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Brief introduction 

iLearn is a comprehensive Python-based toolkit, integrating feature extraction/calculation, feature 
analysis (clustering, feature selection, normalization and dimension reduction), predictor 
construction, best descriptor/model selection, ensemble learning and performance evaluation for 
DNA, RNA and protein sequences. iLearn is capable of calculating and extracting a wide 
spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature 
descriptors for protein sequences, and also can be used to extract 6 major encoding schemes which 
encompass 26 and 18 different types of feature descriptors for DNA and RNA sequences. 
Developed from iFeature (1), iLearn also integrates six kinds of frequently-used feature clustering 
algorithms, five feature selection algorithms, and three dimensionality reduction algorithms. Four 
output feature formats are supported by iLearn, which can be directly used and processed in other 
tools. Furthermore, five commonly used machine learning algorithms are provided, including 
SVM (Support Vector Machine), RF (Random Forest), ANN (Artificial Neutral Network), KNN 
(K-Nearest Neighbours) and LR (Logistic Regression). In order to facilitate users’ interpretability 
of outcomes, the clustering and dimensionality reduction results generated by iLearn can be 
further visualized in form of scatter diagrams, while the cross-validation result can be visualized in 
the form of ROC and PRC curves. This makes iLearn a unique and powerful tool that greatly 
facilitates feature generation, analysis, training and benchmarking of machine-learning models and 
predictions. 
 

1. Installation 

iLearn is an open-source Python-based toolkit, which operates depending on the Python 
environment (Python Version 3.0 or above) and can be run on multi-OS systems (such as 
Windows, Mac and Linux operating systems). Before running iLearn, user should make sure all 
the following packages are installed in their Python environment: sys, os, shutil, scipy, argparse, 
collections, platform, math, re, numpy (1.13.1), sklearn (0.19.1), matplotlib (2.1.0), and pandas 
(0.20.1). For convenience, we strongly recommended users to install the Anaconda Python 3.0 
version (or above) in your local computer. The latter can be freely downloaded from 
https://www.anaconda.com/download/. 
 

2. Full Workflow of iLearn 

Here, we provide step-by-step user instruction illustrating the full workflow of the iLearn toolkit 
by running the example provided in the “examples” directory. iLearn includes sixteen main 
programs, which can be divided into four groups (Table 1). 
 

Table 1. The sixteen main programs in iLearn package. 
Groups Programs Function 

Group 1 iLearn-protein-basic.py 
Extracting 37 different types of feature descriptors for 

proteins sequences. 
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 iLearn-protein-PseKRAAC.py 

Extracting the 16 types of pseudo K-tuple reduced amino 

acid composition (PseKRAAC) feature descriptors for 

protein sequences. 

 iLearn-nucleotide-basic.py 
Extracting 14 different types of feature descriptors for 

nucleotide sequences. 

 iLearn-nucleotide-acc.py 
Extracting 6 different types of autocorrelation descriptors for 

nucleotide sequences. 

 iLearn-nucleotide-Pse.py 
Extracting 6 different types of pseudo-k-tuple composition 

descriptors for nucleotide sequences. 

Group 2 iLearn-clustering.py Running the feature or sample clustering algorithms. 

 iLearn-feature-normalization.py Running the feature normalization algorithms 

 iLearn-feature-selectior.py Running the feature selection algorithms. 

 iLearn-dimension-reduction.py Running the dimension reduction algorithms. 

Group 3 iLearn-ML-SVM.py Running the SVM algorithm. 

 iLearn-ML-RF.py Running the RF algorithm. 

 iLearn-ML-MLP.py Running the ANN algorithm. 

 iLearn-ML-LR.py Running the LR algorithm. 

 iLearn-ML-KNN.py Running the KNN algorithm. 

Group 4 iLearn-descriptor-estimater.py Estimating the prediction ability for the specified descriptors

 iLearn-auto-pipline.py Running the iLearn pipeline. 

3. Software Package Overview 

iLearn can generate a wide spectrum of 18 feature encoding schemes, encompassing a total of 53 
different types of feature descriptors derived from protein or peptide amino acid sequences, and 42 
different types of feature descriptors for nucleotide sequences. The 18 major encoding scheme 
groups for protein sequences and peptides can be found in (1) and the 6 encoding scheme groups 
for nucleotide sequences included in iLearn are summarized in Table 2 of the main manuscript. 
Moreover, iLearn also integrates a variety of commonly used feature clustering, normalization, 
selection, dimensionality reduction and predictor construction algorithms, which greatly facilitates 
feature generation, importance analysis, model training and performance evaluation experiments. 
We describe the detailed functions of iLearn below. 
 
Feature descriptor extraction: 
Generally, each type of feature descriptor can be calculated using the main programs 
“iLearn-protein-basic.py”, “iLearn-protein-PseKRAAC.py”, “iLearn-nucleotide-basic.py”, 
“iLearn-nucleotide-acc.py” and “iLearn-nucleotide-Pse.py” implemented in the iLearn toolkit. 
Users are advised to specify the descriptor type by using the parameter '--method'. 
 
tcsh% python iLearn-protein-basic.py --help 
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tcsh% python iLearn-protein-PseKRAAC.py --help 

 
 
tcsh% python iLearn-nucleotide-basic.py --help 

 
 
tcsh% python iLearn-nucleotide-acc.py --help 
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tcsh% python iLearn-nucleotide-Pse.py --help 

 

 
Feature clustering: 
Use the following command to show the help information for all feature clustering algorithms in 
the iLearn package: 
tcsh% python iLearn-clustering.py --help 

 

 
Feature normalization: 
Use the following command to show the help information for all feature normalization algorithms 
in the iLearn package: 
tcsh% python iLearn-feature-normalization.py --help 
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Feature selection: 
Use the following command to show the help information for the feature selection algorithms 
implemented in the iLearn package: 
tcsh% python iLearn-feature-selectior.py --help 

 
 
Dimension reduction: 
Use the following command to show the help information for the dimension reduction algorithms 
implemented in the iLearn package: 
tcsh% python iLearn-dimension-reduction.py --help 

 

 
Descriptor construction algorithms: 
Use the following command to show the help information for machine learning algorithms 
implemented in the iLearn package: 
tcsh% python iLearn-ML-SVM.py --help 
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tcsh% python iLearn-ML-RF.py --help 

 
 
tcsh% python iLearn-ML-KNN.py --help 

 
 
tcsh% python iLearn-ML-LR.py --help 

 
 
tcsh% python iLearn-ML-MLP.py --help 
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Descriptor evaluater: 
Use the following command to show the help information for predictors prediction ability 
evaluation implemented in the iLearn package: 

 
 
Ensemble learning: 
Use the following command to show the help information for ensemble learning implemented in 
the iLearn package: 

 

4. The Input format of iLearn 

The input for iLearn is a set of DNA, RNA or protein sequences in a special FASTA format. The 
FASTA header consists of three parts: part 1, part 2 and part 3, which are separated by the symbol 
‘|’ (Figure 2 in the main manuscript). Part 1 is the sequence name. Part 2 is the sample category 
information, which can be filled with any integer. For instance, users may use 1 to indicate the 
positive samples and -1 or 0 to represent the negative samples for a binary classification task, or 
use 0, 1, 2, … to represent the different class in multiclass classification tasks. Part 3 indicates the 
role of the sample, where e.g. “training” would indicate that the corresponding sequence would be 
used as the training set for K-fold validation test, and “testing” that the sequence would be used as 
the independent set for independent testing.  
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5. Commonly Used Feature Descriptors for nucleotide sequences  

Let us assume that a nucleotide sequence with L amino acid residues can be generally represented 
as {R1, R2, …, RL}, where Ri represents the base at the i-th position in the sequence. The following 
commonly used feature descriptors can be calculated and extracted using iLearn.  
 
5.1 Kmer 
For kmer descriptor, the DNA or RNA sequences are represented as the occurrence frequencies of 
k neighboring nucleic acids, which has been successfully applied to human gene regulatory 
sequence prediction (2) and enhancer identification (3). The Kmer (k=3) descriptor can be 
calculated as: 

𝑓 𝑡 ,   t ∈ {AAA, AAC, AAG, …, TTT} 

where N(t) is the number of kmer type t, while N is the length of a nucleotide sequence. 
 

Use the following command to extract the Kmer feature descriptors: 
tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method Kmer --format svm 
 
The parameters of iLearn-nucleotide-basic.py are: 
 file: the input sequence file with FASTA format 
 method: the descriptor type 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 
Advanced usage: 
tcsh% python descnucleotide/Kmer.py --file examples/DNA_training.txt 
--kmer 3 --upto --normalize --format csv 
 
The parameters of Kmer.py are: 
 kmer: the value of kmer, it should be an integer larger than 0, default is 2 
 upto: with this parameter the program will generate all the kmers: 1mer, 2mer, …, kmer 
 normalize: with this parameter the final feature vector will be normalized based on the 

total occurrences of all kmers 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 

 
5.2 Reverse Compliment Kmer (RCKmer) 
The reverse compliment kmer (2,4) is a variant of kmer descriptor, in which the kmers are not 
expected to be strand-specific. For instance, for a DNA sequence, there are 16 types of 2-mers (i.e. 
'AA', 'AC', 'AG', 'AT', 'CA', 'CC', 'CG', 'CT', 'GA', 'GC', 'GG', 'GT', 'TA', 'TC', 'TG', 'TT'), ‘TT’ is 
reverse compliment with ‘AA’. After removing the reverse compliment kmers, there are only 10 
distinct kmers in the reverse compliment kmer approach ('AA', 'AC', 'AG', 'AT', 'CA', 'CC', 'CG', 
'GA', 'GC', 'TA'). 
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Use the following command to extract the RCKmer feature descriptors: 
tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method RCKmer --format svm 
 
Advanced usage: 
tcsh% python descnucleotide/RCKmer.py --file 
examples/DNA_training.txt --kmer 2 --upto --normalize --format csv 
 
The parameters of RCKmer.py are: 
 kmer: the value of kmer, it should be an integer larger than 0, default is 2 
 upto: with this parameter the program will generate all the kmers: 1mer, 2mer, …, kmer 
 normalize: with this parameter the final feature vector will be normalized based on the 

total occurrences of all kmers 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 

 
5.3 Nucleic Acid Composition (NAC) 
The Nucleic Acid Composition (NAC) encoding calculates the frequency of each nucleic acid type 
in a nucleotide sequence. The frequencies of all 4 natural nucleic acids (i.e. “ACGT or U”) can be 
calculated as: 

𝑓 𝑡 ,  t ∈ {A, C, G, T(U)} 

where N(t) is the number of nucleic acid type t, while N is the length of a nucleotide sequence. 
 
Use the following command to extract the NAC feature descriptors: 
tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method NAC 

 
5.4 Di-Nucleotide Composition (DNC) 
The Di-Nucleotide Composition gives 16 descriptors. It is defined as: 

D r, s
𝑁

𝑁 1
,   𝑟, 𝑠 ∈ 𝐴, 𝐶, 𝐺, 𝑇 𝑈  

where Nrs is the number of di-nucleotide represented by nucleic acid types r and s. 
 
Use the following command to extract the DNC feature descriptors: 
tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method DNC 
 
5.5 Tri-Nucleotide Composition (TNC) 
The Tri-Nucleotide Composition gives 64 descriptors. It is defined as: 

D r, s, t
𝑁

𝑁 2
,   𝑟, 𝑠, 𝑡 ∈ 𝐴, 𝐶, 𝐺, 𝑇 𝑈  

where Nrst is the number of tri-nucleotide represented by nucleic acid types r, s and t. 
 
Use the following command to extract the TNC feature descriptors: 
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tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method TNC 
 
5.6 Enhanced Nucleic Acid Composition (ENAC) 
The Enhanced Nucleic Acid Composition (ENAC) calculates the NAC based on the sequence 
window of fixed length (the default value is 5) that continuously slides from the 5’ to 3’ terminus 
of each nucleotide sequence and can be usually applied to encode the nucleotide sequence with an 
equal length. For more information of this approach, please refer to (1). 
 
Use the following command to extract the ENAC feature descriptors: 
tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method ENAC 
 
Advanced usage: 
tcsh% python descnucleotide/ENAC.py --file examples/DNA_training.txt 
--slwindow 10 
 
The parameters of RCKmer.py are: 
 slwindow: the sliding window of ENAC descriptor, it should be an integer larger than 0, 

default is 5 
 
5.7 binary 
In the Binary encoding, each amino acid is represented by a 4-dimensional binary vector, e.g. A is 
encoded by (1000), C is encoded by (0100), G is encoded by (0010) and T(U) is encoded by 
(0001), respectively. This encoding scheme is often used to encode nucleotide sequence with an 
equal length. 
 
Use the following command to extract the binary feature descriptors: 
tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method binary 
 
5.8 Composition of k-spaced Nucleic Acid Pairs (CKSNAP) 
The CKSNAP feature encoding calculates the frequency of nucleic acid pairs separated by any k 
nucleic acid (k = 0, 1, 2, … , 5. The default maximum value of k is 5) . Taking k = 0 as an example, 
there are 16 0-spaced nucleic acid pairs (i.e. 'AA', 'AC', 'AG', 'AT', 'CA', 'CC', 'CG', 'CT', 'GA', 
'GC', 'GG', 'GT', 'TA', 'TC', 'TG', 'TT'). Then, a feature vector can be defined as: 

𝑁
𝑁

,
𝑁

𝑁
,

𝑁
𝑁

, … ,
𝑁

𝑁
,  

The value of each descriptor denotes the composition of the corresponding nucleic acid pair in the 
nucleotide sequence. For instance, if the nucleic acid pair AA appears m times in the nucleotide 
sequence, the composition of the nucleic acid pair AA is equal to m divided by the total number of 
0-spaced nucleic acid pairs (Ntotal) in the nucleotide sequence. For k = 0, 1, 2, 3, 4 and 5, the value 
of Ntotal is P – 1, P – 2, P – 3, P – 4, P – 5 and P – 6 for a nucleotide sequence of length P, 
respectively. 
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Use the following command to extract the CKSNAP feature descriptors: 
tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method CKSNAP 
 
Advanced usage: 
tcsh% python descnucleotide/CKSNAP.py --file 
examples/DNA_training.txt --gap 3 
 
The parameters of CKSNAP.py are: 
 gap: the k-space value for CKSNAP descriptor, it should be an integer larger than 0, 

default is 5 
 
5.9 Nucleotide Chemical Property (NCP) 
There are four different kinds of nucleotides in RNA, i.e., adenine (A), guanine (G), cytosine (C) 
and uracil (U). Each nucleotide has different chemical structure and chemical binding. The four 
kinds of nucleotides can be classified into three different groups in terms of these chemical 
properties (Table 1). 
 
Table 1. Chemical structure of each nucleotide (5). 
Chemical property Class Nucleotides 

Ring Structure 
Purine A, G 
Pyrimidine C, U 

Functional Group 
Amino A, C 
Keto G, U 

Hydrogen Bond 
Strong C, G 
Weak A, U 

 
Based on chemical properties, A can be represented by coordinates (1, 1, 1), C can be represented 
by coordinates (0, 1, 0), G can be represented by coordinates (1, 0, 0), U can be represented by 
coordinates (0, 0, 1). 
 
Use the following command to extract the NCP feature descriptors: 
tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method NCP 
 
5.10 Accumulated Nucleotide Frequency (ANF) 
The Accumulated Nucleotide Frequency (ANF) encoding (5) include the nucleotide frequency 
information and the distribution of each nucleotide in the RNA sequence, the density di of any 
nucleotide si at position i in RNA sequence by the following formula: 

𝑑
1

|𝑠 |
𝑓 𝑠 ,   𝑓 𝑞  1      𝑖𝑓 𝑠 𝑞

0 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒
 

where l is the sequence length, |Si| is the length of the i-th prefix string {s1, s2, …, si} in the 
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sequence, q ∈ {A, C, G or U}. Suppose an example sequence “UCGUUCAUGG”. The density 
of ‘U’ is 1 (1/1), 0.5 (2/4), 0.6 (3/5), 0.5 (4/8) at positions 1, 4, 5, and 8, respectively. The density 
of ‘C’ is 0.5 (1/2), 0.33 (2/6) at positions 2 and 6, respectively. The density of ‘G’ is 0.33 (1/3), 
0.22 (2/9), 0.3 (3/10) at positions 3, 9, and 10, respectively. The density of ‘A’ is 0.14 (1/7) at 
position 7.  
By integrating both the nucleotide chemical property and accumulated nucleotide information, the 
sample sequence “UCGUUCAUGG” can be represented by {(0, 0, 1, 1), (0, 1, 0, 0.5), (1, 0, 0, 
0.33), (0, 0, 1, 0.5), (0, 0, 1, 0.6), (0, 1, 0, 0.33), (1, 1, 1, 0.14), (0, 0, 1, 0.5), (1, 0, 0, 0.22), (1, 0, 0, 
0.3)}. By doing so, not only the chemical property was considered, but also the long-range 
sequence order information was incorporated. Therefore, the samples in the benchmark dataset 
were encoded in terms of both nucleotide chemical property and nucleotide densities. 
 
Use the following command to extract the ANF feature descriptors: 
tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method ANF 
 
5.11.1 Position-specific trinucleotide propensity based on single-strand (PSTNPss) 
The Position-specific trinucleotide propensity based on single-strand (PSTNPss) (6,7) using a 
statistical strategy based on single-stranded characteristics of DNA or RNA. There are 43 = 64 
trinucleotides: AAA, AAC, AAG, ..., TTT(UUU). So, for an L bp sample, its details of the 
trinucleotides position specificity can be expressed by the following 64 × (L-2) matrix: 

Z

𝑧 , 𝑧 , ⋯ 𝑧 ,

𝑧 , 𝑧 , ⋯ 𝑧 ,

⋮
𝑧 ,

⋮
𝑧 ,

⋯
⋯

⋮
𝑧 ,

 

where  
𝑧 , 𝐹 3𝑚𝑒𝑟 |𝑗 𝐹 3𝑚𝑒𝑟 |𝑗 , 𝑖 1,2, … ,64; 𝑗 1,2, … 𝐿 2 

𝐹 3𝑚𝑒𝑟 |𝑗  and 𝐹 3𝑚𝑒𝑟 |𝑗  denote the frequency of the i-th trinucleotide (3meri) at the j-th 
position appear in the positive (S+) and negative (S−) data sets, respectively. In the formula, 3mer1 
equals AAA,3mer2 equals AAC, …, 3mer64 equals TTT. 
Therefore, the sample can be expressed as: 

S ∅ ,∅ , … , ∅  

where T is the operator of transpose and ϕu was defined as follows: 

∅

⎩
⎨

⎧
𝑧 , ,     𝑤ℎ𝑒𝑛 𝑁 𝑁 𝑁 𝐴𝐴𝐴
𝑧 , ,     𝑤ℎ𝑒𝑛 𝑁 𝑁 𝑁 𝐴𝐴𝐺

⋮
𝑧 , ,     𝑤ℎ𝑒𝑛 𝑁 𝑁 𝑁 𝑇𝑇𝑇

 

 
Use the following command to extract the PSTNPss feature descriptors: 
tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method PSTNPss 
 
5.11.2 Position-specific trinucleotide propensity based on double-strand (PSTNPss) 
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Feature Position-specific trinucleotide propensity based on double-strand (PSTNPss) (6,7) using a 
statistical strategy based on double-stranded characteristics of DNA according to complementary 
base pairing, so they have more evident statistical features. At this point, we deem A and T as 
identical, the same to C and G. Thus, for every sample, it can be converted into a sequence 
contained A and T only. 
 
Use the following command to extract the PSTNPds feature descriptors: 
tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method PSTNPds 
 
5.12.1 Electron-ion interaction pseudopotentials of trinucleotide (EIIP) 
Nair (8) came up with electron-ion interaction pseudopotentials (EIIP) value of nucleotides A, G, 
C, T (A: 0.1260, C: 0.1340, G: 0.0806, T:0.1335). The EIIP directly use the EIIP value represent 
the nucleotide in the DNA sequence. Therefore, the dimension of the EIIP descriptor is the length 
of the DNA sequence. 
 
Use the following command to extract the EIIP feature descriptors: 
tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method EIIP 
 
5.12.2 Electron-ion interaction pseudopotentials of trinucleotide (PseEIIP) 
In these encoding, let EIIPA, EIIPT, EIIPG, and EIIPC denote the EIIP values of nucleotides A, T, G 
and C, respectively. Then, the mean EIIP value of trinucleotides in each sample to construct 
feature vector, which can be formulated as: 

V 𝐸𝐼𝐼𝑃 ∙ 𝑓 , 𝐸𝐼𝐼𝑃 ∙ 𝑓 , … , 𝐸𝐼𝐼𝑃 ∙ 𝑓  
Where fxyz is the normalized frequency of the i-th trinucleotide, EIIPxyz = EIIPx + EIIPy + EIIPz 
expresses the EIIP value of one trinucleotide and X, Y, Z∈ [A, C, G, T]. Obviously, the 
dimension of vector V is 64. 
 
Use the following command to extract the PseEIIP feature descriptors: 
tcsh% python iLearn-nucleotide-basic.py --file 
examples/DNA_training.txt --method PseEIIP 
 
 
5.13 Autocorrelation 
The Autocorrelation encoding (9) can transform the nucleotide sequences of different lengths into 
fixed-length vectors by measuring the correlation between any two properties. Autocorrelation 
encoding can generate two kinds of variables (i.e. The autocorrelation (AC) between the same 
property, and the cross-covariance (CC) between two different properties). There are six types of 
autocorrelation encodings, including dinucleotide-based auto covariance (DAC), 
dinucleotide-based cross covariance (DCC), dinucleotide-based auto-cross covariance (DACC), 
trinucleotide-based auto covariance (TAC), trinucleotide-based cross covariance (TCC), and 
trinucleotide-based auto-cross covariance (TACC). Users can run ‘iLearn-nucleotide-acc.py’ to get 
these six types of encodings. 
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The parameters of iLearn-nucleotide-acc.py are: 
 file: the input sequence file with FASTA format 
 method: the descriptor type (select from DAC, DCC, DACC, TAC, TCC, TACC) 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 
 type: the nucleotide type (DNA or RNA), default is DNA 
 lag: an integer larger than or equal to 0 and less than or equal to L-2 
 index: the physicochemical indices selection file, there are 148 physicochemical 

dinucleotides indices and 12 trinucleotides indices for DNA sequence (Table 2 & Table 
3) and 22 physicochemical dinucleotides indices for RNA sequence (Table 4). If this 
parameter is not specified, the default physicochemical indices will be used. The default 
DNA dinucleotide indices are: Rise, Roll, Shift, Slide, Tilt, Twist, the default DNA 
trinucleotide indices are: ‘Dnase I’, ‘Bendability (DNAse)’. And the default RNA 
dinucleotide indices are Rise (RNA), Roll (RNA), Shift (RNA), Slide (RNA), Tilt(RNA), 

Twist(RNA). The file should be written as follows: 
 udi: with this option, the users can use their own indices to generate the feature vector. 
 all_index: with this option, all the physicochemical indices will be used to generate the 

feature vector. Its default value is False. 
 
Table 2. The names of the 148 physicochemical dinucleotides indices for DNA. 
Base stacking Protein induced deformability B-DNA twist Propeller twist Duplex stability:(freeenergy) 

Duplex tability(disruptenergy) Protein DNA twist Stabilising energy of Z-DNA Aida_BA_transition Breslauer_dS 

Electron_interaction Hartman_trans_free_energy Lisser_BZ_transition Polar_interaction SantaLucia_dG 

Sarai_flexibility Stability Stacking_energy Sugimoto_dS Watson-Crick_interaction 

Twist Shift Slide Rise Twist stiffness 

Tilt stiffness Shift_rise Twist_shift Enthalpy1 Twist_twist 

Shift2 Tilt3 Tilt1 Slide (DNA-protein complex)1 Tilt_shift 

Twist_tilt Roll_rise Stacking energy Stacking energy1 Propeller Twist 

Roll11 Rise (DNA-protein complex) Roll2 Roll3 Roll1 

Slide_slide Enthalpy Shift_shift Flexibility_slide Minor Groove Distance 

Rise (DNA-protein complex)1 Roll (DNA-protein complex)1 Entropy Cytosine content Major Groove Distance 

Twist (DNA-protein complex) Purine (AG) content Tilt_slide Major Groove Width Major Groove Depth 

Free energy6 Free energy7 Free energy4 Free energy3 Free energy1 

Twist_roll Flexibility_shift Shift (DNA-protein complex)1 Thymine content Tip 

Rise 

Roll 

Shift 

Slide 

Tilt 

Twist 

… 
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Keto (GT) content Roll stiffness Entropy1 Roll_slide Slide (DNA-protein complex) 

Twist2 Twist5 Twist4 Tilt (DNA-protein complex)1 Twist_slide 

Minor Groove Depth Persistance Length Rise3 Shift stiffness Slide3 

Slide2 Slide1 Rise1 Rise stiffness Mobility to bend towards minor 

groove 

Dinucleotide GC Content A-philicity Wedge DNA denaturation Bending stiffness 

Free energy5 Breslauer_dG Breslauer_dH Shift (DNA-protein complex) Helix-Coil_transition 

Ivanov_BA_transition Slide_rise SantaLucia_dH SantaLucia_dS Minor Groove Width 

Sugimoto_dG Sugimoto_dH Twist1 Tilt Roll 

Twist7 Clash Strength Roll_roll Roll (DNA-protein complex) Adenine content 

Direction Probability contacting 

nucleosome core 

Roll_shift Shift_slide Shift1 

Tilt4 Tilt2 Free energy8 Twist (DNA-protein complex)1 Tilt_rise 

Free energy2 Stacking energy2 Stacking energy3 Rise_rise Tilt_tilt 

Roll4 Tilt_roll Minor Groove Size GC content Inclination 

Slide stiffness Melting Temperature1 Twist3 Tilt (DNA-protein complex) Guanine content 

Twist6 Major Groove Size Twist_rise Rise2 Melting Temperature 

Free energy Mobility to bend towards major 

groove 

Bend   

 

Table 3. The names of the 12 physicochemical trinucleotides indices for DNA. 
Dnase I Bendability (DNAse) Bendability (consensus) Trinucleotide GC Content 

Nucleosome positioning Consensus_roll Consensus-Rigid Dnase I-Rigid 

MW-Daltons MW-kg Nucleosome Nucleosome-Rigid 

 

Table 4. The names of the 22 physicochemical dinucleotides indices for RNA. 
Shift (RNA) Hydrophilicity (RNA) Hydrophilicity (RNA) GC content Purine (AG) content 

Keto (GT) content Adenine content Guanine content Cytosine content Thymine content 

Slide (RNA) Rise (RNA) Tilt (RNA) Roll (RNA) Twist (RNA) 

Stacking energy (RNA) Enthalpy (RNA) Entropy (RNA) Free energy (RNA) Free energy (RNA) 

Enthalpy (RNA) Entropy (RNA)    

 

5.13.1 Dinucleotide-based Auto Covariance (DAC) 
The Dinucleotide-based Auto Covariance (DAC) encoding (9) measures the correlation of the 
same physicochemical index between two dinucleotide separated by a distance of lag along the 
sequence. The DAC can be calculated as: 

𝐷𝐴𝐶 𝑢, 𝑙𝑎𝑔 𝑃 𝑅 𝑅 𝑃 𝑃 𝑅 𝑅 𝑃 / 𝐿 𝑙𝑎𝑔 1  

where u is a physicochemical index, L is the length of the nucleotide sequence, 𝑃 𝑅 𝑅  is the 
numerical value of the physicochemical index u for the dinucleotide RiRi+1 at position i, 𝑃  is the 
average value for physicochemical index u along the whole sequence: 
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𝑃 𝑃 𝑅 𝑅 / 𝐿 1  

The dimension of the DAC feature vector is N×LAG, where N is the number of physicochemical 
indices and LAG is the maximum of lag (lag = 1, 2, …, LAG).  
 
Use the following command to extract the DAC feature descriptors: 
tcsh% python iLearn-nucleotide-acc.py --file 
examples/DNA_training.txt --method DAC --type DNA --lag 5  
 
5.13.2 Dinucleotide-based Cross Covariance (DCC) 
The Dinucleotide-based Cross Covariance (DCC) encoding (9) measures the correlation of two 
different physicochemical indices between two dinucleotides separated by lag nucleic acids along 
the sequence. The DCC encoding is calculated as: 

DCC 𝑢 , 𝑢 , 𝑙𝑎𝑔 𝑃 𝑅 𝑅 𝑃 𝑃 𝑅 𝑅 𝑃 / 𝐿 𝑙𝑎𝑔 1  

where u1 and u2 are different physicochemical indices, L is the length of the nucleotide sequence, 

𝑃 𝑅 𝑅  is the numerical value of the physicochemical index ua for the dinucleotide RiRi+1 at 

position i, 𝑃  is the average value for physicochemical index ua along the whole sequence: 

𝑃 𝑃 𝑅 𝑅 / 𝐿 1  

The dimension of the DCC feature vector is N×(N-1)×LAG, where N is the number of 
physicochemical indices and LAG is the maximum of lag (lag = 1, 2, …, LAG).  
 
Use the following command to extract the DCC feature descriptors: 
tcsh% python iLearn-nucleotide-acc.py --file 
examples/DNA_training.txt --method DCC --type DNA --lag 5  
 
5.13.3 Dinucleotide-based Auto-Cross Covariance (DACC) 
The Dinucleotide-based Auto-Cross Covariance (DACC) encoding (9) is a combination of DAC 
and DCC encoding. Thus, the dimension of the DACC encoding is N×N×LAG, where N is the 
number of physicochemical indices and LAG is the maximum of the lag (lag = 1, 2, …, LAG). 
 
Use the following command to extract the DACC feature descriptors: 
tcsh% python iLearn-nucleotide-acc.py --file 
examples/DNA_training.txt --method DACC --type DNA --lag 5 
 
5.13.4 Trinucleotide-based Auto Covariance (TAC) 
The Trinucleotide-based Auto Covariance (TAC) encoding measures the correlation of the same 
physicochemical index between trinucleotides separated by lag nucleic acids along the sequence, 
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and can be calculated as: 

𝑇𝐴𝐶 𝑙𝑎𝑔, 𝑢 𝑃 𝑅 𝑅 𝑅 𝑃 𝑃 𝑅 𝑅 𝑅 𝑃 / 𝐿 𝑙𝑎𝑔

2  
where u is a physicochemical index, L is the length of the nucleotide sequence,𝑃 𝑅 𝑅 𝑅  is 
the numerical value of the physicochemical index u for the trinucleotide RiRi+1Ri+2 at position i, 
𝑃  is the average value for physicochemical index u along the whole sequence: 

𝑃 𝑃 𝑅 𝑅 𝑅 / 𝐿 2  

The dimension of the TAC feature vector is N×LAG, where N is the number of physicochemical 
indices and LAG is the maximum of lag (lag = 1, 2, …, LAG).  
 
Use the following command to extract the TAC feature descriptors: 
tcsh% python iLearn-nucleotide-acc.py --file 
examples/DNA_training.txt --method TAC --type DNA --lag 5  
 
5.13.5 Trinucleotide-based Cross Covariance (TCC) 
The Trinucleotide-based Cross Covariance (TCC) encoding measures the correlation of two 
different physicochemical indices between two trinucleotides separated by lag nucleic acids along 
the sequence. The TCC encoding can be calculated as: 

DCC 𝑢 , 𝑢 , 𝑙𝑎𝑔

𝑃 𝑅 𝑅 𝑅 𝑃 𝑃 𝑅 𝑅 𝑅 𝑃 / 𝐿

𝑙𝑎𝑔 2  
where u1 and u2 are different physicochemical indices, L is the length of the nucleotide sequence, 
𝑅 𝑅 𝑅  is the numerical value of the physicochemical index ua for the dinucleotide RiRi+1Ri+2 

at position i, 𝑃  is the average value for physicochemical index ua along the whole sequence: 

𝑃 𝑃 𝑅 𝑅 𝑅 / 𝐿 2  

The dimension of the DCC feature vector is N×(N-1)×LAG, where N is the number of 
physicochemical indices and LAG is the maximum of lag (lag = 1, 2, …, LAG).  
 
Use the following command to extract the DCC feature descriptors: 
tcsh% python iLearn-nucleotide-acc.py --file 
examples/DNA_training.txt --method TCC --type DNA --lag 5  
 
5.13.6 Trinucleotide-based Auto-Cross Covariance (TACC) 
Like DAC encoding, the Trinucleotide-based Auto-Cross Covariance (TACC) encoding (9) is a 
combination of TAC and TACC encoding. Thus, the dimension of the TACC encoding is N×N×
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LAG, where N is the number of physicochemical indices and LAG is the maximum of the lag (lag 
= 1, 2, …, LAG). 
 
Use the following command to extract the TACC feature descriptors: 
tcsh% python iLearn-nucleotide-acc.py --file 
examples/DNA_training.txt --method TACC --type DNA --lag 5 
 
5.14 Pseudo Nucleic Acid Composition (PseNAC) 
The Pseudo Nucleic Acid Composition (PseNAC) encodings consider both the local 
sequence-order information and long-range sequence-order effects (9). Six types of PseNAC 
encodings including dinucleotide composition (PseDNC), pseudo k-tuple nucleotide composition 
(PseKNC), parallel correlation pseudo dinucleotide composition (PC-PseDNC), parallel 
correlation pseudo trinucleotide composition (PC-PseTNC), series correlation pseudo dinucleotide 
composition (SC-PseDNC), and series correlation pseudo trinucleotide composition (SC-PseTNC) 
can be calculated by the ‘iLearn-nucleotide-Pse.py’ in iLearn package. 
 
The parameters of iLearn-nucleotide-pse.py are: 
 file: the input sequence file with FASTA format 
 method: the descriptor type (select from PseDNC, PseKNC, PCPseDNC, PCPseTNC, 

SCPseDNC, SCPseTNC) 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 
 type: the nucleotide type (DNA or RNA), default is DNA 
 lamada: an integer larger than or equal to 0 and less than or equal to L-2 
 weight: the weight factor ranged from 0 to 1. Its default value is 0.05 
 kmer: the value of kmer, it works only with PseKNC 
 index: the physicochemical indices selection file, please refer to Table 2-4 for the names 

of the physicochemical dinucleotides or trinucleotides indices for DNA and RNA. 
 
5.14.1 Pseudo Dinucleotide Composition (PseDNC) 
The Pseudo Dinucleotide Composition (PseDNC) encoding (10) incorporate contiguous local 
sequence-order information and the global sequence-order information into the feature vector of 
the nucleotide sequence. The PseDNC encoding is defined: 

𝐷 𝑑 , 𝑑 , … , 𝑑 , 𝑑 , … , 𝑑 , … , 𝑑  
where 

𝑑

⎩
⎪
⎨

⎪
⎧

𝑓

∑ 𝑓 𝑤 ∑ 𝜃
,                   1 𝑘 16

𝑤𝜃

∑ 𝑓 𝑤 ∑ 𝜃
, 17 𝑘 16 𝜆

 

where fk (k=1, 2, …, 16) is the normalized occurrence frequency of dinucleotide in the nucleotide 
sequence, λ represent the highest counted rank (or tie) of the correlation along the nucleotide 
sequence, w is the weight factor ranged from 0 to 1, and θj (j =1,2, …, λ) is the j-tier correlation 
factor and is defined: 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝜃 1

𝐿 2 ∑ 𝛩 𝑅 𝑅 , 𝑅 𝑅

𝜃 1
𝐿 3 ∑ 𝛩 𝑅 𝑅 , 𝑅 𝑅

𝜃 1
𝐿 4 ∑ 𝛩 𝑅 𝑅 , 𝑅 𝑅

⋯

𝜃
1

𝐿 1 𝜆
𝛩 𝑅 𝑅 , 𝑅 𝑅

𝜆 𝐿  

where the correlation function is defined: 

𝛩 𝑅 𝑅 , 𝑅 𝑅
1
𝜇

𝑃 𝑅 𝑅 𝑃 𝑅 𝑅  

where μ is the number of physicochemical indices. Six indices (i.e. 'Rise', 'Roll', 'Shift', 'Slide', 
'Tilt', 'Twist') in Table 2 and six indices in Table 4 (i.e. 'Rise (RNA)', 'Roll (RNA)', 'Shift (RNA)', 
'Slide (RNA)', 'Tilt (RNA)', 'Twist (RNA)') were set as the default indices for DNA and RNA 
sequences, separately. 𝑃 𝑅 𝑅  is the numerical value of the u-th (u=1, 2, …, μ) 

physicochemical index of the dinucleotide 𝑅 𝑅  at position i and 𝑃 𝑅 𝑅  represents the 

corresponding value of the dinucleotide 𝑅 𝑅  at position j. 
 
Use the following command to extract the PseDNC feature descriptors: 
tcsh% python iLearn-nucleotide-Pse.py --file 
examples/DNA_training.txt --method PseDNC --type DNA --lamada 2 
--weight 0.1 
 
5.14.2 Pseudo k-tupler Composition (PseKNC) 
The Pseudo k-tupler Composition (PseKNC) encoding (11) incorporate the k-tuple nucleotide 
composition, which can be defined as: 

𝐷 𝑑 , 𝑑 , … , 𝑑 , 𝑑 , … , 𝑑  
where 
 

⎩
⎪
⎨

⎪
⎧

𝑓

∑ 𝑓 𝑤 ∑ 𝜃
, 1 𝑢 4

𝑤𝜃

∑ 𝑓 𝑤 ∑ 𝜃
, 4 𝑢 4 𝜆

 

where λ is the number of the total counted ranks (or tiers) of the correlations along a nucleotide 

sequence; fu (u=1,2,…,4k) is the frequency of oligonucleotide that is normalized to ∑ 𝑓 1, w 

is the factor, and θj is defined: 
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𝜃
1

𝐿 𝑗 1
𝛩 𝑅 𝑅 , 𝑅 𝑅 ,   𝑗 1,2, … , 𝜆; 𝜆 𝐿  

The correlation function 𝛩 𝑅 𝑅 , 𝑅 𝑅  is defined as: 

𝛩 𝑅 𝑅 , 𝑅 𝑅
1
𝜇

𝑃 𝑅 𝑅 𝑃 𝑅 𝑅  

where μ is the number of physicochemical indices. Six indices (i.e. 'Rise', 'Roll', 'Shift', 'Slide', 
'Tilt', 'Twist') in Table 2 and six indices in Table 4 (i.e. 'Rise (RNA)', 'Roll (RNA)', 'Shift (RNA)', 
'Slide (RNA)', 'Tilt (RNA)', 'Twist (RNA)') were set as the default indices for DNA and RNA 
sequences, separately. 𝑃 𝑅 𝑅  is the numerical value of the v-th (v=1, 2, …, μ) 

physicochemical index of the dinucleotide 𝑅 𝑅  at position i and 𝑃 𝑅 𝑅  represents 

the corresponding value of the dinucleotide 𝑅 𝑅  at position i+j. 
 
Use the following command to extract the PseKNC feature descriptors: 
tcsh% python iLearn-nucleotide-Pse.py --file 
examples/DNA_training.txt --method PseKNC --type DNA --lamada 2 
--weight 0.1 --kmer 3 
 
5.14.3 Parallel Correlation Pseudo Dinucleotide Composition (PCPseDNC) 
The Parallel Correlation Pseudo Dinucleotide Composition (PCPseDNC) encoding has the same 
definition with the PseDNC, the different is PCPseDNC encoding used 38 default physiochemical 
indices instead of the six physiochemical indices in PseDNC encoding for DNA. The 38 
physiochemical indices are listed in Table 5.  
 
Use the following command to extract the PCPseDNC feature descriptors: 
tcsh% python iLearn-nucleotide-Pse.py --file 
examples/DNA_training.txt --method PCPseDNC --type DNA --lamada 2 
--weight 0.1 
 
Table 5. The names of the 38 physicochemical dinucleotides indices for RNA. 
Base stacking Protein induced deformability B-DNA twist A-philicity Propeller twist 

Duplex stability:(freeenergy) DNA denaturation Bending stiffness Protein DNA twist Aida_BA_transition 

Breslauer_dG Breslauer_dH Electron_interaction Hartman_trans_free_energy Helix-Coil_transition 

Lisser_BZ_transition Polar_interaction SantaLucia_dG SantaLucia_dS Sarai_flexibility 

Stability Sugimoto_dG Sugimoto_dH Sugimoto_dS Duplex tability(disruptenergy) 

Stabilising energy of Z-DNA Breslauer_dS Ivanov_BA_transition SantaLucia_dH Stacking_energy 

Watson-Crick_interaction Dinucleotide GC Content Twist Tilt Roll 

Shift Slide Rise   

 

5.14.4 Parallel Correlation Pseudo Trinucleotide Composition (PCPseTNC) 
The Parallel Correlation Pseudo Trinucleotide Composition (PCPseTNC) encoding (12,13) is 
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defined as: 
𝐷 𝑑 , 𝑑 , … , 𝑑 , 𝑑 , … , 𝑑  

where 

𝑑

⎩
⎪
⎨

⎪
⎧

𝑓

∑ 𝑓 𝑤 ∑ 𝜃
 , 1 𝑘 64

𝑤𝜃

∑ 𝑓 𝑤 ∑ 𝜃
 , 65 𝑘 64 𝜆

 

where fk (k=1, 2, …, 64) is the normalized occurrence frequency of trinucleotide in the DNA 
sequence, λ represent the highest counted rank (or tie) of the correlation along the DNA sequence, 
w is the weight factor ranged from 0 to 1, and θj (j =1,2, …, λ) is the j-tier correlation factor and is 
defined: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝜃 1

𝐿 3 ∑ 𝛩 𝑅 𝑅 𝑅 , 𝑅 𝑅 𝑅

𝜃 1
𝐿 4 ∑ 𝛩 𝑅 𝑅 𝑅 , 𝑅 𝑅 𝑅

𝜃 1
𝐿 5 ∑ 𝛩 𝑅 𝑅 𝑅 , 𝑅 𝑅 𝑅

⋯

𝜃
1

𝐿 2 𝜆
𝛩 𝑅 𝑅 𝑅 , 𝑅 𝑅 𝑅

𝜆 𝐿  

where the correlation function is defined: 

𝛩 𝑅 𝑅 𝑅 , 𝑅 𝑅 𝑅
1
𝜇

𝑃 𝑅 𝑅 𝑅 𝑃 𝑅 𝑅 𝑅  

where μ is the number of physicochemical indices. Two indices (i.e. 'Dnase I', 'Bendability 
(DNAse)' in Table 3 was set as the default indices for DNA sequences. 𝑃 𝑅 𝑅 𝑅  is the 
numerical value of the u-th (u=1, 2, …, μ) physicochemical index of the dinucleotide 𝑅 𝑅 𝑅  

at position i and 𝑃 𝑅 𝑅 𝑅  represents the corresponding value of the dinucleotide 

𝑅 𝑅 𝑅  at position j. 
 
Use the following command to extract the PCPseTNC feature descriptors: 
tcsh% python iLearn-nucleotide-Pse.py --file 
examples/DNA_training.txt --method PCPseTNC --type DNA --lamada 2 
--weight 0.1 
 
5.14.5 Series Correlation Pseudo Dinucleotide Composition (SCPseDNC) 
The Series Correlation Pseudo Dinucleotide Composition (SCPseDNC) encoding (12) is defined 
as: 

𝐷 𝑑 , 𝑑 , … , 𝑑 , 𝑑 , … , 𝑑 , 𝑑 , … , 𝑑  
where 
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𝑑

⎩
⎪
⎨

⎪
⎧

𝑓

∑ 𝑓 𝑤 ∑ 𝜃
,                   1 𝑘 16

𝑤𝜃

∑ 𝑓 𝑤 ∑ 𝜃
, 17 𝑘 16 𝜆𝛬

 

where fk (k=1, 2, …, 16) is the normalized occurrence frequency of dinucleotide in the nucleotide 
sequence, λ represent the highest counted rank (or tie) of the correlation along the nucleotide 
sequence, w is the weight factor ranged from 0 to 1, Λ is the number of physicochemical indices 
and θj (j =1,2, …, λ) is the j-tier correlation factor and is defined: 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝜃 1

𝐿 3 ∑ 𝐽 ,

𝜃 1
𝐿 3 ∑ 𝐽 ,

…

𝜃 1
𝐿 3 ∑ 𝐽 ,

…

𝜃 1
𝐿 𝜆 2 ∑ 𝐽 ,

𝜃 1
𝐿 𝜆 2 ∑ 𝐽 ,

𝜆 𝐿 2  

where the correlation function is defined: 

𝐽 , 𝑃 𝑅 𝑅 𝑃 𝑅 𝑅
𝜁 1,2, … , 𝛬; 𝑚 1,2, … , 𝜆; 𝑖 1,2, … , 𝐿 𝜆 2

 

where μ is the number of physicochemical indices. Six indices (i.e. 'Rise', 'Roll', 'Shift', 'Slide', 
'Tilt', 'Twist') in Table 2 and six indices in Table 4 (i.e. 'Rise (RNA)', 'Roll (RNA)', 'Shift (RNA)', 
'Slide (RNA)', 'Tilt (RNA)', 'Twist (RNA)') were set as the default indices for DNA and RNA 
sequences, separately. 𝑃 𝑅 𝑅  is the numerical value of the u-th (u=1, 2, …, μ) 

physicochemical index of the dinucleotide 𝑅 𝑅  at position i and 𝑃 𝑅 𝑅  represents the 

corresponding value of the dinucleotide 𝑅 𝑅  at position j. 
 
Use the following command to extract the SCPseDNC feature descriptors: 
tcsh% python iLearn-nucleotide-Pse.py --file 
examples/DNA_training.txt --method SCPseDNC --type DNA --lamada 2 
--weight 0.1 
 
5.14.6 Series Correlation Pseudo Trinucleotide Composition (SCPseTNC) 
The Series Correlation Pseudo Trinucleotide Composition (SCPseTNC) encoding (12) is defined 
as: 

𝐷 𝑑 , 𝑑 , … , 𝑑 , 𝑑 , … , 𝑑 , 𝑑 , 𝑑 , … , 𝑑  
where 
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𝑑

⎩
⎪
⎨

⎪
⎧

𝑓

∑ 𝑓 𝑤 ∑ 𝜃
 , 1 𝑘 64

𝑤𝜃

∑ 𝑓 𝑤 ∑ 𝜃
 , 65 𝑘 64 𝜆𝛬

 

where fk (k=1, 2, …, 64) is the normalized occurrence frequency of trinucleotide in the DNA 
sequence, λ represent the highest counted rank (or tie) of the correlation along the DNA sequence, 
w is the weight factor ranged from 0 to 1, Λ is the number of physicochemical indices and θj (j 
=1,2, …, λ) is the j-tier correlation factor and is defined: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝜃 1

𝐿 4 ∑ 𝐽 ,

𝜃 1
𝐿 4 ∑ 𝐽 ,

…

𝜃 1
𝐿 4 ∑ 𝐽 ,

…

𝜃 1
𝐿 𝜆 3 ∑ 𝐽 ,

𝜃 1
𝐿 𝜆 3 ∑ 𝐽 ,

𝜆 𝐿 3  

where the correlation function is defined: 

𝐽 , 𝑃 𝑅 𝑅 𝑃 𝑅 𝑅 𝑅
𝜁 1,2, … , 𝛬; 𝑚 1,2, … , 𝜆; 𝑖 1,2, … , 𝐿 𝜆 3

 

where μ is the number of physicochemical indices. Two indices (i.e. 'Dnase I', 'Bendability 
(DNAse)' in Table 3 was set as the default indices for DNA sequences. 𝑃 𝑅 𝑅 𝑅  is the 
numerical value of the u-th (u=1, 2, …, μ) physicochemical index of the dinucleotide 𝑅 𝑅 𝑅  

at position i and 𝑃 𝑅 𝑅 𝑅  represents the corresponding value of the dinucleotide 

𝑅 𝑅 𝑅  at position j. 
 
Use the following command to extract the SCPseTNC feature descriptors: 
tcsh% python iLearn-nucleotide-Pse.py --file 
examples/DNA_training.txt --method SCPseTNC --type DNA --lamada 2 
--weight 0.1 
 

6. Commonly Used Feature Descriptors for protein sequences 

There are two main programs in iLearn package that are used to generate descriptors for 
protein/peptide sequences (i.e. iLearn-protein-basic.py and iLearn-protein-PseKRAAC.py). The 
description for these 53 types of protein descriptors have been introduced in our previously 
published iFeature (1) package. For more information, please refer to (1). Here we only briefly 
introduce the usage for each of the protein descriptor. 
 
37 encoding schemes can be generated by iLearn-protein-basic.py, The parameters of 
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iLearn-protein-basic.py are: 
 file: the input sequence file with FASTA format 
 method: the descriptor type (select from Table 6) 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 
 path: data file path used for ‘PSSM’, ‘SSEB(C)’, ‘Disorder(B/C)’, ‘ASA’ and ‘TA’ 

encodings 
 
6.1 Amino Acid Composition (AAC) 
The Amino Acid Composition (AAC) encoding (14) calculates the frequency of each amino acid 
type in a protein or peptide sequence. 
 
Use the following command to extract the AAC feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method AAC 
 
6.2 Enhanced Amino Acid Composition (EAAC) 
The Enhanced Amino Acid Composition (EAAC) feature calculates the AAC based on the 
sequence window of fixed length (the default value is 5) that continuously slides from the N- to 
C-terminus of each peptide and can be usually applied to encode the peptides with an equal length. 
 
Use the following command to extract the EAAC feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method EAAC 
 
Advanced users can adjust the size of the sliding window by running the ‘EAAC.py’ in the 
directory of ‘descproteins’. The parameters of ‘EAAC.py’ are: 
 file: the input sequence file with FASTA format 
 slwindow: the size of sliding window, default is 5 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 
For example, adjust the sliding window to 3: 
tcsh% python descproteins/EAAC.py --file 
examples/peptide_sequences.txt --slwindow 3 
 

6.3 Composition of k-spaced Amino Acid Pairs (CKSAAP) 
The CKSAAP feature encoding calculates the frequency of amino acid pairs separated by any k 
residues (k = 0, 1, 2, … , 5. The default maximum value of k is 5) (15-18). 
 
Use the following command to extract the CKSAAP feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method CKSAAP 
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Advanced users can adjust the size of the sliding window by running the ‘CKSAAP.py’ in the 
directory of ‘descproteins’. The parameters of ‘CKSAAP.py’ are: 
 file: the input sequence file with FASTA format 
 gap: the k-space value, default is 5 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 
For example, adjust the gap value to 3: 
tcsh% python descproteins/CKSAAP.py --file 
examples/protein_sequences.txt --gap 3 
 
6.4 Tri-Peptide Composition (TPC) 
The Tripeptide Composition (TPC) (14) gives 8000 descriptors. 
 
Use the following command to extract the CKSAAP feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method TPC 
 
6.5 Grouped Amino Acid Composition (GAAC) 
In the GAAC encoding, the 20 amino acid types are further categorized into five classes according 
to their physicochemical properties, e.g. hydrophobicity, charge and molecular size (19). The five 
classes include the aliphatic group (g1: GAVLMI), aromatic group (g2: FYW), positive charge 
group (g3: KRH), negative charged group (g4: DE) and uncharged group (g5: STCPNQ). 
 
Use the following command to extract the CKSAAP feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method GAAC 
 
6.6 Enhanced GAAC (EGAAC) 
The Enhanced GAAC (EGAAC) is also for the first time proposed in this work. It calculates 
GAAC in windows of fixed length (default is 5) continuously sliding from the N- to C-terminal of 
each peptide and is usually applied to peptides with an equal length. 
 
Use the following command to extract the EGAAC feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method EGAAC 
 
Use the following command to extract the EGAAC feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method EGAAC 
 
Advanced users can adjust the size of the sliding window by running the ‘EGAAC.py’ in the 
directory of ‘descproteins’. The parameters of ‘EGAAC.py’ are: 
 file: the input sequence file with FASTA format 
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 slwindow: the size of sliding window, default is 5 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 
For example, adjust the sliding window to 3: 
tcsh% python descproteins/EGAAC.py --file 
examples/peptide_sequences.txt --slwindow 3 
 
6.7 Composition of k-Spaced Amino Acid Group Pairs (CKSAAGP) 
The Composition of k-Spaced Amino Acid Group Pairs (CKSAAGP) is a variation of the 
CKSAAP descriptor, which is our own proposal. It calculates the frequency of amino acid group 
pairs separated by any k residues (the default maximum value of k is set as 5). 
 
Use the following command to extract the CKSAAGP feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method CKSAAGP 
 
Advanced users can adjust the size of the sliding window by running the ‘CKSAAGP.py’ in the 
directory of ‘descproteins’. The parameters of ‘CKSAAGP.py’ are: 
 file: the input sequence file with FASTA format 
 gap: the k-space value, default is 5 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 
For example, adjust the gap value to 3: 
tcsh% python descproteins/CKSAAGP.py --file 
examples/protein_sequences.txt --gap 3 
 
6.8 Grouped Tri-Peptide Composition (GTPC) 
The Grouped Tri-Peptide Composition encoding is also a variation of TPC descriptor, which 
generates 125 descriptors. 
 
Use the following command to extract the GTPC feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method GTPC 
 
6.9 Binary (binary) 
In the Binary encoding (20,21), each amino acid is represented by a 20-dimensional binary vector, 
e.g. A is encoded by (10000000000000000000), C is encoded by (01000000000000000000), …, Y 
is encoded by (00000000000000000001), respectively. This encoding scheme is often used to 
encode peptides with an equal length. 
 
Use the following command to extract the binary feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
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examples/protein_sequences.txt --method binary 
 
6.10 Moran correlation (Moran) 
The autocorrelation descriptors are defined based on the distribution of amino acid properties 
along the sequence (22-24). The amino acid properties used here are different types of amino acids 
index, which is retrieved from the AAindex Database (25) available at 
http://www.genome.jp/dbget/aaindex.html. The eight indices ‘CIDH920105', 'BHAR880101', 
'CHAM820101', 'CHAM820102', 'CHOC760101', 'BIGC670101', 'CHAM810101', 
'DAYM780201' are used (26) as default.  
 
Use the following command to extract the Moran feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method Moran 
 
Advanced users can select the property and adjust the maximum value of the nlag (default is 30) 
by running the ‘Moran.py’ in the directory of ‘descproteins’. The parameters of ‘Moran.py’ are: 
 file: the input sequence file with FASTA format 
 props: input the property names, the names were separated by the symbol ':' 
 nlag: set the value of nlag, default is 30 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 
For example, select two property and set the nlag value is 15: 
tcsh% python descproteins/Moran.py --file 
examples/protein_sequences.txt --props CIDH920105:BHAR880101 --nlag 
15 

 
6.11 Geary correlation (Geary) 
The Geary autocorrelation descriptors (24) is also a type of autocorrelation descriptor. 
 
Use the following command to extract the Geary feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method Geary 
 
Advanced users can select the property and adjust the maximum value of the nlag (default is 30) 
by running the ‘Moran.py’ in the directory of ‘descproteins’. The parameters of ‘Moran.py’ are: 
 file: the input sequence file with FASTA format 
 props: input the property names, the names were separated by the symbol ':' 
 nlag: set the value of nlag, default is 30 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 
For example, select two property and set the nlag value is 15: 
tcsh% python descproteins/Geary.py --file 
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examples/protein_sequences.txt --props CIDH920105:BHAR880101 --nlag 
15 

 
6.12 Normalized Moreau-Broto Autocorrelation (NMBroto) 
The Moreau-Broto autocorrelation descriptors (23) is also a type of autocorrelation descriptors. 
 
Use the following command to extract the NMBroto feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method NMBroto 
 
Advanced users can select the property and adjust the maximum value of the nlag (default is 30) 
by running the ‘Moran.py’ in the directory of ‘descproteins’. The parameters of ‘NMBroto.py’ are: 
 file: the input sequence file with FASTA format 
 props: input the property names, the names were separated by the symbol ':' 
 nlag: set the value of nlag, default is 30 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 
For example, select two property and set the nlag value is 15: 
tcsh% python descproteins/Geary.py --file 
examples/protein_sequences.txt --props CIDH920105:BHAR880101 --nlag 
15 

 
6.13 Composition/Transition/Distribution (CTD) 
The Composition, Transition and Distribution (CTD) features represent the amino acid distribution 
patterns of a specific structural or physicochemical property in a protein or peptide sequence 
(27-31). Seven types of physicochemical properties have been previously used for computing these 
features. These include hydrophobicity, normalized Van der Waals Volume, polarity, 
polarizability, charge, secondary structures and solvent accessibility. These descriptors are 
calculated according to the following procedures: (i) The sequence of amino acids is transformed 
into a sequence of certain structural or physicochemical properties of residues; (ii) Twenty amino 
acids are divided into three groups for each of the seven different physicochemical attributes based 
on the main clusters of the amino acid indices of Tomii and Kanehisa (32). The groups of amino 
acids are listed in Table 6. 

Table 6. Amino acid physicochemical attributes and the division of the amino acids into three 
groups according to each attribute. 

Attribute Division 
Hydrophobicity Polar: RKEDQN Neutral: GASTPHY Hydrophobicity: 

CLVIMFW 
Normalized van 
der Waals volume 

Volume range: 
0-2.78 
GASTPD 

Volume range: 2.95-94.0 
NVEQIL 

Volume range: 
4.03-8.08 
MHKFRYW 

Polarity Polarity value: Polarity value: 8.0-9.2 Polarity value: 
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4.9-6.2 
LIFWCMVY 

PATGS 10.4-13.0 
HQRKNED 

Polarizability Polarizability value: 
0-1.08 
GASDT 

Polarizability value: 
0.128-120.186 
GPNVEQIL 

Polarizability value: 
0.219-0.409 
KMHFRYW 

Charge Positive: KR Neutral: 
ANCQGHILMFPSTWYV

Negative: DE 

Secondary 
structure 

Helix: EALMQKRH Strand: VIYCWFT Coil: GNPSD 

Solvent 
accessibility 

Buried: 
ALFCGIVW 

Exposed: PKQEND Intermediate: MPSTHY

 
6.13.1 CTDC 
Use the following command to extract the CTDC feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method CTDC 
 
6.13.2 CTDT 
The Transition descriptor T also consists of three values (27,28): A transition from the polar group 
to the neutral group is the percentage frequency with which a polar residue is followed by a neutral 
residue or a neutral residue by a polar residue. 
 
Use the following command to extract the CTDT feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method CTDT 
 
6.13.2 CTDD 
The Distribution descriptor consists of five values for each of the three groups (polar, neutral and 
hydrophobic) (27,28), namely the corresponding fraction of the entire sequence, where the first 
residue of a given group is located, and where 25, 50, 75 and 100% of occurrences are contained. 
 
Use the following command to extract the CTDD feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method CTDD 
 
6.14 Conjoint Triad (CTriad) 
The Conjoint Triad descriptor (CTriad) considers the properties of one amino acid and its vicinal 
amino acids by regarding any three continuous amino acids as a single unit (33). 
 
Use the following command to extract the CTriad feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method CTriad 
 
6.15 k-Spaced Conjoint Triad (KSCTriad) 
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The k-Spaced Conjoint Triad (KSCTriad) descriptor is based on the Conjoint CTriad descriptor, 
which not only calculates the numbers of three continuous amino acid units, but also considers the 
continuous amino acid units that are separated by any k residues (The default maximum value of k 
is set to 5). 
 
Use the following command to extract the KSCTriad feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method KSCTriad 
 
Advanced users can adjust the value of k to <k> by running the ‘KSCTriad.py’ in the directory of 
‘descproteins’. The parameters of KSCTriad.py’ are: 
 file: the input sequence file with FASTA format 
 gap: the k-space value, default is 5 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 
For example, adjust the gap value to 3: 
tcsh% python descproteins/KSCTriad.py --file 
examples/protein_sequences.txt --gap 3 
 
6.16 Sequence-Order-Coupling Number (SOCNumber) 
Use the following command to extract the SOCNumber feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method SOCNumber 
 
Advanced users can adjust the value of lag (ingeger, default is 30) by running the ‘SOCNumber.py’ 
in the directory of ‘descproteins’. The parameters of ‘SOCNumber.py’ are: 
 file: the input sequence file with FASTA format 
 lag: the lag value for SOCNumber, default is 30 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 
For example, adjust the lag value to 10: 
tcsh% python descproteins/SOCNumber.py --file 
examples/protein_sequences.txt --lag 10 
 
6.17 Quasi-sequence-order (QSOrder) 
Use the following command to extract the QSOrder feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method QSOrder 
 
Advanced users can adjust the value of lag (ingeger, default is 30) by running the ‘SOCNumber.py’ 
in the directory of ‘descproteins’. The parameters of ‘SOCNumber.py’ are: 
 file: the input sequence file with FASTA format 
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 lag: the lag value for QSOrder, default is 30 
 weight: the weight factor, ranged from 0-1, default is 0.1 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 
For example, adjust the lag value to 10 and set the weight factor is 0.2: 
tcsh% python descproteins/QSOrder.py --file 
examples/protein_sequences.txt --lag 10 --weight 0.2 
 
6.18 Pseudo-Amino Acid Composition (PAAC) 
This group of descriptors has been proposed in (34,35). 
 
Use the following command to extract the PAAC feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method PAAC 
 

Advanced users can adjust the value of λ (ingeger, default is 30) and weight factor (default is 

0.05) by running the ‘PAAC.py’ in the directory of ‘descproteins’. The parameters of ‘PAAC.py’ 
are: 
 file: the input sequence file with FASTA format 
 lamada: the lamada value for PAAC.py, default is 30 
 weiht: the weight factor for PAAC.py, default is 0.05 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 

For example, adjust the λ value to 10 and set the weight factor is 0.1: 

tcsh% python descproteins/PAAC.py --file 
examples/protein_sequences.txt --lamada 10 --weight 0.1 
 
6.19 Amphiphilic Pseudo-Amino Acid Composition (APAAC) 
Amphiphilic Pseudo-Amino Acid Composition (APAAC) was proposed in (34,35). 
 
Use the following command to extract the APAAC feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/protein_sequences.txt --method APAAC 
 

Advanced users can adjust the value of λ (ingeger, default is 30) by running the ‘APAAC.py’ in 

the directory of ‘descproteins’. The parameters of ‘APAAC.py’ are: 
 file: the input sequence file with FASTA format 
 lamada: the lamada value for PAAC.py, default is 30 
 weiht: the weight factor for PAAC.py, default is 0.05 
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 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 

For example, adjust the λ value to 10 and set the weight factor is 0.1: 

tcsh% python descproteins/APAAC.py --file 
examples/protein_sequences.txt --lamada 10 --weight 0.1 
 
6.20 K-Nearest Neighbor for peptides (KNNpeptide) 
The K-Nearest Neighbor for peptides (KNNpeptide) descriptor (36) requires an extra training file 
and a label file. The training file is used to calculate the top K-Nearest Neighbor peptides by 
calculating the similarity score of two peptide sequences. 
 
Use the following command to extract the KNNpeptide feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/peptide_sequences.txt --method KNNpeptide 
 
6.21 K-Nearest Neighbor for proteins (KNNprotein) 
The K-Nearest Neighbor for Proteins (KNNProtein) descriptor is similar to the KNNpeptide 
descriptor. The only difference between these two descriptors is the way similarity is calculated. In 
KNNprotein the similarity score of two protein sequences is obtained by applying the 
Needleman-Wunsch algorithm (37). 
 
Use the following command to extract the KNNprotein feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/peptide_sequences.txt --method KNNprotein 
 
6.22 PSSM profile (PSSM) 
This feature descriptor (38,39) is extracted from the Position-Specific Scoring Matrix (PSSM) 
profile. The PSSM profile can be obtained by running PSI-BLAST (40) against the uniref 50 
database. The PSSM descriptor is usually applied to encode the peptides with equal length. Each 
amino acid in the peptide is represented by a 20-dimensional vector. 
 
Use the following command to extract the PSSM feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/peptide1_sequences.txt --method PSSM --path 
examples/predictedProteinProperty 
 
6.23 AAindex (AAINDEX) 
Physicochemical properties of amino acids are the most intuitive features for representing 
biochemical reactions and have been extensively applied in bioinformatics research. The amino 
acid indices (AAindex) database (25) collects many published indices representing 
physicochemical properties of amino acids. For each physicochemical property, there is a set of 20 
numerical values for all amino acids. Currently, 544 physicochemical properties can be retrieved 
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from the AAindex database. After removing physicochemical properties with value 'NA' for any of 
the amino acids, 531 physicochemical properties were left. In contrast to the residue-based 
encoding methods of amino acid identity and evolutionary information, a vector of 531 mean 
values is used to represent a sample for various window sizes. The AAINDEX descriptor (41) can 
be applied to encode peptides of equal length. 
 
Use the following command to extract the AAINDEX feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/peptide1_sequences.txt --method AAINDEX 
 
Advanced users can select the properties by running the ‘AAINDEX.py’ in the directory of 
‘descproteins’. The parameters of ‘AAINDEX.py’ are: 
 file: the input sequence file with FASTA format 
 props: input the property names, the names were separated by the symbol ':' 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 

 
For example, select two property: 
tcsh% python descproteins/AAINDEX.py --file 
examples/peptide_sequences.txt --props CIDH920105:BHAR880101 

6.24 BLOSUM62 (BLOSUM62) 
In this descriptor, the BLOSUM62 matrix is employed to represent the protein primary sequence 
information as the basic feature set. A matrix comprising of m × n elements is used to represent 
each residue in a training dataset, where n denotes the peptide length and m  =  20, which elements 
comprise 20 amino acids. Each row in the BLOSUM62 matrix is adopted to encode one of 20 
amino acids. The BLOSUM62 descriptor (42) can be applied to encode peptides of equal length. 
 
Use the following command to extract the BLOSUM62 feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/peptide_sequences.txt --method BLOSUM62 
 
6.25 Secondary Structure Elements Content (SSEC) 
Protein secondary structure was first predicted by the PSIPRED V4.0 software (43). 
 
Use the following command to extract the SSEC feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/peptide1_sequences.txt --method SSEC --path 
examples/predictedProteinProperty 
 
6.26 Secondary Structure Elements Binary (SSEB) 
In the Secondary Structure Elements Binary (SSEB) descriptor, each residue in a peptide is 
represented by a 3-dimensional vector, i.e. Helix (001), Strand (010), Coil (100). The SSEB 
descriptor can be applied to encode peptides of equal length. 
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Use the following command to extract the SSEB feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/peptide1_sequences.txt --method SSEB --path 
examples/predictedProteinProperty 
 
6.27 Disorder (Disorder) 
Protein disorder information was first predicted by the VSL2 software (44,45). The predicted 
probability value is taken as the feature. The Disorder descriptor (38,46) can be applied to encode 
peptides of equal length. 
 
Use the following command to extract the Disorder feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/peptide1_sequences.txt --method Disorder --path 
examples/predictedProteinProperty 
 
6.28 Disorder Content (DisorderC) 
 
Use the following command to extract the DisorderC feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/peptide1_sequences.txt --method DisorderC --path 
examples/predictedProteinProperty 
 
6.29 Disorder Binary (DisorderB) 
For the Disorder Binary (DisorderB) descriptor, each residue in a peptide sequence is represented 
by a 2-dimensional vector, namely an order residue by (10) and a disorder residue by (01). The 
DisorderB descriptor can be applied to encode peptides of equal length. 
 
Use the following command to extract the DisorderB feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/peptide1_sequences.txt --method DisorderB --path 
examples/predictedProteinProperty 
 
6.30 Accessible Solvent accessibility (ASA) 
The protein Accessible Solvent Accessibility information was first predicted by the SPINE-X 
software (47-49). The predicted ASA value is used as input feature. The ASA descriptor can be 
applied to encode peptides with an equal length. 
 
Use the following command to extract the ASA feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/peptide1_sequences.txt --method ASA --path 
examples/predictedProteinProperty 
 
6.31 Torsion angle (TA) 
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The protein Torsion Angle information was also introduced first by the SPINE-X software (47-49). 
The predicted “phi” and “psi” values are used as features. The TA descriptor can be applied to 
encode peptides of equal length. 
 
Use the following command to extract the TA feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/peptide1_sequences.txt --method TA --path 
examples/predictedProteinProperty 
 
6.32 Z-Scale (ZSCALE) 
For this descriptor, each amino acid is characterized by five physicochemical descriptor variables 
(cf. Table 2), which were developed by Sandberg et al. in 1998 (50). The ZSCALE descriptor (51) 
can be applied to encode peptides of equal length. 
 
Use the following command to extract the ZSCALE feature descriptors: 
tcsh% python iLearn-protein-basic.py --file 
examples/peptide_sequences.txt --method ZSCALE  
 
6.32 pseudo K-tuple reduced amino acids composition (PseKRAAC) 
16 PseKRAAC encoding schemes can be generated by iLearn-protein-PseKRAAC.py, The 
parameters of iLearn-protein-PseKRAAC.py are: 
 file: the input sequence file with FASTA format 
 method: the descriptor type (select from type1, type2, type3A, type3B, type4, type5, 

type6A, type6B, type6C, type7, type8, type9, type10, type11, type12, type13, type14, 
type15, type16) 

 model: feature types for protein sequence analysis, two alternative modes (g-gap and 
lambda-correlation) are available, with the ‘g-gap’ model as the default 

 ktuple: K-tuple value, three K-tuple values (i.e. 1, 2 and 3) are available, default is 2 
 gap_lambda: gap value for the ‘g-gap’ model or lambda value for the ‘lambda-correlation’ 

model, 10 values are available (i.e. 0, 1, 2, …, 9) 
 type: the reduced amino acids cluster type 
 format: the output format, four types of format (i.e. csv, tsv, svm and weka) are supported 
 out: the output file name 
 show: show detailed available “--type” value for each type 

 
Users can run the following command to view the available values for each descriptor type: 
tcsh% python iLearn-protein-PseKRAAC.py --show 
 
Use the following command to extract the PseKRAAC feature descriptors: 
tcsh% python iLearn-protein-PseKRAAC.py --file 
examples/protein_sequences.txt --method type1 --model 
lambda-correlation --ktuple 2 --gap_lambda 2 --type 5 
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7. Feature Analysis Using iLearn 

iLearn integrates several commonly used and useful clustering, feature selection, feature 
normalization, and dimensionality reduction algorithms. The clustering algorithms can be 
implemented by running the ‘iLearn-clustering.py’. The parameters of iLearn-clustering.py are:  
 file: the encoding file, and a ‘tsv_1’ file format is required 
 method: cluster algorithm (select from kmeans, hcluster, apc, meanshift and dbscan) 
 sof: cluster for sample or feature, default is sample 
 ktuple: K-tuple value, three K-tuple values (i.e. 1, 2 and 3) are available, default is 2 
 nclusters: specify the cluster number for kmeans cluster algorithm, default is 3 
 type: the reduced amino acids cluster type 
 out: the output file name 

 
7.1 K-Means clustering (kmeans) 
The K-Means algorithm clusters data by trying to separate samples in n groups of equal variance, 
minimizing a criterion known as the inertia or within-cluster sum-of-squares (52,53). This 
algorithm requires the number of clusters to be specified. It scales well to large numbers of 
samples and has been used across a broad range of application areas. 

 

Use the following command to perform the K-Means clustering: 
tcsh% python iLearn-clustering.py --file 
examples/code_for_cluster.txt --method kmeans --sof sample 
--nclusters 2 

 

7.2 Gaussian Mixture clustering (gmm) 
The Gaussian mixture model (GMM) attempts to find a mixture of multi-dimensional Gaussian 
probability distributions that best model any input dataset. 

 

Use the following command to perform the gmm clustering: 
tcsh% python iLearn-clustering.py --file 
examples/code_for_cluster.txt --method gmm --sof sample --nclusters 
2 

 

7.3 Hierarchical clustering (hcluster) 
Hierarchical clustering is a general family of clustering algorithms that build nested clusters by 
merging or splitting them successively (52-54). This hierarchy of clusters is represented as a tree 
(or dendrogram). The root of the tree is the unique cluster that gathers all the samples, the leaves 
being the clusters with only one sample. 
 
Use the following command to perform the hcluster clustering: 
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tcsh% python iLearn-clustering.py --file 
examples/code_for_cluster.txt --method hcluster  

 

7.4 Affinity Propagation clustering (apc) 
Affinity Propagation creates clusters by sending messages between pairs of samples until 
convergence (55). A dataset is then described using a small number of exemplars, which are 
identified as the most representative of samples. The messages sent between pairs represent the 
suitability for one sample to be the exemplar of the other, which is updated in response to the 
values from other pairs. This updating happens iteratively until convergence has been achieved, at 
which point the final exemplars are chosen, and hence the final clustering is given. 
 
Use the following command to perform the apc clustering: 
tcsh% python iLearn-clustering.py --file 
examples/code_for_cluster.txt --method apc 

 

7.5 Mean Shift clustering (meanshift) 
MeanShift clustering aims to discover blobs in a smooth density of samples (56). It is a centroid 
based algorithm, which works by updating candidates for centroids that are the mean of the points 
within a given region. These candidates are then filtered in a post-processing stage to eliminate 
near-duplicates and to form the final set of centroids. 
 
Use the following command to perform the meanshift clustering: 
tcsh% python iLearn-clustering.py --file 
examples/code_for_cluster.txt --method meanshift 
 
7.6 DBSCAN clustering (dbscan) 
The DBSCAN algorithm views clusters as areas of high density separated by areas of low density 
(57). 
 
Use the following command to perform the dbscan clustering: 
tcsh% python iLearn-clustering.py --file 
examples/code_for_cluster.txt --method dbscan 
 
The feature normalization algorithms can be implemented by running the 
‘iLearn-feature-normalization.py’. The parameters of iLearn-feature-normalization.py are:  
 file: the encoding file 
 method: feature normalization algorithm (select from ZScore and MinMax) 
 format: the input file format (select from csv, tsv, svm, weka) 
 out: the output file name 

 
7.7 ZScore (ZScore) 
Use the following command to perform the ZScore feature normalization: 
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tcsh% python iLearn- feature-normalization.py --file examples/ 
DNA_code_training.txt --method ZScore --format svm 
 
7.8 MinMax (MinMax) 
Use the following command to perform the MinMax feature normalization: 
tcsh% python iLearn- feature-normalization.py --file examples/ 
DNA_code_training.txt --method MinMax --format svm 

 
The feature selection algorithms can be implemented by running the ‘iLearn-feature-selectior.py’. 
The parameters of iLearn-feature-selectior.py are:  
 file: the encoding file 
 method: feature selection algorithm (select from CHI2, IG, MIC, pearsonr) 
 format: the input file format (select from csv, tsv, svm, weka) 
 out: the output file name 

 
7.9 Chi-Square feature selection (CHI2) 
Use the following command to perform the chi2 feature selection algorithm: 
tcsh% python iLearn-feature-selectior.py --file 
examples/DNA_code_testing.txt --method CHI2 --format svm 
 
7.10 Information Gain feature selection (IG) 
Information gain (IG) measures the amount of information in bits with respect to the class 
prediction, if the only information available is the presence of a feature and the corresponding 
class distribution (15,17). 
 
Use the following command to perform the IG feature selection algorithm: 
tcsh% python iLearn-feature-selectior.py --file 
examples/DNA_code_testing.txt --method IG --format svm 
 
7.11 F-Score (Fscore) 
The F-score value of the i-th feature is defined in (58): 
Use the following command to perform the F-score feature selection algorithm: 
tcsh% python iLearn-feature-selectior.py --file 
examples/DNA_code_testing.txt --method Fscore --format svm 
 
 
7.12 Mutual Information feature selection (MIC) 
Use the following command to perform the MI clustering: 
tcsh% python iLearn-feature-selectior.py --file 
examples/DNA_code_testing.txt --method MIC --format svm 
 
7.13 Pearson Correlation coefficient feature selection (pearsonr) 
Use the following command to perform the MI clustering: 
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tcsh% python iLearn-feature-selectior.py --file 
examples/DNA_code_testing.txt --method pearsonr --format svm 
 
The dimension reduction algorithms can be implemented by running the 
‘iLearn-dimension-reduction.py’. The parameters of iLearn-dimension-reduction.py are:  
 file: the encoding file 
 method: feature selection algorithm (select from CHI2, IG, MIC, pearsonr) 
 format: the input file format (select from csv, tsv, svm, weka) 
 ncomponents: the number of components, default is 3 
 out: the output file name 

 
7.14 Principal Component Analysis (pca) 
PCA (59) is used to decompose a multivariate dataset in a set of successive orthogonal 
components that explain a maximum amount of the variance. 
 
Use the following command to perform the pca clustering: 
tcsh% python iLearn-dimension-reduction.py --file 
examples/DNA_code_testing.txt --method pca --format svm 
 
7.15 Latent Dirichlet Allocation (lda) 
Latent Dirichlet Allocation (60) is a generative probabilistic model for collections of discrete 
dataset such as text corpora. 
 
Use the following command to perform the lda clustering: 
tcsh% python iLearn-dimension-reduction.py --file 
examples/DNA_code_testing.txt --method lda --format svm 
 
7.16 t-Distributed Stochastic Neighbor Embedding (tsne) 
Use the following command to perform the tsne clustering: 
tcsh% python iLearn-dimension-reduction.py --file 
examples/DNA_code_testing.txt --method tsne --format svm 
 

8 Predictor Construction Using iLearn 

In iLearn, five commonly used machine learning algorithms were provided, include SVM, RF, 
ANN, KNN and LR. 
 
8.1 Support Vector Machine (SVM) 
SVM aims to accurately classify samples by generating optimal hyperplanes based on the feature 
dimensionality of the training data (61,62). The resulting mapping formula generated by SVM is 
usually not interpretable, but invariably yields to satisfactory classification/prediction performance. 
Therefore, SVM is usually the ‘first choice’ adopted in many bioinformatics studies (20,21). A 
variety of kernels have been developed for SVM, for different classification scenarios, including 
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gaussian radial basis function (RBF), linear/polynomial/sigmoid kernel, etc.  

 

The parameters of iLearn-ML-SVM.py are:  
 train: the training coding file, which is used to build a model 
 indep: the independent coding file, which is used as the independent dataset 
 format: the input code file format, four types of format (i.e. csv, tsv, svm and weka) are 

supported 
 kernel: kernel functions (select from linear, poly, rbf and sigmoid, default is rbf) 
 auto: auto optimize parameters (default is False) 
 batch: random select part (batch * samples) samples for parameters optimization 
 degree: set degree in polynomial kernel function (default is 3) 
 gamma: set gamma in polynomial/rbf/sigmoid kernel function (default is 0) 
 coef0: set coef0 in polynomial/rbf/sigmoid kernel function (default is 0) 
 cost: set the parameter cost value (default 1) 
 fold: set K-fold cross-validation mode (default is 5-fold cross-validation) 
 out: set prefix for output score file 

 
Use the following command to perform the SVM algorighm: 
tcsh% python iLearn-ML-SVM.py --train examples/DNA_code_training.txt 
--indep examples/DNA_code_testing.txt --format svm --batch 0.5 --auto 
--out SVM 

 

8.2 Random Forest (RF) 
Random forest (RF) (63) is another well-established and widely employed algorithm, which has 
been applied for many bioinformatics applications (64-67). RF is essentially an ensemble of a 
number of decision trees, T= 𝑇 𝑋 , 𝑇 𝑋 , … , 𝑇 𝑋  built on N random subsets of the training 
data, and the average prediction performance is usually reported in order to avoid over-fitting (63). 
The obvious advantage of RF is its interpretability, as every decision tree consists of a number of 
‘if…then…’ rules, which are fairly straightforward to explain. Such rules can potentially provide 
biologists with insights and knowledge discovery that would otherwise remain buried in the data. 
When applying RF, one should bear in mind that the number of decision trees is an important 
parameter and should be tested exhaustively based on the specific application or biological 
question, for optimal prediction performance.  
 
The parameters of iLearn-ML-RF.py are:  
 train: the training coding file, which is used to build a model 
 indep: the independent coding file, which is used as the independent dataset 
 format: the input code file format, four types of format (i.e. csv, tsv, svm and weka) are 

supported 
 n_trees: the number of trees in the forest (default is 100) 
 fold: set K-fold cross-validation mode (default is 5-fold cross-validation) 
 out: set prefix for output score file 
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Use the following command to perform the RF algorighm: 
tcsh% python iLearn-ML-RF.py --train examples/DNA_code_training.txt 
--indep examples/DNA_code_testing.txt --format svm --out RF 

 

8.3 Artificial Neural Network 
An Artificial Neural Network (ANN) usually contains multiple nodes as input and multiple layers 
to connect these input nodes, mimicking neurons and their functions/connectivity in human brains 
(68). 
 
The parameters of iLearn-ML-MLP.py are:  
 train: the training coding file, which is used to build a model 
 indep: the independent coding file, which is used as the independent dataset 
 format: the input code file format, four types of format (i.e. csv, tsv, svm and weka) are 

supported 
 hidden: set the hidden layer and size in each layer 
 lost: set the lost function, choose from ‘lbfgs’, ‘sgd’ or ‘adam’. Default is ‘lbfgs’ 
 activation: activation function, choose from ‘identity’, ‘logistic’, ‘tanh’, ‘relu’. Default is 

‘relu’ 
 epochs: set the maximum number of iterations. Default is 200 
 lr: learning rate. Default is 0.0001 
 fold: set K-fold cross-validation mode (default is 5-fold cross-validation) 
 out: set prefix for output score file 

 
Use the following command to perform the ANN algorighm: 
tcsh% python iLearn-ML-MLP.py --train examples/DNA_code_training.txt 
--indep examples/DNA_code_testing.txt --format svm --out ANN --hidden 
32:32 

 
8.4 K-Nearest Neighbours algorithm (KNN) 
K-Nearest Neighbours (KNN) algorithm is another commonly employed unsupervised algorithm 
that clusters samples by calculating their similarities/distances (38). Given the training dataset 
𝐷 𝑣 , 𝑣 , … , 𝑣  and a testing sample x, KNN (38) calculates the distances between x and all 
the instances in D. As a result, the query sample will be assigned to the same class as its nearest 
neighbor (shortest distance) in the training dataset. 
 
The parameters of iLearn-ML-MLP.py are:  
 train: the training coding file, which is used to build a model 
 indep: the independent coding file, which is used as the independent dataset 
 format: the input code file format, four types of format (i.e. csv, tsv, svm and weka) are 

supported 
 k: set the K nearest neighbor value (default is 3) 
 fold: set K-fold cross-validation mode (default is 5-fold cross-validation) 
 out: set prefix for output score file 
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Use the following command to perform the ANN algorighm: 
tcsh% python iLearn-ML-KNN.py --train examples/DNA_code_training.txt 
--indep examples/DNA_code_testing.txt --format svm --out KNN --k 5 

 
8.5 Logistic Regression (LR) 
LR can be used to build a classification model for many prediction tasks (69,70), which can be 
represented as (71): 

ℎ 𝑥 𝑏 𝑤 𝑥 ⋯ 𝑤 𝑥 ,                                     
where xi are the input features, wi the weight parameters, and b is the bias value. Given an 
unlabeled input x, the likelihood of x with the class label (a given PTM type) can be defined as: 

𝑃 ℎ 𝑥   

The parameters of iLearn-ML-LR.py are:  
 train: the training coding file, which is used to build a model 
 indep: the independent coding file, which is used as the independent dataset 
 format: the input code file format, four types of format (i.e. csv, tsv, svm and weka) are 

supported 
 fold: set K-fold cross-validation mode (default is 5-fold cross-validation) 
 out: set prefix for output score file 

 
Use the following command to perform the LR algorighm: 
tcsh% python iLearn-ML-LR.py --train examples/DNA_code_training.txt 
--indep examples/DNA_code_testing.txt --format svm --out LR 
 
Generally, SVM is suitable for dealing with binary classification tasks and is able to handle high 
dimensional data. According to our experience, it is hard to improve the performance of an SVM 
model by using the feature selection method (21,72,73), though the latter can significantly improve 
the performance for RF and KNN models (38,64). For the multi-class classification task, RF and 
ANN are better choices. ANNs are an alternative to LR, the statistical technique with which they 
share most similarities. ANNs offer a number of advantages, such as requiring less formal 
statistical training, ability to implicitly detect complex nonlinear relationships between dependent 
and independent variables, ability to detect all possible interactions between predictor variables, 
and availability of multiple training algorithms. However, the disadvantage of ANN and SVM is 
their “black box” nature (74). Lastly, the performance of an ANN model is dependent on the 
sample size of the training data, while RF is usually the most robust algorithm.  
 
8.6 Descriptor estimater 
For a prediction task, the iLearn package can select out the descriptor with the best performance 
by using the ‘iLearn-descriptor-estimater.py’. 
 
Use the following command to run the iLearn descriptor estimater: 
tcsh% python iLearn-descriptor-estimater.py --config 
The parameters of iLearn-descriptor-estimater.py are:  
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 config: specify the configure file. 
 
8.7 iLearn pipeline 
All the individual functionalities in iLearn can be implemented as a pipeline by using the 
‘iLearn-auto-pipeline.py’ script. 
 
Use the following command to run the iLearn pipeline: 
tcsh% python iLearn-auto-pipline.py --config 
The parameters of iLearn-auto-pipeline.py are:  
 config: specify the configure file. 

The following is an example of the configure file: 
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## Input file information 

Sequence_File=example.txt 

Sequence_Type=DNA 

## Descriptor method 

Method=DNC;TNC;Kmer 

## parameters for nucleotide, protein and peptide descriptors 

# Kmer, RCKmer & PseKNC 

Kmer_Size=3 

# ENAC, EAAC, EGAAC,  

Sliding_Window=5 

# CKSNAP, CKSAAP, CKSAAGP, KSCTriad 

K_Space=5 

# Auto-Correlation, NMBroto, Geary, Moran, SOCNumber, QSOrder 

Lag_Value=2 

# Auto-Correlation, Pseudo nucleic acid composition, QSOrder, PAAC, APAAC 

Weight_Value=0.1 

# Auto-Correlation & Pseudo nucleic acid composition, PAAC, APAAC 

Lamada_Value=2 

# Auto-Correlation & Pseudo nucleic acid composition 

Di-DNA-Phychem=Rise;Roll;Shift;Slide;Tilt;Twist 

Tri-DNA-Phychem=Dnase I;Bendability (DNAse) 

Di-DNA-Phychem-default6=Rise;Roll;Shift;Slide;Tilt;Twist 

Di-RNA-Phychem=Rise (RNA);Roll (RNA);Shift (RNA);Slide (RNA);Tilt (RNA);Twist (RNA) 

All_Property=False 

# AAindex properties, NMBroto, Geary, Moran 

AAindex=ANDN920101;ARGP820101;ARGP820102;ARGP820103;BEGF750101;BEGF750102;BEGF750103;BHAR880101 

# PseKRAAC 

PseKRAAC_Model=g-gap 

Ktuple=2 

GapLamada=2 

RAACCluster1=2 

RAACCluster2=2 

RAACCluster3A=2 

RAACCluster3B=2 

RAACCluster4=5 

RAACCluster5=2 

RAACCluster6A=5 

RAACCluster6B=5 

RAACCluster6C=5 

RAACCluster7=2 

RAACCluster8=2 

RAACCluster9=2 

RAACCluster10=2 

RAACCluster11=2 

RAACCluster12=2 

RAACCluster13=4 

RAACCluster14=2 

RAACCluster15=2 

RAACCluster16=2 

## output format 

Output_Format=svm 

## Clustering 

Clustering_Algorithm= 

Kmean_Cluster_Number=2 

Clustering_Type=sample 

## Feature Normalization 

Feature_Normalization_Algorithm= 

## Feature selection 

Feature_Selection_Algorithm= 

Selected_Feature_Number=100 

## Dimension reduction 

Dimension_Reduction_Algorithm= 

Dimension_Reduction_Number=3 

## Model construction 

ML=RF;SVM 

# Parameters for SVM 

Kernel=rbf 

Cost=1.0 

Gamma= 

Auto_Opterimize=False 

# RF 

Tree_Number=100 

# KNN 

K_Nearest_Neighbour=3 

# ANN 

Hidden_Layer_Size=32;32 

## K-fold Cross-Validation 

Validation=5 

## Ensemble learning 

Ensemble=YES 
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9. Performance Evaluation Strategy of iLearn 

iLearn support both the binary classification task and multiclass classification task. For binary 
classification problem, seven frequently-used measures are supported by iLearn, including  
Sensitivity (Sn), Specificity (Sp), Accuracy (Acc), Matthew correlation coefficient (MCC), Recall, 
Precision, F1-score, the area under ROC curve (AUROC) and the area under the PRC curve 
(AUPRC). Sn, Sp, ACC, MCC, Recall, Precision and F1-score are defined as: 
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where 𝑁 , 𝑁 , 𝑁  and 𝑁  represent the numbers of true positives, false positives, true 
negatives and false negatives respectively. The AUROC value is calculated based on the 
Receiver-Operating-Characteristic (ROC) curve, and takes values between 0 and 1, while the 
AUPRC value is calculated based on the Precision-Recall curve, where, the higher the AUROC 
and AUPRC value, the better the prediction performance. 

For multiclass classification problems, the Acc is used to evaluate the performance, which is 

defined as (75,76): 

𝐴𝑐𝑐 1  
𝑁 𝑖 𝑁 𝑖
𝑁 𝑖 𝑁 𝑖

 

where 𝑁 𝑖 , 𝑁 (i), 𝑁 𝑖  and 𝑁 𝑖  represent the numbers of samples in the i-th class, the 
total number of the samples in the i-th class but predicted as one of the other classes, the total 
number of the samples not in the i-th class and the total number of the samples not in the i-th class 
but predicted as the i-th class, respectively. 
 

10. Online Web Server 

Moreover, for users that are not familiar with computer programming using Python we also 
implemented an online web server of iLearn, which is publicly available at 
http://ilearn.erc.monash.edu/. It is configured for the extensible cloud computing facility supported 



48 
 

by the e-Research Centre at Monash University, equipped with 16 cores, 64 GB memory and a 2 
TB hard disk. This configuration can be easily upgraded in line with increasing user demands in 
the future. 
 
The iLearn web server is a user-friendly online platform for implementing the function integrated 
in the iLearn package. Take the sub web server for DNA analysis as an example: 26 descriptors 
can be selected to transform the DNA sequences into feature vectors. For example, when “Kmer” 
is selected, the parameter of “Kmer size” will be displayed on the page. Then, users can decide 
which feature analysis procedure (e.g. clustering, feature selection, dimensionality reduction and 
feature normalization) is included in the analysis process. When the SVM algorithm is selected to 
construct the predictor, one should also specify the kernel (the default is RBF kernel). Users not 
only can set the values of ‘gamma’ and ‘cost’ for the RBF kernel, but also use the function of 
automatic parameter optimization by clicking the “Auto optimize parameters” button. K-fold 
cross-validation is supported by the iLearn web server. Users can select the commonly used 5-fold 
and 10-fold cross-validation, or input a K value. The step-by-step of usage instructions is as 
follows:  
 
Input “http://ilearn.erc.monash.edu” on your browser, and click the “Go To Use It” button. Then, 
you will see the descriptor calculation page. 

 

Step 1. Select the biological sequence type. For example, we select the DNA sequence. 

Click here to go to the 

descriptor calculation page. 
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Step 2. Input your fasta sequences in the designated text area or upload a file that includes the 
sequences in 'special FASTA' format format. 

 
Note: Paste your protein (or peptide) sequences in the 'TEXTAREA' or upload a file that includes 
the sequences. The biological sequences must be in a specified 'FASTA' format. iLearn was 
designed to accept at most 2000 sequences at once. 
 
Step 3. Select descriptor 
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Step 4. Select output format of the descriptor. Four output format are supported by iLearnWeb. 

 

Step 5. Select clustering algorithm and set the parameter for the selected clustering algorithm. 

 
Step 6. Select feature selection algorithm. 
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Step 7. Dimension reduction algorithm. 

 

Step 8. Select machine learning algorithm and set the parameters for the machine learning 
algorithm. If more than one machine learning algorithms are selected, iLearnWeb will build a 
model for each of the algorithm and identify the model with the best predictive performance. If the 
“Ensemble learning” button is selected, the iLearnWeb will calculate and report the performance 
for all possible combinations of the selected algorithms through a logistic regression method and 
return the machine learning algorithm combination that achieves the best performance. 
 

 

At last, click 'Submit' to calculate the descriptors and run the selected clustering, feature selection 
and machine learning algorithms. 
 
Step 9. Waiting for your result. 
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After a few seconds, the result should displayed in the result page. For each job, iLearnWeb will 
generate a job ID, your calculation result will be stored for a week. With a week, you can query 
your result by searching your job ID. 

7. 11. Summary 

In summary, iLearn has been extensively benchmarked to guarantee correctness of computations, 
and was deliberately designed to ensure workflow efficiency. To the best of our knowledge, this is 
the first universal toolkit for integrated feature calculation, clustering, selection analysis, model 
construction and result visualization. We will integrate more analysis, clustering and machine 
learning algorithms to enable interactive analysis and machine learning-based modeling in future 
work. It is anticipated that iLearn will be widely used as a powerful tool in bioinformatics, 
computational biology, systems biology and proteome research. 
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