NXP Semiconductors

I.MX VPU Application
Programming Interface Linux®

Reference Manual

1 Overview

This section discusses the capabilities of .MX 6 series VPU,
and explains its block diagram.

The 1.MX 6 series Video Processing Unit (VPU) is a high
performance multi-standard video decoder and encoder engine
that performs multiple standard decoding and encoding
operations. VPU codec is fully compliant with H.264
BP/MP/HP, VC-1 SP/MP/AP, MPEG-4 SP/ASP except GMC,
DivX (Xvid), MPEG-1/2, VP8, AVS and MJPEG decoding
and H.264, MPEG-4, H.263, and MJPG encoding. The VPU
supports up to full HD 1920x1080 60i or 30p decoding and
1920x1088 encoding. It can encode or decode multiple video
clips with multiple standards simultaneously. A block diagram
of the i.MX 6 series VPU is shown in the figure below.

The VPU connects with the system through the 32-bit
AMBA3 APB bus for system control and the 64-bit AMBA3
AXTI for data throughput. The VPU also takes advantage of on-
chip memories to achieve high performance.

Most video hardware blocks in the VPU are optimally
designed for shared usage between different video standards
which provides ultra low power and low gate count with
powerful performance. As shown in the figure below, the VPU
has a 16-bit DSP core, the BIT processor, which controls the
internal video codec operations.

[V B VS I

Document Number: IMXVPUAPI
Rev. L4.9.88_2.0.0-ga, 05/2018

Contents
OVETVIEW...eouiiiiiiiiieiieeite ettt 1
Host Interface.........ceeveevienienies e, 5
APT Features.......cccooveiiiiinienies et 7
VPU COontrol.....cocueevieriiiniiiiies e 68
Revision HiStory.......ccoccevvenieiiens ceviinienicnienceeene 86

h

P

Overview

For simple and efficient control of the VPU by the host processor, the VPU provides a set of registers called the host
interface registers. Most commands and responses between the host processor and the VPU are transmitted through the host
interface registers. Stream data and some output picture data are directly accessed by the host processor and the VPU. For a
more comprehensive way of controlling the VPU, a set of API functions is provided that includes all of the required
operations from the host processor side.

APB 1st Xl 2nd AXI

) I
" T

HW APB-0-IPB GDHo-AXI

accslerator -io- =
Hest UF WTAMpET WTaDEEr Post-processor
i BIT OEP p A (Deringing/Rotatio JPEG codec
niirrod)
Macroblock
s, Sequencer

Source Loader
{with buatt-in rofator)

® i L
Infra Mode Decison Reconsiruction —

| | inra | ACDC
Prediction | Predicion Sub-
240 Cyelle Cache - sampler
* Drebiocking Fiter
—p
n Residual
s TransformiQuantization -

Figure 1. i.MX 6 VPU Block Diagram

1.1 Main Features

The VPU is fully compliant with H.264 BP/MP/HP, VC-1 SP/MP/AP, MPEG-4 SP/ASP except GMC, DivX (Xvid) and
MPEG-1/2, VP8, AVS, and MJPEG. Image sizes up to full HD 1920x1080 60i or 30p decoding and 1920x1088 encoding.
The VPU supports various error resilience tools, multiple decoding, and full duplex multi-party-call simultaneously. The
VPU provides programmability, flexibility, and ease of upgrade in decoding and encoding or host interface because all of the
controls in the decoding and encoding process and host interface are implemented as firmware in the programmable BIT
processor.

The detailed features of the VPU are as follows:

* Encoding
* H.264
* 1/4-pel accuracy motion estimation with programmable search range up to [+/-128, +/-64]
» Search range is reconfigurable by SW
e 16x16, 16x8, 8x16 and 8x8 block sizes

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
2 NXP Semiconductors

Overview

» Configurable block sizes
* Only one reference frame for motion estimation
¢ Intra-prediction
* Luma I4x4 Mode : 9 modes
e Luma [16x16 Mode : 3 modes (Vertical, Horizon, DC)
¢ Chroma Mode : 3 modes (Vertical, Horizon, DC)
* Minimum encoding image size is 96 pixels in horizontal and 16 pixels in vertical
* FMO/ASO tool of H.264 is not supported
* MPEG-4
¢ AC/DC prediction
¢ 1/2-pel accuracy motion estimation with search range up to [+/-128, +/-64]
» Search range is reconfigurable by SW
* H.263
* H.263 Baseline profile + Annex J, K (RS=0 and ASO=0), and T
* 48x32 pixel minimum encoding image size (48 pixels horizontal and 32 pixels vertical)
¢ Decoding
* H.264
¢ Fully compatible with the ITU-T Recommendation H.264 specification in BP/MP and HP
* CABAC/CAVLC
¢ Supports MVC Stereo High profile
¢ Variable block size-16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4
¢ Error detection, concealment and error resilience tools

e All VC-1 profile features-SMPTE Proposed SMPTE Standard for Television: VC-1 Compressed Video
Bitstream format and Decoding Process
» Simple/Main/Advanced Profile
* MPEG-4
» Simple/Advanced Simple profile except GMC
* H.263 Baseline profile + Annex I, J, K (except RS/ASO), and T
* DivX version 3.x to 6.x
* Xvid
MPEG-2
¢ Fully compatible with ISO/IEC 13182-2 MPEG2 specification in main profile
e I, P, and B frame
¢ Field coded picture (interlaced) and frame coded picture
* AVS
 Supports Jizhun profile level 6.2 (exclude 422 use case)
* VP8
¢ Fully compatible with VP8 decoder specification
 Supporting both simple and normal in-loop deblocking
¢ 64x64 pixel minimum decoding size
* JPEG tools
* MIJPEG Baseline Process Encoder and Decoder
* Baseline ISO/IEC 10918-1 JPEG compliance
 Support 1 or 3 color components
* 3 component in a scan (interleaved only)
* 8 bit samples for each component
e Support 4:2:0, 4:2:2, 2:2:4, 4:4:4 and 4:0:0 color format (max. six 8x8 blocks in one MCU)
¢ Minimum encoding size is 16x16 pixels.
* Value added features
¢ De-ringing
* Pre/Post rotator/mirror
¢ Built-in de-blocking filter for MPEG-2/MPEG-4 and DivX
¢ Programmability

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

NXP Semiconductors 3

Overview

* 16-bit DSP processor dedicated to processing bitstream and controlling the codec hardware
* General purpose registers and interrupt for communication to and from a host processor
¢ Optimal external memory accesses
* Configurable frame buffer formats (linear or tiled) for longer burst-length
* 2D cache for motion estimation and compensation to reduce external memory accesses
* Secondary AXI port for on-chip memory to enhance performance
* Performance
* All video decoder standards up to 1920x1088 @ 30 fps at 266 MHz
* H264 encoder standards up to 1920x1088 @ 30 fps at 266 MHz, MPEG4 encoder up to 720p@30fps at 266MHz
e MIJPG decoder on 4:4:4 supports 120M pixel per second @ 266MHz
* MIJPG encoder on 4:4:4 supports 160M pixel per second @ 266MHz
* Interrupt
¢ Interrupt from and to external host processor or interrupt controller

1.2 Programmability

The VPU has an internal DSP called the BIT processor which controls the internal hardware blocks for video decoder
operations. The operation of the BIT processor is determined by the dedicated microcode called the BIT firmware. VPU has a
complete set of BIT firmware code as well as a complete set of VPU control functions called VPU API. Therefore,
application developers do not need to manage codec-specific issues on host processor.

1.2.1 Frame-Based Processing

The BIT processor completes decoding operations on a frame-by-frame basis, which allows low level independence of VPU
operations from the host processor. While frame operations are running, there is no need for communication between the host
processor and the VPU. Therefore, VPU does not burden the host processor during decoder operations.

After issuing a picture processing command, the host application performs its own operations until it is ready for the next
picture processing operation or until it receives an interrupt from VPU informing the host processor of completion of the
picture processing.

1.2.2 Program Memory Management

The VPU has its own program memory to load BIT firmware for supporting application-specific operations. In order to use
this internal memory efficiently, the BIT firmware has a dynamic re-loading scheme which enables the VPU to have a small
amount of program memory.

For example, if a MPEG-2 decoder operation is running on VPU, then VPU program memory is filled by the MPEG-2
decoder firmware inside VPU. If a H.264 decoder operation is newly issued, then the BIT processor automatically loads the
H.264 decoder firmware from the SDRAM to program memory.

Because of the frame-based operation of VPU, the maximum rate of this dynamic reloading operation is approximately 30
times per second in a single instance decoder use case. Since the amount of BIT firmware for one decoder standard is smaller
than 16 Kytes, this is not a large burden for the VPU operations in performance and memory bandwidth.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

4 NXP Semiconductors

Host Interface

1.2.3 Multi-Instances

The VPU supports multiple instances which can be helpful for multi-channel decoder applications. In order to support this
multi-instance operation, the BIT processor uses an internal context parameter set for each decoder instance. When creating a
new instance and starting a picture processing operation, a set of context parameters is created and updated automatically
within VPU. This internal context management scheme allows different decoder tasks running on the host processor to
control VPU operations independently with their own instance numbers.

When creating a new instance, an application task receives a new handle specifying an instance if a new handle is available
on the VPU. All the subsequent operations for the given application task are handled separately by VPU using this task-
specific handle. When writing a VPU driver, this handle can be regard as a device-ID or a port-ID of the VPU for each task.
Since the VPU can only perform one picture processing task at a time, the application task should check if VPU is ready
before starting a new picture operation. An application can easily terminate a single task on VPU by calling a function for
closing a certain instance.

2 Host Interface

This section describes the interfaces used by host processor to control i.MX 6 VPU.

This section presents a general description of the host interfaces provided for a host processor to control i.MX 6 VPU.

2.1 Communication Models

VPU requires a dedicated path for exchanging data and/or messages between the host processor and VPU. VPU uses shared
memory for exchanging data between the host processor and VPU. This shared memory is accessible through ABMA host
bus. Bitstream data and frame data are exchanged using this shared memory space.

Independent of data exchange path, a dedicated path for messages between the host processor and VPU is provided using a
set of VPU registers called the host interface registers. All commands and responses between the host processor and VPU are
exchanged through these registers as shown in the figure below.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

NXP Semiconductors 5

Host Interface

YPU Host Interface Function

s(VYPU APT)

HostSW: VP U AFI

Host Program . I/F Func.

0% Independent Base Func .
Set for WP U driver

¥YPU Host Interface

YPU System Manager

VPU Firmware
WPU Systern Manager

Host WF with CM VRSP,
Imtemal Control, u-Code
Fe-loading , Manage
Cades Lib, init/De-init, ate

WPU Codec Library

Setof Encoder & Decoder

YPru YPu YPU) . . ;

Enc Enc Dec Libraries forwarous wvidea

Lib: Lib: Lih: amm codec standards | including
MPEG 4 H.264 H.264 on the -fly pre post

5P BP MP proceszing functions such

as deblocking dernnging ,
rotation , etc.

Figure 2. Data and Message Exchange Between Host and VPU

All bitstream and picture data is accessed directly by the host processor and VPU. The related information about the data
transfer as well as command and responses is exchanged through the host interface. The host interface of the VPU uses a set
of registers accessible from the host processor. Some of these host registers are used for exchanging actual command and
responses and other registers are used to give information about the internal status of the VPU to host processor. Firmware
running on the BIT processor is well-optimized for a given set of commands and responses.

2.1.1 Data Handling

All of the pixel data or stream data transactions are performed by the host processor or VPU through the shared memory
space in SDRAM. In order to assure safe transactions between the host processor and VPU, all the required information is
stored in the host interface registers. Generally, these transactions are one-directional transactions: the host or VPU writes the
data and the other reads the data on a single data buffer. Therefore, transactions are easily and safely controlled by using a
pair of read and write pointers.

Just as common data buffers in shared memory, the BIT processor requires a certain amount of memory for processing called
the working buffer. The working buffer can only be accessed by VPU. In addition, frame buffers used in picture decoding are
managed exclusively by VPU which ensures safe decoding.

For proper streaming, the available free space in the decoder stream buffer can be accessed using the buffer read pointer,
write pointer, and buffer size. A set of APIs is provided for this purpose that can be called by the application anytime.

2.1.2 Host Interface Registers

A set of commands is provided for controlling codec operations on a frame-by-frame basis together with the corresponding
responses. Host interface registers can be partitioned into three categories as follows:

¢ BIT processor control registers update or show BIT processor status to host processors. Most of these registers are used
for initializing BIT processor during boot-up.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
6 NXP Semiconductors

API Features

* BIT processor global registers store all the global variables which are reserved even while an active instance is
changed. All the buffer addresses and some global options are safely stored in these registers.

* BIT processor command I/O registers are overwritten or updated whenever a new command is transmitted from the
host processor. All commands with input arguments and all corresponding responses with return values are handled
using these registers.

In addition, command I/O registers are used in a pre-defined way for each command to control VPU.

2.2 API-Based VPU Control

Host applications generally control VPU through a set of pre-defined APIs by sending a command and corresponding
arguments to VPU. After receiving an interrupt from VPU, signalling the completion of the requested operation, the host
application acquires the results as shown in the figure below.

Each API definition includes the requested command and the input and output data structure. The given command from the
API function is always written on a dedicated I/O register, but the input and output data structure is transmitted through a set
of command I/O registers that contain the input arguments and output results. Therefore, application developers do not need
to know the details of the host register definitions and usage.

APl Calls with Args P\
V] C&M

APFs

H ost
Application

/A R etum Codes with Output Info

17 it
INTERRUPT -
[y
=

Firmware on VPU
© VPU VPU VPU
= Codec System Host I'F
Library Manager Reqg
: &
s (11
(])
T e e
Shared B uffer VPU B uffer
(Bit- stream Buffers, SDRAM | aork Buffer, u-Code Buffers.
Frame Buffers , etc)) Farameter Buffers | etc)

Figure 3. Software Control Model of VPU from Host Application

3 API Features

This section describes the important features of .MX 6 VPU API, which is an API that includes a set of API functions to
efficiently control VPU.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

NXP Semiconductors 7

AR
API Features

A set of API functions is provided to efficiently control VPU. VPU API covers all functions of the i.MX 6 VPU. This API-
based approach speeds up the development process of application software. Important features of the API for i.MX 6 VPU
are summarized in the following sections.

3.1 Simple Software Control

1.MX 6 VPU API provides a simple way to control the . MX 6 VPU and avoid errors in application software. The host
application does not need to know the details of the .MX 6 VPU internal operations. For example, in order to initialize VPU,
an application simply calls API for initialization, vpu_Init(), and no additional information is required for calling this API.
vpu_Init() API performs all the required steps for initializing i.MX 6 VPU. When issuing a picture decoder operation, the
application simply changes some variables included in the well-defined input data structure.

3.1.1 Handling Multi-Instances

The i.MX 6 VPU supports multiple instances for decoding and encoding at the same time, which can be used in multiple
decoding and encoding and multi-party call applications. To support multi-instance operations,i.MX 6 VPU API provides a
full set of functions for handling the instances with ease. When opening a new instance, the application receives a handle
specifying the new instance provided a new handle is available at that time. The operations for a given instance are separately
controlled using the corresponding handle. An application can easily terminate a single task on VPU by calling a function for
closing a certain instance.

3.1.2 Frame-Based Codec Processing

1.MX 6 VPU completes decoding and encoding operation on a frame-by-frame basis, which enables low level independence
of the VPU operations from the host processor. While frame processing operation are running, there is no need for
communication between the host processor and VPU. Therefore, VPU does not burden the host processor during decoding
and encoding operations.

3.2 Type Definitions

This section describes the types and structures used in VPU APIL.

3.2.1 Type Definitions (common data types)

This section describes the common data types used in the VPU API functions.

3.2.1.1 Uint8

typedef unsigned char Uint8;
Description

8-bit unsigned integer type used for declaring pixel data.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

8 NXP Semiconductors

API Features
3.2.1.2 Uint16

typedef unsigned short Uintle;
Description

16-bit unsigned integer type.

3.2.1.3 Uint32

typedef unsigned long Uint32;
Description

32-bit unsigned integer type used for declaring unsigned variables with wide ranges such as the size of a buffer.

3.2.1.4 Uint64

typedef unsigned long long Uinté64;
Description

64-bit unsigned integer type used for multiplication operation.

3.2.1.5 Int64

typedef long long Inté4;
Description

64-bit signed integer type used for multiplication operation.

3.2.1.6 PhysicalAddress

typedef Uint32 PhysicalAddress;
Description

Represents physical addresses that are recognizable by VPU. In general, VPU hardware does not know about the virtual
address space that is set and handled by the host processor. The virtual addresses are translated into physical addresses by the
Memory Management Unit (MMU). Data buffer addresses, such as input bitstream buffer or frame buffer, are given to VPU
as an address in the physical address space.

3.2.1.7 VirtualAddress

typedef Uint32 VirtualAddress;
Description

Represents virtual addresses that are recognizable by CPU.

3.2.1.8 CodStd

typedef enum {

STD_MPEG4 = O,

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

NXP Semiconductors 9

AR
API Features

STD H263 = 1,

STD_AVC

Il
N

I}
w

STD_VC1
STD_MPEG2 = 4,

STD_DIV3

I
ul

STD RV = 6,

STD MJPG = 7,
STD_AVS = 8,

STD VP8 = 9,
} codstd;
Description
Enumeration for declaring code standard type variables. The following video standards are supported by VPU:

e MPEG4 SP/ASP

e H.263 Profile 3

 AVC (H.264) BP/MP/HP
¢ VC-1 SP/MP/AP

¢ MPEG-2, MPEG-1

e Divx3

e AVS

e On2 VP8

NOTE
The MPEG-1 decoder operation is handled as a special case of the MPEG-2 decoder.

3.2.1.9 RetCode

typedef enum {

RETCODE_SUCCESS 0,

RETCODE_FAILURE

-1,
RETCODE_INVALID HANDLE = -2,
RETCODE_INVALID PARAM = -3,

RETCODE_INVALID COMMAND = -4,

I
I
ul

RETCODE_ROTATOR_OUTPUT_NOT_SET

RETCODE_ROTATOR STRIDE NOT SET

-11,
RETCODE_FRAME NOT COMPLETE = -6,
RETCODE_INVALID FRAME BUFFER = -7,
RETCODE_INSUFFICIENT FRAME BUFFERS = -8,
RETCODE_INVALID STRIDE = -9,
RETCODE_WRONG CALL SEQUENCE = -10,
RETCODE_CALLED BEFORE = -12,

RETCODE_NOT_ INITIALIZED = -13,

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
10 NXP Semiconductors

RETCODE_DEBLOCKING OUTPUT NOT_ SET =
RETCODE_NOT_SUPPORTED =

RETCODE_REPORT BUF_NOT_SET =
RETCODE_FAILURE_TIMEOUT =

RETCODE_MEMORY ACCESS_ VIOLATION =

RETCODE_JPEG_EOS

RETCODE_JPEG BIT EMPTY =

} RetCode;

Description

API Features

-14,
-15,

-16,
-17,

-18,
-19,
-20

Enumeration for declaring the return codes from API function calls. The meaning of each return code is the same for all API
functions, but the reason of non-successful return might be different. Table 1 shows the basic meaning of each return code.

Table 1.

Return Codes

Code

Description

RETCODE_SUCCESS

Operation successful

RETCODE_FAILURE

Operation not successfully; this value is returned when an un-
recoverable decoder error occurs such as a header parsing error

RETCODE_INVALID_HANDLE

Given handle for current API function call is invalid, for example, not
initialized yet or improper function call for the given handle

RETCODE_INVALID_PARAM

Given argument parameters (for example, input data structure) is invalid
(not initialized yet or not valid anymore)

RETCODE_INVALID_COMMAND

Given command is invalid, for example, undefined or not allowed in the
given instance

RETCODE_ROTATOR_OUTPUT_NOT_SET

Rotator output buffer is not allocated even though rotation is enabled

RETCODE_ROTATOR_STRIDE_NOT_SET

Rotator stride is not provided even though rotation is enabled

RETCODE_FRAME_NOT_COMPLETE

Frame decoding operation is not completed, so the given API function
call is not allowed

RETCODE_INVALID_FRAME_BUFFER

Certain frame buffer pointers are invalid (not initialized yet or not valid)

RETCODE_INSUFFICIENT_FRAME_BUFFERS

Given numbers of frame buffers are not enough for the operations of the
given handle. This return code is only received when calling the
DecRegisterFrameBuffer() function

RETCODE_INVALID_STRIDE

Given stride is invalid (for example, 0, not a multiple of 8 or smaller than
the picture size). This return code is only allowed in API functions which
set stride

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequences
between API functions (for example, missing one crucial function call
before this function call)

RETCODE_CALLED_BEFORE

Multiple calls of current API function for a given instance are invalid

RETCODE_NOT_INITIALIZED

VPU is not initialized yet. Before calling any API functions, the
initialization API function, vpu_lInit(), should be called

RETCODE_DEBLOCKING_OUTPUT_NOT_SET

Not used in i.MX 6

RETCODE_NOT_SUPPORTED

One feature is not supported

RETCODE_REPORT_BUF_NOT_SET

Data report buffer address is not set with a valid value if report of MB,
MV, frame status, slice information or user data is enabled

Table continues on the next page...

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

NXP Semiconductors

11

API Features

Table 1. Return Codes (continued)

Code

Description

RETCODE_FAILURE_TIMEOUT

The hardware may be busy with other operation and unavailable for
current API calling or something is wrong with VPU based. For detailed
meaning of this return value, see each API description

RETCODE_MEMORY_ACCESS_VIOLATION

Memory access violation error

RETCODE_JPEG_EOS

API calling.

The MJPEG bitstream comes to the end in the vpu_DecStartOneFrame()

RETCODE_JPEG_BIT_EMPTY

The filled data in the bitstream buffer is not enough for the header parser
in the vpu_DecStartOneFrame() API calling.

3.2.1.10 CodecCommand

typedef enum {

ENABLE_ROTATION,
DISABLE ROTATION,
ENABLE_MIRRORING,
DISABLE MIRRORING,
ENABLE_DERING,
DISABLE DERING,
SET_MIRROR_DIRECTION,
SET_ROTATION ANGLE,
SET_ROTATOR OUTPUT,
SET_ROTATOR STRIDE,
ENC_GET_SPS_RBSP,
ENC_GET PPS RBSP,
DEC_SET_SPS_RBSP,
DEC_SET PPS RBSP,
ENC_PUT MP4 HEADER,
ENC_PUT AVC HEADER,
ENC_SET SEARCHRAM PARAM,
ENC_GET VIDEO HEADER,
ENC_GET VOS_HEADER,
ENC_GET VO HEADER,
ENC_GET_VOI, HEADER,
ENC_GET JPEG HEADER,

ENC_SET INTRA MB_REFRESH NUMBER,

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

12

NXP Semiconductors

} CodecCommand;

Description

DEC_SET DEBLOCK_OUTPUT,
ENC_ENABLE_HEC,
ENC_DISABLE HEC,

ENC_SET SLICE_INFO,
ENC_SET GOP_ NUMBER,
ENC_SET INTRA QP,
ENC_SET BITRATE,

ENC_SET FRAME_RATE,
ENC_SET REPORT MBINFO,
ENC_SET REPORT MVINFO,
ENC_SET REPORT SLICEINFO,
DEC_SET_REPORT_BUFSTAT,
DEC_SET REPORT MBINFO,
DEC_SET REPORT MVINFO,
DEC_SET REPORT USERDATA,

SET_DBK_OFFSET,
SET_WRITE MEM PROTECT,

ENC_SET SUB_FRAME_SYNC,
ENC_ENABLE SUB FRAME SYNC,
ENC_DISABLE_SUB_FRAME_SYNC,
DEC_SET FRAME DELAY,

ENC_SET INTRA REFRESH MODE,

ENC_ENABLE_ SOF STUFF

API Features

Special enumeration type for configuration commands from the host processor to VPU. Most of these commands are called
occasionally (not periodically) for changing VPU operation configuration. Details of these commands are presented in
vpu_EncGiveCommand() and vpu_DecGiveCommand().

Following commands aren't used on i.MX 6 platform:

SET_WRITE_MEM PROTECT
ENC_SET SUB_FRAME SYNC
ENC_ENABLE_SUB_FRAME_SYNC

ENC DISABLE SUB FRAME SYNC

3.2.1.11 GDL_TILED_MAP_TYPE

typedef enum {

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

NXP Semiconductors

13

API Features

LINEAR_FRAME MAP = 0,

TILED FRAME MB RASTER MAP

Il
Juny

I}
N

TILED FIELD MB RASTER MAP
TILED MAP TYPE MAX

} GDI_TILED MAP TYPE;

Description

Enumeration type for the GDI type.

3.2.1.12 MirrorDirection

typedef enum {
MIRDIR NONE,
MIRDIR VER,
MIRDIR HOR,
MIRDIR_HOR VER

} MirrorDirection;

Description

Enumeration type for representing the mirroring direction.

3.2.1.13 Mp4HeaderType

typedef enum {
VOL_HEADER,
VOS_HEADER,
VIS HEADER

} Mp4HeaderType;

Description

Special enumeration type for MPEG-4 top-level header classes such as visual sequence header, visual object header, and
video object layer header.

3.2.1.14 AvcHeaderType

typedef enum {
SPS_RBSP,
PPS_RBS,
SPS_RBSP_MVC,
PPS_RBSP_MVC
} AvcHeaderType;

Description

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
14 NXP Semiconductors

API Features

Special enumeration type for AVC parameter sets such as sequence parameter set and picture parameter set.

3.2.1.15 EncHandle

typedef EncInst * EncHandle;
Description

Dedicated type for encoder handles returned when an encoder instance is opened. An encoder instance can be referred to by
the corresponding handle. EncInst is a type managed internally by API and the application does not need to use it.

3.2.1.16 DecHandle

typedef DecInst * DecHandle;
Description

Dedicated type for decoder handles returned when a decoder instance is opened. A decoder instance can be referred to by the
corresponding handle. Declnst is a type managed internally by API and the application does not need to use it.

3.2.2 Data and Structure Definitions

This section describes the data and structure definitions used in VPU API functions.

3.2.2.1 FrameBuffer

typedef struct {
Uint32 strideY;

Uint32 strideC;
int myIndex;

PhysicalAddress bufy;
PhysicalAddress bufCb;
PhysicalAddress bufCr;
PhysicalAddress bufMvCol;
} FrameBuffer;
Description
Data structure for representing frame buffer pointers for each color component
strideYis a Y stride value of the given frame buffers.
stridec is a C stride value of the given frame buffers.

myIndex is an A frame buffer index to identify each frame buffer that will be processed by VPU. The index of each buffer
should be unique and less than 32.

bufY is an address for Y component in the physical address space.
bufCb is an address for Cb component in the physical address space.
bufCr is an address for Cr component in the physical address space.

bufMvCol is an address for co-located motion vector buffers in the physical address space.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 15

AR
API Features

The host application must allocate contiguous physical memory from SDRAM space for the components using this data
structure. All four addresses must be 8-byte aligned. One pixel value of a component occupies one byte and the frame data is
in YCbCr 4:2:0 format for H.264, H.264 and MPEG-4 codecs. The sizes of the Cb and Cr buffers are 1/4 the size of the Y
buffer size for H.264, H.263 and MPEG-4 codecs. For MJPEG, the frame data format can be YCbCr 4:2:0, 4:2:2 horizontal,
4:2:2 vertical, 4:4:4 and 4:0:0 and the sizes of the Cb and Cr buffers vary. The co-located motion vector is only required for
B-frame decoding in MPEG-2, AVC MP/HP, MPEG-4 ASP, VC-1 MP/AP, and so on.

3.2.2.2 DecMaxFrminfo

typedef struct ({
int maxMbX;

int maxMby;

int maxMbNum;
} DecMaxFrmInfo;
Description
Data structure for representing maximum frame buffer info for decoder.
maxMbX means maximum supported macro blocks of horizontal direction.
maxMbY means maximum supported macro blocks of vertical direction.
maxMbNum means maximum supported macro blocks of one picture.

This structure is provided to the host application to specify maximum frame buffer information. Normally, without resolution
change picture decoder support, maxMbX value is picture width/16, maxMbY is picture height/16, maxMbNum is width *

height / 256. If the user knows there is a resolution change from smaller to bigger, the user must give the information as
needed and allocate corresponding maximum frame buffer.

3.2.2.3 Rect

typedef struct ({

Uint32 left;
Uint32 top;
Uint32 right;
Uint32 bottom;
} Rect;
Description

Data structure for representing a rectangular window in a frame.

left is a horizontal pixel offset of the top-left corner of the rectangle from top-left corner of the frame.

top is a vertical pixel offset of the top-left corner of the rectangle from top-left corner of the frame.

right is a horizontal pixel offset of the bottom-right corner of the rectangle from top-left corner of the frame.
bottomis a vertical pixel offset of the bottom-right corner of the rectangle from top-left corner of the frame.

This structure is provided to the host application to specify display window for the H.264 cropping option. Each value is
offset from the start point of a frame. Therefore, all values are positive.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
16 NXP Semiconductors

API Features
3.2.2.4 EncHeaderParam

typedef struct ({
PhysicalAddress buf;

Uint8 *pBuf;
int size;

int headerType;

int userProfilelevelEnable;

int userProfilelLevellIndication;
} EncHeaderParam;

Description

This structure is used for adding a header syntax layer to the encoded bit stream. The parameter headerType is the input
parameter for VPU. The other two parameters are returned from VPU after completing the requested operation. If the encoder
ringbuffer reset option is enabled, the parameters buf and size are also input parameters. In this situation, the host
application must allocate the physical buffer to save the encoded header syntax to VPU.

headerType is the encode header code. In MPEG-4.

3'b000 - VOL header; 3'b001 - VOS header; 3'b010 - VO header
In H.264

3'b000 - SPS rbsp; 3'b001 - PPS rbsp

In H.263, ENC_HEADER command is ignored.

userProfileLevelEnable decides whether to set profile_and_level_indication in VOS header as MPEG-4 predefined
values. If UserProfileLevelEnable is 0, profile_and_level_indication is encoded with one of these values:

8'b0000 0001 : L1 <= 176x144@15Hz

8'b0000 0010 : L2 <= 352x288@15Hz

8'b0000 0011 : L3 <= 352x288@30Hz

8'b0000 0100 : L4a <=640x480@30Hz

8'b0000 0101 : LS <=720x576 @25Hz

8'b0000 0110 : L6 <= otherwise

If UserProfileLevelEnable is 1, a host can set user profile and level with UserProfileLevellndication.

UserProfilelLevelIndication is a user-defined profile and level value for profile_and_level_indication in VOS.

3.2.2.5 EncParamSet

typedef struct {

Uint32 *paraSet;
Uint8 *pParaSet;

int size;
} EncParamSet;
Description

This is a structure used when the host processor requires SPS or PPS data from an encoder instance. The resulting SPS or
PPS data is used in an application as a type of out-of-band information.

paraSet is the address of the SPS or PPS data.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 17

API Features

pParaSet is the address of the MJPG encoder header data. It is only for MJPG.

size is the size of the data.

3.2.2.6 EncMp4Param

typedef struct ({
int
int
int
int
int
} EncMp4Param;

Description

mp4_dataPartitionEnable;
mp4 reversibleVlcEnable;
mp4 intraDcV1cThr;

mp4 hecEnable;

mp4 verid;

This is the data structure for configuring MPEG4-specific parameters in encoder applications.

mp4 dataPartitionEnable where 0 = disable, 1 = enable

mp4_reversibleVlcEnable where 0 = disable, 1 = enable

mp4_intraDcVlcThr is the value of intra_dc_vlc_ thr in MPEG-4 part 2 standard. Valid range is 0-7.

mp4 hecEnable where 0 = disable, 1 = enable.

mp4_verid is the value of MPEG-4 part 2 standard version ID. Both version 1 and 2 are allowed.

3.2.2.7 EncH263Param

typedef struct {
int

int

int

int
} EncH263Param;

Description

h263 annexIEnable;
h263_annexJEnable;
h263 annexKEnable;

h263_annexTEnable;

This is a data structure for configuring H.263-specific parameters in encoder applications.

h263 annexIEnable where O = disable, 1 = enable . Not in use for i.MX 6.

h263 annexJEnable where 0 = disable, 1 = enable

h263 annexKEnable where 0 = disable, 1 = enable

h263 annexTEnable where 0 = disable, 1 = enable

3.2.2.8 EncAvcParam

typedef struct ({

int

avc_constrainedIntraPredFlag;

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

18

NXP Semiconductors

API Features

int avc_disableDeblk;

int avc_deblkFilterOffsetAlpha;
int avc_deblkFilterOffsetBeta;
int avc_chromaQpOffset;

int avc_audEnable;

int avc_fmoEnable;

int avc_fmoSliceNum;

int avc_fmoType;

int avc_fmoSliceSaveBufSize;
int avc_frameCroppingFlag;

int avc_frameCropLeft;

int avc_frameCropRight;

int avc_frameCropTop;

int avc_frameCropBottom;

int mvc_extension;

int interview en;

int paraset refresh en;

int prefix nal_en;

int avc_vui_ present flag;

VuiParam avc_vuil_param;

int avc_level;
} EncAvcParam;
Description
This is a data structure for configuring AVC-specific parameters in encoder applications.
avc_constrainedIntraPredFlag where 0 = disable, 1 = enable
avc_disableDeblk where O = enable, 1 = disable, 2 = disable deblocking filter at slice boundaries
avc_deblkFilterOffsetAlpha deblk filter offset alpha (-6 to 6)
avc_deblkFilterOffsetBeta deblk filter offset beta (-6to 6)
avc_chromaQpOffset chroma gp offset (-12to 12)
avc_audEnable where 0 = disable, 1 = enable. The encoder generates AUD RBSP at the start of every picture.
avce_ fmoEnable is not used in the i.MX 6 since FMO encoding is not supported.
avce_fmoSliceNum is not used in the i.MX 6 since FMO encoding is not supported.
avc_fmoType is not used in the i.MX 6 since FMO encoding is not supported.
avce fmoSliceSaveBufSize is not used in the i.MX 6 since FMO encoding is not supported.

avce_frameCroppingFlag where 0 = disable, 1 = enable. If this is 1, the encoder will generate frame_cropping_flag syntax
at the SPS header.

avc_frameCropLeft is the sample number of left cropping region in a line.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 19

API Features

avc_frameCropRight is the sample number of right cropping region in a line.
ave_frameCropTop is the sample number of top cropping region in a picture column.
avc_frameCropBottom is the sample number of bottom cropping region in a picture column.
mvc_extension where 0 = AVC, not MVC, 1 = MVC

interview en where 0 = disable, 1 = enable interview prediction for another picture.
paraset_refresh en 0 =disable, 1 = enable to insert SPS/PPS before anchor picture.

prefix nal en where O = disable, 1 = enable to add prefix nal unit before every 2nd view of MVC stream.

3.2.2.9 EncMjpgParam

typedef struct ({
int mjpg sourceFormat;
int mjpg restartInterval;
int mjpg thumbNailEnable;
int mjpg thumbNailWidth;
int mjpg thumbNailHeight;
Uint8 * mjpg hufTable;

Unit8 * mjpg_gMatTable;
Uint8 huffval[4] [162];

Uint8 huffBits[4] [256];
Uint8 gMatTab[4] [64];
Uint8 cInfoTab[4] [6];
} EncMjpgParam;
Description
This is a data structure for configuring MJPEG-specific parameters in encoder applications.

mjpg_sourceFormat is the chroma format. The format means chrominance size of source image and can be a value
between 0 and 4: 0 = 4:2:0, 1 = 4:2:2 horizontal, 2 = 4:2:2 vertical, 3 = 4:4:4, 4 = 4:0:0.

mjpg_restartInterval is the value for representing interval of restart marker in MB unit.
mjpg_thumbNailEnable where O = disable, 1 = enable and the encoder enables thumbnail encoding.

mjpg_thumbNailwidth is the variable representing the width (in pixels) of the thumbnail to be encoded. This variable can
have a value between 0 and the source image width. This value must be larger than a specific value and must be a multiple of
the value shown in table below.

Table 2. mjpg_thumbNailWidth and mjpg_thumbNailHeight Values

Format Value
4:2:0 16
4:2:2 16
2:2:4 8
4:4:4 8
4:0:0 8

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
20 NXP Semiconductors

API Features

mjpg_thumbNailHeight is the variable representing the width (in pixels) of the thumbnail to be encoded. This variable can
have a value between 0 and the source image width. This value must be larger than a specific value and must be a multiple of
the value shown in table above.

mjpg_gMatTable is the variable representing a pointer to an address in the Q-Matrix.

mjpg_hufTable is the variable representing a pointer to an address in the Huffman table (not used in i.MX 6).
huffVal[4][162] A list of the 8-bit symbol values in Huffman tables

huffBits[4][256] A 16-byte list giving the number of codes for each code length from 1 to 16 in Huffman tables.
gMatTab[4][64] Quantization tables

cInfoTab[4][6] Component information tables

3.2.2.10 EncSliceMode

typedef struct {
int sliceMode;
int sliceSizeMode;
int sliceSize;

} EncSliceMode;

Description

This is a structure used for declaring encoder slice mode and its options. This structure value is ignored for a MJPEG
encoder.

sliceMode where O = one slice per picture, 1 = multiple slices per picture. In normal MPEG-4 mode, the resync-marker
and packet header are inserted between slice boundaries. In short video header with Annex K = 0, the GOB header is inserted
at every GOB layer start. In short video header with Annex K = 1, multiple slices are generated. In AVC mode, multiple slice
layer RBSP is generated.

sliceSizeMode is the size of a generated slice when sliceMode = 1, 0 means s1iceSize is defined by amount of bits, and
1 means sliceSize is defined by MB(macro block) in a slice. This parameter is ignored when sliceMode = 0 or in short video
header mode with Annex K = 0.

sliceSize is the size of a slice in bits or MB specified by sliceSizeMode. This parameter is ignored when sliceMode = 0, or
in short video header mode with Annex K = 0.

3.2.2.11 EncOpenParam

typedef struct ({
PhysicalAddress bitstreamBuffer;
Uint32 bitstreamBufferSize;
CodStd bitstreamFormat;
int picWidth;
int picHeight;
Uint32 frameRateInfo;
int bitRate;

int initialDelay;

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 21

API Features

int vbvBufferSize;

int gopSize;

int linear2TiledEnable;

int mapType;

EncSliceMode slicemode;

int intraRefresh;

int sliceReport;

int mbReport;

int mbQpReport;

int rcIntraQp;

int chromaInterleave;

int dynamicAllocEnable;

int ringBufferEnable;

union

EncMp4Param mp4Param;
EncH263Param h263Param;
EncAvcParam avcParam;

EncMjpgParam mjpgParam;

} EncStdParam;

int userQpMin;

int userQpMax;
int userQpMinEnable;

int userQpMaxEnable;

Uint32 userGamma;

int RcIntervalMode;

int MbInterval;
int avcIntraléxl60nlyModeEnable;
int MESearchRange;

int MEUseZeroPmv;

int IntraCostWeight;

} EncOpenParam;

Description

This is a data structure for parameters when an encoder instance is opened.

bitstreamBuffer is a start address of bit stream buffer into which encoder places the bit streams. This address must be 512

byte-aligned.

bitstreamBufferSize is the size in bytes of a buffer pointed to by bitstreamBuffer. This value must be a multiple of 1024.

The maximum size is 16383x1024 bytes.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

22

NXP Semiconductors

API Features

bitstreamFormat is the standard type of bitstream in encoder operation: STD_MPEG4, STD_H263, STD_AVC,
STD_VPS, STD_AVS or STD_MJPG.

picwidth is the width of a picture to be encoded in pixels.
picHeight is the height of a picture to be encoded in pixels.

frameRateInfo is the 16 least significant bits, [15:0] is a numerator and 16 most significant bits, [31:16] is a denominator
for calculating the frame rate. The numerator is clock ticks per second and the denominator is clock ticks between frames
minus 1. The frame rate can be defined by (numerator/(denominator + 1)), which equals (frameRatelnfo & Oxffff) /
((frameRateInfo >> 16) + 1). For example, a frameRatelnfo value of 30 represents 30 frames/sec and the value 0x3e87530
represents 29.97 frames/sec.

bitRate is the target bit rate in kbps. If 0, there is no rate control and pictures are encoded with a quantization parameter
equal to quantParam in EncParam. For MJPEG, this value is ignored. Users can control the MJPEG compression rate by
setting qMatTab[4][64] of EncMjpgParam.

initialDelay is atime delay (in ms) for the bit stream to reach initial occupancy of the vbv buffer from zero level. This
value is ignored if rate control is disabled. The value 0 means the encoder does not check for reference decoder buffer delay
constraints.

vbvBufferSize vbv_buffer size in bits. This value is ignored if rate control is disabled or initialDelay is 0. The value
0 means the encoder does not check for reference decoder buffer size constraints.

gopSize is the GOP size where 0 = only first picture is I, 1 = all I pictures, 2 = IPIP, 3 = IPPIPP, and so on. The maximum
value is 32,767, but in practice, a smaller value should be chosen by the application for proper error concealment. This value
is ignored for STD_MIJPG.

linear2TiledEnable where 0 = disable, 1 = enable to convert linear to tiled format in vpu
mapType where 0 = Linear frame map; 1 = Frame tiled map; 2 = Field tiled map
slicemode where parameter for slice mode

intraRefresh where 0 = Intra MB refresh is not used. Otherwise = At least N MB's in every P-frame are encoded as intra
MB's. This value is ignored in for STD_MIPG.

sliceReport is not used in i.MX 6.
mbReport is not used in i.MX 6.
mbQpReport is not used in i.MX 6.

rcIntraQp is the quantization parameter for I frame. When this value is -1, the quantization parameter for I frames is
automatically determined by VPU. In MPEG4/H.263 mode, the range is 1-31. In H.264 mode, the range is from 0-51. This is
ignored for STD_MIPG.

dynamicAllocEnable is not used in i.MX 6.

ringBufferEnable where O = disable, 1 = enable. This flag enables the streaming mode for the current encoder instance.
Two streaming modes, packet-based streaming with ring-buffer (buffer-reset mode), and frame-based streaming with line
buffer (buffer-flush mode) can be configured using this flag. When this field is set, packet-based streaming with ring-buffer is
used. When this field is not set, frame-based streaming with line-buffer is used.

mp4Param is a parameter for MPEG-4 part 2 Visual.
h263Param is a Parameter for ITU-T H.263.
avcParam is a parameter for AVC.

mjpgParam is a parameter for MJPEG.

userQpMin sets the minimum quantized step parameter for encoding process. -1 disables this setting and VPU uses the
default minimum quantize step (Qp(H.264 12, MPEG-4/H.263 2). In MPEG-4/H.263 mode, the value of userQpMix is in the
range of 1 to 31 and less than userQpMax. In H.264 mode, the value of userQpMix is in the range of 0 to 51 and less than
userQpMax.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 23

AR
API Features

userQpMax sets the maximum quantized step parameter for the encoding process. -1 disables this setting and VPU uses the
default maximum quantized step. In MPEG-4/H.263 mode, the value of userQpMax is in the range of 1 to 31. In H.264
mode, the value of userQpMax is in the range of 0 to 51. userQpMin and userQpMax must be set simultaneously.

userQpMinEnable userQpMinEable equal to 1 indicates that macroblock QP, generated in rate control, is cropped to be
bigger than, or equal to, userQpMin.

userQpMaxEnable userQpMaxEable equal to 1 indicates that macroblock QP, generated in rate control, is cropped to be
smaller than, or equal to, userQpMax.

userGamma is a smoothing factor in the estimation. A value for gamma is factorx32768, where the value for factor must be
between 0 and 1. If the smoothing factor is close to 0, Qp changes slowly. If the smoothing factor is close to 1, Qp changes
quickly. The default Gamma value is 0.75x32768.

RcIntervalMode is an encoder rate control mode setting. The host sets the bitrate control mode according to the required
use case. The default value is 1. O = normal mode rate control 1 = FRAME_LEVEL rate control 2 = SLICE_LEVEL rate
control 3 = USER DEFINED MB LEVEL rate control.

MbInterval is a user defined Mbyte interval value. The default value is 2 macroblock rows. For example, if the resolution is
720x470, then the two macroblock row is 2x(720/16) = 90. This value is used only when the RcIntervalMode is 3.

avcIntraléx160nlyModeEnable is not used in i.MX 6.
MESearchRange is the search range mode for Motion Estimation.
0 : Horizontal(-128 ~ 127), Vertical(-64 ~ 63)

1 : Horizontal(-64 ~ 63), Vertical(-32 ~ 31)

2 : Horizontal(-32 ~ 31), Vertical(-16 ~ 15)

3 : Horizontal(-16 ~ 15), Vertical(-16 ~ 15)

MEUseZeroPmv is the PMV option for motion estimation. If this field is 1, encoding quality could be worse than when it was
Zero.

0 : Motion Estimation engine uses PMV that was derived from neighbor MV
1 : Motion Estimation engine uses Zero PMV

IntraCostWeight is the intra cost weight factor for Intra/Inter type decision. By default, it could be zero. If this register
have some value W, and the cost of best intra mode that was decided by Refine-Intra-Mode-Decision is ICOST, the Final

Intra Cost FIC will be like this, FIC = ICOST + W. So, if this field is not zero, the Final Intra Cost have additional weight.
Then the Intra/Inter mode decision logic tend to make more Inter-Macroblock.

3.2.2.12 EncReportBufSize

typedef struct ({
int sliceInfoBufSize;
int mbInfoBufSize;
int mvInfoBufSize;

} EncReportBufSize;

Description

This is a data structure to get the data report buffer size to start encoding from the encoder. Then the application allocates the
memory according to the size information from the data report.

sliceInfoBufSize is a buffer size for slice information.

mbInfoBufSize is a buffer size for MB information.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
24 NXP Semiconductors

API Features

mvInfoBufSize is a buffer size for motion vector information.

3.2.2.13 Enclnitiallnfo

typedef struct ({
int minFrameBufferCount;
EncReportBufSize reportBufSize;
} EncInitiallInfo;
Description

This is a data structure for parameters of vpu_EncGetInitialInfo () which are needed to get the initial information for
encoder.

minFrameBufferCount is a minimum required buffer count in host applications. This returned value is used to allocate
frame buffers in vpu_EncRegisterFrameBuffer ().

reportBufSize is the data report requested buffer size information.

3.2.2.14 EncParam

typedef struct {

FrameBuffer * sourceFrame;
int encTopOffset;

int encLeftOffset;
int forceIPicture;
int skipPicture;
int quantParam;
PhysicalAddress picStreamBufferAddr;
int picStreamBufferSize;
int enableAutoSkip;
} EncParam;
Description
This is a data structure for configuring one frame encoding:
encTopOf fset is the top offset for cropping from source image to be encoded.
encLeftOffset is the left offset for cropping from source image to be encoded.
sourceFrame is a frame buffer containing source image to be encoded.

forceIPicture. If this value is 0, the picture type is determined by the VPU according to the various parameters such as
encoded frame number and GOP size. If this value is 1, the frame is encoded as an I-picture regardless of the frame number
or GOP size and I-picture period calculation is reset to the initial state. For MPEG-4 and H.263, I-picture is sufficient for
decoder refresh. For H.264 mode, the picture is encoded as an Instantaneous Decoding Refresh (IDR) picture. This value is
ignored if skipPicture = 1.

skipPicture. If this value is O, the encoder encodes the picture normally. If this value is 1, the encoder ignores
sourceFrame and generates a skipped picture. In this situation, the reconstructed image is a duplication of the previous
picture. The skipped picture is encoded as P-type regardless of GOP size.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 25

AR
API Features

quantParam is used for all quantization parameters with VBR (no rate control). The range of value is 1-31 for MPEG-4 and
0-51 for H.264. When rate control is enabled, this field is ignored.

picStreamBufferAddr is a start address of a picture stream buffer under line-buffer mode and dynamic buffer allocation.
This variable represents the start of a picture stream for encoded output. In buffer-reset mode, an application might use
multiple picture stream buffers for the best performance. Using this variable, an application re-registers the start position of
the picture stream while issuing a picture encoding operation. This start address of this buffer must be 8-byte aligned. Its size
is specified by picStreamBufferSize. In packet-based streaming with ring-buffer, this variable is ignored. This variable is
only meaningful when both line-buffer mode and dynamic buffer allocation are enabled.

picStreamBufferSize is a byte size of a picture stream chunk. This variable represents byte size of a picture stream buffer
and is crucial in line-buffer mode because encoder output can be corrupted if this size is smaller than any picture encoded
output. Therefore, this value should be big enough for storing multiple picture streams with average size. In packet-based
streaming with ring-buffer, this variable is ignored. This variable specifies the picture stream buffer size for encoded output
in line-buffer mode.

enableAutoSkip. The value O disables automatic skip and 1 enables automatic skip in encoder operation. Automatic skip
means encoder can skip frame encoding when generated Bitstream so far is too big considering target bitrate. This parameter
will be ignored if rate control is not used (bitRate = 0).

3.2.2.15 EncReportinfo

typedef struct ({
int enable;
int type;
int size;
Uint8 *addr;
} EncReportInfo;
Description
This is a structure used for reporting encoder information.
enable is a data report enabled or disabled; type, size and addr are valid when this flag is 1.
type is a type of mvInfo or slicelnfo.
size is a data report size.
addr is a saved report information address.
ReportInfo
typedef struct {
int enable;
int size;
Uint32 *addr;
union {
int mvNumPerMb;
int userDataNum;
int type;

Vi

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
26 NXP Semiconductors

API Features

union {
int userDataBufFull;

int reserved;

} ReportInfo;

Description

This is a data structure for reporting the encoding/decoding information.
enable 0 - Disable the information report; 1- Enable the information report;

size The size of the buffer pointed by the addr to save the specific returned information while calling the
vpu_DecGiveCommand or vpu_EncGiveCommand to set the buffer while it's used as input parameter. The size of returned
information that's saved in the buffer pointed by the addr after vpu_DecGetOutputInfo or vpu_EncGetOutputlnfo calling
while it's used as output parameter. The size has different meanings for different information report cases. For MV
information report in decoding, it represents the total number of MB.

addr The base address of the buffer to save the specific information.

mvNumPerMb When the MB report feature is enabled, decoder will report the motion vector into the buffer pointed by addr.
mvNumPerMb is motion vector number of an macrobloc (MB). the size above is the total number of macroblock. Therefore
total size of MB information in byte is size* mvNumPerMb *4.

userDataNum When the user data report is enabled, decoder will report user data content into the buffer pointed by addr. The
size is the size of user data in byte. When user data report mode is 1 and user data size is bigger than user data buffer size,
VPU reports user data as much as buffer size, skips the remains and sets userDataBufFull.

type When the MV report is enabled in the encoder, this value is used for picture type reporting in MVInfo.

userDataBufFull While user data report is enabled and the user data size is too small to save all decoded user data, VPU will
set userDataBufFull as 1.

reserved Used by driver internally, host application should never use it.

3.2.2.16 EncOutputinfo

typedef struct ({
PhysicalAddress bitstreamBuffer;
Uint32 bitstreamSize;

int bitstreamWrapAround;
int skipEncoded;

int picType;

int numOfSlices;

int reconFrameIndex;
Uint32 *pSlicelInfo;
Uint32 *pMBInfo;
Uint32 *pMBQpInfo;
EncReportInfo mbInfo;

EncReportInfo mvInfo;

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 27

AR
API Features

EncReportInfo sliceInfo;
} EncOutputInfo;
Description
This is a data structure for reporting the results of picture encoding operations:

bitstreamBuffer is a physical address of the starting point of a newly encoded picture stream. If dynamic buffer allocation
is enabled in line-buffer mode, this value is identical to the picture stream buffer address specified by the host application.

bitstreamSize is a byte size of the encoded bitstream.

bitstreamWrapAround is a flag for bitstream buffer wrap-around. When this flag is set, the bitstream buffer wrapped
around and a larger buffer size is required.

skipEncoded. 0 means current frame was encoded as non-skipped frame. 1 means current Frame was encoded as skipped
frame.

picType is a picture type of the current decoded picture. This value has different meaning for different codecs: for VC1
SP/MP: 0 =1 picture, 1 = P picture, 2 = BI picture, 3 = B picture, 4 = SKIPPED picture. For VC1 AP interlacing, picType
contains two picture type information fields: bit[2:0] and bit[5:3] and the respective value has same meaning as SP/MP use
case: 0 = I picture, 1 = P picture, 2 = BI picture, 3 = B picture, 4 = SKIPPED picture. For example, 0 = 000_000: both first
and second field are I picture, 1 = 000_001: first field is I picture and second field is P picture In other codec use cases, 0 =1
picture, 1 =P picture, 2 = B picture.

numOfSlices is a number of slices included in the newly encoded picture. When sliceReport in EncOpenParam is 0, this
value is invalid.

pSlicelInfo is not used in the i.MX 6.
pMBInfo is not used in the . MX 6.
PMBQpInfo is not used in the i.MX 6.

mbInfo is the MB information in the encoded picture. If the application does not give the ENC_SET REPORT_ MBINFO
command to enable it before starting one frame encoding, this information is invalid.

mvInfo is a motion vector information in the encoded picture. If the application does not give the
ENC_SET REPORT MVINFO command to enable it before starting one frame encoding, this information is invalid.

sliceInfo is a slice information in the encoded picture. If the application does not give the ENC_SET REPORT SLICEINFO
command to enable it before starting one frame encoding, this information is invalid.

3.2.2.17 SearchRamParam

typedef struct {
PhysicalAddress searchRamAddr;
int SearchRamSize;

} SearchRamParam;

Description

This is not used in the i MX 6.

3.2.2.18 DecParamSet

typedef struct ({

Uint32 * paraSet;

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
28 NXP Semiconductors

API Features

int size;
} DecParamSet;
Description

Structure used when the host processor requires to send SPS data or PPS data. The SPS data or PPS data is used in real
applications as a type of out-of-band information.

3.2.2.19 DecOpenParam

typedef struct ({
CodsStd bitstreamFormat;
PhysicalAddress bitstreamBuffer;
Uint8 *pBitStream;
int bitstreamBufferSize;
int gpReport;
int mp4DeblkEnable;
int reorderEnable;
int chromalInterleave;
int filePlayEnable;
int picWidth;

int picHeight;
int avcExtension;

int dynamicAllocEnable;

int streamStartByteOffset;
int mjpg thumbNailDecEnable;
PhysicalAddress psSaveBuffer;
int psSaveBufferSize;

int mp4Class;
int mapType;

int tiled2LinearEnable;
int bitstreamMode;

int jpgLineBufferMode;
} DecOpenParam;

Description
This is a data structure used to open a new decoder instance:
bitstreamFormat is a standard type of bitstream in decoder operation. One of codec standards defined in CodStd.

bitstreamBuffer is a start physical address of bit stream buffer from which the decoder retrieves the next bitstream. This
address must be 512 byte-aligned.

bitstreamBufferSize is a size in bytes of a buffer pointed by bitstreamBuffer. This value must be a multiple of 1024. The
maximum size is 16383x1024 bytes.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 29

AR
API Features

gpReport is not used in the i. MX 6.

mp4DeblkEnable where O = disable, 1 = enable. In MPEG4 and H.263 (post-processing) modes, the decoder applies
MPEG-4 deblocking filtered output to the host application.

reorderEnable where 1 = enables display buffer reordering when decoding H.264 streams. In H.264 mode, the output
decoded picture is re-ordered if pic_order_cnt_type is O or 1 and the decoder must delay the output display for re-ordering.
However, some applications (such as video telephony) do not require such display delay. The host may set this flag to O to
disable output display buffer reordering. Then the BIT processor does not re-order the output buffer when pic_order_cnt_type
is 0 or 1. If pic_order_cnt_type is 2 or in MPEG4 or H.263 modes, this flag is ignored because output display buffer
reordering is not allowed.

chromaInterleave where O = CbCr not interleaved, 1 = CbCr interleaved.
filePlayEnable is not used in the i.MX 6.

picwWidth is a horizontal picture size read from the file format header used for codecs for which the picture size is not
available in the bitstream, for example DivX3.11.

picHeight is a vertical picture size read from the file format header used for codecs for which the picture size is not
available in the bitstream, for example DivX3.11.

avcExtension where 0 = no extension of AVC, 1 = MVC extension of AVC.
dynamicBuffAllocEnable is not used in the i.MX 6.

streamStartByteOffset is a start byte offset of the stream buffer. Since the VPU has an internal limitation that the stream
buffer start address must be 8-byte aligned, the host application may be required to copy the stream data to an 8-byte aligned
buffer. This offset allows this overhead to be saved. The values should be between 0 and 7.

mjpg_thumbNailDecEnable is not used in the i.MX 6.

psSaveBuffer is a start address of the PS (SPS/PPS) save buffer which the decoder saves PS (SPS/PPS) RBSP. This
address must be 8 byte-aligned. This variable is only valid for H.264 decoder mode.

psSaveBufferSize is a size in bytes of a buffer pointed to by psSaveBuffer. This value must be a multiple of 1024. The
maximum size is 65565x1024 bytes. This variable is only valid when decoding H.264 streams.

mp4Class is a MPEG4 class when codec is MPEG4 type 0 = MPEG-4; 1 = DivX 5.0 or higher; 2 = Xvid; 5 = DivX 4.0
mapType is an A Map type for GDI inferface. O is a linear frame map. 1 is a frame tiled map. 2 is a filed tiled map.

tiled2LinearEnable is a tiled to linear map enable mode. The map type can be changed from tiled to linear in the post
processing unit for display.

bitstreamMode. When read pointer reaches write pointer in the middle of decoding one picture. 0 means VPU sends an
interrupt to HOST and waits for more bitstream to decode. (interrupt mode). 1 means VPU returns to the status right before
the PIC_RUN command (rollback mode).

jpgLineBufferMode where 0 is a LineBuffer mode and 1 is a streaming mode.

3.2.2.20 DecReportBufSize

typedef struct ({
int frameBufStatBufSize;
int mbInfoBufSize;
int mvInfoBufSize;

} DecReportBufSize;

Description

Not used in the 1. MX 6.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
30 NXP Semiconductors

3.2.2.21 Declnitialinfo

typedef struct ({

} DecInitiallInfo;

Description

int

int

picWidth;

picHeight;

Uint32 frameRateInfo;
Uint32 frameRateRes;

Uint32 frameRateDiv;

Rect picCropRect;

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

mp4_dataPartitionEnable;
mp4 reversibleVlcEnable;
mp4 shortVideoHeader;
h263 annexJEnable;
minFrameBufferCount;
frameBufDelay;
nextDecodedIdxNum;
normalSliceSize;
worstSliceSize;
mjpg_thumbNailEnable;
mjpg_sourceFormat;
streamInfoObtained;
profile;

level;

interlace;
constraint set flagl[4];
direct8x8Flag;

vcl pst;

aspectRateInfo;

Uint32 errorcode; ;

int

bitRate;

Vp8ScaleInfo vp8ScalelInfo;

int

DecReportBufSize reportBufSize;

mjpg_ecsPtr;

AvcVuiInfo avcVuiInfo;

API Features

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

NXP Semiconductors

31

AR
API Features

This is a data structure to get information necessary to start decoding:

picwidth is a horizontal picture size in pixels. This width value is used when allocating decoder frame buffers. In some
situations, this returned value, the display picture width declared on the stream header, should be modified before allocating
the frame buffers. When the picture width is not a multiple of 16, the picture width for buffer allocation should be re-
calculated from the declared display width as: picBufWidth = ((picWidth + 15)/16) x 16, where picBufWidth is the
horizontal picture buffer width. When picWidth is a multiple of 16, picWidth = picBufWidth.

picHeight is a vertical picture size in pixels. This height value is used when allocating decoder frame buffers. In some
situations, this returned value, the display picture height declared on the stream header, should be modified before allocating
the frame buffers. When the picture height is not a multiple of 16, the picture height for buffer allocation should be re-
calculated from the declared display height as: picBufHeight = ((picHeight + 15)/16) x 16, where picBufHeight is the vertical
picture buffer height. When picHeight is a multiple of 16, picHeight = picBufHeight.

frameRateInfo is not used in the i.MX 6.
frameRateRes is the numerator part of frame rate fraction. Refer to DecOutputInfo.frameRateRes.
frameRateDiv is the denominator part of frame rate fraction. Refer to DecOutputInfo.frameRateDiv.

picCropEnable indicates if picCropRect is valid. If picCropEnable = 0,the picCropRect should be ignored.
picCropEnable = I, there is cropping rectangle information picCropRect.

picCropRect is a picture cropping rectangle information. If picCropEnable = 0, this field is invalid. This structure
specifies the cropping rectangle information only for a H.264 decoder. The size and position of the cropping window in a full
frame buffer is presented in this structure. This structure is only valid for H.264 decoder mode.

mp4 dataPartitionEnable where 0 = disable. 1 = enable.
mp4_reversibleVlcEnable where 0 = disable. 1 = enable.
mp4_shortVideoHeader where O = disable. 1 = enable.
H263 annexJEnable where 0 = disable. 1 = enable.

minFrameBufferCount is a minimum number of frame buffers required for decoding. The application must allocate at least
this number of frame buffers and register those number of buffers to the VPU using vpu DecRegisterFrameBuffer ()
before decoding pictures.

frameBufDelay is a maximum display frame buffer delay for buffering decoded picture reorder. The VPU may delay
decoded picture displays for display reordering H.264 mode, when pic_order_cnt_type is 0 or 1 and for B-frame handling in
VC-1 decoder. (By default, some H.264 encoder set pic_order_cnt_type to O or 1, but in BP applications, this setting is not
actually used in practice.)

nextDecodedIdxNum is a maximum number of indexes which are returned after decoding one frame. the VPU may return 1
for MPEG-4, H.264, DivX, and MPEG-2 use cases. For VC-1 decoding only, this variable may have a value between 1 and
3.

normalSliceSize is a recommended size of buffer to save slice in normal use case. Value is determined by a quarter of the
memory size of one raw YUV image in Kbytes.

worstSliceSize is a recommended size of buffer used to save slice in worst case. Value is determined by half of the
memory size for one raw YUV image in Kbytes.

mjpg_thumbNailEnable where 0 = disable. 1 = enable. The stream which is decoded as thumbnail.

mjpg_sourceFormat is the chroma format of encoded image of the stream. The format defines the chrominance size of the
source image and can be a value between 0 and 4. 0 = 4:2:0, 1 = 4:2:2 horizontal, 2 = 4:2:2 vertical, 3 = 4:4:4, 4 = 4:0:0

streamInfoObtained. Set to zero so the stream information cannot be obtained in the current firmware. It is true always
on i.MX 6.

profile is the profile information in the stream. This value is used as outlined below:
* H.264 : profile_idc
e Vcl : 0~2 (SMTPE reserved), 3(advanced profile)

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
32 NXP Semiconductors

API Features

e MP2:3'b101: Simple, 3'b100: Main, 3'b011: SNR Scalable, 3'b10: Spatially Scalable, 3'b001: High
e MP4 : If VOS header is existed, 8'b00000000: Simple Profile, 8'b00001000: Advanced coding efficiencys;
8'b00001111: Advanced Simple Profile
* If there is only VOL header, 8'b00000001: Simple Profile, 8'b00001100: Advance coding efficiency, 8'b00010001:
Advanced Simple Profile
level is the level information in the stream. This value is used as outlined below:

e H.264 : level idc

e Vel :level

e MP2:4'b1010: Low, 4'b1000: Main, 4'b0110: High 1440, 4'b0100: High

e MP4 : If VOS header is existed (high bit is 1, 8'b10000000), 4'b0000 or 4'b1000: L0, 4'b0001: L1, 4'b0010: L2,
4'b0011: L3...; If there is VOS header, level cannot be obtained.

interlace is the interlace information in the stream where 0 means only progressive frames in the stream, and 1 means
there may be interlaced frame in the stream.

constraint set flagis a syntax element in H.264 used to make level in H.264. Ignored in other standards.
direct8x8Flag is a H.264 SPS syntax element which is used in B picture.
vcl_pst is a PSF information in VC1 stream information.

aspectRateInfo is an aspect rate information in stream information. If the value is O, then aspect ratio information is not
present.

e [H.264] - if aspectRatelnfo [31:16] is 0, aspectRateInfo [7:0] means aspect_ratio_idc. Otherwise, AspectRatio means
Extended_SAR.

¢ sar_width = aspectRatelnfo [31:16]

 sar_height = aspectRateInfo [15:0]

e [VC-1]- Aspect Width = aspectRatelnfo [31:16]

¢ Aspect Height = aspectRateInfo [15:0]

e [MP4] - This value is index of Table 6-12 in ISO/IEC 14496-2.

e [MP2] - This value is index of Table 6-3 in ISO/IEC 13818-2. It is determined by half of the memory size for one raw
YUYV image in KB unit.

reportBufSize is a data report requested buffer size information.
bitRate is the bitrate value written in bitstream syntax. Available only when value is not 1.
vp8ScaleInfo is VP8 up sampling information. Refer to the Vp8Scalelnfo.

mjpg_ecsPtr is the consumed mjpg size for using software Getlnitiallnfo for MJPG decoder.

3.2.2.22 ExtBufCfg

typedef struct ({
PhysicalAddress bufferBase;
int bufferSize;
} ExtBufCfg
Description
This data structure is used when the host application wants to give external memory configuration to VPU.
bufferBase is the start address of external memory.

buffersSize is the size of the buffer pointed by bufferBase in bytes.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 33

API Features

3.2.2.23 DecBufinfo

typedef struct ({
ExtBufCfg avcSliceBufInfo;
ExtBufCfg vp8MbDataBufInfo;
DecMaxFrmInfo maxDecFrmInfo;
} DecBuflInfo;
Description
This data structure is used when the host application wants to transfer additional buffer information without the frame buffer.

avcSliceBufInfo is the start address and size of the slice save buffer where decoder can save slice RBSP. This variable is
only valid for H.264 decoder.

vp8MbDataBufInfo is the start address and the size of macroblock prediction data save buffer in which the VP8 decoder
can save inflated macroblock information for a frame. This buffer is temporal scratch memory that sustains while decoding a
picture. The start address must be 8-byte aligned.

maxDecFrmInfo is the maximum supported info of the frame buffer. Not used in the i.MX 6.

3.2.2.24 DecParam

typedef struct ({
int prescanEnable;
int prescanMode;
int dispReorderBuf;
int iframeSearchEnable;
int skipframeMode;
int skipframeNum;
int chunkSize;
int picStartByteOffset;
PhysicalAddress picStreamBufferAddr;
int mjpegScaleDownRatioWidth; /* mx6 */
int mjpegScaleDownRatioHeight; /* mx6 */
PhysicalAddress phyJdpgChunkBase;
unsigned char *virtdpgChunkBase;
}DecParam;
Description
This is a data structure for picture decoding options:
prescanEnable is not used in the i.MX 6.

prescanMode is not used in the i.MX 6.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
34 NXP Semiconductors

API Features

iframeSearchEnable where 0 = disable, 1 = enable, and the decoder performs skipping frame decoding until decoder
meets an [(IDR) frame. If there is no I frame in the stream, the decoder waits for a I (IDR) frame. If skipframeNum is n, the
decoder seeks the (n + 1) T (IDR) frame. When decoder meets an EOS (End Of Sequence) code during I-Search, the decoder
returns -1 (OXFFFF). If this option is enabled, skipframeMode options are ignored.

skipframeMode is a skip frame function enable and operation mode. 0 means skip frame disable, 1 means skip frame
enabled (skip frames but I (IDR) frame), 2 means skip frame enabled (skip any frames). If this option is enabled, the decoder
skips decoding as far as skipframeNum frames. After the decoder skips frames, the decoder returns decoded index -2
(0xFFFE) when it does not have any frames displayed. When decoder meets EOS (End Of Sequence) code during frame skip,
the decoder returns -1 (= OXFFFF).

skipframeNum is not used in the i.MX 6.
chunkSize is not used in the i.MX 6.
picStartByteOffset is not used in the i.MX 6.
picStreamBufferAddr is not used in the i.MX 6.

mjpegScaleDownRatioWidth is horizontal down-sampling factor. O : No scaling, 1 : 1/2 down-scaling, 2 : 1/4 down-
scaling, 3 : 1/8 down-scaling.

mjpegScaleDownRatioHeight is vertical down-sampling factor. O : No scaling, 1 : 1/2 down-scaling, 2 : 1/4 down-
scaling, 3 : 1/8 down-scaling.

phyJdpgChunkBase is the physical memory address of input bitstream buffer for Jpg.

virtJpgChunkBase is the point of virtual memory address of input bitstream buffer for Jpg.

3.2.2.25 DecReportinfo

typedef struct ({

int enable;

int size;
union {
int mvNumPerMb;
int userDataNum;
union {

int reserved;

int userDataBufFull;

Uint8 *addr;
} DecReportInfo;

Description

This function is not used in the i.MX 6.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 35

AR
API Features

3.2.2.26 Vp8Scalelnfo

typedef struct ({
unsigned hScaleFactor : 2;
unsigned vScaleFactor : 2;

unsigned picWidth : 14,
unsigned picHeight : 14,

} Vvp8ScalelInfo;
Description
This is data structure of picture up-scaling information for post-processing out of decoding loop.

This structure is valid only for VP8 decoding use case and can never be used by VPU itself. If host has an up sampling
device, this information is useful. When the host allocates a frame buffer, application needs up-scaled resolution derived by
this information to allocate enough (maximum) memory for variable resolution picture decoding.

hScaleFactor is an up-scaling factor for horizontal expansion. The value could be 0 to 3. The meaning of each value is
described below:

* 0 means 1 up-sampling ratio

* 1 means 5/4 up-sampling ratio
* 2 means 5/3 up-sampling ratio
* 3 means 2/1 up-sampling ratio.

vScaleFactor is an up-scaling factor for vertical expansion. The value could be O to 3. The meaning of each value is
described below:

* picWidth is a picture width in units of sample.
* picHeight is a picture height in units of sample.

3.2.2.27 Vp8PiclInfo

typedef struct ({
unsigned showFrame : 1;

unsigned versionNumber : 3;

unsigned refIdxLast : 8;
unsigned refIdxAltr : 8;
unsigned refIdxGold : 8;

} Vp8PicInfo;
Description

This is a data structure for VP8-specific header information and reference frame indices. Only VP8 decoder returns this
structure after decoding a frame.

showFrame is the frame header syntax which means whether the current decoded frame is displayable or not. It is 0 when
current frame is not for display and 1 when current frame is for display.

versionNumber is the VP8 profile version number information in the frame header. The version number enables or disables
certain features in bitstream. It can be defined with one of the four different profiles: 0 to 3. Each indicates different decoding
complexity.

refIdxLast is the frame buffer index for the Last reference frame. This field is valid only for next inter frame decoding.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
36 NXP Semiconductors

API Features

refIdxAltr is the frame buffer index for the altref (Alternative Reference) reference frame. This field is valid only for next
inter frame decoding.

refIdxGold is the frame buffer index for the Golden reference frame. This field is valid only for next inter frame decoding.

3.2.2.28 AvcFpaSei

typedef struct ({
unsigned exist;
unsigned frame packing arrangement id;
unsigned frame packing arrangement cancel flag;
unsigned quincunx sampling flag;
unsigned spatial flipping flag;
unsigned frameO flipped flag;
unsigned field views_ flag;
unsigned current frame is frame0O flag;
unsigned frameO self contained flag;
unsigned framel self contained flag;
unsigned frame packing arrangement ext flag;
unsigned frame packing arrangement type;
unsigned content interpretation type;
unsigned frameO grid position x;
unsigned frameO grid position y;
unsigned framel grid position x;
unsigned framel grid position y;

unsigned frame packing arrangement repetition period;
} AvcFpaSei;

Description
This is a data structure for AVC FPA (frame packing arrangement) SEI.
0 means AVC FPA SEI does not exist. 1 means AVC FPA SEI exists.

frame packing arrangement id 0 ~ 2°32-1 is an identifying number that may be used to identify the usage of the
frame packing arrangement SEI message.

frame_packing arrangement_ cancel_flag indicates whether the frame packing arrangement SEI message cancels the
persistence of any previous frame packing arrangement SEI message in output order.

quincunx sampling flag indicates whether each color component plane of each constituent frame is quincunx sampled.
spatial flipping flag indicates that one of the two constituent frames is spatially flipped.
frame0 flipped flag indicates which one of the two constituent frames is flipped.

field views_ flag 1 indicates that all pictures in the current coded video sequence are coded as complementary field
pairs.

current frame is frame0O_ flag indicates the current decoded frame and the next decoded frame in output order.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 37

AR
API Features

frame0_self contained flag indicates whether inter prediction operations within the decoding process for the samples
of constituent frame 0 of the coded video sequence refer to samples of any constituent frame 1.

framel self contained flag indicates whether inter prediction operations within the decoding process for the samples
of constituent frame 1 of the coded video sequence refer to samples of any constituent frame 0.

frame packing arrangement extension flag 0 indicates that no additional data follows within the frame packing
arrangement SEI message.

frame packing arrangement type is the type of packing arrangement of the frames as specified in Table D-8, ISO/IEC
14496-10D.2.25.

content interpretation type indicates the intended interpretation of the constituent frames.

frame0_grid position x specifies the horizontal location of the upper left sample of constituent frame O to the right of
the spatial reference point.

frame0_grid position_y specifies the vertical location of the upper left sample of constituent frame 0 below the spatial
reference point.

framel grid position_x specifies the horizontal location of the upper left sample of constituent frame 1 to the right of
the spatial reference point.

framel grid position_ y specifies the vertical location of the upper left sample of constituent frame 1 below the spatial
reference point.

frame packing arrangement repetition period indicates persistence of the frame packing arrangement SEI
message.

3.2.2.29 MvcPicInfo

typedef struct ({
int viewIdxDisplay;
int viewIdxDecoded;
} MvcPicInfo;
Description

This is a data structure for MVC-specific picture information. Only MVC decoder returns this structure after decoding a
frame.

viewIdxDisplay is the view index order of display frame buffer corresponding to indexFrameDisplay of DecOutputlnfo
structure.

viewIdxDecoded is the view index order of decoded frame buffer corresponding to indexFrameDecoded of DecOutputInfo
structure.

3.2.2.30 DecOutputinfo

typedef struct ({
int indexFrameDisplay;
int indexFrameDecoded;
int NumDecFrameBuf;
int picType;

int picTypeFirst;

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
38 NXP Semiconductors

API Features
int idrFlg;
int numOfErrMBs;
Uint32 *gpInfo;
int hScaleFlag;
int vScaleFlag;
int indexFrameRangemap;
int prescanresult;
int notSufficientPsBuffer;
int notSufficientSliceBuffer;
int decodingSuccess;
int interlacedFrame;
int mp4PackedPBframe;
int h264Npf;
int pictureStructure;
int topFieldFirst;
int repeatFirstField;
union {
int progressiveFrame;
int vcl_repeatFrame;
bi
int fieldSequence;
int decPicHeight;
int decPicWidth;
Rect decPicCrop;
int aspectRateInfo;
Uint32 frameRateRes;
Uint32 frameRateDiv;
Vp8ScaleInfo vp8ScaleInfo;
Vp8PicInfo vp8PicInfo;
MvcPicInfo mvcPicInfo;
AvcFpaSeil avcFpaSei;
AvcvVuiInfo avcVuilInfo;
int frameStartPos;
int frameEndPos;

int consumedByte;

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 39

AR
API Features

DecReportInfo mbInfo;
DecReportInfo mvInfo;
DecReportInfo frameBufStat;
DecReportInfo userData;
} DecOutputInfo;
Description
This is a data structure to get information resulting from decoding a frame.

indexFrameDisplay is a frame buffer index of a picture to be displayed among frame buffers which were registered using
vpu_DecRegisterFrameBuffer (). Frame data to be displayed is stored into the frame buffer specified by this index.
When a delay in display does not exist, this index is the same as indexFrameDecoded. But if not, (for example, display
reordering in AVC or B-frames in VC-1), this index is not the same value as indexFrameDecoded. If the decoder cannot
provide a display output at the beginning of sequence decoding with different display order, this index always has -2
(OxFFFE) or -3 (0xFFFD) depending on the decoder skip option. And at the end of sequence decoding, if there is no more
output for display, this value has -1 (OxFFFF). By checking this index, the host application can easily know whether sequence
decoding has finished or not.

indexFrameDecoded is a frame buffer index of decoded picture among frame buffers which were registered using
vpu_DecRegisterFrameBuffer (). A decoded frame during current picture decoding operation is stored into the frame
buffer specified by this index. If decoder meets EOS or skip, the decoder returns -1 (OxFFFF) to represent that no decoded
output is generated. Because of delays in display, the return value of -1 does not mean end of decoding. In order to check the
end of decoding, the host application should refer toindexFrameDisplay.

picType is a picture type of the decoded picture where 0 = I picture, 1 = P picture, 2 = B picture. For H.264, bit[0] indicates
IDR frame. O means current frame is IDR. 1 means non-IDR frame. If 0, the bit [2:1] should be ignored. If 1 of bit [0], bit
[2:1] represents the slice types of current picture. 0 means I-slice, 1 means P-slice, 2 means B-slice. The actual value is the
value of the ORed value of all slices of the current picture.

numOfErrMBs is a number of erroneous macroblocks while decoding a picture.
gpInfo is not used in the i.MX 6.

hScaleFlag is a flag for reduced resolution output in horizontal direction. For VC1 decoding, the resulting picture width
from the decoder may be half the decoded picture width. In this situation, this flag is set. The host application should scale up
the picture by two times in the horizontal direction to get proper display output.

vScaleFlag is a flag for reduced resolution output in vertical direction. For VC1 decoding, the resulting picture height from
the decoder may be half the decoded picture height. In this situation, this flag is set. The host application should scale up this
picture by two times in the vertical direction to get proper display output.

indexFrameRangemap is not used in the i.MX 6.
prescanResult is not used in the i.MX 6.

notSufficientPsBuffer is a flag that represents whether PS (SPS/PPS) save buffer is sufficient to decode the current
picture. VPU does not get the last part of the current picture stream because of the buffer overflow. The host must close the
current instance since the picture streams cannot be decoded properly because of loss of SPS/PPS data.

notSufficientSliceBuffer is a flag that represents whether slice save buffer is sufficient to decode the current picture.
VPU does not get the last part of the current picture stream, and macroblock errors issue because of buffer overflow. The host
can continue decoding the remaining pictures of the current input stream without closing the current instance, even though
several pictures can be error-corrupted.

decodingSuccess where bit 0 = 0 means incomplete finish of decoding process and bit 0 = 1 means complete finish of
decode process. This variable means that the decoding process is finished completely. If stream has errors in the picture
header syntax or the first slice header syntax of H.264 stream, VPU does not initiate the MB decoding routine and returns
immediately. In this situation, VPU returns bit 0 = 0, which means incomplete end of decoding process. Additionally, this
variable uses some bits to indicate error reasons why VPU returns from picture decoding. In rollback mode, if bitstream

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
40 NXP Semiconductors

API Features

buffer doesn't have enough bits for decoding a picture, VPU returns from decoding and rolls back its read pointer to the
beginning of that picture. In this situation, bit 4 of decodingSuccess is 1. When sequence parameters are changed, bit 20 of
decodingSuccess is 1.

interlacedFrame where 0 means progressive frame which consists of one frame picture and 1 means interlaced frame
which consists of two field picture (top field and bottom field). This variable indicates that the frame is the interlaced frame.
If this value is set, the host application may use a de-interlacing filter to enhance image quality.

mp4PackedPBframe where 0 means normal frame chunk data and 1 means packed PB frame chunk data. This variable
indicates that the frame chunk data is a packed PB frame chunk. If this value is set, the host application must re-use this
chunk in the next decoding command. This variable is only valid for MPEG-4 file-play mode.

h264Npf£ indicates that a top or bottom field is absent when NPF occurres in display picture.

PictureStructure is a picture structure in picture coding ext in MP2, interlaced in Video Object Layer in MP4, MBAFF
(MB Adaptive frame/field mode) flag in H.264, and FCM in picture header in VCI.

topFieldFirst where O means bottom field first and 1 means top field first. Ignored if interlacedFrame is 0.
repeatFirstField repeats first field for repeat counter.

progressiveFrame is a progressive_frame in picture coding extension in MP2.

vcl repeatFrame where O means not repeat frame and 1 means repeat frame.

fieldSequence is a field sequence in picture extension of MP2.

decPicHeight is a picture height of current decoded frame.

decPicWidth is a picture width of current decoded frame. For MJIPEG decoding, the decPicHeight and decPicWidth are the
size of the decoded rotator frame saved in the rotation frame buffer that is registered by the SET_ROTATOR_OUTPUT
command. VPU supports the changed resolution decoding. VPU only supports the changed resolution not larger than the
original size. For example, the changed sequence of VGA > QVGA > VGA is supported.

decPicCrop is a picture crop information of current decoded frame. Only effective with the H.264 decoder.

aspectRateInfo H.264 - It is aspect_ratio_idc [7:0] when [31:8] is 0. Otherwise it is ssar_width in [31:16] and sar_height
in [15:0]. VC-1 - ASPECT_RATIO h:v are reported in [15:8] : [7:0] as described in the spec. MPEG4 - This value is index of
Table 6-12 in ISO/IEC 14496-2; MPEG2 - This value is index of Table 6-3 in ISO/IEC 13818-2.

frameRateRes is the numerator part of frame rate fraction. This is the value of time_scale in the H.264 VUI syntax for AVC
decoding.

frameRateDiv is the denominator part of the frame rate fraction. In case of AVC decoding, this is the value of
num_units_in_tick in the H.264 VUI syntax. User can get the frame rate with this parameter. For AVC decoder, frame rate =
frameRateRes / (frameRateDiv*2). Otherwise, frame rate = frameRateRes / frameRateDiv.

vp8ScaleInfo is VP8 up sampling information. Refer to the Vp8Scalelnfo.
vp8PicInfo is VP8 frame header information. Refer to the Vp8Piclnfo.
mvcPicInfo is MVC related picture information. Refer to MvcPicInfo.

avcFpaSei is AVC frame packing arrangement SEI information. Refer to AvcFpaSei.
frameStartPos Start position of the frame

frameEndPos End position of the frame

consumedByte Consumed byte in the decoding command

mbInfo is not used in the i.MX 6.

mvInfo is not used in the i.MX 6.

frameBufStat is not used in the i.MX 6.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 41

API Features

userData is a motion vector in the decoded picture. If the application does not give the DEC_SET_REPORT_USERDATA
command to enable the report before starting one frame decoder, this information is invalid.

3.2.2.31 vpu_versioninfo

typedef struct ({

int fw major; /* firmware major version */

int fw minor; /* firmware minor version */

int fw release; /* firmware release version */

int fw code; /* firmware checkin code number */
int lib major; /* library major version */

int 1lib_minor; /* library minor version */

int lib release; /* library release version */

} vpu versioninfo;

Description

This is a data structure to get the VPU firmware and library version:

fw major, fw minor, fw_release Firmware version, naming convention which are similar to Linux kernel.
fw_code is the firmware detail source code commit id.

lib major, lib minor, lib_release VPU library version, naming convention which are all similar to Linux kernel.

3.2.2.32 VPUMemAlloc

typedef struct {
int size;
unsigned long phy addr;
unsigned long cpu_addr;
unsigned long virt uaddr;
} vpu_mem desc;
Description
Data structure used when the host application allocates physically contiguous memory for the VPU:
size is a requested memory size.
phy addr is a physical base address of the buffer allocated by driver if allocated successfully.

cpu_addr is a kernel virtual address corresponding to phy_addr. The programmer of the user-space application does not
need to care about this.

virt uaddr is an user-space virtual address corresponding to phy_addr, which the host application can access.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
42 NXP Semiconductors

e
API Features

3.2.2.33 iram_t

typedef struct iram t {
unsigned long start;
unsigned long end;

} iram t;

Description

start is a start address of the internal memory for VPU use.

end is an end address of internal memory for VPU use.

3.3 API Definitions Overview

This section provides an overview of the VPU API definitions. The basic API architecture is presented together with the
operation flow of both decoder and encoder- based VPU API functions.

3.3.1 Basic Architecture
1.MX 6 VPU API has the following three basic categories:

* Control API-API functions for general control of the VPU such as initialization
* Decoder API-API functions for VPU decoding operations
* Encoder API-API functions for VPU encoding operations

i.MX 6 VPU API functions are based on a frame-by-frame picture processing scheme. To run a picture decoder or encoder,
the application calls an API function. After completion of the processing, the application can check the results of the picture
processing.

To support multi-instance decoding and encoding, i.MX 6 VPU API functions use a handle to specify a certain instance. The
handle for each instance is provided when the application creates a new decoder or encoder instance. If the application wants
to give a command to a specific instance, the corresponding handle is used in every API function call for that instance.

3.3.1.1 Decoder Operation Flow
To decode a bitstream, the application completes the following steps:

Call vpu_Init() to initialize the VPU.
Open a decoder instance by using vpu_DecOpen().
To provide the proper amount of bitstream, get the bitstream buffer address by using vpu_DecGetBitstreamBuffer().
After transferring the decoder input stream, inform the amount of bits transferred into the bitstream buffer by using
vpu_DecUpdateBitstreamBuffer().
5. Before starting a picture decoder operation, get the crucial parameters for decoder operations such as picture size,
frame rate, and required frame buffer size by using vpu_DecGetInitialInfo().
6. Using the returned frame buffer requirement, allocate the proper size of the frame buffers, and convey this data to .MX
6 VPU by using vpu_DecRegisterFrameBuffer().
7. Start a picture decoder operation picture-by-picture by using vpu_DecStartOneFrame().
8. Wait for the completion of the picture decoder operation interrupt event.
9. Check the results of the decoder operation using vpu_DecGetOutputInfo().
10. After displaying n' frame buffer, clear the buffer display flag by using vpu_DecClrDispFlag().
11. If there is more bitstream to decode, go to Step 7, otherwise go to the next step.
12. Terminate the sequence operation by closing the instance by using vpu_DecClose().

v

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 43

AR
API Features

13. Call vpu_Unlnit() to release the system resources.

The decoder operation flow is shown in the figure below.

¥

wae_feit)

¥

ray_Dec Cpe ()

v

way_ Dee Uod gte She as Buife)

v

yow_OecSetEsc Segind hamdle, 1)
vay_DecGedinitialinfl])
gy DecSetEseSegind hamdle,d)

v

ray_ Dee RegisterF e eBuifer()

¥

gy _Dee StartCreF raar)

v
wpu_ls Busy(iY
Mo
¥

way_Dee Getlutoutinfar)

Decode finishe d™
Ma

h

Frocess output picture
E.q. showw an display or save ta
mem

v

vow_DeeirDisa)

vaw_ DecClose ()

l Line-buffer moda™ Mo
h J
. gy _Declodgtedd strean raw_Dec Uod gteBitstean
ey (et i) TeE Bufer() Bufferhandle, 0

es

Line-buffar moda™ fag

Ma

— vou DecFetd frean Buffer()

Lack of bitstream™ Ma

“fes

Ma +

Fill bit stream ring buffer
res

End of stream™

Set bitsteam to
bitstreambuffer start address=

Figure 4. Decoder Operation Flow

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

44

NXP Semiconductors

e
API Features

3.3.1.2 Encoder Operation Flow
To encode a bitstream, the application completes the following steps:

1. Call vpu_Init() to initialize the VPU.

2. Open a encoder instance by using vpu_EncOpen().

3. Before starting a picture encoder operation, get crucial parameters for encoder operations such as required frame buffer
size by using vpu_EncGetInitialInfo().

4. By using the returned frame buffer requirement, allocate size of frame buffers and convey this information to the VPU

by using vpu_EncRegisterFrameBuffer().

Generate high-level header syntax by using vpu_EncGiveCommand().

Start picture encoder operation picture-by-picture by using vpu_EncStartOneFrame().

Wait the completion of picture encoder operation interrupt event.

After encoding a frame is complete, check the results of encoder operation by using vpu_EncGetOutputInfo().

If there are more frames to encode, go to Step 4. Otherwise, go to the next step.

Terminate the sequence operation by closing the instance using vpu_EncClose().

Call vpu_Unlnit() to release the system resources.

AN e

1
1

The encoder operation flow is shown in the figure below.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 45

AR
API Features

Vi i)

'

vl EncCpen(d

¥

vau Encetinitiaiintol)

¥

val EncRegisterFrameBnfes)

v

vl Epcice Cornmah di)

I
L

¥
et snur:::;;aqﬁﬁ?“‘“-—
“es
¥ Mo
Copy source data to source
frame huffer
vipr EpcStakOnerraimef)
Mo ——"'e
r
wpu_|sBusye?
——————————— [
Mo
¥
vl Ene GetCuts Winfol) ¥
YEs il EhcCinser)
¥
Frocess output dats ¥
v Uningl)
¥

¢ End

Figure 5. Encoder Operation Flow

3.3.2 Control API

The following sections describe the control API functions.

3.3.2.1 vpu_lnit()

Prototype

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
46 NXP Semiconductors

API Features
RetCode vpu_ Init (void *);
Parameter
Not used, just defined for extension. The user can set it with null.
Return Value
RETCODE_SUCCESS means VPU initialized successfully.
RETCODE_FAILURE means VPU initialization unsuccessful.
Description

This function initializes the VPU hardware and proper data structures/resources. The application must call this function
before using VPU. If the VPU hardware is initialized after boot at first usage, VPU library does not need to initialize the
hardware again. For example, there is no need to load the firmware again. This is transparent to the application.

3.3.2.2 vpu_Unlnit()

Prototype

void vpu UnInit () ;
Parameter

None

Description

This function deinitializes the VPU hardware and releases the resources that are allocated in the vpu_Init() function. The
application must call this function before exiting.

3.3.2.3 vpu_lsBusy()

Prototype

int vpu IsBusy();
Parameter

None

Return Value

0 VPU hardware is idle.

1 VPU hardware is busy processing a frame.
Description

This function tells the application if decoder or encoder frame processing is completed or not.

3.3.2.4 jpu_lsBusy()

Prototype

int jpu IsBusy();
Parameter

None

Return Value

0 JPU hardware is idle.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 47

AR
API Features

1 JPU hardware is busy processing a frame.
Description

This function tells the application if decoder or encoder frame processing of MJPG format is completed or not. This function
is not implemented. Use vpu_IsBusy instead.

3.3.2.5 vpu_WaitForint()
Prototype

int vpu_ WaitForInt (int timeout_ in ms) ;
Parameter

timeout in ms [input] is wait time in milliseconds.
Return Value

RETCODE_SUCCESS means that the operation is successful.
RETCODE_FAILURE means that the operation failed.
Description

The application waits for the decoder or encoder to complete the interrupt. This function returns immediately if the interrupt
has been received. Otherwise, it returns after timeout_in_ms.

3.3.2.6 vpu_GetVersioninfo()

Prototype

RetCode vpu GetVersionInfo (vpu versioninfo * verinfo);

Parameter

verinfo [output] is the pointer to vpu_versionlnfo data.

Return Value

RETCODE_SUCCESS means that the version information is acquired successfully.
RETCODE_FAILURE means that the current firmware does not contain any version information.

RETCODE_NOT_INITIALIZED means that VPU is not initialized before calling this function. The application should
initialize VPU by calling vpu_Init() before calling this function.

Description

This function provides the version information running on the system to the application.

3.3.2.7 10GetPhyMem()

Prototype

int IOGetPhyMem(vpu mem desc * buff);
Parameter

buff [input] is a pointer to memory information stored in allocated memory. The user needs to input buff > size, then
buff >. phy_addr is output after return success.

Return Value

RETCODE_SUCCESS means that the operation is successful.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
48 NXP Semiconductors

API Features
RETCODE_FAILURE means that the operation failed.
Description

This function allocates physically contiguous memory. When the application calls this function, the driver allocates
physically contiguous memory.

3.3.2.8 10FreePhyMem()

Prototype

int IOFreePhyMem (vpu mem desc * buff);
Parameter

buff [input] is a pointer to memory information stored in allocated memory. The user needs to input buff > size, then
buff > phy_addr is output after return success.

Return Value

RETCODE_SUCCESS means that the operation is successful.
RETCODE_FAILURE means that the operation failed.
Description

This function frees the physical memory allocated by IOGetPhyMem back to the system.

3.3.2.9 10GetVirtMem()

Prototype

int IOGetVirtMem(vpu mem desc * buff);
Parameter

buff [input] is a pointer to memory information stored in allocated memory. The user needs to input buff > size, then
buff > phy_addr is output after return success.

Return Value

RETCODE_SUCCESS means that the operation is successful.
RETCODE_FAILURE means that the operation failed.
Description

This function gets the virtual address of the given physical address. If the allocated physical continuous memory needs to be
accessed in user space, this function is used to map physical memory.

3.3.2.10 [1OFreeVirtMem()

Prototype

int IOFreeVirtMem(vpu mem desc * buff);
Parameter

buff [input] is a pointer to memory information stored in allocated memory. The user needs to input buff > size, then
buff > phy_addr is output after return success.

Return Value

RETCODE_SUCCESS means that the operation is successful.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 49

AR
API Features

RETCODE_FAILURE means that the operation failed.
Description

This function is used to unmap physical memory to user space.

3.3.2.11 10GetlramBase()

Prototype

int IOGetIramBase (iram t * iram);

Parameter

iram [input] is a pointer to memory information that stores the internal memory.
Return Value

RETCODE_SUCCESS means that the operation is successful.
RETCODE_FAILURE means that the operation failed.

Description

This function is not used in i.MX 6.

3.3.2.12 vpu_SWReset()

Prototype

RetCode vpu SWReset (DecHandle handle, int index);

Parameter

handle [input] is an encoder/decoder handle obtained from vpu_EncOpen()/vpu_DecOpen().

index [input] means that the index of instance will be reset.

Return Value

RETCODE_SUCCESS means that the operation is successful.

RETCODE_FAILURE means that the operation failed.

Description

This function resets the instance specified by the handle or index. Host application can use this function with two methods:
1) Calling with handle parameter. If handle is given, the index parameter will be ignored automatically.

2) Calling with index parameter. This method is for special use cases in which the application exists without instance closed,
the resources need to be released, and the host knows the exact index of instance.

In normal situations, you should reset VPU with a specified handle. You should be confident in what you are doing if
resetting VPU with an index parameter not a handle.

3.3.3 Encoder API

The following sections describe the encoder API functions.

3.3.3.1 vpu_EncOpen()

Prototype

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
50 NXP Semiconductors

API Features
RetCode vpu_ EncOpen (EncHandle * pHandle, EncOpenParam * pop) ;
Parameter

pHandle [output] is a pointer to EncHandle type variable which specifies instance for an application. If no instance is
available, a null handle is returned.

pop [input] is a pointer to a EncOpenParam type structure which describes the parameters for the new encoder instance.
Return Value
RETCODE_SUCCESS means that the new encoder instance opened successfully.

RETCODE_FAILURE means that the new encoder instance not opened successfully. If there is no free instance available,
this value is returned in the function call.

RETCODE_INVALID_PARAM means that a given argument parameter, pop, is invalid-it has a null pointer or contains
improper values for some member variables.

RETCODE_NOT_INITTALIZED means that VPU is not initialized before calling this function. The application must
initialize VPU by calling vpu_Init() before calling this function.

Description

To start a new encoder operation, the application must open a new instance. By calling this function, the application gets a
handle specifying a new encoder instance. Because i.MX 6 VPU supports multiple instances of codec operations, the
application needs this kind of handle for the all running codec instances. Once the application receives a handle, the
application uses this handle to represent the target instances for all subsequent encoder-related operations.

3.3.3.2 vpu_EncClose()

Prototype

RetCode vpu_EncClose (EncHandle handle) ;

Parameter

handle [input] is an encoder handle obtained from vpu_EncOpen().
Return Value

RETCODE_SUCCESS means that the encoder instance closed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is from an instance
which has been closed.

RETCODE_FRAME_NOT_COMPLETE means that the frame decoding or encoding operation is not completed yet and the
API function call cannot be performed at this time. A frame encoding or decoding operation should be completed by calling
vpu_EncGetOutputInfo() or vpu_DecGetOutputInfo(). Even though the result of the current frame operation is not
necessary, the application should call vpu_EncGetOutputInfo() or vpu_DecGetOutputInfo() to proceed with this function
call.

RETCODE_FAILURE_TIMEOUT means that the hardware is already busy with other operation and unavailable for current
API calling.

Description

This function is called by the application to close an instance when the application completes the encoding operations and
wants to release this instance for other processing. After completion of this function call, the instance referred to by the
handle is free. Once the application closes an instance, the application cannot call any further encoder-specific function with
this handle before re-opening a new instance with the same handle.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 51

AR
API Features

3.3.3.3 vpu_EncGetlnitiallnfo()
Prototype

RetCode vpu EncGetInitialInfo(EncHandle handle, EncInitialInfo * info);
Parameter
handle [input] is an encoder handle obtained from vpu_EncOpen().

info [output] is a pointer to a Enclnitiallnfo type structure which describes the parameters required before starting
encoder operations.

Return Value
RETCODE_SUCCESS means that receiving the initial parameters completed successfully.
RETCODE_FAILURE means that there is an error getting the configuration information for the encoder.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

RETCODE_INVALID_PARAM means that the given argument parameter, info, is invalid. This means that it has a null
pointer or contains improper values for some member variables.

RETCODE_CALLED_BEFORE means that the function call is invalid because multiple calls of the current API function for
a given instance are not allowed. The encoder initial information has already been received, so this function call is
meaningless and not allowed.

RETCODE_FAILURE_TIMEOUT means that the hardware is already busy with other operation and unavailable for current
API calling.

Description

Before starting the encoder operation, the application must allocate the frame buffers according to the information obtained
from this function. This function returns the required parameters for vpu_EncRegisterFrameBuffer(), which is followed by
this function call.

3.3.3.4 vpu_EncGetBitstreamBuffer()
Prototype

RetCode vpu EncGetBitstreamBuffer (EncHandle handle,
PhysicalAddress * prdPrt,
PhysicalAddress * pwrPtr, Uint32 * size);
Parameter
handle [input] is an encoder handle obtained from vpu_EncOpen().
prdPrt [output] is a stream buffer read pointer for the current encoder instance.
pwrPtr [output] is a stream buffer write pointer for the current encoder instance.
size [output] is a variable specifying the available space in the bitstream buffer for the current encoder instance.
Return Value
RETCODE_SUCCESS means that the required information for encoder stream buffer is received successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
52 NXP Semiconductors

API Features

RETCODE_INVALID_PARAM means that given argument parameters, prdPrt, pwrPtr, or size, are invalid. This means that
they have a null pointer or contain improper values for some member variables.

Description

After encoding a frame, the application must get the bitstream from the encoder by using the stream location and the
maximum size. The application gets the information by calling this function.

3.3.3.5 vpu_EncUpdateBitstreamBuffer()
Prototype

RetCode vpu EncUpdateBitstreamBuffer (EncHandle handle, Uint32 size);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

size [input] Variable specifying the amount of bits retrieved from the bitstream buffer for the current encoder instance
Return Value

RETCODE_SUCCESS Putting new stream data completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

RETCODE_INVALID_PARAM Given argument parameter, size, is invalid-it is larger than the value obtained from
vpu_EncGetBitstreamBuffer()

Description

The application must let the encoder know how much bitstream has been transferred from the address obtained from
vpu_EncGetBitstreamBuffer(). By giving the size as an argument, the API automatically handles pointer wrap-around and
updates the read pointer.

3.3.3.6 vpu_EncRegisterFrameBuffer()
Prototype

RetCode vpu EncRegisterFrameBuffer (EncHandle handle,
FrameBuffer * bufArray, int num, int frameBufStride, int sourceBufStride,
PhysicalAddress subSampBaseA, PhysicalAddress subSampBaseB, EncExtBufInfo

*pBufInfo) ;

Parameter

handle [input] is an encoder handle obtained from vpu_EncOpen().

bufArray [input] is a pointer to the first element of an array of FrameBuffer data structure.

num [input] is a number of frame buffers.

frameBufStride [input] is a stride value of the given frame buffers for encoder.

sourceBufStride [input] is a stride value of the source frame buffer for encoder.

subSampBaseA [input] is a buffer address for saving a sub-sampled image.

subSampBaseB [input] is a buffer address for saving a sub-sampled image.

pBufInfo [input] is a buffer address for saving extension buffer info. See EncExtBufInfo for details.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 53

AR
API Features

The distance between a pixel in a row and the corresponding pixel in the next row is called a stride. The value of a stride
must be a multiple of 8. The address of the first pixel in the second row does not necessarily coincide with the value next to
the last pixel in the first row. In other words, a stride can have values greater than the picture width in pixels.

The application should not set a stride value smaller than the picture width. For the Y component, the application must
allocate at least a space of size (frame height x stride), and for Cb or Cr components, (frame height/2 x stride/2).

For MJPEG encoding, the address of the frame buffer is not necessary. Only the frameBufStride and frameBufStride values
are necessary.

Return Value
RETCODE_SUCCESS means that registering the frame buffers completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the allowed
sequences between API functions. In this situation, the application may have called this function before successfully calling
vpu_EncGetlnitialInfo(). This function should be called after successfully calling vpu_EncGetInitialInfo().

RETCODE_INVALID_FRAME_BUFFER means that the argument bufArray is invalid or not initialized.

RETCODE_INSUFFICIENT_FRAME_BUFFERS means that the given number of frame buffers, num, is not enough for the
encoder operations of the given handle. num should be greater than or equal to the value of minFrameBufferCount obtained
from vpu_EncGetInitialInfo().

RETCODE_INVALID_STRIDE means that the given argument stride is invalid. This means that it is 0, or is not a multiple
of 8.

RETCODE_CALLED_BEFORE means that the function call is invalid because multiple calls of the current API function for
a given instance are not allowed. The encoder initial information has already been received, so this function call is
meaningless and not allowed.

Description

This function registers frame buffers requested by vpu_EncGetlInitialInfo(). The frame buffers pointed to by bufArray are
managed internally within VPU. These include reference frames, reconstructed frames, and so on. The application must not
change the contents of the array of frame buffers during the life time of the instance. num must not be less than
minFrameBufferCount obtained by vpu_EncGetInitialInfo().

3.3.3.7 vpu_EncStartOneFrame()
Prototype

RetCode vpu_ EncStartOneFrame (EncHandle handle, EncParam * param) ;
Parameter
handle [input] is an encoder handle obtained from vpu_EncOpen().

param [input] is a pointer to a EncParam type structure which describes the picture encoding parameters for the current
encoder instance.

Return Value

RETCODE_SUCCESS means that encoding a new frame started successfully. This return value does not mean that encoding
a frame completed successfully.

RETCODE_FAILURE means that there is an error in starting one frame encoding operation.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
54 NXP Semiconductors

e
API Features

RETCODE_INVALID_HANDLE means that a given handle for current API function call is invalid. This code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the allowed
sequences between API functions. In this situation, the application may have called this function before successfully calling
vpu_EncRegisterFrameBuffer(). This function should be called after successfully calling
vpu_EncRegisterFrameBuffer().

RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid. This means that it has a null
pointer, or contains improper values for some member variables.

RETCODE_INVALID_FRAME_BUFFER means that the sourceFrame in the input structure, EncParam, is invalid. This
means that the sourceFrame is not valid even though picture-skip is disabled.

RETCODE_FAILURE_TIMEOUT means that the hardware is already busy with other operation and unavailable for current
API calling.

Description

This function starts by encoding one frame. Returning from this function does not mean the completion of encoding one
frame, only that encoding of one frame successfully initiated. This function should be followed by
vpu_EncGetOutputInfo() with the same encoder handle. Before vpu_EncGetOutputInfo() is called, the application can't
call other API functions except for vpu_IsBusy(), vpu_EncGetBitstreamBuffer(), or vpu_EncUpdateBitstreamBuffer().

3.3.3.8 vpu_EncGetOutputinfo()

Prototype

RetCode vpu_ EncGetOutputInfo (EncHandle handle, EncOutputInfo * info)
Parameter
handle [input] is an encoder handle obtained from vpu_EncOpen().

info [output] is a pointer to an EncOutputlnfo type structure which describes picture encoding results for the current
encoder instance.

Return Value
RETCODE_SUCCESS means that the output information of current frame encoding received successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the allowed
sequences between API functions. In this situation, the application may have called this function before successfully calling
vpu_EncStartOneFrame(). This function should be called after successfully calling vpu_EncStartOneFrame().

RETCODE_INVALID_PARAM means that the given argument parameter, info, is invalid. This means that it has a null
pointer, or contains improper values for some member variables.

Description

This function gives the information about the encoding output such as the picture type, the address and size of the generated
bitstream, the number of generated slices, the end addresses of the slices, and the macroblock bit position information. The
host application should call this function after frame encoding is complete and before starting further processing.

3.3.3.9 vpu_EncGiveCommand()
Prototype

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 55

AR
API Features

RetCode vpu_ EncGiveCommand (EncHandle handle, CodecCommand cmd, void *param) ;
Parameter

handle [input] is an encoder handle obtained from vpu_EncOpen().

cmd [input] is a variable specifying the command of CodecComand type.

param [intput/output] is a pointer to a command-specific data structure which describes picture I/O parameters for the
current encoder instance.

Return Value

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is undefined or not allowed in the
current instance.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

RETCODE_FRAME_NOT_COMPLETE means that frame encoding operation is not complete, so the given API function
call cannot be performed this time. A frame encoding or decoding operation should be completed by calling
vpu_EncGetOutputInfo() or vpu_DecGetOutputInfo(). Even though the result of the current frame operation is not
necessary, the application should call vpu_EncGetOutputlnfo() or vpu_DecGetOutputInfo() to proceed with this function
call.

Description

This function is provided to give the application a certain level of freedom for reconfiguring the encoder operation after
creating an encoder instance. The options which can be changed dynamically while encoding a video sequence as well as
some command-specific return codes are shown in table below.

Table 3. Encoder Commands

Command Description
ENABLE_ROTATION handle is ignored. This command returns RETCODE_SUCCESS.
DISABLE_ROTATION handle is ignored. This command returns RETCODE_SUCCESS.
ENABLE_MIRRORING handle is ignored. This command returns RETCODE_SUCCESS.
DISABLE_MIRRORING handle is ignored. This command returns RETCODE_SUCCESS.

SET_MIRROR_DIRECTION |handle is a pointer to MirrorDirection. *param should be one of the following:

e MIRDIR_NONE means no mirroring.

* MIRDIR_VER means vertical mirroring.

* MIRDIR_HOR means horizontal mirroring.

* MIRDIR_HOR_VER means both directions mirroring.

Return values are as follows:
RETCODE_SUCCESS means that the given mirroring direction is valid.

RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid so
given mirroring direction is invalid.

SET_ROTATION_ANGLE param is a pointer to an integer which represents rotation angle in degrees. Rotation angle
should be 0, 90, 180, or 270. Return values are as follows:

RETCODE_SUCCESS means that the given rotation angle is valid.

RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid so
given rotation angle is invalid.

NOTE: Rotation angle cannot be changed after sequence initialization since it might cause
problems in handling frame buffers.

Table continues on the next page...

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
56 NXP Semiconductors

API Features

Table 3. Encoder Commands (continued)

Command

Description

ENC_GET_SPS_RBSP

param is a pointer to an EncParamSet type structure. The first variable, paraSet, is a physical
address where the generated stream is located. Size is the size of the stream in bytes. Return
values are as follows:

RETCODE_SUCCESS SPS means that it is successfully generated and available at the
received buffer pointer.

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an AVC (H.264) encoder instance.

RETCODE_INVALID_PARAM means that the given argument, param, is invalid. It has a null
pointer or contains improper values for some member variables.

ENC_GET_PPS_RBSP

param is a pointer to an EncParamSet type structure. Return values are as follows:

RETCODE_SUCCESS PPS means that it is successfully generated and available at the
received buffer pointer.

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an AVC (H.264) encoder instance.

RETCODE_INVALID_PARAM means that the given argument, param, is invalid. It has a null
pointer or contains improper values for some member variables.

ENC_PUT_MP4_HEADER

param is a pointer to an EncHeaderParam structure, where buf is a physical address pointing
to the generated stream location, and size is the size of the generated stream in bytes.
headerType is a type of header that the application wants to generate and has values such as
VOL_HEADER, VOS_HEADER, or VO_HEADER. Return values are as follows:

RETCODE_SUCCESS means that the requested header syntax is successfully inserted.

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an MPEG-4 encoder instance.

RETCODE_INVALID_PARAM means that the given argument, param, is invalid. It has a null
pointer or contains improper values for some member variables.

ENC_PUT_AVC_HEADER

param is a pointer to an EncHeaderParam structure, where buf is a physical address pointing
the generated stream location and size is the size of generated stream in bytes. headerType
is a type of header that the application wants to generate and has values such as SPS_RBSP
or PPS_RBSP. Return values are as follows:

RETCODE_SUCCESS means that the requested header syntax successfully inserted.

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an AVC (H.264) encoder instance.

RETCODE_INVALID_PARAM means that the given argument, param or headerType, is
invalid. It has a null pointer or contains improper values for some member variables

PARAM

ENC_SET_SEARCHRAM_

The command is not used in i.MX 6.

ENC_SET_INTRA_MB_
REFRESH_NUMBER

param is a pointer to an integer which represents the intra refresh number. The intra refresh
number should be between 0 and the macroblock number of the encoded picture. Return
values are as follows:

RETCODE_SUCCESS means that the requested header syntax is successfully inserted,

ENC_ENABLE_HEC

param is ignored. Return values are as follows:
RETCODE_SUCCESS means that the requested header syntax is successfully inserted.

Table continues on the next page...

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

NXP Semiconductors

57

AR
API Features

Table 3. Encoder Commands (continued)

Command Description

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an MPEG-4 encoder instance.

ENC_DISABLE_HEC param is ignored. Return values are as follows:
RETCODE_SUCCESS means that the requested header syntax successfully inserted.

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an MPEG-4 encoder instance.

ENC_SET_SLICE_INFO param is a pointer to an EncSliceMode structure, where sliceMode enables a multi slice
structure. sliceSizeMode represents the mode of calculating one slicesize. sliceSize is the
size of one slice. Return values are as follows:

RETCODE_SUCCESS means that the requested header syntax is successfully inserted.

RETCODE_INVALID_PARAM means that the given argument parameter, param or
headerType, is invalid. It has a null pointer or contains improper values for some member
variables.

ENC_SET_GOP_NUMBER |param is a pointer to an integer which represents the GOP number. Return values are as
follows:

RETCODE_SUCCESS means that the requested header syntax is successfully inserted.

RETCODE_INVALID_PARAM means that the given argument parameter, param or
headerType, is invalid. It has a null pointer or contains improper values for some member
variables.

ENC_SET_INTRA_QP param is a pointer to an integer which represents constant | frame QP. Constant | frame QP
should be between 1 and 31 for MPEG-4, and between 0 and 51 for AVC (H.264). Return
values are as follows:

RETCODE_SUCCESS means that the requested header syntax is successfully inserted.

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an encoder instance.

RETCODE_INVALID_PARAM means that the given argument parameter, param or
headerType, is invalid. It has a null pointer or contains improper values for some member
variables.

ENC_SET_BITRATE param is a pointer to an integer which represents the bitrate. The bitrate should be between 0
and 32767. Return values are as follows:

RETCODE_SUCCESS means that the requested header syntax is successfully inserted.

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an encoder instance.

RETCODE_INVALID_PARAM means that the given argument parameter, param or
headerType, is invalid. It has a null pointer or contains improper values for some member
variables.

ENC_SET_FRAME_RATE param is a pointer to an integer which represents the frame rate value. The frame rate should
be greater than 0. Return values are as follows:

RETCODE_SUCCESS means that the requested header syntax inserted successfully.

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, the current instance might
not be an encoder instance.

Table continues on the next page...

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
58 NXP Semiconductors

API Features

Table 3. Encoder Commands (continued)

Command Description

RETCODE_INVALID_PARAM means that the given argument parameter, param or
headerType, is invalid. It has a null pointer or contains improper values for some member

variables.
ENC_SET_REPORT_ Not used in i.MX 6.
MBINFO
ENC_SET_REPORT_ Not used in i.MX 6.
MVINFO
ENC_SET_REPORT_ param is a pointer to an EncReportinfo. addr cannot be a null pointer when the enable flag is
SLICEINFO 1, so the user needs to allocate memory according to mvinfoBufSize returned by

vpu_EncGetlnitialinfo(). The user can call malloc() to allocate the buffer since continuous
physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM means that the given argument parameter, param is invalid. It
has a null pointer or addr in EncReportinfo is a null pointer when enable is 1.

ENC_SET_INTRA_REFRES |Set intra refresh mode. It must be called before vpu_EncGetlnitialinfo takes effect.
H_MODE ¢ 0 - random intra refresh mode
e 1 - consecutive intra refresh mode

ENC_ENABLE_SOF_STUFF |Pad stuffing zero bytes to the end of JPEG SOF fields.
* 0 - disable stuffing
* 1 - enable stuffing

3.3.4 Decoder API

The following sections describe the decoder API functions.

3.3.4.1 vpu_DecOpen()
Prototype

RetCode vpu DecOpen (DecHandle * pHandle, DecOpenParam * pop) ;
Parameter
pHandle [output] is a pointer to a DecHandle type variable which specifies each instance for an application.

pop [input] is a pointer to a DecOpenParam type structure which describes the required parameters for creating a new
decoder instance.

Return values:
RETCODE_SUCCESS means that the new decoder instance created successfully.

RETCODE_FAILURE means that the new decoder instance did not open successfully. If there is no free instance available,
this value is returned in the function call.

RETCODE_INVALID_PARAM means that the given argument parameter, pop, is invalid. It has a null pointer or contains
improper values for some member variables.

RETCODE_NOT_INITIALIZED means that VPU is not initialized before calling this function. The application must
initialize the VPU by calling vpu_Init() before calling this function.

Description

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 59

AR
API Features

To decode, the application must open the decoder. By calling this function, the application receives a handle by which the
application can refer to a decoder instance. Since VPU is a multiple instance codec, the application requires this kind of
handle. Once the application receives a handle, the application must pass the handle to all subsequent decoder-related
functions.

3.3.4.2 vpu_DecClose()

Prototype

RetCode vpu DecClose (DecHandle handle) ;

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

Return Value

RETCODE_SUCCESS means that the current decoder instance closed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This return code
might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has been closed.

RETCODE_FAILURE_TIMEOUT means that VPU is busy with another task, or there is something wrong with VPU. In
normal operation, the API call should not return a RETCODE_FAILURE_TIMEOUT value. If the application receives this
value, VPU internal function may be corrupted.

RETCODE_FAILURE_TIMEOUT means that hardware is already busy with other operation and unavailable for current API
calling.

Description

When the application is finished decoding a sequence and wants to release this instance for other processing, the application
should close the instance. After completion of this function call, the instance referred to by handle is free. Once the
application closes an instance, the application cannot call any further decoder-specific function with this handle before re-
opening a new decoder instance with the same handle.

3.3.4.3 vpu_DecGetlnitiallnfo()

Prototype

RetCode vpu DecGetInitialInfo(DecHandle handle, DecInitialInfo * info);

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

info [output] is a pointer to a Declnitiallnfo data structure.

Return Value

RETCODE_SUCCESS means that the required information of the stream data to be decoded is received successfully.
RETCODE_FAILURE means that there is an error in getting the configuration information for the decoder.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code might be
caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has been closed.

RETCODE_INVALID_PARAM means that the given argument parameter, info, is invalid. It has a null pointer or contains
improper values for some member variables.

RETCODE_FAILURE_TIMEOUT means that VPU is busy with another task, or there is something wrong with the VPU. In
normal operation, the API call should not return a RETCODE_FAILURE_TIMEOUT value. If the application receives this
value, the VPU internal function may be corrupted.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
60 NXP Semiconductors

e
API Features

RETCODE_WRONG_CALL_SEQUENCE means that current API function call is invalid considering the allowed sequence
between API functions. In this case, the application might call this function before successfully putting the bitstream into the
buffer data by calling vpu_DecUpdateBitstreamBuffer(). In order to perform this functions call, the bitstream data
including the sequence level header should be transferred into the bitstream buffer before calling vpu_DecGetInitialInfo().

RETCODE_CALLED_BEFORE means that the function call is invalid because multiple calls of the current API function for
a given instance are not allowed. The decoder initial information has been already received, so this function call is
meaningless and not allowed.

RETCODE_FAILURE_TIMEOUT means that the hardware is already busy with other operation and unavailable for current
API calling.

Description

The application must pass the address of a Declnitiallnfo structure, where the decoder stores the information such as picture
size, number of necessary frame buffers, and so on. For details, see the definition of the Declnitiallnfo data structure in
Declnitiallnfo. This function should be called after creating a decoder instance and before starting frame decoding. The
application must provide sufficient amount of bitstream to the decoder by calling vpu_DecUpdateBitstreamBuffer() to
avoid bitstream buffer emptying before this function returns.

If the application cannot ensure to feed enough data for the stream, the application can use the forced escape option using
vpu_DecSetEscSeqInit().

3.3.4.4 vpu_DecSetEscSeqlnit()
Prototype

RetCode vpu DecSetEscSeqgInit (DecHandle handle, int escape);

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

escape [input] is a flag to enable or disable forced escape from SEQ_INIT.

Return Value

RETCODE_SUCCESS means that the force escape flag successfully provided to the BIT processor.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This return code
might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has been closed.

Description

This is a special function to provide a way of escaping the VPU hanging during DEQ_SEQ_INIT. When this flag is set to 1
and the stream buffer becomes empty, the VPU automatically terminates the DEC_SEQ_INIT operation. If the target
application ensures that a high layer header syntax is periodically sent through the channel, the application does not need this
option. However, if the target application cannot ensure that a high layer header syntax is periodically sent through the
channel (such as file-play mode). This function is useful to avoid VPU hanging because of crucial errors in the header syntax.

NOTE
This flag is applied to all decoder instances together. Therefore, it is recommended to
reset this flag to 0 after successfully finishing the sequence initialization.

3.3.4.5 vpu_DecGetBitstreamBuffer()
Prototype

RetCode vpu DecGetBitstreamBuffer (DecHandle handle,
PhysicalAddress * paRdPtr,
PhysicalAddress * paWrPtr, Uint32 * size);

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 61

AR
API Features

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

paRdPtr [output] is a stream buffer read pointer for the current decoder instance.

paWrPtr [output] is a stream buffer write pointer for the current decoder instance.

size [output] is a variable specifying the available space in the bitstream buffer for the current decoder instance.
Return Value

RETCODE_SUCCESS means that the required information for the decoder stream buffer received successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This return code
might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has been closed.

RETCODE_INVALID_PARAM means that the given argument parameter, paRdPtr, paWrPtr, or size, is invalid. It has a null
pointer or given values for some member variables have improper values.

Description

Before decoding a bitstream, the application must give the bitstream data to the decoder. First, the application must know
where bitstream can be placed and the maximum size. The application receives this information from this function. For VPU,
using the data from this function is more efficient than providing an arbitrary bitstream buffer to the decoder.

NOTE
The given size is the total sum of the free space in the ring buffer. Therefore, when the
application downloads a bitstream of this given size, Wrptr can reach the end of the
stream buffer. In this case, the application should wrap-around Wrptr to the beginning of
the stream buffer and download the remaining bits. If not, the decoder operation can fail.

3.3.4.6 vpu_DecUpdateBitstreamBuffer()

Prototype

RetCode vpu DecUpdateBitstreamBuffer (DecHandle handle, Uint32 size);
Parameter
handle [input] is a decoder handle obtained from vpu_DecOpen().

size [input] is a variable specifying the amount of bits transferred into the bitstream buffer for the current decoder
instance.

Return Value
RETCODE_SUCCESS means that putting new stream data completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code might be
returned if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has been closed.

RETCODE_INVALID_PARAM means that the given argument parameter, size, is invalid. This means that it is larger than
the value obtained from vpu_DecGetBitstreamBuffer(), or larger than the available space in the bitstream buffer.

RETCODE_FAILURE_TIMEOUT means that VPU is busy with another task, or there is something wrong with VPU. In
normal operation, the API call should not return a RETCODE_FAILURE_TIMEOUT value. If the application receives this
value, the VPU internal function may be corrupted.

Description

The application must let the decoder know how much bitstream has been transferred to the address obtained from
vpu_DecGetBitstreamBuffer(). By giving the size as argument, the API automatically handles pointer wrap-around and
write pointer update.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
62 NXP Semiconductors

API Features

3.3.4.7 vpu_DecRegisterFrameBuffer()
Prototype

RetCode vpu DecRegisterFrameBuffer (DecHandle handle,
FrameBuffer * bufArray, int num, int stride,
DecBufInfo * pBufInfo) ;
Parameter
handle [input] is a decoder handle obtained from vpu_DecOpen().
bufArray [input] is a pointer to the first element of an array of FrameBuffer for the current decoder instance.
num [input] is a number of frame buffers.
stride [input] is a stride value of the given frame buffers.

pBufInfo [input] is a pointer to a DecBuflnfo type structure which describes the additional work buffers. Only
sliceSaveBuffer is declared by this structure.

Return Value
RETCODE_SUCCESS means that registering the frame buffer information completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This return code
might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has been closed.

RETCODE_FAILURE_TIMEOUT means that VPU is busy with another task, or there is something wrong with VPU. In
normal operation, the API call should not return a RETCODE_FAILURE_TIMEOUT value. If the application receives this
value, the VPU internal function may be corrupted.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the allowed
sequence between API functions. In this case, the application might have called this function before successfully calling
vpu_DecGetlnitialInfo().

RETCODE_INVALID_FRAME_BUFFER means that bufArray is invalid. It is not initialized, or is not valid anymore.

RETCODE_INSUFFICIENT_FRAME_BUFFERS means that the given number of frame buffers, num, is not enough for the
decoder operations of the given handle. num should be greater than or equal to the value requested by
vpu_DecGetlnitialInfo().

RETCODE_INVALID_STRIDE means that the given argument stride is invalid. It is smaller than the decoded picture width,
or is not a multiple of 8.

RETCODE_CALLED_BEFORE means that the function call is invalid because multiple calls of the current API function for
a given instance are not allowed. The decoder initial information has been already received, so this function call is
meaningless and not allowed.

Description

This function is used for registering frame buffers with the information from vpu_DecGetInitialInfo(). The frame buffers
pointed to by bufArray are managed internally within VPU. These include reference frames, reconstructed frame, and so on.
The application must not change the contents of the array of frame buffers during the life time of the instance, and num must
not be less than minFrameBufferCount obtained from vpu_DecGetInitialInfo().

3.3.4.8 vpu_DecStartOneFrame()
Prototype

RetCode vpu DecStartOneFrame (DecHandle handle, DecParam * param) ;

Parameter

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 63

AR
API Features

handle [input] is a decoder handle obtained from vpu_DecOpen().
param [input] is a pointer to a DecParam type structure which describes the decoder options.
Return value

RETCODE_SUCCESS means that decoding a new frame started successfully. This return value does not mean that decoding
a frame completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code might be
caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the allowed
sequence between API functions. The application might have called this function before successfully calling
vpu_DecRegisterFrameBuffer(). This function should be called after successfully calling
vpu_DecRegisterFrameBuffer().

RETCODE_DEBLOCKING_OUTPUT_NOT_SET means that the de-blocking filter option is activated but required de-
blocking output information is not available. If de-blocking filter is enabled for MPEG-4, the application should register the
frame buffer information of de-blocking filtered output using vpu_DecGiveCommand().

RETCODE_FAILURE_TIMEOUT means that hardware is already busy with other operation and unavailable for current API
calling.

Description

This function starts by decoding one frame. Returning from this function does not mean the completion of decoding one
frame, only that encoding of one frame successfully initiated. If this event is signaled, then vpu_DecGetOutputInfo() is
called to get the decoded output information. Every call of this function should be matched with vpu_DecGetOutputInfo()
with the same handle. Before vpu_DecGetOutputInfo() is called, the application cannot call another API function except for
vpu_IsBusy(), vpu_DecGetBitstreamBuffer(), or vpu_DecUpdateBitstreamBuffer().

When the application uses pre-scan mode, there is only a very small chance that the decoder may hang. For the VC-1 SP/MP
decoder, pre-scan mode is not supported.

3.3.4.9 vpu_DecGetOutputinfo()
Prototype

RetCode vpu DecGetOutputInfo (DecHandle handle, DecOutputInfo * info);
Parameter
handle [input] is a decoder handle obtained from vpu_DecOpen().

info [output] is a pointer to a DecOutputInfo type structure which describes the picture decoding results for the current
decoder instance.

Return Value
RETCODE_SUCCESS means that receiving the output information of current frame completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This return code
might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has been closed.
Also, this value is returned when vpu_DecStartOneFrame() is matched with vpu_DecGetOutputInfo() with different
handles.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the allowed
sequence between API functions. vpu_DecStartOneFrame() with the same handle might not have been called before calling
this function

RETCODE_INVALID_PARAM means that the given argument parameter, pInfo, is invalid. It has a null pointer or contains
improper values for some member variables.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
64 NXP Semiconductors

API Features
Description

The application received the output information of the decoder by calling this function after the
VPU_INT_PIC_RUN_NAME event is signaled. The output information includes the frame buffer information containing the
reconstructed image. The host application calls this function after the frame decoding is finished and before starting further
processing.

NOTE
If pre-scan mode is enabled, the application should check prescanResult. If the value of
prescanResult = 0, the other output information is meaningless.
vpu_DecStartOneFrame() and vpu_DecGetOutputInfo() must be matched.

3.3.4.10 vpu_DecBitBufferFlush()
Prototype

RetCode vpu DecBitBufferFlush(DecHandle handle) ;

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

Return Value

RETCODE_SUCCESS means that receiving the output information of the current frame completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This return code
might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has been closed.
Also, this value is returned when vpu_DecStartOneFrame() is matched with vpu_DecGetOutputInfo() with different
handles.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the allowed
sequence between API functions. vpu_DecRegisterFrameBuffer() with the same handle might not have been called before
calling this function.

Description

The application flushes the bitstream in the decoder bitstream buffer without decoding by calling this function. If the
bitstream buffer is flushed, the read and write pointers of the bitstream buffer of each instance are set to the bitstream buffer
start address.

3.3.4.11 vpu_DecCirDispFlag()

Prototype

RetCode vpu DecClrDispFlag(DecHandle handle, int index) ;

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

index [input] is a frame buffer index to be cleared.

Return Value

RETCODE_SUCCESS means that receiving the output information of the current frame completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This return code
might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has been closed.
Also, this value is returned when vpu_DecStartOneFrame() is matched with vpu_DecGetOutputInfo() with different
handles.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 65

AR
API Features

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the allowed
sequence between API functions. vpu_DecRegisterFrameBuffer() with the same handle might not have been called before
calling this function.

RETCODE_INVALID_PARAM means that the given argument parameter, index, is invalid. It has improper values.
Description

The application clears the display flag of each frame buffer by calling this function after creating a decoder instance. If the
display flag of the frame buffer is cleared, the frame buffer can be used in the decoding process. Therefore, the application
controls displaying a buffer by clearing the display flag which is set by VPU at every display index output process. This API
is not needed for the STD_MIJPG codec.

3.3.4.12 vpu_DecGiveCommand()
Prototype

RetCode vpu DecGiveCommand (DecHandle handle, CodecCommand cmd, void *param) ;
Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

cmd [input] is a variable specifying the given command of CodecComand type.

param [input/output] is a pointer to a command-specific data structure which describes picture I/O parameters for the
current decoder instance.

Return Value

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is undefined or not allowed in the
current instance.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This return code
might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has been closed.

RETCODE_FAILURE_TIMEOUT means that hardware is already busy with other operation and unavailable for current API
calling.

Description

This function is provided to give applications a certain level of freedom for reconfiguring decoder operations after creating a
decoder instance. The options which can be changed dynamically while decoding a video sequence are shown in the table
below.

Table 4. Decoder Commands

Command Description
ENABLE_ROTATION Enables rotation of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.
DISABLE_ROTATION Disables rotation of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.
ENABLE_MIRRORING Enables mirroring of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.
DISABLE_MIRRORING Disables mirroring of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.

SET_MIRROR_DIRECTION |Sets the mirror direction of the post-rotator. param is a pointer to MirrorDirection. *param
should be one of the following:

MIRDIR_NONE-No mirroring
MIRDIR_VER-Vertical mirroring
MIRDIR_HOR-Horizontal mirroring
MIRDIR_HOR_VER-Both directions

L]
L]
L]
L]

Table continues on the next page...

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
66 NXP Semiconductors

API Features

Table 4. Decoder Commands (continued)

Command

Description

Return values are as follows:
RETCODE_SUCCESS means that the given mirroring direction is valid.

RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid so
given mirroring direction is invalid.

SET_ROTATION_ANGLE

Sets the counter-clockwise angle for post-rotation. param a pointer to an integer which
represents rotation angle in degrees. The rotation angle should be 0, 90, 180, or 270. Return
values are as follows:

RETCODE_SUCCESS means that the given rotation angle is valid.

RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid so
given rotation angle is invalid.

SET_ROTATOR_OUTPUT

Sets the rotator output buffer address. param a pointer to a structure representing the physical
addresses of the YCbCr components of the output frame. For storing the rotated output for a
display, at least one more frame buffer should be allocated. When multiple display buffers are
required, the application changes the buffer pointer of the rotated output at every frame by
issuing this command. Return values are as follows:

RETCODE_SUCCESS means that the given frame buffer pointer is valid.

RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid so
given frame buffer pointer is invalid.

SET_ROTATOR_STRIDE

Sets the stride size of the frame buffer containing rotated output. param is the stride value of
the rotated output. Return values are as follows:

RETCODE_SUCCESS means that the given stride value is valid.

RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid so
given stride value is invalid. The stride value must be greater than 0 and a multiple of 8.

DEC_SET_SPS_RBSP

Applies the SPS stream to the decoder received from a certain out-of-band reception scheme.
The stream should be in RBSP format and big endian. param is a pointer to a DecParamSet
structure. paraSet is an array of 32 bits which contains SPS RBSP, and size is the size of the
stream in bytes. Return values are as follows:

RETCODE_SUCCESS means that transferring a SPS RBSP to a decoder completed
successfully.

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined, or not allowed in the current instance. In this case, the current instance might not be
an AVC (H.264) decoder instance.

RETCODE_INVALID_PARAM means that the given argument, param, is invalid. It has a null
pointer or contains improper values for some member variables.

DEC_SET_PPS_RBSP

Applies the PPS stream to the decoder received from a certain out-of-band reception scheme.
The stream should be in RBSP format and big endian. param is a pointer to a DecParamSet
structure. paraSet is an array of 32 bits which contains PPS RBSP, and size is the size of the
stream in bytes. Return values are as follows:

RETCODE_SUCCESS means that transferring a PPS RBSP to decoder completed
successfully.

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined, or not allowed in the current instance. In this case, current instance might not be an
AVC (H.264) decoder instance.

RETCODE_INVALID_PARAM means that the given argument, param, is invalid. It has a null
pointer, or contains improper values for some member variables.

ENABLE_DERING

Enables VPU internal dering operation. Returns RETCODE_SUCCESS.

Table continues on the next page...

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

NXP Semiconductors

67

VPU Control

Table 4. Decoder Commands (continued)

Command

Description

DISABLE_DERING

Disables VPU internal dering function. Returns RETCODE_SUCCESS.

DEC_SET_REPORT_
BUFSTAT

param is a pointer to an DecReportinfo. addr cannot be a null pointer when the enable flag is 1,
so the user needs to allocate memory according to frameBufStatBufSize returned by
vpu_DecGetlnitialinfo(). The user can call malloc() to allocate the buffer since continuous
physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM means that the given argument parameter, param is invalid. It
has a null pointer, or addr in EncReportinfo is a null pointer when enable is 1.

DEC_SET_REPORT_
MBINFO

param is a pointer to an DecReportinfo. addr cannot be a null pointer when the enable flag is 1,
so the user needs to allocate memory according to frameBufStatBufSize returned by
vpu_DecGetlnitialinfo(). The user can call malloc() to allocate the buffer since continuous
physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM means that the given argument parameter, param is invalid. It
has a null pointer, or addr in EncReportinfo is a null pointer when enable is 1.

DEC_SET_REPORT_
MVINFO

param is a pointer to an DecReportinfo. addr cannot be a null pointer when the enable flag is 1,
so the user needs to allocate memory according to frameBufStatBufSize returned by
vpu_DecGetlnitialinfo(). The user can call malloc() to allocate the buffer since continuous
physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM means that the given argument parameter, param is invalid. It
has a null pointer, or addr in EncReportinfo is a null pointer when enable is 1.

DEC_SET_REPORT_
USERDATA

param is a pointer to an DecReportinfo. addr cannot be a null pointer and size cannot be zero
when the enable flag is 1, so the user needs to allocate memory. The user can call malloc() to
allocate the buffer since continuous physical memory is not needed. Return values are as
follows:

RETCODE_INVALID_PARAM means that the given argument parameter, param is invalid. It
has a null pointer, or addr in EncReportinfo is a null pointer when enable is 1.

DEC_SET_REPORT_
USERDATA

param is a pointer to an DecReportinfo. addr cannot be a null pointer and size cannot be zero
when the enable flag is 1, so the user needs to allocate memory. The user can call malloc() to
allocate the buffer since continuous physical memory is not needed. Return values are as
follows:

RETCODE_INVALID_PARAM means that the given argument parameter, param is invalid. It
has a null pointer, or addr in EncReportinfo is a null pointer when enable is 1.

DEC_SET_FRAME_DELAY

DEC_SET_FRAME_DELAY

HOST can set the number of frames to be delayed before display (H.264/AVC only) by using
this command. This command is useful when display frame buffer delay is supposed to happen
for buffering decoded picture reorder and HOST is sure of that. Unless this command is
executed, VPU has display frame buffer delay as frameBufDelay value of Declnitialinfo
structure.

4 VPU Control

This section explains how VPU works, and provides few example applications that can be used with i.MX 6 VPU APL.

This section describes the VPU control scheme based on the API functions and includes some practical programming issues.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

68

NXP Semiconductors

4
VPU Control

4.1 VPU Initialization

When the host processor enables the VPU for the first time, the following initialization process should be performed. These
operations are completed by calling a single API function, vpu_Init().

* Disable the BIT processor by setting BIT_CODE_RUN (BASE + 0x000) =0

* Write the BIT processor microcode to the SDRAM accessible by the VPU during run-time
* Download the first N Kbytes of microcode to the BIT processor code memory

* Set the BIT processor buffer pointers, working buffer, parameter buffer and code buffer
 Set the stream buffer control options and the frame buffer endian mode

* Enable interrupt and reset registers

* Enable the BIT processor by setting BIT_CODE_RUN register = 1

¢ Wait until vpu_IsBusy() returns RETCODE_IDLE

Detailed information about each of these initialization steps and some programming tips are presented in the following
sections.

4.1.1 Version Check of BIT Processor Microcode

The application can check the version information of the BIT processor microcode during runtime. The version number of
microcode is a 32-bit value. The 16 most significant bits are the internal product number, and the 16 least significant bits are
the version number specified by the following rule:

* Bits 15:12 = Major revision
* Bits 11:8 = Minor revision
* Bits 7:0 = Revision patches

This version number can have a value from 0.0.0 to 15.15.255. A dedicated command, vpu_GetVersionInfo(), is used for
this version check and is supported after initialization.

4.1.2 BIT Processor Enable and Disable

The BIT processor has a dedicated register that activates or deactivates the BIT processor during run-time, BIT_CODE_RUN
(BASE + 0x000). During initialization, the BIT processor program memory is updated and some configuration registers for
controlling VPU operations are also set. During this process, the BIT processor should be disabled. After finishing the
initialization process, the host processor enables the BIT processor. Then the BIT processor starts its own internal
initialization process and is ready for operation.

4.1.3 BIT Processor Data Buffer Management

The BIT processor requires a certain amount of SDRAM space for its codec operations. This dedicated memory space
includes memory space for the BIT processor microcode, internal work buffer, parameter buffers, and so on. The size of each
sub-buffer as follows:

#define CODE_BUF SIZE (132%1024) // byte size of Code buffer
#define WORK BUF_SIZE (256*1024) // byte size of Work Buffer
#define PARA BUF SIZE (8*1024) // byte size of Parameter Buffer

In VPU API, the initialization function only receives the start address of this internal buffer as an argument. Therefore, the
total sum of the VPU processing buffer space, starting from the start address, should be dedicated memory space for VPU
and no other process should access this memory space while VPU is enabled. It is highly recommended for the host processor

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 69

A
VPU Control

to reserve the specified size of the dedicated buffer for the BIT processor and call vpu_Init() with the start address of the
reserved memory. The start addresses of internal buffer partitions, code buffer, work buffer, and parameter buffer are
calculated inside vpu_Init() function and the calculated start addresses are set in the host interface.

In addition to the above sub-buffers, VPU requires buffers for saving SPS/PPS and SLICE RBSP when decoding a H.264
stream. In general, 5 Kbytes is sufficient for the SPS/PPS save buffer and a quarter of the raw YUV image size is sufficient
for the SLICE save buffer. If VPU requires more buffer space to decode a H.264 stream, VPU reports a buffer overflow.

4.1.4 BIT Processor Microcode Management

The BIT processor has its own program memory inside of the VPU, but the content of this program memory is dynamically
updated according to the required codec standard. The advantage of this dynamic microcode reloading is the reduction of
program memory size. This advantage is meaningful because the BIT processor generally requires many sets of microcode to
support several codec standards in duplex mode. Generally speaking, it seldom happens that the codec standard is changed in
the middle of a codec application. So dynamic reloading for changing the codec is not a burden in cycle consumption. In the
worst case, the dynamic code reloading happens once per picture processing, but considering the amount of maximum
reloaded code, it is not a large burden to the VPU cycle consumption.

Since the dynamic reloading is completed by the VPU itself, the host processor only needs to copy the given microcode to the
reserved code buffer before initializing the VPU. Of course, the first loading of the microcode to the BIT processor program
memory should be completed separately by the host processor.

4.1.5 Stream Buffer Management

The stream buffer is a shared buffer between the host processor and the VPU for exchanging stream data. There are two
different streaming schemes for decoding: ring-buffer and line-buffer. The ring-buffer scheme is used for host applications to
reserve a fixed size of memory space and use it during codec operations. On the other hand, the line buffer scheme is used for
host application to allocate a stream buffer dynamically and use it frame-by-frame.

The host processor also can choose the endian option of the stream buffer and can enable or disable the buffer full/empty
check option. All these options for stream buffer data management are stored in a dedicated host interface register,
BIT_BITSTREAM_CTRL, and are referenced by the BIT processor during run-time.

For decoding, the VPU provides both streaming options. But sometimes multiple-instance decoding may require a different
streaming option for each decoder instance. For example, while playing a local video file, the application might need to
decode a digital video broadcast. In this case, the different types of streaming mode can be helpful for the application design
and the different streaming option is applied to each decoder instance independently.

4.1.5.1 Ring-Buffer Scheme (Packet Mode)

The ring-buffer scheme is preferred in packet-based video communication and streaming applications. In packet-based
streaming based on a ring-buffer, the read and write pointers automatically wrap around at the boundaries. When the
application downloads a new chunk of the bitstream, the application should check the available space in the bitstream buffer.
Even though the available space can easily be calculated from the read pointer, write pointer and buffer size, the VPU API
provides a dedicated function for providing the buffer read pointer, buffer write pointer and the available space in the stream
buffer, vpu_DecGetBitStreamBuffer(). Based on the returned value from this API function, the application downloads a
new chunk of bitstream data whose size should be smaller than the available buffer space. The amount of bits transferred into
the stream buffer should be notified to the VPU using vpu_DecUpdateBitStreamBuffer().

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
70 NXP Semiconductors

4
VPU Control

4.1.6 Interrupt Signaling Management

To achieve maximum efficiency in VPU control, the VPU IP provides interrupt signaling for completion of a requested
operation as well as stream buffer empty/full. For some commands with a quick return, interrupt signaling is not helpful so
interrupt signaling is not provided.

The VPU provides interrupt signaling for the following commands:

e BIT_RUN_COMPLETE-BIT processor initialization complete after setting BIT_CODE_RUN
* DEC_SEQ_INIT-Decoder sequence initialization complete

* DEC_SEQ_END-Decoder sequence termination complete

* DEC_PIC_RUN-Decoder picture processing complete

* DEC_SET_FRAME_BUF-Decoder frame buffer registration complete

* DEC_PARA_SET-External header syntax transfer to decoder complete

* DEC_BUF_FLUSH-Flushing decoder stream buffer complete

DEC_SEQ_INIT and DEC_PIC_RUN can cause VPU to stall when the input bitstream is not large enough. Therefore,
enabling the bitstream buffer-empty interrupt with these two interrupts, avoids unnecessary cycle consumptions in the host
application. Each interrupt is easily enabled or disabled by writing O or 1 to the corresponding bit field of interrupt enable
register. When an interrupt is signaled, the application checks the source of the interrupt by checking the value of interrupt
reason register. When interrupt signaling is not easily applicable, these interrupts can be replaced by a polling scheme by
reading the BIT processor busy-flag.

NOTE
Only the DEC_PIC_RUN interrupt is used by applications. The other interrupts are used
internally by the API or not supported.

4.2 Encoder Control

4.2.1 Creating an Encoder Instance

After initializing VPU, an application creates an encode instance and acquires a handle for specifying that encoder instance is
the first step to run an encoder operation. This is accomplished using a single API function called vpu_EncOpen().

When creating a new encoder instance, the application specifies the internal features of the encoder instance through the
EncOpenParam structure. This structure includes the following information about the new encoder instance:

* Bitstream buffer address and size-Physical address of the bitstream buffer start and its size.

¢ Codec standard-Video codec standard such as H.263, MPEG-4, H.264 or MJPEG.

¢ Picture size-Picture width and height.

 Target frame rate and bitrate with Video Buffer Verifier (VBV) model parameters, initialDelay and vbvBufferSize-
VBYV mode parameters are optional even when rate control is enabled.

* Gop size-Frequency of periodic intra (or IDR) pictures in the encoded stream output.

¢ Slice enable/disable, slice size mode and slice size-Slice mode enable or disable as well as the slice size and size mode
(number of bits or number of Mbytes in each slice).

* Output report such as sliceReport, mbReport, and qpReport, and so on. gpReport option is only supported in H.263/
MPEG-4 encoders meaning informative output data such as slice boundary, MB boundary in encoded bitstream.

* Miscellaneous options such as enable AutoSkip and intraRefresh-Enable auto-skipping of pictures when the output bit
count is large enough as well as enable intra-refresh for error robustness and the number of intra MB in a non-intra
picture.

¢ Ring buffer mode enable, allows streaming mode setting for each encoder instance independently-Application decides
whether a ring-buffer based streaming scheme is used or not. When this option is disabled, a frame-based streaming
scheme is used with a line-buffer scheme.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 71

A
VPU Control

* Intra quantization step-Intra Qstep value is configurable by specifying this value greater than 0. Even if rate control is
enabled, the VPU encoder uses this fixed quantization step for all I-frames. This intra quantization step is re-
configurable after creating an instance dynamically.

* Video standard-specific parameters-Specify standard-specific parameters for each video codec standard such as error
resilience tools in MPEG-4, Annexes in H.263, deblocking, and FMO parameters in H.264, source chroma format and
thumbnail parameters and table coefficients in MJPEG and so on.

Using these options, the application receives a well optimized output for the requirements of the target application. Some
output information options such as sliceReport, mbReport, gpReport, and so on, help application developers satisfy the
constraints for target applications.

For example, for a fixed packet size, an application might need to insert one slice to a certain amount of bits. If the slice size
is given by the number of bits, it does not ensure that the output slice size is smaller than the given size because of the
variable length characteristics of the encoding process. Therefore, the application divides the slice into two packets which
causes an inefficiency in the packetization. To achieve an easy packetization, the application sets the slice size to
(packet_size - N) with a certain margin of N, which allows the output slice size to be less than the packet size. Then the
application easily adds a slice into a packet by referring to the slice boundary information provided by the VPU as encoder
output.

MJPEG can be encoded with various YUV format such as 4:4:4 by setting source format variable. 4:0:0, 4:2:0, 4:2:2
horizontal/vertical and 4:4:4 formats are supported in i.MX 6 MJPEG encoder. .MX 6 VPU also supports encoding by using
a user-defined Huffman Table and Q matrix. To encode by using a user-defined Huffman Table and Q matrix, the host must
save the coefficients in a pre-defined format and set the pointer to the area.

After creating an encoder instance with these parameters, the application cannot change these parameters. If the application
wants to change any of these basic parameters, it should close this instance and re-create another encoder instance with new
initial parameters. However, the application may need to change some of these initial parameters depending on the target
application environment. Using the dynamic configuration command, the VPU API enables the application to configure part
of these initial parameters dynamically. For details, refer to vpu_EncGiveCommand().

The API function, vpu_EncOpen(), does not require any operations on the VPU side. Instead, it declares all of the internal
parameters used in later stages as well as the bitstream buffer information.

4.2.2 Configuring VPU for Encoder Instance

4.2.2.1 Sequence Initialization

After registering all of the required information for the new encoder instance, the host application configures VPU to support
the new encoder instance. This procedure is completed by setting the encoder related information in the VPU host interface
registers and giving a command, ENC_SEQ_INIT, to VPU for initiating the internal configuration operation.

This process is mainly completed by an API function, vpu_EncGetInitialInfo(). This function returns a crucial output
parameter for encoder operations and the minimum number of frame buffers. Normally, this process does not require much
time, and it should be done only once at the beginning of each encoder instance. Therefore, it is not recommended to use an
interrupt signal for this function. Interrupt signaling is allowed, however, after completion of this operation by enabling the
corresponding bit on interrupt enable register.

4.2.2.2 Registering Frame Buffers During Configuration Process

The configuration process is completed by registering the frame buffers in VPU for picture encoding operations. In this final
stage of configuration, the parameter, minimum number of frame buffers, returned from vpu_EncGetInitialInfo(), has an
important meaning. This parameter means that the application should reserve at least the same number of frame buffers for
VPU for proper encoding operation. For MJPEG, the frame buffer is not necessary, because MJIPEG does not need motion
compensation. Therefore, only the frame buffer stride is transferred to VPU in this stage. The stride value is used as the stride
of the source image frame buffer.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
72 NXP Semiconductors

4
VPU Control

4.2.2.3 Generating High-Level Header Syntaxes
Automatic header syntax generation (such as VOL in MPEG-4, SPS/PPS in AVC) is not supported.

When the encoder instance has been opened by calling vpu_EncGetInitialInfo(), the application generates the high-level
header syntaxes such as VOS/VO/VOL headers in MPEG-4 and SPS/PPS in AVC from the VPU using
vpu_EncGiveCommand(). These high-level syntaxes can also be used directly for negotiation in the transport protocol layer
of the application.

There are two possible methods for generating these header syntaxes: by PARA_BUF or by the stream buffer. The
recommended way for generating the header syntaxes is to use the ENC_PUT_AVC/MP4 _HEADER command by the
stream buffer. If the application uses this set of commands, the resulting header syntaxes are stored into the bitstream buffer
according to the given endian setting.

If DecBufReset is enabled, the output header syntaxes are written to the bitstream buffer starting from the base address of the
bitstream buffer. If the application does not read out each header syntax one-by-one, they are overwritten by the following
header syntaxes. If the application wants to read out a set of header syntaxes (such as VOS/VO/VOL or SPS/PPS), then the
application should disable DecBufReset and enable the DecBufFlush bit. After completing the generation of the last header
syntax, the application can read out a cascaded set of header syntaxes together.

The other method for generating header syntaxes, by PARA_BUF, is used when the application wants to generate header
syntaxes in the middle of encoding. It can be accomplished using ENC_GET_XXX_HEADER for MPEG-4, and
ENC_GET_XXX_RBSP for AVC. Regardless of the streaming mode, this command generates header syntaxes successfully,
but the endian setting is always big endian. So for little endian systems, an endian conversion should be performed.

4.2.3 Running Picture Encoder on VPU

4.2.3.1 YUV Input Loading

Before running a picture encoder operation, the host application should provide a 4:2:0 or 4:2:2 vertical formatted input YUV
image with a pre-defined size for H.263, MPEG-4 and H.264. The host should provide 4:2:0, 4:2:2 vertical/horizontal, 4:4:4
or 4:0:0 formatted input YUV for MJPEG. If the input image is coming from an external video input device, such as a CMOS
sensor, the VPU idles while waiting for completion of the receiving input picture. To avoid this idling, use a dual buffering
scheme for the input image so that the encoder does not spend any cycles idling before starting operation.

4.2.3.2 Initiating Picture Encoding
When activating picture encoding operations, the application provides the following information to the VPU:

* Source frame address-Base address of each component of input YUV picture

* Quantization step-for the current picture which is ignored when rate control is enabled

* Forced frame skip and forced I-picture options-Forced frame skip is skipping the current frame encoding
unconditionally and force I-picture is encoding current frame as I-frame unconditionally

* Source format-The VPU supports 4:2:2 vertical format source image. The source image is converted to 4:2:0 format
automatically

After providing this information to the VPU, the host processor initiates a picture encoding operation by sending a

ENC_PIC_RUN command to the VPU.

These processes can be performed by calling a single API function, vpu_EncStartOneFrame() with the EncParam structure.
This API function initiates a picture encoding operation. Return from this API does not mean that picture encoding is
completed, only that the encoding operation began successfully.

The quantization step size given to the VPU with ENC_PIC_RUN is only meaningful when the rate control option is
disabled. This additional feature is provided to support application-specific VBR encoder operations.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 73

A
VPU Control

The forced frame skip option is used when encoding a new picture is not allowed temporarily. Automatic frame skipping in
the VPU rate control is used for limiting the output amount of the bitstream under the given target bit-rate. Also, the forced
frame skip can be used by the application when encoding a picture is problematic under certain external situations, for
example, if the channel condition is temporarily unacceptable and transmitting the encoded stream is impossible. Then the
application can suspend the encoder operation for a while using this forced frame skip option.

The forced I-frame option is used when the remote receiver side reports an error during decoder operation. Even though a
certain error concealment or error robustness scheme might be implemented on the decoder side, the best way to recover
from a decoder error is to send an [-frame. Using this forced I-frame option, the application can achieve error-recovery of the
remote receiver side very effectively.

4.2.3.3 Completion of Picture Encoding

The application can be completing other tasks while waiting for the completion of picture encoding operation, such as
packetization of the encoded stream for transmission. The application can use two different type of schemes for detecting
completion of the picture encoding operation: polling a status register or interrupt signaling. When the application is using a
polling scheme, the application checks the BusyFlag register of the BIT processor. Calling vpu_IsBusy() gives the same
result.

Interrupt signaling can be the most efficient way to check the completion of a given command. An interrupt signal for the
ENC_PIC_RUN command is mapped on bit 3 of the interrupt enable register. Therefore, the application can use this
dedicated interrupt signal from VPU to determine the completion of the picture encoder operation.

4.2.3.4 Encoder Stream Handling

When the encoder stream buffer is large enough to store any size of picture stream, the encoder does not need to retrieve any
bitstream data during the picture encoder operation. After the encoder operation is complete, the host application reads the
encoded bitstream according to the requirements of packetization.

When the encoder stream buffer is not large enough to store a complete picture stream, the encoder buffer-full occurs and
until this buffer-full situation is resolved, the encoder task running on the VPU is stalled. Therefore, while the picture is
encoding, the application should continue reading out the encoded bitstream from stream buffer to avoid this stalling.

When using a ring-buffer scheme with a limited size of encoder stream buffer, stream reading during encoder operation is
recommended. Using two dedicated functions, vpu_EncGetBitStreamBuffer() and vpu_EncUpdateBitStreamBuffer(),
the application can easily handle the read pointer while accessing the encoder bitstream buffer. If the ring-buffer option is
disabled with a stream buffer large enough to store one encoded picture data, the host can wait to read the encoded bitstream
at the end of each picture encoding. In this case, the application can safely complete other tasks while the picture encoding is
running on the VPU. The vpu_EncGetBitStreamBuffer() and vpu_EncUpdateBitStreamBuffer() functions have no
meaning when the application uses the frame-based streaming option.

4.2.3.5 Acquiring Encoder Results
When picture encoding is complete, the host application retrieves the encoded output such as the encoded picture type,
number of slices, and so on. According to the input parameter settings of the picture encoding, the slice boundary and MB
boundary information can also be acquired from VPU. For H.263/MPEG-4 decoding, the MB Qstep information can be
acquired from VPU. This encoder output information is generally placed on the parameter buffer with predefined formats (for
the predefined formats of the output information, see the following documents:

e .MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

* .MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
* .MX 6SoloLite Applications Processor Reference Manual IMX6SLRM)

* .MX 6SoloX Applications Processor Reference Manual IMX6SXRM)

* i.MX 7Dual Applications Processor Reference Manual IMX7DRM)

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
74 NXP Semiconductors

4
VPU Control

Therefore, the application can read out this information directly from the parameter buffer using the base address of each data
structure.

VPU API provides a function for retrieving the output results of the picture encoder, VPU_EncGetOutputInfo(), which has
a output data structure that includes the following information:

* Start address of encoded picture and its size

* Number of slices in the encoded picture

¢ Slice boundary information in the encoded bitstream

* MB boundary information in the encoded bitstream

* Application-specific information for packetization such as MB Qstep information

Some packetization schemes, such as Real-time Transfer Protocol (RTP), require some internal information of encoded
picture depending on the codec standard.

The slice information is useful for packet-based applications which have limitations of the slice start in the video packet. The
slice information is also useful for implementing slice re-ordering on the application side such as Arbitrary Slice Ordering
(ASO) in the H.264 standard.

VPU API includes a constraint on using the encoder initiation function and the encoder result acquisition. When using VPU
API, the application should always use these two functions as a pair. This means that without calling the result acquisition
function, vpu_EncGetOutputInfo(), the next picture encoding operation is not initiated by calling
vpu_EncStartOneFrame(). Most VPU commands are not allowed unless the application calls VPU_EncGetOutputInfo()
after completion of the picture encoding operation. This constraint is used to protect the encoded results from being
overwritten from another thread by mistake in a multi-instance environment. Therefore, the application should regard the
vpu_EncGetOutputInfo() function as a releasing command of the VPU from the current picture encoding operation.

4.2.4 Terminating an Encoder Instance

When the application finishes with the encoder operation and terminates an encoder instance, the application releases the
handle of this instance to inform the VPU that this instance is terminated by giving the SEQ_END command to the VPU.
This can be accomplished by calling vpu_EncClose() function.

4.2.5 Dynamic Configuration Commands (picture encoding
operations)
While running sequential picture encoding operations, the application may need to give special commands to VPU such as

rotating the input pictures before encoding, inserting a high layer header syntaxes, and so on. The VPU API provides a set of
commands to support the following special requests from the host application:

* Rotate and mirror source frame before encoding.

 Extract high layer header syntaxes such as VOS/VO/VOL in MPEG-4, and SPS/PPS in H.264 for external use.

¢ Insert high layer header syntaxes such as VOS/VO/VOL in MPEG-4 and SPS/PPS in H.264.

* Change encoder parameters such as bitrate, frame rate, GOP number, and slice mode dynamically between picture
encoding operations.

4.3 Decoder Control

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 75

A
VPU Control

4.3.1 Creating a Decoder Instance

After initialization of VPU, the next step to run a decoder operation is to create a decoder instance and acquire a handle for
specifying that decoder instance. This is accomplished using a single API function, vpu_DecOpen().

When creating a new decoder instance, the application specifies the internal features of this decoder instance through the
DecOpenParam structure. This structure includes the following information about the new decoder instance:

* Bitstream buffer address and size is a physical address of bitstream buffer start address and its size.

¢ Codec standard is a video codec standard such as H.263, MPEG-4, H.264 or VC-1.

* MPEG-4 deblocking filter enable is enable or disable MPEG-4 de-blocking filter option.

* ReorderEnable-Enable or disable H.264 display reordering option. This option is ignored for other decoder standards. It
should usually be set to 1.

» SPS/PPS RBSP save buffer address and size is a physical address and size of buffer for SPS and PPS.

* Enable thumbnail decoding of MJPEG-Enable thumbnail decoding. If the host enables thumbnail decoding, the
decoded output is s thumbnail.

For decoding, most information is acquired from the input stream, so there are few required parameters for creating a decoder
instance. VPU API function, VPU_DecOpen(), does not require any operations on VPU side but declares all the internal
parameters to be used in later stage as well as the bitstream buffer information.

4.3.1.1 AVC Display Reordering

The AVC-specific display reordering option should be used carefully, because it drastically varies the behavior of the AVC
decoder. In principle, this option should always be enabled because the flag for this option is embedded in the header syntax.
According to the options in the header, the required frame buffer size is automatically determined by the VPU.

When creating a decoder instance for H.264, the application should decide if display reordering is used. In principle, this bit
field should be set to 1, because the display reordering option is enabled or disabled automatically according to the values of
the corresponding header fields. But in practice, there are too many streams which do not actually use display reordering but
display reordering option is enabled.

Display reordering generally requires many more decoder buffers, a much longer delay, and some complex constraints in
decoder operations. When display reordering is not used even though the display reordering option is enabled on the baseline
profile stream, the application can force the VPU decoder to ignore this option and a flag is provided for this case.

When this option is disabled, the minimum number of frame buffers is reference frame number + 2. Whenever one frame
decoding is complete, a display (or decoded) output is provided from the VPU, so the decoder operation is the same as a
normal decoder operation.

But when this option is enabled, the minimum number of frame buffers is MAX(reference frame number, 16) + 2 for the
worst case. After decoding one frame, the VPU cannot provide a display output because display order can be different from
the decoding order. In the worst case, the first display output is provided from the VPU after decoding 17 frames. Because of
this characteristic of display reordering, the VPU AVC decoder always decodes display delay + 1 frames during the first call
of the picture decoding when display reordering is enabled in the stream.

In practice, there are many streams which do not use display reordering, but the flag in the header is enabled. In this case, the
host application must allocate unnecessarily more frame buffers and apply large delays. Considering this practical cases, this
option for forced-disable of display reordering is provided in the VPU APIL.

4.3.2 Configuring VPU for Decoder Instance

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
76 NXP Semiconductors

4
VPU Control

4.3.2.1 Feeding Bitstream into Stream Buffer

For the decoder, sequence initialization performs parsing of high level header syntaxes such as VOS/VO/VOL in MPEG-4
and SPS/PPS in H.264 for reading out decoder configurations. To start sequence initialization, the application fills the
decoder stream buffers with enough bitstream data. In some applications, the host applications cannot guarantee that those
kinds of header syntaxes are placed at the beginning of the bitstream. In this case, until the VPU successfully receives all of
the required information from the input stream, the application should keep feeding the input data stream to the decoder
bitstream buffer.

To feed the input bitstream, the host application should know the available space in the bitstream buffer. This is determined
using the read pointer, write pointer and stream buffer size because the stream buffer operates as a ring-buffer. Getting the
available space in the stream buffer, the application can directly download the decoder input stream to the bitstream buffer.
After completing the stream download, the application informs the amount of downloaded stream data by updating the stream
write pointer.

The VPU API provides an API function to get the stream read pointer, write pointer and available space,
vpu_DecGetBitstreamBuffer(). Updating the write pointer is accomplished using the API function,
vpu_DecUpdateBitstreamBuffer().

4.3.2.2 Sequence Initialization when configuring VPU for Decoder
Instance

After creating a new instance and feeding the input bitstream to the stream buffer, the application gives the DEC_SEQ_INIT
command to the VPU to get the decoder configuration information from the bitstream. After parsing the header syntaxes, the
decoder returns the following crucial information about the decoder configuration:

* Picture size-Picture width and height

* Frame rate-Decoder frame rate

* Picture cropping rectangle information-Information about H.264 decoder picture cropping rectangle which is the offset
of top-left point and bottom-right point from the origin of frame buffer

* Minimum number of frame buffers

¢ MPEG-4 option information-Enable or disable MPEG-4 error resilience options such as data partitioned or Reversible
VLC as well as short video header mode

* Frame buffer delay for display reordering-The number of frame delays for supporting display reordering in H.264
decoder

* Annex-J (Deblocking) option indication-This flag indicates whether the deblocking option of the H.263 decoder is
enabled or disabled. When the external post-deblocking filter is used for H.263, this flag is used to avoid repetition of
the H.263 in-loop deblocking filter and external post-deblocking filter

e Number of returned next decoded index after decoding one frame-The number of returned indexes which are used in
next decoding after decoding one frame

» Estimated slice save buffer sizes-The size of the slice save buffer. The VPU reports two different sizes: recommended
and worst-case

¢ MIJPEG thumbnail enable information-This flag indicates whether thumbnail image of MJPEG exists or not. When
thumbnail does not exist in the stream, the VPU returns failure if the host application enables the thumbnail decoding
option

e MJPEG image YUV format-Image YUV format. The host must allocate frame buffer by this value

The picture size acquired from the bitstream might not be a multiple of 16x16. However, to perform the decoder operation
properly, frame buffer size should be a multiple of 16x16. Therefore, the returned size is modified to be a multiple of 16x16
after a ceiling operation. Using the picture size and the minimum number of frame buffers, the application reserves frame
buffers and provides them to the VPU before starting the picture decoding operation.

The frame buffer delay is an H.264-specific parameter for supporting display reordering. If the application supports display
reordering and reordering requires five additional frame buffers, for example, then the first display output comes out from
decoder after decoding the 6 frame. Theoretically, the maximum delay for display reordering is a 16-frames.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 77

A
VPU Control

The VPU API provides a function to handle the DEC_SEQ_INIT operations, vpu_DecGetInitialInfo(). Completion of this
function is signaled by a dedicated interrupt or by polling the BusyFlag.

An important issue in SEQ_INIT operation is error-handling because any errors in the high layer header syntaxes cause
serious problems in decoding operations. Generally, many marker bits are added to the header syntaxes to assist error
detection. When header syntaxes included in the stream have crucial errors, or when header syntaxes are not received for a
long time, the VPU can be stuck on this task and no other instances can run on the VPU. Therefore, the VPU API provides a
special function which is used in this situation, called vpu_SetSeqInitEsc(). When this function is called and the stream
buffer is empty, the VPU automatically terminates the SEQ_INIT operation. Then the host application decides whether to
close this instance or retry SEQ_INIT after running a different codec instance. After escaping from this situation, it is highly
recommend to reset the internal ESCAPE flag by calling the vpu_SetSeqInitEsc() function again. This flag affects all the
decoder instances performing a DEC_SEQ_INIT operation.

4.3.2.3 Registering Frame Buffers

This configuring process is completed by registering the frame buffers to the VPU for picture decoding operations. In this
final stage of configuration, the parameter returned from vpu_DecGetlInitialInfo(), the minimum number of frame buffer,
has an important meaning. This parameter means that the application should reserve at least the same number of frame
buffers to the VPU for proper decoding operation.

The size of the frame buffers is calculated from the picture width and height. When both the picture width and height are a
multiple of 16, the picture size is the size as the frame buffers. If both the picture width and height are not a multiple of 16,
the application should apply a ceiling operation to the picture width or picture height to get the smallest multiple of 16 larger
than picture width or picture height.

In addition to registering the frame buffers to the VPU, the slice save buffer is also registered in this step. The recommended
buffer size is given by calling vpu_DecGetInitialInfo().

4.3.3 Running Picture Decoder On VPU

4.3.3.1 Initiating Picture Decoding
When activating a picture decoding operation, the application provides the following information to the VPU:

* I-Frame Search Enable is enable or disable I-(IDR for H.264) frame search option.
» Frame Skip Mode is enable or disable skipping bitstream for the next frame decoding.
* DispOrderBuf-Enable or disable the next display output without decoding.

After providing these parameters to VPU, the application starts the picture decoding operation by sending a DEC_PIC_RUN
command.

The pre-scan option is a special option for scanning the bitstream buffer to check if a full picture stream exists in the stream
buffer. This option allows the application to determine whether the bitstream empty and decoder stalls or not before running
the actual decoder operation. When this option is enabled and there is not a full picture stream in the decoder buffer, the
DEC_PIC_RUN command does not initiate the picture decoding operation and returns immediately. Then, the application
decides whether to retry the picture decoding after feeding more bitstream data or to handle other tasks for a while.

The pre-scan mode is also given as an option for general usage of the pre-scan operation. When this flag is set to 0 and there
is at least one full picture stream in the stream buffer, the decoder operation is automatically initiated. On the contrary, when
this flag is set to 1, the DEC_PIC_RUN command returns immediately with a return code representing whether a full picture
stream exists or not. In this case, no picture decoding is initiated. To run picture decoding in this case, the application resets
this flag to 0 and re-sends the DEC_PIC_RUN command.

When display reordering in H.264 is enabled, the first decoded output is only available after decoding many frames. To avoid
this, a constraint is added to the H.264 decoder that requires the decoder to fill all the reordering display buffers at the first
time of picture decoding. That means, if the frame buffer delay received from the stream header is five, the H.264 decoder

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
78 NXP Semiconductors

4
VPU Control

should decode six frames at once at the first DEC_PIC_RUN operation. Then, the picture decoding always provides a picture
output to be displayed. In this scenario, the pre-scan might cause problems, because it is designed for the case of one picture
decoding. When display reordering is enabled, it is recommend that the first DEC_PIC_RUN be performed with pre-scan
disabled.

To support display reordering in H.264 mode, a special parameter is used to flush the stored decoder output from the display
reorder buffer without picture decoding. This option is designed for flushing out the decoded picture not yet displayed at the
end of the decoding video sequence. When the display reordering option is enabled and the reordering frame buffer stores
five decoded pictures, the first display output is available after the 6" frame decoding. Therefore, at the end of the stream
decoding, there are five decoded pictures which are not displayed yet even though there is no more available bitstream data to
decode. In this case, the application may ignore these five non-displayed pictures or display them by setting the
dispReorderBuf parameter to 1 and sending the DEC_PIC_RUN command until the VPU returns the decoded picture index
of -1.

VPU API provides an API for handling all these complex operations, vpu_DecStartOneFrame(), which initiates the picture
decoding operation and returns as soon as picture decoding has started on the VPU. Completion of picture decoding is
checked using a different method.

4.3.3.2 Frame Skipping Option

When a decoder error is detected, the application might want to hide the corrupted decoder output. Even though error
concealment is applied to that decoder output, some applications would like to the freeze display instead of showing the
corrupted picture. This output-hiding operation should continue until the decoder meets the next I (or IDR) frame.
Considering AV synchronization, skipping one frame can be a good way to hide a sequence of pictures without affecting the
audio decoding operation.

The frame skipping option is supported for the picture decoding command. As well as skip enable or disable, the skipping
option of detecting an I (or IDR in H.264)-frame can be chosen by the application. So when an error is detected during
picture decoding and the application would like to hide the error-defected pictures, the application can achieve this using the
picture skipping option with I-frame detection enabled. By setting skipframeMode of DecParam to 1, the application easily
performs skipping of non-intra (or non-IDR) frames. While the application enables one frame skipping by setting
skipframeNum of DecParam to 1, pre-scan is automatically enabled and therefore, the frame skip result is translated to a pre-
scan result. While doing one frame skip, the application can detect the results of the frame skipping by checking
prescanresult of DecOutputInfo.

This frame skip feature can be used by the application when the system performance is temporarily degraded and video
decoding is significantly delayed. In this case, it is recommended for the application to use the I-(IDR in H.264 case) frame
detect option. Using this option, the application can only decode I-(or IDR) frame properly without displaying erroneous
frame output.

Multi-frame skipping is also supported by setting skipframeNum of DecParam greater than 1. But multi-frame skipping is not
recommended in normal usage because it may cause problems with AV synchronization.

In the random access case, the I-frame search option can be useful when the keyframe information in the file container is
incorrect.

4.3.3.3 I-Frame Search for Random Access and Trick Mode

When a media player application is designed, trick modes and random access may be desirable features. To achieve these
operations the application, decoder should support a feature for searching the I-frame in the middle of the decoder bitstream.

The I-frame search option is accomplished by setting the iframeSearchEnable of DecParam. The number of I-frames skipped
is also set by setting skipframeNum of DecParam. (The same skipframeNum of DecParam is used for specifying the skipped
frame number in frame skipping and I-search; however, the meaning of this value is somewhat different.) If skipframeNum =
N, all the intermediate frames before the (N+1)™ next I-frame are skipped. This multiple I-frame skipping might be used for
high-speed playback such as fast forward. By increasing the number N, the application can increase the speed of the fast
forward. This kind of fast forward operation depends on the frequency of the I-(IDR) frames in the decoder input bitstream.
Therefore, this type of trick mode can be applicable to applications specifying the maximum interval between I-frames.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 79

A
VPU Control

Random access is generally supported with a form of slide-bar in a graphic user interface of a player. For supporting this
random access, an I-(or IDR in H.264) frame search operation is needed because decoding intermediate inter-frames causes
visual artifacts on displayed pictures. As well as I-frame search functionality, random access also requires a buffer-reset
scheme that does not cause unexpected artifacts in the decoded output. The steps of random access for the video decoder are
as follows:

Freeze the display and reset the decoder bit-stream buffer

Read the bitstream from the new file read pointer and transfer it into the decoder

Enable I-Search and run the picture decoding operation

If the buffer empty interrupt is signaled, feed more bitstream and wait for decoding completion
If decoding completion is detected, read the decoder results and resume display

Nk L=

Resetting the bitstream buffer in Step 1 can be accomplished by calling vpu_DecBitBufferFlush(). Starting the decoder
operation with I-frame search can also be accomplished by calling vpu_DecStartOneFrame() with iframeSearchEnable of
DecParam set to 1. The number of skipped frames specified by skipframeNum of DecParam is given by 1 in random access
operation. When an interrupt of decoder completion or non-busy state of the BIT processor is detected, the I-frame is
searched and decoded.

When the application uses the I-frame search option, the decoder should skip many bits in the decoder stream buffer.
Therefore, the pre-scan option can be meaningless when used simultaneously with the I-search. In the VPU firmware;
therefore, the pre-scan option is automatically disabled and settings for the pre-scan option are ignored. The application
should handle stream buffer filling until the end of the I-search operation. Larger stream units are recommended in this case;
otherwise, too many stream buffer empty interrupts might occur from the VPU side.

4.3.3.4 Decoder Stream Handling

When the decoder stream buffer includes a full picture stream, the host application does not need to worry about streaming in
the middle of the decoder operation. Using the pre-scan option, the application can determine the status of the bitstream
buffer in advance. If there is no full picture in the stream buffer, the application might feed more stream data to the stream
buffer and start the picture decoding operation.

The VPU API provides an API function to get the stream read pointer, write pointer and available space in one function call,
vpu_DecGetBitstreamBuffer(). The application can get the information about the available space in the stream buffer using
this API and transfer an amount of stream data to the stream buffer which is less than or equal to the available size. When
transferring the stream data, the application should take care of the end of the stream buffer to avoid unexpected data
corruption. When transferring stream data to the stream buffer and the write pointer reaches the end of the stream buffer, the
application should wrap the write pointer around to the beginning of the stream buffer and then continue downloading to
avoid data corruption.

Updating the write pointer is accomplished using, vpu_DecUpdateBitstreamBuffer(). The write pointer wrap-around and
updating of the write pointer is done by this API function by providing the downloaded stream size. Before updating the
write pointer, the host application must finish transferring the stream data to the stream buffer. If not, a mismatch in access
time may cause problems in the decoder operation.

4.3.3.5 Completion of Picture Decoding

Picture decoder operations take a certain amount of time, and the application can complete other tasks while calling
vpu_WaitForInt() to wait for the completion of the picture decoding operation, such as display processing of the previously
decoded output. The application can use two different schemes for detecting the completion of the picture decoding
operation: polling a status register or waiting for an interrupt signal. When the application uses the polling scheme, the
application checks the BusyFlag Register of the BIT processor. Calling vpu_IsBusy() gives the same result.

Interrupt signaling can be the most efficient way to check the completion of a given command. An interrupt signal for the
DEC_PIC_RUN command is mapped to bit 3 of the interrupt enable register. So the application can easily determine the
completion of the picture decoder operation from this dedicated interrupt signal from the VPU.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
80 NXP Semiconductors

4
VPU Control

4.3.3.6 Acquiring Decoder Results

When picture decoding is complete, the host application retrieves the decoded output, such as the display frame index,
decoded frame index, decoded frame picture type, number of error concealed MBs, Pre-scan result, and so on. The VPU API
provides a function for retrieving the output results of the picture decoder, vpu_DecGetOutputInfo().

The VPU API includes a constraint on using the decoder initiation function and decoder result acquisition. When using the
VPU API, the application should always use these two functions as a pair. This means that without calling the result
acquisition function, vpu_DecGetOutputInfo(), the next picture decoding operation is not initiated by calling
vpu_DecStartOneFrame(). This constraint is used to protect the decoded results from being overwritten from other thread
by mistake in multi-instance environment. Therefore, the application should regard vpu_DecGetOutputInfo() function as a
releasing command of the VPU from the current picture decoding operation.

4.3.3.6.1 Reading Display Output

The display frame index, indexFrameDisplay, is used to represent the frame buffer number where the display output picture
is stored. It always equals the frame buffer index to be displayed. It can be different from the decoded picture index when
display ordering control is enabled, such as display reordering of H.264, B-frame in VC-1, and so on.

At the beginning of sequence decoding, even after decoding several frames, there is no display output from decoder because
of the order of display. For H.264 reordering, worst case scenario, the first display output can come out after the 17" frame
decoding. Therefore, at times there is no proper display buffer index. In this case, VPU decoder returns a negative frame
buffer index for indexFrameDisplay of -3 or -2 depending on the frame skip option. Only at the end of sequence decoding is
this value equal to -1 and the application can terminate the current decoder instance without any loss in picture display.

Table below shows the display output status based on the indexFrameDisplay values.

Table 5. indexFrameDisplay Values

indexFrameDisplay Display Output Status
Value

Non-negative value Output index value points to the frame buffer index of the display output.

-1 Signals the end of sequence decoding, there is no more display output when the stream end is
signaled to VPU.

-2 There is temporarily no display output because of the frame-skip option.

-3 There is temporarily no display output even without any action by the host application. Usually, this

value occurs when an IDR picture is received for H.264 display-reordering mode.

4.3.3.6.2 Reading Decoded Output

The decoded frame index, indexFrameDecoded, is an optional output to the host application. This index is used to represent
the frame buffer number where the decoded picture is stored. Usually, the host application does not need to worry about this
index. The display index, indexFrameDisplay, is sufficient to handle the output of the VPU decoder.

When there are not enough frame buffers to be written with decoded image data, this value is equal to -1 (OXxFFFF). In this
situation, the application re-calls vpu_DecStartOneFrame() after clearing the display flag by calling
vpu_DecClrDispFlag().

When display ordering control is enabled for H.264 display reordering, VC-1 B-frame, and so on, at the end of sequence
decoding, the host application needs to flush out the decoded frames for display. During this flushing operation, no actual
decoding operations are performed. Under this situation, this value is equal to -1 (OXFFFF) to represent that there is no
decoded frame this time. This negative decoded index is also used when picture decoding is skipped because of skip option
or picture header error.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 81

A
VPU Control

4.3.3.6.3 Reading Pre-Scan Result

The pre-scan result flag represents whether a full picture stream is included in the bitstream buffer before picture decoding.
When this flag is equal to 0, the decoding operation is not performed because there is no full picture stream in the stream
buffer. If application enables pre-scan and sets pre-scan mode to O (decoding a picture when full picture stream exists), the
application should check this output parameter first to determine whether a decoding operation is performed or not.

When pre-scan result is 0 and the stream buffer is full and the current stream buffer is too small to store a full picture stream.
To avoid dead-lock, the host application should disable the pre-scan option and re-run the picture decoding operation.

4.3.3.6.4 Display Cropping in H.264

The display cropping option in H.264 forces the host application to display part of the frame buffers. The information about
the cropping window is provided by SPS. In SPS, four offset values of cropping rectangles are presented, and these four
offset values are given by the picCropRect structure to the host application. Using these four offset values, the host
application can easily detect the position of the target output window. When display cropping is off, the cropping window
size is 0.

4.3.3.6.5 Next Decoded Frame Index

Next decoded frame index, indexNextFrameDecoded[3], is an optional output to the host application. This indexes are used
to represent the frame buffer index which is used in the next VPU_DecStartOneFrame() call. The application might not
stop calling VPU_DecStartOneFrame() to protect display corruption if some of these indexes are not displayed yet.

When display ordering control is enabled for H.264 display reordering, VC-1 B-frame, at the end of sequence decoding, the
host application needs to flush out the decoded frames for display. During this flushing operation, no actual decoding
operations are performed. In this situation, this value might be ignored.

4.3.3.6.6 Reading Lack of Additional Work Buffer

The VPU reports the status of the PS (SPS/PPS) save buffer and slice save buffer after it decodes one frame. If the VPU
reports lack of PS save buffer, the VPU cannot properly decode the remaining input stream; therefore, it is best to close
current instance in this situation. If the VPU reports lack of slice save buffer, the VPU can choose to either close and reopen
the current instance or continue picture decoding regardless of display corruption until the next I-frame.

4.3.3.7 Management of Displaying Buffers Decoded

The VPU has flags to indicate if the frame buffer is displayed or not internally. The flag is set after the VPU returns the
display frame index automatically and the VPU never uses the buffer for which the display flag is set. Before starting the
decoding process, the VPU checks if there is a frame buffer available and returns immediately if there is no frame buffer to
be written with decoded image with a current decoded index of -1. The host application clears the flag after completion of
displaying the frame buffers by calling vpu_DecClrDispFlag().

4.3.4 Escape from Decoder Hang

Even when pre-scan is used, it is still possible for an application to experience decoder hanging because of a stream error or
lack of available stream at the end of sequence decoding. In the middle of picture decoding, decoder hanging is signaled to
the application through the decoder buffer empty interrupt if this interrupt is enabled, and the application can avoid decoder
hanging by putting more bitstream data to stream buffer.

In some extraordinary cases and at the end of sequence decoding, the application avoids decoder hanging by means of
garbage insertion or sending an end-of-stream command to VPU decoder. This is accomplished by calling
vpu_DecUpdateStreamBuffer() with size of 0. As soon as VPU detects this setting, VPU terminates the current picture
decoding with error concealment if applicable.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
82 NXP Semiconductors

4
VPU Control

4.3.5 Terminating a Decoder Instance

4.3.5.1 Stream End and Last Picture in Stream Buffer

After the host application meets the end of stream and sends all of the stream data in the stream buffer, the host application
must determine when the last picture output is coming out. If there is no display delay, this task is simple. But if display delay
exists (reordering of the decoded pictures for display), this task might be difficult for the host application.

After sending the last byte of the stream data to bitstream buffer, host application must call vpu_DecUpdateBitstreamBuffer()
with "size" = 0 to signal the end of stream to VPU thus prevent VPU from being stalled due to stream buffer empty, then
keep calling vpu_DecStartOneFrame(). After the last display output picture has come out, the display frame index
(indexFrameDisplay) will be changed to -1. When host application receives this index, it can easily detect the end of the
sequence processing.

When display delay exists (display reordering option in H.264, B-frames in other codecs), host application gets the buffered
decoder output frame even after finishing actual decoding operation. In this case, host application still needs to call
vpu_DecStartOneFrame() as usual. Until the delayed display output frames are completely flushed out, the VPU decoder will
provide the display frame index of the newly displayed output to the host application. And if there is no more available
output, the VPU decoder returns a display frame index (indexFrameDisplay) of -1.

4.3.5.2 Closing Current Instance

When the application finishes the last picture decoding operation and terminates a decoder instance, the application releases
the handle of this instance and inform the VPU that this instance is terminated by giving the SEQ_END command to the
VPU. This can be accomplished by calling the vpu_DecClose() function.

4.3.6 Dynamic Configuration Commands

While running sequential picture decoding operations, application may need to give a special command to VPU. VPU API
provides a set of commands to support the following special requests from the host application:

* Rotate and mirror output frame before decoding
* Apply SPS and PPS from the external out-of-band protocol
 Specify the frame buffer address for the MPEG-4 de-blocking filtered output

4.4 Example Applications

This section discusses the example applications provided for i.MX 6 VPU APIL

4.4.1 VPU Library

VPU library and header file source code is located under Yocto Project build tmp work tree in imx-lib/*/vpu. The detailed
source code structure of the VPU library and kernel space is presented in the Video Processing Unit (VPU) Driver chapter of
the i. MX Linux® Reference Manual (document IMXLXRM).

The user may optionally configure the following following environment variables:

e VPU_FW_PATH-Directory where the vpu_fw_imx6q.bin or vpu_fw_imx6d.bin file is located. If this variable is not
exported by the user, the vpu_fw_mx6.bin file must be located in the /lib/firmware/vpu directory.

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 83

A
VPU Control

4.4.2 VPU Example Application

VPU example application is located under Yocto Project build tmp work tree in imx-test/*/test/mxc_vpu_test. This
application gives an example of how to use the VPU API to control the VPU hardware to implement a decoder or an encoder.
The following test cased are included in this test application:

* Decode streams to save to a YUV file or to display on a LCD.

* Encode streams from a YUV file or from camera captured data.

* Loopback-encode camera captured YUV data then decode it to a YUV and display on a LCD simultaneously.
* Network-encode camera captured YUV data and send it to another side to decode by UDP.

NOTE
Only packet-based streaming mode with ring-buffer is included in this example
application.

Refer to the readme file for details about the usage of the application example. Decode Stream to Display on LCD, and
Encode Stream from Camera Captured Data, describe the example applications usage for decoding streams to display on a
LCD and encoding streams from camera captured data. These two examples are described in detail to illustrate how proper
frame buffer management between VPU and V4L interface improves performance and avoids memory copy, especially
memory for decoded YUV or captured YUV data.

4.4.2.1 Decode Stream to Display on LCD

The application should complete the following steps to decode streams to display on a LCD:

1. Call vpu_Init() to initialize the VPU. If there are multi-instances supported in this application, this function only needs
to be called once.

2. Open a decoder instance using vpu_DecOpen(). Call IOGetPhyMem() before opening the instance to input

oparam.bitstreamBuffer. Call IOGetVirtMem() to get the corresponding virtual address of the bitstream buffer, then

fill the bitstream at this address in user space. Call IOGetPhyMem() for both the physical PS save buffer and physical

slice save memory for H.264.

Call vpu_DecGetBitstreamBuffer() to get the bitstream buffer address to provide the proper amount of bitstream.

4. After transferring the decoder input stream, declare the amount of bits transferred into the bitstream buffer using
vpu_DecUpdateBitstreamBuffer().

5. Get crucial parameters for decoder operations such as picture size, frame rate, required frame buffer size, and so on
using vpu_DecGetInitialInfo(). Set escape to 1 by calling vpu_DecSetEscSeqInit(handle, 1) before this function is
called. Set escape to 0 by calling vpu_DecSetEscSeqInit(handle, 0) after vpu_DecGetInitialInfo() is called.

6. Using the frame buffer requirement returned from vpu_DecGetlInitialInfo(), allocate the proper size of the frame
buffers and notify the VPU using vpu_DecRegisterFrameBuffer(). The requested frame buffer in PATH_V4L2 case
to display the stream on the LCD is as follows:

¢ Add two more buffers than minFrameBufferCount to the frame buffer count: vpu_DecClrDispFlag() is used to
control if the frame buffer can be used for decoder again. One framebuffer dequeue from IPU is delayed for
performance improvement and one framebuffer is delayed for display flag clear. Performance is better when
more buffers are used if IPU performance is bottleneck.

 Call v4l_display_open() to open the v4l device and request v41 buffers for image display. If VPU rotation or
dering is enabled, larger frame buffers are needed. Two extra buffers are added in this example application.
Register the first minFrameBufferCount + 2 buffers as bufY, bufCb, bufCr for the VPU decoder, and memory
transfer is not needed for performance improvement. Call IOGetPhyMem() for bufMvCol part for VPU decoder
usage.

 Inform the VPU to register minFrameBufferCount + 2 buffers by calling vpu_DecRegisterFrameBuffer().

7. Start picture decoder operation picture-by-picture using vpu_DecStartOneFrame().

* If rotation is enabled, the SET_ROTATION_ANGLE, SET_ROTATOR_STRIDE and ENABLE_ROTATION
commands need to be given before starting decoding by calling vpu_DecGiveCommand(). The rotator stride is
the picture height if the rotation angle is 90° or 270°; otherwise, the stride is the picture width.

»

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
84 NXP Semiconductors

4
VPU Control

¢ If dering is enabled, the ENABLE_DERING command needs to be given before starting decoding.

¢ If mirror is enabled, the SET_MIRROR_DIRECTION and ENABLE_MIRRORING commands need to be
given.

* Since there are two extra buffers used for rotation or dering, the SET_ROTATOR_OUTPUT commands need to
be set before each picture decoder.

* Start the picture decoder operation by calling vpu_DecStartOneFrame().

8. Wait for the completion of the picture decoder operation interrupt event by calling vpu_WaitforInt(). vpu_IsBusy() is
used to check if the VPU is busy. If the VPU is not busy, go to the next step. Otherwise, wait again and more bitstream
can be filled to the bitstreamBuffer while waiting.

9. Check the results of the decoder operation using vpu_DecGetOutputInfo(). Go to different case as defined by
outputinfo. For example, -1 in outinfo.indexFrameDisplay indicates that the decoder completed. Values of -2 or -3 in
outinfo.indexFrameDisplay indicates that no picture needs to be displayed. A positive value in
outinfo.indexFrameDisplay indicates the displayed buffer index, and v4l_put_data() can be called to display the image
on the LCD.

In the v41_put_data() function, IOCTL VIDIOC_QBUF is set to queue the buffer to the v4]1 module for display. Also,
IOCTL VIDIOC_DQBUEF is used to get one buffer that image has been displayed and can be used again for the
decoder. Here, one frame buffer dequeue from the IPU is delayed, then the VPU and IPU operate in an asynchronous
method for performance improvement.

10. After displaying the n' frame buffer, clear the buffer display flag using vpu_DecClrDispFlag(). This function does not
need to be called for the STD_MIJPG codec. One frame buffer is delayed for display flag clear, that means, previous
dequeued framebuffer index was cleared by the VIDIOC_DQBUF IOCTL.

11. If there is more bitstream to decode, go to step 7, otherwise go to the next step

12. Terminate the sequence operation by closing the instance using vpu_DecClose(). Make sure
vpu_DecGetOutputInfo() is called for each corresponding vpu_DecStartOneFrame() call before closing the instance
although the last output information may be not useful.

13. Free all memory that was allocate by calling IOFreePhyMem() and IOFreeVirtMem(). v4l_display_close() needs to
be called to free all v41 related resource, including v41 buffers.

14. Call vpu_UnlInit() to release the system resources before exit. If there are multi-instances supported in this application,
this function only needs to be called once.

4.4.2.2 Encode Stream from Camera Captured Data

The application should complete the following steps to encode streams from camera captured data:

1. Call vpu_Init() to initialize the VPU. If there are multi-instances supported in this application, this function only needs
to be called once.

2. Open a encoder instance using vpu_EncOpen(). Call IOGetPhyMem() to input encop.bitstreamBuffer for the physical
continuous bitstream buffer before opening the instance. Call IOGetVirtMem() to get the corresponding virtual
address of the bitstream buffer, then fill the bitstream to this address in user space. If rotation is enabled and the
rotation angle is 90° or 270°, the picture width and height must be swapped.

3. If rotation is enabled, give commands ENABLE_ROTATION and SET_ROTATION_ANGLE. If mirror is enabled,
give commands ENABLE_MIRRORING and SET_MIRROR_DIRECTION.

4. Get crucial parameters for encoder operations such as required frame buffer size, and so on using
vpu_EncGetlnitialInfo().

5. Using the frame buffer requirement returned from vpu_DecGetlInitialInfo(), allocate the proper size of the frame
buffers and notify the VPU using vpu_EncRegisterFrameBuffer(). The requested frame buffer for the source frame in
PATH_V4L2 to encode camera captured data is as follows:

* Allocate the minFrameBufferCount frame buffers by calling IOGetPhyMem() and register them to the VPU for
encoder using vpu_EncRegisterFrameBuffer().

* Another frame buffer is needed for the source frame buffer. Call v4l_capture_setup() to open the v4l device for
camera and request v41 buffers. In this example, three v41 buffers are allocated. Call v4l_start_capturing() to
start camera capture. Pass the dequeued v41 buffer address by calling v4l_get_capture_data() as encoder source
frame in each picture encoder, then no need to memory transfer for performance improvement.

6. Generate the high-level header syntaxes using vpu_EncGiveCommand().

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018
NXP Semiconductors 85

Revision History

7.

10.
11.

12.

13.

Start picture encoder operation picture-by-picture using vpu_EncStartOneFrame(). Pass dequeued v41 buffer address
by calling v4l_get_capture_data() as the encoder source frame before each picture encoder is started.

. Wait for the completion of picture decoder operation interrupt event calling vpu_WaitforInt(). Use vpu_IsBusy() to

check if the VPU is busy. If the VPU is not busy, go to the next step; otherwise, wait again.

After encoding a frame is complete, check the results of encoder operation using vpu_EncGetOutputInfo(). After the
output information is received, call v4l_put_capture_data() to the VIDIOC_QBUF v4l buffer for the next capture
usage.

If there are more frames to encode, go to Step 7; otherwise, go to the next step.

Terminate the sequence operation by closing the instance using vpu_DecClose(). Make sure
vpu_DecGetOutputInfo() is called for each corresponding vpu_DecStartOneFrame() call before closing the instance
although the last output information may be not useful.

Free all allocated memory and v4l resource using IOFreePhyMem() and IOFreeVirtMem(). Call
v4l_stop_capturing() to stop capture.

Call vpu_Unlnit() to release the system resources. If there are multi-instances supported in this application, this
function only needs to be called once.

4.4.3 Other Issues

Some important issues are as follows:

* Performance is better both on the VPU and IPU when chromainterleave mode is enabled.
* To avoid the VPU hanging if there is not enough stream data, enable prescan in networking mode to first scan the

stream buffer. This flag can be disabled if the bitstream buffer is large in real video playback and the application can
guarantee the bitstream buffer is sufficient.

* Since IPU rotation performance is better than the VPU, use IPU rotation and not VPU rotation.

5

Revision History

This table provides the revision history.

Table 6. Revision history

Revision number Date Substantive changes

L4.9.51_imx8qgxp-alpha 11/2017 Initial release

L4.9.51_imx8gm-betal 12/2017 Added i.MX 8QuadMax

L4.9.51_imx8mg-beta 12/2017 Added i.MX 8MQuad

L4.9.51_8gm-beta2/8qgxp-beta 02/2018 Added i.MX 8QuadMax Beta2 and i.MX
8QuadXPlus Beta

L4.9.51_imx8mg-ga 03/2018 Added i.MX 8MQuad GA

L4.9.88_2.0.0-ga 05/2018 i.MX 7ULP and i.MX 8MQuad GA
release

i.MX VPU Application Programming Interface Linux® Reference Manual, Rev. L4.9.88_2.0.0-ga, 05/2018

86

NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

‘Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be provided in
NXP data sheets and/or specifications can and do vary in different applications, and actual
performance may vary over time. All operating parameters, including “typicals”, must be
validated for each customer application by customer’s technical experts. NXP does not convey
any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address:

nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V. All other

product or service names are the property of their respective owners.

All rights reserved.
© 2018 NXP B.V.

Document Number: IMXVPUAPI
Rev. L4.9.88_2.0.0-ga
05/2018

http://www.nxp.com
http://www.nxp.com/support

	Overview
	Main Features
	Programmability
	Frame-Based Processing
	Program Memory Management
	Multi-Instances

	Host Interface
	Communication Models
	Data Handling
	Host Interface Registers

	API-Based VPU Control

	API Features
	Simple Software Control
	Handling Multi-Instances
	Frame-Based Codec Processing

	Type Definitions
	Type Definitions (common data types)
	Uint8
	Uint16
	Uint32
	Uint64
	Int64
	PhysicalAddress
	VirtualAddress
	CodStd
	RetCode
	CodecCommand
	GDI_TILED_MAP_TYPE
	MirrorDirection
	Mp4HeaderType
	AvcHeaderType
	EncHandle
	DecHandle

	Data and Structure Definitions
	FrameBuffer
	DecMaxFrmInfo
	Rect
	EncHeaderParam
	EncParamSet
	EncMp4Param
	EncH263Param
	EncAvcParam
	EncMjpgParam
	EncSliceMode
	EncOpenParam
	EncReportBufSize
	EncInitialInfo
	EncParam
	EncReportInfo
	EncOutputInfo
	SearchRamParam
	DecParamSet
	DecOpenParam
	DecReportBufSize
	DecInitialInfo
	ExtBufCfg
	DecBufInfo
	DecParam
	DecReportInfo
	Vp8ScaleInfo
	Vp8PicInfo
	AvcFpaSei
	MvcPicInfo
	DecOutputInfo
	vpu_versioninfo
	VPUMemAlloc
	iram_t

	API Definitions Overview
	Basic Architecture
	Decoder Operation Flow
	Encoder Operation Flow

	Control API
	vpu_Init()
	vpu_UnInit()
	vpu_IsBusy()
	jpu_IsBusy()
	vpu_WaitForInt()
	vpu_GetVersionInfo()
	IOGetPhyMem()
	IOFreePhyMem()
	IOGetVirtMem()
	IOFreeVirtMem()
	IOGetIramBase()
	vpu_SWReset()

	Encoder API
	vpu_EncOpen()
	vpu_EncClose()
	vpu_EncGetInitialInfo()
	vpu_EncGetBitstreamBuffer()
	vpu_EncUpdateBitstreamBuffer()
	vpu_EncRegisterFrameBuffer()
	vpu_EncStartOneFrame()
	vpu_EncGetOutputInfo()
	vpu_EncGiveCommand()

	Decoder API
	vpu_DecOpen()
	vpu_DecClose()
	vpu_DecGetInitialInfo()
	vpu_DecSetEscSeqInit()
	vpu_DecGetBitstreamBuffer()
	vpu_DecUpdateBitstreamBuffer()
	vpu_DecRegisterFrameBuffer()
	vpu_DecStartOneFrame()
	vpu_DecGetOutputInfo()
	vpu_DecBitBufferFlush()
	vpu_DecClrDispFlag()
	vpu_DecGiveCommand()

	VPU Control
	VPU Initialization
	Version Check of BIT Processor Microcode
	BIT Processor Enable and Disable
	BIT Processor Data Buffer Management
	BIT Processor Microcode Management
	Stream Buffer Management
	Ring-Buffer Scheme (Packet Mode)

	Interrupt Signaling Management

	Encoder Control
	Creating an Encoder Instance
	Configuring VPU for Encoder Instance
	Sequence Initialization
	Registering Frame Buffers During Configuration Process
	Generating High-Level Header Syntaxes

	Running Picture Encoder on VPU
	YUV Input Loading
	Initiating Picture Encoding
	Completion of Picture Encoding
	Encoder Stream Handling
	Acquiring Encoder Results

	Terminating an Encoder Instance
	Dynamic Configuration Commands (picture encoding operations)

	Decoder Control
	Creating a Decoder Instance
	AVC Display Reordering

	Configuring VPU for Decoder Instance
	Feeding Bitstream into Stream Buffer
	Sequence Initialization when configuring VPU for Decoder Instance
	Registering Frame Buffers

	Running Picture Decoder On VPU
	Initiating Picture Decoding
	Frame Skipping Option
	I-Frame Search for Random Access and Trick Mode
	Decoder Stream Handling
	Completion of Picture Decoding
	Acquiring Decoder Results
	Reading Display Output
	Reading Decoded Output
	Reading Pre-Scan Result
	Display Cropping in H.264
	Next Decoded Frame Index
	Reading Lack of Additional Work Buffer

	Management of Displaying Buffers Decoded

	Escape from Decoder Hang
	Terminating a Decoder Instance
	Stream End and Last Picture in Stream Buffer
	Closing Current Instance

	Dynamic Configuration Commands

	Example Applications
	VPU Library
	VPU Example Application
	Decode Stream to Display on LCD
	Encode Stream from Camera Captured Data

	Other Issues

	Revision History

