
Sequence analysis

iFeature: a python package and web server for features
extraction and selection from protein and peptide
sequences
Zhen Chen1,†, Pei Zhao2,†, Fuyi Li3, André Leier4,5, Tatiana T. Marquez-Lago4,5, Yanan Wang6,
Geoffrey I. Webb7, A. Ian Smith3, Roger J. Daly3,*, Kuo-Chen Chou8,9,*, Jiangning Song3,7,*
1School of Basic Medical Science, Qingdao University, Qingdao, China, 2State Key Laboratory of Cotton Biology, Institute of
Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang, China, 3Biomedicine Discovery Institute and
Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, 4Department of
Genetics, School of Medicine, University of Alabama at Birmingham, USA, 5Department of Cell, Developmental and Integrative
Biology, School of Medicine, University of Alabama at Birmingham, AL, USA, 6Institute of Image Processing and Pattern
Recognition, Shanghai Jiao Tong University, Shanghai, China, 7Monash Centre for Data Science, Faculty of Information
Technology, Monash University, Melbourne, VIC 3800, Australia, 8Gordon Research Institute, Boston, MA 02478, USA, 9Center
for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China

†These two authors contributed equally to this work. *To whom correspondence should be addressed.

†These two authors contributed equally to this work. *To whom correspondence should be addressed.

Supplementary Material
Package Version: 1.0

Content

1. Installation

2. The Full Workflow of iFeature

3. Software Package Overview

4. Commonly Used Feature Descriptors

5. Feature Analysis Using iFeature

6. Online Web Server

7. Summary

8. Acknowledgements

9. References

Brief introduction

iFeature is a comprehensive Python-based toolkit for generating various numerical feature
representation schemes from protein or peptide sequences. iFeature is capable of calculating and
extracting a wide spectrum of 18 major sequence encoding schemes that encompass 53 different
types of feature descriptors. Among the different feature groups, it also allows users to extract
specific physiochemical properties of amino acids from the AAindex database (Kawashima, et al.,
2008). Furthermore, iFeature also integrates five kinds of frequently used feature clustering
algorithms, four feature selection algorithms and three dimensionality reduction algorithms. In order
to facilitate users’ interpretability of outcomes, the clustering and dimensionality reduction results
generated by iFeature can be further visualized in form of scatter diagrams. This makes iFeature a
unique and powerful tool that greatly facilitates feature generation, analysis, training and
benchmarking of machine-learning models and predictions.

1. Installation

iFeature is an open-source Python-based toolkit, which operates depending on the Python
environment (Python Version 3.0 or above) and can be run on multi-OS systems (such as Windows,
Mac and Linux operating systems). Before running iFeature, user should make sure all the following
packages are installed in their Python environment: sys, os, shutil, scipy, argparse, collections,
platform, math, re, numpy (1.13.1), sklearn (0.19.1), matplotlib (2.1.0), and pandas (0.20.1). For
convenience, we strongly recommended users to install the Anaconda Python 3.0 version (or above)
in your local computer. The software can be freely downloaded from
https://www.anaconda.com/download/.

2. The Full Workflow of iFeature

Here, we provide step-by-step user instruction illustrating the full workflow of the iFeature toolkit
by running the example provided in the directory of “examples”. The examples provided include
both protein and peptide sequences.
iFeature includes four main programs: “iFeature.py”, “iFeaturePseKRAAC.py”, “cluster.py” and
“feaSelector.py”. All the functions regarding feature extraction, feature or sample clustering and
feature selection analysis can be executed through these four main programs by specifying the
parameter ‘--type’.

 “iFeature.py” is the main program used to extract 37 different types of feature descriptors:
Usage: tcsh% python iFeature.py --help

 “iFeaturePseKRAAC.py” is the program used to extract the 16 types of pseudo K-tuple
reduced amino acid composition (PseKRAAC) feature descriptors: Usage: tcsh% python
iFeaturePseKRAAC.py --help

 “cluster.py” is the program used for running the feature or sample clustering algorithms:
Usage: tcsh% python cluster.py --help

 “feaSelector.py” is the fourth main program used to implement the feature selection

algorithms: Usage: tcsh% python feaSelector.py --help

Furthermore, the iFeature package contains other Python scripts to generate the position-specific
scoring matrix (PSSM) profiles, predicted protein secondary structure and predicted protein disorder,
which have also been often used to improve the prediction performance of machine learning-based
classifiers in conjunction with sequence-derived information. The three dimensionality reduction
algorithms are also included in the ‘scripts’ directory.
The detailed usage of these scripts is described in section 4 below (“Commonly Used Feature
Descriptors”).

3. Software Package Overview

iFeature can generate a wide spectrum of 18 feature encoding schemes encompassing a total of 53
different types of feature descriptors derived from protein or peptide amino acid sequences. A
complete list of the 18 major encoding schemes included in iFeature is summarized in Table 1 in
the main manuscript. Moreover, iFeature also integrates a variety of commonly used feature
clustering, selection, and dimensionality reduction algorithms, which greatly facilitates feature
generation, importance analysis, model training and performance evaluation experiments. We
describe the detailed functions of iFeature below.

Feature descriptor extraction:
Generally, each type of feature descriptor can be calculated using the main programs “iFeature.py”
and “iFeaturePseKRAAC.py” implemented in the iFeature toolkit. Users are advised to specify the
descriptor type by using the parameter '--type'.

tcsh% python iFeature.py --help

tcsh% python iFeaturePseKRAAC.py --help

Feature clustering:
Use the following command to show the help information for all feature clustering algorithms in the
iFeature package:
tcsh% python cluster.py --help

Feature selection:
Use the following command to show the help information for the feature selection algorithms
implemented in the iFeature package:
tcsh% python feaSelector.py --help

4. Commonly Used Feature Descriptors

Let us assume that a protein or peptide sequence with N amino acid residues can be generally
represented as {R1, R2, …, Rn}, where Ri represents the residue at the i-th position in the sequence.
The following commonly used feature descriptors can be calculated and extracted using iFeature.

4.1 Amino Acid Composition (AAC)

The Amino Acid Composition (AAC) encoding (Bhasin and Raghava, 2004) calculates the
frequency of each amino acid type in a protein or peptide sequence. The frequencies of all 20 natural
amino acids (i.e. “ACDEFGHIKLMNPQRSTVWY”) can be calculated as:

()
() , { , , ,..., }

N t
f t t A C D Y

N
 

where N(t) is the number of amino acid type t, while N is the length of a protein or peptide sequence.

Use the following command to extract the AAC feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
AAC

4.2 Enhanced Amino Acid Composition (EAAC)

The Enhanced Amino Acid Composition (EAAC) feature type is introduced here for the first time.
It calculates the AAC based on the sequence window of fixed length (the default value is 5) that
continuously slides from the N- to C-terminus of each peptide and can be usually applied to encode
the peptides with an equal length. An illustrated example of this encoding scheme is provided in the
following Figure S1.

Figure S1. An illustrated example of the EAAC descriptor.

The EAAC can be calculated as:

(,)
(,) , { , , ,..., }, { 1, 2,..., 17}

()

N t win
f t win t A C D Y win window window window

N win
  

where N(t,win) is the number of amino acid type t in the sliding window win and N(win) is the size
of the sliding window win.

Use the following command to extract the EAAC feature descriptors:
tcsh% python iFeature.py --file examples/test-peptide.txt --type
EAAC

Advanced users can adjust the size of the sliding window to <N> (the default is 5) by running the
following Python command:
tcsh% python codes/EAAC.py examples/test-peptide.txt <N> EAAC.tsv

Here, <N> is a placeholder for the integer defining the window size.

4.3 Composition of k-spaced Amino Acid Pairs (CKSAAP)

The CKSAAP feature encoding calculates the frequency of amino acid pairs separated by any k
residues (k = 0, 1, 2, … , 5. The default maximum value of k is 5) (Chen, et al., 2009; Chen, et al.,
2007a; Chen, et al., 2007b; Chen, et al., 2008). Taking k = 0 as an example, there are 400 0-spaced
residue pairs (i.e., AA, AC, AD,…, YY.). Then, a feature vector can be defined as:

400(, , ,...,)ACAA AD YY

total total total total

NN N N

N N N N

The value of each descriptor denotes the composition of the corresponding residue pair in the protein
or peptide sequence. For instance, if the residue pair AA appears m times in the protein, the
composition of the residue pair AA is equal to m divided by the total number of 0-spaced residue
pairs (Ntotal) in the protein. For k = 0, 1, 2, 3, 4 and 5, the value of Ntotal is P – 1, P – 2, P – 3, P – 4,
P – 5 and P – 6 for a protein of length P, respectively. An illustrated example of this encoding
scheme (k=0) is provided in the following Figure S2.

Figure S2. An illustrated example of the CKSAAP (k = 0) descriptor.

Use the following command to extract the CKSAAP feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
CKSAAP

Advanced users can adjust the value of k to <k> (the default is 5) by running the following Python
command:
tcsh% python codes/CKSAAP.py examples/test-protein.txt <k>
CKSAAP.tsv

Here, <k> is a placeholder for the integer. k = 0, 1, 2, … , 5.

4.4 Tri-Peptide Composition (TPC)

The Tripeptide Composition (TPC) (Bhasin and Raghava, 2004) gives 8000 descriptors, defined as:

(, ,) , , , { , , ,..., }
2

rstN
f r s t r s t A C D Y

N
 



where Nrst is the number of tripeptides represented by amino acid types r, s and t.

Use the following command to extract the TPC feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
TPC

4.5 Di-Peptide Composition (DPC)

The Dipeptide Composition (Saravanan and Gautham, 2015) gives 400 descriptors. It is defined as:

(,) , , { , , , }
1

rsN
D r s r s A C D Y

N
 




where Nrs is the number of dipeptides represented by amino acid types r and s.

Use the following command to extract the DPC feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
DPC

4.6 Dipeptide Deviation from Expected Mean (DDE)

The Dipeptide Deviation from Expected Mean feature vector (Saravanan and Gautham, 2015) is
constructed by computing three parameters, i.e. dipeptide composition (Dc), theoretical mean (Tm),
and theoretical variance (Tv). The above three parameters and the DDE are computed as follows.
Dc(r,s), the dipeptide composition measure for the dipeptide ‘rs’, is given as

(,) , , { , , , }
1

rs
c

N
D r s r s A C D Y

N
 




where Nrs is the number of dipeptides represented by amino acid types r and s and N is the length of
the protein or peptide. Tm(r,s), the theoretical mean, is given by:

(,) sr
m

N N

CC
T r s

C C
 

where Cr is the number of codons that code for the first amino acid and Cs is the number of codons
that code for the second amino acid in the given dipeptide ‘rs’. CN is the total number of possible
codons, excluding the three stop codons (i.e., 61). Tv (r,s), the theoretical variance of the dipeptide
‘rs’, is given by:

(,)(1 (,))
(,)

1
m m

v

T r s T r s
T r s

N






Finally, DDE(r,s) is calculated as:

(,) (,)
(,)

(,)
c m

v

D r s T r s
DDE r s

T r s




Use the following command to extract the DDE feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
DDE

Furthermore, for feature descriptors described in sections 4.1 - 4.6, the output order (the default is
alphabetically) can be selected or defined. In particular, three different orders of amino acids (i.e.
alphabetically, by polarity and by side chain volume) are now available in iFeature. In addition,
iFeature allows users to define an output order that best suits their purposes:
tcsh% python iFeature.py --file examples/test-protein.txt --type
AAC --order polarity

tcsh% python iFeature.py --file examples/test-protein.txt --type
AAC --order userDefined --userDefinedOrder YWVTSRQPNMLKIHGFEDCA

4.7 Grouped Amino Acid Composition (GAAC)

In the GAAC encoding, the 20 amino acid types are further categorized into five classes according
to their physicochemical properties, e.g. hydrophobicity, charge and molecular size (Lee, et al.,
2011b). The five classes include the aliphatic group (g1: GAVLMI), aromatic group (g2: FYW),
positive charge group (g3: KRH), negative charged group (g4: DE) and uncharged group (g5:
STCPNQ). GAAC descriptor is the frequency of each amino acid group, which is defined as:

()
() , { 1, 2, 3, 4, 5}

N g
f g g g g g g g

N
 

() (),tN g N t t g 

where N(g) is the number of amino acid in group g, N(t) is the number of amino acid type t, and N
is the length of the protein/peptide sequence.

Use the following command to extract the GAAC feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
GAAC

4.8 Enhanced GAAC (EGAAC)

The Enhanced GAAC (EGAAC) is also for the first time proposed in this work. It calculates GAAC
in windows of fixed length (default is 5) continuously sliding from the N- to C-terminal of each
peptide and is usually applied to peptides with an equal length.

(,)
(,) , { 1, 2, 3, 4, 5}, { 1, 2,..., 17}

()

N g win
f g win g g g g g g win window window window

N win
  

where N(g, win) is the number of amino acids in group g within the sliding window win and
N(win) is the size of the sliding window win.

Use the following command to extract the EGAAC feature descriptors:
tcsh% python iFeature.py --file examples/test-peptide.txt --type
EGAAC
Advanced users can adjust the size of the sliding window to <N> (the default is 5) by running the
following Python command:
tcsh% python codes/EGAAC.py examples/test-peptide.txt <N>
EGAAC.tsv

Here, <N> is a placeholder for the integer defining the window size.

4.9 Composition of k-Spaced Amino Acid Group Pairs (CKSAAGP)

The Composition of k-Spaced Amino Acid Group Pairs (CKSAAGP) is a variation of the CKSAAP
descriptor, which is our own proposal. It calculates the frequency of amino acid group pairs
separated by any k residues (the default maximum value of k is set as 5). Taking k = 0 as an example,
there are 25 0-spaced group pairs (i.e., g1g1, g1g2, g1g3, … g5g5). Thus, a feature vector of
CKSAAGP can be defined as:

1 1 1 2 1 3 5 5
25(, , ,...,)g g g g g g g g

total total total total

N N N N

N N N N

The value of each descriptor denotes the composition of the corresponding residue group pair in a
protein or peptide sequence. For instance, if the residue group pair g1g1 appears m times in the
protein, the composition of the residue pair g1g1 is equal to m divided by the total number of 0-
spaced residue pairs (Ntotal) in the protein. For k = 0, 1, 2, 3, 4 and 5, the values of Ntotal are P – 1, P
– 2, P – 3, P – 4, P – 5 and P – 6 respectively, for a protein of length P.

Use the following command to extract the CKSAAGP feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
CKSAAGP

Advanced users can adjust the value of k to <k> (the default is 5) by running the following Python
command:
tcsh% python codes/CKSAAGP.py examples/test-protein.txt <k>
CKSAAGP.tsv

Here, <k> is a placeholder for the integer. k = 0, 1, 2, … , 5.

4.10 Grouped Di-Peptide Composition (GDPC)

The Grouped Di-Peptide Composition encoding is another variation of the DPC descriptor. It is
composed of a total of 25 descriptors that are defined as:

(,) , , { 1, 2, 3, 4, 5}
1

rsN
f r s r s g g g g g

N
 



where Nrs is the number of tripeptides represented by amino acid type groups r and s, N is the length
of a protein or peptide sequence.

Use the following command to extract the GDPC feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
GDPC

4.11 Grouped Tri-Peptide Composition (GTPC)

The Grouped Tri-Peptide Composition encoding is also a variation of TPC descriptor, which
generates 125 descriptors, defined as:

(, ,) , , , { 1, 2, 3, 4, 5}
2

rstN
f r s t r s t g g g g g

N
 



where Nrst is the number of tripeptides represented by amino acid type groups r, s and t. N is the
length of a protein or peptide sequence.

Use the following command to extract the GTPC feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
GTPC

4.12 Binary (BINARY)

In the Binary encoding (Chen, et al., 2011; Chen, et al., 2013b), each amino acid is represented by a
20-dimensional binary vector, e.g.
A is encoded by (10000000000000000000), C is encoded by (01000000000000000000), …, Y is
encoded by (00000000000000000001), respectively. This encoding scheme is often used to encode
peptides with an equal length.

Use the following command to extract the BINARY feature descriptors:
tcsh% python iFeature.py --file examples/test-peptide.txt --type
BINARY

4.13 Moran correlation (Moran)

Figure S3. An illustrated example of amino acid physicochemical properties in the AAIndex
database (Kawashima, et al., 2008).

The autocorrelation descriptors are defined based on the distribution of amino acid properties along
the sequence (Feng and Zhang, 2000; Horne, 1988; Sokal and Thomson, 2006). The amino acid
properties used here are different types of amino acids index, which is retrieved from the AAindex
Database (Kawashima, et al., 2008) available at http://www.genome.jp/dbget/aaindex.html/. The
eight indices ‘CIDH920105', 'BHAR880101', 'CHAM820101', 'CHAM820102', 'CHOC760101',
'BIGC670101', 'CHAM810101', 'DAYM780201' are used (Xiao, et al., 2015). An illustrated example
of this amino acid physicochemical properties from the AAIndex database is provided in Figure S3.

All the amino acid indices are centralized and standardized prior to the calculation:

r
r

P P
P






where P
—

 is the average of the properties of the 20 amino acids and σ is the standard deviation of

the properties of the 20 amino acids. P
—

 and σ can be calculated as follows:

20

20
21

1

1
, ()

20 20

r
r

r
r

P
P P P



   




The Moran autocorrelation descriptors (Feng and Zhang, 2000; Lin and Pan, 2001) can thus be
defined as:

' '

1

' 2

1

1
()()

() , 1,2,3...,
1

()

N d

i i d
i

N

i
i

P P P P
N d

I d d nlag
P P

N








 
 







where d is the lag of the autocorrelation, nlag is the maximum value of the lag (default value: 30),

Pi and Pi+d are the properties of the amino acids at positions i and i + d, respectively. ܲ′ is the

average of the considered property P over the entire sequence of length N and is calculated as:

1'

N

i
i

P
P

N



Use the following command to calculate the Moran feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
Moran

Advanced users can adjust the property index to <index> and the maximum value of the nlag to
<N> (the default is 30) by running the following Python command:
tcsh% python codes/Moran.py --file examples/test-protein.txt --
props <index> --nlag <N> --out Moran.tsv

Here, ‘--props <index>’ specifies the amino acid property index from the AAindex database,
where multiple indices can be used here, e.g. “CIDH920105” and “BHAR880101”, separated by “:”,
‘--nlag <N>’ is a placeholder for the integer defining the maximum value of the lag. ‘--out’
specifies the name of the result output file. In the example provided below, “Moran.tsv” is the result
output file.

For example:
tcsh% python codes/Moran.py --file examples/test-protein.txt --
props CIDH920105:BHAR880101 --nlag 15 --out Moran.tsv

4.14 Geary correlation (Geary)

The Geary autocorrelation descriptors (Sokal and Thomson, 2006) for a protein or peptide sequence
are defined as:

2

1

2

1

1
()

2()
() , 1, 2,...,

1
(')

1

N d

i i d
i

N

i
i

P P
N d

C d d nlag
P P

N









 








where d, P, Pi and Pi+d, nlag have the same definitions as described above.

Use the following command to extract the Geary feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
Geary

Advanced users can adjust the property index to <index> and the maximum value of the nlag to
<N> (the default is 30) by running the following Python command:
tcsh% python codes/Geary.py --file examples/test-protein.txt --
props <index> --nlag <N> --out Geary.tsv

Here, ‘--props <index>’ specifies the amino acid property index from the AAindex database,
where multiple indices can be used here, e.g. “CIDH920105” and “BHAR880101”, separated by “:”,
‘--nlag <N>’ is a placeholder for the integer defining the maximum value of the lag. ‘--out’
specifies the name of the result output file.

For example:
tcsh% python codes/Geary.py --file examples/test-protein.txt --
props CIDH920105:BHAR880101 --nlag 15 --out Geary.tsv

4.15 Normalized Moreau-Broto Autocorrelation (NMBroto)

The Moreau-Broto autocorrelation descriptors (Horne, 1988) are defined as follows:

1

() , 1,2,...,
N d

i i d
i

AC d P P d nlag





  

The normalized Moreau-Broto autocorrelation descriptors are thus defined as:

()
() , 1,2,...,

AC d
ATS d d nlag

N d
 



Use the following command to extract the NMBroto feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
NMBroto

Advanced users can adjust the property index to <index> and the maximum value of the nlag to
<N> (the default is 30) by running the following Python command:

tcsh% python codes/NMBroto.py --file examples/test-protein.txt --
props <index> --nlag <N> --out NMBroto.tsv

Here, ‘--props <index>’ specifies the amino acid property index from the AAindex database,
where multiple indices can be used here, e.g. “CIDH920105” and “BHAR880101”, separated by “:”,
‘--nlag <N>’ is a placeholder for the integer defining the maximum value of the lag. ‘--out’
specifies the name of the output file.

For example:
tcsh% python codes/NMBroto.py --file examples/test-protein.txt --
props CIDH920105:BHAR880101 --nlag 15 --out NMBroto.tsv

4.16 Composition/Transition/Distribution (CTD)

The Composition, Transition and Distribution (CTD) features represent the amino acid distribution
patterns of a specific structural or physicochemical property in a protein or peptide sequence (Cai,
et al., 2003; Cai, et al., 2004; Dubchak, et al., 1995; Dubchak, et al., 1999; Han, et al., 2004). 13
types of physicochemical properties have been previously used for computing these features. These
include hydrophobicity, normalized Van der Waals Volume, polarity, polarizability, charge,
secondary structures and solvent accessibility. These descriptors are calculated according to the
following procedures: (i) The sequence of amino acids is transformed into a sequence of certain
structural or physicochemical properties of residues; (ii) Twenty amino acids are divided into three
groups for each of the seven different physicochemical attributes based on the main clusters of the
amino acid indices of Tomii and Kanehisa (Tomii and Kanehisa, 1996). The groups of amino acids
are listed in Table S1.

Table S1. Amino acid physicochemical attributes and the division of the amino acids into three groups

according to each attribute.

Attribute Division

Hydrophobicity_PRAM900101 Polar: RKEDQN Neutral: GASTPHY Hydrophobicity:

CLVIMFW

Hydrophobicity_ARGP820101 Polar:

QSTNGDE

Neutral: RAHCKMV Hydrophobicity: LYPFIW

Hydrophobicity_ZIMJ680101 Polar:

QNGSWTDER

A

Neutral: HMCKV Hydrophobicity: LPFYI

Hydrophobicity_PONP930101 Polar:

KPDESNQT

Neutral: GRHA Hydrophobicity:

YMFWLCVI

Hydrophobicity_CASG920101 Polar:

KDEQPSRNTG

Neutral: AHYMLV Hydrophobicity: FIWC

Hydrophobicity_ENGD860101 Polar:

RDKENQHYP

Neutral :SGTAW Hydrophobicity: CVLIMF

Hydrophobicity_FASG890101 Polar: KERSQD Neutral: NTPG Hydrophobicity:

AYHWVMFLIC

Normalized van der Waals

volume

Volume range:

0-2.78

GASTPD

Volume range: 2.95-

94.0

NVEQIL

Volume range: 4.03-8.08

MHKFRYW

Polarity Polarity value:

4.9-6.2

LIFWCMVY

Polarity value: 8.0-9.2

PATGS

Polarity value: 10.4-13.0

HQRKNED

Polarizability Polarizability

value: 0-1.08

GASDT

Polarizability value:

0.128-120.186

GPNVEQIL

Polarizability value: 0.219-

0.409

KMHFRYW

Charge Positive: KR Neutral:

ANCQGHILMFPSTW

YV

Negative: DE

Secondary structure Helix:

EALMQKRH

Strand: VIYCWFT Coil: GNPSD

Solvent accessibility Buried:

ALFCGIVW

Exposed: PKQEND Intermediate: MPSTHY

4.16.1 CTDC
Taking the hydrophobicity attribute as an example, all amino acids are divided into three groups:
polar, neutral and hydrophobic (Table S1). The Composition descriptor consists of three values: the
global compositions (percentage) of polar, neutral and hydrophobic residues of the protein. An
illustrated example of this encoding scheme is provided in the following Figure S4. The
Composition descriptor can be calculated as follows:

()
() , { , , }

N r
C r r polar neutral hydrophobic

N
 

where N(r) is the number of amino acid type r in the encoded sequence and N is the length of the
sequence.

Use the following command to extract the CTDC feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
CTDC

Considering that categorizing these physicochemical properties into three groups is arbitrary,
iFeature also allows a user-defined classification. Accordingly, we provided three additional Python
scripts to address this issue by allowing users to specify their own amino acid groups and
subsequently calculate the respective CTDC, CTDT and CTDD features (please refer to the
following sections for that). For example, use the following command to extract the user-defined
CTDC feature descriptors:
tcsh% python codes/CTDCClass.py examples/test-protein.txt
CTDCClass.tsv RKEDQN GASTPHY CLV IMFW

4.16.2 CTDT

The Transition descriptor T also consists of three values (Dubchak, et al., 1995; Dubchak, et al.,
1999): A transition from the polar group to the neutral group is the percentage frequency with which
a polar residue is followed by a neutral residue or a neutral residue by a polar residue. Transitions
between the neutral group and the hydrophobic group and those between the hydrophobic group and
the polar group are defined in a similar way. The transition descriptor can then be calculated as:

(,) (,)
(,) , , {(,), (,), (,)}

1

N r s N s r
T r s r s polar neutral neutral hydrophobic hydrophobic polar

N


 



where N(r,s) and N(s,r) are the numbers of dipeptides encoded as “rs” and “sr” respectively in the
sequence, while N is the length of the sequence. An illustrated example of this encoding scheme is
provided in the following Figure S4.

Use the following command to extract the CTDT descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
CTDT

Use the following command to extract the user-defined CTDT feature descriptors:
tcsh% python codes/CTDTClass.py examples/test-protein.txt
CTDTClass.tsv RKEDQN GASTPHY CLV IMFW

Figure S4. An illustrated example of the calculation of composition and transition descriptors.
This example uses the hydrophobicity attribute.

4.16.3 CTDD

The Distribution descriptor consists of five values for each of the three groups (polar, neutral and
hydrophobic) (Dubchak, et al., 1995; Dubchak, et al., 1999), namely the corresponding fraction of
the entire sequence, where the first residue of a given group is located, and where 25, 50, 75 and
100% of occurrences are contained.
For example, we start with the first residue up to and including the residue that marks 25/50/75/100%
of occurrences for residues of any given group and then we simply divide the position of this residue
by the length of the entire sequence.

Use the following command to extract the CTDD descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
CTDD

Use the following command to extract the user-defined CTDD feature descriptors:
tcsh% python codes/CTDDClass.py examples/test-protein.txt
CTDDClass.tsv RKEDQN GASTPHY CLV IMFW

4.17 Conjoint Triad (CTriad)

The Conjoint Triad descriptor (CTriad) considers the properties of one amino acid and its vicinal
amino acids by regarding any three continuous amino acids as a single unit (Shen, et al., 2007). First,
the protein sequence is represented by a binary space (V, F), where V denotes the vector space of
the sequence features, and each feature (Vi) represents a sort of triad type; F is the number vector
corresponding to V, where fi, the value of the i-th dimension of F, is the number of type Vi appearing
in the protein sequence.

For the amino acids that have been catalogued into seven classes, the size of V should be equal to 7

ⅹ7ⅹ7=343. Accordingly, i = 1, 2, 3, …, 343. An illustrated example of this encoding scheme is

provided in the following Figure S5.
In principle, the longer a protein sequence, the higher the probability to have larger values of fi,
confounding the comparison of proteins with different lengths. Thus, we define a new parameter, di,
by normalizing fi with the following equation:

1 2 343

1 2 343

min{ , ,..., }

max{ , ,..., }
i

i

f f f f
d

f f f




Use the following command to extract the CTriad feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
CTriad

Figure S5. Schematic diagram for constructing the vector space (V, F) of a given protein sequence.
V is the vector space of the sequence features; each feature (Vi) represents a triad composed of three
consecutive amino acids; F is the number vector corresponding to V, and the value of the i-th entry
of F, denoted fi, is the number of occurrences that the triad associated with Vi appearing in the protein
sequence. The figure was adapted from the Supplementary Figure in (Shen, et al., 2007).

4.18 k-Spaced Conjoint Triad (KSCTriad)

The k-Spaced Conjoint Triad (KSCTriad) descriptor is based on the Conjoint CTriad descriptor,
which not only calculates the numbers of three continuous amino acid units, but also considers the
continuous amino acid units that are separated by any k residues (The default maximum value of k
is set to 5). For example, AxRxT is a 1-spaced triad. Thus, the dimensionality of the KSCTriad
encoded feature vector is 343 (k+1). An illustrated example of this encoding scheme is provided in
the following Figure S6.

Use the following command to extract the KSCTriad feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
KSCTriad

Advanced users can adjust the value of k to <k> (the default is 5) by running the following Python
command:
tcsh% python codes/KSCTriad.py examples/test-protein.txt <k>
KSCTriad.tsv

Here, <k> is a placeholder for the integer. k = 0, 1, 2, … , 5.

Figure S6. Schematic diagram for constructing the vector space (V, F) of protein sequence (k =1).

4.19 Sequence-Order-Coupling Number (SOCNumber)

The d-th rank sequence-order-coupling number is defined as:

2
,

1

() , 1,2,3,...,
N d

d i i d
i

d d nlag





  

where di,i+d is the entry in a given distance matrix describing a distance between the two amino acids
at position i and i + d, nlag denotes the maximum value of the lag (default value: 30) and N is the
length of a protein or peptide sequence. As distance matrix both the Schneider-Wrede
physicochemical distance matrix (Schneider and Wrede, 1994) used by Kuo-Chen Chou, and the
chemical distance matrix by Grantham (Grantham, 1974) are used. Accordingly, the descriptor
dimension will be nlagⅹ2. The quasi-sequence-order descriptors described next also utilizes the
two matrices. An illustrated example of this encoding scheme is provided in the following Figure
S7.

Note: the length of the protein must be not less than the maximum value of nlag.

Use the following command to extract the SOCNumber feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
SOCNumber

Advanced users can adjust the maximum value of the nlag to <N> (the default is 30) by running
the following Python command:
tcsh% python codes/SOCNumber.py examples/test-protein.txt <N>
SOCNumber.tsv

Here, <N> is a placeholder for the integer defining the maximum value of nlag.

Figure S7. A schematic drawing to show (a) the 1st-rank, (b) the 2nd-rank, and (3) the 3rd-rank
sequence-order-coupling mode along a protein sequence. (a) reflects the coupling mode between all
the most adjacent residues, (b) shows the coupling between the adjacent plus one residues, and (c)
shows the coupling between the adjacent plus two residues. This figure is adapted from (Chou, 2000).

4.20 Quasi-sequence-order (QSOrder)

For each amino acid type, a quasi-sequence-order descriptor can be defined as:

20

1 1

, 1, 2,..., 20r
r nlag

r d
r d

f
X r

f w
 

 
  

where fr is the normalized occurrence of amino acid type r and w is a weighting factor (w = 0.1),
nlag and ߬ௗhave the same definitions as described above. These are the first 20 quasi-sequence-
order descriptors. The other 30 quasi-sequence-order descriptors are defined as:

20

1 1

20
, 21, 22,..., 20d

d nlag

r d
r d

w
X d nlag

f w
 

 
  

  

Extract the QSOrder descriptors:

tcsh% python iFeature.py --file examples/test-protein.txt --type
QSOrder

Advanced users can adjust the maximum value of the nlag to <N> (the default is 30) by running
the following Python command:
tcsh% python codes/QSOrder.py examples/test-protein.txt <N>
QSOrder.tsv

Here, <N> is a placeholder for the integer defining the maximum value of nlag.

4.21 Pseudo-Amino Acid Composition (PAAC)

This group of descriptors has been proposed in (Chou, 2001; Chou, 2005). Let ܪଵ
௢ሺ݅ሻ, ܪଶ

௢ሺ݅ሻ,	ܯ௢ሺ݅ሻ
for i = 1, 2, 3, … 20 be the original hydrophobicity values, the original hydrophilicity values and the
original side chain masses of the 20 natural amino acids, respectively. They are converted to the
following quantities by a standard conversion:

20

1 1
1

1 20 20
2

1 1
1 1

1
() ()

20
()

1
[() ()]

20
20

o o

i

o o

i i

H i H i
H i

H i H i



 








 

where ܪଶ
௢ሺ݅ሻ and 	ܯ௢ሺ݅ሻ are normalized as ܪଶሺ݅ሻ and ܯሺ݅ሻ in the same manner.

Next, a correlation function can be defined as:

2 2 2
1 1 2 2

1
(,) {[() ()] [() ()] [() ()] }

3i j i j i j i jR R H R H R H R H R M R M R      

This correlation function is actually an averaged value for the three amino acid properties:
hydrophobicity value, hydrophilicity value and side chain mass. Therefore, we can extend this
definition of correlation function for one amino acid property or for a set of n amino acid properties.

For one amino acid property, the correlation can be defined as:

2
1 1(,) [() ()]i j i jR R H R H R  

where H(Ri) is the amino acid property of amino acid Ri after standardization.

An illustrated example of the correlation function is provided in the following Figure S8.

Figure S8. A schematic drawing to show (a) the first-tier, (b) the second-tier, and (3) the third-tier
sequence order correlation mode along a protein sequence. (a) reflects the coupling mode between
all the most adjacent residues, (b) shows the coupling between the adjacent plus one residues, and
(c) shows the coupling between the adjacent plus two residues. This figure is adapted from (Chou,
2001) for illustration purposes.

For a set of n amino acid properties, it can be defined as:

2

1

1
(,) [() ()]

n

i j k i k j
n

R R H R H R
n 

  

where Hk(Ri) is the k-th property in the amino acid property set for amino acid Ri.

A set of descriptors called sequence order-correlated factors are defined as:

1

1 1
1

1
(,)

1

N

i i
i

R R
N






  
 

2

2 2
1

1
(,)

2

N

i i
i

R R
N






  
 

3

3 3
1

1
(,)

3

N

i i
i

R R
N






  
 

…

1

1
(,)

N

i i
i

R R
N



 


  
 

where λ (λ < N) is an integer parameter to be chosen. Let fi be the normalized occurrence
frequency of amino acid i in the protein sequence. Then, a set of 20 + λ descriptors called the
pseudo-amino acid composition for a protein sequence can be defines as:

20

1 1

, (1 20)c
c

r j
r j

f
X c

f w


 

  
  

20
20

1 1

, (21 20)c
c

r j
r j

w
X c

f w




 


    

  

where w is the weighting factor for the sequence-order effect and is set to w = 0.05 in iFeature as
suggested by Chou et al. (Chou, 2001).

Use the following command to extract the PAAC feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
PAAC

Advanced users can adjust the maximum value of the λ to <N> (the default is 30) by running the
following Python command:
tcsh% python codes/PAAC.py examples/test-protein.txt <N> PAAC.tsv

Here, <N> is a placeholder for the integer defining the maximum value of λ.

4.22 Amphiphilic Pseudo-Amino Acid Composition (APAAC)

Amphiphilic Pseudo-Amino Acid Composition (APAAC) was proposed in (Chou, 2001; Chou,
2005). The definition of this set of features is similar to the PAAC descriptors. Using H1(i) and H2(j)
as previously defined, the hydrophobicity and hydrophilicity correlation functions are defined as:

1
, 1 1

2
, 2 2

() ()

() ()

i j

i j

H H i H j

H H i H j




,

respectively. An illustrated example of the correlation functions is provided in the following Figure
S9.
Thus, sequence order factors can be defined as:

1
1

1 , 1
1

1
2

2 , 1
1

2
1

3 , 2
1

2
2

4 , 2
1

1
2 1 ,

1

2
2 ,

1

1

1

1

1

1

2

1

2

...

1

1

N

i i
i

N

i i
i

N

i i
i

N

i i
i

N

i i
i

N

i i
i

H
N

H
N

H
N

H
N

H
N

H
N























 




 


 


 


 


 


 


 














Then, a set of descriptors, called Amphiphilic Pseudo-Amino Acid Composition (APAAC), is
defined as:

20 2

1 1

20 2

1 1

, (1 20)

, (21 20 2)

c
c

r j
r j

u
c

r j
r j

f
P c

f w

P u
f w



 



 

  
 


    

 

 

 

where w is the weighting factor. In iFeature this factor is set to w = 0.5 as described in Chou’s work
(Chou, 2001).

Figure S9. A schematic diagram to show (a1/a2) the first-rank, (b1/b2) the second-rank and (c1/c2)
the third-rank sequence-order-coupling mode along a protein sequence through a

hydrophobicity/hydrophilicity correlation function, where ܪ௜,௝
ଵ and ܪ௜,௝

ଶ are given by the

aforementioned equation. Panels (a1/a2) reflects the coupling mode between the most adjacent
residues, panels (b1/b2) shows the coupling between the adjacent plus one residues, and panels
(c1/c2) shows the coupling between the adjacent plus two residues. This figure is adapted from
(Chou, 2005) for illustration purposes.

Use the following command to extract the APAAC feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
APAAC

Advanced users can adjust the maximum value of the λ to <N> (the default is 30) by running the
following Python command:
tcsh% python codes/APAAC.py examples/test-protein.txt <N> APAAC.tsv

Here, <N> is a placeholder for the integer defining the maximum value of λ.

4.23 K-Nearest Neighbor for peptides (KNNpeptide)

The K-Nearest Neighbor for peptides (KNNpeptide) descriptor (Chen, et al., 2013a) requires an
extra training file and a label file. The training file is used to calculate the top K-Nearest Neighbor
peptides by calculating the similarity score of two peptide sequences. Here, the similarity score
between two peptides is defined as:

1, 2,
1

(,)

62(,), (62) 0
(,) {

0, (62) 0

n

i i
i

Score S P P

BLOSUM a b if BLOSUM
S a b

if BLOSUM












where P is the peptide with n amino acids, i is the sequence position, and BLOSUM62(a,b) is the
corresponding element value for amino acids a and b in the BLOSUM62 matrix. The label file
divides the protein sequences in the training file into different classes (positive samples and negative
samples or multiclass). Then, the ratios of different sample classes for the top K-Nearest Neighbor
peptides will be calculated. The default K values in KNNpeptide are set based on a set of values (i.e.
1%, 2%, 3%, …, 30% of the total numbers of samples in the training file). KNNpeptide descriptor
can be applied to encode peptides of equal length.

Use the following command to extract the KNNpeptide descriptors:
tcsh% python iFeature.py --file examples/test-peptide.txt --type
KNNpeptide --train examples/train-peptide.txt --label
examples/label.txt

4.24 K-Nearest Neighbor for proteins (KNNprotein)

The K-Nearest Neighbor for Proteins (KNNProtein) descriptor is similar to the KNNpeptide
descriptor. The only difference between these two descriptors is the way similarity is calculated. In
KNNprotein the similarity score of two protein sequences is obtained by applying the Needleman-
Wunsch algorithm (Needleman and Wunsch, 1970).

Use the following command to extract the KNNprotein feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
KNNprotein --train examples/train-protein.txt --label
examples/label.txt

4.25 PSSM profile (PSSM)

This feature descriptor (Cai, et al., 2012; Radivojac, et al., 2010) is extracted from the Position-
Specific Scoring Matrix (PSSM) profile. An illustrated example of PSSM profile is provided in
Figure S10. The PSSM profile can be obtained by running PSI-BLAST (Altschul, et al., 1997)
against the uniref 50 database. The PSSM descriptor is usually applied to encode the peptides with
equal length. Each amino acid in the peptide is represented by a 20-dimensional vector.

Figure S10. Example of a PSSM profile.

Use the following command to extract the PSSM feature descriptors:
tcsh% python iFeature.py --file examples/test-peptide.txt --type
PSSM --path examples/predictedProteinProperty

‘--path’ specifies the path of the protein PSSM profile files and the PSSM profiles can be obtained
by running the script “generatePSSMProfile.py” in the scripts directory.

4.26 AAindex (AAINDEX)

Physicochemical properties of amino acids are the most intuitive features for representing
biochemical reactions and have been extensively applied in bioinformatics research. The amino acid
indices (AAindex) database (Kawashima, et al., 2008) collects many published indices representing
physicochemical properties of amino acids. For each physicochemical property, there is a set of 20
numerical values for all amino acids. Currently, 544 physicochemical properties can be retrieved
from the AAindex database. After removing physicochemical properties with value 'NA' for any of
the amino acids, 531 physicochemical properties were left. In contrast to the residue-based encoding
methods of amino acid identity and evolutionary information, a vector of 531 mean values is used
to represent a sample for various window sizes. The AAINDEX descriptor (Tung and Ho, 2008) can
be applied to encode peptides of equal length.

Use the following command to perform extract the AAINDEX feature descriptors:
tcsh% python iFeature.py --file examples/test-peptide.txt --type
AAINDEX

4.27 BLOSUM62 (BLOSUM62)

In this descriptor, the BLOSUM62 matrix is employed to represent the protein primary sequence
information as the basic feature set. A matrix comprising of m × n elements is used to represent each
residue in a training dataset, where n denotes the peptide length and m  =  20, which elements
comprise 20 amino acids. Each row in the BLOSUM62 matrix is adopted to encode one of 20 amino

acids. The BLOSUM62 descriptor (Lee, et al., 2011a) can be applied to encode peptides of equal
length.

Use the following command to extract the BLOSUM62 descriptors:
tcsh% python iFeature.py --file examples/test-peptide.txt --type
BLOSUM62

4.28 Secondary Structure Elements Content (SSEC)

Protein secondary structure was first predicted by the PSIPRED V4.0 software (Jones, 1999). Here,
the content of three types of secondary structure elements is calculated.

()
() , { , , }

N sse
f sse sse Helix Strand Coil

N
 

where N(sse) is the number of the secondary structure element sse and N is the length of the
protein/peptide sequence.

Use the following command to extract the SSEC feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
SSEC --path examples/predictedProteinProperty

‘--path’ specifies the path of the predicted protein secondary structure files, and the predicted
secondary structure file can be obtained by running the script “generateSecondaryStructure.py” in
the scripts directory.

4.29 Secondary Structure Elements Binary (SSEB)

In the Secondary Structure Elements Binary (SSEB) descriptor, each residue in a peptide is
represented by a 3-dimensional vector, i.e. Helix (001), Strand (010), Coil (100). The SSEB
descriptor can be applied to encode peptides of equal length.

Use the following command to extract the SSEB descriptors:
tcsh% python iFeature.py --file examples/test-peptide.txt --type
SSEB --path examples/predictedProteinProperty

4.30 Disorder (Disorder)

Protein disorder information was first predicted by the VSL2 software (Obradovic, et al., 2005; Peng,
et al., 2006). The predicted probability value is taken as the feature. The Disorder descriptor (Cai, et
al., 2012; Chen, et al., 2015) can be applied to encode peptides of equal length.

Use the following command to extract the Disorder descriptors:
tcsh% python iFeature.py --file examples/test-peptide.txt --type
Disorder --path examples/predictedProteinProperty

‘--path’ specifies the path of the predicted protein disorder files.

4.31 DisorderC (DisorderC)

For this descriptor, the content of disorder and order is calculated.

()
() , { , }

N d
f d d order disorder

N
 

where N(d) is the number of ordered or disordered residues and N is the length of the protein/peptide
sequence.

Use the following command to extract the DisorderC feature descriptors:
tcsh% python iFeature.py --file examples/test-protein.txt --type
DisorderC --path examples/predictedProteinProperty

4.32 Disorder Binary (DisorderB)

For the Disorder Binary (DisorderB) descriptor, each residue in a peptide sequence is represented
by a 2-dimensional vector, namely an order residue by (10) and a disorder residue by (01). The
DisorderB descriptor can be applied to encode peptides of equal length.

Use the following command to extract the DisorderB feature descriptors:
tcsh% python iFeature.py --file examples/test-peptide.txt --type
DisorderB --path examples/predictedProteinProperty

4.33 Accessible Solvent accessibility (ASA)

The protein Accessible Solvent Accessibility information was first predicted by the SPINE-X
software (Faraggi, et al., 2009; Heffernan, et al., 2016; Heffernan, et al., 2015). The predicted ASA
value is used as input feature. The ASA descriptor can be applied to encode peptides with an equal
length.

Use the following command to extract the ASA feature descriptors:
tcsh% python iFeature.py --file examples/test-peptide.txt --type
ASA --path examples/predictedProteinProperty

‘--path’ specifies the path of the SPINE-X output files.

4.34 Torsion angle (TA)

The protein Torsion Angle information was also introduced first by the SPINE-X software (Faraggi,
et al., 2009; Heffernan, et al., 2016; Heffernan, et al., 2015). The predicted “phi” and “psi” values
are used as features. The TA descriptor can be applied to encode peptides of equal length.

Use the following command to extract the TA feature descriptors:
tcsh% python iFeature.py --file examples/test-peptide.txt --type TA
--path examples/predictedProteinProperty

‘--path’ specifies the path of the SPINE-X output files.

4.35 Z-Scale (ZSCALE)

For this descriptor, each amino acid is characterized by five physicochemical descriptor variables
(cf. Table S2), which were developed by Sandberg et al. in 1998 (Sandberg, et al., 1998). The
ZSCALE descriptor (Chen, et al., 2012) can be applied to encode peptides of equal length.

Use the following command to extract the ZSCALE feature descriptors:
tcsh% python iFeature.py --file examples/test-peptide.txt --type
ZSCALE

Table S2. Z-scale for the 20 amino acids.

Amino

acid

Z1 Z2 Z3 Z4 Z5 Amino

Acid

Z1 Z2 Z3 Z4 Z5

A 0.24 -2.32 0.60 -0.14 1.30 M -2.85 -0.22 0.47 1.94 -0.98

C 0.84 -1.67 3.71 0.18 -2.65 N 3.05 1.60 1.04 -1.15 1.61

D 3.98 0.93 1.93 -2.46 0.75 P -1.66 0.27 1.84 0.70 2.00

E 3.11 0.26 -0.11 -3.04 -0.25 Q 1.75 0.50 -1.44 -1.34 0.66

F -4.22 1.94 1.06 0.54 -0.62 R 3.52 2.50 -3.50 1.99 -0.17

G 2.05 4.06 0.36 -0.82 -0.38 S 2.39 -1.07 1.15 -1.39 0.67

H 2.47 1.95 0.26 3.90 0.09 T 0.75 -2.18 -1.12 -1.46 -0.40

I -3.89 -1.73 -1.71 -0.84 0.26 V -2.59 -2.64 -1.54 -0.85 -0.02

K 2.29 0.89 -2.49 1.49 0.31 W -4.36 3.94 0.59 3.44 -1.59

L -4.28 -1.30 -1.49 -0.72 0.84 Y -2.54 2.44 0.43 0.04 -1.47

4.36 48 pseudo K-tuple reduced amino acids composition (PseKRAAC)

Previous studies indicate that certain residues are similar in their physicochemical features, and can
be clustered into groups because they play similar structural or functional roles in proteins (Wang
and Wang, 1999). By implementing reduced amino acid alphabets, the protein complexity can be
significantly simplified, which reduces information redundancy and decreases the risk of overfitting.
The Pseudo K-tuple Reduced Amino Acids Composition (PseKRAAC) descriptor (Zuo, et al., 2017)
includes two different feature types for protein sequence analysis: g-gap and λ-correlation
PseKRAAC (Chou, 2001).
The g-gap PseKRAAC is used to represent a protein sequence with a vector containing RAACK
components, where g represents the gap between each K-tuple peptides (Liu, et al., 2015a; Liu, et
al., 2015b; Liu, et al., 2015c; Wang, et al., 2016). A g-gap of n reflects the sequence-order
information for all K-tuple peptides with the starting residues separated by n residues. An illustrated

example of this encoding scheme (K = 2) is provided in the following Figure S11A.
The λ-correlation PseKRAAC is used to represent a protein sequence with a vector containing
RAACK components, where λ is an integer that represents the correlation tier and is less than N-K,
where N is the sequence length. The n-th-tier correlation factor (λ = n) reflects the sequence-order
correlation between the n-th nearest residues. An illustrated example of this encoding scheme (K =
2) is provided in the following Figure S11B.

Figure S11. A schematic diagram to show: (A) g-gap definition of dipeptide, and (B) λ-correlation
definition of dipeptide A: (a) g-gap of 0 reflects the sequence-order information between all adjacent
dipeptides, i.e. separated by zero residues, (b) g-gap of 1 reflects the sequence-order information for
all dipeptides with the starting residues separated by one residue, and (c) g-gap of 2 reflects the
sequence-order information for all dipeptides with the starting residues separated by two residues;
B: (a) the first-tier correlation factor reflects the sequence-order correlation between the nearest
residues along a protein chain, (b) the second-tier correlation factor reflects the sequence-order
correlation between the second nearest residues, (c) the third-tier correlation factor reflects the
sequence-order correlation between the 3rd nearest residues, and so forth. The figure is adapted from
(Zuo, et al., 2017).

The 16 types of reduced amino acid alphabets with different clustering approaches can be used to
generate different versions of pseudo reduced amino acid compositions (PseRAACs) (Table S3).

Table S3. A list of 16 types of reduced amino acid alphabets for proteins (Zuo, et al., 2017).

Type Description Cluster Reference

1 RedPSSM 2-19 (Liang, et al., 2015)

2 BLOSUM 62 matrix 2-6, 8, 15 (Ogul and Mumcuoglu, 2007)

3 PAM matrix (3A) and WAG matrix (3B) 2-19 (Kosiol, et al., 2004)

4 Protein Blocks 5,8,9,11,13 (Zuo and Li, 2010)

5 BLOSUM50 matrix 3,4,8,10,15 (Zuo and Li, 2010)

6 Multiple cluster 4,5A,5B,5C (Melo and Marti-Renom, 2006)

7 Metric multi-dimensional scaling 2-19 (Rakshit and Ananthasuresh, 2008)

8 Grantham Distance Matrix 2-19 (Susko and Roger, 2007)

9 Grantham Distance Matrix 2-19 (Susko and Roger, 2007)

10 BLOSUM matrix for SWISS-PROT 2-19 (Liu, et al., 2002)

11 BLOSUM matrix for SWISS-PROT 2-19 (Liu, et al., 2002)

12 BLOSUM matrix for DAPS 2-18 (Li and Wang, 2007)

13 Coarse-graining substitution 4,12,17 (Peterson, et al., 2009)

matrices

14 Alphabet Simplifer 2-19 (Cannata, et al., 2002)

15 MJ matrix 2-16 (Li, et al., 2003)

16 BLOSUM50 matrix 2-16 (Li, et al., 2003)

Use the following command to obtain the help information:
tcsh% python iFeaturePseKRAAC.py --help

The following parameters are required by ‘iFeaturePseKRAAC.py’:
 --file protein/peptide sequence file in fasta format
 --type descriptor type in the PseKRAAC feature group
 --subtype feature types for protein sequence analysis, two alternative modes

(g-gap and lambda-correlation) are available, with the ‘g-gap’ model as the default.
 --ktuple K-tuple value, three K-tuple values (i.e. 1, 2 and 3) are available,

default is 2
 --gap_lambda gap value for the ‘g-gap’ model or lambda value for the ‘lambda-

correlation’ model, 10 values are available (i.e. 0, 1, 2, …, 9)
 --raactype the reduced amino acids cluster type.

Users can run the following command to view the available values for each descriptor type:
tcsh% python iFeaturePseKRAAC.py --show

Use the following command to extract the PseKRAAC feature descriptors:
tcsh% python iFeaturePseKRAAC.py --file examples/test-protein.txt
--type type1 --subtype lambda-correlation --ktuple 2 --gap_lambda
2 --raactype 5

5. Feature selection analysis using iFeature

iFeature integrates several commonly used (and very useful) feature selection, clustering, and
dimensionality reduction algorithms. In order to facilitate the interpretation of the results for non-
expert users, a scatter diagram will be plotted, showing the distribution of the clusters. The clustering
result will also be stored in a text file. The clustering algorithms can be run using the following
command:
tcsh% python cluster.py --file descriptor.tsv --type
<clustering_algorithm> --sof <sample/feature>

‘--file’ is the descriptor output file, which is generated by ‘iFeature.py’ or ‘iFeaturePseKRAAC.py’,
‘--type’ specifies the clustering algorithm (kmeans, hcluster, apc, meanshift and dbscan). ‘--sof’
specifies the option for performing clustering for samples or features (default: samples).

5.1 K-Means clustering (kmeans)

The K-Means algorithm clusters data by trying to separate samples in n groups of equal variance,
minimizing a criterion known as the inertia or within-cluster sum-of-squares (Jain, et al., 1999;
Rokach and Maimon, 2005). This algorithm requires the number of clusters to be specified. It scales
well to large numbers of samples and has been used across a broad range of application areas.
The K-means algorithm divides a set of N samples X into K disjoint clusters C, each described by

the mean μj of the samples in the cluster. The means are commonly called the cluster “centroids”.

Note that they are not, in general, points from the set X, although they live in the same space. The

K-means algorithm aims to choose centroids that minimize the inertia, or within-cluster sum of
squared criterion:

2

0

min()
j

n

j j
C

i

x
 





Use the following command to perform the K-Means clustering:
tcsh% python cluster.py --file examples/example.tsv --type kmeans
--sof feature --nclusters 2

Figure S12. An example of the scatter diagram generated by iFeature for ‘kmeans’ clustering. The
dataset is composed of samples of malonylation and non-malonylation sites in mammals and the
feature extraction method is EAAC.

5.2 Hierarchical clustering (hcluster)

Hierarchical clustering is a general family of clustering algorithms that build nested clusters by
merging or splitting them successively (Jain, 2010; Jain, et al., 1999; Rokach and Maimon, 2005).
This hierarchy of clusters is represented as a tree (or dendrogram). The root of the tree is the unique
cluster that gathers all the samples, the leaves being the clusters with only one sample.

Use the following command to perform the hierarchical clustering:

tcsh% python cluster.py --file examples/example.tsv --type hcluster
--sof feature

In addition to the scatter diagram, for ‘hcluster’ clustering, a hierarchical cluster diagram can also
be alternatively plotted. An example is shown in Figure S13 below.

Figure S13. Example of a hierarchical cluster diagram for ‘hcluster’ clustering.

5.3 Affinity Propagation clustering (apc)

Affinity Propagation creates clusters by sending messages between pairs of samples until
convergence (Frey and Dueck, 2007). A dataset is then described using a small number of exemplars,
which are identified as the most representative of samples. The messages sent between pairs
represent the suitability for one sample to be the exemplar of the other, which is updated in response
to the values from other pairs. This updating happens iteratively until convergence has been achieved,
at which point the final exemplars are chosen, and hence the final clustering is given.

Use the following command to perform the Affinity Propagation clustering:
tcsh% python cluster.py --file examples/example.tsv --type apc --
sof feature

5.4 Mean Shift clustering (meanshift)

MeanShift clustering aims to discover blobs in a smooth density of samples (Cheng, 1995). It is a
centroid based algorithm, which works by updating candidates for centroids that are the mean of the
points within a given region. These candidates are then filtered in a post-processing stage to
eliminate near-duplicates and to form the final set of centroids.

Use the following command to perform the Mean Shift clustering:
tcsh% python cluster.py --file examples/example.tsv --type
meanshift --sof feature

5.5 DBSCAN clustering (dbscan)

The DBSCAN algorithm views clusters as areas of high density separated by areas of low density
(Ester, et al., 1996). Due to this rather generic view, clusters found by DBSCAN can have any shape,
as opposed to k-means which assumes that clusters are convex shaped. The central component of
the DBSCAN algorithm is the concept of core samples, which are samples that are in areas of high
density. A cluster is therefore a set of core samples, each close to each other (measured by some
distance measure) and a set of non-core samples that are close to a core sample (but are not
themselves core samples). The algorithm has two parameters, min_samples and eps, which define
formally what we mean when we say ‘dense’. Higher min_samples or lower eps indicate a higher
density necessary to form a cluster.

Use the following command to perform the DBSCAN clustering:
tcsh% python cluster.py --file examples/example.tsv --type dbscan
--sof feature

The feature selection algorithms can be run by the following command:
tcsh% python feaSelector.py --file descriptor.tsv --type
<feature_selection_algorithm> --label sample_label_file

‘--label’ specify the sample class of the samples in ‘descriptor.tsv’.

5.6 Chi-Square feature selection (CHI2)

In statistics, the χଶ test is applied to test the independence of two events. χଶ is a measure of how
much expected counts E and observed counts N deviate from each other (Chen, et al., 2009). A high
value of χଶ indicates that the hypothesis of independence, which implies that expected and
observed counts are similar, is incorrect. This score can be used to select the n features with the
highest values for the test chi-square statistic from x, which must contain only non-negative features
such as Booleans or frequencies, relative to the classes.

2
2 ()A E

x
E




where A is the observed value and E is the expected value.

Use the following command to perform the Chi-Square feature selection:
tcsh% python feaSelector.py --file examples/example.tsv --type CHI2
--label examples/label.txt --out CHI2_feature.txt

5.7 Information Gain feature selection (IG)

Information gain (IG) measures the amount of information in bits with respect to the class prediction,
if the only information available is the presence of a feature and the corresponding class distribution
(Chen, et al., 2009; Chen, et al., 2007b). For any variable X from the features, its information entropy
is defined as:

2() () log (())i i
i

I X P x P x 

where xi represents a set of values of X, and P(xi) denotes the prior probability of xi. The conditional
entropy of X under the condition of Y is defined as:

2(|) () (|) log ((|))j i i i j
j i

I X Y P y P x y P x y  

where P(xi|yj) is the posterior probability of xi given the value yj of Y. Then, information gain IG(X|Y)
is given by:

(|) () ()IG X Y I X I Y 

Use the following command to perform the Information Gain feature selection:
tcsh% python feaSelector.py --file examples/example.tsv --type IG
--label examples/label.txt --out IG_feature.txt

5.8 Mutual Information feature selection (MI)

Given two random variables X and Y, their mutual information (Peng, et al., 2005) can be defined
based on their probabilities P(X), P(Y) and P(X, Y):

(,)
(,) (,) log

() ()x X y Y

P x y
I X Y P x y

P x p y 

 

Mutual Information feature selection can be executed using the following command:
tcsh% python feaSelector.py --file examples/example.tsv --type MIC
--label examples/label.txt --out MIC_feature.txt

5.9 Pearson Correlation coefficient feature selection (pearsonr)

The Pearson correlation coefficient (M. Stigler, 1989) r for a pair of variables (X, Y) is calculated as
follows:

2 2

()()

() ()

i i i i
i

i i i i
i i

x x y y
r

x x y y

 


 



 

where x
_

i is the mean of X, and y
_

i the mean of Y. The value of r is bounded within the [-1, 1] interval.

A higher absolute value of r corresponds to a higher correlation between X and Y.

Use the following command to perform the Pearson Correlation feature selection:
tcsh% python feaSelector.py --file examples/example.tsv --type
pearsonr --label examples/label.txt --out pearsonr_feature.txt

After running the feature selection algorithm (as discussed in sections 5.6 - 5.9), the feature
descriptors will be ranked according to their importance. The higher the ranking is, the more
important the feature descriptor is.

In addition, three dimensionality reduction algorithms (PCA, LDA, and t-SNE) have been
implemented in the iFeature package and can be run using the following commands (explained in
sections 5.10 - 5.12 below). To facilitate users’ understanding and interpretability of results, the
dimensionality reduction results can be visualized in the form of a scatter diagram.

5.10 Principal Component Analysis (PCA)

PCA (Pearson, 1901) is used to decompose a multivariate dataset in a set of successive orthogonal
components that explain a maximum amount of the variance.

Use the following command to perform the PCA analysis:
tcsh% python scripts/pcaAnalysis.py --file examples/example.tsv --
ncomponents 3 --out pcaResult.txt

‘--ncomponents’ specifies the number of principal components, ‘--out’ specifies the name of the
output file of PCA.

5.11 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (Blei, et al., 2003) is a generative probabilistic model for collections of
discrete dataset such as text corpora.

Use the following command to perform the LDA analysis:
tcsh% python scripts/ldaAnalysis.py --file examples/example.tsv --
ncomponents 3 --label examples/label.txt --out ldaResult.txt

‘--label’ is the label file, which divides the protein sequences in the training file into different classes
(positive samples and negative samples).

5.12 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten, 2014) is a technique for
dimensionality reduction that is particularly well suited for the visualization of high-dimensional
datasets.

Use the following command to perform the t-SNE analysis:
tcsh% python scripts/tsneAnalysis.py --file examples/example.tsv -
-label examples/label.txt --out tSNEResult.txt

‘--label’ is the label file, which divides the protein sequences in the training file into different classes
(positive samples and negative samples).

6. Online Web Server

Moreover, for users that are not familiar with computer programming using Python we also
implemented an online web server of iFeature, which is publicly available at
http://ifeature.erc.monash.edu/. It is configured for the extensible cloud computing facility
supported by the e-Research Centre at Monash University, equipped with 16 cores, 64 GB memory
and a 2 TB hard disk. This configuration can be easily upgraded in line with increasing user demands
in the future.

The iFeature web server (called iFeatureWeb) is a user-friendly online platform for computing the
protein/peptide descriptors presented in the iFeature package. This is a short tutorial for using
iFeatureWeb.

Input “http://ifeature.erc.monash.edu” on your browser, and click the “Go To Use It” button. Then,
you will see the descriptor calculation page.

Click here to go to the

descriptor calculation page.

Step 1. Input your fasta sequences in the designated text area or upload a file that includes the
sequences in fasta format.

Note: Paste your protein (or peptide) sequences in the 'TEXTAREA' or upload a file that includes
the sequences. The protein sequences must be in 'FASTA' format. iFeatureWeb was designed to
accept at most 100 sequences at once.

Step 2. Select descriptor(s).

One or more descriptor types should be chosen. Then you can click the ‘Submit’ button at the bottom
of the page to calculate the selected descriptor(s) or go on to select the clustering algorithms for
sample clustering or feature clustering.

Step 3. Select the clustering algorithms.

TEXTAREA

Click to select the

Descriptor type.

‘*’ indicates that submitted proteins or peptide sequences need to have an equal

length in order to calculate the corresponding Descriptor type.

For PseKRAAC descriptors, when ‘Gap value’ is set

as‘0’, iFeatureWeb will perform λ-correlation

analysis for 16 types of PseKRAAC descriptors.

Otherwise, it will perform the g-gap analysis.

In this step, iFeatureWeb allows users to select clustering algorithms. Users can select clustering for
'sample' or for 'feature'. Five commonly used clustering algorithms are supported by iFeatureWeb.
If you do not need to perform a clustering analysis, just skip this step.

Step 4. Select the feature selection algorithms.
In this step, with additional 'sample label' information, iFeatureWeb can identify the most
characterizing features according to the feature selection algorithms. Four commonly used feature
selection algorithms are supported by iFeatureWeb. Like Step 3, this step is also optional.

At last, click 'Submit' to calculate the descriptors and run the selected clustering and feature selection
algorithms.

Note that the label information (left column) should have the same

name as specified in the fasta-formatted sequence. The sample

class (right column) can be any integer. The name and the label

should be separated by one or more space characters.

Click the ‘Submit’ button to

submit your job.

Step 5. Waiting for your result.

After a few seconds, the calculated descriptors should appear as a table, where rows represent protein
sequences and columns represent descriptors. The descriptors, clustering and feature selection
results are available for download.

Click here to download

your results.

For each job, iFeatureWeb will generate a job ID, your calculation result will be stored for a week.
With a week, you can query your result by searching your job ID.

7. Summary

In summary, iFeature has been extensively benchmarked to guarantee correctness of computations,
and was deliberately designed to ensure workflow efficiency. To the best of our knowledge, this is
the first universal toolkit for integrated feature calculation, clustering and selection analysis. We will
integrate more analysis and clustering algorithms to enable interactive analysis and machine
learning-based modeling in future work. It is anticipated that iFeature will be widely used as a
powerful tool in bioinformatics, computational biology, systems biology and proteome research.
The functionality of iFeature is made freely available via an online web server
(http://iFeature.erc.monash.edu/) and stand-alone toolkit (https://github.com/Superzchen/iFeature/).

8. Acknowledgments

This work was financially supported by grants from the Australian Research Council (ARC)
(LP110200333 and DP120104460), the National Natural Science Foundation of China (Grant No.
31701142), the National Health of Medical Research Council of Australia (NHMRC), the National
Institute of Allergy and Infectious Diseases of the National Institutes of Health (R01 AI111965), and
a Major Inter-Disciplinary Research (IDR) Grant awarded by Monash University. AL and TML were
supported by Informatics startup packages through the UAB School of Medicine.

Input your job ID to query the calculated

results for your submitted sequences.

9. References

Altschul, S.F., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res, 25, 3389-3402.

Bhasin, M. and Raghava, G.P. (2004) Classification of nuclear receptors based on amino acid composition

and dipeptide composition. J Biol Chem, 279, 23262-23266.

Blei, D.M., Ng, A.Y. and Jordan, M.I. (2003) Latent Dirichlet allocation. Journal of Machine Learning

Research, 3, 993-1022.

Cai, C.Z., et al. (2003) SVM-Prot: Web-based support vector machine software for functional classification

of a protein from its primary sequence. Nucleic Acids Res, 31, 3692-3697.

Cai, C.Z., et al. (2004) Enzyme family classification by support vector machines. Proteins, 55, 66-76.

Cai, Y., et al. (2012) Prediction of lysine ubiquitination with mRMR feature selection and analysis. Amino

Acids, 42, 1387-1395.

Cannata, N., et al. (2002) Simplifying amino acid alphabets by means of a branch and bound algorithm and

substitution matrices. Bioinformatics, 18, 1102-1108.

Chen, K., et al. (2009) Prediction of integral membrane protein type by collocated hydrophobic amino acid

pairs. J Comput Chem, 30, 163-172.

Chen, K., Kurgan, L. and Rahbari, M. (2007a) Prediction of protein crystallization using collocation of amino

acid pairs. Biochem Biophys Res Commun, 355, 764-769.

Chen, K., Kurgan, L.A. and Ruan, J. (2007b) Prediction of flexible/rigid regions from protein sequences using

k-spaced amino acid pairs. BMC Struct Biol, 7, 25.

Chen, K., Kurgan, L.A. and Ruan, J. (2008) Prediction of protein structural class using novel evolutionary

collocation-based sequence representation. J Comput Chem, 29, 1596-1604.

Chen, X., et al. (2013a) Incorporating key position and amino acid residue features to identify general and

species-specific Ubiquitin conjugation sites. Bioinformatics, 29, 1614-1622.

Chen, Y.Z., et al. (2012) SUMOhydro: a novel method for the prediction of sumoylation sites based on

hydrophobic properties. PLoS One, 7, e39195.

Chen, Z., et al. (2011) Prediction of ubiquitination sites by using the composition of k-spaced amino acid

pairs. PLoS One, 6, e22930.

Chen, Z., et al. (2013b) hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting

amino acid pattern and properties. Biochim Biophys Acta, 1834, 1461-1467.

Chen, Z., et al. (2015) Towards more accurate prediction of ubiquitination sites: a comprehensive review of

current methods, tools and features. Brief Bioinform, 16, 640-657.

Cheng, Y.Z. (1995) Mean Shift, Mode Seeking, and Clustering. Ieee T Pattern Anal, 17, 790-799.

Chou, K.C. (2000) Prediction of protein subcellular locations by incorporating quasi-sequence-order effect.

Biochem Biophys Res Commun, 278, 477-483.

Chou, K.C. (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins,

43, 246-255.

Chou, K.C. (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes.

Bioinformatics, 21, 10-19.

Dubchak, I., et al. (1995) Prediction of protein folding class using global description of amino acid sequence.

Proc Natl Acad Sci U S A, 92, 8700-8704.

Dubchak, I., et al. (1999) Recognition of a protein fold in the context of the Structural Classification of

Proteins (SCOP) classification. Proteins, 35, 401-407.

Ester, M., et al. A density-based algorithm for discovering clusters a density-based algorithm for discovering

clusters in large spatial databases with noise. In, Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press; 1996. p. 226-231.

Faraggi, E., et al. (2009) Predicting continuous local structure and the effect of its substitution for secondary

structure in fragment-free protein structure prediction. Structure, 17, 1515-1527.

Feng, Z.P. and Zhang, C.T. (2000) Prediction of membrane protein types based on the hydrophobic index of

amino acids. J Protein Chem, 19, 269-275.

Frey, B.J. and Dueck, D. (2007) Clustering by passing messages between data points. Science, 315, 972-976.

Grantham, R. (1974) Amino acid difference formula to help explain protein evolution. Science, 185, 862-864.

Han, L.Y., et al. (2004) Prediction of RNA-binding proteins from primary sequence by a support vector

machine approach. RNA, 10, 355-368.

Heffernan, R., et al. (2016) Highly accurate sequence-based prediction of half-sphere exposures of amino

acid residues in proteins. Bioinformatics, 32, 843-849.

Heffernan, R., et al. (2015) Improving prediction of secondary structure, local backbone angles, and solvent

accessible surface area of proteins by iterative deep learning. Sci Rep, 5, 11476.

Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of sequence

hydrophobicities. Biopolymers, 27, 451-477.

Jain, A.K. (2010) Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31, 651-666.

Jain, A.K., Murty, M.N. and Flynn, P.J. (1999) Data clustering: A review. Acm Comput Surv, 31, 264-323.

Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol

Biol, 292, 195-202.

Kawashima, S., et al. (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res,

36, D202-205.

Kosiol, C., Goldman, N. and Buttimore, N.H. (2004) A new criterion and method for amino acid classification.

J Theor Biol, 228, 97-106.

Lee, T.Y., et al. (2011a) Incorporating distant sequence features and radial basis function networks to identify

ubiquitin conjugation sites. PLoS One, 6, e17331.

Lee, T.Y., et al. (2011b) Exploiting maximal dependence decomposition to identify conserved motifs from a

group of aligned signal sequences. Bioinformatics, 27, 1780-1787.

Li, J. and Wang, W. (2007) Grouping of amino acids and recognition of protein structurally conserved regions

by reduced alphabets of amino acids. Sci China C Life Sci, 50, 392-402.

Li, T., et al. (2003) Reduction of protein sequence complexity by residue grouping. Protein Eng, 16, 323-330.

Liang, Y., Liu, S. and Zhang, S. (2015) Prediction of Protein Structural Classes for Low-Similarity Sequences

Based on Consensus Sequence and Segmented PSSM. Comput Math Methods Med, 2015, 370756.

Lin, Z. and Pan, X.M. (2001) Accurate prediction of protein secondary structural content. J Protein Chem,

20, 217-220.

Liu, B., et al. (2015a) Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy. J

Theor Biol, 385, 153-159.

Liu, B., et al. (2015b) repDNA: a Python package to generate various modes of feature vectors for DNA

sequences by incorporating user-defined physicochemical properties and sequence-order effects.

Bioinformatics, 31, 1307-1309.

Liu, B., et al. (2015c) Pse-in-One: a web server for generating various modes of pseudo components of DNA,

RNA, and protein sequences. Nucleic Acids Res, 43, W65-71.

Liu, X., et al. (2002) Simplified amino acid alphabets based on deviation of conditional probability from

random background. Phys Rev E Stat Nonlin Soft Matter Phys, 66, 021906.

M. Stigler, S. Francis Galton's Account of the Invention of Correlation. 1989.

Maaten, L.V.D. (2014) Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res., 15, 3221-3245.

Melo, F. and Marti-Renom, M.A. (2006) Accuracy of sequence alignment and fold assessment using reduced

amino acid alphabets. Proteins, 63, 986-995.

Needleman, S.B. and Wunsch, C.D. (1970) A general method applicable to the search for similarities in the

amino acid sequence of two proteins. J Mol Biol, 48, 443-453.

Obradovic, Z., et al. (2005) Exploiting heterogeneous sequence properties improves prediction of protein

disorder. Proteins, 61 Suppl 7, 176-182.

Ogul, H. and Mumcuoglu, E.U. (2007) A discriminative method for remote homology detection based on n-

peptide compositions with reduced amino acid alphabets. Biosystems, 87, 75-81.

Pearson, K. (1901) LIII. On lines and planes of closest fit to systems of points in space. The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 559-572.

Peng, H.C., Long, F.H. and Ding, C. (2005) Feature selection based on mutual information: Criteria of max-

dependency, max-relevance, and min-redundancy. Ieee T Pattern Anal, 27, 1226-1238.

Peng, K., et al. (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics, 7, 208.

Peterson, E.L., et al. (2009) Reduced amino acid alphabets exhibit an improved sensitivity and selectivity in

fold assignment. Bioinformatics, 25, 1356-1362.

Radivojac, P., et al. (2010) Identification, analysis, and prediction of protein ubiquitination sites. Proteins,

78, 365-380.

Rakshit, S. and Ananthasuresh, G.K. (2008) An amino acid map of inter-residue contact energies using metric

multi-dimensional scaling. J Theor Biol, 250, 291-297.

Rokach, L. and Maimon, O. Clustering Methods. In: Maimon, O. and Rokach, L., editors, Data Mining and

Knowledge Discovery Handbook. Boston, MA: Springer US; 2005. p. 321-352.

Sandberg, M., et al. (1998) New chemical descriptors relevant for the design of biologically active peptides.

A multivariate characterization of 87 amino acids. J Med Chem, 41, 2481-2491.

Saravanan, V. and Gautham, N. (2015) Harnessing Computational Biology for Exact Linear B-Cell Epitope

Prediction: A Novel Amino Acid Composition-Based Feature Descriptor. OMICS, 19, 648-658.

Schneider, G. and Wrede, P. (1994) The rational design of amino acid sequences by artificial neural networks

and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site. Biophys J,

66, 335-344.

Shen, J., et al. (2007) Predicting protein-protein interactions based only on sequences information. Proc Natl

Acad Sci U S A, 104, 4337-4341.

Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial autocorrelation: an

example from an Amerindian tribal population. Am J Phys Anthropol, 129, 121-131.

Susko, E. and Roger, A.J. (2007) On reduced amino acid alphabets for phylogenetic inference. Mol Biol Evol,

24, 2139-2150.

Tomii, K. and Kanehisa, M. (1996) Analysis of amino acid indices and mutation matrices for sequence

comparison and structure prediction of proteins. Protein Eng, 9, 27-36.

Tung, C.W. and Ho, S.Y. (2008) Computational identification of ubiquitylation sites from protein sequences.

BMC Bioinformatics, 9, 310.

Wang, J. and Wang, W. (1999) A computational approach to simplifying the protein folding alphabet. Nat

Struct Biol, 6, 1033-1038.

Wang, R., Xu, Y. and Liu, B. (2016) Recombination spot identification Based on gapped k-mers. Sci Rep, 6,

23934.

Xiao, N., et al. (2015) protr/ProtrWeb: R package and web server for generating various numerical

representation schemes of protein sequences. Bioinformatics, 31, 1857-1859.

Zuo, Y., et al. (2017) PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids

composition. Bioinformatics, 33, 122-124.

Zuo, Y.C. and Li, Q.Z. (2010) Using K-minimum increment of diversity to predict secretory proteins of

malaria parasite based on groupings of amino acids. Amino Acids, 38, 859-867.

