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Chapter 1

Introduction

IDAS is part of a software family called suNDIALS: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [26]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these
with sensitivity analysis capabilities, CVODES and IDAS.

IDAS is a general purpose solver for the initial value problem (IVP) for systems of differential-
algebraic equations (DAEs). The name IDAS stands for Implicit Differential-Algebraic solver with
Sensitivity capabilities. IDAS is an extension of the IDA solver within SUNDIALS, itself based on
DASPK [7, 8]; however, like all SUNDIALS solvers, IDAS is written in ANSI-standard C rather than
FORTRANT77. Its most notable features are that, (1) in the solution of the underlying nonlinear system
at each time step, it offers a choice of Newton/direct methods and a choice of Inexact Newton/Krylov
(iterative) methods; (2) it is written in a data-independent manner in that it acts on generic vectors
and matrices without any assumptions on the underlying organization of the data; and (3) it provides
a flexible, extensible framework for sensitivity analysis, using either forward or adjoint methods. Thus
IDAS shares significant modules previously written within CASC at LLNL to support the ordinary
differential equation (ODE) solvers CVODE [27, 15] and PVODE [11, 12], the DAE solver 1DA [30] on
which IDAS is based, the sensitivity-enabled ODE solver CVODES [28, 42], and also the nonlinear system
solver KINSOL [16].

At present, IDAS may utilize a variety of Krylov methods provided in SUNDIALS that can be used
in conjuction with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [41],
FGMRES (Flexible Generalized Minimum RESidual) [40], Bi-CGStab (Bi-Conjugate Gradient Stabi-
lized) [44], TFQMR (Transpose-Free Quasi-Minimal Residual) [23], and PCG (Preconditioned Con-
jugate Gradient) [24] linear iterative methods. As Krylov methods, these require little matrix storage
for solving the Newton equations as compared to direct methods. However, the algorithms allow
for a user-supplied preconditioner matrix, and, for most problems, preconditioning is essential for an
efficient solution.

For very large DAE systems, the Krylov methods are preferable over direct linear solver methods,
and are often the only feasible choice. Among the Krylov methods in SUNDIALS, we recommend
GMRES as the best overall choice. However, users are encouraged to compare all options, especially
if encountering convergence failures with GMRES. Bi-CGFStab and TFQMR have an advantage
in storage requirements, in that the number of workspace vectors they require is fixed, while that
number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage in
that it is designed to support preconditioners that vary between iterations (e.g. iterative methods).
PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

IDAS is written with a functionality that is a superset of that of IDA. Sensitivity analysis capabili-
ties, both forward and adjoint, have been added to the main integrator. Enabling forward sensitivity
computations in IDAS will result in the code integrating the so-called sensitivity equations simultane-
ously with the original IVP, yielding both the solution and its sensitivity with respect to parameters
in the model. Adjoint sensitivity analysis, most useful when the gradients of relatively few functionals
of the solution with respect to many parameters are sought, involves integration of the original IVP
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forward in time followed by the integration of the so-called adjoint equations backward in time. IDAS
provides the infrastructure needed to integrate any final-condition ODE dependent on the solution of
the original IVP (in particular the adjoint system).

There are several motivations for choosing the C language for IDAS. First, a general movement away
from FORTRAN and toward C in scientific computing was apparent. Second, the pointer, structure,
and dynamic memory allocation features in C are extremely useful in software of this complexity,
with the great variety of method options offered. Finally, we prefer C over C++ for IDAS because of
the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease of
interfacing the solver to applications written in extended FORTRAN.

1.1 Changes from previous versions

Changes in v3.0.0

IDAS’ previous direct and iterative linear solver interfaces, IDADLS and IDASPILS, have been merged
into a single unified linear solver interface, IDALS, to support any valid SUNLINSOL module. This
includes the “DIRECT” and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type.
Details regarding how IDALS utilizes linear solvers of each type as well as discussion regarding intended
use cases for user-supplied SUNLINSOL implementations are included in Chapter 9. All IDAS example
programs and the standalone linear solver examples have been updated to use the unified linear solver
interface.

The unified interface for the new IDALS module is very similar to the previous IDADLS and IDASPILS
interfaces. To minimize challenges in user migration to the new names, the previous C routine names
may still be used; these will be deprecated in future releases, so we recommend that users migrate to
the new names soon.

The names of all constructor routines for SUNDIALS-provided SUNLINSOL implementations have
been updated to follow the naming convention SUNLinSol_* where * is the name of the linear solver.
The new names are SUNLinSol _Band, SUNLinSol _Dense, SUNLinSol KLU, SUNLinSol_LapackBand,
SUNLinSol_LapackDense, SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR,
SUNLinSol_SPTFQMR, and SUNLinSol_SuperLUMT. Solver-specific “set” routine names have been simi-
larly standardized. To minimize challenges in user migration to the new names, the previous routine
names may still be used; these will be deprecated in future releases, so we recommend that users mi-
grate to the new names soon. All IDAS example programs and the standalone linear solver examples
have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth ar-
gument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through
the SUNNONLINSOL API. This API will ease the addition of new nonlinear solver options and allow for
external or user-supplied nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules
are described in Chapter 10 and follow the same object oriented design and implementation used by
the NVECTOR, SUNMATRIX, and SUNLINSOL modules. Currently two SUNNONLINSOL implementations
are provided, SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXEDPOINT. These replicate the previ-
ous integrator specific implementations of a Newton iteration and a fixed-point iteration (previously
referred to as a functional iteration), respectively. Note the SUNNONLINSOL_FIXEDPOINT module can
optionally utilize Anderson’s method to accelerate convergence. Example programs using each of these
nonlinear solver modules in a standalone manner have been added and all IDAS example programs
have been updated to use generic SUNNONLINSOL modules.

By default IDAS uses the SUNNONLINSOL_NEWTON module. Since IDAS previously only used an
internal implementation of a Newton iteration no changes are required to user programs and func-
tions for setting the nonlinear solver options (e.g., IDASetMaxNonlinIters) or getting nonlinear solver
statistics (e.g., IDAGetNumNonlinSolvIters) remain unchanged and internally call generic SUNNON-
LINSOL functions as needed. While SUNDIALS includes a fixed-point nonlinear solver module, it is not
currently supported in IDAS. For details on attaching a user-supplied nonlinear solver to IDAS see
Chapter 4, 5, and 6.
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Three fused vector operations and seven vector array operations have been added to the NVEC-
TOR API. These optional operations are disabled by default and may be activated by calling vector
specific routines after creating an NVECTOR (see Chapter 7 for more details). The new operations are
intended to increase data reuse in vector operations, reduce parallel communication on distributed
memory systems, and lower the number of kernel launches on systems with accelerators. The fused op-
erations are N_VLinearCombination, N_.VScaleAddMulti, and N_VDotProdMulti and the vector array
operations are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N _VConstVectorArray,
N_VWrmsNormVectorArray, N_-VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and
N_VLinearCombinationVectorArray. If an NVECTOR implementation defines any of these operations
as NULL, then standard NVECTOR operations will automatically be called as necessary to complete the
computation.

Multiple updates to NVECTOR_CUDA were made:
e Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.
e Added N_VGetLocalLength Cuda to return the local vector length.
e Added N_VGetMPIComm Cuda to return the MPI communicator used.
e Removed the accessor functions in the namespace suncudavec.

e Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead
of an N_VectorContent_Cuda object.

e Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels.
See the function N_VSetCudaStreams_Cuda.

e Added N_VNewManaged Cuda, N_VMakeManaged Cuda, and N_VIsManagedMemory_Cuda functions
to accommodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:
e Changed N_VGetLength Raja to return the global vector length instead of the local vector length.
e Added N_VGetLocallLength Raja to return the local vector length.
e Added N_VGetMPIComm Raja to return the MPI communicator used.
e Removed the accessor functions in the namespace suncudavec.
A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added,

NVECTOR_OPENMPDEV. See §7.10 for more details.

Changes in v2.2.1

The changes in this minor release include the following:

e Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the
allocated vector data.

e Fixed library installation path for multiarch systems. This fix changes the default library instal-
lation path to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/1lib.
CMAKE_INSTALL_LIBDIR is automatically set, but is available as a CMake option that can modi-
fied.
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Changes in v2.2.0

Fixed a bug in IDAS where the saved residual value used in the nonlinear solve for consistent initial
conditions was passed as temporary workspace and could be overwritten.

Fixed a thread-safety issue when using ajdoint sensitivity analysis.

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. arm-
clang) that did not define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when
using a GPU system. The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA NVECTOR library to 1ibsundials_nveccudaraja.lib from
libsundials nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA cur-
rently.

Several changes were made to the build system:
e CMake 3.1.3 is now the minimum required CMake version.

e Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the
SUNDIALS_INDEX_SIZE CMake option to select the sunindextype integer size.

e The native CMake FindMPI module is now used to locate an MPI installation.

e If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE <language> COMPILER can compile MPI programs before trying to locate and use an
MPI installation.

e The previous options for setting MPI compiler wrappers and the executable for running MPI
programs have been have been depreated. The new options that align with those used in native
CMake FindMPI module are MPI_C_COMPILER, MPI_CXX_COMPILER, MPI _Fortran COMPILER, and
MPIEXEC_EXECUTABLE.

e When a Fortran name-mangling scheme is needed (e.g., LAPACK_ENABLE is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the in-
ferred or default scheme needs to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE
and SUNDIALS_F77 _FUNC_UNDERSCORES can be used to manually set the name-mangling scheme
and bypass trying to infer the scheme.

e Parts of the main CMakeLists.txt file were moved to new files in the src and example directories

to make the CMake configuration file structure more modular.

Changes in v2.1.2

The changes in this minor release include the following;:

e Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default
to locate shared libraries on OSX.

e Fixed Windows specific problem where sunindextype was not correctly defined when using
64-bit integers for the SUNDIALS index type. On Windows sunindextype is now defined as the
MSVC basic type __int64.

e Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.
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e Updated the KLU SUNLINSOL module to set constants for the two reinitialization types, and
fixed a bug in the full reinitialization approach where the sparse SUNMatrix pointer would go
out of scope on some architectures.

e Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the
sum, but had the wrong sparsity pattern. The sum now occurs in-place, by performing the sum
backwards in the existing storage. However, it is still more efficient if the user-supplied Jacobian
routine allocates storage for the sum I + +J manually (with zero entries if needed).

e Changed the LICENSE install path to instdir/include/sundials.

Changes in v2.1.1
The changes in this minor release include the following;:

e Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was
called multiple times then the solver memory was reallocated (without being freed).

e Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function
to be used (to avoid compiler warnings).

e Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).

e Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
e Added missing #include <stdio.h> in NVECTOR and SUNMATRIX header files.

e Added missing prototype for IDASpilsGetNumJTSetupEvals.

e Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWrmsNormMask and revised
the RAJA NVECTOR implementation of N_VWrmsNormMask to work with mask arrays using values
other than zero or one. Replaced double with realtype in the RAJA vector test functions.

In addition to the changes above, minor corrections were also made to the example programs, build
system, and user documentation.

Changes in v2.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g., N.VPrintFile_Serial).
Added make test and make test_install options to the build system for testing SUNDIALS after
building with make and installing with make install respectively.

Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs
have been updated. The goal of the redesign of these interfaces was to provide more encapsulation and
to ease interfacing of custom linear solvers and interoperability with linear solver libraries. Specific
changes include:

e Added generic SUNMATRIX module with three provided implementations: dense, banded and
sparse. These replicate previous SUNDIALS Dls and Sls matrix structures in a single object-
oriented API.

e Added example problems demonstrating use of generic SUNMATRIX modules.

e Added generic SUNLinearSolver module with eleven provided implementations: SUNDIALS na-
tive dense, SUNDIALS native banded, LAPACK dense, LAPACK band, KLU, SuperLU_MT,
SPGMR, SPBCGS, SPTFQMR, SPFGMR, and PCG. These replicate previous SUNDIALS
generic linear solvers in a single object-oriented API.
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e Added example problems demonstrating use of generic SUNLinearSolver modules.

e Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iter-
ative linear solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLinearSolver objects.

e Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU,
ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils interfaces
and SUNLinearSolver/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate
Jacobian solver available to CVODE and CVODES.

e Converted all SUNDIALS example problems and files to utilize the new generic SUNMATRIX and
SUNLinearSolver objects, along with updated Dls and Spils linear solver interfaces.

e Added Spils interface routines to ARKODE, CVODE, CVODES, IDA, and IDAS to allow specification
of a user-provided ”JTSetup” routine. This change supports users who wish to set up data
structures for the user-provided Jacobian-times-vector (”JTimes”) routine, and where the cost
of one JTSetup setup per Newton iteration can be amortized between multiple JTimes calls.

Two additional NVECTOR implementations were added — one for CUDA and one for RAJA vectors.
These vectors are supplied to provide very basic support for running on GPU architectures. Users are
advised that these vectors both move all data to the GPU device upon construction, and speedup will
only be realized if the user also conducts the right-hand-side function evaluation on the device. In
addition, these vectors assume the problem fits on one GPU. Further information about RAJA, users
are referred to the web site, https://software.llnl.gov/RAJA/. These additions are accompanied by
additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to
be a 32- or 64-bit integer data index type. sunindextype is defined to be int32_t or int64_t when
portable types are supported, otherwise it is defined as int or long int. The Fortran interfaces
continue to use long int for indices, except for their sparse matrix interface that now uses the new
sunindextype. This new flexible capability for index types includes interfaces to PETSc, hypre,
SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE
have been changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It
is assumed that all necessary data for user-provided preconditioner operations will be allocated and
stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information
for use in Fortran programs.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is
a movement in scientific software to provide a foundation for the rapid and efficient production of
high-quality, sustainable extreme-scale scientific applications. More information can be found at,
https://xsdk.info.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release
version information at runtime.

In addition, numerous changes were made to the build system. These include the addition of
separate BLAS_ENABLE and BLAS_LIBRARIES CMake variables, additional error checking during CMake
configuration, minor bug fixes, and renaming CMake options to enable/disable examples for greater
clarity and an added option to enable/disable Fortran 77 examples. These changes included changing
EXAMPLES_ENABLE to EXAMPLES_ENABLE C, changing CXX_ENABLE to EXAMPLES ENABLE CXX, changing
F90_ENABLE to EXAMPLES ENABLE F90, and adding an EXAMPLES ENABLE F77 option.

A bug fix was done to add a missing prototype for IDASetMaxBacksIC in ida.h.

Corrections and additions were made to the examples, to installation-related files, and to the user
documentation.
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Changes in v1.3.0

Two additional NVECTOR implementations were added — one for Hypre (parallel) ParVector vectors,
and one for PETSc vectors. These additions are accompanied by additions to various interface func-
tions and to user documentation.

Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR
module name.

An optional input function was added to set a maximum number of linesearch backtracks in
the initial condition calculation, and four user-callable functions were added to support the use of
LAPACK linear solvers in solving backward problems for adjoint sensitivity analysis.

For each linear solver, the various solver performance counters are now initialized to 0 in both the
solver specification function and in solver 1init function. This ensures that these solver counters are
initialized upon linear solver instantiation as well as at the beginning of the problem solution.

A bug in for-loop indices was fixed in IDAAckpntAllocVectors. A bug was fixed in the interpo-
lation functions used in solving backward problems.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done
to return integers from linear solver and preconditioner ’free’ functions.

In interpolation routines for backward problems, added logic to bypass sensitivity interpolation if
input sensitivity argument is NULL.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various
additions and corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT,
including support for CSR format when using KLU.

New examples were added for use of the OpenMP vector and for use of sparse direct solvers within
sensitivity integrations.

Minor corrections and additions were made to the IDAS solver, to the examples, to installation-
related files, and to the user documentation.

Changes in v1.2.0

Two major additions were made to the linear system solvers that are available for use with the 1DAS
solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second,
an interface to SuperLU_MT, the multi-threaded version of SuperLLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of
these additions, a sparse matrix (CSC format) structure was added to IDAS.

Otherwise, only relatively minor modifications were made to IDAS:

In IDARootfind, a minor bug was corrected, where the input array rootdir was ignored, and a
line was added to break out of root-search loop if the initial interval size is below the tolerance ttol.

In IDALapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an
illegal input error for DGBTRF/DGBTRS.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian:
With a call to IDAD1sSetDenseJacFnBS or IDADlsSetBandJacFnBS, the user can specify a user-
supplied Jacobian function of type IDAD1s***JacFnBS, for the case where the backward problem
depends on the forward sensitivities.

A minor bug was fixed regarding the testing of the input tstop on the first call to IDASolve.

For the Adjoint Sensitivity Analysis case in which the backward problem depends on the forward
sensitivities, options have been added to allow for user-supplied pset, psolve, and jtimes functions.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,
SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and in various example programs.

In the User Guide, a paragraph was added in Section 6.2.1 on IDAAdjReInit, and a paragraph
was added in Section 6.2.9 on IDAGetAdjY.

Two new NVECTOR modules have been added for thread-parallel computing environments — one
for OpenMP, denoted NVECTOR_OPENMP, and one for Pthreads, denoted NVECTOR_PTHREADS.
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With this version of SUNDIALS, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v1.1.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The function
NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays, re-
spectively. In a minor change to the user interface, the type of the index which in IDAS was changed
from long int to int.

Errors in the logic for the integration of backward problems were identified and fixed.

A large number of minor errors have been fixed. Among these are the following: A missing
vector pointer setting was added in IDASensLineSrch. In IDACompleteStep, conditionals around
lines loading a new column of three auxiliary divided difference arrays, for a possible order increase,
were fixed. After the solver memory is created, it is set to zero before being filled. In each linear solver
interface function, the linear solver memory is freed on an error return, and the **Free function now
includes a line setting to NULL the main memory pointer to the linear solver memory. A memory leak
was fixed in two of the IDASp***Free functions. In the rootfinding functions IDARcheck1/IDARcheck?2,
when an exact zero is found, the array glo of g values at the left endpoint is adjusted, instead of
shifting the ¢ location tlo slightly. In the installation files, we modified the treatment of the macro
SUNDIALS_USE_GENERIC_MATH, so that the parameter GENERIC_MATH_LIB is either defined
(with no value) or not defined.

1.2 Reading this User Guide

The structure of this document is as follows:

e In Chapter 2, we give short descriptions of the numerical methods implemented by IDAS for
the solution of initial value problems for systems of DAEs, continue with short descriptions of
preconditioning (§2.2) and rootfinding (§2.3), and then give an overview of the mathematical
aspects of sensitivity analysis, both forward (§2.5) and adjoint (§2.6).

e The following chapter describes the structure of the SUNDIALS suite of solvers (§3.1) and the
software organization of the IDAS solver (§3.2).

e Chapter 4 is the main usage document for IDAS for simulation applications. It includes a complete
description of the user interface for the integration of DAE initial value problems. Readers that
are not interested in using IDAS for sensitivity analysis can then skip the next two chapters.

e Chapter 5 describes the usage of IDAS for forward sensitivity analysis as an extension of its IVP
integration capabilities. We begin with a skeleton of the user main program, with emphasis
on the steps that are required in addition to those already described in Chapter 4. Following
that we provide detailed descriptions of the user-callable interface routines specific to forward
sensitivity analysis and of the additonal optional user-defined routines.

e Chapter 6 describes the usage of IDAS for adjoint sensitivity analysis. We begin by describing
the IDAS checkpointing implementation for interpolation of the original IVP solution during
integration of the adjoint system backward in time, and with an overview of a user’s main
program. Following that we provide complete descriptions of the user-callable interface routines
for adjoint sensitivity analysis as well as descriptions of the required additional user-defined
routines.

e Chapter 7 gives a brief overview of the generic NVECTOR module shared amongst the various
components of SUNDIALS, as well as details on the NVECTOR implementations provided with
SUNDIALS.
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e Chapter 8 gives a brief overview of the generic SUNMATRIX module shared among the vari-
ous components of SUNDIALS, and details on the SUNMATRIX implementations provided with
SUNDIALS: a dense implementation (§8.2), a banded implementation (§8.3) and a sparse imple-
mentation (§8.4).

e Chapter 9 gives a brief overview of the generic SUNLINSOL module shared among the various
components of SUNDIALS. This chapter contains details on the SUNLINSOL implementations
provided with SUNDIALS. The chapter also contains details on the SUNLINSOL implementations
provided with SUNDIALS that interface with external linear solver libraries.

e Chapter 10 describes the SUNNONLINSOL API and nonlinear solver implementations shared
among the various components of SUNDIALS.

e Finally, in the appendices, we provide detailed instructions for the installation of IDAS, within
the structure of SUNDIALS (Appendix A), as well as a list of all the constants used for input to
and output from IDAS functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as IDAInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as IDALS, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin.

1.3 SUNDIALS Release License

The SUNDIALS packages are released open source, under a BSD license. The only requirements of
the BSD license are preservation of copyright and a standard disclaimer of liability. Our Copyright
notice is below along with the license.

**PLEASE NOTE** If you are using SUNDIALS with any third party libraries linked in (e.g.,
LaPACK, KLU, SuperLU_MT, PETSc, or hypre), be sure to review the respective license of the package
as that license may have more restrictive terms than the SUNDIALS license. For example, if someone
builds SUNDIALS with a statically linked KLU, the build is subject to terms of the LGPL license
(which is what KLU is released with) and *not* the SUNDIALS BSD license anymore.

1.3.1 Copyright Notices
All SUNDIALS packages except ARKode are subject to the following Copyright notice.

1.3.1.1 SUNDIALS Copyright

Copyright (¢) 2002-2016, Lawrence Livermore National Security. Produced at the Lawrence Livermore
National Laboratory. Written by A.C. Hindmarsh, D.R. Reynolds, R. Serban, C.S. Woodward, S.D.
Cohen, A.G. Taylor, S. Peles, L.E. Banks, and D. Shumaker.

UCRL-CODE-155951 (CVODE)

UCRL-CODE-155950 (CVODES)

UCRL-CODE-155952 (IDA)

UCRL-CODE-237203 (IDAS)

LLNL-CODE-665877 (KINSOL)

All rights reserved.

1.3.1.2 ARKode Copyright

ARKode is subject to the following joint Copyright notice. Copyright (c¢) 2015-2016, Southern
Methodist University and Lawrence Livermore National Security Written by D.R. Reynolds, D.J.
Gardner, A.C. Hindmarsh, C.S. Woodward, and J.M. Sexton.
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LLNL-CODE-667205 (ARKODE)
All rights reserved.

1.3.2 BSD License

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the disclaimer below.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the disclaimer (as noted below) in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the LLNS/LLNL nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NA-
TIONAL SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
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Chapter 2

Mathematical Considerations

IDAS solves the initial-value problem (IVP) for a DAE system of the general form

F(t,y,9) =0, y(to) =vo, y(to) = 9o, (2.1)

where y, 9, and F are vectors in R, ¢ is the independent variable, § = dy/dt, and initial values yo,
Yo are given. (Often ¢ is time, but it certainly need not be.)
Additionally, if (2.1) depends on some parameters p € Rz, i.e.

F(t,y,9,p) =0

y(to) = o (p) ¥(to) =50(p) (2.2)

IDAS can also compute first order derivative information, performing either forward sensitivity analysis
or adjoint sensitivity analysis. In the first case, IDAS computes the sensitivities of the solution with
respect to the parameters p, while in the second case, IDAS computes the gradient of a derived function
with respect to the parameters p.

2.1 IVP solution

Prior to integrating a DAE initial-value problem, an important requirement is that the pair of vectors
yo and go are both initialized to satisfy the DAE residual F'(to, yo,90) = 0. For a class of problems that
includes so-called semi-explicit index-one systems, IDAS provides a routine that computes consistent
initial conditions from a user’s initial guess [8]. For this, the user must identify sub-vectors of y (not
necessarily contiguous), denoted yq and y,, which are its differential and algebraic parts, respectively,
such that F' depends on g4 but not on any components of g,. The assumption that the system is
“index one” means that for a given ¢ and yg4, the system F'(t,y,y) = 0 defines y, uniquely. In this
case, a solver within IDAS computes y, and 14 at t = tg, given y4 and an initial guess for y,. A second
available option with this solver also computes all of y(ty) given y(¢o); this is intended mainly for quasi-
steady-state problems, where ¢(tg) = 0 is given. In both cases, IDA solves the system F(to,yo, %) =0
for the unknown components of yy and 1, using Newton iteration augmented with a line search global
strategy. In doing this, it makes use of the existing machinery that is to be used for solving the linear
systems during the integration, in combination with certain tricks involving the step size (which is set
artificially for this calculation). For problems that do not fall into either of these categories, the user
is responsible for passing consistent values, or risks failure in the numerical integration.

The integration method used in IDAS is the variable-order, variable-coefficient BDF (Backward
Differentiation Formula), in fixed-leading-coefficient form [4]. The method order ranges from 1 to 5,
with the BDF of order ¢ given by the multistep formula

q
Z Qp iYn—i = hnyn , (23)
1=0
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where y,, and ¥, are the computed approximations to y(t,) and y(t, ), respectively, and the step size
is hy, =t —tn—1. The coefficients a, ; are uniquely determined by the order ¢, and the history of the
step sizes. The application of the BDF (2.3) to the DAE system (2.1) results in a nonlinear algebraic
system to be solved at each step:

q

G@J;F(%ﬂthEme%4>_o. (2.4)
i=0

By default 1DAS solves (2.4) with a Newton iteration but IDAS also allows for user-defined nonlinear

solvers (see Chapter 10). Each Newton iteration requires the soution of a linear system of the form

where yy,(,n) is the m-th approximation to y,. Here J is some approximation to the system Jacobian

_oG_or, or (2.6)
dy Oy 9y
where o = ay, 0/hy. The scalar o changes whenever the step size or method order changes.

For the solution of the linear systems within the Newton iteration, IDAS provides several choices,
including the option of a user-supplied linear solver module (see Chapter 9). The linear solver modules
distributed with SUNDIALS are organized in two families, a direct family comprising direct linear solvers
for dense, banded, or sparse matrices and a spils family comprising scaled preconditioned iterative
(Krylov) linear solvers. The methods offered through these modules are as follows:

e dense direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

e band direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

e sparse direct solver interfaces, using either the KLU sparse solver library [17, 1], or the thread-
enabled SuperLU_MT sparse solver library [35, 19, 2] (serial or threaded vector modules only)
[Note that users will need to download and install the KLU or SUPERLUMT packages independent
of 1DAS],

e SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver without
restarts,

e SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method)
solver,

e SPBCGS, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

e SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver, or

e PCG, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator and
a preconditioned Krylov method yields a powerful tool because it combines established methods for
stiff integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment
of the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [6]. For
the spils linear solvers with 1DAS, preconditioning is allowed only on the left (see §2.2). Note that
the dense, band, and sparse direct linear solvers can only be used with serial and threaded vector
representations.



2.1 IVP solution 13

In the process of controlling errors at various levels, IDAS uses a weighted root-mean-square norm,
denoted || - |[wrwms, for all error-like quantities. The multiplicative weights used are based on the
current solution and on the relative and absolute tolerances input by the user, namely

W; = 1/[RTOL - |y;| + ATOL] . (2.7)

Because 1/W; represents a tolerance in the component y;, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the case of a matrix-based linear solver, the default Newton iteration is a Modified Newton
iteration, in that the Jacobian J is fixed (and usually out of date) throughout the nonlinear iterations,
with a coefficient @ in place of a in J. However, in the case that a matrix-free iterative linear solver is
used, the default Newton iteration is an Inexact Newton iteration, in which J is applied in a matrix-
free manner, with matrix-vector products Jv obtained by either difference quotients or a user-supplied
routine. In this case, the linear residual JAy + G is nonzero but controlled. With the default Newton
iteration, the matrix J and preconditioner matrix P are updated as infrequently as possible to balance
the high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

e starting the problem,
e the value @ at the last update is such that a/& < 3/5 or a/& > 5/3, or
e a non-fatal convergence failure occurred with an out-of-date J or P.

The above strategy balances the high cost of frequent matrix evaluations and preprocessing with
the slow convergence due to infrequent updates. To reduce storage costs on an update, Jacobian
information is always reevaluated from scratch.

The default stopping test for nonlinear solver iterations in IDAS ensures that the iteration error
Yn = Yn(m) is small relative to y itself. For this, we estimate the linear convergence rate at all iterations

m>1 as )
S\ 71
n=(5)"

where the 0, = Yn(m) — Yn(m—1) is the correction at iteration m = 1,2,.... The nonlinear solver
iteration is halted if R > 0.9. The convergence test at the m-th iteration is then

S| < 0.33, (2.8)

where S = R/(R—1) whenever m > 1 and R < 0.9. The user has the option of changing the constant
in the convergence test from its default value of 0.33. The quantity S is set to S = 20 initially and
whenever J or P is updated, and it is reset to S = 100 on a step with o # @. Note that at m = 1, the
convergence test (2.8) uses an old value for S. Therefore, at the first nonlinear solver iteration, we
make an additional test and stop the iteration if [|;] < 0.33 - 10=* (since such a &; is probably just
noise and therefore not appropriate for use in evaluating R). We allow only a small number (default
value 4) of nonlinear iterations. If convergence fails with J or P current, we are forced to reduce the
step size h,, and we replace h, by h,/4. The integration is halted after a preset number (default
value 10) of convergence failures. Both the maximum number of allowable nonlinear iterations and
the maximum number of nonlinear convergence failures can be changed by the user from their default
values.

When an iterative method is used to solve the linear system, to minimize the effect of linear
iteration errors on the nonlinear and local integration error controls, we require the preconditioned
linear residual to be small relative to the allowed error in the nonlinear iteration, i.e., | P~ (Jz+G)|| <
0.05 - 0.33. The safety factor 0.05 can be changed by the user.

When the Jacobian is stored using either dense or band SUNMATRIX objects, the Jacobian J defined
in (2.6) can be either supplied by the user or have IDAS compute one internally by difference quotients.
In the latter case, we use the approximation

Jij = [Fi(t,y + ojej, i+ acje;) — Fi(t,y,9)]/o;, with
oj = \mmaxﬂyﬂa ||, 1/W;} sign(hy;) ,
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where U is the unit roundoff, h is the current step size, and W; is the error weight for the component
y; defined by (2.7). We note that with sparse and user-supplied SUNMATRIX objects, the Jacobian
must be supplied by a user routine.
In the case of an iterative linear solver, if a routine for Jv is not supplied, such products are
approximated by
Jv = [F(t.y + 0v,5+ aov) — F(t,y, )] /o,

where the increment o = v/N. As an option, the user can specify a constant factor that is inserted
into this expression for o.

During the course of integrating the system, IDAS computes an estimate of the local truncation
error, LTE, at the n-th time step, and requires this to satisfy the inequality

|ILTE|wrms < 1.

Asymptotically, LTE varies as k97! at step size h and order ¢, as does the predictor-corrector difference
Ay = Yn — Yn(o)- Thus there is a constant C' such that

LTE = CA,, + O(h??),

and so the norm of LTE is estimated as |C| - ||A,||. In addition, IDAS requires that the error in the
associated polynomial interpolant over the current step be bounded by 1 in norm. The leading term
of the norm of this error is bounded by C||A,|| for another constant C. Thus the local error test in
IDAS is

max{|C], CHI A < 1. (2.9)

A user option is available by which the algebraic components of the error vector are omitted from the
test (2.9), if these have been so identified.

In 1DAS, the local error test is tightly coupled with the logic for selecting the step size and order.
First, there is an initial phase that is treated specially; for the first few steps, the step size is doubled
and the order raised (from its initial value of 1) on every step, until (a) the local error test (2.9) fails,
(b) the order is reduced (by the rules given below), or (c) the order reaches 5 (the maximum). For
step and order selection on the general step, IDAS uses a different set of local error estimates, based
on the asymptotic behavior of the local error in the case of fixed step sizes. At each of the orders ¢’
equal toq, q—1 (if ¢ >1),¢—2 (if ¢ > 2), or ¢+ 1 (if ¢ < 5), there are constants C(q’) such that the
norm of the local truncation error at order ¢’ satisfies

LTE(¢") = C(¢)¢(d + D]l + O(hI ),

where ¢(k) is a modified divided difference of order k that is retained by 1DAS (and behaves asymp-
totically as h*). Thus the local truncation errors are estimated as ELTE(q") = C(¢')||¢(¢’ + 1)|| to
select step sizes. But the choice of order in IDAS is based on the requirement that the scaled derivative
norms, ||h*y*)||, are monotonically decreasing with k, for k near q. These norms are again estimated
using the ¢(k), and in fact

th’+1y(q’+l)|| ~T(q¢) = (¢ +1)ELTE({).

The step/order selection begins with a test for monotonicity that is made even before the local error
test is performed. Namely, the order is reset to ¢/ = ¢—11if (a) ¢ =2 and T(1) < T(2)/2, or (b) ¢ > 2
and max{T' (¢ — 1), T(q — 2)} < T(q); otherwise ¢' = q. Next the local error test (2.9) is performed,
and if it fails, the step is redone at order ¢ < ¢’ and a new step size h/. The latter is based on the
ha*1 asymptotic behavior of ELTE(q), and, with safety factors, is given by

n="h/h=0.9/[2ELTE(g)]"/(«tD)

The value of 7 is adjusted so that 0.25 < 1 < 0.9 before setting h «<— b’ = nh. If the local error test
fails a second time, IDAS uses 17 = 0.25, and on the third and subsequent failures it uses ¢ = 1 and
n = 0.25. After 10 failures, IDAS returns with a give-up message.
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As soon as the local error test has passed, the step and order for the next step may be adjusted.
No such change is made if ¢’ = ¢ — 1 from the prior test, if ¢ = 5, or if ¢ was increased on the previous
step. Otherwise, if the last ¢ + 1 steps were taken at a constant order ¢ < 5 and a constant step size,
IDAS considers raising the order to ¢ + 1. The logic is as follows: (a) If ¢ = 1, then reset ¢ = 2 if
T(2) <T(1)/2. (b) If ¢ > 1 then

o reset ¢ <—q—1if T(¢—1) <min{T(q),T(¢+1)};
o clsereset g« g+ 1if T'(g+1) <T(q);
e leave ¢ unchanged otherwise [then T'(¢ — 1) > T'(¢) < T(q + 1)].

In any case, the new step size b’ is set much as before:
n=h/h=1/]2ELTE(q)]/ @V

The value of 7 is adjusted such that (a) if n > 2, 5 is reset to 2; (b) if n < 1, n is restricted to
05 <1 <09 and (¢) if 1 <n < 2 we use n = 1. Finally A is reset to ' = nh. Thus we do not
increase the step size unless it can be doubled. See [4] for details.

IDAS permits the user to impose optional inequality constraints on individual components of the
solution vector y. Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0,
or y; < 0. The constraint satisfaction is tested after a successful nonlinear system solution. If any
constraint fails, we declare a convergence failure of the nonlinear iteration and reduce the step size.
Rather than cutting the step size by some arbitrary factor, IDAS estimates a new step size h’ using a
linear approximation of the components in y that failed the constraint test (including a safety factor
of 0.9 to cover the strict inequality case). These additional constraints are also imposed during the
calculation of consistent initial conditions.

Normally, IDAS takes steps until a user-defined output value ¢t = t,y is overtaken, and then
computes y(tou;) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force IDAS not to integrate
past a given stopping point ¢ = tgp-

2.2 Preconditioning

When using a nonlinear solver that requires the solution of a linear system of the form JAy = —G (e.g.,
the default Newton iteration), IDAS makes repeated use of a linear solver. If this linear system solve
is done with one of the scaled preconditioned iterative linear solvers supplied with SUNDIALS, these
solvers are rarely successful if used without preconditioning; it is generally necessary to precondition
the system in order to obtain acceptable efficiency. A system Ax = b can be preconditioned on the
left, on the right, or on both sides. The Krylov method is then applied to a system with the matrix
P 1A, or AP7!, or PglAPgl, instead of A. However, within IDAS, preconditioning is allowed only on
the left, so that the iterative method is applied to systems (P~!1J)Ay = —P~1G. Left preconditioning
is required to make the norm of the linear residual in the nonlinear iteration meaningful; in general,
||[JAy + G|| is meaningless, since the weights used in the WRMS-norm correspond to y.

In order to improve the convergence of the Krylov iteration, the preconditioner matrix P should in
some sense approximate the system matrix A. Yet at the same time, in order to be cost-effective, the
matrix P should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff be-
tween rapid convergence and low cost can be very difficult. Good choices are often problem-dependent
(for example, see [6] for an extensive study of preconditioners for reaction-transport systems).

Typical preconditioners used with IDAS are based on approximations to the iteration matrix of
the systems involved; in other words, P = ‘?)—5 + a%—g, where « is a scalar inversely proportional to
the integration step size h. Because the Krylov iteration occurs within a nonlinear solver iteration
and further also within a time integration, and since each of these iterations has its own test for
convergence, the preconditioner may use a very crude approximation, as long as it captures the
dominant numerical feature(s) of the system. We have found that the combination of a preconditioner
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with the Newton-Krylov iteration, using even a fairly poor approximation to the Jacobian, can be
surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.3 Rootfinding

The 1DAS solver has been augmented to include a rootfinding feature. This means that, while inte-
grating the Initial Value Problem (2.1), IDAS can also find the roots of a set of user-defined functions
gi(t,y,y) that depend on ¢, the solution vector y = y(t), and its t—derivative g(¢). The number of
these root functions is arbitrary, and if more than one g; is found to have a root in any given interval,
the various root locations are found and reported in the order that they occur on the ¢ axis, in the
direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in
sign of g;(t, y(¢), y(t)), denoted g;(t) for short. If a user root function has a root of even multiplicity (no
sign change), it will probably be missed by IDAS. If such a root is desired, the user should reformulate
the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then
(when a sign change is found) to home in on the root (or roots) with a modified secant method [25].
In addition, each time g is computed, IDAS checks to see if g;(t) = 0 exactly, and if so it reports this as
a root. However, if an exact zero of any g; is found at a point ¢, IDAS computes g at ¢t + § for a small
increment 4, slightly further in the direction of integration, and if any g¢;(t + ) = 0 also, IDAS stops
and reports an error. This way, each time IDAS takes a time step, it is guaranteed that the values of
all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, IDAS has an interval (t,, tp;] in which roots of the g;(t) are to be sought, such that ¢,; is
further ahead in the direction of integration, and all g;(¢;,) # 0. The endpoint ty; is either ¢,,, the end
of the time step last taken, or the next requested output time ¢, if this comes sooner. The endpoint
t1, is either ¢,,_1, or the last output time ¢,y (if this occurred within the last step), or the last root
location (if a root was just located within this step), possibly adjusted slightly toward ¢, if an exact
zero was found. The algorithm checks g at t; for zeros and for sign changes in (¢;,,tn;). If no sign
changes are found, then either a root is reported (if some g;(tx;) = 0) or we proceed to the next time
interval (starting at ¢p;). If one or more sign changes were found, then a loop is entered to locate the
root to within a rather tight tolerance, given by

T=100 U * (|t,| + |h]) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |g;(¢tn:)|/|g:(tni) — gi(tio)|, corresponding to the
closest to t;, of the secant method values. At each pass through the loop, a new value t,,;4 is set,
strictly within the search interval, and the values of g;(¢,:4) are checked. Then either ¢, or tp; is reset
t0 tmiq according to which subinterval is found to have the sign change. If there is none in (ti0, timid)
but some g;(t;miq) = 0, then that root is reported. The loop continues until |¢p; — €| < 7, and then
the reported root location is t;.
In the loop to locate the root of g;(t), the formula for t,,;q4 is

tmid = thi — (thi — ti0)gi(tni)/19i(thi) — agi(tio)] s

where o a weight parameter. On the first two passes through the loop, « is set to 1, making t,,iq
the secant method value. Thereafter, « is reset according to the side of the subinterval (low vs high,
i.e. toward t;, vs toward ¢5;) in which the sign change was found in the previous two passes. If the
two sides were opposite, « is set to 1. If the two sides were the same, « is halved (if on the low
side) or doubled (if on the high side). The value of t,,;q is closer to t;, when « < 1 and closer to tp;
when o > 1. If the above value of t,,;4 is within 7/2 of t;, or tz;, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least 7/2.
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2.4 Pure quadrature integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity
analysis run (see §2.6) it is of interest to compute integral quantities of the form

t

2(t) = / q(r,y(1),9(7),p) dr . (2.10)
to

The most effective approach to compute z(t) is to extend the original problem with the additional

ODEs (obtained by applying Leibnitz’s differentiation rule):

2=q(t,y,9,p), z(to) =0. (2.11)
Note that this is equivalent to using a quadrature method based on the underlying linear multistep
polynomial representation for y(t).

This can be done at the “user level” by simply exposing to IDAS the extended DAE system
(2.2)4+(2.10). However, in the context of an implicit integration solver, this approach is not desir-
able since the nonlinear solver module will require the Jacobian (or Jacobian-vector product) of this
extended DAE. Moreover, since the additional states, z, do not enter the right-hand side of the ODE
(2.10) and therefore the residual of the extended DAE system does not depend on z, it is much more
efficient to treat the ODE system (2.10) separately from the original DAE system (2.2) by “taking
out” the additional states z from the nonlinear system (2.4) that must be solved in the correction step
of the LMM. Instead, “corrected” values z, are computed explicitly as

1 _ g
th(tn,yn,ymp) - Zan,iznfi ,
On,0 i=1

once the new approximation y,, is available.
The quadrature variables z can be optionally included in the error test, in which case corresponding
relative and absolute tolerances must be provided.

Zn =

2.5 Forward sensitivity analysis

Typically, the governing equations of complex, large-scale models depend on various parameters,
through the right-hand side vector and/or through the vector of initial conditions, as in (2.2). In
addition to numerically solving the DAEs, it may be desirable to determine the sensitivity of the results
with respect to the model parameters. Such sensitivity information can be used to estimate which
parameters are most influential in affecting the behavior of the simulation or to evaluate optimization
gradients (in the setting of dynamic optimization, parameter estimation, optimal control, etc.).

The solution sensitivity with respect to the model parameter p; is defined as the vector s;(t) =
Oy(t)/Op; and satisfies the following forward sensitivity equations (or sensitivity equations for short):

oF oF ., OF

it g+ =0
y 9y Op; (2.12)
2\0 8]71‘ s 21\Y0 (9]% )

obtained by applying the chain rule of differentiation to the original DAEs (2.2).

When performing forward sensitivity analysis, IDAS carries out the time integration of the combined
system, (2.2) and (2.12), by viewing it as a DAE system of size N (N + 1), where Ny is the number
of model parameters p;, with respect to which sensitivities are desired (N, < N,). However, major
improvements in efficiency can be made by taking advantage of the special form of the sensitivity
equations as linearizations of the original DAEs. In particular, the original DAE system and all
sensitivity systems share the same Jacobian matrix J in (2.6).

The sensitivity equations are solved with the same linear multistep formula that was selected
for the original DAEs and the same linear solver is used in the correction phase for both state and
sensitivity variables. In addition, 1DAS offers the option of including (full error control) or excluding
(partial error control) the sensitivity variables from the local error test.
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2.5.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the
combined DAE and sensitivity system for the vector § = [y, s1,...,sn,].

e Staggered Direct In this approach [14], the nonlinear system (2.4) is first solved and, once an
acceptable numerical solution is obtained, the sensitivity variables at the new step are found
by directly solving (2.12) after the BDF discretization is used to eliminate $;. Although the
system matrix of the above linear system is based on exactly the same information as the
matrix J in (2.6), it must be updated and factored at every step of the integration, in contrast
to an evaluation of J which is updated only occasionally. For problems with many parameters
(relative to the problem size), the staggered direct method can outperform the methods described
below [34]. However, the computational cost associated with matrix updates and factorizations
makes this method unattractive for problems with many more states than parameters (such as
those arising from semidiscretization of PDEs) and is therefore not implemented in IDAS.

e Simultaneous Corrector In this method [37], the discretization is applied simultaneously to both
the original equations (2.2) and the sensitivity systems (2.12) resulting in an “extended” non-
linear system G(Qn) = 0 where §, = [yYn,...,Si,...]. This combined nonlinear system can be
solved using a modified Newton method as in (2.5) by solving the corrector equation

J[gn(m-l-l) - gn(m)} = _G(yn(m)) (213)
at each iteration, where
J
JJ

Iy, 0 ... 0 J

J is defined as in (2.6), and J; = (9/0y) [Fys; + Fys; + Fp,]. It can be shown that 2-step
quadratic convergence can be retained by using only the block-diagonal portion of J in the
corrector equation (2.13). This results in a decoupling that allows the reuse of J without
additional matrix factorizations. However, the sum Fys; + Fy$; + F},, must still be reevaluated
at each step of the iterative process (2.13) to update the sensitivity portions of the residual G.

e Staggered corrector In this approach [22], as in the staggered direct method, the nonlinear system
(2.4) is solved first using the Newton iteration (2.5). Then, for each sensitivity vector £ = s;, a
separate Newton iteration is used to solve the sensitivity system (2.12):

J[fn(m—&-l) - fn(m)] =

q
- Fy (tm Yn, yn)fn(m) + Fy (tna Yn,s yn) : hTLl (an,Ofn(m) + Z Oén,ign—i> + F;Df, (tna Yn, yn)] .

i=1

(2.14)

In other words, a modified Newton iteration is used to solve a linear system. In this approach,
the matrices OF /0y, OF /0y and vectors OF/0p; need be updated only once per integration step,
after the state correction phase (2.5) has converged.

IDAS implements both the simultaneous corrector method and the staggered corrector method.

An important observation is that the staggered corrector method, combined with a Krylov linear
solver, effectively results in a staggered direct method. Indeed, the Krylov solver requires only the
action of the matrix J on a vector, and this can be provided with the current Jacobian information.
Therefore, the modified Newton procedure (2.14) will theoretically converge after one iteration.
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2.5.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, IDAS provides an automated estimation of absolute
tolerances for the sensitivity variables based on the absolute tolerance for the corresponding state
variable. The relative tolerance for sensitivity variables is set to be the same as for the state variables.
The selection of absolute tolerances for the sensitivity variables is based on the observation that
the sensitivity vector s; will have units of [y]/[p;]. With this, the absolute tolerance for the j-th
component of the sensitivity vector s; is set to ATOL,/|p;|, where ATOL; are the absolute tolerances for
the state variables and p is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute
tolerances is equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector
s; with weights based on s; be the same as the weighted root-mean-square norm of the vector of scaled
sensitivities §; = |p;|s; with weights based on the state variables (the scaled sensitivities §; being
dimensionally consistent with the state variables). However, this choice of tolerances for the s; may
be a poor one, and the user of IDAS can provide different values as an option.

2.5.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the residual functions in the sensitivity systems (2.12):
analytic evaluation, automatic differentiation, complex-step approximation, and finite differences (or
directional derivatives). IDAS provides all the software hooks for implementing interfaces to automatic
differentiation (AD) or complex-step approximation; future versions will include a generic interface
to AD-generated functions. At the present time, besides the option for analytical sensitivity right-
hand sides (user-provided), IDAS can evaluate these quantities using various finite difference-based
approximations to evaluate the terms (0F/dy)s; + (0F/0y)s; and (OF/dp;), or using directional
derivatives to evaluate [(OF/Jy)s; + (OF/0y)s; + (OF/0p;)]. As is typical for finite differences, the
proper choice of perturbations is a delicate matter. IDAS takes into account several problem-related
features: the relative DAE error tolerance RTOL, the machine unit roundoff U, the scale factor p;, and
the weighted root-mean-square norm of the sensitivity vector s;.

Using central finite differences as an example, the two terms (0F/dy)s; + (0F/0y)s$; and OF/dp;
in (2.12) can be evaluated either separately:

or or . N F(t7y+0'y5iay+o—yéi;p) *F(tvyfaysiayfayéiap)

TSt TS5 N , 2.15
Jy %+ Y s 20, ( )
OF _ F(t,y,9,p + 0iei) = F(t,y,9,p — 0ies) (2.15)

Op; 20; ’ '

1
o; = |p;|v/max(rTOoL,U), 0,= —,
= IPVmasRIOL ) oy = e o Todwrons 170)
or simultaneously:

8Fsi—|— OF . OF _ F(t,y+osi,y+0si,p+oe)—F(t,y—0s;,y—03,p—oe;) (2.16)

?ysi+8pi - 20 ’

o =min(o;, 0y),

Ay

or by adaptively switching between (2.15)+(2.15’) and (2.16), depending on the relative size of the
two finite difference increments o; and o,. In the adaptive scheme, if p = max(o;/0y,0,/0;), we use
separate evaluations if p > pmax (an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (o;, oy, ¢) and switching between derivative
formulas have also been implemented for one-sided difference formulas. Forward finite differences can
be applied to (OF/dy)s; + (OF/dy)s; and g—i separately, or the single directional derivative formula

oF OF . OF _ F(t,y+o0s,y+0s,p+oe)—F(t,y,9,p)
S8t 58+ ~
y a7 Opi o
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can be used. In IDAS, the default value of pp.x = 0 indicates the use of the second-order centered
directional derivative formula (2.16) exclusively. Otherwise, the magnitude of ppax and its sign (pos-
itive or negative) indicates whether this switching is done with regard to (centered or forward) finite
differences, respectively.

2.5.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.4), IDAS does not carry
their sensitivities automatically. Instead, we provide a more general feature through which integrals
depending on both the states y of (2.2) and the state sensitivities s; of (2.12) can be evaluated. In
other words, IDAS provides support for computing integrals of the form:

2(t) = / G y(r), 5 517, . . 5, (7)) dr

to

If the sensitivities of the quadrature variables z of (2.10) are desired, these can then be computed
by using:
qz:quZ+Qy51+qp17 izla"'vav

as integrands for z, where gy, gy, and g, are the partial derivatives of the integrand function ¢ of
(2.10).

As with the quadrature variables z, the new variables z are also excluded from any nonlinear solver
phase and “corrected” values Zz, are obtained through explicit formulas.

2.6 Adjoint sensitivity analysis

In the forward semsitivity approach described in the previous section, obtaining sensitivities with
respect to Ny parameters is roughly equivalent to solving an DAE system of size (1 + Ng)N. This
can become prohibitively expensive, especially for large-scale problems, if sensitivities with respect
to many parameters are desired. In this situation, the adjoint sensitivity method is a very attractive
alternative, provided that we do not need the solution sensitivities s;, but rather the gradients with
respect to model parameters of a relatively few derived functionals of the solution. In other words, if
y(t) is the solution of (2.2), we wish to evaluate the gradient dG/dp of

T
G(p) = / g(t,y,p)dt, (2.17)

to

or, alternatively, the gradient dg/dp of the function g(¢,y,p) at the final time ¢ = T. The function ¢
must be smooth enough that dg/0y and dg/dp exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For
details on the derivation see [13].

2.6.1 Sensitivity of G(p)

We focus first on solving the sensitivity problem for G(p) defined by (2.17). Introducing a Lagrange
multiplier A, we form the augmented objective function

1(p) = G(p) - / N E(t,y, 4. p)dt.

Since F'(t,y,y,p) = 0, the sensitivity of G with respect to p is

dG  dI T T .
0]

to
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where subscripts on functions such as F' or g are used to denote partial derivatives. By integration
by parts, we have

T T
| xRt = )l — [ 00 E
to to

where (---)" denotes the t—derivative. Thus equation (2.18) becomes

dG r * r * * *
% = /t (gp = Fp) dt — /t [_gy + A F, — (A Fy)/] ypdt — (A Fy?/p)ﬂ;- (2.19)
0 0
Now by requiring \ to satisfy
(/\*Fy)’ —ANFy = —gy, (2.20)
we obtain
dG r * * T
% = ; (gp_/\ Fp)dt_ (A Fyyp)‘to- (2.21)
0

Note that y, at t = ¢y is the sensitivity of the initial conditions with respect to p, which is easily ob-
tained. To find the initial conditions (at ¢t = T') for the adjoint system, we must take into consideration
the structure of the DAE system.

For index-0 and index-1 DAE systems, we can simply take

NFyli=r = 0, (2.22)

yielding the sensitivity equation for dG/dp

dG T

= | 6N E e+ O F)ls, (223
p to

This choice will not suffice for a Hessenberg index-2 DAE system. For a derivation of proper final

conditions in such cases, see [13].

The first thing to notice about the adjoint system (2.20) is that there is no explicit specification
of the parameters p; this implies that, once the solution A is found, the formula (2.21) can then be
used to find the gradient of G with respect to any of the parameters p. The second important remark
is that the adjoint system (2.20) is a terminal value problem which depends on the solution y(t) of
the original IVP (2.2). Therefore, a procedure is needed for providing the states y obtained during
a forward integration phase of (2.2) to IDAS during the backward integration phase of (2.20). The
approach adopted in IDAS, based on checkpointing, is described in §2.6.3 below.

2.6.2 Sensitivity of ¢g(7',p)

Now let us consider the computation of dg/dp(T). From dg/dp(T) = (d/dT)(dG/dp) and equation
(2.21), we have

d . T, . d(\*F;
Y o= NEID) — [ NeFyde+ O Fygy)ems, — X Fyyy) (2.24)

dp to dr
where Ar denotes ON/OT. For index-0 and index-1 DAEs, we obtain

AN Fyyp)le=r

dT =0,

while for a Hessenberg index-2 DAE system we have

AN Fyyler gy (CB)~'f2)

dr dt
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The corresponding adjoint equations are
(AN Fy) = NpFy =0. (2.25)

For index-0 and index-1 DAEs (as shown above, the index-2 case is different), to find the boundary
condition for this equation we write A as A(t,T') because it depends on both ¢ and T. Then

N (T, T)Fy ez = 0.

Taking the total derivative, we obtain
* N ary
()\t + )\T) (T, T)Fy|t:T + )\ (T, T)W‘t:T = 0

Since A is just A, we have the boundary condition

dF; .
A Ey)i=r = — | X" (T, T)dity + N Fy| li=r-

For the index-one DAE case, the above relation and (2.20) yield
AL Ey)le=1 = gy — A"Fy] |i=1. (2.26)

For the regular implicit ODE case, Fj is invertible; thus we have A(T',T') = 0, which leads to Ap(T') =
—M(T). As with the final conditions for A(T") in (2.20), the above selection for Ay (T") is not sufficient
for index-two Hessenberg DAEs (see [13] for details).

2.6.3 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires,
at the current time, the states y which were computed during the forward integration phase. Since
IDAS implements variable-step integration formulas, it is unlikely that the states will be available at
the desired time and so some form of interpolation is needed. The IDAS implementation being also
variable-order, it is possible that during the forward integration phase the order may be reduced as
low as first order, which means that there may be points in time where only y and y are available.
These requirements therefore limit the choices for possible interpolation schemes. IDAS implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial
interpolation method which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size
of the vectors y and g that would need to be stored make this approach computationally intractable.
Thus, IDAS settles for a compromise between storage space and execution time by implementing a so-
called checkpointing scheme. At the cost of at most one additional forward integration, this approach
offers the best possible estimate of memory requirements for adjoint sensitivity analysis. To begin
with, based on the problem size N and the available memory, the user decides on the number Ny
of data pairs (y, y) if cubic Hermite interpolation is selected, or on the number N4 of y vectors in
the case of variable-degree polynomial interpolation, that can be kept in memory for the purpose of
interpolation. Then, during the first forward integration stage, after every IN; integration steps a
checkpoint is formed by saving enough information (either in memory or on disk) to allow for a hot
restart, that is a restart which will exactly reproduce the forward integration. In order to avoid storing
Jacobian-related data at each checkpoint, a reevaluation of the iteration matrix is forced before each
checkpoint. At the end of this stage, we are left with N, checkpoints, including one at ty. During the
backward integration stage, the adjoint variables are integrated backwards from T to tg, going from
one checkpoint to the previous one. The backward integration from checkpoint 7 + 1 to checkpoint &
is preceded by a forward integration from i to ¢ + 1 during which the Ny vectors y (and, if necessary
7)) are generated and stored in memory for interpolation!

1The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation at
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Figure 2.1: Illustration of the checkpointing algorithm for generation of the forward solution during
the integration of the adjoint system.

This approach transfers the uncertainty in the number of integration steps in the forward inte-
gration phase to uncertainty in the final number of checkpoints. However, N, is much smaller than
the number of steps taken during the forward integration, and there is no major penalty for writ-
ing/reading the checkpoint data to/from a temporary file. Note that, at the end of the first forward
integration stage, interpolation data are available from the last checkpoint to the end of the interval
of integration. If no checkpoints are necessary (Ny is larger than the number of integration steps
taken in the solution of (2.2)), the total cost of an adjoint sensitivity computation can be as low as
one forward plus one backward integration. In addition, IDAS provides the capability of reusing a set
of checkpoints for multiple backward integrations, thus allowing for efficient computation of gradients
of several functionals (2.17).

Finally, we note that the adjoint sensitivity module in IDAS provides the necessary infrastructure
to integrate backwards in time any DAE terminal value problem dependent on the solution of the
IVP (2.2), including adjoint systems (2.20) or (2.25), as well as any other quadrature ODEs that may
be needed in evaluating the integrals in (2.21). In particular, for DAE systems arising from semi-
discretization of time-dependent PDEs, this feature allows for integration of either the discretized
adjoint PDE system or the adjoint of the discretized PDE.

2.7 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute
second-order derivative information. Considering the DAE problem (2.2) and some model output
functional® g(y), the Hessian d?g/dp® can be obtained in a forward sensitivity analysis setting as

d?g

T
dp? = (gy ® INp) Ypp T Yp JyyYp 5

where ® is the Kronecker product. The second-order sensitivities are solution of the matrix DAE
system:

(Fy®INp) “Ypp + (Fy@INp) 'ypp+(IN®yg) (Fyglp + Fyyyp) + (IN@yg)'(Fyﬂyp+Fyyyp) =0
Py . o
t = =5, t = 5,
Ypp(to) o2 Upp (to) op2

the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th checkpoint, in
which case it uses the BDF order at the right-most relevant point). However, because of the FLC BDF implementation
(see §2.1), the resulting interpolation polynomial is only an approximation to the underlying BDF interpolant.

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also used
by other adjoint solvers (e.g. DASPKADJOINT). The variable-degree polynomial is more memory-efficient (it requires only
half of the memory storage of the cubic Hermite interpolation) and is more accurate.

2For the sake of simplifity in presentation, we do not include explicit dependencies of g on time ¢ or parameters p.
Moreover, we only consider the case in which the dependency of the original DAE (2.2) on the parameters p is through
its initial conditions only. For details on the derivation in the general case, see [38].
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where y, denotes the first-order sensitivity matrix, the solution of N, systems (2.12), and y,, is a
third-order tensor. It is easy to see that, except for situations in which the number of parameters NV,
is very small, the computational cost of this so-called forward-over-forward approach is exorbitant as
it requires the solution of N, + N additional DAE systems of the same dimension as (2.2).

A much more efficient alternative is to compute Hessian-vector products using a so-called forward-
over-adjoint approach. This method is based on using the same “trick” as the one used in computing
gradients of pointwise functionals with the adjoint method, namely applying a formal directional for-
ward derivation to the gradient of (2.21) (or the equivalent one for a pointwise functional g(T, y(T))).
With that, the cost of computing a full Hessian is roughly equivalent to the cost of computing the gra-
dient with forward sensitivity analysis. However, Hessian-vector products can be cheaply computed
with one additional adjoint solve.

As an illustration®, consider the ODE problem

Y= f(t’ y) ) y<t0) = yo(p) )

depending on some parameters p through the initial conditions only and consider the model functional
output G(p) = f:of g(t,y) dt. Tt can be shown that the product between the Hessian of G (with respect
to the parameters p) and some vector u can be computed as

U= [()‘T ® INp) yppu + yg'u’} t=tg ’
where A and p are solutions of

—p=fynt+ (N ®L) fyys; pulty) =0
—A=fIx+gl Atp) =0 (2.27)
s$=fys; s(to) = yopu.

In the above equation, s = y,u is a linear combination of the columns of the sensitivity matrix y,.
The forward-over-adjoint approach hinges crucially on the fact that s can be computed at the cost of
a forward sensitivity analysis with respect to a single parameter (the last ODE problem above) which
is possible due to the linearity of the forward sensitivity equations (2.12).

Therefore (and this is also valid for the DAE case), the cost of computing the Hessian-vector
product is roughly that of two forward and two backward integrations of a system of DAEs of size
N. For more details, including the corresponding formulas for a pointwise model functional output,
see the work by Ozyurt and Barton [38] who discuss this problem for ODE initial value problems. As
far as we know, there is no published equivalent work on DAE problems. However, the derivations
given in [38] for ODE problems can be extended to DAEs with some careful consideration given to
the derivation of proper final conditions on the adjoint systems, following the ideas presented in [13].

To allow the foward-over-adjoint approach described above, IDAS provides support for:

e the integration of multiple backward problems depending on the same underlying forward prob-
lem (2.2), and

e the integration of backward problems and computation of backward quadratures depending on
both the states y and forward sensitivities (for this particular application, s) of the original
problem (2.2).

3The derivation for the general DAE case is too involved for the purposes of this discussion.



Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as SUNDIALS consists of the solvers CVODE and ARKODE (for ODE
systems), KINSOL (for nonlinear algebraic systems), and 1DA (for differential-algebraic systems). In
addition, SUNDIALS also includes variants of CVODE and IDA with sensitivity analysis capabilities
(using either forward or adjoint methods), called CVODES and IDAS, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Figs. 3.1 and 3.2). The following
is a list of the solver packages presently available, and the basic functionality of each:

e CVODE, a solver for stiff and nonstiff ODE systems dy/dt = f(t,y) based on Adams and BDF
methods;

e CVODES, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

e ARKODE, a solver for ODE systems Mdy/dt = fg(t,y)+ f1(t,y) based on additive Runge-Kutta
methods;

e IDA, a solver for differential-algebraic systems F'(¢,y, ) = 0 based on BDF methods;
e IDAS, a solver for differential-algebraic systems with sensitivity analysis capabilities;

e KINSOL, a solver for nonlinear algebraic systems F(u) = 0.

3.2 IDAS organization

The 1DAS package is written in the ANSI C language. The following summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the IDAS package is shown in Figure 3.3. The central integration
module, implemented in the files idas.h, idas_impl.h, and idas.c, deals with the evaluation of
integration coefficients, estimation of local error, selection of stepsize and order, and interpolation to
user output points, among other issues.

IDAS utilizes generic linear and nonlinear solver modules defined by the SUNLINSOL APT (see Chap-
ter 9) and SUNNONLINSOL API (see Chapter 10) respectively. As such, 1DAS has no knowledge of the
method being used to solve the linear and nonlinear systems that arise in each time step. For any given
user problem, there exists a single nonlinear solver interface and, if necessary, one of the linear system
solver interfaces is specified, and invoked as needed during the integration. While SUNDIALS includes a
fixed-point nonlinear solver module, it is not currently supported in IDAS (note the fixed-point module
is listed in Figure 3.1 but not Figure 3.3).

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward
sensitivity equations simultaneously with the original IVP. The sensitivity variables may be included
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Figure 3.1: High-level diagram of the SUNDIALS suite

in the local error control mechanism of the main integrator. IDAS provides two different strategies
for dealing with the correction stage for the sensitivity variables: IDA_SIMULTANEOUS IDA_STAGGERED
(see §2.5). The 1DAS package includes an algorithm for the approximation of the sensitivity equations
residuals by difference quotients, but the user has the option of supplying these residual functions
directly.

The adjoint sensitivity module (file idaa.c) provides the infrastructure needed for the backward
integration of any system of DAEs which depends on the solution of the original IVP, in particular the
adjoint system and any quadratures required in evaluating the gradient of the objective functional.
This module deals with the setup of the checkpoints, the interpolation of the forward solution during
the backward integration, and the backward integration of the adjoint equations.

IDAS now has a single unified linear solver interface, IDALS, supporting both direct and iterative
linear solvers built using the generic SUNLINSOL API (see Chapter 9). These solvers may utilize a
SUNMATRIX object (see Chapter 8) for storing Jacobian information, or they may be matrix-free.
Since IDAS can operate on any valid SUNLINSOL implementation, the set of linear solver modules
available to IDAS will expand as new SUNLINSOL modules are developed.

For users employing dense or banded Jacobian matrices, IDALS includes algorithms for their ap-
proximation through difference quotients, but the user also has the option of supplying the Jacobian
(or an approximation to it) directly. This user-supplied routine is required when using sparse or
user-supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, IDALS includes an algorithm for the approx-
imation by difference quotients of the product between the Jacobian matrix and a vector, Jv. Again,
the user has the option of providing routines for this operation, in two phases: setup (preprocessing
of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again
in two phases: setup and solve. While there is no default choice of preconditioner analogous to
the difference-quotient approximation in the direct case, the references [6, 10], together with the
example and demonstration programs included with IDAS, offer considerable assistance in building
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Figure 3.3: Overall structure diagram of the IDA package. Modules specific to IDA begin with “IDA”
(IDALS, IDABBDPRE, and IDANLS), all other items correspond to generic solver and auxiliary modules.
Note also that the LAPACK, KLU and SUPERLUMT support is through interfaces to external packages.
Users will need to download and compile those packages independently.
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preconditioners.

IDAS’ linear solver interface consists of four primary routines, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, as required to achieve convergence.
The call list within the central IDAS module to each of the four associated functions is fixed, thus
allowing the central module to be completely independent of the linear system method.

IDAS also provides a preconditioner module, IDABBDPRE, for use with any of the Krylov iterative
linear solvers. It works in conjunction with NVECTOR_PARALLEL and generates a preconditioner that
is a block-diagonal matrix with each block being a banded matrix.

All state information used by IDAS to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the IDAS package, and so, in this
respect, it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the IDAS memory structure. The reentrancy of IDAS was motivated by
the situation where two or more problems are solved by intermixed calls to the package from one user
program.






Chapter 4

Using IDAS for IVP Solution

This chapter is concerned with the use of IDAS for the integration of DAEs in a C language setting.
The following sections treat the header files, the layout of the user’s main program, description of
the IDAS user-callable functions, and description of user-supplied functions. This usage is essentially
equivalent to using IDA [30].

The sample programs described in the companion document [43] may also be helpful. Those codes
may be used as templates (with the removal of some lines involved in testing), and are included in
the IDAS package.

The user should be aware that not all SUNLINSOL and SUNMATRIX modules are compatible with
all NVECTOR implementations. Details on compatibility are given in the documentation for each
SUNMATRIX module (Chapter 8) and each SUNLINSOL module (Chapter 9). For example, NVEC-
TOR_PARALLEL is not compatible with the dense, banded, or sparse SUNMATRIX types, or with the
corresponding dense, banded, or sparse SUNLINSOL modules. Please check Chapters 8 and 9 to verify
compatibility between these modules. In addition to that documentation, we note that the precon-
ditioner module IDABBDPRE can only be used with NVECTOR_PARALLEL. It is not recommended to
use a threaded vector module with SuperLU_MT unless it is the NVECTOR_OPENMP module, and
SuperLU_MT is also compiled with OpenMP.

IDAS uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of IDAS, following the procedure described in Appendix
A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by 1DAS. The relevant library files are

e [ibdir/1ibsundials_idas. lib,
e [ibdir/1libsundials nvecx. lib,

where the file extension .[ib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

e incdir/include/idas
e incdir/include/sundials
e incdir/include/nvector

e incdir/include/sunmatrix
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e incdir/include/sunlinsol
e incdir/include/sunnonlinsol

The directories libdir and incdir are the install library and include directories, respectively. For
a default installation, these are instdir/1ib and instdir/include, respectively, where instdir is the
directory where SUNDIALS was installed (see Appendix A).

Note that an application cannot link to both the IDA and IDAS libraries because both contain
user-callable functions with the same names (to ensure that IDAS is backward compatible with 1DA).
Therefore, applications that contain both DAE problems and DAEs with sensitivity analysis, should
use IDAS.

4.2 Data types

The sundials_types.h file contains the definition of the type realtype, which is used by the SUNDIALS
solvers for all floating-point data, the definition of the integer type sunindextype, which is used
for vector and matrix indices, and booleantype, which is used for certain logic operations within
SUNDIALS.

4.2.1 Floating point types

The type realtype can be float, double, or long double, with the default being double. The user
can change the precision of the SUNDIALS solvers arithmetic at the configuration stage (see §A.1.2).

Additionally, based on the current precision, sundials_types.h defines BIG_REAL to be the largest
value representable as a realtype, SMALL _REAL to be the smallest value representable as a realtype,
and UNIT_ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “I.” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. SUNDIALS
uses the RCONST macro internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point
constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype). Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying
the code to use realtype, so long as the SUNDIALS libraries use the correct precision (for details see
8A.1.2).

4.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable
int64_t type, and the user can change it to int32_t at the configuration stage. The configuration
system will detect if the compiler does not support portable types, and will replace int32_t and
int64_t with int and long int, respectively, to ensure use of the desired sizes on Linux, Mac OS X,
and Windows platforms. SUNDIALS currently does not support unsigned integer types for vector and
matrix indices, although these could be added in the future if there is sufficient demand.
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A user program which uses sunindextype to handle vector and matrix indices will work with both
index storage types except for any calls to index storage-specific external libraries. (Our C and C++
example programs use sunindextype.) Users can, however, use any one of int, long int, int32_t,
int64_t or long long int in their code, assuming that this usage is consistent with the typedef
for sunindextype on their architecture). Thus, a previously existing piece of ANSI C code can use
SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS libraries use the
appropriate index storage type (for details see §A.1.2).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

e idas/idas.h, the header file for IDAS, which defines the several types and various constants,
and includes function prototypes. This includes the header file for IDALS, ida/ida_1s.h.

Note that idas.h includes sundials_types.h, which defines the types realtype, sunindextype, and
booleantype and the constants SUNFALSE and SUNTRUE.

The calling program must also include an NVECTOR implementation header file, of the form
nvector/nvector_x*x*x.h. See Chapter 7 for the appropriate name. This file in turn includes the
header file sundials nvector.h which defines the abstract N_Vector data type.

If using a non-default nonlinear solver module, or when interacting with a SUNNONLINSOL module
directly, the calling program must also include a SUNNONLINSOL implementation header file, of the form
sunnonlinsol/sunnonlinsol #**.h where *** is the name of the nonlinear solver module (see Chap-
ter 10 for more information). This file in turn includes the header file sundials nonlinearsolver.h
which defines the abstract SUNNonlinearSolver data type.

If using a nonlinear solver that requires the solution of a linear system of the form (2.5) (e.g.,
the default Newton iteration), a linear solver module header file is also required. The header files
corresponding to the various SUNDIALS-provided linear solver modules available for use with IDAS are:

e Direct linear solvers:

sunlinsol/sunlinsol_dense.h, which is used with the dense linear solver module, SUN-
LINSOL_DENSE;

— sunlinsol/sunlinsol_band.h, which is used with the banded linear solver module, SUN-
LINSOL_BAND;

— sunlinsol/sunlinsol_lapackdense.h, which is used with the LAPACK dense linear solver
module, SUNLINSOL_LAPACKDENSE;

— sunlinsol/sunlinsol_lapackband.h, which is used with the LAPACK banded linear
solver module, SUNLINSOL_LAPACKBAND;

— sunlinsol/sunlinsol_klu.h, which is used with the KLU sparse linear solver module,
SUNLINSOL_KLU;

— sunlinsol/sunlinsol_superlumt.h, which is used with the SUPERLUMT sparse linear
solver module, SUNLINSOL_SUPERLUMT;
e Iterative linear solvers:
— sunlinsol/sunlinsol_spgmr.h, which is used with the scaled, preconditioned GMRES
Krylov linear solver module, SUNLINSOL_SPGMR;

— sunlinsol/sunlinsol_spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, SUNLINSOL_SPFGMR;

— sunlinsol/sunlinsol_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, SUNLINSOL_SPBCGS;
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— sunlinsol/sunlinsol _sptfqmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, SUNLINSOL_SPTFQMR;

— sunlinsol/sunlinsol_pcg.h, which is used with the scaled, preconditioned CG Krylov
linear solver module, SUNLINSOL_PCG;

The header files for the SUNLINSOL_DENSE and SUNLINSOL_LAPACKDENSE linear solver modules
include the file sunmatrix/sunmatrix_dense.h, which defines the SUNMATRIX_DENSE matrix module,
as as well as various functions and macros acting on such matrices.

The header files for the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND linear solver modules in-
clude the file sunmatrix/sunmatrix_band.h, which defines the SUNMATRIX_BAND matrix module, as
as well as various functions and macros acting on such matrices.

The header files for the SUNLINSOL_KLU and SUNLINSOL_SUPERLUMT sparse linear solvers include
the file sunmatrix/sunmatrix_sparse.h, which defines the SUNMATRIX_SPARSE matrix module, as
well as various functions and macros acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials_iterative.h,
which enumerates the kind of preconditioning, and (for the SPGMR and SPFGMR solvers) the choices
for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
idasFoodWeb_kry_p example (see [43]), preconditioning is done with a block-diagonal matrix. For this,
even though the SUNLINSOL_SPGMR linear solver is used, the header sundials/sundials_dense.h is
included for access to the underlying generic dense matrix arithmetic routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of a DAE
IVP. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL, and SUNNONLINSOL
implementations used. For the steps that are not, refer to Chapter 7, 8, 9, and 10 for the specific
name of the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads
to use within the threaded vector functions, if used.

2. Set problem dimensions etc.
This generally includes the problem size N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vectors of initial values

To set the vectors yO and ypO to initial values for y and ¢, use the appropriate functions defined
by the particular NVECTOR implementation.

For native SUNDIALS vector implementations (except the CUDA and RAJA-based ones), use a call
of the form yO = N_VMake *x* (..., ydata) if the realtype array ydata containing the initial
values of y already exists. Otherwise, create a new vector by making a call of the form y0 =
N_VNew_x**(...), and then set its elements by accessing the underlying data with a call of the
form ydata = N_VGetArrayPointer(y0). See §7.2-7.5 for details.

For the hypre and PETSc vector wrappers, first create and initialize the underlying vector and
then create an NVECTOR wrapper with a call of the form y0 = N_VMake_***(yvec), where yvec
is a hypre or PETSc vector. Note that calls like N_-VNew_***(...) and N_VGetArrayPointer(...)
are not available for these vector wrappers. See §7.6 and §7.7 for details.

If using either the CUDA- or RAJA-based vector implementations use a call of the form y0 =
N_VMake *** (..., c) where c is a pointer to a suncudavec or sunrajavec vector class if this class
already exists. Otherwise, create a new vector by making a call of the form y0 = N_VNew_x**(...),
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and then set its elements by accessing the underlying data where it is located with a call of the
form N_VGetDeviceArrayPointer_*** or N_VGetHostArrayPointer_***. Note that the vector
class will allocate memory on both the host and device when instantiated. See §7.8-7.9 for details.

Set the vector ypO of initial conditions for ¢ similarly.

4. Create IDAS object

Call ida_mem = IDACreate() to create the IDAS memory block. IDACreate returns a pointer to
the IDAS memory structure. See §4.5.1 for details. This void * pointer must then be passed as
the first argument to all subsequent IDAS function calls.

5. Initialize IDAS solver

Call IDAInit(...) to provide required problem specifications (residual function, initial time, and
initial conditions), allocate internal memory for IDAS, and initialize 1DAS. IDAInit returns an
error flag to indicate success or an illegal argument value. See §4.5.1 for details.

6. Specify integration tolerances

Call IDASStolerances(...) or IDASVtolerances(...) to specify, respectively, a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances. Alternatively, call IDAWFtolerances to specify a function which sets directly the
weights used in evaluating WRMS vector norms. See §4.5.2 for details.

7. Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., the default Newton iteration)
and the linear solver will be a matrix-based linear solver, then a template Jacobian matrix must
be created by using the appropriate constructor function defined by the particular SUNMATRIX
implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using
a call of the form

SUNMatrix J = SUNBandMatrix(...);

or
SUNMatrix J = SUNDenseMatrix(...);

or

SUNMatrix J = SUNSparseMatrix(...);

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

8. Create linear solver object

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then
the desired linear solver object must be created by calling the appropriate constructor function
defined by the particular SUNLINSOL implementation.

For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be
created using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §4.5.3 and
Chapter 9.

9. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to
that linear solver. See the documentation for each SUNLINSOL module in Chapter 9 for details.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Attach linear solver module

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then
initialize the IDALS linear solver interface by attaching the linear solver object (and matrix object,
if applicable) with the following call (for details see §4.5.3):

ier = IDASetLinearSolver(...);

Set optional inputs

Optionally, call IDASet* functions to change from their default values any optional inputs that
control the behavior of IDAS. See §4.5.8.1 and §4.5.8 for details.

Create nonlinear solver object (optional)

If using a non-default nonlinear solver (see §4.5.4), then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular SUNNONLINSOL imple-
mentation (e.g., NLS = SUNNonlinSol #*x(...); where *** is the name of the nonlinear solver
(see Chapter 10 for details).

Attach nonlinear solver module (optional)

If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching the
nonlinear solver object by calling ier = IDASetNonlinearSolver(ida mem, NLS); (see §4.5.4 for
details).

Set nonlinear solver optional inputs (optional)

Call the appropriate set functions for the selected nonlinear solver module to change optional
inputs specific to that nonlinear solver. These must be called after IDAInit if using the default
nonlinear solver or after attaching a new nonlinear solver to IDAS, otherwise the optional inputs
will be overridden by 1DAS defaults. See Chapter 10 for more information on optional inputs.
Correct initial values

Optionally, call IDACalcIC to correct the initial values yO and ypO passed to IDAInit. See §4.5.5.
Also see §4.5.8.3 for relevant optional input calls.

Specify rootfinding problem

Optionally, call IDARootInit to initialize a rootfinding problem to be solved during the integration
of the DAE system. See §4.5.6 for details, and see §4.5.8.4 for relevant optional input calls.
Advance solution in time

For each point at which output is desired, call flag = IDASolve(ida_mem, tout, &tret, yret,
ypret, itask). Here itask specifies the return mode. The vector yret (which can be the same
as the vector y0O above) will contain y(t), while the vector ypret (which can be the same as the
vector yp0 above) will contain ¢(t). See §4.5.7 for details.

Get optional outputs

Call IDA*Get* functions to obtain optional output. See §4.5.10 for details.

Deallocate memory for solution vectors

Upon completion of the integration, deallocate memory for the vectors yret and ypret (or y and
yp) by calling the appropriate destructor function defined by the NVECTOR implementation:

N_VDestroy(yret) ;

and similarly for ypret.

Free solver memory
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IDAFree(&ida mem) to free the memory allocated for IDAS.

21. Free nonlinear solver memory (optional)

If a non-default nonlinear solver was used, then call SUNNonlinSolFree (NLS) to free any memory
allocated for the SUNNONLINSOL object.

22. Free linear solver and matrix memory

Call SUNLinSolFree and SUNMatDestroy to free any memory allocated for the linear solver and
matrix objects created above.

23. Finalize MPI, if used
Call MPI_Finalize() to terminate MPI.

SUNDIALS provides some linear solvers only as a means for users to get problems running and not
as highly efficient solvers. For example, if solving a dense system, we suggest using the LAPACK
solvers if the size of the linear system is > 50,000. (Thanks to A. Nicolai for his testing and rec-
ommendation.) Table 4.1 shows the linear solver interfaces available as SUNLINSOL modules and the
vector implementations required for use. As an example, one cannot use the dense direct solver inter-
faces with the MPI-based vector implementation. However, as discussed in Chapter 9 the SUNDIALS
packages operate on generic SUNLINSOL objects, allowing a user to develop their own solvers should
they so desire.

Table 4.1: SUNDIALS linear solver interfaces and vector implementations that can be used for each.

— &g

z |3 ) % g S8 5= ye

o = Q| &= - o o

Linear Solver | @ Qf % 8 HCL @ = 8 :Ed Em) A
Dense | v v |V v
Band | v v |V v
LapackDense | v/ v |V v
LapackBand | v/ v |V v
KLU | Vv v IV v
SUPERLUMT | v Ve v
SPGMR | v v VIivIiVvIiVvI|IVvI]Y v
SPFGMR. | v/ v VIiVvIiVvIiVvI|IVvI]Y v
SPBCGS | vV v VIivIiVvIiVvI|IVvI]Y v
SPTFQMR | v v VIivIiVvIiVvI|IVvI]Y v
PCG | vV v VIV IVIVIVIYV v
User Supp. | v v VI IV IV IV IVv|VY v

4.5 User-callable functions

This section describes the IDAS functions that are called by the user to set up and solve a DAE. Some of
these are required. However, starting with §4.5.8, the functions listed involve optional inputs/outputs
or restarting, and those paragraphs can be skipped for a casual use of IDAS. In any case, refer to §4.4
for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.8.1).
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4.5.1 IDAS initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the DAE solution is complete, as it frees the IDAS memory block created and allocated by the first
two calls.

IDACreate

Call ida_mem = IDACreate();
Description  The function IDACreate instantiates an IDAS solver object.
Arguments IDACreate has no arguments.

Return value If successful, IDACreate returns a pointer to the newly created IDAS memory block (of
type void *). Otherwise it returns NULL.

Call flag = IDAInit(ida_mem, res, tO, yO, ypO);

Description  The function IDAInit provides required problem and solution specifications, allocates
internal memory, and initializes IDAS.

Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.

res (IDAResFn) is the C function which computes the residual function F' in the
DAE. This function has the form res(t, yy, yp, resval, user_data). For
full details see §4.6.1.

t0 (realtype) is the initial value of ¢.
yO (N_Vector) is the initial value of y.
ypO (N_Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following;:

IDA_SUCCESS The call to IDAInit was successful.

IDA MEM NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_MEM FAIL A memory allocation request has failed.
IDA_TLL_INPUT An input argument to IDAInit has an illegal value.

Notes If an error occurred, IDAInit also sends an error message to the error handler function.

Call IDAFree(&ida_mem) ;
Description  The function IDAFree frees the pointer allocated by a previous call to IDACreate.
Arguments  The argument is the pointer to the IDAS memory block (of type void *).

Return value The function IDAFree has no return value.

4.5.2 IDAS tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to IDAInit.
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’IDASStolerances‘

Call
Description

Arguments

Return value

flag = IDASStolerances(ida_mem, reltol, abstol);

The function IDASStolerances specifies scalar relative and absolute tolerances.
idamem (void *) pointer to the IDAS memory block returned by IDACreate.
reltol (realtype) is the scalar relative error tolerance.

abstol (realtype) is the scalar absolute error tolerance.

The return value flag (of type int) will be one of the following:

IDA_SUCCESS The call to IDASStolerances was successful.

IDA MEM NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_NO_MALLOC The allocation function IDAInit has not been called.
IDA_TLL_INPUT One of the input tolerances was negative.

’IDASVtolerances

Call

Description

Arguments

Return value

flag = IDASVtolerances(idamem, reltol, abstol);

The function IDASVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

idamem (void *) pointer to the IDAS memory block returned by IDACreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (N_Vector) is the vector of absolute error tolerances.

The return value flag (of type int) will be one of the following:

IDA_SUCCESS The call to IDASVtolerances was successful.

IDAMEM_NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_NO_MALLOC The allocation function IDAInit has not been called.

IDA_TILL_INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.

’IDAWFtolerances

Call flag = IDAWFtolerances(ida_mem, efun);

Description The function IDAWFtolerances specifies a user-supplied function efun that sets the
multiplicative error weights W; for use in the weighted RMS norm, which are normally
defined by Eq. (2.7).

Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.

Return value

efun (IDAEwtFn) is the C function which defines the ewt vector (see §4.6.3).
The return value flag (of type int) will be one of the following:

IDA_SUCCESS The call to IDAWFtolerances was successful.

IDA MEM NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_NO_MALLOC The allocation function IDAInit has not been called.

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol=10"%
means that errors are controlled to .01%. We do not recommend using reltol larger than 1073,
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On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 1071?).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
idasRoberts_dns in the IDAS package, and the discussion of it in the IDAS Examples document [43].
In that problem, the three components vary between 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate
noise levels are completely problem-dependent. The user or modeler hopefully has some idea as to
what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservatively, because they control the
error committed on each individual time step. The final (global) errors are a sort of accumulation of
those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from the actual
desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol= 10~°. But
in any case, it is a good idea to do a few experiments with the tolerances to see how the computed
solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried by
the solver are unaffected. Remember that a small negative value in yret returned by IDAS, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s residual routine res should never change a negative value in the solution vector yy
to a non-negative value, as a ”solution” to this problem. This can cause instability. If the res routine
cannot tolerate a zero or negative value (e.g., because there is a square root or log of it), then the
offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input yy vector) for the purposes of computing F(t,y, ).

(4) 1DAS provides the option of enforcing positivity or non-negativity on components. Also, such
constraints can be enforced by use of the recoverable error return feature in the user-supplied residual
function. However, because these options involve some extra overhead cost, they should only be
exercised if the use of absolute tolerances to control the computed values is unsuccessful.

4.5.3 Linear solver interface functions

As previously explained, if the nonlinear solver requires the solution of linear systems of the form (2.5)
(e.g., the default Newton iteration, then solution of these linear systems is handled with the IDALS
linear solver interface. This interface supports all valid SUNLINSOL modules. Here, matrix-based
SUNLINSOL modules utilize SUNMATRIX objects to store the Jacobian matrix J = 0F/dy + adF/dy
and factorizations used throughout the solution process. Conversely, matrix-free SUNLINSOL modules
instead use iterative methods to solve the linear systems of equations, and only require the action of
the Jacobian on a vector, Jv.

With most iterative linear solvers, preconditioning can be done on the left only, on the right only,
on both the left and the right, or not at all. The exceptions to this rule are SPFGMR that supports
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right preconditioning only and PCG that performs symmetric preconditioning. However, in IDAS only
left preconditioning is supported. For the specification of a preconditioner, see the iterative linear
solver sections in §4.5.8 and §4.6. A preconditioner matrix P must approximate the Jacobian J, at
least crudely.

To specify a generic linear solver to IDAS, after the call to IDACreate but before any calls to
IDASolve, the user’s program must create the appropriate SUNLINSOL object and call the function
IDASetLinearSolver, as documented below. To create the SUNLinearSolver object, the user may
call one of the SUNDIALS-packaged SUNLINSOL module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of such constructor routines includes SUNLinSol _Dense, SUNLinSol_Band,
SUNLinSol_LapackDense, SUNLinSol_LapackBand, SUNLinSol_KLU, SUNLinSol_SuperLUMT,
SUNLinSol _SPGMR, SUNLinSol _SPFGMR, SUNLinSol_SPBCGS, SUNLinSol SPTFQMR, and SUNLinSol PCG.

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use
of each of the generic linear solvers involves certain constants, functions and possibly some macros,
that are likely to be needed in the user code. These are available in the corresponding header file
associated with the specific SUNMATRIX or SUNLINSOL module in question, as described in Chapters
8 and 9.

Once this solver object has been constructed, the user should attach it to IDAS via a call to
IDASetLinearSolver. The first argument passed to this function is the IDAS memory pointer returned
by IDACreate; the second argument is the desired SUNLINSOL object to use for solving systems. The
third argument is an optional SUNMATRIX object to accompany matrix-based SUNLINSOL inputs (for
matrix-free linear solvers, the third argument should be NULL). A call to this function initializes the
IDALS linear solver interface, linking it to the main IDAS integrator, and allows the user to specify
additional parameters and routines pertinent to their choice of linear solver.

’IDASetLinearSolver‘
Call flag = IDASetLinearSolver(ida_mem, LS, J);

Description The function IDASetLinearSolver attaches a generic SUNLINSOL object LS and corre-
sponding template Jacobian SUNMATRIX object J (if applicable) to IDAS, initializing the
IDALS linear solver interface.

Arguments idamem (void *) pointer to the IDAS memory block.

LS (SUNLinearSolver) SUNLINSOL object to use for solving linear systems of the
form (2.5.
J (SUNMatrix) SUNMATRIX object for used as a template for the Jacobian (or

NULL if not applicable).
Return value The return value flag (of type int) is one of

IDALS_SUCCESS  The IDALS initialization was successful.

IDALS MEM NULL The ida mem pointer is NULL.

IDALS_ILL_INPUT The IDALS interface is not compatible with the LS or J input objects
or is incompatible with the current NVECTOR module.

IDALS_SUNLS_FAIL A call to the LS object failed.

IDALS MEM FAIL A memory allocation request failed.

Notes If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used
in the solve process, so if additional storage is required within the SUNMATRIX object
(e.g., for factorization of a banded matrix), ensure that the input object is allocated
with sufficient size (see the documentation of the particular SUNMATRIX type in Chapter
8 for further information).

The previous routines IDADlsSetLinearSolver and IDASpilsSetLinearSolver are
now wrappers for this routine, and may still be used for backward-compatibility. How-
ever, these will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.
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4.5.4 Nonlinear solver interface function

By default IDAS uses the SUNNONLINSOL implementation of Newton’s method defined by the SUNNON-
LINSOL_NEWTON module (see §10.2). To specify a different nonlinear solver in IDAS, the user’s program
must create a SUNNONLINSOL object by calling the appropriate constructor routine. The user must
then attach the SUNNONLINSOL object to IDAS by calling IDASetNonlinearSolver, as documented
below.

When changing the nonlinear solver in IDAS, IDASetNonlinearSolver must be called after IDAInit.
If any calls to IDASolve have been made, then IDAS will need to be reinitialized by calling IDAReInit
to ensure that the nonlinear solver is initialized correctly before any subsequent calls to IDASolve.

The first argument passed to the routine IDASetNonlinearSolver is the IDAS memory pointer
returned by IDACreate and the second argument is the SUNNONLINSOL object to use for solving the
nonlinear system 2.4. A call to this function attaches the nonlinear solver to the main IDAS integrator.
We note that at present, the SUNNONLINSOL object must be of type SUNNONLINEARSOLVER _ROOTFIND.

’IDASetNonlinearSolver
Call flag = IDASetNonlinearSolver (ida_mem, NLS);

Description  The function IDASetNonLinearSolver attaches a SUNNONLINSOL object (NLS) to IDAS.

Arguments idamem (void *) pointer to the IDAS memory block.

NLS (SUNNonlinearSolver) SUNNONLINSOL object to use for solving nonlinear sys-
tems.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The nonlinear solver was successfully attached.

IDA MEM NULL The ida mem pointer is NULL.

IDA_ILL_INPUT The SUNNONLINSOL object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual
function, convergence test function, or maximum number of nonlinear
iterations could not be set.

Notes When forward sensitivity analysis capabilities are enabled and the IDA_STAGGERED cor-
rector method is used this function sets the nonlinear solver method for correcting state
variables (see §5.2.3 for more details).

4.5.5 Initial condition calculation function

IDACalcIC calculates corrected initial conditions for the DAE system for certain index-one problems
including a class of systems of semi-implicit form. (See §2.1 and Ref. [8].) It uses Newton iteration
combined with a linesearch algorithm. Calling IDACalcIC is optional. It is only necessary when
the initial conditions do not satisfy the given system. Thus if yO and ypO are known to satisfy
F(to,y0,90) = 0, then a call to IDACalcIC is generally not necessary.

A call to the function IDACalcIC must be preceded by successful calls to IDACreate and IDAInit
(or IDAReInit), and by a successful call to the linear system solver specification function. The call to
IDACalcIC should precede the call(s) to IDASolve for the given problem.

IDACalcIC

Call flag = IDACalcIC(ida_mem, icopt, toutl);
Description  The function IDACalcIC corrects the initial values yO and ypO at time tO.
Arguments idamem (void *) pointer to the IDAS memory block.

icopt (int) is one of the following two options for the initial condition calculation.

icopt=IDA_YA_YDP_INIT directs IDACalcIC to compute the algebraic compo-
nents of y and differential components of g, given the differential components
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Return value

Notes

of y. This option requires that the N_Vector id was set through IDASetId,
specifying the differential and algebraic components.

icopt=IDA_Y_INIT directs IDACalcIC to compute all components of y, given
y. In this case, id is not required.

toutl

(realtype) is the first value of ¢ at which a solution will be requested (from

IDASolve). This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable .

The return value flag (of type int) will be one of the following:

IDA_SUCCESS
IDA_MEM_NULL
IDA_NO_MALLOC
IDA_ILL_INPUT
IDA_LSETUP_FAIL

IDA_LINIT_FAIL
IDA_LSOLVE_FAIL

IDA_BAD_EWT

IDA_FIRST_RES_FAIL

IDA_RES_FAIL

IDA_NO_RECOVERY

IDA_CONSTR_FAIL

IDA_LINESEARCH_FAIL

IDA_CONV_FAIL

IDASolve succeeded.

The argument ida_mem was NULL.

The allocation function IDAInit has not been called.
One of the input arguments was illegal.

The linear solver’s setup function failed in an unrecoverable man-
ner.

The linear solver’s initialization function failed.

The linear solver’s solve function failed in an unrecoverable man-
ner.

Some component of the error weight vector is zero (illegal), either
for the input value of y0O or a corrected value.

The user’s residual function returned a recoverable error flag on
the first call, but IDACalcIC was unable to recover.

The user’s residual function returned a nonrecoverable error flag.
The user’s residual function, or the linear solver’s setup or solve
function had a recoverable error, but IDACalcIC was unable to
recover.

IDACalcIC was unable to find a solution satisfying the inequality
constraints.

The linesearch algorithm failed to find a solution with a step
larger than steptol in weighted RMS norm, and within the
allowed number of backtracks.

IDACalcIC failed to get convergence of the Newton iterations.

All failure return values are negative and therefore a test flag < 0 will trap all

IDACalcIC failures.

Note that IDACalcIC will correct the values of y(tg) and y(ty) which were specified

in the previous call to IDAInit or IDAReInit.

To obtain the corrected values, call

IDAGetconsistentIC (see §4.5.10.3).

4.5.6 Rootfinding initialization function

While integrating the IVP, IDAS has the capability of finding the roots of a set of user-defined functions.
To activate the rootfinding algorithm, call the following function. This is normally called only once,
prior to the first call to IDASolve, but if the rootfinding problem is to be changed during the solution,
IDARootInit can also be called prior to a continuation call to IDASolve.

IDARootInit

flag = IDARootInit(ida mem, nrtfn, g);

Call

Description

Arguments

The function IDARootInit specifies that the roots of a set of functions g;(t,y, y) are to
be found while the IVP is being solved.

idamem (void *) pointer to the IDAS memory block returned by IDACreate.
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Return value

Notes

nrtfn  (int) is the number of root functions g;.

g (IDARootFn) is the C function which defines the nrtfn functions g;(¢,y,9)
whose roots are sought. See §4.6.4 for details.

The return value flag (of type int) is one of

IDA_SUCCESS  The call to IDARootInit was successful.
IDA_MEM NULL The ida_mem argument was NULL.
IDA_MEM FAIL A memory allocation failed.
IDA_ILL_INPUT The function g is NULL, but nrtfn> 0.

If a new IVP is to be solved with a call to IDAReInit, where the new IVP has no
rootfinding problem but the prior one did, then call IDARootInit with nrtfn= 0.

4.5.7 IDAS solver function

This is the central step in the solution process, the call to perform the integration of the DAE. One
of the input arguments (itask) specifies one of two modes as to where IDAS is to return a solution.
But these modes are modified if the user has set a stop time (with IDASetStopTime) or requested

rootfinding.

Call
Description

Arguments

Return value

flag = IDASolve(ida_mem, tout, &tret, yret, ypret, itask);
The function IDASolve integrates the DAE over an interval in .

ida_mem (void *) pointer to the IDAS memory block.

tout (r