

iOS SDK
Programming:
A Beginner’s Guide

About the Authors
James A. Brannan is a senior developer with more than
15 years of experience. He has developed using everything
from AWK, to Visual Basic, to Java. His current interests
are iOS, Blackberry, Android, and Adobe Flex/Flash. He is
only $999,000 short of being the next app store overnight
millionaire. He lives in Gaithersburg, Maryland, with his wife,
two kids, two Macs, and bicycle.

Blake Ward has a PhD in Computer Science from Carnegie
Mellon University and has spent more than 30 years
programming and managing software development. He has
developed for a wide variety of mobile devices, ranging from the
Apple Newton and Palm Pilot to RIM’s Blackberry, the iPhone
and iPad, and Android phones. Blake has worked as a researcher
and in management at Apple, Xerox PARC, and numerous
startups. He is currently an independent iPhone and Android
developer, available through www.iphoneappquotes.com.

About the Technical Editor
Born to golf, forced to work, Steven Weber, a Java Web
Applications engineer, has ten years application development
under his belt. He’s dabbled in iOS application development
and released one corporate application since the launch of
Apple’s App Store. He’s currently living it up in the Colorado
Rockies.

www.iphoneappquotes.com

iOS SDK
Programming:
A Beginner’s Guide

James A. Brannan
Blake Ward

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

Copyright © 2011 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

ISBN: 978-0-07-175909-0

MHID: 0-07-175909-3

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-175908-3,
MHID: 0-07-175908-5.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical
error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and
is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work. Use of
this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate,
sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial
and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these
terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the
work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to
you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill
has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors
be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work,
even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever
whether such claim or cause arises in contract, tort or otherwise.

For Timothy Hill and Doctor Ronald Holt. This book is not some lofty political or
anthropological treatise, but it was fun writing.

—James

For Bryce—the real author in our family.

—Blake

This page intentionally left blank

vii

Contents at a Glance

1 The iOS Software Development Kit (SDK) . 1

2 A C Refresher . 25

3 Just Enough Objective-C: Part One . 41

4 Just Enough Objective-C: Part Two . 61

5 Deploying to an iPhone, Debugging, and Testing . 77

6 UIApplication and UIApplicationDelegate . 109

7 UIView and UIViewController . 127

8 UITabBar and UITabBarController . 141

9 UINavigationBar and UINavigationController . 159

10 Tables Using UITableView and UITableViewController 185

11 Activity Progress and Alerting Users . 237

12 Controls—Part One: Using Buttons, Sliders, Switches,
and Text Fields . 263

viii iOS SDK Programming: A Beginner’s Guide

13 Controls—Part Two: Using Pickers and Using the Camera 295

14 Application Settings . 329

15 Property Lists and Archiving . 349

16 Data Persistence Using SQLite . 371

17 Core Data . 399

18 Multimedia . 435

19 Universal Applications for the iPad . 457

Index . 485

ix

Contents

ACKNOWLEDGMENTS . xvii
INTRODUCTION . xix

1 The iOS Software Development Kit (SDK) . 1
The App Store . 2
The Software Development Kit (SDK) . 4

Paid Membership . 5
Objective-C, Foundation Framework, Cocoa Touch, and UIKit . 5

Cocoa Touch . 6
Foundation Framework . 6
The iOS Frameworks . 6
Memory and Processor Speed . 8
Small Screen . 8
Security . 9
Short-Lived Applications . 9
Manual Memory Management . 9

Relevant Documentation . 9
Try This: Getting a Quick Start on iOS Development . 10
Summary . 23

2 A C Refresher . 25
C Command-Line Programs . 27
Try This: Creating a Simple C Program Using Xcode . 27

x iOS SDK Programming: A Beginner’s Guide

C Comments . 28
Understanding Headers, Import, and Include . 29
Try This: Creating a Header File . 29
Preprocessor Statements . 31
Try This: Using Preprocessor Statements . 31
Data Types and Operators . 32
Control, Functions, and Conditional Statements . 33
Arrays and Structures . 35
Functions . 35
The printf Statement . 36
Pointers . 36
Try This: Using Pointers . 37
Dereferencing a Pointer . 38
Pointers and Arrays . 39
Try This: Using an Array with Pointers . 39
Summary . 40

3 Just Enough Objective-C: Part One . 41
Objective-C Classes and Objects . 42
Class Interface and Implementation . 42
Try This: Generating an Objective-C Class’ Interface and Implementation 43
The @interface and @implementation Compiler Directives . 44
Method Declaration and Definition . 44
Try This: Adding SayHello to the Simple Class . 45
Interface Anatomy . 46
Implementation Anatomy . 46
Public, Private, and Protected Instance Variables . 48
Understanding Simple Messaging . 48
Using self in a Message . 49
Nested Arguments . 49
Class and Instance Methods . 50
Try This: Adding sayGoodBye as a Class Method . 51
The alloc and init Methods . 52
Managing Memory Using Retain and Release . 53
Try This: Using Manual Memory Management . 55
Instance Variables and Memory . 57
Managing Memory Using Autorelease . 58
Summary . 59

4 Just Enough Objective-C: Part Two . 61
Properties . 62

Retain . 64
Assign . 64
Copy . 65
Releasing Properties . 66

Contents xi

Multiple-Argument Messages . 67
Try This: Creating a Simple Multiple-Argument Message . 67
Understanding the id Variable Type, Dynamic Typing, and Dynamic Binding 69

The id Type . 69
Dynamic Binding and Dynamic Typing . 70

Understanding Inheritance . 70
Overriding Methods . 70
Overloading Methods . 71

Using Categories . 72
Using Protocols . 72
Handling Exceptions . 74
Summary . 75

5 Deploying to an iPhone, Debugging, and Testing . 77
Installing Applications on an iPhone . 79

Membership . 79
Certificates, Devices, Application IDs, and Provisioning . 80

Try This: Deploying an Application to iPhone . 83
Debugging . 88

Using the Debugger . 89
Try This: Debugging an Application . 93

NSZombieEnabled . 97
Try This: Enabling Zombies . 98

Instruments—Leaks . 101
Try This: Find a Memory Leak . 102
Distributing Your Application . 104

Ad Hoc Deployment and Testing . 104
Distributing Your App via the App Store . 107

Summary . 108

6 UIApplication and UIApplicationDelegate . 109
Try This: Adding a UIView and UIViewController to a UIApplicationDelegate 110
Connecting UIWindow, UIApplication, and UIApplicationDelegate 117
Try This: Exploring Main Window.xib . 118
UIApplication and UIApplicationDelegate . 119

The main.m File . 120
Handling Application Life Cycle Events . 121
Application Interruptions . 123

Try This: Handling Application Interruptions . 125
Summary . 126

7 UIView and UIViewController . 127
The UIView Class . 128
The UIViewController Class . 129
View-Based Application Template . 130

xii iOS SDK Programming: A Beginner’s Guide

IBOutlet and IBAction . 130
Try This: Using a View-Based Application Template . 131
Try This: Using a Window-Based Application Template . 133
UIViewController and Application Life Cycle Events . 137
Try This: Exploring Several Life Cycle Methods . 138
Summary . 140

8 UITabBar and UITabBarController . 141
UITabBar, UITabBarController, UITabBarItem, and UITabBarControllerDelegate 142
Try This: Using the Tab Bar Application Template . 145
Try This: Adding a Tab Bar Item to a Tab Bar Application . 147
Try This: Creating a Tab Bar Application from Scratch . 148
Try This: Allowing Users to Customize a Tab Bar . 151
Summary . 156

9 UINavigationBar and UINavigationController . 159
UINavigationBar, UINavigationController, and UINavigationItem 162
Try This: Building a Three-View Application Using a Navigation Bar 163

Adding Another View . 172
Try This: See How a Utility Application Uses NavigationBar . 176
More on the UINavigationController . 177

Popping View Controllers . 177
Configuring the Navigation Bar . 177

Try This: Using a Navigation Controller in a Tab . 178
Summary . 183

10 Tables Using UITableView and UITableViewController 185
UITableView . 189
UITableViewDelegate and UITableViewDataSource . 189

UITableViewDelegate . 189
UITableViewDataSource . 189

Try This: Adopting the UITableViewDelegate and UITableViewDataSource 191
Try This: Adding a Delegate and Data Source . 194
UITableViewController . 198
Try This: Using a UITableViewController . 198
Grouping and Indexing . 201

Grouped Table Style . 202
Try This: Grouping . 202

Indexing . 205
Try This: Indexing . 205
Images in Tables . 207
Try This: Adding an Image . 207
Selecting Rows . 209
Try This: Row Selection . 209
Changing Row Height . 210
Try This: Changing Row Height . 210

Contents xiii

Accessorizing Table Cells . 211
Try This: Accessorizing a Table Cell . 212
Customizing a Table Cell . 213
Try This: Customizing a Cell Using Interface Builder . 214
Using Tables with Navigation Bars and Tabs . 219
Try This: Using a Table in a Navigation Controller in a Tab . 219
Editing Table Cells . 226

Getting to Edit Mode . 226
Edit Mode Methods . 226

Try This: Editing Rows . 228
Summary . 236

11 Activity Progress and Alerting Users . 237
Showing Activity—the UIActivityIndicatorView . 239
Try This: Using a UIActivitylndicatorView . 241
Showing Progress—the UIProgressView . 244
Try This: Using a UIProgress View . 244
Alerting Users . 251
UIAlertView and UIAlertViewDelegate . 252
Try This: Creating a Simple UIAlertView . 254
Try This: Using an Alert with Multiple Buttons . 256
UIActionSheet and UIActionSheetDelegate . 257
Try This: Using a UIActionSheet . 257
Application Badges . 260
Try This: Adding an Application Badge . 260
Summary . 261

12 Controls—Part One: Using Buttons, Sliders, Switches,
and Text Fields . 263

Buttons . 265
UIButton with a Background Image and Image . 265

Try This: Using a Custom Button Background Image and Image . 266
Button Types . 270
UIToolBar . 271
Try This: Creating a UIToolbar . 273
UISwitch . 276
UISlider . 276

Appearance . 277
Values . 277
Continuous Property . 277

Try This: Using a Switch and a Slider . 277
UITextField . 280
Try This: Using UITextField (with a Number Pad) . 282
UITextView . 286
UISegmentedControl . 287

xiv iOS SDK Programming: A Beginner’s Guide

Try This: Using a UISegmentedControl . 287
The Web View . 289

UIWebView . 290
UIWebViewDelegate . 290

Try This: Creating a Simple Web Browser . 291
Summary . 294

13 Controls—Part Two: Using Pickers and Using the Camera 295
Using Pickers: Date Pickers and Pickers . 296

Date Pickers . 296
Try This: Using a Date Picker . 299
Try This: Using a UIDatePicker in Timer Mode . 303

UIPickerView . 306
Try This: Using a Picker . 308
Try This: Using a UIPickerView with Two Components . 312
Try This: Loading UIImageViews into a UIPickerView . 316
Using the Camera: UIImagePickerController . 318

UIImagePickerController . 319
UIImagePickerControllerDelegate . 319

Try This: Using the UIImagePickerController . 320
Try This: Using Notifications . 326
Summary . 328

14 Application Settings . 329
The Settings Application . 331
The Settings Bundle . 331
Try This: Creating a Settings Bundle . 332

Settings Field Types . 335
Try This: Adding a PSTextFieldSpecifier . 336

PSMultiValueSpecifier . 338
Try This: Adding a PSMultiValueSpecifier . 338

PSToggleSwitchSpecifier . 340
Try This: Adding a PSToggleSwitchSpecifier . 340

PSSliderSpecifier . 342
Try This: Adding a PSSliderSpecifier . 342

PSChildPaneSpecifier . 344
Try This: Adding a PSChildPaneSpecifier . 344
Reading Settings Using NSUserDefaults . 346
Try This: Reading the Settings Bundle . 347

Changed Settings While Suspended . 348
Summary . 348

15 Property Lists and Archiving . 349
An iOS Application’s Directory Structure . 350

Directories . 350

Contents xv

Property Lists . 351
Simple Serialization . 352

Try This: Preserving an NSArray . 352
NSPropertyListSerialization . 354

Try This: Preserving to an XML Property List . 355
Archiving . 358

Protocols to Adopt . 358
NSKeyedArchiver and NSKeyedUnarchiver . 359

Try This: Archiving and Unarchiving an Object . 360
Try This: Archiving and Unarchiving an Object Hierarchy . 364

Multitasking and Saving Application State . 368
Summary . 369

16 Data Persistence Using SQLite . 371
Adding a SQLite Database . 372
Try This: Creating a Simple Database Using FireFox SQLite Manager 372
Basic SQLite Database Manipulation . 376

Opening the Database . 376
Statements, Preparing Statements, and Executing Statements 377
Select . 378

Try This: Opening and Querying a Database . 379
SQLite Binding, Inserting, Updating, and Deleting . 386

Try This: Inserting, Updating, and Deleting Records . 388
Try This: Inserting Records . 390
Try This: Updating Records . 392
Try This: Deleting Records . 395
Summary . 397

17 Core Data . 399
Core Data in Brief . 400
Creating a Model . 401

Entities . 401
Attributes . 402
Relationships . 402

Try This: Adding Entities and Relationships to a Core Data Model 403
Model, Context, and Store . 408

NSManagedObjectModel . 408
NSPersistentStoreCoordinator . 408
NSManagedObjectContext . 409
NSManagedObject . 409

NSFetchedResultsController . 409
NSFetchRequest . 409
NSPredicate . 410
NSSortDescriptor . 411

Try This: Fetching All AKCGroup Entities . 412

xvi iOS SDK Programming: A Beginner’s Guide

Adding Objects . 415
Saving Changes . 415
Deleting Entities . 416
Updating Entities . 416
Try This: Adding Navigation and AKCGroup Editing . 417
Navigation . 424
Try This: Adding Navigation and Editing for a List of Breeds . 424
Try This: Adding a Breed Detail View . 428
Distributing Core Data with Your App . 430
What Next? . 432
Summary . 433

18 Multimedia . 435
Playing Sounds . 436

AudioServicesPlaySystemSound . 437
AVAudioPlayer and AVAudioPlayerDelegate . 438

Try This: Playing a Sound and an MP3 . 439
Media Player Framework . 442

Media Data Classes . 442
Selecting Multimedia . 443
Playing Multimedia: MPMusicPlayerController . 444

Try This: Using the Media Picker and Media Player . 445
MPMoviePlayerController . 451

Try This: Play a Video . 452
Summary . 455

19 Universal Applications for the iPad . 457
Creating a Universal Application . 460
Try This: Building an App for iPad and iPhone . 460

Handling Orientation Changes . 463
Try This: Reacting to Orientation Changes . 463

Icons and Default Screens . 464
Split Views . 465
Try This: Add a Split View . 465
Other iPad Features . 477

Using Popovers for Information or Editing . 477
Movies in a View . 478

Try This: MoviePlayer Centered on the iPad Screen . 478
External Display . 481
Working with Documents . 482

Summary . 483

Index . 485

xvii

Acknowledgments

Thanks to the technical editor, Steven Weber, and everybody at McGraw-Hill, particularly
Roger Stewart, Joya Anthony, Jody McKenzie, Vastavikta Sharma, and Bob Campbell.

Special thanks to Everaldo and his Crystal Project Icons licensed under the LGPL. These
icons have made the examples much more visually appealing in both this book and others.
And of course, thanks to Neil Salkind, our book agent, who introduced us to computer book
writing and kept the ship navigating straight despite some stormy moments. Finally, thanks to
the iPhone SDK Forum (www.iphonesdk.com). In no small part, the idea for a tutorial-based
approach for this book came directly from your video tutorials offered on your site.

www.iphonesdk.com

This page intentionally left blank

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

xix

Introduction

Response to the iPhone, the iPod touch, and now the iPad has been nothing short of
overwhelming. The App Store has captured the hobbyist’s imagination like no other

platform in recent memory. Hobbyists have made—and will continue to make—money from
their creations sold on the App Store. And we aren’t necessarily talking about high-minded
technical innovations. The media has reported that apps that make your iPhone pass gas have
made folks hundreds of thousands of dollars. Rival farting App developers have even gone so
far as to sue one another over the App Store’s precious revenue. The iOS family of devices
and the App Store are here to stay—and there’s still plenty of opportunity for you to create
the next great app.

As proof of this popularity, after posting a few tutorial videos on Vimeo, James heard
from people from Asia, Europe, and South America about those videos. So, when we decided
to write this book, we kept in mind that iOS devices have significant international appeal.
We have tried to make this book as accommodating as possible for as wide an audience as
possible. We have kept colloquialisms to a minimum, for instance. But more important than
avoiding colloquialisms, this book relies upon discrete, numbered steps that illustrate each
major concept. Rather than a lot of prose describing the iOS SDK, we show you the SDK in
action.

The Book’s Focus
This book has three goals. The first of these is to get you comfortable with using the iOS’s user
interface controls in Interface Builder. Interface Builder is a useful tool that removes much
of the complexity of creating and laying out the user interface for iOS apps. Once you master

xx iOS SDK Programming: A Beginner’s Guide

this tool, building a graphical user interface (GUI) using Interface Builder is quicker and more
intuitive than using code.

The second goal of this book is to brush up your C language programming skills and
introduce you to Objective-C. Most likely you haven’t used C since college, and chances are
good you have never used Objective-C. However, because Objective-C is the language used
for Cocoa and Cocoa Touch programming, you must understand Objective-C if you wish
to create iPhone and iPad apps. After refreshing your memory on C, this book moves on to
Objective-C with a two-chapter tutorial that will give you a foundation for getting started with
the iOS SDK.

The third goal of this book is to cover all of the most useful functionality of the iOS SDK
so that you’re ready to create your own iOS apps for the App Store. We cover using the latest
version of Apple’s development environment, XCode 4, and most of the features introduced in
the latest versions of the SDK for the iPad and the iPhone 4.

NOTE
This book’s code examples can be downloaded at:
www.mhprofessional.com/computingdownloads.

The Book’s Content
This book assumes no prior C or Objective-C knowledge. Although not comprehensive,
chapters on C and Objective-C should provide enough detail to understand the book’s
remaining chapters. The book starts with the prerequisites. Both C and Objective-C are
prerequisites to programming iOS applications. You don’t need to be a C expert to use
Objective-C, but you should remember C’s basics. After providing a C refresher, the book
has two chapters on Objective-C. These chapters introduce a lot of concepts quickly, but
Objective-C is the language used for Cocoa Touch, so you’d be advised to learn it. After
covering Objective-C, the book provides a chapter on installing an iOS application on an
iPhone, iPod touch, or iPad device. It also provides a tutorial on debugging and testing your
application.

Chapter 6 finally begins the book’s UIKit coverage. Chapters 6 through 10 discuss the
UIView subclasses you use when laying out an iOS application. Chapter 11 discusses alerts,
action sheets, and application badges. Chapters 12 and 13 discuss the many controls available
for an iOS user interface. Chapter 13 also discusses how to use the photo library and the
camera built into the iPhone.

After describing the UIKit, the book then moves on to discuss several other essential iOS
application programming topics. Chapter 14 discusses setting your application’s preferences
using the Settings application. Chapter 15 discusses file I/O, property lists, and archiving
objects. Chapter 16 discusses using the iOS’s built-in database, SQLite. Chapter 17 builds
a more complex iOS application and discusses Core Data, by far the easiest persistence
framework you can use while programming with iOS. Chapter 18 discusses using iTunes
music in your application.

www.mhprofessional.com/computingdownloads

Introduction xxi

Finally, Chapter 19 discusses the new SDK functionality available for the iPad and shows
you how to create a universal application that will run on the iPhone or iPod touch but also
take full advantage of the larger display on the iPad when available. All of the framework
functionality described in the earlier chapters applies to the iPad and the new iPhone 4, so
this chapter focuses on how to layer new iOS 4 functionality on top of the skills that you’ve
already learned.

This book doesn’t require any prior knowledge of C, Objective-C, or Cocoa Touch and
the iOS frameworks, so provided you have some prior programming experience and you
work through all of the exercises in the book, you should be ready to start working on your
own iPhone applications when you’ve finished the book. However, even if you eventually
decide to hire an independent developer to help build your application (via a web site like
www.iphoneappquotes.com), everything you’ve learned working through the exercises will
be invaluable when it comes time to turn your ideas into a design and work with others to
implement them.

www.iphoneappquotes.com

This page intentionally left blank

1

Chapter 1
The iOS Software
Development Kit (SDK)

2 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Understanding the App Store

Understanding how to obtain Xcode and the iOS SDK

Deciding if this book is right for you

Understanding Xcode’s help and Apple’s online documentation

So why do people pay over $100 a month for an iPhone? Or more than $500 for an iPad?
Simple—they’re useful tools and fun toys. If you get lost, just start the Maps application,

and within seconds, it has located your position and provided you with a map. You can check
your e-mail anywhere, listen to music, and every once in a while even answer a phone call.
The built-in functionality of the iPhone, iPod Touch, and iPad is undeniably useful, but the real
magic of these devices is the App Store. There you can find more than a quarter of a million
applications that turn your iPhone from a useful general device to a tool specialized for exactly
what you want to do.

Apple’s App Store has created a new phenomenon—millions of people think of buying
cheap apps the same way they think about picking up a latte on the way to work; it’s an impulse
buy they do several times a week. Unlike other smartphone users, iPhone users buy apps, lots of
them! There may already be a staggering number of apps in the App Store, but the opportunities
are still endless for turning your ideas into profitable apps.

NOTE
Apple reviews every app before publication in the App Store, and you should read
their current guidelines for acceptance before starting on your app. Obvious categories
like gambling and pornography aren’t allowed, but even apps that show scantily clad
models risk rejection from the App Store. But don’t worry too much; if your app is bug
free and follows the guidelines, it will probably be approved within a week.

The App Store
The App Store is a unique concept. The App Store is an Apple application on the iPhone, iPod
Touch, and iPad. You use the App Store to browse and download applications from Apple’s
iTunes Store. Some applications are free, while others have a (usually) nominal charge. Using
your iTunes account, you can download applications directly to your iPhone, iPod Touch, or
iPad (your device). What we like is that anyone can use an iTunes Gift Card that you buy at
your local grocery store; no credit card needed.

Chapter 1: The iOS Software Development Kit (SDK) 3

Don’t know what to buy? You can go to one of the many web sites dedicated to reviewing
applications on the App Store. For instance, www.appstoreapps.com (Figure 1-1) provides
independent reviews of both free and paid applications. The App Store itself also includes
customer ratings and reviews. Many applications are junk, but lots are quite amazing.

Downloading applications from the App Store is both easy and inexpensive. That makes
it a lucrative market for independent developers wishing to take advantage of the iTunes
Store’s large user base. Independent developers can develop applications for the App Store
by downloading the iOS SDK, developing an application, and joining the iOS Developer
Program. Apple then reviews your application, and once it passes the review process, it
is added to the iTunes Store. Apple deals with the customers, distribution, and collecting
payments, and you get 70 percent of the proceeds.

Figure 1-1 The appstoreapps.com web site reviews most App Store applications.

www.appstoreapps.com

4 iOS SDK Programming: A Beginner’s Guide

The Software Development Kit (SDK)
So you have decided to try your hand at developing applications for the App Store. The first
thing you need to do if you want to become an iPhone/iPad developer is register as a member
at the iPhone Dev Center at http://developer.apple.com/iphone. Membership is free and allows
downloading the SDK and viewing all of the Apple documentation.

Once you’ve signed up, download and install Xcode and the iOS SDK from Apple’s
Developer Connection. Step-by-step installation instructions are available on Apple’s web site.
After installing the iOS SDK, the absolute next thing you should do is start Xcode and download
the documentation—all the documentation (Figure 1-2). It will take a while, but it is well worth it.

NOTE
You will find Apple’s documentation surprisingly complete and well written. We refer to
their documentation often in this book, so it is best to download it before continuing.

Figure 1-2 The iOS Reference Library in Xcode

http://developer.apple.com/iphone

Chapter 1: The iOS Software Development Kit (SDK) 5

Paid Membership
You can install the SDK, write apps, and run them in the simulator with a free membership.
However, testing applications on a device and selling applications on the App Store require
that you register with the iPhone Developer Program. This membership is different from
membership to the iPhone Dev Center. The iPhone Developer Program for individuals costs
$99/year and entitles you to the tools needed to test on a device. It is also how you submit and
distribute your application to the App Store, and Apple distributes any profit you might earn
through your iPhone Developer Program membership.

Objective-C, Foundation Framework,
Cocoa Touch, and UIKit

Apple describes the iPhone and iPad device’s technology as layers. The base layer is the Core
OS layer. On top of that is the Core Services layer. On top of the Core Services is the Media
layer. The topmost layer is Cocoa Touch (Figure 1-3).

You can simplify the iPhone operating system (iOS) even more; think of it as two
layers—a C layer and a Cocoa layer (Figure 1-4). The C layer comprises the operating
system’s layer. You use BSD UNIX–style C functions to manipulate this layer. This layer
consists of things like low-level file I/O, network sockets, POSIX threads, and SQLite.

Figure 1-4 The iPhone and iPad device’s programming layers

Cocoa Touch

Media

iPhone OS

Objective-C Cocoa Layer

C Layer

Core Services

Figure 1-3 The iPhone and iPad device’s technology layers

Cocoa Touch

Media

iPhone OS

Core Services

6 iOS SDK Programming: A Beginner’s Guide

The Media layer is also rather low-level and contains C application programming interfaces
(APIs) like OpenGL ES, Quartz, and Core Audio. The Cocoa layer overlays the C layer, and
it simplifies iOS programming. For instance, rather than manipulating C strings, you use the
Foundation framework string, NSString.

Cocoa Touch
On the iPhone and iPad, Cocoa is called Cocoa Touch, rather than simply Cocoa, because the
iOS contains touch events. If you have ever tapped, flicked, swiped, or pinched your device’s
display, you know what touch events are. Touch events allow you to program responses to a
user’s touching the screen with his or her fingers.

Cocoa Touch also provides the primary class libraries needed for development. The two
Cocoa Touch frameworks you will use in every application you write are the Foundation
framework and the UIKit framework. A framework is collection of code devoted to a similar
task. The Foundation framework is dedicated to standard programming topics, such as
collections, strings, file I/O, and other basic tasks. The UIKit is dedicated to the iPhone and
iPad device’s interface and contains classes such as the UIView. In this book, you spend
most of your time learning the UIKit.

Foundation Framework
The Foundation framework contains Objective-C classes that wrap lower-level core functionality.
For instance, rather than working with low-level C file I/O, you can work with the NSFileManager
foundation class. The Foundation framework provides many useful classes that you really
should learn if you want to program robust iOS applications. The Foundation framework
makes programming using collections, dates and time, binary data, URLs, threads, sockets,
and most other lower-level C functionality easier by wrapping the C functions with higher-
level Objective-C classes.

TIP
See Apple’s Foundation Framework Reference for a complete listing of the classes and
protocols provided by the Foundation framework.

NOTE
If you are a Java programmer, think of the iOS’s programming environment like this:
Objective-C is equivalent to Java’s core syntax. The Foundation framework is equivalent
to Java’s core classes, such as ArrayList, Exception, HashMap, String, Thread, and other
Java Standard Edition classes, and the UIKit is the equivalent of SWING.

The iOS Frameworks
Table 1-1 lists the frameworks available to you as an iOS developer. Of these frameworks, this
book dedicates itself to the UIKit rather than trying to cover a little bit of every framework.
Once you’ve mastered UIKit, adding functionality to your app from the other frameworks is
relatively straightforward.

Chapter 1: The iOS Software Development Kit (SDK) 7

Table 1-1 Frameworks in iOS

Framework Purpose

Accelerate Accelerating math functions

AddressBook Accessing user’s contacts

AddressBookUI Displaying Addressbook

AssetsLibrary Accessing user’s photos and videos

AudioToolbox Audio data streams; playing and recording audio

AudioUnit Audio units

AVFoundation Objective-C interfaces for audio playback and recording

CFNetwork WiFi and cellular networking

CoreAudio Core audio classes

CoreData Object-oriented persistent data storage

CoreFoundation Similar to Foundation framework, but lower level (don’t use unless you
absolutely must)

CoreGraphics Quartz 2D

CoreLocation User’s location/GPS

CoreMedia Low-level audio and video routines

CoreMotion Accelerometer and gyro functions

CoreTelephony Telephony functions and routines

CoreText Advanced text layout and rendering

CoreVideo Pipeline model for digital video

EventKit Accessing user’s calendar

EventKitUI Displaying standard system calendar

ExternalAccessory Hardware accessory communication interfaces

Foundation Cocoa foundation layer

GameKit Peer-to-peer connectivity

iAd Displaying advertisements

ImageIO Reading and writing image data

IOKit Low-level library for developing iPhone hardware attachments

MapKit Embedding map in application and geocoding coordinates

MediaPlayer Video playback

MessageUI Composing e-mail messages

OpenAL Positional audio library

8 iOS SDK Programming: A Beginner’s Guide

iPhone/iPad Limitations
If you have never programmed for a small device like an iPhone, there are some limitations you
should be aware of before you begin programming. Memory and processor speed are constrained,
and the screen is small. Security is also tight in iOS, and applications are limited in what they can do.

Memory and Processor Speed
An iPhone’s memory and processor speed are constrained compared to your desktop computer,
and you’ll want to keep that in mind as you develop your application. You’ll want to think
carefully about what information you need, whether it should be cached, the amount of memory
needed, and freeing up memory when you no longer need it. iOS provides functionality to
warn your application when memory is running low, so you can write your application to deal
gracefully with the constraints of any iOS device it’s currently running on.

CAUTION
If your application uses too much memory, your device’s operating system may abruptly
terminate your application to prevent a system crash.

Small Screen
The original iPhone screen and the iPod Touch’s screen measure only 480 × 320 pixels. That’s
not much room to work with. Of course, controls such as buttons are smaller on an iPhone, but
the layout space is still significantly constrained. If you are accustomed to programming user
interfaces on a 1280 × 800 pixel display, you must adjust your thinking. Screen size is limited.

The iPad’s screen is 1024 × 768. Now, if you’re an older programmer, this isn’t problematic,
as we remember the days when we programmed for 800 × 600 desktop displays, or even worse,
640 × 480. However, the interface is still small compared to a modern desktop’s display. If you
pack too much information onto an iPad’s screen, it is going to be difficult for users to read and
digest it all.

The resolution of the new iPhone 4 is double that of the original at 960 by 640 pixels, but
most of the time you’ll still develop your apps for a 480 × 320 coordinate system and the system
layers will just take care of mapping that to the higher-resolution screen for a sharper appearance.

Framework Purpose

OpenGLES Embedded OpenGL (2-D and 3-D graphics rendering)

QuartzCore Core animation

QuickLook Previewing files

Security Certificates, keys, and trust policies

StoreKit In App purchasing

SystemConfiguration Network configuration

UIKit iOS user interface layer

Table 1-1 Frameworks in iOS (continued)

Chapter 1: The iOS Software Development Kit (SDK) 9

The small screen size also results in only one window being visible at a time on an iPhone
or iPod Touch. The iPad adds support for a single pop-up window, but you’ll still want to think
in terms of having a single window and swapping views based on interaction from your user.

Security
You can only read or write to directories that are part of your application’s bundle or your
application’s documents directory. Areas accessible to your application are said to be in your
application’s sandbox. You cannot read files created by other applications unless the application
places the files in its documents folder and explicitly indicates to iOS that it wishes to share its
documents directory. Other applications can only access the documents in a shared documents
folder. Users can also access documents placed in a shared documents directory when they
synchronize their device with their desktop using iTunes. You will see how to accomplish
sharing using the documents directory in Chapter 15.

Short-Lived Applications
Until iOS4, applications could not be memory-resident. A memory-resident application can run
in the background while a user runs other applications. As of iOS4, applications can perform
some rudimentary background processing. However, you should note it is still very limited.
You cannot run multiple applications “full-throttle” and then switch between them while they
are still processing, as you can on a desktop, a Blackberry, or a device running Android.

iOS apps can request additional processing time from iOS when being moved to the
background. However, this processing must be short and quick, or else iOS will terminate the app.
After processing, iOS suspends the app. You learn more about Apple’s rudimentary multitasking
in Chapter 6. In general, though, Apple prevents developers from writing applications that run in
the background.

Manual Memory Management
Garbage collection is one of the nicest features of Java and one of the big improvements in
Objective-C 2.0 running in Mac OS desktop apps. Garbage collection frees developers from
having to worry about memory management; you simply create objects as needed and the
system takes care of freeing them when they’re no longer needed. But iOS, with its limited
resources, does not include Objective-C 2.0 garbage collection, and you must manage memory
yourself. Although manual memory management can be a pain, it is not a huge limitation. Just
be aware that forgetting to release an object is all too easy a mistake to make. As you will see
in Chapter 5, there are tools to help you track down and fix these errors.

Relevant Documentation
Apple provides considerable online documentation. You have access to that documentation both
through your Developer Connection membership and through Xcode’s help. You should refer
to that documentation often. Most documentation is also available as PDF documents. The first
three documents you should download and keep handy are the iOS Application Programming
Guide, iOS Development Guide, and iPad Programming Guide. You might then consider
downloading the Cocoa Fundamentals Guide. You will also find documents on Objective-C and

10 iOS SDK Programming: A Beginner’s Guide

Try This

various Cocoa classes. If you followed this chapter’s earlier recommendation and downloaded
the documentation, you will find that all this information is at your fingertips using Xcode’s
help. This book tries not to duplicate these online and desktop sources, but rather complement
them by providing step-by-step examples illustrating how to do things. Once you understand
how, the online documentation shows you more options to expand upon this book’s tutorial.

Getting a Quick Start on iOS Development
To whet your appetite, this chapter ends with a quick-start example. The next four chapters will
cover prerequisites that you should have prior to learning the iOS’s UIKit and Cocoa Touch.
But you probably want to get a feeling for what writing an app for the iPhone will be like, so
we’ll end this chapter with a simple iOS application. This quick start will familiarize you with
the main tools of iOS development by showing you how to connect a graphical interface created
with drag-and-drop in the Interface Builder to your Objective-C classes written using Xcode.

1. Open Xcode. From the menu select File | New Project and the New Project dialog appears
(Figure 1-5).

Figure 1-5 New Project dialog

Chapter 1: The iOS Software Development Kit (SDK) 11

(continued)

2. Select View-based Application and ensure iPhone is selected in the Product drop-down.
Click Next. In the Choose Options dialog, give the application the name QuickStart
(Figure 1-6). In the Company Identifier field you’ll need to enter the company name that
you used when creating a provisioning profile on the Apple Developer Connection site.

3. Xcode should create the project. In the Groups & Files pane, expand the Classes and
Resources folders and click on MainWindow.xib. Select View | Utilities | Object Attributes
from the main menu. Select View | Show Debugger Area from the main menu. You now
have all of the main areas of the Xcode interface visible (Figure 1-7). Familiarize yourself
with the layout of information and controls.

Figure 1-6 Save As dialog

12 iOS SDK Programming: A Beginner’s Guide

Figure 1-7 The Xcode 4 IDE with all panes visible

Select scheme

Objects in xib file
(breakpoint bar when
viewing source code)

Select current
navigation view

Build and run
current scheme

Hierarchical view
of currently selected
object (click for pull-
down to navigate)

Select which
inspector is visible

Inspector pane

Libraries paneUtilities areaDebugger areaEditor paneNavigation area

4. Click QuickStartViewController.xib to open it in Interface Builder. Starting with Xcode 4,
the Interface Builder is now built in, so you can edit your interface directly in the project
window.

5. You should see a canvas like the one shown in Figure 1-8. Click the View button in the
middle of the window (square with a dotted outline) and a view will appear on the canvas
(Figure 1-9).

Chapter 1: The iOS Software Development Kit (SDK) 13

Figure 1-8 A view’s canvas in Interface Builder

Figure 1-9 Canvas with the view displayed (continued)

14 iOS SDK Programming: A Beginner’s Guide

Figure 1-10 The object library

6. Make the object library visible by selecting View | Utilities | Object Library from Interface
Builder’s main menu (Figure 1-10).

7. Scroll through the controls until you find a Round Rect Button. Drag and drop the button
to the canvas (Figure 1-11).

8. Double-click the button on the canvas, and give the button a title.

9. Drag a label from the library to the canvas (Figure 1-12).

Chapter 1: The iOS Software Development Kit (SDK) 15

Figure 1-11 Adding a button

10. Select File | Save to save your interface changes. You can select View | Utilities | Hide
Utilities from the main menu to hide the object library for now.

11. Select QuickStartViewController.m in the Classes folder in Groups & Files. Xcode should
display the file in the editor pane (Figure 1-13).

12. Open QuickStartViewController.h and modify the file so that it matches Listing 1-1.

(continued)

16 iOS SDK Programming: A Beginner’s Guide

Listing 1-1 QuickStartViewController.h

#import <UIKit/UIKit.h>
@interface QuickStartViewController : UIViewController {
IBOutlet UILabel * myLabel;
}
@property (nonatomic, retain) IBOutlet UILabel * myLabel;
-(IBAction) sayHello: (id) sender;
@end

Figure 1-12 Adding a label

Chapter 1: The iOS Software Development Kit (SDK) 17

13. Change QuickStartViewController.m so that it matches Listing 1-2.

Listing 1-2 QuickStartViewController.m

#import "QuickStartViewController.h"
@implementation QuickStartViewController
@synthesize myLabel;
-(IBAction) sayHello: (id) sender {
NSLog(@"Hello....");
self.myLabel.text = @"Hello";
}
-(void) dealloc {
[super dealloc];
[myLabel release];
}
@end

Figure 1-13 Xcode displaying QuickStartViewController.m

(continued)

18 iOS SDK Programming: A Beginner’s Guide

14. Select Product | Build “QuickStart” from Xcode’s main menu to build the application.

15. Click QuickStartViewController.xib in the Resources folder to display the Interface Builder
again.

16. Select the button on the canvas. Select View | Utilities | Connections from the main menu
to show the object’s connections (Figure 1-14).

Figure 1-14 The Object Connection Inspector

Chapter 1: The iOS Software Development Kit (SDK) 19

17. Next to Touch Up Inside, click and hold on to the little circle. Move your cursor to File’s
Owner in the document window and release. Select sayHello: from the pop-up window
(Figure 1-15).

18. Click the label on the canvas, and the Inspector’s content should change to match the label.
Click the circle next to New Referencing Outlet, and drag and drop on the File’s Owner
(Figure 1-16). Select myLabel from the pop-up window. Be careful not to select View.

Figure 1-15 Connecting a button to an IBAction

(continued)

20 iOS SDK Programming: A Beginner’s Guide

19. Select File | Save from the main menu to save your interface changes.

20. In Xcode, ensure the Active SDK shows the iPhone Simulator option selected
(Figure 1-17).

21. From Xcode’s main menu, select Product | Run “QuickStart”. Xcode should start the
simulator, install your application in it, and start your application (Figure 1-18).

Figure 1-16 Connecting the label to an IBOutlet

Chapter 1: The iOS Software Development Kit (SDK) 21

Figure 1-17 Ensuring Active SDK shows the Simulator selected

Figure 1-18 The application running in the iPhone Simulator (continued)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

22 iOS SDK Programming: A Beginner’s Guide

22. Select View | Navigators | Log and then click the Debug QuickStart entry in the left
column to show the Debugger Console.

23. Click the button, and the label’s text changes to Hello and the console displays the log
(Figure 1-19).

You’ve just completed a lot of steps with no explanation. But what you did in this Try
This will be second nature by this book’s end. Apart from just experiencing the whole process
of creating a new iPhone app, the biggest concept you should take away from this simple
example is using the IBAction and IBOutlet keywords.

IBAction and IBOutlet are covered several times later in this book. IBActions are how
you connect methods in classes in Xcode to events fired by components created using
Interface Builder. IBOutlets are how you connect properties in classes within Xcode to
graphical components created using Interface Builder.

Figure 1-19 The debugging console after clicking the button

Chapter 1: The iOS Software Development Kit (SDK) 23

These graphical components reside in a nib file, so a more correct explanation would
be that IBActions and IBOutlets connect code to components in a nib file. For instance, you
connected the button’s Touch Up Inside event to the sayHello: action. The button lives in the
nib, while the sayHello method lives in the compiled class. Making the sayHello method an
IBAction connects the two. Like the button, the label also lives in the nib, while the myLabel
property lives in the compiled class. Making the myLabel property an IBOutlet in the class
file and then connecting the two in Interface Builder allows the class to manipulate the label
via the myLabel property. Don’t worry if this is still somewhat confusing—it won’t be by
the book’s end. If you must know more now, Chapter 7 has a more “official” explanation of
IBOutlets and IBActions.

Summary
This chapter introduced you to this book’s content. Anyone with basic programming skills can
write and release an application on Apple’s App Store. Moreover, he or she can make money
selling the application. Although the obvious, easy applications may have all been released,
there is room for high-quality applications on the App Store. All it takes is for Apple to feature
your application on its web site, and you are looking at a few thousand dollars for your efforts.

We love iOS programming and find Objective-C to be a beautiful, elegant language. We’re
certain that by the end of this book, you will too.

This page intentionally left blank

25

Chapter 2
A C Refresher

26 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Creating simple C command-line programs

Using C comments

Understanding headers, import, and include

Understanding preprocessor statements

Reviewing data types and operators

Understanding C functions, basic C syntax, and using pointers

Like almost every modern operating system, language, and programming tool of any importance,
 Mac OS X and the iOS operating system were built using the C programming language. Not

the Objective-C programming language and Cocoa framework, not the C++ programming
language, but C. Objective-C is an object-oriented language built using C. Cocoa is a framework
that hides difficult C programming tasks with easy-to-use objects programmed in Objective-C.
But behind every Cocoa object you construct, you find C code defining the construct.

NOTE
The computer scientists Dennis Ritchie and Brian Kernighan developed C at Bell
Laboratories in 1978.

You must know at least some C if you want to program using Objective-C. In this chapter,
we will review basic C. This chapter assumes some programming experience—for instance,
we assume you know what a method, an integer, a function, and other basic programming
constructs are. Ideally, you have had at least one university course using Java or a year’s
experience using Java. Experience using C# also suffices, as the language is remarkably
similar to Java. As most universities teach Java these days, and Java seems to be the most
prevalent language for systems developers, in this book we assume some very basic Java
programming experience.

TIP
If you have never programmed before, a good reference is the Absolute Beginner’s
Guide to C, Second Edition, by Greg Perry (Sams, 1994). It teaches programming and
C at about the right level needed for this book. Objective-C for iPhone Developers: A
Beginner’s Guide by James Brannan (McGraw Hill, 2010) also covers C and basic C
constructs such as loops more thoroughly than this book. A good free reference on
C is the online tutorial “How C Programming Works” on the howstuffworks web site
(http://computer.howstuffworks.com/c.htm).

http://computer.howstuffworks.com/c.htm

Chapter 2: A C Refresher 27

Try This

C Command-Line Programs
Like Java programs, C programs start with a main function. The C main function takes an integer
and a pointer to a character array as inputs and returns an integer.

int main (int argc, const char * argv[])

The returned integer typically indicates the program’s success or failure. Zero usually
indicates success, while a number indicates failure. Often programmers return different values
as error codes. Program users can then determine what went wrong by looking up the error
code in the application’s documentation.

The main function can only be implemented once in your program. When your program
runs, OS X finds the main function and uses it as your program’s starting point.

Creating a Simple C Program Using Xcode
1. Open Xcode, Apple’s integrated development environment (IDE). You’ll be using Xcode

for all of your iOS programming, and by the end of this book, you’ll be very familiar with
its features. We’ll introduce Xcode functionality as it’s needed, but it can be worthwhile
to take a little time to create a dummy project and play around with all of the buttons,
navigation, and views that can be hidden or shown in Xcode’s single window interface.

2. Create a new project in Xcode by selecting File | New | New Project from the main menu.
Highlight Application under Mac OS X and then select Command Line Tool, select C from
the Type drop-down, and click Next . Name the project C Main Project (Figure 2-1).

3. Open main.c and note the function created by Xcode. It even created the “Hello World”
message for you (Listing 2-1). Run your new application by selecting Product | Run “C
Main Project” from the main menu, or by simply clicking the Run button (circular button
with a black triangle) in the upper-left corner of the window. Select View | Show Debugger
Area in the main menu to display the Debugger. The console output is in the lower-left
pane; you’ll see “Hello World!” printed there.

Listing 2-1 The main function in a C program

#include <stdio.h> int main
(int argc, const char * argv[]) {
 // insert code here...
 printf("Hello, World!\n");
 return 0;
}

(continued)

28 iOS SDK Programming: A Beginner’s Guide

C Comments
C’s comment syntax is the same as Java’s. A double forward slash indicates everything following
on the same line is a comment. A slash followed by an asterisk indicates everything following
until the next asterisk and slash is a comment. For instance, the following are both comments.
The first is a single-line comment, while the second is a multiline comment.

// This is a comment in C code.
/* This is a multiline comment in C Code.
This comment can be multiple lines. */

Comments are, of course, ignored by the compiler and are ways for you to provide code
explanation for future programmers who might debug or modify your code.

Figure 2-1 Xcode New Project dialog

Chapter 2: A C Refresher 29

Try This

Understanding Headers, Import, and Include
A header file ends with an .h file extension and contains function prototypes and preprocessing
statements. A prototype is a function’s signature. A signature is a function name, a return type,
and parameters, with no body. Compilers use prototypes so that functions in other files can
“see” the function.

You can also say a header file declares functions. Declaring a function means you are
telling the compiler you intend to define a function with the same signature as the declaration.

Code including or importing a header file declares to a compiler it might use that header
file’s functions. Through the compiler’s magic, the compiler combines all files and resolves
references to functions in different files, provided they all play fair and include or import the
needed header files.

TIP
In standard C programs, you usually see headers included in other files. You use the
#include directive when including a file in another file. In Objective-C, you typically
see headers imported in other files. You use the #import directive when importing a
file in another file. When importing a header file, the compiler ensures the header is
only included once in your application. When including a file, no such protection is
provided. Don’t worry if you don’t really understand the difference—understanding the
difference is not important. Just know that when programming for iOS, use #import.

Creating a Header File
1. Create an iPhone application using the View-based Application template. Be certain you

select iPhone in the Product drop-down. Name the application CreateHeaderFile.

2. In the navigation pane on the left, CTRL-click the project name and select New Group to
create a new group (folder) named C Files. Add a C file to the group using the New File
dialog (Figure 2-2). Name the file cwork.c, and add it to the project.

NOTE
You can use a view-based iOS application to illustrate using C in an iOS application
because you can freely mix Objective-C and C in iOS programs, as Objective-C is a
superset of C.

3. Type the code in Listing 2-2 into the cwork.c file. Be certain you add the function’s
signature to cwork.h (Listing 2-3).

(continued)

30 iOS SDK Programming: A Beginner’s Guide

Listing 2-2 The sayHello function defined in cwork.c

#include "cwork.h"
void sayHello() {
printf("hello programmer....\n");
}

Listing 2-3 The sayHello function declared in cwork.h

#include <stdio.h>
void sayHello();

The sayHello function is declared in cwork.h and defined in the cwork.c file. The sayHello
function returns no value, and so its return type is void. The printf statement is declared

Figure 2-2 Adding a C file to the project using the New File dialog

Chapter 2: A C Refresher 31

Try This

in the standard input and output header, and so you include the stdio.h header file. Note
the angle brackets; you include system libraries using angle brackets. You include headers
exclusive to your project using double quotes.

4. Open main.m, import cwork.h, and add the sayHello function to the file (Listing 2-4).

Listing 2-4 The sayHello function added to main.m in the sample project

#import <UIKit/UIKit.h>
#import "cwork.h"
int main(int argc, char *argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 sayHello();
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

5. If you have more than one project in Xcode, make sure “C Main” is the selected project
in the pull-down menu and then click the Run button next to the pull-down (round button
with a black triangle). The message “hello programmer....” will output to the console.
You’ll probably have to select View | Navigators | Log and then pick the “Debug C Main
Project” log from the list to see the output.

6. Click the button with a black square to stop the program from running.

Preprocessor Statements
The #include and #import statements are preprocessor statements. When compiling a program,
the compiler processes all statements with a # sign before compiling the program; hence, the
term preprocessor statement. The compiler replaces the preprocessor statements with their
actual values.

Using Preprocessor Statements
1. Open the cwork.h header file from the preceding section’s project, CreateHeaderFile.

2. Type #define MYNUMBER 20 in cwork.h and save the file.

3. Modify the sayHello function to the code as in Listing 2-5. Notice that you change the
sayHello function to return an integer. You must also change the cwork.h file (Listing 2-6).

(continued)

32 iOS SDK Programming: A Beginner’s Guide

Listing 2-5 The sayHello function modified to include a preprocessor statement

int sayHello() {
 printf("hello programmer....%d\n", MYNUMBER);
 return 0;
}

Listing 2-6 The cwork.h file

#include <stdio.h>
#define MYNUMBER 20
int sayHello();

4. Make sure your new project is selected in the pull-down and then click the Run button to
run the application. The console should now echo the message with the number defined in
cwork.h.

NOTE
You define constants in header files using the #define preprocessor directive. You don’t
include a constant’s type when defining a constant.

You defined a constant in cwork.h; then when you compiled, the compiler first resolved
any defined constants, replacing the constant with the literal value.

Data Types and Operators
C’s basic data types are the same as Java’s and should appear familiar (Table 2-1).

Data Type Description

char An eight-byte ASCII character

short A small integer

int An integer

long A large integer

float A floating point number, single precision

double A floating point number, double precision

Table 2-1 C’s Basic Data Types

Chapter 2: A C Refresher 33

C’s common operators should also appear familiar (Table 2-2). Note the table excludes the
less commonly used bitwise and shift operators.

Control, Functions, and Conditional Statements
Control statements, functions, and conditional statements all have the same syntax as their Java
counterparts. Conditional if statements are the same as used in Java (Listing 2-7).

Table 2-2 C’s Basic Operators

Operator Operator Character(s)

Assignment =

Addition +

Subtraction −

Division /

Multiplication *

Remainder (mod) %

Unary ++ and -- x++ or x-- ++x or --x

Equal ==

Not Equal !=

Greater Than >

Less Than <

Greater Than or Equal >=

Less Than or Equal <=

Boolean Not !

Boolean And &&

Boolean Or ||

34 iOS SDK Programming: A Beginner’s Guide

Listing 2-7 Using if statements in C

if(myInt < 2) {
 printf("the value is not equal");
 myOtherInt = 3;
} else if (myInt == 5) {
 myOtherInt = 7;
} else {
 myOtherInt = 3;
}

Switch statements are also equivalent to a Java switch statement (Listing 2-8).

Listing 2-8 C’s switch statement

switch (myInt) {
 case 1:
 myOtherInt = 3;
 printf("case one");
 break;
 case 2:
 myOtherInt = 5;
 break;
 default:
 myOtherInt = 4;
}

Loops should prove familiar if you know Java, as should the do-while loop and the for
loop (Listing 2-9).

Listing 2-9 The while, do-while, and for loops using C

int i = 0;
while(i < 20) {
 printf("loop%d", i);
 i++;
}
do {
 printf("loop%d", i);
 i--;
} while(i > 0);
for(int i = 0; i < 20; i++) {
 printf("loop%d", i);
}

Chapter 2: A C Refresher 35

Arrays and Structures
C arrays are similar to Java arrays. You declare arrays the same way, but C has no new keyword;
you simply start using the array (Listing 2-10).

Listing 2-10 Using a C array

int myArray[100];
myArray[0] = 1;
myArray[1] = 2;

C has structs; Java doesn’t have a struct data type. In C, a struct is similar to a class, but
has no functions or inheritance (Listing 2-11).

Listing 2-11 A C struct

struct myBox {
int length;
int width;

}

Arrays can hold structures; for instance, you might declare an array to hold 100 myBox
instances (Listing 2-12).

Listing 2-12 Using a C struct in an array

struct myBox myBoxes[100];
myBoxes[0].length = 10;
myBoxes[0].width = 2;

Functions
You declare functions the same way using C as you do using Java, only C does not restrict a
function’s visibility. C has no public or private functions. As in Java, you declare a C function
with a return type, a name, and argument list. You write function declarations in header files.
You write function definitions in C source files. Functions that don’t return anything use void
as their return type. If a function takes no arguments, you can optionally list the arguments
as void.

void sayHello(void);

36 iOS SDK Programming: A Beginner’s Guide

Although you can’t declare a function private, you can declare a function static. But a
static function in C is very different from a static function in Java. In C, declaring a function
static is similar to declaring a function private in Java. In C, only functions declared in the
same file can use a function declared static. Static functions are useful for utility functions that
won’t be used elsewhere in a program.

static void sayHello(void){ printf("hello\n");}

Note that you don’t declare the static function’s prototype in a header file. You simply write
the function in the source file using the function.

The printf Statement
C uses the printf statement for outputting to the standard output stream. Its declaration is as follows:

int printf(const char *format, arg1, arg2, ..., argn);

The statement takes a pointer to the characters you wish to send to the standard output
stream and zero or more items for formatting. For instance, consider the following printf
statement:

printf("Hello world...%d times", 22);

This statement results in the following output:

Hello world...22 times

Another common argument is %s for character strings. For instance, the following code
defines a character array and then prints it.

char * hello = "hello turkey";
printf("%s\n", hello);

Pointers
Java does away with pointers; however, Objective-C relies extensively upon pointers. A pointer
is a reference to another variable, or more technically, a pointer is a variable that references
another variable’s memory space. Think of your computer’s memory as one large cubbyhole
block. A variable occupies a cubbyhole. A pointer points to the particular cubbyhole, but the
pointer’s value is not the value in the cubbyhole; the pointer’s value is the cubbyhole’s address.

In Figure 2-3, the cubbyhole n is located in row 2, column 5, and its value is 12. Cubbyhole
n’s value is 12, and its address is second row, fifth column. Pointer p points to n’s location, which
is second row, fifth column. Pointer p’s value is not 12, but rather, second row, fifth column. This
is an important distinction.

Chapter 2: A C Refresher 37

Try This

You indicate pointers using the asterisk (*). Pointers point to a location in memory of another
variable. The ampersand (&) indicates a variable’s address in memory.

Using Pointers
1. Create a new C command-line application, and name the application Using Pointers.

2. Modify main.c file so that it appears like Listing 2-13.

3. Select the project in the pull-down and click the Run button.

Listing 2-13 C program illustrating pointers

#include <stdio.h>
int main (int argc, const char * argv[]) {
 int anIntVal = 10;
 int *pavalue = & anIntVal;
 printf("address:%p value:%d\n", pavalue, *pavalue);
 return 0;
}

In this listing, anIntVal’s value is 10, pavalue points to anIntVal’s memory address, and the
printf statement prints anIntVal’s address followed by anIntVal’s value; pavalue points to
anIntVal’s address while *pavalue is anIntVal’s value.

NOTE
If you are following along in Xcode, realize your address values will be different from
those listed in this chapter’s example code results.

address:0xbffff628 value:10

4. Modify main so that the first two lines appear as follows:

//int avalue = 10;
int avalue;

Figure 2-3 Pointers as cubbyholes

1,1

2,5 P

666 234 323 6 32

6 8 46 44 12n

(continued)

38 iOS SDK Programming: A Beginner’s Guide

5. Add the following line to just before the function’s return statement:

printf("value's actual value:%d\n", avalue);

6. Compile and run. Listing 2-14 contains the incorrect output.

Listing 2-14 Output from C command-line program

address:0xbffff764 value:0
value's actual value:0
Program exited with status value:0.

Initializing a variable only reserves memory space; it does not assign the variable a value.
When you refer to an uninitialized variable, you could get any result. You must initialize
a variable with a value before using it.

7. Change the function so that anIntVal is initialized to 10 and then click Build And Go. The
debugger console echoes 10, as expected.

Dereferencing a Pointer
You can also dereference a pointer by assigning the pointer’s location a new value. You do this
through what’s called dereferencing the pointer. Consider the code in Listing 2-15.

Listing 2-15 Dereferencing a pointer

int a = 10;
int *b = &a;
*b = 52;
printf("value:%d value:%d",*b,a);

The third line sets the content of the memory at the address pointed to by the pointer b
to the integer value 52. The address pointed to by pointer b happens to be the variable a, so
changing the content changes a’s value too, as it is the location pointed to by b. Running this
code results in both values printing as 52. Note that a common error is to use an uninitialized
pointer or a modified pointer to accidentally corrupt memory in an unintended location in your
program (for instance, accidentally using b = 52 rather than *b = 52 would change the pointer
and lead to corruption if the pointer were used again later).

Chapter 2: A C Refresher 39

Try This

Pointers and Arrays
One place where pointers are useful in C programming is arrays. A common technique is to
iterate through an array using a pointer as an iterator to the array’s elements. The following
project illustrates this technique.

Using an Array with Pointers
1. Create a new command-line application called C Pointer Array.

2. Modify main in main.m to appear like Listing 2-16.

Listing 2-16 A C program iterating through a pointer array

#include <stdio.h>
int main (int argc, const char * argv[]) {
 int values[10];
 int *iterator;
 for(int i = 0; i < 10; i++) {
 values[i] = i * 2;
 printf("value: %d ", values[i]);
 }
 iterator = values;
 for(int i = 0; i < 10; i++) {
 printf("value(%d):%d ", i, *(iterator+i));
 }
 *(iterator+4) = 999;
 printf("\nvalue of element at 4: %d", values[4]);
 return 0;
}

3. Select the project in the pull-down and click the Run button. Listing 2-17 is the debugger’s
output.

Listing 2-17 Debugger Console output

[Session started at 2008-09-05 21:57:35 -0400.]
value: 0 value: 2 value: 4 value: 6 value: 8 value: 10 value: 12
value:14 value: 16 value: 18 value(0):0 value(1):2 value(2):4
value(3):6
value(4):8 value(5):10 value(6):12 value(7):14 value(8):16 value(9):18
value of element at 4: 999
The Debugger has exited with status 0.

(continued)

40 iOS SDK Programming: A Beginner’s Guide

What you did in this example was use a pointer to iterate through an array. The iterator
points to the array’s address. The iterator first points to the element at index zero. The iterator
+ 1 points to the element at the first position. And iterator + n points to the element at the nth
position. As you iterate through the array’s values, you can use the value at the address to
which the iterator points.

Summary
This chapter did not provide enough detail for you to completely learn C. In fact, this chapter
hardly scratched C’s surface. But it did provide you with enough information to understand the
rest of this book. You must know basic C to understand Objective-C and iOS programming.
Hopefully, this chapter refreshed your memory enough to begin the next chapter. If you are
familiar with Java’s basic programming structures, C header files, and C pointers, you should
have no trouble understanding the next two Objective-C chapters. If you are still uncertain,
you can find many free online C tutorials using Google. But don’t worry—C is kept to a
minimum in this book.

NOTE
If new to programming and C programming, you might benefit from buying the book:
The C Programming Language, Second Edition, by Brian W. Kernighan and Dennis M.
Ritchie (Prentice Hall, 1988).

41

Chapter 3
Just Enough
Objective-C: Part One

42 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Understanding Objective-C classes and objects

Understanding an interface and an implementation

Understanding simple messaging

Understanding alloc and init

Managing memory using retain and release

Managing memory using autorelease

iOS applications use Cocoa classes, and these classes use the Objective-C programming
language. So you must know Objective-C if you wish to program iOS devices. At first glance,
Objective-C’s syntax might seem strange and difficult. But don’t worry—the language is easy
and its strangeness will give way to an elegance I’m sure you will appreciate. In this and the
next chapter you learn enough Objective-C to begin iOS programming.

CAUTION
If coming from a .NET or Java background, pay particular attention to the sections on
memory management. Unlike these languages, memory management is not automatic
on iOS devices. You must manage memory manually.

Objective-C Classes and Objects
Objective-C classes are the same as classes in any other object-oriented programming
language. A class encapsulates both state (properties) and behavior (methods), and forms an
object-oriented program’s basic building blocks. An object-oriented application functions by
objects sending messages between each other. For instance, in a typical Java command-line
application, you begin the program by calling a static method called main in a class. This
main method instantiates one or more objects, and the application’s remaining functionality
consists of messages between those objects instantiated in the main method, as well as any
objects they might in turn instantiate.

Class Interface and Implementation
Objective-C separates a class into an interface and an implementation. An interface declares
instance variables and methods. It is a standard C header file and doesn’t provide any method
definitions. The implementation contains the method definitions for the class. It is a file with
its own .m extension rather than a .c extension.

Chapter 3: Just Enough Objective-C: Part One 43

Try This Generating an Objective-C Class’ Interface
and Implementation

1. Create a new View-based Application. Only this time, rather than selecting iPhone from the
Product drop-down, select iPad. Name the project ChapThree.

2. In Groups & Files, right-click Classes and select New Group from the pop-up menu. Name
the group Objective-C.

3. Right-click the newly created Objective-C folder and select New File from the pop-up
menu. From the New File dialog, highlight Cocoa Touch and select Objective-C Class.
Ensure the Subclass says NSObject (Figure 3-1). Click Next.

4. On the next dialog screen, name the class Simple.

The template generates Simple for you, writing its interface in Simple.h (Listing 3-1) and
its implementation in Simple.m (Listing 3-2).

Figure 3-1 Selecting a new Objective-C class using Xcode’s New File dialog

(continued)

44 iOS SDK Programming: A Beginner’s Guide

Listing 3-1 Objective-C interface

#import <Foundation/Foundation.h>
@interface Simple : NSObject {
}
@end

Listing 3-2 Objective-C implementation

#import "Simple.h"
@implementation Simple
@end

The @interface and @implementation
Compiler Directives

In Simple.h, note the @interface compiler directive. In the Simple.m file, note the @
implementation compiler directive. These directives distinguish a class’ interface from its
implementation. Code within the @interface and @end compiler directives in Simple.h
makes up Simple’s interface, while code within the @implementation and @end compiler
directives makes up Simple’s implementation.

Method Declaration and Definition
You declare a class’ methods and instance variables in its interface. You define a class’ methods
and instance variables in its implementation. Declaring a method means you tell the compiler
that a class will have a method, with a certain signature, but you don’t provide the actual code
for the method. For instance, consider the following method declaration.

-(void) sayHello: (NSString*) name;

The declaration tells the compiler to expect a method called sayHello that returns nothing
(void) and takes an NSString as an argument. The declaration says nothing about the method’s
content.

You provide the compiler with a method’s implementation by defining the method. Defining
a method means you provide a method declaration’s actual behavior, or its implementation.
For instance, the sayHello method in Listing 3-3 provides the sayHello method declaration’s
behavior.

Chapter 3: Just Enough Objective-C: Part One 45

Try This

Listing 3-3 A simple Objective-C method implementation

-(void) sayHello: (NSString*) name {
 NSMutableString *message = [[NSMutableString alloc]
 initWithString:@"Hello there "];
 [message appendString:name];
 NSLog(message);
 [message release];
}

Adding SayHello to the Simple Class
1. Open the last section’s project, ChapThree. Add the sayHello method from Listing 3-3

to Simple.m (Listing 3-4). Don’t forget to add the method’s declaration to Simple.h
(Listing 3-5).

Listing 3-4 Simple.m modified to declare sayHello

#import "Simple.h" @implementation Simple
-(void) sayHello: (NSString *) name {
NSMutableString *message = [[NSMutableString alloc] initWithString:
@"Hello there "];
 [message appendString:name];
 NSLog(message);
 [message release];
}
@end

Listing 3-5 Simple.h modified to declare sayHello

#import <Foundation/Foundation.h>
@interface Simple : NSObject {
}
-(void) sayHello: (NSString *) name;
@end

2. Open main.m in the Other Sources folder and import Simple. Then in main, create a
Simple instance and call it the sayHello method (Listing 3-6).

(continued)

46 iOS SDK Programming: A Beginner’s Guide

Listing 3-6 The file main.h modified to call the sayHello method

#import <UIKit/UIKit.h>
#import "Simple.h"
int main(int argc, char *argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Simple * mySimple = [[Simple alloc] init];
 [mySimple sayHello:@"James"];
 [mySimple release];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

3. Build and run the program, and the hello message will appear in the debugger console.

Interface Anatomy
A class’ interface consists of import statements, a class declaration, any instance variables, and
method signatures. Review Simple’s interface in the Simple.h file. Objective-C classes import
or include other libraries and headers just like C (just a reminder, always use import, as this
assures you won’t include the header file twice). The following line declares to the compiler an
Objective-C class named Simple that extends NSObject:

@interface Simple : NSObject

Opening and closing braces follow the class declaration. Instance variables go between
these braces. Below the closing brace, you add class method declarations. Following any
method declarations, the interface ends with the @end directive, which signifies the interface’s
end. Figure 3-2 summarizes an Objective-C interface’s anatomy.

Implementation Anatomy
An interface is only half an Objective-C class, though. A class’ implementation is as important
as its interface. Review Simple’s implementation in the Simple.m file. This file begins by
importing the class’ interface. Simple’s implementation then begins with the @implementation
compiler directive.

@implementation Simple

Simple’s implementation ends with the @end compiler directive. Method definitions go
between the two directives. Figure 3-3 summarizes an Objective-C class implementation.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3: Just Enough Objective-C: Part One 47

Figure 3-2 An Objective-C interface summary

Import statements

Interface directive

Opening {and closing}
group instance variables

End directive

Method declarations

Instance variables

Class name : parent class name

System imports use < and > while local
(project) imports use“ ”

Figure 3-3 An Objective-C implementation summary

Interface import

Implementation directive

Method definitions

End directive

48 iOS SDK Programming: A Beginner’s Guide

Public, Private, and Protected Instance Variables
Classes can set instance variables to be private, protected, and public. You use the compiler
directives @private, @protected, and @public to declare instance variable visibility. The private
directive ensures variables marked as private are only visible to the class that declares the instance
variable. The protected directive ensures protected variables are only visible to the declaring class
and its descendants. The public directive allows any class access to the public variables.

Consider the interface code snippet in Listing 3-7.

Listing 3-7 Public and private methods

@public
 NSString* groupName;
 int intGroupSize;
@private
 NSString* otherGroupName;
 int intOtherGroupSize;

In this interface declaration, the instance variables groupName and intGroupSize are public,
while otherGroupName and intOtherGroupSize are private.

Understanding Simple Messaging
Objective-C methods look substantially different from Java methods. Although the syntax is
confusing at first, it’s not difficult once you become used to it. Note that you don’t say that
you “call a method” when using Objective-C. Instead, you “send a message to a receiver.” For
instance, using Java you might type the following:

objMyObject.getFooUsingID(33);

When describing this line, I write that I am calling objMyObject’s getFoo method and passing
the argument 33. In Objective-C, the same message appears as follows:

[objMyObject getFooUsingID : 33];

When describing this line, I write that I am sending a getFooUsingID message, passing the
argument 33, and objMyObject is the receiver.

The difference between calling a method and sending a message isn’t Objective-C’s only
difference from Java, C++, and other dot-notation languages. Objective-C uses what’s called
infix notation. Infix notation mixes operands and operators. You don’t really need to fully
understand infix notation, other than it means Objective-C looks substantially different from
Java and C++. An Objective-C message begins with an opening square brace and ends with a
closing square brace followed by a semicolon. The object’s name follows the opening brace,
followed by a space, followed by the message. Arguments passed to the message follow a colon.

Chapter 3: Just Enough Objective-C: Part One 49

You can, of course, have multiple-argument methods, as you will see in the next chapter. For
now, though, just consider single-argument methods. Figure 3-4 summarizes an Objective-C
message with a single argument.

Using self in a Message
The term self refers to an object when sending a message, and it is also the receiver. For
instance, you might make a mental note to yourself to pick up milk on the way home from
work (Listing 3-8).

Listing 3-8 A method using the self keyword

-(void) goHome {
 Milk * myMilk = [self pickupMilk];
}
-(Milk*) pickupMilk {
 // pick up milk logic
}

Both methods are in the same object, and so the goHome method sends the message
pickupMilk to itself, or self.

Nested Arguments
As when programming in Java, you can nest Objective-C messages. For instance, using Java,
you might write the following:

objMyObject.getFoo(objMyFooIdentifier.getID());

In Objective-C, you would write the same statement as follows:

[objMyObject getFoo: [objMyFooIdentifier getID]];

Figure 3-4 A simple Objective-C message

Method name

Object name Argument

50 iOS SDK Programming: A Beginner’s Guide

Using Java, you might nest an object’s constructor in another method.

objTester.testFubar(new Fubar(33));

In Objective-C, you can also nest object constructors in other methods.

[objTester testFubar[[Fubar alloc] initWithInteger : 33]]];

In this method, a new Fubar instance is first allocated and then initialized with 33, and the
resulting object reference is sent as an argument to the testFubar message.

Class and Instance Methods
As discussed earlier, you declare methods in a class’ interface and define methods in a class’
implementation. Just as in C, a method declaration consists solely of the method’s signature,
while the definition is the method’s actual implementation. In both files, there are two method
types: instance and class methods. Instance methods begin with a minus sign, while class
methods begin with a plus sign. A class method is similar to a Java static method, meaning
you don’t need to create a class instance to use the method. For instance, the following is an
instance method.

-(void) sayHello: (NSString*) name

Using the method requires creating a class instance first. Although not required, you should
also initialize the class. Remember, all classes extend NSObject, which has an init method, so
every Objective-C class is guaranteed to implement init.

Simple *objSimple = [[Simple alloc] init];
[objSimple sayHello:@"James"];

Now consider class methods. Class methods begin with a plus sign.

+ (void) sayGoodBye;

A class method doesn’t require creating a class instance before using the method. For instance,
when first allocating space for an object instance, you call a class’ alloc method. If the class
doesn’t implement the alloc method, the runtime traverses up the class’ inheritance hierarchy until
it finds an alloc method or it reaches NSObject’s alloc method and calls it.

Simple *mySimple = [Simple alloc];
[mySimple init];

The alloc method is a class method example. You don’t instantiate a class instance before
calling alloc; rather, you call alloc directly using the class. You create and use class methods
just like Java static methods. And Objective-C class methods have the same restrictions as Java
static methods. You can’t reference that class’ instance variables from a static method, as the

Chapter 3: Just Enough Objective-C: Part One 51

Try This

instance variables haven’t been initialized. You also can’t refer to other instance methods from
the same class as the class method. Remember, as with a Java static method, you are using
an uninitialized class, not an initialized object. If your class method relies upon a class being
initialized, runtime errors will result.

Adding sayGoodBye as a Class Method
1. Open the last example’s project in Xcode. Open Simple.h and add the sayGoodBye method

declaration to it (Listing 3-9). Be certain to use a + and not a – in the method’s signature.

Listing 3-9 Simple.h modified to include sayGoodBye declaration

#import <Foundation/Foundation.h>
@interface Simple : NSObject {
}
+ (void) sayGoodBye;
-(void) sayHello: (NSString *) name;
@end

2. Add the method’s definition to Simple.m (Listing 3-10).

Listing 3-10 Simple.m modified to include sayGoodBye definition

#import "Simple.h"
@implementation Simple
+ (void) sayGoodBye {
 NSLog(@"Goodbye...");
}
-(void) sayHello: (NSString *) name {
 NSMutableString *message =

[[NSMutableString alloc]initWithString:@"Hello there"];
 [message appendString:name];
 NSLog(message);
 [message release];
}
@end

(continued)

52 iOS SDK Programming: A Beginner’s Guide

3. Have main.m call the sayGoodBye method as in Listing 3-11.

Listing 3-11 The main.h file modified to call sayGoodBye

int main(int argc, char *argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Simple * mySimple = [[Simple alloc] init];
 [mySimple sayHello:@"James"];
 [mySimple release];
 [Simple sayGoodBye];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

4. Build and run the application, and “Goodbye...” will be written to the debugger console
(Listing 3-12).

Listing 3-12 Debugger console after running ChapThree

[Session started at 2010-12-17 21:33:38 -0500.]
2010-12-17 21:33:40.498 ChapThree[851:20b] Hello there James
2010-12-17 21:33:40.501 ChapThree[851:20b] Goodbye...

The alloc and init Methods
The alloc method is how you create class instances for all Objective-C classes. This method
allocates memory space for the new object instance. It is inherited from the NSObject class, so
you don’t really need to implement this method yourself.

The init method is how you initialize a class once allocated. Unlike the class method alloc,
the init method is an instance method. The init method is also a method in NSObject. If a class
has no specific initialization requirements, you don’t need to override init, nor are you required
to call it when instantiating a class. However, if you have specific initialization requirements,
you should override this method. Good programming practice, though, is to always call init,
usually on the same line as the allocation.

The init method returns an id. An id is an Objective-C type that is a pointer to the object
instance’s address. The id is weakly typed, though, and the runtime treats all ids the same.
Overriding an init method should always call the class parent’s init method (Listing 3-13).

Chapter 3: Just Enough Objective-C: Part One 53

Listing 3-13 A simple init implementation

-(id) init {
 if (self = [super init]){
 magicNumber = 5;
 }
 return self;
}

In Listing 3-13, the method assigns itself to its parent’s id. If the parent’s init method fails,
it returns a nil value and the if statement fails. If it succeeds, the evaluation is true and the
instance variable, magicNumber, is set to five. The init method ends by returning itself.

You can also initialize an object by passing arguments. By convention, initialization
methods that take arguments are named init, followed by the data type of the argument. For
instance, you could modify the init method in Listing 3-13 to Listing 3-14 if you wanted to
initialize with an integer passed as a parameter.

Listing 3-14 A simple init method

-(id) initWithInt : (int) value {
 if (self = [super init]) {
 magicNumber = value;
 }
 return self;
}

Managing Memory Using Retain and Release
Unlike in Java or C#, when programming for iOS, you manage memory manually; there is
no garbage collection on iOS devices. Although as of OS X 10.5, Cocoa includes an option
to use automatic garbage collection, this option is not available on iOS devices. Table 3-1
summarizes Objective-C’s memory management methods.

Objective-C uses reference counts to determine if memory should be released or retained.
When you create a class instance, the runtime allocates memory for the object and assigns that
object a reference count of one. For instance, suppose you had a class named Simple. You first
allocate space for it using NSObject’s alloc method.

Simple *objSimple = [[Simple alloc] init];

You then use the object.

[objSimple sayHello:@"James"];

When finished, you call its release method. If no release method is found, the runtime
moves up the classes’ inheritance hierarchy until it finds a release implementation.

54 iOS SDK Programming: A Beginner’s Guide

As all classes extend NSObject, if no release instance is found, the runtime calls NSObject’s
release method.

[objSimple release];

When an object’s reference count reaches zero, the runtime calls the object’s dealloc method
to deallocate the object. As with release, if the runtime doesn’t find a dealloc method, it moves
up the inheritance hierarchy until it finds one. If no dealloc method is found, the runtime calls
NSObject’s dealloc method and the object is deallocated so that the memory can be reclaimed.

You’ve already seen how alloc, release, and dealloc work; you allocate memory for an
object and assign it a reference count of one using the alloc method, and you decrement the
reference count by one when calling release. When an object’s reference count reaches zero,
the program calls NSObject’s dealloc method.

The retain method increments an object’s reference by one and returns the object reference as
an id. Unlike Java, this referencing isn’t automatic; you must explicitly call retain to increase an
object’s reference count. For instance, consider the following Objective-C code (Listing 3-15).

Listing 3-15 Using retain

Simple *objSimple = [[Simple alloc] init];
Simple *objSimpleTwo = objSimple;
NSLog(@"retaincount: %d", [objSimple retainCount]);
[objSimple release];
//the next line causes an error because objSimpleTwo is released
[objSimpleTwo sayHello:@"James"];

NOTE
Typically, there is no reason to call retainCount. In this chapter, I use retainCount to
illustrate Objective-C memory management.

Table 3-1 NSObject Memory Management–Related Methods

Memory-Related Method Description

+alloc Allocate memory for new object and assign the object reference count
of one.

–autorelease Add receiver to autorelease pool.

–dealloc Deallocate memory for an object with zero reference count.

–release Decrease object’s reference count by one.

–retain Increase object’s reference count by one. Returns the object as an id.

–copy See documentation.

Chapter 3: Just Enough Objective-C: Part One 55

Try This

The first line allocates objSimple, and the runtime assigns the object a reference count of
one. The second statement creates a new pointer to the objSimple object; both objSimple and
objSimpleTwo point to the same physical object in memory. But because the code doesn’t
call retain, the physical object’s reference count is not incremented. When the object is then
released, the reference count is decremented by one and the reference count for the object
becomes zero. The object is deallocated, so the next line fails, as objSimpleTwo is pointing to
deallocated memory space.

Instead, the code should have explicitly retained objSimpleTwo.

[objSimpleTwo retain];

Retaining objSimpleTwo would have incremented the object’s reference count by one, bringing
it to two. Then, when objSimple was released, the object’s reference count would still be one
and the object would not be deallocated. The subsequent call to sayHello would work just fine,
as the object that objSimpleTwo pointed to would still exist. Note, this is a somewhat unrealistic
example, as you will never write code like Listing 3-15, but it illustrates retain and release.

You can override the NSObject’s retain, release, dealloc, and alloc methods. But if you
do, be certain to call the object’s super method version. The method call for these methods
must make it up the inheritance hierarchy to NSObject for memory management to function
correctly.

Using Manual Memory Management
1. Open the previous Try This project and implement dealloc, retain, release, and alloc in

Simple.m (Listing 3-16). Note that retain returns an id, and that all these methods are
declared in NSObject and don’t require you to add their signatures to Simple.h.

Listing 3-16 Simple.m modified to include memory management methods

#import "Simple.h" @implementation Simple
+ (void) sayGoodBye {
 NSLog(@"Goodbye...");
}
-(void) sayHello: (NSString *) name {
 NSMutableString *message = [[NSMutableString alloc]
 initWithString:@"Hello there"];
 [message appendString:name];
 NSLog(message); [message release];
}
-(void) dealloc {
 NSLog(@"deallocating Simple....");
 [super dealloc];
}

(continued)

56 iOS SDK Programming: A Beginner’s Guide

-(id) retain {
 NSLog(@"retaining Simple.....");
 return [super retain];
}
-(void) release {
 NSLog(@"releasing Simple.....");
 [super release];
}
+(id) alloc {
 NSLog(@"allocating Simple....");
 return [super alloc];
}
@end

2. Modify main.m to write log statements of the Simple’s retainCount (Listing 3-17).

Listing 3-17 The main.h file modified to include retainCount logging

#import <UIKit/UIKit.h>
#import "Simple.h"
int main(int argc, char *argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Simple * mySimple = [[Simple alloc] init];
 NSLog(@"retainCount: %d", [mySimple retainCount]);
 [mySimple sayHello:@"James"];
 [mySimple release];
 [Simple sayGoodBye];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

3. Build and run the application. The debugger includes the logging added in Listing 3-16
(Listing 3-18).

Listing 3-18 Debugger console echoing memory management logging

[Session started at 2010-12-17 22:30:02 -0500.] 2010-12-17 22:30:03.894
ChapThree[1062:20b] allocating Simple.... 2010-12-17 22:30:03.895
ChapThree[1062:20b] retaincount: 1 2010-12-17 22:30:03.899
ChapThree[1062:20b] Hello there James 2010-12-17 22:30:03.903
ChapThree[1062:20b] releasing Simple..... 2010-12-17 22:30:03.904
ChapThree[1062:20b] deallocating Simple.... 2010-12-17 22:30:03.904
ChapThree[1062:20b] Goodbye...

Chapter 3: Just Enough Objective-C: Part One 57

In main.m, the main method first allocates a new Simple instance and assigns the pointer
(mySimple) to point to the newly allocated and initialized object.

Simple *mySimple = [[Simple alloc] init];

The reference count to the object mySimple points to is one, and the debug statement in
Listing 3-17 prints a retainCount of one.

Instance Variables and Memory
In Chapter 4, you will learn about properties. You should use them and their accessor methods.
If you do, you avoid this section’s complications. But you should still understand a little about
instance variables and how they are handled in memory. Suppose you have an instance variable,
personName, you wish to set, as in Listing 3-19.

Listing 3-19 An instance variable in Simple.h

#import <Foundation/Foundation.h>
@interface Simple : NSObject {
 NSString * personName;
}
-(void) sayGoodBye;
-(void) sayName;
-(void) sayHello: (NSString *) name;
@end

Now suppose you modified sayHello to set personName, as in Listing 3-20. You must retain
the variable; otherwise, when the caller of sayHello releases the string, it will go away and the
personName instance variable will be pointing to unallocated memory.

Listing 3-20 Retaining an instance variable

-(void) sayHello: (NSString*) name {
 NSMutableString *message = [[NSMutableString alloc]
 initWithString:@"Hello there "];
 [message appendString:name];
 NSLog(message);
 personName = [name retain];
 [message release];
}

58 iOS SDK Programming: A Beginner’s Guide

Note that by retaining name, you are increasing its reference count by one, returning it,
and then setting personName to it. This ensures that the string pointed to by personName will
not be deallocated until Simple is finished with it. Not retaining a variable when assigning it
to another variable, as in Listing 3-20, is a good example of the type of problem you might
encounter when not using properties. When the name variable pointer is passed to sayHello,
assume there is only one other pointer pointing to name (a retainCount of one). Then, after
assigning personName to name, the retainCount remains one. The personName pointer is now
at the mercy of the pointer that originally pointed to name outside the sayHello method. When
the pointer external to Simple releases the object name points to, the object is deallocated.
So the personName pointer now points to deallocated memory space and an error occurs. To
correct this problem, you call retain on the instance variable as in Listing 3-20. Anytime you
set an instance variable, you should retain it. That way, you ensure that it will not reach a
zero reference count while the instance variable still points to the object. Of course, the better
solution is to always use accessor methods combined with properties. You learn about accessor
methods and properties in the next chapter.

NOTE
You could have written the code in Listing 3-20 using one of NSString’s class methods.
But using stringWithString would not illustrate using retain.

personName = [NSString stringWithString:name];

Managing Memory Using Autorelease
Managing reference counts manually is tiresome and error-prone. NSObject’s autorelease
method manages an object’s reference count for you. The autorelease method uses what’s
called a release pool to manage an object’s references. Refer to Listing 3-17 and note that this
method’s first step is allocating an NSAutoreleasePool. Its second-to-last step is releasing that
pool. Calling autorelease adds the object to the pool, and the pool retains the object for you.
Consider the sayHelloTom method in Listing 3-21.

Listing 3-21 A method using autorelease

-(void) sayHelloTom {
 Simple *objSimple = [[[Simple alloc] init] autorelease];
 [objSimple sayHello:@"Tom"];
}

The method allocates a Simple instance and then calls autorelease, assigning objSimple to
the autorelease pool. When the method finishes executing, the autorelease pool is deallocated
and the Simple instance is subsequently released.

Chapter 3: Just Enough Objective-C: Part One 59

NOTE
The iOS operating system creates an autorelease pool for every event loop and releases
it when the loop completes.

Using autorelease and accepting the default autorelease pools makes memory management
easy. However, the problem is that there’s a penalty: The objects persist for the release pool’s
lifetime. There is one solution, and that is to manage the NSAutoReleasePool yourself. For
instance, you could modify Listing 3-22 to manage its own autorelease pool.

Listing 3-22 The sayHelloTom method managing its own autorelease pool

-(void) sayHelloTom {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 Simple *objSimple = [[[Simple alloc] autorelease] init];
 [objSimple sayHello:@"Tom"];
 [pool release];
}

When the pool is released and deallocated, the pool releases the object pointed to by
objSimple. When the physical object pointed to by objSimple is released, the reference count
is zero, so the runtime deallocates the object. You should note, though, that in this example,
the results are exactly the same as if you had used the default autorelease pool. Unless creating
many objects, it’s probably best to stick to the default NSAutoreleasePool rather than trying
to manage it yourself. However, given the constrained resources of many iOS devices, the
preferred way to manage memory is to do it manually.

Summary
You’re not finished with Objective-C yet. We still haven’t learned about properties, multiple-
argument messages, Objective-C’s dynamic binding and typing, inheritance, composition,
categories, protocols, or handling exceptions. While this might seem like a lot that you still
need to learn, Objective-C is a full-featured object-oriented language and you will eventually
want to take advantage of all of its capabilities while developing for iOS. Despite the length of
this and the next chapter, realize you are only scratching the surface of Objective-C.

This page intentionally left blank

61

Chapter 4
Just Enough
Objective-C: Part Two

62 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Using properties

Understanding multiple-argument messages

Understanding the id variable type, dynamic typing, and dynamic binding

Understanding inheritance

Using composition

Using categories

Using protocols

Handling exceptions

In the last chapter, you learned about Objective-C classes, simple message syntax, and managing
memory. In this chapter, you learn about properties, multiple-argument messages, dynamic binding,
polymorphism, the id type, and inheritance. You also learn about categories and protocols. And
finally, you learn about Objective-C exception handling.

Properties
In the last chapter, you had to manage memory when setting an object’s instance variable. For
instance, if using retain and release, you would write a setter method that explicitly retained
the passed value (Listings 4-1 and 4-2).

Listing 4-1 Writing a method that sets an instance variable (interface)

@interface MyClass : NSObject {
 Simple * objInstanceSimple;
}
-(void) setObjInstanceSimple: (Simple*) newValue;
@end

Listing 4-2 Writing a method that sets an instance variable (implementation)

@implementation MyClass
-(void) setObjInstanceSimple: (Simple*) newValue {
 [newValue retain];

Chapter 4: Just Enough Objective-C: Part Two 63

 [objInstanceSimple release];
 objInstanceSimple = newValue;
}
@end

Remember, when using Objective-C objects, you are simply manipulating pointers.
Pointers point to memory space. When changing an instance variable whose type is inherited
from NSObject, you are changing the memory space it points to. Changing the memory space a
variable points to without using retain or release almost always results in errors. In Listing 4-2,
you explicitly set MyClass’s instance variable, objInstanceSimple. The method first retains
newValue. The method does this to prevent newValue from being deallocated, should the
object later release the newValue. The method then releases objInstanceSimple. It does this to
prevent a memory leak when changing objInstanceSimple to point to the memory space pointed
to by newValue. After releasing objInstanceSimple, it changes objInstanceSimple to point to
newValue.

Managing memory when getting and setting an object’s instance variables is a pain.
Objective-C 2.0 makes instance variables easier by using properties. Properties are shortcuts
for creating instance variable accessors. You create properties using compiler directives. The
@property directive declares a property, @synthesize tells the compiler to generate accessors,
and @dynamic tells the compiler you will provide the accessor methods. A property directive
also has one or more attributes. Table 4-1 summarizes the most common attributes.

The readonly attribute indicates the property is read-only, and the synthesize directive
only creates a getter for the property. Retain instructs the compiler to create the setter so that it
retains the object.

Table 4-1 Property Attributes Covered in This Chapter

Property Attribute Description

assign Setter assigns instance variable to object.

copy Setter copies object to instance variable.

nonatomic Setter and getter won’t guarantee a complete, viable value is returned in a
threaded environment. Faster than atomic and generally what you want to
use when programming for iOS.

readonly Instance variable is read-only; cannot set its value.

readwrite Instance variable has a getter and setter (default).

retain Setter assigns instance variable to object and calls retain.

64 iOS SDK Programming: A Beginner’s Guide

NOTE
This chapter only covers a few basic principles of properties. Refer to Apple’s
documentation for a more complete discussion about properties.

Retain
When using a property with retain and managing memory yourself, you must release the
temporary variable. For instance, suppose you set an instance variable called objSimpleRetain
and this instance variable’s property had a retain attribute.

@property(retain) Simple objSimpleRetain;

When setting this property, you must release whatever temporary instance you might create.
Consider the following method that sets objSimpleRetain.

-(IBAction)giveWelcome {
 Simple* temp1 = [Simple alloc];
 self.objSimpleRetain = temp1;
 [objSimpleRetain sayHello:@"Mike"];
 NSLog(@"retaincount (mike): %d", [objSimpleRetain retainCount]);
 [temp1 release];
}

The temp1 reference is released at the method’s end. If you ran the giveWelcome method,
NSLog would print two as the retain count. The retain count of two is because the method
first allocates temp1, which sets the object’s retain count to one, and then the method sets the
property; because the property specified retain, the object’s retain count becomes two. Finally,
the method releases temp1 and the retain count returns to one.

Note that you could have just as easily used autorelease and let the runtime release the
temporary object at the event loop’s end by writing the method as follows:

-(IBAction)giveWelcome {
 Simple* temp1 = [[Simple alloc] autorelease];
 self.objSimpleRetain = temp1;
 [objSimpleRetain sayHello:@"Mike"];
 NSLog(@"retaincount (mike): %d", [objSimpleRetain retainCount]);
}

Assign
You can also specify a property use assignment by using the assign attribute.

@property(assign) Simple objSimple;

Specifying assign is equivalent to simply assigning a pointer to an object without increasing
its retain count. You must take care to not call autorelease or release a temporary object,

Chapter 4: Just Enough Objective-C: Part Two 65

as the assigned property simple points to the temporary object. I generally avoid using assign
for objects.

Where assign is appropriate is for creating primitive properties. For instance, you might
make an integer a property of a class. An integer is a primitive, and so you assign values to the
property; you do not assign a pointer to the integer.

@property (assign) int myInteger;

Copy
Sometimes you might wish to obtain an independent object copy. You accomplish this using
the copy attribute. When you use the copy attribute, the setter creates a new object and the
original object is duplicated. This property is an independent object, not related to the original.
There are two copy types: shallow and deep.

A shallow copy is when you only duplicate an object’s references to its instance variables,
while a deep copy is when you make a copy of those instance variables as well. Making a
shallow copy is easy—a deep copy, not so easy.

To copy your own custom class, your class must implement the NSCopying protocol.
You learn more about protocols later; a comprehensive discussion on writing your own class
that implements the NSCopying protocol is beyond this chapter’s scope and would needlessly
complicate it. However, in Chapter 15, this book does briefly discuss the NSCopying protocol.
Look up the NSCopying online documentation for more information.

However, copying a Cocoa class that already implements the NSCopying protocol is not
beyond this chapter’s scope. For instance, copying an independent string seems a reasonable
enough requirement. Consider the class, Foo, in Listings 4-3 and 4-4, and a method that uses
Foo (Listing 4-5).

Listing 4-3 Foo’s interface

#import <Foundation/Foundation.h>
@interface Foo : NSObject {
 NSMutableString * myString;
}
@property(copy) NSMutableString *myString;
@end

Listing 4-4 Foo’s implementation

#import "Foo.h"
@implementation Foo
@synthesize myString;
@end

66 iOS SDK Programming: A Beginner’s Guide

Listing 4-5 A method that uses Foo

-(IBAction)giveWelcome {
 Foo * myFoo = [[Foo alloc] autorelease];
 NSMutableString* message = [[[NSMutableString alloc]
 initWithString: @"A copied string."] autorelease];
 myFoo.myString = message;
 [message appendString:@" More added to end of string."];
 NSLog(myFoo.myString);
}

The giveWelcome method creates a Foo instance (myFoo), creates a new string (message),
and then sets myFoo’s myString property to message. Because Foo’s interface declared that
myString uses copy, myFoo creates a copy of the new string when giveWelcome sets myString.
When giveWelcome changes the message string, myFoo.myString remains the same value. Had
you used retain or assign, the myFoo.myString’s value would have changed as well.

Releasing Properties
Remember, every class you define should ultimately inherit from the NSObject class. The
NSObject class contains a dealloc method. You use this method to release any instance variables
and perform other cleanup tasks. When you declare properties in your class, you should always
override this method by declaring your own dealloc method in your class. You will see this over
and over again in the remainder of this book. In fact, to avoid memory leaks, remember this one
rule: when using properties with the attributes nonatomic and retain, always release the properties
in a dealloc method. For instance, in Listing 4-3 you declare a property named myString in the
class Foo. To prevent a memory leak, Foo should have a dealloc method like Listing 4-6. As you
progress through this book, the dealloc method should become second nature.

Listing 4-6 A simple dealloc method

-(void) dealloc {
 [myString release];
 [super dealloc];
}

NOTE
A common technique you will see used is to set a property to nil rather than releasing
it. By setting the property to nil, the generated setter releases the previously allocated
object instance and assigns the property to nil.

-(void) dealloc {
 self.myString = nil;
 [super dealloc];
}

Chapter 4: Just Enough Objective-C: Part Two 67

Try This

Multiple-Argument Messages
As with Objective-C’s other language constructs, multiple arguments will probably appear
strange at first; however, once you become accustomed to them, you will find the syntax easier
than Java, C++, and other dot-notation languages. Why are we so confident that you will love
Objective-C’s syntax for multiple arguments? In a word, readability. How many times have
you seen code like this in a Java program?

objMyClass.startPlay("Adventures of Tom Thumb", 44,
 new CherryPie(), "Jack Sprat", 77);

What exactly do the arguments mean? What are you sending to the startPlay method in
objMyClass? Now consider the same method using Objective-C.

 [objMyClass startPlay: @"Adventures of Tom Thumb" audienceMembers:44
 pie: [[CherryPie alloc] init] supportingActor:@"Jack Sprat"
 extrasNeeded:77];

You know exactly what the arguments sent to the method mean when using Objective-C. You
are starting a play entitled “Adventures of Tom Thumb” that has 44 members in the audience,
needs a cherry pie, has a supporting actor named Jack Sprat, and requires 77 extras.

The signature of the method called in the previous message has a syntax as follows:

-(void) startPlay: (NSString*) title audienceMembers: (int) value
 pie: (CherryPie*) pievalue supportingActor: (NSString*) actorvalue
 extrasNeeded: (int) extrasvalue;

The first argument is unnamed. The second and any further arguments are distinguished by a
space followed by an argument name and colon, followed by the type in parentheses, followed
by a parameter name to hold the value.

Now, here’s the tricky part: When referring to a multiple-argument method, when
calling the method, you refer to its named arguments. An argument’s named argument is
the name prior to the argument’s data type. When using the argument within the method’s
implementation that the argument is a part of, you refer to the actual parameter name, not the
argument name. So, for instance, in the startPlay method’s implementation, you refer to title,
value, pievalue, actorvalue, and extrasvalue. When calling the method, you refer to startPlay’s
named arguments: audienceMembers, pie, supportingActor, and extrasNeeded.

Creating a Simple Multiple-Argument Message
1. Create a new View-based Application. Name the project SimpleMultiArg.

2. Create a new NSObject subclass called Simple. Xcode generates the Simple.h and
Simple.m files.

3. Open Simple.h and add a method declaration for startPlay (Listing 4-7).

(continued)

68 iOS SDK Programming: A Beginner’s Guide

4. Open Simple.m and add the method’s implementation (Listing 4-8).

5. Modify main.m to use Simple so that it appears like Listing 4-9.

6. Build and run the application. The Debugger Console should echo the same logging as
Listing 4-10.

Listing 4-7 Simple’s interface

#import <Foundation/Foundation.h>
@interface Simple : NSObject {
}
-(void) startPlay: (NSString*) title audienceMembers: (int)
value supportingActor: (NSString*) actorvalue extrasNeeded: (int)
extrasvalue;
@end

Listing 4-8 Simple’s implementation

#import "Simple.h" @implementation Simple
-(void) startPlay: (NSString*) title audienceMembers: (int)
value supportingActor: (NSString*) actorvalue extrasNeeded: (int)
extrasvalue {
 NSLog(@"The title: %@", title);
 NSLog(@"Audience: %d", value);
 NSLog(@"Supporting actor: %@", actorvalue);
 NSLog(@"Extras needed: %d", extrasvalue);
}
@end

Listing 4-9 The main.m file modified to call Simple’s startPlay method

#import <UIKit/UIKit.h> #import "Simple.h" int main(int argc, char
*argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 Simple * objSimple = [[[Simple alloc] init] autorelease];
 [objSimple startPlay:@"Peter Pan" audienceMembers:500
 supportingActor:@"John Doe" extrasNeeded:55];
 int retVal = UIApplicationMain(argc, argv, nil, nil); [pool release];
 return retVal;
}

Chapter 4: Just Enough Objective-C: Part Two 69

Listing 4-10 Debugger console output from running program

[Session started at 2010-12-29 18:49:55 -0500.]
2010-12-29 18:49:57.242 SimpleMultiArg[3132:20b] The title: Peter Pan
2010-12-29 18:49:57.243 SimpleMultiArg[3132:20b] Audience: 500
2010-12-29 18:49:57.244 SimpleMultiArg[3132:20b] Supporting actor:
John Doe 2010-12-29 18:49:57.245 SimpleMultiArg[3132:20b] Extras
needed: 55

NOTE
Here, startPlay is not the method’s true name. In Objective-C, if a method has more than
one parameter, the method’s parameters (other than the first parameter) are part of the
method’s name. By this book’s end, you should be familiar with this naming convention,
as many of the methods you use will have multiple parameters. For instance, the
startPlay method’s name is actually the following:

startPlay:audienceMemebers:supportingActor:extrasNeeded:

Understanding the id Variable Type, Dynamic
Typing, and Dynamic Binding

Objective-C is a dynamically typed language. Like Java, Objective-C permits object types
to be determined dynamically at runtime rather than statically at compile time. Objective-C
accomplishes this dynamic typing using the id data type.

The id Type
The id variable is a data type that represents an object’s address. Because it’s just an address,
id can be any object, and because its type is a pointer, you don’t need to include the * symbol,
as the * symbol signifies a pointer to a specific type. For instance,

Foo * myFoo;

is a pointer to a Foo object. The compiler knows the pointer points to an address that contains
an object of type Foo. However, the following,

id myFoo;

provides no such information to the compiler. The compiler only knows that myFoo is a
pointer—the compiler knows where the pointer is pointing, but it doesn’t know the data

70 iOS SDK Programming: A Beginner’s Guide

type of what myFoo points to. Only at runtime can it be determined what myFoo actually
points to.

Dynamic Binding and Dynamic Typing
Objective-C accomplishes dynamic behavior using what’s called dynamic typing and dynamic
binding. Dynamic typing means that an object’s type is not determined until runtime. For
instance, a method that takes an id or an instance variable of type id has no way of knowing
the object’s type until the object is actually sent to the method or assigned to the instance
variable.

Dynamic binding means that the method to invoke is not determined until runtime. And,
unlike Java, Objective-C often doesn’t require casting an object to its specific data type before
being used.

Understanding Inheritance
You have already seen how Objective-C classes inherit from parent classes. In the interface,
you specify that a class inherits from another class by placing the parent’s name after the
class’s name and a colon.

@interface SimpleChild : Simple

Like any object-oriented language, Objective-C sets up classes to extend ancestors further
up its hierarchy, with new methods and instance variables. Objective-C child classes can also
redefine an ancestor’s method. But, like Java (and unlike C++), Objective-C allows a class to
inherit from only one parent; Objective-C doesn’t support multiple inheritance.

Overriding Methods
Objective-C inheritance allows overriding methods, but not instance variables. You already
saw an example of overriding methods when you overrode NSObject’s dealloc, retain, and
release methods in the class Foo.

#import "Foo.h"
@implementation Foo
-(void) dealloc {
 NSLog(@"deallocating Foo....");
 [super dealloc];
}
---snip--
@end

Instead of calling NSObject’s methods, the runtime first calls Foo’s. Since Foo’s methods
also call the parent’s version of each method, the runtime looks up Foo’s inheritance hierarchy
for a version of the method until it finds NSObject’s version.

Chapter 4: Just Enough Objective-C: Part Two 71

NOTE
The term “super” refers to the class’s parent. For instance, you might have a method
called doIt that overrides the parent’s doIt method. If your doIt method adds functionality
rather than replacing the parent’s functionality, you should call the parent doIt method
as well.

-(void) doIt {
 [self doMyStuff];
 [super doIt];
}

Overloading Methods
Unlike Java, you cannot overload methods when using Objective-C. In Java you overload a
method when you provide a method with the same name but a different signature in the same
class. For instance, you could define two methods like the following. The two methods are
treated as distinct methods by the Java runtime.

public void myMethod(String name);
public void myMethod(int age);

Not so when using Objective-C—when faced with two methods like these next ones, the
compiler issues an error and will not compile your class.

-(void) myMethod: (NSString *) name;
-(void) myMethod: (int) age;

Because Objective-C does not support overloading, in the Objective-C programming
community, it is common practice to add the argument’s name to the method name.

-(void) myMethodString: (NSString *) name;
-(void) myMethodInt: (int) age;

Finally, you should note that for multiple argument methods, Objective-C’s lack of method
overloading is not problematic if any argument other than the first is different. Remember,
a method’s name includes its argument names. The following two method names are not the
same:

-(void) myMethod: (int) age name: (NSString *) theName;
-(void) myMethod: (NSString *) name age: (int) theAge;

The compiler treats these methods as distinct because their names are actually myMethod:
name: and myMethod:age: and not simply myMethod. Get used to this naming convention; it
might seem strange at first, but it honestly makes Apple’s documentation much easier to use.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

72 iOS SDK Programming: A Beginner’s Guide

Using Categories
Categories allow other classes to be extended without requiring inheritance. A category can
contain both new methods and methods that override a class’s methods. Categories are most
useful when you find yourself in a situation where a supplied class doesn’t provide functionality
you want. To use a category, you create an interface and an implementation that specifies the class
you wish to add a category to, followed by the category’s name in parentheses. For instance, if you
wished to add a category named FooCategory to NSString, you would type the following in the
FooCategory.h file:

@interface NSString (FooCategory)

In the FooCategory.m file, you would type the following:

@implementation NSString (FooCategory)

followed by whatever methods you wished to add to NSString. Then, in the class you wished
to use the category’s methods, simply import the category and the runtime automatically
resolves calls, such as,

[objMyString aMethodIAdded];

to the category rather than NSString.

NOTE
You can’t add instance variables to a class using a category.

NOTE
In the category’s header file, you must import the header file containing the class the
category is extending.

Using Protocols
Protocols are similar to Java interfaces. In Java, an interface specifies the methods that a class
that implements the interface must have. This is often called a contract. A class claiming to
implement an interface should implement that contract—the class is promising it contains
implementations for all of the interface’s method declarations. So when you write a method
like the following, you can rest assured the object has the called method implementation.

-(void) handleDoIt : (id <DoerProtocol>) objADoerImpl {
 [objADoerImpl doSomething];
}

The method handleDoIt takes an id specified to implement the DoerProtocol as an argument.
Then when handleDoIt calls doSomething (a method declared in DoerProtocol), the runtime
automatically, using dynamic binding, finds the correct object method implementation and calls it.

Chapter 4: Just Enough Objective-C: Part Two 73

The code in the method that takes a protocol as an argument can then call protocol methods,
knowing that the class that adopts the protocol has the specified methods. It’s not until runtime
that the actual class method is dynamically bound to the interface method.

Consider a method that takes a protocol as an argument. At compile time, the compiler only
knows that the method takes an instance of the protocol. The compiler doesn’t know the actual
object’s data type. If the method calls a protocol method, the compiler only assumes the method
is declared by the protocol. The compiler doesn’t know the method definition. At runtime,
though, you pass an actual object to the method. When the object is passed to the method, it is
dynamically typed. Then, when the method calls the protocol’s method, the protocol’s method
is dynamically bound to the object’s method. Thus, just like Java, Objective-C lets you specify
generic methods that take a protocol as an argument and then let the runtime dynamically type
and bind the object when running the application.

You define a protocol using the @protocol compiler directive combined with an @end
directive. You define method declarations between the two directives. For instance, the following
code defines a protocol named MyProtocol.

#import <Foundation/Foundation.h>
@protocol MyProtocol
-(NSNumber*) myMethod;
@end

You specify a class conforms to a protocol by adding the protocol’s name in the class’s
declaration in its header file.

@interface Foo : NSObject <MyProtocol>

Specifying a protocol in a class’s declaration guarantees that class implements the methods
declared in the MyProtocol protocol.

Protocols allow adding optional method declarations in addition to required method
declarations. You specify optional methods using the @optional compiler directive and
required methods using the @required compiler directive. The default for methods is required.
For instance, you could modify MyProtocol to have an optional myMethodTwo method.

#import <Foundation/Foundation.h>
@protocol MyProtocol
-(NSNumber*) myMethod;
@optional
-(void) myMethodTwo;
@end

Of course, having a Java programmer’s perspective, we question the logic behind a contract
with an optional method declaration—if you write code against a protocol, you want to be darn
sure the method is going to be there.

You use the protocol similar to a class, only there is a subtle difference. When passing a
class, you aren’t actually passing the class, but rather a pointer. For instance, in the sayHello
method, you are not passing a string called name as a parameter, but rather a pointer to a string.

-(void) sayHello: (NSString*) name;

74 iOS SDK Programming: A Beginner’s Guide

But a protocol isn’t a class; it’s merely a header file with declarations (not definitions).
Instead, either you must pass just the protocol itself (and the id is automatically understood)
or you must pass an id.

Using a protocol rather than an id, you would specify something similar to the following
in the interface of the class using your protocol. Suppose you wished to define a protocol for
thermometers. There are many different ways a thermometer might be implemented. However,
they all must tell the user his or her temperature. So if you created a Doctor class, although
you know it should tell the patient his or her temperature, you do not know the specific type
of thermometer the Doctor will use. So you use a protocol.

-(void) sayTemp : (<ThermProtocol>) objTherm;

You declare that a method takes a protocol as an argument. You don’t specify the object’s
class, though. For instance, in the sayTemp method, you only know objTherm adopts the
ThermProtocol. You do not know objTherm’s actual class type.

When using an id—incidentally, this is the preferred syntax you see in Apple’s
documentation—you would specify something similar to the following:

-(void) sayTemp : (id <ThermProtocol>) objTherm;

In this example, you declare that sayTemp takes any class that implements the ThermProtocol.
Actually, the first method signature without the id is also stating that sayTemp takes any class
that implements the ThermProtocol; only the id is left implicit. Both method signatures work
equally well, but by convention the second signature is what most programmers write.

Handling Exceptions
Objective-C’s exception handling is similar to Java’s and C++’s. Like Java and C++, Objective-C
provides a try-catch block. Code that might raise an exception is wrapped in a try block, followed
immediately by a catch block. The @try compiler directive defines a code block that might throw
an exception. The @catch directive defines a code block that handles the immediately preceding
try block. The @finally directive defines a code block that is always executed, regardless if an
exception was thrown.

@try { } @catch(NSException *e) { } @finally { }

The most general exception is an NSException. All exceptions inherit from this Cocoa class.
Like Java, you can throw an exception. In Objective-C, you use the @throw compiler directive.

NOTE
Apple recommends using the NSError Foundation Framework class rather than
NSException for handling expected errors. See Apple’s “Introduction to Error Handling
Programming Guide for Cocoa” and also “Introduction to Exception Programming
Topics for Cocoa” for more information on both classes. You will see instances of
NSError and NSException scattered through this book’s examples.

Chapter 4: Just Enough Objective-C: Part Two 75

Summary
This chapter covered a lot of topics in not very many pages, so it’s okay if you’re slightly
overwhelmed. If you understood half of this chapter’s topics, you should do okay for the
remainder of the book. If you wish, you might consider reading Apple’s “Object-Oriented
Programming with Objective-C,” available from the iOS Developer’s site. It’s terse and
provides a good introduction to object-oriented programming concepts using Objective-C.
Because you already know Objective-C’s basic principles, understanding that document
should prove easier. Also, although produced by a different publisher, we also recommend the
book Programming in Objective-C 2.0 by Stephen G. Kochan (Addison-Wesley Professional,
2009). This book is clear, concise, and will teach you everything you could ever want to know
about Objective-C. However, these two chapters should provide you with everything you
need to know so that you can understand the remainder of this book and get started with your
own iOS apps. James also has a separate Objective-C book entitled Objective-C for iPhone
Programmers: A Beginner’s Guide (McGraw-Hill, 2010).

For now, continue reading this book and then before pursuing advanced iOS topics,
consider quickly working through a specific Objective-C book or at least keeping one
handy for reference. Objective-C is not hard once you get past the different syntax. If you
understand properties, protocols, and releasing instance variables in the dealloc method
and also Objective-C’s basic syntax, then you should feel comfortable moving to the next
chapter. If you have a basic understanding, trust us when we say that, by this book’s end,
Objective-C’s syntax will seem natural.

This page intentionally left blank

77

Chapter 5
Deploying to an iPhone,
Debugging, and Testing

78 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Registering for iOS developer membership

Obtaining a certificate and provisioning

Debugging an iPhone application

Using zombies to debug

Finding memory leaks

We won’t be covering the iOS’s UIKit or Cocoa Touch quite yet, but have patience, you
begin these topics in the next chapter. Do not skip to the next chapter, though; this

chapter is important. First, we’ll get you set up with Apple’s iOS Developer Program—a
necessary step to install and test your app on any iOS device and submit your app to
the iTunes App Store. You will also become familiar with many basic tasks required for
compiling, debugging, and installing your app on an iOS device.

Throughout the next few chapters, we will talk about creating and running iPhone apps,
but everything covered applies equally to any iOS device: all models of the iPhone as well
as the iPod Touch and iPad. The deployment and debugging process and most of the UIKit
functionality is the same for all iOS devices. In Chapter 19 we’ll cover how to create a
universal application that recognizes and takes advantage of the larger screen and additional
features of the iPad. Where it’s relevant, we’ll also talk about the differences in the iPhone
4 like the higher resolution display and how to take advantage of them while still running
correctly on other iOS devices.

This chapter is not comprehensive, but it does show you the debugger, Xcode 4’s major
features, and how to get your app on your device for debugging. This chapter covers two
topics: installing applications on an iPhone or iPod touch and debugging iOS applications.
Although you can perform basic debugging using the iPhone Simulator on your computer, truly
debugging and testing your application requires installing and running it on an iPhone, iPod
touch, or iPad. For instance, consider memory limitations. On your desktop computer, memory
is virtually unlimited. Moreover, you probably have a dual-core, blazing-fast processor. Not so
on your iPhone. The iPhone, iPod touch, and iPad all have fewer resources available than the
iPhone Simulator, so you should test your applications on an actual device.

NOTE
You must have an iPhone Developer membership to complete some tasks in this chapter.
If you do not, you can follow along, but we’d recommend getting membership as soon
as possible.

Chapter 5: Deploying to an iPhone, Debugging, and Testing 79

This chapter briefly reviews obtaining membership to the iPhone Developer’s program.
It then covers obtaining a certificate and provisioning for your application. This chapter’s
coverage is not comprehensive, though, as the iPhone web site practically holds your hand
through the certificate and provisioning process, and there is no need to duplicate its hand-
holding here. After installing an application on an iPhone or iPod touch, you can truly debug
and test the application. This chapter’s second half introduces you to debugging in Xcode
and testing for memory leaks using Instruments. As with the certificate and provisioning
discussion, this chapter’s debugging and testing coverage is not comprehensive, but it should
be enough to make you comfortable with performing both tasks.

Q: Why should I care about getting my app on my device right now? Shouldn’t I
wait until I know how to develop before I spend any money and sign up for iPhone
Developer Program membership?

A: No. You should obtain membership as soon as possible. Some code will work on the iPhone
Simulator but not on an actual iOS device. Moreover, the converse is also true. Some
hardware features of iOS devices like special gestures, geolocation, the accelerometer, etc.
either can’t be mimicked effectively in the simulator or won’t behave the same as on an
actual device. You’ll also find it tremendously fulfilling to see your app running on your
iPod or iPhone. And you can show off your development efforts to friends and family.

Ask the Expert

Installing Applications on an iPhone
Installing an application on an iPhone or iPod touch requires iPhone Developer membership.
After you have a membership, installing an application is not difficult, as Apple’s Developer
Portal provides step-by-step instructions.

NOTE
Apple’s “iPhone Development Guide,” available online, provides a good introduction
to installing applications on an iPhone or iPod touch. The examples here illustrate
installing an application as of fall 2010. Undoubtedly there will be differences in the
web application by the time you read this chapter. The process’s fundamentals remain
the same, though.

Membership
A basic membership in the iPhone Dev Center on the Developer Connection web site is a
prerequisite to downloading the iPhone SDK, and you probably signed up for that while reading
Chapter 1. However, to install applications and eventually sell applications on the App Store

80 iOS SDK Programming: A Beginner’s Guide

requires membership in the iPhone Developer Program. Apple offers two membership types:
corporate and individual. You must apply, pay a $99 fee, and receive acceptance before becoming
a full individual member. After becoming a member, you are granted access to the iPhone
Developer Program’s Portal. This site is where you obtain certificates, assign new devices, create
application IDs, create provisioning profiles, and submit an app to the App Store for approval.

If you are not a registered, paid iPhone developer, you should become one now. Go to the
iPhone Dev Center (http://developer.apple.com/programs/iphone/) for complete instructions.
You cannot debug apps on your device until you register.

Certificates, Devices, Application IDs, and Provisioning
A certificate is the first thing that is required. Log in to your iPhone Developer Program account
and click the iPhone Provisioning Portal link. The Provisioning Portal is where you’ll create
a signing certificate, register devices, create provisioning certificates, and more (Figure 5-1).
Apple has provided lots of online help, including videos, for the Provisioning Profile. Take a
little time to go through their documentation before proceeding.

You obtain your certificate by following the instructions on the How To tab in the portal’s
Certificates tab.

Figure 5-1 The Certificates tab

http://developer.apple.com/programs/iphone/

Chapter 5: Deploying to an iPhone, Debugging, and Testing 81

After obtaining the certificate, you must register the devices you wish to use for debugging.
You’ll need brief access to each of these devices to retrieve its unique device ID, but otherwise
these could be iOS devices that belong to your friends or anyone you want to use for testing your
new app (Figure 5-2). As with certificates, complete instructions are provided on the How To tab.

After registering your devices, the next step is to create an App ID for each of your
applications. Any application you wish to test on a device must have an App ID (Figure 5-3).
If an app will use Apple’s Push Notifications or require In App purchasing, then it must have a
unique App ID. For other applications you can create a wildcard App ID that ends with a * and
use it for multiple apps.

Figure 5-2 The Devices tab

82 iOS SDK Programming: A Beginner’s Guide

After obtaining the App ID, you must obtain a provisioning profile (Figure 5-4). A
provisioning profile essentially bundles together a signing certificate, a set of devices, and an
App ID. It will be installed on your device so that your app can be installed and tested. The
provisioning profile will be installed on your device(s) and allows you to install a particular
application on a particular device.

Apple’s Developer Portal has a complete discussion of the provisioning process; the
process is not difficult. What you can do when learning the process is to open two browser
windows, one where you work through the steps and the other to skim the instructions as
needed. In the following example, we take you through registering and installing a simple
application on an iPhone.

Figure 5-3 The App IDs tab

Chapter 5: Deploying to an iPhone, Debugging, and Testing 83

Try This Deploying an Application to iPhone
1. Create a new View-based Application named OnMyPhone. Keep track of the Company

Identifier and Product Name so that you can create an App ID in the iPhone Provisioning
Portal that matches.

2. Log in to the iPhone Developer Program Portal.

3. Click the Certificates tab. If you haven’t installed your certificate, do so now. These steps
assume a certificate (see Figure 5-1).

4. Click the Devices tab. If you haven’t installed your devices, do so now. These steps assume
a registered device (see Figure 5-2).

Figure 5-4 The Provisioning Profile tab

(continued)

84 iOS SDK Programming: A Beginner’s Guide

5. Click the App IDs tab and add the application (see Figure 5-3). Click the Add ID button on
the page’s right, and add the OnMyPhone application (Figure 5-5). You’ll need to match
the Bundle Identifier to what you used in Step 1.

6. Click the Provisioning tab and click the New Profile button on the page’s right (see
Figure 5-4). Complete the form; be certain you select the certificate and the device you
want to provision (Figure 5-6).

Figure 5-5 Adding an application to the App IDs

Chapter 5: Deploying to an iPhone, Debugging, and Testing 85

7. Click Submit, and you return to the Provisioning page. The Provisioning Profile’s status
for My On My Phone Profile should say “Pending.” Refresh the page until the status has
an “Active” status. You are usually quickly granted a profile.

8. Download the profile by clicking the Download button next to the profile. The profile
should have a title like “On_My_Phone_Profile.mobileprovision.” Move it to a safe
location.

9. Ensure your device is connected to your computer.

10. Return to Xcode. From the Window menu, select Organizer. If your device is attached, it
should appear under DEVICES (Figure 5-7).

Figure 5-6 Provisioning the OnMyPhone application

(continued)

86 iOS SDK Programming: A Beginner’s Guide

11. Drag the provision file to the Provisioning list.

12. With your iOS device attached, Xcode will probably default to building/running on your
device. If not, choose OnMyPhone(your device name) from the pull-down menu at the top
of the project window instead of OnMyPhone (iPhone Simulator 4.2).

NOTE
With new projects, Xcode will default to building for the latest version of the SDK. This
is almost always what you’ll want. You should build your app for the latest SDK version
but still specify in the build settings that it will run on a range of iOS versions older than
the SDK if you don’t absolutely require a new feature only available in the latest OS.

Figure 5-7 The Organizer window

Chapter 5: Deploying to an iPhone, Debugging, and Testing 87

13. You might receive an error the first time. If the build fails, click the Issues button in the
navigation pane (the one with an exclamation point) and then click the issue to see details
(Figure 5-8). If the application identifier that you chose when you created the project
doesn’t match the one in the App ID of the provisioning profile, you’ll get a signing error.
If that happens, you can change the application’s identifier by editing the file OnMyPhone-
Info.plist (Figure 5-9) or you can go back to the Provisioning Portal and edit to create a
new App ID or profile.

14. Close the Project Info window and open Info.plist. Change the bundle identifier to
OnMyPhone.

15. Click Run, and the application should install and run on your device.

Figure 5-8 Error message

(continued)

88 iOS SDK Programming: A Beginner’s Guide

NOTE
For more information on provisioning, obtaining App IDs, and other program portal
topics, refer to Apple’s “iPhone Developer Program User Guide.”

Debugging
Debugging and testing your application is paramount if you wish to provide users with a robust
application. Xcode provides several excellent tools for debugging and testing your applications. In
this section, you explore basic debugging using Xcode’s graphical front end to the GNU debugger.

NOTE
For a more complete introduction to debugging, refer to Apple’s “Xcode Debugging
Guide,” available online.

Figure 5-9 Changing the application bundle identifier

Chapter 5: Deploying to an iPhone, Debugging, and Testing 89

Using the Debugger
Xcode’s visual debugger makes it easy to step through the execution of your app, examine
variable values, etc. When you select View | Navigators | Debugger from the main menu,
you’ll see the debugger’s panes (Figure 5-10). The left (navigation) pane shows the app’s
threads and the call stack for each. This tells you where your application is currently at in any
point in the application’s processing. The main pane on the right is the Text Editor pane, which
displays the source code for the method, lets you set/remove breakpoints, and also permits you
to view the values of variables by hovering over them. If you select View | Show Debugger
Area from the main menu, you’ll see the debugger area at the bottom of the window. This pane
lets you control execution of your app, see/edit the current function’s variable values, and view
the contents of the console (log file).

Along the top of the debugger area, notice the buttons that control the debugger. From left
to right, they are Continue, Step Over, Step Into, and Step Out. To the right of them you’ll see
the current stack. Table 5-1 summarizes each button’s purpose.

Figure 5-10 The debugger window

90 iOS SDK Programming: A Beginner’s Guide

Breakpoints
Breakpoints tell the debugger where to pause. If you set no breakpoints and then run the
application in the debugger, nothing unusual happens, as you didn’t tell the application to pause.
There are several ways to set a breakpoint, but the easiest is to click in the Editor window’s gutter
next to the line of code you wish the debugger to stop at (Figure 5-11). If you wish to disable the

Table 5-1 Debugger Area Buttons

Button Function

Pause/Continue Pauses the application running in the debugger. Note, when the application is
paused, this button says Continue. Continue “un-pauses” the application and
resumes processing.

Step Over Processes the next line of code. If the next line is a function call, it executes the
function, proceeding to the next line.

Step Into Processes the next line of code. If the line is a function call, it jumps to the code
inside the function.

Step Out Processes until the current function exits and stops in the function that called it.

Figure 5-11 Setting a breakpoint

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 5: Deploying to an iPhone, Debugging, and Testing 91

breakpoint, click it again and it turns light blue, indicating it is disabled. If you wish to remove the
breakpoint, CTRL-click and select Remove Breakpoint from the pop-up menu. Alternatively, you
can drag the breakpoint off the gutter to remove it. When you run the application in the debugger,
it will pause processing at the first encountered breakpoint.

Stepping Through Code
When an application pauses at a breakpoint, you can step through your code’s execution. Step
Over moves directly to the next line, executing any function and stopping on the next line.
Step Into also moves to the next line, but if the next line is a function, it jumps to the function’s
first line, and you can either step through the function line by line or step out of the function. If
you choose Step Out, the debugger jumps to the first line after the function call.

Debugger Datatips
One thing you can do while debugging is obtain a variable’s value and modify it while debugging.
You can move your cursor over the variable in the source code, and a datatip appears with the
variable and its value (Figure 5-12). You can even modify the value if desired.

Figure 5-12 The Debugger datatips

92 iOS SDK Programming: A Beginner’s Guide

Watchpoints
Sometimes you might be interested in having the program pause when a value changes.
A watchpoint pauses the program when the watched item’s value changes. Setting a watchpoint
is tricky the first time, but then it becomes easy. To set a watchpoint, start the application in the
debugger, and when the application pauses at a breakpoint, select the variable in the debugger
window’s variable list. Right-click it and select “Watch address of” from the shortcut menu
(Figure 5-13). After you click Continue, if the value changes, the debugger notifies you and
pauses (Figure 5-14). It’s worth noting that watchpoints are not persisted across debugging
sessions. Every application launch requires that you reestablish your watchpoints.

Figure 5-13 Setting a watchpoint

Chapter 5: Deploying to an iPhone, Debugging, and Testing 93

Try This Debugging an Application
1. Create a new Utility Application named Debug.

2. Select FlipsideView.xib to edit it in the Interface Builder. Select View | Utilities | Show
Utilities if necessary and then click the Connections button (tiny arrow in a circle). Remove
the connection between the view and the File’s Owner by clicking the tiny X next to Files’s
Owner (Figure 5-15).

Figure 5-14 The debugger notifies you when a watchpoint’s value changes.

Figure 5-15 Remove the view from the view controller.
(continued)

94 iOS SDK Programming: A Beginner’s Guide

3. Click the Run button to run the application. Click the Info button in the lower right of the
simulator screen, and the application crashes.

4. Quit the iPhone Simulator and return to Xcode.

5. Open MainViewController.m and add a breakpoint at the second line in showInfo
(Figure 5-16).

6. Click the Run button again to run the application. If the Debug Area is not visible, select
View | Show Debugger Area.

7. Try stepping over the next few lines and the application crashes. You now know exactly
which line in your code causes the application to crash. Something about presenting the
FlipsideViewController caused the crash.

Figure 5-16 Debugger window stopped at breakpoint in showInfo

Chapter 5: Deploying to an iPhone, Debugging, and Testing 95

TIP
Forgetting to set a File’s Owner view outlet is a common mistake.

8. Stop the iPhone Simulator and return to Xcode. Remove the breakpoint.

9. From the main menu, select View | Navigators | Breakpoint.

10. Click the + in the lower-left corner to create a new breakpoint and select Add Symbolic
Breakpoint from the pop-up menu. Type objc_exception_throw for the symbol and click
Done (Figure 5-17). You’ve now set a breakpoint in the code that’s called at the moment
the error occurs.

Figure 5-17 Adding objc_exception_throw as a breakpoint

(continued)

96 iOS SDK Programming: A Beginner’s Guide

11. Click the Run button to launch the application in the debugger.

12. Click the Info button, and the application halts at the newly set breakpoint. Open the
debugger area, if it is not already open (Figure 5-18). You may want to drag the slider in
the lower left of the window to increase the detail in the stack trace.

13. Notice the upper-left window. This contains the stack listing. Follow the stack down
several items, and you see the last thing to occur prior to an NSException is loading the
view from the nib. Follow the stack to row 12, click it, and you see the line of code in the
view controller that was executed in the right pane (Figure 5-19). So you know trying to
load the view from the nib caused the crash.

Figure 5-18 Debugger window paused at objc_exception_throw breakpoint

Chapter 5: Deploying to an iPhone, Debugging, and Testing 97

NSZombieEnabled
When an object is deallocated, if there are any objects with a reference to the deallocated
object, they are no longer referencing a valid object. Any messages sent to the deallocated
object result in errors. Often, the error is rather cryptic. For instance, the following code
fragment is obviously an error.

FooBar * myFooBar = [[FooBar alloc] init];
NSMutableArray *myArray = [[NSMutableArray alloc] initWithObjects:

 myFooBar,nil];
[myFooBar dealloc];
[[myArray objectAtIndex:0] sayHello];

Figure 5-19 Following the stack trace takes you to an error’s source.

98 iOS SDK Programming: A Beginner’s Guide

Try This

FooBar is allocated, initialized, and added to myArray. There are two references to
myFooBar, so its retainCount is two. However, deallocating myFooBar makes both references
invalid, pointing to deallocated memory space. The sayHello message is sent to the first object
in myArray—the problem is that the object no longer exists. Although in this simple example
it is easy enough to surmise the cause of the error message, in a real application, finding this
type of error’s source is often difficult.

objc[1289]: FREED(id): message sayHello sent to freed

 object=0x521a90 Program received signal: "EXC_BAD_INSTRUCTION".

Zombies help avoid this nebulous error, helping you track down an error’s source. You
enable zombies by setting the NSZombieEnabled environment variable in Xcode. Then, when
debugging the application, rather than releasing an object, the debugger creates a zombie
object. The zombie knows its original identity before joining the undead. The result is that you
usually receive a more descriptive error message.

2009-02-28 12:28:38.749 Zombie[1316:20b] *** -[FooBar sayHello]:
 message sent to deallocated instance 0x52c6a0

Again, in this simple example, the difference is trivial; in a real-world project, the difference
is not trivial. The following task illustrates using NSZombieEnabled.

Enabling Zombies
1. Create a new View-based Application named Zombie.

2. Create a new Objective-C class called FooBar.

3. Create one method called helloThere (Listing 5-1). Don’t forget to put the method’s
signature in FooBar’s interface (Listing 5-2).

Listing 5-1 FooBar.m

#import "FooBar.h"
@implementation FooBar
-(void) sayHello {
 NSLog(@"Hello there...");
}
-(void) dealloc {
[super dealloc];
}
@end

Chapter 5: Deploying to an iPhone, Debugging, and Testing 99

Listing 5-2 FooBar.h

@interface FooBar : NSObject {
}
-(void) sayHello;
@end

4. Modify application:didFinishLaunchingWithOptions in ZombieAppDelegate (Listing 5-3).
Don’t forget to import FooBar.

Listing 5-3 ZombieAppDelegate.m

#import "ZombieAppDelegate.h"
#import "ZombieViewController.h"
#import "FooBar.h"
@implementation ZombieAppDelegate
@synthesize window;
@synthesize viewController;
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 FooBar * myFooBar = [[FooBar alloc] init];
 NSMutableArray * myArray = [[NSMutableArray alloc]
 initWithObjects:myFooBar,nil];
 [myFooBar dealloc];
 [[myArray objectAtIndex:0] sayHello];

 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
 return YES;
}

- (void)applicationWillTerminate:(UIApplication *)application {
 // Save data if appropriate.
}

-(void)dealloc {
 [viewController release];
 [window release];
 [super dealloc];
}
@end

(continued)

100 iOS SDK Programming: A Beginner’s Guide

5. Click the Run button to build and debug the application. Notice the first time you run the
application you may not get an error at all (even though we sent a message to a deallocated
object). This is part of what makes finding and fixing errors like this so hard—if the
memory didn’t happen to get used for anything else in the meantime, it might remain valid
for an unpredictable amount of time. Even if you do get an error message, it is not all that
descriptive (Listing 5-4). The debugger only knows the sayHello message was sent to an
object already freed. The debugger doesn’t know the object’s identity. To change this, you
must enable zombies.

Listing 5-4 Debugger Console error logging when zombies are not enabled

Attaching to program: '/Users/bward/Library/Application Support/iPhone
Simulator/User/Applications/05688B53-AF22-4F21
-95D3AFFE2682A6EA/Zombie.app/Zombie', process 1351.
objc[1351]: FREED(id): message sayHello sent to freed object=0x521bd0
Program received signal: "EXC_BAD_INSTRUCTION".

6. In the pull-down menu next to the Run button, select Edit Active Scheme. Select Launch
in the left column and then click the Arguments tab. This should let you edit the arguments
passed to the app on launch (Figure 5-20).

Figure 5-20 The Executable Info window

Chapter 5: Deploying to an iPhone, Debugging, and Testing 101

7. Click the + and add the NSZombieEnabled variable to the environment variable list.
Assign it the value YES and click OK.

8. Run the app again. Now the error message is more descriptive (Listing 5-5).

Listing 5-5 Debugger Console output after zombies are enabled

2010-08-21 15:10:57.345 Zombie[16692:207] *** -[FooBar sayHello]:
 message sent to deallocated instance 0x592b640

Instruments—Leaks
Instruments is a powerful suite of debugging and testing tools. This chapter cannot possibly
cover it adequately. Tools include Activity Monitor, CPU Sampler, Leaks, Object Allocations,
Core Animation, OpenGL ES, and System Usage (Figure 5-21).

Figure 5-21 Instruments

102 iOS SDK Programming: A Beginner’s Guide

Try This

NOTE
For more information on Instruments, refer to Apple’s documentation “Instruments User
Guide,” available online or via the Instruments Help menu.

However, one tool worth introducing you to here is Leaks. You can use Leaks without
knowing much about it. The Leaks instrument allows you to easily find memory leaks in your
application. It tells you how many leaks occurred, each leak’s size, the address of the leak, and
the leaked object’s type. Using Leaks is fairly intuitive—rather than explaining, let me simply
explain by example through the following application.

Find a Memory Leak
In the following task, you find memory leaks using the iPhone Simulator. If you didn’t do the
OnMyPhone exercise in this chapter’s beginning, do so now.

Find a Memory Leak on iPhone Simulator
1. Create a new Utility application named Sieve.

2. Create a new Objective-C class named FooBar.

3. Open FlipsideViewController.m and implement the viewDidAppear method (Listing 5-6).
Don’t forget to import FooBar.h.

Listing 5-6 The viewDidAppear method

-(void) viewDidAppear:(BOOL) animated {
 FooBar * myFooBar = [[FooBar alloc] init];
 }

4. Select Edit Active Scheme from the pull-down menu. Click Launch in the left column;
then select the Instruments radio button and select Leaks from the pull-down menu. Click
OK to save your changes to the scheme.

5. Run the application. Ignore the warning informing you that you never use the FooBar
instance in viewDidAppear. Note that when you’re using Instruments, Xcode will run
the iPad Simulator rather than the iPhone Simulator. You’ll also see the Instruments
application automatically launch.

Chapter 5: Deploying to an iPhone, Debugging, and Testing 103

6. Click Info and Done repeatedly for about 30 seconds. When finished, click Stop in the
Instruments window (Figure 5-22).

7. Click Leaks, and a detailed list of the leaked objects appears. Click one of the leaked
objects.

8. Select View | Extended Detail from the main menu, and a call stack appears on the
window’s right (Figure 5-23).

9. Double-click one of the leaks, and the source code will display with the line allocating and
initializing FooBar (Figure 5-24).

Figure 5-22 The Leaks panel

(continued)

104 iOS SDK Programming: A Beginner’s Guide

Distributing Your Application
After debugging and testing in the iPhone Simulator and on your own device(s), you’ll want to
build a deployment version of your app for ad hoc testing by your beta testers (friends, family,
etc.) and then a final version for submission to the iTunes App Store. The details of these
deployment steps are beyond the scope of this book, but we’ll summarize them briefly here.
For comprehensive instructions, refer to the Apple documentation and the built-in help on the
Provisioning Portal web site.

Ad Hoc Deployment and Testing
Once you’ve tested your app as much as you can, the next step is to hand it off to some additional
beta testers to make sure they understand how to use it and don’t stumble across any bugs.
Apple’s number one reason for rejecting apps submitted to the App Store is crashing bugs they

Figure 5-23 The Leaks panel showing extended details

Chapter 5: Deploying to an iPhone, Debugging, and Testing 105

find during the review process—it’s worth your time to make sure your app is rock solid before
submitting it.

The first step in doing ad hoc testing is to collect the device IDs for each of the test devices
and add them in the Provisioning Portal. Note that you’re only allowed 100 ad hoc test devices
and they only reset once a year, so make sure that you’re signing up people who will be
available to test all of your applications. Once you’ve got the device IDs added, you’ll need
to create a Distribution Certificate and use it to create an Ad Hoc Provisioning Profile that
includes all of the device IDs. Download that profile and save it someplace safe—you’ll be
sending it to each of your testers along with your app.

All of the nifty debugging tasks that you accomplished in this chapter were because your
app was compiled for debugging with additional information embedded in the app. You don’t
want this extra stuff in your released application; it will slow it down or worse. For instance,
suppose you left the NSEnableZombie environment variable set to YES. Now when the
application ran, released objects would be turned into zombies rather than the objects being

Figure 5-24 Leaks showing source code where the object was allocated

106 iOS SDK Programming: A Beginner’s Guide

returned to available memory. Your application would be sluggish and could be abruptly
terminated by the device’s operating system. We get rid of this extra debugging information by
building a release version of your app.

To build a release version for ad hoc distribution, you’ll want to create a new scheme
(essentially a conveniently named collection of build settings). In the pull-down menu at the top
of the window, select New Scheme, give it a name like “Ad hoc distribution,” and pick Launch
Scheme from the two choices. This creates a new scheme where we’ll change some build settings,
while leaving your original scheme easy to switch back to for additional debugging builds.

In the pull-down menu, select Edit Active Scheme, click Build in the left column, and
change the Build Configuration from Debug to Release (Figure 5-25). Click OK to save the
change to the new scheme.

Now select your app in the navigation panel on the left and then click Build Settings
(Figure 5-26). Make sure the Base SDK is set to the most recent one available. Under
Deployment set the Targeted Device Family to “iPhone”. Set the iOS Deployment Target
to the minimum version of iOS that your app requires. Unless you’re using features only
available in newer OS versions, iOS 3.0 is probably good, since it will allow anyone whose
device is at least updated to iOS 3 to use your app.

Figure 5-25 Setting the Build Configuration to Release

Chapter 5: Deploying to an iPhone, Debugging, and Testing 107

Now we’re ready to build the App file that you’ll be sending to your ad hoc testers. Make
sure that you’re building for a device rather than the simulator by checking the pull-down menu.
Then select Product | Clean Ad Hoc Distribution from the main menu followed by Product |
Build Ad Hoc Distribution. You can check the Xcode Preferences to see where your App file
was written, but it probably defaulted to Library/Developer/Xcode/DerivedData/workspace-
name/Build/Products/Release-iphoneos/app-name. This is the file that you can send to your
testers along with the Ad Hoc Distribution Profile that you created earlier. They can just drop
both files onto iTunes and then sync their device to start testing.

Distributing Your App via the App Store
To really build the final version of your app for submission to the iTunes App Store, you
should check Apple’s current instructions for submitting apps. Complete instructions can be
found on the iPhone Developer web site. You must have an iTunes Connect Account if you
wish to sell your app on the App Store.

You will want to make another new scheme similar to the one we made in the preceding
section, but this time, when creating the scheme, select Distribution Scheme rather than Launch
Scheme. This will build an archived version of your app for uploading to iTunes Connect.

Figure 5-26 The Build Configuration’s settings

108 iOS SDK Programming: A Beginner’s Guide

In addition to building a release version of your app, if you are submitting it to the App
Store, you will also have to create an icon for it in several sizes, upload sample screenshots,
write a description of your app, and pick a category for it. Complete instructions are available
on Apple’s web site.

NOTE
Remember, installing and debugging on your test devices that can be attached to your
computer do not require anything other than what was covered in the beginning of this
chapter. You are not required to create a different build configuration (scheme) or Ad
Hoc Distribution Provisioning Profile to debug and test on your devices.

Summary
Effective debugging and testing of your application requires installing it on a test device. It is
also much more rewarding to see your app run on a bona fide iPod Touch, iPhone, or iPad. But
getting your application on a device requires you to become a paid iPhone Developer Program
member. You must then follow the instructions to getting the proper credentials so that you can
install on your device. Trust us when we say you can muddle through the online instructions,
they are easy to follow.

Many iPhone errors are cryptic at best. Rather than running and rerunning an application
aimlessly until you eventually find the error, take some time to learn the debugging tools that
Xcode has available to you. Refer to the documents referenced throughout this chapter. Use
the debugger to find errors. After debugging your application, test its memory usage on the
iPhone Simulator. After testing on the iPhone Simulator, install the application on your device,
and debug and test again. Pay careful attention to memory and resource use, as an iPhone’s
memory is limited. Also ensure your application runs quickly and is responsive. If you happen
to only own a newer iOS device, be careful to also test on older-generation devices, since they
have less memory and slower processors. Careful debugging and testing of your application
can often be the difference between “just another mediocre app” and the “best app” in your
category on the App Store. Chances are your application is not going to be the first of anything
anymore, so try to make it the best.

109

Chapter 6
UIApplication and
UIApplicationDelegate

110 iOS SDK Programming: A Beginner’s Guide

Try This

Key Skills & Concepts
Understanding the UIApplication class

Understanding the UIApplicationDelegate protocol

Handling application startup and termination

Handling application interruptions

Every iOS application has one UIApplication. UIApplication is an iOS application’s starting
point and is responsible for initializing and displaying your application’s UIWindow. It

is also responsible for loading your application’s first UIView into the UIWindow. Another
responsibility UIApplication has is managing your application’s life cycle. UIApplication
fulfills this management responsibility using a delegate called UIApplicationDelegate.
Although UIApplication receives events, it’s the UIApplicationDelegate that handles how
an application responds to those events. Events the UIApplicationDelegate might handle
include application life cycle events, such as startup and shutdown, and system events like
incoming phone calls and calendar alerts. In this chapter, after learning how to load an
application’s root view into the UIWindow, you explore handling system events using the
UIApplicationDelegate protocol.

Adding a UIView and UIViewController
to a UIApplicationDelegate

Before continuing, create this chapter’s project; this chapter uses the same project throughout.
In this project, you start with the simplest iOS template, a Window-based application. You’ll
create the application from scratch by first creating a xib and a corresponding view controller.
You’ll then modify the application’s delegate so that it loads the view.

1. Create a new Window-based Application in Xcode by selecting File | New | New
Project and then selecting Application under iOS in the left column and Window-
Based Application. Select iPhone in the Device Family pull-down. Name the project
AddViewProject.

2. In the navigation pane, expand the Classes folder. This folder contains the AddViewProject
AppDelegate.h and AddViewProjectAppDelegate.m files. These two files implement the
project’s custom class that adopts the UIApplicationDelegate protocol.

Chapter 6: UIApplication and UIApplicationDelegate 111

3. Highlight the Resources folder. CTRL-click and select New File from the pop-up menu.
Select User Interfaces from the New File dialog, and select Empty XIB (Figure 6-1). You
may also have to select Resources as the group in the pull-down when naming the file.

4. Name the xib FirstViewController and click Finish.

5. Highlight the Classes folder. Select File | New File from the menu.

6. Select the UIViewController subclass from the Cocoa Touch Classes and click Next
(Figure 6-2).

NOTE
You could have created the view controller first and then checked the “With XIB for user
interface” check box; Xcode would then have generated the xib for you.

Figure 6-1 Creating an Empty XIB Interface Builder

(continued)

112 iOS SDK Programming: A Beginner’s Guide

7. Name the file FirstViewController.m. Click Finish.

8. Click FirstViewController.xib to open it in Interface Builder. Select View | Utilities | Object
Library from the main menu to display the object library in the lower-right Libraries pane.

9. Scroll down to the View object, and drag and drop it onto the FirstViewController.xib
Document window.

10. Select File’s Owner icon (the transparent cube to the left of the drawing area). Select View
| Utilities | Identity from the main menu to switch the Inspector pane to display object
identity. Now select FirstViewController as the class in the pull-down menu (Figure 6-3).

Figure 6-2 Creating a UIViewController

Chapter 6: UIApplication and UIApplicationDelegate 113

Figure 6-3 Select FirstViewController as the file’s owner.

11. Select the File Owner icon again. Select View | Utilities | Connections from the main
menu (or just click the connections button at the top of the Utilities Area). Drag from
the circle next to View to the view in the drawing area to set the newly created view as
FirstViewController’s view outlet (Figure 6-4).

12. Select the view, select View | Utilities | Object Attributes from the main menu and then
click in the background color box to change its color (Figure 6-5).

13. Save FirstViewController.xib.

14. Open AddViewProjectAppDelegate.h, import FirstViewController.h, and create a property
referencing the FirstViewController class (Listing 6-1).

(continued)

114 iOS SDK Programming: A Beginner’s Guide

Listing 6-1 AddViewProjectAppDelegate.h interface

#import <UIKit/UIKit.h>
#import "FirstViewController.h"
@interface AddViewProjectAppDelegate : NSObject
<UIApplicationDelegate> {
 UIWindow *window;
 FirstViewController *first;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) FirstViewController *first;
@end

Figure 6-4 Setting the view as the File’s Owner view

Chapter 6: UIApplication and UIApplicationDelegate 115

15. Open AddViewProjectAppDelegate.m, synthesize first, and modify applicationDidFinish
Launching: so that it obtains a reference to FirstViewController from FirstViewController
.xib and then adds its view as a subview to the window. FirstViewController.m should
appear identical to Listing 6-2. Don’t forget to deallocate the view in the delegate’s dealloc
method.

Listing 6-2 AddViewProjectAppDelegate.m implementation

#import "AddViewProjectAppDelegate.h"
@implementation AddViewProjectAppDelegate
@synthesize window;
@synthesize first;

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

Figure 6-5 Changing the view’s color

(continued)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

116 iOS SDK Programming: A Beginner’s Guide

 first = [[FirstViewController alloc]
 initWithNibName:@"FirstViewController" bundle:nil];
 [window addSubview: [first view]];
 [window makeKeyAndVisible];
 return YES;
}

- (void)applicationWillTerminate:(UIApplication *)application {

 // Save data if appropriate.
}
 -(void)dealloc {
 [window release];
 [first release];
 [super dealloc];
}
@end

16. Click the Run button. Your colored view should load into the iPhone Simulator (Figure 6-6).

Figure 6-6 The application in iPhone Simulator

Chapter 6: UIApplication and UIApplicationDelegate 117

In Steps 10 and 11, you manually connected AddViewProjectAppDelegate to its UIView.
Moreover, you placed that view in its own nib. Every nib has an owner. Recall that every
application has one UIWindow. UIWindow is in a project’s MainWindow.xib. That nib’s
owner is UIApplication. Also notice that Xcode added the AddViewProjectAppDelegate to
MainWindow.xib and connected it to the UIWindow and set the UIApplication’s delegate.

Nibs you create should have a class adopting the UIViewController protocol as an owner,
which is what you did in Step 10. In Step 9, you tied the UIView created in the nib in Interface
Builder to the UIViewController created in Xcode. This is how the two objects “know” about
each other. You learn more about UIViewControllers and UIViews—and connecting them—in
Chapter 7.

NOTE
Notice that you created FirstViewController’s view in its own FirstViewController.xib file.
You could have opened MainWindow.xib, dragged a view onto the window, and used
this nib for your user interface. But this is not the preferred way of using views in nibs.
Apple recommends one view per nib file. The reason for this recommendation is that an
application must load all views and all controls that reside in the same nib. Using a new
nib file for each view reduces your application’s memory use because you only load
views as needed.

Q: What is that initWithNibName line in Listing 6-2?

A: This method allows initializing a UIViewController’s view from a nib file rather than from
code. You use this method when you want to write code that initializes a view controller
whose view resides in a nib. You should note that this is just one of several different ways
you might load a view from a nib into a class. By the book’s end, you will be familiar with
most of them.

Ask the Expert

Connecting UIWindow, UIApplication,
and UIApplicationDelegate

In the preceding section, I only briefly mentioned the connections in MainWindow.xib. But
these connections warrant a closer look if you want to understand what the template actually
did. Notice the UIWindow in Listing 6-1 is an IBOutlet. Your first experience with IBOutlets
was in Chapter 1; you learn more on it in Chapter 7. But realize the window “lives” in the xib,
not in the delegate. Although the window is released by the delegate in the dealloc method,

118 iOS SDK Programming: A Beginner’s Guide

Try This

it is neither allocated nor initialized by the delegate’s code in Listing 6-2. Remember, all
the dealloc method in Listing 6-2 is doing is releasing the class’s reference to the window,
not deallocating the window. Instead, MainWindow.xib handles allocating, initializing, and
deallocating the UIWindow.

UIApplication knows to load MainWindow.xib by consulting the NSMainNibFile key in the
Info.plist file. If you open the AddViewProject project’s Info.plist, you will see that the “Main nib
file base name” is set to MainWindow. While loading, the nib sets AddViewProjectApp Delegate
as UIApplication’s delegate and UIWindow as AddViewProjectAppDelegate’s window. Both are
outlets of their respective class in Interface Builder.

Exploring Main Window.xib
1. Open MainWindow.xib and display the document window.

2. Highlight the File’s Owner and select the Object Identity tab in the Inspector. Notice its
Custom Class is set to UIApplication (Figure 6-7). UIApplication loads MainWindow.xib.

Figure 6-7 UIApplication in the Document window

Chapter 6: UIApplication and UIApplicationDelegate 119

3. Notice that the template automatically added the AddViewProjectAppDelegate object to
the set of objects in the xib file (all of the objects are listed along the left side of the edit
pane).

4. When you select the AddViewProjectAppDelete object and select the Connections
pane, you will notice AddViewProjectAppDelegate’s window IBOutlet is set to the
UIWindow in the nib (Figure 6-8). Also notice that the UIApplication’s delegate is set
as AddViewProjectAppDelegate.

UIApplication and UIApplicationDelegate
Ignore UIApplication—you almost never modify it. Just know that UIApplication receives system
events. It is your job to write code that handles those system events. You write that code in a class

Figure 6-8 AddViewProjectAppDelegate’s connections

120 iOS SDK Programming: A Beginner’s Guide

adopting the UIApplicationDelegate protocol. This protocol has several life cycle methods that
handle application and system events. Table 6-1 lists UIApplicationDelegate’s methods. If you
begin with a template, Xcode creates the class adopting the UIApplicationDelegate protocol for
you, but Xcode does not implement the UIApplicationDelegate’s optional event-handling methods.
For instance, in this chapter’s project, Xcode created the AddViewProjectAppDelegate.h and
AddViewProjectAppDelegate.m files. The AddViewProjectAppDelegate class extends NSObject
and adopts the UIApplicationDelegate.

@interface AddViewProjectAppDelegate : NSObject
<UIApplicationDelegate>

The application’s UIApplication, defined in MainWindow.xib, has a reference to its
UIApplicationDelegate as an outlet (Figure 6-8). As UIApplication receives one of the
events related to the methods in Table 6-1, it calls the appropriate method in its delegate
if implemented.

Q: What is a delegate?

A: A delegate is a way to simplify the separation of processing logic from another class.
It also avoids inheritance. For instance, subclassing the UIApplication object would
be painful. Instead, Apple provides a UIApplicationDelegate. The UIApplication has
a reference to the class implementing the UIApplicationDelegate. If implemented,
the UIApplication delegates handling of an event to the appropriate method in the
UIApplicationDelegate. It appears as if UIApplication is handling the event; in reality,
its delegate, UIApplicationDelegate, handles the event. Delegates are a common
object-oriented design pattern. For more information on delegates and object-oriented
programming, refer to the “delegation pattern” on Wikipedia (www.wikipedia.org).

Ask the Expert

The main.m File
In the AddViewProject project, open main.m in the Other Sources folder in the Navigation pane.
The file’s code is listed in Listing 6-3.

www.wikipedia.org

Chapter 6: UIApplication and UIApplicationDelegate 121

Listing 6-3 File main.m in project

#import <UIKit/UIKit.h>
int main(int argc, char *argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

Main creates one UIApplication instance using the UIApplicationMain method. Every
project has exactly one UIApplication object. You can obtain a reference to that object by
calling UIApplication’s sharedApplication class method. This method returns a singleton
reference to your application’s UIApplication object.

UIApplication * myApplication = [UIApplication
 sharedApplication];

You usually will not do much with the UIApplication object other than obtain a reference
to its UIApplicationDelegate. You obtain a reference to the UIApplicationDelegate through the
following code:

UIApplicationDelegate * myDelegate = [[UIApplication
sharedApplication] delegate];

Handling Application Life Cycle Events
UIApplication forwards several important events to its UIApplicationDelegate to handle. For
instance, applicationSignificantTimeChange: handles a significant time change while your
application is running. The method didChangeStatusBarOrientation: handles the event fired
when the status bar’s orientation is changed from portrait to landscape or landscape to portrait.
The method didReceiveRemoteNotification: handles push notifications sent to your application.
Table 6-1 lists UIApplicationDelegate’s application life cycle event-handling methods.

With the exception of application:didFinishLaunchingWithOptions:, the methods in Table 6-1
are not required, but you’ll need to implement many of them if you want to develop a
robust, complete application. There are also four optional methods related to Apple’s Push
Notifications that are beyond the scope of this book because they also require extensive
support on the server side.

Two of the more important application life cycle events are your application’s startup and
shutdown. The application:didFinishLaunchingWithOptions: method—a required method—is
where you initialize your UIViewControllers, initialize your UIWindow, add a UIView to
the window, and then launch your application’s user interface. The method is also useful for
restoring your application’s state, and it is where you perform application initialization. The
applicationWillTerminate: method is useful for saving your application’s state. You might
also use this method to perform cleanup.

122 iOS SDK Programming: A Beginner’s Guide

UIApplicationDelegate Event-
Handling Methods Method Signature

application:didFinishLaunching
WithOptions:

- (BOOL) application: (UIApplication *)
application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions

applicationDidBecomeActive: -(void) applicationDidBecomeActive:
(UIApplication *) application

application:handleOpenURL: - (BOOL) application: (UIApplication *)
application handleOpenURL: (NSURL *) url

applicationDidBecomeActive: - (void) applicationDidBecomeActive:
(UIApplication *) application

applicationWillEnterForeground: - (void) applicationWillEnterForeground:
(UIApplication *)application

applicationWillResignActive: - (void) applicationWillResignActive:
(UIApplication *)application

applicationDidEnterBackground: - (void) applicationDidEnterBackground:
(UIApplication *)application

application:willChangeStatusBarFrame: - (void) application: (UIApplication *)
application willChangeStatusBarFrame:
(CGRect) newStatusBarFrame

application:willChangeStatusBar
Orientation:duration:

-(void) application: (UIApplication *)
application willChangeStatusBarOrientation:
(UIInterfaceOrientation)
newStatusBarOrientation duration:
(NSTimeInterval) duration

application:didChangeStatusBarFrame: -(void) application:(UIApplication *)
application didChangeStatusBarFrame:
(CGRect) oldStatusBarFrame

application:didChangeStatusBar
Orientation:

-(void) application: (UIApplication *)
application didChangeStatusBarOrientation:
(UIInterfaceOrientation)
oldStatusBarOrientation

applicationDidReceiveMemoryWarning: -(void) applicationDidReceiveMemoryWarning:
(UIApplication *) application

applicationSignificantTimeChange: -(void) applicationSignificantTimeChange:
(UIApplication *) application

applicationWillTerminate: -(void) applicationWillTerminate:
(UIApplication *) application

Table 6-1 UIApplicationDelegate Event-Handling Methods

Chapter 6: UIApplication and UIApplicationDelegate 123

TIP
Xcode offers a feature called Code Sense. As you are typing, Xcode will suggest what
it thinks you are typing. If it is correct, press the TAB key and Xcode finishes typing
for you. You can ignore the suggestion by continuing to type. If you are not certain
the suggestion is correct, press CTRL-SPACE and Xcode presents a drop-down list with
possible completions (Figure 6-9). Xcode 4 also added a Fix-it feature so that Xcode
will highlight coding errors the same way a word processor would highlight spelling
mistakes. If you do not see this feature, ensure Xcode is configured correctly in Xcode
Preferences (Figure 6-10).

Application Interruptions
As your application functions, it is likely to receive interruptions. An incoming phone call
causes your application to become inactive. If you decide to answer the call, your application
terminates. Other events that might cause your application to become inactive include calendar

Figure 6-9 Code completion in Xcode

124 iOS SDK Programming: A Beginner’s Guide

alerts and putting your device to sleep (locking your device). The applicationWillResignActive:
method in UIApplicationDelegate executes just prior to your application becoming inactive.
The applicationDidBecomeActive: method executes just after your application becomes active
again. For instance, if you are running your application and lock the screen, your application’s
delegate executes the applicationWillResignActive: method. When you later unlock the screen,
your application’s delegate executes the applicationDidBecomeActive: method.

The applicationDidEnterBackground and applicationWillEnterForeground methods are
available in iOS 4.0 and later to support applications that use background execution. This
is Apple’s multitasking solution, and there are a number of requirements placed on your
application if you want to do background processing. See the iOS Application Programming
Guide for details.

Another important method is applicationDidReceiveMemoryWarning. iOS devices have
limited memory—use too much and the operating system will terminate your application. But
the operating system warns your application first. When UIApplication receives this event, it
forwards the event to its delegate’s applicationDidReceiveMemoryWarning: method. The
delegate can then handle the application’s response to the warning. For instance, it might
release a shared data structure, empty and free image or data caches, or take other memory
reclaiming actions.

Figure 6-10 Xcode Preferences

Chapter 6: UIApplication and UIApplicationDelegate 125

Try This

CAUTION
Although this is not strictly required, your application should handle the events for
becoming active/inactive and for low-memory situations in its UIApplicationDelegate.
If it does not, Apple might reject your application when submitted for inclusion in the
App Store.

Handling Application Interruptions
In this task, you explore the applicationDidReceiveMemoryWarning:, applicationWillResign
Active:, and applicationDidBecomeActive: methods in UIApplicationDelegate.

1. Add the methods applicationDidReceiveMemoryWarning:, applicationDidBecomeActive:,
and applicationWillResignActive: to AddViewProjectDelegate’s implementation (Add
ViewProjectAppDelegate.m). Add a single NSLog statement to each method. The methods
should appear similar to Listing 6-4.

Listing 6-4 AddViewProjectAppDelegate’s three additional methods

-(void)applicationDidReceiveMemoryWarning:(UIApplication *)
application { NSLog(@"hey got a memory warning....");
}
-(void)applicationWillResignActive:(UIApplication *) application {
NSLog(@"hey I'm about to resign active status....");
}
-(void)applicationDidBecomeActive:(UIApplication *) application {
NSLog(@"hey I'm active....");
}

2. Click Run, and execute the application in the iPhone Simulator.

3. Select Hardware | Simulate Memory Warning from the iPhone Simulator’s menu.

4. Select Hardware | Lock from the iPhone Simulator’s menu. Unlock and then quit your
application.

5. Review the Debugger Console, which should appear similar to Listing 6-5.

Listing 6-5 Console output from running application

2010-08-25 11:24:24.147 AddViewProject[83787:207] hey I'm active....
2010-08-25 11:24:49.203 AddViewProject[83787:207] Received simulated
memory warning.

(continued)

126 iOS SDK Programming: A Beginner’s Guide

2010-08-25 11:24:49.203 AddViewProject[83787:207] hey got a memory
warning....
2010-08-25 11:25:02.356 AddViewProject[83787:207] hey I'm about to
resign active status....
2010-08-25 11:25:14.290 AddViewProject[83787:207] hey I'm active....
2010-08-25 11:25:17.336 AddViewProject[83787:207] hey I'm about to
resign active status....

The application executed the applicationDidBecomeActive: method when you started it
and then after you unlocked the Simulator. It called applicationDidReceiveMemoryWarning:
when you selected the Simulate Memory Warning menu item. And when the application
was about to become inactive after locking, the UIApplicationDelegate executed the
applicationWillResignActive: method.

Summary
The UIApplication is your application’s starting point. It is usually the first thing created by
the main method in the main.m file. The application is always associated with a delegate. An
application’s delegate is a class that implements the UIApplicationDelegate protocol. The
delegate is where you place code for handling your application’s life cycle events.

A UIApplication has one UIApplicationDelegate. When using one of Xcode’s templates,
the connection between the UIWindow, UIApplication, and UIApplicationDelegate is done
for you in the MainWindow.xib nib file. Moreover, you almost never have to manually create
a UIApplication and UIApplicationDelegate, as every project template creates these objects
for you. You also do not need to worry about having main.m create the application, nor do you
need to worry about implementing the application:didFinishLaunchingWithOptions: method,
as these methods are almost always generated for you too.

127

Chapter 7
UIView and
UIViewController

128 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Understanding the UIView and UIViewController

Creating a single view application using the View-based Application template

Creating a single view application using the Window-based Application template

Understanding an application delegate’s root view

Setting an application’s root view in Interface Builder

Setting an application’s root view using code

Understanding UIView life cycle methods

UIViews are how the iOS displays information on the screen. The UIView class is responsible
for displaying a rectangular area on the screen. The UIViewController manages the UIView

and is responsible for handling the view’s logic. The UIViewController is the glue between the
view—the UIView—and your data classes—the model.

There are many UIView subclasses you might work with while developing an iOS application.
In fact, every graphical component you use on an iOS graphical user interface (GUI) is a UIView
subclass. Technically speaking, everything is a view. But typically, when documentation or some
other material refers to a “view,” it is referring to a content view. A content view is a view that has
a view controller and is responsible for presenting a screen’s worth of user interface.

The UIView Class
The UIView’s responsibilities are drawing to the screen and handling events associated with
a user’s interaction with an application. A UIView has an associated UIViewController. The
UIViewController manages the view. The view controller loads and unloads its associated
views, manages views, and handles application life cycle events for its views.

Every graphical iOS control you use in Interface Builder is a UIView subclass. Table 7-1 lists
the UIView subclasses. Notice that UIScrollView and UIControl both have further subclasses
listed in the table’s second column.

UIViews function as containers, controls, displays, alerts, action sheets, and navigation
controls, and also as the application’s window. In future chapters, we’ll cover most of
these UIView types. This chapter limits itself to a simple display view and associated view
controller.

Chapter 7: UIView and UIViewController 129

UIView Subclasses Subclasses

UIWindow

UILabel

UIPickerView

UIProgressView

UIActivityIndicatorView

UIImageView

UITabBar

UIToolBar

UINavigationBar

UITableViewCell

UIActionSheet

UIAlertView

UIScrollView UITableView

UITextView

UIWebView

UIControl UIButton

UIDatePicker

UIPageControl

UISegmentedControl

UITextField

UISlider

UISwitch

UISearchBar

Table 7-1 UIView Subclasses in UIKit

The UIViewController Class
The UIViewController manages UIViews. It is responsible for creating, displaying, hiding,
and destroying a view. The UIViewControl is also responsible for responding to a view’s life
cycle events, handling orientation, and serving as a bridge between your application’s view
and model. The view controller is your application’s controller in the model-view-controller
design pattern.

130 iOS SDK Programming: A Beginner’s Guide

View-Based Application Template
The easiest route to creating a single view application is using Xcode’s View-based Application
template. This template creates a single view and a view controller for managing the view. While
the View-based application is not as useful as Xcode’s other project templates, it is helpful here,
as it generates the simplest iOS graphical application and provides a straightforward UIView and
UIViewController example. In the next task, you will generate an application using this template.
But, before continuing, first we will review IBOutlets and IBActions.

IBOutlet and IBAction
You have already used IBOutlets and IBActions in previous chapters. Without really knowing
what they are, you probably already have a good idea of what they accomplish; outlets and
actions are how you connect things in a nib with things outside a nib. An outlet connects an
instance variable outside a nib to an object in a nib.

IBOutlet is a preprocessor directive, evaluates to void, and is ignored by the compiler,
but all you really need to know is that IBOutlet is how Interface Builder knows the
variable was created for its use. When you change the class of an object, Interface Builder
scans the class for IBOutlets and knows those variables are intended as outlets. You can
then easily connect your graphical component to the variable, as Interface Builder adds
the outlets to the inspector automatically for you to select. Note, though, Interface Builder
doesn’t connect the outlets to anything; it just adds them. You are responsible for adding
any connections.

Actions are messages sent from objects in the nib to methods outside the nib. You define
an action in your code using the IBAction keyword. Like IBOutlet, it’s a preprocessor directive
and evaluates to void. You define an action in your code using the IBAction keyword. Also,
like IBOutlet, when you assign a class to a control in Interface Builder, it scans the class for
IBActions and adds them to the inspector for you to select. You can then connect user interface
events to a specific method in your code. Note that a method designated as an action must not
return a value, as the preprocessor replaces IBAction with void, and so all the compiler sees is
void. An action also takes a single parameter, sender. The sender is the id of the control calling
the action. So if a UIButton instance called an IBAction named changeLabelValue, the sender
would be the pointer to the UIButton.

-(IBAction) changeLabelValue: (id) sender;

IBOutlet and IBAction don’t require much explanation, as you use these two directives so
frequently they become second nature. Any instance variable external to Interface Builder that
must communicate with a control in Interface Builder must be an IBOutlet. Any method that
must be called from a control in Interface Builder must be an IBAction.

Chapter 7: UIView and UIViewController 131

Try This Using a View-Based Application Template
1. Create a new View-based Application using the template. Name the project SimpleView.

2. Expand the Classes group and notice XCode created the SimpleViewViewController
class for you. Expand Resources and notice the template generated a separate nib,
SimpleViewViewController.xib, for the SimpleViewViewController.

3. Open SimpleViewViewController.h and add a label and method for changing the label’s
value. Make the label an IBOutlet and the method an IBAction (Listing 7-1).

Listing 7-1 SimpleViewViewController.h

#import <UIKit/UIKit.h>
@interface SimpleViewViewController : UIViewController {
UILabel * theLabel;
}
@property (nonatomic, retain) IBOutlet UILabel *theLabel;
-(IBAction) changeLabelValue: (id) sender;
@end

4. Open SimpleViewViewController.m and add the IBOutlet and IBAction definitions
(Listing 7-2).

Listing 7-2 SimpleViewViewController.m

#import "SimpleViewViewController.h"
@implementation SimpleViewViewController
@synthesize theLabel;
-(IBAction) changeLabelValue : (id) sender {
 [theLabel setText:@"Hello World."];
 UIButton *theBut = sender;
 NSLog(theBut.currentTitle);
 theBut.enabled = NO;
 [theBut setTitle:@"Pressed Already" forState:
UIControlStateDisabled];
}
-(void)dealloc {
 [theLabel release];
 [super dealloc];
}
@end

(continued)

132 iOS SDK Programming: A Beginner’s Guide

5. Select SimpleViewViewController.xib to display it in Interface Builder and change the
view’s color. Add a UILabel and a UIButton to the UIView.

6. Notice that SimpleViewViewController is the File’s Owner. Connect SimpleViewView-
Controller’s theLabel outlet to the label.

7. Connect SimpleViewViewController’s changeTheLabel action to the button. Select Touch
Up Inside.

8. Save your changes.

9. Click Build And Go to run the application.

Take a moment to examine what the View-based Application template did for you.
It created the SimpleViewViewController.xib and it also created a UIViewController
subclass, SimpleViewViewController, by creating the SimpleViewViewController.h and
SimpleViewViewController.m files. Moreover, it added the controller to the delegate
(Listing 7-3).

Listing 7-3 SimpleViewAppDelegate.h

#import <UIKit/UIKit.h>
@class SimpleViewViewController;
@interface SimpleViewAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 SimpleViewViewController *viewController;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet SimpleViewViewController
*viewController;
@end

In the delegate, the template created the application’s window and view controller as
outlets (Listings 7-3 and 7-4). In the delegate’s applicationDidFinishLaunchingWithOptions:
method, the template added the view controller’s view to the window and then displayed the
window. Notice that nowhere does the code allocate or initialize its window or view controller.
Instead, Info.plist specifies that MainWindow.xib is the application’s main nib, so it knows to
load MainWindow.xib and the nib handles window and view controller initialization.

Listing 7-4 SimpleViewAppDelegate.m

#import "SimpleViewAppDelegate.h"
#import "SimpleViewViewController.h"
@implementation SimpleViewAppDelegate
@synthesize window;

Chapter 7: UIView and UIViewController 133

Try This

@synthesize viewController;
- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
 return YES;
}
-(void)dealloc {
 [viewController release];
 [window release]; [super dealloc];
}
@end

In the MainWindow nib, the template set the nib’s file’s owner to UIApplication. The
template set SimpleViewAppDelegate as the application’s delegate and set the delegate’s
window to the window in MainWindow.xib.

The template also added a view controller to MainWindow.xib and set it as the delegate’s
root view controller. Every delegate must have a root view controller. The root view controller in
MainWindow.xib comes from the SimpleViewViewController.xib, also created by the template.

The template created the UIView in its own xib, SimpleViewViewController.xib. It set
SimpleViewViewController.xib’s file’s owner to SimpleViewViewController. It also set the
controller’s view to the view in the xib.

Using a Window-Based Application Template
The View-based Application template hides many development details. If new to iOS
programming, chances are you will not find that the View-based Application template helps
clarify a UIView, a UIViewController, and their relationship. To help make their relationship
clearer, you should understand what the View-based Application template accomplishes
automatically.

Unlike a View-based Application template, a Window-based Application template requires
understanding UIViews and UIViewControllers. When using the Window-based Application
template, you must manually create a view and a view controller and wire them together. In
this project, you create a single view application starting with a Window-based Application
template. Creating a Window-based Application should solidify your understanding of the
steps used by Xcode when creating a View-based application.

1. Create a new Window-based Application and name it SimpleWindow.

2. CTRL-click the Resources folder and select New File. Select User Interface under iOS and
select View to create a new xib. Name the xib FirstViewController.xib.

(continued)

134 iOS SDK Programming: A Beginner’s Guide

3. Select File | New | New File. Add a UIViewController named FirstViewController. Xcode
should create FirstViewController.h and FirstViewController.m. Be certain the check box
to create a xib is not checked.

4. Open SimpleWindowAppDelegate.h and either import the FirstViewController
or use an @class forward declaration. Add a UIViewController property to
SimpleWindowAppDelegate.h so that it appears the same as Listing 7-5.

Listing 7-5 SimpleWindowAppDelegate.h

#import <UIKit/UIKit.h>
@class FirstViewController;
@interface SimpleWindowAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 FirstViewController *rootViewController;
}
@property (nonatomic, retain) IBOutlet FirstViewController
*rootViewController;
@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

5. Modify SimpleWindowAppDelegate.m so that it appears like Listing 7-6. Notice you
must synthesize rootViewController and add its view to the window as a subview in the
delegate’s applicationDidFinishLaunching: method.

Listing 7-6 SimpleWindowAppDelegate.m

#import "SimpleWindowAppDelegate.h"
#import "FirstViewController.h"
@implementation SimpleWindowAppDelegate
@synthesize window;
@synthesize rootViewController;
-(void)applicationDidFinishLaunching:(UIApplication *)application {
 [window addSubview:rootViewController.view];
 [window makeKeyAndVisible];
}
-(void)dealloc {
 [window release];
 [rootViewController release];
 [super dealloc];
}
@end

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7: UIView and UIViewController 135

6. Select FirstViewController.xib to display it in Interface Builder. Select the File’s Owner
and then select View | Utilities | Identity from the main menu. Notice that the class of the
File’s Owner isn’t set.

7. Change its class to FirstViewController from the pull-down in the Object Identity Inspector
pane.

8. Select the view, select Object Attributes in the Inspector pane, and change the view’s color.

9. Select the File’s Owner and click the Connections button in the Inspector pane, and then
connect the view outlet to the view you added to the document window.

10. Save FirstViewController.xib and select MainWindow.xib to open it in Interface Builder.

11. Notice that there is no UIViewController or view set in the document window.

12. Scroll down in the list of objects and drag a view controller from the library to the editing
pane. With the View Controller selected, go to the Object Identity Inspector pane and set its
class to FirstViewController (Figure 7-1).

(continued)

Figure 7-1 Adding FirstViewController to Mainwindow.xib

136 iOS SDK Programming: A Beginner’s Guide

13. In the Object Attributes Inspector pane, change its NIB Name to FirstViewController.

14. Select Simple Window App Delegate (one of the icons to the left of the editing pane).
Select the Connections Inspector pane; notice the rootViewController outlet. Connect this
to the view controller just added (Figure 7-2).

15. Save your changes.

16. Click Run to build and run your application. The view in FirstViewController.xib will be
loaded into the window and displayed.

In Step 14, you connected the FirstViewController to the application’s delegate.
This was an important step; it allowed the nib to set the delegate’s root view controller
for you. The root view controller is the UIViewController that is first loaded by an
application delegate. Remember, the application knew to load MainWindow.xib because
it was in the application’s Info.plist. The application loaded MainWindow.xib, saw the
FirstViewController object that was added to the document window, and saw that the

Figure 7-2 Setting Mainwindow.xib’s root view controller

Chapter 7: UIView and UIViewController 137

delegate’s root view controller was set to FirstViewController. The application also knew
the controller came from FirstViewController.xib. Because of the object, variable, and nib
settings, the application knew to allocate and initialize a FirstViewController instance from
FirstViewController.xib when loading MainWindow.xib. Because these relationships were
established in Interface Builder, no manual code was necessary. This is how the View-based
Application template builds a simple application, which you just duplicated manually using
the Window-based application template.

NOTE
In this example, you manually created a xib and linked it to its associated view
controller. Step 3 specifically instructed you not to check the check box that also
created a xib; had you checked the check box, Xcode would have created a xib
and automatically made most of these connections for you.

Q: Hey, wait a minute. What does the @class precompiler directive mean in Listing 7-3
and Listing 7-5, and why are you not importing the class’s header?

A: The @class is a compiler directive that informs the compiler that a class of that type
will exist. It is what’s called a forward declaration, so named because it is informing
the compiler before the class is actually declared. Using an @class directive in the
header file and only importing the class’s header in the implementation file is the
preferred approach.

Ask the Expert

UIViewController and Application
Life Cycle Events

UIViewController handles important life cycle events for its associated UIViews. Table 7-2
lists the UIViewController’s view life cycle instance methods.

Note that several methods in Table 7-2 are similar to an application delegate’s life cycle
methods—for instance, the didReceiveMemoryWarning: method. Do not let this similarity
confuse you; remember, life cycle methods in the view controller are for the controller’s
associated view and not the application as a whole. Conversely, life cycle methods in the
delegate are designed to handle events for the application as a whole.

138 iOS SDK Programming: A Beginner’s Guide

Try This Exploring Several Life Cycle Methods
1. Open the SimpleView project in Xcode.

2. Open SimpleViewController.m and note that Xcode generates many of the needed life
cycle methods for you and then comments them. It even provides short descriptions of
what each method does for you.

3. Add the life cycle methods in Listing 7-7 to the FirstViewController.m file. Because
FirstViewController’s parent class, UIViewController, declares all these methods, you are
not required to add a declaration for the methods in FirstViewController’s header file.

Listing 7-7 Life cycle methods added to FirstViewController.m

-(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
interfaceOrientation {
return YES;
}

Table 7-2 UIViewController’s Instance Methods for View Life Cycle Management

Instance Method for View
Life Cycle Management When Called

didReceiveMemoryWarning: Called when a controller receives a memory warning

didRotateFromInterfaceOrientation: Called after a view controller’s view rotates

viewDidAppear: Called after a controller’s view appears

viewDidDisappear: Called after a controller’s view disappears

viewDidLoad: Called after a controller’s view loads into memory

viewDidUnload: Called when a controller’s view is released from memory

viewWillAppear: Called just before a controller’s view appears

viewWillDisappear: Called just before a controller’s view disappears

willRotateToInterfaceOrientation:duration: Called when a controller begins rotating

willAnimateFirstHalfOfRotationToInterface
Orientation:duration:

Called just before the first half of a view’s rotation

willAnimateSecondHalfOfRotation
FromInterfaceOrientation:duration:

Called just before the second half of a view’s rotation

Chapter 7: UIView and UIViewController 139

-(void)didReceiveMemoryWarning {
 NSLog(@"received memory warning....");
 [super didReceiveMemoryWarning];
}
-(void)viewDidLoad {
 NSLog(@"view did load...");
 [super viewDidLoad];
}
-(void)viewWillAppear:(BOOL)animated {
 NSLog(@"view will appear...");
}
-(void)viewDidUnload {
 NSLog(@"view did unload...");
}
-(void)didRotateFromInterfaceOrientation:(UIInterfaceOrientation)
fromInterfaceOrientation {
 NSLog(@"view rotated....");
}

4. Click Run to run the application.

5. When the application is running, turn the simulator sideways by selecting Hardware |
Rotate right from the simulator’s menu (Figure 7-3).

6. Simulate a memory warning by selecting Hardware | Simulate Memory Warning.

7. Quit the application. The console’s output should appear similar to Listing 7-8.

Figure 7-3 Running the application in landscape mode

(continued)

140 iOS SDK Programming: A Beginner’s Guide

Listing 7-8 Console’s logging

2010-08-26 23:47:10.931 SimpleView[42582:207] view did load...
2010-08-26 23:47:10.933 SimpleView[42582:207] view will appear...
2010-08-26 23:47:15.685 SimpleView[42582:207] view rotated....
2010-08-26 23:48:10.928 SimpleView[42582:207] Received simulated
memory warning.
2010-08-26 23:48:10.930 SimpleView[42582:207] received memory
warning....

Q: Hey, wait a minute. What does shouldAutoRotateToInterfaceOrientation: mean in
Listing 7-7?

A: This method is for allowing or disallowing a view to rotate. To allow a view to rotate,
return YES. To disallow, return NO. Most iPhone applications leave this set to the default
NO, but when you create a universal application in Chapter 19, you’ll need to handle
rotation on the iPad and will be setting this to YES.

Ask the Expert

Summary
This chapter discussed the UIView and UIViewController classes. When developing an iOS
application, every content view should have its own nib. Remember, placing views in their
own nib conserves memory by only loading the components needed to render the current view.
The development pattern for creating a view is straightforward: Subclass a UIViewController
in Xcode. Create the UIView in its own nib. Then, in the nib, connect the view to the view
controller. To make your code easier to test and debug, keep the name consistent between
the view, view controller, and nib. Implement any view-related life cycle methods you wish
to handle in the view’s view controller. Keep your custom code to a minimum, though—
remember, the controller’s job is to serve as glue code between your view and your model.
Consider placing more advanced code in helper classes, and then have your controller use
these helpers.

Now that you understand how to build each screen’s content, you can learn how to develop
views that aggregate your individual views into a multiple-screen application. In the next chapter,
you begin exploring multiview applications with the UITabBar and UITabBarController. After
learning about tab bars, you move to the navigation controllers and then tables. These views let
you aggregate content views into richer multiscreen applications.

141

Chapter 8
UITabBar and
UITabBarController

142 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Understanding tab bars

Using the Tab Bar Application template

Creating an application that uses a tab bar

Adding tabs to a tab bar

Customizing a tab bar

Atab bar consists of two or more tabs along a window’s bottom. Each tab contains a view
controller. As a user selects a tab, the tab loads its view controller, which in turn loads and

displays its associated view. In this chapter, you explore creating tabbed applications. In the
first task, you create a tabbed application using Xcode’s Tab Bar Application template. After
examining this template’s results, you manually add a third tab to the tab bar. In the next task,
you start with a Window-based Application template and create a two-tab application. In this
task, you solidify your understanding by manually duplicating the steps taken by the Tab Bar
Application template. The chapter’s final task illustrates allowing users to customize a tab
bar’s tabs when it contains five or more tabs.

UITabBar, UITabBarController, UITabBarItem,
and UITabBarControllerDelegate

The tab bar is useful for presenting different application subtasks or different views of the
same data. If you own an iPhone, iPod touch, or iPad, you are certainly familiar with a tab bar
controller, as several applications use tab bars. The Clock application, for instance, has a tab
bar containing tabs with different subtasks (Figure 8-1). Each tab is a different subtask: World
Clock, Alarm, Stopwatch, and Timer. The iPod application illustrates a tab bar containing
different views of the same data (Figure 8-2). The Artists tab organizes your multimedia by
artist; the Album tab organizes your media by album. Each tab is a different view of the same
data, your iTunes multimedia. The iPod application illustrates another tab bar feature. When
a tab bar has more than four tabs, it displays a More tab. When you press More, the tab bar
presents the remaining tabs in a selectable list (Figure 8-3). You can also modify the iPod
application’s tab bar using the Edit button. Clicking the Edit button displays the tabs in a
view that allows you to modify which tabs are displayed in the tab bar (see Figure 8-3). When
presented with an application that contains a task with multiple subtasks or an application that
requires different views of the same data, use a tab bar.

Chapter 8: UITabBar and UITabBarController 143

Figure 8-1 The Clock application has a tab for each subtask.

Figure 8-2 The iPod application has a tab for each data view.

144 iOS SDK Programming: A Beginner’s Guide

NOTE
Do not use a tab bar for sequential navigation or data drill-down. The navigation
control and tables (described in the next two chapters) are more appropriate choices for
navigating sequential lists and data drill-down.

You create a tab bar using the UITabBar class. A UITabBar displays two or more tabs
along a window’s bottom edge. Individual tabs are UITabBarItem class instances. You tie
these classes together using the UITabBarController and UITabBarControllerDelegate. Each
UITabBarItem contains its own view controller. Click a tab, and the UITabBarItem loads its
view controller. The view controller displays its view.

NOTE
A tab’s view controller might be an advanced view, like a table or a navigation
controller. Chapter 9 illustrates placing a navigation controller in a tab. Chapter 10
illustrates placing a navigation controller in a tab and then a table in the navigation
controller.

A UITabBar has an associated UITabBarController and UITabBarDelegate. The
UITabBarController manages the UIViewController objects in each tab. For instance, if a user
wishes to add, remove, or rearrange tab bar items, the UITabBarController is responsible for
implementing the behavior. You will see how to accomplish a rearrangeable tab bar later in this
chapter. But first, consider the easiest tab bar implementation: the Tab Bar Application template.

Figure 8-3 The iPod application uses a More tab to display tabs.

Chapter 8: UITabBar and UITabBarController 145

Try This Using the Tab Bar Application Template
The Tab Bar Application template is the easiest route to creating a tabbed application, and
compared with last chapter’s Single View Application template, this template is a more useful
starting point for real-world projects. In this task, you create a simple tab bar application using
the Tab Bar Application template. After examining the template’s results, you manually add a
third tab to the tab bar.

1. Create a new Tab Bar Application by selecting the template in the New Project dialog.
Name the project TabBarExOne.

2. In the Navigation pane, expand Classes And Resources. At first glance, it appears the
template created the same classes as it would for a View-based Application. However,
the template added several tab bar–related classes for you, making this a slightly more
complex application.

3. Open TabBarExOneAppDelegate.h and notice the application’s delegate adopts the
UITabBarControllerDelegate protocol. It also declares a UITabBarController property as
an IBOutlet (Listing 8-1).

Listing 8-1 The TabBarExOneAppDelegate adopts the UITabBarControllerDelegate
protocol

#import <UIKit/UIKit.h>
@interface TabBarExOneAppDelegate : NSObject <UIApplicationDelegate,
UITabBarControllerDelegate> {
 UIWindow *window;
 UITabBarController *tabBarController;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain)
 IBOutlet UITabBarController *tabBarController;
@end

4. Open MainWindow.xib and review the objects in the xib (the icons to the left of the
Editing pane). In particular, note that the template added a tab bar controller.

5. The template also added TabBarExOneAppDelegate as a proxy object to MainView .xib.
Review TabBarExOneAppDelegate’s connections in the View | Utilities | Connections
pane. Notice Xcode added a tabBarController property as an IBOutlet. Interface Builder
subsequently knew the application delegate had a tabBarController outlet and connected it
to the tab bar controller in the document window.

6. In the Editing pane, select the tab labeled First and then select “First View Controller
– First” in the hierarchy of objects across the top of the Edit pane and notice the “Tab
Bar Item – First” object under it. The second tab view controller also has a tab bar item
associated with it.

(continued)

146 iOS SDK Programming: A Beginner’s Guide

7. Highlight the second view controller in the document window. Notice in the controller’s
inspector that the UIViewController is from an external nib; the template specified the
view controller’s Nib name (Figure 8-4).

8. Build and run the application. A simple two-tab application runs in the simulator.

9. Open MainWindow.xib in Interface Builder.

10. On the tab bar controller’s canvas, click the tab bar item labeled First. Be careful—only
click once. Clicking the item once selects the tab bar item’s view controller. You know you
clicked once if the Object Identity Inspector pane lists the class as “FirstViewController”.

11. Click the tab bar item twice, and you select the actual tab bar item. The Object Identity
Inspector pane lists the class as “UITabBarItem”.

The Tab Bar Application template generates a two-tabbed application. You will most
certainly find situations where you need more tabs. Adding another tab to a tab bar is not
difficult. In the next task, you add a third tab to the application.

Figure 8-4 The second tab bar item’s view controller is from another nib.

Chapter 8: UITabBar and UITabBarController 147

Try This Adding a Tab Bar Item to a Tab Bar Application
1. Select File | New | New File to create another UIViewController subclass and name

the controller ThirdViewController. Ensure the “With XIB for user interface” check
box that creates an accompanying xib is also selected. Xcode should generate the
ThirdViewController.h, ThirdViewController.m, and ThirdViewController.xib files.

2. Select ThirdViewController.xib to open it in Interface Builder. Change the view’s color to
something other than white and save your changes.

3. Open MainWindow.xib in Interface Builder and select the tab bar controller from the object
icons on the left of the Editor pane.

4. Drag a new ViewController from the Object Library pane to the Editing pane and carefully
drop it in the tab bar area. As you hover over the tab bar, the ViewController that you’re
dragging will shrink down and take on the appearance of a tab item.

5. Click the third tab bar item once. In the Inspector, change the class from UIViewController
to ThirdViewController. Also type ThirdViewController for the nib name.

6. Click the third tab bar item two times. Change the tab’s identifier to Search from the
pull-down menu in the Tab Bar Item Attributes Inspector. A magnifying glass and Search
appears in the tab (Figure 8-5).

Figure 8-5 Changing a tab bar item’s image to Search (continued)

148 iOS SDK Programming: A Beginner’s Guide

Try This

7. Save your changes and run the application. The application now has a third tab bar item
(Figure 8-6).

Creating a Tab Bar Application from Scratch
Using a template is well and good, but it doesn’t teach you how to actually build a tabbed
application (unless you are able to use the template). So in this task, you duplicate the Tab
Bar Application template’s steps, but start with a Window-based Application template and
manually add the tab bar items to your project. It is no more difficult than using the template—
just slightly more tedious.

1. Create a new Window-based Application and name it TabBarExTwo.

2. Open TabBarExTwoAppDelegate.h and change it so that it adopts the UITabBarController
Delegate protocol (Listing 8-2). Add a UITabBarController property as an IBOutlet. The
UITabBarControllerDelegate.h should appear like Listing 8-2. Don’t forget to synthesize
the controller in UITabBarControllerDelegate.m. Save and build.

Figure 8-6 Running the three-tab application in iPhone Simulator

Chapter 8: UITabBar and UITabBarController 149

Listing 8-2 TabBarExTwoAppDelegate.h modified to use a UITabBarController

#import <UIKit/UIKit.h>
@interface TabBarExTwoAppDelegate : NSObject <UIApplicationDelegate,
UITabBarControllerDelegate> {
 UIWindow *window;
 UITabBarController *tabBarController;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UITabBarController
*tabBarController;
@end

3. Create a new UIViewController class and name it FirstViewController. Be certain
it also creates an associated xib. Xcode should generate the FirstViewController.h,
FirstViewController.m, and FirstViewController.xib files.

4. Create another UIViewController and associated xib named SecondViewController.

5. Open FirstViewController.xib and change the view’s color. Open SecondViewController
.xib and change the view’s color.

6. Save all of your changes.

7. Open MainWindow.xib and drag a new UITabBarController from the Object Library to the
Editing pane. Interface Builder should show a tab bar controller with two tabs.

8. Select the TabBarExTwoAppDelegate’s Connections Inspector and connect its
tabBarController outlet to the tab bar controller in the document window.

9. Click once on the first tab of the TabBarController in the Editing pane, and change
its class to FirstViewController in the Identity Inspector. Change its Nib Name to
FirstViewController.

10. Change View Controller (Item 2) to the SecondViewController, using the same steps as
the preceding step. Do not forget to set the NIB Name to SecondViewController in the
Second View Controller Attributes Inspector.

11. Change the first tab’s identifier to Recents and the second tab’s identifier to Downloads
(Figure 8-7).

12. Save your changes.

13. Open TabBarExTwoAppDelegate.m. Add the tab bar controller to the
applicationDidFinishLaunching method (Listing 8-3).

(continued)

150 iOS SDK Programming: A Beginner’s Guide

Listing 8-3 TabBarExTwoAppDelegate.m modified to use a UITabBarController

#import "TabBarExTwoAppDelegate.h"
@implementation TabBarExTwoAppDelegate
@synthesize window;
@synthesize tabBarController;
-(void)applicationDidFinishLaunching:(UIApplication *)application {
 [window addSubview:tabBarController.view];
 [window makeKeyAndVisible];
}
-(void)dealloc {
 [window release];
 [tabBarController release];
 [super dealloc];
}
@end

14. Click Run, and a two-tab application runs in the iPhone Simulator (Figure 8-8).

Figure 8-7 The first and second tab identifiers

Chapter 8: UITabBar and UITabBarController 151

Try This Allowing Users to Customize a Tab Bar
Sometimes you might wish to add more than five tabs to your application. However, with six
or more tabs, the iPhone tab bar will have to display four tabs and a More tab. When a user
presses More, the excess tabs appear in a selectable list. By default, a navigation bar with an
Edit button is displayed across the window’s top. A user can then tap Edit and modify which
tabs he or she wishes to see displayed on the tab bar.

The default behavior is to allow all tab bar items to be editable. If you wish to modify this
default and limit which tabs are editable, you must modify the toolbar. In this task, you add
more than four tabs to the first task’s tab bar. You then make the tab bar non-editable, followed
by making only some tabs editable.

1. Open TabBarExOne and add a new view controller. Name the class
FourthViewController. Ensure it also creates an associated xib. Xcode should create the
FourthViewController.h, FourthViewController.m, and FourthViewController.xib files.

(continued)

Figure 8-8 Two-tabbed application running in iPhone Simulator

152 iOS SDK Programming: A Beginner’s Guide

2. Open FourthViewController.xib in Interface Builder. Change the view’s color.

3. Close FourthViewController.xib and open MainWindow.xib in Interface Builder.

4. Add three more tabs by dragging and dropping three new view controllers from the Object
Library onto the tab bar. They should each shrink to a tab item as you hover over the tab
bar before releasing the drag (Figure 8-9).

5. Change each view controller’s class to FourthViewController. Also change each view
controller’s NIB name to FourthViewController.

NOTE
You would never use the same view controller for three different tabs in a real project,
since each tab likely reveals a unique subtask or data view.

6. Save your changes and click Run. Notice it added the fourth tab and a More tab (Figure 8-10).
When you click the More tab, it displays a UITableView with the other two tabs (Figure 8-11).
When you click either tab, the tab’s associated view controller’s view is displayed.

Figure 8-9 Adding three view controllers to the project

Chapter 8: UITabBar and UITabBarController 153

(continued)

Figure 8-10 Application displaying four tabs and a More button

Figure 8-11 Clicking the More tab displays the remaining two tabs in a list.

154 iOS SDK Programming: A Beginner’s Guide

7. Click Edit, and a screen where you can configure the tab bar items is displayed
(Figure 8-12).

8. Try dragging Two and Three to the tab bar and replacing a couple of the other tabs
(Figure 8-13). Click Done to see the new tab order.

9. Open TabBarExOneAppDelegate.m and add the following line to the applicationDidFinish
Launching method.

tabBarController.customizableViewControllers = nil;

10. Save changes and click Run. Notice the Edit button no longer appears after clicking More.

11. Now modify applicationDidFinishLaunching again. Change the code so it matches
Listing 8-4.

Figure 8-12 Clicking Edit displays a view for configuring the tab bar’s tabs.

Chapter 8: UITabBar and UITabBarController 155

Listing 8-4 Setting the customizableViewControllers

-(void)applicationDidFinishLaunching:(UIApplication *)application {
 NSMutableArray * conts =
 [[[NSMutableArray alloc] init] autorelease];
 [conts addObject:[tabBarController.viewControllers
objectAtIndex:0]];
 [conts addObject:[tabBarController.viewControllers
objectAtIndex:1]];
 tabBarController.customizableViewControllers = conts;
 [window addSubview:tabBarController.view];
}

12. Save changes and click Run. Notice you can only edit First and Second (Figure 8-14).

(continued)

Figure 8-13 Replacing a couple tabs with Two and Three

156 iOS SDK Programming: A Beginner’s Guide

A tab bar’s default behavior is to allow users to rearrange, delete, and add tabs when a
tab bar contains more than four tabs. To disable editing all tabs, set the tab bar controller’s
customizableViewControllers to nil. To disable only some tags, add the tabs that should be
editable to the customizableViewControllers. Tabs not added to customizableViewControllers
are automatically made non-editable.

Summary
As this chapter illustrated, creating a tabbed application is easy. First, ensure your application
has a UITabBarControllerDelegate. Although you can create your own class to adopt the
UITabBarControllerDelegate protocol, using the application’s delegate is easier. But note, more
complex applications that use tab bars should have a custom delegate associated with the tab
bar and should not have the application’s main delegate adopt the UITabBarController Delegate.

Figure 8-14 Only First and Second are editable.

Chapter 8: UITabBar and UITabBarController 157

After changing your application’s delegate to adopt the UITabBarController Delegate, add a
UITabBarController property to the delegate. Then add a UITabBarController to MainWindow
.xib and connect the controller to the application delegate’s tabBarController property. After
connecting the delegate and tab bar controller, connect the individual UITabBarItem objects to
view controllers. Creating tabbed applications is that easy.

In this chapter, you learned how to create a tab bar, its associated controller, and its
delegate. This chapter didn’t have much in the way of explanation, as tab bars are best learned
by doing. You created a tabbed application both using a template and manually. If you still do
not understand tab bars, you should definitely reread this chapter, as tab bars are a navigation
component you will use frequently for developing iOS applications. Think of all the situations
where you use tabs in a desktop application—tabs are as ubiquitous on iOS applications. But
remember conventional user interface (UI) wisdom: Use tab bars for subtasks and for different
views on the same data set. Do not use tab bars for tasks involving sequential steps. A navigation
bar and its associated controller are much more useful for this navigation. In the next chapter,
you learn how to create and use a navigation bar and its associated controller. Moreover, you will
place a navigation bar in a view controller as a tab bar item. After learning about the navigation
bar, you then explore tables. After learning about a table’s fundamentals, you will place a
navigation item and a table in the same view controller in an individual tab. After learning about
tables, you will then have the fundamentals for creating the navigation for virtually any iOS
application.

This page intentionally left blank

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

159

Chapter 9
UINavigationBar and
UINavigationController

160 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Understanding UINavigationBar, UINavigationController, and UINavigationItem

Understanding how to use a navigation bar in a simple application

Understanding how to programmatically manipulate a navigation bar’s items

Adding a navigation bar to a tab in a tabbed application

Anavigation bar is displayed along a window’s top, just below the status bar. The
navigation bar optionally contains a title for each view displayed and one or more

buttons. Typically, the button on the bar’s right, when clicked, takes the user to the next
step in another view, although sometimes applications use the right button as a “done”
button. The button on the bar’s left is a Back button, returning to the previous view.
Navigation bars are often used with tables, where a table is displayed with a navigation
bar above it. When a user clicks a table’s rows, the navigation bar’s associated navigation
controller takes the user to more detailed information about the selected item. For instance,
the App Store application allows a user to refine his or her categories until the application
of interest is found (Figure 9-1). For instance, if a user clicked Games, the navigation
controller would take the user to a Games subcategory. If the user then clicked All Games,
the navigation controller would take the user to a table of all games in the App Store. If
a user wished to go back a step, he or she would press the button on the navigation bar’s
upper-left area. This button is the Back button. Note the navigation controller labeled the
button’s title with the previous view’s title.

The navigation bar and navigation controller are useful for applications requiring
hierarchical navigation, such as data drill-down. In the App Store application, you drill
down to increasingly specific categories until reaching a list of items rather than further
subcategories. When you select an item, it takes you to a more detailed view of your
selection. Navigation bars are also useful for applications with multiple steps in a single
task. In this chapter, you learn how to use a navigation bar and its associated classes. In the
first task, you start with a Window-based application and manually create an application
consisting of three views managed by a navigation controller. In the second task, you look at
how the Utility Application template uses a navigation bar. This template uses a navigation
bar on only one view and without using an associated navigation controller. Finally, this
chapter presents a navigation controller embedded in a tab bar’s tab. This is perhaps this
chapter’s most useful task and should not be skipped. You will find embedding a navigation
controller in a tab a ubiquitous requirement when developing iOS applications.

Chapter 9: UINavigationBar and UINavigationController 161

Figure 9-1 Using the App Store application

162 iOS SDK Programming: A Beginner’s Guide

UINavigationBar, UINavigationController,
and UINavigationItem

Below the status bar but above the application window’s content, many applications have
a navigation bar. Navigation bars display the current view’s title and contain one or more
buttons for navigating to other screens. In this chapter’s introduction, you viewed the App
Store application, a typical use for a navigation bar. The Notes application also uses a
navigation bar (Figure 9-2). The navigation bar appears above the yellow notepad. Upon
clicking the + key, the navigation bar displays a new note page. The navigation bar’s title
is New Note and contains a back button labeled “Notes” and a right button labeled “Done.”
When the user taps either button, the application returns the user to the application’s
primary page.

You add navigation bars to an application using the UINavigationBar class, but you almost
never use a UINavigationBar class directly. Instead you’ll use UINavigationBar’s controller,
UINavigationController. You control a UINavigationBar using a UINavigationController. A
UINavigationController uses a stack data structure to manage one or more view controllers.
The first view controller, or the root view controller, is the first item on the stack. To navigate
to other views, you push the view’s view controller onto the stack. To return to the previous
view, you pop the current view from the stack.

Figure 9-2 The Notes App uses a navigation bar.

Chapter 9: UINavigationBar and UINavigationController 163

Try This Building a Three-View Application Using
a Navigation Bar

It is easiest to learn the UINavigationController by example. In this task, you create a simple
application containing three views. You navigate between the three views using a navigation
bar. The first view has a button on the navigation bar’s right, which says “Next.” When you
click the button, the application takes you to the next view. This view has a Back button and a
button in the view rather than on the navigation bar. When you click the button in the view, the
application takes you to a third view. The third view has a navigation bar and a title.

1. Create a new Window-based Application. Name the application ThreeViewNavCont.

2. Create three UIViewController classes, naming them FirstViewController,
SecondViewController, and ThirdViewController. Be certain to also generate xib files
for each class.

3. Open each of the xibs and add a label object to each with the text “View One”, “View
Two”, and “View Three” so that you can easily tell which view is visible when running
your app.

4. Save each xib file after changing it.

5. Open MainWindow.xib and drag a navigation controller from the library to the Document
window (Figure 9-3). Notice Interface Builder shows the navigation controller’s canvas
with a navigation bar and a view.

6. Select the navigation controller’s view controller. You can do this by expanding the column
of icons representing the objects in the xib, then clicking the disclosure arrow next to
navigation controller, and then selecting the view controller. Change the controller’s class to
FirstViewController in the Inspector. Also change its NIB name to FirstViewController
in the Inspector (Figure 9-4).

Q: What is a stack?

A: A stack is a data structure used to hold a collection of objects. You can only add or remove
objects from the stack’s top. Envision a stack of plates: You add plates to the top and
remove plates from the top. Removing from the bottom would cause the plates to topple
and break. The stack data structure has the same LIFO (last in first out) requirements.
Placing a new item on the stack is called “pushing,” while removing an item from the
stack is called “popping.”

Ask the Expert

(continued)

164 iOS SDK Programming: A Beginner’s Guide

7. Save your changes.

8. Open ThreeViewNavContAppDelegate.h in Xcode. Add a UINavigationControllerIBOutlet
declaration to the header file (Listing 9-1).

Listing 9-1 ThreeViewNavContAppDelegate.h

#import<UIKit/UIKit.h>
@interface ThreeViewNavContAppDelegate :
NSObject<UIApplicationDelegate> {
 UIWindow *window;
 UINavigationController *navController;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UINavigationController *
navController;
@end

Figure 9-3 Adding a navigation controller to MainWindow.xib

Chapter 9: UINavigationBar and UINavigationController 165

9. Add the UINavigationController to ThreeViewNavContAppDelegate.m and add the
UINavigationController’s view to the window (Listing 9-2). Save and build.

Listing 9-2 ThreeViewNavContAppDelegate.m

#import "ThreeViewNavContAppDelegate.h"
@implementation ThreeViewNavContAppDelegate
@synthesize window;
@synthesize navController;
- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 [window addSubview: navController.view];
 [window makeKeyAndVisible];
 return YES;
}

Figure 9-4 Changing the view controller to FirstViewController

(continued)

166 iOS SDK Programming: A Beginner’s Guide

- (void)applicationWillTerminate:(UIApplication *)application {
// Save data if appropriate.
}
- (void)dealloc {
 [navController release];
 [window release];
 [super dealloc];
}
@end

10. Switch back to MainWindow.xib in Interface Builder. Right-click ThreeViewNavContApp
Delegate in the document window and connect the navController outlet to the
UINavigationController (Figure 9-5).

11. Save your changes and click Run to run the application, and FirstViewController’s view
should appear (Figure 9-6).

Figure 9-5 Connecting the navigation controller

Chapter 9: UINavigationBar and UINavigationController 167

The first step to using a navigation bar is to add a navigation controller to a document window.
Upon adding the navigation controller, Interface Builder also adds a root view controller,
and you changed this view controller to your view controller. Making this connection in
Interface Builder allows the nib to manage the property’s life cycle. When you build and run
the application, the application knows MainWindow.xib is the application’s main nib and
loads it. Upon loading, the nib initializes the objects it manages, which includes the navigation
controller property, navController. The navigation controller loads its root view controller.
Because the root view controller has an associated navigation item, the navigation controller
adds a navigation bar above the view with the navigation item’s title. Because MainWindow
.xib handles all the application’s initialization, all you do in the application:didFinish-
LaunchingWithOptions method is add the view to the window. After adding the navigation
controller, you must provide navigation controls so that a user can move from view to view.
You can either add a button to the navigation bar itself or add a control to a view’s canvas.
The next few steps do both.

12. Open MainWindow.xib and select the navigation item in the document window (Figure 9-7).
Change the navigation item’s title to First View.

Figure 9-6 The application running in iPhone Simulator

(continued)

168 iOS SDK Programming: A Beginner’s Guide

13. Drag a bar button item from the library to the navigation bar and Interface Builder will
highlight a rectangle where you can drop the button (Figure 9-8). Rename the button Next.

14. Save your changes and then open FirstViewController.h and add a new action
called moveToNextView (Listing 9-3). Import SecondViewController and add
SecondViewController as a property.

Listing 9-3 FirstViewController.h

#import <UIKit/UIKit.h>
@class SecondViewController;
@interface FirstViewController : UIViewController {
 SecondViewController * second;
}
@property (nonatomic, retain) SecondViewController * second;
-(IBAction) moveToNextView: (id) sender;
 @end

Figure 9-7 Selecting the navigation item in the Document window

Chapter 9: UINavigationBar and UINavigationController 169

15. Open FirstViewController.m and implement moveToNextView, as in Listing 9-4.

Listing 9-4 FirstViewController.m

#import "FirstViewController.h"

#import "SecondViewController.h"

@implementation FirstViewController

@synthesize second;

Figure 9-8 Adding a button to FirstViewController’s navigation bar

(continued)

170 iOS SDK Programming: A Beginner’s Guide

-(IBAction) moveToNextView: (id) sender {

 self.second = [[[SecondViewController alloc]

 initWithNibName:@"SecondViewController" bundle:nil] autorelease];

 [self.navigationController pushViewController:self.second animated: YES];

}

-(void)dealloc {

 [second release];

 [super dealloc];

}

@end

16. Save your changes.

17. Open MainWindow.xib in Interface Builder, select the FirstViewController, and connect its
moveToNextView action to the Next button (Figure 9-9).

18. Save and click Run to run the application. Tapping the Next button results in the second

Figure 9-9 Connecting moveToNextView action to the navigation button

Chapter 9: UINavigationBar and UINavigationController 171

view being displayed (Figure 9-10). Tap First View, and the application returns to the
first view.

In Step 13, you changed the default title to your view’s title. Actually, to be specific,
you changed the default title to your view controller’s navigation item’s title. In Step 14,
you added a bar button item to the navigation bar and set it as the navigation bar item’s
rightBarButtonItem. Establishing this connection ensures the application displays the
button on the bar’s right. You then created an action that, when clicked, pushes the second
view controller onto the navigation controller’s stack. The navigation controller displays
this view and a navigation bar containing the new view’s navigation bar element. Notice
you must push view controllers onto the stack manually through code, as in Listing 9-4.

[self.navigationController pushViewController:self.second animated: YES];

Figure 9-10 The application running in iPhone Simulator

172 iOS SDK Programming: A Beginner’s Guide

If a view controller is in a navigation controller’s stack, then the navigationController property
automatically refers to the navigation controller managing the stack. So, the navigation controller
in ThreeViewNavContAppDelegate pushes FirstViewController’s SecondViewController onto the
stack. Note that setting the animated parameter to YES causes the new view to slide in from the
right or the old view from the left when navigating back.

As the task illustrates, creating an application using a navigation controller and associated
navigation bar is not difficult. The Back button, and popping a view controller from the navigation
controller, is implemented for you. You provide the control and action to push view controllers
onto the navigation controller’s stack.

Adding Another View
You are not limited to bar buttons if you wish to push views onto a navigation controller’s
stack. In the following steps, you first add a bar button item to SecondViewController. You
then add an additional button to SecondViewController’s view, but instead of it being a bar
button, you use a regular button.

1. Open the ThreeViewNavCont project in Xcode.

2. Open SecondViewController and add an IBOutlet for a UIBarButtonItem to
SecondViewController as a property. Name the property navBut; don’t forget to synthesize
the property in SecondViewController.m.

3. Open SecondViewController.m and implement the viewDidLoad method to set the
navigationItem’s right bar button item to navBut:

self.navigationItem.rightBarButtonItem = navBut;

4. Note that every UIViewController has a navigationItem and that it is a read-only property.

5. Open SecondViewController.xib in Interface Builder and add a new bar button item to the
document window. Connect the newly added bar button item to the navBut outlet (Figure 9-11).
Name the new bar button item Next.

6. Save and run the application, and the second view now displays its title in the navigation
bar (Figure 9-12). But notice, clicking the Next button in the navigation bar has no effect
because you haven’t connected it to a method yet.

7. Open SecondViewController.h and add a new action called moveToNextView. Import
ThirdViewController. Add a ThirdViewController as a property (Listing 9-5).

Listing 9-5 SecondViewController.h

#import <UIKit/UIKit.h>
@class ThirdViewController;
@interface SecondViewController : UIViewController {

Chapter 9: UINavigationBar and UINavigationController 173

Figure 9-11 Adding a UIBarButtonItem

Figure 9-12 The application displaying the second view controller’s navigation item’s title

174 iOS SDK Programming: A Beginner’s Guide

 ThirdViewController * third;
 UIBarButtonItem * navBut;
}
@property (nonatomic, retain) IBOutlet UIBarButtonItem * navBut;
@property (nonatomic, retain) ThirdViewController * third;
-(IBAction) moveToNextView: (id) sender;
@end

8. Open SecondViewController.m and implement moveToNextView, as in Listing 9-6. Save
and build.

Listing 9-6 SecondViewController.m

#import "SecondViewController.h"

#import "ThirdViewController.h"

@implementation SecondViewController

@synthesize third;

@synthesize navBut;

-(void) viewDidLoad {

 self.navigationItem.title =

 @"SecondView"; self.navigationItem.rightBarButtonItem = navBut;

}

-(IBAction) moveToNextView: (id) sender {

 self.third = [[[ThirdViewController alloc]

 initWithNibName:@"ThirdViewController" bundle:nil] autorelease];

 [self.navigationController pushViewController: self.third animated: YES];

}

-(void)dealloc { [third release]; [super dealloc];

}

@end

9. Click SecondViewController.xib to edit it with Interface Builder. Connect the bar button’s
selector to the File’s Owner moveToNextView action (Figure 9-13).

10. Save and run the application. The second view now has a Next button and tapping it moves
to the next view (Figure 9-14). Now consider pushing a view onto the stack using a regular
button.

11. Open SecondViewController.xib and add a button to the view. Connect the button to
moveToNextView (Figure 9-15). Connect to the button’s Touch Up Inside action.

12. Save and run the application. Click the button on the second view, and it, too, navigates to
the third view.

Chapter 9: UINavigationBar and UINavigationController 175

Figure 9-13 Connecting the bar button to the moveToNextView action

Figure 9-14 The third view, after clicking the Next button on the second view

176 iOS SDK Programming: A Beginner’s Guide

Try This

Using a button rather than a bar button item is that easy. Typically, though, in most iOS
applications, you will see a table in the view rather than a button (see Figure 9-1). For instance,
SecondViewController might have an embedded table listing categories. Upon clicking a
table row, you would invoke the moveToNextView method, passing the specific table row’s
identifier as a parameter. The App Store application is an example of this type of navigation
(see Figure 9-1).

See How a Utility Application Uses
NavigationBar

Create a new Utility application using the Utility Application template, and then review the
code. You will notice it uses a navigation bar in the FlipsideView to display a title and a
Done button.

Figure 9-15 Connecting a button to the moveToNextView method

Chapter 9: UINavigationBar and UINavigationController 177

In our previous example, every view had a NavigationBar and we pushed each subsequent
view onto a stack of views. With a Utility application, the show info button creates a new modal
view and only that flipside view has a NavigationBar. Instead of defaulting to popping the view
from the stack, the Done button invokes a done method that dismisses the modal view.

Remember that all of the application templates in Xcode are just generating code and xib
files for you and you can experiment with creating any of them and then looking through the
generated code to better understand how iOS applications work.

More on the UINavigationController
You are not limited to pushing items onto a stack. You can also pop items off the stack. You
can also modify the navigation bar, hiding elements, adding new ones, and making other
modifications.

Popping View Controllers
You pop view controllers from a stack using the method popViewControllerAnimated:. This
method pops the top view controller off the navigation controller’s stack and updates the
displayed view to the stack’s next view controller’s view.

(UIViewController *) popViewControllerAnimated: (BOOL) animated

The method takes one parameter, which indicates if the transition should be animated. The
method also returns the popped view controller, should you wish to retain it for future use.

Other methods you might use include popToRootViewControllerAnimated: and
popToViewController:animated:. Refer to Apple’s online reference, “UINavigationController
Class Reference,” for more information.

Configuring the Navigation Bar
You can also hide the navigation bar by calling the navigation controller’s setNavigationBarHidden:
method.

-(void)setNavigationBarHidden:(BOOL)hidden animated:(BOOL)animated

This method hides or displays the navigation bar, depending upon if you passed YES or NO
as the initial parameter. You also specify if the navigation bar should slide in from the top by
specifying YES for the animated parameter.

You might also change a navigation bar’s style by changing its style property. You can use
code to change the navigation bar’s style, but the easiest way to do this is through Interface
Builder. You can also change a navigation bar’s color. You change the color using the tintColor
property.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

178 iOS SDK Programming: A Beginner’s Guide

Try This Using a Navigation Controller in a Tab
Applications usually use a navigation bar with other navigation views, such as a tab bar or table
view. You haven’t learned about table views yet—you won’t learn about using a table view
with a navigation bar until Chapter 10. However, you learned about the tab bar in Chapter 8.
A navigation bar might be placed within a tab bar. For instance, returning to the App Store
application, notice the navigation screens are steps within the Categories tab (see Figure 9-1).
The Featured, Categories, Top 25, and Updates tabs are different views on the same data. The
Search tab is a subtask. Within the Categories tab, there is a navigation bar combined with a table
view. This combination provides a way to drill down hierarchically to a specific application.

Although you don’t learn about tables until Chapter 10, consider a navigation bar in a tab.

1. Create a new Window-based Application. Name the application NavInTab.

2. Create two new UIViewController classes. Name the first FirstTabViewController and
the second StepTwoViewController; be certain to create nibs for both.

3. Open both newly created nibs and change the background color for each view.

4. Open MainWindow.xib and add a UITabBarController to the document.

5. Delete the first tab bar view controller. Drag a navigation controller to the document and drop
it so that it is the first item below the tab bar. Change the navigation controller’s root view
controller to FirstTabViewController by changing its class and nib name in the Inspector. The
canvas should indicate the view is from FirstTabViewController.nib (Figure 9-16).

Figure 9-16 Canvas indicates view is from a different nib.

Chapter 9: UINavigationBar and UINavigationController 179

6. Change the navigation item’s title from “Root View Controller” to “step one.”

7. Drag a bar button item from the library to the navigation bar in the editing window and
drop it in the area for a right-hand button (Figure 9-17). Change the button’s title to Next.

8. Save your changes.

9. Open NavInTabAppDelegate.h and NavInTabAppDelate.m and adopt the UITabBarController
Delegate protocol. Also add a UITabBarController property and a UINavigationController
property. Modify applicationDidFinishLaunching so that it loads the tabBarController
property’s root view. The files should match Listings 9-7 and 9-8. Save and build.

Listing 9-7 NavInTabAppDelegate.h

#import<UIKit/UIKit.h>
@interface NavInTabAppDelegate : NSObject<UIApplicationDelegate,
 UITabBarControllerDelegate> {
 UIWindow *window;
 UITabBarController *tabBarController;
 UINavigationController *navBarController;
}

Figure 9-17 Bar button added to document window

(continued)

180 iOS SDK Programming: A Beginner’s Guide

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet
 UITabBarController*tabBarController;
@property (nonatomic, retain) IBOutlet
 UINavigationController *navBarController;
@end

Listing 9-8 NavInTabAppDelegate.m

#import "NavInTabAppDelegate.h"
@implementation NavInTabAppDelegate
@synthesize window;
@synthesize tabBarController;
@synthesize navBarController;

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 [window addSubview:tabBarController.view];
 [window makeKeyAndVisible];
 return YES;
}

-(void)dealloc {
 [tabBarController release];
 [navBarController release];
 [window release];
 [super dealloc];
}
@end

10. Open MainWindow.xib in Interface Builder and connect the NavInTabAppDelegate’s
navBarController to the newly added navigation controller (Figure 9-18). Connect the
tabBarController to the newly added tab bar controller.

11. Save your changes.

12. Edit StepTwoViewController.m and implement the viewDidLoad method so that it sets the
navigationItem’s title to “step two” (Listing 9-9).

Listing 9-9 StepTwoViewController’s viewDidLoad method

-(void)viewDidLoad {
[super viewDidLoad];
self.navigationItem.title = @"step two";
}

13. Open FirstTabViewController.h and import StepTwoViewController.h and
NavInTabAppDelegate.h. Also add the method signature, takeNextStep (Listing 9-10).

Chapter 9: UINavigationBar and UINavigationController 181

Listing 9-10 FirstTabViewController.h

#import<UIKit/UIKit.h>
#import "StepTwoViewController.h"
#import "NavInTabAppDelegate.h"
@interface FirstTabViewController : UIViewController {
}
-(IBAction) takeNextStep: (id) sender;
@end

14. Open FirstTabViewController.m and implement the newly added action. The file should
match Listing 9-11. Note that you’ll also want to call dealloc for third view when the second
view is deallocated. Popping a view from the stack doesn’t automatically deallocate it.

Listing 9-11 takeNextStep method added to FirstTabViewController.m

-(IBAction) takeNextStep : (id) sender {
 StepTwoViewController *varSecondViewController =
 [[StepTwoViewController alloc] initWithNibName:
 @"StepTwoViewController" bundle:nil];

Figure 9-18 Connecting the navBarController

(continued)

182 iOS SDK Programming: A Beginner’s Guide

 [self.navigationController pushViewController:varSecondViewController
 animated: YES];
}

15. Open MainWindow.xib and connect the bar button item to the FirstViewController’s
takeNextStep method.

16. Save and run the application in the iPhone Simulator. You should have a two-tab application,
where the first tab has an embedded navigation control (Figure 9-19).

Figure 9-19 The finished application in iPhone Simulator

Chapter 9: UINavigationBar and UINavigationController 183

Summary
Creating an application with a navigation bar is straightforward. In the application’s
MainWindow.xib, add a UINavigationController. Set the navigation controller’s root view
controller, and create one or more other view controllers. Then add code that pushes the view
controllers onto the navigation controller’s stack. When a view controller is pushed onto
the stack, it becomes the topmost view controller, and so the application displays the view
controller’s view. Popping a view controller off the stack is provided by default if you do not
make the navigation bar’s Back button invisible. If you do make the Back button invisible,
or somehow disable the button, you must use one of the navigation controller’s methods for
popping view controllers.

In this chapter, you learned how to create an application containing a navigation controller
with three views. You then looked at how the Utility Application template uses NavigationBar
in a different manner. Finally, you embedded a navigation controller within a tab in a tab
bar. But this chapter did omit the most common navigation controller use: a table combined
with a navigation controller. In the next chapter, after learning about tables, we’ll correct this
omission by presenting a navigation controller combined with a table controller. After learning
about this combination, you will have enough knowledge of view controllers that you should
be able to tackle most iOS application navigation strategies.

This page intentionally left blank

185

Chapter 10
Tables Using
UITableView and
UITableViewController

186 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Understanding table views

Understanding table view delegates

Understanding table view data sources

Grouping and indexing table rows

Selecting table rows

Modifying a table’s appearance

Using a table in a navigation controller

Editing a table’s rows

Table views display content in a list. Tables have a single column and multiple rows. They
can scroll vertically and display large data sets. For example, the Notes application is a good

example of an application containing a table. Notes’ first screen is a list consisting of zero or
more notes. In Figure 10-1, the list contains three notes. Each row presents the note’s text, its
transcription time, and a disclosure arrow.

Figure 10-1 The Notes application consists of a UITableView and UINavigationBar.

Chapter 10: Tables Using UITableView and UITableViewController 187

Figure 10-2 Creating a new note using the Notes application

Figure 10-3 The Music application on an iPod touch uses a UITableView with an index.

The disclosure arrow indicates that details are on the next screen. Upon tapping a row, the
application takes the user to the detail view for that particular row’s note (Figure 10-2).

Tables can be grouped and indexed. For instance, the Music application on an iPod touch
uses an index (Figure 10-3). The Settings application’s rows are grouped (Figure 10-4).

188 iOS SDK Programming: A Beginner’s Guide

Table rows might also contain a picture and other customizations, as the YouTube and App
Store applications illustrate (Figure 10-5).

As the applications in the first five figures illustrate, the table view is a powerful control
for listing items. You can modify rows, add images, select rows, and edit them. In this chapter,

Figure 10-4 The Settings application uses a grouped UITableView.

Figure 10-5 The YouTube and App Store applications use images and custom cells.

Chapter 10: Tables Using UITableView and UITableViewController 189

you learn how to use tables. You learn how to build a table, change its style to grouped, add an
index to it, and accessorize it. You also learn how to place a table in a navigation controller and
how to edit a table’s rows. It is a long chapter, but the table view is a powerful control.

UITableView
The UITableView class represents a table view. This class is for displaying and editing
information lists. It consists of a single column of multiple rows. Users can scroll vertically
to navigate through a table’s rows. Each row contains a cell. You can customize that cell’s
appearance considerably.

You can index tables and create tables with zero or more sections. When you create a table,
you have a choice of two styles: UITableViewStylePlain or UITableViewStyleGrouped. A plain
table style presents a table like that in Figure 10-3. A grouped table presents a table like that in
Figure 10-4. You see examples implementing both styles later in this chapter.

UITableView classes have an associated UITableViewController, a UITableViewDelegate,
and a UITableViewDataSource. The UITableViewController is the controller class for a table
view. You create an instance of this class to manage the UITableView. The UITableViewDelegate
is a protocol you adopt in a custom class you write. This protocol allows you to manage
selections, configure headers and footers, and manage cells. The UITableViewDataSource
is also a protocol you adopt in a custom class. This protocol allows you to manage a table’s
data source.

UITableViewDelegate and UITableViewDataSource
The UITableViewDelegate and UITableViewDataSource are protocols at least one class
in your application must adopt if your application contains a UITableView. You can create
your own custom classes to adopt these protocols, or create a UITableViewController that
automatically adopts these protocols. If you choose to use a UITableViewController rather
than custom classes, you simply connect the table view’s dataSource and delegate outlets
to the UITableViewController. You can then implement both protocols’ methods in the
UITableViewController.

UITableViewDelegate
A UITableView’s delegate adopts the UITableViewDelegate protocol. This protocol manages
selections, headers, footers, and other tasks. Table 10-1 lists the methods covered in this chapter.

UITableViewDataSource
A UITable’s data source adopts the UITableViewDataSource protocol. A table’s data source
provides the table with its data. Table 10-2 lists the UITableViewDataSource protocol methods
covered in this chapter.

190 iOS SDK Programming: A Beginner’s Guide

The methods tableView:numberOfRowsInSection: and tableView:cellForRowAtIndexPath:
are required methods that every table’s data source must implement.

-(NSInteger)tableView:(UITableView *) tableView numberOfRowsInSection:
(NSInteger) section
-(UITableViewCell *)tableView:(UITableView *) tableView
cellForRowAtIndexPath: (NSIndexPath *) indexPath

The tableView:numberOfRowsInSection: method informs the data source how many rows
a section contains. The tableView:cellForRowAtIndexPath: method provides a table view with
its cells.

Table 10-1 UITableViewDelegate Methods in This Chapter

Method Description

tableView:heightForRowAtIndexPath: Provides height to use in displaying a row.

tableView:accessoryButtonTappedForRowWithIndexPath: Handles a row’s detail disclosure button
after it is tapped.

tableView:willSelectRowAtIndexPath: Handles a row about to be selected.

tableView:didSelectRowAtIndexPath: Handles a row once it is selected.

tableView:editingStyleForRowAtIndexPath: Returns the editing style of a row. This
determines if a cell displays an insertion
accessory, deletion accessory, or no
accessory.

Table 10-2 UITableViewDataSource Methods in This Chapter

Method Description

tableView:numberOfRowsInSection: Provides the number of rows in a section.

tableView:cellForRowAtIndexPath: Obtains cell from a data source to place at a
particular row.

numberOfSectionsInTableView: Obtains the number of sections in a table view
from a data source.

sectionIndexTitlesForTableView: Obtains titles for a table view from a data source.

tableView:commitEditingStyle:forRowAtIndexPath: Commits a cell’s editing.

tableView:canEditRowAtIndexPath: Returns a Boolean value, informing a table view if
a row can be edited.

tableView:canMoveRowAtIndexPath: Returns a Boolean value, informing a table view if
a row can be moved.

tableView:moveRowAtIndexPath:toIndexPath: Allows a table cell to be moved.

Chapter 10: Tables Using UITableView and UITableViewController 191

Try This Adopting the UITableViewDelegate and
UITableViewDataSource

In this first task, you create a UIViewController and have it manage the table view. You also
implement a custom class that adopts the UITableViewDelegate and UITableViewDataSource.

Creating an Empty Table
1. Create a new Window-based application. Name the application TableProjectOne.

2. Create a new UIViewController subclass. Name the class MyViewController. Ensure that
the check box is checked to create a xib file to go with it.

3. Open MyViewController.xib, click on the view icon to make it visible, and then drag
a table view into the view (Figure 10-6). It will automatically resize to completely fill
the view.

4. Save your changes.

Figure 10-6 Adding a UITableView to a view
(continued)

192 iOS SDK Programming: A Beginner’s Guide

5. Add a MyViewController as an IBOutlet to TableProjectOneAppDelegate (Listings 10-1
and 10-2).

Listing 10-1 TableProjectOneAppDelegate.h

#import <UIKit/UIKit.h>
@class MyViewController;
@interface TableProjectOneAppDelegate : NSObject
<UIApplicationDelegate> {
 UIWindow *window;
 MyViewController *viewController;
}
@property (nonatomic, retain) IBOutlet MyViewController
*viewController;
@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

Listing 10-2 TableProjectOneAppDelegate.m

#import "TableProjectOneAppDelegate.h"
#import "MyViewController.h"
@implementation TableProjectOneAppDelegate
@synthesize window;
@synthesize viewController;
- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 [window addSubview:self.viewController.view];
 [window makeKeyAndVisible];
 return YES;
}

- (void)dealloc {
 [viewController release];
 [window release];
 [super dealloc];
}
@end

6. Modify application:didFinishLaunchingWithOptions so that it adds the viewController
property’s view. Build the application.

7. Open MainWindow.xib and drag a View Controller to the editing pane. Change its class
and Nib Name to MyViewController.

Chapter 10: Tables Using UITableView and UITableViewController 193

8. Connect the TableProjectOneAppDelegate’s viewController outlet to the MyViewController
you just added.

9. Save your changes and run the application. The application loads an empty table into the
iPhone Simulator (Figure 10-7).

NOTE
In Steps 1–9, you added the table view as a subview to the view in the MyViewController
nib. If you preferred, you could omit the extra view and just add the table view
directly as the nib’s view. But note, you would also change MyViewController from
a UIViewController to a UITableViewController. Point is, you don’t have to put the
UITableView inside a UIView in order to use it. A UITableView can be added directly to
the XIB and connected to a table view controller’s view outlet, and it will work the same
way. The next Try This example illustrates.

Figure 10-7 An application with an empty UITableView

194 iOS SDK Programming: A Beginner’s Guide

Try This

In this task’s first step, you created a UITableView as a subview of a UIView. When the
UIViewController loads and displays its view, the view automatically displays its subview,
the table view. But all it loads is an empty table. To actually load data into the table, you must
implement a delegate and a data source. Moreover, the data source must actually provide data
for the table. In the next few steps, you create a delegate and data source for the table.

Adding a Delegate and Data Source
1. Create a new class named TableHandler, derived from NSObject. Change TableHandler

so that it adopts the UITableViewDelegate and UITableViewDataSource protocols
(Listings 10-3 and 10-4).

Listing 10-3 TableHandler.h

#import <Foundation/Foundation.h>
@interface TableHandler : NSObject <UITableViewDelegate,
UITableViewDataSource> {
 NSArray * tableDataList;
}
@property (nonatomic, retain) NSArray * tableDataList;
-(void) fillList;
@end

Listing 10-4 TableHandler.m

#import "TableHandler.h"
@implementation TableHandler
@synthesize tableDataList;
-(void) fillList {
NSArray * tempArray = [[[NSArray alloc] initWithObjects:@"Item One",
@"Item Two", @"Item Three", @"Item Four", @"Item Five", @"Item Six",
@"Item Seven", @"Item Eight", @"Item Nine", @"Item Ten", @"Item Eleven",
@"Item Twelve", @"Item Thirteen", @"Item Fourteen", @"Item Fifteen",
@"Item Sixteen", @"Item Seventeen", @"Item Eighteen", @"Item Nineteen",
@"Item Twenty", nil] autorelease];
self.tableDataList = tempArray;
}
#pragma mark -
#pragma mark UITableViewDataSource Protocol Methods
-(NSInteger) tableView : (UITableView *) tableView
numberOfRowsInSection: (NSInteger) section
{
 return [self.tableDataList count];
}

Chapter 10: Tables Using UITableView and UITableViewController 195

-(UITableViewCell *) tableView : (UITableView *) tableView
 cellForRowAtIndexPath: (NSIndexPath *) indexPath {
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier: @"acell"];
 if(cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:@"acell"] autorelease];
 }
 cell.textLabel.text = [self.tableDataList
 objectAtIndex:[indexPath row]];
 return cell;
}

#pragma mark -
-(void)dealloc {
 [tableDataList release];
 [super dealloc];
}
@end

2. Add an NSArray property and a method named fillList for filling the array.

3. Implement the fillArray method so that the application has data to load into the table’s cells.

4. Implement the tableView:numberOfRowsInSection: and tableView: cellForRowAtIndexPath:
methods.

5. Modify MyViewController to have a TableHandler property (Listings 10-5 and 10-6).
Ensure the property is an IBOutlet.

Listing 10-5 MyViewController.h

#import <UIKit/UIKit.h>
#import "TableHandler.h"
@interface MyViewController : UIViewController {
 TableHandler * myHandler;
}
@property (nonatomic, retain) IBOutlet TableHandler * myHandler;
@end

Listing 10-6 MyViewController.m

#import "MyViewController.h"
@implementation MyViewController
@synthesize myHandler; (continued)

196 iOS SDK Programming: A Beginner’s Guide

-(void) viewDidLoad {
 [self.myHandler fillList];
}
-(void)dealloc {
 [self.myHandler release];
 [super dealloc];
}
@end

6. Implement the viewDidLoad method in MyViewController so that it calls its TableHandler’s
fillList method to ensure that the table has data before it needs to draw.

7. Save your changes and build the project.

8. Open MyViewController.xib and drag an object to the editing pane. Change the object’s
class to TableHandler (Figure 10-8).

9. Connect the File’s Owner myHandler outlet to the newly added TableHandler (Figure 10-9).

10. Connect the table view’s dataSource and delegate outlets to the newly added TableHandler.

11. Save and click Run. The application displays 20 rows (Figure 10-10).

Figure 10-8 Adding a TableHandler object in Interface Builder

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 10: Tables Using UITableView and UITableViewController 197

Figure 10-9 Connecting the controller to TableHandler

Figure 10-10 The project running in iPhone Simulator (continued)

198 iOS SDK Programming: A Beginner’s Guide

Try This

NOTE
The #pragma mark lines in the code listings for this example are a handy way to
organize your code as your implementation files get larger. Click the file or function
name displayed across the top of the editing pane and you’ll see #pragma mark entries
in the pull-down menu that appears. This lets you quickly jump around in a large file.

UITableViewController
The UITableViewController manages a table view. The UITableView can use objects defined
in a table’s nib to define a table’s delegate and data source, or it can use itself as the delegate
and data source. For instance, in the previous example, you set the table’s delegate and data
source properties to the TableHandler class. You could have added a UITableViewController,
set it as the table’s File’s Owner, and then set its outlets to TableHandler.

If you do not provide a delegate and data source in a table’s nib, a UITableViewController
sets its data source and delegate to itself. By doing this, the UITableViewController saves
you the work of having to create your own classes so that they adopt the delegate and data
source. You still must implement any data source and delegate methods desired. However,
rather than implementing these methods in separate custom classes, you implement them in
a UITableViewController subclass. The UITableViewController then functions as the table’s
controller, delegate, and data source.

Using a UITableViewController
In the last Try This task, you did things the hard way. However, the task’s purpose was to
illustrate adding a table view as a subview, with no controller. In this Try This task, you use
a UITableViewController. Moreover, rather than adding a table view as a subview, you add it
directly to the xib as the primary view.

1. Create a new Window-based Application. Name the application TableProjectTwo.

2. Create a new UITableViewController subclass (select the UIViewController subclass
and then check the UITableViewController subclass check box). Name the class
MyTableViewController. Make sure that it is also creating the XIB file.

3. Open MyTableViewController.xib. You’ll notice that Xcode created a table view for you
and connected it to the File’s Owner. It also connected the table view’s dataSource and
delegate outlets to the File’s Owner (Figure 10-11).

Chapter 10: Tables Using UITableView and UITableViewController 199

4. Add a MyTableViewController as an IBOutlet to TableProjectTwoAppDelegate. Do not forget
to import MyTableViewController. Modify application:didFinishLaunchingWithOptions so
that it adds the viewController property’s view (Listings 10-7 and 10-8).

Listing 10-7 TableProjectTwoAppDelegate.h

#import <UIKit/UIKit.h>
#import "MyTableViewController.h"
@interface TableProjectTwoAppDelegate : NSObject
<UIApplicationDelegate> {
 UIWindow *window;
 MyTableViewController *viewController;
}
@property (nonatomic, retain) IBOutlet MyTableViewController *
viewController;
@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

Figure 10-11 XIB automatically created for a UITableViewController subclass

(continued)

200 iOS SDK Programming: A Beginner’s Guide

Listing 10-8 TableProjectTwoAppDelegate.m

#import "TableProjectTwoAppDelegate.h"
@implementation TableProjectTwoAppDelegate
@synthesize window;
@synthesize viewController;
- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 [window addSubview:self.viewController.view];
 [window makeKeyAndVisible];
 return YES;
}
-(void)dealloc {
 [window release];
 [viewController release];
 [super dealloc];
}

Listing 10-9 MyTableViewController.h

#import <Foundation/Foundation.h>
@interface MyTableViewController : UITableViewController {
 NSArray * tableDataList;
}
@property (nonatomic, retain) NSArray * tableDataList;
@end

5. Edit MyTableViewController.h and add the tableDataList value (Listing 10-9).

6. Edit MyTableViewController.m to replace the delegate methods required by the table with
the methods in Listing 10-10.

Listing 10-10 MyTableViewController.m

#import "MyTableViewController.h"
@implementation MyTableViewController
@synthesize tableDataList;

-(void) viewDidLoad {
 NSArray * tempArray = [[[NSArray alloc] initWithObjects:@"Item One",
 @"Item Two", @"Item Three", @"Item Four", @"Item Five", @"Item Six",
 @"Item Seven", @"Item Eight", @"Item Nine", @"Item Ten", @"Item Eleven",
 @"Item Twelve", @"Item Thirteen", @"Item Fourteen", @"Item Fifteen",
 @"Item Sixteen", @"Item Seventeen", @"Item Eighteen", @"Item Nineteen",
 @"Item Twenty", nil] autorelease];

Chapter 10: Tables Using UITableView and UITableViewController 201

 self.tableDataList = tempArray;
}

-(NSInteger) tableView : (UITableView *) tableView
 numberOfRowsInSection: (NSInteger) section {
 return [self.tableDataList count];
}

-(UITableViewCell *) tableView : (UITableView *) tableView
 cellForRowAtIndexPath: (NSIndexPath *) indexPath {
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"acell"];
 if(cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:
 UITableViewCellStyleDefault reuseIdentifier:@"acell"] autorelease];
 }
 cell.textLabel.text = [self.tableDataList
 objectAtIndex:[indexPath row]];
 return cell;
}

-(void)dealloc {
 [tableDataList release];
 [super dealloc];
}
@end

7. Open MainWindow.xib and drag a table view controller to the document window. Change
its class and Nib Name to MyTableViewController. Since it will be loaded from the
separate XIB file, you can delete the TableView that was automatically created under
MyTableViewController when you dragged it to the editing pane.

8. Connect the TableProjectTwoAppDelegate’s viewController outlet to the
MyTableViewController added to the document window.

9. Save and run the application. The results should match the previous task’s results
(Figure 10-10).

Grouping and Indexing
Tables have two main styles: grouped and plain. Figure 10-3 illustrates a table with a plain
style, while Figure 10-4 illustrates a table with a grouped style. Plain tables might also be
indexed. An index sorts the rows and makes navigation quicker by letting a user jump to
different locations in the index.

202 iOS SDK Programming: A Beginner’s Guide

Try This

Grouped Table Style
Grouping is accomplished by changing a UITableView’s style to grouped. You then tell a
UITableView’s data source how many sections belong in the table and how many rows belong
in each section. The class adopting the UITableViewDataSource protocol informs the table
how many sections via the numberOfSectionsInTableView: method. It informs the table how
many rows are in each section via the tableView:numberOfRowsInSection: method.

-(NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
-(NSInteger)tableView:(UITableView *) tableView numberOfRowsInSection:
(NSInteger)section

Each grouping might have a title. You add titles by having your UITableViewDataSource
protocol adoption implement the tableView:titleForHeaderInSection method. This method
provides a table view with a title for a section’s header. You might also wish to add a footer
to each grouping by implementing the tableView:titleForFooterInSection: method.

-(NSString *)tableView:(UITableView *)tableView titleForHeaderIn
Section:(NSInteger)section
-(NSString *)tableView:(UITableView *)tableView titleForFooterIn
Section:(NSInteger)section

Grouping
1. Copy TableProjectOne from the first task to a new location. Open the newly copied

TableProjectOne in Xcode.

2. Modify the array in TableHandler so that tableDataList consists of an array of five arrays
(Listing 10-11).

Listing 10-11 Table’s list modified to an array of arrays

-(void) fillList {
NSArray * tempArrayA = [[[NSArray alloc] initWithObjects:@"AItem One",
@"AItem Two", nil] autorelease];
NSArray * tempArrayB = [[[NSArray alloc] initWithObjects:@"BItem Three",
@"BItem Four", nil] autorelease];
NSArray * tempArrayC = [[[NSArray alloc] initWithObjects:@"CItem Five",
@"CItem Six", nil] autorelease];
NSArray * tempArrayD = [[[NSArray alloc] initWithObjects:@"DItem Seven",
@"DItem Eight", nil] autorelease];
NSArray * tempArrayE = [[[NSArray alloc] initWithObjects:@"EItem Nine",
@"EItem Ten", nil] autorelease];
NSArray * tempArray = [[[NSArray alloc] initWithObjects:tempArrayA,
tempArrayB, tempArrayC, tempArrayD, tempArrayE, nil] autorelease];
 self.tableDataList = tempArray;
}

Chapter 10: Tables Using UITableView and UITableViewController 203

3. Add the numberOfSectionsInTableView and titleForHeaderInSection methods to
TableHandler.m (Listing 10-12).

Listing 10-12 Modifications to TableHandler.m to support grouping

-(NSInteger) numberOfSectionsInTableView: (UITableView *) tableView {
 return [tableDataList count];
}
-(NSString *) tableView: (UITableView *) tableView
titleForHeaderInSection: (NSInteger) section {
 switch (section) {
 case 0: return @"A"; break;
 case 1: return @"B"; break;
 case 2: return @"C"; break;
 case 3: return @"D"; break;
 case 4: return @"E"; break;
 }
 return nil;
}
-(NSInteger) tableView : (UITableView *) tableView numberOfRowsInSection:
(NSInteger) section {
 return [[tableDataList objectAtIndex: section] count];
}

4. Modify numberOfRowsInSection to return [[tableDataList objectAtIndex: section] count]
and modify numberOfSections to return [tableDataList count].

5. Modify cellForRowAtIndexPath so that it uses the section and the row (Listing 10-13).

Listing 10-13 The cellForRowAtIndexPath modified to use row and section

-(UITableViewCell *) tableView: (UITableView *) tableView

 cellForRowAtIndexPath: (NSIndexPath *) indexPath {

 UITableViewCell *cell =

 [tableView dequeueReusableCellWithIdentifier: @"acell"];

 if (cell == nil) {

 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault

 reuseIdentifier: @"acell"] autorelease];

 }

 cell.textLabel.text = [[self.tableDataList objectAtIndex:indexPath.section]

 objectAtIndex:indexPath.row]; return cell;

}

6. Select MyViewController.xib to edit it. Change the table view’s Style from Plain to
Grouped (Figure 10-12).

7. Save and click Run. The table’s rows are grouped (Figure 10-13).

(continued)

204 iOS SDK Programming: A Beginner’s Guide

Figure 10-12 Changing the table to grouped

Figure 10-13 The application running in iPhone Simulator

Chapter 10: Tables Using UITableView and UITableViewController 205

Try This

The fillList method initializes an NSArray of five NSArrays. The tableView:titleForHeader
InSection is hard-coded to return A, B, C, D, or E, depending upon the current section. When
the table loads, five sections are created, each with a title from the titleForHeaderInSection
method. Each row’s content is determined from the cellForRowAtIndexPath method.

Indexing
Tables can be indexed. To index a table, a table’s style should be plain. As with grouping,
you implement the numberOfSectionsInTableView: and tableView:numberOfRowsInSection:
methods, but you also implement a third method: sectionIndexTitlesForTableView:. This
method, implemented in your UITableViewDataSource adoptee, creates the titles that appear
along a table’s right side. Upon clicking one of these values, a user is taken directly to the
group with the corresponding title.

-(NSArray *) sectionIndexTitlesForTableView:(UITableView *) tableView

Indexing
1. Open the TableProjectOne from the grouping Try This task you just completed.

2. Open MyViewController.xib and change the table view’s style to Plain.

3. Save and click Run. Notice the application is still grouped, but the table’s appearance is
changed (Figure 10-14).

4. Implement the sectionIndexTitlesForTableView method, as in Listing 10-14, in
TableHandler.m.

Listing 10-14 The sectionIndexTitlesForTableView method

-(NSArray *) sectionIndexTitlesForTableView:
 (UITableView *) tableView {
 NSArray * keys = [[[NSArray alloc] initWithObjects: @"A", @"B", @"C",
 @"D", @"E",nil] autorelease];
 return keys;
}

5. Click Run. The application has an index (Figure 10-15).

(continued)

206 iOS SDK Programming: A Beginner’s Guide

Figure 10-14 A plain table with groupings

Figure 10-15 The indexed table running in iPhone Simulator

Chapter 10: Tables Using UITableView and UITableViewController 207

Try This

NOTE
Don’t let this chapter’s reliance on simple NSArrays fool you into thinking you must use
this collection class to hold a table’s data. You can use any collection class, retrieve the
data from a database, or use any other method you deem appropriate, provided you
implement methods to obtain the data correctly.

Images in Tables
Adding an image to a table, provided you are happy with the image appearing in the row’s upper-left
corner, is not difficult. Simply add an image to the cell in the tableView:cellForRowAtIndexPath:
method. Remember, this method loads a UITableViewCell into a row. You can use this method to
initialize a table cell with an image using the UITableViewCell’s imageView.image property. The
image is then displayed in the table’s row.

Adding an Image
1. Open the last task’s project. From the book’s Resources folder, add the images power.png,

icon.png, package.png, web.png, and colorize.png to the project’s Resources folder.

2. Modify the tableView:cellForRowAtIndexPath: method to match Listing 10-15.

Listing 10-15 The tableView:cellForRowAtIndexPath: method added to
TableHandler.m

-(UITableViewCell *) tableView : (UITableView *) tableView
 cellForRowAtIndexPath: (NSIndexPath *) indexPath {
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier: @"acell"];
 if(cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:
 UITableViewCellStyleDefault reuseIdentifier:@"acell"] autorelease];
 }
 cell.textLabel.text = [[self.tableDataList objectAtIndex:
 indexPath.section] objectAtIndex: indexPath.row];
 UIImage * image;
 switch (indexPath.section) {
 case 0: image = [UIImage imageNamed:@"power.png"]; break;
 case 1: image = [UIImage imageNamed:@"Icon.png"]; break;

(continued)

208 iOS SDK Programming: A Beginner’s Guide

 case 2: image = [UIImage imageNamed:@"package_graphics.png"]; break;
 case 3: image = [UIImage imageNamed:@"colorize.png"]; break;
 case 4: image = [UIImage imageNamed:@"web.png"]; break;
 }
 cell.imageView.image = image;
 return cell;
}

3. Click Run. Notice that iOS automatically scales any images that are too large so that they
don’t overrun the table cell bounds (Figure 10-16).

Figure 10-16 Images display on left side of each table row.

Chapter 10: Tables Using UITableView and UITableViewController 209

Try This

Selecting Rows
The UITableView allows you to select a row. Typically, a table presents rows to a user, where
each row is an item in a hierarchical list. Upon selecting a row, the user is generally taken to
another view presenting the item’s details. You implement the tableView:willSelectRowAtIndex:
and tableView:didSelectRowAtIndexPath: methods if you wish to allow a user to select a row.

-(NSIndexPath *) tableView:(UITableView *) tableView
willSelectRowAtIndexPath: (NSIndexPath *) indexPath
-(void) tableView:(UITableView *) tableView didSelectRowAtIndexPath:
(NSIndexPath *) indexPath

The tableView:willSelectRowAtIndexPath: method allows the delegate to react to a row
about to be selected. The tableView:didSelectRowAtIndexPath: method allows a reaction
to a row’s selection. These methods are useful because they allow you to implement custom
behavior in a table’s delegate when a row is selected.

Row Selection
1. Open the last task’s project in Xcode.

2. Add the tableView:willSelectRowAtIndexPath: and the tableView:didSelectRowAtIndexPath:
methods in Listing 10-16 to TableHandler.m.

Listing 10-16 The tableView:willSelectRowAtIndexPath: and tableView:didSelectRow
AtIndexPath: methods

-(NSIndexPath *) tableView: (UITableView *) tableView
 willSelectRowAtIndexPath: (NSIndexPath *) indexPath {
 NSLog(@"Item at the %d array and %d item has value: %@",
 indexPath.section, indexPath.row,
 [[self.tableDataList objectAtIndex: indexPath.section]
 objectAtIndex: indexPath.row]);
 return indexPath;
}

-(void)tableView:(UITableView *) tableView didSelectRowAtIndexPath:
 (NSIndexPath *) index {
 NSLog(@"Yes I did....");
}

(continued)

210 iOS SDK Programming: A Beginner’s Guide

Try This

3. Click Run. The application looks the same as the previous task’s results. Clicking the items
should result in logging similar to Listing 10-17.

Listing 10-17 Debugger Console logging

2010-08-31 20:27:54.220 TableProjectOne[53965:207] I selected the item
at the 0 array and 0 item, the value is: AItem One
2010-08-31 20:27:54.222 TableProjectOne[53965:207] Yes I did....
2010-08-31 20:27:56.900 TableProjectOne[53965:207] I selected the item
at the 1 array and 0 item, the value is: BItem Three
2010-08-31 20:27:56.901 TableProjectOne[53965:207] Yes I did....

Changing Row Height
A couple of sections ago, you added images that were too large to display in a table’s row.
iOS resized the images on the fly, so this wasn’t a big issue. However, sometimes you want
to display a larger image, text with a large font, or a custom cell. One way you can add space
in a table’s row is by increasing the row’s height. You increase a row’s height using the
heightForRowAtIndexPath method.

Changing Row Height
1. Open the previous task project in Xcode.

2. Add the heightForRowAtIndexPath: method in Listing 10-18 to TableHandler.m.

Listing 10-18 The heightForRowAtIndexPath method added to TableView

-(CGFloat) tableView : (UITableView *) tableView
heightForRowAtIndexPath: (NSIndexPath *) indexPath {
return 90;
}

3. Click Build And Go, and the rows are 90 pixels tall (Figure 10-17).

Chapter 10: Tables Using UITableView and UITableViewController 211

Accessorizing Table Cells
You can tell a cell to place a check mark, disclosure arrow, or detailed disclosure button in
the cell by setting the cell’s accessoryView or accessoryType properties. Accessories are
visual user interface clues for users. For instance, the check mark might inform a user that
he or she has already selected a row. A disclosure arrow or a detailed disclosure button might
hint to a user that he or she can select the row to view the row’s details in another view. The
check mark and disclosure button are visual clues for a user and do not provide events that
respond to a user tapping them. However, the detailed disclosure button can respond to a
user tapping it.

Figure 10-17 The application running with 90-pixel-high rows in iPhone Simulator

212 iOS SDK Programming: A Beginner’s Guide

Try This Accessorizing a Table Cell
1. Open the previous project in Xcode and comment out the sectionIndexTitlesForTableView

method in TableHandler.m.

2. Add the tableView:accessoryButtonTappedForRowWithIndexPath: method to
TableHandler.m (Listing 10-19). Also modify the tableView:cellForRowAtIndexPath:
method to add the accessories to the table cells.

Listing 10-19 The tableView:cellForRowAtIndexPath: and tableView:accessoryButton
TappedForRowWithIndexPath: methods

-(UITableViewCell *) tableView : (UITableView *) tableView
 cellForRowAtIndexPath: (NSIndexPath *) indexPath {
 NSUInteger section = [indexPath section];
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier: @"acell"];
 if(cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:
 UITableViewCellStyleDefault reuseIdentifier:@"acell"] autorelease];
 }
 cell.textLabel.text = [[self.tableDataList objectAtIndex:section]
 objectAtIndex:[indexPath row]];
 UIImage * image;
 switch (indexPath.section) {
 case 0: image = [UIImage imageNamed:@"power.png"]; break;
 case 1: image = [UIImage imageNamed:@"Icon_resize.png"]; break;
 case 2: image = [UIImage imageNamed:@"package_graphics_resize.png"];
 break;
 case 3: image = [UIImage imageNamed:@"colorize.png"]; break;
 case 4: image = [UIImage imageNamed:@"web.png"]; break;
 }
 cell.imageView.image = image;
 if(indexPath.section == 0) {
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 } else if(indexPath.section == 1) {
 cell.accessoryType = UITableViewCellAccessoryDetailDisclosureButton;
 } else {
 cell.accessoryType = UITableViewCellAccessoryCheckmark;
 }
 return cell;
}

-(void) tableView:(UITableView *) tableView
 accessoryButtonTappedForRowWithIndexPath: (NSIndexPath *) indexPath {
 NSLog(@"hey now....");
}

Chapter 10: Tables Using UITableView and UITableViewController 213

3. Click Run. The rows contain accessories (Figure 10-18). When you tap the detailed
disclosure button, the table calls the tableView:accessoryButtonTappedForRow
WithIndexPath: method.

Customizing a Table Cell
Tables can be customized. Sometimes you might wish to format data differently than provided
by the default UITableViewCell. The most direct way to accomplish formatting a table cell is
by adding a view to the UITableViewCell. You do this in code, by adding a subview to a cell
when initializing it in the tableView:cellForRowAtIndexPath method. Another technique is
to create a subclass of a UITableViewCell and then create its graphical layout using Interface
Builder.

Figure 10-18 Accessorized table rows

214 iOS SDK Programming: A Beginner’s Guide

Try This Customizing a Cell Using Interface Builder
1. Create a new Navigation-based Application. Name the application CustomizedCell.

2. Create a new subclass of UITableViewCell. Note that Xcode provides a template for this
class (select Objective-C class and then UITableViewCell from the pull-down). Name the
class MyCellView.

3. In MyCellView, create a new UILabel outlet named theTextLabel (Listings 10-20 and 10-21).

Listing 10-20 MyCellView.h

#import <UIKit/UIKit.h>
@interface MyCellView : UITableViewCell {
 UILabel * theTextLabel;
}
@property (nonatomic, retain) IBOutlet UILabel * theTextLabel;
@end

Listing 10-21 MyCellView.m

#import "MyCellView.h"

@implementation MyCellView

@synthesize theTextLabel;

- (id)initWithStyle:(UITableViewCellStyle)style

 reuseIdentifier:(NSString *)reuseIdentifier {

 if ((self = [super initWithStyle:style reuseIdentifier:reuseIdentifier])) {

 // Initialization code

 }

 return self;

}

- (void)setSelected:(BOOL)selected animated:(BOOL)animated {

 [super setSelected:selected animated:animated];

}

- (void)dealloc {

 [theTextLabel release];

 [super dealloc];

}

@end

4. Drag the image money.png from this book’s Resources folder to the Resources folder in
the project. Save.

5. Create a new Empty XIB. Name the file MyCellView.xib and select it to view it in
Interface Builder.

Chapter 10: Tables Using UITableView and UITableViewController 215

6. Add a table view cell from the library to the editing pane.

7. Change the cell’s class from UITableViewCell to MyCellView.

8. Click My Cell View in the editing pane to select it.

9. In the Attributes Inspector, select money.png as the cell’s image. Change the cell’s
background to yellow. Also, be certain to set the Identifier to MyCell (Figure 10-19).

CAUTION
If you do not set a cell’s identifier, the cell can never be reused. This means every call to
tableView:cellForRowAtIndexPath: results in a new table cell.

10. Drag a UIImageView and two UILabels to the canvas (Figure 10-20). Type some text in
one label; delete the other label’s text. Set the image view’s image to money.png.

Figure 10-19 Setting the identifier to MyCell

(continued)

216 iOS SDK Programming: A Beginner’s Guide

11. Connect the MyCellView’s theTextLabel outlet to the newly added label.

12. Save your changes.

13. Open RootViewController.xib and change the table view’s background to yellow. Save
your changes.

14. Modify RootViewController to implement the UITableViewController methods needed so
that they match Listings 10-22 and 10-23.

Listing 10-22 RootViewController.h

#import <UIKit/UIKit.h>
#import "MyCellView.h"
@interface RootViewController : UITableViewController { }
@end

Figure 10-20 Adding UIImageView and UILabels to a view canvas

Chapter 10: Tables Using UITableView and UITableViewController 217

Listing 10-23 RootViewController.m

#import "RootViewController.h"
#import "CustomizedCellAppDelegate.h"
@implementation RootViewController
-(NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}

-(NSInteger)tableView: (UITableView *) tableView
 numberOfRowsInSection: (NSInteger) section {
 return 5;
}

-(CGFloat) tableView : (UITableView *) tableView
 heightForRowAtIndexPath: (NSIndexPath *) indexPath {
 return 110;
}

-(UITableViewCell *)tableView:(UITableView *) tableView
 cellForRowAtIndexPath: (NSIndexPath *) indexPath {
 MyCellView *cell = (MyCellView *) [tableView
 dequeueReusableCellWithIdentifier: @"MyCell"];
 if(cell == nil) {
 cell = [[[NSBundle mainBundle] loadNibNamed:
 @"MyCellView" owner:self options:nil] objectAtIndex:0];
 }
 [cell.theTextLabel setText:@"Just some static text."];
 NSString *imagePath = [[NSBundle mainBundle]
 pathForResource:@"money" ofType:@"png"];
 cell.imageView.image = [UIImage imageWithContentsOfFile:imagePath];
 [cell setAccessoryType:UITableViewCellAccessoryCheckmark];
 cell.contentView.backgroundColor = [UIColor yellowColor];
 cell.backgroundView.backgroundColor = [UIColor yellowColor];
 return cell;
}

-(void)dealloc {
 [super dealloc];
}
@end

15. Notice that the tableView:cellForRowAtIndexPath: method sets the cell’s accessory,
background color, and image.

16. Click Run. The table cells have the customized appearance (Figure 10-21).

Notice in the previous example that you initialize the cell every time it’s called in the table
View:CellForRowAtIndexPath: method. This initialization is per Apple’s documentation, Table

(continued)

218 iOS SDK Programming: A Beginner’s Guide

View Programming Guide for iOS. The “tableView:cellForRowAtIndexPath should always
reset all content when reusing a cell.” That is why in the tableView:cellForRowAtIndexPath:
you set the cell’s background color, image, and label text. In a more realistic example, you
would probably vary a cell’s content depending upon the row.

Implementing a UITableViewCell in its own nib does not require implementing a
UITableViewCell class, as you did in the example. However, if you wish to override
a UITableViewCell’s methods, such as setSelected, you must implement your own
custom class. You then set the UITableViewCell’s type in Interface Builder to be your
custom subclass. In this example, that class is MyCellView. Implementing a custom
UITableViewCell subclass is also a convenient location to place IBOutlets and IBActions
for the controls on your custom UITableViewCell control.

NOTE
For more information on table view cells, refer to “A Closer Look at Table-View Cells” in
Apple’s “Table View Programming Guide for iOS.”

Figure 10-21 Application with background color

Chapter 10: Tables Using UITableView and UITableViewController 219

Try This

Using Tables with Navigation Bars and Tabs
Almost every application using a table associates that table with a navigation bar. Moreover,
in applications of any complexity, the application also usually organizes its tasks into different
tabs. For instance, the iPod application has different tabs for different views of its data. The
Artists tab, for instance, shows a user’s multimedia sorted by artist. At the iPod application’s
top is a navigation bar. When a user selects an artist row, the navigation controller pushes
another view onto the navigation controller and displays it.

In the following Try This, we try to add some real-world credibility to this chapter by
having you implement a table in a navigation controller that is in a Tab Bar tab. Although
initially confusing, this is such a common user interface pattern that you should definitely
understand the next task.

Using a Table in a Navigation Controller
in a Tab

This is a long but useful task. Much of it is repetition from previous chapters, but the combination
of a table in a navigation controller in a tab is such a common application pattern that it is worth
presenting here in detail, even if much of the task is repetitive.

Creating and Connecting the Views
1. Create a new Window-based Application. Name the application TabNavTable.

2. Add a UITabBarController as an IBOutlet to TabNavTableAppDelegate. Name the outlet
myCont (Listing 10-24).

Listing 10-24 TabNavTableAppDelegate.h

#import <UIKit/UIKit.h>
@interface TabNavTableAppDelegate : NSObject <UIApplicationDelegate> {
UIWindow *window;
UITabBarController *myCont;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UITabBarController *myCont;
@end

3. Change TabNavTableAppDelegate’s application:didFinishLaunchingWithOptions method
in TabNavTableAppDelegate to load the newly added tab bar controller’s root view
(Listing 10-25).

(continued)

220 iOS SDK Programming: A Beginner’s Guide

Listing 10-25 TabNavTableAppDelegate.m

#import "TabNavTableAppDelegate.h"
@implementation TabNavTableAppDelegate
@synthesize window;
@synthesize myCont;
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *) launchOptions {
 [window addSubview: myCont.view];
 [window makeKeyAndVisible];
}

-(void)dealloc {
 [myCont release];
 [window release];
 [super dealloc];
}
@end

4. Save your changes and open MainWindow.xib in Interface Builder.

5. Add a tab bar controller from the library to the document window.

6. Delete the tab bar controller’s root view controller (View Controller - Item 1).

7. Add a navigation controller in the previously deleted root view controller’s place
(Figure 10-22).

8. Change the navigation controller’s view controller, View Controller (Root View
Controller), from a UIViewController to a UITableViewController. For now we’ll leave
its type as UITableViewController; then in a few steps, you change it to your own class,
MyTableViewController.

9. Connect TabNavTableAppDelegate’s myCont property to the tab bar controller (Figure 10-23).

10. Save your changes.

11. Create a new subclass of UITableViewController. Name the class MyTableViewController
and add the table view controller methods in Listings 10-26 and 10-27.

Listing 10-26 MyTableViewController.h

#import <UIKit/UIKit.h>
@interface MyTableViewController : UITableViewController {
 NSMutableArray * tableDataList;
}
@property (nonatomic, retain) NSMutableArray * tableDataList;
@end

Chapter 10: Tables Using UITableView and UITableViewController 221

Figure 10-22 Navigation controller in place of tab’s view controller

Figure 10-23 Application with a table, navigation bar, and tab bar (continued)

222 iOS SDK Programming: A Beginner’s Guide

Listing 10-27 MyTableViewController.m

#import "MyTableViewController.h"
@implementation MyTableViewController
@synthesize tableDataList;

-(void) viewDidLoad {
NSMutableArray * tempArray = [[[NSMutableArray alloc]
 initWithObjects:@"Item One", @"Item Two", @"Item Three",
 @"Item Four", @"Item Five", @"Item Six",@"Item Seven",
 @"Item Eight", @"Item Nine", @"Item Ten",
 @"Item Eleven", @"Item Twelve", @"Item Thirteen",
 @"Item Fourteen", @"Item Fifteen", @"Item Sixteen",
 @"Item Seventeen",@"Item Eighteen",
 @"Item Nineteen", @"Item Twenty", nil] autorelease];
 self.tableDataList = tempArray;
}

-(NSInteger) tableView : (UITableView *) tableView
 numberOfRowsInSection: (NSInteger) section {
 return [self.tableDataList count];
}

-(UITableViewCell *) tableView : (UITableView *) tableView
 cellForRowAtIndexPath:(NSIndexPath *) indexPath {
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"acell"];
 if(cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:
 UITableViewCellStyleDefault reuseIdentifier:@"acell"] autorelease];
 }
 cell.textLabel.text =
 [self.tableDataList objectAtIndex:[indexPath row]];
 return cell;
}

-(void)dealloc {
 [tableDataList release];
 [super dealloc];
}
@end

12. Notice that you’re adding an NSMutableArray named tableDataList and populating it in
MyTableViewController’s viewDidLoad method.

13. Open MyTableViewController.xib, which was created along with the class. Notice that
it already has a table view, and the dataSource and delegate outlets are already set up
for you.

Chapter 10: Tables Using UITableView and UITableViewController 223

NOTE
In Step 14 you are adding the table directly to the nib as the main view. Contrast
this with how you added the table view in this chapter’s first Try This example. Both
techniques work.

14. Open MainWindow.xib in Interface Builder.

15. In the document window, expand Tab Bar Controller, and then expand Navigation
Controller (Item). Change the Table View Controller (Navigation Item) from a
UITableViewController to MyTableViewController. Don’t forget to change its NIB Name
in the Attributes Inspector to MyTableViewController to show the table is loaded from
another nib.

16. Save and click Run. The first tab contains a navigation bar and a table view (Figure 10-24).

Figure 10-24 Table in a tab bar

(continued)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

224 iOS SDK Programming: A Beginner’s Guide

Handling Row Selections
1. Add an IBOutlet to MyTableViewController that references a UINavigationController.

Name the outlet navCont. Don’t forget to synthesize it and to release it. Save and compile.

2. Open MainWindow.xib. In the editing pane, expand Tab Bar Controller and then
Navigation Controller - Item. Connect MyTableViewController’s navCont outlet to the
Navigation Controller - Item.

3. Save and click Run. If you completed the steps correctly, there is no change in the
application’s appearance.

4. Create a new UIViewController subclass and name it TableViewDetailsViewController
(Listings 10-28 and 10-29). Select the check box to also create an accompanying xib for
the class. Although you leave this class empty in this task, in a real-world project, this class
would contain logic.

Listing 10-28 TableViewDetailsViewController.h

#import <Foundation/Foundation.h>
@interface TableViewDetailsViewController : UIViewController {
}
@end

Listing 10-29 TableViewDetailsViewController.m

#import "TableViewDetailsViewController.h"
@implementation TableViewDetailsViewController
@end

5. Open TableViewDetailsViewController.xib in Interface Builder.

6. Change the view’s background color.

7. Because you created the XIB at the same time as the class, the File’s Owner class is
already set to TableViewDetailsViewController and the File’s Owner view outlet is already
connected to the view in the document window.

8. Save your changes.

9. Open MyTableViewController and import TableViewDetailsViewController.h.

10. Implement the tableView:didSelectRowAtIndexPath method in MyTableViewController
(Listing 10-30).

Chapter 10: Tables Using UITableView and UITableViewController 225

Listing 10-30 The tableView:didSelectRowAtIndexPath: method added to
MyTableViewController

-(void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
(NSIndexPath *) indexPath {
NSLog(@"pushing...");
TableViewDetailsViewController * temp = [[
[TableViewDetailsViewController alloc] initWithNibName:
@"TableViewDetailsViewController" bundle:nil] autorelease];
[self.navCont pushViewController:temp animated:YES];
}

11. Build and run in iPhone Simulator. Upon clicking a row, you are taken to the details page
(Figure 10-25).

Figure 10-25 Clicking the row takes the user to detail view.

226 iOS SDK Programming: A Beginner’s Guide

Editing Table Cells
Table cells can be edited. You can add new rows, delete existing rows, and reorder rows. The way
it works is like this: A user clicks a button that puts the table into edit mode. Edit mode displays
insert or delete accessories used for adding and deleting rows. These accessories are displayed on
a cell’s left side. Editing mode displays reorder accessories on a table cell’s right side.

Getting to Edit Mode
This chapter ends by discussing how to edit a table. Tables not only display data, they also allow
adding rows, deleting rows, and changing the order of rows. A table has two modes: its normal
display mode and edit mode. When a table is in edit mode, it can display accessories for inserting,
deleting, and rearranging table cells. An application places a table in edit mode by sending a
message to the table view’s setEditing:animated: method. For instance, you might call a table’s
setEditing:animated: method by implementing an IBAction called by a button on a form.

-(IBAction) edit {
 [self.myTableView setEditing:YES animated:YES];
}

However, a self-created button is not how tables are usually placed into edit mode. Rather
than specifically creating an action and manually calling a method, you usually use a navigation
item and let it automatically activate a table view’s edit mode. Remember, 90 percent of the
time you will implement a table view in a navigation controller. That navigation controller’s
navigation bar can contain a right button. One choice you have when creating a navigation bar
button is creating an Edit button.

self.navigationItem.rightBarButtonItem = myTableController
.editButtonItem;

When you set that button to a table controller’s editButtonItem, the controller
automatically knows to enter edit mode.

Edit Mode Methods
The methods tableView:canEditRowAtIndexPath:, tableView:canMoveRowAtIndexPath:,
tableView:commitEditingStyle:forRowAtIndexPath:, and tableView:commitEditingStyle:
forRowAtIndexPath: are four methods you should implement in your UITableViewDataSource
protocol adoptee.

-(BOOL)tableView:(UITableView *)tableView canEditRowAtIndexPath:
(NSIndexPath *)indexPath
-(BOOL)tableView:(UITableView *)tableView canMoveRowAtIndexPath:
(NSIndexPath *)indexPath
-(void)tableView:(UITableView *)tableView commitEditingStyle:
(UITableViewCellEditingStyle) editingStyle forRowAtIndexPath:
(NSIndexPath *) indexPath
-(UITableViewCellEditingStyle)tableView:(UITableView *) tableView
editingStyleForRowAtIndexPath:(NSIndexPath *) indexPath

Chapter 10: Tables Using UITableView and UITableViewController 227

A table knows a row is editable by the tableView:canEditRowAtIndexPath: method. If you
wish all rows to be editable, simply have the method return YES; otherwise, implement code
to determine if a particular row is editable. If you omit this method, no rows are editable.

The tableView:editingStyleForRowAtIndexPath: method informs the table what style editing
accessory the row should have. If this method returns a UITableViewCellEditingStyleNone,
no accessory is displayed. If this method returns UITableViewCellEditingStyleDelete, the
delete accessory is displayed. And if the method returns UITableViewCellEditingStyleInsert, the
insert accessory is displayed. The example code in Listing 10-31 illustrates this.

Listing 10-31 The tableView:editingStyleForRowAtIndexPath method

-(UITableViewCellEditingStyle)tableView:(UITableView *)tableView
 editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath {
 if(indexPath.row == 0 || indexPath.row == [self.tableDataList count]) {
 return UITableViewCellEditingStyleNone;
 }
 return UITableViewCellEditingStyleDelete;
}

A table knows a table row is movable by the tableView:canMoveRowAtIndexPath: method.
Like the tableView:canEditRowAtIndexPath: method, simply have the method return YES if all
rows are movable; otherwise, write your own custom code. If you omit this method, no rows are
movable.

The tableView:canMoveRowAtIndexPath: method only prevents particular rows from being
directly moved by a user. A user can still move another row to the position held by the unmovable
row, thus moving the unmovable row indirectly. To prevent this behavior, you can implement the
tableView:targetIndexPathForMoveFromRowAtIndexPath:toProposedIndexPath: method in your
table view’s delegate. If a proposed move is acceptable, return the proposedDestinationIndexPath;
otherwise, return the sourceIndexPath. The method’s signature follows.

 -(NSIndexPath *)tableView:(UITableView *)tableView
targetIndexPathForMoveFromRowAtIndexPath:(NSIndexPath *)sourceIndexPath
toProposedIndexPath:(NSIndexPath *)proposedDestinationIndexPath

The tableView:commitEditingStyle:forRowAtIndexPath: commits a row insertion
or deletion. Notice the editingStyle parameter. If a row is deleted, the table view sends a
UITableViewCellEditingStyleDelete style as the editingStyle parameter. If a row is inserted,
the table view sends a UITableViewCellEditingStyleInsert style. It uses the editingStyle
parameter to tell it which action resulted in the method being called.

This method is for implementing code that handles a row insertion or deletion. For instance, in
this chapter, data comes from an NSArray or NSMutableArray. When using an NSMutableArray
as a data source for a table, deleting a row means you must delete the corresponding item from the
array. If inserting, you must add an item at the index where the row was inserted and remove the
item from its old location in the array.

228 iOS SDK Programming: A Beginner’s Guide

Try This Editing Rows
1. Copy the TabNavTable project to a new location and open it in Xcode.

2. Edit MyTableViewController to add the editing functionality (Listings 10-32 and 10-33)

3. Create a new view controller class called AddItemViewController. Be sure to select the
“With XIB for user interface” check box to create an associated xib.

Listing 10-32 MyTableViewController.h

#import <UIKit/UIKit.h>
#import "TableViewDetailsViewController.h"
#import "AddItemViewController.h"
@interface MyTableViewController : UITableViewController {
 NSMutableArray * tableDataList;
UINavigationController * navCont;
AddItemViewController * addItemController;
UIBarButtonItem * addButton;
}
@property (nonatomic, retain) IBOutlet UINavigationController *
navCont;
@property (nonatomic, retain) NSMutableArray * tableDataList;
@property (nonatomic, retain) AddItemViewController *
addItemController;
@property (nonatomic, retain) IBOutlet UIBarButtonItem * addButton;
-(IBAction) exitAndSave: (NSString *) newValue;
-(IBAction) enterAddMode: (id) sender;
@end

Listing 10-33 MyTableViewController.m

#import "MyTableViewController.h"
@implementation MyTableViewController
@synthesize tableDataList;
@synthesize navCont;
@synthesize addItemController;
@synthesize addButton;

-(IBAction) enterAddMode: (id) sender {
 self.addItemController = [[[AddItemViewController alloc]
 initWithNibName: @"AddItemViewController" bundle:nil] autorelease];
 [self.navCont pushViewController:self.addItemController
 animated:YES]; self.addItemController.parentTable = self;
}

Chapter 10: Tables Using UITableView and UITableViewController 229

-(void) exitAndSave : (NSString *) newValue {
 [self.tableDataList addObject: newValue];
 [self.navCont popToRootViewControllerAnimated:YES];
 [self.tableView reloadData];
}

-(void) viewDidLoad {
 NSMutableArray * tempArray = [[[NSMutableArray alloc]
 initWithObjects: @"Item One", @"Item Two", @"Item Three",
 @"Item Four", @"Item Five", @"Item Six",
 @"Item Seven", @"Item Eight", @"Item Nine",
 @"Item Ten", @"Item Eleven", @"Item Twelve",
 @"Item Thirteen", @"Item Fourteen", @"Item Fifteen",
 @"Item Sixteen", @"Item Seventeen",
 @"Item Eighteen", @"Item Nineteen", @"Item Twenty",
 nil] autorelease];
 self.tableDataList = tempArray;
 self.navigationItem.rightBarButtonItem = self.editButtonItem;
 self.navigationItem.leftBarButtonItem = self.addButton;
}

-(NSInteger) tableView : (UITableView *) tableView
 numberOfRowsInSection: (NSInteger) section {
 return [self.tableDataList count];
}

-(UITableViewCell *) tableView : (UITableView *) tableView
 cellForRowAtIndexPath: (NSIndexPath *) indexPath {
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier: @"acell"];
 if(cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:
 UITableViewCellStyleDefault reuseIdentifier:@"acell"]
 autorelease];
 }
 cell.textLabel.text =
 [self.tableDataList objectAtIndex:[indexPath row]];
 return cell;
}

-(void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
 (NSIndexPath *) indexPath {
 TableViewDetailsViewController * temp =
 [[[TableViewDetailsViewController alloc] initWithNibName:
 @"TableViewDetailsViewController" bundle:nil] autorelease];
 [self.navCont pushViewController:temp animated:YES];
}

(continued)

230 iOS SDK Programming: A Beginner’s Guide

-(void)tableView:(UITableView *)tableView commitEditingStyle:
 (UITableViewCellEditingStyle)editingStyle forRowAtIndexPath:
 (NSIndexPath *) indexPath {
 if (editingStyle == UITableViewCellEditingStyleDelete) {
 [self.tableDataList removeObjectAtIndex:indexPath.row];
 [tableView deleteRowsAtIndexPaths:[NSArray
 arrayWithObject:indexPath] withRowAnimation:YES];
 } else if (editingStyle == UITableViewCellEditingStyleInsert) {
 [self.tableDataList insertObject:@"Uninitialized"
 atIndex:indexPath.row];
 [tableView insertRowsAtIndexPaths:[NSArray
 arrayWithObject:indexPath] withRowAnimation:YES];
 }
}

-(void)tableView:(UITableView *)tableView moveRowAtIndexPath:
 (NSIndexPath *) fromIndexPath toIndexPath:
 (NSIndexPath *) toIndexPath {
 id object =
 [[self.tableDataList objectAtIndex:fromIndexPath.row] retain];
 [self.tableDataList removeObjectAtIndex:fromIndexPath.row];
 [self.tableDataList insertObject:object atIndex: toIndexPath.row];
 [object release];
}

-(UITableViewCellEditingStyle) tableView: (UITableView *)
 tableView editingStyleForRowAtIndexPath:
 (NSIndexPath *) indexPath {
 return UITableViewCellEditingStyleDelete;
}

-(BOOL)tableView:(UITableView *)tableView canMoveRowAtIndexPath:
 (NSIndexPath *) indexPath {
 return YES;
}

-(BOOL)tableView:(UITableView *)tableView canEditRowAtIndexPath:
 (NSIndexPath *) indexPath {
 return YES;
}

-(void)dealloc {
 [tableDataList release];
 [navCont release];
 [addItemController release];
 [addButton release];
 [super dealloc];
}
@end

Chapter 10: Tables Using UITableView and UITableViewController 231

4. Add a reference to MyTableViewController in AddItemViewController; however, instead
of importing MyTableViewController, use the @class macro (Listings 10-34 and 10-35).
Name the property parentTable.

Listing 10-34 AddItemViewController.h

#import <UIKit/UIKit.h>
@class MyTableViewController;
@interface AddItemViewController : UIViewController {
 MyTableViewController * parentTable;
 UITextField * addedName;
 UIBarButtonItem * doneButton;
}
@property (nonatomic, retain) IBOutlet UITextField * addedName;
@property (nonatomic, retain) MyTableViewController * parentTable;
@property (nonatomic, retain) IBOutlet UIBarButtonItem * doneButton;
-(IBAction) exitAndSave: (id) sender;
@end

Listing 10-35 AddItemViewController.m

#import "AddItemViewController.h"
@implementation AddItemViewController
@synthesize addedName;
@synthesize parentTable;
@synthesize doneButton;
@synthesize addedName;

-(void) viewDidLoad {
 self.navigationItem.title = @"Add Item";
 self.navigationItem.rightBarButtonItem = self.doneButton;
}

-(void)dealloc {
 [parentTable release];
 [doneButton release];
 [addedName release];
 [super dealloc];
}

-(IBAction) exitAndSave: (id) sender {
 [self.parentTable exitAndSave:self.addedName.text];
}
@end

5. Add an IBOutlet for a UITextField. Name the text field addedName. Add an IBOutlet for
a bar button item. Name the button doneButton. Do not forget to synthesize the outlets/
properties. Add an IBAction called exitAndSave (Listings 10-34 and 10-35).

(continued)

232 iOS SDK Programming: A Beginner’s Guide

6. Open MyTableViewController and import AddItemViewController. Add a property
referencing the AddItemViewController. Name the reference addItemController. Also, add a
method named exitAndSave and an IBAction named enterAddMode. Note that exitAndSave
takes an NSString as a parameter and is not an IBAction (see Listings 10-32 and 10-33).

7. Add an IBOutlet for a bar button item named addButton (see Listing 10-32).

8. Change the viewDidLoad method so that it sets its navigation item’s rightBarButtonItem
to its editButtonItem and its navigation item’s leftBarButtonItem to addButton (see
Listing 10-33).

9. Implement the UITableViewDataSource protocol methods: tableView:canEditRowAtIndex
path:, tableView:commitEditingStyle:forRowAtIndex:, tableView:moveRowAtIndexPath:
toIndexPath:, tableView: editingStyleForRowAtIndexPath:, and tableView:canMoveRowA
tIndexPath: (see Listing 10-33).

10. Open AddItemViewController.xib and add a bar button item to the editing pane. Change
the newly added bar button’s identifier to Done.

11. Connect the File’s Owner doneButton outlet to the newly created Done button.

12. Add a UITextField to the canvas. Attach it to the File’s Owner addedName outlet.

13. Connect the File’s Owner exitAndSave action to the newly added Done bar button item.

14. Save your changes.

15. Open AddItemViewController and implement the viewDidLoadMethod so that it initializes
its navigationItem’s title to “Add Item” and its rightBarButtonItem to its doneButton
(Listing 10-35).

16. Open MyTableViewController.xib in Interface Builder and add a bar button item to the
document window. Change the button’s identifier to Add.

17. Connect the File’s Owner enterAddMode property to the newly added bar button item.
Also connect the File’s Owner addButton to the newly added bar button item.

18. Return to MyTableViewController and implement the exitAndSave and the enterAddMode
methods like Listing 10-33.

19. Return to AddItemViewController and implement the exitAndSave method like Listing 10-35.

20. Ensure all your properties are being properly released in each class dealloc method.

21. Save all of your changes and click Run.

When the application starts, it presents the user with the table view. Upon tapping the Edit
button, the application presents the table in edit mode (Figure 10-26). If the user clicks one of
the table’s delete accessories, the accessory rotates 90 degrees and presents a Delete button
(Figure 10-27). Upon clicking Delete, the row is deleted. When a user clicks and drags the move
accessory on the right, he or she can move the row to the new location desired (Figure 10-28).

Chapter 10: Tables Using UITableView and UITableViewController 233

Figure 10-26 The table view in edit mode

Figure 10-27 Deleting a row
(continued)

234 iOS SDK Programming: A Beginner’s Guide

If a user decides to add a row, he or she taps the Add button, which presents the user with
a view to enter the new object’s details (Figure 10-29). If the user decides to cancel this action,
he or she simply taps the Back button. If the user decides to save the record, he or she taps the
Done button, which saves the record and returns the user to the table with the newly added
table row (Figure 10-30).

To support moving rows, you implemented the tableView:moveRowAtIndexPath:toIndex
Path: method. In that method, you obtained the object from its old position in the tableDataList,
removed it, and then added it to its new location. You also implemented the tableView:canMove
RowAtIndexPath: and tableView:canEditRowAtIndexPath: methods. If you needed to only
allow certain rows to be editable, you would add that code to the tableView:canEditRowAt
IndexPath: method. If you needed to only allow certain rows to be movable, you would add code
to the tableView:canMoveRowAtIndexPath: method. Here, both methods simply return YES.

Supporting delete functionality requires a little more code than moving rows, but not
much. You implemented the tableView:commitEditingStyle:forRowAtIndexPath: method. In
the example, this method removes an object from the index and deletes the row from the table.

Notice you disallowed inserting rows by implementing the tableView:editingStyleForRow
AtIndexPath: and having it return UITableViewCellEditingStyleDelete. This method informs a
table what accessory, if any, it should display in a row when the table enters edit mode. Here, it
displays the delete accessory.

Figure 10-28 Moving a row

Chapter 10: Tables Using UITableView and UITableViewController 235

Figure 10-29 Adding an item

Figure 10-30 The table view with the newly added item
(continued)

236 iOS SDK Programming: A Beginner’s Guide

You did not implement insert functionality at all. Inserting uses similar logic to deleting a
row, only the style is UITableViewCellEditingStyleInsert. You would also implement code to
initialize an object and then insert it in the data source at the proper location. For instance, in
the previous example, you could change it to support inserting rows if you changed tableView:
editingStyleForRowAtIndexPath: to return UITableViewCellEditingStyleInsert and added the
following lines to the tableView:commitEditingStyle:forRowAtIndex: method:

else if (editingStyle == UITableViewCellEditingStyleInsert) {
 [self.tableDataList insertObject:@"Uninitialized" atIndex:indexPath.row];
 [tableView insertRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:YES];
}

In this example, however, adding a row does not use a table’s edit mode. Although it is
possible to insert a row using a table’s edit mode, it is often not practical. Usually, a table lists
items, where each row represents an individual item. Because each item has details associated
with it, adding is often accomplished using a separate view controller. Here, you added a left bar
button with an addition symbol. When a user clicks the button, it calls MyTableViewController’s
enterAddMode method. This method presents the AddItemViewController’s view. Note
that AddItemViewController and MyTableViewController both have references to each
other. Upon finishing entering the new item, a user clicks Done, and the Done button fires
AddItemViewController’s exitAndSave method. This method calls MyTableViewController’s
exitAndSave method and the row is added as the table’s last row.

Summary
This was a long and difficult chapter. But the UITableView is arguably iOS’s most difficult,
yet most important, view. If you do not understand the UITableView and its associated
classes, you do not understand iOS programming. In this chapter, you learned how to use a
UITableView and implement a table view’s delegate and data source in a custom class. You
also learned how to group a table and how to index it. And you learned how to customize a
table cell’s appearance.

After learning how to implement a table and customize it, you then learned a technique for
adding a table to a navigation controller contained in a tab. This was a long task, but as it is
such a ubiquitous layout pattern, it is a necessary task. After learning this technique, you then
learned how to add, move, and delete rows from a table.

NOTE
There are many more methods and properties you can use to customize a table cell’s
behavior and appearance than presented in this chapter. For more information, refer
to the online class references for each of the classes covered in this chapter and also
reference Apple’s “Table View Programming Guide for iOS.”

237

Chapter 11
Activity Progress and
Alerting Users

238 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Using a UIActivityIndicatorView to indicate processing

Using a UIProgressView to indicate processing

Using a UIAlertView to warn users

Using a UIActionSheet to inform users

Using application badges to remind users of items needing their attention

While processing, many times an application must inform users that they must wait. A
poorly constructed application provides no graphical clue that the application is busy

processing; a well-constructed application does provide a graphical clue. The iOS SDK
provides the UIActivityIndicatorView and UIProgressView classes to tell a user to “please
wait, I’m working.” The UIActivityIndicatorView uses a spinning “gear” to tell a user an
application is processing and that it will eventually complete. The UIProgressView control
also tells a user to “please wait,” but it provides a visual clue as to how much processing
remains. The two controls’ names highlight their difference: The activity indicator shows
activity, while the progress view shows progress.

A user-friendly application also informs a user when something unexpected occurs,
and it informs a user when his or her decision might be potentially damaging. Moreover,
the application informs the user in a way that highlights the importance of the problem.
Sometimes unexpected events occur or a user makes a potentially destructive decision.
For these situations, an application presents an alert dialog. Alerts provide information
in a box separate from the underlying interface. This separation reinforces the alert’s
message that the situation is important and unusual, separate from an application’s typical
functionality. Alerts are also modal, meaning a user can do nothing else until clicking
one of the alert’s buttons to release it. Action sheets are similar to alerts but provide
alternatives to actions and slide in from an application’s top (desktop OS X applications)
or from an application’s bottom (iOS applications). You use action sheets for similar
situations to an alert, but action sheets are more appropriate for actions that are a planned
part of application activity.

Chapter 11: Activity Progress and Alerting Users 239

Showing Activity—the UIActivityIndicatorView
A UIActivityIndicatorView class creates an animated indeterminate progress indicator. This
control tells the user to “please wait, I’m processing.” The control does not tell the user how
long he or she must wait. Apple’s reference for this class, which refers to the visual element
as an animated “gear,” illustrates an activity indicator in use (Figure 11-1). When I start the
Amazon.com application, it fetches my content from its web server. Fetching this content
takes time—how much time, the application doesn’t know—and so the application uses a
UIActivityIndicatorView.

Using a UIActivityIndicatorView in an application is easy. Begin the indicator’s
animation by calling its startAnimating method, and stop the indicator’s animation by
calling the stopAnimating method. If you wish to hide the indicator when not animated, set
the property hidesWhenStopped to YES. You can also specify the activity indicator’s size
and style using its activityIndicatorViewStyle property. The indicator types are large white
(UIActivityIndicatorViewStyleWhiteLarge), white (UIActivityIndicatorViewStyleWhite),
and gray (UIActivityViewStyleGray). Figure 11-2 illustrates setting this property in
Interface Builder. Figure 11-3 shows the three styles in iPhone Simulator.

Figure 11-1 An activity indicator on Amazon.com’s application

240 iOS SDK Programming: A Beginner’s Guide

Figure 11-2 Setting a UIActivityIndicatorView’s style

Figure 11-3 Three different UIActivityIndicatorView styles

Chapter 11: Activity Progress and Alerting Users 241

Try This Using a UIActivitylndicatorView
1. Create a new View-based Application. Name the application ActivityAndProgress.

2. Open ActivityAndProgressViewController, add an IBOutlet for a UIActivityIndicatorView,
and add an IBAction called doIt (Listings 11-1 and 11-2). Save and build.

Listing 11-1 ActivityAndProgressViewController.h

@interface ActivityAndProgressViewController : UIViewController {
 IBOutlet UIActivityIndicatorView * myActivityView;
}
@property (nonatomic, retain) IBOutlet
 UIActivityIndicatorView *myActivityView;
-(IBAction) doIt: (id) sender;
@end

Listing 11-2 ActivityAndProgressViewController.m

#import "ActivityAndProgressViewController.h"
@implementation ActivityAndProgressViewController
@synthesize myActivityView;
-(IBAction) doIt: (id) sender {
 if([myActivityView isAnimating])
 [myActivityView stopAnimating];
 else
 [myActivityView startAnimating];
}
-(void)dealloc {
 [myActivityView release];
 [super dealloc];
}
@end

3. Open ActivityAndProgressViewController.xib.

4. Drag a button and activity indicator view from the library to the view’s canvas (Figure 11-4).

5. Connect the File’s Owner doIt action to the button’s Touch Up Inside event. Connect the
myActivityView outlet to the activity indicator view added to the canvas (Figure 11-5).

6. Select the activity indicator view, and open its view attributes in the Inspector. Ensure the
indicator’s Hides When Stopped and Hidden check boxes are checked (Figure 11-6).

7. Click Run to view the application in the iPhone Simulator.

8. Click the button two times (Figure 11-7).
(continued)

242 iOS SDK Programming: A Beginner’s Guide

Figure 11-4 Adding a button and activity indicator to a view’s canvas

Figure 11-5 Connecting the myActivityView outlet to the activity indicator

Chapter 11: Activity Progress and Alerting Users 243

Figure 11-6 Ensuring the indicator’s Hides When Stopped and Hidden check boxes are checked

Figure 11-7 The application running in iPhone Simulator (continued)

244 iOS SDK Programming: A Beginner’s Guide

Try This

When the application loads, it hides the activity indicator, as it is not animating. When you
first click the button, the application displays the activity indicator and begins animating it.
The next time you click the button, the application stops animating the indicator and hides it.

Showing Progress—the UIProgressView
A progress bar shows a task’s progress. It is intended as a “please wait, I’m processing
and I have this much processing remaining” for tasks with a known duration. For instance,
an application might process a file’s content, and as the file is processing, the application
calculates the percentage remaining and displays it using a progress bar. As the file’s content
is processed, the progress bar updates its display to reflect the new percentage remaining until
completion.

Creating a progress bar is more involved than creating an activity indicator. However, it is
still not difficult. Before beginning this task, note that a common technique in many books and
online tutorials is to set a progress view in an alert. Although it’s easy, as of this book’s writing,
Apple neither supports nor recommends this technique. The recommended way of displaying
a UIProgressView is by creating a new view with a transparent background and showing the
progress bar in the new view. Because the view overlays the content view, the progress bar is
modal. That is the strategy taken here.

Using a UIProgress View
1. Open the ActivityAndProgress project from the previous task.

2. Create a new UIViewController named PleaseWaitViewController. Ensure that it also
creates an associated xib.

3. Add an IBOutlet for a UIProgressView to PleaseWaitViewController (Listings 11-3
and 11-4).

Listing 11-3 PleaseWaitViewController.h

#import <UIKit/UIKit.h>
@interface PleaseWaitViewController : UIViewController {
 IBOutlet UIProgressView * myProgress;
}
@property (nonatomic, retain) IBOutlet UIProgressView * myProgress;
@end

Chapter 11: Activity Progress and Alerting Users 245

Listing 11-4 PleaseWaitViewController.m

#import "PleaseWaitViewController.h"
@implementation PleaseWaitViewController
@synthesize myProgress;
-(void)dealloc {
 [myProgress release];
 [super dealloc];
}
@end

4. Drag starcopy.png from the book’s Resources folder to the Resources folder in Xcode.

5. Build and then open PleaseWaitViewController.xib in Interface Builder.

6. Add an image view from the library to the view’s canvas. Select starcopy.png as the image
and set the mode to Scale To Fill if it didn’t default to that.

7. Add a label and a progress view from the library to the view’s canvas (Figure 11-8). Set the
current value of the progress bar to 0.

Figure 11-8 PleaseWaitViewController’s view in Interface Builder
(continued)

246 iOS SDK Programming: A Beginner’s Guide

8. Connect the UIProgressView on the canvas to the myProgress outlet in PleaseWaitView
Controller.

9. Save your changes.

10. Open ActivityAndProgressController.h, add a forward reference to the PleaseWaitView
Controller class, and change the myActivityView IBOutlet to use the new class. Add a method
called moveBar. Listing 11-5 contains the completed ActivityAndProgressController.h.

Listing 11-5 ActivityAndProgressViewController.h modified for this task

#import <UIKit/UIKit.h>
@class PleaseWaitViewController;
@interface ActivityAndProgressViewController : UIViewController {
 PleaseWaitViewController * myActivityView;
}
@property (nonatomic, retain) IBOutlet PleaseWaitViewController *
myActivityView;

-(void) moveBar: (id) object;
-(IBAction) doIt: (id) sender;
@end

11. Open ActivityAndProgressController.m and implement the methods to match Listing 11-6.
Note that doIt has changed from the previous task.

Listing 11-6 ActivityAndProgressViewController.m modified for this task

#import "ActivityAndProgressViewController.h"
#import "PleaseWaitViewController.h"
#import "ActivityAndProgressAppDelegate.h"
@implementation ActivityAndProgressViewController
@synthesize myActivityView;

int completed = 0;
-(void) moveBar: (id) object {
 completed ++;
 myActivityView.myProgress.progress = completed/20.0f;
 if(completed > 20) {
 [object invalidate];
 [self.myActivityView.view removeFromSuperview];
 [self.view setAlpha:1.0f];
 completed = 0;
 self.myActivityView.myProgress.progress = 0;
 }
}

Chapter 11: Activity Progress and Alerting Users 247

-(IBAction) doIt: (id) sender {
 myActivityView.view.backgroundColor = [UIColor clearColor];
 [self.view setAlpha:0.7f];
 [((ActivityAndProgressAppDelegate *)
 [UIApplication sharedApplication].delegate).window
 insertSubview:myActivityView.view aboveSubview: self.view];
 [NSTimer scheduledTimerWithTimeInterval: 0.5 target: self
 selector: @selector(moveBar:) userInfo: nil repeats: YES];
}
-(void)dealloc {
 [myActivityView release];
 [super dealloc];
}
@end

12. Open ActivityAndProgressController.xib in Interface Builder and add several controls
(Figure 11-9). The selection is not important, as they are not used.

(continued)

Figure 11-9 ActivityAndProgressViewController’s canvas

248 iOS SDK Programming: A Beginner’s Guide

13. Add a view controller from the library to the document window. Change the controller’s
class to PleaseWaitViewController. Also, change the controller’s NIB name to
PleaseWaitViewController.

14. Connect the File’s Owner myActivityView outlet to the newly added controller.

15. Save your changes and click Run. After the application loads in the iPhone Simulator
(Figure 11-10), click the button. The PleaseWaitViewController’s view is displayed and the
progress view updates (Figure 11-11). Upon completion, the application removes the view
and displays the original view once again.

Figure 11-10 The application running in iPhone Simulator

Chapter 11: Activity Progress and Alerting Users 249

This task is pretty cool. You first created a separate view controller and view to contain
the UIProgressView. Not happy with just a normal view, you added an image and placed the
controls over the image. Later, because the view’s background color is set to clear, this created
the impression of a non-rectangular view (see Figure 11-8).

Figure 11-11 The application displaying the UIProgressView you added to the project

Q: So you create a non-rectangular view by using a UIImageView on a clear view?

A: Yes, this is one technique. A more robust technique is drawing the user interface yourself,
but drawing a user interface from scratch is hard. Using a UIImageView on a view with
a clear background is easy. Make your application’s window clear, make the views clear,
and then place any controls so that they overlay the image. For instance, Figure 11-12
illustrates a simple non-rectangular view.

Ask the Expert

250 iOS SDK Programming: A Beginner’s Guide

You also added a UIProgressView to the PleaseWaitViewController (Listing 11-3) as an outlet.
You then added a PleaseWaitViewController (Listing 11-5) as an outlet of ActivityAndProgress
ViewController. This allows you to reference both the PleaseWaitViewController and its
UIProgressView from code in ActivityAndProgressViewController.

In ActivityAndProgressViewController, you created a method called moveBar and
modified the doIt method. The doIt method is called when a user clicks the button on the
ActivityAndProgressViewController. The method first sets its myActivity view’s background
color to clear, making the view transparent.

myActivityView.view.backgroundColor = [UIColor clearColor];

The method then sets the view’s alpha level, giving it a faded, semitransparent appearance.

[self.view setAlpha:0.7f];

The doIt method also then gets a reference to the application’s window and adds
myActivity’s view above the ActivityAndProgressViewController’s view.

 [((ActivityAndProgressAppDelegate *)
 [UIApplication sharedApplication] .delegate).window insertSubview:
 myActivityView.view aboveSubview: self.view];

Figure 11-12 A simple non-rectangular view

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 11: Activity Progress and Alerting Users 251

To simulate a long-standing task, you use an NSTimer, which every half a second calls
ActivityAndProgressViewController’s moveBar method.

[NSTimer scheduledTimerWithTimeInterval: 0.5 target: self selector:
 @selector(moveBar:) userInfo: nil repeats: YES];

The moveBar method updates the progress bar until it reaches 20. It then invalidates the
timer, removes PleaseWaitViewController’s view, and sets the original view’s alpha back to
full strength. It also reinitializes the UIProgressView’s progress value to zero.

[NSTimer scheduledTimerWithTimeInterval: 0.5 target: self selector:
 @selector(moveBar:) userInfo: nil repeats: YES];

Q: What is an NSTimer?

A: The NSTimer is a timer. Timers fire events at a specified interval. For instance, you set
the interval to 0.5 seconds. You specified the target, self, and the message, moveBar.
Every 0.5 seconds, the timer fires, executing the moveBar method in ActivityAnd
ProgressViewController. The moveBar method gets called with a single argument, id,
which is a pointer to the timer itself. To make a timer repeat, you specify YES for the
repeats parameter. To remove a time, you invalidate the timer. For more information,
refer to the NSTimer Class Reference.

Ask the Expert

Alerting Users
You should use alerts to inform users of impending actions that might be destructive, “are you
sure” types of messages. Usually these are a result of some unexpected action. Alerts should
have two buttons: an “okay” button and a “cancel” button. Alerts can also be used to notify the
user that something very important just happened that wouldn’t otherwise be obvious in the
user interface. In general, you should try to use alerts sparingly to avoid annoying users.

Use action sheets to inform users of alternatives to an action. As Apple points out in their
documentation, the Photos application contains a good example of using an action sheet
(Figure 11-13). The user has a choice: use the photo as wallpaper, e-mail the photo, assign it
to a contact, or do nothing (cancel). Action sheets are also appropriate when informing a user
he or she is performing a potentially destructive task.

252 iOS SDK Programming: A Beginner’s Guide

UIAlertView and UIAlertViewDelegate
A UIAlertView presents a modal alert to users. The alert appears and floats above the
underlying view. Displaying a UIAlertView is easy: Create the class and display it. As
the alert is modal, a user can do nothing else until she clicks one of the alert’s buttons.
The UIAlertViewDelegate handles the alert’s button actions. If you add buttons to an alert,
implement the clickedButtonAtIndex: method in your delegate. Other methods you might
implement include the alertViewCancel: or didPresentAlertView: method. For a complete
listing, refer to Apple’s UIAlertViewDelegate Protocol Reference.

Alerts should not be misused. Present too many alerts, and you have an annoying application.
Also, place buttons according to Apple’s recommendation. When alerting a user to a potentially
destructive outcome, place the Cancel button on the right (Figure 11-14). When alerting a user to
a harmless action, place the Cancel button on the left (Figure 11-15).

Figure 11-13 An action sheet in the Photo application

Chapter 11: Activity Progress and Alerting Users 253

Figure 11-14 Alert warning of a potentially destructive action

Figure 11-15 Alert warning of a benign action

254 iOS SDK Programming: A Beginner’s Guide

Try This Creating a Simple UIAlertView
1. Create a new View-based Application. Name the application AlertsProgress.

2. Change AlertsProgressViewController to adopt the UIAlertViewDelegate protocol
(Listing 11-7).

Listing 11-7 AlertsProgressViewController.h

#import <UIKit/UIKit.h>
@interface AlertsProgressViewController : UIViewController
<UIAlertViewDelegate> {
}
@end

3. Open AlertsProgressViewController.m and add an alert in the viewDidLoad method
(Listing 11-8). Also, implement the didDismissWithButtonIndex: delegate method.

Listing 11-8 AlertsProgressViewController.m

#import "AlertsProgressViewController.h"

@implementation AlertsProgressViewController

-(void)viewDidLoad {

 [super viewDidLoad];

 UIAlertView * myAlert = [[[UIAlertView alloc]

 initWithTitle:@"View Loaded" message:@"View loaded successfully."

 delegate:self cancelButtonTitle:@"OK" otherButtonTitles:nil] autorelease];

 [myAlert show];

}

-(void)alertView:(UIAlertView *)alertView

 didDismissWithButtonIndex: (NSInteger) buttonIndex {

 NSLog(@"buttonIndex: %i", buttonIndex);

}

-(void)dealloc {

 [super dealloc];

}

@end

4. Click Run to try the application in the iPhone Simulator (Figure 11-16). Tap the button,
and the button’s index is logged to the Debugger Console.

In this simple application, the view’s controller implements a UIAlertViewDelegate. Upon
clicking the button, the delegate’s didDismissWithButtonAtIndex method executes. This method

Chapter 11: Activity Progress and Alerting Users 255

determines which button a user clicked and routes the user accordingly. The didDismissWith
ButtonAtIndex method is an instance method declared in UIAlertViewDelegateProtocol and
has the following signature:

-(void)alertView:(UIAlertView *) alertView didDismissWithButtonAtIndex:
(NSInteger) buttonIndex

The method takes the clicked button’s index as an NSInteger via the buttonIndex parameter.
After processing, this method dismisses the alert.

You created a UIAlertView instance through the following code:

UIAlertView * myAlert = [[[UIAlertView alloc] initWithTitle:@"View
Loaded" message:@"View loaded successfully." delegate:self
cancelButtonTitle:nil otherButtonTitles:nil] autorelease];

This method is convenient for initializing the alert view. If you wish, you can add more buttons
to an alert using the otherButtonTitles parameter in the initWithTitle method. The next task
illustrates an alert with two buttons.

Figure 11-16 A simple alert

256 iOS SDK Programming: A Beginner’s Guide

Try This Using an Alert with Multiple Buttons
1. Open AlertsProgress in Xcode.

2. Modify AlertsProgressViewController’s viewDidLoad method so it matches Listing 11-9.

Listing 11-9 Code to display an alert with two buttons

-(void)viewDidLoad {
 [super viewDidLoad];
 UIAlertView * myAlert = [[[UIAlertView alloc] initWithTitle:
 @"View Loaded" message:@"View loaded successfully."
 delegate:self cancelButtonTitle:@"OK"
 otherButtonTitles:@"Cancel",nil] autorelease];
 [myAlert show];
}

3. Click Run. The alert shows two buttons (Figure 11-17). Click either button, and the
button’s index is logged to the debugger console. You use this index to determine which
button is clicked and route processing accordingly.

Figure 11-17 An alert with two buttons

Chapter 11: Activity Progress and Alerting Users 257

Try This

UIActionSheet and UIActionSheetDelegate
While an alert displays as a pop-up box, the UIActionSheet slides in from a view’s bottom, a
view’s toolbar, or a view’s tab bar. You set where a toolbar slides in from when you display the
action sheet. For instance, the following code slides the action sheet from the view’s bottom.

[myActionSheet showInView:self.view];

The action sheet’s bottom is aligned with the view’s bottom. Note that if you use this
setting when using a tab bar or toolbar, the action sheet’s bottom is hidden by the bar. To
prevent this, you display the action sheet using the showFromTabBar: or showFromToolBar:
method. For instance, the following code slides the action sheet from the tab bar’s top and
aligns the action sheet’s bottom with the bottom of the tab bar.

[myActionSheet showFromTabBar:self.view];

UIActionSheets are otherwise very similar to UIAlertViews. You specify an action sheet’s
delegate by creating a class adopting the UIActionSheetDelegate. You use this delegate to
implement button actions. Methods are similar to UIAlertViewDelegate’s. For instance, the
following code handles a button click.

-(void)actionSheet:(UIActionSheet *)actionSheet clickedButtonAtIndex:
(NSInteger) buttonIndex

Using a UIActionSheet
1. Open AlertsProgress in Xcode.

2. Open AlertsProgressViewController.h and change the class so that it adopts the
UIActionSheetDelegate protocol (Listing 11-10).

Listing 11-10 AlertsProgressViewController.h

#import <UIKit/UIKit.h>
@interface AlertsProgressViewController : UIViewController
<UIActionSheetDelegate> {
}
-(IBAction) removeAll: (id) sender;
@end

3. Add an IBAction called removeAll. In the method’s implementation, add a UIActionSheet
that asks the user for confirmation (Listing 11-11). Remove the viewDidLoad method.

(continued)

258 iOS SDK Programming: A Beginner’s Guide

Listing 11-11 AlertsProgressViewController.m

#import "AlertsProgressViewController.h"
@implementation AlertsProgressViewController
-(IBAction) removeAll: (id) sender {
 UIActionSheet * myActionSheet = [[[UIActionSheet alloc]
 initWithTitle: @"Remove all?" delegate:self cancelButtonTitle:
 @"No" destructiveButtonTitle: @"Yes"
 otherButtonTitles:@"Not Sure",nil] autorelease];
 [myActionSheet showInView:self.view];
}
-(void) actionSheet: (UIActionSheet *) actionSheet
 didDismissWithButtonIndex: (NSInteger) buttonIndex {
 NSLog(@"buttons index: %i", buttonIndex);
 if(buttonIndex == [actionSheet cancelButtonIndex]) {
 NSLog(@"cancelled...");
 }
}
-(void)dealloc {
 [super dealloc];
}
@end

4. Open AlertsProgressViewController.xib, add a button to the view, and connect the
removeAll action in the File’s Owner to the button’s Touch Up Inside event (Figure 11-18).
Save your changes.

5. Open AlertsProgressViewController.m and implement the didDismissWithButtonIndex:
method (Listing 11-11).

6. Click Run (Figure 11-19). Click each button in the action sheet, and the debugger console
should produce logging results similar to Listing 11-12.

Listing 11-12 Debugger console output

Attaching to process 11451.
2010-09-08 10:06:34.529 AlertsProgress[11451:207] buttons index: 0
2010-09-08 10:06:37.186 AlertsProgress[11451:207] buttons index: 1
2010-09-08 10:06:39.511 AlertsProgress[11451:207] buttons index: 2
2010-09-08 10:06:39.512 AlertsProgress[11451:207] cancelled...

Chapter 11: Activity Progress and Alerting Users 259

Figure 11-18 Connecting File’s Owner removeAll action to a button

Figure 11-19 A UIActionSheet in action

260 iOS SDK Programming: A Beginner’s Guide

Try This

Application Badges
The iPhone’s Mail application illustrates using a badge. For instance, in Figure 11-20, I have
39 e-mails in my inbox. Using this functionality is easy. Simply access your application’s
applicationBadgeNumber property and set it. A user’s iPhone will remember the value between
uses of your program. To clear a badge, simply set its value to zero.

Adding an Application Badge
1. Open the previous task in Xcode.

2. Modify the didDismissWithButtonIndex method to match Listing 11-13.

Listing 11-13 The didDismissWithButtonIndex method modified to use an application
badge

-(void) actionSheet: (UIActionSheet *) actionSheet
 didDismissWithButtonIndex: (NSInteger) buttonIndex {
 if(buttonIndex == [actionSheet cancelButtonIndex])
 [UIApplication sharedApplication].applicationIconBadgeNumber -= 1;
 else if (buttonIndex == [actionSheet destructiveButtonIndex])
 [UIApplication sharedApplication].applicationIconBadgeNumber += 1;
}

Figure 11-20 An application badge tells me I have 39 e-mails in my inbox.

Chapter 11: Activity Progress and Alerting Users 261

3. Click Build And Go to run the application.

4. Click the “Yes” button four or five times. Quit the application, but keep the simulator
running. The application’s icon is adorned with an application badge (Figure 11-21).

5. Start the application again; click the “No” button a few times. Quit the application, but
keep the simulator running and notice the application’s badge was decremented.

Summary
In this chapter you learned techniques for alerting users. Tasks that take time to complete
should provide feedback to a user. When an application can estimate how long a task will
take to complete, provide a UIProgressView. When an application cannot estimate how long
a task will take to complete, provide a UIActivityView. When an unusual situation arises that

Figure 11-21 The application has an application badge.

262 iOS SDK Programming: A Beginner’s Guide

requires a user decision, present a UIAlertView. When a user is making a decision that is
potentially destructive, present a UIAlertView or a UIActionSheet, depending upon the
uniqueness of the situation. If the situation is something commonly occurring while using
an application, use a UIActionSheet. If it is an unusual situation, use a UIAlertView. But be
careful not to overuse these two controls, as they interrupt an application’s flow.

This chapter ended by presenting application badges. Application badges are useful to alert
a user of unprocessed items or items needing a user’s attention. Application badges are easy to
incorporate into your application, but like alerts and action sheets, they should not be misused.
For instance, you should not use an application badge to tell a user how many notes he or she
has written in the Notes application. These notes do not require some action. Informing a user
how many unread e-mails are in his or her inbox is an appropriate application badge use. Use
your best judgment.

263

Chapter 12
Controls—Part One:
Using Buttons,
Sliders, Switches,
and Text Fields

264 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Modifying buttons

Understanding the UIToolbar

Understanding the UISlider and UISwitch

Understanding UITextField and UITextArea

Understanding using a UIWebView

In this chapter you learn how to use several of the iOS SDK’s available controls. You also
learn about the toolbar and the web view. Although this chapter is not comprehensive, it
will help you get started understanding the many controls you might use when creating an
iOS application. Several of the screenshots come directly from Apple’s UICatalog example
application (Figure 12-1). You can download this application at Apple’s web site. But note, the
controls it illustrates are largely created programmatically, and not using Interface Builder.

Figure 12-1 Apple’s UICatalog sample application

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 265

Buttons
The most rudimentary control is arguably the button. What can you say about buttons? You
click them, or on an iPhone, you tap them, and something happens. iOS has several different
button styles (Figure 12-2). Implementing a button is not hard. In the next few sections you
examine the buttons available when programming for an iOS device.

UIButton with a Background Image and Image
Although Apple’s stock button, the rounded rectangular button, is sometimes appropriate
(Figure 12-3), it is usually rather ugly.

You are not limited to plain buttons, though; you can make your buttons appear nicer. For
instance, you can add a background image or an image. Creating custom buttons by adding
an image or background image is not hard, but the artistic effort making the images appear
correctly is time consuming. However, the results are usually worth the extra effort.

Figure 12-2 Apple’s UICatalog’s buttons screen

266 iOS SDK Programming: A Beginner’s Guide

Try This Using a Custom Button Background
Image and Image

1. Create a new View-based Application. Name it ButtonsBackground.

2. Add outlets for two UIButtons to ButtonsBackgroundViewController (Listings 12-1
and 12-2).

Listing 12-1 ButtonsBackgroundViewController.h

#import <UIKit/UIKit.h>
@interface ButtonsBackgroundViewController : UIViewController {
 UIButton * clearButton;
 UIButton * smallButton;
}
@property (nonatomic, retain) IBOutlet UIButton * clearButton;
@property (nonatomic, retain) IBOutlet UIButton * smallButton;
- (IBAction) disableBut: (id) sender;
@end

Figure 12-3 The YouTube App uses plain buttons.

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 267

Listing 12-2 ButtonsBackgroundViewController.m

#import "ButtonsBackgroundViewController.h"
@implementation ButtonsBackgroundViewController
@synthesize clearButton;
@synthesize smallButton;
- (IBAction) disableBut: (id) sender {
 if(clearButton.enabled == YES) {
 clearButton.enabled = NO;
 smallButton.enabled = NO;
 [((UIButton *) sender) setTitle:@"Enable"
forState: UIControlStateNormal];
 }
 else {
 clearButton.enabled = YES;
 smallButton.enabled = YES;
 [((UIButton *) sender) setTitle:@"Disable"
forState: UIControlStateNormal];
 }
}
- (void)dealloc { [clearButton release];
 [smallButton release];
 [super dealloc];
}
@end

3. Add an action called disableBut and add the code in Listing 12-2 to the method.

4. Add butbackgray.png, butbackbluegray.png, butbackgraydisabled.png, power.png, and
powerdisable.png to the Resources folder in Groups & Files. You will find these images in
this book’s resources folder.

5. Open ButtonsBackgroundViewController.xib.

6. Drag three buttons vertically aligned onto the view’s canvas. Connect the second button to
one of the outlets and connect the third button to one of the outlets.

7. Connect the disableBut action to the top button’s Touch Up Inside.

8. Add the text Disable to the top button.

9. For the second button, open the inspector to Buttons Attributes. Ensure Shows Touch On
Highlight is checked (Figure 12-4).

10. Notice the drop-down (Figure 12-5). Here you select the button’s state, and the related
field’s values will only apply to that state. Ensure Default State Configuration is selected.

11. Change Background to butbackgray.png and change Image to power.png.

(continued)

268 iOS SDK Programming: A Beginner’s Guide

Figure 12-4 Ensure Shows Touch on Highlight is checked.

Figure 12-5 Selecting a button’s state

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 269

12. Select Highlighted State Configuration and change Background to butbackbluegray.png.
Once an image is set for the default state, it is the default image for the other states as well.
Since the image isn’t changing for the highlighted state, we can leave it blank.

13. Select Disabled State Configuration and change Background to butbackgraydisabled.png
and Image to powerdisabled.png.

14. For the third button, ensure Default State Configuration is selected and add the text “Shock”
to Title. Select the butbackgray.png for Background.

15. Select Highlighted State Configuration and add the text “Shocking” to Title. Select
butbackbluegray.png as the Background. Note: do not make any changes to the Disable
setting.

16. Resize the buttons as necessary so that they appear nice.

17. Click Run to build and run the application.

Notice the results upon tapping the buttons. The buttons change the background image
from gray to bluish-gray (Figure 12-6). The bottom button also changes its title. Click
Disable, and the buttons are grayed out (Figure 12-7). The button with the image changes its
background image and image to the choices you’ve made. The button with the title text has

Figure 12-6 The buttons’ background image changes.

270 iOS SDK Programming: A Beginner’s Guide

this functionality built in. Making the button appear disabled was done automatically for you
without your specifying images for the disabled state. iOS will also manage the disabled state
for buttons with images, so it isn’t actually necessary to specify a different background image
unless you want a specific look and feel for a disabled image button.

TIP
Another way to create a custom button is by setting a button’s type to custom. That
technique is not shown here. It is not hard, though. First, add an image to a button.
Second, change the button’s type to custom and only the image is visible. Note that you
can use different images for different button states, exactly as you did in the previous
example application.

Button Types
There are buttons types other than Round Rect and custom that you might use. Figure 12-8
illustrates creating a Detail Disclosure button. To create a Detail Disclosure button, select a
Round Rect Button from the library in Interface Builder and then change its type to Detail
Disclosure button.

Figure 12-7 The buttons are grayed-out when disabled.

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 271

You create the Info Light and Info Dark buttons, like the Detail Disclosure button, by
selecting a Round Rect button and changing its type to Info Light or Info Dark (Figure 12-9).
You create a Contact button the same way you created the other button styles, by selecting a
Round Rect button and changing its type (Figure 12-9).

UIToolBar
Toolbars are for adding buttons of type UIBarButtonItem in a bar, usually along a view’s bottom.
With a little ingenuity, you can place just about anything on a toolbar, although some items you
are not really adding to a toolbar, but rather you are placing over the toolbar (Figure 12-10).
You can add the following controls to a toolbar: Bar Button Item, Fixed Space Bar Button
Item, Flexible Space, Bar Button Item, Text Field, Switch, Slider, and Button. Placing other
items above a toolbar require using a fixed or flexible spacer (Figure 12-11). Place a spacer on
the toolbar at the location on the toolbar you wish to overlay with a control, and then place the
control over the spacer.

Figure 12-8 Detail Disclosure button

272 iOS SDK Programming: A Beginner’s Guide

Figure 12-9 Info Light button, Info Dark button, and Add Contact button

Figure 12-10 You can go crazy with a toolbar.

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 273

Try This

NOTE
For the sanity of your users, Apple may not approve your application if you get too
crazy with a toolbar. When in doubt, refer to Apple’s user interface guidelines. If you
use controls in a predictable way, your users will know how to use your application
without instructions.

Creating a UIToolbar
1. Create a new View-based Application. Name the application ToolBarProject.

2. Open ToolBarProjectViewController.xib in Interface Builder.

3. Drag a Toolbar from the library window to the view’s canvas. Notice it placed one button
on the toolbar for you (Figure 12-12).

4. Drag a Fixed Space Bar Button Item from the library window to the view’s canvas. Enlarge
the spacer’s size. Add another Bar Button Item to the spacer’s right (Figure 12-13).

5. Select the toolbar and open its Inspector window. Change the toolbar’s style to Black
Translucent (Figure 12-14).

6. Save and click Run. The application displays the toolbar (Figure 12-15).

Figure 12-11 Using spacers to place controls, such as labels on a toolbar

(continued)

274 iOS SDK Programming: A Beginner’s Guide

Figure 12-12 A toolbar on a view’s canvas

Figure 12-13 Adding a spacer to a toolbar

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 275

Figure 12-14 Making the toolbar translucent

Figure 12-15 The sample application displaying a toolbar

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

276 iOS SDK Programming: A Beginner’s Guide

UISwitch
A UISwitch, similar to a toggle button, is on or off. Figure 12-16 illustrates a UISwitch’s
appearance. A UISwitch has a property and method for changing its state. The switch is
on when the Boolean property is YES. The switch is off when NO. The following is the
declaration for the on property.

@property(nonatomic, getter=isOn) BOOL on

Notice that the getter is entitled isOn, you can use this getter to obtain the on property’s
value or the property itself. For instance, the following two statements are equivalent:

if(((UISwitch *) sender).on == YES)
if([((UISwitch *) sender) isOn] == YES)

You can change the switch’s value programmatically using the setOn method. This method’s
signature follows.

-(void) setOn: (BOOL) on animated: (BOOL) animated

UISlider
Sliders are a horizontal bar with a small round indicator that a user can move to the right or left
to change the slider’s value. Figure 12-16 contains a slider example.

Figure 12-16 A view with a switch and a slider

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 277

Try This

Appearance
The UISlider class has several properties and methods you might use to modify a slider’s
appearance. You can modify the indicator using the setThumbImage method.

- (void) setThumbImage:(UIImage *)image forState: (UIControlState) state

This method allows you to provide the slider an image in place of the round indicator. Interface
Builder does not provide a means to set this value, so you must do so programmatically when
first loading the view containing the slider.

You can also specify minimum and maximum images that appear directly to the slider’s left
and right. Set a slider’s image appearing to the right using the maximumValueImage property.

@property(nonatomic, retain) UIImage *maximumValueImage

Set a slider’s image appearing to the left using the minimumValueImage property.

@property(nonatomic, retain) UIImage *minimumValueImage

The next Try This example sets both properties using the Inspector pane in Interface
Builder. There are more modifications you might make to a UISlider; refer to the UISlider
Class Reference for a complete listing.

Values
By default, a UISlider’s values begin with minimum of 0, a maximum of 1.00, and a .50 initial
value. The slider’s values are floats, and you can set the value programmatically using the
setValue method or the value property.

- (void) setValue:(float) value animated:(BOOL) animated

The minimum, maximum, and initial values are all properties that you can set
programmatically or through Interface Builder.

Continuous Property
A slider changes its values continuously as a user adjusts the indicator. For instance, as a user
moves the indicator from left to right, the slider is continuously firing value-changed events.
You can change this behavior by changing the continuous property to NO. If the value is NO,
the slider fires the event only when a user lifts his or her finger from the indicator. You can set
this property programmatically, or through Interface Builder.

Using a Switch and a Slider
1. Create a new View-based Application. Name the application SwitchSlider.

2. Drag the edit_add.png and edit_remove.png images from the resources folder to the
Resources folder in Groups & Files.

3. Open SwitchSliderViewController.xib in Interface Builder.
(continued)

278 iOS SDK Programming: A Beginner’s Guide

4. Add a Slider and a Switch from the library. Resize the slider to be larger and set the edit_
remove .png as the minimum image and edit_add.png as the maximum image (Figure 12-16).

5. Notice that the Slider’s minimum value is zero and maximum is one. Leave the values
unchanged.

6. Save your changes.

7. Open SwitchSliderViewController and implement a method named handleSwitch and a
method named handleSlider (Listings 12-3 and 12-4). Also implement a property for the
UISwitch named mySwitch.

Listing 12-3 SwitchSliderViewController.h

#import <UIKit/UIKit.h>
@interface SwitchSliderViewController : UIViewController {
 UISwitch * mySwitch;
}
@property(nonatomic, retain) IBOutlet UISwitch * mySwitch;
- (IBAction) handleSwitch: (id) sender;
- (IBAction) handleSlider: (id) sender;
@end

Listing 12-4 SwitchSliderViewController.m

#import "SwitchSliderViewController.h"
@implementation SwitchSliderViewController
@synthesize mySwitch;
- (IBAction) handleSwitch: (id) sender {
 if([((UISwitch *) sender) isOn] == YES) {
 NSLog(@"It's on");
 } else {
 NSLog(@"It's off");
 }
}
- (IBAction) handleSlider: (id) sender {
 NSLog(@"value: %f", ((UISlider *)sender).value);
 [mySwitch setOn: ([((UISlider *) sender) value] == ((UISlider *)
sender).maximumValue)];
}
- (void)dealloc {
 [mySwitch release];
 [super dealloc];
}
@end

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 279

8. Save and open SwitchSliderViewController.xib.

9. Connect the mySwitch outlet to the switch on the canvas.

10. Connect the handleSlider action to the slider’s Value Changed event.

11. Connect the handleSwitch action to the switch’s Value Changed event.

12. Save and exit Interface Builder.

13. Save and click Run (Figure 12-17). Click the switch and it logs to the Debugger Console.
Change the slider’s value to the far right. The switch’s value changes to ON (Figure 12-18).

Figure 12-17 The application running in the iPhone Simulator

(continued)

280 iOS SDK Programming: A Beginner’s Guide

UITextField
iOS uses the UITextField class to render text fields. A text field is associated with a keyboard
that appears when a user taps in the text field. Keyboard styles include Number Pad, Phone
Pad, URL, and several others. You can set the keyboard style programmatically or using
Interface Builder (Figure 12-19).

Figure 12-20 illustrates several other text field properties you might set. You can specify
how text should be capitalized. Valid choices are None, Words, Sentences, and All Characters.
You can also specify if the text field should attempt to correct spelling errors by setting the
correction property to YES. If you want the text field to behave like a password, then check the
Secure check box in Interface Builder. Other properties you might want to change are the text
field’s border, background, font, and return key for the keyboard. Figure 12-20 shows the valid
choices for a keyboard’s return key. For a complete listing of properties and methods available
to you, refer to the UITextField Class Reference.

Figure 12-18 Moving the slider to the maximum value changes the switch’s value.

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 281

Figure 12-19 Setting a text field’s keyboard type

Figure 12-20 Valid choices for a keyboard’s return key

282 iOS SDK Programming: A Beginner’s Guide

Try This Using UITextField (with a Number Pad)
1. Create a new View-based Application named TextField.

2. Open TextViewController.xib in Interface Builder. Drag two UITextField controls from the
library to the view’s canvas and resize the text fields.

3. Select the second text field and in its inspector, change its Keyboard to Number Pad.

4. Select the first text field and change its Return Key to Done.

5. Save your changes.

6. Open TextFieldViewController and implement the textFieldDone action (Listings 12-5 and
12-6). Also, add an IBOutlet for the second text field and implement the numberFieldDone
method.

Listing 12-5 TextFieldViewController.h

#import <UIKit/UIKit.h>
@interface TextFieldViewController : UIViewController {
 UITextField * numberField;
}
@property(nonatomic, retain) IBOutlet UITextField * numberField;
- (IBAction) textFieldDone: (id) sender;
- (IBAction) numberFieldDone: (id) sender;
@end

Listing 12-6 TextFieldViewController.m

#import "TextFieldViewController.h"
@implementation TextFieldViewController
@synthesize numberField;
- (IBAction) textFieldDone: (id) sender {
 [sender resignFirstResponder];
}
- (IBAction) numberFieldDone: (id) sender {
 [numberField resignFirstResponder];
}
- (void)dealloc {
 [numberField release];
 [super dealloc];
}
@end

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 283

7. Save and then open TextFieldViewController.xib. Connect the textFieldDone action to the
first text field’s Did End on Exit event.

8. Save and click Run. Notice that when finished editing the first text field, upon clicking
Done, the text pad disappears. The number pad, though, has no Done key (Figure 12-21).

9. Reopen TextFieldViewController.xib and drag a button onto the view’s canvas. Resize the
button to cover the entire canvas.

10. In the Document window, expand the View and ensure the newly added button is behind
the two text fields (Figure 12-22).

11. In the Inspector’s Button Attributes pane, change the button’s Type to custom and uncheck
any checked drawing check boxes (Figure 12-23).

12. Connect the numberField outlet to the second text field. Connect the numberFieldDone
action to the Touch Up Inside event for the button added to the canvas (Figure 12-24).

13. Save and then click Run. Click the second text field and the number pad appears. Tap
anywhere outside the two text fields to close the number pad. Tapping in the first text field
causes the number pad to switch to the keyboard (Figure 12-25).

Note that in textFieldDone and numberFieldDone we are calling the resignFirstResponder
method. This is an essential step that actually dismisses the keyboard.

Figure 12-21 The number pad has no Done key.

(continued)

284 iOS SDK Programming: A Beginner’s Guide

Figure 12-22 Button is under two textfields.

Figure 12-23 Changing button’s type to Custom

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 285

Figure 12-24 Connecting the numberFieldDone action to the button

Figure 12-25 The number pad appears and disappears from the application.

286 iOS SDK Programming: A Beginner’s Guide

UITextView
Use a UITextView to capture multiple lines of text in a scrollable, multiline text area. It’s
generally used for entering paragraphs of text rather than a single line. There are several
properties you can set to customize the control’s appearance, including the font, textColor,
editable, and textAlignment properties. You can also check if it has text using the hasText
method. Figure 12-26 illustrates several properties you might want to set for a UITextView
in Interface Builder. For more information on the UITextView, refer to the UITextView Class
Reference.

Figure 12-26 UITextView properties you might want to set in Interface Builder

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 287

Try This

UISegmentedControl
A segmented control groups together two or more segments, where each segment acts as an
independent button. The next task illustrates a segmented control.

Using a UISegmentedControl
1. Create a new View-based Application named Segment.

2. Add the images colorize.png and wizard.png from the resources folder to the Resources
folder in Groups & Files.

3. Open SegmentViewController.xib and add a Segmented Control to the view’s canvas.

4. Change the control so that it has three segments. Change the Segment 0’s name to Kids,
the first segment’s image to colorize.png, and the second segment’s image to wizard.png
(Figure 12-27). Change the control’s style to Bordered.

Figure 12-27 Modifying the segmented control in Interface builder

(continued)

288 iOS SDK Programming: A Beginner’s Guide

5. Save your changes.

6. Open SegmentViewController and add an IBAction called handleSegment to
SegmentViewController (Listings 12-7 and 12-8).

Listing 12-7 SegmentViewController.h

#import <UIKit/UIKit.h>
@interface SegmentViewController : UIViewController {
}
- (IBAction) handleSegment: (id) sender;
@end

Listing 12-8 SegmentViewController.m

#import "SegmentViewController.h"
@implementation SegmentViewController
- (IBAction) handleSegment: (id) sender {
 UISegmentedControl * myseg = (UISegmentedControl *) sender;
 if(myseg.selectedSegmentIndex == 0) {
 NSLog(@"selected zero index...");
 }
 else if(myseg.selectedSegmentIndex == 1) {
 NSLog(@"selected one index...");
 }
 else {
 NSLog(@"selected two index...");
 }
}
- (void)dealloc {
 [super dealloc];
}
@end

7. Save and then switch to SegmentViewController.xib.

8. Connect the segment’s Value Changed event to the File’s Owner handleSegment method.

9. Save your changes and click Run. Figure 12-28 illustrates the application’s appearance,
and Listing 12-9 contains the Debugger Console’s logging.

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 289

Listing 12-9 The Debugger Console’s logging for application

2010-09-09 10:47:03.535 Segment[19281:207] selected one index...
2010-09-09 10:47:19.737 Segment[19281:207] selected two index...

The Web View
This chapter wraps up its discussion of controls by discussing the web view. The UIWebView
is the class you use to add a web browser to your application. It’s based upon the same code
foundation as Safari, and so you can use CSS and JavaScript. Using the web view can be easy
or more difficult, depending upon how much you want your application to interact with the
browser. In this chapter we keep it simple.

Figure 12-28 The application running in iPhone Simulator

290 iOS SDK Programming: A Beginner’s Guide

UIWebView
The UIWebView is responsible for the web view’s display. It is an easy means of embedding
web content in your application. The loadRequest: method is how you load web content.
You can check on the control’s progress loading a resource using the loading property. You
might also want to move forward or backward through the user’s browsing history—you do
this using the goBack and goForward methods. Of course, you should check first to see if
the control can move backward or forward by examining the canGoBack or canGoForward
properties.

If you own an iPhone, then you’ve probably noticed that you can tap telephone numbers in the
Safari browser and it automatically dials the number. The UIWebView implements this behavior
unless you specifically tell it not to by setting the detectsPhoneNumbers property to NO. Another
method that is subtle, yet powerful is the stringByEvaluatingJavaScriptFromString: method.

- (NSString *)stringByEvaluatingJavaScriptFromString:(NSString *)script

Why is this method so powerful? The stringByEvaluatingJavaScriptFromString: method lets
you evaluate any JavaScript string. You can access a page’s Document Object Model (DOM)
through JavaScript, and thereby manipulate an HTML page’s content.

The HTML DOM is a W3C standard for manipulating HTML documents. HTML DOM
is outside this book’s scope, but for more information refer to the W3C School’s HTML DOM
Tutorial, available online at www.w3schools.com. If you want to do sophisticated programming
using the web browser, you would be well served by learning the HTML DOM. The following
Try This example, illustrates using the stringByEvaluatingJavaScriptFromString: method to
print a page’s HTML content.

You navigate to a specific page by using the UIWebView’s loadRequest method.

- (void) loadRequest: (NSURLRequest *) request

The loadRequest method takes a URL request as a parameter and navigates to the resource
represented by the underlying URL. A NSURL class wraps the NSURLRequest’s underlying
URL. Both NSURLRequest and NSURL are part of the Foundation framework. You use both
in the next Try This example application.

UIWebViewDelegate
UIWebViews can also have a delegate. You create a delegate for a UIWebView by creating
a class that adopts the UIWebViewDelegate protocol and then assigning the UIWebView’s
delegate property to the custom class. The UIWebViewDelegate handles key events when
loading a web page. When an event occurs, the web view calls the appropriate delegate
method. For instance, when a web view is about to load a page, it calls the webView:should
StartLoadWithRequest:navigationType: method.

- (BOOL)webView:(UIWebView *)webView
 shouldStartLoadWithRequest:
 (NSURLRequest *) request
 navigationType:(UIWebViewNavigationType)navigationType

www.w3schools.com

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 291

Try This

When a web view starts loading a page, it calls the webViewDidStartLoad: method.

- (void)webViewDidStartLoad:(UIWebView *)webView

When a web view finishes loading a page, it calls the webViewDidFinishLoad: method,
unless an error occurs, when instead it calls the webView:didFailLoadWithError: method.

- (void)webViewDidFinishLoad:(UIWebView *)webView
- (void)webView:(UIWebView *)webView didFailLoadWithError:(NSError *)
error

Creating a Simple Web Browser
1. Create a new View-based Application named MyWeb.

2. Create a new class called MyWebViewDelegate and have it adopt the UIWebViewDelegate
protocol (Listings 12-10 and 12-11).

Listing 12-10 MyWebViewDelegate.h

#import <Foundation/Foundation.h>
@interface MyWebViewDelegate : NSObject <UIWebViewDelegate> {
}
@end

Listing 12-11 MyWebViewDelegate.m

#import "MyWebViewDelegate.h"
@implementation MyWebViewDelegate
- (void)webViewDidFinishLoad: (UIWebView *) webView {
 NSLog(@"%@", [webView stringByEvaluatingJavaScriptFromString:
 @"document.documentElement.textContent"]);
}
@end

3. Open MyWebViewController.xib in Interface Builder.

4. Add a Web View from the Library to the canvas. Also add a text field and a button
(Figure 12-29).

(continued)

292 iOS SDK Programming: A Beginner’s Guide

5. Change the text field’s keyboard type to URL.

6. Save your changes.

7. Open MyWebViewController and add IBOutlets for the text field and the web
view (Listings 12-12 and 12-13). Add an IBAction called changeLocation. Add the
MyWebViewDelegate as a property and implement the viewDidLoad method.

Listing 12-12 MyWebViewController.h

#import <UIKit/UIKit.h>
@class MyWebViewDelegate;
@interface MyWebViewController : UIViewController {
 UITextField * myTextField;
 UIWebView * myWebView;
 MyWebViewDelegate * myWebViewDelegate;
}

Figure 12-29 A simple web browser in Interface Builder

Chapter 12: Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields 293

@property(nonatomic, retain) IBOutlet UIWebView * myWebView;
@property(nonatomic, retain) IBOutlet UITextField * myTextField;
@property(nonatomic, retain) MyWebViewDelegate * myWebViewDelegate;
- (IBAction) changeLocation: (id) sender;
@end

Listing 12-13 MyWebViewController.m

#import "MyWebViewController.h"
#import "MyWebViewDelegate.h"
@implementation MyWebViewController
@synthesize myWebView;
@synthesize myTextField;
@synthesize myWebViewDelegate;
- (void) viewDidLoad {
 myWebViewDelegate = [[MyWebViewDelegate alloc] init];
 myWebView.delegate = myWebViewDelegate;
}
- (void)dealloc {
 myWebView.delegate = nil;
 [myWebViewDelegate release];
 [myTextField release];
 [myWebView release];
 [super dealloc];
}
- (IBAction) changeLocation: (id) sender {
 [myTextField resignFirstResponder];
 NSURL * url = [NSURL URLWithString: myTextField.text];
 NSURLRequest * request = [NSURLRequest requestWithURL:url];
 [myWebView loadRequest:request];
}
@end

8. Save your changes and switch back to MyWebViewController.xib.

9. Connect the button’s Touch Up Inside action to the changeLocation action. Connect the
text field and web view to their respective outlets.

10. Save your changes and click Run.

11. Type http://www.apple.com in the text field and tap GO and the web page loads in the
web view (Figure 12-30). The web page’s HTML is also logged to the Debugger Console
(not provided as a listing due to its length).

(continued)

http://www.apple.com

294 iOS SDK Programming: A Beginner’s Guide

Summary
This chapter discussed some of the controls available to you in the iOS SDK. First you
reviewed buttons. After buttons, you learned about the toolbar, followed by switches, sliders,
and text fields. Note the subtleties of using the keyboard; you must explicitly release the
keyboard using the resignFirstResponder method. Moreover, when using a number pad, if you
want to release the keyboard you need to resort to an “invisible button” trick. You then learned
about using the text view and segmented control and then finished up with the UIWebView.

Figure 12-30 A simple web browser displaying Apple’s home page

295

Chapter 13
Controls—Part Two:
Using Pickers and
Using the Camera

296 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Using a UIDatePicker to select dates

Using a UIPickerView to select values

Using a UIPickerView with multiple components

Using a UIPickerView with UIImageView

Using the UIImagePickerController to control the camera and access the photo
library

Using simple NSNotifications

What do the UIPickerView and the UIImagePicker classes have in common? Nothing,
really, other than they are both ultimately UIViews. But they are both controls you

might use in an iOS application, and so they are covered together in this second chapter
on iOS controls. This chapter’s first half covers using the UIDatePicker and UIPickerView
classes. These classes create visual controls that appear similar to Las Vegas slot machines.
This chapter’s second half covers using the UIImagePickerController. This class gives you a
way to programmatically access the photo library on any iOS device and the camera roll and
camera on an iPhone or new iPod Touch that includes a camera.

Using Pickers: Date Pickers and Pickers
You use pickers to select one of several values. There are two types of pickers: date pickers and
pickers. As you would expect, date pickers are used for selecting a date, time, or countdown
interval. Pickers are used for selecting one of many values.

Date Pickers
Date pickers pick dates and times, placing the selected values in an NSDate class, and are
implemented using the UIDatePicker class. If using Interface Builder to develop an iOS
application, you drag a date picker onto your view’s canvas from the library and modify the
picker’s properties in the Inspector. You then create an IBOutlet for the picker in your view’s
associated view controller and connect it to the picker on your view’s canvas. The view
controller uses this outlet to obtain the UIDatePicker object’s selected date. The example
later in this section illustrates this process.

UIDatePicker
A UIDatePicker has rotating wheels, allowing a user to select the date and time. If using a date
picker to pick a date and time, valid modes are Date & Time, Time, and Date. If using a date

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 297

picker to pick a countdown time, the valid mode is Timer. Figure 13-1 illustrates the picker’s
visual appearance for the different modes.

There are several attributes you might change from the default when using a UIDatePicker.
Figure 13-2 illustrates the mode, locale, timeZone, date, minimumDate, maximumDate, and
interval properties, as viewed in the Inspector.

The locale is an NSLocale. This class encapsulates how the date should be formatted for
a different date or culture. The timeZone is an NSTimeZone; its default value is the operating
system’s time zone. The minuteInterval is the minute intervals displayed by the picker. For
instance, Figure 13-3 illustrates a UIDatePicker using 30-minute intervals and a UIDatePicker
using 1-minute intervals.

NSDate
UIDatePickers return values as an NSDate. You access a date picker’s value through its date
property. For instance, the following sets an NSDate from a UIDatePicker’s date property.

NSDate * theDate = self.datePicker.date;

Figure 13-1 UIDatePicker has four modes: Date & Time, Time, Date, and Timer.

298 iOS SDK Programming: A Beginner’s Guide

Figure 13-2 Several UIDatePicker properties you might change in the Inspector

Figure 13-3 A UIDatePicker showing 30-minute intervals and a UIDatePicker showing
1-minute intervals

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 299

Try This

An NSDate is a date and time. Several NSDate methods you might use include isEqualToDate:,
earlierDate:, compare:, and laterDate:. For a more complete understanding of date and time
programming, refer to Apple’s “Date and Time Programming Guide for Cocoa,” available online.

NSDateFormatter
When you wish to display a date, you use an NSDateFormatter. An NSDateFormatter allows
a date to be displayed as a formatted NSString. There are many formats you might use. For
instance, consider the two formatters.

NSDateFormatter * dateFormatter =
 [[[NSDateFormatter alloc] init] autorelease];
[dateFormatter setDateFormat:@"MM/dd/yyyy"];

The “MM/dd/yyyy” format outputs August 26, 2008, as “08/26/2008.”

[dateFormatter setDateFormat:@"EEEE MMMM d',' yyyy"];

The “EEEE MMMM d’,’ yyyy” format outputs “Tuesday August 26, 2008,” as the date.
These are only two of many choices you might select to format dates and times. For more
formats, refer to Apple’s “Data Formatting Programming Guide for Cocoa,” available online.

Using a Date Picker
1. Create a new View-based Application. Name the application DatePickerProject.

2. Open DatePickerProjectViewController.xib in Interface Builder.

3. Add a date picker to the canvas and add a label (Figure 13-4).

4. Change the date picker’s mode to Date (Figure 13-5).

5. Save your changes.

6. Open DatePickerProjectViewController and add an IBOutlet for the UIDatePicker and
an IBOutlet for the UILabel (Listings 13-1 and 13-2). Also add an IBAction called
changeValue. Don’t forget to release the two outlets in the dealloc method.

Listing 13-1 DatePickerProjectViewController.h

#import <UIKit/UIKit.h>
@interface DatePickerProjectViewController : UIViewController {
 UIDatePicker * datePicker;
 UILabel * theLabel;
}

(continued)

300 iOS SDK Programming: A Beginner’s Guide

Figure 13-4 Adding a UIDatePicker and UILabel to the view

Figure 13-5 Change a UIDatePicker’s mode to Date

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 301

@property (nonatomic, retain) IBOutlet UIDatePicker * datePicker;
@property (nonatomic, retain) IBOutlet UILabel * theLabel;
- (IBAction) changeValue: (id) sender;
@end

Listing 13-2 DatePickerProjectViewController.m

#import "DatePickerProjectViewController.h"
@implementation DatePickerProjectViewController
@synthesize datePicker;
@synthesize theLabel;
- (IBAction) changeValue: (id) sender {
 NSDate * theDate = self.datePicker.date;
 NSLog(@"the date picked is: %@", [theDate description]);
 NSDateFormatter * dateFormatter = [[[NSDateFormatter alloc] init]
autorelease];
 [dateFormatter setDateFormat:@"MM/dd/yyyy"];
 NSLog(@"formatted: %@", [dateFormatter stringFromDate:theDate]);
 [dateFormatter setDateFormat:@"EEEE MMMM d',' yyyy"];
 NSLog(@"formatted: %@", [dateFormatter stringFromDate:theDate]);
 [theLabel setText:[theDate description]];
}
- (void)dealloc {
 [datePicker release];
 [theLabel release];
 [super dealloc];
}
@end

7. Save your changes and open DatePickerProjectViewController.xib in Interface Builder.

8. Connect the File’s Owner datePicker outlet to the UIDatePicker on the canvas. Connect the
File’s Owner theLabel to the UILabel on the canvas.

9. Connect the File’s Owner changeValue action to the UIDatePicker’s Value Changed event
(Figure 13-6).

10. Save your changes and click Run to run the application in iPhone Simulator (Figure 13-7).
The Debugger Console should have logging similar to Listing 13-3.

Listing 13-3 Debugger Console output

2010-09-10 11:38:36.445 DatePickerProject[7095:207] the date picked is:
2010-09-11 17:25:54 GMT

(continued)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

302 iOS SDK Programming: A Beginner’s Guide

Figure 13-6 Connecting to the UIDatePicker’s value changed event

Figure 13-7 The application running in iPhone Simulator

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 303

Try This

2010-09-10 11:38:36.455 DatePickerProject[7095:207] formatted: 09/11/2010
2010-09-10 11:38:36.455 DatePickerProject[7095:207] formatted: Saturday
September 11, 2010
2010-09-10 11:38:58.838 DatePickerProject[7095:207] the date picked is:
2010-10-11 17:25:54 GMT
2010-09-10 11:38:58.840 DatePickerProject[7095:207] formatted: 10/11/2010
2010-09-10 11:38:58.841 DatePickerProject[7095:207] formatted: Monday
October 11, 2010

Using a UIDatePicker in Timer Mode
UIDatePicker classes are also useful for selecting a duration for an NSTimer. A UIDatePicker
selects an NSDate, which consists of a date and a time; therefore, you can create a timer using
an NSDate’s time. But a UIDatePicker does not implement a timer; it only provides a visual
way to pick duration. You must then use this duration with an NSTimer. This task illustrates
using a UIDatePicker to select a duration for an NSTimer and, in the process, illustrates using
the NSCalendar, NSDateFormatter, and NSDateComponents classes.

1. Create a new View-based Application in Xcode named ATimer.

2. Create a new IBOutlet named timePicker for a UIDateTime and an IBAction called
echoTime (Listing 13-4).

Listing 13-4 ATimerViewController.h

#import <UIKit/UIKit.h>
@interface ATimerViewController : UIViewController {
 UIDatePicker * timePicker;
}
@property (nonatomic, retain) IBOutlet UIDatePicker * timePicker;
- (IBAction) echoTime: (id) sender;
- (void) echoIt: (NSTimer *) timer;
@end

3. Implement the echoTime method so that it implements an NSTimer that fires a timer every
second (Listing 13-5).

Listing 13-5 ATimerViewController.m

#import "ATimerViewController.h"

@implementation ATimerViewController

@synthesize timePicker; (continued)

304 iOS SDK Programming: A Beginner’s Guide

NSInteger seconds = 0;

- (IBAction) echoTime: (id) sender {

 NSDate * time = timePicker.date;

 NSDateFormatter * dateFormatter =

 [[[NSDateFormatter alloc] init] autorelease];

 [dateFormatter setDateFormat:@"HH:MM:SS"];

 NSLog(@"date: %@",[dateFormatter stringFromDate:time]);

 NSCalendar *gregorian =

 [[NSCalendar alloc] initWithCalendarIdentifier: NSGregorianCalendar];

 NSDateComponents * comps = [gregorian components:(NSHourCalendarUnit |

 NSMinuteCalendarUnit) fromDate:time];

 NSInteger hour = [comps hour];

 NSInteger minute = [comps minute];

 NSLog(@"Hour: %i", hour);

 NSLog(@"minute: %i", minute);

 NSInteger secs = hour * 60 * 60 + minute * 60;

 NSNumber * elapsedSeconds = [[NSNumber alloc] initWithInt:secs];

 NSDictionary * myDict = [NSDictionary dictionaryWithObject:

 elapsedSeconds forKey:@"TotalSeconds"];

 [NSTimer scheduledTimerWithTimeInterval:1 target: self selector: @

 selector(echoIt:) userInfo: myDict repeats: YES];

}

- (void) echoIt: (NSTimer *) timer {

 NSNumber * num =

 (NSNumber *) [[timer userInfo] valueForKey:@"TotalSeconds"];

 seconds++;

 NSInteger secs = [num integerValue] - seconds;

 NSLog(@"elapsed: %i, remaining: %i", seconds, secs);

}

- (void)dealloc {

 [timePicker release];

 [super dealloc];

}

@end

4. Add a method called echoIt for the timer to call when firing.

5. Open ATimerViewController.xib in Interface Builder and place a UIDatePicker on the
canvas. Change the picker’s mode to Timer in the Inspector and set the interval to one
minute. Also place a button on the canvas (Figure 13-8).

6. Connect the File’s Owner timePicker property to the picker.

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 305

7. Connect the File’s Owner echoTime action to the button’s Touch Up Inside event.

8. Save your changes and click Run (Figure 13-9). The output to the Debugger Console
should appear like Listing 13-6.

Listing 13-6 The ATimer application logging to Debugger Console

2010-09-10 11:52:22.658 ATimer[7271:207] date: 01:12:00
2010-09-10 11:52:22.658 ATimer[7271:207] Hour: 1
2010-09-10 11:52:22.659 ATimer[7271:207] minute: 0
2010-09-10 11:52:26.028 ATimer[7271:207] elapsed: 1, remaining: 3599
2010-09-10 11:52:34.723 ATimer[7271:207] elapsed: 2, remaining: 3598
2010-09-10 11:52:43.023 ATimer[7271:207] elapsed: 3, remaining: 3597
2010-09-10 11:52:44.032 ATimer[7271:207] elapsed: 4, remaining: 3596

Figure 13-8 Adding a button to the canvas

(continued)

306 iOS SDK Programming: A Beginner’s Guide

This example code involves several concepts not covered elsewhere in this book. Notice
the NSDictionary, NSCalendar, and NSDateComponents classes. The UIDatePicker picks the
hours and minutes for the timer. When the button is clicked, the echoTime method creates an
NSCalendar and obtains date components from the time. After obtaining the total seconds,
echoTime adds the seconds to an NSDictionary and creates a timer that fires every second.
When firing, the timer calls the echoIt method, passing itself as the parameter. The echoIt
method obtains the seconds from the userInfo stored in the timer. The echoIt method then
determines the elapsed seconds and logs it to the Debugger Console.

UIPickerView
A UIPickerView allows the selection of a value or values from one or more value sets. A
UIPickerView consists of rows and components. Think of the component as the column in
a table of values and the row as the row. If you have a three-wheel UIPickerView, the third
wheel is the third component. A UIPickerView must have an associated class that adopts the

Figure 13-9 Running the application in iPhone Simulator

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 307

UIPickerViewDelegate and a class that adopts the UIPickerViewDataSource. The same class
can adopt both protocols.

UIPickerViewDelegate
The UIPickerViewDelegate protocol dictates how a UIPickerView is to construct itself. This
protocol contains five methods a class might implement when adopting this protocol: the picker
View:rowHeightForComponent:, pickerView:widthForComponent:, pickerView:titleForRow:
forComponent:, pickerView:viewForRow:forComponent:reusingView:, and pickerView:did
SelectRow:inComponent: methods.

Width and Height The pickerView:rowHeightForComponent: and pickerView:widthFor
Component: methods set a picker’s component dimensions. Remember, a picker’s component
can contain rows of strings or view controls, like a UIImageView. These methods accommodate
controls by allowing you to set a component’s height and width. Each method’s signature follows.

- (CGFloat)pickerView:(UIPickerView *) pickerView rowHeightForComponent:
(NSInteger) component
- (CGFloat)pickerView:(UIPickerView *) pickerView widthForComponent:
(NSInteger) component

Content The pickerView:titleForRow:forComponent: and pickerView:viewForRow:for
Component: methods provide a component’s title or view. The title or the view is what is
displayed as the rows in a picker. You must implement one of the two methods. If you need to
pick from several strings, implement the pickerView:titleForRow:forComponent: method; if
your choices are more complex, use a view for each and implement the pickerView:viewFor
Row:forComponent: method. Each method’s signature follows.

- (NSString *)pickerView:(UIPickerView *)pickerView titleForRow:
(NSInteger) row forComponent: (NSInteger) component
- (UIView *)pickerView:(UIPickerView *)pickerView
viewForRow:(NSInteger) row forComponent:(NSInteger)component
reusingView:(UIView *)view

Selecting The UIPickerView calls the pickerView:didSelectRow:inComponent: method when
a user selects a component’s row. It takes the component’s index number and the row’s index
number as parameters, so you can determine the component selected and the component’s row.
The method’s signature follows.

- (void)pickerView:(UIPickerView *)pickerView didSelectRow:(NSInteger)row
inComponent:(NSInteger)component

UIPickerViewDatasource
A UIPickerViewDatasource handles a UIPickerView’s data. It contains two methods you
should define when adopting this protocol: the numberOfComponentsInPickerView: and

308 iOS SDK Programming: A Beginner’s Guide

Try This

pickerView:numberOfRowsInComponent: methods. The numberOfComponentsInPickerView:
method returns how many components, or columns, a picker must display.

- (NSInteger)pickerView:(UIPickerView *)pickerView
numberOfRowsInComponent: (NSInteger) component

The pickerView:numberOfRowsInComponent: method returns a component’s row count.

- (NSInteger)pickerView:(UIPickerView *)pickerView
numberOfRowsInComponent: (NSInteger) component

Using a Picker
1. Create a new View-based Application named APicker.

2. Open APickerViewController.xib in Interface Builder.

3. Drag a picker view from the library to the canvas. Right-click and notice that the control
doesn’t have the choices a UIDatePicker has (Figure 13-10).

Figure 13-10 A UIPickerView has fewer outlets and actions than a UIDatePicker.

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 309

4. Add a button to the canvas.

5. Save your changes.

6. Create a new NSObject named MyPickerDelegate and change it to adopt the
UIPickerViewDelegate and UIPickerViewDataSource protocols. Have MyPickerDelegate
implement the needed methods (Listings 13-7 and 13-8).

Listing 13-7 MyPickerDelegate.h

#import <Foundation/Foundation.h>
@interface MyPickerDelegate : NSObject <UIPickerViewDelegate,
UIPickerViewDataSource> {
 NSArray * myData;
}
@property (nonatomic, retain) NSArray * myData;
@end

Listing 13-8 MyPickerDelegate.m

#import "MyPickerDelegate.h"

@implementation MyPickerDelegate

@synthesize myData;

- (id) init {

 if([super init] == nil) return nil;

 myData = [[NSArray alloc] initWithObjects:

 @"Red",@"Yellow",@"Green",@"Blue", @"Purple", @"Orange",

 @"Black", @"Gray", @"Tan", @"Pink", @"Coral", nil];

 return self;

}

- (void)pickerView:(UIPickerView *)pickerView didSelectRow:(NSInteger)row

 inComponent:(NSInteger)component {

 NSLog(@"picked row: %i, component: %i", row, component);

 NSLog(@"the value: %@", [self.myData objectAtIndex:row]);

}

- (NSInteger) numberOfComponentsInPickerView: (UIPickerView *) pickerView {

 return 1;

}

- (NSInteger) pickerView: (UIPickerView *) pickerView

 numberOfRowsInComponent: (NSInteger) component {

 return [self.myData count];

}

(continued)

310 iOS SDK Programming: A Beginner’s Guide

- (NSString *) pickerView: (UIPickerView *) pickerView titleForRow:

 (NSInteger) row forComponent: (NSInteger) component {

 return [self.myData objectAtIndex:row];

}

- (void)dealloc {

 [myData release];

 [super dealloc];

}

@end

7. Open APickerViewController and add IBOutlets for UIPickerView and MyPickerDelegate
(Listing 13-9). Add an IBAction called changeColor.

Listing 13-9 APickerViewController.h

#import <UIKit/UIKit.h>
#import "MyPickerDelegate.h"
@class MyPickerDelegate;
@interface APickerViewController : UIViewController {
 UIPickerView * myPicker;
 MyPickerDelegate * myPickerDelegate;
}
@property (nonatomic, retain) IBOutlet UIPickerView * myPicker;
@property (nonatomic, retain) IBOutlet MyPickerDelegate *
myPickerDelegate;
- (IBAction) changeColor: (id) sender;
@end

8. Implement the changeColor action (Listing 13-10).

Listing 13-10 APickerViewController.m

#import "APickerViewController.h"
#import "MyPickerDelegate.h"
@implementation APickerViewController
@synthesize myPicker;
@synthesize myPickerDelegate;
- (IBAction) changeColor: (id) sender {
 NSLog(@"the color is: %@", (NSString *)[myPickerDelegate.myData
objectAtIndex: [myPicker selectedRowInComponent:0]]);
}
- (void)dealloc {
 [myPickerDelegate release];

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 311

 [myPicker release];
 [super dealloc];
}
@end

9. Save and open APickerViewController.xib in Interface Builder.

10. Connect the File’s Owner changeColor action to the button’s Touch Up Inside event.

11. Connect the File’s Owner myPicker outlet to the UIPickerView.

12. Drag an object from the library to the editing pane. Change the object’s type to
MyPickerDelegate.

13. Connect the File’s Owner myPickerDelegate outlet to the object just added.

14. Connect the UIPickerView’s dataSource and delegate outlets to the newly added
MyPickerDelegate object.

15. Save your changes and click Run to run the application in iPhone Simulator. When the
button is pushed, the Debugger Console logs the picker’s chosen color (Figure 13-11 and
Listing 13-11).

Figure 13-11 Running the application in iPhone Simulator (continued)

312 iOS SDK Programming: A Beginner’s Guide

Try This

Listing 13-11 Debug Console output from running APicker application

2010-09-10 12:13:43.184 APicker[7497:207] picked row: 1, component: 0
2010-09-10 12:13:43.188 APicker[7497:207] the value: Yellow
2010-09-10 12:13:45.123 APicker[7497:207] the color is: Yellow
2010-09-10 12:13:54.053 APicker[7497:207] picked row: 2, component: 0
2010-09-10 12:13:54.054 APicker[7497:207] the value: Green
2010-09-10 12:13:55.037 APicker[7497:207] the color is: Green

A UIPickerView must have helper classes adopting the UIPickerViewDelegate and
UIPickerViewDataSource protocols. In this example you had one class, MyPickerDelegate,
adopt both protocols. The delegate uses a simple NSArray to hold NSString objects. Because
the data is simple strings, the delegate implements the titleForRow method. When a user
selects a row, the didSelectRow method logs the row, component, and value to the Debugger
Console.

Using a UIPickerView with Two Components
1. Make a copy of the APicker project you just finished and then open it in Xcode.

2. Modify MyPickerDelegate’s numberOfComponentsInPickerView to return the number 2
(Listing 13-13).

3. Click Build And Go. Notice the picker now shows two independent spinning wheels
(Figure 13-12).

4. Add a second value array. Call the array myData2 and initialize it in the init method, as
you did before with myData (Listings 13-12 and 13-13).

Listing 13-12 MyPickerDelegate.h modified to reflect two wheels

#import <Foundation/Foundation.h>
#define COLOR_WHEEL 0
#define SHADE_WHEEL 1
@interface MyPickerDelegate : NSObject <UIPickerViewDelegate,
UIPickerViewDataSource> {
 NSArray * myData;
 NSArray * myData2;
}
@property (nonatomic, retain) NSArray * myData;
@property (nonatomic, retain) NSArray * myData2;
@end

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 313

Listing 13-13 MyPickerDelegate.m modified to reflect two wheels

#import "MyPickerDelegate.h"

@implementation MyPickerDelegate

@synthesize myData;

@synthesize myData2;

- (id) init {

 if([super init] == nil)

 return nil;

 myData = [[NSArray alloc]initWithObjects:

 @"Red", @"Yellow", @"Green", @"Blue",

 @"Purple", @"Orange", @"Black", @"Gray", @"Tan", @"Pink", @"Coral", nil];

 myData2 = [[NSArray alloc] initWithObjects:

 @"Very Dark", @"Dark", @"Normal", @"Light", @"Very Light", nil];

 return self;

}

Figure 13-12 A UIPickerView with two components

(continued)

314 iOS SDK Programming: A Beginner’s Guide

- (NSInteger) numberOfComponentsInPickerView: (UIPickerView *) pickerView {

 return 2;

}

- (void)pickerView:(UIPickerView *)pickerView didSelectRow:

 (NSInteger)row inComponent:(NSInteger)component {

 NSLog(@"picked row: %i, component: %i", row, component);

 if(component == COLOR_WHEEL)

 NSLog(@"the value: %@", [self.myData objectAtIndex:row]);

 else

 NSLog(@"the value: %@", [self.myData2 objectAtIndex:row]);

 }

- (NSInteger) pickerView: (UIPickerView *)pickerView

 numberOfRowsInComponent (NSInteger) component {

 if(component == COLOR_WHEEL)

 return [self.myData count];

 else

 return [self.myData2 count];

}

- (NSString *) pickerView: (UIPickerView *) pickerView

 titleForRow: (NSInteger) row forComponent: (NSInteger) component {

 if(component == COLOR_WHEEL)

 return [self.myData objectAtIndex:row];

 else

 return [self.myData2 objectAtIndex:row];

}

- (void)dealloc {

 [myData release];

 [myData2 release];

 [super dealloc];

}

@end

5. Create two constants representing the different wheels: COLOR_WHEEL for the wheel
containing the myData values and SHADE_WHEEL for the wheel containing the myData2
values (Listing 13-12).

6. Modify the numberOfRowsInComponent method and titleForRow method to reflect the
newly added wheel.

7. Open APickerViewController.m and modify the changeColor method to reflect the second
wheel (Listing 13-14).

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 315

Listing 13-14 The changeColor method modified to reflect two wheels

- (IBAction) changeColor: (id) sender {
 NSLog(@"the color is: %@ and the shade is: %@",
 (NSString *)[myPickerDelegate.myData objectAtIndex:
 [myPicker selectedRowInComponent: COLOR_WHEEL]],
 (NSString *)[myPickerDelegate.myData2 objectAtIndex:
 [myPicker selectedRowInComponent:SHADE_WHEEL]]);
}

8. Save your changes and click Run. The application shows two wheels. Upon clicking the
button, the Debugger Console logs the first wheel’s color and the second wheel’s shade
(Figure 13-13 and Listing 13-15).

Figure 13-13 Running the application in iPhone Simulator

(continued)

316 iOS SDK Programming: A Beginner’s Guide

Try This

Listing 13-15 Debugger Console logging from running APicker application

2010-09-10 12:26:48.705 APicker[7655:207] picked row: 1, component: 0
2010-09-10 12:26:48.715 APicker[7655:207] the value: Yellow
2010-09-10 12:26:49.658 APicker[7655:207] picked row: 2, component: 1
2010-09-10 12:26:49.660 APicker[7655:207] the value: Normal
2010-09-10 12:26:50.964 APicker[7655:207] the color is: Yellow and the
shade is: Normal

Using more components involves adding code to check which component was selected. Note
that rather than use the raw integers, you created constants for both components, producing more
readable code. Each delegate’s method then checks which component the user selected.

if(component == COLOR_WHEEL)
 return [self.myData objectAtIndex:row];
else
 return [self.myData2 objectAtIndex:row];

Loading UIImageViews into a UIPickerView
1. Make a copy of the original APicker project created earlier—not the project with two

components, but the earlier project with only one component. Open it in Xcode.

2. Replace the pickerView:titleForRow:forComponent: method in MyPickerDelegate with
pickerView:viewForRow:forComponent: (Listing 13-16).

Listing 13-16 MyPickerDelegate.m modified to load images into the UIPickerView

#import "MyPickerDelegate.h"
@implementation MyPickerDelegate
@synthesize myData;
- (id) init {
 if([super init] == nil)
 return nil;
 UIImageView * one = [[UIImageView alloc] initWithImage:
 [[UIImage alloc] initWithContentsOfFile:
 [[[NSBundle mainBundle] resourcePath]
 stringByAppendingPathComponent:@"wizard.png"]]];
 UIImageView * two =[[UIImageView alloc] initWithImage:
 [[UIImage alloc] initWithContentsOfFile:
 [[[NSBundle mainBundle] resourcePath]
 stringByAppendingPathComponent: @"tux.png"]]];

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 317

 UIImageView * three =[[UIImageView alloc] initWithImage:
 [[UIImage alloc] initWithContentsOfFile:
 [[[NSBundle mainBundle] resourcePath]
 stringByAppendingPathComponent:@"money.png"]]];
 myData = [[NSArray alloc] initWithObjects:one,two,three,nil];
 return self;
}
- (void)pickerView:(UIPickerView *)pickerView didSelectRow:
 (NSInteger) row inComponent: (NSInteger)component {
 NSLog(@"picked row: %i, component: %i", row, component);
}
- (NSInteger) numberOfComponentsInPickerView:
 (UIPickerView *)pickerView {
 return 1;
}
- (NSInteger) pickerView:
 (UIPickerView *) pickerView
 numberOfRowsInComponent: (NSInteger) component {
 return [self.myData count];
}
- (UIView *)pickerView:(UIPickerView *)pickerView
 viewForRow:(NSInteger) row
 forComponent:(NSInteger)component
 reusingView:(UIView *)view {
 return [self.myData objectAtIndex:row];
}
- (void)dealloc {
 [myData release];
 [super dealloc];
}
@end

3. Add the images money.png, wizard.png, and tux.png to the project. You can find these
images in the book’s resources folder.

4. Modify the MyPickerDelegate’s init: method to load UIImageViews rather than strings into
myData (Listing 13-16).

5. Modify the pickerView:didSelectRow:inComponent: to only log the row and component to
the Debugger Console (Listing 13-16).

6. Save your changes and open APickerViewController.xib and remove the button.

7. Save your changes, and click Run. The application loads the images into the UIPickerView
(Figure 13-14).

(continued)

318 iOS SDK Programming: A Beginner’s Guide

NOTE
Notice that the pickerView:viewForRow:forComponent method takes a UIView. So,
much as when working with custom table cells, you can also create custom picker rows
using a UIView.

Using the Camera: UIImagePickerController
Rather than working directly with an iPhone’s camera, you use the UIImagePickerController to
manipulate an iPhone’s camera and photo library. Using the UIImagePickerController, you take,
or select, a photo, optionally edit the photo, and then dismiss the UIImagePickerController,
returning control back to your application.

Figure 13-14 A UIPickerView that uses UIImageView objects as its components

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 319

UIImagePickerController
The UIImagePickerController is different from other view controllers. Rather than developers
creating the controller’s view and adding components to the view’s canvas, the UIImage
PickerController’s views are already created and are part of the UIKit library. Developers
simply determine the controller’s source type and implement a delegate for the controller.
The controller creates and manages the views, while the delegate responds to the view being
dismissed by a user.

Source
Earlier models of the iPod touch, the original iPad, and the iPhone Simulator all lack a camera.
If you attempt to use a device’s nonexistent camera, you will get an exception, and if that
exception isn’t caught, the application will terminate unexpectedly. If you’re attempting to
use the camera on an iPhone Simulator, it will also log a message to the Debugger Console.

2010-09-10 13:53:16.010 CameraProject[8418:207] *** Terminating app
due to uncaught exception 'NSInvalidArgumentException', reason:
'Source type 1 not available'

To avoid an exception or an application that unexpectedly quits, the UIImagePickerController
provides the isSourceTypeAvailable: method.

+ (BOOL)isSourceTypeAvailable:(UIImagePickerControllerSourceType)
sourceType

This method returns YES if a source type is available and NO if unavailable. Valid source
types are UIImagePickerControllerSourceTypePhotoLibrary, for selecting images from the
photo library; UIImagePickerControllerSourceTypeCamera, for selecting images from the
camera; and UIImagePickerControllerSourceTypeSavedPhotosAlbum, for selecting images
from a camera roll, or from the photo library if the device doesn’t have a camera.

After ensuring a device has a source type, you set the UIImagePickerController’s
sourceType property. This property determines what controls the UIImagePickerController
displays. Allowable source types are the same as with the isSourceTypeAvailable: method.

Editing and Delegating
The controller also has an allowsEditing property and delegate property (note that prior to
iOS 3.1 this property was called allowsImageEditing). The allowsEditing property determines
if a user should be allowed to edit an image after taking or selecting the image. The delegate
property specifies the class’s UIImagePickerControllerDelegate.

UIImagePickerControllerDelegate
The UIImagePickerControllerDelegate’s protocol has two methods your delegate should
implement for the image picker. The imagePickerController:didFinishPickingMediaWithInfo
:info: method is called after a user selects an image. This could be selecting an image from a

320 iOS SDK Programming: A Beginner’s Guide

Try This

camera roll or photo library, or after taking a photo using the camera. The method’s signature
follows.

- (void)imagePickerController:(UIImagePickerController *) picker
didFinishPickingMediaWithInfo: (NSDictionary *) info;

If you cancel a photo selected, the imagePickerControllerDidCancel: method is called. The
method’s signature follows:

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker

The imagePickerController:didFinishPickingMediaWithInfo:info: has three parameters. The
first parameter holds a reference to the image picker, the second to the image picked, and the third
to an NSDictionary containing editing information. If editing is disabled, the third parameter holds
nil. If editing is enabled, the parameter holds the unedited image and the cropped rectangle. For
more information on the imagePickerController:didFinish PickingMediaWithInfo:info method,
refer to Apple’s online “UIImagePickerControllerDelegate Reference.”

Using the UIImagePickerController

NOTE
Using the camera or camera roll requires having an iPhone or iPod with a camera
and running the application on the device, which will require a paid developer’s
membership, and a provision profile for this example application. Even if you can’t try
the camera part of this example, you can still select a photo from a photo album.

1. Create a new View-based Application. Name the project CameraProject.

2. Open CameraProjectViewController.xib in Interface Builder.

3. Drag a toolbar from the library onto the view’s canvas.

4. Rename the first button Take Photo. Add another button to the toolbar and call it Select
Photo. Add a UIImageView to the canvas (Figure 13-15).

5. Save your changes.

6. Create a new class called MyImagePickerDelegate derived from NSObject. Modify the class
so that it adopts the UINavigationControllerDelegate and UIImagePickerControllerDelegate
protocols (Listing 13-17). Add a property that contains the UIImage that the image picker
will select.

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 321

Listing 13-17 MyImagePickerDelegate.h

#import <Foundation/Foundation.h>
@interface MyImagePickerDelegate : NSObject
<UINavigationControllerDelegate, UIImagePickerControllerDelegate> {
 UIImage * selectedImage;
}
@property (nonatomic, retain) UIImage * selectedImage;
@end

7. Implement the imagePickerController methods (Listing 13-18).

Listing 13-18 MyImagePickerDelegate.m

#import "MyImagePickerDelegate.h"
@implementation MyImagePickerDelegate
@synthesize selectedImage;

Figure 13-15 The application’s canvas

(continued)

322 iOS SDK Programming: A Beginner’s Guide

- (void) imagePickerControllerDidCancel:
 (UIImagePickerController *) picker {
 [picker.parentViewController dismissModalViewControllerAnimated:YES];
 [picker release];
}
- (void)imagePickerController:(UIImagePickerController *) picker
 didFinishPickingMediaWithInfo:(NSDictionary *) info {
 self.selectedImage = (UIImage*)[info objectForKey:
 UIImagePickerControllerOriginalImage];
 [picker.parentViewController
 dismissModalViewControllerAnimated: YES];
 [picker release];
}
- (void) dealloc {
 [selectedImage release];
 [super dealloc];
}
@end

8. Open CameraProjectViewController.h and add a forward reference to MyImagePickerDelegate.
Add an IBOutlet for MyImagePickerDelegate, the UIImageView and the takePhoto
UIBarButtonItem (Listing 13-19).

Listing 13-19 CameraProjectViewController.h

#import <UIKit/UIKit.h>
@class MyImagePickerDelegate;
@interface CameraProjectViewController : UIViewController {
 MyImagePickerDelegate * imgPickerDelegate;
 UIImageView * theImageView;
 UIBarButtonItem * theTakePhotoButton;
}
@property (nonatomic, retain) IBOutlet
 MyImagePickerDelegate *imgPickerDelegate;
@property (nonatomic, retain) IBOutlet UIImageView * theImageView;
@property (nonatomic, retain) IBOutlet
 UIBarButtonItem *theTakePhotoButton;
- (IBAction) takePicture: (id) sender;
- (IBAction) selectPicture: (id) sender;
@end

9. Add two IBActions to CameraProjectViewController. Name one action takePicture and the
other selectPicture (Listing 13-19). Implement both methods as shown in Listing 13-20.

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 323

Listing 13-20 CameraProjectViewController.m

#import "CameraProjectViewController.h"
#import "MyImagePickerDelegate.h"
@implementation CameraProjectViewController
@synthesize imgPickerDelegate;
@synthesize theImageView;
@synthesize theTakePhotoButton;
- (void) viewDidLoad {
 [super viewDidLoad];
 // Only enable the button if a camera is actually available
 theTakePhotoButton.enabled = ([UIImagePickerController
 isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera]);
}
- (IBAction) takePicture: (id) sender {
 UIImagePickerController * pickCont =
 [[UIImagePickerController alloc] init];
 pickCont.delegate = imgPickerDelegate;
 pickCont.allowsEditing = YES;
 pickCont.sourceType = UIImagePickerControllerSourceTypeCamera;
 [self presentModalViewController:pickCont animated:YES];
 NSLog(@"heynow");
 if(self.imgPickerDelegate.selectedImage != nil)
 self.theImageView.image = self.imgPickerDelegate.selectedImage;
}

- (IBAction) selectPicture: (id) sender {
 UIImagePickerController * pickCont =
 [[UIImagePickerController alloc] init];
 pickCont.delegate = imgPickerDelegate;
 pickCont.allowsEditing = YES;
 pickCont.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 [self presentModalViewController:pickCont animated:YES];
 NSLog(@"heynow");
 if(self.imgPickerDelegate.selectedImage != nil)
 self.theImageView.image = self.imgPickerDelegate.selectedImage;
 }

- (void)dealloc {
 [theImageView release];
 [imgPickerDelegate release];
 [super dealloc];
}
@end

(continued)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

324 iOS SDK Programming: A Beginner’s Guide

10. Implement the viewDidLoad method in CameraProjectViewController so that we enable
the Take Photo button only when the camera is available (Listing 13-20).

11. Save your changes.

12. Open CameraProjectViewController.xib in Interface Builder.

13. Connect the File’s Owner theImageView outlet to the UIImageView on the canvas.
Connect the File’s Owner theTakePhotoButton IBOutlet to the Take Photo bar item.

14. Connect the selectPicture action to the Select Photo button and the takePicture action to the
Take Photo button.

15. Drag an object from the library to the Document window. Change its type to
MyImagePickerDelegate.

16. Connect the File’s Owner imgPickerDelegate outlet to the newly created object.

17. Save your changes.

18. If you want to use the camera, follow the necessary steps to register and provision the
application so that you can install it on your iPhone. Otherwise, you can use the Select
Photo button and select a photo from the simulator’s photo albums.

19. Run the application. Everything works as expected, except notice that the view’s image is
not set to the image selected by the image picker.

Nothing happens after selecting or taking a photo, unless you click one of the application’s
buttons a second time. The photo previously selected is then displayed (Figure 13-16). What
is supposed to happen is that the theImageView in CameraProjectViewController should
display the newly taken photo. You might have thought that placing the following lines in the
selectPicture method would have worked, but they didn’t.

if(self.imgPickerDelegate.selectedImage != nil)
 self.theImageView.image = self.imgPickerDelegate.selectedImage;

Notice the “heynow” logging added to the delegate’s methods. Immediately after displaying
the image picker, the Debugger Console logs “heynow.” If the logging does not wait for the
image picker to finish, the two lines setting the image don’t wait either, and so the image isn’t
set correctly until the next time you push one of the application’s two buttons.

CameraProjectController must be changed to be notified when a picture is taken so that it
can update its view. There are two ways you might fix the image not displaying. First, you could
add a reference to the CameraProjectViewController in MyImagePickerDelegate, but that isn’t
an ideal solution. Why? Adding a CameraProjectViewController to MyImagePickerDelegate
as a property introduces close coupling between the two classes. You can never again reuse
MyImagePickerDelegate, unless you reuse CameraProjectViewController. Using a notification
would be a better solution.

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 325

Figure 13-16 Running the application in iPhone Simulator and using the provided photo library

326 iOS SDK Programming: A Beginner’s Guide

Try This

Notifications
If you have ever used Java listeners, you already know the general idea behind notifications.
Cocoa’s notifications are similar to Java’s listeners, only easier and more flexible. Every Cocoa
application has a notification center, NSNotificationCenter. Classes in your application can
post notifications, NSNotification, to the notification center. Other classes can register with the
notification center to listen for notifications. Through notifications, classes can communicate
with each other without even knowing about one another’s existence. Although this book
doesn’t present notifications in any detail, in the next few steps, you add a notification to the
CameraProjectViewController.

NOTE
Refer to Apple’s Introduction to Notification Programming Topics for more information
on using notifications.

Using Notifications
1. Reopen CameraProject in Xcode.

2. Modify the imagePickerController:didFinishPickingMediaWithInfo:info: method to post a
notification (Listing 13-21).

Listing 13-21 The didFinishPickingMediaWithInfo modified to post a notification

- (void)imagePickerController:(UIImagePickerController *) picker
 didFinishPickingMediaWithInfo:(NSDictionary *) info {
 self.selectedImage = (UIImage*)[info
 objectForKey:UIImagePickerControllerOriginalImage];
 [[NSNotificationCenter defaultCenter] postNotificationName:
 @"Image Picked" object:nil];
 [picker.parentViewController dismissModalViewControllerAnimated:YES];
 [picker release];
}

3. Add a method called changeImage to CameraProjectViewController (Listing 13-22).

Listing 13-22 The changeImage method

- (void) changeImage {
 NSLog(@"IMAGE CHANGED");
 self.theImageView.image = self.imgPickerDelegate.selectedImage;
}

Chapter 13: Controls—Part Two: Using Pickers and Using the Camera 327

4. Modify viewDidLoad to observe the notification (Listing 13-23). Also, modify dealloc to
unregister the controller as a notification listener.

Listing 13-23 The viewDidLoad method modified to have CameraViewController
observe the notification

-(void) viewDidLoad {
 [super viewDidLoad];
 theTakePhotoButton.enabled =([UIImagePickerController
 isSourceTypeAvailable:
UIImagePickerControllerSourceTypeCamera]);
 [[NSNotificationCenter defaultCenter] addObserver:self selector:
 @selector(changeImage) name:@"ImagePicked" object:nil];
}
-(void) dealloc {
 [super dealloc];
 [theImageView release];
 [imgPickerDelegate release];
 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

5. Save your changes and click Run. Now the application sets the UIImageView’s image as
expected.

NOTE
Notifications worked well in the preceding Try This example, but another way of
achieving the same result would be to use an observer. Refer to Apple’s Introduction to
Notification Programming Topics for more information on using observers.

In the last two tasks, you created an application that uses the UIImagePickerController
to control an iPhone’s camera. You created two buttons, one for taking a photo using the
camera and one for selecting an image from the photo library. If you obtained provisioning
for the application and installed the provisioning on your iPhone, you could install the
application on your iPhone and use the camera (Figure 13-17). Alternatively, you selected
photos from the photo library while running the application on the iPhone Simulator. You
used isSourceTypeAvailable to only enable the Take Photo button when a camera is available.
Depending on the design of your application, rather than disabling a button, it could make
more sense to only display a button for taking a picture if the camera is present.

328 iOS SDK Programming: A Beginner’s Guide

Summary
In this chapter, you used a UIDatePicker, a UIPickerView, and a UIImagePickerController.
A UIDatePicker is for selecting a date and time. You used a UIDatePicker to select a date
and to select a time interval. After the UIDatePicker, you learned about UIPickerViews. A
UIPickerView is for selecting a string value or an object descending from UIView. You used a
UIPickerView with one component and then used one with two components. You then modified
the one-component UIPickerView to display images rather than strings. After examining the
UIDatePicker and UIPickerView controls, you learned about the UIImagePickerController. This
class allows you to select images from an iPhone’s camera, camera roll, or photo album. Only the
third option, selecting from a photo album, works on the iPhone Simulator or earlier iPod Touch
models, as neither has a camera. In this chapter’s final task, you used a UIImagePickerController
to select a photo from the iPhone Simulator’s photo album.

Figure 13-17 Using the camera on an iPhone

329

Chapter 14
Application Settings

330 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Creating a settings bundle

Understanding settings field types

Initializing an application with a settings bundle’s values

You adjust the settings for your iOS device through the Settings application (Figure 14-1).
For instance, you can set your device’s brightness, Wi-Fi settings, and wallpaper settings

using the Settings application. Different applications can also use the Settings application
for setting their own configuration preferences. In this chapter, you learn how to add an
application’s settings to the Settings application.

Figure 14-1 The iOS Settings application

Chapter 14: Application Settings 331

The Settings Application
The Settings application is used for setting both a device’s preferences and preferences for
different applications. When using the Settings application for an application’s preferences, use
it only for an application’s configuration settings and not for settings that change frequently. It
will be much more convenient for your users if they change volatile preferences through the
application’s interface rather than the Settings application.

The Settings Bundle
An application’s preferences are stored in an Extended Markup Language (XML) file called
Root.plist. Root.plist is stored in a bundle called Settings.bundle. A settings bundle is not
automatically added to your project, and so you must add it to your application if you want
to use the Settings application (Figure 14-2). In addition to Root.plist, a settings bundle can

Figure 14-2 Adding a settings bundle

332 iOS SDK Programming: A Beginner’s Guide

Try This

contain any additional .plist files, any images used for sliders, and one or more .lproj files.
Additional .plist files are for any child preference panes your application might require. The
.lproj files are for localized string resources (not covered in this chapter). You can also store
16 × 16 pixel images you might want to use as the minimumImage and maximumImage on a
slider pane in your preference panes.

NOTE
You can also specify an icon for your application in the Settings application. Create
a 29 × 29 pixel Portable Network Graphics (PNG) image and name it Icon-Settings
.png. This file should be placed in your Xcode project’s Resources folder in Groups &
Files.

Creating a Settings Bundle
1. Create a new View-based Application named MySettings.

2. Expand the Resources folder and add a new resource file of type Settings Bundle. Accept
the default name. Select the Resources group as the place to add the Settings.bundle.

3. Expand Settings.bundle and click Root.plist (Figure 14-2). (You may need to display
the Utilities pane and change the type of Settings.bundle to Directory instead of Bundle
in order to see a disclosure triangle next to it so that you can expand it and select Root
.plist.)

4. Click Run. Tap the Home button to end the application, and tap the Settings application’s
icon. The Settings application includes MySettings (Figure 14-3). Tap the arrow, and
Settings displays the MySettings application’s default settings screen (Figure 14-4).

NOTE
To change this example’s title displayed in Settings, change the application’s Bundle
Display Name in the MySettings-Info.plist file (Figure 14-5).

Chapter 14: Application Settings 333

Figure 14-3 Settings application with MySettings

Figure 14-4 MySettings application’s settings (continued)

334 iOS SDK Programming: A Beginner’s Guide

Figure 14-5 Changing the application’s name

Chapter 14: Application Settings 335

Settings Field Types
You add preferences to the settings bundle through Root.plist. The different settings display
differently in the Settings application. Possible values for settings are PSTextFieldSpecifier,
PSTitleValueSpecifier, PSToggleSwitchSpecifier, PSMultiValueSpecifier, PSGroupSpecifier,
and PSChildPaneSpecifier. This section considers each setting in turn.

TIP
We use the word “expand” rather than “disclose” throughout this book. In this chapter,
you will notice you “expand” rows; you don’t “disclose” them. The little arrows, called
Disclosure buttons, when clicked, are said to “disclose” their content.

PSGroupSpecifier
The PSGroupSpecifier groups settings into a group. If you have many settings, consider
using this specifier to group your settings into logical groupings. Table 14-1 summarizes the
PSGroupSpecifier’s settings.

PSTextFieldSpecifier
The PSTextFieldSpecifier is for a preference whose value is a string. Table 14-2 summarizes a
PSTextFieldSpecifier’s settings.

Key Purpose Type Valid Values Required

Type Specifies preference type. String PSGroupSpecifier Yes

Title Specifies the title displayed by
Settings application.

String Any string value Yes

Table 14-1 PSGroupSpecifier Settings

336 iOS SDK Programming: A Beginner’s Guide

Try This Adding a PSTextFieldSpecifier
1. Open MySettings in Xcode. Open Root.plist in the Editor window.

2. Expand PreferenceSpecifiers and delete Item 1, Item 2, and Item 3, leaving just Item 0.

3. Select Item 0 and click the plus sign to its right. It adds a new row (Item 1). Note that this
row is a child of PreferenceSpecifiers.

4. Select Item 1 and change its type to Dictionary.

5. Control-click Item 1, expand it, and select Add Row. A new child row should be added.
Note that this row is a child of Item 1. Add two more new child rows; ensure that they are
children of Item 1. Change each row to match Figure 14-6.

6. Save the .plist file.

7. Click Run. Navigate to Settings and MySettings settings. Click the text field, and your
Simulator should match Figure 14-7.

Key Purpose Type Valid Values Required

Type Specifies preference type. String PSTextFieldSpecifier Yes

Title Specifies the title displayed by
the Settings application.

String Any string value Yes

Key Specifies the preference’s key
used for storage and retrieval.

String Any string value Yes

Default Value Specifies a default value for
the preference.

String Any string value No

IsSecure Specifies if preference should
be treated as password.

Boolean Yes or No No

KeyboardType Specifies type of keyboard to
display when tapped.

String Alphabet,
NumbersAndPunctuation,
NumberPad, URL,
EmailAddress:
default is Alphabet

No

AutoCapitalization
Type

Specifies if autocapitalization
should occur.

String None, Sentences, Words,
AllCharacters; default is
None

No

AutoCorrection
Type

Specifies if spelling should be
automatically corrected.

String Default, Yes, No Default

Table 14-2 PSTextFieldSpecifier Settings

Chapter 14: Application Settings 337

Figure 14-6 Root.plist with PSTextFieldSpecifier

Figure 14-7 Settings reflecting the new setting

338 iOS SDK Programming: A Beginner’s Guide

Try This

PSMultiValueSpecifier
The PSMultiValueSpecifier is for selecting one of many alternative choices. Table 14-3
summarizes the PSMultiValueSpecifier’s settings. Note that you create entries below the
Values and Titles settings for each value and for each title.

Adding a PSMultiValueSpecifier
1. Return to MySettings in Xcode. Open the Root.plist in the editor.

2. Create an Item 2 below PreferenceSpecifiers and ensure its type is Dictionary.

3. Expand Item 2 and add six new child rows.

4. Change the first child row to have Type for the key, String for the type, and
PSMultiValueSpecifier for the value (Figure 14-8).

5. Change the next child row to have Title for the key, String for the type, and Colors for
the value.

6. Change the next child row to have DefaultValue for the key, String for the type, and blue
for the value.

7. Change the next child row to have Key for the key, String for the type, and keyTwo for
the value.

8. Change the next two child rows to have Titles and then Values for the key and Array for the
type.

9. Expand Titles and then add three child rows to it. Do the same for Values (see Figure 14-8).
Assign the three child Titles the values Red, Blue, and Orange. Assign the three child
Values the values red, blue, and orange.

10. Save the .plist file.

11. Click Run. Navigate to the Settings application, and the new setting appears (Figure 14-9).

Table 14-3 PSMultiValueSpecifier Settings

Key Purpose Type Valid Values Required

Type Specifies preference type. String PSMultiValueSpecifier Yes

Title Specifies the title displayed by the
Settings application.

String Any string value Yes

Key Specifies the preference’s key used
for storage and retrieval.

String Any string value Yes

Values Specifies an array of values. Array Array of Key-Value entries Yes

Titles Specifies titles for array of values. Array Array of Key-Value entries Yes

Default
Value

Specifies a default value for the
preference.

Any Any value from the Values array Yes

Chapter 14: Application Settings 339

Figure 14-8 Root.plist with the PSMultiValueSpecifier added

Figure 14-9 Settings reflecting the new setting

340 iOS SDK Programming: A Beginner’s Guide

Try This

PSToggleSwitchSpecifier
The PSToggleSwitchSpecifier is for selecting a Boolean value. The toggle switch displayed
in the Settings application for this specifier is On or Off. Table 14-4 summarizes the
PSToggleSwitchSpecifier’s settings.

Adding a PSToggleSwitchSpecifier
1. Return to Root.plist and add Item 3 below PreferenceSpecifiers (i.e., highlight Item 2 and

click the plus sign on the right). Change the new item’s type to Dictionary.

2. Expand Item 3 and add six new child rows. Change the first child row to have a Type for
key, String for type, and PSToggleSwitchSpecifier for value. Change the second child row to
have Title for key, String for type, and Use Colors? for the value. Change the third child row
to have Key for key, String for type, and keyThree for value. Change the fourth child row
to have TrueValue for key, String for type, and YES for value. Change the fifth child row to
have FalseValue for key, String for type, and NO for value. Finally, change the sixth child
row to have DefaultValue for key, String for type, and NO for value (Figure 14-10).

3. Save the .plist file.

4. Click Run. Navigate to Settings, and the new value appears (Figure 14-11).

NOTE
Notice we keep stating to “save the .plist file” as its own step. The reason for this is that
Run does not automatically save the .plist file.

Table 14-4 PSToggleSwitchSpecifier Settings

Key Purpose Type Valid Values Required

Type Specifies preference type. String PSToggleSwitchSpecifier Yes

Title Specifies the title displayed by
the Settings application.

String Any string value Yes

Key Specifies the preference’s key
used for storage and retrieval.

String Any string value Yes

TrueValue The value for on. Any Any scaler type, including
Boolean, String, Number,
or Data. Default is Boolean

No

FalseValue The value for off. Any Any scaler type, including
Boolean, String, Number,
or Data. Default is Boolean

No

DefaultValue Specifies a default value for the
preference.

Any String value from TrueValue or
FalseValue

Yes

Chapter 14: Application Settings 341

Figure 14-10 Root.plist with the PSToggleSwitchSpecifier added

Figure 14-11 Settings reflecting the new setting

342 iOS SDK Programming: A Beginner’s Guide

Try This

PSSliderSpecifier
The PSSliderSpecifier is for selecting a value from a range of values. Table 14-5 summarizes
PSSliderSpecifier’s settings.

Adding a PSSliderSpecifier
1. Return to Root.plist and add a new item below Item 3.

2. Change the newly added item to a Dictionary type. Expand the new Item 4 and add two
child rows below it.

3. Assign the first child item’s key to Type, type to String, and value to PSGroupSpecifier.

4. Assign the second child item’s key to Title, type to String, and value to Intensity.

5. Close Item 4 and add another item after it. Change the new Item 5’s type to Dictionary.
Expand the newly added item and add six child rows.

6. Change the first child row’s key to Type, type to String, and value to PSSliderSpecifier.
Change the third child row’s key to Key, type to String, and value to keyFour. Change the
fourth child row’s key to DefaultValue, type to Number, and value to 5. Change the fifth
child row’s key to MinimumValue, type to Number, and value to 0. Change the sixth child
row’s key to MaximumValue, type to Number, and value to 10. Figure 14-12 shows Root.
plist after making the changes.

7. Save the .plist file.

8. Click Run, and the changes appear in the Settings application (Figure 14-13).

Table 14-5 PSSliderSpecifier Settings

Key Purpose Type Valid Values Required

Type Specifies preference type String PSSliderSpecifier Yes

Key Specifies the preference’s key
used for storage and retrieval

String Any string value Yes

DefaultValue Specifies a default value for the
preference

Real Any number between
minimum and
maximum values

Yes

MinimumValue Minimum value for slider Real Any number Yes

MaximumValue Maximum value for slider Real Any number Yes

MinimumValueImage Path to image (21 × 21 pixels) String Valid path No

MaximumValueImage Path to image (21 × 21) pixels String Valid path No

Chapter 14: Application Settings 343

Figure 14-12 Root.plist with the PSSliderSpecifier added

Figure 14-13 Settings reflects the new setting

344 iOS SDK Programming: A Beginner’s Guide

Try This

PSChildPaneSpecifier
The PSChildPaneSpecifier is for specifying a child pane in the Settings application. You define
the settings in this pane in a separate .plist file. Table 14-6 summarizes PSChildSpecifier’s
settings.

Adding a PSChildPaneSpecifier
1. Return to Root.plist and add Item 6. Change its type to Dictionary. Expand and add three

child rows.

2. Change the first child row’s key to Type, type to String, and value to PSChildPaneSpecifier.
Change the second child row’s key to Title, type to String, and value to Shade. Change the
third child row’s key to File, type to String, and value to Shades (Figure 14-14).

Table 14-6 PSChildPaneSpecifier Settings

Key Purpose Type Valid Values Required

Type Specifies preference type. String PSChildPaneSpecifier Yes

Title Specifies the title displayed by the Settings
application.

String Any string value Yes

File Specifies the file used for the child pane. String The .plist file name without
the extension

Yes

Figure 14-14 Root.plist with the PSChildPaneSpecifier added

Chapter 14: Application Settings 345

Figure 14-15 Creating a new property list

(continued)

3. Save.

4. Create a new property list (Figure 14-15). Name the file Shades.

5. Open Shades.plist in the editor and add one row. Change the row’s key to Title, type to
String, and value to Shades (Figure 14-16).

6. Save.

7. Click Build And Go. The change is reflected in the Settings application (Figure 14-17).

Figure 14-16 The Shades.plist settings

346 iOS SDK Programming: A Beginner’s Guide

Reading Settings Using NSUserDefaults
You use the NSUserDefaults class to access the defaults system. The defaults for an application
are loaded at startup time and cached. You access these values using the NSUserDefaults class’s
methods. Methods for obtaining values include arrayForKey:, boolForKey:, dataForKey:,
dictionaryForKey:, floatForKey:, integerForKey:, objectForKey:, stringArrayForKey:, and
stringForKey:. For instance, to obtain a string value from a key holding a string, you use the
stringForKey: method.

NSString* value = [[[NSUserDefaults standardUserDefaults]
stringForKey:@"myKey"] retain];

Figure 14-17 Application’s settings pane shows the new subpane

Chapter 14: Application Settings 347

Try This Reading the Settings Bundle
1. Open MySettingsAppDelegate.m and modify applicationDidFinishLaunchingWithOptions:

to log the application’s settings (Listing 14-1). Notice that you also initialize the application’s
settings.

Listing 14-1 The applicationDidFinishLaunchingWithOptions method in
MySettingsAppDelegate

(BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 NSString *testValue = [[NSUserDefaults standardUserDefaults]
 stringForKey:@"keyOne"];
 if (testValue == nil) {
 NSDictionary *appDefaults =
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"keyOneValue", @"keyOne",@"keyTwoValue",
 @"keyTwo",@"0", @"keyThree", @"keyFourValue",
 @"keyFour", nil];
 [[NSUserDefaults standardUserDefaults]
 registerDefaults: appDefaults];
 [[NSUserDefaults standardUserDefaults] synchronize];
 }
 NSUserDefaults * defaults = [NSUserDefaults standardUserDefaults];
 NSLog(@"%@",[defaults stringForKey:@"keyOne"]);
 NSLog(@"%@",[defaults stringForKey:@"keyTwo"]);
 NSLog(@"%@",[defaults stringForKey:@"keyThree"]);
 NSLog(@"%@",[defaults stringForKey:@"keyFour"]);
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
 return YES;
}

2. Click Run. The Debugger Console logs the default values (Listing 14-2).

Listing 14-2 Debugger Console logging settings

2010-09-11 00:53:00.407 MySettings[12014:207] keyOneValue
2010-09-11 00:53:00.409 MySettings[12014:207] keyTwoValue
2010-09-11 00:53:00.410 MySettings[12014:207] 0
2010-09-11 00:53:00.410 MySettings[12014:207] keyFourValue

(continued)

348 iOS SDK Programming: A Beginner’s Guide

3. Tap the Home button and navigate to the Settings application. Change MySetting’s values.
Exit the Settings application. Terminate the iPhone Simulator.

4. Click Run again, and this time, the values you changed in the Settings application should
appear in the Debugger Console.

Notice the console does not log the text value represented by keyOne. This is because you
did not specify a default value. If you navigate to the Settings application, add a value for the text
field, and then exit Settings, the next time you start the application, keyOne will log a value.

Although not well documented, in Apple’s AppSettings sample application, code is
provided that handles uninitialized preferences. Listing 14-1 uses the sample application’s
logic to first check if the first setting was set. If not, it creates default settings for the user
settings values. Note that it doesn’t save these values, though. Until a user actually goes into
the Settings application and changes the settings, the MySettings application’s user preferences
will always default to the values set in the applicationDidFinishLaunching: method.

Changed Settings While Suspended
Prior to iOS 4, when the user pressed the Home button to leave your application, your application
was terminated and unloaded from memory. If that user went to the Settings and changed your
application’s settings, you would notice the change when loading settings NSUserDefaults in
applicationDidFinishLaunchingWithOptions the next time your application launched. However,
any new applications that are built for iOS 4 now default to supporting a limited version of
multitasking. When the user presses the Home button, your application is initially only suspended.
If they launch your application again, iOS just resumes it where it left off. If the user changed your
settings while it was suspended, you will need to notice the change.

Fortunately, there is an easy way to watch for new settings. When your settings are changed,
iOS will send your application a NSUserDefaultsDidChangeNotification. Register for this
notification when your application initially launches and you’ll be able to react to any settings
changes that might occur while your application is running.

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:selector(settingsHaveChanged)
 name: NSUserDefaultsDidChangeNotification object:nil]

When your settingsHaveChanged method is called, call [notification object] to get the
NSUserDefaults object.

Summary
It is important to remember that application settings are for preferences that will not change
often. For instance, a user’s username, password, and e-mail address are not likely to change
often. An application’s preferences are set up using the Root.plist and zero or more plists for
child panes. Users modify an application’s preferences through the Settings application. The
application can access its preferences through the NSUserDefault class.

349

Chapter 15
Property Lists
and Archiving

350 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Understanding the iOS directory structure

Persisting a collection as a property list

Archiving an object hierarchy

In this chapter, you learn how to persist your data to a file using properties and then how to
persist your data using archiving. However, before learning about these two topics, you briefly
explore the iOS’s file system.

An iOS Application’s Directory Structure
Persisting and archiving require writing data to a file, but an iOS application can only read and
write to files in the application’s sandbox. When installed, an application is placed in its own
home directory. This directory is the application’s root directory and should be left untouched,
lest you risk corrupting your application. Under the application’s home directory are the
directories you may write to. These directories are the Documents, Preferences, Caches, and
tmp directories.

<application home directory>/Documents
<application home directory>/Library/Preferences
<application home directory>/Library/Caches
<application home directory>/tmp

The Documents directory is where you should write your application’s data files. The
Preferences directory is where your application’s preferences are stored. These are the preferences
set through the iOS’s Settings application, using the NSUserDefaults class, not preferences you
might create programmatically. The Caches directory, like the Documents directory, is another
location you can persist files to, although, as the name implies, this directory should be reserved
for caching data rather than storing an application’s files. The tmp directory is a temporary
directory for writing files that do not need to be persisted between application launches. Your
application should remove files from this directory when not needed and iOS also removes files
from this folder when an application is not running.

Directories
You will mostly read and write from two directories: the Documents directory and the tmp
directory. Files you want to persist between application launches should go in the Documents
directory. These files are also backed up by iTunes when an iPhone, iPod touch, or iPad is
synchronized with a user’s computer. Files placed in the tmp folder are temporary and should
be deleted when an application terminates. If the application does not clean the folder, iOS
might delete them depending on when space is needed on your device. You should never

Chapter 15: Property Lists and Archiving 351

hard-code a path in your code to either folder. When using the Documents folder, you should
use the NSHomeDirectory method combined with the NSSearchPathForDirectoriesInDomain
method. When obtaining the tmp directory, you should use the NSTemporaryDirectory method.

NSHomeDirectory
The NSHomeDirectory is how you should obtain an application’s root directory.

NSString * NSHomeDirectory (void);

Obtain the path to your Documents directory using the NSHomeDirectory. By itself, this
method isn’t very useful, as you usually want to obtain the Documents directory.

NSSearchPathForDirectoriesInDomains
Obtain the path to your application’s Documents directory using the NSSearchPathFor
DirectoriesInDomains.

NSArray * NSSearchPathForDirectoriesInDomains (
 NSSearchPathDirectory directory,
NSSearchPathDomainMask domainMask, BOOL expandTilde);

The method takes three parameters: the directory to begin the search, the search path
domain mask, and a flag indicating if tildes should be converted to actual paths. The method
returns an array of paths. Although on a desktop or laptop there might be multiple elements
in the array, on an iOS device, there will only be one result in the array. The following code
illustrates how to obtain an application’s Documents directory on an iOS device:

NSArray * myPaths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
NSString * myDocPath = [myPaths objectAtIndex:0];

Values you might use for the directory parameter on an iOS device include
NSDocumentDirectory, NSApplicationDirectory, NSCachesDirectory, and
NSApplicationSupportDirectory.

NSTemporaryDirectory
The NSTemporaryDirectory method returns the path to your application’s tmp directory.

NSString * NSTemporaryDirectory (void);

Unlike the NSHomeDirectory method, the NSTemporaryDirectory method is useful by
itself, as it is the most direct way to obtain a path to your application’s tmp directory.

Property Lists
The easiest way to save your application’s preferences if you’re managing them within your
application is using a property list. If an object can be serialized, you can persist it to a file using
a path or URL. You can also reconstitute the object by reading it from the file.

352 iOS SDK Programming: A Beginner’s Guide

Try This

It is worth noting that only objects can be serialized. A common source of frustration is
trying to serialize a primitive int. Since primitive data types are not serializable, they need to
be converted to NSObjects (e.g., int to NSNumber).

Simple Serialization
The NSDictionary, NSArray, NSString, NSNumber, and NSData classes, and their mutable
equivalents, can all be saved as a property list using the writeToFile: or writeToURL: method.

-(BOOL)writeToFile:(NSString *) path atomically:(BOOL)flag
-(BOOL)writeToURL:(NSURL *) aURL atomically:(BOOL)flag

The first parameter is the path, or URL, to save the file as. The second parameter is a
flag indicating if the file should first be saved to an auxiliary file. If the flag is YES, the data
is written to an auxiliary file that is then renamed to the file indicated by the path or URL.
Writing to an auxiliary file prevents the file system from becoming corrupt should writing
the file fail midstream.

NOTE
You can refer to the NSDictionary, NSArray, NSString, NSNumber, or NSData classes,
or one of their mutable equivalents, as a property list object. So you could say “the
property list objects all contain . . .” rather than naming each property list object
individually.

Reading a property list back into the object uses the initWithContentsOfFile: or
initWithContentsOfURL: method.

-(id)initWithContentsOfFile:(NSString *)path
-(id)initWithContentsOfURL:(NSURL *)aURL

The initWithContentsOfFile: method takes a path to the property file, while the
initWithContentsOfURL: takes a URL. Both return an id.

Preserving an NSArray
1. Create a new View-based Application named SimpleArray.

2. Open SimpleArrayAppDelegate.m and modify applicationDidFinishLaunching
WithOptions to match Listing 15-1.

3. Click Run (Listing 15-2).

4. After running the application, navigate to properties.plist in the file system and open it
using TextEdit (Listing 15-3).

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 15: Property Lists and Archiving 353

Listing 15-1 The applicationDidFinishLaunching method in
SimpleArrayAppDelegate.m

(BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 NSMutableArray * dataArray = [[NSMutableArray alloc]
 initWithObjects: @"First", @"Second", @"Third", nil];
 NSString * path = [(NSString *) [NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES) objectAtIndex:0]
 stringByAppendingPathComponent:@"properties.plist"];
 [dataArray writeToFile:path atomically:YES];
 NSArray * dataArray2 = [[NSArray alloc] initWithContentsOfFile:path];
 NSLog(@"objects: %@, %@, %@",
 [dataArray2 objectAtIndex:0], [dataArray2 objectAtIndex:1],
 [dataArray2 objectAtIndex:2]);
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
 [dataArray release];
 [dataArray2 release];
}

Listing 15-2 Logging to the Debugger Console

2010-09-11 11:17:41.591 SimpleArray[14500:207] objects: First, Second,
Third

Listing 15-3 The properties.plist file is saved as XML.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
<string>First</string>
<string>Second</string>
<string>Third</string>
</array>
</plist>

354 iOS SDK Programming: A Beginner’s Guide

The application first gets a path to its Documents directory and adds the filename to the
path. After creating the path, the application persists the array to a file. Immediately after
persisting the file, it creates a new array from the file’s content and logs the array’s values to
the Debugger Console.

One thing interesting to note is that the application persists the array in an XML format.
If you wished, you could easily modify the data in any text editor. You could also persist the
application to a URL, and since it is XML with a published document type definition (DTD),
you could process the file with almost any back-end programming language that had libraries
for parsing XML and DTD files. However, note that the writeToURL:atomically: method is
synchronous and your application will halt processing until the data is successfully written
to the URL, so you are better off using the NSURLConnection class so that your application
doesn’t appear to freeze up until all of the data has been written.

NSPropertyListSerialization
Using the writeToFile: method to save a property list object as a simple property list is usually
sufficient, but another way you can persist a property list object to a property list is by using
the NSPropertyListSerialization class.

Serializing
To serialize a property list object, use the dataFromPropertyList:format:errorDescription: method.

+(NSData *)dataFromPropertyList:(id)plist format:
(NSPropertyListFormat *)format
errorDescription:(NSString **) errorString

This method’s first parameter is an id that references the property list data and must
be a property list object. Note that the dataFromPropertyList:format:errorDescription:
method doesn’t open and read a file’s content; you must first obtain the data using the
initWithContentsOfFile: or initWithContentsOfURL: method. The method’s second
parameter is the property list’s desired format. This parameter is one of the valid
NSPropertyListFormat types: NSPropertyListOpenStepFormat, NSPropertyListXMLFormat_
v1_0, or NSPropertyListBinaryFormat_v1_0. The method’s final parameter is a string to
place an error description should something fail. Note, you must release this string should
an error occur. The method returns an NSData object. You can then write this object to disk,
using the writeToFile: or writeToURL: method.

Deserializing
To deserialize a property list, use the propertyListFromData:mutabilityOption:format:
errorDescription: method.

+ (id)propertyListFromData:(NSData *)data
 mutabilityOption: (NSPropertyListMutabilityOptions) opt
 format: (NSPropertyListFormat *)format
 errorDescription:(NSString **) errorString

Chapter 15: Property Lists and Archiving 355

Try This

This method’s first parameter is the data to deserialize. The method’s second parameter
indicates if the properties should be immutable or mutable. The method’s third parameter indicates
the format to make the property list, and the fourth parameter is the error description. Valid values
for the second parameter are NSPropertyListImmutable, NSPropertyListMutableContainers,
and NSPropertyListMutableContainersAndLeaves. Valid values for the third parameter are
NSPropertyListOpenStepFormat, NSPropertyListXMLFormat_v1_0, and NSPropertyListBinary
Format_v1_0. Note that as with the dataFromPropertyList: method, should something fail, you
must release the NSString holding the error description.

NOTE
Do not take this task’s more complex data structure as implying you cannot use a
property list object’s writeToFile: or writeToURL: method to persist complex data
structures. You can, provided all items in a data structure are a property list object. For
instance, if an NSArray’s elements each contained an NSDictionary, you could serialize
the entire data structure at once by writing the NSArray to a file.

Preserving to an XML Property List
1. Create a new View-based Application named Properties.

2. Open PropertiesAppDelegate.m and modify the applicationDidFinishLaunching
WithOptions method (Listing 15-4).

3. Click Build And Go.

Listing 15-4 The PropertiesAppDelegate’s applicationDidFinishLaunchingWithOptions
method

- (BOOL)application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 NSString * errorDescription;

 NSString *pathToFile = [[NSSearchPathForDirectoriesInDomains

 (NSDocumentDirectory, NSUserDomainMask,YES) objectAtIndex:0]

 stringByAppendingPathComponent:@"properties.plist"];

 NSData * myData;

 NSLog(@"%@", pathToFile);

 if ([[NSFileManager defaultManager] fileExistsAtPath:pathToFile] == NO) {

 NSMutableDictionary * dict2Serialize =

 [[[NSMutableDictionary alloc] init] autorelease];

356 iOS SDK Programming: A Beginner’s Guide

 NSString * name = @"James";

 NSArray * kids = [NSArray arrayWithObjects:

 @"Nicolas", @"Juliana", nil];

 NSNumber * age = [NSNumber numberWithInt:40];

 [dict2Serialize setObject:name forKey:@"name"];

 [dict2Serialize setObject:kids forKey:@"kids"];

 [dict2Serialize setObject:age forKey:@"age"];

 myData = [NSPropertyListSerialization dataFromPropertyList:(id)

 dict2Serialize format:NSPropertyListXMLFormat_v1_0

 errorDescription:&errorDescription];

 if (myData)

 [myData writeToFile:pathToFile atomically:YES];

 else {

 NSLog(@"Error writing to myData, error: %@", errorDescription);

 [errorDescription release];

 }

 }

 else {

 NSLog(@"property file exists....");

 NSPropertyListFormat format;

 NSData * plistData = [NSData dataWithContentsOfFile:pathToFile];

 NSDictionary * props = (NSDictionary *)[NSPropertyListSerialization

 propertyListFromData:plistData

 mutabilityOption:NSPropertyListImmutable

 format: &format errorDescription: &errorDescription];

 if (props) {

 NSLog(@"name: %@", [props objectForKey:@"name"]);

 NSLog(@"age: %i",

 [(NSNumber *)[props objectForKey:@"age"] intValue]);

 NSLog(@"kid: %@", (NSString *)[(NSArray *)

 [props objectForKey:@"kids"] objectAtIndex:0]);

 NSLog(@"kid: %@", (NSString *)[(NSArray *)

 [props objectForKey:@"kids"] objectAtIndex:1]);

 } else {

 NSLog(@"Error reading properties, error: %@", errorDescription);

 [errorDescription release];

 }

 }

 [window addSubview:viewController.view];

 [window makeKeyAndVisible];

 return YES;

}

Chapter 15: Property Lists and Archiving 357

The first time you run the application, the debugger output will contain only a path. The
second time, however, the application logs the property list contents to the Debugger Console.
Notice that rather than writing the NSDictionary directly to disk, you first transformed it into
an NSData object representing the property list. Had this first step of converting to XML gone
awry, you would have the error description informing you (hopefully) where the problem
occurred. This error handling is not provided using the NSMutableDictionary’s writeToFile:
method. After converting to a property list, you then persisted it using the NSData’s writeToFile
method. Listing 15-5 lists the file’s XML content. Upon running the application a second time,
you read the property list as an NSData object and converted it to an NSDictionary. To prove
that the data was in fact reconstituted correctly, you logged the output to the Debugger Console
(Listing 15-6).

Listing 15-5 The application’s plist saved as XML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www
.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>age</key>
<integer>40</integer>
<key>kids</key>
<array>
<string>Nicolas</string>
<string>Juliana</string>
</array>
<key>name</key>
<string>James</string>
</dict> </plist>

Listing 15-6 The application’s Debugger Console logging

2010-09-11 11:35:07.918 Properties[14672:207] /Users/bward/Library/
Application Support/iPhone Simulator/4.1/Applications/3D6D7BC3-8957-
4F2A-977B-6016E86F28C4/Documents/properties.plist
2010-09-11 11:35:07.920 Properties[14672:207] property file exists....
2010-09-11 11:35:07.922 Properties[14672:207] name: James
2010-09-11 11:35:07.922 Properties[14672:207] age: 40
2010-09-11 11:35:07.924 Properties[14672:207] kid: Nicolas
2010-09-11 11:35:07.925 Properties[14672:207] kid: Juliana

358 iOS SDK Programming: A Beginner’s Guide

Archiving
You can only serialize and deserialize property list objects. Moreover, all of a property list
object’s constituent objects must also be property list objects. This limitation hinders the
usefulness of property lists. Therefore, rather than using a property list, you can use archiving.
Archiving is a more flexible approach to persisting an object than a property list.

You create an archive using an NSKeyedArchiver. This class persists any object that
adopts the NSCoding protocol. You reconstitute an object by using NSKeyedArchiver’s
complement, the NSKeyedUnarchiver class. In this section, you learn how to create a class
that adopts the NSCoding protocol. You then learn how to archive and unarchive this class.

Protocols to Adopt
Archiving a class requires that a class adopt the NSCoding protocol. The class should also
adopt the NSCopying protocol if you’re creating a class that adopts the NSCoding protocol.

NSCoding
Classes that adopt this protocol must implement the encodeWithCoder: and initWithCoder:
methods. The encodeWithCoder: method encodes the object and the object’s instance variables
so that they can be archived.

-(void)encodeWithCoder:(NSCoder *)encoder

The initWithCoder: method decodes the object and the object’s instance variables.

-(id)initWithCoder:(NSCoder *)decoder

You use both methods in the example task that follows.

NSCopying
When implementing the NSCoding protocol, best practices dictate that you also implement
the NSCopying protocol. Classes that implement the NSCopying protocol must implement
the copyWithZone method. Remember, when you set one object to another, you are merely
creating another reference to the same underlying physical object. For instance, in the
following code, both A and B are pointing to the same Foo that was originally allocated and
initialized by A.

Foo * A = [[Foo alloc] init];
Foo * B = A;

When you copy an object, you obtain a distinct physical object, as if the object obtaining
the copy actually allocated and initialized the object.

Foo * A = [[Foo alloc] init];
Foo * B = [A copy];

Chapter 15: Property Lists and Archiving 359

The method that allows copying is the copyWithZone: method.

-(id)copyWithZone:(NSZone *)zone

You can use either this method or NSObject’s copy method to obtain what is called a
“deep copy” of an object. For more information, refer to Apple’s “Memory Management
Programming Guide for Cocoa,” available online.

NOTE
This chapter only discusses NSCopying briefly, as it is not used in this chapter. It is
included because best practices dictate that if a class implements the NSCoding protocol
for archiving, it must also implement the NSCopying protocol.

NSKeyedArchiver and NSKeyedUnarchiver
The NSKeyedArchiver class archives objects, while the NSKeyedUnarchiver class unarchives
objects.

NSKeyedArchiver
NSKeyedArchiver stores one or more objects to an archive using the initForWritingWith
MutableData method. To be archived, an object must implement the NSCoding protocol.

-(id)initForWritingWithMutableData:(NSMutableData *)data

This method takes a writable data object and returns the archived object as an id. You can then
write the archive to disk.

The steps for creating and writing an archive to disk are as follows. First, create an
NSMutableData object.

NSMutableData * theData = [NSMutableData data];

After creating the data object, create an NSKeyedArchiver, passing the newly created data
object as a parameter.

NSKeyedArchiver * archiver = [[NSKeyedArchiver alloc]
 initForWritingWithMutableData:theData];

After initializing the NSKeyedArchiver, encode the objects to archive. If you wish, you
can encode multiple objects using the same archiver, provided all archived objects adopt the
NSCoding protocol. The following code snippet illustrates:

[archiver encodeObject:objectA forKey:@"a"];
[archiver encodeObject:objectB forKey:@"b"];
[archiver encodeObject:objectC forKey:@"c"];
[archiver finishEncoding];

360 iOS SDK Programming: A Beginner’s Guide

Try This

After archiving, write the data object, which now contains the archived objects, to a file.

[theData writeToFile:"myfile.archive" atomically:YES]

NSKeyedUnarchiver
You use NSKeyedUnarchiver to unarchive an archive. NSKeyedUnarchiver reconstitutes
one or more objects from a data object that was initialized with an archive. To be unarchived,
an object must implement the NSCoding protocol. When programming for iOS, you use the
initForReadingWithData: method.

-(id)initForReadingWithData:(NSData *)data

The steps to unarchive are similar to archiving. First, create an NSData object from the
previously archived file.

NSData * theData =[NSData dataWithContentsOfFile:"myfile.archive"];

After creating the data object, create and initialize an NSKeyedUnarchiver instance.

NSKeyedUnarchiver * uarchiver = [[NSKeyedUnarchiver alloc] initForRead
ingWithData:theData];

After initializing the NSKeyedUnarchiver, unarchive the objects previously archived.

A * objA = [[unarchiver decodeObjectForKey:@"a"] retain];
B * objB = [[unarchiver decodeObjectForKey:@"b"] retain];
C * objC = [[unarchiver decodeObjectForKey:@"c"] retain];
[unarchiver finishDecoding];
[unarchiver release];

Archiving and Unarchiving an Object
1. Create a new View-based Application called Encoding.

2. Create a new Objective-C class called Foo.

3. Add two properties to Foo. Make one property an NSString and name it “name” and make
the other property an NSNumber and name it “age.”

4. Have Foo adopt the NSCopying and NSCoding protocols (Listings 15-7 and 15-8).
Remember, Foo must get deep copies of name and age.

5. Modify Foo so that it implements the encodeWithCoder:, initWithCoder:, and
copyWithZone: methods.

Chapter 15: Property Lists and Archiving 361

6. Add Foo as a property to EncodingAppDelegate (Listings 15-9 and 15-10).

7. Implement the applicationWillTerminate: method and modify the applicationDidFinish
LaunchingWithOptions: method to decode and encode Foo.

8. If you’re building for SDK 4.0 or later, then iOS will suspend rather than terminate
your application, so the applicationWillTerminate will never be called. Edit Encoding-
Info.plist in Resources and add another value to the end of the plist with key
UIApplicationExitsOnSuspend, type Boolean and value YES. (Later we’ll talk about using
archiving to save your application’s state on suspension, so that it can resume where it left
off whether iOS terminates it or only suspends it.)

9. Click Run and the debugging log will indicate that it’s the first pass through. Stop
execution and then Run again and the debugging log will indicate that you’ve unarchived
the Foo object.

Listing 15-7 Foo.h

#import <Foundation/Foundation.h>
@interface Foo : NSObject <NSCoding, NSCopying> {
 NSString * name;
 NSNumber * age;
}
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSNumber * age;
@end

Listing 15-8 Foo.m

#import "Foo.h"
@implementation Foo
@synthesize name;
@synthesize age;
-(id) copyWithZone: (NSZone *) zone {
 Foo * aFoo = [[Foo allocWithZone:zone] init];
 aFoo.name = [NSString stringWithString: self.name];
 aFoo.age = [NSNumber numberWithInt:[self.age intValue]];
 return aFoo;
}
-(void) encodeWithCoder: (NSCoder *) coder {
 [coder encodeObject: name forKey: @"name"];
 [coder encodeObject:age forKey: @"age"];
}

362 iOS SDK Programming: A Beginner’s Guide

-(id) initWithCoder: (NSCoder *) coder {
 self = [super init];
 name = [[coder decodeObjectForKey:@"name"] retain];
 age = [[coder decodeObjectForKey:@"age"] retain];
 return self;
}
-(void) dealloc {
 [name release];
 [age release];
 [super dealloc];
}
@end

Listing 15-9 EncodingAppDelegate.h

#import <UIKit/UIKit.h>
@class Foo;
@class EncodingViewController;
@interface EncodingAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 EncodingViewController *viewController;
 Foo * myFoo;
}
@property (nonatomic, retain) Foo * myFoo;
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet EncodingViewController
*viewController;
@end

Listing 15-10 EncodingAppDelegate.m

#import "EncodingAppDelegate.h"
#import "EncodingViewController.h"
#import "Foo.h"
@implementation EncodingAppDelegate
@synthesize window;
@synthesize viewController;
@synthesize myFoo;
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

Chapter 15: Property Lists and Archiving 363

 NSString *pathToFile = [[NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask,YES) objectAtIndex:0]
 stringByAppendingPathComponent:@"foo.archive"];
 NSLog(@"%@",pathToFile);
 NSData * theData =[NSData dataWithContentsOfFile:pathToFile];
 if([theData length] > 0) {
 NSKeyedUnarchiver * archiver = [[[NSKeyedUnarchiver alloc]
 initForReadingWithData:theData] autorelease];
 myFoo = [archiver decodeObjectForKey:@"myfoo"];
 [archiver finishDecoding];
 NSLog(@"nth run - name: %@ age: %i", myFoo.name,
 [myFoo.age intValue]);
 }
 else {
 NSLog(@"first run: no name or age");
 myFoo =[[Foo alloc] init];
 myFoo.name = @"James";
 myFoo.age = [NSNumber numberWithInt:40];
 }
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
 return YES;
}
-(void) applicationWillTerminate: (UIApplication *) application {
 NSString *pathToFile = [[NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask,YES) objectAtIndex:0]
 stringByAppendingPathComponent:@"foo.archive"];
 NSMutableData * theData = [NSMutableData data];
 NSKeyedArchiver * archiver = [[[NSKeyedArchiver alloc]
 initForWritingWithMutableData:theData] autorelease];
 [archiver encodeObject:self.myFoo forKey:@"myfoo"];
 [archiver finishEncoding];
 if([theData writeToFile:pathToFile atomically:YES] == NO)
 NSLog(@"writing failed....");
}
-(void)dealloc {
 [myFoo release];
 [viewController release];
 [foo release];
 [window release];
 [super dealloc];
}
 @end

364 iOS SDK Programming: A Beginner’s Guide

Try This Archiving and Unarchiving an Object
Hierarchy

1. Open the previous application, Encoding, in Xcode.

2. Create a new Objective-C class and name it Bar. Have it adopt the NSCoding and
NSCopying protocols (Listings 15-11 and 15-12).

3. Add an NSMutableArray as a property in Bar.

4. Override init to add a couple of Foo objects to the array (Listing 15-13).

5. Implement the initWithCoder:, encodeWithCoder:, and copyWithZone: methods
(Listing 15-14).

6. Add Bar as a property to EncodingAppDelegate. Remember, you must have a forward
reference to the class, since you are adding it as a property to the header, and then import
the Bar class and synthesize the property in the implementation.

7. Modify EncodingAppDelegate’s applicationDidFinishLaunchingWithOptions: and
applicationWillTerminate: methods to include the newly created Bar property.

8. Note that we changed the name of the archive file to foo2.archive to avoid conflicting with
the previous task.

9. Click Run.

Listing 15-11 Bar.h

#import <Foundation/Foundation.h>
#import "Foo.h"
@interface Bar : NSObject <NSCoding, NSCopying> {
 NSMutableArray * foos;
}
@property (nonatomic, retain) NSMutableArray * foos;
@end

Listing 15-12 Bar.m

#import "Bar.h"
@implementation Bar
@synthesize foos;

Chapter 15: Property Lists and Archiving 365

-(id) init {
 if([super init] == nil)
 return nil;
 Foo * foo1 = [[Foo alloc] init];
 foo1.name = @"Juliana";
 foo1.age = [NSNumber numberWithInt:7];
 Foo * foo2 = [[Foo alloc] init];
 foo2.name = @"Nicolas";
 foo2.age = [NSNumber numberWithInt:3];
 foos = [[NSMutableArray alloc] initWithObjects:foo1, foo2, nil];
 return self;
}
-(void) encodeWithCoder: (NSCoder *) coder {
 [coder encodeObject: foos forKey:@"foos"];
}
-(id) initWithCoder: (NSCoder *) coder {
 self = [super init];
 foos = [[coder decodeObjectForKey:@"foos"] retain];
 return self;
}
-(id) copyWithZone: (NSZone *) zone {
 Bar * aBar = [[Bar allocWithZone:zone] init];
 NSMutableArray *newArray = [[[NSMutableArray alloc] initWithArray:
 self.foos copyItems:YES] autorelease];
 aBar.foos = newArray;
 return aBar;
}
– (void) dealloc {
 [foos release];
 [super dealloc];
}
@end

Listing 15-13 EncodingAppDelegate.h

#import <UIKit/UIKit.h>
@class Bar
@class Foo;
@class EncodingViewController;
@interface EncodingAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 EncodingViewController *viewController;
 Foo * myFoo;
 Bar * myBar;
}

366 iOS SDK Programming: A Beginner’s Guide

@property (nonatomic, retain) Foo * myFoo;
@property (nonatomic, retain) Bar * myBar;
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet EncodingViewController
*viewController;
@end

Listing 15-14 EncodingAppDelegate.m

#import "EncodingAppDelegate.h"
#import "EncodingViewController.h"
#import "Foo.h"
#import "Bar.h"
@implementation EncodingAppDelegate
@synthesize window;
@synthesize viewController;
@synthesize myFoo;
@synthesize myBar;
-(void)applicationDidFinishLaunching:(UIApplication *)application {
 NSString *pathToFile = [[NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask,YES) objectAtIndex:0]
 stringByAppendingPathComponent:@"foo2.archive"];
 NSLog(@"%@", pathToFile);
 NSData * theData =[NSData dataWithContentsOfFile:pathToFile];
 if([theData length] > 0) {
 NSKeyedUnarchiver * archiver = [[[NSKeyedUnarchiver alloc]
 initForReadingWithData:theData] autorelease];
 myFoo = [archiver decodeObjectForKey:@"myfoo"];
 myBar = [archiver decodeObjectForKey:@"mybar"];
 [archiver finishDecoding];
 NSLog(@"nth run - name: %@ age: %i", myFoo.name,
 [myFoo.age intValue]);
 NSArray * array = myBar.foos;
 for(Foo * aFoo in array) {
 NSLog(@"Foo: name: %@, age: %i", aFoo.name, [aFoo.age intValue]);
 }
 }
 else {
 NSLog(@"first run: no name or age");
 myFoo =[[Foo alloc] init];
 myFoo.name = @"James";
 myFoo.age = [NSNumber numberWithInt:40];
 myBar = [[Bar alloc] init];
 }

Chapter 15: Property Lists and Archiving 367

 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
}
-(void) applicationWillTerminate: (UIApplication *) application {
 NSString *pathToFile = [[NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask,YES) objectAtIndex:0]
 stringByAppendingPathComponent:@"foo2.archive"];
 NSMutableData * theData = [NSMutableData data];
 NSKeyedArchiver * archiver = [[[NSKeyedArchiver alloc]
 initForWritingWithMutableData:theData] autorelease];
 [archiver encodeObject:myFoo forKey:@"myfoo"];
 [archiver encodeObject:myBar forKey:@"mybar"];
 [archiver finishEncoding];
 if([theData writeToFile:pathToFile atomically:YES] == NO)
 NSLog(@"writing failed....");
}
-(void)dealloc {
 [myFoo release];
 [myBar release];
 [viewController release];
 [window release];
 [super dealloc];
}
@end

When the application starts, it loads the archive file into a data object. If the data object is
null, the file doesn’t exist. If the file does exist, the data is unarchived. When the application
terminates, it archives Foo. Because Bar contains constituent Foo objects in an array, it also
archives those objects. The key for the archived Foo is “myfoo,” and “mybar” for the archived
Bar object. Both Foo and Bar implement the NSCoding protocol. This allows them to be
archived. Notice that Bar contains an NSMutableArray of Foo objects. Because NSMutableArray
adopts the NSCoding protocol, NSMutableArray can be encoded and decoded. Moreover, the
NSMutableArray knows to encode or decode its constituent elements.

Now examine Bar’s copyWithZone method. Because Bar contains an NSMutableArray of
Foo objects, when copying a Bar you must also copy the Bar’s Foo array. But you cannot just
set the new Bar’s array to the old Bar’s array, as the new Bar’s array will simply be a pointer
to the old Bar’s array. Instead you must create a new NSMutableArray and initialize the new
array with the old array, being certain to specify copyItems as YES. By taking this step, the
new Bar obtains a deep copy of the old Bar’s array of Foo objects.

NOTE
For more information on archiving, refer to “Apple’s Archives and Serializations
Programming Guide for Cocoa.”

368 iOS SDK Programming: A Beginner’s Guide

Multitasking and Saving Application State
In versions of the iOS prior to 4, when the user pressed the Home button, your application
was terminated. Now the default behavior is to leave your application in memory and just
suspend it. Then if the user wants to return to it later, it can launch instantly and they’re exactly
where they left off. We actually had to turn this behavior off in the encoding task so that it
would terminate and save our test data. For simple apps that launch quickly and aren’t likely
to be returned to over and over, it makes sense to set that flag and not worry about coding
for application suspension. However, for more complex applications your users will really
appreciate being able to switch to another app and then instantly return to yours, continuing
right where they left off.

So, what does this have to do with archiving? If all the iOS ever did was temporarily
freeze your app in memory and then continue it later, there wouldn’t be any need for
persistence. But, if iOS runs low on memory or the user doesn’t return to your application
for a while, then it can be purged from memory without warning. This creates unpredictable
behavior for your users. Sometimes when they switch to another app and then return to
yours, everything is exactly as they left it (e.g., they’re in the middle of a gaming level or
tunneled deeply down into some nested UITableViews). Other times, when they return to
your app it seems to be starting up fresh (because it is—iOS had to purge it from memory).
The recommended way to deal with this inconsistency is to always save away enough state
information when your application is suspended so that you can restore it to the exact same
context if your application is purged from memory before the user can return to it. That’s
where archiving comes in.

The state information you’ll need to save is going to be different for every application, but
the easiest way to save that information is going to be a set of objects serialized and archived
to a file in the application’s Documents directory. For a game you might need to serialize
a number indicating the level they were on along with a hierarchy of objects that encode
the state of enemies, puzzles, etc., on that level. For a reference application that browses
hierarchical data, it might be saving a trail of which item they chose at each level and where
they were scrolled to on the current view. In either case, you will likely want to implement
the NSCoding protocol for a selection of objects, so that you can archive them when your
application is suspended. Implement the applicationDidEnterBackground method in your
AppDelegate class and save your state information there as well as freeing up any resources
you don’t need.

- (void)applicationDidEnterBackground:(UIApplication *)application

Implement the applicationWillEnterForeground method in your AppDelegate class to
restore your state information.

- (void)applicationWillEnterForeground:(UIApplication *)application

Chapter 15: Property Lists and Archiving 369

Summary
In this chapter, you learned how to persist an application’s data using property lists and
archiving. These techniques are really only practical for persisting a few reasonably small
objects to a file. Large object hierarchies are much better persisted using SQLite or better
yet, the Core Data framework. But for state information, user preferences, etc., persisting to a
property list or archiving is fine. In this chapter, you learned methods for doing both. As a rule
of thumb, if persisting variables not tied to particular objects, simply place them in a collection
and persist the collection as a property list. But if persisting variables that are object properties,
have the objects adopt the NSCoding protocol and archive the objects. If persisting a moderate
to large amount of data, use SQLite or use the Core Data framework. If you want to use the
data outside of an iOS or Cocoa application, you should use SQLite. Both SQLite and Core
Data will be discussed in upcoming chapters.

This page intentionally left blank

371

Chapter 16
Data Persistence
Using SQLite

372 iOS SDK Programming: A Beginner’s Guide

Try This

Key Skills & Concepts
Creating a database and adding data to it

Including the database in Xcode

Reading from a database

Making a database writable

Inserting a record

Updating a record

Deleting a record

The SQLite database is a popular open-source database written in C. The database is small
and designed for embedding in an application, unlike a database such as Oracle that was

designed to run on a separate, large server. SQLite is part of the standard open-source Linux/
BSD server stack, and as OS X is essentially FreeBSD, it was only natural Apple chose SQLite
as the iOS’s embedded database.

Adding a SQLite Database
Adding a SQLite database to your project involves two steps. First, you must create the
database. In this chapter’s first task, you create a database using the Firefox SQLite Manager
plug-in. Second, you must add the SQLite library to your Xcode project. The first task also
illustrates adding the SQLite library to your Xcode project. After creating the database and
loading it, you can then use the database programmatically via its C programming interface.

Creating a Simple Database Using FireFox
SQLite Manager

1. If you don’t already have Firefox, download and install it.

2. Select Add-ons from the Tools menu (Figure 16-1).

3. Select Get Add-ons, type SQLite in the search box, and install SQLite Manager.

4. Once installed and you have restarted Firefox, select Tools | SQLite Manager.

Chapter 16: Data Persistence Using SQLite 373

5. Select the New icon (the blank paper graphic), and create a new database named
myDatabase. Save the database file some place where you can easily find it later. Note
SQLite Manager automatically adds the .sqlite extension.

6. Click Create Table and create a new table named photos.

7. Add three columns: id, name, and photo. Make id an INTEGER and check Primary Key
and Autoinc check boxes.

8. Make name a VARCHAR and check only Allow Null.

9. Make photo a BLOB and check only Allow Null.

10. Your screen should resemble Figure 16-2.

11. Click OK and the SQLite Manager generates the database table.

Figure 16-1 Adding SQLite Manager to Firefox

(continued)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

374 iOS SDK Programming: A Beginner’s Guide

NOTE
SQLite does not enforce foreign key relationships. You must instead write triggers
manually to enforce foreign key relationships. SQLite does not support right outer joins
or full outer joins. SQLite views are read-only.

12. Click the Browse & Search tab, and then click the Add Record button.

13. In the action sheet, leave id blank. Type Icon One for the name. Notice the small paper
clip beside photo. Move your mouse over the paper clip, and the tooltip should say “Add
File as a Blob” (Figure 16-3). Click the paper clip and add any photo from your computer.
If the photo column doesn’t say something like BLOB (Size: 65984), the file was not
correctly added as a blob.

14. Click OK, and the record will be added. Add another record, selecting any other image
from your computer.

Figure 16-2 Creating a database using SQLite Manager

Chapter 16: Data Persistence Using SQLite 375

15. From the menu, select Database | Close Database from the main menus to close the
database. You can now exit SQLite Manager and quit Firefox.

16. Open Xcode and create a new View-based Application. Name the application MyDBProject.

17. Expand Frameworks in the Navigator and right-click on any one of the frameworks (e.g.,
UIKit) and select Show in Finder from the pop-up menu. This will get you to the folder
with all of your frameworks on your computer. Move up two folder levels from there to the
SDK folder and then open user/lib.

18. Drag and drop the libsqlite3.0.dylib framework from that folder to Frameworks in the
Navigator in Xcode. In the dialog that pops up, be sure to uncheck “Copy items into
destination group’s folder” and click Finish.

19. Add the database file that you created earlier to the Resources folder. Be sure to check the
Copy Items check box so that the database file gets copied into MyDBProject.

20. This task is now complete with the SQLite library added to the project and the database file
copied into the project’s resources. Do not delete the project or database, as you will use
them for the remainder of this chapter.

Figure 16-3 Adding a record using SQLite Manager

376 iOS SDK Programming: A Beginner’s Guide

NOTE
Adding binary data using SQLite Manager in Firefox seems to be buggy. Sometimes it
works, sometimes not. If after adding a record the photo column is blank, just edit the
row and add the photo file’s content again. Updating the blob seems to be more stable
in SQLite Manager.

Basic SQLite Database Manipulation
If you have ever used a database from within a programming language, SQLite database
manipulation using C should seem intuitive. You open the database. You create a prepared
statement containing a SQL string. That statement might have one or more parameters you
bind values to. After binding, you execute the statement. If the statement returns results, you
loop through each record and load the record’s column values into your program’s variables.
After looping through all records, you finalize the statement, and, if you are finished with the
database, you close the database. The steps are similar for most languages and databases.

Opening the Database
You open a database using the sqlite3_open, sqlite_open16, or sqlite3_open_v2 commands.
This chapter uses the sqlite3_open command exclusively. The sqlite3_open command takes
a database filename as a UTF-8 string and opens the database. Listing 16-1, taken from the
SQLite’s online documentation, lists the sqlite_open3 method signature.

Listing 16-1 The sqlite3_open method signature (from SQLite online documentation)

int sqlite3_open(
 const char *filename, /* Database filename (UTF-8) */
 sqlite3 **ppDb /* OUT: SQLite db handle */
);

The method returns an integer as the method’s success or failure code. Listing 16-2, from
the SQLite online documentation, lists several common result codes.

Listing 16-2 SQLite return codes (taken from SQLite online documentation)

#define SQLITE_OK 0 /* Successful result */
#define SQLITE_ERROR 1 /* SQL error or missing database */
#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
#define SQLITE_INTERRUPT 9 /* Operation terminated by
#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
#define SQLITE_MISMATCH 20 /* Data type mismatch */
#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */

Chapter 16: Data Persistence Using SQLite 377

Statements, Preparing Statements,
and Executing Statements
There are two primary ways of executing SQL statements using SQLite’s C interface. One
method is the sqlite3_exec method. Although a powerful method, it is more advanced C
programming, and so this chapter uses the sqlite3_stmt structure and the sqlite3_prepare_v2
and sqlite3_step statements instead of the sqlite3_exec function.

The SQLite sqlite3_stmt
The sqlite3_stmt encapsulates a SQL statement. For instance, “select * from photos” is a SQL
statement. In your program, you encapsulate this SQL string using a statement. For instance,
the following code snippet illustrates creating a SQL string, initializing a statement, and loading
the statement (Listing 16-3).

Listing 16-3 Using a sqlite3_stmt in a C program

const char *sqlselect = "SELECT id,name,photo FROM photos";
static sqlite3_stmt *statement = nil;
sqlite3_prepare_v2(database, sqlselect, -1, &statement, NULL);

The SQLite sqlite3_prepare_v2 Method
You load a SQL string into a statement using sqlite3_prepare methods. The prepare methods
are sqlite3_prepare, sqlite3_prepare_v2, sqlite3_prepare_16, and sqlite3_prepare16_v2. This
chapter uses only the sqlite3_prepare_v2 method. Notice the prepare statement takes a C
string, not an NString, but getting the C string from an NString is not difficult—simply call
the NSString’s UTF8String method. The sqlite3_prepare_v2 method’s signature is in Listing
16-4. Notice, like the open statements, the prepare statement returns an integer result code you
should check when calling the method.

Listing 16-4 The sqlite3_prepare_v2 method signature (taken from the SQLite online
documentation)

int sqlite3_prepare_v2(
 sqlite3 *db, /* Database handle */
 const char *zSql, /* SQL statement, UTF-8 encoded */
 int nByte, /* Maximum length of zSql in bytes. */
 sqlite3_stmt **ppStmt, /* OUT: Statement handle */
 const char **pzTail /* OUT: Pointer to unused portion of zSql */
);

After preparing the statement, you execute it and step through the results.

378 iOS SDK Programming: A Beginner’s Guide

The SQLite sqlite3_step Method
The sqlite3_step method executes a prepared statement. You must call this method at least
once. For instance, when calling insert or update, you call sqlite3_step once. You only call it
once because these statements do not result in a record set being returned from the database.
When selecting data, you typically call this method multiple times until you receive no more
results. The following is the method’s signature.

int sqlite3_step(sqlite3_stmt*);

Like the other SQLite methods, this method returns a response code you should check after
calling the method.

Select
You select one or more records from a SQL database using a select statement. Because a select
statement usually returns multiple rows, you must loop through the row set if you wish to obtain
all records.

while (sqlite3_step(statement) == SQLITE_ROW){
 //process row here
}

Obtaining SQLite Column Values
You obtain column values through a method in Listing 16-5. Using these methods will become
more apparent after the next task.

Listing 16-5 Methods for obtaining column data (from SQLite online documentation)

const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
double sqlite3_column_double(sqlite3_stmt*, int iCol);
int sqlite3_column_int(sqlite3_stmt*, int iCol);
sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
int sqlite3_column_type(sqlite3_stmt*, int iCol);
sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);

NOTE
The int iCol arguments in the methods in Listing 16-5 are a zero-based index into the
columns in the results of the sqlite3_stmt, not an index into the columns of a SQLite
database table.

Chapter 16: Data Persistence Using SQLite 379

Try This Opening and Querying a Database
1. Return to your MyDBProject in Xcode.

2. In Classes, create a new group called Model.

3. Create a new Objective-C class in the Model group called PhotosDAO. Create another
Objective-C class in the same group called PhotoDAO.

4. Add a name, photoID, and photo property to PhotoDAO.h and PhotoDAO.m (Listings 16-6
and 16-7).

Listing 16-6 PhotoDAO.h

#import <Foundation/Foundation.h>
@interface PhotoDAO : NSObject {
 NSString * name;
 NSInteger photoID;
 UIImage * photo;
}
@property (nonatomic, retain) NSString * name;
@property (nonatomic, assign) NSInteger photoID;
@property (nonatomic, retain) UIImage * photo;
@end

Listing 16-7 PhotoDAO.m

#import "PhotoDAO.h"
@implementation PhotoDAO
@synthesize name;
@synthesize photoID;
@synthesize photo;
- (void) dealloc {
 [name release];
 [photo release];
 [super dealloc];
}
@end

5. Open PhotosDAO.h and import SQLite3. Add a reference to the database you will use
(Listing 16-8).

(continued)

380 iOS SDK Programming: A Beginner’s Guide

Listing 16-8 PhotosDAO.h

#import <Foundation/Foundation.h>
#import <sqlite3.h>
@interface PhotosDAO : NSObject {
 sqlite3 *database;
}
- (NSMutableArray *) getAllPhotos;
@end

6. Add a getAllPhotos method to PhotosDAO and implement the method (Listing 16-9).

Listing 16-9 PhotosDAO.m

#import "PhotosDAO.h"
#import "PhotoDAO.h"
@implementation PhotosDAO
- (NSMutableArray *) getAllPhotos {
 NSMutableArray * photosArray = [[NSMutableArray alloc] init];
 @try {
 NSFileManager *fileManager = [NSFileManager defaultManager];
 NSString *theDBPath = [[[NSBundle mainBundle] resourcePath]
stringByAppendingPathComponent:@"myDatabase.sqlite"];
 BOOL success = [fileManager fileExistsAtPath:theDBPath];
 if (!success) {
 NSLog(@"Failed to find database file '%@'.", theDBPath);
 }
 if (!(sqlite3_open([theDBPath UTF8String], &database) == SQLITE_OK)) {
 NSLog(@"An error opening database, normally handle error here.");
 }
 const char *sql = "SELECT id,name,photo FROM photos";
 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(database, sql, -1, &statement, NULL) !=
 SQLITE_OK){
 NSLog(@"Error, failed to prepare statement, handle error here.");
 }
 while (sqlite3_step(statement) == SQLITE_ROW) {
 PhotoDAO * aPhoto = [[PhotoDAO alloc] init];
 aPhoto.photoID = sqlite3_column_int(statement, 0);
 aPhoto.name = [NSString stringWithUTF8String:(char *)
 sqlite3_column_text(statement, 1)];

Chapter 16: Data Persistence Using SQLite 381

 const char * rawData = sqlite3_column_blob(statement, 2);
 int rawDataLength = sqlite3_column_bytes(statement, 2);
 NSData *data = [NSData dataWithBytes:rawData length: rawDataLength];
 aPhoto.photo = [[UIImage alloc] initWithData:data];
 [photosArray addObject:aPhoto];
 [aPhoto release];
 }
 if(sqlite3_finalize(statement) != SQLITE_OK){
 NSLog(@"Failed to finalize data statement, error handling here.");
 }
 if (sqlite3_close(database) != SQLITE_OK) {
 NSLog(@"Failed to close database, normally error handling here.");
 }
 } @catch (NSException *e) {
 NSLog(@"An exception occurred: %@", [e reason]);
 return nil;
 }
 return photosArray;
}
@end

7. Open MyDBProjectViewController.h and add an NSMutableArray property to hold the
photos. Add an IBOutlet for a UIImageView. Add a UILabel named theLabel, add an
IBAction, and name the method changeImage (Listing 16-10).

Listing 16-10 MyDBProjectViewController.h

#import <UIKit/UIKit.h>
@interface MyDBProjectViewController : UIViewController {
 NSMutableArray * photos;
 UIImageView * theImageView;
 UILabel * theLabel;
}
@property (nonatomic, retain) NSMutableArray * photos;
@property (nonatomic, retain) IBOutlet UIImageView * theImageView;
@property (nonatomic, retain) IBOutlet UILabel * theLabel;
- (IBAction) changeImage: (id) sender;
@end

8. Open MyDBProjectViewController.m and synthesize photos and theImageView
(Listing 16-11).

(continued)

382 iOS SDK Programming: A Beginner’s Guide

Listing 16-11 MyDBProjectViewController.m

#import "MyDBProjectViewController.h"
#import "PhotoDAO.h";
#import "PhotosDAO.h";
@implementation MyDBProjectViewController
@synthesize photos;
@synthesize theImageView;
@synthesize theLabel;
- (void)viewDidLoad {
 PhotosDAO * myPhotos = [[PhotosDAO alloc] init];
 self.photos = [myPhotos getAllPhotos];
 [self.theImageView setImage:((PhotoDAO *)[self.photos
objectAtIndex:0]).photo];
 [self.theLabel setText:((PhotoDAO *)
 [self.photos objectAtIndex:0]).name];
 [myPhotos release];
 [super viewDidLoad];
}
- (IBAction) changeImage: (id) sender {
 static NSInteger currentElement = 0;
 if(++currentElement == [self.photos count]) currentElement = 0;
 PhotoDAO * aPhoto =
 (PhotoDAO *) [self.photos objectAtIndex: currentElement];
 [self.theLabel setText:aPhoto.name];
 [self.theImageView setImage:aPhoto.photo];
}
- (void)dealloc {
 [photos release];
 [theImageView release];
 [theLabel release];
 [super dealloc];
}
@end

9. Implement the viewDidLoad and changeImage methods so that they match Listing 16-11.

10. Save your changes and open MyDBProjectViewController.xib. Add a toolbar, a label, and
a UIImageView (Figure 16-4). Change the button’s title to Next. Remove the text from the
label.

11. Connect the File’s Owner theLabel outlet to the label added to the toolbar. Connect the
theImageView outlet to the UIImageView. Connect the changeImage action to the Next
button. Save your changes.

12. Run the application in iPhone Simulator, as shown in Figures 16-5 and 16-6.

Chapter 16: Data Persistence Using SQLite 383

Figure 16-4 Adding a UIImageView and a UIToolBar to the view’s canvas

Figure 16-5 Running the application (first image) (continued)

384 iOS SDK Programming: A Beginner’s Guide

NOTE
You would normally never load an entire database at once in a real application,
especially when using large blobs, like this example. Memory is limited in an iOS
device—only load what you need when you need it.

The Model-View-Controller
When writing a program for any platform, you should adhere to the MVC design pattern as
closely as possible. Rather than placing the database logic in a view or view controller, you
created separate classes, insulating the view and controller layers from the database layer. The
MyDBProjectViewController knows nothing about the underlying SQLite3 library; the view
controller only knows about PhotosDAO and PhotoDAO. Notice you further separated the
code by placing it in its own group, Model, under Classes. All this separation makes debugging
and maintaining the program easier. It also makes reading and understanding this chapter’s
example code easier.

Figure 16-6 Running the application (second image)

Chapter 16: Data Persistence Using SQLite 385

Opening the Database
To keep the task’s length manageable and focused, rather than creating several data access
methods in PhotosDAO, you only created one.

- (NSMutableArray *) getAllPhotos;

This method returns an array of PhotoDAO objects. The getAllPhotos method first finds
the database and opens it. Because the database is in the resources folder, you can access it
directly using the bundle’s resourcePath. (When you want to create an application that uses
canned [predefined] data, this task illustrated how to create that data in advance [using SQLite
Manager in Firefox] and then embed it in your application.)

NSFileManager *fileManager = [NSFileManager defaultManager];
NSString *theDBPath = [[[NSBundle mainBundle] resourcePath]
stringByAppendingPathComponent: @"myDatabase.sqlite"];

After obtaining the database’s path, you open it.

if (!(sqlite3_open([theDBPath UTF8String], &database) == SQLITE_OK))

Notice that you obtain the UTF8String from the NSString before passing the sqlite3_open
method the path. Since opening the database is a common activity, you might want to move
that portion of the code into its own method for easy reuse.

Querying the Data
After opening the database, you query it for the photo records. If you have ever worked
with a database using code, for instance, Java Database Connectivity (JDBC), then this code
should look familiar. The getAllPhotos method first creates the SQL select string. Next, the
method places the string in a statement and then queries the database. After obtaining the data,
getAllPhotos loops through each record.

For each new record, getAllPhotos creates a new PhotoDAO. The newly created
PhotoDAO object’s values are then set to the appropriate values from the current record.
After initializing the PhotoDAO object, getAllPhotos places the object into PhotosDAO’s
photosArray.

Loading a Blob into NSData
This code snippet is useful. It shows you a quick, easy way to load a blob, any blob, into an
NSData object. First, load the blob into a C string.

const char * rawData = sqlite3_column_blob(statement, 2);

Second, obtain the blob’s byte size.

int rawDataLength = sqlite3_column_bytes(statement, 2);

Third, create an NSData class using the C string and size variables.

NSData *data = [NSData dataWithBytes:rawData length:rawDataLength];

386 iOS SDK Programming: A Beginner’s Guide

As you already know the database blob is an image, you initialize the PhotoDAO’s photo
property using the UIImage’s initWithData method.

aPhoto.photo = [[UIImage alloc] initWithData:data];

This same technique works for other binary data as well (replacing UIImage with the
appropriate class).

Closing the Database
When finished using a statement, you release its resources by finalizing the statement.

if(sqlite3_finalize(statement) != SQLITE_OK)

After you no longer need the database, you close it.

if (sqlite3_close(database) != SQLITE_OK)

Selecting all records only has limited value. Rarely will you use SQL statements where
you do not wish to limit the results returned. For this, you typically add parameters to your
SQL statements and then replace the parameters with values in your program. This is called
binding your program’s values to the statements’ parameters. Programs usually also allow
more than simply selecting data; most applications allow users to add, edit, and delete records.
In the next section, you learn about binding, inserting, updating, and deleting records.

SQLite Binding, Inserting, Updating, and Deleting
SQL allows limiting data to only the data needed via the where clause. For instance, the
following statement only selects records whose age column is greater than 30.

select * from mytable where age > 30

When placing SQL statements like this into a SQLite statement, you can parameterize the
where clause’s value. For instance, to parameterize age’s value, write the following code.

select * from mytable where age > ?

You then bind your program’s value to the SQL statement’s parameter.

Binding
You bind one of your program’s values to a SQL statement’s parameter using a bind method
(Listing 16-12). Different data types have different bind methods.

Listing 16-12 SQLite bind methods (from the SQLite online documentation)

int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n,
void(*)(void*));
int sqlite3_bind_double(sqlite3_stmt*, int, double);

Chapter 16: Data Persistence Using SQLite 387

int sqlite3_bind_int(sqlite3_stmt*, int, int);
int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
int sqlite3_bind_null(sqlite3_stmt*, int);
int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n,
 void(*)(void*));
int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int,
 void(*)(void*));
int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);

NOTE
Bindings start with 1 rather than 0.

For instance, the following code snippet shows a SQL statement and its subsequent
binding (without the error checking shown).

const char * select = "Select * from photos where name = ?";
sqlite3_stmt *select_statement;
sqlite3_prepare_v2(database, select, -1, &select_statement, NULL);
sqlite3_bind_text(&select_statement, 1, [photo.name UTF8String], -1,
SQLITE_TRANSIENT);

The first argument is a pointer to the prepared statement. The second argument is the
SQL statement’s parameter number. The third argument is the value that should be bound to
the SQL statement’s parameter. The fourth argument is the number of bytes in the value—if
negative, the length is automatically determined from the C string.

Insert, Update, and Delete
There is little difference between the steps for inserting, updating, or deleting records using
the SQLite C library. The primary difference is you only call the sqlite3_step method once.
Usually, you use insert, update, or delete with bindings. For instance,

insert into customers (name, age, company, location) values (?, ?, ?, ?);

or

update customers set location = ? where company = ?;

or

delete customers where company = ?;

In the following task, you insert, update, and delete a record.

388 iOS SDK Programming: A Beginner’s Guide

Try This Inserting, Updating, and Deleting Records
1. Open the MyDBProject project in Xcode.

2. Add a class method named moveDatabase to PhotosDAO. Remember, a class method uses
a plus rather than a minus.

3. Implement the method in PhotosDAO.m as in Listing 16-13.

Listing 16-13 The moveDatabase and getAllPhotos methods

+ (void) moveDatabase {
 NSFileManager *fileManager = [NSFileManager defaultManager];
 NSString *theDBPath = [[[NSBundle mainBundle] resourcePath]
 stringByAppendingPathComponent:@"myDatabase.sqlite"];
 NSError *error;
 BOOL success;
 NSArray * paths =
 NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
 NSString * docsDir = [paths objectAtIndex:0];
 NSString * newPath =
 [docsDir stringByAppendingPathComponent:@"myDatabase.sqlite"];
 [fileManager removeItemAtPath:newPath error: &error];
 success = [fileManager copyItemAtPath:theDBPath
 toPath:newPath error: &error];
 if (!success) {
 NSLog(@"Failed to copy database...error handling here %@.",
 [error localizedDescription]);
 }
}

- (NSMutableArray *) getAllPhotos {
 NSMutableArray * photosArray = [[NSMutableArray alloc] init];
 @try {
 NSFileManager *fileManager = [NSFileManager defaultManager];
 NSArray * paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString * docsDir = [paths objectAtIndex:0];
 NSString * theDBPath = [docsDir stringByAppendingPathComponent:
 @"myDatabase.sqlite"];
 BOOL success = [fileManager fileExistsAtPath:theDBPath];
 if (!success) {
 NSLog(@"Failed to find database file '%@'.");
 }

Chapter 16: Data Persistence Using SQLite 389

 if (!(sqlite3_open([theDBPath UTF8String], &database) ==
 SQLITE_OK)) {
 NSLog(@"An error opening database, handle error here.");
 }
 const char *sql = "SELECT id,name,photo FROM photos";
 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(database, sql, -1, &statement, NULL) !=
 SQLITE_OK) {
 NSLog(@"Error, failed to prepare statement, handle error here.");
 }
 while (sqlite3_step(statement) == SQLITE_ROW) {
 PhotoDAO * aPhoto = [[PhotoDAO alloc] init];
 aPhoto.photoID = sqlite3_column_int(statement, 0);
 aPhoto.name = [NSString stringWithUTF8String:(char *)
 sqlite3_column_text(statement, 1)];
 const char * rawData = sqlite3_column_blob(statement, 2);
 int rawDataLength = sqlite3_column_bytes(statement, 2);
 NSData *data = [NSData dataWithBytes:rawData length:
 rawDataLength];
 aPhoto.photo = [[UIImage alloc] initWithData:data];
 [photosArray addObject:aPhoto];
 }
 if(sqlite3_finalize(statement) != SQLITE_OK){
 NSLog(@"Failed to finalize data statement, error handling here.");
 }
 if (sqlite3_close(database) != SQLITE_OK) {
 NSLog(@"Failed to close database, error handling here.");
 }
 } @catch (NSException *e) {
 NSLog(@"An exception occurred: %@", [e reason]);
 return nil;
 }
 return photosArray;
}

4. Modify the getAllPhotos method in PhotosDAO to obtain the records from the documents
directory (Listing 16-13).

5. Open MYDBProjectViewController.m and add a call to the moveDatabase method to the
first line of viewDidLoad (Listing 16-14).

(continued)

390 iOS SDK Programming: A Beginner’s Guide

Try This

Listing 16-14 The viewDidLoad method

- (void)viewDidLoad {
 [PhotosDAO moveDatabase];
 PhotosDAO * myPhotos = [[PhotosDAO alloc] init];
 self.photos = [myPhotos getAllPhotos];
 [self.theImageView setImage:((PhotoDAO *)[self.photos
objectAtIndex:0]).photo];
 [self.theLabel setText:((PhotoDAO *)
 [self.photos objectAtIndex:0]).name];
 [myPhotos release];
 [super viewDidLoad];
}

The first thing you did was make the database writable. The Resources folder is read-
only. Saving changes requires the database to be writable, so you copied the database to
your documents directory. You also modified the getAllPhotos method so that it obtained the
database from the application’s document directory rather than the resources directory.

Inserting Records
1. Add any photo from your computer to the project’s Resources group and remember the

photo’s name so that you can use it later in the addThirdPhoto method.

2. Add a new method to PhotosDAO called addPhoto. Implement the method (Listing 16-15).

Listing 16-15 The addPhoto method

- (void) addPhoto : (PhotoDAO *) photo {
 const char * sql = "insert into photos (name, photo) values (?, ?)";
 sqlite3_stmt *insert_statement = nil;
 NSArray * paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString * docsDir = [paths objectAtIndex:0];
 NSString * thePath = [docsDir stringByAppendingPathComponent:
 @"myDatabase.sqlite"];
 sqlite3_open([thePath UTF8String], &database);
 sqlite3_prepare_v2(database, sql, -1, &insert_statement, NULL);
 sqlite3_bind_text(insert_statement, 1, [photo.name UTF8String], -1,

Chapter 16: Data Persistence Using SQLite 391

 SQLITE_TRANSIENT);
 NSData * binData = UIImagePNGRepresentation(photo.photo);
 sqlite3_bind_blob(insert_statement, 2, [binData bytes],
 [binData length], SQLITE_TRANSIENT);
 sqlite3_step(insert_statement);
 sqlite3_finalize(insert_statement);
 sqlite3_close(database);
 }

3. Create a new IBAction in MyDBProjectViewController called addThirdPhoto
(Listing 16-16).

Listing 16-16 The addThirdPhoto IBAction

- (IBAction) addThirdPhoto: (id) sender {
 static BOOL wasAdded;
 if (!wasAdded) {
 PhotosDAO * myPhotos = [[PhotosDAO alloc] init];
 PhotoDAO * aPhoto = [[PhotoDAO alloc] init];
 // Use the name of your photo in the next line
 NSString * imgPath = [[[NSBundle mainBundle] resourcePath]
 stringByAppendingPathComponent:@"photo3.png"];
 aPhoto.name = @"Another Photo";
 aPhoto.photo = [[UIImage alloc] initWithContentsOfFile:imgPath];
 [myPhotos addPhoto:aPhoto];
 [self.photos release];
 self.photos = [myPhotos getAllPhotos];
 [myPhotos release];
 wasAdded = YES;
 }
}

4. Save your changes and open MyDBProjectViewController.xib and add a new Bar Button
item to the toolbar. Change the bar button’s title to Add.

5. Connect the addThirdPhoto action to the Add button.

6. Save your changes and click Run to view the application in the iPhone Simulator
(Figure 16-7).

(continued)

392 iOS SDK Programming: A Beginner’s Guide

Try This

The addPhoto method (Listing 16-15) allows new photos to be inserted. To keep this example
simple, the add button invokes the addThirdPhoto method that merely gets the photo from your
resources group. The addPhoto method first creates a SQL string with parameters. The method
then replaces the question marks by binding them to the appropriate value. For instance, the
name column is text, so addPhoto binds it to a C string. The UIImage is binary, so it is bound to
a blob. After binding, addPhoto then inserts the record by calling the sqlite3_step method. This
method is called only once, as no data is returned from the insert statement. Notice, for brevity, an
examination of the return code is omitted, as is other error handling from Listing 16-6 forward.

Updating Records
1. Return to the Xcode project.

2. Add another photo to your Resources folder and remember its name to use in the
changePhotosImage method added in Step 5.

3. Add a new NSInteger called currentID to MyDBProjectViewController.m. Change the
changeImage method to update this new variable with the current photo’s id from the
database (Listing 16-17).

Figure 16-7 Running the application with an add button

Chapter 16: Data Persistence Using SQLite 393

Listing 16-17 The currentID variable, and modified changeImage

NSInteger currentID = 0;
- (IBAction) changeImage: (id) sender {
 static NSInteger currentElement = 0;
 if(++currentElement == [self.photos count])
 currentElement = 0;
 PhotoDAO * aPhoto = (PhotoDAO *)
 [self.photos objectAtIndex: currentElement];
 currentID = aPhoto.photoID;
 [self.theLabel setText:aPhoto.name];
 [self.theImageView setImage:aPhoto.photo];
}

4. Add a new method called changeAPhotoImage to PhotosDAO (Listing 16-18).

Listing 16-18 The changeAPhotoImage method

- (void) changeAPhotoImage: (UIImage *) image theID: (NSInteger) photoID {

 const char * sql = "update photos set photo = ? where id = ?";

 sqlite3_stmt *update_statement = nil;

 NSArray * paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

 NSUserDomainMask, YES);

 NSString * docsDir = [paths objectAtIndex:0];

 NSString * thePath =

 [docsDir stringByAppendingPathComponent:@"myDatabase.sqlite"];

 sqlite3_open([thePath UTF8String], &database);

 sqlite3_prepare_v2(database, sql, -1, &update_statement, NULL);

 NSData * binData = UIImagePNGRepresentation(image);

 sqlite3_bind_blob(update_statement, 1, [binData bytes],

 [binData length],SQLITE_TRANSIENT);

 sqlite3_bind_int(update_statement, 2, photoID);

 sqlite3_step(update_statement);

 sqlite3_finalize(update_statement);

 sqlite3_close(database);

}

5. Add a new IBAction called changePhotosImage to MyDBProjectViewController
(Listing 16-19). Save your changes.

(continued)

394 iOS SDK Programming: A Beginner’s Guide

Listing 16-19 The changePhotosImage method

-(IBAction) changePhotosImage: (id) sender {
 PhotosDAO * myPhotos = [[PhotosDAO alloc] init];
 NSString * imgPath = [[[NSBundle mainBundle] resourcePath]
 stringByAppendingPathComponent:@"photo4.png"];
 [myPhotos changeAPhotoImage:[[UIImage alloc] initWithContentsOfFile:
 imgPath] theID: currentID];
 [self.photos release];
 self.photos = [myPhotos getAllPhotos];
 [myPhotos release];
}

6. Open MyDBProjectViewController.xib and add another bar button to the toolbar. Change
the button’s title to Change.

7. Connect the changePhotosImage action to the Change button.

8. Save and exit Interface Builder. Click Build And Go to run the application in the iPhone
Simulator (Figure 16-8).

Figure 16-8 Changing the image

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 16: Data Persistence Using SQLite 395

Try This

Updating a record is as straightforward as inserting it. The changeAPhotoImage first
creates a SQL string with parameters. It then binds a file’s binary data to photo and an integer
to id. After binding, it then calls the step function once, finalizes the statement, and closes
the database. Notice that updating requires the record’s id, as SQLite uses the id to update the
correct record. To accommodate this requirement, you added a currentID variable and changed
the changeImage method to set the currentID with the currently selected photo record.

Deleting Records
1. Quit the application and return to Xcode.

2. Add a new method called deletePhoto to PhotosDAO (Listing 16-20).

Listing 16-20 The deletePhoto method in PhotosDAO

- (void) deletePhoto: (NSInteger) photoID {

 const char * sql = "delete from photos where id = ?";

 sqlite3_stmt *delete_statement = nil;

 NSArray * paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

 NSUserDomainMask, YES);

 NSString * docsDir = [paths objectAtIndex:0];

 NSString * thePath = [docsDir stringByAppendingPathComponent:

 @"myDatabase.sqlite"];

 sqlite3_open([thePath UTF8String], &database);

 sqlite3_prepare_v2(database, sql, -1, &delete_statement, NULL);

 sqlite3_bind_int(delete_statement, 1, photoID);

 sqlite3_step(delete_statement);

 sqlite3_finalize(delete_statement);

 sqlite3_close(database);

}

3. Create a new IBAction called deletePhoto to MyDBProjectViewController (Listing 16-21).

Listing 16-21 The deletePhoto IBAction in MyDBProjectViewController

- (IBAction) deletePhoto : (id) sender {
 PhotosDAO * myPhotos = [[PhotosDAO alloc] init];
 [myPhotos deletePhoto:currentID];
 [self.photos release];
 self.photos = [myPhotos getAllPhotos];
 currentElement = 0;
 [myPhotos release];
}

(continued)

396 iOS SDK Programming: A Beginner’s Guide

4. Move the static NSInteger currentElement from the changeImage method in Listing 16-11
to just below the currentID variable (Listing 16-22). Remove the static qualifier.

Listing 16-22 Placing currentElement at the class’s top so it’s shared in the class

@implementation MyDBProjectViewController
@synthesize photos;
@synthesize theImageView;
@synthesize theLabel;
NSInteger currentID = 0;
NSInteger currentElement = 0;

5. Save your changes and open MyDBProjectViewController.xib.

6. Add another button to the toolbar and change its title to Delete.

7. Resize the image and move the label to above the toolbar, as you are running out of space
on the toolbar (Figure 16-9).

8. Connect the button to the deletePhoto action.

9. Click Run and try deleting a photo.

Figure 16-9 The MyDBProjectViewController view’s canvas

Chapter 16: Data Persistence Using SQLite 397

The delete statement follows the same pattern as insert and update. The only real
difference is the SQL string.

const char * sql = "delete from photos where id = ?";

Summary
If your application needs to store and retrieve complex object hierarchies, you’ll want to
consider using CoreData, which we’ll be covering in the next chapter. However, for simple
data storage needs, or for a database that you can use in a non-iOS application, SQLite is an
efficient, powerful solution.

This chapter covered all of the basics for adding a database to your application. You
learned how to create a new database, embed it in your application and retrieve values from
the database. Then you learned how to make the database writable and implement insert,
update, and delete operations.

If you do much programming for iOS, you will quickly find that all but the simplest
applications need to store data. For that reason, the techniques that you learned in this chapter
are very important. You will need to understand and master the techniques of this chapter or
the next one on CoreData if you’re going to do any significant iOS development.

This page intentionally left blank

399

Chapter 17
Core Data

400 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Understanding Core Data’s basics

Creating a Core Data model

Understanding how to load, fetch, and save a model’s data

Building a complex navigation-based application using Core Data

Knowing where to obtain more Core Data information

With its addition to the iOS SDK, Core Data is arguably the best choice for persisting
an application’s data. It is more robust than using properties and is easier than using

SQLite. You can visually lay out your application’s data model, much as you would when
using a database-modeling tool. Moreover, it provides the infrastructure for managing the
objects you create, freeing you from writing the typical object management code. As this
chapter will demonstrate, using Core Data is a natural choice for persisting an application’s
data. Core Data allows you to focus on the application rather than on the code persisting the
application’s data.

In previous chapters, the Try This examples were generally very small applications that
illustrated a single concept but would never be mistaken for a full iOS application that you
might find in the App Store. In this chapter, we’re going to build a more complex reference
application. By the end of this chapter, you’ll have a fairly useful application that, while not
quite ready for the App Store, just needs a little more data and some polish. In Chapter 19
we’ll take the result of this chapter and turn it into a universal application that will also run
native on the iPad with its larger screen.

Since the application we are building will have several views and build on skills that you
learned in earlier chapters, in the interest of readability, we will only provide complete in-line
code listings where we are illustrating new functionality. Before getting started on this chapter,
it will be helpful to download the DogBreeds-Final sample code for this chapter. With the
completed sample application code handy, you can reference it when you’re not sure how to
do a particular step.

Core Data in Brief
Core Data is a framework used to easily manage an application’s data objects. Core Data consists
of managed object models, managed object contexts, and persistent data stores.

A managed object model contains an object graph. The object graph is a collection of objects
and their relationships with one another. You create a graph using Xcode’s data modeler. The data
modeler is where you visually add entities and create relationships between them.

Chapter 17: Core Data 401

A managed object context contains the objects created from the entities in the managed
object model. A managed object context has a persistent store coordinator that manages one or
more persistent stores. A persistent data store persists objects created by the managed object
context. Although an application can have multiple persistent stores, in this chapter, you
restrict yourself to one persistent store. Figure 17-1 illustrates Core Data’s architecture.

Creating a Model
A model contains entities. Entities contain attributes. Relationships model how one or more
entities relate to one another. You model these concepts using Xcode’s data modeler. You add
a model to your application by creating a file with an .xcdatamodel extension through Xcode’s
New File dialog (Figure 17-2). It is best to place the model file in a new Models folder. After
creating the model, when you select the file, Xcode should automatically display the data
modeler in the Editor window.

Entities
Entities, represented by the NSEntityDescription class, are patterns describing NSManagedObject
instances. NSManagedObjects are what you persist. For Core Data to know how to instantiate
new object instances and persist the instances, it needs a pattern. Entities in the model provide
those patterns. For instance, you might want to create a handy reference application that lists
all of the American Kennel Club (AKC) dog breeds. The AKC divides all of the dog breeds
into categories like “herding group” and “sporting group,” so we’ll need an AKCGroup class to
represent these groups. Within each group there are a number of dog breeds, so we also have

Figure 17-1 Core Data’s architecture (simplified)

Managed Object Context

Managed Object
Model

Persistent Store
Coordinator

Persistent Store

Managed
Objects

Managed
Objects

Entities
Entities

402 iOS SDK Programming: A Beginner’s Guide

a Breed class to represent the breeds. These straightforward Objective-C classes will be subclasses
of NSManagedObject, and you tell Core Data how to persist them using entities.

Attributes
Entities tell Core Data which classes we will need to persist. In order to actually save objects in a
persistent store and reconstitute them later, Core Data also needs to know what information must
be saved for each object. Therefore, in our data model, entities have attributes that describe each
of the properties that will need to be persisted.

Relationships
In all but the simplest of applications, there will also be relationships between the classes
you define. For instance, each AKCGroup will contain one or more Breed objects and every
Breed will be in exactly one group. The objects were modeled with entities, and how they are
interrelated is modeled with relationships. Entities can have relationships with other entities.
For instance, an apple and an orange are both types of fruit, a crate might hold one or more
apples and oranges, and a fruit stand might contain one or more crates.

Figure 17-2 Creating a new Core Data model

Chapter 17: Core Data 403

Try This Adding Entities and Relationships to a Core
Data Model

Reference applications are particularly popular in the App Store. They typically contain
hierarchical information that is easily viewed with a navigation-based iOS application. In
fact, this pattern is so common that Xcode provides a template that creates a navigation-
based application that is tied to a Core Data model. In this first task, you will first create a
new navigation-based application and tell Xcode that it uses Core Data. Then you create the
entities needed for a dog breeds reference application and add attributes and relationships.
Later tasks will generate Objective-C classes that correspond to those entities, and then write
the code to create, delete, and navigate those objects.

1. Create a new Navigation-based Application named DogBreeds. Be certain to select the Use
Core Data check box (Figure 17-3). Xcode will create an almost functional Navigation-
based Application with Core Data support, including a default xcdatamodel file.

Figure 17-3 Creating a new Navigation-based Application

(continued)

404 iOS SDK Programming: A Beginner’s Guide

2. The default xcdatamodel contains a single Event entity. If there were corresponding
Event.h and Event.m class files for the Event entity, you would be able to run the new
application that was just created. Fortunately, Xcode will create the class definition for
you based on the attributes defined in the xcdatamodel. Select the Entity and then select
Create NSManagedObject Subclass from the Editor menu.

3. Event.h and Event.m will be generated (Listings 17-1 and 17-2). Run the application. You
will notice that you can create new “events” in the list, and edit the list to delete events. If
you quit the application and later relaunch it, the events have all been persisted.

4. Take a few minutes to look at the generated source code for the AppDelegate and
RootViewController and familiarize yourself with the methods that were automatically
generated for you.

Listing 17-1 Definition of a simple Event class

#import <Cocoa/Cocoa.h>
@interface Event : NSManagedObject {
@private
}
@property (nonatomic, retain) NSDate * timeStamp;
@end

Listing 17-2 Implementation of a simple Event class

#import "Event.h"
@implementation Event
@dynamic timeStamp;
@end

5. Now we’ll change the default application to reflect our dog breeds data model. Delete the
Event.h and Event.m files. Select the DogBreeds.xcdatamodel file. Delete the Event entity
by selecting it and pressing the DELETE key.

6. Click the Add Entity button (at the bottom of the pane) and create a new entity called
AKCGroup (Figure 17-4).

7. Click the Add Attribute button and add an attribute called groupDescription with type
String. Create another attribute called name, also with type String.

8. Click the Add Entity button again and create a new entity called Breed. Give the Breed
entity three String attributes: name, breedDescription, and photoURL (Figure 17-5).

Chapter 17: Core Data 405

9. With the Breed entity selected, click and hold on the Add Attribute button and select Add
Relationship. Name the new relationship group and select AKCGroup from the Destination
pull-down menu.

10. Select View | Utilities | Core Data Model to display the relationship details. Uncheck the
Optional check box.

11. Select the AKCGroup entity and add a new relationship to it called breeds. Set its
destination to Breed and Inverse to group. Select the To-Many Relationship check box and
set the delete rule to Cascade (Figure 17-6).

12. Save the model. You are finished describing the objects we need to persist and how they
relate to each other. Core Data will use this information to determine how and when to
save your objects in an underlying SQLite database.

13. Now you need to create the underlying classes for the AKCGroup and Breed entities.
Highlight AKCGroup and Breed and then select Editor | Create NSManagedObject
Subclass from the main menu.

Figure 17-4 Adding the AKCGroup entity

(continued)

406 iOS SDK Programming: A Beginner’s Guide

14. Xcode will generate four files for you, Breed.h, Breed.m, AKCGroup.h, and AKCGroup.m,
based on the entity descriptions we created earlier.

15. Select Breed.h and take a look at what was generated for you. You will notice that the
Breed class has properties defined for each of the attributes in the entity. You will also
notice that the Breed class doesn’t contain instance variables for the properties. Instead,
for Core Data managed classes, they are defined with the @dynamic directive in the
implementation file.

NOTE
NSManagedObjects have no dealloc methods, as the Core Data framework manages
their life cycle. Core Data is also responsible for generating NSManagedObjects’
accessor methods at runtime.

16. Select the AKCGroup.h file and take a look at what was generated for you. There are
properties for the two attributes and the relationship that we defined in the xcdatamodel
file.

Figure 17-5 Breed entity with its attributes

Chapter 17: Core Data 407

17. We have changed the object model since you ran the default application in Step 2, so you
need to completely delete the application from the iPhone Simulator so that the database
containing the Event data will also be deleted. Otherwise, when you run the modified
application in the next task, you will get an error because the model changed from Event
entities to Breeds and AKCGroups.

Notice you specified that the relationship between AKCGroup and Breed has a Cascade
Delete Rule. This rule informs the model that when an AKCGroup object is deleted, then any
Breed objects that it references should also be deleted. Other delete rules you might specify
include Nullify, Deny, and No Action.

NOTE
For more information on creating models using Xcode, refer to Apple’s “Creating a
Managed Object Model with Xcode.”

Figure 17-6 Relationship between AKCGroup and Breeds

408 iOS SDK Programming: A Beginner’s Guide

Model, Context, and Store
The preceding task created the model used to create entities and their relationships in a
managed object context. When an application runs, it needs a model instance, the context, and
the persistent store. The persistent store and the model are largely transparent to you when
coding your application. You simply obtain both these items and then set properties referencing
them in the managed object context. Because we started from a navigation-based application
template set to use Core Data, Xcode added code to create and manage these for us.

NSManagedObjectModel
As discussed earlier, an application’s managed object model contains entities and their
relationships. It serves as an application’s schema by describing the entities used in an
application’s managed object context. Take a look at DogBreedsAppDelegate and you will
see that Xcode added a property to the AppDelegate to hold the NSManagedObjectModel
and an accessor method that creates the managedObjectModel on the first access. The
easiest way to obtain the model is through the mergedModelFromBundles: class method.

managedObjectModel =
 [[NSManagedObjectModel mergedModelFromBundles: nil] retain];

This method creates a data model by merging all the models it finds into a bundle. Because
the previous code specifies nil, the method simply finds all the models in the application’s
Resources folder and merges them into one NSManagedObjectModel instance.

NSPersistentStoreCoordinator
A persistent store coordinator coordinates one or more persistent stores and associates them
with a managed object model. While the managed object model defines what gets persisted, the
persistent store takes care of the low-level details of how and where the data is actually saved.
Although advanced applications might have more than one persistent store, this chapter limits
consideration to single-store applications. Core Data can persist data in several different ways.
Store types you might use to persist data include NSSQLiteStoreType, NSBinaryStoreType,
or NSInMemoryStoreType. For most purposes, you’ll want to use a SQLite database for the
Persistent Store and that is what Xcode created in the persistentStoreCoordinator accessor in
DogBreedsAppDelegate.

NSURL *storeUrl =
 [NSURL fileURLWithPath:
 [[self applicationDocumentsDirectory]
 stringByAppendingPathComponent: @"DogBreeds.sqlite"]];

After obtaining the URL to the store, it creates an NSPersistentStoreCoordinator instance
using the managed object model instance. The persistent store contains the data, while the
model defines how to interpret that data.

persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel: [self managedObjectModel]];

Chapter 17: Core Data 409

NSError *error = nil;
[persistentStoreCoordinator
 addPersistentStoreWithType: NSSQLiteStoreType
 configuration: nil
 URL: storeUrl options:nil error:&error]

NSManagedObjectContext
The NSManagedObjectContext represents an application’s managed object context, or the object
instances (NSManagedObject classes) that your application is manipulating. Managed objects are
fetched from the persistent store into the NSManagedObjectContext, and it is where you modify
the objects. Apple describes the context as a big “scratch-pad” because no manipulations to a
context are persisted until code explicitly tells the context to persist the changes.

Xcode added a managedObjectContext property to DogBreedsAppDelegate and an
accessor that creates the context on first access. Obtain an application’s managed context
by allocating and initializing a new NSManagedObjectContext instance. You then set its
persistent store coordinator.

managedObjectContext = [[NSManagedObjectContext alloc] init];
[managedObjectContext setPersistentStoreCoordinator: coordinator];

NSManagedObject
The NSManagedObjectContext manages NSManagedObject instances. NSManagedObjects
are not entities, but rather, created from entities. An application obtains data from the persistent
store and uses the entities in the model to create the NSManagedObjects placed in the context.
Consider NSEntityDescriptions as the classes and NSManagedObjects as the objects.

The previous Try This task created entities in the xcdatamodel file. Although the
NSManagedObjectModel uses these entities, the NSManagedObjectContext does not; it
manages NSManagedObjects. Our AKCGroup and Breed classes are therefore subclasses
of NSManagedObject.

NSFetchedResultsController
As a navigation-based application, the DogBreeds application will use a hierarchy of UITableViews
to display our AKC groups and breeds. Displaying objects from Core Data in UITableViews is
such a common task that iOS provides support for easily connecting fetched results to a table view.
The NSFetchedResultsController object and NSFetchedResultsControllerDelegate protocol make
it relatively easy to retrieve a set of objects from Core Data and modify the set as the user adds,
deletes, and updates them via a table view.

NSFetchRequest
The NSFetchRequest class is how you query a persistent object store for its data. It uses an
NSEntityDescription to know which entity to fetch. Listing 17-3 illustrates creation of an
NSFetchRequest and an NSEntityDescription, and assigns the description to the request. The
NSManagedObjectContext then executes the request and returns the matching objects in an
NSArray.

410 iOS SDK Programming: A Beginner’s Guide

Listing 17-3 NSFetchRequest example

NSFetchRequest * myRequest = [[NSFetchRequest alloc] init];
NSEntityDescription * entDesc = [NSEntityDescription
 entityForName:@"AKCGroup" inManagedObjectContext:myContext];
[myRequest setEntity:entDesc];
NSError * error;
NSArray * fetchResults = [self.managedObjectContext
executeFetchRequest:myRequest
error:&error];
if(fetchResults == nil) {
 NSLog(@"an error occurred");
 [error release];
}

Notice Listing 17-3 selects all the AKCGroups in myContext. Unless you know there will
always be a reasonable number of results, you will want to limit the results returned. One way
you could do this is through the NSFetchRequest’s fetchLimit property. This property limits
the objects returned by a fetch request. However, this property does not distinguish which
objects to exclude. Often, you will want to limit results to only objects meeting certain criteria.
For instance, you might want all Breeds in a particular AKCGroup. The way you limit results
based upon given criteria is through the NSPredicate class.

NSPredicate
The NSPredicate class restricts the data returned by an NSFetchRequest. It is similar to
a SQL statement’s WHERE clause. The easiest way to create a predicate is by using the
predicateWithFormat class method.

+ (NSPredicate *)predicateWithFormat:(NSString *)format,

The code is similar to initializing an NSString with a format. You write the expression and
include a substitution parameter, followed by one or more substitution values. For instance,
you might create a predicate limiting Breeds to those with a particular group.

NSPredicate *groupFilter =
 [NSPredicate predicateWithFormat:
 @"group = %@", self.selectedGroup];

Notice the preceding predicate does not tell you which entity the predicate is associated
with; to make the association, you set the entity and predicate in the same fetch request.

[myRequest setEntity:entDesc];
[myRequest setPredicate: groupFilter];

Chapter 17: Core Data 411

Predicates can have more than one item in the substitution list. For instance, you might
create the following predicate:

NSPredicate * predicate = [NSPredicate predicateWithFormat:
@"group = %@ and hairLength like %@", self.selectedGroup, @"short"];

This predicate assigns a specific AKCGroup to the group value and short to the hairLength
value. Notice the “like” keyword; there are many similarities between Apple’s predicate syntax
and SQL.

NOTE
Apple’s predicate syntax is quite detailed. For more information on predicate syntax,
see Apple’s “Predicate Programming Guide.”

NSSortDescriptor
By default, fetched objects are unsorted; sorting the objects requires an NSSortDescriptor
instance. This class represents the sort order for a fetched object collection. The following
statement creates and initializes an NSSortDescriptor that sorts AKCGroups in ascending order
based upon their name:

NSSortDescriptor * myDesc = [[NSSortDescriptor alloc]
initWithKey:@"name" ascending:YES];

A request can have more than one sort descriptor, so you add your NSSortDescriptors to an
NSArray and then add the array to the NSFetchRequest using its setSortDescriptors method if
you want to sort by multiple values.

NOTE
Although the topic is not covered in this chapter, you can predefine fetch requests,
predicates, and sort descriptors in an application’s xcdatamodel file. Then at runtime,
you can fetch those predefined objects from the data model and use them in your code.

If you take a look at the RootViewController class that Xcode automatically generated
for us, you’ll see a property to store the NSFetchedResultsController and an accessor that
instantiates the controller the first time it’s accessed. In the default template the accessor fetches
Event objects, so our next task is to change it to retrieve and manipulate the AKCGroup objects
at the top of our hierarchy.

412 iOS SDK Programming: A Beginner’s Guide

Try This Fetching All AKCGroup Entities
1. Open DogBreeds in Xcode.

2. Open RootViewController.m and modify the NSEntityDescription to change it from Event
to AKCGroup. Change the NSSortDescriptor to sort on name in ascending order and
comment out the limit on the fetch, since we know there will never be more than a few
AKC groups (Listing 17-4).

Listing 17-4 fetchedResultsController Accessor in RootViewController

- (NSFetchedResultsController *)fetchedResultsController {
 if (fetchedResultsController != nil) {
 return fetchedResultsController;
 }
 // Create the fetch request for the entity.
 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
 // Edit the entity name as appropriate.
 NSEntityDescription *entity = [NSEntityDescription
 entityForName:@"AKCGroup"
 inManagedObjectContext:self.managedObjectContext];
 [fetchRequest setEntity:entity];
 // Set the batch size to a suitable number.
 //[fetchRequest setFetchBatchSize:20];
 // Edit the sort key as appropriate.
 NSSortDescriptor *sortDescriptor =
 [[NSSortDescriptor alloc] initWithKey:@"name"
ascending:YES];
 NSArray *sortDescriptors =
 [[NSArray alloc] initWithObjects:sortDescriptor, nil];
 [fetchRequest setSortDescriptors:sortDescriptors];
 NSFetchedResultsController *aFetchedResultsController =
 [[NSFetchedResultsController alloc]
 initWithFetchRequest:fetchRequest
 managedObjectContext:managedObjectContext
 sectionNameKeyPath:nil
 cacheName:@"Root"];
 aFetchedResultsController.delegate = self;
 self.fetchedResultsController = aFetchedResultsController;
 [aFetchedResultsController release];
 [fetchRequest release];
 [sortDescriptor release];

Chapter 17: Core Data 413

 [sortDescriptors release];
 NSError *error = nil;
 if (![[self fetchedResultsController] performFetch:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }
 return fetchedResultsController;
}

3. The default implementation of RootViewController also refers to the timestamp attribute of
Event in a couple of places, so we’ll need to change those references as well before we can
run our application. Find the insertNewObject method in RootViewController and change
it to set the AKCGroup name and groupDescription instead of the Event’s timestamp
(Listing 17-5).

Listing 17-5 insertNewObject in RootViewController

- (void)insertNewObject {
 // Create a new instance of the entity managed by the
 // fetched results controller.
 NSManagedObjectContext *context =
 [fetchedResultsControllermanagedObjectContext];
 NSEntityDescription *entity =
 [[fetchedResultsController fetchRequest] entity];
 NSManagedObject *newManagedObject =
 [NSEntityDescription insertNewObjectForEntityForName:
 [entity name] inManagedObjectContext:context];
 [newManagedObject setValue:@"A new group" forKey:@"name"];
 [newManagedObject setValue:@"Description of group"
 forKey:@"groupDescription"];
 // Save the context.
 NSError *error = nil;
 if (![context save:&error]) {
 // Replace this implementation with code to
 // handle the error appropriately.
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }
}

4. Modify the configureCell method in RootViewController so that it displays the
AKCGroup’s name and description in the cell instead of the timestamp from the Event
entity (Listing 17-6).

(continued)

414 iOS SDK Programming: A Beginner’s Guide

Listing 17-6 configureCell in RootViewController

- (void)configureCell:(UITableViewCell *)cell
 atIndexPath:(NSIndexPath *)indexPath {
 NSManagedObject *managedObject = [self.fetchedResultsController
 objectAtIndexPath:indexPath];
 cell.textLabel.text = [managedObject valueForKey:@"name"];
 cell.detailTextLabel.text = [managedObject
 valueForKey:@"groupDescription"];
}

5. Save your changes and run the application. Notice that with hardly any effort, you now
have an application that displays a list of AKCGroups and lets you add and delete groups
from that list (Figure 17-7).

Figure 17-7 Adding and deleting AKCGroups

Chapter 17: Core Data 415

Adding Objects
All objects managed by a managed object context are NSManagedObject instances.
NSManagedObject is a class that implements the required behavior for a Core Data model
object. You do not create NSManagedObject instances, but rather subclasses. These subclasses
are usually created from the entities defined in an xcdatamodel file.

The easiest way to create a new managed object is through the NSEntityDescription’s class
method, insertNewObjectForEntityForName:inManagedObjectContext.

+ (id)insertNewObjectForEntityForName:(NSString *) entityName
inManagedObjectContext:(NSManagedObjectContext *) context

This method obtains an entity from the model, creates a new NSManagedObject based upon
the entity, and inserts it in the current managed object context. For instance, the following code
from insertNewObject in Listing 17-5 creates a new AKCGroup from the AKCGroup entity
used in this chapter’s xcdatamodel file:

AKCGroup * newGroup = (AKCGroup *) [NSEntityDescription
 insertNewObjectForEntityForName: @"AKCGroup"
 inManagedObjectContext:self.managedObjectContext];

After inserting a new object, you can then set its properties, just as if it were a normal
object. The following code sets the newly created AKCGroup’s name:

newGroup.name = @"A new group";

Saving Changes
An application’s managed object context does not automatically save changes to a model’s
data. You must manually save the context to persist changes. For instance, when an application
is suspended or terminates, you might want to check the context for changes and, if there were
changes, save them.

if ([managedObjectContext hasChanges] && ![managedObjectContext
save:&error])

The context saves changes using its save method. This method persists the context’s
changes to its associated persistent data store. The method takes an error as a parameter and
returns a Boolean indicating success or failure.

- (BOOL)save:(NSError **) error

You can also roll back all changes to a context using the rollback method. This method
removes everything from something called the undo stack and removes all insertions and
deletions, and restores all context-managed objects to their original state.

416 iOS SDK Programming: A Beginner’s Guide

NOTE
An NSManagedObjectContext can have an NSUndoManager instance assigned to
its undoManager property. An NSUndoManager manages undoing actions. When
using Core Data, you can use this class to undo changes made to an application’s
NSManagedModelContext. For more information, refer to the NSUndoManager Class
Reference.

Deleting Entities
You use the NSManagedObjectContext’s deleteObject method to delete objects from an
application’s managed object context. This method takes an NSManagedObject instance of
the object to delete. For instance, the default code in tableView:commitEditingStyle deletes an
AKCGroup for us with the following code:

 NSManagedObjectContext *context = [self.fetchedResultsController
managedObjectContext];
 [context deleteObject:[self.fetchedResultsController
objectAtIndexPath:indexPath]];
 // Save the context.
 NSError *error = nil;
 if (![context save:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }

Note that the managed object context marks the particular AKCGroup for deletion with the
deleteObject call, but it doesn’t make the actual change to the persistent store until you call the
context’s save method.

Updating Entities
Modifying an object from a managed object context is as easy as simply changing its
properties and then saving the context. In the next task we’ll create a subview for editing an
AKCGroup, and when the user taps the Done button, we’ll just update the properties of the
group from the fields in the view and then save the context with code like the following.

self.group.name = nameField.text;
self.group.groupDescription = groupDescriptionField.text;
NSError *error = nil;
if (![self.group.managedObjectContext save:&error]) {
 // Be sure to handle any errors
}

Chapter 17: Core Data 417

Try This Adding Navigation and AKCGroup Editing
1. Open DogBreeds in Xcode.

2. The Xcode template automatically created an Edit button on the left and an Add button
on the right for us. Since we’re going to eventually extend our application to have another
level of navigation (select a group to see all of the breeds in that group), we will need to
use the left button for returning back up a level. Open RootViewController.m and change
the viewDidLoad method to put the Edit button on the right instead of the Add button
(Listing 17-7). Also give the view an appropriate title.

Listing 17-7 viewDidLoad in RootViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 // Set up the edit button.
 self.navigationItem.rightBarButtonItem = self.editButtonItem;
 self.title = @"AKC Groups";
}

3. When the user taps on the Edit button to edit the list of AKC groups, we want to display the
Add button so that they can add new groups as well as delete or edit groups. When the user
taps on the Edit button in a UITableView, a setEditing message is sent to the UITableView’s
delegate (our RootViewController), so we can implement that method and create or remove
the Add button when they go into and out of the edit screen (Listing 17-8).

Listing 17-8 setEditing in RootViewController

- (void)setEditing:(BOOL)editing animated:(BOOL)animated {
 [super setEditing:editing animated:animated];
 //[tableView setEditing:editing animated:YES];
 if (editing) {
 UIBarButtonItem *addButton = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self
action:@selector(insertNewObject)];
 self.navigationItem.leftBarButtonItem = addButton;
 [addButton release];
 } else {
 self.navigationItem.leftBarButtonItem = nil;
 }
}

(continued)

418 iOS SDK Programming: A Beginner’s Guide

4. Save your changes and run the application. Notice that the Add button now shows up after
we’ve started to edit the group list, but it still works the way it did before (Figure 17-8).

5. Now we need to create a new view to actually edit the AKCGroup’s properties. Add
an IBOutlet for the new view in RootViewController.h (Listing 17-9). Don’t forget to
synthesize the property in RootViewController.m and release it in the dealloc method.

Listing 17-9 RootViewController.h

#import <UIKit/UIKit.h>
#import <CoreData/CoreData.h>
@class AKCGroupViewController;
@interface RootViewController : UITableViewController
<NSFetchedResultsControllerDelegate> {

Figure 17-8 AKCGroups table in editing mode

Chapter 17: Core Data 419

NSFetchedResultsController *fetchedResultsController;
 NSManagedObjectContext *managedObjectContext;
 AKCGroupViewController *groupEditorVC;
}

@property (nonatomic, retain) NSFetchedResultsController
*fetchedResultsController;
@property (nonatomic, retain) NSManagedObjectContext
*managedObjectContext;
@property (nonatomic, retain) IBOutlet AKCGroupViewController
*groupEditorVC;
@end

6. Create a new UIViewController subclass called AKCGroupViewController with an XIB
file. Edit the header file and add IBOutlets for the name and groupDescription fields. Also
add properties to store the AKCGroup that we’re editing and whether or not it’s a group
insertion (Listing 17-10).

Listing 17-10 AKCGroupViewController.h

#import <UIKit/UIKit.h>

@class AKCGroup;

@interface AKCGroupViewController : UIViewController <UITextFieldDelegate,

UITextViewDelegate> {

 AKCGroup *group;

 UITextField *nameField;

 UITextView *groupDescriptionField;

BOOL insertingGroup;

}

@property(nonatomic, retain) IBOutlet UITextField *nameField;

@property(nonatomic, retain) IBOutlet UITextView *groupDescriptionField;

@property(nonatomic, retain) AKCGroup *group;

@property(nonatomic, assign) BOOL insertingGroup;

@end

7. Select AKCGroupViewController.xib and add a label and text field for the group name and
a label and text view for the description. Connect them to the IBOutlets you created in
Step 6 (Figure 17-9).

8. Open RootViewController.xib, create a new view controller, set its class to
AKCGroupViewController, and set it to load from that nib. Connect the groupEditorVC
outlet from the File’s Owner to the new view. Select the table view and check the Allows
Selection While Editing option. Save your changes.

(continued)

420 iOS SDK Programming: A Beginner’s Guide

9. Open AKCGroupViewController.m and in the viewWillAppear method copy the group
name and description from the group to the fields we just created in the XIB file. In the
viewDidLoad method you will need to create two navigation buttons: put a Done button on
the right and a Cancel button on the left (Listing 17-11).

10. Implement a done method that will be called when the Done button is pressed. It should
copy the name and description back into the group object, ask the managedObjectContext
to save changes and then pop the view (Listing 17-11).

11. Implement a cancel method that pops the view without saving any changes. If the
insertingGroup flag was set, then this was a new group and cancel should delete the group
object and ask the managedObjectContext to save changes (Listing 17-11).

Listing 17-11 AKCGroupViewController.m

#import "AKCGroupViewController.h"

#import "AKCGroup.h"

@implementation AKCGroupViewController

Figure 17-9 Outlets for AKCGroupViewController

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 17: Core Data 421

@synthesize nameField;

@synthesize groupDescriptionField;

@synthesize group;

@synthesize insertingGroup;

- (void)viewWillAppear:(BOOL)animated {

 [super viewWillAppear:animated];

 self.nameField.text = self.group.name;

 self.groupDescriptionField.text = self.group.groupDescription;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 UIBarButtonItem *doneButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem: UIBarButtonSystemItemDone

 target:self action:@selector(done)];

 self.navigationItem.rightBarButtonItem = doneButton;

 [doneButton release];

 UIBarButtonItem *cancelButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemCancel

 target:self action:@selector(cancel)];

 self.navigationItem.leftBarButtonItem = cancelButton;

 [cancelButton release];

}

- (void)viewDidUnload {

 [super viewDidUnload];

 // Release any retained subviews of the main view.

 // e.g. self.myOutlet = nil;

}

- (void)done {

 self.group.name = nameField.text;

 [self.nameField resignFirstResponder];

 self.group.groupDescription = groupDescriptionField.text;

 [self.groupDescriptionField resignFirstResponder];

 NSError *error = nil;

 if (![self.group.managedObjectContext save:&error]) {

 // Be sure to handle any errors

 }

 [self.navigationController popViewControllerAnimated:YES];

}

- (void)cancel {

 [self.nameField resignFirstResponder];

 [self.groupDescriptionField resignFirstResponder];

 // If this was a new group that was created, then

 //cancel should get rid of the empty group from the database

(continued)

422 iOS SDK Programming: A Beginner’s Guide

 if (insertingGroup == YES) {

 // Delete the managed object for the given index path

 NSManagedObjectContext *context = self.group.managedObjectContext;

 [context deleteObject:self.group];

 // Save the deletion

 NSError *error = nil;

 if (![context save:&error]) {

 NSLog(@"Failed to save to data store: %@",

 [error localizedDescription]);

 NSArray* detailedErrors = [[error userInfo]

 objectForKey:NSDetailedErrorsKey];

 if(detailedErrors != nil && [detailedErrors count] > 0) {

 for(NSError* detailedError in detailedErrors) {

 NSLog(@" DetailedError: %@", [detailedError userInfo]);

 }

 }

 else {

 NSLog(@" %@", [error userInfo]);

 }

 abort();

 }

 }

 [self.navigationController popViewControllerAnimated:YES];

}

- (void)dealloc {

 [group release];

 [nameField release];

 [groupDescriptionField release];

 [super dealloc];

}

@end

12. Finally, we need to modify insertNewObject in RootViewController and add a few lines at
the end to push the group editing view when the user inserts a new group.

self.groupEditorVC.group = (AKCGroup *)newManagedObject;
self.groupEditorVC.insertingGroup = YES;
[self.navigationController pushViewController:self.groupEditorVC
animated:YES];

13. When the user taps on a row in a UITableView, the didSelectRowAtIndexPath method is
called. Modify that method in RootViewController so that when the user taps on a group
while in editing mode, the group editing view is also pushed.

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
(NSIndexPath *)indexPath {
 AKCGroup *theGroup = [[self fetchedResultsController]

Chapter 17: Core Data 423

objectAtIndexPath:indexPath];
 if (self.editing == YES) {
 self.groupEditorVC.group = theGroup;
 self.groupEditorVC.insertingGroup = NO;
 [self.navigationController pushViewController:
 self.groupEditorVC animated:YES];
 }
}

14. Save all of your changes and run the application. When you put the group list into editing
mode, you can now click a group to edit it. When you create a new AKCGroup, you’re
now immediately taken to the edit view (Figure 17-10). You can polish the view layout and
some of the settings like field capitalization, but at this point you have a fairly functional
application for manipulating a list of AKC groups.

Figure 17-10 Edit view for AKCGroup

424 iOS SDK Programming: A Beginner’s Guide

Try This

Navigation
You now have a fairly complete application for displaying, adding, deleting, and editing a list
of AKC groups. But the groups alone aren’t too interesting. When the user taps on an AKC
group while not in editing mode, she should see a new UITableView with all of the breeds
within that group. Then if she taps on a breed in that list, she should see a detailed view of the
breed with a photo and description.

The UITableView with the list of breeds within a group is going to be very similar to the
list of AKC groups, so for the Try This task in this section you can largely copy the code from
RootViewController and AKCGroupViewController and we will only highlight the differences.

Adding Navigation and Editing
for a List of Breeds

1. Reopen DogBreeds in Xcode. If you have the DogBreeds-Final project downloaded,
you might want to also open it so that you can easily refer to the final project if you are
uncertain how to complete a step.

2. Using File | New File from the main menus, create a new subclass of UITableViewController
(select the check boxes for a subclass of UITableViewController and create a xib file). Call it
BreedsListViewController.

3. Edit BreedsListViewController.h and add a property to store which group was selected and
IBOutlets for sub-views to edit a breed and display breed details. Also add properties for the
fetchedResultsController and managedObjectStore like RootViewController. The class will
also have to implement the NSFetchedResultsControllerDelegate protocol (Listing 17-12).

Listing 17-12 BreedsListViewController.h

#import <UIKit/UIKit.h>
@class AKCGroup;
@class BreedViewController;
@class BreedDetailViewController;
@interface BreedsListViewController :
 UITableViewController
<NSFetchedResultsControllerDelegate> {
 AKCGroup *selectedGroup;
 BreedViewController *breedEditorVC;
 BreedDetailViewController *breedDetailVC;
 NSFetchedResultsController *fetchedResultsController;
 NSManagedObjectContext *managedObjectContext;
}

Chapter 17: Core Data 425

@property (nonatomic, retain) AKCGroup *selectedGroup;
@property (nonatomic, retain) IBOutlet BreedViewController
*breedEditorVC;
@property (nonatomic, retain) IBOutlet BreedDetailViewController
*breedDetailVC;
@property (nonatomic, retain) NSFetchedResultsController
*fetchedResultsController;
@property (nonatomic, retain) NSManagedObjectContext
*managedObjectContext;

@end

4. Open BreedsListViewController.m and synthesize the properties you added in Step 3 and
be sure to release them in the dealloc method.

5. Copy the fetchedResultsController accessor and all of the NSFetchedResultsControllerDelegate
methods from RootViewController, since we’ll be fetching the Breed objects for the table in the
same way as we did the AKCGroup objects in RootViewController. We do need to change the
fetchedResultsController so that it retrieves Breed entities and only those entities in the selected
group (using a predicate):

NSEntityDescription *entity =
 [NSEntityDescription entityForName:@"Breed"
 inManagedObjectContext:self.managedObjectContext];
[fetchRequest setEntity:entity];
NSPredicate *groupFilter = [NSPredicate predicateWithFormat:
 @"group = %@", self.selectedGroup];
[fetchRequest setPredicate:groupFilter];

6. Change viewDidLoad to add the Edit button just like RootViewController. Copy the
numberOfSectionsInTableView, numberOfRowsInSection, cellForRowAtIndexPath, and
configureCell methods unchanged from RootViewController. Change configureCell to
only display the name. Save your changes.

7. Edit RootViewController and add an IBOutlet called breedsListVC for the
BreedsListViewController. Modify didSelectRowAtIndexPath so that when not in editing
mode, it initializes the new breeds list controller and pushes it onto the view stack:

else {
 self.breedsListVC.selectedGroup = theGroup;
 self.breedsListVC.title = theGroup.name;
 self.breedsListVC.managedObjectContext =
 self.managedObjectContext;
 [self.navigationController
 pushViewController:self.breedsListVC
 animated:YES];
}

(continued)

426 iOS SDK Programming: A Beginner’s Guide

8. The BreedsListViewController object is created once, stored in the breedsListVC
property of the RootViewController, and then reused as the user taps on different
groups to view them. The fetchedResultsController accessor is designed to create the
NSFetchedResultsController the first time and then just reuse it. This creates an interesting
problem. The second time the user taps on a group, the didSelectRowAtIndexPath method
in RootViewController changes the selected group in breedsListVC and changes the view’s
title. But the fetchedResultsController in BreedsListViewController has already fetched
results, and it is simply reused. You can solve this problem by overriding the default setter
for selectedGroup and making the other necessary changes within the view when the group
changes (Listing 17-13).

Listing 17-13 Overriding the setter for selectedGroup

- (void)setSelectedGroup:(AKCGroup *)theGroup {
 if(theGroup != self.selectedGroup) {
 [self.selectedGroup release];
 selectedGroup = [theGroup retain];
 self.fetchedResultsController = nil;
 [self.tableView reloadData];
 }
}

9. Save your changes and select RootViewController.xib. Add a ViewController for
BreedsListViewController, set its class and NIB, and connect it to the breedsListVC
IBOutlet.

10. Save your changes and try running the application. You should be able to tap on an
AKCGroup and switch to a new table view with the group’s name as the title. The table
is empty but would be displaying the breeds in that group if there were any. We can now
navigate into and out of the AKC groups.

11. You can now implement the breed editing functionality exactly the same way we did it for
the AKCGroup in RootViewController. You’ll need to define a BreedViewController class
that lets you edit the breed’s name, photo URL, and description in exactly the same way
you implemented AKCGroupViewController and change didSelectRowAtIndexPath to
push it on the view stack when the user taps a row while in editing mode.

12. You will need to add an insertNewBreed method that is very similar to the
insertNewAKCGroup method in RootViewController. However, in addition to
creating the new Breed entity, it will also need to add it to the selected AKCGroup
with addBreedsObject so that Core Data can maintain the relationship between them
(Listing 17-14).

Chapter 17: Core Data 427

Listing 17-14 insertNewBreed in BreedsListViewController

- (void)insertNewBreed {

 NSManagedObjectContext *context = [self.fetchedResultsController

 managedObjectContext];

 Breed *newBreed = [NSEntityDescription insertNewObjectForEntityForName:

 @"Breed" inManagedObjectContext:context];

 [newBreed setValue:@"" forKey:@"name"];

 [newBreed setValue:@"" forKey:@"breedDescription"];

 [newBreed setValue:@"" forKey:@"photoURL"];

 [self.selectedGroup addBreedsObject:newBreed];

 NSError *error = nil;

 if (![context save:&error]) {

 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

 abort();

 }

 self.breedEditorVC.breed = newBreed;

 self.breedEditorVC.insertingBreed = YES;

 self.breedEditorVC.selectedGroup = self.selectedGroup;

 [self.navigationController pushViewController:self.breedEditorVC

animated:YES];

}

13. Select BreedViewController.xib and add labels and text fields for the breed name and photo
URL. Add a label and text view for the description. Connect the fields to the IBOutlets
in the File’s Owner. Save your changes and then switch to BreedsListViewController.xib,
add a view controller and change its class to BreedViewController, set it to load from the
BreedViewController nib, and connect it to the breedEditorVC IBOutlet.

14. Save all of your changes and run the application. You can now add/edit/delete AKC
groups, move in/out of AKC groups, and add/edit/delete breeds within any group
(Figure 17-11). You’re getting close to a completed application.

(continued)

428 iOS SDK Programming: A Beginner’s Guide

Try This Adding a Breed Detail View
1. Reopen DogBreeds in Xcode and create a new UIViewController subclass called

BreedDetailViewController with a xib file.

2. Open BreedDetailViewController.h and add a property to store the selected breed. Add
properties and IBOutlets for the breedDescription and photo (Listing 17-15). Save your
changes and open BreedDetailViewController.m and synthesize the properties and release
them in the dealloc method.

Listing 17-15 BreedDetailViewController.h

#import <UIKit/UIKit.h>
@class Breed;

Figure 17-11 Editing screens for AKCGroup and Breed

Chapter 17: Core Data 429

@interface BreedDetailViewController : UIViewController {
 UITextView *breedDescription;
 UIImageView *photo;
 Breed *selectedBreed;
}
@property(nonatomic, retain) IBOutlet UITextView *breedDescription;
@property(nonatomic, retain) IBOutlet UIImageView *photo;
@property(nonatomic, retain) Breed *selectedBreed;
@end

3. Select BreedDetailViewController.xib and add UIImageView and UITextView objects.
Connect them to the IBOutlets in the File’s Owner.

4. Select BreedListViewController.xib and add a new View Controller object, change its
class to BreedDetailViewController, and change its nib file attribute. Connect it to the
breedDetailVC IBOutlet of the File’s Owner object.

5. BreedDetailViewController.m only needs one small change. When the view will be
displayed, we need to use the photo URL and actually retrieve the photo and display it in
the UIImageView. iOS makes it easy to retrieve data from a URL and use it to create a
UIImage (Listing 17-16).

Listing 17-16 viewWillAppear method in BreedDetailViewController.m

- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 self.breedDescription.text = self.selectedBreed.breedDescription;
 NSURL* aURL = [NSURL URLWithString:self.selectedBreed.photoURL];
 NSData *imageData = [[NSData alloc] initWithContentsOfURL:aURL];
 UIImage *theImage = [[UIImage alloc] initWithData:imageData];
 [photo setImage:theImage];
 [theImage release];
}

6. Save all of your changes and run the application. If you create a couple of breeds with a
valid photo URL, you will now be able to tap on a breed and see a description and photo.

7. Delete the DogBreeds application from the iPhone Simulator (which also deletes its Core
Data database). Open and run the DogBreeds-Final project. You will find that it comes
with all of the AKC groups defined and all of the dogs in the “Herding Group” complete
with description and photo (Figure 17-12).

(continued)

430 iOS SDK Programming: A Beginner’s Guide

Distributing Core Data with Your App
By the end of this chapter you now have a fairly useful iOS application. It needs some more
polish, maybe a few more fields in the Breed entity, some search functionality perhaps, but it’s
well on the way to being useful. However, no one is going to buy your reference application
if they have to enter all of the reference material themselves! If you have a Core Data–based
application, how do you fill it with useful information and then distribute that with the
application in the App Store?

The first step is to get all of your information into Core Data. With the DogBreeds application,
we built all of the editing functionality into the app, so to enter the data you could just run it in the
iPhone Simulator and type or paste all of the information in to create the 9 AKC groups and 168
recognized breeds. All of that information is readily available in places like Wikipedia.

Of course, using the iPhone Simulator to enter all of the information for your reference
application might start to get quite tedious. If the information you want to embed is available

Figure 17-12 Finished application with data

Chapter 17: Core Data 431

in a standard format (e.g., a csv file), you could also add a bit of temporary code to your
application that looks for the file and imports it. If you will need to maintain the information
over time and release periodic updates, then the easiest thing to do might be to create a Mac
OS X application for editing the data. While the topic is beyond the scope of this book, you
probably noticed that iOS (Cocoa Touch) and Cocoa for Mac OS X overlap. In particular, Core
Data is not specific to iOS. If you want to build a simple desktop application with a few views
for entering and editing your information, you can use exactly the same xcdatamodel file. Then
you’ll be able to directly use the Core Data persistent store database created by Mac OS X in
your iOS application.

Once you’ve filled a Core Data persistent store database with your information, the next
step is to find that database so that you can include it in your application’s Resources folder for
distribution. If you used the iPhone Simulator to enter your data, the easiest way to find that
database is to set a breakpoint on the following line in the persistentStoreCoordinator accessor
in DogBreedsAppDelegate:

NSURL *storeUrl = [NSURL fileURLWithPath:
 [[self applicationDocumentsDirectory]
 stringByAppendingPathComponent:@"DogBreeds.sqlite"]];

The storeURL variable will contain the full path to the persistent store for the iPhone Simulator
on your development computer. Add that file to the Resources folder of your application so that
it will be included in your application when it’s built for distribution. If you created a separate
Mac OS X application for editing your data, you can use a similar trick to find the database file
from that application.

With the default database embedded in the Resources folder, you can make a minor change
to the persistentStoreCoordinator accessor in DogBreedsAppDelegate so that the first time
your application runs, it copies the default database to the Documents directory:

NSString *storePath = [[self applicationDocumentsDirectory]
 stringByAppendingPathComponent: @"DogBreeds.sqlite"];
 NSURL *storeUrl = [NSURL fileURLWithPath:storePath];

 // Copy the default db from resources
 // if it doesn't already exist in documents
 NSFileManager *fileManager = [NSFileManager defaultManager];
 if (![fileManager fileExistsAtPath:storePath]) {
 NSString *defaultStorePath = [[NSBundle mainBundle]
 pathForResource:@"DogBreeds" ofType:@"sqlite"];
 if (defaultStorePath) {
 [fileManager copyItemAtPath:defaultStorePath

 toPath:storePath error:NULL];
 }
 }

432 iOS SDK Programming: A Beginner’s Guide

The sample DogBreeds application for this chapter included editing functionality so that
we could illustrate adding, deleting, and updating objects stored using Core Data. In a typical
reference application you probably wouldn’t include any editing functionality and the database
could be read-only. If that is the case, then you could avoid copying the database to the
Documents directory and just open it in the Resources directory (which is read-only).

If you downloaded the DogBreeds-Final project in the sample code for this chapter, you’ll
see that it includes a default database with some of the dog breeds in the herding group already
entered for you. We’ll start with that project in Chapter 19 and turn it into a universal application
for the iPad, so having some data already present will make it much more interesting on the iPad’s
large screen.

What Next?
You now have a complete and somewhat useful iOS application. In the preceding section you
even learned how to distribute your application with predefined information. It should be fairly
easy to repurpose the sample code from this chapter for different reference material by simply
changing the data model to have the appropriate entities, attributes, and relationships and then
changing the various views to display those attributes. So, what remains to be done before
you can proudly submit your reference application to the App Store and start making money?
There are several rough edges in our sample application that you would want to polish in order
to have a quality application, but none of them are difficult.

The first thing that you might do is remove the editing functionality from the application and
build a separate Mac OS X application (using the same data model) for entering and editing your
reference material. If it’s reference material, you probably don’t want your customers changing it
anyway. That would also free up the right button location in the navigation bar for an information
icon button. At the RootViewController level that button could display a screen of general
information about your application, data sources, etc. At the BreedsListViewController level it
could display the description of the breed, since we’re currently only displaying the first line of it
in the table view.

When tapping on the various breeds in the Herding Group in the DogBreeds-Final application,
you probably noticed a delay between when you tapped and when the detailed view appeared.
The viewWillAppear method loads the photo data synchronously from the Internet, which means
the user waits while a potentially large photo downloads. Ideally, the application should have
immediately displayed the detail view and then loaded the photo data asynchronously with some
indication that the photo was loading.

Even better would be to make your reference application self-contained. When they create
a new breed, you could retrieve the photo from the URL and store the actual photo data in the
database. Then when the user taps on a breed you can display the detail view quickly and it
will work whether the user has Internet access or not.

There are also many ways that you could make the application prettier. For instance, the
UITableView that displays the list of breeds within an AKC group could use custom table cells
that display a thumbnail photo of the breed alongside its name.

Chapter 17: Core Data 433

Summary
In this chapter, you learned the basics of Core Data framework. After learning how to model
your application’s data objects, you learned how to insert, fetch, and delete instances from the
data model. But you only scratched Core Data’s surface in this chapter. There are so many
ways to create an NSPredicate, so many ways to create an NSFetchRequest, and so many
variations on the different ways of working with the managed object context that covering
them all would result in a several-hundred-page book.

To continue learning more about Core Data, refer to Apple’s documentation. Apple has
heavily documented the Core Data framework. The first reference you should consult is
“Apple’s Core Data Tutorial for iOS.” Consult Apple’s “Creating a Managed Object Model with
Xcode” tutorial and also “Xcode Tools for Core Data” for more information on using Xcode’s
data modeler. Consult Apple’s “Predicate Programming Guide” for more information on
writing predicates. Finally, for a complete reference on Core Data, consult Apple’s “Core Data
Programming Guide.”

This page intentionally left blank

435

Chapter 18
Multimedia

436 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Playing system sounds

Playing songs

Using the Media Player to interact with a device’s multimedia

Playing video

Up until the release of the iOS 3.0, the iPhone was a difficult platform for developing
multimedia applications. The capabilities were there, but you had to resort to using low-level

C APIs to program audio and video. And as for the multimedia on a device that was placed there
by iTunes? Forget it, off limits. Any media you wished playing in your application had to either be
packaged as part of your application or be streamed from a server. That restriction changed with
iOS 3.0; now you can access and play a user’s audio iTunes multimedia, making the iPhone and
iPod touch the most programmable portable music players ever released. The vast majority of iOS
devices currently in use are running iOS 3.0 or later, so except for a very unusual application, you
can assume at least iOS 3.0 in your build settings and feel free to write your application to take
advantage of the new APIs.

In this chapter, you explore the basic multimedia capabilities of the iPhone and iPod touch.
You first learn how to play system sounds and longer sounds. You then move to the Media
Player framework, where you use the framework to select and play a user’s iTunes audio
multimedia. After learning to play iTunes media, you then learn how to play a video using the
Media Player framework’s video player.

Playing Sounds
Playing short sounds on an iPhone or iPod touch is easy. Simply load the song as a system
sound, obtain the sound’s id, and use the AudioServicesPlaySystemSound method to play
the sound. Playing a longer sound using the AVAudioPlayer is not difficult, but a little more
involved. However, there is one important limitation you must realize when using sound
on your device using the AudioServicesPlaySystemSound function or AVAudioPlayer: Any
media you play must be packaged as part of your application or must be streamed from a
server. So, although these two classes are good for adding sound to your application or for
developing an interface to a server that streams multimedia, they are not good classes for
developing a music player. Instead, you should use the Media Player Framework, covered
later in this chapter.

Chapter 18: Multimedia 437

AudioServicesPlaySystemSound
The AudioServicesPlaySystemSound function plays a short system sound. Although security
restrictions prevent your application from playing a device’s OS system sounds, you can load
and play your own short (30 seconds or less) sounds and play them using this function.

The AudioServicesPlaySystemSound function can only play a sound with the following
format: .caf, .aif, or .wav. The sound plays at whatever audio level the device is set to, and
the sound plays immediately upon its id being passed to the function. There is no pausing,
rewinding, fast-forwarding, or other sound manipulation functionality. You load a sound, and
the function plays it.

void AudioServicesPlaySystemSound (SystemSoundID inSystemSoundID);

The function takes a SystemSoundID as a parameter. A SystemSoundID is an unsigned
integer that uniquely identifies the sound. You obtain a SystemSoundID by loading a sound
with the AudioServicesCreateSystemSoundID function.

OSStatus AudioServicesCreateSystemSoundID (CFURLRef inFileURL,
SystemSoundID * outSystemSoundID);

The AudioServicesCreateSystemSoundID function takes a reference to the file’s URL
and the SystemSoundID to assign the value to. A CFURLRef is simply a lower-level pointer
to a URL. You can ignore creating a CFURL (what the CFURLRef points to) and instead cast
an NSURL as a CFURLRef. After obtaining a sound’s URL, you pass it to the create system
sound function. It assigns the value to the system sound ID variable you defined; you pass that
ID to the system sound player function; and it plays the sound.

Q: What’s a CFURLRef? What’s an NSURL?

A: A CFURLRef is a reference to a CFURL object. A CFURL is part of the Core Foundation
framework, meaning it is C, not Objective-C, and provides functions to create and parse
URLs. An NSURL is a higher-level, Cocoa Objective-C class for working with URLs. It
encapsulates a URL and provides many functions for manipulating URLs. Refer to the
NSURL Class Reference for more information.

You can cast an NSURL * as a CFURLRef because of Apple’s “toll-free bridging”
functionality. The term “toll-free bridging” refers to certain Core Foundation types being
interchangeable with their higher-level Cocoa counterparts. Just remember, a pointer to an
NSURL is equivalent to a CFURL reference.

Ask the Expert

438 iOS SDK Programming: A Beginner’s Guide

TIP
You can use the AudioServicesPlaySystemSound to vibrate a user’s iPhone. Pass the
kSystemSoundID_Vibrate identifier constant to the function. All versions of the iPhone
can vibrate, but only the latest 4th-generation iPod touch is capable of vibrating; this
code does not do anything on an earlier iPod touch.

AVAudioPlayer and AVAudioPlayerDelegate
The AVAudioPlayer plays sounds. The audio player does not have the limitations of the
AudioServicesPlaySystemSound function. It can play any length sound, loop a sound, and play
multiple sounds at the same time; it also allows control over a sound’s volume. Methods you
might use include prepareToPlay, play, pause, and stop. Each method’s functionality should be
intuitive. Notice that prepareToPlay and play return a BOOL, so you can evaluate if the call
was successful.

-(BOOL)prepareToPlay
-(BOOL)play
-(void)pause
-(void)stop

You can initialize an AVAudioPlayer with data or a URL. The initWithData:error:
function initializes an audio player using data encapsulated in an NSData object. The
initWithContentsOfURL:error: initializes an audio player using the sound file referenced
by the URL. That sound file can be in your application’s bundle, or it can be a resource on a
server and streamed. If it is streamed, note that the prepareToPlay method discussed previously
takes more importance, as it buffers the content and helps lessen a user’s wait when playing an
external resource.

-(id)initWithData:(NSData *) data error:(NSError **) outError
-(id)initWithContentsOfURL:(NSURL *) url error:(NSError **) outError

Properties you might use include the currentTime, data, delegate, duration, playing,
volume, and numberOfLoops. The currentTime property returns the playback in seconds
as an NSTimeInterval. The duration property returns a sound’s duration in seconds as an
NSTimeInterval. The volume returns the player’s playback gain as a float between 0.0 and
1.0. The playing property returns a BOOL, while the numberOfLoops property returns an
unsigned int. There are also more advanced properties, such as numberOfChannels and
peakPowerForChannel. For a more complete listing of AVAudioPlayer’s properties and
methods, refer to the AVAudioPlayer Class Reference.

An AVAudioPlayer’s delegate property refers to an audio player’s AVAudioPlayerDelegate
protocol. As with all protocols, you implement a custom class that adopts the protocol. Protocol
methods you might implement are listed in Table 18-1.

Chapter 18: Multimedia 439

Try This Playing a Sound and an MP3
1. Create a new View-based Application and name it AVPlayer.

2. From the sample code Resources folder, add the mp3, charleston1925_64kb.mp3, to the
application’s Resources folder. Also add the burp_2.aif file.

3. Add the AudioToolbox.framework to the application’s frameworks. Also add the
AVFoundation.framework. Remember, you can easily add a framework by control-clicking
one of the frameworks already in your project (e.g., UIKit) and selecting Show In Finder.
Then drag and drop the new frameworks from the Finder into the Frameworks folder in the
project window. Be sure to uncheck the Copy Items Into Destination Group Folder option.

4. Open AVPlayerViewController.h and import the AudioToolbox and AVFoundation header
files (Listing 18-1). Have the class adopt the AVAudioPlayerDelegate protocol.

Listing 18-1 AVPlayerViewController.h

#import <UIKit/UIKit.h>
#import <AudioToolbox/AudioToolbox.h>
#import <AVFoundation/AVFoundation.h>
@interface AVPlayerViewController : UIViewController
<AVAudioPlayerDelegate> {
SystemSoundID burpSoundID;
AVAudioPlayer * player;
}
- (IBAction) playSound: (id) sender;
- (IBAction) playSong: (id) sender;
@end

Table 18-1 AVAudioPlayerDelegate Methods

Method Description

– (void) audioPlayerBeginInterruption: (AVAudioPlayer *) player Responds to an interruption to an
audio player.

– (void) audioPlayerDecodeErrorDidOccur: (AVAudioPlayer *)
player error: (NSError *) error

Responds to a decoding error.

– (void) audioPlayerDidFinishPlaying: (AVAudioPlayer *) player
successfully: (BOOL) flag

Responds to a sound finished
playing.

- (void) audioPlayerEndInterruption: (AVAudioPlayer *) player Responds to the end of an
interruption.

(continued)

440 iOS SDK Programming: A Beginner’s Guide

5. Add a SystemSoundID as a variable to AVPlayerViewController; name it burpSoundID.
Also add an AVAudioPlayer as a variable and name it player.

6. Add two IBActions to AVPlayerViewController named playSound and playSong. Do not
forget to add the actions to AVPlayerViewController’s header and implementation (Listing
18-2). Don’t implement the actions yet; you do that in Step 9. Save the application.

Listing 18-2 AvplayerViewController.m

#import "AVPlayerViewController.h"
@implementation AVPlayerViewController
-(void) viewDidLoad {
 AudioServicesCreateSystemSoundID((CFURLRef)
 [NSURL fileURLWithPath:
 [[NSBundle mainBundle] pathForResource:@"burp_2"
 ofType:@"aif"]], &burpSoundID);
}
-(IBAction) playSound: (id) sender {
 AudioServicesPlaySystemSound (burpSoundID);
}
-(IBAction) playSong: (id) sender {
 NSError *error = nil;
 player = [[AVAudioPlayer alloc] initWithContentsOfURL:
 NSURL fileURLWithPath:[[NSBundle mainBundle]
 pathForResource: @"charleston1925_64kb"
 ofType:@"mp3"]] error:&error];
 player.delegate = self;
 if(error != NULL) {
 NSLog([error description]);
 [error release];
 }
 [player play];
}
-(void) audioPlayerDidFinishPlaying:
 (AVAudioPlayer *) theplayer successfully:(BOOL)flag {
 [theplayer release];
}
-(void)dealloc {
 [player release];
 [super dealloc];
}
@end

7. Open AVPlayerViewController.xib in Interface Builder and add two buttons. Connect
Touch Up Inside for one button to playSound and for the other button to playSong. Label
both buttons appropriately.

Chapter 18: Multimedia 441

8. Save and exit Interface Builder.

9. Implement playSound, playSong, and viewDidLoad. Also implement the
audioPlayerDidFinishPlaying:successfully: method from the AVAudioPlayerDelegate protocol.

10. Click Run. Tap the button connected to playSong to begin playing the song. After the song
starts playing, tap the button connected to playSound, and the iPhone Simulator belches
simultaneously (Figure 18-1).

This task is straightforward; first, you loaded the sound and obtained its id. As system
sounds are 30 seconds or less, loading it into memory and keeping it there should not tax your
device’s memory. Notice you do not load the longer song into memory until you actually play
it in the playSong method, as it takes more memory.

You initialize the system sound in the viewDidLoad method. Don’t let the one line of code
be intimidating; it’s actually doing something quite simple. It gets the path to the file, creates an
NSURL using the path, casts it as a CFURLRef, and creates a system sound from the resource.

Figure 18-1 The finished application in the iPhone Simulator

442 iOS SDK Programming: A Beginner’s Guide

The playSong method creates a new AVAudioPlayer instance every time the application
calls it. If an error occurs, the method logs the error; otherwise, it plays the song. When the
song is finished playing, it calls the audioPlayerDidFinishPlaying:successfully: method and
releases the player.

NOTE
The mp3 song is entitled The Charleston, and is a digital copy of the 1925 recording. It
was obtained from the Internet Archive’s 78RPMS & Cylinder Recordings Collection. The
mp3 is licensed under the Creative Commons Commercial license. The burp_2.aif sound
is also public domain.

Media Player Framework
Before iOS 3.0, a device’s multimedia loaded by iTunes was off limits for application developers.
The Media Player framework released with OS 3.0 removes that restriction by providing several
classes that work with a device’s iTunes-loaded multimedia.

NOTE
Running the Media Player audio application in this chapter requires installing
the application on an iPod touch or iPhone running iOS 3.0 or later. The sample
application won’t run correctly in the iPhone simulator.

Media Data Classes
An MPMediaLibrary class represents a device’s multimedia library loaded from iTunes. An
MPMediaItem object represents every multimedia item in the media library. The MPMediaItem
class contains metadata such as title, artist, and length about a media item.

When working with the MPMediaLibrary, you usually execute an MPMediaQuery that
returns an MPMediaItemCollection. Although the Media Player framework offers several
methods for accessing a device’s media programmatically, another way is by using an
MPMediaPickerController. An MPMediaPickerController is a class that presents a view much
like the current iPod application. A user can then select one or more media items, and the picker
returns an MPMediaItemCollection.

After selecting the media items to play, you pass them to an MPMusicController to play.
The MPMusicController class is responsible for playing music, rewinding, forwarding, and
other playback functionality.

MPMediaItem and MPMediaItemCollection
An MPMediaItem encapsulates a single audio multimedia element in a device’s iTunes
multimedia collection. The MPMediaItem contains one method for obtaining a media item’s
properties, the valueForProperty: method.

-(id)valueForProperty:(NSString *)property

Chapter 18: Multimedia 443

The valueForProperty: method takes a constant representing the property for which to
obtain a value. Notice that the method returns an id; this means the function’s return value is
tied to the property constant passed to the method. Listing 18-3 lists the properties you might
pass to the valueForProperty: method.

Listing 18-3 Media Item properties

NSString *const MPMediaItemPropertyPersistentID;
NSString *const MPMediaItemPropertyAlbumTrackNumber;
NSString *const MPMediaItemPropertyAlbumTrackCount;
NSString *const MPMediaItemPropertyDiscNumber;
NSString *const MPMediaItemPropertyDiscCount;
NSString *const MPMediaItemPropertyArtwork;
NSString *const MPMediaItemPropertyLyrics;
NSString *const MPMediaItemPropertyPodcastTitle;

You can also use user-defined properties. These properties have a variable value,
depending upon a user’s multimedia collection use. Listing 18-4 lists the user-defined
properties.

Listing 18-4 User-defined properties

NSString *const MPMediaItemPropertyPlayCount;
NSString *const MPMediaItemPropertySkipCount;
NSString *const MPMediaItemPropertyRating;
NSString *const MPMediaItemPropertyLastPlayedDate;

The MPMediaItemCollection class is a collection of media items. You obtain a collection’s
media items through its items property. This property returns an NSArray of MPMediaItem
objects. Other properties include count, mediaTypes, and the representativeItem properties.
The count property returns a count of the collection’s multimedia items as an NSUInteger. You
use the mediaTypes property and the representativeItem property to obtain a collection’s media
types.

Selecting Multimedia
Before playing multimedia, a user must select the media items. The easiest way to allow a user
to do this is through the MPMediaPickerController. Similar to the UIImagePickerController,
it controls a view that is hidden from developers. Also, like the image picker, it enables you to
define a delegate for the media picker. That delegate, the MPMediaPickerControllerDelegate,
responds to a user’s interaction with the media picker.

444 iOS SDK Programming: A Beginner’s Guide

MPMediaPickerController
The MPMediaPickerController class manages the media picker view. As with the
UIImagePickerController, you present this controller’s view as a modal view that overlays
the currently displaying view.

[self presentModalViewController:mediaController animated:YES];

You can initialize a media picker to only display certain media types using the
initWithMediaTypes method. This method takes an MPMediaType; valid types
are MPMediaTypeMusic, MPMediaTypePodcast, MPMediaTypeAudioBook, and
MPMediaTypeAnyAudio. Notice there is no MPMediaTypeVideo; you cannot select or
play an iTunes-loaded video on devices using MPMediaPickerController. (Note that iPhone
3gs and later devices are capable of selecting video using the UIImagePickerController.)

You can also initialize a media picker to allow a user to select multiple items by setting
the allowsPickingMultipletems property to YES. If you don’t set this property, its default
value is NO.

MPMediaPickerControllerDelegate
A media picker requires an MPMediaPickerControllerDelegate if it is to do anything interesting.
An MPMediaPickerControllerDelegate has two methods you implement when adopting this
protocol: the mediaPicker:didPickMediaItems: and mediaPickerDidCancel: methods.

(void) mediaPicker: (MPMediaPickerController *)mediaPicker
didPickMediaItems: (MPMediaItemCollection *) mediaItemCollection
(void) mediaPickerDidCancel: (MPMediaPickerController *) mediaPicker

The mediaPickerDidCancel: method responds to a user canceling the media picker, while
the mediaPicker:didPickMediaItems: method responds to a user clicking the Done button after
selecting media in the media picker.

Playing Multimedia: MPMusicPlayerController
A user will probably want to play a multimedia object after selecting it. You play an
MPMediaItemsCollection using the MPMusicPlayerController. This class is responsible for
playing audio media items. There are two player types to choose from: an iPodMusicPlayer
and an applicationMusicPlayer. An iPodMusicPlayer replaces an iPod’s state, while an
applicationMusicPlayer is independent of a user’s iPod. For instance, if you are using
iPodMusicPlayer and set it to shuffle mode, the user’s iPod application will be in shuffle
mode the next time he or she uses it. When using the applicationMusicPlayer, this does not
happen because it does not modify the iPod’s state.

You initialize a music player’s media collection using the setQueueWithQuery:,
setQueueWithItems:, or setQueueWithItemCollection: method. The set with query method
takes an MPMediaQuery, the set with items method takes an NSArray of MPMediaItems,
and the set with collection method takes an MPMediaItemCollection.

Chapter 18: Multimedia 445

Try This

You can initialize a media player’s state using the repeatMode and shuffleMode properties.
If you do not set these properties, your player’s state is the user’s iPod application state. Other
properties you can use to obtain information about a media player are the nowPlayingItem,
currentPlaybackTime, and playbackState properties. The nowPlayingItem property is an
MPMediaItem that represents the currently playing media item. The currentPlaybackTime is an
NSInterval containing the now-playing item’s playback location in seconds. The playbackState
property returns the music player’s playback state as an MPMusicPlaybackState. Valid values
for these states include MPMusicPlaybackStateStopped, MPMusicPlaybackStatePlaying,
MPMusicPlaybackStatePaused, MPMusicPlaybackStateInterrupted, MPMusicPlaybackState
SeekingForward, and MPMusicPlaybackStateSeekingBackward.

Methods you can use to control a media player are play, pause, stop, beginSeekingForward,
beginSeekingBackward, endSeeking, skipToNextItem, skipToBeginning, and skipToPreviousItem.
The play, pause, and stop methods should be self-explanatory. The beginSeekingForward
and beginSeekingBackward methods are for fast-forwarding and rewinding, respectively,
while the endSeeking method stops fast-forwarding or rewinding. The skipToNextItem,
skipToPreviousItem, and skipToBeginning methods should also be self-explanatory.

The MPMusicPlayerController has no delegate protocol for responding to its events.
Instead it provides two notifications: the MPMusicPlayerControllerPlaybackStateDidChange
and MPMusicPlayerControllerNowPlayingItemDidChange notifications. The first notification
posts when an MPMusicPlayerController’s playback state changes. The second notification
posts when an MPMusicPlayerController’s now-playing media item changes. By using these
two notifications, your application can respond to the media player’s state, as the next example
task illustrates.

Using the Media Picker and Media Player
1. Create a new View-based Application; name it iPodSongs.

2. Add the Media Player framework (MediaPlayer.framework) to the project’s frameworks.

3. Add the player_stop.png, player_pause.png, player_play.png, player_rew.png and player_
fwd.png images from the sample code Resources folder to the project’s Resources folder.

4. Open iPodSongsViewController and add four IBOutlets: three for UILabels and one for
a UIView. Name the outlets currentTitle, currentArtist, currentLengthInSeconds, and
volumeView.

5. Add an IBAction named selectSongs. Don’t implement selectSongs yet. Add an IBAction
named changeState (Listings 18-5 and 18-6).

(continued)

446 iOS SDK Programming: A Beginner’s Guide

Listing 18-5 iPodSongsViewController.h

#import <UIKit/UIKit.h>
#import <MediaPlayer/MediaPlayer.h>
@class MyMediaPickerDelegate;
@interface iPodSongsViewController : UIViewController {
 MyMediaPickerDelegate * mediaControllerDelegate;
 MPMediaLibrary * mediaLib;
 UILabel * currentTitle;
 UILabel * currentLengthInSeconds;
 MPMusicPlayerController * player;
 UIView * volumeView;
 MPVolumeView * mpVolumeView;
}
@property (nonatomic, retain) MyMediaPickerDelegate
*mediaControllerDelegate;
@property (nonatomic, retain) MPMediaLibrary * mediaLib;
@property (nonatomic, retain) IBOutlet UILabel * currentTitle;
@property (nonatomic, retain) IBOutlet UILabel * currentArtist;
@property (nonatomic, retain) IBOutlet UILabel * currentLengthInSeconds;
@property (nonatomic, retain) MPMusicPlayerController * player;
@property (nonatomic, retain) IBOutlet UIView * volumeView;
- (IBAction) selectSongs : (id) sender;
- (IBAction) changeState: (id) sender;
@end

Listing 18-6 iPodSongsViewController.m

#import "iPodSongsViewController.h"
#import "MyMediaPickerDelegate.h"
@implementation iPodSongsViewController
@synthesize mediaControllerDelegate;
@synthesize mediaLib;
@synthesize currentTitle;
@synthesize currentArtist;
@synthesize currentLengthInSeconds;
@synthesize player;
@synthesize volumeView; int currentItem = 0;
-(void) viewDidLoad {
 [MPMediaLibrary defaultMediaLibrary];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector: @selector(songsPicked:)
 name:@"SongsPicked" object:nil];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector: @selector(songChanged)
 name: @"MPMusicPlayerControllerNowPlayingItemDidChangeNotification"
 object:nil];

Chapter 18: Multimedia 447

 mpVolumeView = [[MPVolumeView alloc] init];
 [mpVolumeView setFrame:[self.volumeView bounds]];
 [self.volumeView addSubview:mpVolumeView];
}
-(void) songsPicked: (NSNotification *) notification {
 player = [MPMusicPlayerController applicationMusicPlayer];
 player.repeatMode = MPMusicRepeatModeNone;
 player.shuffleMode = MPMusicShuffleModeOff;
 [player setQueueWithItemCollection:(MPMediaItemCollection *)
 [notification object]];
 [player beginGeneratingPlaybackNotifications];
 [player play];
}
-(void) songChanged {
 MPMediaItem * tempMediaItem = (MPMediaItem *)player.nowPlayingItem;
 [self.currentTitle setText:[tempMediaItem valueForProperty:
 MPMediaItemPropertyTitle]];
 [self.currentArtist setText: [tempMediaItem valueForProperty:
 MPMediaItemPropertyArtist]];
 [self.currentLengthInSeconds setText: [NSString stringWithFormat:@"%i",
 [tempMediaItem valueForProperty:MPMediaItemPropertyPlaybackDuration]]];
}
-(IBAction) changeState: (id) sender {
 NSInteger num = ((UIControl*)sender).tag;
 switch (num) {
 case 1: [player pause]; break;
 case 2: [player play]; break;
 case 3: [player stop]; break;
 case 4: [player skipToPreviousItem]; break;
 case 5: [player skipToNextItem]; break;
 }
}
-(IBAction) selectSongs: (id) sender {
 MPMediaPickerController * mediaController =
 [[MPMediaPickerController alloc] init];
 mediaController.allowsPickingMultipleItems = YES;
 mediaController.delegate = [[MyMediaPickerDelegate alloc] init];
 [self presentModalViewController:mediaController animated:YES];
}
-(void)dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [mediaControllerDelegate release];
 [player stop];
 [mpVolumeView release];
 [super dealloc];
}
@end

(continued)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

448 iOS SDK Programming: A Beginner’s Guide

6. Save your changes and open iPodSongsViewController.xib. Create a button and connect its
Touch Up Inside event to the selectSongs method.

7. Create five buttons and add an image to each button (Figure 18-2). Assign each button a
unique tag in the Inspector. Connect the five buttons to the changeState action.

8. Add three labels to the canvas. Also add a UIView to the view’s canvas and connect it to
the volumeView outlet.

9. Connect the three labels to the currentTitle, currentArtist, and currentLengthInSeconds
outlets.

10. Exit Interface Builder and return to iPodSongsViewController.

11. Create a new Objective-C class that is a subclass of NSObject named
MyMediaPickerDelegate and have it adopt the MPMediaPickerControllerDelegate
protocol (Listings 18-7 and 18-8). Don’t forget to import the MediaPlayer header file.

Figure 18-2 The application’s canvas in Interface Builder

Chapter 18: Multimedia 449

Listing 18-7 MyMediaPickerDelegate.h

#import <Foundation/Foundation.h>
#import <MediaPlayer/MediaPlayer.h>
@interface MyMediaPickerDelegate : NSObject
<MPMediaPickerControllerDelegate> {
}
@end

Listing 18-8 MyMediaPickerDelegate.m

#import "MyMediaPickerDelegate.h"
@implementation MyMediaPickerDelegate
-(void) mediaPicker: (MPMediaPickerController *) mediaPicker
 didPickMediaItems: (MPMediaItemCollection *)
mediaItemCollection {
 NSArray * mediaItems = [mediaItemCollection items];
 NSEnumerator * enumer = [mediaItems objectEnumerator];
 id myObject;
 while (myObject = [enumer nextObject]) {
 MPMediaItem * tempMediaItem = (MPMediaItem *) myObject;
 NSLog(@"Title: %@", [tempMediaItem valueForProperty:
 MPMediaItemPropertyTitle]);
 NSLog(@"id: %@", [tempMediaItem
 valueForProperty:MPMediaItemPropertyArtist]);
 NSLog(@"id: %i", [tempMediaItem valueForProperty:
 MPMediaItemPropertyPersistentID]);
 NSLog(@"-----------------------");
 }
 [mediaPicker.parentViewController dismissModalViewControllerAnimated
:YES];
 [mediaPicker release];
 [[NSNotificationCenter defaultCenter] postNotificationName:
 @"SongsPicked" object: mediaItemCollection];
}
-(void) dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver: self];
 [super dealloc];
}
@end

12. Open iPodSongsViewController and add properties for the MyMediaPickerDelegate,
MPMediaLibrary, and MPMusicPlayerController. Name the properties mediaPickerDelegate,
mediaLib, and player.

450 iOS SDK Programming: A Beginner’s Guide

13. Add a variable for MPVolumeView named mpVolumeView.

14. Be certain that iPodSongsViewController imports MyMediaPickerDelegate, and do not
forget to synthesize the three properties.

15. Return to MyMediaPickerDelegate and implement the didPickMediaItems delegate
methods.

16. Return to iPodSongsViewController and implement the selectSongs and changeState
methods.

17. Implement the viewDidLoad method and the songsPicked method, paying particular
attention to the NSNotification.

18. The application runs, displays the controls, and allows selecting multimedia. Click Select
Songs, choose a few songs from your iPod and then tap Done. The music player starts
playing and displays the currently playing item in the labels (Figure 18-3).

Figure 18-3 The application running on an iPod touch

Chapter 18: Multimedia 451

When you think about how long it took us to write this application, it is perhaps the coolest
application in the entire book. The user interface isn’t pretty, but the application works well as
a simple music player. In fact, with a little polish you might even like it better than the iPod
touch’s Music application because you can quickly select all the songs you’re interested in and
then play them.

In the viewDidLoad method, notice the code for initializing a volume control. Although
the MPVolumeView class provides a sizeThatFits method, it is better to do it the way presented
here. Simply add a UIView as a subview, size it to the desired size, and then add the volume
view to the subview. Easy, and it is guaranteed to size correctly.

mpVolumeView = [[MPVolumeView alloc] init];
[mpVolumeView setFrame:[self.volumeView bounds]];
[self.volumeView addSubview:mpVolumeView];

As the MPMediaPlayerController does not have a delegate, you made the
iPodSongsViewController a listener for the MPMusicPlayerControllerNowPlayingItemDid
ChangeNotification event. When a player’s now-playing item changes, the player fires this
event. You set the songChanged method as the method called when the event fires. After being
called, the songChanged method obtains the now-playing item and updates the view’s labels.

The changeState method handles any one of the five control buttons being tapped. Because
each button has a different tag, the method can distinguish which button fires the Touch Up
Inside event and handle the message appropriately. In a real-world application, you would
disable the buttons as appropriate. For instance, when paused, the Pause button should be
disabled and only the Play button enabled. Here, however, the extra code would have detracted
from the example’s intended purpose.

In addition to the player’s notification, you created your own notification in
MyMediaPickerDelegate. Upon selecting an MPMediaItemCollection using the media
picker, this notification is fired. The songsPicked method in iPodSongsViewController
responds to this notification. The method takes the NSNotification as a parameter; remember
notifications can contain an object. Here, that object is the selected MPMediaItemCollection.
After initializing the media player with the collection, the songsPicked method tells the
media player to begin generating playback notifications and then starts playing.

MPMoviePlayerController
The MPMoviePlayerController plays video bundled as part of your application. It can also
stream video from a server. However, despite its name, it cannot use video loaded on a user’s
device by iTunes.

In versions of iOS prior to 3.2, MPMoviePlayerController always presents a modal, full-
screen video when it plays and you can only minimally modify its appearance using properties.
With iOS 3.2 and later, MPMoviePlayerController can also play video in a portion of the
screen or even in portrait orientation. This is particularly helpful on the iPad, where the display
is large enough to display video in a portion of the screen alongside other information. If you
want to remain compatible with devices running iOS 3.1 and earlier, then the player runs full
screen and you can change the movie player’s background color, a movie’s scaling, and the
controls presented to the user when playing a movie. You change a movie’s background color

452 iOS SDK Programming: A Beginner’s Guide

Try This

using the backgroundColor property. You change a movie’s scaling using the scalingMode
property, and you change the controls presented using the movieControlMode property.

The backgroundColor property changes the movie player’s background color when playing
a movie. For instance, when you watch a video using the Video application on an iPod touch,
the background is black. If you wish, you can change that color using this property.

The scalingMode property changes a movie’s scaling. Valid values for scalingMode are
MPMovieScalingModeNone, MPMovieScalingModeAspectFit, MPMovieScalingModeAspect
Fill, and MPMovieScalingModeFill.

The movieControlMode property determines the visible controls when a movie plays. For
instance, when playing a movie using the Video application, if you tap the screen, it presents
a control showing the volume, a control showing the location in the video, a scaling control,
and a Done button. You can modify which control a player presents using this property. Valid
values are MPMovieControlModeDefault, MPMovieControlModeVolumeOnly, and MPMovie
ControlModeHidden.

You initialize a movie player using the initWithContentURL: method. This method
takes an NSURL to the movie’s location. This location must be within your application’s
sandbox or available via an Internet server (it’s a URL). After initializing the player, you call
the prepareToPlay and play methods. If you wish to be notified that the player has stopped
playing, you register as a notification listener, listening for the player’s MPMoviePlayerPlay
backDidFinishNotification notification.

Play a Video
1. Create a new View-based Application called MoviePlayer. Add the Media Player

framework to the application.

2. Add the movie short.3gp from the sample code Resources folder to the project’s Resources
folder.

3. Open MoviePlayerController and add an MPMoviePlayerController as a property; name it
moviePlayer (Listings 18-9 and 18-10). Do not forget to import the MediaPlayer.

Listing 18-9 MovieplayerViewController.h

#import <UIKit/UIKit.h>
#import <MediaPlayer/MediaPlayer.h>
@interface MovieplayerViewController : UIViewController {
 MPMoviePlayerController * movieplayer;
}
@property (nonatomic, retain) MPMoviePlayerController * movieplayer;
-(IBAction) playMovie: (id) sender;
-(void) playingDone;
@end

Chapter 18: Multimedia 453

Listing 18-10 MovieplayerViewController.m

#import "MovieplayerViewController.h"
@implementation MovieplayerViewController
@synthesize movieplayer;
-(void) viewDidLoad {
 [[NSNotificationCenter defaultCenter] addObserver:self selector:
 @selector (playingDone)
 name:MPMoviePlayerPlaybackDidFinishNotification object:nil];
}
-(IBAction) playMovie: (id) sender {
 movieplayer = [[MPMoviePlayerController alloc] initWithContentURL:
 [NSURL fileURLWithPath:[[NSBundle mainBundle]
 pathForResource:@"short" ofType:@"3gp"]]];
 // Only iOS 3.2 and above respond to the loadState selector
 if ([movieplayer respondsToSelector:@selector(loadState)]) {
 // Our application runs in portrait orientation,
 // so on iOS 3.2 and later, the movie player will also
 // display in portrait mode by default.
 // The next few lines change the orientation to landscape
 [[UIApplication sharedApplication]
 setStatusBarOrientation:UIInterfaceOrientationLandscapeRight
 animated:NO];
 // Rotate the view for landscape playback
 [[self view] setBounds:CGRectMake(0, 0, 480, 320)];
 [[self view] setCenter:CGPointMake(160, 240)];
 [[self view] setTransform:CGAffineTransformMakeRotation(M_PI / 2)];
 // Set frame of movie player
 [[movieplayer view] setFrame:CGRectMake(0, 0, 480, 320)];
 // Add movie player as subview
 [[self view] addSubview:[movieplayer view]];
 // Play the movie
 [movieplayer play];
 } else {
 // Prior to iOS 3.2, this was enough to play the movie correctly
 [movieplayer play];
 }
}
-(void) playingDone {
 [movieplayer release];
 movieplayer = nil;
}
-(void)dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [movieplayer release]; [super dealloc];
}
@end

(continued)

454 iOS SDK Programming: A Beginner’s Guide

4. Add a method called playingDone and an IBAction called playMovie to MoviePlayerView
Controller. Implement both methods the same as in Listing 18-10. Also implement the
viewDidLoad method.

5. Save your changes and open MovieplayerViewController.xib.

6. Add a button to the canvas and connect it to the playMovie action.

7. Save your changes and click Run. Click the play movie button and an old B&W movie will
play in landscape orientation.

Like the music player, you register to listen to the finished playing event in the viewDidLoad
method. Notice that unlike the previous task, you didn’t place the event’s name in quotations.
This omission was intentional. The event and the event’s NSString name are the same, and you
can use either. The viewDidLoad method also initializes the movie player with the short.3gp
movie’s location. In a real-world application, loading a movie when a view loads is probably not
a good idea, as movies are usually quite large.

When a user taps the button, the movie player begins playing the movie in landscape mode
(Figure 18-4). Upon tapping the Done button, the user returns to the application’s view in
portrait mode. The controller also receives the notification that the player stopped playing and
releases the player.

Figure 18-4 The application running in iPhone Simulator

Chapter 18: Multimedia 455

Summary
In this chapter, you learned how to play system sounds, sounds, a device’s audio multimedia
loaded from iTunes, and video. You first played a system sound. System sounds are 30 seconds
or less and are designed as audible alerts. You also played an MP3 using the AVAudioPlayer.
The AVAudioPlayer is for playing longer sounds, including your application’s multimedia,
such as MP3s. However, the audio player is limited to sounds bundled with your application or
streamed from a server. It cannot play iTunes-loaded multimedia.

The newer media player can play iTunes multimedia, provided it is audio. You learned
how to use the media player and how to use a controller to select music and a player to play
it. After learning about the Media Player framework’s newer features, you then learned about
its movie player. Despite being part of the Media Player framework, you can only play video
bundled as part of your application or video streamed from a server.

In the next chapter we will return to the MoviePlayer example and look at how to play
video in a subview on the iPad’s larger display.

This page intentionally left blank

457

Chapter 19
Universal Applications
for the iPad

458 iOS SDK Programming: A Beginner’s Guide

Key Skills & Concepts
Understanding the key differences of the iPad

Creating a universal application

Creating a Split View Controller

Popover views

Understanding of other iPad and iOS 4 features

It’s important to understand that the iPad isn’t just an iPhone with a bigger screen. Somehow,
the larger screen completely changes the experience. When you’re designing for the iPad,
don’t just think about spreading out your content so that it more or less fills the screen. Instead,
think about how you could completely reimagine what you’re presenting given the freedom of
the iPad’s large screen. Information that had to be spread over multiple tabs on an iPhone can
be elegantly displayed on a single screen. Or you can include a variety of controls alongside
your content. While the iPhone and iPod touch were best suited to consuming content, the
iPad is also great for creating it—think about applications that you could design that would let
the user create new content while on-the-go. The iPad provides whole new opportunities for
innovative applications.

Everything that you’ve learned about iOS programming in the previous chapters also applies
to the iPad, and all of the example applications should run just fine on an iPad. However, because
they were designed and built for the smaller display of the iPhone, without modification they will
run in a small area in the center of the iPad’s much larger display—not a particularly compelling
experience for the user (Figure 19-1). Fortunately, the changes necessary to make a typical
application run full screen on the iPad are quite easy. In this chapter you will begin by looking at
the minimum changes necessary to create a universal application.

However, making your app run full screen as a universal application on the iPad is only
the start. Unless your primary audience will be using an iPhone or iPod touch, you’ll want to
go well beyond the minimum and design your information layout for the larger screen. You’ll
also want to incorporate new iOS functionality added just for the iPad. For instance, the larger
screen of the iPad makes it possible to display two levels of the hierarchy in a navigation-based
application at once, making it faster and easier for the user to move around in your content. We
will incorporate Split View Controllers and popovers into the DogBreeds app from Chapter 17.

The movie player from Chapter 18 used the full screen of the iPhone when playing video,
which made sense on a small device. However, when video is supplementing other information
in an iPad application, it will often make more sense to display it in only part of the screen so
that you can display additional information or controls around the video. Later in this chapter
you will convert the MoviePlayer application from Chapter 18 into a universal application and
then modify it to play the video in the center of the screen.

Chapter 19: Universal Applications for the iPad 459

Figure 19-1 DogBreeds application running in the iPad Simulator

460 iOS SDK Programming: A Beginner’s Guide

Try This

Finally, we will briefly take a look at some of the other new iOS functionality that showed
up in iOS 3.2 on the iPad and then in iOS 4.0 on the iPhone and iPod touch. We don’t have
enough space in an introductory book to try examples for each of these new features, but we’ll
give you a taste for what they can do and point you at the Apple documentation if you decide
they make sense for your applications.

Creating a Universal Application
In all of the Try This examples up to this point, the Targeted Device Family has always been set
to iPhone (which includes the iPod touch). If you reopen the DogBreeds app from Chapter 17
and select iPad Simulator from the pull-down next to the Run button, and then click Run, the
app will launch in the iPad Simulator in a small window in the center of the larger iPad display
(Figure 19-1). Technically, it’s compatible with the iPad, but since it wasn’t built with any
knowledge of the iPad’s different hardware, the iPad is just emulating an iPhone.

To take full advantage of the larger screen and other unique features of the iPad, your
application will have to be built for the iPad. You essentially have two choices when starting
a project that will run on the iPad. Your first option is to create a universal application that
will run well on both the iPad and the iPhone, detecting which device it’s on and adjusting as
necessary. This is best for users, since they can buy it once in the App Store and use it on both
their iPhone and their iPad.

If the iPhone and iPad versions would sell to different audiences or your application contains
a lot of predefined graphics that take up a lot of space and need to be different for each screen
size (e.g., game backgrounds), it might be more practical to build separate versions for each
device. That allows you to include only the graphics needed for the device, or to charge for both
versions separately. If the code is largely the same, you can do this with a single project and
two build targets. However, if your iPad and iPhone versions will have significantly different
functionality, it might make sense to create two separate projects that share any common source
files but implement different views and controllers.

In the next Try This example, we will turn the DogBreeds app from Chapter 17 into a
universal application. The functionality will be very similar between the iPad and iPhone
versions, and it’s the sort of reference application that users would expect to only pay
for once. This will require us to check which device we’re running on and layout views
accordingly, but it is usually worth complicating the code a bit to have a single application
that is distributed to everyone.

Building an App for iPad and iPhone
1. Select the DogBreeds project in the Navigation pane. Make sure the Deployment Target is

set to range from 3.2 through the latest version of the iOS.

2. Click Build Settings tab and select iPhone/iPad in the pull-down menu next to Targeted
Device Family (Figure 19-2).

Chapter 19: Universal Applications for the iPad 461

3. Make sure the iPad Simulator is still selected in the pull-down next to the Run button and
then click Run. The DogBreeds app will launch in the iPad Simulator and use the full
screen (Figure 19-3).

4. Click in and out of the groups and look at a breed or two in the Herding group. Notice
that the app more or less works, but as you look at the details for a specific breed, it only
uses one corner of the display. You will also notice that when you rotate the iPad, the app
continues to display in portrait mode.

Figure 19-2 Changing the targeted device family

(continued)

462 iOS SDK Programming: A Beginner’s Guide

Figure 19-3 DogBreeds running full-screen in the iPad Simulator

Chapter 19: Universal Applications for the iPad 463

Try This

Handling Orientation Changes
If you’ve had the opportunity to handle an iPad in person, one of the first things that you probably
noticed is that you are just as likely to use it in landscape as portrait orientation. You may also find
yourself rotating the iPad often while using it. This behavior is different than what is typical with
the iPhone or iPod touch. With those devices, you could get away with creating an application
that ignores device orientation and only functions in portrait mode. In fact, except for games that
were designed for landscape orientation, most of the iPhone applications in the App Store ignore
rotation and display in portrait orientation only.

When running on the iPad, your application will have to react to rotations and draw accordingly.
Fortunately, reacting to changes in orientation and redrawing the standard UI components is
very easy. When an iOS device is rotated, the shouldAutorotateToInterfaceOrientation method is
called in the current view controller. If you don’t implement that method, then it defaults to NO.

Reacting to Orientation Changes
1. Reopen the DogBreeds project.

2. Add the shouldAutorotateToInterfaceOrientation method in Listing 19-1 in all of
the view controllers in the application (AKCViewController, BreedViewConroller,
BreedsListViewController, BreedDetailViewController, and RootViewController).

Listing 19-1 shouldAutorotateToInterfaceOrientation method

-(BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)orientation {
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)
 return YES;
 return NO;
}

3. Save all of your changes and click Run. In the Hardware menu of the iPad Simulator, there
are menu commands to rotate the device left or right. Play with rotating it while on each of
the DogBreed screens, and you will notice that it now rotates and redraws as necessary.

NOTE
The orientation argument to shouldAutorotateToInterfaceOrientation can have one of
four values: UIInterfaceOrientationPortrait, UIInterfaceOrientationPortraitUpsideDown,
UIInterfaceOrientationLandscapeLeft, UIInterfaceOrientationLandscapeRight. If you have
an application that will only work in certain orientations (e.g., portrait and portrait
upside down), you can use that argument to decide when to allow rotation.

464 iOS SDK Programming: A Beginner’s Guide

In the preceding example, we simply allowed rotation when on the iPad and iOS took care of
everything else for us, redrawing all of the subviews as necessary. That’s great for UITableViews,
but for views where you’re presenting a lot of data in an elegant format, you will probably need
to shift around or resize elements to make them continue to fit and look good. You can override
the willRotateToInterfaceOrientation:duration method on any view controllers where you want a
chance to change the content of the view before it rotates into the new orientation.

In Listing 19-1 you will also notice that the application needed to determine if it was currently
running on an iPad and used the following test:

(UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)

This is the Apple-preferred way of determining whether you’re running on an iPad or on an
iPhone/iPod touch. As you modify various parts of the DogBreeds application to make it display
differently on an iPad, you will find yourself using that test fairly often. It’s a judgment call, but
when you find yourself having to test whether you are on an iPad over and over in the same view
controller, it may make sense to define two view controllers and then instantiate and push one for
the iPad and the other one for the iPhone.

Icons and Default Screens
We haven’t bothered creating icons for our sample iPhone applications in previous chapters, but
that’s a step that you have to take care of before submitting your application to the App Store.
With an iPhone application, you only needed to create a 57 × 57 pixel icon. When creating a
universal application, you will also need three more sizes:

A 72 × 72 icon named “icon-ipad.png” for the home screen

A 50 × 50 icon named “icon-small-50.png” for Spotlight on the iPad

A 29 × 29 icon named “icon-small.png” for Spotlight on the iPhone

After you’ve created your icons and added them to the Resources folder, control-click
DogBreeds-Info.plist and select Open As Source Code. Replace the two lines:

<key>CFBundleIconFile</key>
 <string></string>

with the following lines to reference all of the icons:

<key>CFBundleIconFiles</key>
 <array>
 <string>icon.png</string>
 <string>icon-ipad.png</string>
 <string>icon-small-50.png</string>
 <string>icon-small.png</string>
 </array>

If you include a default screen in your application’s resources, iOS will use it to display
a splash or startup screen while your application is launching. Our sample apps start up very
quickly, so we haven’t bothered to create a splash screen. However, when your application

Chapter 19: Universal Applications for the iPad 465

Try This

is larger or needs to do a lot of initialization at startup, it’s nice to give your user something
to look at while it launches. For an iPhone application, the screen would be 320 × 460 and
added to your Resources folder as “Default.png.” If you’re creating a universal application,
then you also need to include portrait (768 × 1004) and landscape (1024 × 748) screens named
“Default-Portrait.png” and “Default-Landscape.png.”

Applications on the iPhone always launch in portrait orientation, but if you want your iPad
application to be able to launch in any orientation, you’ll also have to add the following entry
to the plist we were editing earlier:

<key>UISupportedInterfaceOrientations~ipad</key>
<array>
 <string>UIInterfaceOrientationPortrait</string>
 <string>UIInterfaceOrientationPortraitUpsideDown</string>
 <string>UIInterfaceOrientationLandscapeLeft</string>
 <string>UIInterfaceOrientationLandscapeRight</string>
</array>

Split Views
The DogBreeds application now runs full screen on the iPad, but it has a lot of wasted space. In a
typical navigation-based application, the larger display of the iPad is ideally suited to displaying
navigation and item details at the same time. When the iPad is in landscape orientation, a table
view from the iPhone easily fits alongside a detail area that’s still much larger than it is on the
iPhone. Apple calls this a split view, and iOS 3.2 on the iPad added the UISplitViewController to
make it easy to implement a navigation view on the left that controls a detail view on the right.

When the iPad is in portrait orientation, there’s not quite enough width to display a standard
table view alongside a reasonably-sized detail area, so when in portrait orientation, the Split View
Controller uses the full display for the detail view and pops up a navigation view on top of it when
the user taps a button. UISplitViewController automatically takes care of hiding the popover
navigation view as you rotate the iPad.

Add a Split View
iOS lets you define a second main window xib that will be used when the application is
running on the iPad. We start by creating that window and placing a Split View Controller in it
instead of the Navigation Controller.

1. Open the DogBreeds project. Control-click the project in the Navigation pane and select
New Group, naming it Resources-iPad. Drag the new folder down next to the Resources
folder. This will give us a convenient place to keep all of our iPad-specific resources.

2. Control-click the Resources-iPad folder and select New File | Select User Interface from
the column on the left and Application as the template. Select iPad from the Device Family
pull-down (Figure 19-4). Name the new file MainWindow-iPad. This creates a new xib
file that is sized specifically for the iPad.

(continued)

466 iOS SDK Programming: A Beginner’s Guide

3. Now we need to tell the application about the new MainWindow file. Select DogBreeds-
Info.plist and add a new entry with key NSMainNibFile~ipad and the string value
“MainWindow-iPad”.

4. Select MainWindow-iPad.xib. Drag a Split View Controller into the main window.

5. Select the View Controller on the left (under the Root View Controller title). In the
Identity subpane of the Utilities pane, change the class of this View Controller to
RootViewController. Select the right pane in the Split View Controller and change its
class to BreedDetailViewController. In the Attributes subpane, set each of them to load
from their respective NIB files. Save your changes.

6. Go to DogBreedsAppDelegate.h and define a new instance variable and IBOutlet property:

UISplitViewController *splitVC;
@property (nonatomic, retain) IBOutlet UISplitViewController
*splitVC;

7. Synthesize the property in the .m file and release it in the dealloc method.

8. Switch back to MainWindow-iPad.xib. Select the App Delegate and set its class to
DogBreedsAppDelegate. In the Connections subpane, connect the navigationController
outlet to the Navigation Controller, the splitVC outlet to the Split View Controller, and the
window outlet to the Window (Figure 19-5).

Figure 19-4 Creating a new window xib

Chapter 19: Universal Applications for the iPad 467

9. Now when the application launches, we need to use the appropriate view based on whether
we’re running on the iPhone or iPad. Select DogBreedsAppDelegate.m and change the
application:didFinishLaunchingWithOptions method to match Listing 19-2.

Listing 19-2 application:didFinishLaunchingWithOptions method

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
 [window addSubview:[splitVC view]];
 } else {
 [window addSubview:[navigationController view]];
 }
 [window makeKeyAndVisible];
 return YES;
}

10. Save your changes and click Run. If the iPad is in portrait orientation, rotate it to landscape
orientation. You should see the dog groups navigation along the left and an empty details view
on the right (Figure 19-6). If you stop the application and switch to running it in the iPhone
Simulator, you’ll find that everything still works as expected on the smaller iPhone screen.

Figure 19-5 Setting up the Split View Controller

(continued)

468 iOS SDK Programming: A Beginner’s Guide

You will notice that clicking a group takes you to the breeds list as expected, but clicking a
breed displays its details in the navigation pane rather than the details area. This is because the
two panes don’t know anything about each other yet.

You will also notice that when you rotate the iPad Simulator to portrait orientation, the
navigation view slides out of sight as expected. However, there’s no button to make the
navigation appear as a popover. Let’s solve this problem first, and then we’ll worry about
connecting the detail pane to the navigation pane.

We will need to add a toolBar to the Breed Detail View in order to have some place to
draw the button. But the catch is that the iPhone version already has a navigation bar and we
don’t want to add an additional toolbar there. Since we still want the rest of the behavior of the
Breed Detail View, the easiest way to solve this will be to subclass BreedDetailViewController.
Adding this subclass will also give us the opportunity to change the layout of the photo and
description in the nib file to make better use of the larger iPad display.

1. Create a new file, making it a UIViewController subclass with Targeted for
iPad selected. Make sure a XIB is created too (Figure 19-7). Name the new file
BreedDetailViewController_iPad.

Figure 19-6 DogBreeds with a split view

Chapter 19: Universal Applications for the iPad 469

2. Edit BreedDetailViewController_iPad.h and change the class to inherit from
BreedDetailViewController. Add an instance variable and IBOutlet property called toolbar
to keep track of the toolbar we will be adding. Also create a property to keep track of the
popover that we will be implementing a little later (Listing 19-3). Be sure to synthesize
the properties and release them in BreedDetailViewController_iPad.m

Listing 19-3 BreedDetailViewController_iPad.h

#import <UIKit/UIKit.h>
#import "BreedDetailViewController.h"
@interface BreedDetailViewController_iPad : BreedDetailViewController
<UISplitViewControllerDelegate> {
 UIToolbar *toolbar;
 UIPopoverController *popover;
}
@property(nonatomic,retain) IBOutlet UIToolbar *toolbar;
@property(nonatomic, retain) UIPopoverController *popover;
@end

Figure 19-7 Creating a BreedDetailViewController subclass

(continued)

470 iOS SDK Programming: A Beginner’s Guide

3. Select BreedDetailViewController_iPad.xib. Drag a toolbar into Edit pane and remove the
button from the toolbar, since it will be added/removed in our code as the iPad is rotated.
Connect the toolbar to the toolbar outlet in the File’s Owner.

4. Also add an Image View (500 pixels wide × 350 pixels tall) and add a Text View (600 pixels
wide × 560 pixels tall). Connect them to their outlets in the File’s Owner (it will be similar
to BreedViewController.xib). Save your changes.

5. Select MainWindow-iPad.xib and select the right-hand pane of the Split View Controller.
Change its class from BreedDetailViewController to BreedDetailViewController_iPad.
Also change the NIB that it’s loaded from to match. Save your changes.

We now have a toolbar where we can place a button to display the navigation popover
when in portrait mode, but we need to be notified when the Split View Controller is
changing orientation so that we can hide/show the button. Fortunately, iOS provides the
UISplitViewControllerDelegate protocol with methods that are called when orientation
changes.

6. Select BreedDetailViewController_iPad.h. Add the UISplitViewControllerDelegate
protocol (Listing 19-3).

7. Select BreedDetailViewController_iPad.m. Implement the willHideViewController
delegate method as shown in Listing 19-4. This method will be called right before the
navigation controller is hidden and the detail view resized. We set the name of the button
and then keep track of the popover so that we can delete it later, when the iPad rotates back
to landscape orientation. We also take this opportunity to resize the photo and description
fields to fit nicely in the portrait layout.

Listing 19-4 willHideViewController in BreedDetailViewController_iPad.m

- (void)splitViewController:(UISplitViewController*)svc
willHideViewController:(UIViewController *)aViewController
 withBarButtonItem:(UIBarButtonItem*)barButtonItem
forPopoverController:(UIPopoverController*)pc {
 if (self.selectedBreed != nil)
 barButtonItem.title = self.selectedBreed.group.name;
 else
 barButtonItem.title = aViewController.title;
 [self.toolbar setItems:[NSArray arrayWithObject:barButtonItem]
animated:YES];
 self.popover = pc;
 CGRect portraitPhotoFrame = photo.frame;
 portraitPhotoFrame.origin.x = 135;
 portraitPhotoFrame.origin.y = 50;
 photo.frame = portraitPhotoFrame;
 CGRect descFrame = breedDescription.frame;

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 19: Universal Applications for the iPad 471

 descFrame.size.height = 560;
 descFrame.origin.x = 85;
 descFrame.origin.y = 410;
 breedDescription.frame = descFrame;
}

8. Select MainWindow-iPad.xib. Select the Split View Controller and connect its delegate
outlet to the BreedDetailViewController_iPad in the left pane of the view controller.

9. Save all of your changes and click Run. DogBreeds should now display a button when
rotated to portrait orientation. Clicking the button brings up the group list or the breeds list
if a group has already been selected.

10. You’ll notice that the button remains in the toolbar after switching back to landscape
orientation. Implement the willShowViewController delegate method as shown in Listing 19-5.
When the navigation view is about to reappear when the iPad rotates to landscape orientation, it
removes the button and releases the popover view. We also take the opportunity to change
the position and size of the photo and description fields to make them fit nicely in the
landscape layout.

Listing 19-5 willShowViewController in BreedDetailViewController_iPad.m

- (void)splitViewController: (UISplitViewController*)svc
willShowViewController:(UIViewController *)aViewController
 invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem {
 [self.toolbar setItems:[NSArray array] animated:YES];
 self.popover = nil;
 // Adjust the photo and description to fit nicely in landscape mode
 CGRect portraitPhotoFrame = photo.frame;
 portraitPhotoFrame.origin.x = 100;
 portraitPhotoFrame.origin.y = 20;
 photo.frame = portraitPhotoFrame;
 CGRect descFrame = breedDescription.frame;
 descFrame.size.height = 360;
 descFrame.origin.x = 50;
 descFrame.origin.y = 375;
 breedDescription.frame = descFrame;
}

11. Run the application again and the button now disappears when you rotate back to
landscape orientation.

We still have one major issue outstanding in our split view. Clicking a breed in the navigation
view displays the details in the navigation view instead of the detail view. This is the desired
behavior on the iPhone, but on the iPad the navigation view needs to be able to find the separate

(continued)

472 iOS SDK Programming: A Beginner’s Guide

detail view and update it. We can do this by first ensuring that rootViewController has a reference
to the detail view and then passing that reference on to the BreedsListViewController when it’s
pushed so that it has access to the detail view when a breed is selected.

1. First add an IBOutlet property to RootViewController.h to store a reference to the
BreedDetailViewController (and remember to synthesize it and release it in the dealloc
method):

BreedDetailViewController *breedDetailVC;
@property (nonatomic, retain) IBOutlet BreedDetailViewController
*breedDetailVC;

2. Now we have to make sure it’s connected to the detail half of the Split View Controller.
Open MainWindow-iPad.xib, select the left pane of the split view (the RootViewController)
and in the Connections pane, connect breedDetailVC to the right hand pane of the split view
(the BreedDetailViewController). Save your changes.

3. Select RootViewController.m and edit the didSelectRowAtIndexPath method and set
the breedDetailVC property of breedsListVC to the breedDetailVC property of the
RootViewController (Listing 19-6).

Listing 19-6 didSelectRowAtIndex in RootViewController.m

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
(NSIndexPath *)indexPath {
 AKCGroup *theGroup = [[self fetchedResultsController]
objectAtIndexPath:indexPath];
 if (self.editing == YES) {
 self.groupEditorVC.group = theGroup;
 self.groupEditorVC.insertingGroup = NO;
 [self.navigationController pushViewController:
self.groupEditorVC animated:YES];
 } else {
 self.breedsListVC.selectedGroup = theGroup;
 self.breedsListVC.title = theGroup.name;
 self.breedsListVC.managedObjectContext =
self.managedObjectContext;
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)
 self.breedsListVC.breedDetailVC = self.breedDetailVC;
 [self.navigationController pushViewController:
self.breedsListVC animated:YES];
 }
}

4. Select BreedDetailViewController.h and add two new method declarations:

- (void)updateDetails;
- (void)updateBreed: (Breed *)theBreed;

Chapter 19: Universal Applications for the iPad 473

5. Switch to BreedDetailViewController.m and implement the methods as shown in
Listing 19-7. We’re adding a handy method for changing the breed associated with the
BreedDetailViewController and a separate method for loading the values for the details
fields (photo and description) into their subviews. We’ll call updateBreed from the
navigation controller when the user selects a specific breed.

Listing 19-7 Changes to BreedDetailViewController.m

- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 [self updateDetails];
}
- (void)updateDetails {
 self.title = selectedBreed.name;
 self.breedDescription.text = self.selectedBreed.breedDescription;
 NSURL* aURL = [NSURL URLWithString:self.selectedBreed.photoURL];
 NSData *imageData = [[NSData alloc] initWithContentsOfURL:aURL];
 UIImage *theImage = [[UIImage alloc] initWithData:imageData];
 [photo setImage:theImage];
 [theImage release];
}
-(void)updateBreed: (Breed *)theBreed {
 self.selectedBreed = theBreed;
}

6. When running on the iPhone, updateBreed doesn’t update the subviews because that will
have to wait until the view is ready to appear. However, on the iPad updateBreed should
update the details immediately and notify the view that something has changed so that
it will redraw. Switch to BreedDetailViewController_iPad.m and add an override of the
updateBreed method (Listing 19-8).

Listing 19-8 Changes to BreedDetailViewController_iPad.m

-(void)updateBreed: (Breed *)theBreed {
 self.selectedBreed = theBreed;
 [self updateDetails];
 [self.view setNeedsDisplay];
}

7. Select BreedsListViewController.m and edit the didSelectRowAtIndexPath method to
match Listing 19-9. We can now call updateBreed regardless of what device the application
is running on. If the application is running on the iPhone we also need to push the detail
view onto the stack.

(continued)

474 iOS SDK Programming: A Beginner’s Guide

Listing 19-9 didSelectRowAtIndexPath in BreedsListViewController.m

-(void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 Breed *theBreed = [[self fetchedResultsController]
 objectAtIndexPath:indexPath];
 if (self.editing == YES) {
 self.breedEditorVC.breed = theBreed;
 self.breedEditorVC.insertingBreed = NO;
 [self.navigationController pushViewController:
self.breedEditorVC animated:YES];
 } else {
 [self.breedDetailVC updateBreed:theBreed];
 if (UI_USER_INTERFACE_IDIOM() != UIUserInterfaceIdiomPad) {
 [self.navigationController pushViewController:
 self.breedDetailVC animated:YES];
 }
 }
}

8. Save all your changes and run the application (Figure 19-8).

Everything should be more or less working, but you’ll notice that in portrait orientation,
when you select a breed and the details update behind the navigation popover, it remains
visible. It would be nice if the popover disappeared once we’ve selected a breed so that you
can easily see the breed information.

1. Select BreedDetailsViewController_iPad.m and edit the updateBreed method and add the
following lines:

if (self.popover)
 [self.popover dismissPopoverAnimated:YES];

2. Save your changes and run the application. In portrait orientation, when you select a breed,
the navigation popover will now disappear to let you see the breed information.

3. You will notice that when you stay in portrait orientation, the button to bring up the
navigation popover doesn’t change to reflect the group of the currently selected breed. The
updateBreed method can update the button title, but it will need a reference to the button
first. Edit BreedDetailViewController_iPad.h and add a UIBarButtonItem property called
navButton. Be sure to synthesize and release it.

4. Edit the willHideViewController method in BreedDetailViewController_iPad and set the
navButton property to the button:

self.navButton = barButtonItem;

5. Edit the willShowViewController method and set navButton to nil, since it’s going away.

6. Finally, edit the updateBreed method and, if the button is non-nil, then update its title to
match the group of the newly selected breed (Listing 19-10).

Chapter 19: Universal Applications for the iPad 475

Listing 19-10 Updating the button title in updateBreed

-(void)updateBreed: (Breed *)theBreed {
 if (self.popover) {
 [self.popover dismissPopoverAnimated:YES];
 if (self.navButton != nil) {
 self.navButton.title = theBreed.group.name;
 [self.toolbar setNeedsDisplay];
 }
 }
 self.selectedBreed = theBreed;
 [self updateDetails];
 [self.view setNeedsDisplay];
}

Figure 19-8 DogBreeds running in landscape orientation

(continued)

476 iOS SDK Programming: A Beginner’s Guide

7. Run the application and note that the button updates its title as you switch between breeds
in different working groups (Figure 19-9).

Figure 19-9 DogBreeds running in portrait orientation

Chapter 19: Universal Applications for the iPad 477

Note that because we load the breed photo over the Internet before redrawing the detail
view, there will be a delay between tapping the breed name and the details appearing. When
the Internet connection is slow, this delay will be long enough that the user won’t think that
their tap worked. Immediate feedback is especially important in navigation controls, and if we
were creating a polished application ready for submission to the App Store, the photo would
need to be loaded asynchronously so that the rest of the details can show up immediately.

You have now converted the DogBreeds application from Chapter 17 into a fully
functional universal app that still works the same way it did on the iPhone but also looks good
on the iPad. If you were planning to submit this application to the App Store, there’s still a
lot of polishing you could do, but the basic functionality is all there. With the much bigger
details view, you could store and display a lot more information about the breeds. To fit that
extra information in the iPhone version, you might want to switch to a tabbed interface for the
details screen and spread what fits in one screen on the iPad over several tabs on the iPhone.

Other iPad Features
The iPad and iOS 3.2 brought new functionality to iOS, and in this section we’ll briefly cover
the most significant new features. It’s beyond the scope of this book to cover all of them
in detail with complete Try This examples, but we will at least introduce the new features,
describe when you might want to use them, and then point you toward excellent Apple
documentation that you can leverage to add advanced functionality to your own applications.

Using Popovers for Information or Editing
The popover view that is used by UISplitViewController for navigation in portrait orientation
can also be used independently on the iPad. Popovers work well in any situation where the user
might want to tap on a visible item on the screen and then see more information or quickly edit
some aspect of the item. They have the advantage of being quick and unobtrusive, while leaving
the rest of the screen (the overall context) still visible to the user. However, popovers should not
be used in situations where you must have an answer from the user. When using the popover,
the user should always be able to tap outside the popover and have it disappear. If you need to
get the attention of your user, or must have an answer to some question or choice, you will want
to use a modal view instead.

Displaying a popover is quite easy. You will want to begin by creating a view controller
that contains the information you want to display or the controls needed for editing an item
that you are displaying on the screen. Make sure that view controller is accessible via an outlet
in the enclosing view so that you can refer to it when the user taps on an item.

Popovers are ideal for situations where the user taps on an object in the display, or even just
an obvious area of the screen. Assuming you detect that tap and then call a method to handle it,
the implementation of that method will look something like the following:

-(void) handleUserTap: (id)sender {
UIPopoverController *thePopover = [[UIPopoverController alloc]
 initWithContentViewController: myInfoVC];
 thePopover.popoverContentSize = myInfoVC.view.frame.size;

478 iOS SDK Programming: A Beginner’s Guide

Try This

 [thePopover presentPopoverFromRect: ((UIView *)sender).bounds
 inView: (UIView *)sender
 permittedArrowDirections:UIPopoverArrowDirectionAny
animated:YES];
}

This assumes sender is the subview that was tapped by the user and the contents to be
displayed in the popover are in an outlet called myInfoVC. If you need to know when the popover
shows and hides in order to adjust its content, you can implement the UIPopoverControllerDelegate
protocol. Apple’s “iPad Programming Guide” has a good description of using popovers for content,
and Apple’s ToobarSearch sample application shows how to use a popover to display search results.

Movies in a View
On the iPad with its larger screen, it will often make sense to display video in a smaller
view, leaving room on the screen for additional information or controls. As we mentioned
in Chapter 18, with iOS 3.2 and later, the movie player does not need to take over the full
screen. In the next Try This example, we will convert the MoviePlay application from
Chapter 18 into a universal application. While it will behave the same as before on the
iPhone, you will be modifying it to play the movie in the center of the screen on an iPad. You
can easily imagine how a reference application could be particularly useful on the iPad when
you can continue to display information while playing a video in only part of the screen.

MoviePlayer Centered on the iPad Screen
1. Open the MoviePlayer project from Chapter 18. You will convert it to a universal application

by following steps similar to the first Try This example. Begin by changing the build settings
so that the targeted device family is iPhone/iPad.

2. Create a new UIViewController subclass with the name MoviePlayerViewController_iPad.
Make sure that Targeted for iPad and With XIB are checked.

3. Edit MoviePlayerViewController_iPad.h and make it a subclass of MoviePlayerViewController
(you will need to import MoviePlayerViewController.h).

4. Create MainWindow_iPad.xib and add a View Controller with class
MoviePlayerViewController_iPad, loaded from the MoviePlayViewController_iPad nib.
Change the class of the App Delegate to MoviePlayerAppDelegate. Connect the window
and view controller outlets of the App Delegate to the window and new view controller.

5. Select MoviePlayerViewController_iPad.xib and add a Play Movie button connected to
the File’s Owner playMovie action. Set the button’s geometry so that its size is fixed and it
centers horizontally and vertically (Figure 19-10).

6. Add an entry to MoviePlayer-Info.plist with key NSMainNibFile~ipad and string value
MainWindow-iPad, the same as you did when converting DogBreeds to a universal app.

Chapter 19: Universal Applications for the iPad 479

7. Save all of your changes and run the application. The Play Movie button should show up
and tapping it should start the movie in one corner of the display. It works, but it doesn’t
look pretty on an iPad.

8. Override the playMovie method in MoviePlayerViewController_iPad using the
implementation in Listing 19-11.

Listing 19-11 playMovie in MoviePlayerViewController_iPad.m

-(IBAction) playMovie: (id) sender {
 movieplayer = [[MPMoviePlayerController alloc]
 initWithContentURL: [NSURL fileURLWithPath:
 [[NSBundle mainBundle]
 pathForResource: @"short" ofType:@"3gp"]]];
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(playingDone)
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:nil];

Figure 19-10 Changing the geometry of the Play Movie button

(continued)

480 iOS SDK Programming: A Beginner’s Guide

 CGPoint center =
 ([UIDevice currentDevice].orientation ==
 UIDeviceOrientationPortrait) ?
 CGPointMake(384,512) : CGPointMake(512,384);
 [[movieplayer view] setFrame:CGRectMake(center.x - 240,
 center.y - 160, 480, 320)];
 [[self view] addSubview:[movieplayer view]];
 [movieplayer play];
}

9. Save your changes and run the application. Now the button and movie should both appear
centered in the display, whether the iPad is in landscape or portrait orientation (Figure 19-11).

Figure 19-11 MoviePlayer on the iPad with video in a subview

Chapter 19: Universal Applications for the iPad 481

You have now had practice converting a second application to be a universal application
that runs well on the iPad but still runs correctly on the iPhone. On the iPad with its larger
screen, it will often make sense to display video in a smaller view leaving room for additional
information or controls. We successfully converted the MoviePlayer application from Chapter 18
so that on an iPad the video plays in an iPhone-sized view with plenty of room for additional
information or controls.

External Display
A little known feature of the iPad is the ability to connect an external display. Apple sells an
adapter cable that will plug into the connector on the bottom of the iPad and connect to any
VGA display or projector. It’s important to note that the monitor or projector becomes a second
display for the iPad; it doesn’t mirror the contents of the iPad screen. This is actually very useful
behavior if you’re writing something like a presentation application where the second screen
displays the content and the iPad displays controls or presentation notes. There aren’t very many
applications in the App Store that take advantage of an external display, so if you have a clever
idea for a new application that leverages two screens, it could be a great opportunity.

To use the external display, you have to add code to your application to detect the display, get
a reference to it, and then add views to it. This is actually surprisingly easy to do. You can detect a
second screen by registering to be notified when an external display is connected and disconnected:

NSNotificationCenter *center = [NSNotificationCenter defaultCenter];
[center addObserver:self selector: @selector(screenConnected:)
name:UIScreenDidConnectNotification object:nil];
[center addObserver:self selector: @selector(screenDisconnected:)
name:UIScreenDidDisconnectNotification object:nil];

If an external display is already connected when your application launches, no notifications
are sent, so you will also need to check for a second screen on launch. You can check for the
second screen and get a reference to the screen using the UIScreen class:

NSAray *allTheScreens = [UIScreen screens];
if ([allTheScreens count] > 1) {
 // external display attached
}

The first screen in the array is always the iPad’s built-in display. Any additional screens will be
external (at present only one is supported, but who knows what the future holds).

To draw on the external screen, you need to create a UIWindow, set its screen to the reference
to the external screen and then add a view to the window. For example:

 UIScreen *secondScreen = [[UIScreen screens] objectAtIndex:1];
 UIWindow *externalWindow = [[UIWindow alloc] initWithFrame:[secondScreen
bounds]];
 [externalWindow setScreen: secondScreen];
 externalView = [[UIView alloc] initWithFrame: [externalWindow bounds]];
 [externalWindow addSubview:externalView];
 [externalWindow makeKeyAndVisible];

482 iOS SDK Programming: A Beginner’s Guide

The externalView is just like any other view, and you add subviews to it or draw in it. The
main thing to remember is to watch for notifications when the external screen appears or
disappears, since the user can unplug it at any time and you will need to react and move
controls or information back onto the main display as needed.

It’s also worth noting that while you’ve become accustomed to working with a fixed
screen size on the iPhone and then the iPad, that isn’t necessarily the case with the external
screen. Depending on the device attached, it could be one of several different sizes (at least
640 × 480, 800 × 600, and 1024 × 768 are supported by the iPad). You may need to examine
the bounds of the second screen and adjust the layout of your content accordingly.

Working with Documents
With iOS 3.2 on the iPad and then iOS 4.0 on the iPhone and iPod touch, iOS devices gained
some functionality for working with documents. The details are beyond the scope of this book, but
if you’re writing a document-based application that would benefit from sharing documents with
other applications, this new functionality can be extremely useful. Apple’s “iPad Programming
Guide” has more details, but we will provide a brief introduction to the key features.

Your application has always had a Documents directory where it could store information, but
prior to iOS 3.2, it was largely hidden from the user. Now, if you add the key UIFileSharingEnabled
with value true to YourApplicationName-Info.plist, then your users can use iTunes to add files
to the Documents folder and retrieve documents that were created or edited on the iPad.

You can also register your application to deal with specific types of documents. You will
need to edit your application’s plist and add a key like the following:

<key>CFBundleDocumentTypes</key>
<array>
 <dict>
 <key>LSItemContentTypes</key>
 <array>
 <string>public.plain-text</string>
 </array>
 </dict>
</array>

Each dictionary entry is a type of document that your application can handle. In addition
to registering the types that you can handle, your application will also need to handle opening
the document when requested. In the application:didFinishLaunchingWithOptions method,
you will need to check the options dictionary that is passed in for an NSURL that specifies a
document that another application has requested you open. Again, see the “iPad Programming
Guide” for more information.

Finally, if you write an application that handles documents that it doesn’t necessarily know
how to open (e.g., productivity applications), then it can use a UIDocumentInteractionController
object to work with those documents. The document interaction controller works with the
system to preview files in place and determine if they can be opened by another application.

Chapter 19: Universal Applications for the iPad 483

Summary
In this chapter, you learned how to take an iPhone/iPod touch application and convert it to a
universal application that handles rotation and takes advantage of the larger iPad display. You
then learned how to use a split view on the iPad to enhance that application so that it provided
easy navigation on the iPad while still retaining the standard navigation on the iPhone. All of
these same techniques would be used when creating a universal application from scratch.

You also learned how to make MPMoviePlayerController use only part of the screen on
the iPad so that there is space to place additional information or controls around the video.
While working with the movie player you also got practice creating a second iPad application.

We also briefly introduced some of the other features that became available with the iPad
initially and then in iOS 4 on the iPhone and the iPod touch when it was released in the summer
of 2010.

With the completion of this chapter, you should be fairly comfortable creating your own
universal applications or an iPad-specific application. iOS has a very rich feature set, so there
are many things that we didn’t cover in this book, but you’ve had a chance to work with all of
the main functionality that is needed for a typical application. For the more advanced features,
explore Apple’s documentation and sample applications and you’ll have everything you need
to create the next big hit in the iTunes App Store. Have fun!

This page intentionally left blank

485

Index

Symbols
// (double slash), comment syntax and, 28
/* (slash asterisk), comment syntax and, 28

A
Absolute Beginner’s Guide to C, Second

Edition (Perry), 26
accessories, adding to table cells, 211–213
action sheets

delegates, 257
exercise using, 257–260
function of, 238
in Photo application, 252
summary, 262
when to use, 251

actions
connecting button bar to, 175
IBActions, 130

activity indicators
exercise using, 241–244
function of, 238

showing activity with, 239–240
styles, 240
summary, 261

Activity Monitor, in Instruments, 101
ad hoc

distributing apps, 106–107
testing apps, 105

Add Symbolic Breakpoint, 95
AddViewProjectAppDelegate, 119
alerts

alerting users, 251
creating alert with multiple

buttons, 256
creating simple alert, 254–255
delegates, 252–253
function of, 238
summary, 261–262

alloc method
memory management, 54
overview of, 52–53

Amazon.com application, activity indicator
on, 239

486 iOS SDK Programming: A Beginner’s Guide

App IDs
adding applications, 84
creating, 81–82
error message and, 87

App IDs tab, of Provisioning Portal, 81–82
App Store

app reviews, 3
customizing table rows and, 188
distributing apps via, 107–108
membership in iPhone Developer

Program and, 80
navigation controller and, 160–161
overview of, 2

appearance properties, sliders, 277
application badges, 260–261
application settings

changing application name, 334
changing settings while application

suspended, 348
field types for settings, 335
key skills and concepts, 330
NSUserDefaults for reading

settings, 346
PSChildPaneSpecifier, 344–346
PSGroupSpecifier, 335
PSMultiValueSpecifier, 338–340
PSSliderSpecifier, 342–343
PSTextFieldSpecifier, 335–337
PSToggleSwitchSpecifier, 340–341
reading settings bundle, 347–348
Settings application, 331
settings bundles, 331–334
summary, 348

applicationMusicPlayer, 444
applications

saving application state while
multitasking, 368

UIApplication. See UIApplication
apps

creating App ID, 81–82
debugging. See Debugger
deploying to iPhone, 83–88
distributing, 104–108

distributing Core Data with, 430–432
downloading from App Store, 2–3
exercise building universal app for iPad

and iPhone, 460–462
installing, 79–80
key skills and concepts, 78–79
obtaining certificates and registering

devices, 80–81
provisioning process, 82–83
summary, 108
testing, 101–104

archiving
adopting NSCoding and NSCopying

protocols, 358–359
exercise archiving/unarchiving object

hierarchies, 364–367
exercise archiving/unarchiving objects,

360–363
NSKeyedArchiver, 359–360
NSKeyedUnarchiver, 360
overview of, 358
saving application state while

multitasking, 368
summary, 369

area buttons, Debugger, 90
arguments, multiple-argument messages in

Objective-C, 67–69
arrays

NSArray, 352–354
NSMutableArray, 364, 367
overview of, 35
table lists and, 202
using with pointers, 39–40

assign
as property attribute, 63
specifying properties with, 64–65

attributes
assign, 63
copy, 65–66
creating entities and adding attributes

to, 406
in data model, 402
retain, 63

Index 487

audio. See also multimedia
AudioServicesPlaySystemSound, 437
AVAudioPlayer and

AVAudioPlayerDelegate, 438–439
exercise playing a sound and an MP3,

439–442
playing music with

MPMusicPlayerController, 444–445
playing sounds, 436

audio players, 438
AudioServicesCreateSystemSoundID, 437
AudioServicesPlaySystemSound

overview of, 437
playing sounds, 436
using to vibrate iPhone, 438

autorelease
memory management, 54–55
method using, 58–59

AutorotateToInterfaceOrientation method, for
display orientation, 463–464

AVAudioPlayer, playing sounds with, 436,
438–439

AVAudioPlayerDelegate
exercise playing sounds and MP3s,

439–442
methods, 439
overview of, 438

B
background images

on buttons, 265–266
exercising using custom images on

buttons, 266–270
badges, application, 260–261
Bar Button items

adding, 173
adding to toolbars, 271
connecting button bar to actions, 175
Fixed Space Bar Button Item, 273
toolbars for adding, 271

bar buttons
adding, 173

adding to Document window, 179
connecting to actions, 175

Bernighan, Brian, 26
bind methods, SQLite, 386–387
blob (binary large object), loading into NSData,

385–386
breakpoints

Add Symbolic Breakpoint, 95
setting in Debugger, 90–91, 94
throwing exceptions as, 95–96

build configurations
releasing, 106
settings, 107

button bars. See bar buttons
buttons

adding images to, 265–266
adding to toolbars, 271
exercising using custom images with,

266–270
overview of, 265
types of, 270–271

C
C language

arrays and structures, 35
command-line programs, 27
comments, 28
control statements, functions, and

conditional statements, 33–34
creating simple program using Xcode,

27–28
data types and operators, 32–33
functions, 35–36
header file, 29–31
key skills and concepts, 26
pointers, 36–38
preprocessor statements, 31–32
printf statement, 36
SQLite database in, 372
summary, 40
using arrays with pointers, 39–40

C layer, 5

488 iOS SDK Programming: A Beginner’s Guide

The C Programming Language, Second Edition
(Kernighan and Ritchie), 40

Caches directory, 350
cameras. See digital camera, iPhone
canvas

adding buttons and activity indicators
to, 242

displaying view in, 12–13
dragging controls to, 14–15
toolbar on, 274

capitalization, of text, 280
catalogs

buttons screen, 265
sample application, 264

categories, Objective-C, 72
cells, in tables

accessorizing, 211–213
customizing, 213–218
editing, 226

Certificates tab
obtaining certificates, 83
of Provisioning Portal, 80–81

CFURL, 437
class methods, Objective-C

overview of, 50–51
sayGoodBye class method example,

51–52
classes, Objective-C

categories and, 72
interface and implementation aspects of,

42–44
method declaration and definition,

44–45
overview of, 42
public, private, and protected variables, 48

Clock application, use of tab bars with,
142–143

Cocoa classes, Objective-C using, 42
Cocoa framework, C language and, 26
Cocoa Fundamentals Guide, 9–10
Cocoa layer, 5
Cocoa Touch, 6
Code Sense, in Xcode, 123
code, stepping through with Debugger, 91

collections, preserving as property list.
See property lists

column values, obtaining in SQLite, 378
columns, in tables, 186
command-line programs, C language, 27
comments, C language, 28
compiler directives

@implementation and @interface, 44
@private, @public, and @protected, 48
@property, 63
@throw, 74

compilers, use of protypes by, 29
conditional statements, C language, 33–34
Contact button, as button type, 271–272
content views, 128
context, in Core Data

NSManagedObjectContext, 409
overview of, 400–401
saving changes to model data, 415–416

continuous property, sliders, 277
control statements, C language, 33–34
controls

adding images to buttons, 265–266
buttons, 265
creating simple web browser, 291–294
date pickers, 296–299
dragging to canvas, 14–15
exercise creating a toolbar, 273–275
exercise using a switch and a slider,

277–280
exercise using custom images on buttons,

266–270
exercise using date picker, 299–303
exercise using date picker in Timer mode,

303–306
exercise using image picker controller

to manage camera and photo library,
320–326

exercise using picker views to select
values, 308–312

exercise using picker views with images,
316–320

exercise using picker views with two
components, 312–316

Index 489

key skills and concepts, 264
notifications and, 326–328
picker views, 306–308
segmented, 287–289
sliders, 276–277
subclasses of UIControl, 129
summary, 294
switches (toggle buttons), 276
for text fields, 280–281
for text views, 286
toolbars, 271–273
types of buttons, 270–271
using text field with a number pad,

282–285
for web views, 289–291

copy
creating objects, 65–66
description of property attributes, 63
memory management and, 54

Core Animation, in Instruments, 101
Core Data

adding detail view, 428–430
adding navigation and editing for a group,

417–423
adding navigation and editing for a list of

items within a group, 424–427
attributes, 402
creating a model, 401
creating application for displaying,

adding, deleting, and editing a list of
groups, 417–423

creating new managed objects, 415
deleting managed objects, 416
distributing with apps, 430–432
entities, 401–402
exercise adding entities and relationships

to model, 403–407
exercise fetching a group of entities,

412–414
key skills and concepts, 400
model instance, context, and persistence

store, 408–409
overview of, 400–401
relationships, 402

retrieving (fetching) set of objects from,
409–411

saving changes to model data, 415–416
sorting fetched objects, 411
summary, 433
updating managed objects, 416

Core OS layer, iPhone/iPad device technology
layers, 5

Core Services layer, iPhone/iPad device
technology layers, 5

corporate membership, iPhone Developer, 80
CPU Sampler, in Instruments, 101
CSS, web views and, 289
custom buttons, 270

D
data manipulation, with SQLite, 376
data model. See Core Data
data persistence. See SQLite
data sources

adding delegates and data sources,
194–198

UIPickerViewDatasource, 307–308
UITableViewDataSource, 191–194

data types
C language, 32
id variable type, 69–70

databases, SQLite. See SQLite database
datatips, debugging and, 91
Date mode, UIDatePicker, 300
date pickers

Date mode, 300
exercise using, 299–303
exercise using in Timer mode, 303–306
NSDate values, 297, 299
NSDateFormatter, 299
overview of, 296–298
value changed event, 302

dealloc
debugging and, 97–98
memory management and, 54–55
NSObject class and, 66

490 iOS SDK Programming: A Beginner’s Guide

Debugger
area buttons, 90
datatips and, 91
deallocating objects and, 97–98
exercise creating Zombie app, 98–101
exercise debugging an application, 93–97
overview of, 89
setting breakpoints, 90–91
stepping through code, 91
testing application with, 22
watchpoints, 92–93

deep copies, 65
default screens, splash screens for universal

application, 464–465
defaults, for applications, 346
delegates

applications. See UIApplicationDelegate
AVAudioPlayerDelegate, 438–439
MPMediaPickerControllerDelegate, 443
tables. See UITableViewDelegate
UIActionSheet, 257
UIAlertView, 252–253
UIImagePickerController, 319–320
UIPickerViewDelegate, 307
UIWebView, 290–291
what they are, 120

delete
a list of groups, 417–423
managed objects, 416
rows in tables, 233–234
SQLite database, 387
SQLite records, 395–397

deploying apps, to iPhone, 83–88
deserialization, of property lists, 354–355
Detail Disclosure button, button types,

270–271
detail view, Core Data, 428–430
Developer Connection

documentation available via, 9
downloading Xcode and iOS SDK, 4

Devices tab, Provisioning Portal
installing devices, 83–84
registering devices, 81

digital camera, iPhone
managing with UIImagePickerController,

318–319
notifications and, 326–328

directory structure, 350–351
displays, iPad

connecting to external display, 481–482
exercise centering MoviePlayer on,

478–481
orientation settings, 463–464
popover views, 477–478
screen size, 8–9
splash screens for universal application,

464–465
split views, 465–477

displays, iPhone
screen size, 8–9
splash screens for universal application,

464–465
displays, iPod touch, 8–9
distributing apps

ad hoc deployment and testing, 104–407
overview of, 104
via App Store, 107–108

do-while loops, in C, 34
Document window

adding button bar to, 179
selecting navigation items, 168
UIApplication in, 118

documentation, 9–10
Documents directory

overview of, 350
reading/writing to, 350–351

documents, working with, 482
dynamic binding, 70
dynamic typing, 70

E
Edit button, editing tab bars, 142
Edit mode

accessing, 226
editing table rows, 228–236

Index 491

methods, 226–227
table view in, 233

Editor pane, View button, 12
entities

attributes of, 402
in data model, 401–402
exercise adding to data model, 403–407
exercise fetching a group of entities,

412–414
fetching with NSFetchRequest, 409–410
NSManagedObject and, 409
relationships and, 402

events
creating and implementing, 404
handling methods in

UIApplicationDelegate class, 122
exception handling

Objective-C, 74
throwing exceptions as a breakpoint,

95–96
Extended Markup Language (XML)

exercise preserving to XML property list,
355–357

Root.plist file, 331

F
fetching managed objects

from data models, 409–411
exercise fetching a group of entities,

412–414
field types, for application settings

overview of, 335
PSChildPaneSpecifier, 344–346
PSGroupSpecifier, 335
PSMultiValueSpecifier, 338–340
PSSliderSpecifier, 342–343
PSTextFieldSpecifier, 335–337
PSToggleSwitchSpecifier, 340–341

file sharing, enabling, 482
File’s Owner, removing connection between

view and, 93

Firefox SQLite Manager plug-in, creating
database with, 372–376

Fixed Space Bar Button Item, adding controls
to toolbars, 271, 273

Flexible Space Bar Button Item, adding
controls to toolbars, 271

for loops, in C, 34
formats, audio, 437
Foundation framework, 6
functions, declaring, 29, 35–36

G
garbage collection, iPhone/iPad

limitations, 9
graphical user interface (GUI), 128
grouped table style

exercise grouping tables, 202–205
overview of, 189, 202

groups, exercise fetching a group of entities,
412–414

GUI (graphical user interface), 128

H
header file, creating, 29–31
Home button, suspending applications

and, 368
Home directory

NSHomeDirectory, 351
overview of, 350

I
IBOutlets, 117
icons

creating universal application (for iPad
or iPhone), 464–465

specifying for applications, 332
id variable type, 69–70
if statements, in C, 34

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

492 iOS SDK Programming: A Beginner’s Guide

image pickers
delegates, 319–320
exercise managing camera and photo

library, 318–319
exercise using, 320–326

image views
adding to canvas, 383
creating non-rectangular, 249–250
loading into pickers, 316–320

images
on buttons, 265–266
exercising using custom images on

buttons, 266–270
loading image views into pickers,

316–320
in tables, 207–208

@implementation compiler directive, 44
implementation, Objective-C

anatomy of, 46–47
example generating, 43–44
overview of, 42

#import statement, compiling and, 31–32
#include statement, compiling and, 31–32
indexes

exercise using, 205–207
plain tables and, 201
using with Music application on iPod, 187

individual membership, iPhone Developer, 80
Info Dark button, 271–272
Info Light button, 271–272
inheritance, Objective-C

overriding methods allowed, 70–71
overview of, 70

init method, Objective-C, 52–53
insert method, SQLite

inserting records, 390–392
overview of, 387

installing iPhone apps, 79–80
instance methods, Objective-C, 50–51
instance variables

declaring, 44
memory management and, 57–58
public, private, and protected variables, 48
writing methods that set, 62–63

Instruments
exercise finding memory leak on iPhone

simulator, 102–104
overview of, 101

Interface Builder
creating empty XIB Interface

Builder, 111
creating simple web browser, 292
customizing table cells, 214–218
editing interface with, 12
IBOutlets and IBActions and, 130
modifying segmented control in, 287
setting keyboard style, 280
setting text view properties, 286
UIView classes and, 128

@interface compiler directive, 44
interface, Objective C

anatomy of, 46–47
example generating, 43–44
overview of, 42

interface, Xcode
editing, 12
overview of, 11–12
saving changes to, 15

interruptions, handling interruptions to
UIApplication, 123–126

iOS Application Programming Guide, 9
iOS Development Guide, 9
iOS frameworks, list of, 6–8
iPad

App Store and, 8
connecting to external display, 481–482
creating a universal application, 460
device technology layers, 5–6
exercise adding a split view, 465–477
exercise building an app for iPad and

iPhone, 460–462
exercise centering MoviePlayer on iPad

screen, 478–481
handling changes to orientation, 463–464
icons and default screens, 464–465
key skills and concepts, 458–460
limitations of, 8–9
movies in a view, 478

Index 493

popover views for information or editing,
477–478

split views, 465
summary, 483
working with documents, 482

iPad Programming Guide, 9
iPhone

App Store and, 2
debugging iPhone apps. See Debugger
deploying apps to, 83–88
device technology layers, 5–6
exercise building an app for, 460–462
installing apps, 79–80
iPad compared with, 458–460
limitations of, 8–9
Mail application, iPhone, 260
managing camera with

UIImagePickerController, 318–319
multimedia and, 436
notifications and, 326–328
provisioning process for apps, 82–83
registering apps, 80–81
testing apps for, 101–104

iPhone Dev Center
membership in, 79–80
registering with, 4–5

iPhone Developer membership, 79–80
iPod

App Store and, 2
More tab on iPod application, 144
multimedia and, 436
screen size, 8–9
use of tab bars for data views,

142–143
using with Music application on

iPod, 187
iPodMusicPlayer, 444
items

adding to table view, 235
bar button items. See UIBarButtonItem
media items, 442–445
navigation items. See UINavigationItem
tab bar items, 144, 147–148

iTunes
distributing apps via App Store, 107–108
downloading apps from App Store, 2
iOS 3.0 and, 436

iTunes Connect Account, 107

J
JavaScript, web views and, 289

K
keyboards

setting type for text field, 281
styles, 280

L
labels

adding, 15–16
adding to toolbars, 273
adding to view, 300
connecting to an IBOutlet, 20

landscape orientation, using iPad in, 463
last in first out (LIFO), stacks and, 163
leaks

exercise finding memory leak, 102–104
in Instruments, 101–102

life cycle
handling application life cycle events,

121–123
Views for managing, 137–140

LIFO (last in first out), stacks and, 163
loops, in C, 34

M
Mail application, iPhone, 260
main function, C language, 27
main.m file, UIApplicationDelegate class,

120–121

494 iOS SDK Programming: A Beginner’s Guide

MainWindow.xib
adding navigation controller to, 163–164
loading, 118–119

managed objects. See also model, of data
objects

adding navigation and editing for a group
of, 417–423

creating new, 415
exercise fetching a group of entities,

412–414
fetching from data models, 409–411
updating and deleting, 416

manual memory management, iPhone/iPad
limitations, 9

media data classes, 442–443
Media layer, iPhone/iPad device technology

layers, 5–6
media picker, 445–451
Media Player, exercise using, 445–451
Media Player Framework

developing music player with, 436
exercise using media picker and Media

Player, 445–451
media data classes, 442–443
overview of, 442
playing music with

MPMusicPlayerController, 444–445
selecting media items, 443–444

membership, in iPhone Developer Program,
79–80

memory, iPhone/iPad limitations, 8
memory management

example using manual memory
management, 55–57

exercise finding memory leak, 102–104
with instance variables, 57–58
methods, 53–55
using autorelease, 58–59

memory-resident applications, iPhone/iPad
limitations, 9

messaging, with Objective-C
nesting messages, 49–50
overview of, 48–49
self keyword used in messages, 49

methods
AutorotateToInterfaceOrientation,

463–464
AVAudioPlayerDelegate, 439
Edit mode, 226–227
event handling, 122
NSManagedObject accessors, 406
rollback, 415–416
save, 415–416
UIApplicationMain, 121
UITableView, 190

methods, Objective-C
alloc and init methods, 52–53
autorelease, 58–59
categories and, 72
class and instance methods, 50–51
dealloc, 66
declaration and definition, 44–45
memory management, 53–55
overloading not allowed, 71
overriding methods, 70–71
retain, 57
sayGoodBye class method example,

51–52
sayHello method example, 45–46
writing methods that set instance

variables, 62–63
methods, SQLite

bind, 386–387
insert, update, and delete, 387, 390–395
sqlite3_preparev2, 377
sqlite3_step, 378

model instance, in Core Data, 408–409
model, of data objects

attributes, 402
deleting managed objects, 416
entities, 401–402
exercise adding entities and relationships

to model, 403–407
fetching managed objects from, 409–411
NSManagedObjectModel, 408
overview of, 401
relationships, 402
saving changes to model data, 415–416

Index 495

sorting fetched objects, 411
updating managed objects, 416

model, view, controller (MVC) design
pattern, 384

More tab
allowing users to customize tab bars, 151
displaying additional tab bars, 142, 144

movies
exercise playing video, 452–454
in iPad view, 478
playing with MPMoviePlayerController,

451–452
MP3s, exercise playing, 439–442
MPMediaItem

initializing media collection, 444–445
as media data classes, 442–443

MPMediaItemCollection, 442–443
MPMediaLibrary, 442
MPMediaPickerController

as media data classes, 442
playing multimedia, 444–445
selecting media items, 443–444

MPMediaPickerControllerDelegate, 443–444
MPMediaQuery

initializing media collection, 444
as media data classes, 442

MPMoviePlayerController
exercise centering MoviePlayer on iPad

screen, 478–481
playing video with, 451–454

MPMusicPlayerController
as media data classes, 442
playing music with, 444–445

multimedia
AudioServicesPlaySystemSound, 437
AVAudioPlayer and

AVAudioPlayerDelegate, 438–439
exercise playing a sound and an MP3,

439–442
exercise playing video, 452–454
exercise using media picker and Media

Player, 445–451
key skills and concepts, 436

media data classes, 442–443
Media Player framework, 442
playing music with

MPMusicPlayerController, 444–445
playing sounds, 436
playing video with

MPMoviePlayerController,
451–452

selecting media items, 443–444
summary, 452–454

multiple-argument messages, Objective-C,
67–69

multitasking, saving application state
while, 368

music application with index, on iPod, 187
MVC (model, view, controller) design

pattern, 384

N
navigation

adding for a group of managed objects,
417–423

adding for a list of items within a group,
424–427

creating navigation-based application, 403
navigation bars

adding additional view to, 172–176
adding buttons to, 169
building a three-view application using,

163–172
classes related to, 162
configuring, 177–178
key skills and concepts, 160–161
in Notes application, 186–187
overview of, 162
popping view controllers, 177
summary, 183
using navigation controller in tabs,

178–182
using with tables, 219–225
Utility application using, 176–177

496 iOS SDK Programming: A Beginner’s Guide

navigation controllers
adding additional view, 172–176
building a three-view application using,

163–172
changing between views, 165
configuring navigation bars, 177
connecting to navBarController, 181
connecting to outlets, 166
overview of, 162
popping view controllers, 177
uses of, 160–161
using in tabs, 178–182
using tables in navigation controller

in a tab, 219–225
navigation items

changing title of, 179
displaying title of, 173
selecting, 167–168

nested arguments, in Objective-C messages,
49–50

New Project dialog, 10, 27–28
nibs, IBOutlets and IBActions and, 130
non-rectangular view, creating, 249–250
nonatomic, description of property attributes, 63
Notes application

UITableView and UINavigationBar in,
186–187

use of navigation bars by, 162
NSArray

exercise preserving as property list,
352–354

saving as property list, 352
NSCoding protocol

adopting archiving protocols, 358–359
archiving/unarchiving an object, 360
archiving/unarchiving an object

hierarchy, 364
NSCopying protocol

adopting archiving protocols, 358–359
archiving/unarchiving an object, 360
archiving/unarchiving an object

hierarchy, 364
overview of, 65

NSData
loading blob into, 385–386
saving as property list, 352

NSDate, UIDatePicker and, 297, 299
NSDateFormatter, UIDatePicker and, 299
NSDictionary, saving as property list, 352
NSEntityDescription. See also entities

entities in data model, 401
exercise fetching a group of entities,

412–413
retrieving (fetching) set of objects from

Core Data, 409
NSException, exception handling with, 74
NSFetchedResultsController, 409
NSFetchRequest

predicates restricting data returned by,
410–411

retrieving (fetching) set of objects from
Core Data, 409–410

NSHomeDirectory, 351
NSKeyedArchiver, 359–360
NSKeyedUnarchiver, 360
NSManagedObject

accessor methods generated at
runtime, 406

creating subclasses rather than object
instances, 415

deleting entities, 416
instantiation and persistence of, 401–402
overview of, 409

NSManagedObjectContext
deleting entities, 416
overview of, 409
undoing changes to model data, 416

NSManagedObjectModel, 408
NSMutableArray, 364, 367
NSNotification, 326–328
NSNumber

archiving/unarchiving an object, 360
saving as property list, 352

NSObject
converting primitive types to, 352
dealloc method, 66

Index 497

NSPersistentStoreCoordinator, 408–409
NSPredicate, 410–411
NSPropertyListSerialization, 354–355
NSSearchPathForDirectoriesInDomains, 351
NSSortDescriptor

exercise fetching a group of entities,
412–413

sorting fetched objects, 411
NSString

archiving/unarchiving an object, 360
saving as property list, 352

NSTemporaryDirectory, 351
NSTimer, 251
NSUndoManager, 416
NSURL, 437
NSUserDefaults

changing settings while application
suspended, 346

for reading application settings, 346
number pad

exercise using text field with, 282–285
keyboard styles, 280

O
Object Allocations, in Instruments, 101
Object Connection Inspector, 18
object graph, mapping relationships in object

models, 400–401
Object Library

accessing, 14
hiding, 15

object-oriented programming. See Objective-C
Objective-C

alloc and init methods, 52–53
assigning properties, 64–65
C language and, 26
categories, 72
class and instance methods, 50–51
classes and objects, 42
compiler directives, 44
copy attribute, 65–66
dynamic typing, 70

example using manual memory
management, 55–57

exception handling, 74
id variable type, 69–70
inheritance, 70
interface and implementation anatomies,

46–47
interface and implementation of classes,

42–44
key skills and concepts, 42, 62
memory management methods, 53–55
memory management using autorelease,

58–59
memory management with instance

variables, 57–58
method declaration and definition, 44–45
multiple-argument messages, 67–69
nesting messages, 49–50
overloading methods, 71
overriding methods, 70–71
properties, 62–64
protocols, 72–74
public, private, and protected

variables, 48
releasing properties, 66
relevant documentation, 9–10
retaining properties, 64
sayGoodBye class method example,

51–52
sayHello method example, 45–46
self keyword used in messages, 49
simple messaging with, 48–49
summary, 59, 75

Objective-C for iPhone Developers: A
Beginners Guide (Brannan), 26

Objective-C for iPhone Programmers: A
Beginner’s Guide (Brannan), 75

objects
blob (binary large object), 385–386
copying, 65–66
deallocating, 97–98
exercise archiving and unarchiving an,

360–363

498 iOS SDK Programming: A Beginner’s Guide

objects (cont.)
exercise archiving and unarchiving an

object hierarchy, 364–367
managed. See managed objects
Objective-C, 42
pushing/popping to/from stacks, 163

OpenGL, ES, and System Usage, in
Instruments, 101

opening SQLite database, 376, 385
opening Xcode, 10
operators, C language, 33
orientation settings

handling changes to orientation on iPad,
463–464

split views and, 465
OS layers, 5–6
outlets

connecting navigation controller to, 166
connecting views to activity

indicators, 242
IBOutlets, 130

overloading methods, 71
overriding methods, 70–71

P
persistence store

in Core Data, 400–401
NSPersistentStoreCoordinator, 408–409
querying with NSFetchRequest, 409–410
saving changes to model data, 415–416

Phone pad, keyboard styles, 280
Photo application, action sheet in, 252
photo library, managing, 318–319
pickers

data sources, 307–308
date pickers, 296–299
delegates, 307
exercise using date picker, 299–303
exercise using date picker in Timer mode,

303–306

exercise using image picker controller
to manage camera and photo library,
320–326

exercise using picker views to select
values, 308–312

exercise using picker views with images,
316–320

exercise using picker views with two
components, 312–316

media picker, 443–444
notifications and, 326–328
overview of, 306–307
picker views, 306–308
summary, 328

pixels, screen sizes and, 8–9
plain table style

indexing tables and, 205–207
overview of, 189, 201

playing sounds. See audio
playing video. See video
PNG (Portable Network Graphics), 332
pointers, C language

dereferencing, 38
overview of, 36–37
using, 37–38
using with arrays, 39

popover views, iPad, 477–478
popping, removing objects from stacks, 163
Portable Network Graphics (PNG), 332
portrait orientation, using iPad in, 463
predicates, restricting data returned by

NSFetchRequest, 410–411
Preferences directory, 350
preprocessor statements, C language

overview of, 31
using, 31–32

primitive types, converting to NSObjects for
serialization, 352

printf statement, outputting with, 36
@private compiler directive, 48
private variables, declaring, 48
processor speed, iPhone/iPad limitations, 8

Index 499

Programming in Objective-C 2.0 (Kochan), 75
progress bars

exercise using, 244–251
function of, 238
showing progress with, 244
summary, 261

projectors, connecting iPad to, 481
properties, Objective-C

assigning, 64–65
copying, 65–66
overview of, 62–64
releasing, 66
retaining, 64

@property compiler directive, 63
property lists

exercise preserving NSArray as,
352–354

exercise preserving to XML property list,
355–357

NSPropertyListSerialization, 354–355
overview of, 351–352
serialization and, 352
summary, 369

@protected compiler directive, 48
protected variables, declaring, 48
protocols

adopting NSCoding and NSCopying
protocols, 358–359

Objective-C, 72–74
prototypes, function signatures and, 29
Provisioning Portal

App IDs tab, 82
Certificates tab, 80
Devices tab, 81
Provisioning Profile tab, 83

provisioning process, for iPhone apps,
82–83

Provisioning Profile tab
overview of, 82–83
provisioning process, 84–86

PSChildPaneSpecifier
adding, 344–346
overview of and list of settings, 344

PSGroupSpecifier, 335
PSMultiValueSpecifier, 338–340
PSSliderSpecifier, 342
PSTextFieldSpecifier

adding, 336–337
list of settings, 336
overview of, 335

PSToggleSwitchSpecifier
adding, 340–341
overview of and list of settings, 340

@public compiler directive, 48
public variables, declaring, 48
pushing, placing objects on

stacks, 163

Q
queries, SQLite database, 385
Quick-start example, 10–23

R
readonly, property attribute, 63
readwrite, property attribute, 63
records, SQLite

adding using SQLite Manager, 375
deleting, 395–397
inserting, 390–392
selecting, 378
updating, 392–395

registration, of apps, 80–81
relationships

in data model, 402
exercise adding, 403–407
specifying between group and

subgroup, 407
release method

description of property
attributes, 63

memory management, 54–55
overview of, 66

resolution, screen size and, 8–9

500 iOS SDK Programming: A Beginner’s Guide

retain method
description of property attributes, 63
memory management, 53–55
retaining instance variable, 57
using properties with, 64

return key, keyboard settings, 281
Ritchie, Dennis, 26
rollback method, undoing changes to model

data, 415–416
Root.plist

adding, 341
PSChildPaneSpecifier, 344
PSMultiValueSpecifier, 339
PSSliderSpecifier, 343
PSTextFieldSpecifier, 337
in settings bundle, 331

Round Rect button, 270
rows, in tables

deleting and moving, 233–234
editing, 228–236
handling row selections, 224–225
height settings, 210–211
selecting, 209–210

S
save method, saving changes to model data,

415–416
screen size. See also displays

external displays on iPad and, 482
iPhone/iPad limitations, 8–9

scrolling, 129
SDK (Software Development Kit)

how to obtain, 4–5
prerequisites to downloading, 79

security, iPhone/iPad limitations, 9
segmented controls, 287–289
select statement, selecting records from SQL

database, 378
self keyword, in Objective-C messages, 49
serialization

NSPropertyListSerialization, 354–355
property lists and, 352

Settings application. See also application
settings

adding application settings to, 330
MySettings interface on iPhone

simulator, 333
overview of, 331

settings bundles
creating, 332–334
reading, 347–348
types of files in, 331–332

shallow copies, 65
short-lived applications, iPhone/iPad

limitations, 9
signatures, function names, 29
simulator, iPad

with full-screen display, 462
with iPhone sized display, 459

simulator, iPhone
allowing users to customize tab bars,

153–156
exercise finding memory leak, 102–104
running three-tab application in, 148
running two-tabbed application in, 151
starting application, 20–21
viewing newly created application in, 116

sliders
adding controls to toolbars, 271
exercise using, 277–280
overview of, 276–277
properties, 277

Software Development Kit (SDK)
how to obtain, 4–5
prerequisites to downloading, 79

sorting, objects retrieved from data models, 411
sounds. See audio
spacers, adding to toolbars, 274
spell checking, 280
split views

exercise adding, 465–477
overview of, 465
popover views and, 477

SQLite database
adding, 372

Index 501

basic data manipulation, 376
bind methods, 386–387
closing, 386
deleting records, 395–397
exercise creating, 372–376
insert, update, and delete methods, 387
inserting records, 390–392
key skills and concepts, 372
loading, 379–384
loading blob into NSData, 385–386
MVC design pattern and, 384
obtaining column values, 378
opening, 376
opening and querying, 385
preparing and executing statement,

377–378
return codes, 376
selecting records, 378
summary, 397
updating records, 392–395
working with records, 388–390

SQLite Manager plug-in, for Firefox, 372–376
sqlite3_open command, 376
sqlite3_preparev2 method, 377
sqlite3_step method, 378
sqlite3_stmt, 377
stacks, 163
state

saving application state while
multitasking, 368

selecting button’s state, 268
statements, preparing and executing SQLite

statements, 377–378
status bars, 160
stepping through code, with Debugger, 91
structures (structs), 35
styles

activity indicators, 240
keyboard, 280

styles, tables
exercise grouping tables, 202–205
indexing tables, 205–207
overview of, 201

UITableViewStyleGrouped, 189, 202
UITableViewStylePlain, 189

switch statements, in C, 34
switches

adding controls to toolbars, 271
exercise using a switch and a slider,

277–280
overview of, 276

SystemSoundID, 437, 440

T
Tab Bar Application template, 145–146
tab bar controller, 144
tab bar controller delegate, 144
tab bar items

adding tab bar items to tab bar
applications, 147–148

individual tabs, 144
tab bars

adding items to, 147–148
allowing users to customize, 151–156
classes related to, 142–144
creating tab bar application from scratch,

148–151
creating tab bars, 144
exercise using Tab Bar Application

template, 145–146
key skills and concepts, 142
navigation controller used in tabs, 178–182
summary, 156–157
using with tables, 219–225

table view controllers
creating and managing table views with,

191–194
exercise using, 198–201
overview of, 189, 198

table view data sources
adding, 194–198
creating new class that adopts data

sources, 191–194
methods, 190
overview of, 189

502 iOS SDK Programming: A Beginner’s Guide

table view delegates
adding, 194–198
creating new class that adopts delegates,

191–194
methods, 190
overview of, 189

table view styles
grouped, 189, 202–205
plain, 189, 201, 205–207

table views
accessorizing cells, 211–213
adding, 191
adding delegates and data sources, 194–198
adopting UITableViewDelegate and

UITableViewDataSource, 191–194
cells. See cells, in tables
customizing cells, 213–218
editing cells, 226–227
editing rows, 228–236
exercise grouping, 202–205
grouped table style, 202
images in, 207–208
indexing, 205–207
key skills and concepts, 186
in Music application, 187–188
navigation bars and tabs used with,

219–225
in Notes application, 186–187
row height options, 210–211
row selection, 209–210
rows. See rows, in tables
styles, 201
summary, 236
UITableView, 189
UITableViewController, 198–201
UITableViewDataSource, 189–190
UITableViewDelegate, 189–190

Targeted Device Family
setting to iPad, 461
setting to iPhone, 460

templates
Tab Bar Application template, 145–146
Utility Application template, 176–177

View-based Application template,
131–133

Window-based Application template,
133–137

testing iPhone apps, 101–104
text fields

adding controls to toolbars, 271
overview of, 280–281
using with a number pad, 282–285

text views, 286
@throw compiler directive, 74
timers

exercise using date picker in Timer mode,
303–306

NSTimer, 251
tmp directories

NSTemporaryDirectory, 351
overview of, 350
reading/writing to, 350–351

toggle buttons. See switches
toolbars

adding to canvas, 383
exercise creating, 273–275
overview of, 271–273
placing labels on, 273

translucent, making toolbars, 275

U
UIActionSheet

delegates, 257
exercise using, 257–260
function of, 238
in Photo application, 252
summary, 262
when to use, 251

UIActionSheetDelegate, 257
UIActivityIndicatorView

exercise using, 241–244
function of, 238
showing activity with, 239–240
styles, 240
summary, 261

Index 503

UIAlertView
alerting users, 251
creating alert with multiple buttons, 256
creating simple alert, 254–255
delegates, 252–253
function of, 238
summary, 261–262

UIAlertViewDelegate, 252–253
UIApplication

adding UIView and UIViewController to
UIApplicationDelegate, 110–117

connecting with UIWindow and
UIApplicationDelegate, 117–118

handling application life cycle events,
121–123

handling interruptions, 123–126
loading MainWindow.xib, 118–119
overview of, 110
summary, 123–126
UIApplicationDelegate and, 119–121

UIApplicationDelegate
adding UIView and UIViewController to,

110–117
connecting with UIWindow, 117–118
event handling methods, 122
handling application life cycle

events, 121
main.m file, 120–121
overview of, 119–120

UIApplicationMain method, 121
UIBarButtonItem

adding, 173
connecting button bar to actions, 175
toolbars for adding, 271

UIButton
button types, 270–271
exercising using custom images with,

266–270
with images, 265

UICatalog
buttons screen, 265
sample application, 264

UIControl, 129

UIDatePicker
Date mode, 300
exercise using, 299–303
exercise using in Timer mode, 303–306
NSDate values, 297, 299
NSDateFormatter, 299
overview of, 296–298
value changed event, 302

UIDocumentInteractionController, 482
UIFileSharingEnabled, 482
UIImagePickerController

delegates, 319–320
exercise managing camera and photo

library, 318–319
exercise using, 320–326

UIImagePickerControllerDelegate, 319–320
UIImageView

adding to canvas, 383
creating non-rectangular view with,

249–250
loading image views into pickers,

316–320
UIKit framework

overview of, 6
UIView classes in, 129

UILabel, 300
UINavigationBar. See also navigation bars

in Notes application, 186–187
overview of, 162

UINavigationController. See also navigation
controllers

adding additional view, 172–176
building a three-view application using,

163–172
configuring navigation bars, 177
connecting to navBarController, 181
overview of, 162
popping view controllers, 177
using navigation controller in tabs, 178–182

UINavigationItem
changing title of navigation item, 179
displaying title of, 173
selecting navigation items, 167–168

504 iOS SDK Programming: A Beginner’s Guide

UIPickerView
data sources, 307–308
delegates, 307
exercise using a picker, 308–312
exercise using with two components,

312–316
loading image views into pickers,

316–320
overview of, 306–307

UIPickerViewDatasource, 307–308
UIPickerViewDelegate, 307
UIProgressView

exercise using, 244–251
function of, 238
showing progress with, 244
summary, 261

UIScrollView, 129
UISegmentedControl, 287–289
UISlider

appearance properties, 277
continuous property, 277
exercise using, 277–280
overview of, 276
values, 277

UISpllitViewController
exercise adding a split view, 465–477
overview of, 465
popover views and, 477

UISwitch
adding controls to toolbars, 271
exercise using, 276
exercise using a switch and a slider,

277–280
UITabBar

adding items to, 147–148
allowing users to customize, 151–156
classes related to, 142–144
creating tab bar application from scratch,

148–151
creating tab bars, 144
exercise using Tab Bar Application

template, 145–146
key skills and concepts, 142

navigation controller used in tabs, 178–182
summary, 156–157
using with tables, 219–225

UITabBarController, 144
UITabBarControllerDelegate, 144
UITabBarItem

adding tab bar items to tab bar
applications, 147–148

individual tabs, 144
UITableView. See also table views

adding to a view, 191
cells. See cells, in tables
in Music application, 187–188
in Notes application, 186–187
overview of, 189
rows. See rows, in tables

UITableViewController
creating and managing table views with,

191–194
exercise using, 198–201
overview of, 189, 198

UITableViewDataSource
adding, 194–198
creating new class that adopts data

sources, 191–194
methods, 190
overview of, 189

UITableViewDelegate
adding, 194–198
creating new class that adopts delegates,

191–194
methods, 190
overview of, 189

UITableViewStyleGrouped, 189
exercise grouping tables, 202–205
overview of, 202

UITableViewStylePlain
indexing tables and, 205–207
overview of, 189, 201

UITextField
exercise using text field with a number

pad, 282–285
overview of, 280–281

Index 505

UITextView, 286
UIToolBar

adding to canvas, 383
exercise creating toolbars, 273–275
overview of, 271–273
placing labels on toolbars, 273

UIView
adding to UIApplicationDelegate, 110–117
application life cycle events and, 137–140
creating UITableView as subview of, 194
exercise using View-based Application

template, 131–133
exercise using Window-based Application

template, 133–137
IBOutlets and IBActions and, 130
overview of, 128
subclasses of, 129
summary, 140
view-based application template, 130

UIViewController
adding to UIApplicationDelegate,

110–117
application life cycle events and,

137–140
exercise using View-based Application

template, 131–133
exercise using Window-based Application

template, 133–137
function of, 128
overview of, 129

UIWebView
delegates, 290–291
exercise creating simple web browser,

291–294
overview of, 289–290

UIWebViewDelegate, 290–291
UIWindow

connecting UIApplicationDelegate with,
117–118

using iPad with external display, 481
uniform resource locators (URLs)

CFURL and NSURL, 437
keyboard styles, 280

update method
managed objects, 416
SQLite records, 392–395

URLs (uniform resource locators)
CFURL and NSURL, 437
keyboard styles, 280

user-friendly applications, 238
Utility application, navigation bars used with,

176–177

V
variables

id variable type, 69–70
instance variables. See instance variables

VGA display, connecting iPad to, 481
video. See also multimedia

exercise playing video, 452–454
playing video with

MPMoviePlayerController, 451–452
View-based Application template, 131–133
view controllers

adding to UIApplicationDelegate,
110–117

application life cycle events and,
137–140

exercise using View-based Application
template, 131–133

exercise using Window-based Application
template, 133–137

function of, 128
overview of, 129

views
adding to UIApplicationDelegate,

110–117
application life cycle events and,

137–140
content views, 128
creating UITableView as subview of, 194
exercise using View-based Application

template, 131–133
exercise using Window-based Application

template, 133–137

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

506 iOS SDK Programming: A Beginner’s Guide

views (cont.)
IBOutlets and IBActions and, 130
removing from view controller, 93
subclasses of, 129
summary, 140
view-based application template, 130

W
watchpoints, setting in Debugger, 92–93
web views

delegates, 290–291
exercise creating simple web browser,

291–294
overview of, 289–290

while loops, in C, 34
Window-based Application template

creating tab bar applications from scratch,
148–151

exercise using, 133–137
Window-based Applications

building a three-view application, 163
creating in Xcode, 110

windows
connecting UIApplicationDelegate with

UIWindow, 117–118
UIWindow for using iPad with external

display, 481
www.appstoreapps.com, 3

X
Xcode

building for latest version of SDK
(default), 86

code completion and preferences, 123–124
Code Sense in, 123
creating simple C program, 27–28
creating window-based application in, 110
debugging and testing tools, 88
downloading and installing, 4
interface for, 11–12
opening, 10
View-based application template, 130

XML (Extended Markup Language)
exercise preserving to XML property list,

355–357
Root.plist file, 331

Y
YouTube

customizing table rows and, 188
example of YouTube app with plain

buttons, 266

Z
Zombie app, 98–101

www.appstoreapps.com

	Contents
	Acknowledgments
	Introduction
	1 The iOS Software Development Kit (SDK)
	The App Store
	The Software Development Kit (SDK)
	Paid Membership

	Objective-C, Foundation Framework, Cocoa Touch, and UIKit
	Cocoa Touch
	Foundation Framework
	The iOS Frameworks
	Memory and Processor Speed
	Small Screen
	Security
	Short-Lived Applications
	Manual Memory Management

	Relevant Documentation
	Try This: Getting a Quick Start on iOS Development
	Summary

	2 A C Refresher
	C Command-Line Programs
	Try This: Creating a Simple C Program Using Xcode
	C Comments
	Understanding Headers, Import, and Include
	Try This: Creating a Header File
	Preprocessor Statements
	Try This: Using Preprocessor Statements
	Data Types and Operators
	Control, Functions, and Conditional Statements
	Arrays and Structures
	Functions
	The printf Statement
	Pointers
	Try This: Using Pointers
	Dereferencing a Pointer
	Pointers and Arrays
	Try This: Using an Array with Pointers
	Summary

	3 Just Enough Objective-C: Part One
	Objective-C Classes and Objects
	Class Interface and Implementation
	Try This: Generating an Objective-C Class’ Interface and Implementation
	The @interface and @implementation Compiler Directives
	Method Declaration and Definition
	Try This: Adding SayHello to the Simple Class
	Interface Anatomy
	Implementation Anatomy
	Public, Private, and Protected Instance Variables
	Understanding Simple Messaging
	Using self in a Message
	Nested Arguments
	Class and Instance Methods
	Try This: Adding sayGoodBye as a Class Method
	The alloc and init Methods
	Managing Memory Using Retain and Release
	Try This: Using Manual Memory Management
	Instance Variables and Memory
	Managing Memory Using Autorelease
	Summary

	4 Just Enough Objective-C: Part Two
	Properties
	Retain
	Assign
	Copy
	Releasing Properties

	Multiple-Argument Messages
	Try This: Creating a Simple Multiple-Argument Message
	Understanding the id Variable Type, Dynamic Typing, and Dynamic Binding
	The id Type
	Dynamic Binding and Dynamic Typing

	Understanding Inheritance
	Overriding Methods
	Overloading Methods

	Using Categories
	Using Protocols
	Handling Exceptions
	Summary

	5 Deploying to an iPhone, Debugging, and Testing
	Installing Applications on an iPhone
	Membership
	Certificates, Devices, Application IDs, and Provisioning

	Try This: Deploying an Application to iPhone
	Debugging
	Using the Debugger

	Try This: Debugging an Application
	NSZombieEnabled

	Try This: Enabling Zombies
	Instruments—Leaks

	Try This: Find a Memory Leak
	Distributing Your Application
	Ad Hoc Deployment and Testing
	Distributing Your App via the App Store

	Summary

	6 UIApplication and UIApplicationDelegate
	Try This: Adding a UIView and UIViewController to a UIApplicationDelegate
	Connecting UIWindow, UIApplication, and UIApplicationDelegate
	Try This: Exploring Main Window.xib
	UIApplication and UIApplicationDelegate
	The main.m File
	Handling Application Life Cycle Events
	Application Interruptions

	Try This: Handling Application Interruptions
	Summary

	7 UIView and UIViewController
	The UIView Class
	The UIViewController Class
	View-Based Application Template
	IBOutlet and IBAction
	Try This: Using a View-Based Application Template
	Try This: Using a Window-Based Application Template
	UIViewController and Application Life Cycle Events
	Try This: Exploring Several Life Cycle Methods
	Summary

	8 UITabBar and UITabBarController
	UITabBar, UITabBarController, UITabBarItem, and UITabBarControllerDelegate
	Try This: Using the Tab Bar Application Template
	Try This: Adding a Tab Bar Item to a Tab Bar Application
	Try This: Creating a Tab Bar Application from Scratch
	Try This: Allowing Users to Customize a Tab Bar
	Summary

	9 UINavigationBar and UINavigationController
	UINavigationBar, UINavigationController, and UINavigationItem
	Try This: Building a Three-View Application Using a Navigation Bar
	Adding Another View

	Try This: See How a Utility Application Uses NavigationBar
	More on the UINavigationController
	Popping View Controllers
	Configuring the Navigation Bar

	Try This: Using a Navigation Controller in a Tab
	Summary

	10 Tables Using UITableView and UITableViewController
	UITableView
	UITableViewDelegate and UITableViewDataSource
	UITableViewDelegate
	UITableViewDataSource

	Try This: Adopting the UITableViewDelegate and UITableViewDataSource
	Try This: Adding a Delegate and Data Source
	UITableViewController
	Try This: Using a UITableViewController
	Grouping and Indexing
	Grouped Table Style

	Try This: Grouping
	Indexing

	Try This: Indexing
	Images in Tables
	Try This: Adding an Image
	Selecting Rows
	Try This: Row Selection
	Changing Row Height
	Try This: Changing Row Height
	Accessorizing Table Cells
	Try This: Accessorizing a Table Cell
	Customizing a Table Cell
	Try This: Customizing a Cell Using Interface Builder
	Using Tables with Navigation Bars and Tabs
	Try This: Using a Table in a Navigation Controller in a Tab
	Editing Table Cells
	Getting to Edit Mode
	Edit Mode Methods

	Try This: Editing Rows
	Summary

	11 Activity Progress and Alerting Users
	Showing Activity—the UIActivityIndicatorView
	Try This: Using a UIActivitylndicatorView
	Showing Progress—the UIProgressView
	Try This: Using a UIProgress View
	Alerting Users
	UIAlertView and UIAlertViewDelegate
	Try This: Creating a Simple UIAlertView
	Try This: Using an Alert with Multiple Buttons
	UIActionSheet and UIActionSheetDelegate
	Try This: Using a UIActionSheet
	Application Badges
	Try This: Adding an Application Badge
	Summary

	12 Controls—Part One: Using Buttons, Sliders, Switches, and Text Fields
	Buttons
	UIButton with a Background Image and Image

	Try This: Using a Custom Button Background Image and Image
	Button Types
	UIToolBar
	Try This: Creating a UIToolbar
	UISwitch
	UISlider
	Appearance
	Values
	Continuous Property

	Try This: Using a Switch and a Slider
	UITextField
	Try This: Using UITextField (with a Number Pad)
	UITextView
	UISegmentedControl
	Try This: Using a UISegmentedControl
	The Web View
	UIWebView
	UIWebViewDelegate

	Try This: Creating a Simple Web Browser
	Summary

	13 Controls—Part Two: Using Pickers and Using the Camera
	Using Pickers: Date Pickers and Pickers
	Date Pickers

	Try This: Using a Date Picker
	Try This: Using a UIDatePicker in Timer Mode
	UIPickerView

	Try This: Using a Picker
	Try This: Using a UIPickerView with Two Components
	Try This: Loading UIImageViews into a UIPickerView
	Using the Camera: UIImagePickerController
	UIImagePickerController
	UIImagePickerControllerDelegate

	Try This: Using the UIImagePickerController
	Try This: Using Notifications
	Summary

	14 Application Settings
	The Settings Application
	The Settings Bundle
	Try This: Creating a Settings Bundle
	Settings Field Types

	Try This: Adding a PSTextFieldSpecifier
	PSMultiValueSpecifier

	Try This: Adding a PSMultiValueSpecifier
	PSToggleSwitchSpecifier

	Try This: Adding a PSToggleSwitchSpecifier
	PSSliderSpecifier

	Try This: Adding a PSSliderSpecifier
	PSChildPaneSpecifier

	Try This: Adding a PSChildPaneSpecifier
	Reading Settings Using NSUserDefaults
	Try This: Reading the Settings Bundle
	Changed Settings While Suspended

	Summary

	15 Property Lists and Archiving
	An iOS Application’s Directory Structure
	Directories

	Property Lists
	Simple Serialization

	Try This: Preserving an NSArray
	NSPropertyListSerialization

	Try This: Preserving to an XML Property List
	Archiving
	Protocols to Adopt
	NSKeyedArchiver and NSKeyedUnarchiver

	Try This: Archiving and Unarchiving an Object
	Try This: Archiving and Unarchiving an Object Hierarchy
	Multitasking and Saving Application State

	Summary

	16 Data Persistence Using SQLite
	Adding a SQLite Database
	Try This: Creating a Simple Database Using FireFox SQLite Manager
	Basic SQLite Database Manipulation
	Opening the Database
	Statements, Preparing Statements, and Executing Statements
	Select

	Try This: Opening and Querying a Database
	SQLite Binding, Inserting, Updating, and Deleting

	Try This: Inserting, Updating, and Deleting Records
	Try This: Inserting Records
	Try This: Updating Records
	Try This: Deleting Records
	Summary

	17 Core Data
	Core Data in Brief
	Creating a Model
	Entities
	Attributes
	Relationships

	Try This: Adding Entities and Relationships to a Core Data Model
	Model, Context, and Store
	NSManagedObjectModel
	NSPersistentStoreCoordinator
	NSManagedObjectContext
	NSManagedObject

	NSFetchedResultsController
	NSFetchRequest
	NSPredicate
	NSSortDescriptor

	Try This: Fetching All AKCGroup Entities
	Adding Objects
	Saving Changes
	Deleting Entities
	Updating Entities
	Try This: Adding Navigation and AKCGroup Editing
	Navigation
	Try This: Adding Navigation and Editing for a List of Breeds
	Try This: Adding a Breed Detail View
	Distributing Core Data with Your App
	What Next?
	Summary

	18 Multimedia
	Playing Sounds
	AudioServicesPlaySystemSound
	AVAudioPlayer and AVAudioPlayerDelegate

	Try This: Playing a Sound and an MP3
	Media Player Framework
	Media Data Classes
	Selecting Multimedia
	Playing Multimedia: MPMusicPlayerController

	Try This: Using the Media Picker and Media Player
	MPMoviePlayerController

	Try This: Play a Video
	Summary

	19 Universal Applications for the iPad
	Creating a Universal Application
	Try This: Building an App for iPad and iPhone
	Handling Orientation Changes

	Try This: Reacting to Orientation Changes
	Icons and Default Screens

	Split Views
	Try This: Add a Split View
	Other iPad Features
	Using Popovers for Information or Editing
	Movies in a View

	Try This: MoviePlayer Centered on the iPad Screen
	External Display
	Working with Documents

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

