
Copyright © 2013 System & Method A/S

IceBreak
Programmers Guide

Programmers Guide

Creating server applications

by Niels Liisberg

.

This book applies to IceBreak version: V4R04BLD0395 and above.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: januar 2013 in Copenhagen

IceBreak

System & Method A/S

Publisher
Special thanks to all the dedicated IceBreak contributors:

Tom Grønkjær Nielsen
Jens Berg Churchill
Anders Thostrup-Clemmensen
Bjarke Aronso
John Foldager
Syd Nicholson
Dan Foldager
Peder Zacho
Jim Cooper
Tracy Eastwood
Edward Wright
Milan Zdimal
Frank Doherty
Per Rahr
Oran Paul
Lars Erik Brodersen
Jens Erik Mejlsbye
John Quarentello
Jørgen Wisbech
Erik Rex
Bent Ronne
Jeppe Klinge Bundgaard
Claus Rytter Larsen
Henning Orensoe

Managing Editor

Technical Editors

Cover Designer

Comprendo.dk

Kaj Vang Jensen

Niels Liisberg

Bent Ronne

Kenneth Riber Andersen

Production

Comprendo.dk

Team Coordinator

Martin Hect Olsen

IceBreak4

System & Method A/S

Table of Contents

Foreword

Part I Getting started 2

... 21 First Step

... 112 Prerequisites for installation

... 113 Introducing IceBreak

Part II Basic Features 16

... 161 Response object

... 16Placing runtime data in a HTML document

... 17Placing runtime data using "Markers"

... 18Dynamically including stream files

... 21Sending the response back to the client

... 23Trimming the response object

... 242 Request object

... 24The "Form" function

.. 25Using the "FormNum()" function

... 26Using the "QryStr" function to parse parameters along the URL

.. 28The "QryStrNum" Function

... 283 Server object

... 28Controlling the HTTP Header

... 30Retrieving Server Information

... 32System Global Variables

... 344 Session object

... 34Session management

... 35Log on to an icebreak session

... 395 Server behaviour

... 39Setting up HTTPS

... 40Use the pre-request exit program

Part III Building applications 44

... 441 Debugging IceBreak applications

... 512 Using compiler directives

... 523 How to include external resources

... 554 A simple database application

... 575 Database maintenance application

... 616 Split your program logic and design into separated files

... 627 Writing and reading stream files

... 648 AJAX Async JavaSript and XML

... 669 Creating XML files Dynamically

... 7210 Inter process communication

... 7411 Uploading files to a IceBreak server

5Contents

System & Method A/S

... 7712 Controlling the state of a "CheckBox"

... 7813 Mixing Jave-Script and RPG

... 8114 VB-Scripting. Merge i5/OS data into a MS-Word document

... 8415 Using keyCodes (SPAM Prevention)

... 8516 Using COBOL as ASPX programming language

... 8817 Using Legacy RPG fixed form code

Part IV Internal Large Objects - ILOB's 90

... 901 ILOB's - Internal Large Objects

... 932 ILOB's and SQL

... 963 ILOB's with IBM supplied API's

... 974 ILOB's, httpRequest and XML

... 1015 ILOB's secures your streamfile upload to your IceBreak server

... 1036 ILOB's in WebServices

Part V SQL 106

... 1061 Using embedded SQL

... 1072 SQL - Producing a list using a cursor

... 1103 SQL to the ResponseObject

Part VI XML, Webservices and proxies 121

... 1211 WebServices - the easy way

... 126Using arrays in webservices

... 127Using external described datastructures in webservices

... 1332 Using Proxy. Making HTTP request to web servers

... 1363 Using the built-in XML Parser on the request object

... 1404 Using the built-in XML Parser on a string or stream file

... 1425 ILOB's, httpRequest and XML (SOA components)

Part VII OEM, Bundle IceBreak 148

... 1481 Ship IceBreak allong with your product (COPY)

Part VIII Using JAVA 153

... 1531 Java as the host language

... 1592 Accesing remote data bases with JDBC

Part IX Utilities 165

... 1651 Introduction

... 165Bind to IceUtility

... 165Prototyping

... 1652 Functions

... 165Administrator();

... 166Disabled(disable);

IceBreak6

System & Method A/S

... 166DropDown(TagName: SqlCmd {:SelectedValue} {: HtmlExtend});

... 167exists(varying);

... 167FieldListOpen(Library: File);

... 167FieldListRead();

... 167LowerCase(varying);

... 168MemberListOpen(Library: File: Member {:Format} {:OverrideProcessing});

... 168MemberListRead();

... 169ObjectExists(Library: Object: ObjectType);

... 169ObjectListOpen(Library: Object: Type {: Format});

... 169ObjectListRead();

... 170ReverseDNSlookup(IP address);

... 170UpperCase(varying);

... 170UserExists(UserProfile);

... 1703 Samples

... 170DropDown sample

.. 171HTML code

.. 172RPGLE code

Part X Administration menu 176

... 1761 Work with servers

... 1812 SQL prompt

... 1823 Application wizard

... 1824 Component wizard

... 1825 Sencha Touch Component Wizard

... 1846 Source file browser

... 1847 Services

... 184Web TAPI

... 184Web printers

... 1848 Frameworks

... 1899 Display current server

... 18910 Display current header info

... 18911 Display all servers

... 18912 Display joblog

... 18913 Display job

... 19014 Display trace

... 19015 Authorization

... 19016 Subsystem configuration

... 19017 Your information

... 19018 License information

... 19019 Build history log

... 19120 Open projects log

Part XI Appendix 193

... 1931 Intergration to BlueSeries

... 1942 Internal relation between CCSID and encoding schemes

7Contents

System & Method A/S

... 1973 Manual Installation

... 1994 Technical decumentations

... 199What is IceBreak

... 200Application Server Programs as a concept

... 201The Object model

.. 202The Request Object:

.. 202The Form Parser:

.. 202The Session Object

.. 203The XML parser:

.. 203The Server Object:

.. 203The Application Object:

.. 204The Response Object:

.. 204Other function

.. 205Internal Large Objects - ILOB's

... 205Creating Application Server Programs (ASPX):

.. 206Compile and run

.. 206ASPX program files - Normal web application programs

.. 206ASMX program files - WebServices

.. 207Program activation group

... 208Dispatcher methods

.. 208Session persistent process

.. 209Application pooling

.. 210Multi Process

.. 211Single Session

... 212Programming

.. 212ASPX File Identification

.. 212ASPX File parsing

.. 213How to place dynamic data at runtime

.. 213Remarks

.. 214IceBreak language enhancements

.. 214I18N - internationalization

.. 215AJAX

... 216IceBreak Macros

.. 217Using the simple macros

.. 217Using script macros

.. 218Macro list

... 220Security Considerations in IceBreak

.. 220Direct Access

.. 221Apache Server

.. 222Secure Web Server

.. 222Secure Sockets Layer (SSL)

Part XII Acknowledgements 228

Index 229

System & Method A/S

IceBreak

if (Problem());
 exsr FixIt;
else;
 NOP();
endif;

Part

I

2 IceBreak

System & Method A/S

1 Getting started

1.1 First Step

Getting Started:

When the IceBreak server is installed an running you can
used the administration menu. Here you need to create
your own applications server instance where you can run
your own applications. Also - you can visit the
ApplicationStore on the web from where you can
download application, frameworks, plugins and tools...

Now let's get started:

Create my own server instance.

The server instance is a combined webserver and
applications server for ILE programs. You can serve plain
html, text and image files directly from the IFS AND you
can run ILE RPG, COBOL programs from IBMi libraries
and JAVA classes. You need to define a root path on the
IFS where streamfiles are placed. You also need to
define a library name where you application is placed.
Logon to the

· Logon to the "Administration menu"
· Click "Administration"
· Click "Work with Servers"
· Click the green + or press F6 for "Create a new

server":

Now fill in the form - let's call our first server ICETEST

· Enter "icetest" in the server id and give it a good

3Getting started

System & Method A/S

description.
· The application library is automatically set to ICETEST
· The "HTTP IFS path" (or the root path) is

automatically set to "/www/ICETEST"
· Now set the port number to 7777. (You can ensure it

is available if it not used in the NETSTAT *CNN list)
· Ensure it is in "development mode" which will cause

the compilers to be available.
· Finally press the "Create" button.

Now you have created you server. Now lets start it:

· Right click on the row "ICETEST" in the grid.
· On the drop down menu select "Start"
· Press the "Refresh button"
· The server will now switch from red to green.

Congratulation !! Now you have an running server you
can work with.

If you open a green-screen you can see it has created:
1. Directory /www/ICETEST
2. Library ICETEST
3. Job description ICETEST in ICETEST
4. Source file QASPSRC in ICETEST - This is where the

IceBreak pre-compiler will place the program source
5. Source file QSOAPHDR in ICETEST - this is where the

IceBreak pre-compiler will place prototypes for SOAP
WebServices

6. IceBreak also creates a datashare named ICETEST so
you can access the Root path directly. We will need
that in a moment.

4 IceBreak

System & Method A/S

My First application

Any good programming tool can make a "hello world" in
a couple of lines. Now lets do exactly that in IceBreak:

First you need to have access to the application Root
path. If you open your file explorer you should be able
to work with it just bu typing the name of your IBMi and
the share name. In my case my IBMi is called DKEXP05
so I enter the address:

\\dkexp05\ICETEST

Which looks like:

You will see that IceBreak has created two file folders -
"Intermediate" which is a working sandbox and
"System" where you will find a lot of common
components like images, styles, scripts complete
frameworks. Do not delete any of these folders or their
contents.

Now lets create a new program file:

· Right click and select "New"
· Select "New Text document"
· Now right click and rename "New Text Document.txt"

to hello.aspx

5Getting started

System & Method A/S

· Open "hello.aspx" with an editor of you choice. I'll use
"notepad" in this case.

· Now enter the source code:

<%/free%>
<html>
Hello world!! time in IceBreak land is : <%= %
char(%timestamp) %>
</html>
<% *inlr = *on; %>

Let's look at the code before you save and run it.

The first thing you will notice is the code is surrounded
by <% and %> Every thing that is not enclosed in this

escape sequence will be sent to the browser (the
client). Next - character strings can be set to the
browser if you include the "=" equal sign. So in this case
we are converting a timestamp to a character string and
sending a dynamic value to the browser. There are
several ways to do tat trick in IceBreak, but for now we
will just use this monolithic design :)

Yeps - it time to save the source. Ensure your folder now
contains hello.aspx (If you have hidden suffixes ensure
it is not "hello.aspx.txt" it will not work)

It is time to fire up the baby - and see if it works.

· Open your browser
· In the URL - enter http:// the name of your IBMi : the

port / hello.aspx

Since my IBMi is called DKEXP05 the URL looks like:

http://dkexp05:7777/hello.aspx

Notice the name of the server is not shown here - it is
only referred to by the port number.

If you have copied and pasted correctly your browser
will show something like this:

6 IceBreak

System & Method A/S

Congratulation !! Now you have an running application in
your server.

What happens under the hood is what is called a JIT -
Just In Time compilation. If IceBreak can see the hello.
aspx source but the HELLO program object in ICETEST is
missing or outdated, the JIT compiler kicks in and (re)
compiles the source and creates the program object.

Even though this sample only contains a few lines of
code it illustrates how easy you can bring your IBMi ILE
code to the web. How advanced is up to you.

Using the component wizard

It is nice to be creative and write applications fast.
However some times a little help from the toolbox is
required to speed up the process. In IceBreak we have a
couple of tools to assist you in this process.

The component wizard is by far the most easy generator
to use. It comes in two flavours: vanilla and strawberry -
or rather web 1.0 and web 2.0.

Web 1.0 is clean html and has the flavour of the web.

web 2.0 is more javascript and dynamic html and has
the flavour of an windows/mac/linux desktop application
which requires some kine of frame work to look nice and
behave correctly. IceBreak ships with the ExtJS
framework which also makes up the administration
application.

But first things first - lets have a look at the web 1.0
component wizard and create a simple html based
report.

· Open the administration console
· Open "Tools"
· Open "Component wizard"
· In the "library" field enter *LIBL
· In the "file" file enter product

7Getting started

System & Method A/S

· In the "view" select As Simple List Program
· Now click "display the file" button

Your browser now shows this:

The complete text area will contain the final program:

8 IceBreak

System & Method A/S

<%
H*' --
H*' List of product
H*' --
F*Filename+IPEASF.....L.....A.Device+.Keywords+++++++++++++++++++++++++++++Comments
Fproduct IF A E K disk
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments
D i s 4B 0
C/free
 *inlr = *ON;
//' first the html header and the table to put the data into
//' --

%><html>
<Head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
</Head>
<body>
 <h1>Product master</h1>
 <table border="1">

 <thead>
 <tr>
 <th>Product Key</th>
 <th>Product ID</th>
 <th>Description</th>
 <th>Manufacturer ID</th>
 <th>Price</th>
 <th>Stock Count</th>
 <th>Stock Date</th>
 </tr>
 </thead>
<%
 //' Now reload the list, e.g. Set lower limit with *loval is the first record
 //' then repeat reading until end-of-file or counter exhausted
 //' ---
 setll *loval PRODUCTR;
 read PRODUCTR;
 i = 0;
 dow (not %eof(product) and i < 200) ;
 i = i + 1;

%>
 <tr>
 <td nowrap align="right"><% = %char(PRODKEY) %></td>
 <td><% = PRODID %></td>
 <td><% = DESC %></td>
 <td><% = MANUID %></td>
 <td nowrap align="right"><% = %char(PRICE) %></td>
 <td nowrap align="right"><% = %char(STOCKCNT) %></td>
 <td nowrap align="right"><% = %char(STOCKDATE) %></td>
 </tr>
<% read PRODUCTR;
 EndDo;

%></table>
</html>

Now this looks more like a program - with SETLL and
READ and ENDDO - I like that.

Lets create a new file in our server called list1.aspx
Just follow that same procedure as with the hello.aspx.

9Getting started

System & Method A/S

· Right click and select "New"
· Select "New Text document"
· Now right click and rename "New Text Document.txt"

to list1.aspx
· Open "list1.aspx" with an editor of you choice. I'll use

"notepad" in this case.
· Go back to the Component wizard.
· Click in the code-area and press Ctrl-A and Ctrl-C

which is select all and copy to clipboard.
· Go back to notepad
· Now press Ctrl-V for paste
· ... your code has arrived

Your notepad will look like this:

When you save it and run it it produces a rather basic
report:

10 IceBreak

System & Method A/S

Explore the Application Store

Some tools a not installed in the same go as when you
install the IceBreak core. A nice (free) tool is Snow
flake which installs as a companion tool on your
windows desktop and contains program snippets you can
cut and past into your own work. RPG specs rulers for
fixed format - just copy from snowflake and paste.

· Open the administration console
· Open "Resources on the internet"
· Click "Application store"
· Locate "Snowflake"
· Click "Download"

This will bring you through the windows installation
process and soon you will have Snowflake installed on
your desktop tray

When installing applications that requires to run on the

11Getting started

System & Method A/S

IBM, you first click the download, which will place the
installation files on your desktop - THEN Click Install
application on server.

These two step allows you to not have access to the
internet while accessing the IBMi which sometimes are
required for security reasons.

1.2 Prerequisites for installation

Getting Started:

Before installing please check that you have the following information ready:

· First write down the TCP/IP address for your IBMi
· You will need a user profile and password with *SECADM class for installing IceBreak
· Also your FTP-server must be started on your IBMi

Now let's install the IceBreak server system:

· Open your internet browser and find http://icebreak.org
· Select the "download" option
· Fill in your name, company name and e-mail address.
· Click the "Start download" Now you will have a IceBreakSetupxxxx.exe (xxxx indecate the build)

which will start the installation on your IBMi / iSeries/ i5 / AS/400.
· Enter the TCP/IP address for your IBMi
· Enter the user profile and password with *SECADM class.
· Now you can see the blue progress bar working while IceBreak is being unpacked and installed
· Finally you will be prompted using the "black/green" environment or the browser based

environment .. Just click on the URL
· Congratulation!! - The IceBreak server is now up and running.

Change the administration server to prompt for a user profile and password:

· Open the "Work with server"
· Select the ADMIN server and click "Edit server settings"
· In the "General" tab, Find "logon required" and change it to YES
· Click "Save settings"
· Select the ADMIN server and click "Restart"

1.3 Introducing IceBreak

Getting Started:

IceBreak is a native HTTP-application server for IBMi, iSeries, i5 and AS/400. This server brings the
power of the Internet right into the heart of ILE environment on the IBMi so you can create modern web
applicatins with you RPG skils and bring legacy applications to the web. The IceBreak Server is an
advanced, user-friendly server technology, enabling you to build web applications on the IBM i5/ IBMi/
AS/400 server platform. Yes - You can reuse your RPG coding skills and legacy code.

IceBreak saves source files on the IFS. This gives you the freedom to use any text editor to produce

12 IceBreak

System & Method A/S

your applications. From low cost or free web designing tools like NotePad, pspPad, HTML-kit and NotePad
++ to professional tools like WDSc, Microsoft Visual Web Development, FrontPage or DreamWeaver -
you make the choice depending on your needs and experience. You can even create IceBreak programs
using tools on a Mac like iWeb.

You are able to create very efficient web applications running directly under the i5/OS OS/400 / IBM I
operating system as native compiled program objects. Thanks to the IceBreak native server your
applications are protected against subtle activity on the Internet.

The key to a simple web-development approach is ".aspx", Compiled Active Server Pages. This
technology has been used in .NET on Microsoft web servers for a quite some time. Now we are bringing
ASPX to the IBMi "Application Server Program eXtension". The syntax is similar and the performance is
faster with i5/OS OS/400 / IBM I program objects executing directly from the IceBreak server.

The Object model

The host languages in IceBreak are all the ILE languages: RPG, COBOL or CLP. However, these
languages don't have an object model known in the Object Oriented programming world (OOP). IceBreak
introduces an interface, so you are able to access the object model directly from RPG, COBOL and CLP.

The object model is hidden from your application-layer, however IceBreak allows the user via an API
interface to communicate directly with all objects instantiated by the IceBreak server in RPG, COBOL or
CLP.

Take a look at the communication flow between the IceBreak server and client web browsers:

1.The client places a request at the IceBreak server which creates a request object
2.The Request object is processed: Dependent on the content type either the form-parser for HTML or

the XML-parser is executed for XML input.
3.ASPX Program initiates- You can retrieve data from the request object(2) and render the response

object (5)
4.You can use imbedded SQL to make database I/O, call legacy code, use IBM API's or call IceBreak

API's etc.
5.The Response object is prepared to the clients codepage and encoding scheme
6.IceBreak sends the response back to the client

13Getting started

System & Method A/S

The Objects used in the IceBreak server

When the client (the Browser) requests a HTML document from a web server, it will send a request to the
server. The server then receives the response and render the result in the browser canvas.

Let's follow each of these objects involved in the process from the request to the response:

The Request Object:

The Request object contains all data sent from the client. In the HTTP protocol that is the header and
content. The header describes the content which can be either a "Form Object" or an "XML-Object".

The Form Parser:

The Form Parser initiates automatically when it is a HTML Form-object. The following functions are
available in your ASPX-program:

· Myvar=Form('FormVar');
· MyNumvar=FormNum('FormNumVar');
· MyVar=QryStr('URLParameter')
· MyVarNum=QryStr('NumericURLParameter')
· GetHeader(KeyWord)
· GetHeaderList(Name:Value:'*FIRST' | '*NEXT')

The XML parser:

The XML parser is invoked automatically when the content in the request is a XML-document. That is

14 IceBreak

System & Method A/S

when the content-type is set to "text/xml".

Example:
· Myvar=XmlGetValue('/element1/element2/element[elementnumber]@anattribute' :

'Defaultvalue');

The Session Object:

Fact: The Internet is "stateless" - your program must be designed to process input and produce output -
and then terminate. You cannot have open files or static memory between panels.

A Break-through: The IceBreak server is maintaining a session with the client by creating a "session
cookie". Even if the client browser is blocking "cookies" a session cookie is normally allowed. Sometimes
you have to change the "allow session cookies" flag in the browser for the applications to work correctly.

Sessions are maintained as long as you want, and you can configure the duration of a session using the
WRKICESVR or WRKXSVR command. A session has a very small "footprint" and uses little system
resources.

Session object functions:
· MyVar = SessGetVar('MyVariable');
· MyVarNum = SessGetVarNum('MyNumericVariable');
· SessSetVar(''MyVariable');
· SessSetVarNum(''MyNumericVariable');

The Server Object:
The server object contains static server information like the configuration parameters, but also dynamic
information from the client.

Server object functions:
· MyVar = GetServerVar('AserverVariable');
· PointerToMyVar = GetServerVarPtr('AserverVariable');

The Response Object:

The Response object contains all data sent from the server to the client. In HTTP protocol that is the
header and content. The header describes the content which can be of any type HTML, XML, GIF, TIF,
PDF, etc. This is the place where you render your dynamic output data with the ASPX syntax.

When your program quits IceBreak will the send the response to the client.

Response object functions:
· ResponseWrite(Value)
· ResponseWriteNL(Value)
· ResponseNLWrite(Value)
· ResponseEncTrim(Value)
· SetContentType(MimeType)
· SetCharset(CharSet)
· AddHeader('Name' : 'Value')
· SetHeader('Name' : 'Value')
· Redirect('ToUrl')
· SetStatus(Code)
· SetCacheTimeout(Minutes)
· SetEncodingType(*HTML (default) | *XML | *NONE)

Follow the rest of the tutorial so you can master ASPX and IceBreak. Enjoy!

Part

II

16 IceBreak

System & Method A/S

2 Basic Features

2.1 Response object

2.1.1 Placing runtime data in a HTML document

Basic Functions:

The Basic Syntax Rule

An IceBreak-ASPX file normally contains HTML tags, just like an HTML file. However, an ASPX file can
also contain server scripts/code, surrounded by the delimiters <% and %>. Server scripts/code are
executed on the server, and can contain any expressions, statements, procedures, or operators valid
for the scripting language you prefer to use. In the following tutorial we will use Free-RPG.

ASPX uses an escape sequence between the HTML document and the code portion.

To start the code escape insert <%

To end the code insert %>

To place variables from the code insert <%= pgmvar %>

A small sample "Hello world" written in Free-RPG might look like:

<%/free%>
<html>
Hello world!! time in IceBreak land is : <%= %char(%time) %>
</html>
<% *inlr = *on; %>

Line1:
· First we insert <% to switch into "script code-mode".
· The RPG-compiler is then set to use "free format-mode".
· Switch back to HTML using %> .

Line 2,3,4:
· In HTML-mode you are able to write any valid HTML text.
· Place the value of a function call to retrieve the time value by inserting <%=.
· All response is in text format: Convert the result of the %time -function with the %char-function.
· Switch back to HTML with %> .

Line 5:
· Again insert <% to switch into "code-mode".
· Insert *INLR to terminate the program by setting this switch to *ON.
· Finally we switch back to HTML with %> .

You cannot view the ASPX source code by selecting "View source" in a browser. You will only see the
output from the ASPX file which is plain HTML. This is because the scripts are executed on the server
before the result is sent back to the browser.

17Basic Features

System & Method A/S

In our ASPX tutorial, every example displays the hidden ASPX source code. This will make it easier for
you to understand how it works.

2.1.2 Placing runtime data using "Markers"

Basic Functions:

Using "Markers"

"Markers" are used to place data in the response object just like using <% = variable %>. A marker
value is inserted into the the response object just before data is sent back to the browser.

Markers data will be encoded according the current value set by SetEncodingType('*html' (default) |
'*xml' | '*none'); So it can contain any kind of data: HTML, Scripts etc. but has a limit of 32766 bytes
in RPG

There are two steps in using a marker:
· Insert the the marker in the response object. The syntax is: <%$ Mymarker %>
· Then assign the marker to a value. This is done by calling the build in function: SetMarker

('MyMarker' : 'this is the value for my marker');

A small sample "hello world" written in Free-RPG might look like:

<%/free%>
<html>
 The marker value is:
 <%$ MyMarker %>
 ...
<%
 SetMarker('MyMarker': 'hello world!!');
 *inlr= *ON;
%>

Separating business logic and presentation layer

Markers also make it possible to separate .aspx code and HTML or XML documents. Here are the two
steps:

1. Place all your HTML or XML code in a separate document which can be designed and validated by
any HTML or XML editor.

2. Make a .aspx program which refers to a specific tag in the HTML / XML document at runtime.

Your connection with variables in the final response is through markers.

The syntax is the same as for static include in the presentation layer:
<!--#tag="tagname"-->

Next you referfollowing to that tag from the program by setting markers and finally render the result

by:

ResponseWriteTag('filename' : 'tagname');

Filename:
The file name and path can be absolute or relative for the ResponseWriteTag(Filename :
TagName) according to the following

18 IceBreak

System & Method A/S

· /path/filename.ext This absolute from the IFS root
· ./Filename.ext This is relative to the Server instance root path
· Filename.ext This is relative to the browser relative "refer location"

Tagname:
The tag name is the location in the file - until next tag or end of file (which comes first)

The special values *FIRST can be used as tag name to refer to the first protion of the file prior to
any tags. This is useful when dealing with XML-response files since they can be validated. An XML
file can not start with a comment, which the tag looks like from a XML file editor’s perspective.

Example:

The HTML document (let's call it ex01marker1.htm) will contain the following:

<html>
<body>
<h1>Dynamic placing data using markers</h1>
<table>
<!--#tag="detail"-->
<tr>
 <td><%$ MyCounter %></td>
 <td><%$ MyTime %></td>
</tr>
<!--#tag="end"-->
</table>
</body>
</html>

The ASPX program is HTML free and only use the SetMarker(variable : value); and the
ResponseWriteTag(Filename : TagName); build-in function.

<%
d i s 10i 0
 /free
 ResponseWriteTag('./tutorials/ex01marker1.htm' : '*FIRST');
 for i = 1 to 1000;
 SetMarker('MyCounter': %char(i));
 SetMarker('MyTime' : %char(%timestamp));
 ResponseWriteTag('./tutorials/ex01marker1.htm' : 'detail');
 endfor;
 ResponseWriteTag('./tutorials/ex01marker1.htm' : 'end');
 return;
%>

2.1.3 Dynamically including stream files

Basic Functions:

The IceBreak ASPX-compiler has the powerful "include" function which dynamically enables you to

19Basic Features

System & Method A/S

include any stream file object in the response. You can import Microsoft Word documents, PDF files,
Excel spread sheets, HTML, XML etc.

The Include-function loads files according to the http path entered in the IceBreak server configuration.
The file path can be absolute or relative according to the folowing

· /path/filename.ext This absolute from the IFS root
· ./Filename.ext This is relative to the Server instance root path
· Filename.ext This is relative to the browser relative "refer location"

How to let the Browser open the XLS-sheet, not asking for downloading the
file.

Run an IceBreak ASPX-program creating the file contents. Then let the browser open the associated file
type. For that purpose we use double suffix. IceBreak detects the first suffix, and the browser detects
the following suffix.

The file name might be:

MyApp.aspx.XLS

The contents type however has to be set so the browser can open the resulting file. Otherwise a dialog
box will appear asking you to download the file.

The following code include a simple sheet:

<%
D*'Name+++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D errstr s 512 varying
/free

// We will place Excel in the response object
// the "setContentType" must be executed before placing data in the response object
 SetContentType('application/x-msexcel');
 SetCacheTimeOut(240);

// Load the stream file into the response object
 errstr = Include('./tutorials/sheet1.xls');
 if (errstr > '') ;
 SetContentType('text/html');
 SetCacheTimeOut(0);
 %><%= errstr %><%
 endif;

 return;
%>

Please note:

The use of SetCacheTimeOut(240) is required. Otherwise the message "404 document not found" is
issued because the browser first places the file into the cache - and then opens it with the associated
application, in this case Microsoft Excel. The dialog box is avoided by setting the contents type:
SetContentType('application/x-msexcel');

20 IceBreak

System & Method A/S

How to let the Browser open the DOC with Microsoft Word, not asking for
downloading the file

Word documents can also be created in the same way. Now you have to change the contents type to
Word document and the application suffix to DOC:

1) SetContentType('application/msword');

2) MyApp.aspx.DOC

The following code include a simple Word-document

<%
D*'Name+++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D errstr s 512 varying
/free

// We will place a word-document in the response object
// the "setContentType" must be executed before placing data in the response object
 SetContentType('application/msword');
 SetCacheTimeOut(240);

// Load the stream file into the response object
 errstr = Include('./tutorials/testword.doc');
 if (errstr > '') ;
 SetContentType('text/html');
 SetCacheTimeOut(0);
 %><%= errstr %><%
 endif;

 return;
%>

Can I do that for any file type?

Yes! As long you know the SetContentType and the FileSuffix. Maybe you need to search the Internet
to find the right Content type, also called the MIME type but here is a popular list:

Application to start File Suffix SetContentType / MIME type

Microsoft Word DOC application/msword

Microsoft Excel XLS application/x-msexcel

Adobe Acrobat PDF application/pdf

Kodak imaging TIF image/tiff

Microsoft Power Point PPT application/vnd.ms-powerpoint

Rich Text RTF application/rtf

Application programs EXE .. Others application/octet-stream

Hint: The "ShowSample.aspx" used in this tutorial includes an example displaying the source by wrapping
the APS/HTML content in <XMP></XMP> tags.

IceBreak includes a DB/2 table called MIM00 which controls the default MIME-type for different file
extensions. You can modify this table but first backup this file. You can replace the contents with your
own version. This table indicates which extensions ASPX-programs are using.

The default default MIME type for an filename or attribute can be retrieved by:

MyMimetype = GetMimeType('FilenameOrAttribute.ext')

21Basic Features

System & Method A/S

The following code is including a PDF file and find the content type using the GetMimeType function:

<%
D*'Name+++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D errstr s 512 varying
/free

// We will place PDF file in the response object
// the "setContentType" must be executed before placing data in the response object
 SetContentType(GetMimeType('./tutorials/sample.pdf'));
 SetCacheTimeOut(240);

// Load the stream file into the response object
 errstr = Include('./tutorials/sample.pdf');
 if (errstr > '') ;
 SetContentType('text/html');
 SetCacheTimeOut(0);
 %><%= errstr %><%
 endif;

 return;
%>

2.1.4 Sending the response back to the client

Basic Functions:

The response is by default build up in a response buffer, which will be transferred back to the client (the
browser) in one go - when your applications programs returns.

In some cases you might find it convenient to send the buffer back in smaller pieces. Some situations
might be:

· Your application runs for a long time and produces output occasionally.
· You program produces more that 16MB which is the maximum size of the response buffer
· You are creating a "Web Push technology" applications.

In the above situations you might to exploit the "chunked" transfer encoding.

Chunked.

IceBreak automatically used the chunked transfer encoding after you call the setChunked(); IceBreak
procedure. The header will immediately be sent back to the client (the browser) so it is important that
you setup all headers (if any) before calling setChunked();Likewise you must set the chunked before
you send any data to the response object.

The setChunked() procedure also takes minimum size of a chunk buffer you want to sent. Don't make it
to small since it will have a performance impact - a good approximation might be around 4K. Each time
this threshold is exceeded the output buffer will be flushed and sent back to the client.

If you want to control when the buffer is actually sent back to the client, you can call the responseFlush
(); which sending the buffer and afterwards clear it. It only works in Chunked mode. When used in
"normal" mode the output buffer only gets cleared.

Syntax:

setChunked(BufferSize);

BufferSize:

22 IceBreak

System & Method A/S

· The buffer threshold value in bytes for automatically flushing the response to the client (browser)
· CHUNK_AUTO_FLUSH used it your application uses markers.

Syntax:
responseFlush();

Sample:

<%
d i s 10i 0
/free
 setChunked(4096);
%><html><%
 for i = 1 to 1000;
 %>Sending chunked data at :<% = %char(%TimeStamp()) %>
<%
 endfor;
 *inlr= *ON;
%></html>

Also use this feature if you having a processes bar or for long running task as status information
purposes:

<%
d i s 10i 0
/include qasphdr,posix
/free
 setChunked(1024);
%><html><%
 for i = 1 to 10;
 %>Running step <%= %char(i) %> of 10

 <% // An extra new-line is required before the browser displays the
line
 responseFlush(); // Here the response is being sent back to the client
 sleep(1); // This is a C-library function you can access if you include the
POSIX member from QASPHDR
 endfor;
 *inlr= *ON;
%>
</html>

Markers and Chunks

When you are using markers you have to bare in mind that your static response and the dynamic marker
values are rendered when you send the response back to the client. You have to synchronize that
behaviour with the chunks being sent.

23Basic Features

System & Method A/S

The easiest way is to set the chunk minimum size to CHUNK_AUTO_FLUSH. That causes the response to
be rendered and flushed in one go when you use the responseWriteTag(); procedure. Otherwise you can
use the combination parseMarker() / responseFlush();

Sample:

<%
d i s 10i 0
 /free
 setChunked(CHUNK_AUTO_FLUSH);
 responseWriteTag('./tutorials/ex01mark1.htm' : '*FIRST');
 for i = 1 to 1000;
 setMarker('MyCounter': %char(i));
 setMarker('MyTime' : %char(%timestamp));
 responseWriteTag('./tutorials/ex01mark1.htm' : 'detail');
 endfor;
 responseWriteTag('./tutorials/ex01mark1.htm' : 'end');
 return;
%>

The following sample is if you want to control the flow 100% by you self. This has actually a better
performance since the buffer is only sent to client for each 100 resulting rows.

<%
d i s 10i 0
 /free
 setChunked(1000000);
 responseWriteTag('./tutorials/ex01mark1.htm' : '*FIRST');
 for i = 1 to 1000;
 setMarker('MyCounter': %char(i));
 setMarker('MyTime' : %char(%timestamp));
 responseWriteTag('./tutorials/ex01mark1.htm' : 'detail');
 if (%rem(i : 100) = 0);
 responseFlush();
 endif;
 endfor;
 responseWriteTag('./tutorials/ex01mark1.htm' : 'end');
 return;
%>

2.1.5 Trimming the response object

Basic Functions:

Depending on the nature of your application you can set up how the response is trimmed before
returning to the client.

The default trimming option is set on the server with CHGICESVR and the keyword DFTTRIM

The DFTTRIM can have 4 values:

24 IceBreak

System & Method A/S

· *NONE - The field value goes as it is to the client
· *LEFT - All leading blanks from left is removed before sending the result to the client
· *RIGHT - All trailing blanks from right is removed before sending the result to the client
· *BOTH - Both leading and trailing blanks are removed before sending the result to the client

You can override this value at runtime by calling the build-in setTrim();

setTrim() can process 4 values:

· setTrim(TRIM_NONE) The field value goes as it is to the client
· setTrim(TRIM_LEFT) All leading blanks from left is removed before sending the result to the

client
· setTrim(TRIM_RIGHT) All trailing blanks from right is removed before sending the result to the

client
· setTrim(TRIM_BOTH) Both leading and trailing blanks are removed before sending the result to

the client

If you want to remove white space from the source stream you can use the compiler directive
trimoutput='YES'

2.2 Request object

2.2.1 The "Form" function

Request object:

When you use input fields in an IceBreak-ASPX page - you make a "form" in HTML. Input field
surrounded with the "form" can be "posted" back into the IceBreak Server:

When you want to use the content of the posted form use the "Form" Icebreak-ASPX function to retrieve
the posted value from the request object.

The following example is IceBreak ASPX code in Free-RPG:

<%
d myName s 256 varying
/free

// Take the "myName" attribute from the form object an place it
// into a program variable
// ---
 myName = form('myName');

%>
<html>
<form action="ex01Form.aspx" method="post" name="form1">
 Enter your name, and press enter :
 <input type="text" name="myName">
</form>
When I come back to this page my name is: <%= myName %>
</html>
<% *inlr = *on; %>

Note the relation between "<form ... post input .. name="MyName" ...

"MyName" is an input text field on the posted form.

25Basic Features

System & Method A/S

Listing all fields in a form

You can also list both values and field names placed on a form and returned to the IceBreak application
like:

<%
 *' -- *
 *' Demo : Show all form fields received from the browser-client
 *' -- *
d Field s 256 varying
d Value s 4096 varying
c/free
%>
<html>
<head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
</head>
<body>
<form method="post" id=form2 name=form2>
<input type=text name=myinput />
<input type=text name=moreinput />
<input type=submit name=ok />
<table>
 <thead>
 <th>Field</th>
 <th>Value</th>
 </thead>
<%
 GetFormList (Field: value : '*FIRST');
 dow (Field > '') ; %>
 <tr>
 <td><%= Field %></td>
 <td><%= Value %></td>
 </tr>
<% GetFormList (Field: value : '*NEXT');
 Enddo;

*inlr = *on;
%>
</table>
</form>
</body>
</html>

2.2.1.1 Using the "FormNum()" function

Request object:

Just like the "Form()" ASPX function you can use the "FormNum()" function to retrieve numeric values
from a form.
The "FormNum()" function returns the numeric value from a "form" field Into a RPG variable or use the
value in an expression.

The value returned is always a "packed decimal(30,15)" To allow a wide range of numeric data sizes. The
conversion in respect to number of digits and decimal position is done by the RPG-runtime.

All formatting chars like -,;$ etc. are striped out. Therefore is this function is also useful to converting
date field, since date formatting is striped out. The decimal sign , or . is used in respect to the underlying

26 IceBreak

System & Method A/S

IceBreak server job description.

ex:

eval Number = FormNum('MyFormField');

or:
if (FormNum('MyFormField') <= 0) then;
%> My Form Field has to be a valid number <%
endif;

<%
d myNumber s 9 5
/free

 myNumber = FormNum('myNumber');

%>
<html>
<head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
</head>
<body>
<p>The value of "myNumber" is : " <%= %char(myNumber) %>
</p>
<form name="form1" method="post" action="ex01FormNum.aspx">
 Enter a number. Use decimal points and signs as you please:
 <input name="myNumber" value="<%= Form('myNumber') %>">
 <input type="submit" name="Submit" value="Submit">
</form>
</body>
</html>
<%
 *inlr = *on;
%>

2.2.2 Using the "QryStr" function to parse parameters along the URL

Request object:

The "QryStr" Function.

The "QryStr" takes the value from a parameter parsed along with the URL.

There are (at least) two ways to build the URL in a HTML document:

· Passing the variable name and value along the <a href ... tag
· use the method= "GET" on the form object.

The following example illustrates both ways in IceBreak ASPX code Free-RPG:

<%/free%>
<html>

27Basic Features

System & Method A/S

<head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
</head>

<form method="get">
 <p>Enter your name, and press enter : </p>
 <input type="text" name="myname">
 <p>When I come back to this page my name is: <%= QryStr('myname') %></p>
 This link takes the value "ABC" along the URL back
to the application
</form>
</html>
<% *inlr = *on; %>

Listing all fields in the query string

You can also list both values and field names parsed on the query string returned to the IceBreak
application like:

<%
 *' -- *
 *' Demo : Show all query string fields received from the browser-client
 *' -- *
d Field s 256 varying
d Value s 4096 varying
c/free
%>
<html>
<head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
</head>
<body>
<form method="get" id=form1 name=form1>
<input type=text name=myinput />
<input type=text name=moreinput />
<input type=submit name=ok />
<table>
 <thead>
 <th>Field</th>
 <th>Value</th>
 </thead>
<%
 GetQryStrList (Field: value : '*FIRST');
 dow (Field > '') ; %>
 <tr>
 <td><%= Field %></td>
 <td><%= Value %></td>
 </tr>
<% GetQryStrList (Field: value : '*NEXT');
 Enddo;

*inlr = *on;
%>
</table>
</form>
</body>
</html>

28 IceBreak

System & Method A/S

2.2.2.1 The "QryStrNum" Function

Request object:

The "QryStrNum" takes the numeric value from a parameter parsed along with the URL

To retrieve input fields from an ASPX page you use the "form" tag in HTML. Input field surrounded with
the "form" can be sent along the URL by the "GET" function back into the IceBreak Server:

The following example is IceBreak ASPX code in Free-RPG

<%
D*'Name+++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D MyNumber s 15 5
/free
 MyNumber = QryStrNum('MyNumber');
%>
<html>
<head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
</head>
<body>
<form action="ex01QryNum.asp" method="get" name="form1">
 <p>Enter a number or a date and press enter :
 <input type="text" name="MyNumber"></p>
 <p></p>When I come back to this page the number is: <%= %char(MyNumber) %></p>
 This link takes the value "1234,56" along the
URL back to the application
</form>
</html>
<% *inlr = *on; %>

2.3 Server object

2.3.1 Controlling the HTTP Header

Server Behaviour:

The HTTP header is the way you control the Browser behavior. Here are the functions available:

Function name Description Sample

SetHeader
Set a header attribute in the
response

SetHeader('Location':'http://www.
agentdata.com');

Redirect
Force the browser to reload a
page from another URL

Redirect('http://www.agentdata.
com');

SetCharset
Set the character set used for the
resulting document

SetCharset('windows-1252');

SetContentType
Set the MIME type on the resulting
document

SetContentType('text/html');

SetContentType
Set the MIME type and character
set used for the resulting
document

SetContentType('text/html;
charset=windows-1252');

SetStatus Changes the HTTP status code for SetStatus('401 Access denied');

29Basic Features

System & Method A/S

the response. See the complete
list

here

GetHeader
Returns the value of a given
header keyword in this case the
full URL

val= GetHeader('Referer');

GetHeaderList Returns all headers one by one
GetHeaderList(Keyword , Value,
'*FIRST' | '*NEXT');

Here is a sample

<%
 *' -- *
 *' Demo : How to make a redirect
 *' -- *
 /free

//' One way to make a "redirect"
 Redirect('http://www.google.com');

//' The same thing made "by hand"
// SetStatus('302 Redirect');
// SetHeader('Location' : 'http://www.google.com');

%> Never say Hello world - i'll be redirected to google before that<%
*inlr = *on;
%>

Run the sample

Show the sample

This sample shows all headers received from the browser-client

<%
 *' -- *
 *' Demo : Show all headers received from the browser-client
 *' -- *
D Keyword S 256 varying
D Value S 4096 varying
 /free
%>
<head>
 <meta http-equiv=Content-Type content="text/html; charset=windows-1252">
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
</head>
<body>

Get a header value direct: Host = <%= GetHeader('host') %>

 <table>
 <thead>
 <th>Keyword</th>
 <th>Value</th>
 </thead>
<%
 GetHeaderList (Keyword: value : '*FIRST');

30 IceBreak

System & Method A/S

 dow (Keyword > '') ; %>
 <tr>
 <td><%= Keyword %></td>
 <td><%= Value %></td>
 </tr>
<% GetHeaderList (Keyword: value : '*NEXT');
 Enddo;

*inlr = *on;
%>
 </table>
</body>
</html>

Run the sample

Show the sample

2.3.2 Retrieving Server Information

Server Behaviour:

The server has many configuration parameters and runtime information which are available to you ASPX-
program. Call the the GetServerVar() function to place values in your program variable.

Example:

 MyServerId = GetServerVar('SERVER_ID');

The complete list with actual run-time values:

Server variable Description

SERVER_SOFTWA
RE

The name and version of the running server

SERVER_ID Name of current server instance

SERVER_TOKEN The enumerated number of the server instance

SERVER_DESCRIP
TION

Description of the server instance

SERVER_LOCAL_P
ORT

The TCP/IP portnumer (from 1 to 65535) where the server is polling for requests

SERVER_INTERFA
CE

The TCP/IP interface where the server is polling for requests. (Interface created by
i5/OS command ADDTCPIFC)

SERVER_JOB_NAM
E

The underlaying i5/OS job name

SERVER_JOB_USE
R

The underlaying i5/OS job user name (not the active user)

SERVER_JOB_NUM
BER

The underlaying i5/OS job internal job number

SERVER_JOB_MOD
E

The state of the server: "*PROD" or "*DEVELOP"

SERVER_LOGON_
REQUIRED

An authenticaton prompt is automatically displayed when the user request the page
and are "unknown" (Not available yet)

SERVER_STARTUP
_TYPE

Whether the server should start when the subsystem is activated or must be started
by STRICESVR or STRXSVR

SERVER_DEFAULT
_USERPROFILE

The user profile used when starting a server instance process

SERVER_ROOT_PA The IFS path used for web document. This can not be relative but is fixed to the IFS-

31Basic Features

System & Method A/S

Server variable Description

TH root

SERVER_DFT_DOC
The web document displayed when no specific document is requsted. This is relative
to the SERVER_ROOT_PATH

SERVER_CACHE_T
IMEOUT

Number of seconds before a document expires. 0=immediately.
Servers in *DEVELOP mode always overrides this value to 0 so the cache always is
refreshed

SERVER_INPUT_B
UFFER_SIZE

Number of bytes in the input buffer (the Request Object).
When zero a default of 1Mbytes is used

SERVER_OUTPUT_
BUFFER_SIZE

Number of bytes in the output buffer (the Response Object).
When zero a default of 1Mbytes is used

SERVER_COOKIE_
BUFFER_SIZE

Number of bytes in the output buffer (the Response Object).
When zero a default of 64Kbytes is used

SERVER_INITIAL_
PGM_NAME

Name of program to set extra libray list etc. It is called when the server instance is
initiate - Not each time a new client connects
or *NONE

SERVER_INITIAL_
PGM_LIB

Name of library where the initial program exists

SERVER_JOBQ_NA
ME

The jobqueue from where the server process is started

SERVER_JOBQ_LI
B

Name of library where the jobqueue exists"

SERVER_APPLICAT
ION_LIB

This is where all your APS-programs are placed when they are compiled.
This is where the QASPSRC file is created with your precompiled ASPX-program
sources

SERVER_TGTRLS The default target i5/OS release for programs created on this server instance

SERVER_TRACE_F
ILE

The name of the trace file created when TRACE=*ON When blank, the file name
defaults to Trace.txt in the SERVER_ROOT_PATH

SERVER_SYSTEM_
NAME

The system name from the network attribute

SERVER_OS_VER The current version and relase of i5/OS

SERVER_CCSID The current CCSID or *AUTO if the CCSID is dynamic seletected

SESSION_TIMEOU
T

Number of seconds before the session automatically is terminated
Default is 1440 seconds

SESSION_ID The Unique Session Timestamp-id; also it is the time when the session was started

SESSION_NUMBER
The Unique Session number; Also it is the job number of the first lightwaight job that
initiated the session

SESSION_USERID The i5/OS userprofile logged on. When no logon was issued it returns *DEFAULT

REMOTE_ADDR The remote TCP/IP address of the client web browser

REMOTE_PORT The remote TCP/IP port number negotiated by the TCP/IP layer

REQUEST_HOST_N
AME

The TCP/IP address or name for the requested server

REQUEST_METHO
D

The method the document was requested:
GET parameters is parsed along the URL
POST Parameters are parsed in the form object

REQUEST_URL
The complete URL. E.g. the resource filename with path and extension and
parameters

REQUEST_FULL_P
ATH

The resource filename with path and extension

REQUEST_REF_PA
TH

The refered path from the http header if given. Otherwise the reffence path where
the resource were requested

REQUEST_PATH The path portion only of the request

REQUEST_FILE The filename and extension only

REQUEST_RESOU
RCE

The resource (filename only) portion only of the request in uppercase

REQUEST_FIRST_
EXTENSION

The first extension for the resource of the request in uppercase. If only one extension
exist this will be the same value

REQUEST_EXTENS
ION

The extension for the resource of the request in uppercase

REQUEST_HEADER The complete header string

REQUEST_RAW The complete request, excluding the content

32 IceBreak

System & Method A/S

Server variable Description

REQUEST_CONTEN
T

The content string

QUERY_STRING
Parameters sent along the GET or POST request after the document. The URL in the
browser

HIVE_NAME If running i a hive this is the virtual path name (the hive name). Otherwise blank

HIVE_PATH If running i a hive this is the physical path to the IFS. Otherwise blank

HIVE_LIB If running i a hive this is the application library for the current . Otherwise blank

All i5/OS system values are also available by prefixing the system value with "SYSVAL_".

like:
 DayOfWeek = GetServerVar('SYSVAL_QDAYOFWEEK');

The complete list of system values can be found in the i5/OS command WRKSYSVAL Here are samples
values

Server variable Sysval Description

SYSVAL_QDAYOFWEEK QDAYOFWEEK The day of week

SYSVAL_QTIME QTIME The current time

Run the sample

Show the sample

2.3.3 System Global Variables

Basic Functions:

System Global Variables are persistent between sessions and servers. I.e. if you create a system global
variable in one session on one server it will be visible in all other servers and session. So be carful -
especially when you clear system global variables - it has an impact on the entire system.

Functions:

globalSetVar (variableName : value);

myVar = globalGetVar(variableName : [defaulrValue]);

globalSetVarNum (variableName : numeric value);

myNumVar = globalGetVarNum(variableName : [default Numeric Value]);

globalClrVar (qualified name);

Variable Name:

You can use any name for the global variable, however we suggest that you qualify you names
according to X-path naming, since you will be able to import and export using XML in releases to
come. Also for the reason that the name you use is system wide. At least provide some kind of
name space - for instance the current server name.

33Basic Features

System & Method A/S

Value:

Any string expression - up to 32K bytes

Default value:

Any string expression - up to 32K bytes. Applied when the variable does not exists in the System
Global domain. When the variables exists, the default value is ignored.

Numeric value:

Numeric expression that can be stored in a 31.15 decimal variable

Qualified name:

Any string expression. You can apply the * to give a generic value to clear - up to 32K bytes.
Applied when the variable does not exists in the System Global domain. When the variables exists,
the default value is ignored.

Example:

<%

d*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++++
d myName s 256 varying
d counter s 10i 0
d si s 12 varying

/free

 // String sample using x-path
 globalSetVar('/myprops/cust@name' : 'John');
 myname = globalGetVar('/myprops/cust@name' : 'N/A'); // Default to N/A if not set
 %>My Name: <% = myName %>
<%

 // Number sample - using x-path:
 counter = globalGetVarNum ('/myprops/cust@counter' : -1) +1; // Default to -1 if not set
 globalSetVarNum ('/myprops/cust@counter' : counter);
 %>Counter is now: <% = %char(counter) %>
<%

 // Cleanup sample: Delete all variables under "cust1" (still x-path
 globalClrVar ('/myprops/cust1*');

 // Simple name - yet qualified:
 si = '/' + getServerVar('SERVER_ID') + '/';
 globalSetVar(si +'now' : %char(%timestamp()));
 %>time is:<%= globalGetVar(si + 'now') %><%
 globalClrVar (si + 'now');

 *inlr= *ON;
%>

Note:

The data is stored in the DB/2 table SGV00 - and you can manipulate it directly by i.e. SQL, but be
aware that this might change from release to release.

Also, if you need to mirror IceBreak between and use System global variables - you need to mirror this

34 IceBreak

System & Method A/S

DB/2 table SGV00.

2.4 Session object

2.4.1 Session management

Basic Functions:

The internet has no session mechanism - the internet is stateless. However, state information is required
to track data from one page to another in a modern web application. IceBreak support two different ways
to keep track of sessions namely by session cookies and by URL Rewriting. Both methods have some
pros and cons. What you choose to use depends on your application.

Session cookie

By default all session in iceBreak is maintained by a session cookie. The session ID is automatically
placed in the http header and sendt back and forth between the browser and the IceBreak server.
However, browsers may disable the use of cookies - even harmless session cookies. Also, some browsers
have difficulties with serving the right session cookie to the right application in a multi-frame
environment. I.e. when the outer frame is served by one server - let's say an IIS and the inner frame is
served by IceBreak. In both cases you need to use the URL rewriting method.

URL Rewriting (session stability by URL redirection)

URL Rewriting is one of the popular session tracking methods used for Non-cookie browsers to save
session information. URL Rewriting tracks the user's session by including the session ID in the URL (to
carry information from one HTML page to another). The information is stored inside the URL, as an
additional parameter where all the links on a page are re-written so that the server side program
receives the old as well as new data. Thus a session (or a connection is maintained between multiple
pages) for every user.

Since the session ID is exposed to the user it might be changed. In that case IceBreak just creates a new
session.

Some pitfalls/considerations:

· Beware that you only use relative redirection.
· Ensure that Ajax calls refer to the same session URL.
· Sessions might be bookmarked and even transferred to other clients

Accessing the session object

You can put data into the session object and retrieve data back by some simple IceBreak functions:
· MyVar = SesGetVar('MyVariable');
· MyVarNum = SesGetVarNum('MyNumericVariable');
· SesSetVar('MyVariable' : MyValue);
· SesSetVarNum('MyNumericVariable': 1234567.89);

Also ILOB's are in maintained by the session object. More on that later in the ILOB chapter.

35Basic Features

System & Method A/S

2.4.2 Log on to an icebreak session

Basic Functions:

In IceBreak you can use either the native i5/OS user profile login or you can use an LDAP server or
Windows server running active directory to authticate a IceBreak session.

Log on using an I5/OS user profile

In many cases you will build applications that requires running authenticated under another user profile
than the default profile that was used when the server instance was started.

For that purpose the IceBreak-ASPX has the following build-in functions:

LogOn

Syntax:

Message = LogOn (Userprofile : Password);

Field Name Data type Description

UserProfile CHAR(10) The i5/OS User profile

Password CHAR(128)
The associated password for the
above user profile

Returns

Message VARCHAR(512)
If blank the logon attempt was
successful; otherwise it contains a
descriptive message

When the "LogOn" executes successfully the underlying job for the IceBreak will change the session
profile and all successive jobs associated with that session will use same profile handle.

Ex:

<%
d msg s 512 varying
/free
msg = LogOn(Userid:Password);
if (msg <= '');
 Initpage();
 return;
else;
 exsr ShowLogon;
endif;
...
 %>

Run the sample

Show the sample

36 IceBreak

System & Method A/S

Log on using an LDAP server or Windows server running Active Directory

This is a simple way to authenticate the user profile and password against LDAP or Windows server.
However, since there is no connection between the user profile on i5/OS and LDAP/Windows this will only
be an authentication vailidation, but no credentials are given.

For that purpose the IceBreak-ASPX has the following building functions:

LDAP_Logon

Syntax:

flag = LDAP_Logon (Server : Userprofile : Password);

Field Name Data type Description

Server URL VARCHAR(128) Server name or TCP/IP adrress. Explicit host list.

UserProfile VARCHAR(128)
The User profile on LDAP / Windows Active
Directory

Password CHAR(128) The associated password for the above user profile

Returns

flag BOOL (indicator)
When *ON an error occured and you can examin
that error by calling GetLastError();

Explicit Host List Specifies the name of the host on which the LDAP server is running. The host parameter
may contain a blank-separated list of hosts to try to connect to, and each host may optionally be of the
form host:port .

The following are typical examples:

error = LDAP_Logon('server1' : MyUser : MyPwd);
error = LDAP_Logon('server2:1200':MyUser : MyPwd);
error = LDAP_Logon('server1:800server2:2000 server3' :MyUser : MyPwd);

You can also use a default host. i.e when the host parameter is set to ("ldap://") the LDAP library will
attempt to locate one or more default LDAP servers, with non-SSL ports, using the SecureWay

error = LDAP_Logon ('ldap://' : MyUser : MyPwd);

If more than one default server is located, the list is processed in sequence, until an active server is
found.

The "Server URL" can include a Distinguished Name (DN), used as a filter for selecting candidate LDAP
servers based on the server's suffix (or suffixes). If the most significant portion of the DN is an exact
match with a server's suffix (after normalizing for case), the server is added to the list of candidate
servers. For example, the following will only return default LDAP servers that have a suffix that supports
the specified DN:

error = LDAP_Logon ('ldap:///cn=niels, dc=cph, dc=agentdata, dc=com' :MyUser: MyPwd);

In this case, a server that has a suffix of "dc=austin, dc=ibm, dc=com" would match. If more than one
default server is located, the list is processed in sequence, until an active server is found.

If the "Server URL" contains a host name and optional port, the host is used to create the connection. No
attempt is made to locate the default server(s), and the DN, if present, is ignored.

For example, the following two are equivalent:

error = LDAP_Logon('ldap://myserver' : MyUser : MyPwd);
error = LDAP_Logon('myserver':MyUser : MyPwd);

37Basic Features

System & Method A/S

In general you will always test the result of the log on by retrieving the messages from the GetLastError() function.

Ex:

<%
....
error = LDAP_Logon(Server:Userid:Password);
if (error);
 <% = GetLastError() %>
 return;
else;
 exsr ReadyToGo;
endif;
...
 %>

Show the sample

LoggedOn

Syntax:

Flag = LoggedOn ();

Field Name Data type Description

Flag Indicator/ Logical / boolean
Returns *ON if a session is logged
on.

The "LoggedOn()" function can be used to redirect the user to the correct logon ASPX page where the
user id/password can be entered.

Or it can be used to determine whether or not the session is run as Anonymous session.

Ex:

<%
....
if (not LoggedOn());
 exsr doLogon;
 return;
endif;
...
 %>

batchLogin

You can also create an IceBreak session from a batch or interactive job. This is useful when you run
IceBreak in mixed environments with CGIDEV2, PHP or java from the same IBMi box.

From you within a (no-IceBreak) RPG program you issue a "bachLogin" which in turn gives you a session
handle to an IceBreak session. Notice that you need to provide a userid and password - This is native
IBMi profile information.

Also your RPG program has to bind to the ICEBREAK bin directory so you need ICEBREAK on your library

38 IceBreak

System & Method A/S

list to compile and run it.

You can now concatenate the session id into an URL to your icebreak application and application will run
with the credentials specified:

h bnddir('ICEBREAK')

 /include qasphdr,icebreak

d session s 22 varying

 /free

 session = batchLogon('SYSTEST ' : 'DEMO' : 'DEMO');

 url = 'http://myIBMI:1234/'

 + session

 + '/myProgram.aspx';

 // now provide the url to the client

 *inlr = *ON;

When you are done with the session you can explicitly terminate the session if needed with a
batchLogoff:

h bnddir('ICEBREAK')

 /include qasphdr,icebreak

d session s 22 varying

 /free

 ...

 batchLogoff ('SYSTEST ' : session);

 *inlr = *ON;

39Basic Features

System & Method A/S

2.5 Server behaviour

2.5.1 Setting up HTTPS

Server Behaviour:

See the videocast on from the Internet

HTTPS is the secure version of the HTTP protocol. It is the same but uses the Secure Socket Layer - SSL
as the transportations.

You need a certificate to run IceBreak with HTTPS. This certificate can be issued by Verisign (tm) among
others - or you can build one your self. In this tutorial we will step through the configuration of the
IceBreak server instance and build a certificate using the buld-in "Digital Certificate Manager" that ships
with i5/OS - OS/400.

Step 1: Create a certificate.

· Open the "IBMi task": Click on the following link http://MySystemI:2001
· Logon as QSECOFR
· Click on "Digital Certificate Manager"
· Click on "Select a Certificate store"
· Select "*SYSTEM"
· Now it shows the path to the certificate - it might be "/QIBM/USERDATA/ICSS/CERT/SERVER/

DEFAULT.KDB".
· Write the file path down - it must be entered into the IceBreak configuration later.
· Enter the password for the certificate - the password is case-sensitive. If you don't know what it is -

the click on "reset password"
· Write the password down - it must be entered into the IceBreak configuration later.
· Create a new Certificate:
· 1: Select "Server / client certificate" [Continue]
· 2: Select "Local Certificate Authority" [Continue].
· 3: Fill in required values. [Continue]
· 4: Don't select anything. [Continue]
· Assign the Certificate to the certificate store:
· 1: Select "manage certificate Store".
· 2: Select "Set default certificate" [Continue].
· 3: Select the certificate you just made [Continue].

Step 2: Configure the IceBreak server instance.

· Go to the iceBreak administration menu.
· Click on work with servers
· Stop the server you want to run with HTTPS
· Select and edit the server you want to run with HTTPS
· Click on the advanced button
· Set the protocol type to "HTTPS"
· Set the certificate file path and password to what you wrote down in step 1.
· Restart the server.

You don't have to make any changes in your application to utilize HTTPS.

40 IceBreak

System & Method A/S

2.5.2 Use the pre-request exit program

Server Behaviour:

The pre-request program is an .aspx program that is executed before each and every "normal" request is
processed in IceBreak.

It can be used for custom designed security, URL overriding, generic heading handling etc.

How to configure

The .aspx program you want to use must be compiled by referring to it from a normal browser URL. Due
to performance reasons the normal JIT compilation is bypassed for the pre-request exit program.

Now - change the server instance to refer to the exit program. Use either CHGICESVR command or use
the "ADMIN" page "work with server instances" and change the pre-request exit program parameter to
the name of your program. Also you can set the library name if you want to let more server instances
point to the same exit program.

Use the exit program for Internet / Intranet security

When you are making web applications you will face that some resources might be public available where
the user is anonymous. Also you might want to build your own internet user account which has nothing
to do with i5/OS security at all.

Now you can put your security logic into the pre-request exit program and secure all your resources.

You can control whether or not IceBreak will server a specified resource with the build in function
SetBreak. If you use SetBreak(*ON) the normal http serving is bypassed and only the response object
from your pre-request exit program is sent back to the client (the browser)

Syntax:

SetBreak (*ON | *OFF);

This example let IceBreak serve anything but .PDF files:

<%
...
extention = GetServerVar('REQUEST_FIRST_EXTENSION');
if (extention = 'PDF');
 SetContentType('text/html; charset=windows-1252');
 %>You can not view PDF files - sorry <%
 SetStatus('401 Access denied');
 SetBreak (*ON);
endif;
return;
%>

Performance considerations

Since this program is called each and every time a request is made to the icebreak server instance you
have to design it to use very little resources and keep the program on the "stack" (e.g. don't seton
*INLR). Also keep files open if any.

41Basic Features

System & Method A/S

Advanced login

Then next sample show how to make a basic authentication using a pre-request exit program.

Thanks to Jens Berg Churchil - KTP, Denmark:

<%

 D*ame+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
 D pos s 5U 0
 D Flag s 1S 0 INZ(0)
 D lo c 'abcdefghijklmnopqrstuvwxyzæøå'
 D up c 'ABCDEFGHIJKLMNOPQRSTUVWXYZÆØÅ'
 D Auth64 s 1024A VARYING
 D Auth s 1024A VARYING
 D Username s 128A VARYING
 D Password s 128A VARYING
 D Status s 128A VARYING
 D Message s 512A VARYING

 /free

 // Only if the user is not logged on yet
 if not LoggedOn();
 Auth64 = GetHeader('Authorization');
 pos = %Scan(' ' : %Trim(Auth64));

 if (pos = 6); // Expect 'Basic BASE64_ENCODED_STR'
 Auth64 = %Subst(Auth64 : pos + 1);
 Auth64 = xlateStr(Auth64 : 0 : 1250);
 Auth = Base64DecodeStr(Auth64);
 Auth = xlateStr(Auth : 1250 : 0);

 pos = %Scan(':' : Auth);
 if (pos > 1);
 Username = %Subst(Auth : 1 : pos - 1);
 Password = %Subst(Auth : pos + 1);

 Username = %Xlate(lo : up : Username);

 Message = Logon(Username:Password);

 if LoggedOn();
 SesSetVar('USERNAME' : Username);
 endif;

 if (%Scan('deaktiveret' : Message) > 0);
 Flag = 2;
 endif;
 else;
 Flag = 1;
 Message = 'Invalid Authorization header';
 endif;
 endif;

 if not LoggedOn();
 if (Flag = 1);
 Status = '400 Bad Request';
 elseif (Flag = 2);
 Status = '403 Forbidden';
 else;
 Status = '401 Unauthorized';
 SetHeader('WWW-Authenticate':'Basic realm="My Webserver name"');
 endif;

 SetContentType('text/html; charset=windows-1252');
 SetStatus(Status);

42 IceBreak

System & Method A/S

 SetHeader('x-login-message' : Message);

 SetMarker('Message' : Message);
 SetMarker('Status' : Status);

%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/
TR/1999/REC-html401-19991224/loose.dtd">
<HTML>
 <HEAD>
 <TITLE><%$ Status %></TITLE>
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-1">
 </HEAD>
 <BODY><H1><%$ Status %>.</H1><P><%$ Message %></P></BODY>
</HTML>
<%

 SesEnd();
 SetBreak (*ON);
 endif;
 endif;

 return;

 /end-free
%>

Part

III

44 IceBreak

System & Method A/S

3 Building applications

3.1 Debugging IceBreak applications

Programming:

Debugging a web application can be very difficult, IceBreak has some build in features which make life a
lot more easy. You can use the 5250 debugger, the GUI debugger or simply use the console to log data
values. Use what ever fits your needs.

Using the "Console":

The simplest ways to debug it just to send values of variables directly to the console. This can me
achieved by the adding the following code to your RPGLE program:

<%
 /free
 consoleLog('Any text can go to the console');
 *inlr = *ON;
%>

This text will now occur in the browser debugger console along with other consol log notifications:

45Building applications

System & Method A/S

Pleas notice, that the consoleLog uses a protocol called "WildFire" whitch requires a pluging like FirePHP
to be installed in you Chrome of FireFox browser.

When you are building XML or JSON based applications you can log objets and arrays from the IceBreak
XML and JSON parser directly. The following code is using both simple strings and complex JSON
objects:

<%
// Example:
// Using the "consoleLog" on Json objects
// --

d pJson s *
d subobj s *

 /include qasphdr,jsonparser
 /free

 *inlr = *ON;
 consoleLog('Demo of JSON objects. First parse a string');

 consoleLog('{ +
 "manuid":"CASIO", +
 "price" :123.45 +
 }');

 pJson = json_ParseString ('{ +
 "manuid":"CASIO", +
 "price" :123.45, +
 "subobj": { +
 "a": 1, +
 "b": 2, +
 "c": 3 +
 } +
 }');

 if json_Error(pJson) ;
 consoleLog('Json error:' + json_Message(pJson));
 json_Close(pJson);
 return;
 endif;

 consoleLog('Json parser ran ok, now show the contents');
 consoleLogJson(pJson);

 consoleLog('Now only show the "subobj" object:');
 subobj = json_locate(pJson : 'subobj');
 consoleLogJson(subobj);

 json_Close(pJson);

Which will result in the following output in firebug / chrome console:

46 IceBreak

System & Method A/S

Using traditional server side debuggers:

IceBreak also provides support for both GUI and basic 5250 debugging. Please ensure to put the server
into *MULTITHREAD mode before starting any of the debugging approaches. Otherwise it can be rather
difficult to find which jog is actually service you application. But in *MULTITHREAD you have one IBMi job
for each "WebJob" so You can use both System I debuggers: The GUI debugger and the 5250 service job
debugger.

The GUI debugger

If you have IBMi Navigator installed, you have already installed the system debugger. Otherwise read the
chapter installing the system debugger.

You need some settings before you can use the debugger:
· You browser must allow Active-X components
· The debug server must run: STRDBGSVR and STRTCPSVR SERVER(*DBG) (or CALL QSYS/

QTESSTRSVR for V5R1)
· The IceBreak server must be in development mode
· The IceBreak server must be running in *MULITHREAD (or *SINGLE) mode

From the URL where you application you want to debug type:
/system/strdbg.aspx

E.g if you have a server instance running on port 60001 it will look like:

47Building applications

System & Method A/S

http://mysystem:60001/system/strdbg.aspx

An Active-X warning might pup up now. please continue.

Short after the system debugger will appear. You will have to fill in the name and library of the program
to debug:

48 IceBreak

System & Method A/S

Now press OK and the intermediate source of your program will appear. Place a break-point and press
the green "Run" button.

Go back to the browser and run the program by entering the name at the URL like:

http://mySystemi:60001/hello.aspx

Application now runs to the breakpoint line. You can not step through the source by F11. Use the build in
help to investigate the debugger functionalities:

49Building applications

System & Method A/S

Using the 5250 debugger.

If You prefer the green-screen debugger, you can still use that.
· Navigate to the IceBreak menu with GO ICEBREAK
· Enter command WRKICESVR
· Enter option 17 at the server you want to debug which will prompt the STRICEDBG command

50 IceBreak

System & Method A/S

Enter the name of the program you want to debug. Now the service debugger will appear.

If you will be absolutely sure that you hit the right session then use /system/dspsvrinf.aspx from browser
URL and find the session timestamp for the session you are debugging. The value *LAST refer to the
most reason session that was started in the IceBreak subsystem

http://MySystemi.org:60000/system/dspsvrinf.aspx

Installing the GUI debugger.

You can install this and it work equaly well on Windows, Linux and Mac:

If you are running I5/OS V5R1 or V5R2 you need a few PTF's

V5R1 :
· Server PTF SI09825
· Client PTF SI06031

V5R2:
· Server PTF SI09834, SI08512
· Client PTF SI09844

Java 1.3 (or later) run-time environment must be installed on your IBMi. This is product 5722-JC1 option
5.

You will also need a recent JRE on your client PC.

You must copy 3 “.jar” (Java Archive) files to your PC. Locate or create a directory and copy from the
IBMi:

· /QIBM/ProdData/HTTP/public/jt400/lib/jt400.jar
· /QIBM/ProdData/HTTP/public/jt400/lib/tes.jar
· jhall.jar from http://java.sun.com/products/javahelp

51Building applications

System & Method A/S

Place them in C:\i5debug

Change the CLASSPATH to refer to C:\i5debug.

If you're debugging from “outside” the office firewall, you will need port 4026 open which is the “single
point of contact” for the user interface. Note that port 4026 is registered in the IBMi service table as “as-
debug”.

3.2 Using compiler directives

Precompiler:

When the IceBreak compiles a program it uses a Just-In-Time technology. The JIT compiler is invoked
only if the server instance is in *DEVELOP mode and if the source files has been modified since the last
compilation. That means - if you change a program it will be re-compiled when you open it from the
browser next time.

The IceBreak compiler has 4 stages:

· IceBreak pre-compiled
· IBM SQL pre-compiled [Optional]
· IBM ILE compiler [RPG/COBOL/C++/CLP]
· IBM Binding [CRTPGM or CRTSRVPGM]

All steps can be controlled by compiler directives within the source file starting the source file with a <%
@ and terminated by %> like:

 <%@ language="SQLRPGLE" sqlopt="COMMIT(*NONE)" modopt="text('demo')" pgmopt="BNDDIR
(UTIL)" %>

For each step that utilize IBM commands you can override the default values with sqlopt, modopt and
pgmopt

Directive Value Default Description

language RPGLE * Source code is in ILE-RPG format

 CBLLE Source code is in ILE-COBOL format

 CPP Source code is in ILE-C++ format

 CLLE Source code is in ILE-CL

 SQLRPGLE Source code is in ILE-RPG format with SQL

 SQLCBLLE Source code is in ILE-COBOL format with SQL

 SQLCPP Source code is in ILE-C++ format with SQL

pgmtype PGM * Bound program with access to the IceBreak Object model

 SRVPGM Service program with access to the IceBreak Object model

 NOASPMOD Program Module. No access to the IceBreak Object model

NOASPSRVP
GM

 Service program. No access to the IceBreak Object model

WEBSERVIC
E

Service program. With access to the IceBreak Object model and all
procedures exposed as WebServices

52 IceBreak

System & Method A/S

Directive Value Default Description

trimoutput NO * The response object is rendered as is

 YES
White space are removed from the response object, reducing the final
output

srcstyle FREE *
RPG columns are aligned automatically, Block comment /* */, and free
SQL syntax are allowed

 WDSC RPG syntax is strict according to columns, comments and SQL

sqlopt Any parameters for CRTSQLxxx command

modopt
Any parameters for CRTRPGMOD/CRTCBLMOD/CRTCPPMOD/CRTCLMOD
command

pgmopt Any parameters for CRTPGM/CRTSRVPG command

3.3 How to include external resources

Programming:

Dynamic include

When you include data into your ASPX-program it can be done in to different ways - either static or
dynamic. Dynamic include is done by the IceBreak server at run time by the ResponseObject, which
are covered in :

Placing runtime data using "Markers"

Dynamically including stream files

Static include

Static include is done by the IceBreak pre compiler or by the host language compiler.

Host language include

If you use RPG as the host language you might be familiar with the /COPY or /INCLUDE or if you use
COBOL it looks like "copy MemberName in SourceFile".
With these copy function you can place only code into source physical file.

IceBreak, however also has a include feature in the pre compiler which allows you to both include code
as well as XML and HTML into source physical file from where the IBM compiler is running.

The include can be placed anywhere in your source allowing you to initialize constants from included
stream files, program code, and for the response object both HTML, XML, JSON etc.

This is also very convenient if you still like to use the PDM as you preferred source editor, because you
can make one very small ASPX-program in the IFS that only includes the complete source from a source
file in a library.

53Building applications

System & Method A/S

IceBreak pre-compiler include

In a IceBreak ASPX program we use the ASPX notation for including resources. the syntax is:

 <!--#include file="FileToInclude.htm" -->

The "FileToInclude.htm" above is any stream file relative to the current resource where you issued the
include statement. Of cause you can address any stream file in the IFS. But then you have to prefix the
name with at "/" like:

 <!--#include file="/root/www/FileToInclude.htm" -->

You can also include relative to the server root path by prefixing the file name with a "." like:

 <!--#include file="./System/Includes/debug.inc.rpgle" -->

You can put this include anywhere in your source, so now you are able to include both HTML and ASPX-
code, initialize constants with values from the include file etc.
Include can be done recursively with a max level to 200 files...

IceBreak extension to the ASPX-include

We have made an extension to the ASPX-include syntax. we have introduced Tags. Tags can be used to
include a fragment from the include file. The syntax is:

 <!--#include file="./System/Includes/debug.inc.rpgle" -->

The include file can now contain tags that will be included. Like:

 <!--#include file="./System/Includes/debug.inc.rpgle" -->

The pre compiler will now include all data just after the tag until it finds a new tag or the end of file.
This technique can be used to externally describe HTML files - just like a normal DDS-displayfile. This is a
way to separate code and HTML into two or more different files.

Consider the following ASPX program ex01IncApp.aspx:

54 IceBreak

System & Method A/S

<%/free

 %><!--#include file="ex01IncApp.htm" tag="header"--><%
 select;
 when Form('Screen') = 'Screen03';
 %><!--#include file="ex01IncApp.htm" tag="Screen03"--><%
 when Form('Screen') = 'Screen02';
 %><!--#include file="ex01IncApp.htm" tag="Screen02"--><%
 Other;
 %><!--#include file="ex01IncApp.htm" tag="Screen01"--><%
 endsl;
 %><!--#include file="ex01IncApp.htm" tag="footer"--><%
 *INLR = *ON;
%>

Now its counter part - the html file ex01IncApp.htm :

<!--#tag="header"-->
<html>
 <head>
 <title>This shows the use of externally described HTML files</title>
 </head>
 <body>
 <form method="POST">

<!--#tag="screen01"-->
<p>This is screen 01</p>

<!--#tag="screen02"-->
<p>This is screen 02</p>

<!--#tag="screen03"-->
<p>This is screen 03</p>

<!--#tag="footer"-->
 <input type="submit" name="Screen" value="Screen01">
 <input type="submit" name="Screen" value="Screen02">
 <input type="submit" name="Screen" value="Screen03">
 </form>
 </body>
</html>

This technique is very important when you migrate legacy programs into new ASPX programs - but also
when you design new applications. With this approach you can let a web designer handle just the html
file. Because the tag is only a HTML comment and is accepted by all web-design tools

Run the sample

Show the sample

Reference to the current file.

If you have separated your application into a .ASPX file and a .HTML file which shares the same name
excluding the extension - then you can refer to the include file with a # The syntax is:

 <!--#include file="#.htm" tag="AnyTagInTheIncludeFile"-->

55Building applications

System & Method A/S

Reference to XML / XHTML include files.

When you are dealing with XML and XHTML you might know that "doctype ..." must be the first in the
file. There for you can not give this part of the file a tag name. For that purpose you can use the pseudo
tag name *FIRST, which includes until the next tag in the include file:

 <!--#include file="#.htm" tag="*FIRST"-->

3.4 A simple database application

Programming:

The most powerful feature in IceBreak is the ability to integrate the i5/OS or OS/400 DB-2 database
using ILE-programs. This is why IceBreak has such outstandingly fast file access.

Let's take a look at a simple program that displays the first 200 records from a database file.

First, we need to declare the file we are using. In this case it is a product file with some digital cameras.
We also need a counter 'i' for the counting record occurrences later.

We use the <% escape sequence to go into RPG-code mode. Declare and switch back to HTML using the
%> sequence.

<%
f*Filename+IPEASF.....L.....A.Device+.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
fProduct IF A E K disk

d*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
d i s 10U 0
 /free
%>

Build a valid HTML-document where the header and the body are written in plain HTML.

<html>
<Head>
 <link rel="stylesheet" type="text/css" href="/system/styles/icebreak.css">
</Head>
<body>
 <table border= "1">
 <thead>
 <th>Product ID</th>

56 IceBreak

System & Method A/S

 <th>Description</th>
 <th>Manufacturer ID</th>
 <th>Price</th>
 <th>StockCount</th>
 <th>StockDate</th>
 </thead>

After the table header we are ready to put in real data from the database. So we use <% escape to go
into FREE-RPG, set the file pointer to the first record, and read that. If we have a valid record, then we
enter a DO-loop that repeats reading until end-of-file or the number of records is reached.

<%
 setll *loval ProductR;
 read ProductR;
 i = 0;
 dow (not % eof(Product) and i < 200) ;
 i = i + 1;
%>

Place the record data into the HTML-table row. This is done in plain HTML, but with the <%= syntax. If
we had some numeric values here we might want to convert them with %char or %edit functions:

 <tr>
 <td nowrap ><% = PRODID %></td>
 <td><% = DESC %></td>
 <td nowrap><% = MANUID %></td>
 <td nowrap align="right"><% = %char(PRICE) %></td>
 <td nowrap align="right"><% = %char(STOCKCNT) %></td>
 <td nowrap><% = %char(STOCKDATE) %></td>
 </tr>
<%
 read ProductR;
 EndDo;
%>

We finish up by terminating the program so the result can be shown:

 </table>
 </body>
</html>
<% return;%>

The final program looks like:

<html>
<head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
</head>
<body>
 <table border="1">
 <thead>

57Building applications

System & Method A/S

 <th>Product ID</th>
 <th>Description</th>
 <th>Manufacturer ID</th>
 <th>Price</th>
 <th>Stock Count</th>
 <th>Stock Date</th>
 </thead>
<%
 //' Now reload the list, e.g. Set lower limit with *loval is the first record
 //' then repeat reading until end-of-file or counter exhausted
 //' ---
 setll *loval ProductR;
 read ProductR;
 i = 0;
 dow (not %eof(Product) and i < 200) ;
 i = i + 1;
%>
 <tr>
 <td nowrap ><% = PRODID %></td>
 <td><% = DESC %></td>
 <td nowrap><% = MANUID %></td>
 <td nowrap align="right"><% = %char(PRICE) %></td>
 <td nowrap align="right"><% = %char(STOCKCNT) %></td>
 <td nowrap><% = %char(STOCKDATE) %></td>
 </tr>
<% read ProductR;
 EndDo;
%>
 </table>
</html>
<% return; %>

Run the sample

Show the sample

3.5 Database maintenance application

Programming:

Let's go one step further, and expand the simple "List" application so the database can update/delete and
write.
This sample combines the Form() and QryStr() functions from the first tutorials .

Also we use the "File Field Descriptor" tool which can produce the components of the application we a
building.

To simplify the program we have put the logic into separate subroutines:

1.Init:
The initial settings from the HTML document, references to style sheets and j-scripts.

2.Main logic
This part determines the functions based on previous incarnations of the ASPX-page state.

3.Load List
Similar to database application, tutorial 5, this reads the database and builds the html table

4.Edit
This Shows a form with the selected database occurrence, and buttons for update, delete and new

58 IceBreak

System & Method A/S

5.Exit
This cleans up, closes, and terminates the program

We also have traditional RPG for file and data declarations F-spec and D-spec etc. The "init" has nearly
the same layout as the previous sample, but all initialization should be placed here in the future:

<%
//' --
//' Init; setsup the HTML header and stylesheet / (evt. the script links)
//' --
Begsr Init;
%>
<html>
 <Head>
 <link rel= "stylesheet"type ="text/css" href= "/system/styles/icebreak.css">
 </Head >
 <h1>Work with Products</h1>

<%
Endsr;
%>

Now to the core applications - the "Main" logic

The Form('Option') used in the multi way if (select) is the result of any prior buttons "clicks" on the
"edit" form

The state can be extracted from that.

The QryStr('Key') returns the unique key from the Query String in the request object i.e. the URL

//' --
//' The Main logic controlling the state from previous incarnations
//' --
Begsr Main;

//' Previous function parses update or add parameter
//' --
 select;

 //' The "New" button is clicked in the edit form
 when Form('Option') = 'New' ;
 reset ProductR;
 Exsr Edit;

 //' The "Update" button is clicked in the edit form
 when Form('Option') = 'Update';
 prodKey = FormNum('product.prodKey');
 chain prodKey ProductR;
 if (%found);
 exsr Form2db;
 update ProductR;
 else;
 reset ProductR;
 setll *hival ProductR;
 readp ProductR;
 MaxKey = ProdKey + 1;
 exsr Form2db;
 ProdKey = MaxKey;
 write ProductR;
 endif;
 Exsr LoadList;

59Building applications

System & Method A/S

 //' The "Delete" button is clicked - and a prodKey exists; now delete that record
 when Form('Option') = 'Delete';
 prodKey = FormNum('product.prodKey');
 chain prodKey ProductR;
 if (%found);
 delete ProductR;
 endif;
 Exsr LoadList;

 //' The "Return" button is clicked
 when Form('Option') = 'Return';
 Exsr LoadList;

 //' When Clicking on a row in the table the "<a href .." returns the "prodId" along in
the "QryStr"
 when QryStrNum('prodKey') > 0;
 prodKey = QryStrNum('prodKey');
 chain prodKey ProductR;
 unlock Product;
 Exsr Edit;

 other;
 Exsr LoadList;
 endsl;

 Exsr Exit;
EndSr;

Load list reads all records from the database file and puts them into a HTML table. Real data from the
database is ready to be placed under the table header. Use <% escape to go into FREE-RPG and the set
the file pointer to the first record and read that. If a valid record is shown, enter a DO-loop that repeats
reading until end-of-file or the number of records is reached.

Note: Here a Form is used in conjunction with the "POST" method and a "New" button. This causes the
same ASPX page to be redisplayed, but with the "Option" Form-Field set to the value "New". The main
logic will respond to that by clearing input fields and running the "Edit" routine for the new record.

The list table is created by the "Component Wizard (File Field Description tool)" found on the
administration menu under "tools" . This produces the HTML structure for any database file:

<%
//' --
//' loadList; is much like a "load subfile". All records are placed into a html table
//' --
Begsr LoadList;
%>
<form method="POST" id="form1" name="form1">
 <input type="submit" value="New" name="Option">
</form>

<table class="ListeHead">
 <thead>
 <th></th>
 <th>Product ID</th>
 <th>Description</th>
 <th>Manufacturer ID</th>
 <th>Price</th>
 <th>Stock Count</th>
 <th>Stock Date</th>
 </thead>
<%

 // Now reload the list
 // -------------------
 Count = 0;
 setll *loval ProductR;

60 IceBreak

System & Method A/S

 read(n) ProductR;

 dow (not %eof(Product) and Count < 2000) ;
 Count = Count + 1;
%>
 <tr>
 <td><a href="?prodKey=<%= %char(ProdKey) %>">
 <td nowrap><% = PRODID %></td>
 <td><% = DESC %></td>
 <td nowrap><% = MANUID %></td>
 <td nowrap align="right"><% = %editc(PRICE:'J') %></td>
 <td nowrap align="right"><% = %editc(STOCKCNT:'J') %></td>
 <td nowrap><% = %char(STOCKDATE) %></td>
 </tr>
<%
 read(n) ProductR;
 EndDo;
%>
</table>
<%
EndSr;
%>

The Edit routine features all the record fields into form fields in detail level.

Note: the Form in conjunction with the Post method causes the ASPX page to be redisplayed, but with
the "Form" decorated with all data from this routine. Also, the "Option" contains either "Update" "Delete"
or "Return" depending on which button is pressed.

The input form "Component Wizard (File Field Description tool)" found on the administration
menu under "tools" . This produces the HTML structure for any database file:

<%
//' --
//' Edit; Is just showing a form which is being posted back with all input fields
//' Filled
//' --
Begsr Edit;
%>
<form method="POST" name="form1" id="form1">
 <input type="hidden" name="product.PRODKey" value ="<% = %char(PRODkey) %>">
 <table>
 <tr>
 <td nowrap>Product ID</td>
 <td><input type="text" name="product.PRODID" size="<%= %char(%size(PRODID))%>"
maxlength="<%= %char(%size(PRODID))%>" value ="<% = PRODID %>"></td>
 </tr>
 <tr>
 <td nowrap>Description</td>
 <td><input type="text" name="product.DESC" size="<%= %char(%size(DESC))%>" maxlength="
<%= %char(%size(DESC))%>" value ="<% = DESC %>"></td>
 </tr>
 <tr>
 <td nowrap>Manufacturer ID</td>
 <td><input type="text" name="product.MANUID" size="<%= %char(%size(MANUID))%>"
maxlength="<%= %char(%size(MANUID))%>" value ="<% = MANUID %>"></td>
 </tr>
 <tr>
 <td nowrap>Price</td>
 <td><input type="text" name="product.PRICE" value ="<% = %trim(%editc(PRICE:'J')) %>
"></td>
 </tr>
 <tr>
 <td nowrap>Stock Count</td>
 <td><input type="text" name="product.STOCKCNT" value ="<% = %trim(%editc

61Building applications

System & Method A/S

(STOCKCNT:'J')) %>"></td>
 </tr>
 <tr>
 <td nowrap>Stock Date</td>
 <td><input type="text" name="product.STOCKDATE" size="<%= %char(%size(STOCKDATE))%>"
maxlength="<%= %char(%size(STOCKDATE))%>" value ="<% = %char(STOCKDATE) %>"></td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="submit" value="Update" name="Option">
 <input type="submit" value="Delete" name="Option">
 <input type="submit" value="Return" name="Option">
 </td>
 </tr>
 </table>
</form>
<%
EndSr;
%>

Finally we finish up by terminating the HTML (table, body and document) and terminate the program so
the result can be shown:

<%
//' --
//' Exit Finish up the the complete HTML and quits the program
//' --
Begsr Exit;
%>
 </body>
</html>
<%
 return;
Endsr;
/end-free%>

Run the sample

Show the sample

3.6 Split your program logic and design into separated files

Programming:

In this sample we will split the logic and the design into to files (.ASPX and .HTML). We are using the "
Pre-compile time Include with tags" technique in the sample. This will make the ASPX source code much
easier to understand and the HTML include file will only hold the presentation.

List program

The following list program “Tutorials/ex19WrkPrd.aspx” is written in RPGLE and it loops through a file
called Product. All records are putted into a HTML table described in the included file “Tutorials/
ex19WrkPrd.htm”.

62 IceBreak

System & Method A/S

Show the RPGLE source:

Show the sample RPGLE-fixed

Show the sample RPGLE /free

So the user interface, the presentation layer is only in this HTML files:

Show HTML presentation layer

Record maintenance program

From the list program you can maintain products by use of maintain program “Tutorials/ex19EdtPrd.
aspx” and the included “Tutorials/ex19EdtPrd.htm”.

Show the RPGLE source:

Show the sample RPGLE-fixed

Show the sample RPGLE /free

Try the sample

3.7 Writing and reading stream files

Build in functions :

A handy feature in IceBreak is the ability to write and read stream files directly from strings.

What it does

It retrieves a string buffer and writes the contents to a stream file in the IFS according to the server
directory. If you need to locate the file in the root of the IFS, then start the file name with an "/". e.g. "/
MyFile.text". Optionally, you can convert the data from EBCDIC to ASCII by setting *ON in the
conversion option.

Subdirectories must exists but files are created.

Write Stream files from strings

Use the built-in function "putStreamString(...)" to write a text file from a string.

Syntax:

63Building applications

System & Method A/S

error = putStreamString (FileName:FileOptions: StringtoWrite: xLate);

Field
Name

Data type Description Default

FileName VARCHAR(256) path and name of the stream file to be created/appended to

FileOptions VARCHAR(256)
These are the options from the STDIO.H
w=write, a=append, b=binary, t=text
codepage=1252 is windows codepage

StringToWr
ite

VARCHAR
(32768)

Any data to put into the file

xLate BOOL Convert from EBCDIC to ASCII *OFF

Note: if you need to write new lines use the x'0D25' sequence, or <CR><LF> sequence in EBCDIC.

Reading Stream files into strings

Use the built-in function "getStreamString(...)" to read a text file from a string.

Syntax:

error = getStreamString (FileName: String : Offset : MaxLength : xLate);

Field
Name

Data type Description Default

FileName VARCHAR(256) Path and name of the stream file to be read

String
VARCHAR(1 to
32768)

This is where the file contents is placed. The Contents is truncated
if the file contains more that 32768 or MaxLength number of
bytes.

Offset LONGINT Starting position in the file where 1=the first byte

MaxLength LONGINT

Maximum number of bytes to place into the result. no padding is
done if the file is shorter.
Use %size(String)-2 since the result is a varying string (-2 to
omit the length)

xLate BOOL Convert from ASCII to EBCDIC *OFF

Here is an example.

The file now contains:
Note: if you need to write new lines use the x'0D25' sequence, or <CR><LF> sequence in EBCDIC.

<%@ language="RPGLE" %>
<%
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D Error s N
D CRLF s 2A inz(x'0d25')
D str s 32760 varying

/free
// This appends a string to a ascii stream file - converting the input text string to
ascii

 Error = PutStreamString(
 'test.txt': // The output file name
 'ab,codepage=1252': // w:write a:append, b:
binary codepage=1252 is windows

64 IceBreak

System & Method A/S

 'My log file at: ' + %char(%timestamp) + CRLF: // The text string to write
 *ON); // Conversion from EBCDIC
to ASCII

// Now read the complete test log file back into "str" - converting the input file to
EBCDIC
 Error = GetStreamString(
 'test.txt': // The input file name
 str: // where to place the
contents
 1: // Starting position in the
file; 1=first byte
 %size(str)-2: // Maximum number of bytes
to read
 *ON); // Conversion from ASCII to
EBCDIC
%>The file now contains: <pre><%= str %><pre><%
 return;
%>

Run the sample

Show the sample

3.8 AJAX Async JavaSript and XML

Programming:

When you want to create application based on components - AJAX is an excellent choice.

AJAX lets you handle "onClick" round-trips to the server, so you don't need to reload a complete page -
but rather load fragments.

IceBreak has a small, yet powerful implementation of AJAX, which allows you to replace any DIV /
SPAN / P tag with data of your choice - on the fly

Look at the following static HTML page, and see how we can make it alive with an AJAX call

<%@ language="RPGLE" %>
<html>
<head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
 <script language="JavaScript1.2" src="/System/Scripts/ajax.js"></script>
</head>
<body>
 <input type=button value='Click here to run theAjaxrequest' onclick="adAjaxCall
('myResult','ex22ajax.aspx?manuid=SONY');" />
 <div id=myResult></div>
</body>
</html>

· The first AJAX relatet line is 5: This refer to the script containing all the AJAX implementation.
AJAX is always a client technology

· Next is line 8: "adAjaxCall" is the round trip to the server. The first parameter is WHERE you want
to place data. The second parameter is HOW you want it. This is an URL to a resource - in this

65Building applications

System & Method A/S

case an ASPX program that creates a table ... more on that later.

· Last - line 9: A <div> tag where I want to put my data when the call is complete. The "id"
attribute is the key here.

The next step is to make the server side application. It only have to return the table element - not a
complete html document. Otherwise it is pretty straight forward - making a table based on a result set:

<%
F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
Fproduct1 if e k disk

d pmanuid s like(manuid)

/free
*inlr = *on;
pmanuid = qrystr('manuid');
%>
<table>
<%
 chain pmanuid productr;
 dow not %eof(product1) and manuid = pmanuid;
%><tr>
 <td><% = prodid %></td>
 <td><% = desc %></td>
 </tr>
<% read productr;
 enddo;
%>
</table>

As you can see it only create the "raw" table. It have no idea in what context it is used - it just create the
list/table. The formatting is provided by the client document we just saw before.

It looks easy - and it is. The only problem with AJAX in the real world is:

· Debugging: It might sometimes be difficult to find the right component doing what.

· Caching: The browser might in some cases be confused about resources in the inner HTML and will
therefore not cache it.

· JavaScript might not be available in the target browser.

Run the sample

Now lets change the first HTML to an ASPX with a drop-down list so you can feel the real power of AJAX:

<%
F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
FMANUFACT IF E K DISK
/free
*inlr = *on;
%>
<html>
<head>
<%//' For using Ajax - just include the Ajax script in the system folder
%>

66 IceBreak

System & Method A/S

 <script language="JavaScript1.2" src="/System/Scripts/ajax.js"></script>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
</head>

<body>
 <form>
 Select a manufacturer:

<%
//' The adAjaxcall takes two parameters:
//' 1) the id name for an div or paragraph to hold the result. In this case a table
//' 2) The url to the APS program to produce the result. in this case we build up the
QueryString with parameters - the key to our database lookup
%>

 <select name="manufacturer" onchange="adAjaxCall('productsDiv','ex22ajax.aspx?manuid='
+ this.value)">

<%
 read manufactr;
 dow not %eof(manufact);
%> <option value="<% = manuid %>"><% = Desc %></option>
<%
 read manufactr;
 enddo;
%>
 </select>
 <div id="productsDiv">Product info will be listed here.</div>
 </form>
</body>
</html>

Run the sample

3.9 Creating XML files Dynamically

Programming:

Until now we have only studied IceBreak ASPX creating HTML files dynamically. In other cases you might
need to produce XML files dynamically, which can be done very easily with the IceBreak ASPX.

We learned in "Tutorial 4" how to include Word or Excel sheets dynamically. You will now expand that
knowledge and let IceBreak ASPX create the XML contents. Again we use a double suffix. IceBreak
detects the first suffix, and the browser detects only the last.

The resulting file name might be: a

MyApp.aspx.XML

The contents type, should be set for the browser to open the resulting file. Otherwise it will ask you to
download the file (which may be the purpose in another case).

The following case creates a simple XML file for a Web shop.

Step 1 - The legacy code that reads the data

First lets take a look at an classic program that read all manufactures of digital cameras and produces a
list of all available cameras for each manufacturer:

67Building applications

System & Method A/S

<%@ language="RPGLE" %>
<%
 *' -- *

 *' Program ex07XmlA.asp

 *'

 *' Reads all manufacturers of digital cameraes and coresponding products

 *'

 *' -- *

F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
FMANUFACT IF E K DISK prefix('MANU_')

FPRODUCT1 IF E K DISK prefix('PROD_')

 *' Read manufacturer

C *LOVAL SETLL MANUFACTR

C READ MANUFACTR 8080

C *IN80 DOWEQ *OFF

 *' Read all products for that manufacturer

C MANU_MANUID CHAIN PRODUCTR 80

C *IN80 DOWEQ *OFF

C MANU_MANUID READE PRODUCTR 8080

C ENDDO

C READ MANUFACTR 8080
C ENDDO
C SETON LR
%>

Step 2 - Building the XML

Now we let the ASPX features extend the code to produce the XML data.

First we need to tell the browser that we are dealing with XML. That is done with the SetContentType
which takes a MIME type as parameter ... this is done in FREE-RPG mode.

/free
 SetContentType('application/xml; charset=utf-8');
/end-free

Second we need a XML header and a root tag that wraps all the XML stuff:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<ProductList>

Then we need a Manufacture tag with the following data from the file:

68 IceBreak

System & Method A/S

 <Manufacture ManufactureID="<%= Manu_ManuId %>"
 Description="<%= Manu_Desc %>"
 LogoURL="<%= Manu_LogoURL %> "/>

And the the Product tag with the following data from the file:

 <Product ProductID="<%= Prod_ProdId %>"
 Description="<%= Prod_Desc %>"
 Price="<%= %char(Prod_Price) %>"
 Stock="<%= %char(Prod_StockCnt) %>" />

The program logic must insert the end tags of cause. Now The Program looks like:

<%
 *' -- *

 *' Program ex07XmlA.asp

 *'

 *' Reads all manufacturers of digital cameraes and coresponding products

 *'

 *' -- *

F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
FMANUFACT IF E K DISK prefix('MANU_')

FPRODUCT1 IF E K DISK prefix('PROD_')

 *' This program deals with XML. UTF-8 is the prefered charset for that
/free
SetContentType('application/xml; charset=utf-8');
/end-free

 *' XML data is mostly in UTF-8 format

%><?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<ProductList>
<%
 *' Read manufacturer

C *LOVAL SETLL MANUFACTR

C READ MANUFACTR 8080

C *IN80 DOWEQ *OFF

 *' Now put the manufacturer informations into the response object
%>
 <Manufacture ManufactureID="<%= Manu_ManuId %>"
 Description="<%= Manu_Desc %>"
 LogoURL="<%= Manu_LogoURL %> ">
<%
 *' Read all products for that manufacturer

C MANU_MANUID CHAIN PRODUCTR 80

69Building applications

System & Method A/S

C *IN80 DOWEQ *OFF

 *' Now put the product informations into the response object
%>
 <Product ProductID="<%= Prod_ProdId %>"
 Description="<%= Prod_Desc %>"
 Price="<%= %char(Prod_Price) %>"
 Stock="<%= %char(Prod_StockCnt) %>" />
<%
C MANU_MANUID READE PRODUCTR 8080
C ENDDO

%>
 </Manufacture>
<%
C READ MANUFACTR 8080
C ENDDO
C SETON LR
%>
</ProductList>

Thats all you need. If you run this sample you browser will format the data as a XML document. You can
collapse and expand each node in the XML-tree

Run the sample

Show the sample

Step 3 - Using the XML data

If you have installed Microsoft Office 2003 or greater - then you can use the XML data right away.
In the browser window right-click on the mouse and select "Export to Microsoft Office Excel". You will be
prompted for where to put the data into sheet. And last - you go a Pivot table.

70 IceBreak

System & Method A/S

It's really useful!!!

Step 4 - Formating the XML data

Browsers are able to reformat the XML data to be more readable to humans. It uses a transformation
style sheet, a XSL file.
We have made a small XSL file called Product.XSL which reformats the XML you just created.

71Building applications

System & Method A/S

Show the XSL file

Now you have to refer to the transformation style sheet from within the XML file before the
transformation occurs. It is done in the XML header with

 <?xml-stylesheet type="text/xsl" href="Product.xsl"?>

The final ASPX program now looks like:

<%
 *' -- *

 *' Program ex07XmlB.asp

 *'

 *' Reads all manufacturers of digital cameraes and coresponding products

 *'

 *' -- *

F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
FMANUFACT IF E K DISK prefix('MANU_')

FPRODUCT1 IF E K DISK prefix('PROD_')

 *' This program deals with XML. UTF-8 is the prefered charset for that
/free
SetContentType('application/xml; charset=utf-8');
/end-free
 *' Here we use the transformations stylesheet "Product.xsl"

%><?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<?xml-stylesheet type="text/xsl" href="Product.xsl"?>
<ProductList>
<%
 *' Read manufacturer

C *LOVAL SETLL MANUFACTR

C READ MANUFACTR 8080

C *IN80 DOWEQ *OFF

 *' Now put the manufacturer informations into the response object
%>
 <Manufacture ManufactureID="<%= Manu_ManuId %>"
 Description="<%= Manu_Desc %>"
 LogoURL="<%= Manu_LogoURL %> ">
<%
 *' Read all products for that manufacturer

C MANU_MANUID CHAIN PRODUCTR 80

C *IN80 DOWEQ *OFF

 *' Now put the product informations into the response object
%>
 <Product ProductID="<%= Prod_ProdId %>"

72 IceBreak

System & Method A/S

 Description="<%= Prod_Desc %>"
 Price="<%= %char(Prod_Price) %>"
 Stock="<%= %char(Prod_StockCnt) %>" />
<%
C MANU_MANUID READE PRODUCTR 8080
C ENDDO

%>
 </Manufacture>
<%
C READ MANUFACTR 8080
C ENDDO
C SETON LR
%>
</ProductList>

When you try to run the program your browser will reformat the XML document into a nice HTML
document. The point here is - that is it the same data provided for both the human and for the
application.

Run the final sample

3.10 Inter process communication

Programming:

If you want to send messages across the internet i.e. if you are building a chat-room you will need a
method to communicate between processes - hence the name inter process communication. If you are
familiar with data queues on the IBMi you will be happy to know that you can use data queues right out
of the box in IceBreak. Data queues will not interrupt the normal HTTP request/response flow but rather
run in a separated thread in the IceBreak core.

Sending and receiving data to a data queue from the browser:

In the "system" hive there is two IceBreak build in functions that sends data to the data queue and
receives data from the data queue. Normally you will wrap these functions in AJAX calls from a web
framework like ExtJs, DOJO or jQuery. However, you can try the functionality directly from the browser
URL

First let us create a queue to work with. On the command line - enter:

CRTDTAQ DTAQ(QGPL/JOHN) MAXLEN(1024)

Like this:

73Building applications

System & Method A/S

Now start a browser and let it wait for an event on that queue. This is done by the /system/rcvdtaq
command. Notice it will just "spin" the waiting symbol until data arrives in the data queue, and notice
you'll need to write the data queue name and library in uppercase:

Next: Let's send the text "Hello world" into the messages queue JOHN in QGPL. This is done by the /
system/snddtaq command

Now: As soon you press the Enter and send the request, immediately after the waiting process will wake
up and show the text "Hello world"

You can control the following parameters:

Parameter Description

dtaq Name of the data queue. This values has to be in uppercase

lib
The name of the library containing the dataqueue. This values must be in uppercase. The
special values *LIBL and *CURLIB can be used

data
String data representation of the data snddtaq will place in the data queue. This will be
converted between UTF-8 and EBCDIC according to the current CCSID of the server job

timeout
Number of seconds rcvdtaq will wait before returning an empty response. Don't set this
value longer than the AJAX call timeout value, it might fill up you communication stack

key If a keyed dataqueue, this is the char presentation of the key

keylen
number of bytes in the total keylen (the key will be padded with blanks to fit this length).
Defaults to the string length of the key

74 IceBreak

System & Method A/S

keytype The type of entry to wait for: EQ, GE, LE, GT, GT. Defaults to EQ - has to be in uppercase

Normally you will place the rcvdtaq and snddtaq in some AJAX call. You will notice that no application
server job is started. The dataqueues are handled by the multithreaded core, and will not interrupt your
normal program call flow.

Also notice. It does not matter which server port you are sending or receiving at - all queues are
available on all server instances despite the server port number. Just notice that if the server requires
you to logon - then you can't send or receive on data queues before the logon process is completed
normally.

3.11 Uploading files to a IceBreak server

Programming:

In this tutorial we will create a simple IceBreak program which uploads files - either to the IFS or to an
internal large object (ILOB). Basically this program is just a simple HTML form. The magic however is in
the combination of the form encoding type set to multipart/form-data and the special input fields of type
"file".

Configure the allowed destination:

When you upload files they will be placed with a temporary name in the /tmp folder on the IFS - from
here it is your responsibility to move them into your designated folder. You can, however restrict/allow
the client to upload into one or more dedicated folders. You simply place a configuration file in Your
server root path called webConfig.xml

The configuration file has a upload element which again can contain a map of valid directories an the
corresponding alias as the client refer to it. Finally You can give a generic folder path for any invalid
upload filenames. This is indicated by an * as the alias name. By default that would be the /tmp folder on
the IFS.

The webConfig.xml file is hidden from the client. It is only available in the physical path, not in the virtual
counterpart.

The webConfig.xml contains (among other stuff) the following.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <upload>
 <map alias="frameworks" path="frameworks" />
 <map alias="upload" path="/www/anyplace/docs" />
 <map alias="*" path="/tmp" />
 </upload>
</configuration>

The configuration above says:
· Any uploaded files designated to virtual folder "frameworks" will be placed in the sub-folder

"framework" in the server root path.

75Building applications

System & Method A/S

· Any uploaded files designated to virtual folder "upload" will be placed in the absolute path "/www/
anyplace/docs"

· The final "*" alias is a "catch all" - so all other virtual folder references will be placed into the "/tmp"
folder

The code:

Next we will take a look at the file type, how it is used to upload files to your IceBreak server and how
you can control the uploaded file. The combination of the form encoding type set to multipart/form-data
and the special input fields of type "file" makes it work.

Two components are needed, <Form> and <Input> tags:

<form>

 <form METHOD="post" ENCTYPE="multipart/form-data" ACTION="Upload.aspx" id=form1 name
="form1" accept-charset="utf-8">

The <form> tag type has a special feature called "ENCTYPE". This is the encoding type for file-uploading
to "multipart/form-data". It informs the browser to include all form elements like attachments in an email
instead of passing the data in the form object.

Also notice that IceBreak only supports the UTF-8 charset when you have inputs fields on you upload
form. You always need to specify accept-charset="utf-8" if you also submits input fields. Input fields can
be retrieved by the form() api

<input> for IFS stream files

 <input NAME="upload/MyUpload1.txt" TYPE= "file">

The NAME paramter must contain a valid virtual path and file. the path must be a name found in the
webConfig.xml file in the upload element. The name must conform to any valid file name for the IFS.

The name can be set to the special value "*" if you want IceBreak to create a unique name and place the
file into the /tmp IFS folder.

<input> for ILOB's (Internal Large Objects)

 <input NAME="*ILOB:MyUpload" TYPE= "file">

The <input> tag type is set to "file". This informs the browser to attach a file in form attachment. The

76 IceBreak

System & Method A/S

browser automatically places a Browse-button next to the file name.

The "NAME" is the destination name of an ILOB, but you have to prefix it by *ILOB:

Now you have some objects in the resulting ASPX request object which you can retrieve by the Form('')
or FormNum('') functions.

Field Name Description

FormNum('file.count')
Returns the number of attachments in the file
upload

Form('file.n.uploadname')
Returns the intended name from the form "name" -
field

Form('file.n.localname')
Returns the name of the uploaded filename on the
IFS

Form('file.n.remotename')
Returns the name of the selected filename on the
client

form('file.n.size') Returns the size of the file in bytes

Where 'n' is the file number in the attachment between 1 and "FormNum('file.count')"

The final sample:

 <%
 //' I use the "var" icebreak macro to declare my variables- they will expand to
D-specs
 var i like(int)
 var FilesOnForm like(int)
 var oldName like(String)
 var newName like(String)

 /include qasphdr,ifs
 /free
 %>
 <html>
 <head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
 </head>
 <body>
 <h1>Files uploads on the form was: <%= form('file.count') %></h1>.

 <%
 //' the first uses the default file name and will be placed temporary in
/tmp/xxxxx.upload
 //' the second uses the "UPLOAD" which is mapped to location: /www/anyplace/docs
on the IFS via the webConfig.xml file placed in the server root path
 //' the last is trying to hack into a invalid path, so it will fallback to the
default /tmp path
 %>
 <form method="post" enctype="multipart/form-data" action="Upload.aspx" accept-charset
="utf-8">

File to upload :<INPUT NAME="*" TYPE="file" size=40>

File to upload :<INPUT NAME="UPLOADa/MyUpload2.dat" TYPE="file" size=40>

File to upload :<INPUT NAME="/this is an invalid path/MyUpload3.dat" TYPE
="file" size=40>

Aditional text :<INPUT NAME="text1" TYPE="text" size=40>

<input TYPE="submit" VALUE="Upload">
 </form>
 <h2><% = Form('text1') %></h2>
 <table>
 <%
 //'The table header
 %>

77Building applications

System & Method A/S

 <tr>
 <td>Filenumber</td>
 <td>Name on the upload form</td>
 <td>Uploaded to</td>
 <td>Uploaded from</td>
 <td>Size in Bytes</td> </tr>
 <%
 //' Now build a simple table with info about the uploaded files
 //' we iterate through each file-field on the request form
 FilesOnForm = FormNum('file.count');
 for i = 1 to FilesOnForm;
 %><tr>
 <td><%= %char(i)%> </td>
 <td><%= form('file.' + %char(i) + '.uploadname') %></td>
 <td><%= form('file.' + %char(i) + '.localname') %></td>
 <td><%= form('file.' + %char(i) + '.remotename') %></td>
 <td><%= form('file.' + %char(i) + '.size') %></td>
 </tr><%
 endfor;
 %></table>
 </BODY>
 </html>

 <%
 //' Finally - if we use the method with temporary filename
 //' we rename and move the temporary file to the decided finally location
 //' Note we include the prototype IFS from qasphdr to utilize the IFS api "rename"
 if form('file.1.remotename') > '';
 oldName = form('file.1.localname'); // This is the
teporary name
 newName = '/www/anyPlace/docs/upload1.dat'; // this is the resulting name
 if rename(oldName :newName) = 0;
 %>File was moved from: <% = oldName %> to: <% = newName %><%
 else;
 %>Not able to moved from: <% = oldName %> to: <% = newName %><%
 endIf;
 endIf;
 return;
 %>

3.12 Controlling the state of a "CheckBox"

Programming:

Check boxes are used for logical states ON/OFF .. TRUE/FALSE. This is done by the "checked" attribute in
the HTML.

The following code builds a HTML-form containing a check box

<form name="form1">
 <input type="checkbox" value="checked" name="IsItOk" checked>
</form>

By using the value "checked" it is very easy to transfer the logical state from the ASPX:

78 IceBreak

System & Method A/S

<form name="form1">
 <input type="checkbox" value="checked" name="IsItOk" <%= form('IsItOk') %>>
</form>

RPG has logical variables and indicators which can be used for direct control of these check boxes.

<%
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D IsItOk s N

/free
 IsItOk = form('IsItOk') > *blanks;

 if (IsItOk);
 %>This Checkbox is Checked<%
 else;
 %>This Checkbox is not Checked<%
 endif;
%>

When the value is retrieved from the checkbox, it will contain "checked" or blank. Now take the check
state into logical variables and control the check box.

Run the sample

Show the sample

3.13 Mixing Jave-Script and RPG

Programing:

With HTML you are able to use scripts in your ASPX code in IceBreak. This can be data from a DB2
database which contain the options in a menu structure. Here is a small sample.

How to put the system time into an "alert" popup message:

This is done by the following code:

<%/free
 *inlr = *ON;
%>
<html>
 <h1>Script sample</h1>
 <script>
 alert(' <%= %char(%time) %> ');
 </script>
</html>

79Building applications

System & Method A/S

When the value is retrieved from the checkbox, it will contain "checked" or blank. Now take the check
state into logical variables and control the check box.

Script sample

It does not look like much, but these few lines do quite a lot of work:
· When the ASPX program is executed the %time() value is placed into the script
· The total HTML file is the sent to the browser
· The browser displays the HTML "Script sample"
· Then it interprets the script showing the alert prompt with the time

Run the sample

Show the sample

Tip: When you want to include JavaScript into your project you can find free snippets and complete
components on the Internet.

The following example shows how to build a menu. The first part only declares some of the RPG
variables.

<%
 D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments+++++
++++++
 D url s 256 varying
/free
%>

Now we make reference to style sheets and JavaScripts.

<html>
 <head>
 <link rel="stylesheet" type="text/css" href="/System/Scripts/iNavigate/style/iNavigate.
css">
 <script language="JavaScript1.2" src="/System/Scripts/iNavigate/jscript/iNavigate.js">
 </script>
 </head>

The following code makes up the menu items in Java Script

<script>
function menu() {
 MenuBegin("Icebreak Introduction");
 AddSubMenu("What is it?" , "navigator.asp?func=Default.htm");
 AddSubMenu("Creating programs" , "navigator.asp?func=CreatePgm.htm");
 AddSubMenu("Into details" , "navigator.asp?func=intro3.htm");
 AddSubMenu("Tutorial" , "navigator.asp?func=tutorial.htm");
 AddSubMenu("System & Metode" , "navigator.asp?func=http://www.System-metode.dk");
 AddSubMenu("Agent Data " , "navigator.asp?func=http://www.agentdata.com");
 MenuEnd();

 MenuBegin("Administration");

80 IceBreak

System & Method A/S

 AddSubMenu("Working with servers" , "navigator.asp?func=SvcMng01.asp");
 AddSubMenu("System settings" , "navigator.asp?func=Default.htm");
 AddSubMenu("User profile" , "navigator.asp?func=Default.htm");
 MenuEnd();

 MenuBegin("Back office");
 AddSubMenu("Work with spool Files" , "navigator.asp?func=Default.htm");
 MenuEnd();

 MenuBegin("Email & Faxing");
 AddSubMenu("Send Fax/Mail" , "navigator.asp?func=Default.htm");
 AddSubMenu("Work with jobs" , "navigator.asp?func=Default.htm");
 AddSubMenu("Work with receipients" , "navigator.asp?func=Default.htm");
 MenuEnd();

 iNavigate_SetParentPage('navigator.asp' , '?func=<%=%trim(url)%>');
 iNavigate_BeforeLoad();
}
</script>

The complete page is built by a table with the Java script menu on the left side and the contents on the
right made by an IFRAME (Inline frame).

81Building applications

System & Method A/S

<html>
<body topmargin="0" leftmargin="0" marginwidth="0" marginheight="0" onload
="iNavigate_AfterLoad();">
<%
 url = QryStr('func');
 if url = *blanks;
 url = 'default.htm';
 endif;
%>

<table border="0" cellpadding="0" cellspacing="0" height="100%">
 <tr>
 <td width="10"></td>
 <td valign="top" width="200">
 <script language="JavaScript1.2">
 menu();
 </script>
 </td>

 <!--- VERTICAL LINE SEPERATOR -->
 <td width="10"></td>
 <td width="1" bgcolor="#808080"><img src="/iNavigate/graphics/blank.gif" width="1"
height="1"></td>
 <td width="10"></td>

 <!--- CONTENT START --->
 <td valign="top" width="100%">
 <iframe src="<%=url%>" width="100%" frameborder="0" marginwidth="0" height="100%"
marginheight="0" align="top" scrolling="auto" hspace="0" vspace="0"></iframe>
 </td>
 <!--- CONTENT END --->

 </tr>
</table>

</body>
</html>

<%return;%>

You can take this navigator menu and load the item from a DB2 database to make a user dependent
menu.

3.14 VB-Scripting. Merge i5/OS data into a MS-Word document

Programming:

The power of building script using an IceBreak ASPX-program is relay amazing. Here we will start MS-
word as an Active-X component and then build a document based on data from an DB2-table.

The first step is to bring up MS-word and just fill in some data:

<html>
<head>

82 IceBreak

System & Method A/S

</head>
 <script language="vbscript">
 sub OpnDoc()

 ' Create Word object
 Dim oWd, doc
 Dim Crlf
 crlf = chr(13) + chr(10)
 On Error Resume Next
 Set oWd = GetObject(, "Word.Application")
 If TypeName(oWd) <> "Application" Then
 Set oWd = CreateObject("Word.Application")
 End If

 oWd.Visible = false
 oWd.Documents.Add ,,0
 oWd.Activate
 oWd.Selection.TypeParagraph
 oWd.Selection.TypeText "Customer name" + CrLf
 oWd.Selection.TypeText "Address way 1" + CrLf
 oWd.Selection.TypeText "US 888 555 Anyplace" + CrLf
 oWd.Selection.TypeText "Thecountryname" + CrLf
 oWd.Selection.TypeParagraph
 oWd.Selection.TypeText "This is the text we want to write to the customer"
 oWd.Visible = True

 end sub
 </script>
<body>
<input type="button" onclick="OpnDoc" value="Word">
</body>
</html>

When You click on the "Word" button the VB-Script is started. The construction getObject followed by
CreateObject is used to reuse word is it is already started. The hole magic is to use the "TypeText"
method on the word object:

Run the sample

Show the sample

Next step is to bring live data into the document with an IceBreak ASPX Program. Now we can iterate
through a database table and build the script dynamically.

<%
 *' -- *

 *' Program ex17Word2.asp

 *'

 *' Reads all manufacturers of digital cameraes and coresponding products

 *'
 *' This demonstrates the interaction with Microsoft Word scriptiong capabilities
 *' You need to allow "active-X" to run from your icebreak server - otherwise it will not
work
 *'

83Building applications

System & Method A/S

 *' -- *

F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
FMANUFACT IF E K DISK prefix('MANU_')

FPRODUCT1 IF E K DISK prefix('PROD_')

//'

%>
<html>
<head>
 <script language="vbscript">
 sub OpnDoc()
 Dim oWd, doc
 Dim Crlf
 Dim lf
 crlf = chr(13) + chr(10)
 lf = chr(10)

 ' Create Word object - if it exists the reuse it
 On Error Resume Next
 Set oWd = GetObject(, "Word.Application")
 If TypeName(oWd) <> "Application" Then
 Set oWd = CreateObject("Word.Application")
 End If

 ' Use a preformated document with logos etc as template - we load it from the same
server as we get this request
 oWd.Visible = false
 oWd.Documents.Add "http://<%= getHeader('host')%>/tutorials/template.doc", False, 0
 oWd.Activate

<%
 *' Read manufacturer

C *LOVAL SETLL MANUFACTR

C READ MANUFACTR 8080

C *IN80 DOWEQ *OFF

%>
 ' Now list the manufacturer
 oWd.Selection.TypeParagraph
 oWd.Selection.TypeText "<%
 /free
 ResponseWrite(%trim(Manu_Desc));
 /end-free
 %>" + Lf
 oWd.Selection.TypeText
"---" + CrLf
<%
 *' Read all products for that manufacturer

C MANU_MANUID CHAIN PRODUCTR 80

C *IN80 DOWEQ *OFF

C MANU_MANUID READE PRODUCTR 8080

%>
 oWd.Selection.TypeText "<%
 /free
 ResponseWrite(%trim(Prod_Desc));
 /end-free
 %>" + CrLf
<%
C ENDDO
%>

84 IceBreak

System & Method A/S

 oWd.Selection.InsertBreak wdPageBreak
<%
C READ MANUFACTR 8080
C ENDDO
C SETON LR

%>
 oWd.Visible = True

 end sub
</script>
</head>
<body>
<p>The report is ready press OK to open it in word</p>
<input type="button" value="ok" onclick="OpnDoc()">
</body>
</html>

As you can see - the structure is the same, but the RPG-logic i reading the entire file and inserting data
in the document with "TypeText" method.

Hint: Use word macro recording tool to show you all you need to do to produce, print and save (etc.) a
document.

Hint2: You can use the same technique to produce Excel spreadsheets.

Run the sample

Show the sample

.

3.15 Using keyCodes (SPAM Prevention)

Programming:

Use "KeyCodes" to prevent a spammer from creating unwanted accounts from your web-application.

What it does

It prompts the user for a sequence of random numbers presented in a graphic format which is not easy
for OCR-software to recognize. Also the information behind "KeyCodes" can not be exposed neither the
"query string" or the "form" object.

How it is done

The key-code is generated as a random number using a timestamp as the base. Here we use four digits.

//' Create a new key code:
//' Get a pseudo random number .. that is the current timestamp sec cat milli sec part
//' Time is in format: 2005-05-05-12.34.56.123456
 rand = Num(%subst(%char(%timestamp()):21:2)
 + %subst(%char(%timestamp()):18:2));
 rand = %rem(rand : 10000); //' Limit it to between 0 and 9999

85Building applications

System & Method A/S

 KeyCode = %subst(%char(rand + 10000) : 2: 4); //' convert it to 4-char string with
prefix zeros
 SesSetVar('KeyCode' : KeyCode); //' Store it into session

A .GIF file for each digit is created with an almost unreadable font i.e. the "Curlz" font. Each digit from
the keyCode is returned to the response object not exposing the original name, as .GIF image data.

Here we use an ASPX that includes the .GIF data, and sets the contents type to "image/gif". Remember
to set the cache time out to zero, otherwise the browser will just get the first image and then reuse that
from the cache. You are creating the image contents dynamically!

<%
//' Return the "Curlz" image for the KeyCode position in the query string
 KeyPos = QryStrNum('KeyPos'); // The Key Digit position .. First 1 then 2 then 3
and last 4..
 if (KeyPos >= 1);
 KeyCode = SesGetVar('KeyCode');
 KeyPicture = %subst(KeyCode : KeyPos : 1);
 errstr = include('image/curlz' + KeyPicture + '.gif');
 if (errstr = '');
 SetContentType('image/gif');
 SetCacheTimeout(0);
 else;
 %><%= errstr %><%
 endif;
 return;
 endif;
%>

Run the sample

Show the sample

3.16 Using COBOL as ASPX programming language

Programming:

By migrating a COBOL program to IceBreak ASPX, you have a good opportunity to move legacy code
towards the Internet.

This release supports the basic features of the "form" object and the "response" object. These features
are sufficient for writing COBOL-ASPX for the IceBreak server.

Let's look into the souce code:

First, set the precompiler to COBOL (CBLLE).

<%@ language="CBLLE" %>

 In the "Environment division" you will need some special linkage features for the IceBreak server. This is
done by including the member "httpxlink" in file "qasphdr".

86 IceBreak

System & Method A/S

 Environment division.
 Configuration section.
 Special-names.
 copy httpxlink in qasphdr.

In the "Data division" you need to include IceBreak-internal work variables using the member
"httpxdata" in file "qasphdr".

Data Division.
Working-Storage Section.
copy httpxdata in qasphdr.

In the "procedure division" you are now able to utilize the "request" and the "response" object within the
IceBreak server. When placing data in the response object you call on one of the following procedures
and macros.

Syntax Description

<%= MyVariable %>
URL-Encodes and blank-trims a variable into the
response object

"Response_Write"
Writes the parameter/literal to the response object
as it is

"Response_Write_NL"
Writes the parameter to the response object. Then
appends a new line characters

"Response_NL_Write"
Writes a new line of characters into the response
and appends the parameter/literal

The final sample might look like this using basic COBOL paragraphing.

<%@ language="CBLLE"%><%
' --- '
 Environment division.
 Configuration section.
 Special-names.
 copy httpxlink in qasphdr.
' --- '
 Data Division.
 Working-Storage Section.
 copy httpxdata in qasphdr.

 Procedure Division.
' --- '
 Main section.

*' Insert the html heading text
%>
<html>
 <h1>This is a test from a COBOL.ASP program </h1>
</html>

Run the sample

Show the sample

87Building applications

System & Method A/S

Use the following macros when you want to retrieve data from form input fields.

Syntax Description

MyVariable = Request.Form("MyFormField"); Retrieve a char field from the input form

MyVariable = Request.FormNum("MyFormField"); Retrieve a number field from the input form

MyVariable = Request.QueryString("FormField"); Retrieve a char field from the URL

MyVariable = Request.QueryStringNum
("FormField");

Retrieve a number from the URL

Please Note:

1) Macros in IceBreak-COBOL are terminated by ";" and they look likefunction calls in "Visual-Basic".

2) The first parameter (the left side of the =) is the name of the variable in your COBOL program to
receive the content.

3) The second parameter is the form field name. The name of any HTML <input> tag.

Show the complete list of macros

Let's extend the sample above placing a form field and showing what was typed into that field

This sample might look like this:

<%@ language="CBLLE"%><%
' --- '
 Environment division.
 Configuration section.
 Special-names.
 copy httpxlink in qasphdr.
 Input-output section.
 File-Control.

' --- '
 Data Division.
 Working-Storage Section.
 copy httpxdata in qasphdr.

 01 Globals.
 05 MyField pic x(30).

 Procedure Division.
' --- '
 Main section.

 Main01.

*' Insert the html heading text
%>
<html>
 <h1>This is a test from a COBOL.ASP program</h1>
 <form action='ex10cobol2.asp' method='post' name='form1'>
 Enter a string:<input type='text' name='MyField'>
<% MyField = Request.Form("MyField"); %>

The string was: <%= MyField %>
 </form>
</html>
<%
 MainEnd.
 exit.
%>

88 IceBreak

System & Method A/S

Run the sample

Finally let's look at a COBOL-ASPX application producing a list of data using the DB2-database

Show the sample

Run the sample

When using the procedure interface, it might look like this:

call procedure "Response_Write" using content "

 call procedure "Response_Write" using content
 "<html><h1>This is a test from a COBOL.ASP program</h1>"
 end-call

Use the "using content" calling convention when placing text literals, or "using reference" as the calling
convention. Remember that text literals have a maximum length of 255 characters.

3.17 Using Legacy RPG fixed form code

Programming:

You can even use old style "input primary files" and the old-style "cycle", however, you have to migrate
old RPG-III programs to IceBreak which can be done with the following guide-lines:

· Convert the RPG-III to RPG-ILE using the CVTRPGSRC command
· Move the source to the IFS using "Source File Browser" tool found in the Adminitration menu
· Isolate the business logic from display files into routines
· Rewrite the user interface into HTML
· Use the "File Field Descriptor" tool to create HTML tables and HTML forms

The fixed form business logic might be used with little or no change at all:

<%@ language="RPGLE" %>
<%
FPRODUCT IP E DISK
%><% = prodid %><%= Desc %>

Run the sample

Part

IV

90 IceBreak

System & Method A/S

4 Internal Large Objects - ILOB's

4.1 ILOB's - Internal Large Objects

ILOB's:

Host languages like RPG and COBOL have a limit in program variable size. IceBreak breaks that limit by
utilizing userspaces and associates them to a session. The transfer of data back and forth between
Request object or Response object can be done with help from ILOB's. Also SQL CLOB's and BLOB's can
be mapped to ILOB’s. See ILOB's and SQL

Consider a file upload application. When the user hits the “upload” button on a form this data can be
placed in an ILOB up to 2Gbytes. This ILOB can now save itself as a stream file. The XML parser can
parse it or it can be placed into DB/2 CLOB field.

ILOB's is by default session maintained, but can also be persistent so it is ideal to share data between
server instances and session instances with ILOB's.

ILOB's contains a body and a header which maps directly to the HTTP protocol. Therefore ILOB is used
for IceBreak webservices.

i5/OS userspaces are used to implement ILOB's. They are wrapped in an easy-to-use IceBreak-API's.
However, you can use IBM supplied API's for manipulating userspaces if you create the basic type ILOB.
see the API sample.

The access to IOB functions is available by including:

/include qasphdr,ilob

ILOB Functions:

· IlobPtr = ILOB_OpenPersistant(Library : Name);

· Ok = ILOB_DeletePersistant(IlobPtr);

· Ok = ILOB_Read(IlobPtr: String: Offset : Length);

· Ok = ILOB_ReadNext(IlobPtr: String :Length);

· Ok = ILOB_Write(IlobPtr : String :Offset);

· Ok = ILOB_LoadFromBinaryStream (IlobPtr: FileName);

· Ok = ILOB_LoadFromTextStream (IlobPtr: FileName);

· Ok = ILOB_SaveToBinaryStream (IlobPtr: FileName);

· Ok = ILOB_SaveToTextStream(IlobPtr: FileName);

· OK = ILOB_Xlate(IlobPtr: fromCCSID : toCCSID);

· Ok = ILOB_Append(IlobPtr : String);

· Ok = ILOB_Clear (IlobPtr);

· DataPtr= ILOB_GetDataPtr(IlobPtr); // Obsolete - now the IlobPointer is the same as the data pointer

· Len = ILOB_GetLength(IlobPtr);

· ILOB_SetData (IlobPtr : Length : Data | *NULL);

· ILOB_SetWriteBinary(IlobPtr; *ON|*OFF);

· ILOB_Close(IlobPtr);

· ILOB_Ilob2Clob(ClobLocator : IlobPtr : Offset : Length);

· ILOB_Clob2Ilob(IlobPtr : ClobLocator : Offset : Length);

· ILOB_SubIlob (OutIlobPtr: InIlobPtr : FromPos : Length | ILOB_ALL : ToPos | ILOB_END); // Pos = 1 is first byte

Also functions directly accessible from the response, request, session object and the XML parser:

· Form2ILOB(IlobPtr: FormFieldName);

· ResponseWriteILOB(IlobPtr);

· SetResponseObject(IlobPtr | *NULL);

91Internal Large Objects - ILOB's

System & Method A/S

· IlobPtr = SesGetILOB(IlobName : [Defultsize=8192] : [HeaderSize=4096]);

· IlobPtr = SesGetUsrSpc(usrspcname: IlobName : [Defultsize = 8192]);

· XmlPtr = Xml_ParseILOB (IlobPtr : Options: InputCcsid : OutputCcsid);

· error = Xml_GetIlobValue (IlobPtr: XmlPtr : xPathNode);

ILOB’s are also used for response and request objects in some application server session dispatcher
modes.

First let's play with a ILOB as a way to preserve session variables for an application. A good practice
might be to prefix the ILOB name with the name of the program for program global session variables,
and "globals." for cross program variables. Simply base all variables you want to preserve in a session on
a pointer served by an ILOB. If the name does not exists - it will automatically be created:

<%@ language="RPGLE"%>
<%

/include qasphdr,ilob

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
d MyIlob s *
d MySession ds based(MyIlob)
d Counter 10I 0
d first 1A

C/free
 *inrt = *on; // break the cycle
 MyIlob = SesGetILOB('Thispgm.MyIlob'); // All ILOB's in the following is based on
"MyIlob" session ILOB
 if (first <> *ON); // Initialize the ilob fields
 Counter = 0;
 First = *ON;
 endif;
 Counter = Counter + 1; // Increment the counter in the ilob
 %><% = %char(Counter) %><%
%>

Show the sample

Run the sample

You can manipulate ILOB's with ILOB_SubIlob, where you can take a fraction or all data from an ILOB
and insert it or append it to another ILOB

<%@ language="RPGLE" modopt="DBGVIEW(*LIST)" %>
<%

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
d firsttime s n INZ(*ON)
d ilob1 s *

92 IceBreak

System & Method A/S

d ilob2 s *

/include qasphdr,ilob

C/free

// Get two pointers to some session ILOB's
 ilob1 = SesGetILOB('ilob1');
 ilob2 = SesGetILOB('ilob2');

// Clear Ilobs. The second only the first time
 Ilob_Clear(ilob1);
 if (firsttime);
 Ilob_Clear(ilob2);
 firsttime = *OFF;
 endif;

// Put data in the first ilob, so we redirect the response to the first ilob
 SetResponseObject(ilob1);

// Use the normal ASPX syntax to produce data, this time however it ends up in "ilob1"
%>
<tr><td><%= %char(%timestamp()) %></td></tr>
<%
// Switch back to default reposnse object
 SetResponseObject(*NULL);

// Now append that data to the second ilob
 Ilob_SubIlob(ilob2 : ilob1 : 1 : ILOB_ALL : ILOB_END);

// Build the result
%>
<html>
 <Head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
 </Head>
 <body>
 <h1>ILOB Demo - Press refresh to append to the list</h1>
 <table>
<%
 // take the final ilob which contains all table rows and put it into the table
 ILOB_SetWriteBinary(ilob2 : *ON); // This is already in ASCII
 ResponseWriteIlob(ilob2);
%></table>
 </body>
</html>
<% return ; %>

Show the sample

Run the sample

93Internal Large Objects - ILOB's

System & Method A/S

4.2 ILOB's and SQL

ILOB's can map CLOB and BLOB coloumns in a SQL table. It requires, however, that the SQL tables a
journal'ed and commit are allowed.

In this sample we are using SQL and maps fields to SQL CLOB fields, it requires a "locator", but with that
you are able to save and restore SQL data in a session.

<%@ language="SQLRPGLE" options="COMMIT(*ALL)" modopt="DBGVIEW(*LIST)" %>
<%
 *' --
 *' Use CLOB Fields directly from input form and the response object
 *' --

/include qasphdr,ilob

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
d MyIlob s *
d MyClob s sqltype(CLOB_LOCATOR)
d lobind s 5i 0
d ALL s 10I 0 inz(-1)

 *' --
 *' Main logic
 *' --
/Exec sql
 Set Option Optlob=*YES, Commit=*ALL, Closqlcsr=*ENDACTGRP
/End-exec

C/free
 *inrt = *on; // break the cycle
 MyIlob = SesGetILOB('MyIlob'); // All ILOB's in the following is based on "MyIlob"
session ILOB

%>
<html>
 <Head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
 </Head>
 <body>
 <h1>CLOB/ILOB Demo</h1>
 <form method=POST id=form1 name=form1>
 <textarea name=lob></textarea>

 <input type=submit name=loadfromstream value="Load ILOB From Stream">
 <input type=submit name=savetostream value="Save ILOB to Stream">
 <input type=submit name=Showilob value="Show ILOB">
 <input type=submit name=form2clob value="Form to Clob">
 <input type=submit name=ilob2clob value="ILOB to Clob">
 <input type=submit name=Delete value=Delete>
<%
 if Form('form2clob') > '';
 Form2Clob(myClob : 'lob');
 Exsr Sql_Insert;
 %><pre><% responseWriteCLOB(MyClob); %></pre><%

 ILOB_Clob2Ilob(MyIlob:MyClob:1:ALL);

94 IceBreak

System & Method A/S

 endif;

 if Form('Ilob2clob') > '';
 ILOB_Ilob2Clob(MyClob:MyIlob:1:ALL);
 Exsr Sql_Insert;
 %><pre><% responseWriteCLOB(MyClob); %></pre><%

 endif;

 if Form('showilob') > '';
 %><pre><% responseWriteILOB(MyILOB); %></pre>
 <%
 endif;
 if Form('loadfromstream') > '';
 ILOB_LoadFromStream(MyIlob :'/www/systest/space.txt':'r');
 %><pre><% responseWriteILOB(MyILOB); %></pre>
 <%
 endif;

 if Form('savetostream') > '';
 Form2ILOB(myIlob : 'lob');
 ILOB_SaveToStream(MyIlob :'/www/systest/space.txt':'w,ccsid=277');
 endif;

 if Form('Delete') > '';
 Exsr Sql_Delete;
 endif;
%>

<table border="1">
 <thead>
 <TR>
 <th>Clob</th>
 </TR>
 </thead>

<%
// Now reload the list
// -------------------
 Exsr Sql_Open; // Declare and Open the SQL cursor
 Exsr Sql_Fetch; // Get the first row from the result set
 Dow (SqlCod = 0) ; // repeat until max number of rows found or EOF
%>
 <tr>
 <td><pre><% responseWriteCLOB(MyClob); %></pre></td>
 </tr>
<%
 Exsr Sql_Fetch; // Get the next row from the result set
 EndDo;
 Exsr Sql_Close; // Always remember to close cursors after use
%>
 </table>
 </form>
 </body>
</html>
<%
 return;

//' --
//' Open is declaring And opening the SQL Cursor
//' Actually the declare ends up as a comment in the final object
//' --
Begsr Sql_Open;

/Exec SQL
 Declare List cursor for
 Select yclob
 from y
 for update of yclob
/End-exec

95Internal Large Objects - ILOB's

System & Method A/S

/Exec SQL
 Open List
/End-Exec

 Exsr Sql_Monitor;
Endsr;
//' --
//' Fetch - is retrieving the newt row from the result set
//' --
Begsr Sql_Fetch;

/Exec SQL
 Fetch list into :MyClob :lobind
/End-Exec

 Exsr Sql_Monitor;
Endsr;
//' --
//' Close - Just close the cursor
//' --
Begsr Sql_Close;

/Exec SQL
 Commit hold
/End-Exec

 Exsr Sql_Monitor;

/Exec SQL
 Close list
/End-Exec

 Exsr Sql_Monitor;

Endsr;
//' --
//' Insert a new row
//' --
Begsr Sql_Insert;

/Exec SQL
 Insert into y values :MyClob
/End-Exec

 Exsr Sql_Monitor;
Endsr;
//' --
//' delete all rows
//' --
Begsr Sql_Delete;

/Exec SQL
 Delete from y
/End-Exec

 Exsr Sql_Monitor;
Endsr;
//' --
//' Sql_Monitor is the global monitor for sql-errors
//' The SQL_SetError sends the message back to the IceBreak server.
//' Then use 'GetLastError' to display the formatted error message
//' --
Begsr Sql_Monitor;
 select;
 when SqlCod = 0;
 when SqlCod = 100;
 other;
 SQL_SetError(SqlCod:SqlErm);
%>

96 IceBreak

System & Method A/S

 <script>
 alert ("<%= GetLastError('*MSGTXT') %>");
 </script>
<%
 Endsl;
EndSr;
%>

4.3 ILOB's with IBM supplied API's

If you want to use traditional userspaces with in a session and let IceBreak handle the memory
management, you can use a special userspace ILOB which has no ILOB's features except for the plain
userspace and the fact it will be connected to your session and reclaimed when the session ends.

Syntax:

IlobPtr = SesGetUsrSpc(UsrSpcName: IlobName : [Defultsize=8192]);

Field Name Usage Data type Description

UsrSpcName OUTPUT CHAR(20)

Automatically generated
name of the resulting
qualified output name and
library for the user space

Name INPUT VARCHAR(256)

Your session global wide
alias name for the ILOB
userspace managed for
your session. (Not case
sensitive)

Name INPUT - optional INT4
The optional initial size for
the userspace in bytes.
Default i 8K if omitted

Return value
IlobPtr OUTPUT POINTER Pointer to userspace

Sample:

<%@ language="RPGLE" %>
<%
 *' --
 *' Demo: userspace managed by ilobs
 *' --

/include qasphdr,ilob

d MyIlob s *
d pObj s *
d ReadCount s 5u 0
d lstobj s 20

 * --- *
D gh ds Based(MyIlob)
D LikeDs(QUSH0100)

97Internal Large Objects - ILOB's

System & Method A/S

 * --- *
D ol ds Based(pObj)
d likeds(QUSL010003)
 * --- *
D quslobj pr extpgm('QUSLOBJ')
D SpaceName 20
D Format 8 const
D ObjQual 20 const
D ObjType 10 const

 /Include QSysInc/qRpgleSrc,QUSGEN
 /Include qasphdr,QUSLOBJ

 *' --
 *' Main logic
 *' --

C/free

%><html>
<head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
</head>
<body>
 <h4>Tutorials</h4>
 <h1>Using Userspace like an ilob.</h1>
 <table>
 <%

 *inlr = *on;
 MyIlob = SesGetUsrSpc(lstobj
 : 'ListOfmyObjects'
 : 4096);

 quslobj (lstobj
 : 'OBJL0100'
 : '*ALL QGPL '
 : '*ALL ');

 pObj = myilob + gh.QUSOLD; // Position to Record format
 for ReadCount = 1 to gh.QUSNBRLE; // ReadCount < Number List Entries
 %><tr><%
 %><td><% = ol.QUSOLNU %></td><%
 %><td><% = ol.QUSOBJNU %></td><%
 %><td><% = ol.QUSOBJTU %></td><%
 %></tr><%
 pObj = pObj + gh.QUSSEE; // Size Each Entry
 endfor;

%>
</table>
</body>
</html>

4.4 ILOB's, httpRequest and XML

ILOB's:

In a Service Oriented Architecture world (SOA) the ability to intercommunicate huge data streams is
essential. As we saw earlier ILOB's is a way deal with large data from within an ILE program.

98 IceBreak

System & Method A/S

This tutorial will show how to use ILOB's and make HTTP request with XML based data stream.

Basically we want to send a XML request to a server program and in return receives the XML response.
By using ILOB's we are able to break the 32K limit that RPG normally has.

The Server program

<%@ language="RPGLE" %>
<%
 *'

 *' Runs an SQL query for the XML request received
 *'

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
d manufactid s 16 varying
D Error s N
D SqlCmd s 1024 varying
D MaxRows s 10i 0

/free
//' The first thing is always to set charset and content type
 SetContentType ('application/xml; charset=windows-1252');

//' Take the parameter from the XML request
 manufactid = reqXmlGetValue('/request/manufactid' : '');

//' Build the SQL command
 sqlcmd = 'select * from product where manuid = ''' +manufactid+ '''';
 MaxRows = 10000;

//' Now run the SQL query
 %><?xml encoding="windows-1252" version="1.0" ?><%
 Error = SQL_Execute_XML(sqlcmd : maxrows);
 if (Error);
 %><error help="<% = getLastError('*HELP') %>" msg="<% = getLastError('*MSGTXT') %>
"></error><%
 endif;
 return;
%>

99Internal Large Objects - ILOB's

System & Method A/S

1. The SetContentType() to "application/xml" is essential. We both sends ad receives data in XML

format. if IceBreak "see" the /XML in the content type it will automatically run the XML-parser.
2. The xml request is already parsed so we have access to an XML object that IceBreak maintains.

Now we can use the X-path syntax to refer to the value of the element "manufactid" in the "
request" elemet.

3. The SQL statement is constructed. Just adding the "where" clause and we are ready to run the
SQL.

4. Finally the surroundings for the XML is set up. Note that the encoding tag in the XML header has to
be the same as we used in "SetContentType()"

5. SQL_Execute_XML() simply returns the SQL result set as an XML document, which is placed
directly in the response object.

You can see the number of variables in a program like this i kept to a minimum. All the data manipulation
is done behind the scenes in the request and response object.

The Client program

The client program is a little more sophisticated the the client. It is dealing with the access to the ILOB's
and parser directly:

<%@ language="RPGLE" %>
<%

d*' Include the ILOB and xml parser prototypes
/include qasphdr,ilob
/include qasphdr,xmlparser

d*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
d manufactid s 16 varying
d path s 64 varying
d Error s N
d reqILOB s *
d respILOB s *
d xmlPtr s *
d i s 10i 0
d rows s 10i 0

/free

//' Bacically this program just toggle between the manufactures
 manufactid = form('manufactid');

//' The first thing is always to set charset and content type
 SetContentType ('text/html; charset=windows-1252');

//' First I crerate my work ILOB's
 reqILOB = SesGetILOB('request'); // get a pointer to a session ILOB used as my
request
 respILOB = SesGetILOB('response'); // get a pointer to a session ILOB used for the
response from the server

//' Reset my ilob
 ILOB_Clear(reqILOB);
 ILOB_Clear(respILOB);

//' Now i want to populate a simple XML request. - my ILOB header need a content type XML
//' All httpRequest are routet to the same default job hench the cookie
 ILOB_SetHeaderBuf(
 reqILOB :
 'Content-Type: application/XML; charset=windows-1252'
);

//' I reroute my response object to the request ILOB, so I can use the ASP sysnax for

100 IceBreak

System & Method A/S

creating the XML
 SetResponseObject(reqILOB);

%><?xml version="1.0" encoding="windows-1252" ?>
<request>
 <manufactid><% = manufactid %></manufactid>
</request><%

//' Now i redirect my response back to the default responce objet (what my browser
receives >
 SetResponseObject(*NULL);

//' My request is now ready to to to the server, so i call the httpRequest for ILOB's
 Error = ILOB_httpRequest(
 '/tutorials/ex24ilobsvr.asp': // The URL in form:"http://server:port/resource"
 30: // Number of seconds before timing out
 'POST': // The "POST" method
 reqILOB: // pointer to my Request ILOB
 RespILOB // pointer to my Response ILOB
);

//' Check for errors
 if error;
 %><% = GetlastError('*MSGTXT') %><%
 return;
 endif;

//' My data has arrived - I'll fire up the XML parser
 xmlPtr = XML_ParseILOB (//' Returns XML-object tree from an ILOB
 RespILOB: //' Pointer to an ILOB object
 'syntax=loose': //' Parsing options
 1252: //' The ccsid of the input ilob (0=current job)
 0 //' The ccsid of the XML tree (0=current job)
);

//' Check for errors
 if XML_Error(xmlPtr);
 %><%= XML_Message(xmlPtr) %><%
 XML_Close(xmlPtr);
 return;
 endif;

//' The Result will be a table
%><html>
<head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
</head>
<h1>Products by: <% = manufactid %></h1>

<form action="" method="post" id=form1 name=form1>
 <select name="manufactid">
 <option value="ACER">ACER</option>
 <option value="CANON">CANON</option>
 <option value="CASIO">CASIO</option>
 <option value="FUJIFILM">FUJIFILM</option>
 <option value="HP">HP</option>
 <option value="KODAK">KODAK</option>
 <option value="KONICA">KONICA</option>
 <option value="NIKON">NIKON</option>
 <option value="OLYMPUS">OLYMPUS</option>
 <option value="PANASONIC">PANASONIC</option>
 <option value="SAMSUNG">SAMSUNG</option>
 <option value="SONY">SONY</option>
 </select>
 <input type="submit" value="Go"/ id=submit1 name=submit1>
</form>

<table>
 <thead>
 <th>Product id</th>
 <th>Product Desciption</th>
 <th>Product Price</th>
 </thead><%

101Internal Large Objects - ILOB's

System & Method A/S

//' now print the report
 rows = num(XML_GetValue(xmlPtr: '/resultset/row[ubound]' :'0'));
 for i = 0 to rows -1;
 path = '/resultset/row[' + %char(i) + ']@';
 %><tr>
 <td><% = XML_GetValue(xmlPtr: path + 'prodid' :'N/A') %></td>
 <td><% = XML_GetValue(xmlPtr: path + 'desc' :'N/A') %></td>
 <td><% = XML_GetValue(xmlPtr: path + 'price' :'N/A') %></td>
 </tr><%
 endfor;
%>
 </table>
</html><%

//' Always release the memory used
 XML_Close(xmlPtr);
 return;
%>

Show the sample

Run the sample

1. Like the server program we need to set up the contents type. It need to map to the same values
as the server.

2. The we create two ILOB's used for request and response
3. The clear of the the Request ilob is essential. Otherwise data will just append to the ILOB.
4. The ILOB has a header which is used for HTTP communication. You have access to that header by

the "ILOB_SetHeaderBuf()". Note that you replaces the complete header by using the method.
5. The "SetResponseObject()" is used to reroute the response data to an ILOB so the data goes to

the ILOB and not the normal response object. When you want to switch back, the just call
"SetResponseObject()" with a *NULL parameter and you have your normal response object back
which goes to your browser. This method can also be applied to creating XML files on the fly by
building up the ILOB and the save the ILOB to stream file.

6. Now with the request XML in the "request" ILOB we just runs the "ILOB_httpRequest()" method
and receives the "response" ILOB.

7. All the data in the ILOB is in ASCII, so when we fire up the XML parser we have to tell it which
ccsid the ILOB is sored in. In this case "windows-1252" maps to "ccsid 1252".

8. Now are finished with the ILOB's the rest of the program just formats the XML tree to the response
object that goes to the end-users browser. Here again - like in the server - we are extracting data
using the X-Path syntax.

9. Finally always remember to use XML_Close() to free up the memory used by the XML parser.

4.5 ILOB's secures your streamfile upload to your IceBreak server

Next Lets upload data to an ILOB and save it to a stream file. Note the *ILOB: in the input field. The
name just after is the ILOB field.

This is a good way to protect files in an upload until you decide where to save the uploaded file (see
tutorial 3 on uploads)

On the form you set the "enctype" to "multipart/form-data". This ensure that the browser uploads

the attached file:

 <form method="post" enctype="multipart/form-data" name="form1">

102 IceBreak

System & Method A/S

Set the input type to file and the name prefixed by *ILOB: to ensure the up loaded stream is placed in
the ILOB. From there you can manipulatet it in any way you like with the ILOB build in functions.

 <input type="file" name="*ILOB:MyUploadIlob" size="40"/>

Now the final program:

<%@ language="RPGLE" %>
<%

/include qasphdr,ilob

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
d MyUploadIlob s *

C/free
 *inrt = *on; // break the cycle
 MyUploadIlob = SesGetILOB('MyUploadIlob');

%>
<html>
 <Head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
 </Head>

 <body>
 <h1>ILOB upload Demo</h1>

 <form method="post" enctype="multipart/form-data" name="form1">

File to upload :

 <input type="file" name="*ILOB:MyUploadIlob" size="40"/>
 <input type="submit" name=submit1 VALUE="Upload"/>
 </form>
<%
 if Form('file.1.RemoteName') > '';

 %><p>The Remote file name is: <%= form('file.1.Remotename') %></p>
 <p>It was uploaded to an ILOB : <%= form('file.1.Localname') %></p>
 <p>The size of the received file was: <%= form('file.1.size') %></p>
 <%
 // Now save it to disk
 ILOB_SaveToBinaryStream(MyUploadIlob : 'MyUploadIlob.txt');

 endif;
%>
 </body>
</html>

Show the sample

Run the sample

103Internal Large Objects - ILOB's

System & Method A/S

4.6 ILOB's in WebServices

ILOB's

ILOB's or Internal Large Objects is heavily used in IceBreak to store large chunks of data. In this
example I’ll show you how to run a SQL query based on a request in a WebService. The XML result is
placed in an ILOB and returned to the WebService client as a string.

<%@ language="RPGLE" pgmtype="webservice" %><%
h NOMAIN

/include qasphdr,ilob

p*name++++++++++..b...................keywords++++++++++++++++++++++++++comments+++++++++
+++
p GetProductList...
p B export

d PI
d SqlCmd 1024 input varying
d xmlout * output

d*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
d Error s N
d i s 10i 0

/free

 xmlout = SesGetILOB('sqllist'); //' The SQL result set will go directly to the ILOB
in the response
 setResponseObject (xmlout); //' Redirect all output to the response object to
the ILOB
 ILOB_SetWriteBinary(xmlout : *ON); //' This is in ASCII so don't x-late it later.

 %><?xml version="1.0" encoding="windows-1252" ?><%

 //' Now run the SQL query and put all data into the response object
 MaxRows = 10000;
 Error = SQL_Execute_XML(sqlcmd : maxrows);

 if (Error);
 %><error msg="<% = getLastError('*MSGTXT') %>"
 help="<% = getLastError('*HELP') %>"/><%
 endif;

 setResponseObject (*NULL); //' Go back to use the normal response object from
here

/end-free
P GetProductList...
P E
%>

As you can see - it is pretty much a normal service program - except for the input/output keywords. It
is a service program with no mainline. It simply exports a procedure. However, You are not restricted to
only one.

The trick here is that xmlout is defined as as pointer. When IceBreak recognize a pointer in th
WebService declaration it will assume it is a ILOB'pointer. In this example I have used the

104 IceBreak

System & Method A/S

SQL_Execute_XML() to produce the SQL result set XML by redirecting the ResponseObject to the
xmlout ILOB.

Now IceBreak is tranfering the resultset in the WebService interface.

Part

V

106 IceBreak

System & Method A/S

5 SQL

5.1 Using embedded SQL

SQL:

SQL programs can have another subtype besides RPGLE, the other is called SQLRPGLE. All you have to
do is tell the precompiler that another programming language is being used, and override how the
commitment control is being used. The first line of ASPX code does that, it is called Compiler-directives:

<%@ language="SQLRPGLE" sqlopt="COMMIT(*NONE)" %>

The "sqlopt" parameter can override any additional parameters on the CRTBNDRPG and CRTSQLRPGI.

Host variables are needed to hold the result of the SQL-query. This is a standard RPG d-spec definition.

<%
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D MyCounter s 10U 0
D Now s Z
/free
%>

The last thing is the actual SQL-statement. This is:

<%
Exec SQL Select count(*) , Current Timestamp
 into :MyCounter, :Now
 from Product;

%>

Or if you prefer the classic style syntax - enclosed by /exec and /end-exec:

<%
/Exec SQL Select count(*) , Current Timestamp
 into :MyCounter, :Now
 from Product
/End-Exec
%>

Both syntaxes above are supportet both within fixed or free format from i5/OS ver. 5R1 with
help from the IceBreak pre-compiler.

Note, that colon in :MyCounter and :now is the method to describe an RPG host variable when you are
writing SQL-statements.

Finally, you are able to present the result in HTML like this.

107SQL

System & Method A/S

<p>
 The number of rows in table "Product" is <%= %char(MyCounter) %> and time is: <% = %char
(now) %>
</p>

The complete example looks like this.

<%@ language="SQLRPGLE" sqlopt="COMMIT(*NONE)" %>
<%
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D MyCounter s 10U 0
D Now s Z
/free
%>
<html>
<h1>Using SQL</h1>
<%
 Exec SQL Select count(*) , Current Timestamp
 into :MyCounter , :Now
 from product;
%>
 <p>
 The number of rows in table "product" is <%= %char(MyCounter) %> and time is: <% = %
char(now) %>
 </p>
</html>
<%
 return;
%>

Show the sample

Run the sample

5.2 SQL - Producing a list using a cursor

SQL:

If you want to use SQL to create result sets and read rows into a HTML table, then you need a "cursor".

Take a look at the following example which is a embedded-SQL version of a List application.

Here we place all SQL-statements into subroutines, so it doesn't interfere with the main logic. Also notice
the use of SQLMonitor which is a method to determine if SQL-statements have completed normally.

<%@ language="SQLRPGLE" options="COMMIT(*NONE)" %>
<%
H*' --
H*' A List using embedded SQL
H*' --

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D Rows s 10i 0
D MsgId s 7
D MsgFile s 10
D Sql_Cmd s 1024 Varying

 *' --

108 IceBreak

System & Method A/S

 *' The SQL host variables are included as an external data-structure
 *' --
D Product E ds

 *' --
 *' Main logic
 *' --
 /free

 Exsr Init;
 Exsr LoadList;
 Exsr Exit;

//' --
//' Init; sets up the HTML header and stylesheet / (evt. the script links)
//' --
Begsr Init;
%>
<html>
 <Head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
 </Head>
 <Body>
<%
Endsr;
//' --
//' loadList; is much like a "load subfile". All records are placed into a html table
//' --
Begsr LoadList;

// First build the table header
// ----------------------------
%>

<table border="1">
 <thead>
 <th>Product ID</th>
 <th>Description</th>
 <th>Manufacturer ID</th>
 <th>Price</th>
 <th>Stock Count</th>
 <th>Stock Date</th>
 </thead>

<%
// Now reload the list
// -------------------
 Rows = 0; // reset the row counter

 Exsr Sql_Open; // Declare and Open the SQL cursor
 Exsr Sql_Fetch; // Get the first row from the result set
 Dow (SqlCod = 0 and Rows < 2000) ; // Repeat until max number of rows found or EOF
 Rows = Rows + 1; // Count number of rows so fare
%>
 <tr>
 <td nowrap><% = PRODID %></td>
 <td><% = DESC %></td>
 <td nowrap><% = MANUID %></td>
 <td nowrap align=right><% = %editc(PRICE:'J') %></td>
 <td nowrap align=right><% = %editc(STOCKCNT:'1') %></td>
 <td nowrap><% = %char(STOCKDATE) %></td>
 </tr>
<%
 Exsr Sql_Fetch; // Get the next row from the result set
 EndDo;
 Exsr Sql_Close; // Always remember to close cursors after use
%>
</table>
<%
EndSr;
//' --

109SQL

System & Method A/S

//' Exit Finish up the the Final html and quits the program
//' --
Begsr Exit;
%>
 </body>
</html>
<%
 return;
Endsr;
//' --
//' Open is declaring And opening the SQL Cursor
//' Actually the declare ends up as a comment in the final object
//' --
Begsr Sql_Open;

 Sql_Cmd = 'Select * from Product '
 + 'Where prodId > '' '' '
 + 'Order by ManuId';

 Exec SQL Prepare pList from :Sql_Cmd;
 Exsr Sql_Monitor;

 Exec SQL Declare List cursor for pList;
 Exsr Sql_Monitor;

 Exec SQL Open List;
 Exsr Sql_Monitor;

Endsr;
//' --
//' Fetch - is retrieving the newt row from the result set
//' --
Begsr Sql_Fetch;

 Exec SQL Fetch list into :product;
 Exsr Sql_Monitor;

Endsr;
//' --
//' Close - Just close the cursor
//' --
Begsr Sql_Close;

 Exec SQL Close list;
 Exsr Sql_Monitor;

Endsr;
//' --
//' Sql_Monitor is the global monitor for sql-errors
//' The SQL_SetError sends the message back to the IceBreak server.
//' Then use 'GetLastError' to display the formatted error message
//' --
Begsr Sql_Monitor;
 select;
 when SqlCode = 0;
 when SqlCode = 100;
 other;
 SQL_SetError(SqlCode:SqlErm);
%>
 <script>
 alert ("<%= GetLastError('*MSGTXT') %>");
 </script>
<%
 Endsl;
EndSr;

Show the sample

Run the sample

110 IceBreak

System & Method A/S

5.3 SQL to the ResponseObject

SQL:

You can use the Structured Query Language - SQL in several ways in IceBreak.

The classic way is to incorporate embedded-SQL into your code with Embedded SQL.

But IceBreak also lets you use SQL-result sets directly in your application. IceBreak has two build-in
functions that return either a HTML-table or a complete XML document directly into your response object.

SQL to a HTML-table

If you just want to list the content of a SQL select statement (the result set) , then the
SQL_Execute_HTML build-in function is the easiest way to incorporate database information into your
application. This function formats the data values in respect to the data types in the result set.

The result is placed directly in the response-object just where the function is executed:

<%
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D Error s N
D SqlCmd s 1024 varying
D MaxRows s 10i 0
/free
%>
<html>
<head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
</head>
<body><%

 *inlr = *on;
 SqlCmd = 'Select * from product';
 MaxRows = 1000;
 Error = SQL_Execute_HTML(sqlcmd : maxrows);

 if (Error); %>
 <% = getLastError('*MSGTXT') %>

 <% = getLastError('*HELP') %><%
 endif;
%>
</body>
</html>

Show the sample

Run the sample

The SQL_Execute_HTML build-in function returns logical *ON if an error occurs, which sets the
"LastError" property. You can then retrieve the last error with GetLastError('*MSGTXT | *HELP |
*MSGID') which returns the last error in a string.

The SqlCmd parameter can be any SQL select statement up to 32760 bytes long.

The MaxRows parameter determines the maximum number of rows allowed in the result set.

111SQL

System & Method A/S

SQL to a XML-document

The SQL_Execute_XML build-in function returns the root element of an XML-document called
<resultset>. Each row of the result set is called <row> and has an attribute named after the SQL
column name.

However, you have to fill in the XML header with the version 1.0 and the encoding type of your choice - i.
e. combine this function with SetContentType() . And ofcause you can append a formatting style sheet
that reformats the XML into a XHTML document or what ever.

The result is placed directly in the response-object just where the function is executed:

<%
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D Error s N
D SqlCmd s 1024 varying
D MaxRows s 10i 0
/free
 SetContentType ('application/xml; charset=windows-1252');
 %><?xml version="1.0" encoding="windows-1252" ?>
 <%
 *inlr = *on;
 SqlCmd = 'Select * from product';
 MaxRows = 10000;
 Error = SQL_Execute_XML(sqlcmd : maxrows);

 if (Error);
 %><error msg="<% = getLastError('*MSGTXT') %>"
 help="<% = getLastError('*HELP') %>"/><%
 endif;

%>

Show the sample

Run the sample

The SQL_Execute_XML build-in function returns logical *ON if an error occurs, which sets the
"LastError" property. You can then retrieve the last error with GetLastError('*MSGTXT | *HELP |
*MSGID') which returns the last error in a string.

The SqlCmd parameter can be any SQL select statement up to 32760 bytes long.

The MaxRows parameter determines the maximum number of rows allowed in the result set.

SQL to any custom format

The SQL_Execute_Callback build-in function calls your own custom function which makes you able to
build any kind of output; from JSON to CSV etc. Basically it works as the above but you parse it your
own function which is called for each cell in the result set -including the header.

The following sample creates a simple HTML list:

112 IceBreak

System & Method A/S

<%
/include qasphdr,sqlvar

d*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
d Error s N
d SqlCmd s 1024 varying
d FromRow s 10i 0
d MaxRows s 10i 0

d RenderCell pr 10i 0
d CellValue 4096 varying
d Row 10i 0 value
d OfRows 10i 0 value
d Col 10i 0 value
d OfCols 10i 0 value
d SqlVar likeds(I_sqlvar)

/free
%>
<html>
 <head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
 </head>
<body>
<%

 SqlCmd = 'Select * '
 + 'from product '
 + 'order by MANUID';

 FromRow = 1;
 maxRows = 10000;

 SQL_Execute_CallBack(
 SqlCmd: //' The Select * from ...
 FromRow: //' From row number in the result set where 1 is the first
 MaxRows: //' Maximum number of rows returned in the resultset
 %paddr(RenderCell) //' Custom Cell rendering call-back function
);

 *inrt = *on;
%>
</body>
</html><%
/end-free

//'

--
//' The "RenderCell" is called for each cell in the result set
//'

--
p*name++++++++++..b...................keywords+++++++++++++++++++++++++++++comments++++++
++++++
p RenderCell B
d PI 10i 0
d CellValue 4096 varying
d Row 10i 0 value
d Rows 10i 0 value
d Col 10i 0 value
d Cols 10i 0 value
d SqlVar likeds(I_sqlvar)
 /free

 Select;

113SQL

System & Method A/S

 //' Row zero i the header only
 When (row = 0);

 if (col = 1);
 %><H4>Number of rows in the result set: <%= %char(Rows) %></h4>
 <table><thead><%
 endif;

 %><th><% = sqlVar.SqlName %></th><%

 if (col = cols);
 %></thead><%
 endif;

 //' Row one and abowe is cell data from the result set
 When (row >= 1);
 if (col = 1); //' First coloumn
 %><tr><%
 endif;

 %><td><% = CellValue %></td><%

 if (col = cols); //' Last coloumn
 %></tr><%
 endif;

 //' Row -1 indicates that is an EOF indications - no data is returned. This event
always comes once as the last event
 When (row = -1);
 %></table><%
 Endsl;

//' Return I_CONTINUE as long a you want to iterate. If you want to break the loop then
return I_BREAK
 return I_CONTINUE;

 /end-free
p RenderCell e
%>

Show the sample

Run the sample

The SQL_Execute_Callback build-in function returns logical *ON if an error occurs, which sets the
"LastError" property. You can then retrieve the last error with GetLastError('*MSGTXT | *HELP |
*MSGID') which returns the last error in a string.

The SqlCmd parameter can be any SQL select statement up to 32760 bytes long.

The FromRow parameter is the starting row you want to retrieve from the result set. This makes it
perfect to scroll through a dataset with a paging logic.

The MaxRows parameter determines the maximum number of rows you will have returned on each
subsequent call.

The Callback is the procedure address of your cell function.

Initially it is call with just the header with the row value of zero.

Each subsequent call returns the relative row number in the sub-result-set.

Finally you receive a value of -1 which is the EOF indication that allows you to mach up the final
response.

114 IceBreak

System & Method A/S

The SQLVAR template structure is defined in the QASPHDR file and is received with appropriate value for
the actual cell. The cell value is formatted to a default string, but you have access to the binary data
from with in the SQLVAR structure along with the database data type.

Advanced use of the SQL_Execute_Callback()

Suppose you want to produce an Excel spread sheet on the fly base on XML and all data is loaded using
SQL. In that case SQL_Execute_Callback() build-in function is perfect. This solution has two
components:

· A XML template file
· The ASPX source using SQL_Execute_Callback()

First let's take a look at the XML template. This template is produced by saving a spreadsheet from Excel
in XML format. Then we have modified all dynamic data to be referred to by static include and tag
names.

<?xml version="1.0"?>
<?mso-application progid="Excel.Sheet"?>
<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:o="urn:schemas-microsoft-com:office:office"
 xmlns:x="urn:schemas-microsoft-com:office:excel"
 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:html="http://www.w3.org/TR/REC-html40"
 xmlns:x2="http://schemas.microsoft.com/office/excel/2003/xml"
 xmlns:udc="http://schemas.microsoft.com/data/udc"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:udcxf="http://schemas.microsoft.com/data/udc/xmlfile">
 <DocumentProperties xmlns="urn:schemas-microsoft-com:office:office">
 <Version>11.8132</Version>
 </DocumentProperties>
 <ExcelWorkbook xmlns="urn:schemas-microsoft-com:office:excel">
 <WindowHeight>10995</WindowHeight>
 <WindowWidth>21360</WindowWidth>
 <WindowTopX>0</WindowTopX>
 <WindowTopY>645</WindowTopY>
 <ProtectStructure>False</ProtectStructure>
 <ProtectWindows>False</ProtectWindows>
 <FutureVer>11</FutureVer>
 </ExcelWorkbook>

 <Styles>
 <Style ss:ID="Default" ss:Name="Normal">
 <Alignment ss:Vertical="Bottom"/>
 <Borders/>

 <Interior/>
 <NumberFormat/>
 <Protection/>
 </Style>
 <Style ss:ID="s21">

 </Style>
 <Style ss:ID="s22">
 <NumberFormat/>
 </Style>
 <Style ss:ID="s23">
 <NumberFormat ss:Format="@"/>
 </Style>
 <Style ss:ID="s24">
 <NumberFormat ss:Format="Short Date"/>
 </Style>

115SQL

System & Method A/S

 </Styles>

 <Worksheet ss:Name="<%= SheetName %>">
 <Names>
 <NamedRange ss:Name="_FilterDatabase" ss:RefersTo="=<%= SheetName %>!R1C1:R<%= %char
(Rows+1) %>C<%= %char(Cols) %>" ss:Hidden="1"/>
 </Names>

 <Table ss:ExpandedColumnCount="<%= %char(Cols) %>" ss:ExpandedRowCount="<%= %char(Rows
+1) %>" x:FullColumns="1" x:FullRows="1">

<!--#tag="col"-->
 <Column ss:Width="<% = %char(len * 2) %>"/>

<!--#tag="style"-->
 <Row>

<!--#tag="stylecell"-->
 <Cell ss:StyleID="s21"><Data ss:Type="String"><% = sqlHdr(i).sqlColName %></Data><
NamedCell ss:Name="_FilterDatabase"/></Cell>

<!--#tag="stylecellend"-->
 </Row>

<!--#tag="type"-->
 <Row>

<!--#tag="typecell"-->
 <Cell ss:StyleID="<% = style %>"><Data ss:Type="<% = type %>"><% = CellValue %></
Data><NamedCell ss:Name="_FilterDatabase"/></Cell>

<!--#tag="typeend"-->
 </Row>

<!--#tag="WorksheetOptions"-->
 </Table>
 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">
 <Selected/>
 <Panes>
 <Pane>
 <Number>1</Number>
 <RangeSelection>R1C1:R<%= %char(Rows+1) %>C<%= %char(Cols) %></RangeSelection>
 </Pane>
 </Panes>
 <ProtectObjects>False</ProtectObjects>
 <ProtectScenarios>False</ProtectScenarios>
 </WorksheetOptions>
 </Worksheet>
 <x2:MapInfo x2:HideInactiveListBorder="false">
 <x2:Schema x2:ID="Schema1" x2:Namespace="">
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element nillable="true" name="resultset">
 <xsd:complexType>
 <xsd:sequence minOccurs="0">
 <xsd:element minOccurs="0" maxOccurs="unbounded" nillable="true" name="row" form
="unqualified">
 <xsd:complexType>

<!--#tag="attribute"-->
 <xsd:attribute name="<% = sqlHdr(i).SqlColName %>" form="unqualified" type
="xsd:<% = type %>"></xsd:attribute>

<!--#tag="attributeend"-->
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </x2:Schema>

116 IceBreak

System & Method A/S

 <x2:Map x2:ID="resultset_Map" x2:SchemaID="Schema1" x2:RootElement="resultset">
 <x2:Entry x2:Type="table" x2:ID="1" x2:ShowTotals="true">
 <x2:Range><%= SheetName %>!R2C1:R<%= %char(Rows+1) %>C<%= %char(Cols) %></x2:Range>
 <x2:HeaderRange>R1C1</x2:HeaderRange>
 <x:FilterOn>True</x:FilterOn>
 <x2:XPath>/resultset/row</x2:XPath>

<!--#tag="field"-->
 <x2:Field x2:ID="<% = sqlHdr(i).SqlColName %>">
 <x2:Range>RC[<%= %char(i-1) %>]</x2:Range>
 <x2:XPath>@<% = sqlHdr(i).SqlColName %></x2:XPath>
 <x2:XSDType><% = type %></x2:XSDType>
 <ss:Cell/>
 <x2:Aggregate>None</x2:Aggregate>
 </x2:Field>

<!--#tag="fieldend"-->
 </x2:Entry>
 </x2:Map>
 </x2:MapInfo>

<!--#tag="workbookend"-->
</Workbook>

This is a bit long, however that is required to make a XML list in Excel. Please note that the template is
prepared for static include so RPG variables and buldings are used in the template

Now let's have a look at the ASPX code.

<%
/include qasphdr,sqlvar

d*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
d Sql_Cmd s 1024 varying

D start s 10i 0
D limit s 10i 0
d sheetname s 32 varying
d style s 16 varying
d type s 32 varying
d q s 1 inz('''')
D i s 10i 0
D len s 10i 0
d SqlHdr ds dim(200) likeds(I_sqlHdr)

d RenderCell pr n
d CellValue 4096 varying
d Row 10i 0 value
d Rows 10i 0 value
d Col 10i 0 value
d Cols 10i 0 value
d SqlVar likeds(I_sqlvar)

d CallbackHead pr
d Cols 10i 0 value
d SqlHdr dim(200) likeds(I_sqlHdr)

/free
//'

--
//' Mainline
//'

--

117SQL

System & Method A/S

//' These 3 lines causes:
//' 1) Excel to open it
//' 2) prompt for a download
//' 3) Keep the temporary file to stay in the cache until excell has it open
 SetContentType('application/vnd.ms-excel; charset=utf-8');
 SetHeader ('content-disposition'
 : 'attachment; filename=AnXMLexcelList.xls');
 SetCacheTimeout(10);

 sheetname = 'Sheet1';
 start = 1;
 limit = 99999; //' allways all !!!

 Sql_Cmd = 'Select * '
 + 'from product ';

 SQL_Execute_Header(
 sql_cmd:
 %paddr(CallbackHead)
);

 SQL_Execute_CallBack(
 sql_cmd: //' The Select * from ...
 Start: //' From row number in the result set where 1 is the first
 Limit: //' Maximum number of rows returned in the resultset
 %paddr(RenderCell) //' Custom Cell rendering call-back function
);
 *inrt = *on;

 /end-free
//'

--
//' This is called once when the coloumn names are ready
//' we only copy the header array to a global array for later use
//'

--
p*name++++++++++..b...................keywords+++++++++++++++++++++++++++++comments++++++
++++++
p CallbackHead B
d PI
d Cols 10i 0 value
d Sql_Hdr dim(200) likeds(I_sqlHdr)

d i s 10i 0
d comma s 1 varying
 /free
 SqlHdr = Sql_Hdr;
 /end-free
p CallbackHead E
//'

--
//' The renderCell is called for each cell in the result set. here we produce the
complete XML
//'

--
p*name++++++++++..b...................keywords+++++++++++++++++++++++++++++comments++++++
++++++
p RenderCell B
d PI N
d CellValue 4096 varying
d Row 10i 0 value
d Rows 10i 0 value
d Col 10i 0 value
d Cols 10i 0 value
d SqlVar likeds(I_sqlvar)

118 IceBreak

System & Method A/S

 /free

//' Row zero is the header only. from row = 1 etc it also contains data
//' So we build the initial XML stuff when the first column is detected
 if (row = 0 and col = 1);
 %><!--#include file="ex09sqlExcel.xml" tag="*FIRST"--><%

 for i = 1 to cols;
 len = %len(%trim(sqlHdr(i).sqlColName)) * 4;
 if (sqlHdr(i).SqlLen > len) ;
 len = sqlHdr(i).SqlLen;
 endif;
 %><!--#include file="ex09sqlExcel.xml" tag="col"--><%

 endfor;
 %><!--#include file="ex09sqlExcel.xml" tag="style"--><%
 for i = 1 to cols;
 %><!--#include file="ex09sqlExcel.xml" tag="stylecell"--><%
 endfor;
 %><!--#include file="ex09sqlExcel.xml" tag="stylecellend"--><%
//' from row = 1 and forward it also contains data from the resultset
//' we build each data cell here
 elseif (row > 0);
 if (col = 1);
 %><!--#include file="ex09sqlExcel.xml" tag="type"--><%
 endif;
 select;
 when sqlHdr(col).SqlType >= 480
 and sqlHdr(col).SqlType <= 490;
 type = 'Number';
 style = 's22';
 when sqlHdr(col).SqlType >= 491
 and sqlHdr(col).SqlType <= 501;
 type = 'Number';
 style = 's22';
 other;
 type = 'String';
 style = 's23';
 endsl;

 %><!--#include file="ex09sqlExcel.xml" tag="typecell"--><%

 if (col = cols);
 %><!--#include file="ex09sqlExcel.xml" tag="typeend"--><%
 endif;

//' row -1 is the EOF indication. This event always comes once at last
//' here we finalize the XML with all the xPath stuff
 elseif (row = -1);
 %><!--#include file="ex09sqlExcel.xml" tag="WorksheetOptions"--><%

 for i = 1 to cols;
 select;
 when sqlHdr(i).SqlType >= 480
 and sqlHdr(i).SqlType <= 490;
 type = 'double';
 when sqlHdr(i).SqlType >= 491
 and sqlHdr(i).SqlType <= 501;
 type = 'integer';
 other;
 type = 'string';
 endsl;
 %><!--#include file="ex09sqlExcel.xml" tag="attribute"--><%
 endfor;
 %><!--#include file="ex09sqlExcel.xml" tag="attributeend"--><%
 for i = 1 to cols;
 select;
 when sqlHdr(i).SqlType >= 480
 and sqlHdr(i).SqlType <= 490;
 type = 'double';
 when sqlHdr(i).SqlType >= 491
 and sqlHdr(i).SqlType <= 501;
 type = 'integer';

119SQL

System & Method A/S

 other;
 type = 'string';
 endsl;
 %><!--#include file="ex09sqlExcel.xml" tag="field"--><%
 endfor;
 %><!--#include file="ex09sqlExcel.xml" tag="fieldend"--><%

 %><!--#include file="ex09sqlExcel.xml" tag="workbookend"--><%
 endif;

//' Return *ON as long a you want to itterate. If you want to break the loop then return
*OFF
 return *ON;

/end-free
p RenderCell

Note that the CallbackHead() is using array data structures as parameters. This data type was introduced
in i5/OS R5V2M0. This Admin pages can run back to R5V1M0 so you have to copy the source to your
own server instance with a target release ar R5V2M0 or above - to try it out.

Part

VI

121XML, Webservices and proxies

System & Method A/S

6 XML, Webservices and proxies

6.1 WebServices - the easy way

WebServices:

WebServices is the backbone in Service Oriented Architecture - SOA.

IceBreak lets you create SOA complaint WebServices from any RPG service program in few easy steps.
· Set the compiler directive type="webservice".
· Set the "export" keyword on the function you want to populate.
· Use the IceBreak keyword extentions Input, Output or InOut on the parameter list.
· Suffix your source file with the .asmx extension.

When you refers to the WebService from the Browser URL IceBreak will:
· Compile the RPG program into a service program
· Create a source file QSOAPHDR with prototypes for your functions, so you can reuse them in a non

SOAP environment.
· Build the SOAP wrapper functions for your exported functions (They have the same name suffixed

by an "_")
· Build a WSDL file that describes how to invoke the webservice

What is SOAP and WSDL

Soap is an XML document that is sent back and forth between the WebService consumer and the
WebService provider with the parameters and which function to invoke.

The WSDL describes the invocation, functions names and their parameters and types.

Now lets se how to create the WebService - step by step.a

Create a webservice source

Open your favorite editor and paste the following in

122 IceBreak

System & Method A/S

<%@ language="RPGLE" pgmtype="webservice" %>
<%
h nomain

p*name++++++++++..b...................keywords++++++++++++++++++++++++++comments+++++++++
+++
p Calculator B export

d Calculator pi
d x 10i 0 Input
d y 10i 0 Input
d z 10i 0 Output

/free

 z = x + y;

/end-free
p Calculator E
%>

This sample takes x and y as input parameters and calculates the sum z.

As you can see - it is pretty much a normal service program except for the input/output keywords in the
D-Spec.

basically it is a normal service program with no mainline. It simply exports a number of procedures. You
are not restricted to only one.

The following data types are supported:

i5/OS type WebService type

char s:string

packed s:decimal

zoned s:decimal

integers s:decimal

float s:decimal

time s:time

date s:date

timestamp s:datetime

pointer to ILOB s:string

You can pass "atomic" parameters and arrays. Also, you can pass external described data structures as
complex types. Even arrays of externally described structures which becomes arrays of complextypes

If you want to pass arrays or data structures, then click here to see howto use arrays in webservices

You can use ILOB's to pass large data chunks (12MB) from and to the WebService. Click here to see how
to use ILOB's in WebServices

Save the WebService

123XML, Webservices and proxies

System & Method A/S

Now save the webservice as WebService.asmx in your development server directory. The suffix ASMX
is very important, since it causes IceBreak to load the service program and locate the requested
WebService functions within.

Compile the WebService

Simply Refer to the WebService.asmx?WSDL from a browser ... and that's it.

The ?WSDL causes the WebService to return its own definition to the rest of the world.

If you had made any typos you will see the compilation post list as usual.

You are done !! The WebService is ready to use.

Use the WebService

You can use the WebService from WebSphere or .NET or any other SOA complaint architecture. One easy
place is to integrate it into Microsoft office Word or Excel.

Here is an Excel example:

· Open Excel
· Click Tools
· Click Macro
· Click "Visual Basic Editor"

· Click "Tools"
· Click "Web Service References" (If it don't show - then download webservices for office tools from

124 IceBreak

System & Method A/S

Microsoft, it is free)

· Now click in "WebService URL"
· Enter the URL to your IceBreak server and the name of the WebService
· Click "Search"
· In the right panel your webservice is shown
· "Check" the "WebService"
· Click "add"

125XML, Webservices and proxies

System & Method A/S

Now all the code needed is created for you now just enter the following macro and you are ready:

Sub Calc() Dim Calculator As New clsws_WebService
 Worksheets(1).Range("C1").Value = _
 Calculator.wsm_Calculator(_
 Worksheets(1).Range("A1").Value, _
 Worksheets(1).Range("B1").Value _
)
End Sub

The macro above takes cell A1 and B1 and call the WebService which in turn calculates the sum and
place it in cell C1

126 IceBreak

System & Method A/S

6.1.1 Using arrays in webservices

On the service procedure you can specify the RPG keyword dim() to give an array a dimension. However
it is not necessary all elements that is transmitted. To determine the number of elements that is received
or sent by the SOAP service, you can call the IceBreak build in function soap_ArrayElements().
Beware that you need to pass the address of the array.

if you want to detect the number of elements received:

NumberOfReceivedElements = soap_ArrayElements(%addr(InputArray));

if you want to set the number of array element that is returned to the soap client:

soap_ArrayElements(%addr(InputArray) : NumberOfElementeToSend);

This sample code receives an array of keys. For each key it returns the value fetched from the database
in a corresponding output element to the client:

<%@ language="RPGLE" pgmtype="webservice" %>
<%
h nomain

fproduct if e k disk

p*name++++++++++..b...................keywords++++++++++++++++++++++++++comments++++++++++++
p Products B export

d Products pi
d iKeys 10i 0 Input dim(1000)
d oDesc 256 Output dim(1000) varying
d oPrice 11 2 Output dim(1000)
d oStockDate D Output dim(1000)

d i s 10i 0
d activeElements s 10i 0
/free

 // Store number of elements received
 activeElements = soap_ArrayElements(%addr(ikeys));

 // read each product from the input array of active elements
 for i = 1 to activeElements;
 ProdKey = ikeys(i);
 chain ProdKey ProductR;
 if %found;
 oDesc(i) = Desc;
 oPrice(i) = Price;
 oStockDate(i) = stockDate;
 else;
 oDesc(i) = 'N/A';
 oPrice(i) = 0;
 oStockDate(i) = %date();
 endif;
 endFor;

 // Set the size of theh output array to return to the client
 soap_ArrayElements(%addr(oDesc) : activeElements);
 soap_ArrayElements(%addr(oPrice) : activeElements);
 soap_ArrayElements(%addr(oStockDate) : activeElements);

/end-free
p Products e
%>

127XML, Webservices and proxies

System & Method A/S

6.1.2 Using external described datastructures in webservices

SOAP services supports "complext types" which is a collection of atomic fields. This concept maps quite
well the the data-structure concept in RPG. However, datastructures in RPG support overlaps, pointers,
sub-definitions and other tweaks which are not good pratice in a service oriented architecture.

So IceBreak uses the best form the two worlds. By introducing external described data-structures as
complex types you will have two fishes in the same catch: Dynamic defined data based on DDS or SQL
together with the possibility to expose these structures in WebServices. And you can even make arrays
of comples types.

Lets have an example:

<%@ language="SQLRPGLE" pgmtype="webservice" %><%
<%
h nomain debug
d Product E DS based(prototype_only) qualified
/* ---
 Get product by a key number and return a complex type
 --- */
p getProductByKey...
p b export
d pi
d iKey 10i 0 input
d oProduct output likeds(Product)

// Work fields
d prodRec ds likeds(Product)

/free
 prodRec.prodKey = iKey;
 exec sql select *
 into :prodRec
 from product
 where prodKey = :prodRec.prodKey;
 oProduct = prodRec;
/end-free
p e

The magic begins at :

d Product E DS based(prototype_only) qualified

This line of code will go to the library and import the definition of "Product" . The "based(prototype_only)
" instructs the compiler to not assign any memory to that definition, but rather use the definition as a
template.

The next magical line is the:

d oProduct output likeds(Product)

The oProduct output parameter with will have the same fields as the "product E DS" template form
above. The "output" instructs the IceBreak pre-compiler to create a SOAP wrapper and build a WSDL
definition for all the fields in that data-structure and, as well, include the structure as a "complext type"
in the WSDL

Now we can use a simple SQL to fetch all the columns in one go. Take a look of the beauty - actually we
have no real internal hard-coded definition of data in this little sample.

128 IceBreak

System & Method A/S

Now lets try this WebService:

1.Save the above code as wscomplex1.asmx on the IFS for any test IceBreak server.
2.Open your browser and refer to the WSDL definition of this service so it compiles - like:

http://myIBMi:60000/wscomplex1.asmx?WSDL

Now you can see that the externally described structure is expanded in to a complex type in the WSDL.
The complex type "product" are used as a return parameter on the SOAP call "getProductByKeyResponse
"

129XML, Webservices and proxies

System & Method A/S

Let's test the SOAP service:

130 IceBreak

System & Method A/S

Open your SoapUI - if you don't have a copy, then you can download and install it from here:
http://sourceforge.net/projects/soapui/ or purchase it from http://www.soapui.org/

Now create an new project: Lets call it "complex" and enter the location of you webservice's WSDL,
which is the name of youe service with the amsx extension and WSDL as the URL parameter (query
string):

Press the "OK" and let Soap-UI build the SOAP interfaces for you.

In the "projects"

1.Expand the "getProductByKey".
2.Fill in "100" in the iKey parameter.
3.Now press the green > run button.

Now you should see something similar to this:

131XML, Webservices and proxies

System & Method A/S

List of complex types

Now lets add a new webservice method that returns a list product from a manufacturer. Basically we
want to return an array of complex types. And all we need to do is to create a loop on the SQL select
statement, so we need a SQL cusrsor.

From the webservice perspective, we now need to define the array and this is done by a "dim" option on
out output. Add the following getProductForManufact to you code:

132 IceBreak

System & Method A/S

<%@ language="SQLRPGLE" pgmtype="webservice" %><%
<%
h nomain debug
d Product E DS based(prototype_only) qualified
/* ---
 Get product by a key number and return a complex type
 --- */
p getProductByKey...
p b export
d pi
d iKey 10i 0 input
d oProduct output likeds(Product)

// Work fields
d prodRec ds likeds(Product)

/free
 prodRec.prodKey = iKey;
 exec sql select *
 into :prodRec
 from product
 where prodKey = :prodRec.prodKey;
 oProduct = prodRec;
/end-free
p e

/* ---
 Get products by manufacturer and return a list complex type
 --- */

p getProductForManufact...
p b export
d pi
d iManuId 20 input varying
d oProduct output likeds(Product) dim(512) colhdg

// Work fields
d prodList ds likeds(Product)
d rows s 10i 0 inz(0)
/free
 exec sql declare c1 cursor for
 select * from product
 where manuid = :iManuid;
 exec sql open c1;
 exec sql fetch c1 into :prodList;
 dow sqlcode = 0 and rows < 512;
 rows = rows +1;
 oProduct(rows) = prodList;
 exec sql fetch c1 into :prodList;
 enddo;
 exec sql close c1;

 // This is how many we want to send back to the client
 soap_ArrayElements(%addr(oProduct): rows);

/end-free
p e

133XML, Webservices and proxies

System & Method A/S

Let's re-create the Soap-UI project and run it:

Now we have an array of 512 elements we can return to the client; eact row is produced by a SQL fetch
the oProduct is the list we are returning so we finally use the soap_ArrayElements to set the number of
active elements in the array - this is managed by the "row" counter.

Also notice we want some more advanced names in our SOAP service. So in the "likeds" you provide
the "colhdg" IceBreak keyword on your output or input structures. IceBreak will convert the column
heading from the externally described file/data-structure to the complex type field names. Internally in
you RPG source you just work with the field names of externally described data structure, but from the
SOAP service / the clients point of view we are use the coloumnheadings as names. Therefor: Beware
the column heading can confirm to valid SOAP-field names, otherwise you client will not be able to
consume the WSDL and therefore the SOAP service you are providing.

Final note:

This sample illustrate how easy you can provide a SOAP web-service using IceBreak and RPGLE. Your
WSDL is automatically created, and in this sample you basically have no internal described data.
Everything is provided by IBMi data management. In this sample we are only dealing with list of
complex types send back to the client, you can however, as easy consume arrays of complex types by
replacing the "output" with the "input" or "inout" keyword.

6.2 Using Proxy. Making HTTP request to web servers

httpRequest:

A proxy is a technique to execute a web-request on another web server.

134 IceBreak

System & Method A/S

What it does

IceBreak has a built-in "virtual browser" so you are able to perform "GET" and "POST" functions in your
ASPX program. This allows you to send parameters along the URL and build dynamic form data in the
request. It even allows you to include XML data in a SOAP envelope creating web-service applications.

How it is done

Use the built-in function "httpRequest(..)" to exchange data between your IceBreak ASPX-program and
another web server. httpRequest supports both HTTP and HTTPS. When you use HTTPS you will net to
set up the certificate store as described in:

Setting up HTTPS

httpRequest

Syntax:

error = httpRequest (ReqUrl: ReqTimeOut: ReqMethod: reqData: reqContentsType: reqXlate:
respXlate: respHeader: respBody);

Field Name Data type Description Default

reqUrl VARCHAR(32768)

The URLinform:"http://
server:port/Resource?
parm1=value1&parm2=v
alue2"

You can use both http
and https.

If you skip "http://server:
port" and use/Resource?
parm1=value1&parm2=v
alue2
the request with be
executed on the current
server instance. I.e.
"loopback" port.

reqTimeOut INT(5)
Number of seconds
before timing out

15

reqMethod VARCHAR(10) "POST" or "GET" GET

reqData VARCHAR(32768)
Data in the "form" when
using "POST"

none

reqContentsType VARCHAR(256)
The MIME type of the
request

text/html

reqHeader VARCHAR(32768) Additional headers none

reqXlate CHAR(15)
The Request charset:utf-8
| iso-8859-1 | windows-
1252

windows-1252

respXlate CHAR(15)
The Response charset:
utf-8 | iso-8859-1 |
windows-1252

windows-1252

respHeader VARCHAR(32768)
Output: the http header
from the remote web
server response

none

respBody VARCHAR(32768)
Output: the http body
from the remote web
server response

Response object

Returns

Error boolean If an error occurs, this

135XML, Webservices and proxies

System & Method A/S

Field Name Data type Description Default

will be set to "TRUE" and
you can retrieve the
reason with msg =
GetLastError()

Example 1. Include a entire web page directly into your response object:

<%@ language="RPGLE" %>
<%
D Error s N
/free
// This simply places the result in the response object
// using all default parameters
 Error = httpRequest(
 'www.ibm.com/us/'
 : 30
 : 'GET'
 :*OMIT:*OMIT:*OMIT:*OMIT:*OMIT:*OMIT:*OMIT);

 if error;
 %>
 <% = GetLastError('*MSGID') %>
 <% = GetLastError('*MSGTXT') %>
 <% = GetLastError('*HELP') %>
 <%
 endif;
%>

Example 2. This is an equivalent example but sets up all parameters.

<%@ language="RPGLE" %>
<%
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D ReqUrl s 32767 varying The URL in
form:"http://server:port/file"
D ReqTimeOut s 5I 0 Number of
seconds before timing out
D ReqType s 10 varying "POST" or
"GET"
D ReqData s 32767 varying The form data
when using "POST"
D ReqContentType s 256 varying The MIME type
of the request
D ReqHeader s 32767 varying Aditional
Headers
D ReqXlate s 15 The target
charset (valid: utf-8 | iso-8859-1 | windows-1252)
D RespXlate s 15 The charset
for the response (valid:utf-8 | iso-8859-1 | windows-1252)
D RespHeader s 32767 varying Out: Response
Header
D RespData s 32767 varying Out: Response
Body

D Error s N

/free

// This uses all parameters and returns both the header and body in separate variables

136 IceBreak

System & Method A/S

 Error = httpRequest(
 'www.ibm.com/us/': // The URL in form:"http://server:port/
resource"
 30: // Number of seconds before timing out
 'GET': // "POST" or "GET"
 '': // The formdata when using "POST"
 'text/html; charset=utf-8': // The MIME type of the request
 '': // Extra headers
 'UTF-8': // UTF-8 is the target charset (valid: utf-8 |
iso-8859-1 | windows-1252)
 'UTF-8': // UTF-8 is the charset for the response
(valid:utf-8 | iso-8859-1 | windows-1252)
 RespHeader: // Out: Response Header
 RespData); // Out: Response Body

 if error;
 %>
 <% = GetLastError('*MSGID') %>
 <% = GetLastError('*MSGTXT') %>
 <% = GetLastError('*HELP') %>
 <%
 else;
 responseWrite(RespData); // Just put the response from "www.ibm.com/us/"
into my response object
 endif;
 return;
%>

Show the sample

Run the sample

6.3 Using the built-in XML Parser on the request object

Sample 15:

XML contents in a HTTP request is the core of Web-Services used in SOAP. XML is the perfect
transportation method of almost any information on the internet.

What it does

When a client is creating a XML-request object it will always set the content-type header attribute to
manage XML, i.e. "text/xml" or "application/xml" or "ms-office/XML". IceBreak will automatically parse
the input.

How it is done

You simply use the built-in function reqXmlGetValue(...) to retrieve data. This function is using the
XPath syntax to navigate into the XML-object tree.

MyVar = reqXmlGetValue(Path : Defaultvalue);

Field Name Data type Description Default

MyVar VARCHAR(32760)
The return value of the
XML-object

Path CHAR(*)
This is the path to the
XML element or attribute
in XPath format

Default CHAR(*)
Any default value if the
"path" was not found in

137XML, Webservices and proxies

System & Method A/S

Field Name Data type Description Default

the XML-object tree

XPath

XPath is a language for finding information in an XML document. XPath is used to navigate through
elements and attributes in an XML document. XPath is a major element in the W3C's XSLT standard.
XQuery and XPointer are both built on XPath expressions. Understanding XPath is crucial for working with
advanced XML.

The XPath is a syntax to navigate into the XML object tree:

Path Expression Description

/ Location from the root in the XML object tree

@ An attribute value

[ubound] Upper boundary for elemet

[n] Subscripting the index of 'n' 0=First, 1=next ...

Consider the following XML request:

<Order>
 <Header Orderno='436533' Custname='John Doe'>
 <Detail>
 <Line lineno='1' itemno='4711' description='Nails 7"' qty='100'/>
 <Line lineno='2' itemno='3214' description='Bolts 2"' qty='50'/>
 </Detail>
<Order>

will give the following result:

Path Expression example Description Result

/Order/Header@Orderno
Returns the attribute "Orderno" in
the element "Header" in element
"Order"

436533

/Order/Header@CustName
Returns the attribute "Custname"
in the element "Header" in
element "Order"

John Doe

/Order/Detail/Line[ubound]
Returns the number of "line" Â´s
in "detail" in "Order"

2

/Order/Detail/Line[1]@qty
Returns the attribute "qty" in the
second element "line" in "Detail" in
"Order"

50

Now let us create a small server:
1. It receives a XML-request (the layout as above) in charset UTF-8 format

138 IceBreak

System & Method A/S

2. Parse the XML request
3. Build a HTML response using the values found in the XML request
4. Finaly it sends the response back to the client

Let's take a closer look:

<%@ language="RPGLE" %>
<%

 *'

 *' Web Service server: Parse the XML and return a HTML document
 *'

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D path s 1024 varying
D NumberOfLines s 5 0
D i s 5 0
/free
// Always set the charset before putting data into the response object
 SetCharset('utf-8');

%>
<html>
<header>
<link rel="stylesheet" type="text/css" href="/system/Styles/iceBreak.css">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</header>
<body>
<h1>The XML request was:</h1>
<pre><% = GetServerVar('REQUEST_CONTENT') %></pre>
<h1>List the Order</h1>
Order Number : <% = reqXmlGetValue('/Order/Header@Orderno'
 : 'No number was given') %>

Customer name: <% = reqXmlGetValue('/Order/Header@CustName'
 : 'Customer name was not given') %>

Order date : <% = reqXmlGetValue('/Order/Header@Date'
 : 'No date was not given') %>

<table>
 <thead>
 <th>Line No</th>
 <th>Item No</th>
 <th>Description</th>
 <th>Qty</th>
 </thead>
<%
 NumberOfLines = num(reqXmlGetValue('/Order/Detail/Line[ubound]' : '0'));
 for i = 0 to NumberOfLines - 1;
 Path = '/Order/Detail/line[' + %char(i) + ']';
 %>
 <tr>
 <td><% = reqXmlGetValue(Path + '@LineNo' : '0') %></td>
 <td><% = reqXmlGetValue(Path + '@ItemNo' : 'N/A') %></td>
 <td><% = reqXmlGetValue(Path + '@Description' : 'N/A') %></td>
 <td><% = reqXmlGetValue(Path + '@Qty' : '0') %></td>
 </tr>
<%
 endfor;
%>
</table>
</body>
</html>
<%

139XML, Webservices and proxies

System & Method A/S

 return;
%>

But how do you produce a request with a XML content for that server? You might reuse the HTTP-proxy
we made in Tutorial 13. It is able to make a HTTP-request with any kind of content, including XML.

What the client must do:
1. Set up charset UTF-8 - the default when dealing with XML and webservices.
2. Build a request XML structure.
3. Put it into the request content.
4. Ensure that the "content type" containing xml and charset e.g. "text/xml; charset=utf-8".
5. Execute the HTTP-request.
6. Present the result in the browser.

<%@ language="RPGLE" %>
<%

 *

 * Send a XML request to the server and then just display the response data
 *

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D xml s 32767 varying *ON=Convert to
response to ebcdic
D RespHeader s 32767 varying Out: Response
Header
D RespData s 32767 varying Out: Response
Body
D ServerURL s 255 varying The URL to the
web service

D Error s N
D crlf c x'0d25'

/free

// When dealing with XML and webservices; the preferred charset is UTF-8
// Also - the charset must be selected before anything is placed in the responseobject
 SetCharset('utf-8');

// Then we build the request XML
xml =
'<Order>' + CRLF +
' <Header Orderno="436533" -
 Custname="John Doe" -
 Date="' + %char(%timestamp()) + '"/>' + CRLF +
' <Detail>' + CRLF +
' <Line Lineno="1" -
 itemno="4711" -
 description="Nails 7 x 0.5-Ø" -
 qty="100"/>' + CRLF +
' <Line Lineno="2" -
 itemno="3214" -
 description="Bolts 2 x 0.2-Ø" -
 qty="50"/>' + CRLF +
' </Detail>' + CRLF +
'</Order>';

140 IceBreak

System & Method A/S

// I'll run the service on the same IceBreak server instance so we skip the "http://
server:port"
// and just go with the resource
 ServerURL = '/tutorials/ex15Server.asp';

// post the HTTP-request to the server ASP and return both the header and body in
separate variables
 Error = httpRequest(
 ServerURL: // The URL in form:"http://server:port/
resource"
 30: // Number of seconds before timing out
 'POST': // "POST" or "GET"
 xml: // The formdata or xml when using "POST"

 'text/xml, charset=utf-8': // The MIME type of the request
 '': // Extra headers
 'utf-8': // UTF-8 is the target charset (valid: UTF-8 |
ISO-8859-1 | windows-1252)
 'utf-8': // UTF-8 is the charset for the response
(valid: UTF-8 | ISO-8859-1 | windows-1252)
 RespHeader: // Out: Response Header
 RespData); // Out: Response Body

// Take all the response and send it back to the browser
 responseWrite(RespData);

return;%>

Show the sample

Run the sample

6.4 Using the built-in XML Parser on a string or stream file

XML:

Using the built-in XML Parser on stream files or strings

The XML parser is also convenient for stream files and strings containing XML-structures.

What it does

You can parse a stream file or a string containing XML structures by adding an extra prototype to your
ASP program, module or service program. The XML parser is a small and fast parser that use the XPath
syntax to retrieve XML elements or attributes.

How it is done

· First you have to Include the XML-parser portotype into your ASP-source.
· Then declare a pointer to he XML-tree.
· Then use the function xml_ParseFile() or xml_ParseString() to process the stream filen or string.
· Now you can retrieve data in the XML-tree by xml_Getvalue(...).
· Finally you must reclaim the storage used by the parser with xml_Close().

Let us have a look at an example:

<%@ language="RPGLE" %><%

141XML, Webservices and proxies

System & Method A/S

/include qasphdr,xmlparser

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
D xmlPtr s * Pointer to the
XML tree
D xmlString s 1024 varying XML string to
parse
D val s 1024 varying temp. value
D node s 256 varying temp. value
D crlf c x'0d25' the <CR><LF>
sequence

/free
%>
<html>
<head>
 <link rel="stylesheet" type="text/css" href="/system/Styles/iceBreak.css">
</head>
<body>
<%

// First build the request XML
xmlString =
'<Order>' + CRLF +
' <Header Orderno="436533" +
 Custname="John Doe" +
 Date="' + %char(%timestamp()) + '"/>' + CRLF +
' <Detail>' + CRLF +
' <Line Lineno="1" +
 itemno="4711" +
 description="Nails 7 x 0.5" +
 qty="100"/>' + CRLF +
' <Line Lineno="2" +
 itemno="3214" +
 description="Bolts 2 x 0.2" +
 qty="50"/>' + CRLF +
' </Detail>' + CRLF +
'</Order>';

// Just show the XML
%>
<h1>The XML structrure</h1>
<pre><%=xmlString%></pre>

<h1>The Result when parsing the XML and finding the values with X-Path</h1>

<%

// Then Parser the string
 xmlPtr = XML_ParseString(xmlString:'syntax=LOOSE');

// If the parser is not able to parse the string; then display the error
 if XML_Error(xmlPtr);
 %><%= XML_Message(xmlPtr) %><%

// Otherwise - the parser ran ok, so we pick the second line description atribute
// remember that x-path use [0] as the first index [1] as the next etc...
// the 'N/A' is the default value if i can not be found in the XML tree
 else;
 node = '/Order/Detail/Line[1]@description';
 val = XML_GetValue(xmlPtr:node:'N/A');
 %>Node:<%=Node%> has the value of: <%= val %><%
 endif;
 XML_Close(xmlPtr);
%>
</body>
</html>
<%
 return;

142 IceBreak

System & Method A/S

%>

Show the sample

Run the sample

6.5 ILOB's, httpRequest and XML (SOA components)

SOA::

In a Service Oriented Architecture world (SOA) the ability to intercommunicate huge data streams is
essential.

ILOB's as we saw earlier is a way deal with large data from within a ILE program.
This tutorial will show how to use ILOB's and make HTTP request with XML based data stream.

Basically we want to send a XML request to a server program and in return receives the XML response.
By using ILOB's we are able to break the 32K limit that RPG normally has.

The Server program

<%@ language="RPGLE" %>
<%
 *'

 *' Runs an SQL query for the XML request received
 *'

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
d manufactid s 16 varying
D Error s N
D SqlCmd s 1024 varying
D MaxRows s 10i 0

/free
//' The first thing is always to set charset and content type

143XML, Webservices and proxies

System & Method A/S

 SetContentType ('application/xml; charset=windows-1252');

//' Take the parameter from the XML request
 manufactid = reqXmlGetValue('/request/manufactid' : '');

//' Build the SQL command
 sqlcmd = 'select * from product where manuid = ''' +manufactid+ '''';
 MaxRows = 10000;

//' Now run the SQL query
 %><?xml encoding="windows-1252" version="1.0" ?><%
 Error = SQL_Execute_XML(sqlcmd : maxrows);
 if (Error);
 %><error help="<% = getLastError('*HELP') %>" msg="<% = getLastError('*MSGTXT') %>
"></error><%
 endif;
 return;
%>

1.The SetContentType() to "application/xml" is essential. We both sends ad receives data in XML format.
if IceBreak "see" the /XML in the content type it will automatically run the XML-parser.

2.The xml request is already parsed so we have access to an XML object that IceBreak maintains. Now
we can use the X-path syntax to refer to the value of the element "manufactid" in the "request"
element.

3.The SQL statement is constructed. Just adding the "where" clause and we are ready to run the SQL.
4.Finally the surroundings for the XML is set up. Note that the encoding tag in the XML header has to be

the same as we used in "SetContentType()"
5.SQL_Execute_XML() simply returns the SQL result set as an XML document, which is placed directly in

the response object.

You can see the number of variables in a program like this i kept to a minimum. All the data
manipulation is done behind the scenes in the request and response object.

The Client program

The client program is a little more sophisticated than the client. It is dealing with the access to the ILOB's
and parser directly:

<%@ language="RPGLE" %>
<%

d*' Include the ILOB and xml parser prototypes
/include qasphdr,ilob
/include qasphdr,xmlparser

d*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++
++++++
d manufactid s 16 varying
d path s 64 varying
d Error s N
d reqILOB s *
d respILOB s *
d xmlPtr s *
d i s 10i 0
d rows s 10i 0

/free

//' Basically this program just toggle between the manufactures
 manufactid = form('manufactid');

144 IceBreak

System & Method A/S

//' The first thing is always to set charset and content type
 SetContentType ('text/html; charset=windows-1252');

//' First I create my work ILOB's
 reqILOB = SesGetILOB('request'); // get a pointer to a session ILOB used as my
request
 respILOB = SesGetILOB('response'); // get a pointer to a session ILOB used for the
response from the server

//' Reset my ilob
 ILOB_Clear(reqILOB);
 ILOB_Clear(respILOB);

//' Now i want to populate a simple XML request. - my ILOB header need a content type XML
//' All httpRequest are routed to the same default job hence the cookie
 ILOB_SetHeaderBuf(
 reqILOB :
 'Content-Type: application/XML; charset=windows-1252'
);

//' I reroute my response object to the request ILOB, so I can use the ASP syntax for
creating the XML
 SetResponseObject(reqILOB);

%><?xml version="1.0" encoding="windows-1252" ?>
<request>
 <manufactid><% = manufactid %></manufactid>
</request><%

//' Now i redirect my response back to the default response objet (what my browser
receives >
 SetResponseObject(*NULL);

//' My request is now ready to to to the server, so i call the httpRequest for ILOB's
 Error = ILOB_httpRequest(
 '/tutorials/ex24ilobsvr.asp': // The URL in form:"http://server:port/resource"
 30: // Number of seconds before timing out
 'POST': // The "POST" method
 reqILOB: // pointer to my Request ILOB
 RespILOB // pointer to my Response ILOB
);

//' Check for errors
 if error;
 %><% = GetlastError('*MSGTXT') %><%
 return;
 endif;

//' My data has arrived - I'll fire up the XML parser
 xmlPtr = XML_ParseILOB (//' Returns XML-object tree from an ILOB
 RespILOB: //' Pointer to an ILOB object
 'syntax=loose': //' Parsing options
 1252: //' The ccsid of the input ilob (0=current job)
 0 //' The ccsid of the XML tree (0=current job)
);

//' Check for errors
 if XML_Error(xmlPtr);
 %><%= XML_Message(xmlPtr) %><%
 XML_Close(xmlPtr);
 return;
 endif;

//' The Result will be a table
%><html>
<head>
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
</head>
<h1>Products by: <% = manufactid %></h1>

<form action="" method="post" id=form1 name=form1>

145XML, Webservices and proxies

System & Method A/S

 <select name="manufactid">
 <option value="ACER">ACER</option>
 <option value="CANON">CANON</option>
 <option value="CASIO">CASIO</option>
 <option value="FUJIFILM">FUJIFILM</option>
 <option value="HP">HP</option>
 <option value="KODAK">KODAK</option>
 <option value="KONICA">KONICA</option>
 <option value="NIKON">NIKON</option>
 <option value="OLYMPUS">OLYMPUS</option>
 <option value="PANASONIC">PANASONIC</option>
 <option value="SAMSUNG">SAMSUNG</option>
 <option value="SONY">SONY</option>
 </select>
 <input type="submit" value="Go"/ id=submit1 name=submit1>
</form>

<table>
 <thead>
 <th>Product id</th>
 <th>Product Description</th>
 <th>Product Price</th>
 </thead><%

//' now print the report
 rows = num(XML_GetValue(xmlPtr: '/resultset/row[ubound]' :'0'));
 for i = 0 to rows -1;
 path = '/resultset/row[' + %char(i) + ']@';
 %><tr>
 <td><% = XML_GetValue(xmlPtr: path + 'prodid' :'N/A') %></td>
 <td><% = XML_GetValue(xmlPtr: path + 'desc' :'N/A') %></td>
 <td><% = XML_GetValue(xmlPtr: path + 'price' :'N/A') %></td>
 </tr><%
 endfor;
%>
 </table>
</html><%

//' Always release the memory used
 XML_Close(xmlPtr);
 return;
%>

1.Like the server program we need to set up the contents type. It need to map to the same values as
the server.

2.The we create two ILOB's used for request and response
3.The clear of the the Request ILOB is essential. Otherwise data will just append to the ILOB.
4.The ILOB has a header which is used for HTTP communication. You have access to that header by the

"ILOB_SetHeaderBuf()". Note that you replaces the complete header by using the method.
5.The "SetResponseObject()" is used to reroute the response data to an ILOB so the data goes to the

ILOB and not the normal response object. When you want to switch back, the just call
"SetResponseObject()" with a *NULL parameter and you have your normal response object back which
goes to your browser. This method can also be applied to creating XML files on the fly by building up
the ILOB and the save the ILOB to stream file.

6.Now with the request XML in the "request" ILOB we just runs the "ILOB_httpRequest()" method and
receives the "response" ILOB.

7.All the data in the ILOB is in ASCII, so when we fire up the XML parser we have to tell it which ccsid
the ILOB is stored in. In this case "windows-1252" maps to "ccsid 1252".

8.Now are finished with the ILOB's the rest of the program just formats the XML tree to the response
object that goes to the end-users browser. Here again - like in the server - we are extracting data
using the X-Path syntax.

9.Finally always remember to use XML_Close() to free up the memory used by the XML parser.

Run the sample

146 IceBreak

System & Method A/S

Part

VII

148 IceBreak

System & Method A/S

7 OEM, Bundle IceBreak

7.1 Ship IceBreak allong with your product (COPY)

OEM - (Original equipment manufacturer) means the original manufacturer of a component for a product,
which may be resold by another company. In the case of IceBreak it means you can put all the IceBreak
features into you own software package and ship your package and IceBreak in one go.

As an alternative, you can let your customers install IceBreak from the web, and just configure you OEM
server (or servers) once and let your application have control over license authorization.

In both cases you have the option to run IceBreak servers in you own subsystem as a part of you own
product.

Obtain a OEM licence key

Before you can make an OEM version of IceBreak you need to contact the IceBreak support team at
mailto:support@system-method.com to get a OEM licence key. An OEM licence key let you create a
server instance, and run that server from your own subsystem

OEM Licence Exit Program

You need a OEM licence exit program in you application library that returns your OEM key (or keys) to
the IceBreak core. The name of this program is by default SVCOEMEXIT. This can be a simple RPG
program or even a CLP as in the following example

Pgm Parm(&licXml)

 /* Simply return the Licence XML string for your product -
 --- */
 Dcl &licXml *Char (2048)

 chgvar &licXml ('-
 <license>-
 <product id="OEM-ICEADM" service="ADMIN" expires="*PERM" liccode="517-391-473" text="IceBreak Admin"/>-
 </license>-
 ')
 return

EndPgm

Basically this program returns a string containing a XML document. You can have one or more products
of you own in this XML string. The OEM-exit program need to be placed in the application library for you

149OEM, Bundle IceBreak

System & Method A/S

server instance

· id - This is your global wide unique product identification. You receive this from the IceBreak support
team.

· service - The service name you provide; this also the name of you application server in IceBreak. For
OEM servers the name can be up to 8 char long.

· expires - The date when this licence code will expire in format CCYY-MM-DD or *PERM if this OEM
licence continues infinitely.

· text - Any descriptive text of you choice to describe your product.

Now you have two options: You can imbed IceBreak as a part of your own application library or you can
ship you application run on to of any type of IceBreak server installed. Let me explain both options:

Imbed IceBreak OEM in you own application library.

If you want to imbed IceBreak as a part of your application i.e. install IceBreak along with you product
then you can extract all the necessary programs, files and other objects required into a save-file which
you again restore into you product library either when you install on the customer site or when you save
your product before shipment.

A good or bad thing (depends on how you look at it) is, that you lock your IceBreak version to version
you extracts. Of cause you can redo the imbed process to upgrade to a new version of IceBreak. This,
however, is not done automatically.

This is the process:

1. Extract the IceBreak core from you installation:

2. Install the extracted IceBreak core in you application library

3. Prepare your installation

4. Deploy and run

Log on as QSECOFR or a user with *SECADM and open an IBMi command prompt and enter:

===> GO ICEBREAK
===> EXPICEOEM OEMCODE('OEM-ICEADM') SAVF(QGPL/MYICEBREAK) WORKLIB(QTEMP)
===> RSTOBJ OBJ(*ALL) SAVLIB(QTEMP) DEV(*SAVF) SAVF(QGPL/MYICEBREAK) RSTLIB(MYICEOEM)

· OEMCODE - This is your global wide unique product identification. You receive this from the IceBreak

150 IceBreak

System & Method A/S

support team.

· SAVF - Is the location where you store the core

· RSTLIB - Your application library to contain the icebreak core. MYICEOEM is just used for this
example

Now you can prepare the server in your library

Relogon on as QSECOFR or a user with *SECADM and open an IBMi command prompt and enter:

===> ADDLIBLE MYICEOEM
===> WRKICESVR

Now add a server with the name of the service provided for you in the OEM licence agreement.

When you add a server then ensure that that you have a job queue to a active subsystem. If you don't
have a subsystem provided by your application then you can use the system supplied job queue:

QSYS/QSYSNOMAX

So your "add IceBreak server" command will look similar to:

===> ADDICESVR SVRID(MYICEOEM) TEXT('My icebreak oem server') SVRPORT(60006) JOBQ
(QSYS/QSYSNOMAX)

Now you need to start the servers with STRICEJOBS, this must be done from at batch job either in you
own subsystem by a call from a CL-program in i.e. the auto-start-job or you can submit it from the
command line - again you can use QSYS/QSYSNOMAX job queue.

===> SBMJOB CMD(STRICEJOBS) JOB(STRMYJOB) JOBQ(QSYS/QSYSNOMAX)

Note: Do not try to start the server from with in the WRKICESVR option 12 or the STRICESVR command.
Your OEM servers are detached from the normal IceBreak subsystem, so the normal start features does
not work as in a plain IceBreak installation. You can however use option 13=End server or ENDICESVR
command. Always use the STRICEJOBS for OEM servers. (This, however, might change in future
releases).

Now the server is up a running - you can test it by one of the build in servies like SVCLOGON:

1. Open your browser:

2. Enter the URL http://mysystemI:60006/svclogon.aspx

Now the default logon icebreak prompt is shown - note: system styiling is not in the default OEM

build:

151OEM, Bundle IceBreak

System & Method A/S

Finally you can now deploy you application library with IceBreak build in. That is all there is to it.

Use Your product with a plain IceBreak installation

Your application can coexist with any "nomal" plain IceBreak installation. Even demo and community
edition, depending on which OEM licence code for your product you obtain. Normally; if your application
just require the IceBreak Runtime, it will be sufficient to just install the newest version from the icebreak
download site and configure your server (which can be done automatically by a CL program in you
application package, and the finally start the IceBreak subsystem. You will not need to provide any
licence codes for the IceBreak server it self

Part

VIII

153Using JAVA

System & Method A/S

8 Using JAVA

8.1 Java as the host language

If you want to build java web applications then you can choose from many server technologies: Tomcat,
WebSphere Glassfish - just to name a few.

IceBreak also supports java. But where Tomcat and WebSphere only support java, IceBreak on the
other hand runs Java and ILE in the same session.

So when do You need to use Java in IceBreak?

· If you have mixed environments of ILE and Java.
· if you want to use some features that does not exists in ILE / RPG like JDBC to acces SQL databases

on remote systems.
· If you need high JAVA performance
· If you are running on a small system where i.e. WebSphere can not run.
· If you want to use open-source java libraries like iText to produce PDF-files, xmlSec to sign XML files

etc.

How does java work in IceBreak

Java for IceBreak is not a "standard" servlet container like Tomcat or websphere, but rather a way to let
java use the IceBreak server object model. The layer between your java code and the IceBreak is
extremely thin, so you will not have the same performance penalty in IceBreak that you have in a
"standard" servlet container on the IBMi.

When you establish an IceBreak session it becomes equally available for ILE and java so you can refer to
a RPG resource in one httprequest and a java resource in the next with no performance overhead. Your
java and RPG session shares the following:

· The request object
· The response object
· The session with session variables and ILOB's
· Globals and server-vars.

Now lets get stated:

Create a java "hello World" in IceBreak

1) Fire up you Java environment of choice: eclipse, NetBeans, WDSc, RDi, IntelliJ - any will do.

2) Now create a new java project. Let's call it "IceBreakTest". Don't create a "Java Web project", since it
will be for servlet containers which IceBreak is not.

3) Set environment: The version of java you are using are important.The version you compile to, need
to be the same on the target IBMi system. In this sample I will used JDK 1.5. So ensure the you right
click on the project the select project properties. Select i.e. JDK 1.5 or JDK 1.6 - just ensure you have
the same JDK installed on the IBMi that you are compiling against. But for now select JDK 1.5

154 IceBreak

System & Method A/S

4) Copy and paste the version of IceBreak core integrations classes that matches you environment into
your project. You find it on the IFS in the IceBreak core path, where x-x is the java JDK version you are
using.. Typically copy it from here:

 \\myIBMi\IceBreak\java\IceBreak-x-x.jar

In eclipse you simply:
a) go the the project properties
b) click on the "java build path"
c) click on "add external JAR"
d) Enter the share name to the icebreak-x-x.jar as described above.

This jar file contains all the access to the IceBreak core you need. Also you will find the documentation
for IceBreak.jar in the IceBreak admin at the "Programmers guide" -> java documentation. Or you can
open it from here:

 \\myIBMi\IceBreak\java\javadoc\index.html

Write you java code

Now having the IceBreak jar in place you can start using it:

1) Add a package to you project, just callit IceBreakTest like the project. 3) Add a package to you
project. Packages means you can have several classes with several methods in one package. IceBreak
supports packages. It is a nice way to sperate logic into dedicated source files.

2) Add a class to the package - let's call it "simple". this will produce a source file called simple.java

3) In the source "simple.java" you can add the following code:

a) You need to give the name of the package it belongs to: IceBreakTest - was the name

b) Now import all the core classes from the IceBreak core: This is done by import icebreak.core.*;

c) Add the class body for the simple class like public class simple - it need to be public so the
IceBreak core can access is at runtime

d) Add a method to the simple class - let call it "sayHey" which will use the request object to get the
name and the response object to reply back:

package IceBreakTest;
import icebreak.core.*;

public class simple {
 public static void sayHey () {
 String s = qrystr.get("name");
 response.write("Hey " + s);

155Using JAVA

System & Method A/S

 }

}

... Not much code required to make a Web applicaitons with Java in IceBreak... :)

Compile and deploy "icebreaktest".

Click on "make project" and if you had success we are ready to deploy it to the IceBreak server:

On the IFS, in the application server "Http root path" you can make a directory called "java", where you
can put your applications. For my "systest" server it will be:

//myIbmi/www/systest/java

In Netbeans you simply copy the complete contents of the "dist" folder from the "NetBeansProject"
folder and paste it to the "java" directory described above.

In eclipse/WSDc /RDi you export the jar file:

1) Click on properties on the project.
2) click on "export"
3) Select "java"->"JAR file"
4) Click "Next"
5) Select the "export destination" to be the IFS application server path selected in IceBreak
6) Click "Finish"

My IFS folder now looks like this:

156 IceBreak

System & Method A/S

In the application server you need to setup the callspath for your JAVA. The classpath is where IceBreak
java searches for your application .JAR file(s):

You will have to open the webConfig.xml in your application server "Http root path" - if it does not
exists, simply create it, and add the java element:

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>

 <java
 classpath="/www/systest/java/icebreaktest.jar"
 version="1.5">
 </java>

</Configuration>

Set the classpath to the complete location of where you did place you application jar file. This is from the
IBMi perspective so if you afterwards use the "WRKLNK" command to verify the existence of the file.

Note: the classpath can be a list of files. Simply separate the jar files by a : as you will see in the next
tutorial.

Version: In this sample we use JDK version 1.5 - again this have to match the compiled version from
your IDE and you must have this version installed on your IBMi

Now save your webConfig.xml.

For each time you deploy/recompile you application or change the webConfig.xml you have to reload the
IceBreak JVM. Simply restart the IceBreak server from a command line to accomplish this task.

ENDICESVR SVRID(SYSTEST) RESTART(*YES)

157Using JAVA

System & Method A/S

Run your "Hello world" application.

Now You should be good to go. Open you browser. And enter the URL of your application:

First: the name or IP-address and the port-number of you IBMi: In my case it is : http://myIBMi:60000/

Next: The package name slash the class name: In my case that is IceBreakTest/simple

Now you can access all "public void .. (void)" methods in that class with colon and the method name.
Here it is :sayHey

Finally - all java need to be suffixed by .java to route the request to the IceBreak JVM

So finally my URL looks like:

http://myibmi:60000/IceBreakTest/simple:sayHey.java

NOTE !! NOTE !!: Beware - Java is case sensitive so now the URL are case sensitive. Everything from the
package name and forward need to be in the right upper or lower-case.

Let's try the it:

Take a look at the code again: We actually supplied the query string as well: so if we give the parameter
name=John it will be echoed back. Lets take it for a spin:

158 IceBreak

System & Method A/S

Nice!! Now we receive a parameter from the URL, parse it into our Java-code and place that in our
response. We are golden!!

It is important that you always keep the structure of the "Package" / "Class" : "Method" and ensure that
you use the same case in all levels. If you fail to do so, you will receive a class not found message:

159Using JAVA

System & Method A/S

8.2 Accesing remote data bases with JDBC

The main reason for you to use Java in IceBreak is to benefit from all the java libraries you can find out
there on the internet. In this tutorial I'll show you how to access a MS SQL server from an IceBreak
program. This sample also illustrates the use of properties in the webConfig.xml, classpath lists and
more.

Creating a JDBC application

A Java Data Base Connection can be run against almost any SQL server. From MySql , Oracle, MS SQL to
DB/2 on any platform. From tiny devices to mainframes.

So lets extend the "IceBreakTest" package from previous tutorial to exploit the benefit of JDBC.

Open your IDE of choice, open the previous tutorial and add the following listHtml method to you code:

import icebreak.core.*;
import java.sql.* ;

public class simple {
 public static void sayHey () {
 String s = qrystr.get("name");
 response.write("Hey " + s);
 }

 public static void listHtml() {
 try {

 // Load the database driver
 String driver = System.getProperty("driver");
 String connect = "jdbc:sqlserver://DKSRV01;databaseName=Northwind;user=xx;";
 String sqlcmd = "Select * from customers";

 // Load the database driver and get connection to the database
 Class.forName(driver) ;
 Connection conn = DriverManager.getConnection(connect);

 // Print all warnings
 for(SQLWarning warn = conn.getWarnings(); warn != null; warn = warn.getNextWarning()) {
 response.writeln("SQL Warning:") ;
 response.writeln("State : " + warn.getSQLState()) ;
 response.writeln("Message: " + warn.getMessage()) ;
 response.writeln("Error : " + warn.getErrorCode()) ;
 }

 // Get a statement from the connection
 Statement stmt = conn.createStatement() ;

 // Execute the query
 ResultSet rs = stmt.executeQuery(sqlcmd) ;

 // Loop through the result set
 response.writeln("<html>");
 response.writeln("<table>");
 while(rs.next()) {
 response.writeln("<tr>");
 for (int i = 1 ; i <5; i++) {
 response.write("<td>");

160 IceBreak

System & Method A/S

 response.write(rs.getString(i));
 response.write("</td>");
 }
 response.writeln("</tr>");
 }
 response.writeln("</table>");
 response.writeln("</html>");

 // Close the result set, statement and the connection
 rs.close() ;
 stmt.close() ;
 conn.close() ;
 }
 catch(SQLException se) {

 // Loop through the SQL Exceptions
 response.writeln("SQL Exception:") ;
 while(se != null) {
 response.writeln("State : " + se.getSQLState()) ;
 response.writeln("Message: " + se.getMessage()) ;
 response.writeln("Error : " + se.getErrorCode()) ;
 se = se.getNextException() ;
 }
 }
 catch(Exception e) {
 response.writeln(e.toString()) ;
 }

 }
}

All the new code is in the listHtml method. Let me go through it step by step:

a) The first initialization of the string driver, connect and sqlcmd are simply string constants;

// Load the database driver
String driver = System.getProperty("driver");
String connect = "jdbc:sqlserver://DKSRV01;databaseName=Northwind;user=xx;";
String sqlcmd = "Select * from customers";

- The driver is the name that implements the JDBC in out case a driver supplied by Micosoft
which you can find in the IceBreak core IFS path under /java/lib. The JAR files are discussed
later when we talk about the classpath. The name is supplied by the driver attribute from
"webConfig.xml", where you also have the classpath. so System.getProperty() returns values
from your webConfig.xml, feel free to use that feature.

- Connect is the "connection string" where you have the URL to the SQL database server, the
name of the database to connect to, and a user name/password.

- sqlcmd is just a simple select which resurens alle the rows in the customers database table.

b) class.forName loads the implementation of the JDBC, in this case it is the Microsoft driver, which must
be found in the class-path, getConnection returns a handle to a logged on database connection (this
might take a little while the first time)

// Load the database driver and get connection to the database
Class.forName(driver) ;
Connection conn = DriverManager.getConnection(connect);

c) If an error occurs, we can trap that and print it to the browser screen; Note this is a list and we use
the IceBreak response.write to send the response back to the client

// Print all warnings
for(SQLWarning warn = conn.getWarnings(); warn != null; warn = warn.getNextWarning()) {

 response.writeln("SQL Warning:") ;
 response.writeln("State : " + warn.getSQLState()) ;
 response.writeln("Message: " + warn.getMessage()) ;

161Using JAVA

System & Method A/S

 response.writeln("Error : " + warn.getErrorCode()) ;
 }

d) Now we can run the SQL query; and return a resultset into "rs"

 // Execute the query
 ResultSet rs = stmt.executeQuery(sqlcmd) ;

e) For each row in the resultset we produce at HTML-table row using the icebreak response.write this
tutorial just list the five first columns.

 // Loop through the result set
 response.writeln("<html>");
 response.writeln("<table>");
 while(rs.next()) {
 response.writeln("<tr>");
 for (int i = 1 ; i <5; i++) {
 response.write("<td>");
 response.write(rs.getString(i));
 response.write("</td>");
 }
 response.writeln("</tr>");
 }
 response.writeln("</table>");
 response.writeln("</html>");

f) After the last row, we do a little cleanup; Close the result set, close the statement and finally close the
connection.

 // Close the result set, statement and the connection
 rs.close() ;
 stmt.close() ;
 conn.close() ;

 g) Exceptions - First we listen to SQL exceptions; if any occurs we simply list them to the browser screen.

 } catch(SQLException se) {

 // Loop through the SQL Exceptions
 response.writeln("SQL Exception:") ;
 while(se != null) {
 response.writeln("State : " + se.getSQLState()) ;
 response.writeln("Message: " + se.getMessage()) ;
 response.writeln("Error : " + se.getErrorCode()) ;
 se = se.getNextException() ;
 }

h) More Exceptions - Finally we listen to generic exceptions, if any occurs we simply list them to the browser screen

 }catch(Exception e) {
 response.writeln(e.toString()) ;
 }
}

Now compile the IceBreakTest package again, and re-deploy it to the IBMi - However, we just need to
tweak the classpath a bit to let the JVM load the database driver:

reopen the webConfig.xml:

- Add the MS SQL driver JAR til the classpath:

162 IceBreak

System & Method A/S

- Add the property driver with the values of "com.microsoft.sqlserver.jdbc.SQLServerDriver",

which is used by the Microsoft implementation

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>

 <java
 classpath="/www/systest/java/icebreaktest.jar:/icebreak/java/lib/sqljdbc.jar"
 version="1.5">
 <property name="driver" value="com.microsoft.sqlserver.jdbc.SQLServerDriver"/>
 </java>

</Configuration>

And remember: For each time you deploy/recompile you application or change the webConfig.xml you
have to reload the IceBreak JVM. Simply restart the IceBreak server from a command line to accomplish
this task.

ENDICESVR SVRID(SYSTEST) RESTART(*YES)

Run the report application:

Now we need to setup the URL in the browser - First: the name or IP-address and the port-number of
you IBMi: In my case it is : http://myIBMi:60000

Next: The package name slash the class name: In my case that is IceBreakTest/simple

Now the method prefixed by a colon in this case :listHtml

Finally - all java need to be suffixed by .java to route the request to the IceBreak JVM

So the URL looks like:

http://myibmi:60000/IceBreakTest/simple:listHtml.java

Again !! NOTE !! NOTE !!: Beware - Java is case sensitive so part of the URL are case sensitive.
Everything from the package name and forward need to be in the right upper or lower-case.

If you have done it right, and configured a server in your network to allow JDBC and change the code
above accordingly - it will produce the following report:

163Using JAVA

System & Method A/S

Amazing ... :)

Part

IX

165Utilities

System & Method A/S

9 Utilities

9.1 Introduction

Utilities:

Included in the standard IceBreak installation you will find IceBreak Utility (Services program). The
IceBreak Utility (IceUtility) is constantly increased with function useful for IceBreak programmers. This
document describe how to use the IceUtility functions and how to bind from you own IceBreak program
to the IceUtility service program.

All samples in this document are written in IceBreak RPGLE.

Why are these utilities not part of the IceBreak core?

All functions in the IceUtility is "stand alone" and does not requires the IceBreak core. hence, you can
use it to other the web based applications. All functions in the iceBreak core relies on a server instance
and the object model around that.

9.1.1 Bind to IceUtility

Every time you need to use one or more functions from the IceUtility you must refer to a Bind directory
call ICEUTILITY like:

H BndDir('ICEUTILITY')

9.1.2 Prototyping

You must include member “ICEUTILITY” placed in file “QASPHDR” placed in the IceBreak library for the
right prototyping of the functions use by the IceUtility like:

/Include qAspHdr,IceUTILITY

9.2 Functions

In the following I describe function by function how to use them – normally with a little sample.

Legend:

· bool => Indicator variable
· varying => Variable-Length Character field
· * => pointer

9.2.1 Administrator();

Returns *ON if the user has Administrator rights.

Sample:

If Administrator();
 // Do some Administrator stuff
Else;

166 IceBreak

System & Method A/S

 // The user is Not an Administrator
endif;

9.2.2 Disabled(disable);

Returns “disabled=disabled” if disable is *ON

Use this function to make it easier to disable input for users depending on RPG fields directly.

Sample:

If field “MyBool” contains *ON the input field name “MyName” will be disabled and the user will NOT be
able to enter data into it.

<Input <%=disabled(MyBool)%> Type="text" name="MyName" value ="<%=MyName %>" >

9.2.3 DropDown(TagName: SqlCmd {:SelectedValue} {: HtmlExtend});

Writes a formatted HTML “select” back to the response object formatted with output from a SQL select
command.

Parameters:

FormName:

Form name that can be read with the standard IceBreak Form function. e.g.:

Manuid = Form('PRODUCT.MANUID');

Sql command:
Enter a Sql command. The Sql output will be placed in the select dropdown list. If you select two or more
fields in the select, the first one will be returned as the "key" field eg. <option value="CANON"... the
last one will be used as the text. All in between the first and the last field will not be used.

Selected value (optional):
Use this parameter to set a certain record to be selected. Enter the "Key" value that the first Sql Select
field should be compared with.

HtmlExtend (optional):
If you need to add some extra keywords to the genereted HTML this one can be used. E.g.
'onblur="MyScript();"' will execute the MyScript() when the user leave the field.

Sample:

 DropDown('PRODUCT.MANUID':
 'Select ManuId, desc from Manufact order by 1':
 ‘OLYMPUS’);

Will write the following to the response object:

<select name="PRODUCT.MANUID" id="PRODUCT.MANUID" />
 <option value="ACER">Acer</option>
 <option value="CANON">Canon</option>
 <option value="CASIO">Casio</option>
 <option value="FUJIFILM">Fujifilm</option>
 <option value="HP">HP</option>
 <option value="KODAK">Kodak</option>
 <option value="KONICA">Konica</option>
 <option value="NIKON">Nikon</option>
 <option selected=selected value="OLYMPUS">Olympus</option>
 <option value="PANASONIC">Panasonic</option>
 <option value="SAMSUNG">Samsung</option>
 <option value="SONY">Sony</option>
</select>

167Utilities

System & Method A/S

Check out “/icebreak/Tutorials/ex19.htm” for a demo of the function.

9.2.4 exists(varying);

Check IFS and return *ON if found

Sample:

if (exists('/path/file.ext'));
 // do some stuff for the STMF
endif;

9.2.5 FieldListOpen(Library: File);

Open and prepare a list of fields for a database file. Together with FieldListRead() you can generate a list
of fields within the first record format for a file.

The first parameter must be the library name where the file name from the second parameter is located.

Sample:

FieldListOpen('MYLIB' : 'MYFILE');

For more samples check out FieldListRead();

9.2.6 FieldListRead();

Reads a row of data prepared with FieldListOpen(); The function returns its data into a data structure
defined as a pointer to it.

Sample:

This sample opens a file in a library and loops through the “File Field Description” for the file and set the
field “myField” to the name of the field name (ffd.fieldName) just read.

D pFFD s *
D FFD ds likeds(FLDL0100) based(pFFD)

 if (FieldListOpen(UpperCase(Lib) : UpperCase(File)));
 pFFD = FieldListRead();
 dow (pFFD <> *NULL);
 myField = ffd.fieldName;
 pFFD = FieldListRead();
 enddo;
 endif;

9.2.7 LowerCase(varying);

Convert and return a string in lowercase.

Sample:

168 IceBreak

System & Method A/S

UserID = LowerCase(UserID);

9.2.8 MemberListOpen(Library: File: Member {:Format} {:OverrideProcessing});

Together with function MemberListRead() it lets you generate a list of member names and descriptive
information based on specified selection parameters.

The first parameter must be the library name where the file name from the second parameter is located.

“Format” is an optional parameter with default set to QUSL0200

“OverrideProcessing” is an optional parameter with default set to *OFF

Sample:

MemberListOpen('MYLIB': 'MYFILE': 'MYMEMBER);

For more samples check out MemberListRead();

For more information see OS/400 API QUSLMBR (http://publib.boulder.ibm.com/IBMi/v5r2/ic2924/index.
htm?info/apis/quslmbr.htm)

9.2.9 MemberListRead();

Reads a row of data prepared with MemberListOpen() The function returns its data into a data structure
defined as a pointer to it. You must select a structure that fits the chosen format in the MemberListOpen
– that is:

MBRL0100 Member name use data structure QUSL010000
MBRL0200 Member name and source information use data structure QUSL0200 (Default)

For MBRL0310, MBRL0320, MBRL0330 check the description @: http://publib.boulder.ibm.com/IBMi/
v5r2/ic2924/index.htm?info/apis/quslmbr.htm

Sample:

This sample open and prepare a list of members to be read and sets the field “MyMember” to the
member name just read.

H BNDDIR('ICEUTILITY')
D pML s *
D ML ds likeds(QUSL0200) based(pOL)

 /Include qAspHdr,IceUtility

 if (MemberListOpen(UpperCase(Lib): UpperCase(File): UpperCase(Member)));
 pML = MemberListRead();
 dow (pML <> *NULL);
 MyMember = ml.QUSMN01;
 pML = MemberListRead();
 enddo;
 endif;

169Utilities

System & Method A/S

9.2.10 ObjectExists(Library: Object: ObjectType);

This function checks object existence and verifies the user's authority to the object before trying to
access it.

Sample:

if (NOT ObjectExists('QSYS': 'MyLib': '*LIB'));
 // Library MyLib was not found
endif;

9.2.11 ObjectListOpen(Library: Object: Type {: Format});

Together with function ObjectListRead() it lets you generate a list of object names and descriptive

information based on specified selection parameters.

The third optional parameter "Format" may either be a specific object type, or a special value of *ALL.
For a complete list of the available object types, see the OS/400 API QUSLOBJ manual.

Sample:

ObjectListOpen('MYLIB': 'MYFILE': '*FILE'));

This sample check for the existing of file MYFILE placed in library MYLIB

For more information see OS/400 API QUSLOBJ (http://publib.boulder.ibm.com/IBMi/v5r2/ic2924/index.
htm?info/apis/quslobj.htm)

“Format” is an optional parameter with default set to OBJL0200

9.2.12 ObjectListRead();

Reads a row of data prepared with ObjectListOpen(); The function returns its data into a data structure
defined as a pointer to it. You must select a structure that fits the chosen format in the ObjectListOpen –
that is:

OBJL0100 Object names (fastest) use data structure QUSL010003
OBJL0200 Text description and extended attribute use data structure QUSL020002 (Default)
OBJL0300 Basic object information use data structure QUSL030000
OBJL0400 Creation information use data structure QUSL0400
OBJL0500 Save and restore information; journal information use data structure QUSL0500
OBJL0600 Usage information use data structure QUSL0600
OBJL0700 All object information (slowest) use data structure QUSL0700

Sample:

This sample open and prepare a list of objects to be read and sets the field “MyObject” to the object
name just read.

H BNDDIR(' ICEUTILITY')
D pOL s *
D OL ds likeds(QUSL020002) based(pOL)

 /Include qAspHdr,IceUTILITY

 if (ObjectListOpen(UpperCase(Lib): UpperCase(Obj): UpperCase(Type)));
 pOL = ObjectListRead();
 dow (pOL <> *NULL);
 MyObject = ol.QUSOBJNU00;
 pOL = ObjectListRead();

170 IceBreak

System & Method A/S

 enddo;
 endif;

9.2.13 ReverseDNSlookup(IP address);

Reverse DNS lookup.

This function returns the host name for an IP address.

Sample:

HostName = ReverseDNSlookup ('129.42.16.103');

This HostName will hold 'www.ibm.com'

9.2.14 UpperCase(varying);

Convert and return a string in UPPERCASE.

Sample:

UserID = UpperCase(UserID);

9.2.15 UserExists(UserProfile);

Check OS/400 User profile and return *ON if found.

Sample 1:

 bool = UserExists('JOHN');

Sample 2:

if UserExists(User);
 // The User exists
else;
 // The User does not exists
endif;

9.3 Samples

9.3.1 DropDown sample

This sample shows how to use the DropDown function in an IceBreak RPGLE program.

The code is separated in a RPGLE part and a HTML part. The IceBreak pre-compiler collects the needed
code into one source code and compile the program (for more information see tutorials/ex01Include.
htm).

171Utilities

System & Method A/S

9.3.1.1 HTML code

<!--#tag="Init"-->
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
 <link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
 <script language="JavaScript" type="text/javascript" src="/System/Scripts/util.js"></
script>
 </head>

 <!--#tag="Page01"-->
 <body onload="adSetFormStatus();">
 <form method="POST" name="form1" id="form1" action="#">
 <fieldset><legend>Maintain product information (<%=ModeText%>)</legend>
 <table>
 <tr>
 <td style="width: 119px">Product key</td>
 <td><input class="<%=Class_Key%> NUM" type="text" name="PRODUCT.PRODKEY"
value ="<% = %char(PRODKEY) %>" ></td>
 <td class="ErrorText" ><%=SesGetVar('PRODUCT.PRODKEY.error')%> </td>
 </tr>
 <tr>
 <td style="width: 119px">Product ID</td>
 <td><input type="text" name="PRODUCT.PRODID" size="<%=
%char(%size(PRODID))%>" maxlength="<%= %char(%size(PRODID))%>" value ="<% = PRODID %>"
></td>
 <td class="ErrorText" ><%=SesGetVar('PRODUCT.PRODID.error')%> </td>
 </tr>
 <tr>
 <td>Description</td>
 <td><input type="text" name="PRODUCT.DESC" size="50" maxlength="<%=
%char(%size(DESC))%>" value ="<% = DESC %>" style="float: left"></td>
 <td class="ErrorText" ><%=SesGetVar('PRODUCT.DESC.error')%> </td>
 </tr>
 <tr>
 <td>Manufacturer ID</td>
 <td>
 <%DropDown('PRODUCT.MANUID':
 'Select ManuId, desc from Manufact order by 1':
 Manuid);%>
 </td>
 </tr>
 <tr>
 <td>Price</td>
 <td><input type="text" class="NUM" name="PRODUCT.PRICE" value ="<% =
%char(PRICE) %>"></td>
 <td class="ErrorText" ><%=SesGetVar('PRODUCT.PRICE.error')%> </td>
 </tr>
 <tr>
 <td>Stock Count</td>
 <td><input type="text" onblur="adCheckRange(this , -99, 99);" name
="PRODUCT.STOCKCNT" value ="<% = %char(STOCKCNT) %>"></td>
 <td class="ErrorText" ><%=SesGetVar('PRODUCT.STOCKCNT.error')%> </td>
 </tr>
 <tr>
 <td>Stock Date</td>
 <td><input type="text" name="PRODUCT.STOCKDATE" size="<%=
%char(%size(STOCKDATE))%>" maxlength="<%= %char(%size(STOCKDATE))%>" value ="<% =
%char(STOCKDATE: *ISO) %>"></td>
 <td class="ErrorText" ><%=SesGetVar('PRODUCT.STOCKDATE.error')%> </td>
 </tr>
 </table>
 </fieldset>
 <input type="hidden" name="Mode" id="Mode" value="<%=Mode%>"/>
 <input type="hidden" name="showCount" id="showCount" value="<%=%char(showCount)%>
"/>
 <input type="hidden" name="inputOk" id="inputOk" value=true/>
 <input type="submit" value="OK" name="Func">
 <input type="button" onclick="history.go(<%=%char(showCount * -1)%>);" value
="Cancel" name="Cancel">
 </form>
 <!--#tag="GoBack"-->
 <script type="text/javascript">history.go(<%=%char(showCount * -1)%>);</script>

172 IceBreak

System & Method A/S

 <!--#tag="Alert"-->
 <script language=javascript type="text/javascript">
 alert("<%=AlertText%>");
 </script>

 <!--#tag="Exit"-->
 </body>
</html>

9.3.1.2 RPGLE code

<%
H DecEdit(*JOBRUN) Use correct decimal point for edited decimal numbers
H BNDDIR('ICEUTILITY')

F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++++++++
FPRODUCT uf A E K disk The file beeing maintained

/Include qAspHdr,IceUtils

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++++
D Func S 10 Will contian 'OK' when the OK button are pressed
D Mode S 10 ChangeMode or AddMode
D Error S n Error indicator
D AlertText S 64 The Alert text to be display in the Alert box (#tag="Alert")
D showCount S 5 0 Number of times this panel was showed

D ModeText S 64 The displayed text for the mode, Add or Change
D ChangeMode c const('UPDATE') Define constant for ChangeMode
D AddMode c const('ADD') Define constant for AddMode

D Class_Key S 64 Special behaviour for key field.

D System SDS
D Program *PROC The program name

/free
 exsr init;

 // Select type of logic, when no function then assum get record
 select;

 when func = 'OK';
 exsr valInput; // Validate input, if error then return
 if Error;
 exsr InputForm; // Show the input form again
 else;
 exsr updateDB; // update the record
 endif;

 other;
 exsr getRecord; // Get the record from the QryStr
 exsr inputForm; // Put the input form

 endsl;

 exsr exit; // return to the web server and apply the response object

 // --
 // get the record. If not exists Jump into create mode...
 // --
 //LN01Factor1+++++++Opcode&ExtFactor2+++++++Result++++++++Len++D+HiLoEq....Comments++++++++++++

 Begsr getRecord;

 ProdKey = QryStrNum('PRODKEY'); // Read the key from the URL (e.g. http://myServer/MyPgm?Key=123)

 chain(n) ProdKey PRODUCTR;
 *IN80 = NOT %FOUND;
 if *in80 = *on;
 Mode = AddMode; // Mark for ADD mode
 clear PRODUCTR; // Clear the record format when creating a new record

173Utilities

System & Method A/S

 else;
 Mode = ChangeMode; // Mark for UPDATE mode

 endif;

 Endsr;
 // --
 // Validate input from the form
 // --

 Begsr valInput;

 Error = *off; // No errors yet

 exsr form2DB; // Move from form to internal fields

 // Validate input

 if Mode = AddMode AND ProdKey = 0;
 SesSetVar('PRODUCT.PRODKEY.error': // Set error text for the form field in error
 'Must be > 0 when creating a record');
 Error = *on; // Mark for at least one error
 endif;

 if ProdID = *blank;
 SesSetVar('PRODUCT.PRODID.error':
 'Required field!');
 Error = *on;
 endif;

 if Desc = *blank;
 SesSetVar('PRODUCT.DESC.error':
 'Required field!');
 Error = *on;
 endif;

 endsr;

 // --
 // Now add or updates the record
 // --

 BegSr updateDB;

 select;

 when Mode = ChangeMode;
 chain ProdKey PRODUCTR; // Chain to the record for update
 *IN80 = NOT %FOUND;
 if *in80 = *off;
 exsr Form2DB; // Update fields from form fields into the records fields
 update PRODUCTR; // Update the record
 endif;

 when Mode = AddMode; // When add mode
 write PRODUCTR; // Just write the record,
 endsl;

 // Include the HTML code for the "GoBack" tag here at compile time */
 // %><!--#include file="#.htm" tag="GoBack"--><%

 showCount = 0; // Next show will be the first
 EndSr;

 // --
 // Form to database for the record
 // --
 BegSr Form2db;

 monitor;

 PRODKEY = FormNum('PRODUCT.PRODKEY'); // Copy numeric data from the form into the RPG variable
 PRODID = Form('PRODUCT.PRODID'); // Copy character data from the form into the RPG variable
 DESC = Form('PRODUCT.DESC');
 MANUID = Form('PRODUCT.MANUID');

174 IceBreak

System & Method A/S

 PRICE = FormNum('PRODUCT.PRICE');
 STOCKCNT = FormNum('PRODUCT.STOCKCNT');
 STOCKDATE = %date(Form('PRODUCT.STOCKDATE'));

 on-error *all;
 Error = *on; // Error in the form, prepare for re-display
 exsr InputForm;
 AlertText = 'Error in the form, check ' +
 'numeric or date values entered!';
 // Include the Alert tag
 %><!--#include file="#" tag="Alert"--><%

 exsr Exit;
 endmon;
 EndSr;
 // --
 // Init set up the HTML header incl. stylesheets and scripts
 // --
 Begsr Init;
 SesClrVar('PRODUCT.*'); // Clear all session vars used as error texts
 Func = Form('Func'); // The last function used by the user (e.g. pressed OK submit button)
 Mode = Form('Mode'); // AddMode og ChangeMode
 showCount = FormNum('showCount') + 1; // Count number of times this panel was showed (e.g. when re-displaying errors)

 // Include the init tag
 %><!--#include file="ex19edtPrd.htm" tag="init"--><%

 endsr;

 // --
 // Write the input form
 // --
 BegSr InputForm;

 Class_Key = *blank; // Key can be changed when blank
 if Mode = AddMode;
 ModeText = 'Add a new record'; // Put some "Create" info text on the panel
 else;
 Class_Key = 'PROTECT'; // Protect the key field when we are in change mode
 ModeText = 'Change a record'; // Put some "Change" info text on the panel
 endif;

 %><!--#include file="#" tag="page01"--><%

 EndSr;
 // --
 // Done
 // --
 Begsr exit;

 // Include the exit part of the HTML code here at compile time */
 %><!--#include file="#" tag="exit"--><%

 return; // Return to the browser with the response object build in this program

 EndSr;
 // --

Part

X

176 IceBreak

System & Method A/S

10 Administration menu

10.1 Work with servers

This is where you maintain and configure the list of servers instances in your IceBreak sub system.

Creating a new server

At least you will need to give it a name. By default this name is used as description, rootpath and
application library for your new server - more on that later.

The server name also is an eye catcher when you look in the iceBreak subsystem. Here you can see two
jobs for each server when it is active. Once active job and one spare job (the backup job) which in status
lock wait until it is needed - when the application pool is full or if anything happens to the the primary
job.

Port
IceBreak server are listening on one specific port number in the TCP/IP protocol. When you assign port
numbers it is recommended that you check the port number and see if it is available.

Use the NETSTAT *CNN command and see if your desired port is free for use. One port can only serve one

server at the time. You can reuse the port number; however, you have to stop the server on that
particular port before you start another.

Interface address

By default the value *ANY which of cause means that this IceBreak server is listening on all available

interfaces. You can see the complete list of interfaces with the command NETSTAT *IFC. If you want to

share the same port number between two or more IceBreak server - the just add a dedicated interface -
giving it a new IP address

Mode

Where the server is in development mode it will check if the source for each particular application is
changed compared to the running compiled version. If so the JIT (Just-in-time) compiler will kick in;
compile the application and run it. If any kind of types or syntax error was found, the you will be
presented the post list of the application.

The development mode is only available for Enterprise versions of IceBreak.

In "production" mode the JIT process is bypassed and the application will always be executed. The
IceBreak PRO server version only allows the production mode, which also ensures the no application
hacking can occur - according to SOX.

Target release

When compile programs the target release of the compiler can be selected with with option.

Root path

This is the IFS location where all your resources for your applications and web sites "lives". By default
the root path will be a subdirectory to the "/www" path also used by the Apache server. This allows you
to share resources like .css . gif .html files between IceBreak applications and Apache Web server.

Referring to the root path with in applications:

The file name and path can be absolute or relative when you build applications i.e. using the
ResponseWriteTag(Filename : TagName);

This reference is according to the following rule:

· /path/filename.ext This absolute from the IFS root
· ./Filename.ext This is relative to the Server instance root path

177Administration menu

System & Method A/S

· Filename.ext This is relative to the browser relative "refer location"

The above applies to application only. From the url to top level root is always the this root path for
security reasons. If you want to make applications that serves other directories which is above the root,
then make an application that includes this resource. then you have programmatic control over the
security.

Application library

When the JIT compiler kicks in the output will be a genuine I5/OS program object. This program is
placed in the application library. Since that is the case and the max length of a object in I5/OS i 10 char.
you must ensure that the final object name is unique despite your IFS source is longer or is placed in
subdirectories.

Default document

This is the document or application that is show if the URL to the server is blank. This document or
application is also available even if the logon required parameter is set to *YES. Which allows you to
build your own log on screen, and secure all resources with in the IceBreak server instance.

Default profile

Initially when a server instance is running it will run under this particular user profile - this can be
overridden at runtime by the logon() build in function.

Protocol

The protocols available is HTTP and the secure version counterpart HTTPS. By default the more
lightweight HTTP is selected, however if you want to make secure solutions like banking software HTTPS
is the way to go. Click here to see how to configure HTTPS over SSL.

Library list

All ILE applications runs with a library list. This tab lets you set up the default library list for your job and
the server instance which eventually is the same as you applications.

Trace

The trace tab gives you the possibility to enter a file name where Incoming requests and out going
responses are logged.

*NO - no trace is made.
*YES will trace the headers.
*ALL will trace headers and contents. This generates a huge amount of data so be careful.

The TLOG00 database file also contains Trace for header but works as a round robin

Certificates

When you use the HTTPS protocol as described above , you will need a certificate. Click here to see how
to configure HTTPS over SSL.

Advanced tab

You should normally only change the parameter on the advanced tab after you has consulted an
IceBreak service representative.

178 IceBreak

System & Method A/S

Initial program

When the server instance is starting up (not the job carnation), this optional program is being called.
This is convenient to set additional library list here.

Job queue

By default bot server instance and server job carnation is submitted accordingly to a job description
placed with the server name in the application library. However, you can override the value from the job
description with this value.

Cache timeout

This value is placed in all HTTP headers for static contents. When you are in development mode you
might want to change this value to zero to avoid any client side caching.

This value can be overridden programmatically with the setCacheTimeout(sec); in your application.

Value is in seconds.

Session timeout

The number of minutes a session is maintained after it was detected inactive. (That is - no server round
trips). When this timer expires the ICECORE will remove session related state information, variables,
ILOB's.

For session stable servers also the session job is terminated causing files being closed, QTEMP library
deleted, SQL cursors closed etc.

Value is in minutes.

Connection timeout

The number of seconds IceBreak is maintaining a TCP/IP connection after it was detected inactive. (That
is - no server round trips). When this timer expires the server instance thread that is directly
communicating with the client is terminated and resources is released back to the i5/OS.

The connection timeout has no impact on the session which will remain "alive" despite the connection is
terminated. If the client reconnects, a new server instance thread will be created and reconnected to the
session.

Value is in seconds.

Buffer size

The input, output and cookie buffer are only used when the server runs in multi processed mode. Buffers
in that particular mode are allocated using teraspaces . The larger buffer the larger foot print.

The buffers in other server modes are allocated by ILOB's which again are based on userspaces.

Value in in bytes

Coded character set ID

The CCSID is used when converting back and forth between client codepage and server side codepage
which can be ascii, unicode and utf-8 for the client and any EBCDIC for the server side. Also the result
from the IceBreak pre-compiler places the code in QASPSRC in the application library. This source file
will be created with this CCSID.

Default response trimming

179Administration menu

System & Method A/S

When IceBreak places dynamic data in the response it will be blank trimmed accordingly to this
parameter. See the tutorial.

Shared application library

Default NO. The application library might also contain additional programs which may not be accessible
from the URL. in that case you can change this value to YES, which in turn causes an extra validation of
the object - it must reside as a row in the DB/2 table DIR00 within IceBreak core library usually called
ICEBREAK. When you use this feature you must provide a deployment feature to update the DIR00 table
on the target IceBreak server.

This feature is basically used for OEM version of IceBreak.

We suggest you keep this value to NO and place your additionally programs in an sperate library which
is accessible using the library list. The URL reference will always be calling the application in the
application library.

Pre-request exit program

You can define your own security algorithms for any resource within IceBreak. This optional ASPX-
program is called prior to any content is returned to the client.

See the tutorial.

Add File Server Share

When you select yes, a share to the server root path on the IFS is automatically created. Now you can
map this share as a network drive in you Windows (or using SAMBA on Mac and Linux) to edit the source
stream file files that eventually makes the website or application.

WebService URI

When you build webservices, it need to define a URI for you reaource. This is the name that will be
statically bound to the web-service.

See the tutorial.

Days to keep transmission log

Each request / response is logged in the DB/2 table TLOG00 in the icebreak core library. Compared to
the trace the TLOG00 is in tabular form, which makes it suitable for any network statistics, such as turn-
around time and debugging because you can query it with e.g. SQL.

Rows from the TLOG00 table will be removed when they are older that this parameter.

Session type

A session can be maintained either by a cookie - a small token the browser will return to the server for
each subsequent request. Or it can be maintained by redirection to a session unique virtual sub-path.

pros/cons:

· Cookies can be disabled - but session cookies are normally not;
· URL session can be bookmarked - but this might not cause a problem for you application.
· Cookie-2 is only supported by new (Microsoft) browsers, but can not be disabled.

180 IceBreak

System & Method A/S

Dispatcher method

IceBreak has several modes to dispatch the serving job. Each which has their own benefits - See
technical documentation.

The short version:

· Use MULTITHREAD with pool size set to zero for intranet solutions.
· Use MULTITHREAD with pool size arround 5 jobs for internet solution.

Multi thread server options

The following option are only available for server running with the multi threaded IceBreak core.

Heartbeats

If you will assure that the IceBreak server core is running you can enter the TCP/IP address of the
interface and the frequency you want to ping with a heartbeat.

If the heartbeat is not responded - IceBreak will launch a new carnation of the server job, and kill any
server job that were suppose to serve.

Leave that blank if you have a monitoring system or don't want to take up bandwidth with network
pings.

Max Sessions per Server job

This is the part of IceBreak load balancing. After around 250 concurrent network connections TCP/IP jobs
start degrade the performance since the job will be overloaded.

If you exceed this parameter value a new instance of the server job will be started, which again is ready
for up to 250 concurrent network connections.

You can set til value to a lower value on smaller system to gain overall performance for the IceBreak
applications on the cost of the total system performance.

The math is simple - ex. 2500 concurrent users with the limit set to 250:

2500 / 250 = 10 IceBreak server jobs

Max transactions per Server job

You can renew the server instance job after a number of transactions to clean up heap/stack - to release
memory.

0=No max; the server instance job in never renewed.

Max Sockets per Server job

Related to max session per server job, this is the actual number of physical connections to clients. if you
keep these two values the same then any of the values that is exceed first will cause the new instance to
start.

Server job run priority

The i5/OS job priority for the server instance - the job that is connected to the client.

Session job run priority

The i5/OS job priority for the session job - the job that is runs the application.

181Administration menu

System & Method A/S

Job Pool Size

The pool size has only effect for multithreaded job dispatching.

This value set equal to zero disables the pool which again runs the server in session stable mode / job
persistent mode. This is recommended for intranet applications, since you have a physical job for each
client; just like 5250 application.

When you change this value to a value above zero this again reflect the number of physical jobs that
serve application requests.

You can never be assure that any subsequent request from a client will hit the same server instance
except when you set the value to on - since there will only one job to serve all request. This can be
valuable knowledge when making data-queue like application / web-service like applications.

see technical documentation for dispatcher methods.

10.2 SQL prompt

Administration Menu:

You can can enter any select SQL select statement from this prompt. Other SQL statements like "update"
or "delete" are however not allowed for security reasons.

Try the prompt

In the Administration Menu under the Tool menu you will find the SQL prompt. Try the following SQL
statement produces a report over some digital cameras from a demo table:

Select * from product order by 1

You can select the output format to be in HTML or XML from the drop down box.

Using the output XML in Excel

If you right on the XML output, you will find that you can open the result set with Microsoft Excel:

Right click and select import.

External references to the SQL query

You can copy the final URL from the statement to you clip board so you can run the query from out side
the the administration menu.

182 IceBreak

System & Method A/S

10.3 Application wizard

The application wizard builds a skeleton program that you can use as a foundation for your own
programs

You can build your own templates for this application generator if you like. Just save your templates in
the IFS path where IceBreak is in stalled. Locate the sub-folder for your programming language:

RPG: \IceBreak\Wizards\Templates\RPG

COBOL: \IceBreak\Wizards\Templates\COBOL

Remember to save your templates before you upgrade IceBreak to a new version.

10.4 Component wizard

Like the application wizard, the component wizard generates code. However, it ranges from code
snippets to complete programs you can use as
foundation for your own application.

The component wizard uses a database file or a SQL table / view and generate the code corresponding to
you selection it in the dropdown box.

The code or code snippet are shown in the text box where from you can select it by clicking the text box
and press the key combination <CTRL><A> <CTRL><C> Then you can paste it into you source for your
application.

10.5 Sencha Touch Component Wizard

The IceBreak Sencha Thouch code generator / component wizard is quite straight forward. After you fire
it up, you simply fill in generation parameters and it will produce a directory with j a number of sub
directories containing the iPhone / iPad / android application.

Basically the application is a HTML5 based web application, however i utilize all the features in HTML5
and / or the web-kit environment allowing a web application to have the same look and feel as a native
application, but can be installed and run from the internet directly from your IceBreak Server. The
directory also it contains compilation parameter required if you want to create a native handheld
application that can be downloaded and installed from Apple AppStore or android market and run totally
offline.

Prerequsits

Before you start you need to download a version of the Senche Touch frame work . The application
generator is designed to work with Sencha touch version 2. This however will change over time. For
copyrights reason the IceBreak server is not distributed with the Sencha touch frame work, the
installation on the other hand i quite easy:

1.Download Sencha touch from http://www.sencha.com/products/touch/download/
2.Unpack the zip file
3.Place the Sencha Touch directory under the /System/Plugins directory of your IceBreak application

server.
4.The "/System/Plugins" directory:

Please note that the /System/Plugins directory is a symbolic link and is therefore available in all server
instances via the system hive. Also /System/Plugins are left unchanged when you update IceBreak to
the next version. The /System/Plugins directory are not changed, deleted or updated by IceBreak,

183Administration menu

System & Method A/S

you, however, must have in mind that any changes you apply to /System/Plugins will be propagated
to all server instances of IceBreak server on your system. Therefore: Do not delete it!!

Also the /System/Plugins directory is perfect for shared resources between IceBreak servers – just to
name a few that might interest you:

· jQuery
· ExtJs
· Sencha Touch
· jQuery Touch
· DoJo
· Capuchino

Create My First App

Now lets fire up the code generator and build out first application:

· Open the IceBreak Adminstration
· Open the "tool" menu
· Click on the "Sencha Touch generor"
· Now you will se the generator wizard:
· Now lets fill in the wizard form:

1.First the fille in the library and file: Lets use the simple PRODUCT database table which is default
available in *LIBL of you IceBreak installation.

2.Select the component type: Now just select the List and edit for application.
3.Select the server where it will be installed and run from: The server need to be in development

mode before the wizard successfully can compile the RPGLE-REST service it will create.
4.Enter the name of the "app" this will also be the name of the directory created for you app, so

don't enter a name so overwriting existing stuff will occur. Also avoid spaces and hyphens.
5.Enter a a description of the app: This will be the name you see on the iPhone/iPad/Androide

desktop menu when you attaché the app tou you home screen – So give it at proper description
but not to long – the phone desktop has limited space.

Now you are good to go!! Press the "generate" and let the magic begin - it might run for a while.

Run my first App

Open your iPhone/iPad/androide and open the browser: Enter the url of the application you just made:

http://myIBMI:1234/myapp/index.html

myIBMI is the ip address or name of you IBM
1234 denotes the port number you already have configured for you IceBreakserver
Myappis the exact name of you app you entered in the above opt 4
Index.html is The default document – just use that name for now

Now you will see an application similar to this:

It has the following features:

· It only loads 25 rows from the sever at the time to reduce net workload – this can of cause be
changed. But when you page through it loads the 25 etc.

· It makes a generic search on all columns in the basing table – this can be modified later
· When you click on a row, it brings up a form where you can change the row contents, and update

the contents.
· You can create new rows in the table
· When you swipe down on the first page it will reload the list contents.

184 IceBreak

System & Method A/S

The application will in all cases be based on the access to a DB/2 database file. So the application
generator will build the following components for you:

· The Ajax based client code
· The REST service – which btw also contains a full-blown web 2.0 CRUD web-desktop application
· And IFS folder as a subfolder in you application server root that contains the source to the above.

10.6 Source file browser

Since IceBreak applications source is based on IFS stream files you need at too to migrate your legacy
code from source physical files.

The "source file browser" lets cut and paste from a source physical file member and trim the first six left
characters off if you like - not recommended if you are using WDSc, but is useful if you are using i.e.
Microsoft Visual Web Developer tool.

10.7 Services

Services is a collection of features that enhance the IceBreak server core. Services can be installed as
add-on products via framework deployment.

10.7.1 Web TAPI

Web TAPI is a service that brings the "telephony API" on the client available for IceBreak applications on
system i.

This is excellent when you want to build web based call center applications or extend a CRM solution with
a "dial customer button".

You need to download the "web TAPI client service" to each PC that will be using the feature.

You will find the "web TAPI client service" for download at http://icebreak.org/tools.htm

10.7.2 Web printers

Web printer is a service that brings clients printers available as output queues on the system i.

On the client you have to install the "Web printer client service" which will expose the client connected
printers over HTTP. The transmission of data is 128 bit encrypted over a plain HTTP protocol.

You will find the "Web printer client service" for download at http://icebreak.org/tools.htm

10.8 Frameworks

In IceBreak you can deploy applications as "Frameworks". A framework is a generic for Applications ,
services, plug-ins and complete solutions. IceBreak frameworks were introduced to help developers
deploying their applications and plug-ins to other IceBreak installations. You can use IceBreak
frameworks to deploy you own applications or installing IceBreak applications and Plug-ins from the
IceBreak community and software vendors. To find new software from the IceBreak community you can

185Administration menu

System & Method A/S

visit http://icebreak.org or select “Work with IceBreak Frameworks, Applications and Plug-ins.” from the
main IceBreak menu.

When you have a server instance with all your own applications, then you can export all its contents both
program objects from the application library - along with IFS objects .html, .gif's etc. directly to a
stream file on the IFS.

Framework files has the extension of .IFW (IceBreak FrameWork).

Export a framework:

1.Logon to your IceBreak admin page
2.Click on work with servers
3.Select the server that contains what you want to export
4.Click "Edit server settings"
5.Click "Export as framework"

Fill in to export form and press "Export"

The Export Server panel are use to prepare and the export of a server as a framework.

Product information

Indicate the product information's of the server on the target system.

Description
The default description shown when the end user installs the framework.

Vendor
The name of the vendor of this framework.

Vendor URL
Enter a URL to the vendors homepage. Later when the end user are going to install the framework on
the target system this link will be active.

URL
Enter a URL to the products homepage. Later when the end user are going to install the framework on
the target system this link will be active.

Version
The version of the framework can be entered here. You will see that the "file name" will altered
automatically including the version entered.

IceBreak Server ID
This Server ID will be the server ID that the end user will be shown as the default server ID.

Port number
Use this parameter to specify the default TCP/IP port used for this IceBreak server exported.

Application library
The default application library name for the target system.

Http Root Path
The IFS default root path for this framework on the target system.

User exit programs on the target installation
You can define user exit programs to be called on the target system before and after the installation has
occurred.

The "before" exit program will be executed as the first process on the target system. The program will be
restored into QTEMP and executed from their.

The post exit program will be called as the finale step in the installation process. The library QTEMP holds
a data area called NEWSERVER with a logical value = '1' if the server was new and was created during

186 IceBreak

System & Method A/S

the installation process.

Sample post exit CL program:

/* Post Framework install exit program */
pgm
 Dcl &NewServer *lgl

 RtvDtaara Qtemp/NewServer &NewServer
 if (&NewServer) then(Do)
 clrpfm GROUP00
 monmsg cpf0000
 clrpfm QUERY00
 monmsg cpf0000
 RUNSQL SQLCMD('Insert into GROUP00 ("GROUP", TEXT, +
 DESC) VALUES(''MYFIRST'', ''My first +
 group in Inspire'', ''This is My first +
 group in IceBreak Inspire'')')
 monmsg cpf0000
 enddo
 else do
 /* Upgrade */
 RunSQL SqlCmd('update query00 set qrytk = rrn(query00) where qrytk = 0')
 monmsg (sql0000 cpf0000)
 enddo

endpgm

Hint!
You can retrieve information of the framework just installed by use of the command RTVICESVRA
*RECENT.

Sample:

If you need to know the name of the application library entered by the user under the installation
process you can use the following line:

RtvIceSvrA SvrId(*Recent) AppLib(&AppLib)

The field &Applib will hold the name of the application library just installed into.

You can retrieve the following information:

Returned SVRID (10)
Tcp/Ip Port (5 0)
Tcp/Ip Interface (15)
Description (50)
Server type (10)
Startup type (7) *AUTO, *MANUAL
Http Root Path (128)
www Default Document (32)
Initial Program (10)
Initial Program Library (10)
Job queue (10)
Job queue Library (10)
Application Library (10)
Shared Application Lib (1)
Target release (10)
Create Trace file (1)
Trace Path (128)
Days to keep trans.log (9 0)
Mode (1)
Mode as text (10) *PROD, *DEVELOP
Log on required (1)
Default User profile (10)
Cache Timeout (sec.) (9 0)
Session timeout (9 0)
Connection timeout (9 0)
Input buffer sizes (9 0)
Output buffer sizes (9 0)

187Administration menu

System & Method A/S

Cookie buffer sizes (9 0)
Session type (10) *COOKIE, *URLREDIR, *COOKIE2
TcpIp Heartbeat address (15)
Sec.between Heartbeats (9 0)
Max ses. pr Server job (9 0)
Max trans.pr Server job (9 0)
Max Sockets pr Server job(9 0)
Server job priority (2 0) 0=*CLASS
Session job priority (2 0) 0=*CLASS
Job Pool Size (9 0) 0=*JOBSTABLE
Coded character set ID (5 0)
Protocol (6) *HTTP, *HTTPS
Certificate Path & File (128)
Certificate Password (32)
Prerequest exit program (10)
Prerequest exit PGM LIB (10)
WebService URI (128)

What will be saved?

· All objects in the application library except the job description named after the IceBreak server ID.
· All objects in the IFS root path defined by the ADDICESVR’s keyword HTTPPATH. Including almost all

subdirectories. Directory /System and /Exclude will NOT be saved.
· The IceBreak server attributes needed for the framework installation program to create the server on

the target system.
· All the save operations above are collected in one IFS object named by the user. Normally with file

extension .ifw (e.g. /IceBreak/FrameWorks/MyFramework.ifw)

Note!
· The target release will be the same as the one from the IceBreak server being exported.
· Object owner of all objects in the http path are changed to QPGMR

Universal Framework ID

The first time you export a IceBreak server the export feature generates a Universal Framework ID. The
Universal Framework ID are used to identify the framework when it is restored on the target system.
When using this technique the installation process will be able to update the server next time the vendor
releases a new version.

Import a framework:

1.Logon to your IceBreak admin page on the target system;
2.Click on Configuration:
3.Click Frameworks

The framework installations has three steps:

1.Downloading the IFW file from the IceBreak framework community website to your PC.
2.Uploading the IFW file from your PC to the IFS and register it to IceBreak.
3.Install the IFW file from IFS to a library and server root path, create all stuff needed and start the

server.

Downloading the IFW file from a website to your PC.
· Click on the WEB->PC tab.
· Select the framework you want to download
· click green download arrow

You can skip this first step if you have a local copy of a framework and are locally connected to the
system i where IceBreak runs.

Uploading the IFW file from your PC to the IFS and register it to IceBreak.

188 IceBreak

System & Method A/S

Now you have the IFW on your PC:

· Click on the PC->IFS tab.
· Find the file with “search”
· Click “Upload”

The IFW deployment file is then registered in the iceBreak server.

Install the IFW file from IFS to a library and server root path
· Click on the IFS->LIB tab.
· Select the framework on the list by clicking the “+” sign
· Follow the installation guide

The IceBreak Framework Installer are shown with the following information's.

Framework ID
Enter the ID for the framework ID

Port number
IceBreak server are listening on one specific port number in the TCP/IP protocol. When you assign port
numbers it is recommended that you check the port number and see if it is available.

Use the NETSTAT *CNN command and see if your desired port is free for use. One port can only serve one

server at the time. You can reuse the port number; however, you have to stop the server on that
particular port before you start another.

Description

Enter the description for the server into this field.

Application library name

When the JIT compiler kicks in the output will be a genuine I5/OS program object. This program is
placed in the application library. Since that is the case and the max length of a object in I5/OS i 10 char.
you must ensure that the final object name is unique despite your IFS source is longer or is placed in
subdirectories.

HTTP IFS path

This is the IFS location where all your resources for your applications and web sites "lives". By default
the root path will be a subdirectory to the "/www" path also used by the Apache server. This allows you
to share resources like .css . gif .html files between IceBreak applications and Apache Web server.

Referring to the root path with in applications:

The file name and path can be absolute or relative when you build applications i.e. using the
ResponseWriteTag(Filename : TagName);

This reference is according to the following rule:

· /path/filename.ext This absolute from the IFS root
· ./Filename.ext This is relative to the Server instance root path
· Filename.ext This is relative to the browser relative "refer location"

The above applies to application only. From the url to top level root is always the this root path for
security reasons. If you want to make applications that serves other directories which is above the root,
then make an application that includes this resource. then you have programmatic control over the
security.

189Administration menu

System & Method A/S

10.9 Display current server

This list is all the available server variables and their corresponding values. This is achieved by the build-
in function getServerVar();

You can learn how that program is build here: servervars.

10.10 Display current header info

The list here is the information sent from you browser to the IceBreak server.

Click here to learn more about the HTTP headers within a IceBreak program.

10.11 Display all servers

IceBreak can be installed in different libraries on your system i.e. if you want to run it in several versions
or if you want a dedicated production / development environment.

Each version also gives you a dedicated subsystem along with a dedicated administration.

The "Display all servers" gives you a complete list of server on the system despite which library it is
configured in. You can sort the on library , port number or server name.

A trailing list shows you the libraries that contains IceBreak servers - this includes also products where
IceBreak runs as OEM.

10.12 Display joblog

IceBreak supports a dedicated i5/OS job for each "browser" job. That means that you also a dedicated
joblog for each browser job.

This joblog is very convenient when you want to debug an applications. This is where you programs
exceptions will be logged.

However, when you run the servers with the application pool activated, the joblog gives less meaning
since you will not know which job was serving the request - unless you set the pool size to one.

10.13 Display job

IceBreak supports a dedicated i5/OS job for each "browser" job. The "display job" feature is very
convenient when you want to debug an applications.

You can see the current program stack and which files are open etc.

However, when you run the servers with the application pool activated, the display job gives less
meaning since you will not know which job was serving the request - unless you set the pool size to one.

The "Display job" is equivalent to the "DSPJOB" i5/OS command.

190 IceBreak

System & Method A/S

10.14 Display trace

The trace contains - if activated on the server instance - all HTTP traffic between the client (browser) and
the IceBreak server instance.

The trace files is located on the IFS as a stream file.

10.15 Authorization

This is where you configure the access to the administration menu in IceBreak.

The configuration parameters are activated after you restart the server instance.

10.16 Subsystem configuration

The behaviour of IceBreak subsystem can be configured here.

Autostart the IceBreak subsystem after IPL.

If you select this checkbox, an IceBreak auto-start job entry will be added to your controlling subsystem.

If you prefer to start IceBreak - i.e. in the QSTRUP program - you can just click "NO" in the check box
and use the following code:

ICEBREAK/STRICESBS

10.17 Your information

The information on this form will be used when you upgrade or register you licence of IceBreak.

10.18 License information

Before you can use IceBreak you need a valid licence key.

The Licence key can be obtained from the web site www.icebreak.org simply by clicking "order Licence
code" from where you can select which service contract you will purchase and which type of IceBreak
server you will be using depending on your needs.

Shortly after you will receive an e-mail with the Licence key, which you have to enter here before you
can use the IceBreak server.

The licence key will determine which features will be available in you copy of IceBreak and what kind of
service you will expect.

10.19 Build history log

Each time a new version or IceBreak is created by IceBreak develop team - they will increment the build
number.

This log show a historical list of changes and additions to the IceBreak system.

The build log is based on the data from the knowledge base which you can find on icebreak.org - and

191Administration menu

System & Method A/S

you can post request for enhancements and inform us about bugs.

10.20 Open projects log

Open projects log is a list of ongoing projects in the IceBreak community. It covers:

· Reported bugs which are not fixed yet
· Changes
· New features
· Enhancements

The "open project log" is based on the data from the knowledge base which you can find on icebreak.org
- and you can post request for enhancements and inform us about bugs.

If you have requests or problems with IceBreak please consult this list before post a new request at
icebreak.org.

Part

XI

193Appendix

System & Method A/S

11 Appendix

11.1 Intergration to BlueSeries

Appendix:

BluesSeries is a Back office system for mailing, faxing, short messages service and other B2B
communication. You can access components in BlueSeries by the BlueSeries Bind-directory and header
file.

If You utilize the BlueSeries - you need to change the library list for the serverinstance to include the
BlueSeries library.

BlueSeries has a object model called a "Business Objects" which can be converted from and to XML
documents, spool files, TXT files, CSV files and PDF files. You can acces the Business Object with the
following:

SetXvar

Syntax:

SetXvar (Variable : Value);

Field Name Data type Description

Variable VARCHAR(64)
The Name and path to an node in
the business Object

Value VARCHAR(256) The value you want to set

GetXvar

Syntax:

Value = GetXvar (Variable);

Field Name Data type Description

Variable VARCHAR(64)
The Name and path to an node in
the business Object

Value VARCHAR(256) The value you want to set

The Following is updating and retrieve a custom number in the object:

194 IceBreak

System & Method A/S

11.2 Internal relation between CCSID and encoding schemes

Appendix:

Encoding CCSID Description

ASCII 367 American Standard Code for Information Interchange

Big5 950 8-bit ASCII T-Chinese BIG-5

Big5_HKSCS 950 Big5_HKSCS

Big5_Solaris 950 Big5 with seven additional Hanzi ideograph character mappings for the
Solaris zh_TW.BIG5 locale

CNS11643 964 Chinese National Character Set for traditional Chinese

Cp037 037 IBM® EBCDIC US, Canada, Netherlands

Cp273 273 IBM EBCDIC Germany, Austria

Cp277 277 IBM EBCDIC Denmark, Norway

Cp278 278 IBM EBCDIC Finland, Sweden

Cp280 280 IBM EBCDIC Italy

Cp284 284 IBM EBCDIC Spanish, Latin America

Cp285 285 IBM EBCDIC UK

Cp297 297 IBM EBCDIC France

Cp420 420 IBM EBCDIC Arabic

Cp424 424 IBM EBCDIC Hebrew

Cp437 437 8-bit ASCII US PC

Cp500 500 IBM EBCDIC International

Cp737 737 8-bit ASCII Greek MS-DOS

Cp775 775 8-bit ASCII Baltic MS-DOS

Cp838 838 IBM EBCDIC Thailand

Cp850 850 8-bit ASCII Latin-1 Multinational

Cp852 852 8-bit ASCII Latin-2

Cp855 855 8-bit ASCII Cyrillic

Cp856 0 8-bit ASCII Hebrew

Cp857 857 8-bit ASCII Latin-5

Cp860 860 8-bit ASCII Portugal

Cp861 861 8-bit ASCII Iceland

Cp862 862 8-bit ASCII Hebrew

Cp863 863 8-bit ASCII Canada

Cp864 864 8-bit ASCII Arabic

Cp865 865 8-bit ASCII Denmark, Norway

Cp866 866 8-bit ASCII Cyrillic

Cp868 868 8-bit ASCII Urdu

Cp869 869 8-bit ASCII Greek

Cp870 870 IBM EBCDIC Latin-2

Cp871 871 IBM EBCDIC Iceland

Cp874 874 8-bit ASCII Thailand

Cp875 875 IBM EBCDIC Greek

Cp918 918 IBM EBCDIC Urdu

Cp921 921 8-bit ASCII Baltic

Cp922 922 8-bit ASCII Estonia

Cp930 930 IBM EBCDIC Japanese Extended Katakana

Cp933 933 IBM EBCDIC Korean

Cp935 935 IBM EBCDIC Simplified Chinese

Cp937 937 IBM EBCDIC Traditional Chinese

Cp939 939 IBM EBCDIC Japanese Extended Latin

Cp942 942 8-bit ASCII Japanese

Cp942C 942 Variant of Cp942

Cp943 943 Japanese PC data mixed for open env

195Appendix

System & Method A/S

Cp943C 943 Japanese PC data mixed for open env

Cp948 948 8-bit ASCII IBM Traditional Chinese

Cp949 944 8-bit ASCII Korean KSC5601

Cp949C 949 Variant of Cp949

Cp950 950 8-bit ASCII T-Chinese BIG-5

Cp964 964 EUC Traditional Chinese

Cp970 970 EUC Korean

Cp1006 1006 ISO 8-bit Urdu

Cp1025 1025 IBM EBCDIC Cyrillic

Cp1026 1026 IBM EBCDIC Turkey

Cp1046 1046 8-bit ASCII Arabic

Cp1097 1097 IBM EBCDIC Farsi

Cp1098 1098 8-bit ASCII Farsi

Cp1112 1112 IBM EBCDIC Baltic

Cp1122 1122 IBM EBCDIC Estonia

Cp1123 1123 IBM EBCDIC Ukraine

Cp1124 0 ISO 8-bit Ukraine

Cp1140 1140 Variant of Cp037 with Euro character

Cp1141 1141 Variant of Cp273 with Euro character

Cp1142 1142 Variant of Cp277 with Euro character

Cp1143 1143 Variant of Cp278 with Euro character

Cp1144 1144 Variant of Cp280 with Euro character

Cp1145 1145 Variant of Cp284 with Euro character

Cp1146 1146 Variant of Cp285 with Euro character

Cp1147 1147 Variant of Cp297 with Euro character

Cp1148 1148 Variant of Cp500 with Euro character

Cp1149 1149 Variant of Cp871 with Euro character

Cp1250 1250 MS-Win Latin-2

Cp1251 1251 MS-Win Cyrillic

Cp1252 1252 MS-Win Latin-1

Cp1253 1253 MS-Win Greek

Cp1254 1254 MS-Win Turkish

Cp1255 1255 MS-Win Hebrew

Cp1256 1256 MS-Win Arabic

Cp1257 1257 MS-Win Baltic

Cp1258 1251 MS-Win Russian

Cp1381 1381 8-bit ASCII S-Chinese GB

Cp1383 1383 EUC Simplified Chinese

Cp33722 33722 EUC Japanese

EUC_CN 1383 EUC for Simplified Chinese

EUC_JP 5050 EUC for Japanese

EUC_JP_LINUX 0 JISX 0201, 0208 , EUC encoding Japanese

EUC_KR 970 EUC for Korean

EUC_TW 964 EUC for Traditional Chinese

GB2312 1381 8-bit ASCII S-Chinese GB

GB18030 1392 Simplified Chinese, PRC standard

GBK 1386 New simplified Chinese 8-bit ASCII 9

ISCII91 806 ISCII91 encoding of Indic scripts

ISO2022CN 965 ISO 2022 CN, Chinese (conversion to Unicode only)

ISO2022_CN_CNS 965 CNS11643 in ISO 2022 CN form, Traditional Chinese (conversion from
Unicode only)

ISO2022_CN_GB 1383 GB2312 in ISO 2022 CN form, Simplified Chinese (conversion from
Unicode only)

ISO2022CN_CNS 965 7-bit ASCII for Traditional Chinese

ISO2022CN_GB 1383 7-bit ASCII for Simplified Chinese

ISO2022JP 5054 7-bit ASCII for Japanese

ISO2022KR 25546 7-bit ASCII for Korean

196 IceBreak

System & Method A/S

ISO8859_1 819 ISO 8859-1 Latin Alphabet No. 1

ISO8859_2 912 ISO 8859-2 ISO Latin-2

ISO8859_3 0 ISO 8859-3 ISO Latin-3

ISO8859_4 914 ISO 8859-4 ISO Latin-4

ISO8859_5 915 ISO 8859-5 ISO Latin-5

ISO8859_6 1089 ISO 8859-6 ISO Latin-6 (Arabic)

ISO8859_7 813 ISO 8859-7 ISO Latin-7 (Greek/Latin)

ISO8859_8 916 ISO 8859-8 ISO Latin-8 (Hebrew)

ISO8859_9 920 ISO 8859-9 ISO Latin-9 (ECMA-128, Turkey)

ISO8859_13 0 Latin Alphabet No. 7

ISO8859_15 923 ISO8859_15

ISO8859_15_FDIS 923 ISO 8859-15, Latin alphabet No. 9

ISO-8859-15 923 ISO 8859-15, Latin Alphabet No. 9

JIS0201 897 Japanese industry standard X0201

JIS0208 5052 Japanese industry standard X0208

JIS0212 0 Japanese industry standard X0212

JISAutoDetect 0 Detects and converts from Shift-JIS, EUC-JP, ISO 2022 JP (conversion
to Unicode only)

Johab 0 Korean composition Hangul encoding (full)

K018_R 878 Cyrillic

KSC5601 949 8-bit ASCII Korean

MacArabic 1256 Macintosh Arabic

MacCentralEurope 1282 Macintosh Latin-2

MacCroatian 1284 Macintosh Croatian

MacCyrillic 1283 Macintosh Cyrillic

MacDingbat 0 Macintosh Dingbat

MacGreek 1280 Macintosh Greek

MacHebrew 1255 Macintosh Hebrew

MacIceland 1286 Macintosh Iceland

MacRoman 0 Macintosh Roman

MacRomania 1285 Macintosh Romania

MacSymbol 0 Macintosh Symbol

MacThai 0 Macintosh Thai

MacTurkish 1281 Macintosh Turkish

MacUkraine 1283 Macintosh Ukraine

MS874 874 MS-Win Thailand

MS932 943 Windows® Japanese

MS936 936 Windows Simplified Chinese

MS949 949 Windows Korean

MS950 950 Windows Traditional Chinese

MS950_HKSCS NA Windows Traditional Chinese with Hong Kong S.A.R. of China extensions

SJIS 932 8-bit ASCII Japanese

TIS620 874 Thai industry standard 620

US-ASCII 367 American Standard Code for Information Interchange

UTF8 1208 UTF-8 (IBM CCSID 1208, which is not yet available on the System i5
platform)

UTF-16 1200 Sixteen-bit UCS Transformation Format, byte order identified by an
optional byte-order mark

UTF-16BE 1200 Sixteen-bit Unicode Transformation Format, big-endian byte order

UTF-16LE 1200 Sixteen-bit Unicode Transformation Format, little-endian byte order

UTF-8 1208 Eight-bit UCS Transformation Format

Unicode 13488 UNICODE, UCS-2

UnicodeBig 13488 Same as Unicode

197Appendix

System & Method A/S

11.3 Manual Installation

If you have problems with the standard installation program for IceBreak you can use the following
method to install it manually:

Start up the normal installation process as always. Press OK

Press the Start and files needed will be unzipped and places in the directory entered into ”Extract to”.

After the extract has finished the following panel will show up. Press the Cancel and Yes to leave the
installation program.

198 IceBreak

System & Method A/S

Locate the Directory where you just extracted the installation files to:

Copy the “IceBreak.savf” file to a directory in the IFS on the target System. Use Windows explorer or the

199Appendix

System & Method A/S

IBMi Navigator.

Sign on to a 5250 session and run the following commands as *SECOFR

· CPYFRMSTMF FROMSTMF('/Mydir/IceBreak.savf') TOMBR('/qsys.lib/qtemp.lib/IceBreak.file')
MBROPT(*REPLACE)

· RSTLIB SAVLIB(BLUEICE) DEV(*SAVF) SAVF(QTEMP/ICEBREAK) RSTLIB(INSTBOX)
· CHGCMD CMD(INSTBOX/INSTALL) PRDLIB(INSTBOX)

If needed you can change the installation parameters, you can do so by change the data area call
INSTBOX/INSTALLDFT. The layout of that data area looks like:

Pos. 1 length 10 - The IceBreak installation library
Pos. 11 length 10 – The database library
Pos. 21 length 128 – The IceBreak root directory
Pos. 149 length 128 – The ADMIN root directory
Pos. 278 length 10 – ADMIN server name
Pos. 288 length 5 – ADMIN port number
Pos. 293 length 1 – ‘1’ indicate that the IceBreak menu should be duplicated into library QGPL

The installation program is now ready to be executed with the following command:

· INSTBOX/INSTALL

11.4 Technical decumentations

11.4.1 What is IceBreak

IceBreak is a combined HTTP and application server for the Integrated Language Environment (ILE) on
the System i platform.

The purpose of IceBreak is not to have a cross platform solution but rather an optimized application
server that runs even on the smallest System i.

IceBreak is written in ILE (C/C++ and CLP) which eliminates any conversion when making procedure
calls from the user application into the server core. In addition, because of IceBreak’s “platform

200 IceBreak

System & Method A/S

dependent” concept, it can utilize MI interface functions, user indexes and user spaces, to gain the most
power out of the System i platform.

IceBreak is a server platform for bringing the System i native languages RPG, COBOL, CLP, C and C++
to the web.

IceBreak is modeled as a web servlet container for the ILE environment that brings you similar
functionality to your application as a serverlet container for JAVA like Tomcat or WebSphere.

11.4.2 Application Server Programs as a concept

IceBreak is based on the ASPX syntax developed by Microsoft for the .NET framework used in IIS
(Internet Information Server) environment. ASPX is also inspired by other environments like JSP (Java
Server Pages).

The ASPX syntax has two components which consist of the presentation layer and the program logic. You

switch between presentation and program logic by escaping back and forth with the <% and %>
character sequence. See later in ”ASPX Source Parsing”.

The feature of ASPX is the fact that you can isolate the presentation layer form the business logic –
providing a Model View Control (MVC) structure on your design.

On the other hand, the ASPX approach can also provide the combination ILE logic and the presentation
layer which in turn can be a dangerous cocktail. Blending RPG logic with the HTML presentation layer is
far from modern design concepts like Model-View-Control (MVC). However IceBreak has enhanced the
ASPX syntax to “include” or refer to the presentations logic from the program logic to an external
described presentation layer in a separate (X)HTML / XML / JSON file. This is very similar to the way
that the ILE developer has used externally described display files for years.

ASPX is for the same reason ideal for “quick-and-dirty” solutions and basic educational teaching:

201Appendix

System & Method A/S

<%@ language=”RPGLE” %>
<html>
 <p>Hello world</p>
</html>
<% return; %>

Ninety percent of Microsoft powered internet solutions are based on ASPX. As a result, there is a large
base of ASPX knowledge. Although IceBreak is a dedicated server platform for the System i ILE
developers, it has attracted developers from the Microsoft .NET community by redefining RPG as “just
another scripting language” for ASPX.

11.4.3 The Object model

The host languages in IceBreak are all ILE, namely RPG, COBOL, C and CLP. These languages do not
have an object model as we know it from the Object Oriented programming (OOP) world. IceBreak
provides an interface so you are able to access the IceBreak object model directly from RPG, COBOL, C
and CLP. This is done by processing the .ASPX application source with a precompiler that creates object
wrapper functions to the object model. This can only be done by the fact that each object in the model
only occurs once so an explicit object reference in not necessary.

The object model is hidden from the application; however IceBreak allows the user via an API interface
to communicate directly with all objects instantiated by the IceBreak server from within RPG, COBOL, C
or CLP.

Take a look at the communication flow between the IceBreak server and client web browsers:

· The client places a request to the IceBreak server which creates a request object (1)
· The request object is processed. Dependent on the content type either the form-parser for HTML or

the XML-parser is executed for XML input.
· ASPX Program initiates (3). You can retrieve data from the request object (2) and render the response

object (5)
· You can use imbedded SQL to make database I/O, call legacy code, use IBM API's or call IceBreak

API's etc.
· The Response object is prepared to the clients codepage and encoding scheme
· IceBreak sends the response back to the client (6)

The Objects used in the IceBreak server

202 IceBreak

System & Method A/S

When the client (the browser) requests a (X)HTML document from a web server, it will send a request to
the server. The server then receives the response and renders the result in the browser canvas. Let us
follow each of these objects involved in the process from the request to the response.

11.4.3.1 The Request Object:

The Request object contains all data sent from the client. In the HTTP protocol that is the header and
content. The header describes the content which can be either a "Form Object" or an "XML-Object".

· MyVar=QryStr('URLParameter')

· MyVarNum=QryStrNum('NumericURLParameter')

· GetHeader(KeyWord)

· GetHeaderList(Name:Value:'*FIRST' | '*NEXT')

· Form2Ilob(IlobPtr : ‘FormField’);

The Form parser and xml parser are working on the request object:

11.4.3.2 The Form Parser:

The Form Parser initiates automatically when it is a HTML Form-object. The following functions are
available in your ASPX-program:

· Myvar=Form('FormVar');

· MyNumvar=FormNum('FormNumVar');

11.4.3.3 The Session Object

Fact: The Internet is "stateless" and that might be the biggest challenge when migrating existing 5250
applications to browser-based applications. Programs must be designed to process input, produce
output, and then terminate. You cannot have open files or static memory between panels.

The IceBreak server maintains a session with the client by creating a "session cookie." Even if the client
browser is blocking "cookies" a session cookie is normally allowed. Sometimes you have to change the
"allow session cookies" flag in the browser for the applications to work correctly.

If session cookies are not an option, IceBreak also supports “Session stability by URL redirection.” In
this case, the browser is redirected to a specific URL containing a pseudo sub-path which is the session
id. Internally this session id can only be requested from the IP address that created the session. The

203Appendix

System & Method A/S

session sub-path is purely virtual and is removed from any resource reference by the IceBreak server.

Sessions are maintained as long as you want, and you can configure the duration of a session using
the WRKICESVR or WRKXSVR command or from IceBreak’s browser ADMIN page. A session has a very
small "footprint" and uses little system resources.

· Session object functions:

· MyVar = SessGetVar('MyVariable');

· MyVarNum = SessGetVarNum('MyNumericVariable');

· SessSetVar(''MyVariable');

· SessSetVarNum(''MyNumericVariable');

· IlobPtr = SessgetILOB(IlobName);

11.4.3.4 The XML parser:

The XML parser is invoked automatically when the content in the request is a XML-document. That is
when the content-type is set to "text/xml". Now you are ready to access any element or attribute in the
request object by the X-Path syntax.
Example:

· Myvar=XmlGetValue('/element1/element2/element[elementnumber]@anattribute' :
'Defaultvalue');

The Build-in XML parser can also be used directly on stream files, strings and ILOB’s. This is discussed
later.

11.4.3.5 The Server Object:

The server object contains static server information such as the configuration parameters and dynamic
information from the client.

Server object functions:

· MyVar = GetServerVar('AserverVariable');

· PointerToMyVar = GetServerVarPtr('AserverVariable');

See the appendix I for complete list of header values available.

All i5/OS system values are also available by prefixing the system value with "SERVER_SYSVAL_".
like:

DayOfWeek = GetServerVar('SERVER_SYSVAL_QDAYOFWEEK');

The complete list of system values can be found in the i5/OS command WRKSYSVAL. Here are samples
values

Server variable Sysval Description Sample Value

SERVER_SYSVAL_QDAYOFWEEK QDAYOFWEEK The day of week *THU

SERVER_SYSVAL_QTIME QTIME The current time 153856763

11.4.3.6 The Application Object:

One static application object is maintained for each server instance. This object is accessible from all
applications running within this server instance. The Application object is thread safe.

This is implemented as a UserIndex placed in the application library call “ICEAPPLVAR”

204 IceBreak

System & Method A/S

Since it is located in the application library, values are available when deployed.

Application object functions:

· MyVar = ApplGetVar('MyVariable');

· MyVarNum = ApplGetVarNum('MyNumericVariable');

· ApplSetVar('MyVariable':’Text’);

· ApplSetVarNum('MyNumericVariable':1234);

· ApplClrVar('MyVariable');

11.4.3.7 The Response Object:

The Response object contains all data sent from the server to the client. In HTTP protocol this is the
header and content. The header describes the content which can be of any type HTML, XML, GIF, TIF,
PDF, etc. This is the place where you render your dynamic output data with the ASPX syntax.

When the ASPX program quits, IceBreak sends the response to the client.

Response object functions:

· ResponseWrite(Value)

· ResponseWriteNL(Value)

· ResponseNLWrite(Value)

· ResponseEncTrim(Value)

· ResponseWriteILOB(IlobPtr)

· ResponseWriteLanguageMsg(msgid)

· ResponseWriteBLOB(LobLocator)

· ResponseWriteCLOB(LobLocator)

· SetContentType(MimeType)

· SetCharset(CharSet)

· AddHeader('Name' : 'Value')

· SetHeader('Name' : 'Value')

· Redirect('ToUrl')

· SetStatus(Code)

· SetCacheTimeout(Minutes)

· SetEncodingType(*HTML (default) | *XML | *NONE)

· SetMarker (MarkerName : MarkerValue);

· ParseMarker ();

· ResponseRelease();

11.4.3.8 Other function

Some of the IceBreak API functions are not related to any object in the object model. They are,
however; useful when making web-applications:

Miscellaneous atomic function

· MyNum= Num(’12-34/456/789’);

· SetDecimalPoint (DecimalPoint);

· Fld = UrlDecode (UrlField);

· Fld = UrlEncode (UrlField);

· Ok = PutStreamString (Filename: Filemode : Value : Xlate);

· Ok = GetStreamString (Filename:Value : Offset : Length : Xlate);

· Ok = Include (‘FileName ‘);

· Ok = IncludeUrlEncode(‘FileName’);

· Trace (‘TraceData’);

· Mimevar= GetMimeType (‘FileName or extention’);

· SQL_Execute_HTML(Sqlstmt : MaxRows);

· SQL_Execute_XML(Sqlstmt : MaxRows);

· SQL_Execute_JS(Sqlstmt : MaxRows);

· Ok = HttpRequest(ReqUrl:ReqTimeOut:ReqMethod:ReqData:ReqContentType:ReqHeader:eqXlate: RespXlate:RespHeader:RespData);

205Appendix

System & Method A/S

11.4.3.9 Internal Large Objects - ILOB's

Host languages like RPG and COBOL have a limit in program variable size. IceBreak breaks that limit by
utilizing userspaces and associates them to a session. The transfer of data back and forth between
Request object or Response object can be done with help from ILOBS. Also SQL CLOBS and BLOBS can
be mapped to ILOB’s.

Consider a file upload application. When the user hits the “upload” button on a form this data can be
placed in an ILOB up to 2Gbytes. This ILOB can now save itself as a stream file. The XML parser can
parse it or it can be placed into DB/2 CLOB field.

The access to IOB functions are available by including:

/include QASPhdr,ilob

ILOB Functions:

· IlobPtr = ILOB_OpenPersistant(Library : Name);

· Ok = ILOB_DeletePersistant(IlobPtr);

· Ok = ILOB_Read(IlobPtr: String: Offset : Length);

· Ok = ILOB_ReadNext(IlobPtr: String :Length);

· Ok = ILOB_Write(IlobPtr : String :Offset);

· Ok = ILOB_LoadFromBinaryStream (IlobPtr: FileName);

· Ok = ILOB_LoadFromTextStream (IlobPtr: FileName);

· Ok = ILOB_SaveToBinaryStream (IlobPtr: FileName);

· Ok = ILOB_SaveToTextStream(IlobPtr: FileName);

· Ok = ILOB_Append(IlobPtr : String);

· Ok = ILOB_Clear (IlobPtr);

· DataPtr= ILOB_GetDataPtr(IlobPtr);

· Len = ILOB_GetLength(IlobPtr);

· ILOB_SetWriteBinary(IlobPtr; *ON|*OFF);

· ILOB_Close(IlobPtr);

· ILOB_Ilob2Clob(ClobLocator : IlobPtr : Offset : Length);

· ILOB_Clob2Ilob(IlobPtr : ClobLocator : Offset : Length);

ILOB’s are also used for response and request objects in some application server session dispatcher
modes (see later)

11.4.4 Creating Application Server Programs (ASPX):

When an IceBreak server instance is configured, it is assigned a “root path” in the IFS and a
“applications” library. Compiler and recompiles are based on Just-In-Time (JIT) compilation as follows:

1. The “hello.ASPX” applications is placed in the root path.
2. The browser is invoked using an URL that hits the server instance and the hello.ASPX application.

For example, http://MySeries:7001/hello.ASPX
3. If the first file extension is “.ASPX” or “.ASMX”, IceBreak will determine if “HELLO” as an

program object is in the application library.
a. If not, the JIT compiler compiles the hello.ASPX application and runs the program object

from the application library
b. If the hello.ASPX application exists, the system checks to see if the source has been modified

since this object creation timestamp
i. If Yes, the JIT compiler re-compiles the hello.ASPX and runs the program object from

the application library.
ii. If No, the hello.ASPX program object is just run from the application library.

If the compiler fails to produce an executable, IceBreak formats the compiler post list to HTML and
returns the page to the browser. Since the compile failed, IceBreak does not run the application.

If the IceBreak server instance is a “production” instance, it will call the application immediately and

206 IceBreak

System & Method A/S

ignore the JIT compiler.

11.4.4.1 Compile and run

The precompiler looks up the first file extension in build-in MIME table (Physical file MIM00).

There are three types of extensions that will trigger a program: .RPGLE .ASPX and .ASMX.

The .RPGLE and .ASPX will be compiled into a “plain” *PGM object.

The .ASMX is used as WebServices and result in a *SRVPGM (service program). See WebServices later.

11.4.4.2 ASPX program files - Normal web application programs

When the precompiler is invoked it goes through the .ASPX source stream file and separates the code
and the response object data from each other. The code fragments are left (almost) unchanged but the
response data is placed in method call on the response object namely Response.Write(“..”);

Since RPG and COBOL do not understand the Response object, it is accessed by the ResponseWrite(“…”);
API wrapper function in IceBreak. The new source is placed in a source physical file called “QASPSRC” in
the application library with a member name the same as the source stream file (first 10 characters).

A program module is then created with the corresponding native CRTRPGMOD, CRTSQLRPG etc.
commands depending on the “language=” compiler directive. (see later) The final program is created
with the CRTPGM command where the service program SVC200, IceBreak server core, and call back
procedures are bound to the final program resulting in the response data being placed as literal
constants in the *PGM object. For this reason, the only object required at runtime is the *PGM object
and the IceBreak server.

11.4.4.3 ASMX program files - WebServices

When the precompiler is invoked it goes through the .ASMX source stream file and separates the code
and the response object data from each other. For each procedure a prototype is created and the special
parameter keywords “Input”, “Output” or “InOut” are the removed from the procedure interface. The
“Input”, “Output” and “InOut” keywords are IceBreak extensions to the parameters in the RPG procedure
interface declarations.

A Special procedure wrapper is generated that:

1) Calls the X-path functions and pulls all input parameters from the SOAP body.
2) Calls the exported WebServices procedure.
3) Constructs the response XML SOAP document with response.write wrapper calls.

This wrapper procedure has the same name as the target procedure suffixed by a “_”. The IceBreak
server is calling this wrapper procedure when hit by a WebService request.

The new source is placed in a source physical file called “QASPSRC” in the application library with a
member name the same as the source stream file (first 10 characters).

The procedure headers are placed in a file called “QSOAPHDR” in the application library with a member
name the same as the source stream file (first 10 characters). So the WebService can be used as a
“normal” service program as well.

A WSDL file is produced containing the complete WebService definition for all exported procedures in the
RPG program. The name is the same as the .ASMX file but with the .WSDL extension. This file is served
when the WebService is called with ?WSDL from and URL like:

http://MySeries:7001/MyWebService.ASMX?WSDL

A program module is then created with the corresponding native commands such as CRTRPGMOD,
CRTSQLRPG etc. depending on the “language=” compiler directive. (See later)

207Appendix

System & Method A/S

The final service program is created with the CRTSRVPGM where the service program SVC200, IceBreak
server core, and call back procedures are bound to the user written WebService service program. This
means that all response data, SOAP header, SOAP body, is actually placed as literal constants in the
*SRVPGM object and for that reason the only object required at runtime is the *SRVPGM object and the
IceBreak server.

IceBreak is dynamic loading, linking and procedure resolving the service program/ procedure containing
the webservice to the IceBreak server core at runtime. This is similar to DLL under Windows.

WebServices created in this manner can also be accessed by Microsoft DCOM by creating an IceBreak
server instance for the same application library with a server type *SVC and installing the IceBreak
DCOM proxy on any accessible windows server in the network. I.e. Any System i service program built
that way can act as a Microsoft DCOM object.

11.4.4.4 Program activation group

When an ASPX program runs, by default it inherits the IceBreak server default activation group. So if the
user application terminates uncontrolled, IceBreak is able to recover from that error and send the joblog
back to the user.

When such error occurs the response status is automatically set to 501 – “Internal server error.”
Otherwise the response status is set to 200, which is “OK”. The Status can however be overridden by the
SetStatus(); response object function.

The server instance program SVC019 is bound to the application server service program SVC200. Also
the user application is also bound to SVC200 which makes the call stack very thin.

208 IceBreak

System & Method A/S

.

11.4.5 Dispatcher methods

IceBreak has four different ways to run an application. Each server instance can be configured to run one
of these:

Dispatcher Method Scalability Design considerations Application
isolation

Application pooling High Yes – Clearing of fields / resetting files
required

Low

Session persistent
process

Low None – File pointers / SQL commit
boundaries are preserved

High

Multi process Medium Yes - Session may continue in a new
process

High

Single session High/Low For Debug and data-queue like
WebServices

Low

The one you pick depends on the requirements for your application.

11.4.5.1 Session persistent process

Each client request results in one process that remains active until the session times out or is
disconnected. The process remains active even if the socket connection is physically terminated.

File pointers and variables are preserved when using “return.” The explicit need of interaction with the
session object by SessSetVar and sessGetvar is not necessary.

209Appendix

System & Method A/S

 Session persistent process

11.4.5.2 Application pooling

The pool is loaded when the server instance is started, that is the number of pre-established process is
started. When the client connects, simple stream files are served by the connection thread. When it is
an application, the first available application server instance in the pool receives the request. If none is
available a new is started.

Programs written for connection pooling have to re-initialize variables and reset file pointers between
each request since the client may change for the next request.

Explicit need of interaction with the session object by SessSetVar and sessGetvar is required to keep
tract of the session.

210 IceBreak

System & Method A/S

 Application pooling

11.4.5.3 Multi Process

When the client connects, all requests are served by the application process. This process is alive as long
as the socket is connected. The session object, however is maintained until the session times out or the
session is disconnected

Programs written for “multi process” pooling have to re-initialize variables and reset file pointers between
each request since the socket may be closed by network equipment or the browser does not support
“keep connection.”

Explicit need of interaction with the session object by SessSetVar and sessGetvar is required to keep
tract of session.

211Appendix

System & Method A/S

 Multi process

11.4.5.4 Single Session

When the client connects, the connection is established by the dispatcher directly. The dispatcher does
not dispatch anything but calls the application directly.

This is useful for debugging purposes since the job number does not change for the server. It is also
suitable for WebServices that use the “dataqueue” style. The client requests are queued in the socket
layer and processed one at a time.

File pointers, variables and SQL commit boundaries are preserved but explicit need of interaction with
the session object by SessSetVar and sessGetvar is required to keep tract of session. For the same
reason you might need to reset file pointer, variables, etc between request depending on the application
type.

 Single session

212 IceBreak

System & Method A/S

11.4.6 Programming

11.4.6.1 ASPX File Identification

1.An .ASPX file, like a .JSP file, is a blend of response document in XHTML, XML or HTML and program
code.

2.You toggle between ASPX code and render the response document with the escape sequence <% and
%>.

3.The ASPX code is inside the escape sequence tags <% and %> and the rendered mode is outside the
escape sequence tags.

4.The programming language (script language) can not be determined from the file extension .ASPX. An
.ASPX files is interpreted as an XHTML file until the <% %> escape sequence tags are encountered.

5.If the first character of the escape sequence is the @ sign, it is interpreted as a compiler/runtime
directive:

 <%@ language=”RPGLE” %>

6.Each compilation step has its own parameter string:
a.SQLOPT – if imbedded SQL is used
b.MODOPT – for the CRTxxMOD command
c. PGMOPT – for CRTPGM or SRTSRVPGM command

7.If the “language” directive is omitted, the default language is “RPG”
8.Following values are valid for parameter language:
a.RPGLE
b.SQLRPGLE
c. CBLLE
d.SQLCBLLE
e.CLLE
f. CLE
g.SQLC

11.4.6.2 ASPX File parsing

A simple ASPX program:

<%@ language=”RPGLE” %>
<html>
 <p>Hello world</p>
</html>
<% return; %>

1.The parsing starts in render mode but the first character encountered is the <% escape sequence for

ASPX code. The first non-blank character is the @ sign which identifies it as a compiler directive. This
means that any keyword and value are valid.

2.Next the compiler directive is terminated by the %> escape sequence which puts the code back into
render mode. The rest is plain XHTML syntax.

3.On the last line, the <% escape sequence toggles back to ASPX code mode until a %> escape
sequence is encountered which ends the ASPX file.

213Appendix

System & Method A/S

11.4.6.3 How to place dynamic data at runtime

There are two types of variables in IceBreak and the syntax is different.

1. Direct program variables are identified by the “=” sign as the first non-blank character in the
ASPX code stream:

<% = MyProgramVar %>

The value must be in character format so packed, zoned, time and timestamp etc. data types must be cast

into character format using the %char() RPG build-in-function.

This syntax also applies for return values from function calls.

Example:

<%@ language=”RPGLE” %>
<html>
 <p>Hello world. Time is <% = %Char(%TimeStamp()) %></p>
</html>
<% return; %>

2. Marker variables are identified by the "$" sign as the first non-blank character in the ASPX code
stream:

<% $ MyMarkerVar %>

The value must be in character format so packed, zoned, time and timestamp etc. data types must be cast

into character format using the %char() RPG build-in-function.

Markers are dynamic variables defined and used at runtime.

Example:

<%@ language=”RPGLE” %>
<% SetMarker(‘timeValue’: %Char(%TimeStamp()); %>
<html>
 <p>Hello world. Time is <%$ timeValue %></p>
</html>
<% return; %>

11.4.6.4 Remarks

Remarks can be stated in 3 ways:

· If the parser is in ASPX CODE mode and finds a /*, any following code and XHTML is rendered in
remark color and not syntax checked until a */ is found again

· If the parser is in ASPX CODE mode and finds //, the rest of the line including XHTML is rendered in
remark color and not syntax checked.

· If the first char in the line is a * or blank + *, the rest of the line including XHTML is rendered in
remark color and not syntax checked.

Example:

<%@ language=”RPGLE” %>

214 IceBreak

System & Method A/S

<html>
 <p>Hello world. Time is <% /* = %Char(%TimeStamp()) */ %></p>
</html>
<% // Now terminate the program
 Return; %>

11.4.6.5 IceBreak language enhancements

There have been a few powerful enhancements made to the ILE languages. These include the following:

RPG:
· Code is by default in free format if selected on the server instance
· Free format code may start in position 1
· Fixed format spec. can start in any position. IceBreak will align the code to column 6.
· Block comments start with /* and ending with */
· Keywords “Input”, “output” and “inout” are allowed for procedure interfaces and used with

WebSevices.
· “Var” macro for building D-spec in free format
· SQL can be written from free format even on I5OS/v5.1 like:

//' ---
//' Fetch - is retrieving the next row from the result set
//' ---
Begsr Sql_Fetch;

 Exec SQL
 Fetch list into :recds;

 Exsr Sql_Monitor;
Endsr;

11.4.6.6 I18N - internationalization

IceBreak supports internationalization (‘I’ + 18 letters + ‘N’). The precompiler searches for the ^
character in XML/HTML/XHTML and .ASPX source. When found, the rest of the string until a “ or an ‘ is
found is stored in the I18N_DFT message file in the application library.

A string sequence for xhtml/xml/html can be made by encapsulate the text into brackets [and].

IceBreak stores the unique message id for that string instead of the text string itself. By creating new
message files suffixed by the selected language from the browser, any .ASPX page will select the
according language. However, when the message file or message id is not found, the text from the
default message file I18N_DFT is displayed

i.e if the browser is set to use the following languages:

215Appendix

System & Method A/S

That is Danish, then Canadian English and final generic English. The IceBreak will search the messages in
the following order:

I18N_DA Danish
I18N_EN_CA Canadian English
I18N_EN generic English
I18N_DFT Default language

Example:

<%@ language=”RPGLE” %>
<%
//' Translation can occure at paragraphs or any other html/xml tag
//' the translation continues until next tag occures ... like:
%>

<p>^Text</p>
<%
 /*' Also Transtaltion can occure at attribute values between ".." and '..'*/
%>
<input type="Button" value="^Ok">
<input type="Button" value='^Submit'>
<%
 /*' Finally you can let the translation span over many tags starting with ^[and end with]
 ' however, expantion of ASPX-variavbes are not valid in translation */
%>

<p>^[This text contains bold tag, but i'll like to have it all in the
translation messages file]</p>

<% return %>

11.4.6.7 AJAX

All server instances have a “/system” directory. This directory includes “ajax.js” which is a simple yet
power full AJAX implementation which allows the user to create AJAX applications with a minimum of
JavaScript knowledge.

This example shows an html file that request “ajaxserver.ASPX” when you click the button:

· Line 2 : the AJAX script is loaded;
· Line 7 : ASPX program “ajaxServer.ASPX” is called. We want the response in “MyResult”
· Line 8 : “MyResult” is the id of an “Div” tag. The inner HTML is replaced asynchronous by the response

of “ajaxServer.ASPX”

216 IceBreak

System & Method A/S

<html>
<link rel="stylesheet" type="text/css" href="/System/Styles/IceBreak.css"/>
<script language="JavaScript1.2" src="/System/Scripts/ajax.js"></script>
<body>
 <input type=button
 value='Click here to run the Ajax request'
 onclick="adAjaxCall('myresult','ajaxServer.ASPX?manuid=SONY');"/>
 <div id=myresult></div>
</body>
</html>

This is the “ajaxserver.ASPX” that returns a table content depending on the URL parameter. The Ajax will
replace the “div” tag with id “myresult” with the result of the ASPX response object which will be a table
component.

<%
F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++
+++++++++Comments++++++++
Fproduct1 if e k disk
D pmanuid s like(manuid)

/free
*inlr = *on;
pmanuid = qrystr('manuid');
%>
<table>

<%
 chain pmanuid productr;
 dow not %eof(product1) and manuid = pmanuid;
%><tr>
 <td><% = prodid %></td>
 <td><% = desc %></td>
 </td>
<%
 read productr;
 enddo;
%>
</table>

11.4.7 IceBreak Macros

IceBreak Macros can be simple macros that just expand at compile time. But macros can also be
REXX-scripts which are run at compile time.

COBOL:
Since COBOL has a poor implementation of user function, macros are used. Macros are one line of code
terminated by and “;” . Macros are stored in /system/Macros/macros.xml. End users can write generic
macros by adding the macro to this XML file.

Example:

217Appendix

System & Method A/S

Main section.

Do.

 MyCustNo = Request.Form("CustNo");
 Move MyCustNo to CustNo of CustRec.

Enddo.
 exit.

This will expand to:

Example:

Main section.

Do.

 call procedure "Request_Form" using
 reference MyCustNo
 content “CustNo”
 end-call

 Move MyField to CustNo of CustRec.

Enddo.
 exit.

11.4.7.1 Using the simple macros

The IceBreak precompiler predefines the following REXX variables:

· $RETURNPARM

o The name of the left side parameter used in function like macros: x=MyMacro(). here $RETURNPARM

will be "X"
· $PARM01 to $PARM99

o The parameter from the macros e.g.: MyMacro(Customer,Item) $PARM01 is "Customer" and

$PARM02 is "Item"

· $STMTNO

o The ASPX-Source statement where the macro was found

· $FILENAME

o The ASPX-Source filename

11.4.7.2 Using script macros

Script Macros are expanded into the ASPX-source by using "expand"
IceBreak-REXX-build-in-function”.

The IceBreak precompiler predefines the following REXX variables:

· RETURNPARM

o The name of the left side parameter used in function like macros: x=MyMacro(). here

RETURNPARM will be "X"

· PARM01 to PARM99

o The parameter from the macros e.g.: MyMacro(Customer,Item) PARM01 is "Customer" and

218 IceBreak

System & Method A/S

PARM02 is "Item"
· STMTNO

o The ASPX-Source statement where the macro was found
· FILENAME

o The ASPX-Source filename

When using if/while comparison always embed the script in CDATA tags to avoid XML
misinterpretation.

Syntax
The generic syntax of the macro is:

 returnparm = macroname(parm01, parm02 , parm03 ... parm99);

where ";" is the macro identifier

Macros are NOT case sensitive.
All programming languages have a separate pool of macros. However SQL versions of the
language shares the same pool as their host language.
A "Macroidentifier" can be specific for each language.

The "Macroidentifier" must be one char that is unique and not used in the language context.

11.4.7.3 Macro list

Default Macro definitions.

<MacroDefinitions>
 <language type="RPGLE" MacroIdentifier="." ParameterMarker="$">

 <macro name="var" type="buildin"/>

 <macro name="SmallScriptMacro" type="script"><![CDATA[
 expand(RETURNPARM '=' PARM01 '+' PARM02);
]]></macro>

 </language>

 <language type="CBLLE" MacroIdentifier=";" ParameterMarker="$">

 <macro name="Request.Form" type="simple">
 call procedure "Request_Form" using
 reference $RETURNPARM
 content $PARM01
 end-call
 </macro>

 <macro name="Request.FormNum" type="simple">
 call procedure "Request_FormNum" using
 reference IcebreakFloat
 content $PARM01
 end-call
 move IcebreakFloat to $RETURNPARM
 </macro>

 <macro name="Request.QueryString" type="simple">
 call procedure "Request_QueryString" using
 reference $RETURNPARM

219Appendix

System & Method A/S

 content $PARM01
 end-call
 </macro>

 <macro name="Request.QueryStringNum" type="simple">
 call procedure "Request_QueryStringNum" using
 reference IcebreakFloat
 content $PARM01
 end-call
 move IcebreakFloat to $RETURNPARM
 </macro>

 <macro name="Response.Include" type="simple">
 call procedure "Response_Include" using
 reference $RETURNPARM
 content $PARM01
 end-call
 </macro>

 <macro name="Response.SetNoHeader" type="simple">
 call procedure "SetNoHeader"
 end-call
 </macro>

 <macro name="Response.Write" type="simple">
 call procedure "Response_Write" using
 content $PARM01
 end-call
 </macro>

 <macro name="Response.SetCharset" type="simple">
 move $PARM01 to IceBreakVarCharString
 move 16 to IceBreakVarCharLen
 call procedure "SetCharset" using
 IceBreakVarChar
 end-call
 </macro>

 </language>

 <language type="DEMO" MacroIdentifier=";" ParameterMarker="$">
 <!-- implementing the formnum as a script - this has however some performance overhead
-->
 <macro name="formnum" type="script">
 expand(' call procedure "Request_FormNum" using');
 expand(' reference IcebreakFloat');
 expand(' content ' PARM01);
 expand(' end-call');
 expand(' move IcebreakFloat to ' RETURNPARM);
 </macro>
 </language>
</MacroDefinitions>

220 IceBreak

System & Method A/S

11.4.8 Security Considerations in IceBreak

There are basically 3 ways you can present IceBreak applications to the WEB.

What solution to select, is a normally a matter of company policy in relation to security issues.

1) The application has direct access to the WEB
2) The application will communicate through an Apache Server (Internal or External)
3) The application will communicate through a Secure Web server

Confidentiality is a major goal in security. Using encryption functions, such as Secure Sockets Layer
(SSL), you can ensure that network traffic cannot be read by an unauthorized user while in transit.
See 7.4

11.4.8.1 Direct Access

Considerations
All networked systems should be secured
to control remote access

 - Access to IFS
 - Telnet
 - FTP
 - ODBC/JDBC
 - Remote commands

· Standard I5/OS (OS/400) security features can be used
· IceBreak provides user log on features
· All jobs in the session then run under the signed on user's profile allowing standard i5/OS (OS/400)

security features to apply
· Dynamic menus with options dependent upon the logged on user can be devised
· ASPX programs run on the server, not in the browser
· Access to data is controlled by ASPX program
· End users do not have direct access to data on the server
· Only the HTML created by the ASPX program is sent to the browser, users cannot see the program

code, file names, or other elements of the business
· Compiled objects on the IBMi cannot be manipulated.

221Appendix

System & Method A/S

11.4.8.2 Apache Server

The application can communicate through an Apache Server (Internal or External)

Secure your IceBreak application by use of the well proven Apache Technology.

IBM® embraced the widely popular open-source Apache server several years ago as the Hypertext
Transfer Protocol (HTTP) server of choice for its Web products.

The foundation of any On Demand Business application is the Web server, and IBM has made a
significant investment in Apache to be that foundation. The broad investment in Apache across IBM's
product offerings allows Web developers to leverage existing Apache skills and software to build
applications for commercial use. This does also apply for IceBreak

Considerations
See the IBM Redbook:

http://www.redbooks.ibm.com/redbooks/pdfs/sg246716.pdf

222 IceBreak

System & Method A/S

11.4.8.3 Secure Web Server

Communicate through a Secure Web server.
Set up a server on the Web that supports one or more of the major security protocols such as SSL,
HTTPS and PCT.

This means that e.g. order form data from your browser is encrypted before being sent (uploaded) to the
Web site, making it extremely difficult for a third party to decipher credit card numbers and other
sensitive data that it might fraudulently capture.

Considerations:
See the IBM Redbook:

http://www.redbooks.ibm.com/redbooks/pdfs/sg246716.pdf

11.4.8.4 Secure Sockets Layer (SSL)

Confidentiality is a major goal in security. Using encryption functions, such as Secure Sockets Layer
(SSL), you can ensure that network traffic cannot be read by an unauthorized user while in transit.

SSL is widely used to do two things: to validate the identity of a Web site and to create an encrypted
connection for sending credit card and other personal data. Look for a lock icon at the bottom of your
browser when you order merchandise on the Web. If the lock is closed, you are on a secure SSL.

223Appendix

System & Method A/S

HTTPS and Port Number 443
An SSL session is started by sending a request to the Web server with an HTTPS prefix in the URL, which
causes port number 443 to be placed into the packets. Port 443 is the number assigned to the SSL
application on the server.

The Handshake
After the two sides acknowledge each other, the browser sends the server a list of algorithms it
supports, and the server responds with its choice and a signed digital certificate. From an internal list of
certificate authorities (CAs) and their public keys, the browser uses the appropriate public key to validate
the signed certificate. Both sides also send each other random numbers. Contact you local dealer for
more details on certificates.

Data for Secret Keys Is Passed
 The browser extracts the public key of the Web site from the server's certificate and uses it to encrypt a
pre-master key and send it to the server. At each end, the client and server independently use the
pre-master key and random numbers passed earlier to generate the secret keys used to encrypt and
decrypt the rest of the session.

224 IceBreak

System & Method A/S

Appendix I – Server variables available.

Server variable Description Sample Value

SERVER_SOFTWARE The name and version of the running server
IceBreak/V1R11BLD008
1

SERVER_ID Name of current server instance ICEUDV

SERVER_DESCRIPTION Description of the server instance Test for pre installation

SERVER_LOCAL_PORT
The TCP/IP port number (from 1 to 65535)
where the server is polling for requests

60001

SERVER_INTERFACE
The TCP/IP interface where the server is
listening for requests. (Interface created by
OS/400 command ADDTCPIFC)

*ANY

SERVER_JOB_NAME The underlying OS/400 job name FAXUDV

SERVER_JOB_USER
The underlying OS/400 job user name (not
the active user)

IB

SERVER_JOB_NUMBER
The underlying OS/400 job internal job
number

509556

SERVER_JOB_MODE
The state of the server: "*PROD" or
"*DEVELOP"

*DEVELOP

SERVER_LOGON_REQUIRED
An authentication prompt is automatically
displayed when the user request the page
and are "unknown" (Not available yet)

*NO

SERVER_STARTUP_TYPE
Whether the server should start when the
subsystem is activated or must be started
by STRICESVR or STRXSVR

*AUTO

SERVER_DEFAULT_USERPRO
FILE

The user profile used when starting a server
instance process

IB

SERVER_ROOT_PATH
The IFS path used for web document. This
can not be relative but is fixed to the
IFS-root

/www/Icebreak

SERVER_DFT_DOC
The web document displayed when no
specific document is requested. This is
relative to the SERVER_ROOT_PATH

Index.ASPX

SERVER_CACHE_TIMEOUT

Number of seconds before a document
expires. 0=immediately.
Servers in *DEVELOP mode always
overrides this value to 0 so the cache
always is refreshed

240

SERVER_INPUT_BUFFER_SIZ
E

Number of bytes in the input buffer (the
Request Object).
When zero a default of 1Mbytes is used

0

SERVER_OUTPUT_BUFFER_S
IZE

Number of bytes in the output buffer (the
Response Object).
When zero a default of 1Mbytes is used

0

SERVER_COOKIE_BUFFER_S
IZE

Number of bytes in the output buffer (the
Response Object).
When zero a default of 64Kbytes is used

0

SERVER_INITIAL_PGM_NAM
E

Name of program to set extra libray list etc.
It is called when the server instance is
initiate - Not each time a new client
connects
or *NONE

SERVER_INITIAL_PGM_LIB
Name of library where the initial program
exists

SERVER_JOBQ_NAME The jobqueue from where the server

225Appendix

System & Method A/S

Server variable Description Sample Value

process is started

SERVER_JOBQ_LIB Name of library where the jobqueue exists"

SERVER_APPLICATION_LIB

This is where all your ASPX-programs are
placed when they are compiled.
This is where the QASPSRC file is created
with your precompiled ASPX-program
sources

ICEDEV

SERVER_TGTRLS OS/400 version V5R1M0

SERVER_TRACE_FILE

The name of the trace file created when
TRACE=*ON When blank, the file name
defaults to Trace.txt in the
SERVER_ROOT_PATH

trace.txt

SERVER_SESSION_TIMEOUT
Number of seconds before the session
automatically is terminated
Default is 1440 seconds

1440

SERVER_SESSION_ID
The Unique Session Timestamp-id; also it is
the time when the session was started

2006-07-27-15.37.29.5
16500

SERVER_SESSION_NUMBER
The Unique Session number; Also it is the
job number of the first lightweight job that
initiated the session

516500

SERVER_SYSTEM_NAME
The system name from the network
attribute

DKEXP03

REMOTE_ADDR
The remote TCP/IP address of the client
web browser

192.168.5.3

REMOTE_PORT
The remote TCP/IP port number negotiated
by the TCP/IP layer

1892

REQUEST_HOST_NAME
The TCP/IP address or name for the
requested server

dkexp03

REQUEST_METHOD

The method the document was requested:
GET parameters is parsed along the URL
POST Parameters are parsed in the form
object

GET

REQUEST_HEADER The complete header string

Accept: image/gif,
image/x-xbitmap,
image/jpeg,
image/pjpeg,
application/x-shockwave
-flash,
application/vnd.ms-exce
l,
application/vnd.ms-pow
erpoint,
application/msword, */*
Referer:
http://dkexp03:60001/t
utorials/Tutorials.ASPX?t
opic=ex01server.ASPX&
desc=GetServerVar()
Accept-Language:
da,en;q=0.5
Accept-Encoding: gzip,
deflate User-Agent:
Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT
5.1; SV1; .NET CLR
1.1.4322; .NET CLR
2.0.50727) Host:
dkexp03:60001
Connection: Keep-Alive
Cookie:

226 IceBreak

System & Method A/S

Server variable Description Sample Value

sys_sesid="2006-07-27
-15.37.29.516500";
sys_sesid="2006-07-27
-15.37.29.516500";
iNavigate__2=1

REQUEST_RAW
The complete request, excluding the content

GET
/tutorials/ex01server.AS
PXHTTP/1.1 Accept:
image/gif,
image/x-xbitmap,
image/jpeg,
image/pjpeg,
application/x-shockwave
-flash,
application/vnd.ms-exce
l,
application/vnd.ms-pow
erpoint,
application/msword, */*
Referer:
http://dkexp03:60001/t
utorials/Tutorials.ASPX?t
opic=ex01server.ASPX&
desc=GetServerVar()
Accept-Language:
da,en;q=0.5
Accept-Encoding: gzip,
deflate User-Agent:
Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT
5.1; SV1; .NET CLR
1.1.4322; .NET CLR
2.0.50727) Host:
dkexp03:60001
Connection: Keep-Alive
Cookie:
sys_sesid="2006-07-27
-15.37.29.516500";
sys_sesid="2006-07-27
-15.37.29.516500";
iNavigate__2=1

REQUEST_CONTENT The content string

QUERY_STRING
Parameters sent along the GET or POST
request after the document. The URL in the
browser

Part

XII

228 IceBreak

System & Method A/S

12 Acknowledgements

IceBreak core

Copyright (C) 2004-2010 System & Method A/S

IceBreak core also ships with the following third party library. The IceBreak team acknowledges the
Licence terms and conditions

ZLIB

 Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

 This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.

 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.

 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly jloup@gzip.org
 Mark Adler madler@alumni.caltech.edu

Read more on http://zlib.net/

Index 229

System & Method A/S

Index

- < -
<select> 166

- A -
administrator 165

API 168

authority 169

authorization 165

- C -
check object 169

- D -
data structure 167, 168

disabled=disabled 166

DNS 170

DropDown 171, 172

dropdown list 166

- E -
exists 167

- F -
FieldListOpen 167

FieldListRead() 167

- H -
host name 170

HostName 170

HtmlExtend 166

- I -
IFS 167

IP address 170

- K -
kapital letters 167, 170

key 166

keywords 166

- L -
library 167

list of member names 168

lowercase 167, 170

- M -
MBRL0100 168

MBRL0200 168

MBRL0310 168

MBRL0320 168

MBRL0330 168

MemberListOpen 168

MemberListRead 168

- O -
object type 169

ObjectExists 169

ObjectListOpen 169

ObjectListRead 169

OBJL0100 169

OBJL0200 169

OBJL0300 169

OBJL0400 169

OBJL0500 169

OBJL0600 169

OBJL0700 169

onblur 166

OS/400 168, 169, 170

OverrideProcessing 168

- Q -
QUSL010003 169

QUSL0200 168

QUSL020002 169

IceBreak230

System & Method A/S

QUSL030000 169

QUSL0400 169

QUSL0500 169

QUSL0600 169

QUSL0700 169

quslmbr 168

QUSLOBJ 169

- R -
response object 166

ReverseDNSlookup 170

rights 165

- S -
SQL 166

STMF 167

stream file 167

- U -
uppercase 167, 170

User profile 170

UserExists 170

231

System & Method A/S

	Getting started
	First Step
	Prerequisites for installation
	Introducing IceBreak

	Basic Features
	Response object
	Placing runtime data in a HTML document
	Placing runtime data using "Markers"
	Dynamically including stream files
	Sending the response back to the client
	Trimming the response object

	Request object
	The "Form" function
	Using the "FormNum()" function

	Using the "QryStr" function to parse parameters along the URL
	The "QryStrNum" Function

	Server object
	Controlling the HTTP Header
	Retrieving Server Information
	System Global Variables

	Session object
	Session management
	Log on to an icebreak session

	Server behaviour
	Setting up HTTPS
	Use the pre-request exit program

	Building applications
	Debugging IceBreak applications
	Using compiler directives
	How to include external resources
	A simple database application
	Database maintenance application
	Split your program logic and design into separated files
	Writing and reading stream files
	AJAX Async JavaSript and XML
	Creating XML files Dynamically
	Inter process communication
	Uploading files to a IceBreak server
	Controlling the state of a "CheckBox"
	Mixing Jave-Script and RPG
	VB-Scripting. Merge i5/OS data into a MS-Word document
	Using keyCodes (SPAM Prevention)
	Using COBOL as ASPX programming language
	Using Legacy RPG fixed form code

	Internal Large Objects - ILOB's
	ILOB's - Internal Large Objects
	ILOB's and SQL
	ILOB's with IBM supplied API's
	ILOB's, httpRequest and XML
	ILOB's secures your streamfile upload to your IceBreak server
	ILOB's in WebServices

	SQL
	Using embedded SQL
	SQL - Producing a list using a cursor
	SQL to the ResponseObject

	XML, Webservices and proxies
	WebServices - the easy way
	Using arrays in webservices
	Using external described datastructures in webservices

	Using Proxy. Making HTTP request to web servers
	Using the built-in XML Parser on the request object
	Using the built-in XML Parser on a string or stream file
	ILOB's, httpRequest and XML (SOA components)

	OEM, Bundle IceBreak
	Ship IceBreak allong with your product (COPY)

	Using JAVA
	Java as the host language
	Accesing remote data bases with JDBC

	Utilities
	Introduction
	Bind to IceUtility
	Prototyping

	Functions
	Administrator();
	Disabled(disable);
	DropDown(TagName: SqlCmd {:SelectedValue} {: HtmlExtend});
	exists(varying);
	FieldListOpen(Library: File);
	FieldListRead();
	LowerCase(varying);
	MemberListOpen(Library: File: Member {:Format} {:OverrideProcessing});
	MemberListRead();
	ObjectExists(Library: Object: ObjectType);
	ObjectListOpen(Library: Object: Type {: Format});
	ObjectListRead();
	ReverseDNSlookup(IP address);
	UpperCase(varying);
	UserExists(UserProfile);

	Samples
	DropDown sample
	HTML code
	RPGLE code

	Administration menu
	Work with servers
	SQL prompt
	Application wizard
	Component wizard
	Sencha Touch Component Wizard
	Source file browser
	Services
	Web TAPI
	Web printers

	Frameworks
	Display current server
	Display current header info
	Display all servers
	Display joblog
	Display job
	Display trace
	Authorization
	Subsystem configuration
	Your information
	License information
	Build history log
	Open projects log

	Appendix
	Intergration to BlueSeries
	Internal relation between CCSID and encoding schemes
	Manual Installation
	Technical decumentations
	What is IceBreak
	Application Server Programs as a concept
	The Object model
	The Request Object:
	The Form Parser:
	The Session Object
	The XML parser:
	The Server Object:
	The Application Object:
	The Response Object:
	Other function
	Internal Large Objects - ILOB's

	Creating Application Server Programs (ASPX):
	Compile and run
	ASPX program files - Normal web application programs
	ASMX program files - WebServices
	Program activation group

	Dispatcher methods
	Session persistent process
	Application pooling
	Multi Process
	Single Session

	Programming
	ASPX File Identification
	ASPX File parsing
	How to place dynamic data at runtime
	Remarks
	IceBreak language enhancements
	I18N - internationalization
	AJAX

	IceBreak Macros
	Using the simple macros
	Using script macros
	Macro list

	Security Considerations in IceBreak
	Direct Access
	Apache Server
	Secure Web Server
	Secure Sockets Layer (SSL)

	Acknowledgements

