MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

4)

ID

Language Reference Manual

Version 90.1

Rishiyur S. Nikhil

Computation Structures Group Memo 284-2
July 15, 1991

Copyright © 1991 Laboratory for Computer Science,
Massachusetts Institute of Technology

This report describes research done at the Laboratory for Computer Science of the Mas-
sachusetts Institute of Technology. Funding for the Laboratory is provided in part by the
Advanced Research Projects Agency of the Department of Defense under the Office of
Naval Research contract N00014-89-J-1988.

_ /

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Id
Language Reference Manual
(Version 90.1)

Rishiyur S. Nikhilt

July 15, 1991

Computation Structures Group
Laboratory for Computer Science
Massachusetts Institute of Technology

545 Technology Square,
Cambridge, MA 02139, USA

Abstract

Id is a general-purpose parallel programming language designed by members of the Com-
putation Structures Group in MIT’s Laboratory for Computer Science, and is used for
programming dataflow and other parallel machines.

The major subset of Id (syntactically distinguishable) is a pure functional language with
non-strict semantics. Features include: higher-order functions, a Milner-style statically
type-checked polymorphic type system with overloading, user defined types and pattern-
matching notation, lists and list comprehensions, arrays and array comprehensions, and
facilities for delayed evaluation.

The non-functional aspects of Id include I-structures and M-structures (for both arrays
and user-defined types), and input/output. With respect to the functional subset, pro-
grams with I-structures remain deterministic but may not be referentially transparent, and
programs with M-structures and i/o may even be non-deterministic.

Id programs are implicitly parallel to a very fine grain. Some programs with M-structures
and i/o may need explicity sequencing, for which facilities are provided.

'I' Inquiries about Id may be directed by mail to Prof. Arvind at the above address, by email
to id@lcs.mit.edu, or to the author. Author’s current address: Digital Equipment Corporation,
Cambridge Research Laboratory, One Kendall Square, Bldg 700, Cambridge MA 02139, USA; Email:
nikhil@crl.dec.com; Telephone: (617) 621 6639. This work was done while the author was at MIT.

CONTENTS

Contents

1 Introduction

2 Functional Id

2.1
2.2
2.3
2.4
2.5
2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23

2.24
2.25
2.26
2.27

Expressions, Statements and Types
Programs
Parentheses and Grouping
Semicolons
Comments
Identifiers

2.6.1 Reserved Words

2.6.2 Standard Identifiers

Precedence in Type Expressions

2.7.2 Polymorphic Types.
Overloading
Type synonyms: typesyn
Type Declarations: typeof
Algebraic Types

Function Applications

Characters
Strings o
Symbols

2.23.1 Record type definition

2.23.2 Record construction

Simple Binding Statements

Patterns

e e

© W ©W ©W o 0w o N N N N9 o0 o0 o, OOt kR W W W NN N NN

S = S T G
= o O o o

2.28 Pattern-Matching
2.29 Case-expressions

2.30 Function Abstractions

2.31 Function Definitions
2.32 Pattern-Binding Statements
233 Lists

2.33.1 Binary Infix List Operators

2.33.2 Arithmetic Series Operators

2.34 Arrays oo
2.34.1 Array Types

2.34.2 Array literals

2.34.3 Array Selection
2.34.4 Array Index Bounds

2.34.5 Array Comprehensions
2.35 Accumulatorso
2.36 Abstract Types
237 Loopso
2.37.1 Scope of Variables in Loops

2.37.2 Loop semantics

2.38 Errors

General issues concerning non-functional

constructs (I-structures and M-structures) 20

3.1 I-structure and M-structure semantics

and M-

3.2 Polymorphism of I-structures
structures

3.3 Referential Transparency, Sharing and Ob-
ject Identity

3.4 What gets evaluated, and when

3.5 Determinacy

3.6 Side-effect statements

3.7 Sequencing Statements: barriers

3.8 Sequencing expressions

I-structures
4.1 I-structure semantics
4.2 [I-structure arrays

4.2.1 TI-array types

4.2.2 I-array creation

20

ii
4.2.3 I-array assignments
4.2.4 I-array selection
4.2.5 I-array index bounds

4.3 [I-structure fields in Algebraic Types

4.3.1 Type definition
4.3.2 Object creation
4.3.3 Component assignment
4.3.4 Component selection
4.3.5 Component selection in patterns

4.3.6 Example: iterative map.

4.4 I-structure fields in records

4.4.1 Type definition
4.4.2 Record creation
4.4.3 Field assignment
4.4.4 Field selection

5 Mb-structures
5.1 M-structure semantics
5.2 M-structure arrays
5.2.1 M-array types.

5.2.2 M-array literals and comprehensions

5.2.3 M-array creation
5.2.4 M-array assignment
5.2.5 M-array selection
5.2.6 M-array index bounds

5.3 M-structure fields in Algebraic Types . . .

5.3.1 Type definition
5.3.2 Object creation
5.3.3 Component assignment
5.3.4 Component selection
5.3.5 Component selection in patterns

5.3.6 Example: unique id generator . . .
5.3.7 Example: FIFO queue

5.4 M-structure fields in records

5.4.1 Type definition
5.4.2 Record creation
5.4.3 Field assignment
5.4.4 Field selection

CONTENTS

26 6 Delayed evaluation 33
26 6.1 General Delayed Evaluation 33

2 6.2 Delayed Evaluation For Data Structure
Components 33

21 6.2.1 Delayed components in algebraic
27 types 34
27 6.2.2 Delayed components in records . . 34

97 6.2.3 Delayed components in functional
AITAYS - ¢ ¢ v e e v e e e e e e e 34

21 6.2.4 Delayed components in I-structure
27 AITAYS - ¢ ¢ v e e v e e e e e e e 35
27 7 Pragmatics 35
28 7.1 Inline substitution 35
28 7.2 Boundedloops 35
28 73 Pragmas 36
28 7.4 Loop peeling and unrolling 36
28 7.4.1 Looppeeling 36
7.4.2 Loop Unrolling 37

28

Standard Identifiers 39
28 Al Booleans 39
29 A2 Numbers. 39
29 A3 Characters. 40
29 A4 Strings oo 40
29 A5 Symbols, 41
29 A6 Lists L. 41
30 AT ListsasSets 43
A8 Arrayso oo 43
30 A.9 I-structure arrays 45
30 A.10 M-structure arrays 45
30 A.11 Object identity 45
30 A.12 Delayed Evaluation 45
31 A.13 Input/Output 45
31 A.14 Storage Management 48
31 List of overloaded operators and identifiers 49
31 B.1 Overloaded operators 49
32 B.2 Overloaded identifiers 49
32 B.3 Overloaded array notations 51
32 Incompatible Changes 51
32 C.1 Changes from Id 90.0 to Id 90.1 51
32 C.2 Changes from Id 88.x toId 90.0 52
33 C.3 Changes from Id Noveau to Id 88.x 53

2. Introduction/Functional Id

1 Introduction

Id is a parallel programming language designed by
members of the Computation Structures Group of
MIT/LCS. It is used for programming dataflow and
other parallel machines.

Id is a language with three layers. The major sub-
set of Id is a purely functional language; this subset
is described first, in Section 2. The second layer
extends this with I-structures which are described
in Section 4. The third layer extends this with M-
structures which are described in Section 5. Some
general aspects of these non-functional extensions
are described in Section 3.

Id traces its roots back to 1978 [1].
versions of Id have run on simulated dataflow ma-

Since then,

chines, and more recently on real dataflow hardware
and Unix workstations. Id/83s [4] was a first cut at
a major redesign of the language, based on contem-
porary ideas in functional languages. It briefly ac-
quired the name Id Nouveau (1986) [6, 2], and then
reverted to Id in 1988 [3].

Id continues to be a research language. Current
investigations include better constructs to express
1/0,

non-deterministic
management etc.

computations, resource-

This document is not a tutorial on Id. For a tu-
torial introduction, the reader is referred to [5].

Appendix C lists the incompatibilities between
this version of Id and previous versions.

Acknowledgements

Many people—past and current members of the
Computation Structures Group, and colleagues
elsewhere—have participated in the design of Id.
Major contributors include: Shail Aditya, Arvind,
Paul Barth, David Culler, Kattamuri Ekanadham,
Steve Heller, James Hicks, Vinod Kathail, Rishiyur
Nikhil, Keshav Pingali, Ken Traub, and Jonathan
Young.

Id is also heavily influenced by various functional

languages in the ISWIM-ML-SASL family.

2 Functional Id

This section describes the purely functional (and ref-
erentially transparent) subset of Id.

2.1 Expressions, Statements and Types

Two major syntactic categories in Id are ezpressions
and statements.
Every expression denotes a walue. In this man-
©§_2 41
?

ual, we use the generic symbols “e
designate arbitrary expressions.

el”, etc. to

Statements appear in the top-level of programs, in
blocks, etc. Statements are usually identifier bind-
ings and declarations of new types.

Id has a polymorphic type system. Every expres-
sion and statement must “type-check”, i.e., satisfy
certain type-rules; these are explained as each con-
struct is introduced. Types are described by type-
expressions. In this manual, we use the generic sym-
bols “t”, “t0”, etc. to refer to types.

Type-checking in Id is done by type inference,
i.e., in general the programmer is not required to
declare the types of identifiers or expressions—the
type-checker automatically deduces them from the
context. However, for readability, for better error-
messages and to assist in overloading resolution,
there is a facility for declaring types of identifiers
(using typeof statements, see Section 2.10).

For explaining the type rules in this manual, we
use the notation:
e ::t
which is pronounced “e has type t”, i.e., the value
of expression “e” lies in the set of values denoted

by type “t”. This notation is only a device for this
manual; it is not part of the language.

2.2 Programs

A program is a collection of statements:

STATEMENT ;

STATEMENT ;

The statements collectively define an environment
in which top-level expressions may be evaluated.

The statements, together with a top-level expression,
have the semantics of a block (see Section 2.25).

2

2.3 Parentheses and Grouping

Any expression or type-expression may be enclosed
in parentheses. This may be done to override prece-
dence, or merely for visual clarity.

(2+3) * (4-(f x))

(btree (btree N))

Parentheses are also used for “quoting” binary infix
operators (see Section 2.13), for denoting the void
value (see Section 2.15), and for grouping statements
(see Section 3.7.)

2.4 Semicolons

Semicolons may be used either as a separator be-
tween statements, or as a terminator at the end of a
statement.

2.5 Comments

Comments begin with “%” and can contain any text
up to the end-of-line:

% anything goes till the end of the line

We recommend the guidelines on page 348 of the
Common Lisp manual (Guy L. Steele, Jr., Digital
Press, 1984) for commenting code, except that Id has

@, ”

“¥” instead of Lisp’s “;” as the comment character.

2.6 Identifiers

Identifiers may contain alphabetics, digits, under-

scores (_), question marks (?), single quotes (’) and
tildes () in any order. Examples:

bd
X,

harry
desmond_2_2
2D_array
nil?

done?

The lexical syntax for identifiers overlaps with the
lexical syntax for reserved words (Sections 2.6.1),
numbers (Sections 2.17 and 2.18), character con-
stants (Section 2.19) and the special underscore to-

ken “” (Sections 2.27, 4.3.3 and 5.3.3). A lexical

2. Functional Id

token is read as an identifier only if it is not in one
of these categories.

Upper- and lower-case letters are equivalent in
identifiers.

2.6.1 Reserved Words

The following words are reserved and may not be
used as identifiers:

abstype for rep
accumulate fun seq

and if sequential
array in then
bound instance to

by instances type

case matrix typeof
def M_array typesyn
defsubst M_matrix unbounded
do M_vector unless
downto next upfrom
downfrom of vector
else or when
finally record while

In addition, the following families of words are re-
served:

k_nD_arrays k._nD M_arrays

k_vectors kM _vectors
k_arrays k M_arrays
k_matrices kM matrices
nD_array nD M_array

for each k > 1 and n > 1.

Upper- and lower-case letters are equivalent in re-
served words.

2.6.2 Standard Identifiers

Standard identifiers are not reserved words—they
can be redefined by the programmer, and the set
of standard identifiers will continue to grow as more
and more useful library functions are identified and
implemented. To enhance readability and reusabil-
ity of code, the programmer is strongly advised not
to redefine them. See Appendix A for a listing of
standard identifiers.

2. Functional Id

2.7 Types

In this manual, we use the generic symbols “t”, “t1”,
etc. to designate arbitrary type expressions.

Types are denoted by type-ezpressions, which are
either Type Variables:

*3 *0 *13

or N-ary Constructed Types (N > 0):

type-constructor t1 ... tN

A type constructor is an identifier (e.g., bool, list,
tree) or one of the array reserved words (e.g., array,
vector,matrix,nD_array,nD_M_array)

The identifiers used for type constructors may over-
lap with identifiers used for values. Since type ex-
pressions occur only in specific contexts, there is
no ambiguity. For example, there is a type called
float, and there is also a standard identifier float
representing the function that converts integers into
floating-point numbers.

Some pre-defined 0-ary constructed types (also
called Type Constants):

void

char or C
bool or B
int or I
float or F
string or S
symbol or SYM

The types in each row are synonyms.

Some pre-defined constructed types:

e Array Types:

1D _array t vector t array t
2D_array t matrix t
3D_array t

The types in each row are synonyms.

e List Types:
list ¢

Certain pre-defined constructed types also have spe-
cial syntax:

e Tuple Types:
0 , ..., tN

e Function Types:
t0 > t1

The “->” type operator associates to the right,
so that the parentheses can be omitted in the
following type-expression:

int -> (int -> bool)

Additional pre-defined constructed types are listed
in Sections 4, 5, 6 and A.13.

2.7.1 Precedence in Type Expressions

Type application binds tighter than “->”, which
binds tighter than comma. In each of the following
examples, the parentheses may be dropped:

(btree int) -> int

(1ist int),int

(int -> int),int

2.7.2 Polymorphic Types

A type containing a type variable is a polymor-
phic type, e.g., the type of “:”, the list constructor,
is:

*0 -> (list *0) -> (1list *0)

The type variable stands for “any type”, indicating
that “:” can construct lists of any type. However,
all occurrences of a type variable in a polymorphic
type must be instantiated uniformly. For example,
all these are valid instantiations of the type of the
list constructor:

int -> (list int) -> (1list int)
for building lists of integers, or:

bool -> (list bool) -> (list bool)

for building lists of booleans, or:

(int->bool) ->

(1ist (int->bool)) —> (1list (int->bool))

for building lists of integer-to-boolean functions.
However, the following is not a valid instantia-
tion:

char -> (list bool) -> (list int)

since the type variable *0 is instantiated non-
uniformly to char, bool and int, respectively.

While this may seem restrictive compared to, say,
Lisp, in fact it is not, because disjoint union types
(Section 2.11) give a way of packaging different types
into a common type in a type-safe manner.

4

2.8 Overloading

There are many operators and identifiers that are
not polymorphic, but overloaded. A polymorphic
function is a single function that works on an infin-
ity of types (each possible instantiation of its type
variables). An occurrence of an overloaded identi-
fier, on the other hand, is a syntactic shorthand for
one of a small set of identifiers that have different
types; which one it actually stands for depends on
the context in which it is used—this resolution is
performed automatically by type checking.

For example, the operator symbol “+” represents
one of the following functions:
plus”int :: int -> int -> int
plus“float :: float -> float -> float

The identifier length represents one of the following
functions

length“string :: string -> int
length~list : (list *0) —-> int

For each use of an overloaded operator or identifier,
the type-checker will attempt to infer the particular
type at which it is used from the surrounding con-
text, so that the particular function it represents is
known. If it is unable to do so, an error is flagged. In
this situation, the programmer must assist the type
checker either by replacing the overloaded identifier
by the intended non-overloaded one, or by using an
explicit type declaration (Section 2.10) to make the
type unambiguous.

We use the following syntactic convention to relate
an overloaded identifier to the corresponding non-
overloaded identifiers. An overloaded identifier foo
represents one of the identifiers:

foo"typel
foo"type2

Appendix B lists many overloaded operators and
identifiers, and their corresponding non-overloaded
identifiers.

User-defined overloading

The user may declare that an identifier x is over-
loaded by using the statement:

overload x = t ;

2. Functional Id

The type of each non-overloaded instance of x is only
allowed to be an instance of the type t. For exam-
ple:

overload plus = *0 —> *0 -> *0 ;

Non-overloaded instances of an identifier x may be
declared using the statement:

instance x = x"a, x"b, ... ;

The reserved word instances is a synonym for
instance. Here, x must already be known as an over-
loaded identifier (i.e., previously declared using an
t declaration). The types of x~a, x"b,

. must be known, and must each be an instance of
the overloaded type t.

overload x =

There may be multiple instance declarations for
the same overloaded identifier. Example:

instances plus = plus”“int, plus”float;

or
instance plus = plus”int ;
instance plus = plus”float ;

All instances of an overloaded identifier should have
mutually exclusive types, i.e., for each pair of in-
stances x”a and x~b, their types should not be unifi-

able.

Polymorphism of overloaded identifiers

Some overloaded identifiers represent polymorphic
functions. For example, length represents:
length“string :: string -> int
length~list :: (list *0) -> int
and the latter function is polymorphic. However, a
particular occurrence of length cannot be used poly-
morphically. Thus, the following program will not
type-check:
{f=
In

(f integer_list),(f bool_list) }

length

even though it would type-check if we
length~list instead. Two occurrences of length can,

of course, be used at different types.

use

2.9 Type synonyms: typesyn

A new type constructor may be declared as a syn-
onym for an existing type. The statement:

2. Functional Id

typesyn tx tvl ... tvN = t ;

declares tx to be a new type. The tvJ’s are optional
type variables (N > 0). Examples:

typesyn S = string ;

typesyn complex = (float,float) ;
typesyn code_mem = array (op,src,dests) ;
typesyn eq_func *0 = *0 -> *0 -> bool ;

The type variables in the right-hand side, if any,
must be a subset of the type variables mentioned
in the left-hand side.

2.10 Type Declarations: typeof

An identifier’s type may be declared anywhere in its
scope. The statement:

typeof x = t ;
asserts that identifler x denotes a value of type t.
Example:

(0 —> *1) —>
(list *0) -> (list *1);

typeof map“list =

Since Id’s type-checker automatically infers the
types of all identifiers, user-specified type dec-
larations are not generally necessary. However,
we strongly recommend their plentiful use be-
cause:

e They make programs more readable;
e Error messages from the type-checker will be
more localized, and hence more helpful.

Type declarations are sometimes necessary to assist
the type-checker in resolving overloaded identifiers.

Note: a type declaration statement does not in-
troduce any new identifiers or types.

2.11 Algebraic Types

Algebraic types are also called “disjoint union”
types. New algebraic types are defined by the state-
ment:

type tx tvl ... tvN = disj1 | | disjM;

Here, tx is the name for the new type. Its optional
N (> 0) type parameters are specified by the type-
variables tvJ. Its M (> 1) disjuncts are specified by
the disjJs, each of which has the form:

tcons t1 ... tL

Here, tcons is an identifier and represents a new L-
adic (> 0) Constructor. Each tJ is a type-expression
constraining the type of the J’th argument of the
constructor. Thus,

tcons :: t1 -> ... —-> tL -> (%x tvl ... tvN)

The type variables in the right-hand side (all dis-
juncts), if any, must be a subset of the type variables
mentioned in the left-hand side.

Implicitly defined with each L-adic constructor are
also L field selectors tcons_1, ..., tcons L. Assuming
we have an expression e that evaluates to

v protx tvl ... tVN

then the “dot-notation” expression:
e.tcons_J

checks that v is indeed of the form:

tcons v1 ... vL

i.e., checks that it is in the expected disjunct, and
then returns vJ. If v is a different disjunct, a run-
time error occurs, producing the error value L (see
Section 2.38).

Implicitly defined with each constructor tcons is
also a predicate function:

tcons? (tx tvl ... tvN) —> bool

that tests whether a value of that type is in that
disjunct.

Examples
Lists of integers:
type ilist = Inil | Icoms int ilist;
Implicitly defined constructors:

Inil
Icons

: ilist

: int -> ilist -> ilist
Implicitly defined field selectors:
int

ilist

:: ilist .
: ilist .

ICons_1
ICons_2

both of which produce the error value L if e evaluates
to INil (see Section 2.38).

Implicitly definied predicates:

Inil?
Icons?

-> bool
-> bool

1 ilist
1 ilist

Polymorphic lists:

type list *0 = Nil | Comns *0 (list *0);
Implicitly defined constructors:

Nil
Cons

: (1ist *0)
:: %0 —> (1list *0) -> (1list *0)

Implicitly defined field selectors:

:: (list *0) . *0
:: (list *0) (1ist *0)

Cons_1
Cons_2

both of which produce the error value L if e evaluates
to Nil (see Section 2.38).

Implicitly defined predicates:

Nil?
Cons?

:: (1list *0) -> bool
:: (1list *0) -> bool

Polymorphic binary trees:

Empty_btree

Bnode *0
(btree
(btree

type btree *0 =
|
*0)
*0) ;
Implicitly defined constructors:

Empty_btree :: (btree *0)
Bnode 1 %0 —>
(btree *0) —>
(btree *0) —> (btree *0)

Implicitly defined field selectors:

Bnode_1 :: (btree *0) . *0
Bnode_2 :: (btree *0) . (btree *0)
Bnode_3 :: (btree *0) . (btree *0)

all of which produce the error value L if e evaluates
to Empty_tree (see Section 2.38).

Implicitly defined predicates:

:: (btree *0) —> bool
:: (btree *0) —> bool

Empty_btree?
Bnode?

2.12 Function Applications

Every function has type “t0 -> t1” for some argu-
ment type “¢0” and result type “t1”.

Assuming:

ef :: (£0 -> t1)
ex :: t0

then the application expression:

ef ex :: t1

2. Functional Id

denotes the application of a function (the value of
ef) to an argument (the value of ex).

Application associates to the left. Thus, the fol-
lowing two expressions are equivalent:

el e2 e3 ... eN

(((el e2) e3) . ell)

2.13 Prefix and Infix Operators

Some functions are designated by special symbols
called operators. Unary prefix operator expressions
are written:

op e
Binary infix operator expressions are written:

el op e2

All binary operators can be treated as ordinary iden-
tifiers by enclosing them in parentheses, e.g.,

(+) el e2
foldr_list (+) 0 list_of_N

This is one of the two special uses of parentheses in
Id, where they are not used for grouping (the other
is the notation for the void value, Section 2.15).

The unary prefix operator “-” cannot be similarly

treated as an ordinary identifier by enclosing it in
parentheses, because “(-)” stands for the value of
the binary version. For example, if the programmer
needs a unary integer minus function, this can be
obtained by partially applying the binary function
to the constant “0”:

(=) 0)

When applied to some x, this becomes “0-x”, which

is equivalent to “-x”.

2.14 Operator Precedence

In decreasing precedence:

2. Functional Id

operator associates
array and field selection | Left
application Left
- (unary) Right
" Right
* / Left
+ - Left
to downto by -

: Right
++ Right
== <> < <= > >= Left
and Left
or Left

, (comma in tuples) | -

2.15 Voids

There is a special constant “()” whose type is void.
There are no other values of this type. It is typically
used in two situations: as an argument for a pro-
cedure that does not otherwise have a meaningful
argument, and as a result of a procedure that does
not otherwise have a meaningful result.

Although there is nothing non-functional about
this by itself, it is useful mainly in non-functional
programs (Sections 3, 4 and 5).

This is the second special use of parentheses,
where they are not used for grouping (the first spe-
cial use was to “quote” infix operators, Section 2.13).

2.16 Booleans

Booleans are defined as follows:

False | True ;
bool ;

type bool =
typesyn B =

with implicitly defined predicates:

False?
True?

:: bool -> bool
:: bool -> bool

Thus, False and True are identifiers representing
boolean constants, and are also constructors (z.e.,
they can be used in patterns).

Infix operators:

and :: bool -> bool -> bool
or :: bool -> bool -> bool

Both left and right arguments are always evaluated.

7

The following operators are overloaded for

booleans:
== <>

See Appendix A.1 for standard boolean functions,
including “not”, the boolean negation function.

2.17 Integers

“I”)
Integer constants are written as sequences of dig-

its:

266 ::

Integer numbers have type int (synonym:

int

The following operators are overloaded for integers:
- (unary negation)
+ - *
== <> <= < > >=

Integers may also be used in patterns.

See Appendix A.2 for standard integer functions,
including integer division.

2.18 Floats
Floating point numbers have type float (synonym:
“F”).

Floating point constants are written with decimal
points and/or exponents:

0.6667 :: float
1.45 :: float
2.56e4 :: float
3e-3

The radix and exponent are always based on 10.
The decimal point must be preceded or followed by
at least one digit. The “e” must be preceded by a
number and followed by a (possibly signed) integer.

Example: 2.56e4 denotes 2.56 x 10*

The following operators are overloaded for floating
point numbers:
- (unary negation)

+ - *
== <> <= < > >=
Division:
/ :: float -> float -> float
Exponentiation:
~ :: float -> int -> float

See Appendix A.2 for standard floating point func-
tions.

8
2.19 Characters

All characters have type char (synonym: “c”). The
notation for character constants follows the conven-
tions of the C programming language.

Most character constants are written as the char-
acter enclosed in single quotes:

‘a’ :: char
e :: char
M :: char

To represent the single quote character itself, the
backslash character and certain other characters, the
following escape sequences may be used:

’\n’ char newline

\g? char horizontal tab
N\y? char vertical tab
’\b’ char backspace

\r’ char carriage return
\f? char form feed

’\a’ char audible alert
’\\? char backslash

N\ char question mark
2\ char single quote
M\ char double quote
*\ooo’ char octal code
"\xh..h’ char hex code

The last two forms are used for specifying octal or
hexadecimal codes for characters. Octal character
codes may be 1, 2 or 3 octal digit sequences. Hex
character codes may contain any number of hexadec-
imal digits (> 1).

Upper- and lower-case are distinguished in charac-
ter constants, except for hexadecimal digits in escape
sequences.

The following operators are overloaded for charac-
ters:
== <> <= < > >=

The obvious lexicographic ordering is guaranteed
only within the following classes: digit characters,
upper case characters, and lower case characters.

See Appendix A.3 for standard character func-
tions.

2.20 Strings

All strings have type string (synonym: “s”). The
notation for string constants follows the conventions

2. Functional Id

of the C programming language.

String constants are written between double-
quotation marks:

"Hiya" :: string
"Cab for hire" : string
"Wanna take you higher" : string

To represent the double quote character, the back-
slash character and certain other characters within
strings, the same escape sequences as for character
constants are available, with the following restric-
tion: octal escapes must have exactly three octal
digits, and hex escapes must have exactly two hex-
adecimal digits.

Upper- and lower-case are distinguished in string
constants, except for hexadecimal digits in escape
sequences.

Example: a string containing a newline.

"Some like it hot,\nSome like it cold."

The following operators are overloaded for strings:
== <> <= < > >=

The ordering uses lexicographic ordering on the char-
acters in the string.

Strings are zero-indexed (i.e., the first character
is at position 0).

The string type is different from lists or arrays of
characters for reasons of efficiency.

Even though we use C notation for string con-
stants, strings in Id are not zero-terminated as in

C.

See Appendix A.4 for standard string functions,
including functions to find the length of a string and
to convert to and from lists and arrays.

2.21 Symbols

All symbols have type symbol (synonym: “SYM”). A
symbol is written as a backslash followed by an iden-
tifier:

\A :: symbol
\x’ :: symbol
\desmond_2_2 :: symbol
\c3po :: symbol
\7am :: symbol

2. Functional Id

The following operators are overloaded for symbols:
== <>

Unlike Lisp, symbols are are not related to program
identifiers. Each distinct symbol merely represents
a unique global constant (unique across all Id pro-
grams).

See Appendix A.5 for standard symbol functions,
including conversion to and from strings.

2.22 Tuples

An N-tuple has type “(t1,...,tN)” where “tj” is
the type of the j'th component.
Assuming:

el i t1

eN :: tN
then the tuple expression:

el, ..., eN s t1,...,tN

denotes an n-tuple value (where N > 2—there is no
notation for 1-tuples).

The comma has lower precedence than all other
operators. Examples:

4+5, true
5, (sqr x, false)
(5,4),"Hi",(a > b)

:: int,bool
:: int, (int,bool)
:: (int,int),string,bool

The second expression is a 2-tuple whose second
component is itself a 2-tuple. The nesting structure
is significant—it is not equivalent to a 3-tuple.

Components of a tuple are accessed via pattern-
matching (see Section 2.28).

2.23 Records
2.23.1 Record type definition

Records are like tuples with named fields. A new

record type is defined using the statement:

tvll =
{record fieldnamel

type tx tvl ...

t1;

fieldnameM = tM};

Here, tx is the new type, and the tvJ’s are optional
type variables (N > 0). The fieldnameJ’s are iden-
tifiers representing field names.

The type variables in the right-hand side, if any,
must be a subset of the type variables mentioned in

the left-hand side.

Fieldnames have the same syntax as program iden-
tifiers. However fieldnames and identifiers are drawn
from different namespaces, i.e., there can be an iden-
tifier called x and a fieldname called x with no con-
fusion, since they always appear in disjoint regions
of the program text.

The same fieldname may not be used in more than
one record type (however, this restriction is likely to
be removed in the future).

Examples:
type person = {record pname = string ;
age = int } ;
type complex = {record x = float;
y = float } ;
type node *0 = {record
nname = int ;
info = %0 ;
children = list (node *0)};

2.23.2 Record construction

A record is constructed using a record expres-
sion:

{record fieldnamel = el;
H

fieldnameM = eM}

The order in which the fields are specified does not
have to follow the order of the fields in the record
type definition. All fields must be specified (This is
true only in the functional subset of the language; see Sections
4.4.2 and 5.4.2, where we allow I-structure and M-structure
fields to be omitted).

Examples:
{record pname = "Z.Z.Gabor";

age = 16 } :: person
{record y = 2.3; x = 4.5 } :: complex
{record nname = 2345;

info = 6.001;

children = Nil } : node float

10

2.23.3 Record field selection

Record fields may be selected using explicit field se-
lection:

record_expression . fieldname

Examples:

p.pname
c.x

n.children

2.24 Conditional Expressions

Assuming:

el :: bool e2 :: %t e3 :: %t
then

if el then e2 else e3 HE

is a conditional expression. The predicate el is eval-
uated, and depending on its truth or falsity, either
e2 or e3 (but not both) is evaluated, and returned
as the value of the entire expression.

The conditional expression is equivalent to the fol-
lowing case expression (see Section 2.29):

{case el of
True = e2

| False = e3}

In a conditional expression, the phrase “else e3”
may be omitted:

if el then e2 :: void

This is syntactic shorthand for:

if el then e2 else ()

Although there is nothing non-functional about this
by itself, it is useful mainly in non-functional pro-
grams (Sections 3, 4 and 5).

In parsing, an else matches the nearest preceding
unbalanced then.

Precedence of then and else: binds less tightly
even than commas—the parentheses may be omitted
in each of these examples:

if ... else (x,y)
if ... then (£ x y)
if ... else (x and y)

2. Functional Id

2.25 Blocks

The block expression:
{ STATEMENT ;
STATEMENT
In
e}

denotes the value of e evaluated in the environment
inside the block.

Semicolons may be used as statement separators
or as statement terminators, i.e., the last statement
before “In” is optionally followed by a semicolon.

Each statement must be well-typed. Statements
usually specify bindings associating identifiers to
types or values. The type of the block expression
is the type of e.

Blocks (like all Id constructs) follow a static scop-
ing discipline. The name-environment inside a block
is the surrounding environment augmented by the
names introduced by the statements of the block. A
name X may be introduced at most once in a block,
and hides any X in the surrounding environment.
Names introduced inside a block are invisible out-

side the block.

Thus, the statements in a block may be recursive
and mutually recursive, and the textual order of the
statements is not significant.

The phrase “In ¢” may be omitted:
{ STATEMENT ;

STATEMENT } :: void
This is syntactic shorthand for:
{ STATEMENT ;
STATEMENT
In
O

Although there is nothing non-functional about this
by itself, it is useful mainly in non-functional pro-
grams (Sections 3, 4 and 5).

2.26 Simple Binding Statements

The statement:

X=e ;

2. Functional Id

introduces x as a name for the value of expression e
into the current scope. We also say that x is bound
to the value of e.

2.27 Patterns

A pattern is one of the following:

e an identifier,

[{1382]

e an underscore “” (don’t care)

e a special constant (void, integer, character, sym-

bol),
e a constructor pattern:
c patl ... patN

where ¢ is an N-ary constructor name of some
algebraic type t, and the patJ’s are themselves
patterns (N > 0). The pattern itself is said to
be of type t.

All normal identifiers in a pattern must be unique
(technically, this is called left linearity). The “don’t-

care” pattern “” may be repeated.

Special syntax: list patterns can be written with
an infix colon:

pati:pat2

Special syntax: N-tuple patterns can be written

with commas:

pati,...,patlN

2.28 Pattern-Matching

Pattern-matching a pattern to a value has two dis-
tinct aspects:

e Matching, i.e., testing whether the value is a data
structure that conforms to the shape specified by
the pattern. If so, the match is said to succeed,
otherwise it is said to fail.

e Binding, i.e., producing an environment in which
identifiers in the pattern are bound to corre-
sponding components of the value. Binding only
occurs if the match succeeds.

Matching:

Matching succeeds under the following conditions.

A “don’t-care” pattern “”

value.

successfully matches any

11

An identifier pattern x successfully matches any
value.

A constant pattern ¢ successfully matches only the
corresponding value c.

A constructor term pattern

c patl ... patN

successfully matches only a value of the form

cvl ... vN

provided also that each patJ matches the corre-
sponding field vJ.

Binding

Assuming the pattern matches successfully, the fol-
lowing environment is produced:

({9}

A “don’t-care” pattern “” produces no binding.

An identifier pattern x binds x to the value.
A constant pattern ¢ produces no binding.

A constructor term pattern:

c patl ... patN

when matched to a value:

cvl ... vN

produces the union of all the bindings obtained by
matching all the patJ’s to their corresponding vJ1’s.

2.29 Case-expressions

Assuming:

e :: te
el :: ¢t

el :: ¢

and patl ... patN are patterns of type te, then the
case-expression:

{case e of
patl = el

...

| patN = eN } :: t

behaves as follows. All the patterns pat1 ... patlN

are matched to the value of e, in no specific order.

If patJ

succeeds, then the resulting bindings augment the

No more than one match should succeed.

12

current environment, eJ is evaluated in that envi-
ronment, and its value is returned as the value of
the whole expression. Note that all eJ’s must have
the same type t, and the entire case-expression has

type t.

The patterns must be disjoint, ¢.e., at most
one pattern can successfully match any e; this is
checked by the compiler. The pattern-matching is
“parallel”— there is no specified top-to-bottom or
left-to-right order in the pattern-matching. (For spe-
cialists: disjoint patterns may require non-sequential
functions for non-strict evaluation; in Id, these be-
come strict so that the order of patterns is not sig-
nificant).

The last clause may be preceded by “..” to des-
ignate it as a catch-all clause (this is a limited form
of ordering):

{case e of

patl = el
| cen
| patN = eN
|.. patF = eF }

Here, a match of patF to v (the value of e) is at-
tempted only if all other matches fail. Thus, patF
need not be disjoint from the other patterns.

The patterns need not be exhaustive—if no pat-
tern matches, a runtime error occurs, and the case-
expression has the error value L (see Section 2.38).
This behavior can be understood as follows. A case
expression without a default clause is equivalent to
one with a default clause added:

{case e of
patl = el
| c.
| patN
[.. _

elN
error "Pattern match"}

(see Section 2.38 for the error function). A case
expression with a default clause is equivalent to one
with the default clause rewritten as follows:

{case e of

patl = el
|
| patN = eN
[.. x = {case x of
patF = eF

error "Pattern match"}}

2. Functional Id

2.30 Function Abstractions

A function abstraction expression (a form of lamb-
da-expression) is written:

{fun patil ... patilN = el
[pat21 ... pat2N = e2
[patMl ... patMN = el
[.. patLl ... patLN = eL }

and is equivalent to:

{fun x1 ... zN =
{case (x1,...,xN) of
(patil,...,patiN) = el
[(pat21,...,pat2N) = e2
[(patMi,...,patMN) = ell
[.. (patlLi,...,patLN) = eL }}

and represents an “anonymous” function of arity
N (> 1) whose formal parameters are the xJs and
whose body is the case-expression. As usual, static

scoping rules are followed.

The final “catch-all” clause (signalled by “..”) is
optional.

2.31 Function Definitions

A function definition statement is written:

def f patil ... patiN = el
| £ pat21 ... pat2N = e2
| £ patMl ... patMN = el
[.. £ patLl ... patLN = eL

and is equivalent to the simple binding state-
ment:

f = {fun x1 ... zN =
{case (x1,...,xN) of
(patil,...,patiN) = el
[(pat21,...,pat2N) = e2
| cen
[(patMi,...,patMN) = ell
[.. (patLi,...,patLN) = eL }}

The final “catch-all”
optional.

clause (signalled by “..”) is

See also Section 7.1 for defsubst, a version of def
that also suggests that it is inlinable for efficiency.

2. Functional Id

2.32 Pattern-Binding Statements

A convenient way to access components of a data
structure is to use a pattern-binding statement:

pat = e ;

The pattern is matched against the value of e, and
if it succeeds, the corresponding bindings are intro-
duced into the current scope.

If the match fails, a runtime error occurs—
the statement is equivalent to the error statement
statement, (see Section 2.38), and some or all of the

bindings may not be performed.

Example:

(x,y:y8) = e ;

The expression e should evaluate to a 2-tuple whose
second component is a non-empty list. The state-
ment binds x to the first component of the tuple, y
to the head of the list and ys to the tail of the list. If
the second component of the 2-tuple is an empty list,
the pattern-match fails; in this case, the statement
is equivalent to the error statement statement; (see
Section 2.38), y and ys remain unbound, and it is un-
specified whether x is bound to the first component
of the tuple or remains unbound.

2.33 Lists

The standard list type is defined as:
type list *0 = Nil | Comns *0 (list *0);
with implicitly defined field selectors:

: (list *0).*0
: (list *0).(1list *0)

Cons_1
Cons_2

and implicitly defined predicates:

Nil?
Cons?

(1list *0) -> bool
(1list *0) -> bool

Special syntax: constructor terms of the form:
Cons el e2

may be written with the infix “:”

operator:
el:e2

and the higher-order function:

Cons

may be written as:

()

13

using the usual parenthesized notation for quoting
infix operators. Also, the pattern:

Cons patl pat2

can be written

patl : pat2

2.33.1 Binary Infix List Operators

Appending two lists:
++ :: (1list *0) —-> (list *0) -> (list *0)

2.33.2 Arithmetic Series Operators

Assuming:

el :: int e2 : int elnc : int

evaluate to integers vl, v2 and vlInc, respectively,

then the expressions:

:: (list int)
:: (list int)

el to e2 by elnc
el downto e2 by elnc

produce lists containing (v1, vl + vInc, vl + 2vinc,
ey ©2), and (vl, vl L vInc, vl L 2vinc, ..., v2),
respectively.

Note: vInc must always be positive.

The short forms:

el to e2
el downto e2 ::

:: (list int)
(1ist int)

assume that vIncis +1.

Precedence of to, downto and by: the parentheses
may be omitted in each of these examples:

. to (f x)
.. downto (f x)
.. to (el + e2)
. by (£ x)

See also Section 6.2.1 for arithmetic series of infinite
length.

2.33.3 List Comprehensions

A list-comprehension is written:
{: e || geni ; ; genll }

(N > 1). Each generator gen is written in one of two
ways:

14

pat <- eList FILTER1 ... FILTERm

pat = eVal FILTER1 ... FILTERm

(m > 0). Each FILTER is written in one of two
ways:

when epw

unless epu

Individual generator behavior

In the first form (using <-), eList must be a list of
values; pat is matched to each element of the list,
generating a sequence of environments that bind the
pattern variables. If pattern-matching fails, a run-
time error occurs— the failing match of the pattern
to a list element is replaced by the error statement
statement (see Section 2.38).

In the second form (using =), pat is matched to the
value of eval, generating an environment that binds
the pattern variables. If pattern-matching fails, a
runtime error occurs— the failing match of the pat-
tern to a list element is replaced by the error state-
ment statement; (see Section 2.38).

The environments are then filtered, i.e., those en-
vironments in which an epw evaluates false or an epu
evaluates true are discarded. The filters are tried
in sequence from left to right, i.e., if a filter rejects
an environment, the subsequent filter expressions are
not evaluated for that environment.

Generator sequence behavior

The generators are evaluated from left to right. For
each environment EFnv in the sequence of environ-
ments produced before genJ,

e genJ is evaluated in Env, and produces a set of
environments Envj, Fnvy,, ...

e Env is replaced in the sequence by the aug-
mented environments Env + Envy, Env +
Envyg,, ...

Thus, the net result of the generator sequence is a
sequence of environments containing bindings for the
pattern variables of all the generators.

List-comprehension behavior
The expression e is evaluated in each environment
produced by the generator sequence, and the values
are collected into a list (in the same order), which is
the result of the whole expression.

Type of list comprehension
The type of the list comprehension is (1list t),

2. Functional Id

where e::t in the environment specified by the gen-
erators.

Examples

A list of x-y coordinates in the first octant of a 100-
square:

{: x,y || x <- 0 to 100 ; y <- 0 to x }

A list of x-y coordinates in a 100-square that are not
on the axes or on the diagonals:

{: x,y || x <- 0 to 100 when x <> 0
3 ¥ <— 0 to 100 when y <> 0
unless x == y }

See Appendix A.6 for standard list functions.

2.34 Arrays

Arrays are collections of uniformly-typed objects,
with a constant access-time for each component.

2.34.1 Array Types

An n-dimensional array (n > 1) whose components
have type t has type:

nD_array t

Arrays can contain objects of any type, including
other arrays.

Nested arrays are not equivalent to multi-
dimensional arrays. The following two types are not
equivalent:

2D_array t

1D_array (1D_array t)

Synonyms for 1D_array:

vector array

Synonym for 2D_array:
matrix

2.34.2 Array literals

Assuming a bounds expression (an n-tuple of integer
2-tuples):

eBounds :: (int,int), ... ,(int,int)

2. Functional Id

which evaluates to (11,ul),...,(1n,un), an array
with those index bounds can be constructed by enu-
merating its contents:

{nD_array eBounds of
eFirst eLast}

The expressions specify the contents in “row-major”
order, t.e., starting from index 11,12,...,1n and
ending at index ui,...,un, stepping the right-most
index fastest. The number of contents-expressions
must be equal to the number of components in the
array.

Note that if a component is specified by an ap-
plication “f a”, it will have to be parenthesized to
prevent it from being mistaken as two separate com-
ponent specifications.

It is legal for the index bounds (I,u) along any
dimension to be empty, i.e., to have u = L 1 (zero
components).

2.34.3 Array Selection

Assuming:
a :: nD_array t
e :: int,...,int

then the array-selection expression:
alel A

returns the value of the ji,...,jn’th component
of the array “a”, where ji1,...,jn is the value of
“e”. The index j1,...,jn must be within the index-
bounds of the array—it is a runtime error otherwise,
producing the error value L (see Section 2.38).

Note that the index expression can be any expres-
sion that returns an n-tuple of integers, i.e., it does
not have to be a literal tuple-expression.

Precedence of array selection: tighter even than
application, so that parentheses are not necessary
in:

f (alel)
2.34.4 Array Index Bounds

For each n > 1, there is a function that returns the
index bounds of n-dimensional arrays:

15

bounds”1D_array ::

(1D_array *0) -> (int,int)
bounds”“2D_array ::

(2D_array *0) -> ((int,int),(int,int))

The overloaded identifier bounds represents all these
functions.

2.34.5 Array Comprehensions

Array comprehensions are used to construct arrays,
allowing the programmer to specify the contents of
different regions of the array using different compu-
tation rules.

For each £ > 1 and n > 1, assuming a bounds
expression (an m-tuple of integer 2-tuples):

eBounds :: (int,int), ... ,(int,int)

and a set of index expressions (each an n-tuple of
integers):
eJl ::

int,...,int

and a set of component expressions (each a k-
tuple):
eJ2 ::

tl,...,tk

then the array comprehension expression:

{k_nD_arrays eBounds of

[e11] = e12 || gen ; ; gen
[...
| [eM1] = eM2 || gen ; ; gen }

returns a k-tuple of n-dimensional arrays. Each gen
is a generator, possibly including filters (exactly as
in list-comprehensions).

Array comprehension behavior

eBounds is evaluated to produce lower- and upper-
bounds for each of n dimensions. k arrays with
these dimensions are created. Then, the subsequent
clauses are all executed in parallel to fill the arrays.
(The top-to-bottom order of the clauses has no sig-
nificance.)

Clause behavior
See Generator behavior and Generator sequence be-
havior in Section 2.33.3 on list comprehensions to

see how each generator sequence
gen ; ; gen

produces a sequence of environments. Now, in each
such environment, eJ1 is evaluated to produce an in-
dex into the arrays (an n-tuple), and eJ2 is evaluated

16

to produce a k-tuple specifying the contents of that
location in each of the k arrays.

Type of array comprehensions
The type of the value of the array comprehension
is

nD_array ti, ., nD_array tk

where t1,...,tk is the type of each eJ2 in each en-
vironment specified by the J’th generator sequence.

A runtime error occurs if the contents of an ar-
ray at some index is defined more than once, .e.,
if the array comprehension specifies values twice at
the same index ji,...,jN. This is a drastic error—
the entire program is considered to be inconsistent

(see Section 2.38).

If, at some index, the array comprehension speci-
fies no value at all, then that location simply remains
undefined (indistinguishable from a non-terminating
computation).

The generator sequences “|| gen ; ; gen”
are optional. In this case, eJ1 and eJ2 specify the

contents of a single location.

The k.nD_arrays keywords have synonyms for
sOme common cases:

k=1 k>1
n=1 array k_arrays

vector k_vectors
n =2 | matrix | kmatrices
n > 1 | nD_array

It is legal for the index bounds (I,u) along any
dimension to be empty, i.e., to have u = L 1 (zero
components).

Examples

The vector sum of two vectors & and B:

{array (1,N) of

[i] = A[iJ+B[i] || i <- 1 to N }

A statement defining an array using a “wavefront”
recurrence:

A = {matrix (1,N),(1,N) of

[1,1]1 =1
| [i,1]1 =1 [l 1 <- 2 to N
[[1,j1 =1 [l j <-2toN
| [i,j] = A[i-1,3] +
Ali,j-1] [l 1 <- 2 to N

;5] < 2 to

2. Functional Id

An array containing the inverse of a given permu-
tation in array A:

{array (1,N) of
[A[iJ] =41 || i <- 1 to N }

See also Appendix A.8 for standard array functions.

2.35 Accumulators

Accumulators are an extension of arrays.

{k1_ni1D_arrays eBoundsl of

[ei] = evs || gen ; ... ; gen
[...
| [ei] = evs || gen ; ... ; gen
k2_n2D_arrays eBounds2 of

[ei] = evs || gen ; ... ; gen
[...
| [ei] = evs || gen ; ... ; gen
kM_nMD_arrays eBoundsM of

[ei] = evs || gen ; ... ; gen
[...
| [ei] = evs || gen ; ... ; gen
accumulate k_ops of

[eis] = evs || gen ; ; gen
[...
| [eis] = evs || gen ; ; gen }

This returns a tuple containing k arrays (k = k1 +
k2 + ... + kM). The first k1 arrays have bounds
eBounds1 and are initialized according to the first set
of clauses, the next k2 arrays have bounds eBounds2
and are initialized according to the second set of
clauses, and so on.

After the keyword accumulate, the expression
k_ops returns a tuple of k& operators that are the ac-
cumulation operators.

The final set of clauses specifies the indexes and
In each clause, eis
is a k-tuple of indices il,...,ik, and evs is a k-
tuple of values v1,...,vk, specifying the accumula-

values for the accumulation.

tions:
X1[i1] := op1l X[i1] vi
Xk[ik] := opk X[ik] vk

Each such accumulation is executed atomically.

2. Functional Id

The array value of the entire expression is returned
only after all the accumulations have been done.
Thus, accumulators are hyperstrict, unlike ordinary
arrays, which are non-strict.

Since the order in which the accumulation oper-
ations are performed is non-deterministic, it is the
programmer’s responsibility to ensure that the ac-
cumulation operators have the following property:

(op (op x y) z) = (op (op x 2) y)

so that the whole construct is deterministic.

Example
A 10-category histogram of a zillion things:

{array (1,10) of
[il =0 Il i <- 1 to 10
accumulate (+) of
[classify x] =1 || x <~ zillion_things }

2.36 Abstract Types

A new abstract data type is declared using this state-
ment:

abstype NEWIYPE
typeof x1 = TYPE1 ;

typeof xN = TYPEN

rep
REPRESENTATION-TYPE
{

def x1 cee

def xN cee
};

NEWTYPE is the (possibly parameterized) new type ex-
pression.

17

not exported—they are just local types and local
definitions.

The net effect of the abstype statement is to in-
troduce the new type identifier and the identifiers x1
through xN into the current scope. Each xJ has the
specified type signature and bound value.

Within the braces, the abstract type is treated
as equivalent to the representation type. Outside
the abstype statement, the abstract type and the
representation type are treated as distinct (different)

types.

The representation type may be a local type, i.e.,
declared in the braces. If so, it is not even visible
outside.

Example

A stack, with a list representation:

abstype (stack *0)

typeof empty = (stack *0);
typeof empty?= (stack *0) -> bool;
typeof push = *0 ->
(stack *0) —-> (stack *0);

typeof pop = (stack *0) -> (stack *0);
typeof top = (stack *0) -> %0
rep (1list *0)
{

empty = nil ;

empty? = nil? ;

push = (:) ;

def pop (x:s) = s

| pop nil = error "Stack underflow" ;
def top (x:s) = x

| top nil = error "Stack underflow"

};

(See Section 2.38 for the error function.)

2.37 Loops

The subsequent typeof statements specify the sig-
nature (or interface) of the abstract type.

While list- and array-comprehensions are convenient
for expressing “mapping” operations over sequences,

The REPRESENTATION-TYPE is a type-expression l0Ops are convenient for expressing “reduction” op-

specifying the internal representation of objects of erations. Id has while-loops and for-loops.

the new type. The

general while-loop expression notation

The statements in the braces specify definitions is:
for the identifiers in the signature. There may be {while eb do
other identifiers defined in the braces, but they are STATEMENT ;

18
STATEMENT
finally e} EE
where eb :: boolande :: t.

The general for-loop expression notation is:

{for x <- eIndex do
STATEMENT ;

STATEMENT
finally e} EE

where eIndex :: (list *0) and e :: t. The for-

loop notation is shorthand for a while-loop:
{ L = eIndex
In
{while (L <> nil) do
x:(next L) = L ;
STATEMENT ;
STATEMENT
finally el}}
Here, eIndex is normally an arithmetic-series expres-
sion (see Section 2.33.2).

The braces are compulsory. The type of the entire
loop expression is the type of the expression in the
“finally” phrase.

The loop body is a series of statements, with
the following extension: a binding occurrence of an
identifier (say “x”) may be prefixed by the keyword
“next”, denoting the value to be used for “x” in the
next iteration. This value is also available in the cur-
rent iteration because “next x” may be used as an

expression.

The phrase “finally e” may be omitted:

{while/for ...
STATEMENT

STATEMENT } :: void
This is syntactic shorthand for:
{while/for

STATEMENT ;

STATEMENT
finally () }

Although there is nothing non-functional about this
by itself, it is useful mainly in non-functional pro-
grams (Sections 3, 4 and 5).

See Section 7.2 on “bounded loops” for annota-
tions to limit the parallelism of loops.

2. Functional Id

2.37.1 Scope of Variables in Loops

We use the phrase loop context to refer to the set of
variables available to the loop expression from the
surrounding scope. Any variable “x” from the loop
context takes on a new value at each iteration if there

is a “next x” binding in the loop body.

In while-loops, the predicate may only use identi-
fiers from the loop context, and is re-evaluated each
time before entering the loop body.

The loop is terminated in while loops when the
predicate evaluates to false. Then, the finally e
expression is evaluated and returned as the value of
the loop. It may only use identifiers from the loop
context.

Within the loop body, only variables from the loop
context may be “nextified”. The loop body may also
contain ordinary identifier bindings. The scope of all
bindings is the entire loop body (this includes the
nextified variables, since “next x” may be used as
an expression within the body).

For any nextified identifier “x”, the bound value

becomes the value of “x” at the end of the iteration.

2.37.2 Loop semantics

While-loops are equivalent to tail-recursive func-
tions, according to the correspondence illustrated by
the following example. Assume that x and y are the
only two nextified variables, and that their bindings
are the last two statements in the loop body:

{while eB do
STATEMENT
STATEMENT
next x = ex ;

next y = ey ;
finally eF} A

This loop is equivalent to:

{ def loop x y = if eB then
{ STATEMENT
STATEMENT
next_x = ex ;
next_y = ey ;
In

loop next_x next_y}
else

2. Functional Id

eF ;
In
loop x vy } ;

The function loop has a parameter for each nexti-
fied variable. The loop body is transcribed verbatim
into the block inside the conditional, with the excep-
tion that we systematically replace all occurrences
of “next x” by the identifier next x. The return-
expression of the block is a tail-recursive call to loop
using the next values of x and y.

The translation illustrates a number of points.
The initial values of x and y come from the surround-
ing scope. If eB evaluates to False the first time, the
loop body is not executed at all. Because of the par-
allel semantics of blocks, the recursive call (to the
next iteration) may execute in parallel with the cur-
rent call. In principle, all iterations may execute in
parallel and, indeed, the loop can even return a final
result while the loop bodies are still executing.

Bounded Loops

The above description of loops semantics is correct
to first order. However, the user may specify that a
loop should be compiled as a bounded loop, which
limits the degree of unfolding to a fixed number of
iterations. The net effect of bounded loops is possi-
bly to increase the strictness of loops in exchange for
better resource utilization, i.e., it can affect termi-
nation. Bounded loops are discussed fully in Section
7.2.

In the absence of explicit user directives, it is
unspecified whether loops are compiled as bounded
loops or not.

Examples

Successive approximations until convergence to a
limit:

{ approx = first_guess ;
delx = infinity

In
{while (delx > epsilon) do

next approx = improve approx ;
next delx = (next approx)-approx
finally x}}

The n’th Fibonacci:

19

{zx,y=1,1
In
{for j <- 1 to n do
next x,next y =y, xt+y
finally x1}}

2.38 Errors

There are three types of errors that may be produced
during execution of an Id program:

e Error values, written 1. For example, the ex-
pression v1/v2 evaluates to L if v2 is zero. Er-
ror values should be regarded as synonymous
with non-terminating computations, i.e., it is
as if the erroneous operation that produced L
is stuck forever.

e Error statements, written statement,. For ex-
ample, a pattern-binding statement:

(x:y) = e ;

is replaced by statement, if e evaluates to Nil
(i.e., the pattern-match fails). Another reason
for this error is an out-of-bounds index in an
array-store operation (see Sections 4 and 5).

e Inconsistency, written T. This is a drastic error,
in that it renders the entire program inconsis-
tent. For example, in an array comprehension,
if some element of the array is specified more
than once, the program is inconsistent. The
usual reason for this error is multiple I-stores
into the same location (see Section 4).

For 1 and statement,, implementations of Id may
provide some interactive means for the user to arti-
ficially repair the error and continue execution. For
T, on the other hand, no such repair is meaningful.

Functional Id programs and programs that use I-
structures (Section 4) are determinate (Church-
Rosser) even in the presence of errors. A pro-
gram:

e may be inconsistent, or
e produces a value (perhaps the error value 1) and
zero or more statement] s.

This behavior is repeatable, i.e., different runs of
the program will always produce the same outcome,
despite differences in runtime scheduling.

20
Forced errors

The programmer can force an error using the func-
tion:

error : string -> *0

which always evaluates to 1. The argument string
e should be a meaningful error-message. Because of
its polymorphic output type, the error function may
be applied in any context.

3. Functional Id/General non-functional

3 General issues concerning non-
functional constructs
(I-structures and M-structures)

I-structures are a small departure, and M-structures
are a major departure from purely functional seman-
tics. I-structures and M-structures are layered on
top of the purely functional subset of Id by con-
structs that are distinguished by syntax and by type,
i.e., it is possible to mechanically check whether a
program is purely functional or whether it uses I-
structures or M-structures.

This section discusses general issues concerning
these non-functional extensions. I-structures are de-
scribed in detail in Section 4, and M-structures are
described in detail in Section 5.

3.1 I-structure and M-structure seman-

tics

The primitive side-effecting constructs in Id have
to do with updating components of data structures.
There is no assignment statement for ordinary vari-
ables. A component of a data structure may have
either functional, I-structure or M-structure seman-
tics. Operations on all three have built-in synchro-
nization.

The value of a functional component of a data
structure is specified simultaneously with the cre-
ation of the data structure. Of course, the compo-
nent cannot be updated, and it can be read many
times. The programmer never considers synchro-
nization explicitly, except inasmuch as one is aware
that one can use non-strictness to define data struc-
tures using recurrences. All data structures de-
scribed in Section 2 were functional.

For a non-functional component of a data struc-
ture, no value is specified when the data structure is
created; instead, a separate assignment statement is
used. A non-functional component may be in one of
two states: full (with a value), or empty. All com-
ponents begin in the empty state (when the data
structure is allocated) and later become full through
assignment statements. I-structure and M-structure
components have different semantics for reading and
writing, and are described in detail in Sections 4 and
5, respectively.

3. General non-functional

For algebraic types and records, different fields of
an object may have different semantics: functional,
I-structure or M-structure.
field is specified in the type declaration. A given field
can only be accessed according to its declaration—
with functional, I-structure or M-structure seman-
tics; this is ensured by a combination of syntax and
type checking.

The semantics of each

For arrays, on the other hand, there are three
types of arrays: functional, I-arrays and M-arrays.
Thus, all components of an array have the same se-
mantics, and this is reflected in the array type itself.
Again, type-checking ensures proper access.

3.2 Polymorphism of I-structures and M-
structures

Updatable structures do not mesh well with poly-
morphism. In order to be safe, our type-checker is
very conservative, and so the polymorphism of some
programs with I-structure objects may be less than
expected.

(Comment for experts: the polymorphism of I-
structure and M-structure components is expressed
with so-called “weak” type variables, similar to ref
types in ML.)

3.3 Referential Transparency, Sharing

and Object Identity

Programs that use only functional operations are ref-
erentially transparent, whereas programs that use I-
structures or M-structures may not be. For example,
consider the following two expressions:

(e,e) {x=¢e
In

(x,x) }

These expressions are equivalent (except for effi-
ciency considerations) in the functional subset of Id,
i.e., both programs will produce exactly the same
answer except that one may use more resources than
the other. They are no longer equivalent if they use
I-structures or M-structures. For example, if e allo-
cates and returns a data structure, the expression on
the left produces two references to two separate data
structures, whereas the expression on the right pro-
duces two references to the same structure. In the

21

functional subset of Id, these two situations are in-
distinguishable. With I-structures or M-structures,
on the other hand, they are distinguishable, because
an assignment wvia one reference to a data structure
can affect what is read via another reference to the
same data structure.

Thus, when programming with I-structures and
M-structures, the programmer should be clear about
the sharing of computations and, by extension, the
sharing of data structures. The standard proce-
dure:

same? :: *0 -> *0 -> bool

can be used to test if two values are identical (the
same object). Its behavior is undefined on non-
updatable objects, such as numbers, functions and
algebraic types with no updatable components. For
example,

same? (5,6) (5,6)

may return true or false, depending on the imple-
mentation. The programmer is advised to use this
procedure only on updatable objects (I-arrays, M-
arrays, and algebraic types and records with I-fields

or M-fields).

3.4 What gets evaluated, and when

Consider a conditional expression:

if el then e2 else e3

In Section 2.24, we stated that el is evaluated first
and then, depending on its value, either e2 or e3 (but
not both) is evaluated.

In the functional subset of Id, this level of preci-
sion is not necessary— neither what nor when. Even
if some evaluation occurs in both e2 and e3, some
unnecessary work would be done, but it would not
affect the outcome of the program. Further, it does
not matter if some evaluation occurs in e2 or e3 be-
fore el is evaluated.

With I-structures and M-structures, however,
both these issues are important. For example, if e2
and e3 both contained assignments to the same I-
structure location, a runtime error would occur if
both were performed. Or, if e2 or e3 manipulated
some M-structure location, they could affect each
other’s outcome, or even the outcome of other ex-
pressions such as el, if they were evaluated too early.

22

Thus, when using I-structures and M-structures,
the programmer must be clear about exactly which
expressions get evaluated, and when.

In general, for most expressions that have mul-
tiple sub-expressions, all sub-expressions are evalu-
ated, and they are evaluated in parallel. For exam-
ple, all expressions in a block, both expressions in
an infix expression “el op e2”, all expressions in a
tuple expression, etc. are evaluated in parallel. The
exceptions to this general rule are described below.

Conditionals:

if el then e2 else e3

The predicate el is evaluated fully. After its boolean
value is available, one of the arms e2 or e3 is eval-
uated. However, please note the following subtlety
due to non-strictness: this does not mean that there
is no overlap between the evaluation of el and the
evaluation of e2/e3. Consider this conditional:

if (Nil? (eH:eT)) then e2 else e3

Because of non-strictness, the predicate can return
False even if no evaluation of eH and eT has yet taken
place, and this enables the evaluation of e3. Thus,
the evaluations of eH, eT and e3 can overlap. Thus,
non-strictness should be kept in mind when reason-
ing about when an expression is evaluated, in this
and all subsequent rules.

Case expressions (this is the general form of the rule
for conditionals):

{case e of
patl = el

...

| patN = eN }

The expression e is evaluated completely. When it is

successfully matched to one of the patterns, say patJ,

the corresponding arm eJ is evaluated completely.

Function definitions and applications:

def £ x1 ... xN = eBody ;

Nothing is evaluated in eBody. After the function £
has been applied to N arguments, a new instance
of eBody is created and is evaluated. Partial appli-
cations of £ (i.e., application to fewer than N argu-
ments) do not cause any evaluation in eBody.

Function abstractions have similar behavior. Evalu-
ating the expression:

{fun x1 ... xN = eBody}

3. General non-functional

does not cause any evaluations in eBody— it just
creates a function value (a closure). Partial appli-
cations of this function value (i.e., applications to
fewer than N arguments) simply build new function
values. When fully applied to N arguments, a new
instance of eBody is created and is evalauted.

Loops: the evaluation order is derived from the
translation to tail-recursive form, as described in
Section 2.37.2. Briefly, without going into this trans-
lation, in a while-loop:
{while eb do

STATEMENT ;

STATEMENT
finally e}
none of the statements in the body are executed until
eb evaluates to True, after which all the statements
and the next invocation of eb are evaluated in paral-
lel. After a particular invocation of eb evaluates to
False, the corresponding loop body is not executed

at all, and the corresponding final expression e is
evaluated.

Delayed expressions: See Section 6

Barriers: See Section 3.7.

3.5 Determinacy

Programs in the functional subset of Id are guar-
anteed to be determinate, by which we mean that
that it is impossible for the programmer to write a
program that, despite different schedules on differ-
ent runs, produces two different outcomes. Formally,
functional programs are said to have the Church-
Rosser property.

Programs which use only functional data struc-
tures and I-structures (not M-structures) are also
guaranteed to be determinate (despite the loss of
referential transparency).

Programs that use M-structures are not guaran-
teed to be determinate. Of course, through careful
use of M-structures, it is still possible to write de-
terminate programs (indeed, this is often an explicit
goal), but it is important to understand the differ-
ence: in functional Id and with I-structures, determi-
nacy is a property of the language (every program
has this property), whereas with M-structures, de-
terminacy is only a property of particular programs
(has to be proved separately for each program).

3. General non-functional

3.6 Side-effect statements

In the functional subset of Id, a statement always
binds identifiers on the left-hand side to values from
the right-hand side (e.g., in a block or loop body).
With I-structures and M-structures, we can also
have side-effect statements.

Primitive side-effect statements are assignments of
values to I-structure or M-structure components.
Such a statement has the form:

slot-designator = e ;

where slot-designator is an identifier (not a gen-
eral expression) followed by zero or more functional
or I-structure array and field selectors, followed by
exactly one I-structure or M-structure array or field
selector. Examples:

al[3] = el ;
b![4] = e2
c.name = e3;

d!balance = e4;
e[4] .name = €5 ;
f.months[12]!'balance = e6 ;

Note that slot-designators are unrelated to patterns,
and there are no identifier bindings involved.

An expression e can be executed purely for its side
effect by using it in a statement that discards its
result:

STATEMENT ;

_=e

éiATEMENT

The single underscore may be regarded as a special,

dummy identifier to which the value of e is bound
and never referred to further.

However, conditionals, loops, case and block ex-
pressions can be used directly as statements (the

“_ =" can be omitted):

STATEMENT ;

if ... then ... else ;

{while/for ... T ;

{ STATEMENT; ... ; STATEMENT in e’} ;
{case ... T ;

STATEMENT

23

3.7 Sequencing Statements: barriers
By using “---" in a statement sequence, the pro-
grammer can indicate that all statements before it
must execute completely before any statement after
it can begin:

{s1;

Here, s1 through sI execute completely before the
execution of sJ through sN or e begins.

When we say that a statement S must “execute
completely”, we include, transitively, anything that
S calls, anything that those computations in turn
call, and so on. This is sometimes also referred to as
“hyperstrict” evaluation. The *
read visually as a “barrier”.

-—-" lexeme can be

Unless the last statement in a block is followed by
an “---", it is executed in parallel with the return-
expression. Compare these two expressions:

{ st { s1
s2 s2
In -
e} In

e}

On the left, e is evaluated in parallel with s2; on the
right, e is evaluated after the execution of s2.

Parentheses may be used to group statements to
limit the extent of the sequentialization:

{s1;
(s2

s3 ;
s4) ;
sb
In
e}

Here, s1, the parenthesized statement group, s5 and
e are evaluated in parallel. Within the statement
group, s2 is evaluated first, after which s3 and s4
are evaluated in parallel.

24

Grouping statements using parentheses does not
affect the scope of identifiers (hence one could not
in general replace the parentheses by braces in the
block shown above). For example:

{s1;
(x=....9 ... ;
s3 ;
s4 ;) ;
y = eb
In
e}

% s2

The use of y in statement s2 is perfectly legal; there
is no violation of scope rules.

Similarly, barriers and statement groupings, which
concern dynamic control, are irrelevant for type def-
initions and type declarations, since these are static
declarations. For uniformity, the programmer may
regard all type definitions and declarations in a block
as if they occurred at the top of the block.

However, the programmer should notice that while
the order of the statements has not effect on the
scopes of identifiers, the order can be important to
prevent deadlock. For example:

{s1;
(x=....7 ... ; % 82
s3 ;
y=ed ;) ;
sb ;
In
e}

There is no violation of scope rules, but the program
will deadlock because statement s2 cannot complete
until y gets a value, and y cannot get a value until
s2 completes.

The behavior of barriers in loop bodies follows
from the translation to tail-recursive functions de-
scribed in Section 2.37.2.
loop:

Consider the following

{while eB do
STATEMENT1;
STATEMENT2;
next x = ex ;
next y = ey ;

finally eF}

The translation is:

3. General non-functional

{ def loop x y = if eB then
{ STATEMENT1;

STATEMENT2;
next_x = ex ;
next_y = ey ;

In
loop next_x next_y}

else
eF ;
In
loop x y } ;

From this, it is obvious that the recursive call for the
next iteration cannot begin until STATEMENT!1 com-
pletes. The net effect is that the entire loop runs se-
quentially. The programmer should be careful about
this behavior: a single unadorned barrier in a loop
body sequentializes the loop!

If the programmer wishes to localize the barrier
to individual iterations while allowing separate iter-
ations to run in parallel, parentheses may be used as
usual to localize the barrier. For example:

{while eB do
(STATEMENT1;

STATEMENT2;)

next x = ex ;
next y = ey ;
finally eF} A

The translation is:

{ def loop x y = if eB then
{ (STATEMENT1

STATEMENT2)
next_x = ex ;
next_y = ey ;

In
loop next_x next_y}
else
eF ;
In
loop x y } ;

Now, the recursive call can begin as soon as we know
that eB is True, and all iterations can, in principle,
run in parallel.

Barriers are used primarily in M-structure pro-
grams for regulating the order in which side-effects
are performed (including I/O). Here, insertion or
omission of a barrier must be done with care, as
it can substantially change the semantics of a pro-

4. General non-functional/I-structures

gram (produce different answers or introduce run-
time multiple-put errors).

For programs that do not use M-structures
(purely functional, or with I-structures), barriers
only change the termination behavior (strictness) of
programs. For example:

(_=7vy;

x=e;)

The barrier causes the expression e to become strict
in y, t.e., e does not evaluate until y gets a value
(from the surrounding context). In extreme cases,
of course, insertion of a barrier can introduce dead-
lock into an otherwise deadlock-free functional or I-
structure program.

Barriers are also used in programs that perform
explicit storage management (Appendix A.14).

3.8 Sequencing expressions

The seq form may be used to sequentialize the eval-
uation of expressions:

{seq el; e2; ; eN}

Here, el, e2, ..., and el are evaluated sequentially,
and the value of el is returned as the value of the
whole expression. The values of the other eJ’s are
discarded. The type of the entire expression is the
type of eN.

The seq form is an abbreviation for:

{_ =el
_ = e2
foo = elN

In
foo }

25

4 I-structures

I-structures are a small departure from purely func-
tional semantics. I-structures are layered on top of
the purely functional subset of Id by constructs that
are distinguished by syntax and by type.

Please refer to Section 3 for general issues con-
cerning non-functional constructs.

4.1 I-structure semantics

A component of a data structure may have I-
structure semantics (as opposed to functional or M-
structure semantics). For such a component, no
value is specified when the data structure is created;
instead, a separate assignment statement is used. An
I-structure component may be in one of two states:
full (with a value), or empty. All components be-
gin in the empty state (when the data structure is
allocated).

An I-structure component has a single assignment
restriction, i.e., it can only be assigned once, at
which point its state goes from empty to full. Any
attempt to assign it more than once is caught as a
runtime error. The component can be read an arbi-
trary number of times. Further, any attempt to read
a component that is empty is automatically blocked
until it becomes full. Thus, the programmer does not
have to worry about sequencing the reads after the
assignment—there is no race condition. I-structure
reads and writes are called I-fetches and I-stores,
respectively.

Multiple I-stores into the same location cause a
drastic runtime error. The entire program is said to
be inconsistent, or T (see Section 2.38).

4.2 I-structure arrays

I-structure arrays are array-like data structures with
empty locations which can be assigned subsequently
using I-structure semantics. These arrays are also
referred to as I-arrays.

4.2.1 I-array types

An n-dimensional I-array whose components are of
type t has type:

26

nD_I_array t

Synonyms for the type name 1D_I array:

I _vector I_array

Synonym for the type name 2D_I array:
I matrix

4.2.2 I-array creation

An n-dimensional I-array is created using the func-
tion:
nD_I_array::((int,int),

(int,int)) -> (nD_I_array *0)
i.e., it takes an index bounds expression (an n-tuple
of integer 2-tuples) and returns an empty I-array
with those bounds.

It is legal for the index bounds (I,u) along any
dimension to be empty, i.e., to have u = L 1 (zero
components). However, if v < [L 1, the function
returns the error value L (see Section 2.38).

Synonyms for 1D_I_array allocator:

I _vector I_array

Synonym for 2D_I_array allocator:
I matrix

Example

A 2-dimensional 10 x 10 I-array:
I_matrix ((1,10),(1,10))

4.2.3 I-array assignments

Assuming:
a :: (nD_I_array t)
el :: (int,...,int)
e2 it t

then the I-array assignment statement:
alel] = e2 ;

uses an I-store operation to assign the value of “e2”
to the (j1,...,jn)’th component of the I-array “a”,
where (j1,...,jn) is the value of “e1”.

If the index el is out of bounds, the statement
is equivalent to the error statement statement; (see
Section 2.38).

The assignment statement is overloaded for all di-
mensions of I-arrays and must thus be resolvable by
the type checker.

4. I-structures

4.2.4 I-array selection

Assuming:
a :: (nD_I_array t)
el :: (int,...,int)

then the I-array selection expression:
alet] it t

uses an I-fetch operation to return the value of the
(j1,...,jn)’th component of the I-array “a”, where
(j1,...,jn) is the value of “e1”.

If the index el is out of bounds, the selection ex-

pression evaluates to the error value L (see Section
2.38).

The selection notation is overloaded in two ways—
on functional and I-arrays, and on arrays of differ-
ent dimensions— and must thus be resolvable by
the type checker. The corresponding non-overloaded
function for I-arrays is:

select™nD_I_array ::

(nD_I_array *0) -> (int,...,int) -> *0

4.2.5 I-array index bounds
For each n > 1, there is a function that returns the

index bounds of n-dimensional I-arrays:

bounds~1D_TI_array ::

(1D_I_array t) -> (int,int)
bounds“2D_I_array ::

(2D_I_array t) -> ((int,int),(int,int))

The overloaded identifier bounds represents all these
functions.

See Appendix A.9 for standard I-array functions.

Example

An l-array containing 72 at the j’th index:

{ x = I_array (1,10) ;
{for j <- 1 to 10 do
x[§j1 =3 * j}
In
x}

4. I-structures

4.3 I-structure fields in Algebraic Types
Unlike arrays, where the entire structure has either
functional, I-structure or M-structure semantics, an
algebraic type can have different fields with different
semantics.

4.3.1 Type definition

Recall from Section 2.11 that an algebraic type def-
inition looks like this:

type tx tvl ... tvN = disj1 | | disjM;

where each disjunct looks like this:

tcons t1 ... tL

We extend this notation as follows. In each disjunct,
each tJ may be preceded by “.” to indicate that it
has I-structure semantics. Such fields are known as

I-fields.

4.3.2 Object creation

First, we define Constructor Terms as applicative
forms:

tcons el ... elN

where tcons is a constructor identifier (not an ar-
bitrary expression or identifier) of arity N of some
algebraic type.

Objects are created, as usual, by constructor
terms. However, an I-field may be left empty by
using the special token “” (underscore). Note:
values must be supplied for all normal functional
components— they cannot be left empty. The type-
checker will ensure this.

4.3.3 Component assignment

Assuming:

X :: tx tvl ... tvN

and assuming that it is of the form:
tcons vl ... vN

then, if its J’th component is an I-field, it may be
assigned using an I-store operation using the field
assignment statement:

X.tcons_J = eV ;

27

The new value in the J’th component of X is the
value of eV.

It is a runtime error if X is not a tcons disjunct—
the statement is equivalent to the error statement
statement) (see Section 2.38).

4.3.4 Component selection

Assuming:

X :: tx tvl ... tvN

and assuming that it is of the form:

tcons vi ... vN

the, if its J’th component is an I-field, it may be
selected using an I-fetch operation using the field
selection expression:

X.tcons_J

It is a runtime error if X is not a tcons disjunct,
producing the error value L (see Section 2.38).

4.3.5 Component selection in patterns

I-fields may be read using pattern-matching in ex-
actly the same way as functional fields.
words, an I-field may be matched against a variable
(in which case the value is bound to that variable),
a constant, another structured pattern, etc.

In other

4.3.6 Example: iterative map

Here is a tail-recursive implementation of map list,
using “open lists”:
Nil

type I_list *0 =
| Cons *0 .(I_list *0) ;

I
I
typeof map~list = (*0->*1) ->

(list *0) -> (list *1) ;

def map~list £ Nil = Nil
| map~list £ (x:xs)= { iys = I_Cons (f x) _ ;
= map’ f xs iys
In
I_list_to_list iys } ;

typeof map’ = (*0->%1) ->
(1list *0) ->
(I_1list *1) -> void ;

28

def map’ £ Nil L=
| map’ £ (x:xs8) L=

{L.I_Cons_2 = I_Nil }

{L’> =1ICons (f x) _ ;
L.I_Cons_2 =L’ ;

= map’ £ xs L’ } ;

The function I_1ist_to_list converts an I_list type
into an ordinarly list type.

4.4 I-structure fields in records
4.4.1 Type definition

A field of a record may be declared to have I-
structure semantics by preceding its type with a “.”.

Such fields are called I-fields.

Example:

{record fieldf
fieldi

int ;
. int }

type foo =

Here, foo is a new record type, containing a func-
tional field fieldf and an I-field fieldi.

4.4.2 Record creation

In the record construction expression, I-fields may

be left empty using the special token “”. Exam-
ple:
{record fieldf = 23; fieldi = _ }

For convenience, I-fields that are to be left empty
may be omitted entirely, so that the above example

could be written:
{record fieldf = 23}

4.4.3 Field assignment

An I-fleld fieldi of a record X may be assigned us-
ing an I-store operation using the field assignment
statement:

X.fieldi = eV ;

The new value in the field of X is the value of ev.

4.4.4 Field selection

An I-fleld fieldi of a record X may be selected using
an I-fetch operation using the expression:

X.fieldi

(The notation is the same as for normal functional

fields).

5. I-structures/M-structures

5 M-structures

M-structures are a major departure from purely
functional semantics. M-structures are layered on
top of the purely functional subset of Id by con-
structs that are distinguished by syntax and by type.

Please refer to Section 3 for general issues con-
cerning non-functional constructs.

5.1 M-structure semantics

A component of a data structure may have M-
structure semantics (as opposed to functional or I-
structure semantics). For such a component, no
value is specified when the data structure is created;
instead, a separate assignment statement is used. An
M-structure component may be in one of two states:
full (with a value), or empty. All components be-
gin in the empty state (when the data structure is
allocated).

An M-structure component can be assigned with
a put operation and read with a take operation. A
value can be put only into an empty component—
it is a runtime error if it is already full. Many
take’s may be attempted concurrently on a compo-
nent. They all block automatically if the compo-
nent is empty. When it is full, exactly one of them
succeeds in reading the value and the component
again becomes empty, so that the other fake’s remain
blocked. It is unspecified as to which take amongst
competing take’s will succeed.

In typical usage of M-structure components, sev-
eral concurrent computations share a resource. Each
computation takes it, computes with it, and puts it
back. The semantics guarantees that each computa-
tion has exclusive access to the resource. Note: for
correct operation, every take must be followed by
a put, t.e., it is the programmer’s responsibility to
make sure that these operations are “balanced”.

In some situations, the value to be put back is the
same as the value taken out (e.g., if we simply want
to test the current value in an M-structure field).
This combination— taking a value, putting it back,
and returning the value— is called an ezamine oper-
ation, for which syntactic shorthands are provided.

In some situations, the value to be put back is
unrelated to the value taken out (e.g., if we simply

5. M-structures

want to reset an M-structure field to a known value).
This combination— taking out the old value and dis-
carding it, and putting in a new value— is called a
replace operation, for which syntactic shorthands are
provided.

5.2 Mb-structure arrays

M-structure arrays are array-like data structures
with empty locations which can be assigned subse-
quently using M-structure semantics. These arrays
are also referred to as M-arrays.

5.2.1 M-array types

An n-dimensional M-structure array whose compo-
nents are of type t has type:

nD_M_array t

Synonyms for the type name 1D M array:

M_vector M_array

Synonym for the type name 2D M_array:
M matrix

5.2.2 M-array literals and comprehensions

The array literal notation of Section 2.34.2 is ex-
tended to M-arrays by using the keywords ¥ _vector,
M_array, M_matrix and nD M_array instead of their
functional counterparts:

{nD_M_array eBounds of
eFirst eLast}

The array comprehension notation of Section 2.34.5
is extended to M-arrays by using the keywords
M_array, M_vector, Mmatrix, k_M_arrays, k_ M _vectors,
k M matrices and k_nD M _arrays instead of their func-
tional counterparts:

{k_nD_M_arrays eBounds of

[e11] = e12 || gen ; ; gen
[...
| [eM1] = eM2 || gen ; ; gen }

M-array literals and comprehensions are useful for
“initializing” M-arrays. The initializations use put
operations.

29
5.2.83 M-array creation

An empty n-dimensional M-array is created using
the function:

mk_nD_M_array::((int,int),

(int,int)) -> (nD_M_array *0)
i.e., it takes an index-bounds expression (an n-tuple
of integer 2-tuples) and returns an empty M-array
with those bounds.

It is legal for the index bounds (I,u) along any
dimension to be empty, i.e., to have u =1 L 1 (zero
components). However, if v < [L 1, the function
returns the error value L (see Section 2.38).

Synonyms for 1D M_array allocator:

mk_M_vector mk _M_array

Synonym for 2D M_array allocator:
mk M matrix

Example

A 2-dimensional 10 x 10 M-array:

mk_M_matrix ((1,10),(1,10))

5.2.4 M-array assignment

Assuming:
a :: nD_M_array t
el :: int,...,int
e2 it t

then the M-array assignment statement:
allel] = e2 ;

uses a put operation to assign the value of “e2” to the
ji,...,jn’th component of the M-array “a”, where
ji,...,jnis the value of “e1”.

An M-array component can be replaced using the
statement:

alllel] = e2 ;

which is equivalent to:

i==el;

= e2 ;

(_=v
= a!'[il ;
all[il = v)

30

In other words, the old value is taken only after
the value of e2 is available, but note, due to non-
strictness, that sub-expressions of e2 may still be
evaluating.

If the index el is out of bounds, the statements
are equivalent to the error statement statement; (see
Section 2.38).

The assignment statement is overloaded for all di-
mensions of and M-arrays, and must thus be resolv-
able by the type checker.

5.2.5 M-array selection

Assuming:
a :: nD_M_array t
el :: int,...,int

then the M-array selection expression:
a![el] EE

uses a take operation to return the value of the
ji,...,jn’th component of the M-array “a”, where
ji,...,jnis the value of “e1”.

An M-array component may be examined using the
expression:

al!lell

which is equivalent to:

{i = el ;
v = a![i] ;
al[i]l = v

In
v}

If the index el is out of bounds, the selection ex-
pressions evaluate to the error value L (see Section
2.38).

The selection notation is overloaded to work on
all dimensions of M-arrays, and must thus be resolv-
able by the type checker. The corresponding non-
overloaded function for M-arrays is:

take"nD_M_array ::

(nD_M_array *0) -> (int,...,int) -> *0

5.2.6 Me-array index bounds

For each n > 1, there is a function that returns the
index bounds of n-dimensional M-arrays:

5. M-structures

bounds”1D_M_array ::

(1D_M_array t) -> (int,int)
bounds“2D_M_array ::

(2D_M_array t) -> ((int,int),(int,int))

The overloaded identifier bounds represents all these
functions.

See Appendix A.10 for standard M-array functions.

5.3 M-structure fields in Algebraic Types

Unlike arrays, where the entire structure has either
functional, I-structure or M-structure semantics, an
algebraic type can have different fields with different
semantics.

5.3.1 Type definition

Recall from Section 2.11 that an algebraic type def-
inition looks like this:

type tx tvl ... tvlN = disj1 | | disjM;

where each disjunct looks like this:

tcons t1 ... tL

We extend this notation as follows. In each disjunct,
each tJ may be preceded by “!” to indicate that it
has M-structure semantics. Such fields are known as

M-fields.

5.3.2 Object creation

First, we define Constructor Terms as applicative
forms:

tcons el ... elN

where tcons is a constructor identifier (not an ar-
bitrary expression or identifier) of arity N of some
algebraic type.

Objects are created, as usual, by constructor
terms. However, an M-fleld may be left empty
by using the special token “” (underscore). Note:
values must be supplied for all normal functional
components— they cannot be left empty. The type-
checker will ensure this.

5. M-structures
5.83.3 Component assignment

Assuming:

X :: tx tvl ... tvN

and assuming that it is of the form:
tcons vl ... vN
then, if its J'th component is an M-field, then it

may be assigned using a put operation using the field
assignment statement:

X!'tcons_J = eV ;
An M-field can be replaced using the state-
ment:
X!'!tcons_J = eV ;
which is equivalent to:

v = eV ;
(_=v;

_ = X'tcons_J ;

X'tcons_J = v)

In other words, the old value is taken only after
the value of eV is available, but note, due to non-
strictness, that sub-expressions of eV may still be
evaluating.

The new value in the J’th component of X is the
value of eV.

It is a runtime error if X is not a tcons disjunct—
the statement is equivalent to the error statement
statement (see Section 2.38).

5.3.4 Component selection

Assuming:

X :: tx tvl ... tvN

and assuming that it is of the form:

tcons vi ... vN

the, if its J’th component is an M-field, then it may
be selected using a take operation using the field
selection expression:

X!'tcons_J

An M-field may be examined using the expres-
sion:

X!'!tcons_J

31

which is equivalent to:

{ v = X'tcons_J ;
X!tcons_J = v
In
v}

It is a runtime error if X is not a tcons disjunct,
producing the error value L (see Section 2.38).

5.3.5 Component selection in patterns

M-fields may be read using pattern-matching, but
only a limited form of patterns may be used:

('x)
(1'x)

where x is an identifier, not a general pattern. The
parentheses in the latter two cases are mandatory.

({9}

When the pattern is an “”, it indicates that the
M-field is ignored during the pattern matching (no
take is performed).

When the pattern is “(1x)” or “(!1x)”, it indi-
cates that the value in the field is to be taken or ex-
amined, respectively, and bound to the identifier x.
However, the take or examine operation is performed
only after it has been determined that the pattern-
matching is successful; the M-field itself plays no role
in whether the pattern-matching is successful or not.
When a pattern fails to match, none of its takes or
examines are performed.

5.83.6 Example: unique id generator

A type for data structures for generating unique
identifiers that are strings of the form "fooj":

type uid = Uidcell string !int ;

A statement binding u to an updatable data struc-
ture for generating unique identifiers that are strings
of the form "fooj":

u = Uidcell "foo" _ ;

A statement initializing the unique identifier gener-
ator u:

u!Uidcell_2 = 0 ;

Generating the next uid fooj from the object u:

32

{ Uidcell prefix (!j) = u ;

u!Uidcell_2 = j+1 ;

uid = conc”string prefix (int_to_string j)
In

uid }

5.3.7 Example: FIFO queue

We can implement a fifo queue using the following
type:

type queue *0 = Queue !(open_list *0)

! (open_list *0) ;

type open_list *0 = Ocons .*0
.(open_list *0);

For example, a fifo queue in which a, b and ¢ have
been inserted (in that order) would be:

{ tail = Ocons _ _ ;
In
Queue (Ocons a
(Ocons b
(Ocons ¢
tail)))
tail }

The idea is that the Queue structure points at the
head and the tail of the queue. The tail is an Ocons
cell containing an empty slot for the next object to
be enqueued, and an empty slot to grow the queue.

Here are the functions to manipulate the

queue:

def mk_empty_q () = { ol = Ocons _ _
In
Queue ol ol } ;

def enqueue x q =
{ Queue _ ('tail) = q ;
newtail = Ocons _ _ ;
tail.Ocons_1 =
tail.Ocons_2 =

X 3
newtail ;
q'Queue_2 = newtail ;

In

O}
def dequeue q =

{ Queue ('head) _ = q ;
Ocons x nexthead = head ;
q!Queue_1 = nexthead ;

In
x 7} ;

Note that the components of the open list struc-
tures are each assigned exactly once, so that they

5. M-structures

have I-structure semantics. However, the two com-
ponents of the queue structure are repeatedly up-
dated (by every enqueuer and dequeuer), so they
have M-structure semantics.

5.4 M-structure fields in records
5.4.1 Type definition

A field of a record may be declared to have M-
structure semantics by preceding its type with a “1”.

Such fields are called M-fields.

Example:

{record fieldf
fieldm =

int ;
! int }

type foo =

Here, foo is a new record type, containing a func-
tional field fieldf and an M-field fieldm.

5.4.2 Record creation

In the record construction expression, M-fields may

be left empty using the special token “”. Exam-
ple:
{record fieldf = 23; fieldm = _ }

For convenience, M-fields that are to be left empty
may be omitted entirely, so that the above example
could be written:

{record fieldf = 23}

5.4.3 Field assignment

An M-field fieldm of a record X may be assigned us-
ing a put operation using the field assignment state-
ment:

X!fieldm = eV ;

An M-field fieldm of a record may be replaced using
the statement:

X!!fieldm = eV ;

which is equivalent to:

_ = X!fieldm ;

X!'fieldm = v ;)

6. M-structures/Delayed evaluation

In other words, the old value is taken only after
the value of eV is available, but note, due to non-
strictness, that sub-expressions of eV may still be
evaluating.

The new value in the field of X is the value of evV.

5.4.4 Field selection

An M-field fieldm of a record X may be selected using
a take operation using the expression:

X!'fieldi

An M-field fieldm of a record X may be examined
using the expression:

X!!1fieldm

which is equivalent to:

{ v =X!fieldnm ;
X!fieldm = v ;
In
v}

33

6 Delayed evaluation

Annotations for delayed evaluation are experimental
features of Id to gain experience with infinite struc-
tures. Semantically, their only effect is to change the
termination behavior of programs. Pragmatically,
they can drastically change the runtime resource re-
quirements of a program.

6.1 General Delayed Evaluation
Assuming:
e :: t

is an expression that evaluates to v, then the expres-
sion:

{# e} :: (delay t)

returns d, an unevaluated representation of e called
a thunk.

The standard function:

force :: (delay *0) -> %0

takes a thunk d, evaluates the delayed expression in
it, and returns v, its value. It also “memoizes” the
value, so that in multiple evaluations of (force d),
the delayed expression itself is evaluated only once.
The memoization is transparent—there is no test
available to the programmer to determine whether
a delayed object has been forced or not.

Note that a delayed object has a different type
from the object iteself, and the value is always ex-
tracted using force. Thus, the following two expres-
sions below are incorrect and will be caught by the
type-checker:

1 + (force 5)
1+ {# 5}

% forcing an undelayed object
% adding a delayed object

6.2 Delayed Evaluation For Data Struc-
ture Components

While expressions in arbitrary contexts may be de-
layed using {# ...}, it is frequently the case that the
delayed object is a component of a data structure.
In this situation, one can use a special notation for
greater efficiency (less space overhead for thunks)
and convenience (no distinction of delayed objects
on the basis of type, no need for an explicit force).

34
6.2.1 Delayed components in algebraic types

First, we define Constructor Terms as applicative
forms:

cel ... elN

where ¢ is a constructor identifier (not an arbitrary
expression or identifier) of arity N of some algebraic
type. Examples:

el : e2

bnode el e2 e3

but not:

(:) el % arity not satisfied
bnode el e2 % arity not satisfied

(See Section 2.11 for the binary tree algebraic type
with constructor bnode.)

In a constructor term, any argument may be an-
notated by “#” to indicate that it should be delayed.
Example:

bnode el #e2 e3

constructs a binary tree with the left subtree expres-
sion delayed.

Unlike general delayed expressions, delayed data-
structure components are of the same type as if they
were not delayed. There is no explicit force oper-
ation. A delayed component is evaluated implicitly
(and stored in the data structure) when an attempt
is made to select it (usually in some pattern-match).
For example, if e1::%1, then

bnode # el e2 e3 ::
bnode {# el} e2 e3 ::

(btree t1)
(btree (delay t1))

In the former, selecting the first component of the
bnode implicitly evaluates the delayed expression and
returns an object of type t1, whereas in the latter, it
returns an object of type (delay t1), to which force
must be applied to get an object of type t1.

Delayed Lists

List constructor terms may be annotated too:

el : e2 %
el : #e2 %
#el : e2 %
#el : #e2 %

normal-——eager head and tail
eager head, delayed tail
delayed head, eager tail
delayed head and tail

For compatibility with the delayed list-comprehen-
sion notation (below), the following notations may
also be used:

6. Delayed evaluation

el : e2 % normal---eager head and tail
el :# e2 % eager head, delayed tail

el #: e2 % delayed head, eager tail

el #:# e2 % delayed head and tail

Delayed list-comprehensions may be written by

changing the opening “:” symbol:

{: e |l gen ... } ¥ normal

{#: e || gen ... } % delayed heads

{:# e ||l gen ... } Y% delayed tails

{#:# e || gen ... } ¥ delayed heads, tails
Assuming:

el::int elnc::int

evaluate to integers vl and vInc, respectively, then
the expressions:

: (list N)
:: (list)

upfrom el by elnc
downfrom el by elnc

produce infinite lists containing (vl, vl + vinc,
vl 4 2vlnc, ...), and (vl, vl L vinc, vl L 2vinc,
...), respectively.

Note: vInc must always be positive.

The short forms:

(1ist N)
(1ist N)

upfrom el
downfrom el ::

assume that vIncis +1.

6.2.2 Delayed components in records

A component of a record may be delayed using “#”

instead of “=":
{record
fieldl = el;
fieldJ # eJ;
fieldN = eN}

Normal and delayed components may be mixed in a
single record.

6.2.3 Delayed components in functional ar-
rays

Components of array-comprehensions may be de-
layed using “#” instead of “=":
{array (1,u) of

[ei] = ev || gen ... % normal components
| [ej]l # ew || gen ... } % delayed components

7. Delayed evaluation/Pragmatics

Normal and delayed components may be mixed in
the same array.

6.2.4 Delayed components in I-structure ar-
rays

The delayed assignment statement (with the same

type rules as the ordinary assignment statement,
Section 4.2.3):

alel] # e2

stores a thunk for e2 in the e1’th location of a. When
that location is selected, the thunk is implicitly eval-
uated, and the value replaces the thunk.

Evaluation on selection

A component of a data structure that has been de-
layed using any of the above notations is evaluated
automatically the first time that it is selected. This
is different from the situation in lazy languages!.

Consider:

cl = el #:# e2 ;
(x:_) =rct

c2 =x #:# e3 ;

Even though all we are doing is copying el from one
cons cell to another, it gets evaluated the moment
we select it (delaying the head of the c2 construction
is, therefore, pointless).

35

7 Pragmatics

7.1 Inline substitution

A function definition

def foo ... = ... ;

may also be written:

defsubst foo ... = ... ;

in which case the compiler will try to expand the
function in place wherever possible. This has no se-
mantic consequence; it merely removes the overhead
of function-calls.

The substitution is semantically transparent (it is
not a macro). The function itself is still available as
a value.

The inlinable functions can be recursive and mu-
tually recursive. The compiler will inline only upto
a fixed maximum depth.

7.2 Bounded loops

In principle, all iterations of a loop can run in parallel
(subject only to data dependencies). Pragmatically,
this may be undesirable as it can swamp the ma-
chine. Thus, loops are normally compiled as bounded
loops, 1.e., no more than k iterations may execute si-
multaneously, for some loop bound k.

Normally, a default loop bound is used. The loop
bound can also be specified explicitly using the bound
keyword. Assuming ek::int, then in each of the
following forms:

{for j <- e bound ek do ... }
{while b bound ek do ... }
{: e || ; j <~ e bound ek ... }

{array (1,u) of

| [ejl =
[... 2

ev || ; J <- e bound ek ...

the corresponding loop is bounded to k, the value of
expression ek, which must be a positive integer.

A loop can be forced to execute sequentially using
the sequential reserved word:

36
{for j <- e sequential do ... }
{while b sequential do ... }
{: e || .3 j <~ e sequential ... }
{array ... of
| téj] = ev || .; j <- e sequential ...

[

Bounded loops are not semantically identical to
tail-recursive functions, because they may dead-
lock where the corresponding tail-recursive function
would not. An example using l-arrays:

{4 =1I_array (0,9) ;

Af10] = 0 ;

{for j from 1 to 9 do

A[j]1 = £ A[j+1] }
In
A}

Another example, in the purely functional subset
of Id: Suppose we want to find biggest, the maxi-
mum of a 100-element array, and nbig, the number of
elements within 10% of it. Normally, we would tra-
verse the array twice, first computing biggest, then
using it to compute nbig. But non-strictness may
tempt us to write a single loop:
b,nb = minfloat,0 ;
biggest, nbig =

{for j <- 1 to 100 do

next b = max A[j] b ;
next nb = if A[jl/biggest < 0.9 then nb
else nb+1

finally b,nb} ;

Note that all iterations of the loop use biggest,
which is itself computed by the loop and is produced
by the last iteration. Thus, this loop will deadlock
with any k£ that does not allow it to unfold fully.

We strongly recommend against loops with back-
ward dependencies, i.e., where a variable in an iter-
ation depends on computations in future iterations.
However, if an unbounded loop is really necessary, it
may be written using the unbounded keyword:

{for j <- e unbounded do ... }
{while b unbounded do ... }
{: e |l ; j <- e unbounded ... }

{array (1,u) of

7. Pragmatics

ev ||

| [ejl =
[... 2

; J <- e unbounded ...

Unbounded loops are semantically identical to tail-
recursive functions.

7.3 Pragmas

A pragma is a statement flagged by “@”:
Q@identifier

or

Oidentifier expression

A block of pragmas may be inserted after the for-
mal parameters in a function definition to indicate
attributes of the function:

def £ x1 ... xN {pragma;...;pragmal = e

Currently, the only pragma that may be used here
is:

@inlinable
@inlineable

Use of this pragma is equivalent to using the keyword
defsubst instead of def.

7.4 Loop peeling and unrolling

Loop peeling and unrolling are techniques to reduce
the overhead of loops. If we think of a loop as equiv-
alent to a definition of a tail-recursive function F
and an initial call to F, then loop peeling is similar
to inline substitution at the initial call site, and loop
unrolling is similar to inline substitution of F' in the
(recursive) call site inside the body of F'. In the limit
case, when a loop is completely peeled or unrolled,
they are the same.

7.4.1 Loop peeling

The pragma:
Opeel j

when used as a statement in a loop body, may be
used toindicate that upto j iterations should be done
outside the loop. Here, j must be a positive integer
constant. For example,

7. Pragmatics

{while p do
Opeel 1 ;
next x = el ;

finally eFinal}
is equivalent to:
if p then

{ next_x =

el’ ;

In
{ x = next_x
In
{while p do
next x = el ;

Finally eFinall}}}
else
eFinal

where e1’ uses next_x wherever el used next x.

When used in for-loops with known index bounds,
the compiler will usually be able to remove the con-
ditional by optimization.

7.4.2 Loop Unrolling

The pragma:
OQunroll j

when used as a statement in a loop body, may be
used to transform the loop so that j iterations of
the original loop are performed in a single iteration
of the new loop. Here, j must be a positive integer
constant, or the keyword “completely”. For exam-

ple,

{while p do
Qunroll 1 ;
next x = el ;
next y = e2 ;

finally eFinal}

is equivalent to:

{while p do
next_x’ = el’ ;
next_y’ = e2’ ;

next x,next y
{ x = next_x’ ;
y = next_y’
in
if p then

37

el??
e?2??

{ next_x’’ =
next_y’’ =

In
next_x’’ ,next_y’’ }
else
next_x’,next_y’}
finally eFinal}

where e1’ and e2’ use next_x’ and next_y’ whereever
el used next x and next y, respectively (and simi-
larly for e1?’ and e2’?).

When used in for-loops with known index bounds,
the compiler will usually be able to remove the con-
ditional by optimization.

The compiler will obey a pragma to unroll the loop
completely only if it is a for loop with known index
bounds.

38

7. Pragmatics

A. Standard identifiers

A Standard Identifiers

Id has standard libraries that implement many useful
functions. The names and semantics of these func-
tions are based on the corresponding Common Lisp
functions wherever possible. The names for these
functions are not reserved words, but for readability
and re-usability of code, the programmer is strongly
advised not to redefine them.

The compiler should expand these functions n
situ, so that there is no procedure-calling overhead.

Since the Id libraries are a continuously grow-
ing repository of useful functions, the following list
is necessarily incomplete. The libraries themselves
must be consulted for the current set.

A.1 Booleans

Truth values

typeof True = bool;
typeof False = bool;

These are also constructors (z.e., they can be used
in patterns).

Negation

typeof not = bool -> bool;

A.2 Numbers

Basic arithmetic

typeof negate”int = int -> int;

typeof plus”int = int -> int -> int;
typeof minus“int = int -> int -> int;
typeof times“int = int -> int -> int;

typeof negate”“float = float -> float;

typeof plus“float = float -> float -> float;
typeof minus“float = float -> float -> float;
typeof times“float float -> float -> float;

Comparison

typeof eq”int = int -> int -> bool;
typeof ne“int = int -> int -> bool;
typeof 1t"int = int -> int -> bool;
typeof le“int = int -> int —-> bool;
typeof gt“int = int -> int -> bool;
typeof ge“int = int -> int -> bool;

typeof
typeof
typeof
typeof
typeof
typeof

eq”“float =
ne“float =
1t“float =
le“float =
gt“float =
ge“float =

General

typeof
typeof

typeof
typeof

typeof
typeof

typeof
typeof

Implementation-dependent numbers that are

pi = float
2pi = float

odd? = int
even? = int
max”int =

max“float =

min“int =
min“float =

float
float
float
float
float
float

H

H
->b
->b

int

float -> float -> float;

int

float -> float -> float;

-> float —-> bool;
-> float —-> bool;
-> float —-> bool;
-> float —-> bool;
-> float —-> bool;
-> float —-> bool;
ool;

ool;

-> int -> int;

-> int -> int;

most positive (largest positive numbers):

typeof
typeof

Implementation-dependent numbers that are

maxint = in
maxfloat =

t;
float

most negative (largest negative numbers):

typeof
typeof

minint = in
minfloat =

Exponentiation

t;
float

typeof exp = float -> float;

where (exp y) = e¥

Logarithms
typeof log = float -> float;
typeof logl0 = float -> float;

where (log x) = log, z,
and (logl0 x) = loggz

Square root, absolute value

typeof
typeof
typeof

sqrt
abs”int
abs“float

flo
= int
= flo

at -> float;
-> int;
at -> float;

Trignometric functions

Angles are in radians.

typeof
typeof
typeof

typeof
typeof
typeof

sin = float —>
cos = float —>
tan = float ->

asin = float —>

acos = float —>
atan = float —>

float;
float;
float;

float;
float;
float -> float;

39

the

the

40

where (atan y x) = arctany/z, in the range L7 to
+m. The arguments cannot both be zero.

Hyperbolic functions

typeof sinh = float -> float;
typeof cosh = float -> float;
typeof tanh = float -> float;
typeof asinh = float -> float;
typeof acosh = float -> float;
typeof atanh = float -> float -> float;

Conversion of integers to floats

typeof float = int -> float;

Conversion of floats to integers
typeof floor = float -> int;

where floor truncates towards 1 oco.
typeof ceiling = float -> int;
where ceiling truncates towards +oo.

typeof truncate = float -> int;

where truncate truncates towards 0.

typeof round = float -> int;

where round truncates to the nearest integer, with
z.5 truncated towards the even integer.

The following four functions are similar to the previ-
ous four, except that they return their integer-valued
results as floats, for convenience.

typeof ffloor = float -> float;

where ffloor truncates towards 1l oo.

typeof fceiling = float -> float;

where fceiling truncates towards +oo.

typeof ftruncate = float -> float;

where ftruncate truncates towards 0.

typeof fround = float -> float;

where fround truncates to the nearest integer, with
z.5 truncated towards the even integer.

Integer division

typeof div = int -> int -> int;

where (div x y) = ¢, where (¢ — truncate (x/y)).

typeof quo = int -> int -> int;

where (quo x y) = ¢, where (¢ = floor (x/y)).

typeof rem = int -> int -> int;

A. Standard identifiers

where (rem x y) = z 1 qy, where (¢ — truncate
(z/y)).

typeof mod = int -> int -> int;

where (mod x y) = =z L gy, where (¢ = floor

(z/y)).

A.3 Characters

Comparison

typeof eq”char = char -> char -> bool;
typeof ne“char = char -> char -> bool;
typeof 1t“char = char -> char -> bool;
typeof le“char = char -> char -> bool;
typeof gt“char = char -> char -> bool;
typeof ge“char = char -> char -> bool;

The ordering is only guaranteed within the following
classes: digit characters, upper case characters, and
lower case characters.

Character class predicates

typeof digit? = char -> bool;
typeof uc? = char -> bool;
typeof 1c? = char -> bool;
Convert case

typeof to_uc“char = char -> char;
typeof to_lc“char = char -> char;
Character codes

typeof char_to_int = char -> int;
typeof int_to_char = int -> char;

A.4 Strings

Comparison

The comparison is lexicographic, based on the order-
ing of characters.

The following functions are case-sensitive:

typeof eq”string = string -> string -> bool;
typeof ne”string = string -> string -> bool;
typeof 1lt“string = string -> string -> bool;
typeof le”string = string -> string -> bool;
typeof gt string = string -> string -> bool;
typeof ge“string = string -> string -> bool;

The following functions are case-insensitive:

A. Standard identifiers

typeof eq_ci_string = string -> string -> bool;
typeof ne_ci_string = string -> string -> bool;
typeof 1t_ci_string = string -> string -> bool;
typeof le_ci_string = string -> string -> bool;
typeof gt_ci_string = string -> string -> bool;
typeof ge_ci_string = string -> string -> bool;

Convert to and from arrays of characters

typeof array_to_string =
(array char) -> string;

The argument must have index bounds (0, n L 1)

when n is the length of the string.

typeof string_to_array =
string -> (array char);

The result has index bounds (0, n L 1) when n is the

length of the string.

Convert to and from lists of characters

typeof list_to_string

Length of string

typeof length”string = string —> int;
Index string

typeof nth”string = int -> string -> char;
First character has index 0.

Extract substring

Given a starting position and substring length:

typeof substring = string ->
int ->
int -> string;

Concatenate strings

typeof conc”string = string -> string ->
string;

Map character function over string

typeof map”string = (char->char) ->
string -> string;

Convert case

Convert a string to upper or lower case:

typeof to_uc”string = string —-> string;
typeof to_lc”string = string —-> string;

Hashing

typeof hash”string = int -> string -> int;

where (hash string n s) hashes string s into an in-

teger in the range 0 to (n —1).

(1ist char) -> string;
typeof string_to_list = string -> (list char);

41

A.5 Symbols

Comparison

typeof eq”symbol = symbol -> symbol —> bool;
typeof ne“symbol = symbol -> symbol —-> bool;

Hashing

typeof hash”symbol = int —-> symbol -> int;
where (hash symbol n s) hashes symbol s into an
integer in the range 0 to (n — 1).

Conversion with strings

typeof string_to_symbol = string —-> symbol;
typeof symbol_to_string = symbol -> string;

A.6 Lists

Basic functions

(1ist *0);

(1ist *0) -> bool;

*0 -> (1list *0) -> (1list *0);
(1ist *0) -> *0;

(list *0) —> (1list *0);

typeof Nil
typeof nil?
typeof cons
typeof hd
typeof tl

Length of list

typeof length~list = (list *0) -> int;

N’th element of list

typeof nth*list = int -> (list *0) -> *0;

The head is the 0’th element.

First N elements of list

typeof first_n = int -> (1list *0) -> (1list *0);
N’th tail of list

typeof drop = int -> (list *0) -> (list *0);
typeof nthtl = int -> (list *0) -> (list *0);

drop n = t1™, so 0’th tail is the list itself.
nthtl is a synonym for drop.

Last element of list

typeof last = (1list *0) —> *0;
Equality of lists

Given predicate to compare equality of compo-
nents:
typeof eq”list =

(x0 -> *0 -> bool) —->

(1list *0) ->

(1ist *0) -> bool;

42

Reverse list
typeof reverse = (list *0) -> (list *0);
Zipping and unzipping
A family of functions, for each N:
typeof zipN =

(list *1) —>

&iist *N) -> (1list (*1,...,%N));

The N input lists should all have the same length.
If not, a runtime error occurs— the output list is as
long as the shortest input list, and the tail of the last
list cell is the error value L (see Section 2.38).

typeof unziplN =
(list (*1,...,*N)) —> (list *1,
list *N);
Map function over list

Apply a function to each member of a list, returning
list of results in same order:

(*x0->*1) ->
(list *0) —> (1list *1);

typeof map“list =

Filtering

Return only those elements that satisfy predi-
cate:

typeof filter =
(¥0 —> bool) —>
(1ist *0) -> (1list *0);

Return longest prefix of elements that satisfy predi-
cate:

typeof takewhile =
(¥0 —> bool) —>
(1ist *0) -> (1list *0);

Omit longest prefix of elements that satisfy predi-
cate:

typeof dropwhile =
(¥0 —> bool) —>
(1ist *0) -> (1list *0);

Left-associative reduction

typeof foldl“list =
(x0 —> *1 —> *0) ->

*0 ->
(list =*1) -> %0;
Example:

foldl*list £ z 1

A. Standard identifiers

returns
f (£ (... (£fz10) 11) ...) 1In
where 10, ..., 1n are the elements of the list 1.

Right-associative reduction

typeof foldr~list =
(%0 —> *1 -> *1) ->

*1 ->
(1ist *0) -> *1;
Example:

foldr~list £f z 1

Returns

£ 10 (... (f 1n 2))

where 10, ..., 1n are the elements of the list 1.
Iteration

typeof iterate =
(¥0 —> bool) —>
(*x0 —> *0) ->
*0 -> (1list *0);

where iterate p f x returns the list containing x,
(£ x), (£ (£ x)), ..., as long as (p (£ x)) is true.
Simultaneous mapping and left-associative re-

duction

typeof map_foldl“list =
(*0-—>*1->(*0,*2)) —>
*0 ->
(1list *1) -> (*0,list *2);
Example:

map_foldl“list £ z 1

returns (zN,m), where:

z0,m0 = £ z 10

zli,ml = £f z0 11

zN,mN =

10, ..., 1N are the elements of the list 1, and mo, ...,

mN are the elements of the list m.

For example, if £ was

def £ z1j=1{ w=2z+1j
In w,w} ;

z was 0, and 1 contained 1, 2, and 3, then the result
m would be a list of partial sums: 1, 3, and 6, and
the result zlN would be the sum 6.

Simultaneous mapping and right-associative
reduction

A. Standard identifiers

typeof map_foldr~list =
(*1->%0->(*2,%0)) —>

*0 ->
(list =*1) -> (1list *2,%0);
Example:

map_foldr“list £ z 1

returns (m,z0), where:

m0,z0 = £ 10 z1
mi,z1 = £ 11 z2

mN,zN = £ 1N z
10, ..., 1N are the elements of the list 1, and mo, ...,
ml are the elements of the list m.
For example, if £ was
def £ 1jz=1{ w=2z+ 1j
In w,w} ;

z was 0, and 1 contained 1, 2, and 3, then the result m
would be a list of partial sums (from back to front):
6, 5, and 3, and the result z0 would be the sum 6.

A.7 Lists as Sets

All these functions require, as their first parameter,
an equality function between elements of the sets.

Conversion from list to set

Subset test

typeof subset? =
(¥*0 —> *0 —> bool) —>
(list *0) ->
(1ist *0) -> bool;

Set equality test

typeof set_equal? =
(*0 -> *0 -> bool) ->

43

(1list *0) ->
(1ist *0) -> bool;
A.8 Arrays

In the following, we describe families of functions,
for 1D arrays, 2D arrays, etc. We describe the entire
family using the “nD” meta-syntax. In addition, the
substring 1D_array can always be replaced by array
or vector, and the substring 2D_array can always be

replaced by matrix.

We refer to a sequence of indices for an array by
its endpoints “first” and “last”, meaning n-tuples
containing the lower bounds and upper bounds, re-
spectively, along all dimensions, and stepping the

rightmost index fastest.

Index bounds

Removes duplicates:

typeof settify =
(*0 -> *0 -> bool) ->
(1list *0) ->

Membership test

typeof member? =
(0 -> *0 ->bool) ->
*0 ->
(1ist *0) -> B

(1ist *0);

Union, intersection, difference

typeof union =
(*0 -> *0 -> bool) ->
(1list *0) ->
(1ist *0) ->

typeof intersection =
(*0 -> *0 -> bool) ->
(1list *0) ->
(1list *0) ->

typeof difference =
(*0 -> *0 -> bool) ->
(1list *0) ->
(1list *0) ->

(1ist *0);

(1ist *0);

(1ist *0);

typeof bounds“nD_array =
(ND_array *0) -> ((int,int),...,(int,int));

Synonyms:

bounds”1D_array bounds“vector bounds”array
bounds“2D_array bounds“matrix

Array component selection

typeof select”nD_array =
(nD_array *0) -> (int,...,int) -> *0;

Create k arrays, given filling function

typeof make_k_nD_arrays =
((int,int),...,(int,int)) ->
((int,...,int)—>(*1,...,*k)) ->
(nD_array *0,

s
nD_array *k);

Example:
make_k_nD_arrays b £

returns k arrays al,...,ak with bounds b, such that

if

44

£ (j1,...,j0) == (v1,...,vk)

then

ailj1,...,jN] == vi

Synonyms:

k=1 k>1
n=1 make_array make k_arrays
make _vector make k _vectors

n=2 make matrix make k matrices
n > 1 | make nD_array

Equality of arrays

Given predicate equality of ele-

ments:

to compare

typeof eq”"nD_array =
(*0 -> *0 -> bool) ->
(nD_array *0) ->
(nD_array *0) -> bool;

Map function over array

typeof map“nD_array =
(%0 —> *1) ->
(nD_array *0) -> (nD_array *1);

Example:
map“nD_array f a

returns an array with same bounds as array a, con-
taining (£ alj]) at each index j.

Left-associative reduction

typeof foldl"nD_array =
(x0 —> *1 —> *0) ->
*0 ->
(nD_array *1) -> *0;

Example:

foldl"nD_array f z a

returns:

f (£ (f z alfirst]) ...) allast]

Right-associative reduction

typeof foldr“nD_array =
(0 —> *1 —> *1) ->
*1 ->
(nD_array *0) -> *1;
Example:

foldr"nD_array f z a
returns:

f al[first] ((f allast] z))

A. Standard identifiers

Tree-reduction

typeof fold"nD_array =
(0 —> *1 -> *0) ->
*0 ->
(nD_array *1) -> *0;

Example:

fold"nD_array f z a

reduces the array to a value by first computing the
foldls of all the innermost vectors (rightmost index
varying), then the foldls of those results with the
next innermost index varying, and so on. fold....
has more parallelism than foldl_... and foldr_....

Simultaneous mapping and left-associative re-
duction

typeof map_foldl"nD_array =
(*0-—>*1->(*0,*2)) —>
*0 ->
(array *1) -> (*0,array *2);

Example:
map_foldl"nD_array f z a

returns (zLast,b), where b is an array with same
bounds as array a, and

a[first]
a[second]

zFirst, b[first] = f z

zSecond,b[second] = f zFirst

zLast, b[last] = f zLastButOne al[last]
For example, if £ was

def fzaj={ w-=
In w,w} ;

z + aj

z was 0, and a was a vector containing 1, 2 and 3,
then the result b would be a vector of partial sums:
1, 3 and 6, and the result zLast would be the sum 6.

Simultaneous mapping and right-associative
reduction
typeof map_foldr"nD_array =
(*1->%0->(*2,%0)) —>
*0 ->
(array *1) -> (array *2,%0);
Example:

map_foldr"nD_array f z a

returns (b,zFirst), where b is an array with same

bounds as array a, and

f alfirst]
f alsecond]

zSecond
zThird

b[first], zFirst
b[second],zSecond

bl[last], =zLast f allast] z

A. Standard identifiers

For example, if £ was

def fzaj={ w-=
In w,w} ;

z + aj

z was 0, and a was a vector containing 1, 2 and 3,
then the result b would be a vector of partial sums
(from last to first): 6, 5 and 3, and the result zFirst
would be the sum 6.

A.9 I-structure arrays

I-array allocators

typeof nD_I_array =
((int,int),...,(int,int)) -> (nD_I_array *0);

Synonyms for 1D_I_array:

I _vector I_array

Synonym for 2D _I_array:
I matrix

I-array index bounds

typeof bounds“nD_I_array =
(nD_I_array *0) —> ((int,int),...,(int,int));

I-array component selection

typeof select”nD_I_array =

(nD_I_array *0) -> (int,...,int) -> *0;

Fill rectangular region of k& I-arrays given fill-
ing function

typeof £ill"k_nD_I_arrays =
((int,int),...,(int,int)) ->
((int,...,int) -> (*1,...,*k)) ->
(nD_I_array %0, , nD_I_array *k) -> void;

Example:

£fil1*k_nD_I_arrays r £ (al,...,ak)

fills region r of I-arrays a1, ...,ak such that if

£ (j1,...,j0) == (v1,...,vk)
then
ailj1,...,jN] == vi

45

A.10 M-structure arrays

M-array allocators

typeof nD_M_array =
((int,int),...,(int,int)) -> (nD_M_array *0);

Synonyms for 1D M _array:

M_vector M_array

Synonym for 2D M_array:
M_matrix

M-array index bounds
typeof bounds“nD_M_array =

(nD_M_array *0) -> ((int,int),...,(int,int));
M-array component selection

typeof take"nD_M_array =

(nD_M_array *0) -> (int,...,int) -> *0;

A.11 Object identity

typeof same? = *0 -> *0 -> bool;

A.12 Delayed Evaluation

typeof force = (delay *0) -> *0;

A.13 Input/Output

The following is a temporary library of input/output
types and procedures. This will be replaced by a new
I/0O library after we have more experience with this
one.

For synchronization of concurrent I/O operations,
every procedure takes an extra “trigger” argument
and returns an extra “signal” result, both of type
f_status. The procedures are all strict in the trigger
argument, z.e., they do not attempt any I/O un-
til it is available. Further, the procedures do not
return the signal result until they have “done” the
I/O. Thus, an application can perform I/O opera-
tions in a particular order by threading an f_status

46

token through all of them. An application can per-
form I/O operations in a non-deterministic order by
choosing not to thread this argument through them.

In each of the procedures, the result f_status in-
dicates how the i/o operation went (ok, end-of-file,
or error).

I/0 types

There is a built-in type called fstream.

The following type is used to test whether an I/O
operation succeeded or not.

type f_status = F_ok | F_err | F_end ;

Opening I/0 streams

Access modes for opening files:

= For_Read
| For_Write
| For_Append ;

type access_mode

Opening an I/O stream on a file:

typeof fopen = string ->
access_mode —>
(fstream,f_status) ;

The string argument is the file name.

Opening an input stream on a string;:

typeof sopen_in = string ->
(fstream, f_status) ;

The string argument is treated as the “input file” for
the stream.
Opening an output stream to a string:

int —>
(fstream,f_status,string) ;

typeof sopen_out =

The integer argument specifies the desired length of
the string. The string is returned as the third compo-
nent of the result tuple, while the stream that writes
into the string is returned as the third component.
Because of non-strictness, the string is returned im-
mediately, but is empty. As output operations on
the stream are performed, the string is filled up.

Closing I/O streams

fstream ->
f_status ->
f_status ;

typeof fclose =

A. Standard identifiers

The trigger argument is used for sequentialization.
By threading the f_status result of the last i/o oper-
ation into the trigger of fclose, the programmer can
ensure that the i/o operations on the stream have
been completed before it is closed. If the stream was
an output stream into a string, the remainder of the
string is padded with null characters.

Positioning

When an I/O stream is opened, it is initially posi-
tioned at the first character, z.e., the next character
to be read is the first one. The position may be
moved in front of the j’th character using the func-
tion:

typeof fseek = fstream ->
int ->
f_status —>
f_status ;

The desired position j is supplied as the integer ar-
gument. A status of F_eof is returned if 5 is beyond
the end of the stream.

The current position of an i/o stream may be
queried using the function:

typeof fposition = fstream ->
f_status —>
(int,f_status) ;

Input

The following functions read (parse) a character, an
integer, a float and a string, respectively, from a
stream of characters:

fstream ->
f_status ->
(char,f_status) ;
fstream ->
f_status ->
(int,f_status) ;
fstream ->
f_status ->
(float,f_status) ;
fstream ->
f_status ->
(string,f_status) ;

typeof fscan_char =

typeof fscan_int =

typeof fscan_float =

typeof fscan_string =

In each case, the first component of the result 2-tuple
is the value that was read, and is meaningful only if
the result f _status is F_ok.

A. Standard identifiers

For fscan_char, a status of F_end is returned if no
characters remain in the stream.

For fscan string, a status of F_end is returned if
no characters remain in the stream. If any char-
acters remain, the input is consumed upto and in-
cluding the next newline, if any, or the end of the
stream, otherwise. The consumed characters, minus
the trailing newline, are returned in the result string.

For fscan_int, leading whitespace characters are
skipped (spaces, tabs, newlines). Then, a status
of F_end is returned if no characters remain in the
stream. Otherwise, it scans an integer:

[4/-] [whitespace] digit+

For fscan float, leading whitespace characters are
skipped (spaces, tabs, newlines). Then, a status
of F_end is returned if no characters remain in the
stream. Otherwise, it scans a float:

[+/-] [whitespace] digit+ [. digit*]

The following function reads the next character
without consuming it:

= fstream ->
f_status ->
(char,f_status) ;

typeof fpeek_char

Output

The following functions print a character, an integer,
a float and a string, respectively, into a stream of
characters:

typeof fprint_char = fstream ->
char ->
f_status ->
f_status ;
fstream ->
int ->
f_status ->
f_status ;
fstream ->
float ->
f_status ->
f_status ;
fstream ->
string —>
f_status ->
f_status ;

typeof fprint_int =

typeof fprint_float =

typeof fprint_string =

47

For fprint_int, a leading sign is printed only if the
number is negative.

For fprint float, a leading sign is printed only
if the number is negative. The number of digits of
mantissa printed is unspecified.

The following function prints out a newline:

= fstream ->
f_status ->
f_status ;

typeof fprint_nl

Formatted I/0

Formatted input involves parsing numbers and
strings from an input stream of characters, and for-
matted output involves writing numbers and strings
to an output stream of characters, according to a list
of format directives.

Items to be read or written are placed in a list
PRINT_ITEM objects:

type PRINT_ITEM = Pri int
| Prf float
| Prs string
| Prc char
| Prnl ;

These are for integers, floats, strings, characters
and newlines, respectively. A possible extension in
the future is to have additional disjuncts with field
width, centering and padding specifications.

Formatted output

typeof fprintf = fstream ->
(1list PRINT_ITEM) ->
f_status ->
f_status ;

Example: Suppose i and x evaluate to 23 and 6.847,
respectively. The statement:

stat = fprintf (Prs "i ="

: Pri i
: Prs ", x ="
: Prf x
: Prnl
: Prs
: Prnl
: Nil)
trig ;

"Voila!"

produces output that looks like this:

i =23, x = 6.847
Voila!

48
Formatted input

The desired scanning (parsing) of the input is spec-
ified in a list of SCAN_ITEM objects:

Sci

type SCAN_ITEM =
| Scf
[
[

Scs
Scc

These are for integers, floats, strings and characters,
respectively. A possible extension in the future is to
have additional disjuncts with field width, matching,
termination and skipping specifications.

Formatted input is performed by the following
function:

typeof fscanf = fstream ->
(1ist SCAN_ITEM) ->
f_status —>
(1ist PRINT_ITEM, f_status) ;

The input is scanned according to the SCAN_ITEM list,
and the results are returned in a PRINT_ITEM list.

Example: the statement:
items, stat = fscanf filel (Sci:Scf:Nil) trig ;
scans an integer and a floating point number from
the stream, and returns a list of two PRINT_ITEMs, the

components of which can be accessed by the pattern-
binding statement:

(Pri j:Prf x:Nil) = items ;

This binds the numbers that were read to j and x,
respectively.

Standard input and output

There are three standard streams, usually connected
to the terminal:

typeof stdin = fstream;
typeof stdout = fstream;
typeof stderr = fstream;

For each of the functions for I/O to streams, there
is a corresponding function for I/O to stdin and
stdout, respectively, by omitting the leading “£” in
the function name and omitting the fstream argu-
ment:

typeof scan_char = f_status ->
(char,f_status) ;
typeof scan_int = f_status ->

(int,f_status) ;

A. Standard identifiers

typeof scan_float = f_status —>
(float,f_status) ;

typeof scan_string = f_status —>
(string,f_status) ;

typeof print_char = char —>
f_status —>
f_status ;

typeof print_int = int ->
f_status —>
f_status ;

typeof print_float = float —>
f_status —>
f_status ;

typeof print_string = string —>
f_status —>
f_status ;

typeof print_nl = f_status ->
f_status ;

typeof scanf = (list SCAN_ITEM) ->

f_status —>
(1ist PRINT_ITEM,f_status) ;
typeof printf = (list PRINT_ITEM) ->

f_status >
f_status ;

A.14 Storage Management

The following storage management procedures are
very dangerous— they are calls to storage manager
that permit deallocation and reuse of heap objects
instead of relying on general garbage collection. If
the programmer is not careful, programs that use
these procedures can fail in bizarre ways.

Return a heap object to the storage alloca-
tor:

typeof dealloc = *0 -> void ;

If the argument is not a heap object (e.g., it is a num-
ber), no action is performed. Note: this only deal-
locates the object corresponding directly to the ar-
gument; it does not transitively deallocate any other
objects to which this object may point. The void re-
sult is returned only after the deallocation has been
completed.

Clear a heap object so that all its slots are once
again empty:

typeof clear = *0 —> *0 ;

B. Standard identifiers/Overloaded identifiers

If the argument is not a heap object (e.g., it is a
number), no action is performed. Note: this only
clears the object corresponding directly to the argu-
ment; it does not transitively clear any other objects
to which this object may point. As a result of this
clearing, of course, all previous contents of this ob-
ject are lost. The result is a pointer to the same
object, and is returned only after the clearing has
been completed.

Copy a heap object completely:
typeof copy = *0 -> %0 ;

If the argument is not a heap object (e.g., it is a num-
ber), no action is performed. Note: this only copies
the object corresponding directly to the argument; it
does not transitively copy any other objects to which
this object may point. The result is a pointer to the
new object, and is returned as soon as it is allocated.
The procedure reads the old object using I-fetches.

49

B List of overloaded operators
and identifiers

In almost all cases, the types of the instances of an
overloaded operator or identifier have some common
structure. Thus, to abbreviate the listings below,
for each overloaded operator or identifier, we show a
general type scheme using meta-variable T, and then
we list all the instantiations of T'.

For example, the entry:

max:

typeof max"T =T -> T > T;
where T' = int float

indicates that the overloaded identifier max stands
for the two non-overloaded identifiers:

int -> int -> int;

float -> float -> float;

typeof max“int =
typeof max“float =

B.1 Overloaded operators

Unary prefix -:
typeof negate™T =T -> T;
where T' = int float

Binary infix +, - and *:

typeof plus*T =T -> T -> T,

typeof minus“T =T -> T -> T,

typeof times"T =T -> T -> T,
where 7' = int float

Binary infix == and <>:

typeof eq"T =T -> T -> bool;

typeof ne"T =T -> T -> bool;

where T' = int float char bool string symbol
Binary infix <, <=, > and >=:

typeof 1t"T =T -> T -> bool;
typeof le”T =T -> T -> bool;
typeof gt*T = T -> T -> bool;
typeof ge”T = T -> T -> bool;

where T' = int float char string

B.2 Overloaded identifiers

Overloaded identifiers are listed below in alphabetic
order.

abs:

50

typeof abs*T =T -> T,
where 7' = int float

bounds:

typeof bounds~T = (T *0) -> (int,int);
where T' = 1D_array 1D_I_array 1D M _array

typeof bounds~T =
(T *0) —> ((int,int),...,(int,int));

where T' = nD_array nD_I_array nD M _array
forallmn>1

conc:

typeof conc”T =T ->T > T;
where T' = string (1list *0)

eq:

typeof eq"T =T -> T -> bool;

where T' = int float char bool string symbol

typeof eq”T =
(*0 —> *0 —-> bool) —>
(T *0) ->
(T *0) -> bool;

where T' = list nD_array

fill:

typeof £ill“k_nD_arrays =
((int,int),...,(int,int)) ->
((int,...,int) -> (*1,...,*k)) ->

(nD_I_array *O0,

where T = nD_I_array
forallk>1,n>1

foldl:

typeof foldl~T =
(x0 —> *1 —> *0) ->

*0 ->
(T *1) —> %03
where T' = list nD_array
foralln>1

foldr:

typeof foldr~T =
(0 —> *1 -> *1) —>
*1 ->
(T *0) —> x1;

where T' = list nD_array
foralln>1

hash:

, nD_I_array *k) -> void;

B. Overloaded identifiers

typeof hash™T = int -> T -> int;

where T' = string symbol

length:

typeof length“T = T -> int;

where T = string list

map:

typeof map“string

(char -> char) -> string -> string;

typeof map“list =

(%0->%1) —> (1list *0) -> (list *1);
typeof map“nD_array =
(¥0->%1) -> (nD_array *0) -> (nD_array *1);

foralln>1

map _foldl:

typeof map_foldl~T =
(*0-—>x1-> (*%0,*2)) —>

-
=> (*0,list *2);

*0
(T *1)
where T' = list nD_array
foralln>1
map _foldr:

typeof map_foldr~T =
(*1->%0->(*2,%0)) —>

->
-> (1list *2, *0);

*0
(T *1)
where T' = list nD_array
foralln>1
max:

typeof max"T = T

> T ->T;

where T = int float

min:

typeof min“T = T

> T ->T;

where T = int float

nth:

typeof nth”string =
= int -> (list *0) -> *0;

typeof nth”list

select:

typeof select™T =

int -> string -> char;

(T *0) -> int —-> *0;

where T' = nD_array nD_I_array

foralln>1

to_uc:

C. Overloaded identifiers/Compatibility

typeof to_uc”T =T -> T;
where T = char string

tolc

typeof to_1lc”T =T -> T;

where T = char string

B.3 Overloaded array notations

Functional and I-structure array selection expres-
sions:

ATi]
are overloaded to work on:

(nD_array *0)
(nD_I_array *0)

forn=1,2, ..
M-structure array selection expressions:

At[i]
A [4]

are overloaded to work on:

(nD_M_array *0)

forn=1,2, ..

I-structure array assignment statements:
ATi] = v;

are overloaded to work on:

(nD_I_array *0)

forn=1,2, ..

M-structure array assignment statements:

A'[i] = v;
ATl = v;

are overloaded to work on:
(nD_M_array *0)
forn=1,2, ..

51

C Incompatible Changes

C.1 Changes from Id 90.0 to Id 90.1

Reserved words

The following are now reserved words:

instance
instances
M_array
M_matrix
M_vector
record
sequential

The following families are now reserved words:

k_nD M_arrays
k M_vectors
k M_arrays
k M matrices
nD M_array

The following are no longer reserved words:

assign
error
put

Char, String, Symbol notations

We have abandoned Common Lisp notation and
switched completely to ANSI C notation for char-
acter and string constants. The use of single quotes
for character constants also necessitated a change in
the notation for symbols.

Failing patterns in comprehensions

When a pattern fails in a generator in a list or ar-
ray comprehension, a runtime error occurs. Previ-
ously, this was not specified. Also, this differs from
the convention in some other functional languages
where failing patterns are silently dropped (:.e., fail-
ing patterns are used as filters).

M-array allocator names

The M-array allocators have been renamed to:

52

mk_m_array
mk_m_vector
mk_m_matrix
mk_nD_m_array

because of a conflict with the reserved words:

m_array
m_vector
m_matrix
nD_m_array

I-structure and M-structure field declaration

In algebraic types, I-structure and M-structure fields
are signalled by “.” and “!”, respectively. Previ-
ously, they were signalled by “1”

tively.

LYW R

and , respec-

M-structure assignment and selection nota-
tion

M-structure assignment and selection now use “!”
explicitly, e.g.,

A'[3] = A'[G] + 1
Blage = Blage + 1;
whereas previously they had the same notation as

for functional data structures and I-structures.

Storage management pragmas

The following storage management pragmas have
been removed:

Q@release
Q@circulate

The standard procedures in Appendix A.14 take
their place. These are used in conjunction with bar-
riers to achieve the same effect.

C.2 Changes from Id 88.x to Id 90.0
Overloading

There is now a clear position on overloading, and it is
not as ambitious as originally expected. Only built-
in operators and identifiers are overloaded. The
type-checker must be able to resolve overloading lo-
cally. If it cannot, the programmer must assist the
type checker with explicit type declarations or by
using a non-overloaded identifier instead.

C. Compatibility

Numeric types

The single numeric type N has been replaced with two
separate types int and float. The Id 88.x manual
had indicated that this was likely to happen.

Various operators and identifiers are now over-
loaded to work on both integers and floats.

Identifiers

The identifier “?” consisting of only a question
mark is no longer treated specially.

Character and String constants

Character and string constants now follow the con-
vention in the C programming language instead of
Common Lisp.

Escape sequences are available in character and
string constants, following the convention in the C
programming language.

Symbols

Symbols now begin with a backslash, instead of a
single quote.

Lists

The lexical token “1” is no longer an operator. The
standard function nth~1list is now available instead

for indexing lists.

Equality and inequality

The operators “=="
only on a few primitive types (they no longer work
on lists, arrays, tuples or other algebraic types). The
overloaded identifier eq works for the primitive types
as well as for lists and arrays. The standard identi-
fiers eq”1list and eq~array are available for list and
array equality. The programmer must write equality
functions for other types.

and “<>” are now overloaded

C. Compatibility
Patterns

Floating point constants are no longer allowed in
patterns.

The don’t care pattern “” consisting of a single

underscore has taken on additional meaning. For
M-structure components of an algebraic type, it also
means that no take operation is to be performed on
that component.

The lexical token “_”

In patterns, the “don’t care” pattern “_”
ditional meaning. For M-structure components of an
algebraic type, it also means that no fake operation

is to be performed on that component.

now has ad-

In expressions, “” no longer stands for the void

value (use “()” instead). In constructor terms for
algebraic types, it is used to indicate that no value
is to be stored into the corresponding I-structure or
M-structure component of the object.

Void

The type void now has a distinguished constant “()”
representing the only value in that type. It can be
used in patterns. The previous “_” notation for void

values is no longer available.

Call statements

The statement form:

call e

is no longer available. Use this instead:

= e

Standard identifiers

In accordance with our new convention for system-
atically relating overloaded identifiers to the corre-
sponding non-overloaded ones, the names of certain
standard functions have changed. Examples:

New old
bounds“nD_array nD_bounds
bounds“"nD_I_array nD_bounds

map~list map_list

53
Comprehension notation

We now use semicolons (;) instead of ampersands
(%) to separate generators in list and array compre-
hensions. Ampersand is no longer a lexeme.

In array comprehensions and accumulator compre-
hensions, bounds expressions are now followed by the
keyword “of”, bringing it more in line with the no-
tation for case expressions.

In accumulators, in accumulation clauses, we use
the notation:

[eis] = evs || gen ; ; gen
instead of
eis gets evs || gen ; ; gen

Accordingly, gets is no longer a reserved word.

C.3 Changes from Id Noveau to Id 88.x

Function definitions (see Section 2.31) are now al-
ways introduced by the def keyword. Previously,
function definitions at the top-level had the keyword,
whereas function definitions inside blocks did not.

The terms array, vector, matrix, k_nD_arrays, etc.
are now keywords introducing array comprehensions
(see Section 2.34.5).

We are now serious about type-checking. Unless
you explicitly disable it, every program must now
pass the type-checker. Some existing programs will
now be rejected by the type-checker. Typically, such
programs violate the restriction that all components
of a list and all components of an array must be ho-
mogeneously typed. This restriction was mentioned
in the Id Nouveau document, but was not enforced
by the compiler.

For-loop syntax has changed (generalized). In-

stead of:

for j from el to e2 by eInc do

we now say:

for j <- e do

where e is any list expression. The phrase:
el to e2 by elnc

is now a full-fledged expression (7.e., it can be used
anywhere), and denotes a list containing the arith-
metic series from el through e2 with eInc increment.

b4 C. References

References

[1] Arvind, K. P. Gostelow, and W. Plouffe.
An Asynchronous Programming Language and
Computing Machine. Technical Report 114a, De-
partment of Information and Computer Science,

University of California, Irvine, CA, December
1978.

[2] R.S. Nikhil. Id Nouveau Reference Manual, Part
I: Syntax. Technical report, Computation Struc-
tures Group, MIT Lab. for Computer Science,
545 Technology Square, Cambridge, MA 02139,
April 1987.

[3] R. S. Nikhil. Id (Version 88.1) Reference Man-
ual. Technical Report CSG Memo 284, MIT Lab-
oratory for Computer Science, 545 Technology
Square, Cambridge, MA 02139, August 1988.

[4] R. S. Nikhil and Arvind. Id/83s. Technical
report, MIT Laboratory for Computer Science,
Cambridge, MA 02139, July 1985. (Prepared for
MIT Subject 6.83s).

[5] R. S. Nikhil and Arvind. Programming in Id: a
parallel programming language. 1990. (book in
preparation).

[6] R.S. Nikhil, K. K. Pingali, and Arvind. Id Nou-
veau. Technical Report CSG Memo 265, MIT
Laboratory for Computer Science, Cambridge,
MA 02139, July 23 1986. (Prepared for MIT
Subject 6.83s).

IBTEX’ed on August 11, 1994

