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2. Introduction/Functional Id 11 IntroductionId is a parallel programming language designed bymembers of the Computation Structures Group ofMIT/LCS. It is used for programming data
ow andother parallel machines.Id is a language with three layers. The major sub-set of Id is a purely functional language; this subsetis described �rst, in Section 2. The second layerextends this with I-structures which are describedin Section 4. The third layer extends this with M-structures which are described in Section 5. Somegeneral aspects of these non-functional extensionsare described in Section 3.Id traces its roots back to 1978 [1]. Since then,versions of Id have run on simulated data
ow ma-chines, and more recently on real data
ow hardwareand Unix workstations. Id/83s [4] was a �rst cut ata major redesign of the language, based on contem-porary ideas in functional languages. It brie
y ac-quired the name Id Nouveau (1986) [6, 2], and thenreverted to Id in 1988 [3].Id continues to be a research language. Currentinvestigations include better constructs to expressnon-deterministic computations, I/O, resource-management etc.This document is not a tutorial on Id. For a tu-torial introduction, the reader is referred to [5].Appendix C lists the incompatibilities betweenthis version of Id and previous versions.AcknowledgementsMany people|past and current members of theComputation Structures Group, and colleagueselsewhere|have participated in the design of Id.Major contributors include: Shail Aditya, Arvind,Paul Barth, David Culler, Kattamuri Ekanadham,Steve Heller, James Hicks, Vinod Kathail, RishiyurNikhil, Keshav Pingali, Ken Traub, and JonathanYoung.Id is also heavily in
uenced by various functionallanguages in the ISWIM-ML-SASL family.

2 Functional IdThis section describes the purely functional (and ref-erentially transparent) subset of Id.2.1 Expressions, Statements and TypesTwo major syntactic categories in Id are expressionsand statements .Every expression denotes a value. In this man-ual, we use the generic symbols \e", \e1", etc. todesignate arbitrary expressions.Statements appear in the top-level of programs, inblocks, etc. Statements are usually identi�er bind-ings and declarations of new types.Id has a polymorphic type system. Every expres-sion and statement must \type-check", i.e., satisfycertain type-rules; these are explained as each con-struct is introduced. Types are described by type-expressions . In this manual, we use the generic sym-bols \t", \t0", etc. to refer to types.Type-checking in Id is done by type inference,i.e., in general the programmer is not required todeclare the types of identi�ers or expressions|thetype-checker automatically deduces them from thecontext. However, for readability, for better error-messages and to assist in overloading resolution,there is a facility for declaring types of identi�ers(using typeof statements, see Section 2.10).For explaining the type rules in this manual, weuse the notation:e :: twhich is pronounced \e has type t", i.e., the valueof expression \e" lies in the set of values denotedby type \t". This notation is only a device for thismanual; it is not part of the language.2.2 ProgramsA program is a collection of statements:STATEMENT ;...STATEMENT ;The statements collectively de�ne an environmentin which top-level expressions may be evaluated.The statements, together with a top-level expression,have the semantics of a block (see Section 2.25).



2 2. Functional Id2.3 Parentheses and GroupingAny expression or type-expression may be enclosedin parentheses. This may be done to override prece-dence, or merely for visual clarity.( 2 + 3 ) * ( 4 - (f x))(btree (btree N))Parentheses are also used for \quoting" binary in�xoperators (see Section 2.13), for denoting the voidvalue (see Section 2.15), and for grouping statements(see Section 3.7.)2.4 SemicolonsSemicolons may be used either as a separator be-tween statements, or as a terminator at the end of astatement.2.5 CommentsComments begin with \%" and can contain any textup to the end-of-line:% anything goes till the end of the lineWe recommend the guidelines on page 348 of theCommon Lisp manual (Guy L. Steele, Jr., DigitalPress, 1984) for commenting code, except that Id has\%" instead of Lisp's \;" as the comment character.2.6 Identi�ersIdenti�ers may contain alphabetics, digits, under-scores ( ), question marks (?), single quotes (') andtildes (~) in any order. Examples:xx'harrydesmond_2_22D_arraynil?done?The lexical syntax for identi�ers overlaps with thelexical syntax for reserved words (Sections 2.6.1),numbers (Sections 2.17 and 2.18), character con-stants (Section 2.19) and the special underscore to-ken \ " (Sections 2.27, 4.3.3 and 5.3.3). A lexical

token is read as an identi�er only if it is not in oneof these categories.Upper- and lower-case letters are equivalent inidenti�ers.2.6.1 Reserved WordsThe following words are reserved and may not beused as identi�ers:abstypeaccumulateandarrayboundbycasedefdefsubstdodowntodownfromelsefinally
forfunifininstanceinstancesmatrixM arrayM matrixM vectornextoforrecord

repseqsequentialthentotypetypeoftypesynunboundedunlessupfromvectorwhenwhileIn addition, the following families of words are re-served: k nD arrays k nD M arraysk vectors k M vectorsk arrays k M arraysk matrices k M matricesnD array nD M arrayfor each k � 1 and n � 1.Upper- and lower-case letters are equivalent in re-served words.2.6.2 Standard Identi�ersStandard identi�ers are not reserved words|theycan be rede�ned by the programmer, and the setof standard identi�ers will continue to grow as moreand more useful library functions are identi�ed andimplemented. To enhance readability and reusabil-ity of code, the programmer is strongly advised notto rede�ne them. See Appendix A for a listing ofstandard identi�ers.



2. Functional Id 32.7 TypesIn this manual, we use the generic symbols \t", \t1",etc. to designate arbitrary type expressions.Types are denoted by type-expressions , which areeither Type Variables :*3 *0 *13or N -ary Constructed Types (N � 0):type-constructor t1 ... tNA type constructor is an identi�er (e.g., bool, list,tree) or one of the array reserved words (e.g., array,vector, matrix, nD array, nD M array).The identi�ers used for type constructors may over-lap with identi�ers used for values. Since type ex-pressions occur only in speci�c contexts, there isno ambiguity. For example, there is a type calledfloat, and there is also a standard identi�er floatrepresenting the function that converts integers into
oating-point numbers.Some pre-de�ned 0-ary constructed types (alsocalled Type Constants):voidchar or Cbool or Bint or Ifloat or Fstring or Ssymbol or SYMThe types in each row are synonyms.Some pre-de�ned constructed types:� Array Types:1D array t vector t array t2D array t matrix t3D array t...The types in each row are synonyms.� List Types:list tCertain pre-de�ned constructed types also have spe-cial syntax:� Tuple Types:t0 , ..., tN

� Function Types:t0 -> t1The \->" type operator associates to the right,so that the parentheses can be omitted in thefollowing type-expression:int -> (int -> bool)Additional pre-de�ned constructed types are listedin Sections 4, 5, 6 and A.13.2.7.1 Precedence in Type ExpressionsType application binds tighter than \->", whichbinds tighter than comma. In each of the followingexamples, the parentheses may be dropped:(btree int) -> int(list int),int(int -> int),int2.7.2 Polymorphic TypesA type containing a type variable is a polymor-phic type, e.g., the type of \:", the list constructor,is:*0 -> (list *0) -> (list *0)The type variable stands for \any type", indicatingthat \:" can construct lists of any type. However,all occurrences of a type variable in a polymorphictype must be instantiated uniformly . For example,all these are valid instantiations of the type of thelist constructor:int -> (list int) -> (list int)for building lists of integers, or:bool -> (list bool) -> (list bool)for building lists of booleans, or:(int->bool) ->(list (int->bool)) -> (list (int->bool))for building lists of integer-to-boolean functions.However, the following is not a valid instantia-tion:char -> (list bool) -> (list int)since the type variable *0 is instantiated non-uniformly to char, bool and int, respectively.While this may seem restrictive compared to, say,Lisp, in fact it is not, because disjoint union types(Section 2.11) give a way of packaging di�erent typesinto a common type in a type-safe manner.



4 2. Functional Id2.8 OverloadingThere are many operators and identi�ers that arenot polymorphic, but overloaded. A polymorphicfunction is a single function that works on an in�n-ity of types (each possible instantiation of its typevariables). An occurrence of an overloaded identi-�er, on the other hand, is a syntactic shorthand forone of a small set of identi�ers that have di�erenttypes; which one it actually stands for depends onthe context in which it is used|this resolution isperformed automatically by type checking.For example, the operator symbol \+" representsone of the following functions:plus~int :: int -> int -> intplus~float :: float -> float -> floatThe identi�er length represents one of the followingfunctionslength~string :: string -> intlength~list :: (list *0) -> intFor each use of an overloaded operator or identi�er,the type-checker will attempt to infer the particulartype at which it is used from the surrounding con-text, so that the particular function it represents isknown. If it is unable to do so, an error is 
agged. Inthis situation, the programmer must assist the typechecker either by replacing the overloaded identi�erby the intended non-overloaded one, or by using anexplicit type declaration (Section 2.10) to make thetype unambiguous.We use the following syntactic convention to relatean overloaded identi�er to the corresponding non-overloaded identi�ers. An overloaded identi�er foorepresents one of the identi�ers:foo~type1foo~type2...Appendix B lists many overloaded operators andidenti�ers, and their corresponding non-overloadedidenti�ers.User-de�ned overloadingThe user may declare that an identi�er x is over-loaded by using the statement:overload x = t ;

The type of each non-overloaded instance of x is onlyallowed to be an instance of the type t. For exam-ple:overload plus = *0 -> *0 -> *0 ;Non-overloaded instances of an identi�er x may bedeclared using the statement:instance x = x~a, x~b, ... ;The reserved word instances is a synonym forinstance. Here, xmust already be known as an over-loaded identi�er (i.e., previously declared using anoverload x = t declaration). The types of x~a, x~b,... must be known, and must each be an instance ofthe overloaded type t.There may be multiple instance declarations forthe same overloaded identi�er. Example:instances plus = plus~int, plus~float;orinstance plus = plus~int ;...instance plus = plus~float ;All instances of an overloaded identi�er should havemutually exclusive types, i.e., for each pair of in-stances x~a and x~b, their types should not be uni�-able.Polymorphism of overloaded identi�ersSome overloaded identi�ers represent polymorphicfunctions. For example, length represents:length~string :: string -> intlength~list :: (list *0) -> intand the latter function is polymorphic. However, aparticular occurrence of length cannot be used poly-morphically. Thus, the following program will nottype-check:{ f = lengthIn(f integer_list),(f bool_list) }even though it would type-check if we uselength~list instead. Two occurrences of length can,of course, be used at di�erent types.2.9 Type synonyms: typesynA new type constructor may be declared as a syn-onym for an existing type. The statement:



2. Functional Id 5typesyn tx tv1 ... tvN = t ;declares tx to be a new type. The tvJ's are optionaltype variables (N � 0). Examples:typesyn S = string ;typesyn complex = (float,float) ;typesyn code_mem = array (op,src,dests) ;typesyn eq_func *0 = *0 -> *0 -> bool ;The type variables in the right-hand side, if any,must be a subset of the type variables mentionedin the left-hand side.2.10 Type Declarations: typeofAn identi�er's type may be declared anywhere in itsscope. The statement:typeof x = t ;asserts that identi�er x denotes a value of type t.Example:typeof map~list = (*0 -> *1) ->(list *0) -> (list *1);Since Id's type-checker automatically infers thetypes of all identi�ers, user-speci�ed type dec-larations are not generally necessary. However,we strongly recommend their plentiful use be-cause:� They make programs more readable;� Error messages from the type-checker will bemore localized, and hence more helpful.Type declarations are sometimes necessary to assistthe type-checker in resolving overloaded identi�ers.Note: a type declaration statement does not in-troduce any new identi�ers or types.2.11 Algebraic TypesAlgebraic types are also called \disjoint union"types. New algebraic types are de�ned by the state-ment:type tx tv1 ... tvN = disj1 | ... | disjM;Here, tx is the name for the new type. Its optionalN (� 0) type parameters are speci�ed by the type-variables tvJ. Its M (� 1) disjuncts are speci�ed bythe disjJs, each of which has the form:tcons t1 ... tL

Here, tcons is an identi�er and represents a new L-adic (� 0) Constructor . Each tJ is a type-expressionconstraining the type of the J 'th argument of theconstructor. Thus,tcons :: t1 -> ... -> tL -> (tx tv1 ... tvN)The type variables in the right-hand side (all dis-juncts), if any, must be a subset of the type variablesmentioned in the left-hand side.Implicitly de�ned with each L-adic constructor arealso L �eld selectors tcons 1, ..., tcons L. Assumingwe have an expression e that evaluates tov :: tx tv1 ... tvNthen the \dot-notation" expression:e.tcons_Jchecks that v is indeed of the form:tcons v1 ... vLi.e., checks that it is in the expected disjunct, andthen returns vJ. If v is a di�erent disjunct, a run-time error occurs, producing the error value ? (seeSection 2.38).Implicitly de�ned with each constructor tcons isalso a predicate function:tcons? :: (tx tv1 ... tvN) -> boolthat tests whether a value of that type is in thatdisjunct.ExamplesLists of integers:type ilist = Inil | Icons int ilist;Implicitly de�ned constructors:Inil :: ilistIcons :: int -> ilist -> ilistImplicitly de�ned �eld selectors:ICons_1 :: ilist . intICons_2 :: ilist . ilistboth of which produce the error value ? if e evaluatesto INil (see Section 2.38).Implicitly de�nied predicates:Inil? :: ilist -> boolIcons? :: ilist -> boolPolymorphic lists:



6 2. Functional Idtype list *0 = Nil | Cons *0 (list *0);Implicitly de�ned constructors:Nil :: (list *0)Cons :: *0 -> (list *0) -> (list *0)Implicitly de�ned �eld selectors:Cons_1 :: (list *0) . *0Cons_2 :: (list *0) . (list *0)both of which produce the error value ? if e evaluatesto Nil (see Section 2.38).Implicitly de�ned predicates:Nil? :: (list *0) -> boolCons? :: (list *0) -> boolPolymorphic binary trees:type btree *0 = Empty_btree| Bnode *0(btree *0)(btree *0) ;Implicitly de�ned constructors:Empty_btree :: (btree *0)Bnode :: *0 ->(btree *0) ->(btree *0) -> (btree *0)Implicitly de�ned �eld selectors:Bnode_1 :: (btree *0) . *0Bnode_2 :: (btree *0) . (btree *0)Bnode_3 :: (btree *0) . (btree *0)all of which produce the error value ? if e evaluatesto Empty tree (see Section 2.38).Implicitly de�ned predicates:Empty_btree? :: (btree *0) -> boolBnode? :: (btree *0) -> bool2.12 Function ApplicationsEvery function has type \t0 -> t1" for some argu-ment type \t0" and result type \t1".Assuming:ef :: (t0 -> t1)ex :: t0then the application expression:ef ex :: t1

denotes the application of a function (the value ofef) to an argument (the value of ex).Application associates to the left. Thus, the fol-lowing two expressions are equivalent:e1 e2 e3 ... eN(((e1 e2) e3) ... eN)2.13 Pre�x and In�x OperatorsSome functions are designated by special symbolscalled operators . Unary pre�x operator expressionsare written:op eBinary in�x operator expressions are written:e1 op e2All binary operators can be treated as ordinary iden-ti�ers by enclosing them in parentheses, e.g.,(+) e1 e2foldr_list (+) 0 list_of_NThis is one of the two special uses of parentheses inId, where they are not used for grouping (the otheris the notation for the void value, Section 2.15).The unary pre�x operator \-" cannot be similarlytreated as an ordinary identi�er by enclosing it inparentheses, because \(-)" stands for the value ofthe binary version. For example, if the programmerneeds a unary integer minus function, this can beobtained by partially applying the binary functionto the constant \0":((-) 0)When applied to some x, this becomes \0-x", whichis equivalent to \-x".2.14 Operator PrecedenceIn decreasing precedence:



2. Functional Id 7operator associatesarray and �eld selection Leftapplication Left- (unary) Right^ Right* / Left+ - Leftto downto by -: Right++ Right== <> < <= > >= Leftand Leftor Left, (comma in tuples) -2.15 VoidsThere is a special constant \()" whose type is void.There are no other values of this type. It is typicallyused in two situations: as an argument for a pro-cedure that does not otherwise have a meaningfulargument, and as a result of a procedure that doesnot otherwise have a meaningful result.Although there is nothing non-functional aboutthis by itself, it is useful mainly in non-functionalprograms (Sections 3, 4 and 5).This is the second special use of parentheses,where they are not used for grouping (the �rst spe-cial use was to \quote" in�x operators, Section 2.13).2.16 BooleansBooleans are de�ned as follows:type bool = False | True ;typesyn B = bool ;with implicitly de�ned predicates:False? :: bool -> boolTrue? :: bool -> boolThus, False and True are identi�ers representingboolean constants, and are also constructors (i.e.,they can be used in patterns).In�x operators:and :: bool -> bool -> boolor :: bool -> bool -> boolBoth left and right arguments are always evaluated.

The following operators are overloaded forbooleans:== <>See Appendix A.1 for standard boolean functions,including \not", the boolean negation function.2.17 IntegersInteger numbers have type int (synonym: \I").Integer constants are written as sequences of dig-its:255 :: intThe following operators are overloaded for integers:- (unary negation)+ - *== <> <= < > >=Integers may also be used in patterns.See Appendix A.2 for standard integer functions,including integer division.2.18 FloatsFloating point numbers have type float (synonym:\F").Floating point constants are written with decimalpoints and/or exponents:0.6667 :: float1.45 :: float2.56e4 :: float3e-3The radix and exponent are always based on 10.The decimal point must be preceded or followed byat least one digit. The \e" must be preceded by anumber and followed by a (possibly signed) integer.Example: 2.56e4 denotes 2:56� 104The following operators are overloaded for 
oatingpoint numbers:- (unary negation)+ - *== <> <= < > >=Division:/ :: float -> float -> floatExponentiation:^ :: float -> int -> floatSee Appendix A.2 for standard 
oating point func-tions.



8 2. Functional Id2.19 CharactersAll characters have type char (synonym: \C"). Thenotation for character constants follows the conven-tions of the C programming language.Most character constants are written as the char-acter enclosed in single quotes:'a' :: char'?' :: char'M' :: char...To represent the single quote character itself, thebackslash character and certain other characters, thefollowing escape sequences may be used:'\n' :: char newline'\t' :: char horizontal tab'\v' :: char vertical tab'\b' :: char backspace'\r' :: char carriage return'\f' :: char form feed'\a' :: char audible alert'\\' :: char backslash'\?' :: char question mark'\'' :: char single quote'\"' :: char double quote'\ooo' :: char octal code'\xh::h' :: char hex codeThe last two forms are used for specifying octal orhexadecimal codes for characters. Octal charactercodes may be 1, 2 or 3 octal digit sequences. Hexcharacter codes may contain any number of hexadec-imal digits (� 1).Upper- and lower-case are distinguished in charac-ter constants, except for hexadecimal digits in escapesequences.The following operators are overloaded for charac-ters:== <> <= < > >=The obvious lexicographic ordering is guaranteedonly within the following classes: digit characters,upper case characters, and lower case characters.See Appendix A.3 for standard character func-tions.2.20 StringsAll strings have type string (synonym: \S"). Thenotation for string constants follows the conventions

of the C programming language.String constants are written between double-quotation marks:"Hiya" :: string"Cab for hire" :: string"Wanna take you higher" :: stringTo represent the double quote character, the back-slash character and certain other characters withinstrings, the same escape sequences as for characterconstants are available, with the following restric-tion: octal escapes must have exactly three octaldigits, and hex escapes must have exactly two hex-adecimal digits.Upper- and lower-case are distinguished in stringconstants, except for hexadecimal digits in escapesequences.Example: a string containing a newline."Some like it hot,\nSome like it cold."The following operators are overloaded for strings:== <> <= < > >=The ordering uses lexicographic ordering on the char-acters in the string.Strings are zero-indexed (i.e., the �rst characteris at position 0).The string type is di�erent from lists or arrays ofcharacters for reasons of e�ciency.Even though we use C notation for string con-stants, strings in Id are not zero-terminated as inC.See Appendix A.4 for standard string functions,including functions to �nd the length of a string andto convert to and from lists and arrays.2.21 SymbolsAll symbols have type symbol (synonym: \SYM"). Asymbol is written as a backslash followed by an iden-ti�er:\A :: symbol\x' :: symbol\desmond_2_2 :: symbol\c3po :: symbol\7am :: symbol



2. Functional Id 9The following operators are overloaded for symbols:== <>Unlike Lisp, symbols are are not related to programidenti�ers. Each distinct symbol merely representsa unique global constant (unique across all Id pro-grams).See Appendix A.5 for standard symbol functions,including conversion to and from strings.2.22 TuplesAn N -tuple has type \(t1,...,tN)" where \tj" isthe type of the j'th component.Assuming:e1 :: t1...eN :: tNthen the tuple expression:e1, ..., eN :: t1,...,tNdenotes an n-tuple value (where N � 2|there is nonotation for 1-tuples).The comma has lower precedence than all otheroperators. Examples:4+5, true :: int,bool5, (sqr x, false) :: int,(int,bool)(5,4),"Hi",(a > b) :: (int,int),string,boolThe second expression is a 2-tuple whose secondcomponent is itself a 2-tuple. The nesting structureis signi�cant|it is not equivalent to a 3-tuple.Components of a tuple are accessed via pattern-matching (see Section 2.28).2.23 Records2.23.1 Record type de�nitionRecords are like tuples with named �elds. A newrecord type is de�ned using the statement:type tx tv1 ... tvN ={record fieldname1 = t1;...fieldnameM = tM};Here, tx is the new type, and the tvJ's are optionaltype variables (N � 0). The fieldnameJ's are iden-ti�ers representing �eld names.

The type variables in the right-hand side, if any,must be a subset of the type variables mentioned inthe left-hand side.Fieldnames have the same syntax as program iden-ti�ers. However �eldnames and identi�ers are drawnfrom di�erent namespaces, i.e., there can be an iden-ti�er called x and a �eldname called x with no con-fusion, since they always appear in disjoint regionsof the program text.The same �eldname may not be used in more thanone record type (however, this restriction is likely tobe removed in the future).Examples:type person = {record pname = string ;age = int } ;type complex = {record x = float;y = float } ;type node *0 = {recordnname = int ;info = *0 ;children = list (node *0)};2.23.2 Record constructionA record is constructed using a record expres-sion:{record fieldname1 = e1;... ;fieldnameM = eM}The order in which the �elds are speci�ed does nothave to follow the order of the �elds in the recordtype de�nition. All �elds must be speci�ed (This istrue only in the functional subset of the language; see Sections4.4.2 and 5.4.2, where we allow I-structure and M-structure�elds to be omitted).Examples:{record pname = "Z.Z.Gabor";age = 16 } :: person{record y = 2.3; x = 4.5 } :: complex{record nname = 2345;info = 6.001;children = Nil } :: node float



10 2. Functional Id2.23.3 Record �eld selectionRecord �elds may be selected using explicit �eld se-lection:record_expression . fieldnameExamples:p.pnamec.xn.children2.24 Conditional ExpressionsAssuming:e1 :: bool e2 :: t e3 :: tthenif e1 then e2 else e3 :: tis a conditional expression. The predicate e1 is eval-uated, and depending on its truth or falsity, eithere2 or e3 (but not both) is evaluated, and returnedas the value of the entire expression.The conditional expression is equivalent to the fol-lowing case expression (see Section 2.29):{case e1 ofTrue = e2| False = e3}In a conditional expression, the phrase \else e3"may be omitted:if e1 then e2 :: voidThis is syntactic shorthand for:if e1 then e2 else ()Although there is nothing non-functional about thisby itself, it is useful mainly in non-functional pro-grams (Sections 3, 4 and 5).In parsing, an else matches the nearest precedingunbalanced then.Precedence of then and else: binds less tightlyeven than commas|the parentheses may be omittedin each of these examples:if ... else (x,y)if ... then (f x y)if ... else (x and y)

2.25 BlocksThe block expression:{ STATEMENT ;...STATEMENTIn e }denotes the value of e evaluated in the environmentinside the block.Semicolons may be used as statement separatorsor as statement terminators, i.e., the last statementbefore \In" is optionally followed by a semicolon.Each statement must be well-typed. Statementsusually specify bindings associating identi�ers totypes or values. The type of the block expressionis the type of e.Blocks (like all Id constructs) follow a static scop-ing discipline. The name-environment inside a blockis the surrounding environment augmented by thenames introduced by the statements of the block. Aname X may be introduced at most once in a block,and hides any X in the surrounding environment.Names introduced inside a block are invisible out-side the block.Thus, the statements in a block may be recursiveand mutually recursive, and the textual order of thestatements is not signi�cant.The phrase \In e" may be omitted:{ STATEMENT ;...STATEMENT } :: voidThis is syntactic shorthand for:{ STATEMENT ;...STATEMENTIn() }Although there is nothing non-functional about thisby itself, it is useful mainly in non-functional pro-grams (Sections 3, 4 and 5).2.26 Simple Binding StatementsThe statement:x = e ;



2. Functional Id 11introduces x as a name for the value of expression einto the current scope. We also say that x is boundto the value of e.2.27 PatternsA pattern is one of the following:� an identi�er,� an underscore \ " (don't care)� a special constant (void, integer, character, sym-bol),� a constructor pattern:c pat1 ... patNwhere c is an N -ary constructor name of somealgebraic type t, and the patJ's are themselvespatterns (N � 0). The pattern itself is said tobe of type t.All normal identi�ers in a pattern must be unique(technically, this is called left linearity). The \don't-care" pattern \ " may be repeated.Special syntax: list patterns can be written withan in�x colon:pat1:pat2Special syntax: N -tuple patterns can be writtenwith commas:pat1,...,patN2.28 Pattern-MatchingPattern-matching a pattern to a value has two dis-tinct aspects:� Matching , i.e., testing whether the value is a datastructure that conforms to the shape speci�ed bythe pattern. If so, the match is said to succeed,otherwise it is said to fail.� Binding , i.e., producing an environment in whichidenti�ers in the pattern are bound to corre-sponding components of the value. Binding onlyoccurs if the match succeeds.Matching:Matching succeeds under the following conditions.A \don't-care" pattern \ " successfully matches anyvalue.

An identi�er pattern x successfully matches anyvalue.A constant pattern c successfully matches only thecorresponding value c.A constructor term patternc pat1 ... patNsuccessfully matches only a value of the formc v1 ... vNprovided also that each patJ matches the corre-sponding �eld vJ.BindingAssuming the pattern matches successfully, the fol-lowing environment is produced:A \don't-care" pattern \ " produces no binding.An identi�er pattern x binds x to the value.A constant pattern c produces no binding.A constructor term pattern:c pat1 ... patNwhen matched to a value:c v1 ... vNproduces the union of all the bindings obtained bymatching all the patJ's to their corresponding vJ's.2.29 Case-expressionsAssuming:e :: tee1 :: t...eN :: tand pat1 ... patN are patterns of type te, then thecase-expression:{case e ofpat1 = e1| ...| patN = eN } :: tbehaves as follows. All the patterns pat1 ... patNare matched to the value of e, in no speci�c order.No more than one match should succeed. If patJsucceeds, then the resulting bindings augment the



12 2. Functional Idcurrent environment, eJ is evaluated in that envi-ronment, and its value is returned as the value ofthe whole expression. Note that all eJ's must havethe same type t, and the entire case-expression hastype t.The patterns must be disjoint, i.e., at mostone pattern can successfully match any e; this ischecked by the compiler. The pattern-matching is\parallel"| there is no speci�ed top-to-bottom orleft-to-right order in the pattern-matching. (For spe-cialists: disjoint patterns may require non-sequentialfunctions for non-strict evaluation; in Id, these be-come strict so that the order of patterns is not sig-ni�cant).The last clause may be preceded by \.." to des-ignate it as a catch-all clause (this is a limited formof ordering):{case e ofpat1 = e1| ...| patN = eN|.. patF = eF }Here, a match of patF to v (the value of e) is at-tempted only if all other matches fail. Thus, patFneed not be disjoint from the other patterns.The patterns need not be exhaustive|if no pat-tern matches, a runtime error occurs, and the case-expression has the error value ? (see Section 2.38).This behavior can be understood as follows. A caseexpression without a default clause is equivalent toone with a default clause added:{case e ofpat1 = e1| ...| patN = eN|.. _ = error "Pattern match"}(see Section 2.38 for the error function). A caseexpression with a default clause is equivalent to onewith the default clause rewritten as follows:{case e ofpat1 = e1| ...| patN = eN|.. x = {case x ofpatF = eF|.. _ = error "Pattern match"}}

2.30 Function AbstractionsA function abstraction expression (a form of lamb-da-expression) is written:{fun pat11 ... pat1N = e1| pat21 ... pat2N = e2...| patM1 ... patMN = eM|.. patL1 ... patLN = eL }and is equivalent to:{fun x1 ... xN ={case (x1,...,xN) of(pat11,...,pat1N) = e1| (pat21,...,pat2N) = e2...| (patM1,...,patMN) = eM|.. (patL1,...,patLN) = eL }}and represents an \anonymous" function of arityN (� 1) whose formal parameters are the xJs andwhose body is the case-expression. As usual, staticscoping rules are followed.The �nal \catch-all" clause (signalled by \..") isoptional.2.31 Function De�nitionsA function de�nition statement is written:def f pat11 ... pat1N = e1| f pat21 ... pat2N = e2...| f patM1 ... patMN = eM|.. f patL1 ... patLN = eLand is equivalent to the simple binding state-ment:f = {fun x1 ... xN ={case (x1,...,xN) of(pat11,...,pat1N) = e1| (pat21,...,pat2N) = e2| ...| (patM1,...,patMN) = eM|.. (patL1,...,patLN) = eL }}The �nal \catch-all" clause (signalled by \..") isoptional.See also Section 7.1 for defsubst, a version of defthat also suggests that it is inlinable for e�ciency.



2. Functional Id 132.32 Pattern-Binding StatementsA convenient way to access components of a datastructure is to use a pattern-binding statement:pat = e ;The pattern is matched against the value of e, andif it succeeds, the corresponding bindings are intro-duced into the current scope.If the match fails, a runtime error occurs|the statement is equivalent to the error statementstatement? (see Section 2.38), and some or all of thebindings may not be performed.Example:(x,y:ys) = e ;The expression e should evaluate to a 2-tuple whosesecond component is a non-empty list. The state-ment binds x to the �rst component of the tuple, yto the head of the list and ys to the tail of the list. Ifthe second component of the 2-tuple is an empty list,the pattern-match fails; in this case, the statementis equivalent to the error statement statement? (seeSection 2.38), y and ys remain unbound, and it is un-speci�ed whether x is bound to the �rst componentof the tuple or remains unbound.2.33 ListsThe standard list type is de�ned as:type list *0 = Nil | Cons *0 (list *0);with implicitly de�ned �eld selectors:Cons_1 :: (list *0).*0Cons_2 :: (list *0).(list *0)and implicitly de�ned predicates:Nil? :: (list *0) -> boolCons? :: (list *0) -> boolSpecial syntax: constructor terms of the form:Cons e1 e2may be written with the in�x \:" operator:e1:e2and the higher-order function:Consmay be written as:(:)

using the usual parenthesized notation for quotingin�x operators. Also, the pattern:Cons pat1 pat2can be writtenpat1 : pat22.33.1 Binary In�x List OperatorsAppending two lists:++ :: (list *0) -> (list *0) -> (list *0)2.33.2 Arithmetic Series OperatorsAssuming:e1 :: int e2 :: int eInc :: intevaluate to integers v1, v2 and vInc, respectively,then the expressions:e1 to e2 by eInc :: (list int)e1 downto e2 by eInc :: (list int)produce lists containing (v1, v1+ vInc, v1 + 2vInc,..., v2), and (v1, v1 � vInc, v1 � 2vInc, ..., v2),respectively.Note: vInc must always be positive.The short forms:e1 to e2 :: (list int)e1 downto e2 :: (list int)assume that vInc is +1.Precedence of to, downto and by: the parenthesesmay be omitted in each of these examples:... to (f x)... downto (f x)... to (e1 + e2)... by (f x)See also Section 6.2.1 for arithmetic series of in�nitelength.2.33.3 List ComprehensionsA list-comprehension is written:{: e || gen1 ; ... ; genN }(N � 1). Each generator gen is written in one of twoways:



14 2. Functional Idpat <- eList FILTER1 ... FILTERmpat = eVal FILTER1 ... FILTERm(m � 0). Each FILTER is written in one of twoways:when epwunless epuIndividual generator behaviorIn the �rst form (using <-), eList must be a list ofvalues; pat is matched to each element of the list,generating a sequence of environments that bind thepattern variables. If pattern-matching fails, a run-time error occurs| the failing match of the patternto a list element is replaced by the error statementstatement? (see Section 2.38).In the second form (using =), pat is matched to thevalue of eVal, generating an environment that bindsthe pattern variables. If pattern-matching fails, aruntime error occurs| the failing match of the pat-tern to a list element is replaced by the error state-ment statement? (see Section 2.38).The environments are then �ltered, i.e., those en-vironments in which an epw evaluates false or an epuevaluates true are discarded. The �lters are triedin sequence from left to right, i.e., if a �lter rejectsan environment, the subsequent �lter expressions arenot evaluated for that environment.Generator sequence behaviorThe generators are evaluated from left to right. Foreach environment Env in the sequence of environ-ments produced before genJ,� genJ is evaluated in Env, and produces a set ofenvironments EnvJ1, EnvJ2, ...� Env is replaced in the sequence by the aug-mented environments Env + EnvJ1, Env +EnvJ2, ...Thus, the net result of the generator sequence is asequence of environments containing bindings for thepattern variables of all the generators.List-comprehension behaviorThe expression e is evaluated in each environmentproduced by the generator sequence, and the valuesare collected into a list (in the same order), which isthe result of the whole expression.Type of list comprehensionThe type of the list comprehension is (list t),

where e::t in the environment speci�ed by the gen-erators.ExamplesA list of x-y coordinates in the �rst octant of a 100-square:{: x,y || x <- 0 to 100 ; y <- 0 to x }A list of x-y coordinates in a 100-square that are noton the axes or on the diagonals:{: x,y || x <- 0 to 100 when x <> 0; y <- 0 to 100 when y <> 0unless x == y }See Appendix A.6 for standard list functions.2.34 ArraysArrays are collections of uniformly-typed objects,with a constant access-time for each component.2.34.1 Array TypesAn n-dimensional array (n � 1) whose componentshave type t has type:nD_array tArrays can contain objects of any type, includingother arrays.Nested arrays are not equivalent to multi-dimensional arrays. The following two types are notequivalent:2D_array t1D_array (1D_array t)Synonyms for 1D array:vector arraySynonym for 2D array:matrix2.34.2 Array literalsAssuming a bounds expression (an n-tuple of integer2-tuples):eBounds :: (int,int), ... ,(int,int)



2. Functional Id 15which evaluates to (l1,u1),...,(ln,un), an arraywith those index bounds can be constructed by enu-merating its contents:{nD_array eBounds ofeFirst ... eLast}The expressions specify the contents in \row-major"order, i.e., starting from index l1,l2,...,ln andending at index u1,...,un, stepping the right-mostindex fastest. The number of contents-expressionsmust be equal to the number of components in thearray.Note that if a component is speci�ed by an ap-plication \f a", it will have to be parenthesized toprevent it from being mistaken as two separate com-ponent speci�cations.It is legal for the index bounds (l; u) along anydimension to be empty, i.e., to have u = l � 1 (zerocomponents).2.34.3 Array SelectionAssuming:a :: nD_array te :: int,...,intthen the array-selection expression:a[e] :: treturns the value of the j1,...,jn'th componentof the array \a", where j1,...,jn is the value of\e". The index j1,...,jn must be within the index-bounds of the array|it is a runtime error otherwise,producing the error value ? (see Section 2.38).Note that the index expression can be any expres-sion that returns an n-tuple of integers, i.e., it doesnot have to be a literal tuple-expression.Precedence of array selection: tighter even thanapplication, so that parentheses are not necessaryin:f (a[e])2.34.4 Array Index BoundsFor each n � 1, there is a function that returns theindex bounds of n-dimensional arrays:

bounds~1D_array ::(1D_array *0) -> (int,int)bounds~2D_array ::(2D_array *0) -> ((int,int),(int,int))...The overloaded identi�er bounds represents all thesefunctions.2.34.5 Array ComprehensionsArray comprehensions are used to construct arrays,allowing the programmer to specify the contents ofdi�erent regions of the array using di�erent compu-tation rules.For each k � 1 and n � 1, assuming a boundsexpression (an n-tuple of integer 2-tuples):eBounds :: (int,int), ... ,(int,int)and a set of index expressions (each an n-tuple ofintegers):eJ1 :: int,...,intand a set of component expressions (each a k-tuple):eJ2 :: t1,...,tkthen the array comprehension expression:{k_nD_arrays eBounds of[e11] = e12 || gen ; ... ; gen| ...| [eM1] = eM2 || gen ; ... ; gen }returns a k-tuple of n-dimensional arrays. Each genis a generator, possibly including �lters (exactly asin list-comprehensions).Array comprehension behavioreBounds is evaluated to produce lower- and upper-bounds for each of n dimensions. k arrays withthese dimensions are created. Then, the subsequentclauses are all executed in parallel to �ll the arrays.(The top-to-bottom order of the clauses has no sig-ni�cance.)Clause behaviorSee Generator behavior and Generator sequence be-havior in Section 2.33.3 on list comprehensions tosee how each generator sequencegen ; ... ; genproduces a sequence of environments. Now, in eachsuch environment, eJ1 is evaluated to produce an in-dex into the arrays (an n-tuple), and eJ2 is evaluated



16 2. Functional Idto produce a k-tuple specifying the contents of thatlocation in each of the k arrays.Type of array comprehensionsThe type of the value of the array comprehensionisnD_array t1, ..., nD_array tkwhere t1,...,tk is the type of each eJ2 in each en-vironment speci�ed by the J 'th generator sequence.A runtime error occurs if the contents of an ar-ray at some index is de�ned more than once, i.e.,if the array comprehension speci�es values twice atthe same index j1,...,jN. This is a drastic error|the entire program is considered to be inconsistent(see Section 2.38).If, at some index, the array comprehension speci-�es no value at all, then that location simply remainsunde�ned (indistinguishable from a non-terminatingcomputation).The generator sequences \|| gen ; ... ; gen"are optional. In this case, eJ1 and eJ2 specify thecontents of a single location.The k nD arrays keywords have synonyms forsome common cases:k = 1 k � 1n = 1 array k arraysvector k vectorsn = 2 matrix k matricesn � 1 nD arrayIt is legal for the index bounds (l; u) along anydimension to be empty, i.e., to have u = l � 1 (zerocomponents).ExamplesThe vector sum of two vectors A and B:{array (1,N) of[i] = A[i]+B[i] || i <- 1 to N }A statement de�ning an array using a \wavefront"recurrence:A = {matrix (1,N),(1,N) of[1,1] = 1| [i,1] = 1 || i <- 2 to N| [1,j] = 1 || j <- 2 to N| [i,j] = A[i-1,j] +A[i,j-1] || i <- 2 to N; j <- 2 to N };

An array containing the inverse of a given permu-tation in array A:{array (1,N) of[A[i]] = i || i <- 1 to N }See also Appendix A.8 for standard array functions.2.35 AccumulatorsAccumulators are an extension of arrays.{k1_n1D_arrays eBounds1 of[ei] = evs || gen ; ... ; gen| ...| [ei] = evs || gen ; ... ; genk2_n2D_arrays eBounds2 of[ei] = evs || gen ; ... ; gen| ...| [ei] = evs || gen ; ... ; gen...kM_nMD_arrays eBoundsM of[ei] = evs || gen ; ... ; gen| ...| [ei] = evs || gen ; ... ; genaccumulate k_ops of[eis] = evs || gen ; ... ; gen| ...| [eis] = evs || gen ; ... ; gen }This returns a tuple containing k arrays (k = k1 +k2 + ::: + kM). The �rst k1 arrays have boundseBounds1 and are initialized according to the �rst setof clauses, the next k2 arrays have bounds eBounds2and are initialized according to the second set ofclauses, and so on.After the keyword accumulate, the expressionk ops returns a tuple of k operators that are the ac-cumulation operators.The �nal set of clauses speci�es the indexes andvalues for the accumulation. In each clause, eisis a k-tuple of indices i1,...,ik, and evs is a k-tuple of values v1,...,vk, specifying the accumula-tions:X1[i1] := op1 X[i1] v1...Xk[ik] := opk X[ik] vkEach such accumulation is executed atomically.



2. Functional Id 17The array value of the entire expression is returnedonly after all the accumulations have been done.Thus, accumulators are hyperstrict, unlike ordinaryarrays, which are non-strict.Since the order in which the accumulation oper-ations are performed is non-deterministic, it is theprogrammer's responsibility to ensure that the ac-cumulation operators have the following property:(op (op x y) z) = (op (op x z) y)so that the whole construct is deterministic.ExampleA 10-category histogram of a zillion things:{array (1,10) of[i] = 0 || i <- 1 to 10accumulate (+) of[classify x] = 1 || x <- zillion_things }2.36 Abstract TypesA new abstract data type is declared using this state-ment:abstype NEWTYPEtypeof x1 = TYPE1 ;...typeof xN = TYPENrepREPRESENTATION-TYPE{ ...def x1 = ... ;...def xN = ... ;...};NEWTYPE is the (possibly parameterized) new type ex-pression.The subsequent typeof statements specify the sig-nature (or interface) of the abstract type.The REPRESENTATION-TYPE is a type-expressionspecifying the internal representation of objects ofthe new type.The statements in the braces specify de�nitionsfor the identi�ers in the signature. There may beother identi�ers de�ned in the braces, but they are

not exported|they are just local types and localde�nitions.The net e�ect of the abstype statement is to in-troduce the new type identi�er and the identi�ers x1through xN into the current scope. Each xJ has thespeci�ed type signature and bound value.Within the braces, the abstract type is treatedas equivalent to the representation type. Outsidethe abstype statement, the abstract type and therepresentation type are treated as distinct (di�erent)types.The representation type may be a local type, i.e.,declared in the braces. If so, it is not even visibleoutside.ExampleA stack, with a list representation:abstype (stack *0)typeof empty = (stack *0);typeof empty?= (stack *0) -> bool;typeof push = *0 ->(stack *0) -> (stack *0);typeof pop = (stack *0) -> (stack *0);typeof top = (stack *0) -> *0rep (list *0){ empty = nil ;empty? = nil? ;push = (:) ;def pop (x:s) = s| pop nil = error "Stack underflow" ;def top (x:s) = x| top nil = error "Stack underflow"};(See Section 2.38 for the error function.)2.37 LoopsWhile list- and array-comprehensions are convenientfor expressing \mapping" operations over sequences,loops are convenient for expressing \reduction" op-erations. Id has while-loops and for-loops.The general while-loop expression notationis:{while eb doSTATEMENT ;



18 2. Functional Id...STATEMENTfinally e} :: twhere eb :: bool and e :: t.The general for-loop expression notation is:{for x <- eIndex doSTATEMENT ;...STATEMENTfinally e} :: twhere eIndex :: (list *0) and e :: t. The for-loop notation is shorthand for a while-loop:{ L = eIndexIn{while (L <> nil) dox:(next L) = L ;STATEMENT ;...STATEMENTfinally e}}Here, eIndex is normally an arithmetic-series expres-sion (see Section 2.33.2).The braces are compulsory. The type of the entireloop expression is the type of the expression in the\finally" phrase.The loop body is a series of statements, withthe following extension: a binding occurrence of anidenti�er (say \x") may be pre�xed by the keyword\next", denoting the value to be used for \x" in thenext iteration. This value is also available in the cur-rent iteration because \next x" may be used as anexpression.The phrase \finally e" may be omitted:{while/for ...STATEMENT...STATEMENT } :: voidThis is syntactic shorthand for:{while/forSTATEMENT ;...STATEMENTfinally () }Although there is nothing non-functional about thisby itself, it is useful mainly in non-functional pro-grams (Sections 3, 4 and 5).See Section 7.2 on \bounded loops" for annota-tions to limit the parallelism of loops.

2.37.1 Scope of Variables in LoopsWe use the phrase loop context to refer to the set ofvariables available to the loop expression from thesurrounding scope. Any variable \x" from the loopcontext takes on a new value at each iteration if thereis a \next x" binding in the loop body.In while-loops, the predicate may only use identi-�ers from the loop context, and is re-evaluated eachtime before entering the loop body.The loop is terminated in while loops when thepredicate evaluates to false. Then, the finally eexpression is evaluated and returned as the value ofthe loop. It may only use identi�ers from the loopcontext.Within the loop body, only variables from the loopcontext may be \nexti�ed". The loop body may alsocontain ordinary identi�er bindings. The scope of allbindings is the entire loop body (this includes thenexti�ed variables, since \next x" may be used asan expression within the body).For any nexti�ed identi�er \x", the bound valuebecomes the value of \x" at the end of the iteration.2.37.2 Loop semanticsWhile-loops are equivalent to tail-recursive func-tions, according to the correspondence illustrated bythe following example. Assume that x and y are theonly two nexti�ed variables, and that their bindingsare the last two statements in the loop body:{while eB doSTATEMENT...STATEMENTnext x = ex ;next y = ey ;finally eF} :: tThis loop is equivalent to:{ def loop x y = if eB then{ STATEMENT...STATEMENTnext_x = ex ;next_y = ey ;Inloop next_x next_y}else



2. Functional Id 19eF ;Inloop x y } ;The function loop has a parameter for each nexti-�ed variable. The loop body is transcribed verbatiminto the block inside the conditional, with the excep-tion that we systematically replace all occurrencesof \next x" by the identi�er next x. The return-expression of the block is a tail-recursive call to loopusing the next values of x and y.The translation illustrates a number of points.The initial values of x and y come from the surround-ing scope. If eB evaluates to False the �rst time, theloop body is not executed at all. Because of the par-allel semantics of blocks, the recursive call (to thenext iteration) may execute in parallel with the cur-rent call. In principle, all iterations may execute inparallel and, indeed, the loop can even return a �nalresult while the loop bodies are still executing.Bounded LoopsThe above description of loops semantics is correctto �rst order. However, the user may specify that aloop should be compiled as a bounded loop, whichlimits the degree of unfolding to a �xed number ofiterations. The net e�ect of bounded loops is possi-bly to increase the strictness of loops in exchange forbetter resource utilization, i.e., it can a�ect termi-nation. Bounded loops are discussed fully in Section7.2.In the absence of explicit user directives, it isunspeci�ed whether loops are compiled as boundedloops or not.ExamplesSuccessive approximations until convergence to alimit:{ approx = first_guess ;delx = infinityIn{while (delx > epsilon) donext approx = improve approx ;next delx = (next approx)-approxfinally x}}The n'th Fibonacci:

{ x,y = 1,1In{for j <- 1 to n donext x,next y = y, x+yfinally x}}2.38 ErrorsThere are three types of errors that may be producedduring execution of an Id program:� Error values, written ?. For example, the ex-pression v1/v2 evaluates to ? if v2 is zero. Er-ror values should be regarded as synonymouswith non-terminating computations, i.e., it isas if the erroneous operation that produced ?is stuck forever.� Error statements, written statement?. For ex-ample, a pattern-binding statement:(x:y) = e ;is replaced by statement? if e evaluates to Nil(i.e., the pattern-match fails). Another reasonfor this error is an out-of-bounds index in anarray-store operation (see Sections 4 and 5).� Inconsistency, written >. This is a drastic error,in that it renders the entire program inconsis-tent. For example, in an array comprehension,if some element of the array is speci�ed morethan once, the program is inconsistent. Theusual reason for this error is multiple I-storesinto the same location (see Section 4).For ? and statement?, implementations of Id mayprovide some interactive means for the user to arti-�cially repair the error and continue execution. For>, on the other hand, no such repair is meaningful.Functional Id programs and programs that use I-structures (Section 4) are determinate (Church-Rosser) even in the presence of errors. A pro-gram:� may be inconsistent, or� produces a value (perhaps the error value ?) andzero or more statement?s.This behavior is repeatable, i.e., di�erent runs ofthe program will always produce the same outcome,despite di�erences in runtime scheduling.



20 3. Functional Id/General non-functionalForced errorsThe programmer can force an error using the func-tion:error :: string -> *0which always evaluates to ?. The argument stringe should be a meaningful error-message. Because ofits polymorphic output type, the error function maybe applied in any context. 3 General issues concerning non-functional constructs(I-structures and M-structures)I-structures are a small departure, and M-structuresare a major departure from purely functional seman-tics. I-structures and M-structures are layered ontop of the purely functional subset of Id by con-structs that are distinguished by syntax and by type,i.e., it is possible to mechanically check whether aprogram is purely functional or whether it uses I-structures or M-structures.This section discusses general issues concerningthese non-functional extensions. I-structures are de-scribed in detail in Section 4, and M-structures aredescribed in detail in Section 5.3.1 I-structure and M-structure seman-ticsThe primitive side-e�ecting constructs in Id haveto do with updating components of data structures.There is no assignment statement for ordinary vari-ables. A component of a data structure may haveeither functional, I-structure or M-structure seman-tics. Operations on all three have built-in synchro-nization.The value of a functional component of a datastructure is speci�ed simultaneously with the cre-ation of the data structure. Of course, the compo-nent cannot be updated, and it can be read manytimes. The programmer never considers synchro-nization explicitly, except inasmuch as one is awarethat one can use non-strictness to de�ne data struc-tures using recurrences. All data structures de-scribed in Section 2 were functional.For a non-functional component of a data struc-ture, no value is speci�ed when the data structure iscreated; instead, a separate assignment statement isused. A non-functional component may be in one oftwo states: full (with a value), or empty . All com-ponents begin in the empty state (when the datastructure is allocated) and later become full throughassignment statements. I-structure and M-structurecomponents have di�erent semantics for reading andwriting, and are described in detail in Sections 4 and5, respectively.



3. General non-functional 21For algebraic types and records, di�erent �elds ofan object may have di�erent semantics: functional,I-structure or M-structure. The semantics of each�eld is speci�ed in the type declaration. A given �eldcan only be accessed according to its declaration|with functional, I-structure or M-structure seman-tics; this is ensured by a combination of syntax andtype checking.For arrays, on the other hand, there are threetypes of arrays: functional, I-arrays and M-arrays.Thus, all components of an array have the same se-mantics, and this is re
ected in the array type itself.Again, type-checking ensures proper access.3.2 Polymorphism of I-structures and M-structuresUpdatable structures do not mesh well with poly-morphism. In order to be safe, our type-checker isvery conservative, and so the polymorphism of someprograms with I-structure objects may be less thanexpected.(Comment for experts: the polymorphism of I-structure and M-structure components is expressedwith so-called \weak" type variables, similar to reftypes in ML.)3.3 Referential Transparency, Sharingand Object IdentityPrograms that use only functional operations are ref-erentially transparent, whereas programs that use I-structures or M-structures may not be. For example,consider the following two expressions:(e,e) { x = eIn(x,x) }These expressions are equivalent (except for e�-ciency considerations) in the functional subset of Id,i.e., both programs will produce exactly the sameanswer except that one may use more resources thanthe other. They are no longer equivalent if they useI-structures or M-structures. For example, if e allo-cates and returns a data structure, the expression onthe left produces two references to two separate datastructures, whereas the expression on the right pro-duces two references to the same structure. In the

functional subset of Id, these two situations are in-distinguishable. With I-structures or M-structures,on the other hand, they are distinguishable, becausean assignment via one reference to a data structurecan a�ect what is read via another reference to thesame data structure.Thus, when programming with I-structures andM-structures, the programmer should be clear aboutthe sharing of computations and, by extension, thesharing of data structures. The standard proce-dure:same? :: *0 -> *0 -> boolcan be used to test if two values are identical (thesame object). Its behavior is unde�ned on non-updatable objects, such as numbers, functions andalgebraic types with no updatable components. Forexample,same? (5,6) (5,6)may return true or false, depending on the imple-mentation. The programmer is advised to use thisprocedure only on updatable objects (I-arrays, M-arrays, and algebraic types and records with I-�eldsor M-�elds).3.4 What gets evaluated, and whenConsider a conditional expression:if e1 then e2 else e3In Section 2.24, we stated that e1 is evaluated �rstand then, depending on its value, either e2 or e3 (butnot both) is evaluated.In the functional subset of Id, this level of preci-sion is not necessary| neither what nor when. Evenif some evaluation occurs in both e2 and e3, someunnecessary work would be done, but it would nota�ect the outcome of the program. Further, it doesnot matter if some evaluation occurs in e2 or e3 be-fore e1 is evaluated.With I-structures and M-structures, however,both these issues are important. For example, if e2and e3 both contained assignments to the same I-structure location, a runtime error would occur ifboth were performed. Or, if e2 or e3 manipulatedsome M-structure location, they could a�ect eachother's outcome, or even the outcome of other ex-pressions such as e1, if they were evaluated too early.



22 3. General non-functionalThus, when using I-structures and M-structures,the programmer must be clear about exactly whichexpressions get evaluated, and when.In general, for most expressions that have mul-tiple sub-expressions, all sub-expressions are evalu-ated, and they are evaluated in parallel. For exam-ple, all expressions in a block, both expressions inan in�x expression \e1 op e2", all expressions in atuple expression, etc. are evaluated in parallel. Theexceptions to this general rule are described below.Conditionals :if e1 then e2 else e3The predicate e1 is evaluated fully. After its booleanvalue is available, one of the arms e2 or e3 is eval-uated. However, please note the following subtletydue to non-strictness: this does not mean that thereis no overlap between the evaluation of e1 and theevaluation of e2/e3. Consider this conditional:if (Nil? (eH:eT)) then e2 else e3Because of non-strictness, the predicate can returnFalse even if no evaluation of eH and eT has yet takenplace, and this enables the evaluation of e3. Thus,the evaluations of eH, eT and e3 can overlap. Thus,non-strictness should be kept in mind when reason-ing about when an expression is evaluated, in thisand all subsequent rules.Case expressions (this is the general form of the rulefor conditionals):{case e ofpat1 = e1| ...| patN = eN }The expression e is evaluated completely. When it issuccessfully matched to one of the patterns, say patJ,the corresponding arm eJ is evaluated completely.Function de�nitions and applications :def f x1 ... xN = eBody ;Nothing is evaluated in eBody. After the function fhas been applied to N arguments, a new instanceof eBody is created and is evaluated. Partial appli-cations of f (i.e., application to fewer than N argu-ments) do not cause any evaluation in eBody.Function abstractions have similar behavior. Evalu-ating the expression:{fun x1 ... xN = eBody}

does not cause any evaluations in eBody| it justcreates a function value (a closure). Partial appli-cations of this function value (i.e., applications tofewer than N arguments) simply build new functionvalues. When fully applied to N arguments, a newinstance of eBody is created and is evalauted.Loops : the evaluation order is derived from thetranslation to tail-recursive form, as described inSection 2.37.2. Brie
y, without going into this trans-lation, in a while-loop:{while eb doSTATEMENT ;...STATEMENTfinally e}none of the statements in the body are executed untileb evaluates to True, after which all the statementsand the next invocation of eb are evaluated in paral-lel. After a particular invocation of eb evaluates toFalse, the corresponding loop body is not executedat all, and the corresponding �nal expression e isevaluated.Delayed expressions : See Section 6Barriers : See Section 3.7.3.5 DeterminacyPrograms in the functional subset of Id are guar-anteed to be determinate, by which we mean thatthat it is impossible for the programmer to write aprogram that, despite di�erent schedules on di�er-ent runs, produces two di�erent outcomes. Formally,functional programs are said to have the Church-Rosser property.Programs which use only functional data struc-tures and I-structures (not M-structures) are alsoguaranteed to be determinate (despite the loss ofreferential transparency).Programs that use M-structures are not guaran-teed to be determinate. Of course, through carefuluse of M-structures, it is still possible to write de-terminate programs (indeed, this is often an explicitgoal), but it is important to understand the di�er-ence: in functional Id and with I-structures, determi-nacy is a property of the language (every programhas this property), whereas with M-structures, de-terminacy is only a property of particular programs(has to be proved separately for each program).



3. General non-functional 233.6 Side-e�ect statementsIn the functional subset of Id, a statement alwaysbinds identi�ers on the left-hand side to values fromthe right-hand side (e.g., in a block or loop body).With I-structures and M-structures, we can alsohave side-e�ect statements.Primitive side-e�ect statements are assignments ofvalues to I-structure or M-structure components.Such a statement has the form:slot-designator = e ;where slot-designator is an identi�er (not a gen-eral expression) followed by zero or more functionalor I-structure array and �eld selectors, followed byexactly one I-structure or M-structure array or �eldselector. Examples:a[3] = e1 ;b![4] = e2c.name = e3;d!balance = e4;e[4].name = e5 ;f.months[12]!balance = e6 ;Note that slot-designators are unrelated to patterns,and there are no identi�er bindings involved.An expression e can be executed purely for its sidee�ect by using it in a statement that discards itsresult:STATEMENT ;..._ = e ;...STATEMENTThe single underscore may be regarded as a special,dummy identi�er to which the value of e is boundand never referred to further.However, conditionals, loops, case and block ex-pressions can be used directly as statements (the\ = " can be omitted):STATEMENT ;...if ... then ... else ;{while/for ... } ;{ STATEMENT; ... ; STATEMENT in e'} ;{case ... } ;...STATEMENT

3.7 Sequencing Statements: barriersBy using \---" in a statement sequence, the pro-grammer can indicate that all statements before itmust execute completely before any statement afterit can begin:{ s1 ;...sI ;---sJ ;...sNIne }Here, s1 through sI execute completely before theexecution of sJ through sN or e begins.When we say that a statement S must \executecompletely", we include, transitively, anything thatS calls, anything that those computations in turncall, and so on. This is sometimes also referred to as\hyperstrict" evaluation. The \---" lexeme can beread visually as a \barrier".Unless the last statement in a block is followed byan \---", it is executed in parallel with the return-expression. Compare these two expressions:{ s1 { s1--- ---s2 s2In ---e} Ine }On the left, e is evaluated in parallel with s2; on theright, e is evaluated after the execution of s2.Parentheses may be used to group statements tolimit the extent of the sequentialization:{ s1 ;( s2---s3 ;s4 ) ;s5Ine }Here, s1, the parenthesized statement group, s5 ande are evaluated in parallel. Within the statementgroup, s2 is evaluated �rst, after which s3 and s4are evaluated in parallel.



24 3. General non-functionalGrouping statements using parentheses does nota�ect the scope of identi�ers (hence one could notin general replace the parentheses by braces in theblock shown above). For example:{ s1 ;( x = .... y ... ; % s2---s3 ;s4 ; ) ;y = e5 ;Ine }The use of y in statement s2 is perfectly legal; thereis no violation of scope rules.Similarly, barriers and statement groupings, whichconcern dynamic control, are irrelevant for type def-initions and type declarations, since these are staticdeclarations. For uniformity, the programmer mayregard all type de�nitions and declarations in a blockas if they occurred at the top of the block.However, the programmer should notice that whilethe order of the statements has not e�ect on thescopes of identi�ers, the order can be important toprevent deadlock. For example:{ s1 ;( x = .... y ... ; % s2---s3 ;y = e4 ; ) ;s5 ;Ine }There is no violation of scope rules, but the programwill deadlock because statement s2 cannot completeuntil y gets a value, and y cannot get a value untils2 completes.The behavior of barriers in loop bodies followsfrom the translation to tail-recursive functions de-scribed in Section 2.37.2. Consider the followingloop:{while eB doSTATEMENT1;---STATEMENT2;next x = ex ;next y = ey ;finally eF}The translation is:

{ def loop x y = if eB then{ STATEMENT1;---STATEMENT2;next_x = ex ;next_y = ey ;Inloop next_x next_y}elseeF ;Inloop x y } ;From this, it is obvious that the recursive call for thenext iteration cannot begin until STATEMENT1 com-pletes. The net e�ect is that the entire loop runs se-quentially. The programmer should be careful aboutthis behavior: a single unadorned barrier in a loopbody sequentializes the loop!If the programmer wishes to localize the barrierto individual iterations while allowing separate iter-ations to run in parallel, parentheses may be used asusual to localize the barrier. For example:{while eB do( STATEMENT1;---STATEMENT2; )next x = ex ;next y = ey ;finally eF} :: tThe translation is:{ def loop x y = if eB then{ ( STATEMENT1---STATEMENT2 )next_x = ex ;next_y = ey ;Inloop next_x next_y}elseeF ;Inloop x y } ;Now, the recursive call can begin as soon as we knowthat eB is True, and all iterations can, in principle,run in parallel.Barriers are used primarily in M-structure pro-grams for regulating the order in which side-e�ectsare performed (including I/O). Here, insertion oromission of a barrier must be done with care, asit can substantially change the semantics of a pro-



4. General non-functional/I-structures 25gram (produce di�erent answers or introduce run-time multiple-put errors).For programs that do not use M-structures(purely functional, or with I-structures), barriersonly change the termination behavior (strictness) ofprograms. For example:( _ = y ;---x = e ; )The barrier causes the expression e to become strictin y, i.e., e does not evaluate until y gets a value(from the surrounding context). In extreme cases,of course, insertion of a barrier can introduce dead-lock into an otherwise deadlock-free functional or I-structure program.Barriers are also used in programs that performexplicit storage management (Appendix A.14).3.8 Sequencing expressionsThe seq form may be used to sequentialize the eval-uation of expressions:{seq e1; e2; ... ; eN}Here, e1, e2, ..., and eN are evaluated sequentially,and the value of eN is returned as the value of thewhole expression. The values of the other eJ's arediscarded. The type of the entire expression is thetype of eN.The seq form is an abbreviation for:{ _ = e1---_ = e2--- ...---foo = eNInfoo }

4 I-structuresI-structures are a small departure from purely func-tional semantics. I-structures are layered on top ofthe purely functional subset of Id by constructs thatare distinguished by syntax and by type.Please refer to Section 3 for general issues con-cerning non-functional constructs.4.1 I-structure semanticsA component of a data structure may have I-structure semantics (as opposed to functional or M-structure semantics). For such a component, novalue is speci�ed when the data structure is created;instead, a separate assignment statement is used. AnI-structure component may be in one of two states:full (with a value), or empty . All components be-gin in the empty state (when the data structure isallocated).An I-structure component has a single assignmentrestriction, i.e., it can only be assigned once, atwhich point its state goes from empty to full. Anyattempt to assign it more than once is caught as aruntime error. The component can be read an arbi-trary number of times. Further, any attempt to reada component that is empty is automatically blockeduntil it becomes full. Thus, the programmer does nothave to worry about sequencing the reads after theassignment|there is no race condition. I-structurereads and writes are called I-fetches and I-stores ,respectively.Multiple I-stores into the same location cause adrastic runtime error. The entire program is said tobe inconsistent, or > (see Section 2.38).4.2 I-structure arraysI-structure arrays are array-like data structures withempty locations which can be assigned subsequentlyusing I-structure semantics. These arrays are alsoreferred to as I-arrays.4.2.1 I-array typesAn n-dimensional I-array whose components are oftype t has type:



26 4. I-structuresnD_I_array tSynonyms for the type name 1D I array:I vector I arraySynonym for the type name 2D I array:I matrix4.2.2 I-array creationAn n-dimensional I-array is created using the func-tion:nD_I_array::((int,int),...,(int,int)) -> (nD_I_array *0)i.e., it takes an index bounds expression (an n-tupleof integer 2-tuples) and returns an empty I-arraywith those bounds.It is legal for the index bounds (l; u) along anydimension to be empty, i.e., to have u = l � 1 (zerocomponents). However, if u < l � 1, the functionreturns the error value ? (see Section 2.38).Synonyms for 1D I array allocator:I vector I arraySynonym for 2D I array allocator:I matrixExampleA 2-dimensional 10� 10 I-array:I_matrix ((1,10),(1,10))4.2.3 I-array assignmentsAssuming:a :: (nD_I_array t)e1 :: (int,...,int)e2 :: tthen the I-array assignment statement:a[e1] = e2 ;uses an I-store operation to assign the value of \e2"to the (j1,...,jn)'th component of the I-array \a",where (j1,...,jn) is the value of \e1".If the index e1 is out of bounds, the statementis equivalent to the error statement statement? (seeSection 2.38).The assignment statement is overloaded for all di-mensions of I-arrays and must thus be resolvable bythe type checker.

4.2.4 I-array selectionAssuming:a :: (nD_I_array t)e1 :: (int,...,int)then the I-array selection expression:a[e1] :: tuses an I-fetch operation to return the value of the(j1,...,jn)'th component of the I-array \a", where(j1,...,jn) is the value of \e1".If the index e1 is out of bounds, the selection ex-pression evaluates to the error value ? (see Section2.38).The selection notation is overloaded in two ways|on functional and I-arrays, and on arrays of di�er-ent dimensions| and must thus be resolvable bythe type checker. The corresponding non-overloadedfunction for I-arrays is:select~nD_I_array ::(nD_I_array *0) -> (int,...,int) -> *04.2.5 I-array index boundsFor each n � 1, there is a function that returns theindex bounds of n-dimensional I-arrays:bounds~1D_I_array ::(1D_I_array t) -> (int,int)bounds~2D_I_array ::(2D_I_array t) -> ((int,int),(int,int))...The overloaded identi�er bounds represents all thesefunctions.See Appendix A.9 for standard I-array functions.ExampleAn I-array containing j2 at the j'th index:{ x = I_array (1,10) ;{for j <- 1 to 10 dox[j] = j * j}In x}



4. I-structures 274.3 I-structure �elds in Algebraic TypesUnlike arrays, where the entire structure has eitherfunctional, I-structure or M-structure semantics, analgebraic type can have di�erent �elds with di�erentsemantics.4.3.1 Type de�nitionRecall from Section 2.11 that an algebraic type def-inition looks like this:type tx tv1 ... tvN = disj1 | ... | disjM;where each disjunct looks like this:tcons t1 ... tLWe extend this notation as follows. In each disjunct,each tJ may be preceded by \." to indicate that ithas I-structure semantics. Such �elds are known asI-�elds.4.3.2 Object creationFirst, we de�ne Constructor Terms as applicativeforms:tcons e1 ... eNwhere tcons is a constructor identi�er (not an ar-bitrary expression or identi�er) of arity N of somealgebraic type.Objects are created, as usual, by constructorterms. However, an I-�eld may be left empty byusing the special token \ " (underscore). Note:values must be supplied for all normal functionalcomponents| they cannot be left empty. The type-checker will ensure this.4.3.3 Component assignmentAssuming:X :: tx tv1 ... tvNand assuming that it is of the form:tcons v1 ... vNthen, if its J 'th component is an I-�eld, it may beassigned using an I-store operation using the �eldassignment statement:X.tcons_J = eV ;

The new value in the J 'th component of X is thevalue of eV.It is a runtime error if X is not a tcons disjunct|the statement is equivalent to the error statementstatement? (see Section 2.38).4.3.4 Component selectionAssuming:X :: tx tv1 ... tvNand assuming that it is of the form:tcons v1 ... vNthe, if its J 'th component is an I-�eld, it may beselected using an I-fetch operation using the �eldselection expression:X.tcons_JIt is a runtime error if X is not a tcons disjunct,producing the error value ? (see Section 2.38).4.3.5 Component selection in patternsI-�elds may be read using pattern-matching in ex-actly the same way as functional �elds. In otherwords, an I-�eld may be matched against a variable(in which case the value is bound to that variable),a constant, another structured pattern, etc.4.3.6 Example: iterative mapHere is a tail-recursive implementation of map list,using \open lists":type I_list *0 = I_Nil| I_Cons *0 .(I_list *0) ;typeof map~list = (*0->*1) ->(list *0) -> (list *1) ;def map~list f Nil = Nil| map~list f (x:xs)= { iys = I_Cons (f x) _ ;_ = map' f xs iysInI_list_to_list iys } ;typeof map' = (*0->*1) ->(list *0) ->(I_list *1) -> void ;



28 5. I-structures/M-structuresdef map' f Nil L= { L.I_Cons_2 = I_Nil }| map' f (x:xs) L= { L' = I_Cons (f x) _ ;L.I_Cons_2 = L' ;_ = map' f xs L' } ;The function I list to list converts an I list typeinto an ordinarly list type.4.4 I-structure �elds in records4.4.1 Type de�nitionA �eld of a record may be declared to have I-structure semantics by preceding its type with a \.".Such �elds are called I-�elds.Example:type foo = {record fieldf = int ;fieldi = . int }Here, foo is a new record type, containing a func-tional �eld fieldf and an I-�eld fieldi.4.4.2 Record creationIn the record construction expression, I-�elds maybe left empty using the special token \ ". Exam-ple:{record fieldf = 23; fieldi = _ }For convenience, I-�elds that are to be left emptymay be omitted entirely, so that the above examplecould be written:{record fieldf = 23}4.4.3 Field assignmentAn I-�eld fieldi of a record X may be assigned us-ing an I-store operation using the �eld assignmentstatement:X.fieldi = eV ;The new value in the �eld of X is the value of eV.4.4.4 Field selectionAn I-�eld fieldi of a record X may be selected usingan I-fetch operation using the expression:X.fieldi(The notation is the same as for normal functional�elds).

5 M-structuresM-structures are a major departure from purelyfunctional semantics. M-structures are layered ontop of the purely functional subset of Id by con-structs that are distinguished by syntax and by type.Please refer to Section 3 for general issues con-cerning non-functional constructs.5.1 M-structure semanticsA component of a data structure may have M-structure semantics (as opposed to functional or I-structure semantics). For such a component, novalue is speci�ed when the data structure is created;instead, a separate assignment statement is used. AnM-structure component may be in one of two states:full (with a value), or empty . All components be-gin in the empty state (when the data structure isallocated).An M-structure component can be assigned witha put operation and read with a take operation. Avalue can be put only into an empty component|it is a runtime error if it is already full. Manytake's may be attempted concurrently on a compo-nent. They all block automatically if the compo-nent is empty. When it is full, exactly one of themsucceeds in reading the value and the componentagain becomes empty, so that the other take's remainblocked. It is unspeci�ed as to which take amongstcompeting take's will succeed.In typical usage of M-structure components, sev-eral concurrent computations share a resource. Eachcomputation takes it, computes with it, and puts itback. The semantics guarantees that each computa-tion has exclusive access to the resource. Note: forcorrect operation, every take must be followed bya put , i.e., it is the programmer's responsibility tomake sure that these operations are \balanced".In some situations, the value to be put back is thesame as the value taken out (e.g., if we simply wantto test the current value in an M-structure �eld).This combination| taking a value, putting it back,and returning the value| is called an examine oper-ation, for which syntactic shorthands are provided.In some situations, the value to be put back isunrelated to the value taken out (e.g., if we simply



5. M-structures 29want to reset an M-structure �eld to a known value).This combination| taking out the old value and dis-carding it, and putting in a new value| is called areplace operation, for which syntactic shorthands areprovided.5.2 M-structure arraysM-structure arrays are array-like data structureswith empty locations which can be assigned subse-quently using M-structure semantics. These arraysare also referred to as M-arrays.5.2.1 M-array typesAn n-dimensional M-structure array whose compo-nents are of type t has type:nD_M_array tSynonyms for the type name 1D M array:M vector M arraySynonym for the type name 2D M array:M matrix5.2.2 M-array literals and comprehensionsThe array literal notation of Section 2.34.2 is ex-tended to M-arrays by using the keywords M vector,M array, M matrix and nD M array instead of theirfunctional counterparts:{nD_M_array eBounds ofeFirst ... eLast}The array comprehension notation of Section 2.34.5is extended to M-arrays by using the keywordsM array, M vector, M matrix, k M arrays, k M vectors,k M matrices and k nD M arrays instead of their func-tional counterparts:{k_nD_M_arrays eBounds of[e11] = e12 || gen ; ... ; gen| ...| [eM1] = eM2 || gen ; ... ; gen }M-array literals and comprehensions are useful for\initializing" M-arrays. The initializations use putoperations.

5.2.3 M-array creationAn empty n-dimensional M-array is created usingthe function:mk_nD_M_array::((int,int),...,(int,int)) -> (nD_M_array *0)i.e., it takes an index-bounds expression (an n-tupleof integer 2-tuples) and returns an empty M-arraywith those bounds.It is legal for the index bounds (l; u) along anydimension to be empty, i.e., to have u = l � 1 (zerocomponents). However, if u < l � 1, the functionreturns the error value ? (see Section 2.38).Synonyms for 1D M array allocator:mk M vector mk M arraySynonym for 2D M array allocator:mk M matrixExampleA 2-dimensional 10� 10 M-array:mk_M_matrix ((1,10),(1,10))5.2.4 M-array assignmentAssuming:a :: nD_M_array te1 :: int,...,inte2 :: tthen the M-array assignment statement:a![e1] = e2 ;uses a put operation to assign the value of \e2" to thej1,...,jn'th component of the M-array \a", wherej1,...,jn is the value of \e1".An M-array component can be replaced using thestatement:a!![e1] = e2 ;which is equivalent to:i = e1 ;v = e2 ;( _ = v---_ = a![i] ;---a![i] = v )



30 5. M-structuresIn other words, the old value is taken only afterthe value of e2 is available, but note, due to non-strictness, that sub-expressions of e2 may still beevaluating.If the index e1 is out of bounds, the statementsare equivalent to the error statement statement? (seeSection 2.38).The assignment statement is overloaded for all di-mensions of and M-arrays, and must thus be resolv-able by the type checker.5.2.5 M-array selectionAssuming:a :: nD_M_array te1 :: int,...,intthen the M-array selection expression:a![e1] :: tuses a take operation to return the value of thej1,...,jn'th component of the M-array \a", wherej1,...,jn is the value of \e1".An M-array component may be examined using theexpression:a!![e1]which is equivalent to:{ i = e1 ;v = a![i] ;a![i] = vInv }If the index e1 is out of bounds, the selection ex-pressions evaluate to the error value ? (see Section2.38).The selection notation is overloaded to work onall dimensions of M-arrays, and must thus be resolv-able by the type checker. The corresponding non-overloaded function for M-arrays is:take~nD_M_array ::(nD_M_array *0) -> (int,...,int) -> *05.2.6 M-array index boundsFor each n � 1, there is a function that returns theindex bounds of n-dimensional M-arrays:

bounds~1D_M_array ::(1D_M_array t) -> (int,int)bounds~2D_M_array ::(2D_M_array t) -> ((int,int),(int,int))...The overloaded identi�er bounds represents all thesefunctions.See Appendix A.10 for standard M-array functions.5.3 M-structure �elds in Algebraic TypesUnlike arrays, where the entire structure has eitherfunctional, I-structure or M-structure semantics, analgebraic type can have di�erent �elds with di�erentsemantics.5.3.1 Type de�nitionRecall from Section 2.11 that an algebraic type def-inition looks like this:type tx tv1 ... tvN = disj1 | ... | disjM;where each disjunct looks like this:tcons t1 ... tLWe extend this notation as follows. In each disjunct,each tJ may be preceded by \!" to indicate that ithas M-structure semantics. Such �elds are known asM-�elds.5.3.2 Object creationFirst, we de�ne Constructor Terms as applicativeforms:tcons e1 ... eNwhere tcons is a constructor identi�er (not an ar-bitrary expression or identi�er) of arity N of somealgebraic type.Objects are created, as usual, by constructorterms. However, an M-�eld may be left emptyby using the special token \ " (underscore). Note:values must be supplied for all normal functionalcomponents| they cannot be left empty. The type-checker will ensure this.



5. M-structures 315.3.3 Component assignmentAssuming:X :: tx tv1 ... tvNand assuming that it is of the form:tcons v1 ... vNthen, if its J 'th component is an M-�eld, then itmay be assigned using a put operation using the �eldassignment statement:X!tcons_J = eV ;An M-�eld can be replaced using the state-ment:X!!tcons_J = eV ;which is equivalent to:v = eV ;( _ = v ;---_ = X!tcons_J ;---X!tcons_J = v )In other words, the old value is taken only afterthe value of eV is available, but note, due to non-strictness, that sub-expressions of eV may still beevaluating.The new value in the J 'th component of X is thevalue of eV.It is a runtime error if X is not a tcons disjunct|the statement is equivalent to the error statementstatement? (see Section 2.38).5.3.4 Component selectionAssuming:X :: tx tv1 ... tvNand assuming that it is of the form:tcons v1 ... vNthe, if its J 'th component is an M-�eld, then it maybe selected using a take operation using the �eldselection expression:X!tcons_JAn M-�eld may be examined using the expres-sion:X!!tcons_J

which is equivalent to:{ v = X!tcons_J ;X!tcons_J = vInv }It is a runtime error if X is not a tcons disjunct,producing the error value ? (see Section 2.38).5.3.5 Component selection in patternsM-�elds may be read using pattern-matching, butonly a limited form of patterns may be used:_(!x)(!!x)where x is an identi�er , not a general pattern. Theparentheses in the latter two cases are mandatory.When the pattern is an \ ", it indicates that theM-�eld is ignored during the pattern matching (notake is performed).When the pattern is \(!x)" or \(!!x)", it indi-cates that the value in the �eld is to be taken or ex-amined, respectively, and bound to the identi�er x.However, the take or examine operation is performedonly after it has been determined that the pattern-matching is successful; the M-�eld itself plays no rolein whether the pattern-matching is successful or not.When a pattern fails to match, none of its takes orexamines are performed.5.3.6 Example: unique id generatorA type for data structures for generating uniqueidenti�ers that are strings of the form "fooj":type uid = Uidcell string !int ;A statement binding u to an updatable data struc-ture for generating unique identi�ers that are stringsof the form "fooj":u = Uidcell "foo" _ ;A statement initializing the unique identi�er gener-ator u:u!Uidcell_2 = 0 ;Generating the next uid fooj from the object u:



32 5. M-structures{ Uidcell prefix (!j) = u ;u!Uidcell_2 = j+1 ;uid = conc~string prefix (int_to_string j)Inuid }5.3.7 Example: FIFO queueWe can implement a �fo queue using the followingtype:type queue *0 = Queue !(open_list *0)!(open_list *0) ;type open_list *0 = Ocons .*0.(open_list *0);For example, a �fo queue in which a, b and c havebeen inserted (in that order) would be:{ tail = Ocons _ _ ;InQueue (Ocons a(Ocons b(Ocons ctail)))tail }The idea is that the Queue structure points at thehead and the tail of the queue. The tail is an Oconscell containing an empty slot for the next object tobe enqueued, and an empty slot to grow the queue.Here are the functions to manipulate thequeue:def mk_empty_q () = { ol = Ocons _ _InQueue ol ol } ;def enqueue x q ={ Queue _ (!tail) = q ;newtail = Ocons _ _ ;tail.Ocons_1 = x ;tail.Ocons_2 = newtail ;q!Queue_2 = newtail ;In() } ;def dequeue q ={ Queue (!head) _ = q ;Ocons x nexthead = head ;q!Queue_1 = nexthead ;Inx } ;Note that the components of the open list struc-tures are each assigned exactly once, so that they

have I-structure semantics. However, the two com-ponents of the queue structure are repeatedly up-dated (by every enqueuer and dequeuer), so theyhave M-structure semantics.5.4 M-structure �elds in records5.4.1 Type de�nitionA �eld of a record may be declared to have M-structure semantics by preceding its type with a \!".Such �elds are called M-�elds.Example:type foo = {record fieldf = int ;fieldm = ! int }Here, foo is a new record type, containing a func-tional �eld fieldf and an M-�eld fieldm.5.4.2 Record creationIn the record construction expression, M-�elds maybe left empty using the special token \ ". Exam-ple:{record fieldf = 23; fieldm = _ }For convenience, M-�elds that are to be left emptymay be omitted entirely, so that the above examplecould be written:{record fieldf = 23}5.4.3 Field assignmentAn M-�eld fieldm of a record X may be assigned us-ing a put operation using the �eld assignment state-ment:X!fieldm = eV ;An M-�eld fieldm of a record may be replaced usingthe statement:X!!fieldm = eV ;which is equivalent to:v = eV ;( _ = v;---_ = X!fieldm ;---X!fieldm = v ; )



6. M-structures/Delayed evaluation 33In other words, the old value is taken only afterthe value of eV is available, but note, due to non-strictness, that sub-expressions of eV may still beevaluating.The new value in the �eld of X is the value of eV.5.4.4 Field selectionAn M-�eld fieldm of a record Xmay be selected usinga take operation using the expression:X!fieldiAn M-�eld fieldm of a record X may be examinedusing the expression:X!!fieldmwhich is equivalent to:{ v = X!fieldm ;X!fieldm = v ;Inv }
6 Delayed evaluationAnnotations for delayed evaluation are experimentalfeatures of Id to gain experience with in�nite struc-tures. Semantically, their only e�ect is to change thetermination behavior of programs. Pragmatically,they can drastically change the runtime resource re-quirements of a program.6.1 General Delayed EvaluationAssuming:e :: tis an expression that evaluates to v, then the expres-sion:{# e} :: (delay t)returns d, an unevaluated representation of e calleda thunk .The standard function:force :: (delay *0) -> *0takes a thunk d, evaluates the delayed expression init, and returns v, its value. It also \memoizes" thevalue, so that in multiple evaluations of (force d),the delayed expression itself is evaluated only once.The memoization is transparent|there is no testavailable to the programmer to determine whethera delayed object has been forced or not.Note that a delayed object has a di�erent typefrom the object iteself, and the value is always ex-tracted using force. Thus, the following two expres-sions below are incorrect and will be caught by thetype-checker:1 + (force 5) % forcing an undelayed object1 + {# 5} % adding a delayed object6.2 Delayed Evaluation For Data Struc-ture ComponentsWhile expressions in arbitrary contexts may be de-layed using {# ...}, it is frequently the case that thedelayed object is a component of a data structure.In this situation, one can use a special notation forgreater e�ciency (less space overhead for thunks)and convenience (no distinction of delayed objectson the basis of type, no need for an explicit force).



34 6. Delayed evaluation6.2.1 Delayed components in algebraic typesFirst, we de�ne Constructor Terms as applicativeforms:c e1 ... eNwhere c is a constructor identi�er (not an arbitraryexpression or identi�er) of arity N of some algebraictype. Examples:e1 : e2bnode e1 e2 e3but not:(:) e1 % arity not satisfiedbnode e1 e2 % arity not satisfied(See Section 2.11 for the binary tree algebraic typewith constructor bnode.)In a constructor term, any argument may be an-notated by \#" to indicate that it should be delayed.Example:bnode e1 #e2 e3constructs a binary tree with the left subtree expres-sion delayed.Unlike general delayed expressions, delayed data-structure components are of the same type as if theywere not delayed. There is no explicit force oper-ation. A delayed component is evaluated implicitly(and stored in the data structure) when an attemptis made to select it (usually in some pattern-match).For example, if e1::t1, thenbnode # e1 e2 e3 :: (btree t1)bnode {# e1} e2 e3 :: (btree (delay t1))In the former, selecting the �rst component of thebnode implicitly evaluates the delayed expression andreturns an object of type t1, whereas in the latter, itreturns an object of type (delay t1), to which forcemust be applied to get an object of type t1.Delayed ListsList constructor terms may be annotated too:e1 : e2 % normal---eager head and taile1 : #e2 % eager head, delayed tail#e1 : e2 % delayed head, eager tail#e1 : #e2 % delayed head and tailFor compatibility with the delayed list-comprehen-sion notation (below), the following notations mayalso be used:

e1 : e2 % normal---eager head and taile1 :# e2 % eager head, delayed taile1 #: e2 % delayed head, eager taile1 #:# e2 % delayed head and tailDelayed list-comprehensions may be written bychanging the opening \:" symbol:{: e || gen ... } % normal{#: e || gen ... } % delayed heads{:# e || gen ... } % delayed tails{#:# e || gen ... } % delayed heads, tailsAssuming:e1::int eInc::intevaluate to integers v1 and vInc, respectively, thenthe expressions:upfrom e1 by eInc :: (list N)downfrom e1 by eInc :: (list N)produce in�nite lists containing (v1, v1 + vInc,v1 + 2vInc, ...), and (v1, v1 � vInc, v1 � 2vInc,...), respectively.Note: vInc must always be positive.The short forms:upfrom e1 :: (list N)downfrom e1 :: (list N)assume that vInc is +1.6.2.2 Delayed components in recordsA component of a record may be delayed using \#"instead of \=":{recordfield1 = e1;...fieldJ # eJ;...fieldN = eN}Normal and delayed components may be mixed in asingle record.6.2.3 Delayed components in functional ar-raysComponents of array-comprehensions may be de-layed using \#" instead of \=":{array (l,u) of[ei] = ev || gen ... % normal components| [ej] # ew || gen ... } % delayed components



7. Delayed evaluation/Pragmatics 35Normal and delayed components may be mixed inthe same array.6.2.4 Delayed components in I-structure ar-raysThe delayed assignment statement (with the sametype rules as the ordinary assignment statement,Section 4.2.3):a[e1] # e2stores a thunk for e2 in the e1'th location of a. Whenthat location is selected, the thunk is implicitly eval-uated, and the value replaces the thunk.Evaluation on selectionA component of a data structure that has been de-layed using any of the above notations is evaluatedautomatically the �rst time that it is selected. Thisis di�erent from the situation in lazy languages!.Consider:c1 = e1 #:# e2 ;(x:_) = c1c2 = x #:# e3 ;Even though all we are doing is copying e1 from onecons cell to another, it gets evaluated the momentwe select it (delaying the head of the c2 constructionis, therefore, pointless).

7 Pragmatics7.1 Inline substitutionA function de�nitiondef foo ... = ... ;may also be written:defsubst foo ... = ... ;in which case the compiler will try to expand thefunction in place wherever possible. This has no se-mantic consequence; it merely removes the overheadof function-calls.The substitution is semantically transparent (it isnot a macro). The function itself is still available asa value.The inlinable functions can be recursive and mu-tually recursive. The compiler will inline only uptoa �xed maximum depth.7.2 Bounded loopsIn principle, all iterations of a loop can run in parallel(subject only to data dependencies). Pragmatically,this may be undesirable as it can swamp the ma-chine. Thus, loops are normally compiled as boundedloops , i.e., no more than k iterations may execute si-multaneously, for some loop bound k.Normally, a default loop bound is used. The loopbound can also be speci�ed explicitly using the boundkeyword. Assuming ek::int, then in each of thefollowing forms:{for j <- e bound ek do ... }{while b bound ek do ... }{: e || ... ; j <- e bound ek ... }{array (l,u) of...| [ej] = ev || ... ; j <- e bound ek ...| ... }the corresponding loop is bounded to k, the value ofexpression ek, which must be a positive integer.A loop can be forced to execute sequentially usingthe sequential reserved word:



36 7. Pragmatics{for j <- e sequential do ... }{while b sequential do ... }{: e || ...; j <- e sequential ... }{array ... of...| [ej] = ev || ...; j <- e sequential ...| ... }Bounded loops are not semantically identical totail-recursive functions, because they may dead-lock where the corresponding tail-recursive functionwould not. An example using I-arrays:{ A = I_array (0,9) ;A[10] = 0 ;{for j from 1 to 9 doA[j] = f A[j+1] }InA}Another example, in the purely functional subsetof Id: Suppose we want to �nd biggest, the maxi-mum of a 100-element array, and nbig, the number ofelements within 10% of it. Normally, we would tra-verse the array twice, �rst computing biggest, thenusing it to compute nbig. But non-strictness maytempt us to write a single loop:b,nb = minfloat,0 ;biggest, nbig ={for j <- 1 to 100 donext b = max A[j] b ;next nb = if A[j]/biggest < 0.9 then nbelse nb+1finally b,nb} ;Note that all iterations of the loop use biggest,which is itself computed by the loop and is producedby the last iteration. Thus, this loop will deadlockwith any k that does not allow it to unfold fully.We strongly recommend against loops with back-ward dependencies, i.e., where a variable in an iter-ation depends on computations in future iterations.However, if an unbounded loop is really necessary, itmay be written using the unbounded keyword:{for j <- e unbounded do ... }{while b unbounded do ... }{: e || ... ; j <- e unbounded ... }{array (l,u) of...

| [ej] = ev || ... ; j <- e unbounded ...| ... }Unbounded loops are semantically identical to tail-recursive functions.7.3 PragmasA pragma is a statement 
agged by \@":@identifieror@identifier expressionA block of pragmas may be inserted after the for-mal parameters in a function de�nition to indicateattributes of the function:def f x1 ... xN {pragma;...;pragma} = eCurrently, the only pragma that may be used hereis:@inlinable@inlineableUse of this pragma is equivalent to using the keyworddefsubst instead of def.7.4 Loop peeling and unrollingLoop peeling and unrolling are techniques to reducethe overhead of loops. If we think of a loop as equiv-alent to a de�nition of a tail-recursive function Fand an initial call to F , then loop peeling is similarto inline substitution at the initial call site, and loopunrolling is similar to inline substitution of F in the(recursive) call site inside the body of F . In the limitcase, when a loop is completely peeled or unrolled,they are the same.7.4.1 Loop peelingThe pragma:@peel jwhen used as a statement in a loop body, may beused to indicate that upto j iterations should be doneoutside the loop. Here, j must be a positive integerconstant. For example,



7. Pragmatics 37{while p do@peel 1 ;next x = e1 ;...finally eFinal}is equivalent to:if p then{ next_x = e1' ;...In{ x = next_xIn{while p donext x = e1 ;...Finally eFinal}}}elseeFinalwhere e1' uses next x wherever e1 used next x.When used in for-loops with known index bounds,the compiler will usually be able to remove the con-ditional by optimization.7.4.2 Loop UnrollingThe pragma:@unroll jwhen used as a statement in a loop body, may beused to transform the loop so that j iterations ofthe original loop are performed in a single iterationof the new loop. Here, j must be a positive integerconstant, or the keyword \completely". For exam-ple,{while p do@unroll 1 ;next x = e1 ;next y = e2 ;...finally eFinal}is equivalent to:{while p donext_x' = e1' ;next_y' = e2' ;...next x,next y ={ x = next_x' ;y = next_y'inif p then

{ next_x'' = e1'' ;next_y'' = e2'' ;...Innext_x'',next_y'' }elsenext_x',next_y'}finally eFinal}where e1' and e2' use next x' and next y' whereevere1 used next x and next y, respectively (and simi-larly for e1'' and e2'').When used in for-loops with known index bounds,the compiler will usually be able to remove the con-ditional by optimization.The compiler will obey a pragma to unroll the loopcompletely only if it is a for loop with known indexbounds.
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A. Standard identi�ers 39A Standard Identi�ersId has standard libraries that implement many usefulfunctions. The names and semantics of these func-tions are based on the corresponding Common Lispfunctions wherever possible. The names for thesefunctions are not reserved words, but for readabilityand re-usability of code, the programmer is stronglyadvised not to rede�ne them.The compiler should expand these functions insitu, so that there is no procedure-calling overhead.Since the Id libraries are a continuously grow-ing repository of useful functions, the following listis necessarily incomplete. The libraries themselvesmust be consulted for the current set.A.1 BooleansTruth valuestypeof True = bool;typeof False = bool;These are also constructors (i.e., they can be usedin patterns).Negationtypeof not = bool -> bool;A.2 NumbersBasic arithmetictypeof negate~int = int -> int;typeof plus~int = int -> int -> int;typeof minus~int = int -> int -> int;typeof times~int = int -> int -> int;typeof negate~float = float -> float;typeof plus~float = float -> float -> float;typeof minus~float = float -> float -> float;typeof times~float = float -> float -> float;Comparisontypeof eq~int = int -> int -> bool;typeof ne~int = int -> int -> bool;typeof lt~int = int -> int -> bool;typeof le~int = int -> int -> bool;typeof gt~int = int -> int -> bool;typeof ge~int = int -> int -> bool;

typeof eq~float = float -> float -> bool;typeof ne~float = float -> float -> bool;typeof lt~float = float -> float -> bool;typeof le~float = float -> float -> bool;typeof gt~float = float -> float -> bool;typeof ge~float = float -> float -> bool;Generaltypeof pi = float;typeof 2pi = float;typeof odd? = int -> bool;typeof even? = int -> bool;typeof max~int = int -> int -> int;typeof max~float = float -> float -> float;typeof min~int = int -> int -> int;typeof min~float = float -> float -> float;Implementation-dependent numbers that are themost positive (largest positive numbers):typeof maxint = int;typeof maxfloat = float;Implementation-dependent numbers that are themost negative (largest negative numbers):typeof minint = int;typeof minfloat = float;Exponentiationtypeof exp = float -> float;where (exp y) ) eyLogarithmstypeof log = float -> float;typeof log10 = float -> float;where (log x) ) loge x,and (log10 x) ) log10 xSquare root, absolute valuetypeof sqrt = float -> float;typeof abs~int = int -> int;typeof abs~float = float -> float;Trignometric functionsAngles are in radians.typeof sin = float -> float;typeof cos = float -> float;typeof tan = float -> float;typeof asin = float -> float;typeof acos = float -> float;typeof atan = float -> float -> float;



40 A. Standard identi�erswhere (atan y x) ) arctan y=x, in the range �� to+�. The arguments cannot both be zero.Hyperbolic functionstypeof sinh = float -> float;typeof cosh = float -> float;typeof tanh = float -> float;typeof asinh = float -> float;typeof acosh = float -> float;typeof atanh = float -> float -> float;Conversion of integers to 
oatstypeof float = int -> float;Conversion of 
oats to integerstypeof floor = float -> int;where floor truncates towards �1.typeof ceiling = float -> int;where ceiling truncates towards +1.typeof truncate = float -> int;where truncate truncates towards 0.typeof round = float -> int;where round truncates to the nearest integer, withx:5 truncated towards the even integer.The following four functions are similar to the previ-ous four, except that they return their integer-valuedresults as 
oats, for convenience.typeof ffloor = float -> float;where ffloor truncates towards �1.typeof fceiling = float -> float;where fceiling truncates towards +1.typeof ftruncate = float -> float;where ftruncate truncates towards 0.typeof fround = float -> float;where fround truncates to the nearest integer, withx:5 truncated towards the even integer.Integer divisiontypeof div = int -> int -> int;where (div x y) ) q, where (q = truncate (x/y)).typeof quo = int -> int -> int;where (quo x y) ) q, where (q = floor (x/y)).typeof rem = int -> int -> int;

where (rem x y) ) x � qy, where (q = truncate(x/y)).typeof mod = int -> int -> int;where (mod x y) ) x � qy, where (q = floor(x/y)).A.3 CharactersComparisontypeof eq~char = char -> char -> bool;typeof ne~char = char -> char -> bool;typeof lt~char = char -> char -> bool;typeof le~char = char -> char -> bool;typeof gt~char = char -> char -> bool;typeof ge~char = char -> char -> bool;The ordering is only guaranteed within the followingclasses: digit characters, upper case characters, andlower case characters.Character class predicatestypeof digit? = char -> bool;typeof uc? = char -> bool;typeof lc? = char -> bool;Convert casetypeof to_uc~char = char -> char;typeof to_lc~char = char -> char;Character codestypeof char_to_int = char -> int;typeof int_to_char = int -> char;A.4 StringsComparisonThe comparison is lexicographic, based on the order-ing of characters.The following functions are case-sensitive:typeof eq~string = string -> string -> bool;typeof ne~string = string -> string -> bool;typeof lt~string = string -> string -> bool;typeof le~string = string -> string -> bool;typeof gt~string = string -> string -> bool;typeof ge~string = string -> string -> bool;The following functions are case-insensitive:



A. Standard identi�ers 41typeof eq_ci_string = string -> string -> bool;typeof ne_ci_string = string -> string -> bool;typeof lt_ci_string = string -> string -> bool;typeof le_ci_string = string -> string -> bool;typeof gt_ci_string = string -> string -> bool;typeof ge_ci_string = string -> string -> bool;Convert to and from arrays of characterstypeof array_to_string =(array char) -> string;The argument must have index bounds (0, n � 1)when n is the length of the string.typeof string_to_array =string -> (array char);The result has index bounds (0, n�1) when n is thelength of the string.Convert to and from lists of characterstypeof list_to_string = (list char) -> string;typeof string_to_list = string -> (list char);Length of stringtypeof length~string = string -> int;Index stringtypeof nth~string = int -> string -> char;First character has index 0.Extract substringGiven a starting position and substring length:typeof substring = string ->int ->int -> string;Concatenate stringstypeof conc~string = string -> string ->string;Map character function over stringtypeof map~string = (char->char) ->string -> string;Convert caseConvert a string to upper or lower case:typeof to_uc~string = string -> string;typeof to_lc~string = string -> string;Hashingtypeof hash~string = int -> string -> int;where (hash string n s) hashes string s into an in-teger in the range 0 to (n � 1).

A.5 SymbolsComparisontypeof eq~symbol = symbol -> symbol -> bool;typeof ne~symbol = symbol -> symbol -> bool;Hashingtypeof hash~symbol = int -> symbol -> int;where (hash symbol n s) hashes symbol s into aninteger in the range 0 to (n� 1).Conversion with stringstypeof string_to_symbol = string -> symbol;typeof symbol_to_string = symbol -> string;A.6 ListsBasic functionstypeof Nil = (list *0);typeof nil? = (list *0) -> bool;typeof cons = *0 -> (list *0) -> (list *0);typeof hd = (list *0) -> *0;typeof tl = (list *0) -> (list *0);Length of listtypeof length~list = (list *0) -> int;N 'th element of listtypeof nth~list = int -> (list *0) -> *0;The head is the 0'th element.First N elements of listtypeof first_n = int -> (list *0) -> (list *0);N 'th tail of listtypeof drop = int -> (list *0) -> (list *0);typeof nthtl = int -> (list *0) -> (list *0);drop n = tln, so 0'th tail is the list itself.nthtl is a synonym for drop.Last element of listtypeof last = (list *0) -> *0;Equality of listsGiven predicate to compare equality of compo-nents:typeof eq~list =(*0 -> *0 -> bool) ->(list *0) ->(list *0) -> bool;



42 A. Standard identi�ersReverse listtypeof reverse = (list *0) -> (list *0);Zipping and unzippingA family of functions, for each N :typeof zipN =(list *1) ->...(list *N) -> (list (*1,...,*N));The N input lists should all have the same length.If not, a runtime error occurs| the output list is aslong as the shortest input list, and the tail of the lastlist cell is the error value ? (see Section 2.38).typeof unzipN =(list (*1,...,*N)) -> (list *1,... ,list *N);Map function over listApply a function to each member of a list, returninglist of results in same order:typeof map~list = (*0->*1) ->(list *0) -> (list *1);FilteringReturn only those elements that satisfy predi-cate:typeof filter =(*0 -> bool) ->(list *0) -> (list *0);Return longest pre�x of elements that satisfy predi-cate:typeof takewhile =(*0 -> bool) ->(list *0) -> (list *0);Omit longest pre�x of elements that satisfy predi-cate:typeof dropwhile =(*0 -> bool) ->(list *0) -> (list *0);Left-associative reductiontypeof foldl~list =(*0 -> *1 -> *0) ->*0 ->(list *1) -> *0;Example:foldl~list f z l

returnsf (f (... (f z l0) l1) ...) lnwhere l0, ..., ln are the elements of the list l.Right-associative reductiontypeof foldr~list =(*0 -> *1 -> *1) ->*1 ->(list *0) -> *1;Example:foldr~list f z lReturnsf l0 (... (f ln z))where l0, ..., ln are the elements of the list l.Iterationtypeof iterate =(*0 -> bool) ->(*0 -> *0) ->*0 -> (list *0);where iterate p f x returns the list containing x,(f x), (f (f x)), ..., as long as (p (fn x)) is true.Simultaneous mapping and left-associative re-ductiontypeof map_foldl~list =(*0->*1->(*0,*2)) ->*0 ->(list *1) -> (*0,list *2);Example:map_foldl~list f z lreturns (zN,m), where:z0,m0 = f z l0z1,m1 = f z0 l1...zN,mN = ...l0, ..., lN are the elements of the list l, and m0, ...,mN are the elements of the list m.For example, if f wasdef f z lj = { w = z + ljIn w,w} ;z was 0, and l contained 1, 2, and 3, then the resultm would be a list of partial sums: 1, 3, and 6, andthe result zN would be the sum 6.Simultaneous mapping and right-associativereduction



A. Standard identi�ers 43typeof map_foldr~list =(*1->*0->(*2,*0)) ->*0 ->(list *1) -> (list *2,*0);Example:map_foldr~list f z lreturns (m,z0), where:m0,z0 = f l0 z1m1,z1 = f l1 z2...mN,zN = f lN zl0, ..., lN are the elements of the list l, and m0, ...,mN are the elements of the list m.For example, if f wasdef f lj z = { w = z + ljIn w,w} ;z was 0, and l contained 1, 2, and 3, then the result mwould be a list of partial sums (from back to front):6, 5, and 3, and the result z0 would be the sum 6.A.7 Lists as SetsAll these functions require, as their �rst parameter,an equality function between elements of the sets.Conversion from list to setRemoves duplicates:typeof settify =(*0 -> *0 -> bool) ->(list *0) -> (list *0);Membership testtypeof member? =(*0 -> *0 ->bool) ->*0 ->(list *0) -> B;Union, intersection, di�erencetypeof union =(*0 -> *0 -> bool) ->(list *0) ->(list *0) -> (list *0);typeof intersection =(*0 -> *0 -> bool) ->(list *0) ->(list *0) -> (list *0);typeof difference =(*0 -> *0 -> bool) ->(list *0) ->(list *0) -> (list *0);

Subset testtypeof subset? =(*0 -> *0 -> bool) ->(list *0) ->(list *0) -> bool;Set equality testtypeof set_equal? =(*0 -> *0 -> bool) ->(list *0) ->(list *0) -> bool;A.8 ArraysIn the following, we describe families of functions,for 1D arrays, 2D arrays, etc. We describe the entirefamily using the \nD" meta-syntax. In addition, thesubstring 1D array can always be replaced by arrayor vector, and the substring 2D array can always bereplaced by matrix.We refer to a sequence of indices for an array byits endpoints \first" and \last", meaning n-tuplescontaining the lower bounds and upper bounds, re-spectively, along all dimensions, and stepping therightmost index fastest.Index boundstypeof bounds~nD_array =(ND_array *0) -> ((int,int),...,(int,int));Synonyms:bounds~1D_array bounds~vector bounds~arraybounds~2D_array bounds~matrixArray component selectiontypeof select~nD_array =(nD_array *0) -> (int,...,int) -> *0;Create k arrays, given �lling functiontypeof make_k_nD_arrays =((int,int),...,(int,int)) ->((int,...,int)->(*1,...,*k)) ->(nD_array *0,... ,nD_array *k);Example:make_k_nD_arrays b freturns k arrays a1,...,ak with bounds b, such thatif



44 A. Standard identi�ersf (j1,...,jN) == (v1,...,vk)thenai[j1,...,jN] == viSynonyms: k = 1 k > 1n = 1 make array make k arraysmake vector make k vectorsn = 2 make matrix make k matricesn � 1 make nD arrayEquality of arraysGiven predicate to compare equality of ele-ments:typeof eq~nD_array =(*0 -> *0 -> bool) ->(nD_array *0) ->(nD_array *0) -> bool;Map function over arraytypeof map~nD_array =(*0 -> *1) ->(nD_array *0) -> (nD_array *1);Example:map~nD_array f areturns an array with same bounds as array a, con-taining (f a[j]) at each index j.Left-associative reductiontypeof foldl~nD_array =(*0 -> *1 -> *0) ->*0 ->(nD_array *1) -> *0;Example:foldl~nD_array f z areturns:f (f ... (f z a[first]) ... ) a[last]Right-associative reductiontypeof foldr~nD_array =(*0 -> *1 -> *1) ->*1 ->(nD_array *0) -> *1;Example:foldr~nD_array f z areturns:f a[first] ( ... (f a[last] z))

Tree-reductiontypeof fold~nD_array =(*0 -> *1 -> *0) ->*0 ->(nD_array *1) -> *0;Example:fold~nD_array f z areduces the array to a value by �rst computing thefoldls of all the innermost vectors (rightmost indexvarying), then the foldls of those results with thenext innermost index varying, and so on. fold ...has more parallelism than foldl ... and foldr ....Simultaneous mapping and left-associative re-ductiontypeof map_foldl~nD_array =(*0->*1->(*0,*2)) ->*0 ->(array *1) -> (*0,array *2);Example:map_foldl~nD_array f z areturns (zLast,b), where b is an array with samebounds as array a, andzFirst, b[first] = f z a[first]zSecond,b[second] = f zFirst a[second]...zLast, b[last] = f zLastButOne a[last]For example, if f wasdef f z aj = { w = z + ajIn w,w} ;z was 0, and a was a vector containing 1, 2 and 3,then the result b would be a vector of partial sums:1, 3 and 6, and the result zLast would be the sum 6.Simultaneous mapping and right-associativereductiontypeof map_foldr~nD_array =(*1->*0->(*2,*0)) ->*0 ->(array *1) -> (array *2,*0);Example:map_foldr~nD_array f z areturns (b,zFirst), where b is an array with samebounds as array a, andb[first], zFirst = f a[first] zSecondb[second],zSecond = f a[second] zThird...b[last], zLast = f a[last] z



A. Standard identi�ers 45For example, if f wasdef f z aj = { w = z + ajIn w,w} ;z was 0, and a was a vector containing 1, 2 and 3,then the result b would be a vector of partial sums(from last to �rst): 6, 5 and 3, and the result zFirstwould be the sum 6.A.9 I-structure arraysI-array allocatorstypeof nD_I_array =((int,int),...,(int,int)) -> (nD_I_array *0);Synonyms for 1D I array:I vector I arraySynonym for 2D I array:I matrixI-array index boundstypeof bounds~nD_I_array =(nD_I_array *0) -> ((int,int),...,(int,int));I-array component selectiontypeof select~nD_I_array =(nD_I_array *0) -> (int,...,int) -> *0;Fill rectangular region of k I-arrays given �ll-ing functiontypeof fill~k_nD_I_arrays =((int,int),...,(int,int)) ->((int,...,int) -> (*1,...,*k)) ->(nD_I_array *0, ... , nD_I_array *k) -> void;Example:fill~k_nD_I_arrays r f (a1,...,ak)�lls region r of I-arrays a1,...,ak such that iff (j1,...,jN) == (v1,...,vk)thenai[j1,...,jN] == vi

A.10 M-structure arraysM-array allocatorstypeof nD_M_array =((int,int),...,(int,int)) -> (nD_M_array *0);Synonyms for 1D M array:M vector M arraySynonym for 2D M array:M matrixM-array index boundstypeof bounds~nD_M_array =(nD_M_array *0) -> ((int,int),...,(int,int));M-array component selectiontypeof take~nD_M_array =(nD_M_array *0) -> (int,...,int) -> *0;A.11 Object identitytypeof same? = *0 -> *0 -> bool;A.12 Delayed Evaluationtypeof force = (delay *0) -> *0;A.13 Input/OutputThe following is a temporary library of input/outputtypes and procedures. This will be replaced by a newI/O library after we have more experience with thisone.For synchronization of concurrent I/O operations,every procedure takes an extra \trigger" argumentand returns an extra \signal" result, both of typef status. The procedures are all strict in the triggerargument, i.e., they do not attempt any I/O un-til it is available. Further, the procedures do notreturn the signal result until they have \done" theI/O. Thus, an application can perform I/O opera-tions in a particular order by threading an f status



46 A. Standard identi�erstoken through all of them. An application can per-form I/O operations in a non-deterministic order bychoosing not to thread this argument through them.In each of the procedures, the result f status in-dicates how the i/o operation went (ok, end-of-�le,or error).I/O typesThere is a built-in type called fstream.The following type is used to test whether an I/Ooperation succeeded or not.type f_status = F_ok | F_err | F_end ;Opening I/O streamsAccess modes for opening �les:type access_mode = For_Read| For_Write| For_Append ;Opening an I/O stream on a �le:typeof fopen = string ->access_mode ->(fstream,f_status) ;The string argument is the �le name.Opening an input stream on a string:typeof sopen_in = string ->(fstream, f_status) ;The string argument is treated as the \input �le" forthe stream.Opening an output stream to a string:typeof sopen_out = int ->(fstream,f_status,string) ;The integer argument speci�es the desired length ofthe string. The string is returned as the third compo-nent of the result tuple, while the stream that writesinto the string is returned as the third component.Because of non-strictness, the string is returned im-mediately, but is empty. As output operations onthe stream are performed, the string is �lled up.Closing I/O streamstypeof fclose = fstream ->f_status ->f_status ;

The trigger argument is used for sequentialization.By threading the f status result of the last i/o oper-ation into the trigger of fclose, the programmer canensure that the i/o operations on the stream havebeen completed before it is closed. If the stream wasan output stream into a string, the remainder of thestring is padded with null characters.PositioningWhen an I/O stream is opened, it is initially posi-tioned at the �rst character, i.e., the next characterto be read is the �rst one. The position may bemoved in front of the j'th character using the func-tion:typeof fseek = fstream ->int ->f_status ->f_status ;The desired position j is supplied as the integer ar-gument. A status of F eof is returned if j is beyondthe end of the stream.The current position of an i/o stream may bequeried using the function:typeof fposition = fstream ->f_status ->(int,f_status) ;InputThe following functions read (parse) a character, aninteger, a 
oat and a string, respectively, from astream of characters:typeof fscan_char = fstream ->f_status ->(char,f_status) ;typeof fscan_int = fstream ->f_status ->(int,f_status) ;typeof fscan_float = fstream ->f_status ->(float,f_status) ;typeof fscan_string = fstream ->f_status ->(string,f_status) ;In each case, the �rst component of the result 2-tupleis the value that was read, and is meaningful only ifthe result f status is F ok.



A. Standard identi�ers 47For fscan char, a status of F end is returned if nocharacters remain in the stream.For fscan string, a status of F end is returned ifno characters remain in the stream. If any char-acters remain, the input is consumed upto and in-cluding the next newline, if any, or the end of thestream, otherwise. The consumed characters, minusthe trailing newline, are returned in the result string.For fscan int, leading whitespace characters areskipped (spaces, tabs, newlines). Then, a statusof F end is returned if no characters remain in thestream. Otherwise, it scans an integer:[+/-] [whitespace] digit+For fscan float, leading whitespace characters areskipped (spaces, tabs, newlines). Then, a statusof F end is returned if no characters remain in thestream. Otherwise, it scans a 
oat:[+/-] [whitespace] digit+ [ . digit* ]The following function reads the next characterwithout consuming it:typeof fpeek_char = fstream ->f_status ->(char,f_status) ;OutputThe following functions print a character, an integer,a 
oat and a string, respectively, into a stream ofcharacters:typeof fprint_char = fstream ->char ->f_status ->f_status ;typeof fprint_int = fstream ->int ->f_status ->f_status ;typeof fprint_float = fstream ->float ->f_status ->f_status ;typeof fprint_string = fstream ->string ->f_status ->f_status ;

For fprint int, a leading sign is printed only if thenumber is negative.For fprint float, a leading sign is printed onlyif the number is negative. The number of digits ofmantissa printed is unspeci�ed.The following function prints out a newline:typeof fprint_nl = fstream ->f_status ->f_status ;Formatted I/OFormatted input involves parsing numbers andstrings from an input stream of characters, and for-matted output involves writing numbers and stringsto an output stream of characters, according to a listof format directives.Items to be read or written are placed in a listPRINT ITEM objects:type PRINT_ITEM = Pri int| Prf float| Prs string| Prc char| Prnl ;These are for integers, 
oats, strings, charactersand newlines, respectively. A possible extension inthe future is to have additional disjuncts with �eldwidth, centering and padding speci�cations.Formatted outputtypeof fprintf = fstream ->(list PRINT_ITEM) ->f_status ->f_status ;Example: Suppose i and x evaluate to 23 and 6.847,respectively. The statement:stat = fprintf ( Prs "i = ": Pri i: Prs ", x = ": Prf x: Prnl: Prs "Voila!": Prnl: Nil )trig ;produces output that looks like this:i = 23, x = 6.847Voila!



48 A. Standard identi�ersFormatted inputThe desired scanning (parsing) of the input is spec-i�ed in a list of SCAN ITEM objects:type SCAN_ITEM = Sci| Scf| Scs| SccThese are for integers, 
oats, strings and characters,respectively. A possible extension in the future is tohave additional disjuncts with �eld width, matching,termination and skipping speci�cations.Formatted input is performed by the followingfunction:typeof fscanf = fstream ->(list SCAN_ITEM) ->f_status ->(list PRINT_ITEM, f_status) ;The input is scanned according to the SCAN ITEM list,and the results are returned in a PRINT ITEM list.Example: the statement:items, stat = fscanf file1 (Sci:Scf:Nil) trig ;scans an integer and a 
oating point number fromthe stream, and returns a list of two PRINT ITEMs, thecomponents of which can be accessed by the pattern-binding statement:(Pri j:Prf x:Nil) = items ;This binds the numbers that were read to j and x,respectively.Standard input and outputThere are three standard streams, usually connectedto the terminal:typeof stdin = fstream;typeof stdout = fstream;typeof stderr = fstream;For each of the functions for I/O to streams, thereis a corresponding function for I/O to stdin andstdout, respectively, by omitting the leading \f" inthe function name and omitting the fstream argu-ment:typeof scan_char = f_status ->(char,f_status) ;typeof scan_int = f_status ->(int,f_status) ;

typeof scan_float = f_status ->(float,f_status) ;typeof scan_string = f_status ->(string,f_status) ;typeof print_char = char ->f_status ->f_status ;typeof print_int = int ->f_status ->f_status ;typeof print_float = float ->f_status ->f_status ;typeof print_string = string ->f_status ->f_status ;typeof print_nl = f_status ->f_status ;typeof scanf = (list SCAN_ITEM) ->f_status ->(list PRINT_ITEM,f_status) ;typeof printf = (list PRINT_ITEM) ->f_status ->f_status ;A.14 Storage ManagementThe following storage management procedures arevery dangerous| they are calls to storage managerthat permit deallocation and reuse of heap objectsinstead of relying on general garbage collection. Ifthe programmer is not careful, programs that usethese procedures can fail in bizarre ways.Return a heap object to the storage alloca-tor:typeof dealloc = *0 -> void ;If the argument is not a heap object (e.g., it is a num-ber), no action is performed. Note: this only deal-locates the object corresponding directly to the ar-gument; it does not transitively deallocate any otherobjects to which this object may point. The void re-sult is returned only after the deallocation has beencompleted.Clear a heap object so that all its slots are onceagain empty:typeof clear = *0 -> *0 ;



B. Standard identi�ers/Overloaded identi�ers 49If the argument is not a heap object (e.g., it is anumber), no action is performed. Note: this onlyclears the object corresponding directly to the argu-ment; it does not transitively clear any other objectsto which this object may point. As a result of thisclearing, of course, all previous contents of this ob-ject are lost. The result is a pointer to the sameobject, and is returned only after the clearing hasbeen completed.Copy a heap object completely:typeof copy = *0 -> *0 ;If the argument is not a heap object (e.g., it is a num-ber), no action is performed. Note: this only copiesthe object corresponding directly to the argument; itdoes not transitively copy any other objects to whichthis object may point. The result is a pointer to thenew object, and is returned as soon as it is allocated.The procedure reads the old object using I-fetches.
B List of overloaded operatorsand identi�ersIn almost all cases, the types of the instances of anoverloaded operator or identi�er have some commonstructure. Thus, to abbreviate the listings below,for each overloaded operator or identi�er, we show ageneral type scheme using meta-variable T , and thenwe list all the instantiations of T .For example, the entry:max:typeof max~T = T -> T -> T;where T = int floatindicates that the overloaded identi�er max standsfor the two non-overloaded identi�ers:typeof max~int = int -> int -> int;typeof max~float = float -> float -> float;B.1 Overloaded operatorsUnary pre�x -:typeof negate~T = T -> T;where T = int floatBinary in�x +, - and *:typeof plus~T = T -> T -> T;typeof minus~T = T -> T -> T;typeof times~T = T -> T -> T;where T = int floatBinary in�x == and <>:typeof eq~T = T -> T -> bool;typeof ne~T = T -> T -> bool;where T = int float char bool string symbolBinary in�x <, <=, > and >=:typeof lt~T = T -> T -> bool;typeof le~T = T -> T -> bool;typeof gt~T = T -> T -> bool;typeof ge~T = T -> T -> bool;where T = int float char stringB.2 Overloaded identi�ersOverloaded identi�ers are listed below in alphabeticorder.abs:



50 B. Overloaded identi�erstypeof abs~T = T -> T;where T = int floatbounds:typeof bounds~T = (T *0) -> (int,int);where T = 1D array 1D I array 1D M arraytypeof bounds~T =(T *0) -> ((int,int),...,(int,int));where T = nD array nD I array nD M arrayfor all n > 1conc:typeof conc~T = T -> T -> T;where T = string (list *0)eq:typeof eq~T = T -> T -> bool;where T = int float char bool string symboltypeof eq~T =(*0 -> *0 -> bool) ->(T *0) ->(T *0) -> bool;where T = list nD arrayfill:typeof fill~k_nD_arrays =((int,int),...,(int,int)) ->((int,...,int) -> (*1,...,*k)) ->(nD_I_array *0, ... , nD_I_array *k) -> void;where T = nD I arrayfor all k � 1, n � 1foldl:typeof foldl~T =(*0 -> *1 -> *0) ->*0 ->(T *1) -> *0;where T = list nD arrayfor all n � 1foldr:typeof foldr~T =(*0 -> *1 -> *1) ->*1 ->(T *0) -> *1;where T = list nD arrayfor all n � 1hash:

typeof hash~T = int -> T -> int;where T = string symbollength:typeof length~T = T -> int;where T = string listmap:typeof map~string =(char -> char) -> string -> string;typeof map~list =(*0->*1) -> (list *0) -> (list *1);typeof map~nD_array =(*0->*1) -> (nD_array *0) -> (nD_array *1);for all n � 1map foldl:typeof map_foldl~T =(*0->*1-> (*0,*2)) ->*0 ->(T *1) -> (*0,list *2);where T = list nD arrayfor all n � 1map foldr:typeof map_foldr~T =(*1->*0->(*2,*0)) ->*0 ->(T *1) -> (list *2, *0);where T = list nD arrayfor all n � 1max:typeof max~T = T -> T -> T;where T = int floatmin:typeof min~T = T -> T -> T;where T = int floatnth:typeof nth~string = int -> string -> char;typeof nth~list = int -> (list *0) -> *0;select:typeof select~T = (T *0) -> int -> *0;where T = nD array nD I arrayfor all n � 1to uc:



C. Overloaded identi�ers/Compatibility 51typeof to_uc~T = T -> T;where T = char stringto lctypeof to_lc~T = T -> T;where T = char stringB.3 Overloaded array notationsFunctional and I-structure array selection expres-sions:A[i]are overloaded to work on:(nD_array *0)(nD_I_array *0)for n = 1, 2, ...M-structure array selection expressions:A![i]A!![i]are overloaded to work on:(nD_M_array *0)for n = 1, 2, ...I-structure array assignment statements:A[i] = v;are overloaded to work on:(nD_I_array *0)for n = 1, 2, ...M-structure array assignment statements:A![i] = v;A!![i] = v;are overloaded to work on:(nD_M_array *0)for n = 1, 2, ...

C Incompatible ChangesC.1 Changes from Id 90.0 to Id 90.1Reserved wordsThe following are now reserved words:instanceinstancesM_arrayM_matrixM_vectorrecordsequentialThe following families are now reserved words:k nD M arraysk M vectorsk M arraysk M matricesnD M arrayThe following are no longer reserved words:assignerrorputChar, String, Symbol notationsWe have abandoned Common Lisp notation andswitched completely to ANSI C notation for char-acter and string constants. The use of single quotesfor character constants also necessitated a change inthe notation for symbols.Failing patterns in comprehensionsWhen a pattern fails in a generator in a list or ar-ray comprehension, a runtime error occurs. Previ-ously, this was not speci�ed. Also, this di�ers fromthe convention in some other functional languageswhere failing patterns are silently dropped (i.e., fail-ing patterns are used as �lters).M-array allocator namesThe M-array allocators have been renamed to:



52 C. Compatibilitymk_m_arraymk_m_vectormk_m_matrixmk_nD_m_arraybecause of a con
ict with the reserved words:m_arraym_vectorm_matrixnD_m_arrayI-structure and M-structure �eld declarationIn algebraic types, I-structure and M-structure �eldsare signalled by \." and \!", respectively. Previ-ously, they were signalled by \!" and \!!", respec-tively.M-structure assignment and selection nota-tionM-structure assignment and selection now use \!"explicitly, e.g.,A![j] = A![j] + 1;B!age = B!age + 1;whereas previously they had the same notation asfor functional data structures and I-structures.Storage management pragmasThe following storage management pragmas havebeen removed:@release@circulateThe standard procedures in Appendix A.14 taketheir place. These are used in conjunction with bar-riers to achieve the same e�ect.C.2 Changes from Id 88.x to Id 90.0OverloadingThere is now a clear position on overloading, and it isnot as ambitious as originally expected. Only built-in operators and identi�ers are overloaded. Thetype-checker must be able to resolve overloading lo-cally. If it cannot, the programmer must assist thetype checker with explicit type declarations or byusing a non-overloaded identi�er instead.

Numeric typesThe single numeric type N has been replaced with twoseparate types int and float. The Id 88.x manualhad indicated that this was likely to happen.Various operators and identi�ers are now over-loaded to work on both integers and 
oats.Identi�ersThe identi�er \?" consisting of only a questionmark is no longer treated specially.Character and String constantsCharacter and string constants now follow the con-vention in the C programming language instead ofCommon Lisp.Escape sequences are available in character andstring constants, following the convention in the Cprogramming language.SymbolsSymbols now begin with a backslash, instead of asingle quote.ListsThe lexical token \!" is no longer an operator. Thestandard function nth~list is now available insteadfor indexing lists.Equality and inequalityThe operators \==" and \<>" are now overloadedonly on a few primitive types (they no longer workon lists, arrays, tuples or other algebraic types). Theoverloaded identi�er eq works for the primitive typesas well as for lists and arrays. The standard identi-�ers eq~list and eq~array are available for list andarray equality. The programmer must write equalityfunctions for other types.



C. Compatibility 53PatternsFloating point constants are no longer allowed inpatterns.The don't care pattern \ " consisting of a singleunderscore has taken on additional meaning. ForM-structure components of an algebraic type, it alsomeans that no take operation is to be performed onthat component.The lexical token \ "In patterns, the \don't care" pattern \ " now has ad-ditional meaning. For M-structure components of analgebraic type, it also means that no take operationis to be performed on that component.In expressions, \ " no longer stands for the voidvalue (use \()" instead). In constructor terms foralgebraic types, it is used to indicate that no valueis to be stored into the corresponding I-structure orM-structure component of the object.VoidThe type void now has a distinguished constant \()"representing the only value in that type. It can beused in patterns. The previous \ " notation for voidvalues is no longer available.Call statementsThe statement form:call eis no longer available. Use this instead:_ = eStandard identi�ersIn accordance with our new convention for system-atically relating overloaded identi�ers to the corre-sponding non-overloaded ones, the names of certainstandard functions have changed. Examples:New Oldbounds~nD_array nD boundsbounds~nD_I_array nD boundsmap~list map list

Comprehension notationWe now use semicolons (;) instead of ampersands(&) to separate generators in list and array compre-hensions. Ampersand is no longer a lexeme.In array comprehensions and accumulator compre-hensions, bounds expressions are now followed by thekeyword \of", bringing it more in line with the no-tation for case expressions.In accumulators, in accumulation clauses, we usethe notation:[eis] = evs || gen ; ... ; geninstead ofeis gets evs || gen ; ... ; genAccordingly, gets is no longer a reserved word.C.3 Changes from Id Noveau to Id 88.xFunction de�nitions (see Section 2.31) are now al-ways introduced by the def keyword. Previously,function de�nitions at the top-level had the keyword,whereas function de�nitions inside blocks did not.The terms array, vector, matrix, k nD arrays, etc.are now keywords introducing array comprehensions(see Section 2.34.5).We are now serious about type-checking. Unlessyou explicitly disable it, every program must nowpass the type-checker. Some existing programs willnow be rejected by the type-checker. Typically, suchprograms violate the restriction that all componentsof a list and all components of an array must be ho-mogeneously typed. This restriction was mentionedin the Id Nouveau document, but was not enforcedby the compiler.For-loop syntax has changed (generalized). In-stead of:for j from e1 to e2 by eInc dowe now say:for j <- e dowhere e is any list expression. The phrase:e1 to e2 by eIncis now a full-
edged expression (i.e., it can be usedanywhere), and denotes a list containing the arith-metic series from e1 through e2 with eInc increment.
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