
igraph Reference Manual

Gábor Csárdi, Department of Statistics, Harvard University
Tamás Nepusz, Department of Biological Physics, Eötvös University

igraph Reference Manual
by Gábor Csárdi and Tamás Nepusz

Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Gábor Csárdi and Tamás Nepusz. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section
entitled “GNU Free Documentation License”.

iii

Table of Contents
1. Introduction .. 1

igraph is free software ... 1
Citing igraph .. 2

2. Installation ... 3
3. Tutorial .. 4

Lesson 1. Compiling programs using igraph. .. 4
Lesson 2. Creating your first graphs. .. 5
Lesson 3. Calculating various properties of graphs. ... 6

4. About igraph graphs, the basic interface .. 8
The igraph data model ... 8
The basic interface .. 9

Graph Constructors and Destructors ... 9
Basic Query Operations .. 11
Adding and Deleting Vertices and Edges ... 17
Deprecated functions .. 20

5. Error Handling .. 21
Error handling basics .. 21
Error handlers .. 21

igraph_error_handler_t — Type of error handler functions. 21
igraph_error_handler_abort — Abort program in case of error. 22
igraph_error_handler_ignore — Ignore errors. ... 22
igraph_error_handler_printignore — Print and ignore errors. 22

Error codes ... 22
igraph_error_type_t — Error code type. ... 22
igraph_strerror — Textual description of an error. ... 26

Warning messages .. 26
igraph_warning_handler_t — Type of igraph warning handler functions 26
igraph_set_warning_handler — Install a warning handler 26
IGRAPH_WARNING — Trigger a warning. .. 27
igraph_warning — Trigger a warning ... 27
igraph_warningf — Trigger a warning, more flexible printf-like syntax 27
igraph_warning_handler_ignore — Ignore all warnings 28
igraph_warning_handler_print — Print all warning to the standard error 28

Advanced topics .. 29
Writing error handlers ... 29
Error handling internals ... 29
Deallocating memory .. 31
Writing igraph functions with proper error handling ... 32
Error handling and threads ... 32

6. Memory (de)allocation .. 33
igraph_free — Deallocate memory that was allocated by igraph functions 33

7. Data structure library: vector, matrix, other data types .. 34
About template types ... 34
Vectors .. 35

About igraph_vector_t objects .. 35
Constructors and Destructors .. 35
Initializing elements ... 37
Accessing elements ... 38
Vector views .. 40
Copying vectors .. 41
Exchanging elements .. 42

igraph Reference Manual

iv

Vector operations .. 44
Vector comparisons ... 46
Finding minimum and maximum .. 48
Vector properties ... 50
Searching for elements ... 53
Resizing operations .. 55
Sorting ... 58
Set operations on sorted vectors ... 59
Pointer vectors (igraph_vector_ptr_t) ... 60

Matrices ... 65
About igraph_matrix_t objects .. 65
Matrix constructors and destructors ... 65
Initializing elements ... 66
Copying matrices ... 67
Accessing elements of a matrix ... 68
Operations on rows and columns .. 70
Matrix operations .. 74
Matrix comparisons ... 78
Combining matrices ... 80
Finding minimum and maximum .. 80
Matrix properties ... 83
Searching for elements ... 86
Resizing operations .. 87

Sparse matrices ... 89
About igraph_spmatrix_t objects ... 89
Sparse matrix constructors and destructors. ... 89
Accessing elements of a sparse matrix ... 91
Iterating over the non-zero elements of a sparse matrix ... 92
Matrix query operations .. 94
Matrix operations .. 96
Printing sparse matrices .. 98

Sparse matrices, another kind .. 98
About sparse matrices ... 98
Creating sparse matrix objects ... 99
Query properties of a sparse matrix ... 102
Operations on sprase matrices .. 104
Operations that change the internal representation .. 110
Decompositions and solving linear systems .. 111
Eigenvalues and eigenvectors ... 117
Conversion to other data types ... 119
Writing to a file, or to the screen .. 120

Stacks .. 121
igraph_stack_init — Initializes a stack. ... 121
igraph_stack_destroy — Destroys a stack object. .. 121
igraph_stack_reserve — Reserve memory. .. 122
igraph_stack_empty — Decides whether a stack object is empty. 122
igraph_stack_size — Returns the number of elements in a stack. 122
igraph_stack_clear — Removes all elements from a stack. 123
igraph_stack_push — Places an element on the top of a stack. 123
igraph_stack_pop — Removes and returns an element from the top of a stack. 123
igraph_stack_top — Query top element. ... 124

Double-ended queues .. 124
igraph_dqueue_init — Initialize a double ended queue (deque). 124
igraph_dqueue_destroy — Destroy a double ended queue. 125

igraph Reference Manual

v

igraph_dqueue_empty — Decide whether the queue is empty. 125
igraph_dqueue_full — Check whether the queue is full. 125
igraph_dqueue_clear — Remove all elements from the queue. 126
igraph_dqueue_size — Number of elements in the queue. 126
igraph_dqueue_head — Head of the queue. .. 126
igraph_dqueue_back — Tail of the queue. ... 126
igraph_dqueue_pop — Remove the head. ... 127
igraph_dqueue_pop_back — Remove the tail .. 127
igraph_dqueue_push — Appends an element. ... 127

Maximum and minimum heaps .. 128
igraph_heap_init — Initializes an empty heap object. 128
igraph_heap_init_array — Build a heap from an array. 128
igraph_heap_destroy — Destroys an initialized heap object. 129
igraph_heap_empty — Decides whether a heap object is empty. 129
igraph_heap_push — Add an element. ... 129
igraph_heap_top — Top element. .. 130
igraph_heap_delete_top — Return and removes the top element 130
igraph_heap_size — Number of elements .. 130
igraph_heap_reserve — Allocate more memory .. 131

String vectors .. 131
igraph_strvector_init — Initialize .. 131
igraph_strvector_copy — Initialization by copying. 132
igraph_strvector_destroy — Free allocated memory 132
STR — Indexing string vectors .. 132
igraph_strvector_get — Indexing .. 133
igraph_strvector_set — Set an element ... 133
igraph_strvector_set2 — Sets an element .. 134
igraph_strvector_remove — Removes a single element from a string vec-
tor. .. 134
igraph_strvector_append — Concatenate two string vectors. 134
igraph_strvector_clear — Remove all elements 135
igraph_strvector_resize — Resize ... 135
igraph_strvector_size — Gives the size of a string vector. 135
igraph_strvector_add — Adds an element to the back of a string vector. 136

Adjacency lists .. 136
Adjacent vertices ... 137
Incident edges ... 140
Lazy adjacency list for vertices .. 141
Lazy incidence list for edges ... 143
Deprecated functions .. 144

8. Random numbers ... 146
About random numbers in igraph, use cases ... 146
The default random number generator ... 146

igraph_rng_default — Query the default random number generator. 146
igraph_rng_set_default — Set the default igraph random number generator 146

Creating random number generators .. 146
igraph_rng_init — Initialize a random number generator 146
igraph_rng_destroy — Deallocate memory associated with a random number
generator .. 147
igraph_rng_seed — Set the seed of a random number generator 147
igraph_rng_min — Query the minimum possible integer for a random number
generator .. 148
igraph_rng_max — Query the maximum possible integer for a random number
generator .. 148

igraph Reference Manual

vi

igraph_rng_name — Query the type of a random number generator 148
Generating random numbers .. 149

igraph_rng_get_integer — Generate an integer random number from an in-
terval ... 149
igraph_rng_get_unif — Generate real, uniform random numbers from an inter-
val ... 149
igraph_rng_get_unif01 — Generate real, uniform random number from the
unit interval .. 150
igraph_rng_get_normal — Normally distributed random numbers 150
igraph_rng_get_geom — Generate geometrically distributed random numbers 150
igraph_rng_get_binom — Generate binomially distributed random numbers 151

Supported random number generators .. 151
igraph_rngtype_mt19937 — The MT19937 random number generator 151
igraph_rngtype_glibc2 — The random number generator type introduced in
GNU libc 2 ... 152
igraph_rngtype_rand — The old BSD rand/stand random number generator 152

Use cases ... 153
Normal (default) use .. 153
Reproducible simulations .. 153
Changing the default generator ... 153
Using multiple generators .. 153
Example ... 154

9. Graph Generators ... 155
Deterministic Graph Generators .. 155

igraph_create — Creates a graph with the specified edges. 155
igraph_small — Shorthand to create a short graph, giving the edges as argu-
ments. .. 155
igraph_adjacency — Creates a graph object from an adjacency matrix. 156
igraph_weighted_adjacency — Creates a graph object from a weighted adja-
cency matrix. .. 157
igraph_adjlist — Create a graph from an adjacency list 158
igraph_star — Creates a star graph, every vertex connects only to the center. 159
igraph_lattice — Creates most kinds of lattices. ... 160
igraph_ring — Creates a ring graph, a one dimensional lattice. 160
igraph_tree — Creates a tree in which almost all vertices have the same number
of children. ... 161
igraph_full — Creates a full graph (directed or undirected, with or without
loops). .. 162
igraph_full_citation — Creates a full citation graph 162
igraph_famous — Create a famous graph by simply providing its name 163
igraph_lcf — Create a graph from LCF notation ... 165
igraph_lcf_vector — Create a graph from LCF notation 166
igraph_atlas — Create a small graph from the “Graph Atlas”. 167
igraph_de_bruijn — Generate a de Bruijn graph. .. 167
igraph_kautz — Generate a Kautz graph. .. 168
igraph_extended_chordal_ring — Create an extended chordal ring 168
igraph_connect_neighborhood — Connects every vertex to its neighbor-
hood .. 169

Games: Randomized Graph Generators .. 170
igraph_grg_game — Generating geometric random graphs. 170
igraph_barabasi_game — Generates a graph based on the Barabási-Albert
model. .. 171
igraph_erdos_renyi_game — Generates a random (Erdos-Renyi) graph. 172
igraph_watts_strogatz_game — The Watts-Strogatz small-world model 173

igraph Reference Manual

vii

igraph_rewire_edges — Rewire the edges of a graph with constant probabili-
ty .. 174
igraph_degree_sequence_game — Generates a random graph with a given
degree sequence ... 174
igraph_k_regular_game — Generates a random graph where each vertex has
the same degree. .. 176
igraph_static_fitness_game — Generates a non-growing random graph
with edge probabilities .. 176
igraph_static_power_law_game — Generates a non-growing random graph
with expected power-law degree distributions. .. 177
igraph_forest_fire_game — Generates a network according to the “forest
fire game” .. 179
igraph_rewire — Randomly rewires a graph while preserving the degree distrib-
ution. ... 180
igraph_growing_random_game — Generates a growing random graph. 181
igraph_callaway_traits_game — Simulate a growing network with vertex
types. ... 181
igraph_establishment_game — Generates a graph with a simple growing
model with vertex types. ... 182
igraph_preference_game — Generates a graph with vertex types and connec-
tion preferences ... 183
igraph_asymmetric_preference_game — Generates a graph with asymmet-
ric vertex types and connection preferences .. 184
igraph_recent_degree_game — Stochastic graph generator based on the num-
ber of incident edges a node has gained recently ... 185
igraph_barabasi_aging_game — Preferential attachment with aging of ver-
tices ... 186
igraph_recent_degree_aging_game — Preferential attachment based on the
number of edges gained recently, with aging of vertices .. 187
igraph_cited_type_game — Simulate a citation based on vertex types. 188
igraph_citing_cited_type_game — Simulate a citation network based on
vertex types. ... 189
igraph_sbm_game — Sample from a stochastic block model 190

10. Games on Graphs ... 191
Microscopic Update Rules ... 191

igraph_deterministic_optimal_imitation — Adopt a strategy via de-
terministic optimal imitation. ... 191
igraph_moran_process — The Moran process in a network setting. 192
igraph_roulette_wheel_imitation — Adopt a strategy via roulette wheel
selection. .. 194
igraph_stochastic_imitation — Adopt a strategy via stochastic imitation
with uniform selection. ... 195

11. Vertex and Edge Selectors and Sequences, Iterators .. 198
About selectors, iterators .. 198
Vertex selector constructors ... 198

igraph_vs_all — Vertex set, all vertices of a graph. .. 198
igraph_vs_adj — Adjacent vertices of a vertex. .. 199
igraph_vs_nonadj — Non-adjacent vertices of a vertex. 199
igraph_vs_none — Empty vertex set. .. 200
igraph_vs_1 — Vertex set with a single vertex. ... 201
igraph_vs_vector — Vertex set based on a vector. .. 201
igraph_vs_vector_small — Create a vertex set by giving its elements. 202
igraph_vs_vector_copy — Vertex set based on a vector, with copying. 202
igraph_vs_seq — Vertex set, an interval of vertices. .. 203

igraph Reference Manual

viii

Generic vertex selector operations .. 203
igraph_vs_copy — Creates a copy of a vertex selector. 203
igraph_vs_destroy — Destroy a vertex set. .. 204
igraph_vs_is_all — Check whether all vertices are included. 204
igraph_vs_size — Returns the size of the vertex selector. 204
igraph_vs_type — Returns the type of the vertex selector. 205

Immediate vertex selectors .. 205
igraph_vss_all — All vertices of a graph (immediate version). 205
igraph_vss_none — Empty vertex set (immediate version). 205
igraph_vss_1 — Vertex set with a single vertex (immediate version). 206
igraph_vss_vector — Vertex set based on a vector (immediate version). 206
igraph_vss_seq — An interval of vertices (immediate version). 206

Vertex iterators .. 207
igraph_vit_create — Creates a vertex iterator from a vertex selector. 207
igraph_vit_destroy — Destroys a vertex iterator. ... 208
Stepping over the vertices .. 208
IGRAPH_VIT_NEXT — Next vertex. ... 208
IGRAPH_VIT_END — Are we at the end? .. 209
IGRAPH_VIT_SIZE — Size of a vertex iterator. ... 209
IGRAPH_VIT_RESET — Reset a vertex iterator. ... 209
IGRAPH_VIT_GET — Query the current position. ... 210

Edge selector constructors ... 210
igraph_es_all — Edge set, all edges. ... 210
igraph_es_incident — Edges incident on a given vertex. 211
igraph_es_none — Empty edge selector. ... 211
igraph_es_1 — Edge selector containing a single edge. 212
igraph_es_vector — Handle a vector as an edge selector. 212
igraph_es_fromto — Edge selector, all edges between two vertex sets. 213
igraph_es_seq — Edge selector, a sequence of edge ids. 213
igraph_es_pairs — Edge selector, multiple edges defined by their endpoints in
a vector. ... 214
igraph_es_pairs_small — Edge selector, multiple edges defined by their end-
points as arguments. ... 214
igraph_es_vector_copy — Edge set, based on a vector, with copying. 215

Immediate edge selectors .. 215
igraph_ess_all — Edge set, all edges (immediate version) 215
igraph_ess_none — Immediate empty edge selector. 216
igraph_ess_1 — Immediate version of the single edge edge selector. 216
igraph_ess_vector — Immediate vector view edge selector. 217
igraph_ess_seq — Immediate version of the sequence edge selector. 217

Generic edge selector operations .. 218
igraph_es_copy — Creates a copy of an edge selector. 218
igraph_es_destroy — Destroys an edge selector object. 218
igraph_es_is_all — Check whether an edge selector includes all edges. 218
igraph_es_size — Returns the size of the edge selector. 219
igraph_es_type — Returns the type of the edge selector. 219

Edge iterators .. 219
igraph_eit_create — Creates an edge iterator from an edge selector. 219
igraph_eit_destroy — Destroys an edge iterator. ... 220
Stepping over the edges ... 220
IGRAPH_EIT_NEXT — Next edge. ... 220
IGRAPH_EIT_END — Are we at the end? .. 221
IGRAPH_EIT_SIZE — Number of edges in the iterator. 221
IGRAPH_EIT_RESET — Reset an edge iterator. ... 221

igraph Reference Manual

ix

IGRAPH_EIT_GET — Query an edge iterator. .. 221
12. Graph, Vertex and Edge Attributes .. 223

The Attribute Handler Interface .. 223
igraph_attribute_table_t — Table of functions to perform operations on at-
tributes ... 223
igraph_i_set_attribute_table — Attach an attribute table. 226
igraph_attribute_type_t — The possible types of the attributes. 226

Accessing attributes from C ... 227
Query attributes ... 227
Set attributes ... 241
Remove attributes .. 254

13. Structural Properties of Graphs ... 258
Basic Properties ... 258

igraph_are_connected — Decides whether two vertices are connected 258
Shortest Path Related Functions ... 258

igraph_shortest_paths — The length of the shortest paths between vertices. 258
igraph_shortest_paths_dijkstra — Weighted shortest paths from some
sources. .. 259
igraph_shortest_paths_bellman_ford — Weighted shortest paths from
some sources allowing negative weights. ... 260
igraph_shortest_paths_johnson — Calculate shortest paths from some
sources using Johnson's algorithm. .. 261
igraph_get_shortest_paths — Calculates the shortest paths from/to one ver-
tex. .. 262
igraph_get_shortest_path — Shortest path from one vertex to another one. ... 264
igraph_get_shortest_paths_dijkstra — Calculates the weighted short-
est paths from/to one vertex. .. 264
igraph_get_shortest_path_dijkstra — Weighted shortest path from one
vertex to another one. ... 266
igraph_get_all_shortest_paths — Finds all shortest paths (geodesics)
from a vertex to all other vertices. .. 267
igraph_get_all_shortest_paths_dijkstra — Finds all shortest paths
(geodesics) from a vertex to all other vertices. .. 268
igraph_average_path_length — Calculates the average geodesic length in a
graph. .. 269
igraph_path_length_hist — Create a histogram of all shortest path lengths. 270
igraph_diameter — Calculates the diameter of a graph (longest geodesic). 270
igraph_diameter_dijkstra — Weighted diameter using Dijkstra's algorithm,
non-negative weights only. .. 271
igraph_girth — The girth of a graph is the length of the shortest circle in it. 272
igraph_eccentricity — Eccentricity of some vertices 273
igraph_radius — Radius of a graph ... 273

Neighborhood of a vertex .. 274
igraph_neighborhood_size — Calculates the size of the neighborhood of a
given vertex. ... 274
igraph_neighborhood — Calculate the neighborhood of vertices. 275
igraph_neighborhood_graphs — Create graphs from the neighborhood(s) of
some vertex/vertices. .. 276

Graph Components .. 277
igraph_subcomponent — The vertices in the same component as a given ver-
tex. .. 277
igraph_induced_subgraph — Creates a subgraph induced by the specified ver-
tices. .. 277

igraph Reference Manual

x

igraph_subgraph_edges — Creates a subgraph with the specified edges and
their endpoints. .. 278
igraph_subgraph — Creates a subgraph induced by the specified vertices. 279
igraph_clusters — Calculates the (weakly or strongly) connected components
in a graph. .. 280
igraph_is_connected — Decides whether the graph is (weakly or strongly)
connected. .. 280
igraph_decompose — Decompose a graph into connected components. 281
igraph_decompose_destroy — Free the memory allocated by
igraph_decompose(). .. 281
igraph_biconnected_components — Calculate biconnected components 282
igraph_articulation_points — Find the articulation points in a graph. 283

Degree Sequences .. 283
igraph_is_degree_sequence — Determines whether a degree sequence is
valid. ... 283
igraph_is_graphical_degree_sequence — Determines whether a se-
quence of integers can be a degree sequence of some ... 284

Centrality Measures .. 285
igraph_closeness — Closeness centrality calculations for some vertices. 285
igraph_betweenness — Betweenness centrality of some vertices. 286
igraph_edge_betweenness — Betweenness centrality of the edges. 287
igraph_pagerank_algo_t — PageRank algorithm implementation 287
igraph_pagerank_power_options_t — Options for the power method 288
igraph_pagerank — Calculates the Google PageRank for the specified vertices. 288
igraph_pagerank_old — Calculates the Google PageRank for the specified ver-
tices. .. 290
igraph_personalized_pagerank — Calculates the personalized Google
PageRank for the specified vertices. .. 291
igraph_personalized_pagerank_vs — Calculates the personalized Google
PageRank for the specified vertices. .. 292
igraph_constraint — Burt's constraint scores. ... 294
igraph_maxdegree — Calculate the maximum degree in a graph (or set of ver-
tices). ... 294
igraph_strength — Strength of the vertices, weighted vertex degree in other
words. .. 295
igraph_eigenvector_centrality — Eigenvector centrality of the vertices 296
igraph_hub_score — Kleinberg's hub scores ... 297
igraph_authority_score — Kleinerg's authority scores 298

Estimating Centrality Measures .. 299
igraph_closeness_estimate — Closeness centrality estimations for some
vertices. .. 299
igraph_betweenness_estimate — Estimated betweenness centrality of some
vertices. .. 300
igraph_edge_betweenness_estimate — Estimated betweenness centrality
of the edges. ... 301

Centralization .. 302
igraph_centralization — Calculate the centralization score from the node
level scores ... 302
igraph_centralization_degree — Calculate vertex degree and graph cen-
tralization ... 303
igraph_centralization_betweenness — Calculate vertex betweenness
and graph centralization .. 303
igraph_centralization_closeness — Calculate vertex closeness and
graph centralization .. 304

igraph Reference Manual

xi

igraph_centralization_eigenvector_centrality — Calculate eigen-
vector centrality scores and graph centralization .. 305
igraph_centralization_degree_tmax — Theoretical maximum for graph
centralization based on degree .. 306
igraph_centralization_betweenness_tmax — Theoretical maximum for
graph centralization based on betweenness ... 307
igraph_centralization_closeness_tmax — Theoretical maximum for
graph centralization based on closeness ... 308
igraph_centralization_eigenvector_centrality_tmax — Theoreti-
cal maximum centralization for eigenvector centrality .. 309

Similarity Measures .. 310
igraph_bibcoupling — Bibliographic coupling. .. 310
igraph_cocitation — Cocitation coupling. .. 310
igraph_similarity_jaccard — Jaccard similarity coefficient for the given
vertices. .. 311
igraph_similarity_jaccard_pairs — Jaccard similarity coefficient for
given vertex pairs. ... 312
igraph_similarity_jaccard_es — Jaccard similarity coefficient for a given
edge selector. .. 313
igraph_similarity_dice — Dice similarity coefficient. 314
igraph_similarity_dice_pairs — Dice similarity coefficient for given ver-
tex pairs. .. 315
igraph_similarity_dice_es — Dice similarity coefficient for a given edge
selector. .. 316
igraph_similarity_inverse_log_weighted — Vertex similarity based
on the inverse logarithm of vertex degrees. .. 317

Spanning Trees .. 318
igraph_minimum_spanning_tree — Calculates one minimum spanning tree
of a graph. .. 318
igraph_minimum_spanning_tree_unweighted — Calculates one mini-
mum spanning tree of an unweighted graph. ... 319
igraph_minimum_spanning_tree_prim — Calculates one minimum span-
ning tree of a weighted graph. .. 319

Transitivity or Clustering Coefficient .. 320
igraph_transitivity_undirected — Calculates the transitivity (clustering
coefficient) of a graph. ... 320
igraph_transitivity_local_undirected — Calculates the local transitiv-
ity (clustering coefficient) of a graph. .. 321
igraph_transitivity_avglocal_undirected — Average local transitivi-
ty (clustering coefficient). .. 322
igraph_transitivity_barrat — Weighted transitivity, as defined by A. Bar-
rat. .. 323

Directedness conversion .. 324
igraph_to_directed — Convert an undirected graph to a directed one 324
igraph_to_undirected — Convert a directed graph to an undirected one. 324

Spectral properties ... 325
igraph_laplacian — Returns the Laplacian matrix of a graph 325

Non-simple graphs: multiple and loop edges ... 326
igraph_is_simple — Decides whether the input graph is a simple graph. 326
igraph_is_loop — Find the loop edges in a graph. .. 326
igraph_is_multiple — Find the multiple edges in a graph. 327
igraph_has_multiple — Check whether the graph has at least one multiple
edge. .. 328

igraph Reference Manual

xii

igraph_count_multiple — Count the number of appearances of the edges in a
graph. .. 328
igraph_simplify — Removes loop and/or multiple edges from the graph. 329

Mixing patterns ... 329
igraph_assortativity_nominal — Assortativity of a graph based on vertex
categories ... 329
igraph_assortativity — Assortativity based on numeric properties of ver-
tices ... 330
igraph_assortativity_degree — Assortativity of a graph based on vertex
degree .. 331

K-Cores .. 332
igraph_coreness — Finding the coreness of the vertices in a network. 332

Topological sorting, directed acyclic graphs ... 332
igraph_is_dag — Checks whether a graph is a directed acyclic graph (DAG) or
not. .. 332
igraph_topological_sorting — Calculate a possible topological sorting of
the graph. ... 333
igraph_feedback_arc_set — Calculates a feedback arc set of the graph using
different ... 334

Maximum cardinality search, graph decomposition, chordal graphs 335
igraph_maximum_cardinality_search — Maximum cardinality search 335
igraph_is_chordal — Decides whether a graph is chordal 335

Matchings ... 336
igraph_is_matching — Checks whether the given matching is valid for the giv-
en graph. .. 336
igraph_is_maximal_matching — Checks whether a matching in a graph is
maximal. .. 337
igraph_maximum_bipartite_matching — Calculates a maximum matching
in a bipartite graph. .. 338

Line graphs ... 339
igraph_linegraph — Create the line graph of a graph. 339

Unfolding a graph into a tree ... 339
igraph_unfold_tree — Unfolding a graph into a tree, by possibly multiplicat-
ing its vertices. .. 339

Other Operations ... 340
igraph_density — Calculate the density of a graph. .. 340
igraph_reciprocity — Calculates the reciprocity of a directed graph. 341
igraph_diversity — Structural diversity index of the vertices 341
igraph_is_mutual — Check whether the edges of a directed graph are mutual. 342
igraph_avg_nearest_neighbor_degree — Average nearest neighbor de-
gree. .. 343
igraph_get_adjacency — Returns the adjacency matrix of a graph 343
igraph_get_stochastic — Stochastic adjacency matrix of a graph 344
igraph_get_stochastic_sparsemat — Stochastic adjacency matrix of a
graph ... 345
igraph_get_edgelist — Returns the list of edges in a graph 345
igraph_contract_vertices — Replace multiple vertices with a single one. 346

14. Graph visitors .. 347
Breadth-first search .. 347

igraph_bfs — Breadth-first search ... 347
igraph_bfshandler_t — Callback type for BFS function 348

Depth-first search ... 349
igraph_dfs — Depth-first search ... 349
igraph_dfshandler_t — Callback type for the DFS function 350

igraph Reference Manual

xiii

15. Cliques and Independent Vertex Sets ... 352
Cliques ... 352

igraph_cliques — Find all or some cliques in a graph 352
igraph_largest_cliques — Finds the largest clique(s) in a graph. 353
igraph_maximal_cliques — Find all maximal cliques of a graph 353
igraph_maximal_cliques_count — Count the number of maximal cliques in
a graph ... 354
igraph_clique_number — Find the clique number of the graph 355

Independent Vertex Sets ... 356
igraph_independent_vertex_sets — Find all independent vertex sets in a
graph ... 356
igraph_largest_independent_vertex_sets — Finds the largest indepen-
dent vertex set(s) in a graph. .. 357
igraph_maximal_independent_vertex_sets — Find all maximal inde-
pendent vertex sets of a graph .. 357
igraph_independence_number — Find the independence number of the
graph ... 358

16. Graph Isomorphism .. 359
The simple interface ... 359

igraph_permute_vertices — Permute the vertices 359
igraph_isomorphic — Decides whether two graphs are isomorphic 359
igraph_subisomorphic — Decide subgraph isomorphism 360

The BLISS algorithm ... 361
igraph_bliss_sh_t — Splitting heuristics for BLISS 361
igraph_bliss_info_t — Information about a BLISS run 361
igraph_canonical_permutation — Canonical permutation using BLISS 362
igraph_isomorphic_bliss — Graph isomorphism via BLISS 363
igraph_automorphisms — Number of automorphisms using BLISS 363

The VF2 algorithm .. 364
igraph_isomorphic_vf2 — Isomorphism via VF2 .. 364
igraph_count_isomorphisms_vf2 — Number of isomorphisms via VF2 365
igraph_get_isomorphisms_vf2 — Collect the isomorphic mappings 366
igraph_isohandler_t — Callback type, called when an isomorphism was
found ... 368
igraph_isocompat_t — Callback type, called to check whether two vertices or
edges are compatible .. 368
igraph_isomorphic_function_vf2 — The generic VF2 interface 369
igraph_subisomorphic_vf2 — Decide subgraph isomorphism using VF2 370
igraph_count_subisomorphisms_vf2 — Number of subgraph isomor-
phisms using VF2 .. 371
igraph_get_subisomorphisms_vf2 — Return all subgraph isomorphic map-
pings .. 372
igraph_subisomorphic_function_vf2 — Generic VF2 function for sub-
graph isomorphism problems ... 373

The LAD algorithm .. 375
igraph_subisomorphic_lad — Check subgraph isomorphism with the LAD
algorithm .. 375

Functions for graphs with 3 or 4 vertices ... 376
igraph_isomorphic_34 — Graph isomorphism for 3-4 vertices 376
igraph_isoclass — Determine the isomorphism class of a graph with 3 or 4 ver-
tices ... 376
igraph_isoclass_subgraph — The isomorphism class of a subgraph of a
graph. .. 377

igraph Reference Manual

xiv

igraph_isoclass_create — Creates a graph from the given isomorphism
class. .. 377

17. Graph Motifs, Dyad Census and Triad Census ... 379
igraph_dyad_census — Calculating the dyad census as defined by Holland and Lein-
hardt .. 379
igraph_triad_census — Triad census, as defined by Davis and Leinhardt 379
Graph motifs ... 381

igraph_motifs_randesu — Count the number of motifs in a graph 381
igraph_motifs_randesu_no — Count the total number of motifs in a graph 382
igraph_motifs_randesu_estimate — Estimate the total number of motifs in
a graph ... 382
igraph_motifs_randesu_callback — Finds motifs in a graph and calls a
function for each of them .. 383
igraph_motifs_handler_t — Callback type for
igraph_motifs_randesu_callback ... 384

18. Generating Layouts for Graph Drawing .. 386
2D layout generators .. 386

igraph_layout_random — Places the vertices uniform randomly on a plane. 386
igraph_layout_circle — Places the vertices uniformly on a circle, in the order
of vertex ids. ... 386
igraph_layout_star — Generate a star-like layout .. 387
igraph_layout_grid — Places the vertices on a regular grid on the plane. 387
igraph_layout_graphopt — Optimizes vertex layout via the graphopt algo-
rithm. ... 388
igraph_layout_bipartite — Simple layout for bipartite graphs 389
The DrL layout generator .. 389
igraph_layout_fruchterman_reingold — Places the vertices on a plane
according to the Fruchterman-Reingold algorithm. ... 394
igraph_layout_kamada_kawai — Places the vertices on a plane according the
Kamada-Kawai algorithm. ... 395
igraph_layout_mds — Place the vertices on a plane using multidimensional
scaling. ... 396
igraph_layout_grid_fruchterman_reingold — Force based layout gen-
erator for large graphs. ... 397
igraph_layout_lgl — Force based layout algorithm for large graphs. 398
igraph_layout_reingold_tilford — Reingold-Tilford layout for tree
graphs .. 399
igraph_layout_reingold_tilford_circular — Circular Reingold-Til-
ford layout for trees ... 400
igraph_layout_sugiyama — Sugiyama layout algorithm for layered directed
acyclic graphs. .. 401

3D layout generators .. 402
igraph_layout_random_3d — Random layout in 3D 402
igraph_layout_sphere — Places vertices (more or less) uniformly on a
sphere. ... 402
igraph_layout_grid_3d — Places the vertices on a regular grid in the 3D
space. ... 403
igraph_layout_fruchterman_reingold_3d — 3D Fruchterman-Reingold
algorithm. ... 403
igraph_layout_kamada_kawai_3d — 3D version of the force based Kama-
da-Kawai layout. .. 405

Merging layouts ... 406
igraph_layout_merge_dla — Merge multiple layouts by using a DLA algo-
rithm .. 406

igraph Reference Manual

xv

19. Reading and Writing Graphs from and to Files .. 407
Simple edge list and similar formats ... 407

igraph_read_graph_edgelist — Reads an edge list from a file and creates a
graph. .. 407
igraph_write_graph_edgelist — Writes the edge list of a graph to a file. 407
igraph_read_graph_ncol — Reads a .ncol file used by LGL. 408
igraph_write_graph_ncol — Writes the graph to a file in .ncol format 409
igraph_read_graph_lgl — Reads a graph from an .lgl file 410
igraph_write_graph_lgl — Writes the graph to a file in .lgl format 411
igraph_read_graph_dimacs — Read a graph in DIMACS format. 412
igraph_write_graph_dimacs — Write a graph in DIMACS format. 413

Binary formats .. 413
igraph_read_graph_graphdb — Read a graph in the binary graph database
format. ... 413

GraphML format ... 414
igraph_read_graph_graphml — Reads a graph from a GraphML file. 414
igraph_write_graph_graphml — Writes the graph to a file in GraphML for-
mat .. 415

GML format ... 415
igraph_read_graph_gml — Read a graph in GML format. 415
igraph_write_graph_gml — Write the graph to a stream in GML format 416

Pajek format ... 417
igraph_read_graph_pajek — Reads a file in Pajek format 417
igraph_write_graph_pajek — Writes a graph to a file in Pajek format. 419

UCINET's DL file format .. 420
igraph_read_graph_dl — Read a file in the DL format of UCINET 420

Graphviz format .. 420
igraph_write_graph_dot — Write the graph to a stream in DOT format 420

20. Maximum Flows, Minimum Cuts and related measures ... 422
Maximum Flows .. 422

igraph_maxflow — Maximum network flow between a pair of vertices 422
igraph_maxflow_value — Maximum flow in a network with the push/relabel
algorithm .. 423
igraph_dominator_tree — Calculates the dominator tree of a flowgraph 424
igraph_maxflow_stats_t — A simple data type to return some statistics from
the ... 425

Cuts and minimum cuts .. 426
igraph_st_mincut — Minimum cut between a source and a target vertex 426
igraph_st_mincut_value — The minimum s-t cut in a graph 427
igraph_all_st_cuts — List all edge-cuts between two vertices in a directed
graph ... 427
igraph_all_st_mincuts — All minimum s-t cuts of a directed graph 428
igraph_mincut — Calculates the minimum cut in a graph. 429
igraph_mincut_value — The minimum edge cut in a graph 430

Connectivity .. 431
igraph_st_edge_connectivity — Edge connectivity of a pair of vertices 431
igraph_edge_connectivity — The minimum edge connectivity in a graph. 432
igraph_st_vertex_connectivity — The vertex connectivity of a pair of
vertices .. 432
igraph_vertex_connectivity — The vertex connectivity of a graph 433

Edge- and Vertex-Disjoint Paths ... 434
igraph_edge_disjoint_paths — The maximum number of edge-disjoint
paths between two vertices. ... 434

igraph Reference Manual

xvi

igraph_vertex_disjoint_paths — Maximum number of vertex-disjoint
paths between two vertices. ... 435

Graph Adhesion and Cohesion ... 435
igraph_adhesion — Graph adhesion, this is (almost) the same as edge connectiv-
ity. .. 435
igraph_cohesion — Graph cohesion, this is the same as vertex connectivity. 436

Cohesive Blocks .. 437
igraph_cohesive_blocks — Identifies the hierarchical cohesive block struc-
ture of a graph .. 437

21. Vertex separators .. 439
igraph_is_separator — Decides whether the removal of a set of vertices disconnects
the graph .. 439
igraph_is_minimal_separator — Decides whether a set of vertices is a minimal
separator ... 439
igraph_all_minimal_st_separators — List all vertex sets that are minimal (s,t)
separators for some s and t .. 440
igraph_minimum_size_separators — Find all minimum size separating vertex
sets .. 440

22. Detecting Community Structure .. 442
Common functions related to community structure .. 442

igraph_modularity — Calculate the modularity of a graph with respect to some
vertex types .. 442
igraph_community_optimal_modularity — Calculate the community
structure with the highest modularity value .. 443
igraph_community_to_membership — Create membership vector from com-
munity structure dendrogram ... 443
igraph_reindex_membership — Makes the IDs in a membership vector con-
tinuous ... 444
igraph_compare_communities — Compares community structures using vari-
ous metrics ... 445
igraph_split_join_distance — Calculates the split-join distance of two
community structures .. 446

Community structure based on statistical mechanics ... 447
igraph_community_spinglass — Community detection based on statistical
mechanics ... 447
igraph_community_spinglass_single — Community of a single node
based on statistical mechanics .. 449

Community structure based on eigenvectors of matrices ... 450
igraph_community_leading_eigenvector — Leading eigenvector com-
munity finding (proper version). ... 451
igraph_community_leading_eigenvector_callback_t — Callback for
the leading eigenvector community finding method. ... 453
igraph_le_community_to_membership — Vertex membership from the
leading eigenvector community structure ... 454

Walktrap: community structure based on random walks .. 454
igraph_community_walktrap — This function is the implementation of the
Walktrap community .. 454

Edge betweenness based community detection .. 455
igraph_community_edge_betweenness — Community finding based on
edge betweenness ... 455
igraph_community_eb_get_merges — Calculating the merges, ie. the den-
drogram for an edge betweenness community structure ... 457

Community structure based on the optimization of modularity ... 458

igraph Reference Manual

xvii

igraph_community_fastgreedy — Finding community structure by greedy
optimization of modularity .. 458
igraph_community_multilevel — Finding community structure by mul-
ti-level optimization of modularity .. 459

Label propagation .. 460
igraph_community_label_propagation — Community detection based on
label propagation ... 460

The InfoMAP algorithm .. 461
igraph_community_infomap — Find community structure that minimizes the
expected ... 461

23. Graphlets ... 463
Introduction ... 463
Performing graphlet decomposition ... 463

igraph_graphlets — Calculate graphlets basis and project the graph on it 463
igraph_graphlets_candidate_basis — Calculate a candidate graphlets ba-
sis ... 463
igraph_graphlets_project — Project a graph on a graphlets basis 464

24. Hierarchical random graphs .. 466
Introduction ... 466
Representing HRGs .. 466

igraph_hrg_t — Data structure to store a hierarchical random graph 466
igraph_hrg_init — Allocate memory for a HRG. .. 467
igraph_hrg_destroy — Deallocate memory for an HRG. 467
igraph_hrg_size — Returns the size of the HRG, the number of leaf nodes. 467
igraph_hrg_resize — Resize a HRG. ... 468

Fitting HRGs .. 468
igraph_hrg_fit — Fit a hierarchical random graph model to a network 468
igraph_hrg_consensus — Calculate a consensus tree for a HRG. 469

HRG sampling .. 469
igraph_hrg_sample — Sample from a hierarchical random graph model 469
igraph_hrg_game — Generate a hierarchical random graph 470

Conversion to and from igraph graphs ... 471
igraph_hrg_dendrogram — Create a dendrogram from a hierarchical random
graph. .. 471
igraph_hrg_create — Create a HRG from an igraph graph. 471

Predicting missing edges ... 472
igraph_hrg_predict — Predict missing edges in a graph, based on HRG mod-
els ... 472

25. Spectral Coarse Graining ... 473
Introduction .. 473

SCG in brief ... 473
Functions for performing SCG ... 474
References .. 474

SCG functions ... 475
igraph_scg_adjacency — Spectral coarse graining, symmetric case. 475
igraph_scg_stochastic — Spectral coarse graining, stochastic case. 477
igraph_scg_laplacian — Spectral coarse graining, laplacian matrix. 479
igraph_scg_grouping — SCG problem solver .. 481
igraph_scg_semiprojectors — Compute SCG semi-projectors for a given
partition .. 482
igraph_scg_norm_eps — Calculate SCG residuals ... 484

26. Graph Operators ... 486
Union and intersection .. 486

igraph_disjoint_union — Creates the union of two disjoint graphs 486

igraph Reference Manual

xviii

igraph_disjoint_union_many — The disjint union of many graphs. 486
igraph_union — Calculates the union of two graphs. .. 487
igraph_union_many — Creates the union of many graphs. 488
igraph_intersection — Collect the common edges from two graphs. 488
igraph_intersection_many — The intersection of more than two graphs. 489

Other set-like operators ... 490
igraph_difference — Calculate the difference of two graphs 490
igraph_complementer — Create the complementer of a graph 491
igraph_compose — Calculates the composition of two graphs 491

27. Using BLAS, LAPACK and ARPACK for igraph matrices and graphs 493
BLAS interface in igraph ... 493

igraph_blas_dgemv — Matrix-vector multiplication using BLAS, vector ver-
sion. .. 493
igraph_blas_dgemv_array — Matrix-vector multiplication using BLAS, array
version. .. 494

LAPACK interface in igraph .. 494
Matrix factorization, solving linear systems .. 494
Eigenvalues and eigenvectors of matrices ... 496

ARPACK interface in igraph .. 501
Data structures .. 501
ARPACK solvers ... 507

28. Bipartite, i.e. two-mode graphs ... 510
Bipartite networks in igraph ... 510
Create two-mode networks .. 510

igraph_create_bipartite — Create a bipartite graph 510
igraph_full_bipartite — Create a full bipartite network 511
igraph_bipartite_game — Generate a bipartite random graph (similar to Er-
dos-Renyi) .. 511

Incidence matrices ... 513
igraph_incidence — Create a bipartite graph from an incidence matrix 513
igraph_get_incidence — Convert a bipartite graph into an incidence matrix 513

Project a two-mode graphs .. 514
igraph_bipartite_projection_size — Calculate the number of vertices
and edges in the bipartite projections ... 514
igraph_bipartite_projection — Create one or both projections of a bipar-
tite (two-mode) network .. 515

Other operations on bipartite graphs .. 516
igraph_is_bipartite — Check whether a graph is bipartite 516

29. Advanced igraph programming ... 518
Using igraph in multi-threaded programs ... 518

IGRAPH_THREAD_SAFE — Macro that is defined to be 1 if the current build of
the ... 518
Thread-safe ARPACK library .. 518

Progress handlers ... 518
About progress handlers ... 518
Setting up progress handlers .. 518
Invoking the progress handler .. 520
Writing progress handlers ... 521
Writing igraph functions with progress reporting .. 522
Multi-threaded programs .. 522

Status handlers .. 522
Status reporting .. 522
Setting up status handlers .. 522
Invoking the status handler .. 523

igraph Reference Manual

xix

30. Not Graph Related Functions .. 526
Igraph version number .. 526

igraph_version — Return the version of the igraph C library 526
Running Mean of a Time Series ... 526

igraph_running_mean — Calculates the running mean of a vector. 526
Random Sampling from Very Long Sequences ... 527

igraph_random_sample — Generates an increasing random sequence of inte-
gers. .. 527

Convex hull of a set of points on a plane ... 528
igraph_convex_hull — Determines the convex hull of a given set of points in
the 2D plane ... 528

Fitting power-law distributions to empirical data ... 529
igraph_plfit_result_t — Result of fitting a power-law distribution to a vec-
tor ... 529
igraph_power_law_fit — Fits a power-law distribution to a vector of num-
bers ... 529

31. Licenses for igraph and this manual ... 531
THE GNU GENERAL PUBLIC LICENSE .. 531

Preamble .. 531
GNU GENERAL PUBLIC LICENSE ... 531
How to Apply These Terms to Your New Programs .. 534

The GNU Free Documentation License ... 535
0. PREAMBLE ... 536
1. APPLICABILITY AND DEFINITIONS .. 536
2. VERBATIM COPYING .. 537
3. COPYING IN QUANTITY ... 537
4. MODIFICATIONS ... 538
5. COMBINING DOCUMENTS .. 539
6. COLLECTIONS OF DOCUMENTS ... 539
7. AGGREGATION WITH INDEPENDENT WORKS .. 540
8. TRANSLATION .. 540
9. TERMINATION .. 540
10. FUTURE REVISIONS OF THIS LICENSE .. 540
G.1.1 ADDENDUM: How to use this License for your documents 540

Index ... 542

xx

List of Examples
4.1. File examples/simple/igraph_empty.c .. 9
4.2. File examples/simple/igraph_copy.c .. 10
4.3. File examples/simple/igraph_get_eid.c .. 13
4.4. File examples/simple/igraph_get_eids.c .. 14
4.5. File examples/simple/igraph_neighbors.c .. 15
4.6. File examples/simple/igraph_is_directed.c .. 16
4.7. File examples/simple/igraph_degree.c .. 17
4.8. File examples/simple/igraph_add_edges.c .. 18
4.9. File examples/simple/igraph_add_vertices.c .. 19
4.10. File examples/simple/igraph_delete_edges.c ... 19
4.11. File examples/simple/igraph_delete_vertices.c ... 20
7.1. File examples/simple/igraph_fisher_yates_shuffle.c 44
7.2. File examples/simple/igraph_sparsemat.c .. 98
7.3. File examples/simple/igraph_sparsemat2.c .. 99
7.4. File examples/simple/igraph_sparsemat3.c .. 99
7.5. File examples/simple/igraph_sparsemat4.c .. 99
7.6. File examples/simple/igraph_sparsemat5.c .. 99
7.7. File examples/simple/igraph_sparsemat6.c .. 99
7.8. File examples/simple/igraph_sparsemat7.c .. 99
7.9. File examples/simple/igraph_sparsemat8.c .. 99
7.10. File examples/simple/dqueue.c ... 124
7.11. File examples/simple/igraph_strvector.c ... 131
7.12. File examples/simple/adjlist.c ... 137
8.1. File examples/simple/random_seed.c ... 154
9.1. File examples/simple/igraph_create.c ... 155
9.2. File examples/simple/igraph_small.c ... 156
9.3. File examples/simple/igraph_adjacency.c ... 157
9.4. File examples/simple/igraph_weighted_adjacency.c 158
9.5. File examples/simple/igraph_star.c ... 160
9.6. File examples/simple/igraph_ring.c ... 161
9.7. File examples/simple/igraph_tree.c ... 162
9.8. File examples/simple/igraph_full.c ... 162
9.9. File examples/simple/igraph_lcf.c ... 166
9.10. File examples/simple/igraph_atlas.c ... 167
9.11. File examples/simple/igraph_grg_game.c ... 171
9.12. File examples/simple/igraph_barabasi_game.c ... 172
9.13. File examples/simple/igraph_barabasi_game2.c ... 172
9.14. File examples/simple/igraph_erdos_renyi_game.c 173
9.15. File examples/simple/igraph_degree_sequence_game.c 176
9.16. File examples/simple/igraph_rewire.c ... 180
9.17. File examples/simple/igraph_growing_random_game.c 181
9.18. File examples/simple/igraph_preference_game.c 184
10.1. File examples/simple/igraph_deterministic_optimal_imitation.c 192
10.2. File examples/simple/igraph_moran_process.c ... 194
10.3. File examples/simple/igraph_roulette_wheel_imitation.c 195
10.4. File examples/simple/igraph_stochastic_imitation.c 197
11.1. File examples/simple/igraph_vs_nonadj.c ... 200
11.2. File examples/simple/igraph_vs_vector.c ... 202
11.3. File examples/simple/igraph_vs_seq.c ... 203
11.4. File examples/simple/igraph_es_adj.c ... 211
11.5. File examples/simple/igraph_es_fromto.c ... 213

igraph Reference Manual

xxi

11.6. File examples/simple/igraph_es_pairs.c ... 214
12.1. File examples/simple/cattributes.c ... 227
12.2. File examples/simple/cattributes2.c ... 227
12.3. File examples/simple/cattributes3.c ... 227
12.4. File examples/simple/cattributes4.c ... 227
13.1. File examples/simple/dijkstra.c ... 260
13.2. File examples/simple/bellman_ford.c ... 261
13.3. File examples/simple/igraph_get_shortest_paths.c 263
13.4. File examples/simple/igraph_get_shortest_paths_dijkstra.c 266
13.5. File examples/simple/igraph_get_all_shortest_paths_dijkstra.c 269
13.6. File examples/simple/igraph_average_path_length.c 270
13.7. File examples/simple/igraph_diameter.c ... 271
13.8. File examples/simple/igraph_girth.c ... 273
13.9. File examples/simple/igraph_eccentricity.c ... 273
13.10. File examples/simple/igraph_radius.c ... 274
13.11. File examples/simple/igraph_decompose.c ... 281
13.12. File examples/simple/igraph_biconnected_components.c 283
13.13. File examples/simple/igraph_betweenness.c ... 287
13.14. File examples/simple/igraph_edge_betweenness.c 287
13.15. File examples/simple/igraph_pagerank.c ... 290
13.16. File examples/simple/eigenvector_centrality.c 297
13.17. File examples/simple/centralization.c ... 302
13.18. File examples/simple/igraph_cocitation.c ... 311
13.19. File examples/simple/igraph_similarity.c ... 312
13.20. File examples/simple/igraph_similarity.c ... 313
13.21. File examples/simple/igraph_similarity.c ... 314
13.22. File examples/simple/igraph_similarity.c ... 315
13.23. File examples/simple/igraph_similarity.c ... 316
13.24. File examples/simple/igraph_similarity.c ... 317
13.25. File examples/simple/igraph_similarity.c ... 318
13.26. File examples/simple/igraph_minimum_spanning_tree.c 319
13.27. File examples/simple/igraph_minimum_spanning_tree.c 320
13.28. File examples/simple/igraph_transitivity.c ... 321
13.29. File examples/simple/igraph_to_undirected.c ... 325
13.30. File examples/simple/igraph_laplacian.c ... 326
13.31. File examples/simple/igraph_is_loop.c ... 327
13.32. File examples/simple/igraph_is_multiple.c ... 328
13.33. File examples/simple/igraph_has_multiple.c ... 328
13.34. File examples/simple/igraph_simplify.c ... 329
13.35. File examples/simple/assortativity.c ... 330
13.36. File examples/simple/assortativity.c ... 331
13.37. File examples/simple/assortativity.c ... 332
13.38. File examples/simple/igraph_topological_sorting.c 334
13.39. File examples/simple/igraph_feedback_arc_set.c 334
13.40. File examples/simple/igraph_feedback_arc_set_ip.c 335
13.41. File examples/simple/igraph_maximum_bipartite_matching.c 337
13.42. File examples/simple/igraph_maximum_bipartite_matching.c 338
13.43. File examples/simple/igraph_maximum_bipartite_matching.c 339
13.44. File examples/simple/igraph_reciprocity.c ... 341
13.45. File examples/simple/igraph_knn.c ... 343
14.1. File examples/simple/igraph_bfs.c ... 348
14.2. File examples/simple/igraph_bfs2.c ... 348
15.1. File examples/simple/igraph_cliques.c ... 353
15.2. File examples/simple/igraph_maximal_cliques.c 354

igraph Reference Manual

xxii

15.3. File examples/simple/igraph_maximal_cliques.c 355
15.4. File examples/simple/igraph_independent_sets.c 356
16.1. File examples/simple/igraph_isomorphic_vf2.c ... 365
16.2. File examples/simple/igraph_subisomorphic_lad.c 376
17.1. File examples/simple/igraph_motifs_randesu.c ... 382
17.2. File examples/simple/igraph_motifs_randesu.c ... 384
18.1. File examples/simple/igraph_layout_reingold_tilford.c 400
19.1. File examples/simple/igraph_read_graph_lgl.c ... 411
19.2. File examples/simple/igraph_write_graph_lgl.c 412
19.3. File examples/simple/igraph_read_graph_graphdb.c 414
19.4. File examples/simple/graphml.c ... 415
19.5. File examples/simple/graphml.c ... 415
19.6. File examples/simple/gml.c ... 416
19.7. File examples/simple/gml.c ... 417
19.8. File examples/simple/foreign.c ... 419
19.9. File examples/simple/igraph_write_graph_pajek.c 419
19.10. File examples/simple/igraph_read_graph_dl.c ... 420
19.11. File examples/simple/dot.c ... 421
20.1. File examples/simple/flow.c ... 423
20.2. File examples/simple/flow2.c ... 423
20.3. File examples/simple/dominator_tree.c ... 425
20.4. File examples/simple/igraph_all_st_cuts.c ... 428
20.5. File examples/simple/igraph_all_st_mincuts.c ... 429
20.6. File examples/simple/igraph_mincut.c ... 430
20.7. File examples/simple/cohesive_blocks.c ... 438
21.1. File examples/simple/igraph_is_separator.c ... 439
21.2. File examples/simple/igraph_is_minimal_separator.c 440
21.3. File examples/simple/igraph_minimal_separators.c 440
21.4. File examples/simple/igraph_minimum_size_separators.c 441
22.1. File examples/simple/igraph_community_optimal_modularity.c 443
22.2. File examples/simple/spinglass.c ... 449
22.3. File examples/simple/igraph_community_leading_eigenvector.c 451
22.4. File examples/simple/walktrap.c ... 455
22.5. File examples/simple/igraph_community_edge_betweenness.c 457
22.6. File examples/simple/igraph_community_fastgreedy.c 459
22.7. File examples/simple/igraph_community_multilevel.c 460
22.8. File examples/simple/igraph_community_label_propagation.c 461
25.1. File examples/simple/scg.c ... 476
25.2. File examples/simple/scg2.c ... 479
25.3. File examples/simple/scg3.c ... 481
25.4. File examples/simple/igraph_scg_grouping.c ... 482
25.5. File examples/simple/igraph_scg_grouping2.c ... 482
25.6. File examples/simple/igraph_scg_grouping3.c ... 482
25.7. File examples/simple/igraph_scg_grouping4.c ... 482
25.8. File examples/simple/igraph_scg_semiprojectors.c 484
25.9. File examples/simple/igraph_scg_semiprojectors2.c 484
25.10. File examples/simple/igraph_scg_semiprojectors3.c 484
26.1. File examples/simple/igraph_disjoint_union.c ... 486
26.2. File examples/simple/igraph_union.c ... 488
26.3. File examples/simple/igraph_union.c ... 488
26.4. File examples/simple/igraph_intersection.c ... 489
26.5. File examples/simple/igraph_difference.c ... 491
26.6. File examples/simple/igraph_complementer.c ... 491
26.7. File examples/simple/igraph_compose.c ... 492

igraph Reference Manual

xxiii

27.1. File examples/simple/blas.c ... 493
27.2. File examples/simple/igraph_lapack_dgesv.c ... 496
27.3. File examples/simple/igraph_lapack_dsyevr.c ... 497
27.4. File examples/simple/igraph_lapack_dgeev.c ... 499
27.5. File examples/simple/igraph_lapack_dgeevx.c ... 501
28.1. File examples/simple/igraph_bipartite_create.c 510
28.2. File examples/simple/igraph_bipartite_projection.c 515
28.3. File examples/simple/igraph_bipartite_projection.c 516
30.1. File examples/simple/igraph_version.c ... 526
30.2. File examples/simple/igraph_random_sample.c ... 528
30.3. File examples/simple/igraph_convex_hull.c ... 528
30.4. File examples/simple/igraph_power_law_fit.c ... 530

1

Chapter 1. Introduction
This is another library for creating and manipulating graphs. You can look at it two ways: first, igraph
contains the implementation of quite a lot graph algorithms. These include classic graph algorithms like
graph isomorphism, graph girth and connectivity and also the new wave graph algorithms like transitivity,
graph motifs and community structure detection. Skim through the table of contents or the index of this
book to get an impression.

Second, igraph provides a platform for the developing and/or implementing graph algorithms. It has a quite
efficient data structure for representing graphs and a number of other data structures like flexible vectors,
stacks, heaps, queues, adjacency lists to accomplish this. In fact these data structures evolved along the
implementation of the classic and non-classic graph algorithms which make up the major part of the igraph
library. This way they were fine tuned and checked for correctness several times.

Our main goal with developing igraph was to create a graph library which is efficient on large but not
extremely large graphs. More precisely, it is assumed that the graph(s) fit into the physical memory of
the computer. Nowadays this means graphs with several million vertices and/or edges. Our definition of
efficient is that it runs fast, both in theory and (more importantly) in practice.

We believe that one of the big strengths of igraph is that it can be embedded into a higher level language
or environment. Two such embeddings (or interfaces if you look at them the other way) are currently
being developed by us: igraph as a GNU R package and igraph as a Python extension module. A third
embedding, being developed by another developer is a Ruby extension. Other are likely to come. The high
level languages as R or Python make it possible to do use graph routines with mush greater comfort, without
actually writing a single line of C code. They have some, usually very small, speed penalty compared to
the C version, but add ease and much flexibility. This manual however covers only the C library. If you
want to use Python or GNU R, please see the documentation written specifically for these interfaces and
come back here only if you're interested in some detail which is not covered in those documents.

We still consider igraph as a child project. It has much room for development and we are sure that it will
improve a lot in the near future. Any feedback we can get from the users is very important for us, as most
of the time these questions and comments guide us in what to add and what to improve.

igraph is open source and distributed under the terms of the GNU GPL. We strongly believe that all the
algorithms used in science, let that be graph theory or not, should have an efficient open source imple-
mentation allowing use and modification for anyone.

igraph is free software
igraph library

Copyright (C) 2003-2012 Gabor Csardi <csardi.gabor@gmail.com> 334 Harvard st, Cambridge MA,
02139, USA

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Introduction

2

Citing igraph
To cite igraph in publications, please use the following reference:

Gábor Csárdi, Tamás Nepusz: The igraph software package for complex network research. InterJournal
Complex Systems, 1695, 2006.

3

Chapter 2. Installation
The easiest way to install the igraph C library depends on your system, and it might also change, so we no
longer include installation instructions here. Please see the igraph homepage at http://igraph.org instead.

http://igraph.org

4

Chapter 3. Tutorial
Lesson 1. Compiling programs using igraph.

The following short example program demonstrates the basic usage of the igraph library.

#include <igraph.h>

int main(void)
{
 igraph_integer_t diameter;
 igraph_t graph;
 igraph_rng_seed(igraph_rng_default(), 42);
 igraph_erdos_renyi_game(&graph, IGRAPH_ERDOS_RENYI_GNP, 1000, 5.0/1000,
 IGRAPH_UNDIRECTED, IGRAPH_NO_LOOPS);
 igraph_diameter(&graph, &diameter, 0, 0, 0, IGRAPH_UNDIRECTED, 1);
 printf("Diameter of a random graph with average degree 5: %d\n",
 (int) diameter);
 igraph_destroy(&graph);
 return 0;
}

This example illustrates a couple of points. First, programs using the igraph library should in-
clude the igraph.h header file. Second, igraph uses the igraph_real_t type for real numbers in-
stead of double. Third, igraph graph objects are represented by the igraph_t data type. Fourth, the
igraph_erdos_renyi_game() creates a graph and igraph_destroy() destroys it, ie. deallo-
cates the memory associated to it.

For compiling this program you need a C compiler, if this is called gcc and the previous code is saved in
file igraph_test.c, you will need a command like this:

gcc igraph_test.c -I/usr/local/igraph -L/usr/local/lib -ligraph -o igraph_test

The exact form depends on where igraph was installed on your system. The directory after the -I switch
is the one containing the igraph.h file, while the one following -L should contain the library file itself,
usually a file called libigraph.so, libigraph.a or igraph.dll. It your system has the pkg-
config utility you are likely to get the neccessary compile options by issuing the command

pkg-config --libs --cflags igraph

The executable can be run by simply typing its name like this:

./igraph_test

on most systems. If you use dynamic linking and the igraph libraries are not at a standard place, you may
need to set the LD_LIBRARY_PATH variable, the syntax depends on the shell use are using. In bash it
goes like this:

Tutorial

5

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/user/libs/igraph
./igraph_test

Here we assumed that the igraph library is installed in /home/user/libs/igraph. Alternatively,
you can use the LD_PRELOAD variable to preload the igraph library before invoking your program:

LD_PRELOAD=/home/user/libs/igraph/libigraph.so ./igraph_test

Please note that LD_PRELOAD and LD_LIBRARY_PATH are usually available only on Un*x-like sys-
tems. On Windows using Cygwin it is usually enough to set the PATH enviroment variable to include the
folder in which the igraph library is installed, look for the cygigraph-0.dll or similar file.

Lesson 2. Creating your first graphs.
The functions generating graph objects are called graph generators. Stochastic (=randomized) graph gen-
erators are called “games”.

igraph can handle directed and undirected graphs. Most graph generators are able to create
both types of graphs and most other functions are usually also capable of handling both. Eg.
igraph_shortest_paths() which (surprisingly) calculates shortest paths from a vertex to another
vertices can calculate directed or undirected paths.

igraph has sophisticated ways for creating graphs. The simplest graphs are deterministic regular structures
like star graphs (igraph_star()), ring graphs (igraph_ring()), lattices (igraph_lattice())
or trees (igraph_tree()).

The following example creates an undirected regular circular lattice, adds some random edges to it and
calculates the average length of shortest paths between all pairs of vertices in the graph before and after
adding the random edges. (The message is that some random edges can reduce path lengths a lot.)

#include <igraph.h>

int main(void) {
 igraph_real_t avg_path;
 igraph_t graph;
 igraph_vector_t dimvector;
 igraph_vector_t edges;
 int i;

 igraph_vector_init(&dimvector, 2);
 VECTOR(dimvector)[0]=30;
 VECTOR(dimvector)[1]=30;
 igraph_lattice(&graph, &dimvector, 0, IGRAPH_UNDIRECTED, 0, 1);

 igraph_rng_seed(igraph_rng_default(), 42);
 igraph_vector_init(&edges, 20);
 for (i=0; i<igraph_vector_size(&edges); i++) {
 VECTOR(edges)[i] = rand() % (int)igraph_vcount(&graph);
 }

 igraph_average_path_length(&graph, &avg_path, IGRAPH_UNDIRECTED, 1);
 printf("Average path length (lattice): %f\n", (double) avg_path);

Tutorial

6

 igraph_add_edges(&graph, &edges, 0);
 igraph_average_path_length(&graph, &avg_path, IGRAPH_UNDIRECTED, 1);
 printf("Average path length (randomized lattice): %f\n", (double) avg_path);

 igraph_vector_destroy(&dimvector);
 igraph_vector_destroy(&edges);
 igraph_destroy(&graph);

 return 0;
}

This example illustrates some new points. igraph uses igraph_vector_t instead of plain C arrays.
igraph_vector_t is superior to regular arrays in almost every sense. Vectors are created by the
igraph_vector_init() function and like graphs they should be destroyed if not needed any more by
calling igraph_vector_destroy() on them. A vector can be indexed by the VECTOR() function
(right now it is a macro). Vectors can be resized, eg. most igraph functions returning the result in a vector
resize it to the size of the result.

igraph_lattice() takes a vector argument specifying the dimensions of the lattice, in this example
we generate a 30x30 two dimensional lattice. See the documentation of igraph_lattice() in the
reference manual for the other arguments.

The vertices in a graph are identified by an integer number between 0 and N-1, N is the number of vertices
in the graph (this can be obtained by igraph_vcount(), as in the example).

The igraph_add_edges() function simply takes a graph and a vector of vertex ids defining the new
edges. The first edge is between the first two vertex ids in the vector, the second edge is between the second
two, etc. This way we add ten random edges to the lattice.

Note that in the example it is possible to add loop edges, edges pointing to the same vertex and multiple
edges, more than one edge between the same pair of vertices. igraph_t can of course represent loops and
multiple edges, although some routines expect simple graphs, ie. graphs without loop and multiple edges,
because for example some structural properties are ill-defined for non-simple graphs. Loop edges can be
removed by calling igraph_simplify().

Lesson 3. Calculating various properties of
graphs.

In our next example we will calculate various centrality measures in a friendship graph. The friendship
graph is from the famous Zachary karate club study. (Web search on 'Zachary karate' if you want to know
more about this.) Centrality measures quantify how central is the position of individual vertices in the
graph.

#include <igraph.h>

int main(void) {
 igraph_t graph;
 igraph_vector_t v;
 igraph_vector_t result;
 igraph_real_t edges[] = { 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8,
 0,10, 0,11, 0,12, 0,13, 0,17, 0,19, 0,21, 0,31,

Tutorial

7

 1, 2, 1, 3, 1, 7, 1,13, 1,17, 1,19, 1,21, 1,30,
 2, 3, 2, 7, 2,27, 2,28, 2,32, 2, 9, 2, 8, 2,13,
 3, 7, 3,12, 3,13, 4, 6, 4,10, 5, 6, 5,10, 5,16,
 6,16, 8,30, 8,32, 8,33, 9,33,13,33,14,32,14,33,
 15,32,15,33,18,32,18,33,19,33,20,32,20,33,
 22,32,22,33,23,25,23,27,23,32,23,33,23,29,
 24,25,24,27,24,31,25,31,26,29,26,33,27,33,
 28,31,28,33,29,32,29,33,30,32,30,33,31,32,31,33,
 32,33
 };

 igraph_vector_view(&v, edges, sizeof(edges)/sizeof(double));
 igraph_create(&graph, &v, 0, IGRAPH_UNDIRECTED);

 igraph_vector_init(&result, 0);

 igraph_degree(&graph, &result, igraph_vss_all(), IGRAPH_ALL,
 IGRAPH_LOOPS);
 printf("Maximum degree is %10i, vertex %2i.\n",
 (int)igraph_vector_max(&result), (int)igraph_vector_which_max(&result));

 igraph_closeness(&graph, &result, igraph_vss_all(), IGRAPH_ALL,
 /*weights=*/ 0);
 printf("Maximum closeness is %10f, vertex %2i.\n",
 (double)igraph_vector_max(&result), (int)igraph_vector_which_max(&result));

 igraph_betweenness(&graph, &result, igraph_vss_all(),
 IGRAPH_UNDIRECTED, /*weights=*/ 0, /*nobigint=*/ 1);
 printf("Maximum betweenness is %10f, vertex %2i.\n",
 (double)igraph_vector_max(&result), (int)igraph_vector_which_max(&result));

 igraph_vector_destroy(&result);
 igraph_destroy(&graph);

 return 0;
}

This example reflects some new features. First of all, it shows a way to define a graph simply as defining a
C array with its edges. Function igraph_vector_view() creates a view of a C array. It does not copy
any data, this also means that you should not call igraph_vector_destroy() on a vector created
this way. This vector is then used to create the undirected graph.

Then the degree, closeness and betweenness centrality of the vertices is calculated and the highest values
are printed. Note that the vector (result) which returns the result from these functions has to be initial-
ized first, and also that the functions resize it to be able to hold the result.

The igraph_vss_all() argument tells the functions to calculate the property for every vertex in the
graph, it is shorthand for a vertex selector (igraph_vs_t). Vertex selectors help performing operations on
a subset of vertices, you can read more about them in one of the following chapters.

8

Chapter 4. About igraph graphs, the
basic interface
The igraph data model

The igraph library can handle directed and undirected graphs. The igraph graphs are multisets of ordered
(if directed) or unordered (if undirected) labeled pairs. The labels of the pairs plus the number of vertices
always starts with zero and ends with the number of edges minus one. In addition to that a table of metadata
is also attached to every graph, its most important entries are the number of vertices in the graph and
whether the graph is directed or undirected.

Like the edges, the igraph vertices are also labeled by number between zero and the number of vertices
minus one. So, to summarize, a directed graph can be imagined like this:

 (vertices: 6,
 directed: yes,
 {
 (0,2),
 (2,2),
 (2,3),
 (3,3),
 (3,4),
 (3,4),
 (4,1)
 }
)

Here the edges are ordered pairs or vertex ids, and the graph is a multiset of edges plus some meta-data.

An undirected graph is like this:

 (vertices: 6,
 directed: no,
 {
 {0,2},
 {2},
 {2,3},
 {3},
 {3,4},
 {3,4},
 {4,1}
 }
)

Here an edge is a set of one or two vertex ids, two for most of the time, except for loop edges. A graph is
a multiset of edges plus meta data, just like in the directed case.

It is possible to convert a directed graph to an undirected one, see the igraph_to_directed() and
igraph_to_undirected() functions.

About igraph graphs,
the basic interface

9

Note that igraph has some limited support for graphs with multiple edges. The support means that multiple
edges can be stored in igraph graphs, but for most functions (like igraph_betweenness()) it is not
checked that they work well on graphs with multiple edges. To eliminate multiple edges from a graph,
you can use igraph_simplify().

The basic interface
This is the very minimal API in igraph. All the other functions use this minimal set for creating and
manipulating graphs.

This is a very important principle since it makes possible to implement other data representations by
implementing only this minimal set.

Graph Constructors and Destructors

igraph_empty — Creates an empty graph with some vertices and
no edges.

int igraph_empty(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed);

The most basic constructor, all the other constructors should call this to create a minimal graph object.
Our use of the term "empty graph" in the above description should be distinguished from the mathematical
definition of the empty or null graph. Strictly speaking, the empty or null graph in graph theory is the
graph with no vertices and no edges. However by "empty graph" as used in igraph we mean a graph
having zero or more vertices, but no edges.

Arguments:

graph: Pointer to a not-yet initialized graph object.

n: The number of vertices in the graph, a non-negative integer number is expected.

directed: Boolean; whether the graph is directed or not. Supported values are:

IGRAPH_DIRECTED The graph will be directed.

IGRAPH_UNDIRECTED The graph will be undirected.

Returns:

Error code: IGRAPH_EINVAL: invalid number of vertices.

Time complexity: O(|V|) for a graph with |V| vertices (and no edges).

Example 4.1. File examples/simple/igraph_empty.c

igraph_empty_attrs — Creates an empty graph with some ver-
tices, no edges and some graph attributes.

About igraph graphs,
the basic interface

10

int igraph_empty_attrs(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed, void* attr);

Use this instead of igraph_empty() if you wish to add some graph attributes right after initial-
ization. This function is currently not very interesting for the ordinary user. Just supply 0 here or use
igraph_empty().

Arguments:

graph: Pointer to a not-yet initialized graph object.

n: The number of vertices in the graph; a non-negative integer number is expected.

directed: Boolean; whether the graph is directed or not. Supported values are:

IGRAPH_DIRECTED Create a directed graph.

IGRAPH_UNDIRECTED Create an undirected graph.

attr: The attributes.

Returns:

Error code: IGRAPH_EINVAL: invalid number of vertices.

Time complexity: O(|V|) for a graph with |V| vertices (and no edges).

igraph_copy — Creates an exact (deep) copy of a graph.

int igraph_copy(igraph_t *to, const igraph_t *from);

This function deeply copies a graph object to create an exact replica of it. The new replica should be
destroyed by calling igraph_destroy() on it when not needed any more.

You can also create a shallow copy of a graph by simply using the standard assignment operator, but
be careful and do not destroy a shallow replica. To avoid this mistake, creating shallow copies is not
recommended.

Arguments:

to: Pointer to an uninitialized graph object.

from: Pointer to the graph object to copy.

Returns:

Error code.

Time complexity: O(|V|+|E|) for a graph with |V| vertices and |E| edges.

Example 4.2. File examples/simple/igraph_copy.c

About igraph graphs,
the basic interface

11

igraph_destroy — Frees the memory allocated for a graph object.

int igraph_destroy(igraph_t *graph);

This function should be called for every graph object exactly once.

This function invalidates all iterators (of course), but the iterators of a graph should be destroyed before
the graph itself anyway.

Arguments:

graph: Pointer to the graph to free.

Returns:

Error code.

Time complexity: operating system specific.

Basic Query Operations

igraph_vcount — The number of vertices in a graph.

igraph_integer_t igraph_vcount(const igraph_t *graph);

Arguments:

graph: The graph.

Returns:

Number of vertices.

Time complexity: O(1)

igraph_ecount — The number of edges in a graph.

igraph_integer_t igraph_ecount(const igraph_t *graph);

Arguments:

graph: The graph.

Returns:

About igraph graphs,
the basic interface

12

Number of edges.

Time complexity: O(1)

igraph_edge — Gives the head and tail vertices of an edge.

int igraph_edge(const igraph_t *graph, igraph_integer_t eid,
 igraph_integer_t *from, igraph_integer_t *to);

Arguments:

graph: The graph object.

eid: The edge id.

from: Pointer to an igraph_integer_t. The tail of the edge will be placed here.

to: Pointer to an igraph_integer_t. The head of the edge will be placed here.

Returns:

Error code. The current implementation always returns with success.

See also:

igraph_get_eid() for the opposite operation.

Added in version 0.2.

Time complexity: O(1).

igraph_get_eid — Get the edge id from the end points of an edge.

int igraph_get_eid(const igraph_t *graph, igraph_integer_t *eid,
 igraph_integer_t pfrom, igraph_integer_t pto,
 igraph_bool_t directed, igraph_bool_t error);

For undirected graphs pfrom and pto are exchangeable.

Arguments:

graph: The graph object.

eid: Pointer to an integer, the edge id will be stored here.

pfrom: The starting point of the edge.

pto: The end point of the edge.

directed: Logical constant, whether to search for directed edges in a directed graph. Ignored for
undirected graphs.

About igraph graphs,
the basic interface

13

error: Logical scalar, whether to report an error if the edge was not found. If it is false, then -1
will be assigned to eid.

Returns:

Error code.

See also:

igraph_edge() for the opposite operation.

Time complexity: O(log (d)), where d is smaller of the out-degree of pfrom and in-degree of pto if
directed is true. If directed is false, then it is O(log(d)+log(d2)), where d is the same as before and
d2 is the minimum of the out-degree of pto and the in-degree of pfrom.

Example 4.3. File examples/simple/igraph_get_eid.c

Added in version 0.2.

igraph_get_eids — Return edge ids based on the adjacent ver-
tices.

int igraph_get_eids(const igraph_t *graph, igraph_vector_t *eids,
 const igraph_vector_t *pairs,
 const igraph_vector_t *path,
 igraph_bool_t directed, igraph_bool_t error);

This function operates in two modes. If the pairs argument is not a null pointer, but the path argument
is, then it searches for the edge ids of all pairs of vertices given in pairs. The pairs of vertex ids are taken
consecutively from the vector, i.e. VECTOR(pairs)[0] and VECTOR(pairs)[1] give the first
pair, VECTOR(pairs)[2] and VECTOR(pairs)[3] the second pair, etc.

If the pairs argument is a null pointer, and path is not a null pointer, then the path is interpreted as
a path given by vertex ids and the edges along the path are returned.

If neither pairs nor path are null pointers, then both are considered (first pairs and then path), and
the results are concatenated.

If the error argument is true, then it is an error to give pairs of vertices that are not connected. Otherwise
-1 is reported for not connected vertices.

If there are multiple edges in the graph, then these are ignored; i.e. for a given pair of vertex ids, al-
ways the same edge id is returned, even if the pair is given multiple time in pairs or in path. See
igraph_get_eids_multi() for a similar function that works differently in case of multiple edges.

Arguments:

graph: The input graph.

eids: Pointer to an initialized vector, the result is stored here. It will be resized as needed.

About igraph graphs,
the basic interface

14

pairs: Vector giving pairs of vertices, or a null pointer.

path: Vector giving vertex ids along a path, or a null pointer.

directed: Logical scalar, whether to consider edge directions in directed graphs. This is ignored for
undirected graphs.

error: Logical scalar, whether it is an error to supply non-connected vertices. If false, then -1 is
returned for non-connected pairs.

Returns:

Error code.

Time complexity: O(n log(d)), where n is the number of queried edges and d is the average degree of
the vertices.

See also:

igraph_get_eid() for a single edge, igraph_get_eids_multi() for a version that handles
multiple edges better (at a cost).

Example 4.4. File examples/simple/igraph_get_eids.c

igraph_get_eids_multi — Query edge ids based on their adja-
cent vertices, handle multiple edges.

int igraph_get_eids_multi(const igraph_t *graph, igraph_vector_t *eids,
 const igraph_vector_t *pairs,
 const igraph_vector_t *path,
 igraph_bool_t directed, igraph_bool_t error);

This function operates in two modes. If the pairs argument is not a null pointer, but the path argument
is, then it searches for the edge ids of all pairs of vertices given in pairs. The pairs of vertex ids are taken
consecutively from the vector, i.e. VECTOR(pairs)[0] and VECTOR(pairs)[1] give the first
pair, VECTOR(pairs)[2] and VECTOR(pairs)[3] the second pair, etc.

If the pairs argument is a null pointer, and path is not a null pointer, then the path is interpreted as
a path given by vertex ids and the edges along the path are returned.

If the error argument is true, then it is an error to give pairs of vertices that are not connected. Otherwise
-1 is returned for not connected vertex pairs.

An error is triggered if both pairs and path are non-null pointers.

This function handles multiple edges properly, i.e. if the same pair is given multiple times and they are
indeed connected by multiple edges, then each time a different edge id is reported.

Arguments:

graph: The input graph.

eids: Pointer to an initialized vector, the result is stored here. It will be resized as needed.

About igraph graphs,
the basic interface

15

pairs: Vector giving pairs of vertices, or a null pointer.

path: Vector giving vertex ids along a path, or a null pointer.

directed: Logical scalar, whether to consider edge directions in directed graphs. This is ignored for
undirected graphs.

error: Logical scalar, whether to report an error if non-connected vertices are specified. If false,
then -1 is returned for non-connected vertex pairs.

Returns:

Error code.

Time complexity: O(|E|+n log(d)), where |E| is the number of edges in the graph, n is the number of queried
edges and d is the average degree of the vertices.

See also:

igraph_get_eid() for a single edge, igraph_get_eids() for a faster version that does not
handle multiple edges.

igraph_neighbors — Adjacent vertices to a vertex.

int igraph_neighbors(const igraph_t *graph, igraph_vector_t *neis, igraph_integer_t pnode,
 igraph_neimode_t mode);

Arguments:

graph: The graph to work on.

neis: This vector will contain the result. The vector should be initialized beforehand and will be
resized. Starting from igraph version 0.4 this vector is always sorted, the vertex ids are in
increasing order.

pnode: The id of the node for which the adjacent vertices are to be searched.

mode: Defines the way adjacent vertices are searched in directed graphs. It can have the follow-
ing values: IGRAPH_OUT, vertices reachable by an edge from the specified vertex are
searched; IGRAPH_IN, vertices from which the specified vertex is reachable are searched;
IGRAPH_ALL, both kinds of vertices are searched. This parameter is ignored for undirected
graphs.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex id. IGRAPH_EINVMODE: invalid mode argument.
IGRAPH_ENOMEM: not enough memory.

Time complexity: O(d), d is the number of adjacent vertices to the queried vertex.

Example 4.5. File examples/simple/igraph_neighbors.c

About igraph graphs,
the basic interface

16

igraph_incident — Gives the incident edges of a vertex.

int igraph_incident(const igraph_t *graph, igraph_vector_t *eids,
 igraph_integer_t pnode, igraph_neimode_t mode);

Arguments:

graph: The graph object.

eids: An initialized vector_t object. It will be resized to hold the result.

pnode: A vertex id.

mode: Specifies what kind of edges to include for directed graphs. IGRAPH_OUT means only outgo-
ing edges, IGRAPH_IN only incoming edges, IGRAPH_ALL both. This parameter is ignored
for undirected graphs.

Returns:

Error code. IGRAPH_EINVVID: invalid pnode argument, IGRAPH_EINVMODE: invalid mode ar-
gument.

Added in version 0.2.

Time complexity: O(d), the number of incident edges to pnode.

igraph_is_directed — Is this a directed graph?

igraph_bool_t igraph_is_directed(const igraph_t *graph);

Arguments:

graph: The graph.

Returns:

Logical value, TRUE if the graph is directed, FALSE otherwise.

Time complexity: O(1)

Example 4.6. File examples/simple/igraph_is_directed.c

igraph_degree — The degree of some vertices in a graph.

int igraph_degree(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids,

About igraph graphs,
the basic interface

17

 igraph_neimode_t mode, igraph_bool_t loops);

This function calculates the in-, out- or total degree of the specified vertices.

Arguments:

graph: The graph.

res: Vector, this will contain the result. It should be initialized and will be resized to be the appro-
priate size.

vids: Vector, giving the vertex ids of which the degree will be calculated.

mode: Defines the type of the degree. Valid modes are: IGRAPH_OUT, out-degree; IGRAPH_IN, in-
degree; IGRAPH_ALL, total degree (sum of the in- and out-degree). This parameter is ignored
for undirected graphs.

loops: Boolean, gives whether the self-loops should be counted.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex id. IGRAPH_EINVMODE: invalid mode argument.

Time complexity: O(v) if loops is TRUE, and O(v*d) otherwise. v is the number of vertices for which the
degree will be calculated, and d is their (average) degree.

See also:

igraph_strength() for the version that takes into account edge weights.

Example 4.7. File examples/simple/igraph_degree.c

Adding and Deleting Vertices and Edges

igraph_add_edge — Adds a single edge to a graph.

int igraph_add_edge(igraph_t *graph, igraph_integer_t from, igraph_integer_t to);

For directed graphs the edge points from from to to.

Note that if you want to add many edges to a big graph, then it is inefficient to add them one by one, it is
better to collect them into a vector and add all of them via a single igraph_add_edges() call.

Arguments:

igraph: The graph.

from: The id of the first vertex of the edge.

to: The id of the second vertex of the edge.

About igraph graphs,
the basic interface

18

Returns:

Error code.

See also:

igraph_add_edges() to add many edges, igraph_delete_edges() to remove edges and
igraph_add_vertices() to add vertices.

Time complexity: O(|V|+|E|), the number of edges plus the number of vertices.

igraph_add_edges — Adds edges to a graph object.

int igraph_add_edges(igraph_t *graph, const igraph_vector_t *edges,
 void *attr);

The edges are given in a vector, the first two elements define the first edge (the order is from , to for di-
rected graphs). The vector should contain even number of integer numbers between zero and the number of
vertices in the graph minus one (inclusive). If you also want to add new vertices, call igraph_add_vertices()
first.

Arguments:

graph: The graph to which the edges will be added.

edges: The edges themselves.

attr: The attributes of the new edges, only used by high level interfaces currently, you can supply
0 here.

Returns:

Error code: IGRAPH_EINVEVECTOR: invalid (odd) edges vector length, IGRAPH_EINVVID: invalid
vertex id in edges vector.

This function invalidates all iterators.

Time complexity: O(|V|+|E|) where |V| is the number of vertices and |E| is the number of edges in the
new, extended graph.

Example 4.8. File examples/simple/igraph_add_edges.c

igraph_add_vertices — Adds vertices to a graph.

int igraph_add_vertices(igraph_t *graph, igraph_integer_t nv, void *attr);

This function invalidates all iterators.

Arguments:

About igraph graphs,
the basic interface

19

graph: The graph object to extend.

nv: Non-negative integer giving the number of vertices to add.

attr: The attributes of the new vertices, only used by high level interfaces, you can supply 0 here.

Returns:

Error code: IGRAPH_EINVAL: invalid number of new vertices.

Time complexity: O(|V|) where |V| is the number of vertices in the new, extended graph.

Example 4.9. File examples/simple/igraph_add_vertices.c

igraph_delete_edges — Removes edges from a graph.

int igraph_delete_edges(igraph_t *graph, igraph_es_t edges);

The edges to remove are given as an edge selector.

This function cannot remove vertices, they will be kept, even if they lose all their edges.

This function invalidates all iterators.

Arguments:

graph: The graph to work on.

edges: The edges to remove.

Returns:

Error code.

Time complexity: O(|V|+|E|) where |V| and |E| are the number of vertices and edges in the original graph,
respectively.

Example 4.10. File examples/simple/igraph_delete_edges.c

igraph_delete_vertices — Removes vertices (with all their
edges) from the graph.

int igraph_delete_vertices(igraph_t *graph, const igraph_vs_t vertices);

This function changes the ids of the vertices (except in some very special cases, but these should not be
relied on anyway).

About igraph graphs,
the basic interface

20

This function invalidates all iterators.

Arguments:

graph: The graph to work on.

vertices: The ids of the vertices to remove in a vector. The vector may contain the same id more
than once.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex id.

Time complexity: O(|V|+|E|), |V| and |E| are the number of vertices and edges in the original graph.

Example 4.11. File examples/simple/igraph_delete_vertices.c

Deprecated functions

igraph_adjacent — Gives the incident edges of a vertex.

int igraph_adjacent(const igraph_t *graph, igraph_vector_t *eids,
 igraph_integer_t pnode, igraph_neimode_t mode);

This function was superseded by igraph_incident() in igraph 0.6. Please use
igraph_incident() instead of this function.

Added in version 0.2, deprecated in version 0.6.

21

Chapter 5. Error Handling
Error handling basics

igraph functions can run into various problems preventing them from normal operation. The user might
have supplied invalid arguments, e.g. a non-square matrix when a square-matrix was expected, or the
program has run out of memory while some more memory allocation is required, etc.

By default igraph aborts the program when it runs into an error. While this behavior might be good enough
for smaller programs, it is without doubt avoidable in larger projects. Please read further if your project
requires more sophisticated error handling. You can safely skip the rest of this chapter otherwise.

Error handlers
If igraph runs into an error - an invalid argument was supplied to a function, or we've ran out of memory
- the control is transferred to the error handler function.

The default error handler is igraph_error_handler_abort which prints an error message and
aborts the program.

The igraph_set_error_handler() function can be used to set a new error handler function of
type igraph_error_handler_t; see the documentation of this type for details.

There are two other predefined error handler functions, igraph_error_handler_ignore and
igraph_error_handler_printignore. These deallocate the temporarily allocated memory
(more about this later) and return with the error code. The latter also prints an error message. If you use
these error handlers you need to take care about possible errors yourself by checking the return value of
(almost) every non-void igraph function.

Independently of the error handler installed, all functions in the library do their best to leave their arguments
semantically unchanged if an error happens. By semantically we mean that the implementation of an object
supplied as an argument might change, but its “meaning” in most cases does not. The rare occasions when
this rule is violated are documented in this manual.

igraph_error_handler_t — Type of error handler
functions.

typedef void igraph_error_handler_t (const char * reason, const char * file,
 int line, int igraph_errno);

This is the type of the error handler functions.

Arguments:

reason: Textual description of the error.

file: The source file in which the error is noticed.

line: The number of the line in the source file which triggered the error

Error Handling

22

igraph_errno: The igraph error code.

igraph_error_handler_abort — Abort program in
case of error.

extern igraph_error_handler_t igraph_error_handler_abort;

The default error handler, prints an error message and aborts the program.

igraph_error_handler_ignore — Ignore errors.

extern igraph_error_handler_t igraph_error_handler_ignore;

This error handler frees the temporarily allocated memory and returns with the error code.

igraph_error_handler_printignore — Print and ig-
nore errors.

extern igraph_error_handler_t igraph_error_handler_printignore;

Frees temporarily allocated memory, prints an error message to the standard error and returns with the
error code.

Error codes
Every igraph function which can fail return a single integer error code. Some functions are very simple
and cannot run into any error, these may return other types, or void as well. The error codes are defined
by the igraph_error_type_t enumeration.

igraph_error_type_t — Error code type.

typedef enum {
 IGRAPH_SUCCESS = 0,
 IGRAPH_FAILURE = 1,
 IGRAPH_ENOMEM = 2,
 IGRAPH_PARSEERROR = 3,
 IGRAPH_EINVAL = 4,
 IGRAPH_EXISTS = 5,
 IGRAPH_EINVEVECTOR = 6,
 IGRAPH_EINVVID = 7,
 IGRAPH_NONSQUARE = 8,

Error Handling

23

 IGRAPH_EINVMODE = 9,
 IGRAPH_EFILE = 10,
 IGRAPH_UNIMPLEMENTED = 12,
 IGRAPH_INTERRUPTED = 13,
 IGRAPH_DIVERGED = 14,
 IGRAPH_ARPACK_PROD = 15,
 IGRAPH_ARPACK_NPOS = 16,
 IGRAPH_ARPACK_NEVNPOS = 17,
 IGRAPH_ARPACK_NCVSMALL = 18,
 IGRAPH_ARPACK_NONPOSI = 19,
 IGRAPH_ARPACK_WHICHINV = 20,
 IGRAPH_ARPACK_BMATINV = 21,
 IGRAPH_ARPACK_WORKLSMALL= 22,
 IGRAPH_ARPACK_TRIDERR = 23,
 IGRAPH_ARPACK_ZEROSTART = 24,
 IGRAPH_ARPACK_MODEINV = 25,
 IGRAPH_ARPACK_MODEBMAT = 26,
 IGRAPH_ARPACK_ISHIFT = 27,
 IGRAPH_ARPACK_NEVBE = 28,
 IGRAPH_ARPACK_NOFACT = 29,
 IGRAPH_ARPACK_FAILED = 30,
 IGRAPH_ARPACK_HOWMNY = 31,
 IGRAPH_ARPACK_HOWMNYS = 32,
 IGRAPH_ARPACK_EVDIFF = 33,
 IGRAPH_ARPACK_SHUR = 34,
 IGRAPH_ARPACK_LAPACK = 35,
 IGRAPH_ARPACK_UNKNOWN = 36,
 IGRAPH_ENEGLOOP = 37,
 IGRAPH_EINTERNAL = 38,
 IGRAPH_ARPACK_MAXIT = 39,
 IGRAPH_ARPACK_NOSHIFT = 40,
 IGRAPH_ARPACK_REORDER = 41,
 IGRAPH_EDIVZERO = 42,
 IGRAPH_GLP_EBOUND = 43,
 IGRAPH_GLP_EROOT = 44,
 IGRAPH_GLP_ENOPFS = 45,
 IGRAPH_GLP_ENODFS = 46,
 IGRAPH_GLP_EFAIL = 47,
 IGRAPH_GLP_EMIPGAP = 48,
 IGRAPH_GLP_ETMLIM = 49,
 IGRAPH_GLP_ESTOP = 50,
 IGRAPH_EATTRIBUTES = 51,
 IGRAPH_EATTRCOMBINE = 52,
 IGRAPH_ELAPACK = 53,
 IGRAPH_EDRL = 54,
 IGRAPH_EOVERFLOW = 55,
 IGRAPH_EGLP = 56,
 IGRAPH_CPUTIME = 57,
 IGRAPH_EUNDERFLOW = 58
} igraph_error_type_t;

These are the possible values returned by igraph functions. Note that these are interesting only if you
defined an error handler with igraph_set_error_handler(). Otherwise the program is aborted
and the function causing the error never returns.

Error Handling

24

Values:

IGRAPH_SUCCESS: The function successfully completed its task.

IGRAPH_FAILURE: Something went wrong. You'll almost never meet this error as nor-
mally more specific error codes are used.

IGRAPH_ENOMEM: There wasn't enough memory to allocate on the heap.

IGRAPH_PARSEERROR: A parse error was found in a file.

IGRAPH_EINVAL: A parameter's value is invalid. Eg. negative number was specified
as the number of vertices.

IGRAPH_EXISTS: A graph/vertex/edge attribute is already installed with the given
name.

IGRAPH_EINVEVECTOR: Invalid vector of vertex ids. A vertex id is either negative or bigger
than the number of vertices minus one.

IGRAPH_EINVVID: Invalid vertex id, negative or too big.

IGRAPH_NONSQUARE: A non-square matrix was received while a square matrix was ex-
pected.

IGRAPH_EINVMODE: Invalid mode parameter.

IGRAPH_EFILE: A file operation failed. Eg. a file doesn't exist, or the user has no
rights to open it.

IGRAPH_UNIMPLEMENTED: Attempted to call an unimplemented or disabled (at compile-time)
function.

IGRAPH_DIVERGED: A numeric algorithm failed to converge.

IGRAPH_ARPACK_PROD: Matrix-vector product failed.

IGRAPH_ARPACK_NPOS: N must be positive.

IGRAPH_ARPACK_NEVNPOS: NEV must be positive.

IGRAPH_ARPACK_NCVSMALL: NCV must be bigger.

IGRAPH_ARPACK_NONPOSI: Maximum number of iterations should be positive.

IGRAPH_ARPACK_WHICHINV: Invalid WHICH parameter.

IGRAPH_ARPACK_BMATINV: Invalid BMAT parameter.

IGRAPH_ARPACK_WORKLSMALL: WORKL is too small.

IGRAPH_ARPACK_TRIDERR: LAPACK error in tridiagonal eigenvalue calculation.

IGRAPH_ARPACK_ZEROSTART: Starting vector is zero.

IGRAPH_ARPACK_MODEINV: MODE is invalid.

IGRAPH_ARPACK_MODEBMAT: MODE and BMAT are not compatible.

Error Handling

25

IGRAPH_ARPACK_ISHIFT: ISHIFT must be 0 or 1.

IGRAPH_ARPACK_NEVBE: NEV and WHICH='BE' are incompatible.

IGRAPH_ARPACK_NOFACT: Could not build an Arnoldi factorization.

IGRAPH_ARPACK_FAILED: No eigenvalues to sufficient accuracy.

IGRAPH_ARPACK_HOWMNY: HOWMNY is invalid.

IGRAPH_ARPACK_HOWMNYS: HOWMNY='S' is not implemented.

IGRAPH_ARPACK_EVDIFF: Different number of converged Ritz values.

IGRAPH_ARPACK_SHUR: Error from calculation of a real Schur form.

IGRAPH_ARPACK_LAPACK: LAPACK (dtrevc) error for calculating eigenvectors.

IGRAPH_ARPACK_UNKNOWN: Unknown ARPACK error.

IGRAPH_ENEGLOOP: Negative loop detected while calculating shortest paths.

IGRAPH_EINTERNAL: Internal error, likely a bug in igraph.

IGRAPH_EDIVZERO: Big integer division by zero.

IGARPH_GLP_EBOUND: GLPK error (GLP_EBOUND).

IGARPH_GLP_EROOT: GLPK error (GLP_EROOT).

IGARPH_GLP_ENOPFS: GLPK error (GLP_ENOPFS).

IGARPH_GLP_ENODFS: GLPK error (GLP_ENODFS).

IGARPH_GLP_EFAIL: GLPK error (GLP_EFAIL).

IGARPH_GLP_EMIPGAP: GLPK error (GLP_EMIPGAP).

IGARPH_GLP_ETMLIM: GLPK error (GLP_ETMLIM).

IGARPH_GLP_ESTOP: GLPK error (GLP_ESTOP).

IGRAPH_EATTRIBUTES: Attribute handler error. The user is not expected to find this; it is
signalled if some igraph function is not using the attribute handler
interface properly.

IGRAPH_EATTRCOMBINE: Unimplemented attribute combination method for the given at-
tribute type.

IGRAPH_ELAPACK: A LAPACK call resulted an error.

IGRAPH_EDRL: Internal error in the DrL layout generator.

IGRAPH_EOVERFLOW: Integer or double overflow.

IGRAPH_EGLP: Internal GLPK error.

IGRAPH_CPUTIME: CPU time exceeded.

IGRAPH_EUNDERFLOW: Integer or double underflow.

Error Handling

26

igraph_strerror — Textual description of an error.

const char* igraph_strerror(const int igraph_errno);

This is a simple utility function, it gives a short general textual description for an igraph error code.

Arguments:

igraph_errno: The igraph error code.

Returns:

pointer to the textual description of the error code.

Warning messages
Igraph also supports warning messages in addition to error messages. Warning messages typically do not
terminate the program, but they are usually crucial to the user.

Igraph warning are handled similarly to errors. There is a separate warning handler function
that is called whenever an igraph function triggers a warning. This handler can be set by the
igraph_set_warning_handler() function. There are two predefined simple warning handlers,
igraph_warning_handler_ignore() and igraph_warning_handler_print(), the lat-
ter being the default.

To trigger a warning, igraph functions typically use the IGRAPH_WARNING() macro, the
igraph_warning() function, or if more flexibility is needed, igraph_warningf().

igraph_warning_handler_t — Type of igraph warning
handler functions

typedef igraph_error_handler_t igraph_warning_handler_t;

Currently it is defined to have the same type as igraph_error_handler_t, although the last (error
code) argument is not used.

igraph_set_warning_handler — Install a warning
handler

igraph_warning_handler_t*
igraph_set_warning_handler(igraph_warning_handler_t* new_handler);

Install the supplied warning handler function.

Error Handling

27

Arguments:

new_handler: The new warning handler function to install. Supply a null pointer here to uninstall
the current warning handler, without installing a new one.

Returns:

The current warning handler function.

IGRAPH_WARNING — Trigger a warning.

#define IGRAPH_WARNING(reason)

This is the usual way of triggering a warning from an igraph function. It calls igraph_warning().

Arguments:

reason: The warning message.

igraph_warning — Trigger a warning

int igraph_warning(const char *reason, const char *file, int line,
 int igraph_errno);

Call this function if you want to trigger a warning from within a function that uses igraph.

Arguments:

reason: Textual description of the warning.

file: The source file in which the warning was noticed.

line: The number of line in the source file which triggered the warning.

igraph_errno: Warnings could have potentially error codes as well, but this is currently not used
in igraph.

Returns:

The supplied error code.

igraph_warningf — Trigger a warning, more flexible
printf-like syntax

int igraph_warningf(const char *reason, const char *file, int line,

Error Handling

28

 int igraph_errno, ...);

This function is similar to igraph_warning(), but uses a printf-like syntax. It substitutes the additional
arguments into the reason template string and calls igraph_warning().

Arguments:

reason: Textual description of the warning, a template string with the same syntax as the
standard printf C library function.

file: The source file in which the warning was noticed.

line: The number of line in the source file which triggered the warning.

igraph_errno: Warnings could have potentially error codes as well, but this is currently not used
in igraph.

...: The additional arguments to be substituted into the template string.

Returns:

The supplied error code.

igraph_warning_handler_ignore — Ignore all warn-
ings

void igraph_warning_handler_ignore (const char *reason, const char *file,
 int line, int igraph_errno);

This warning handler function simply ignores all warnings.

Arguments:

reason: Textual description of the warning.

file: The source file in which the warning was noticed.

line: The number of line in the source file which triggered the warning..

igraph_errno: Warnings could have potentially error codes as well, but this is currently not used
in igraph.

igraph_warning_handler_print — Print all warning
to the standard error

void igraph_warning_handler_print (const char *reason, const char *file,
 int line, int igraph_errno);

This warning handler function simply prints all warnings to the standard error.

Error Handling

29

Arguments:

reason: Textual description of the warning.

file: The source file in which the warning was noticed.

line: The number of line in the source file which triggered the warning..

igraph_errno: Warnings could have potentially error codes as well, but this is currently not used
in igraph.

Advanced topics

Writing error handlers
The contents of the rest of this chapter might be useful only for those who want to create an interface to
igraph from another language. Most readers can safely skip to the next chapter.

You can write and install error handlers simply by defining a function of type
igraph_error_handler_t and calling igraph_set_error_handler(). This feature is use-
ful for interface writers, as igraph will have the chance to signal errors the appropriate way, eg. the R
interface defines an error handler which calls the error() function, as required by R, while the Python
interface has an error handler which raises an exception according to the Python way.

If you want to write an error handler, your error handler should call IGRAPH_FINALLY_FREE() to
deallocate all temporary memory to prevent memory leaks.

igraph_set_error_handler — Set a new error handler.

igraph_error_handler_t*
igraph_set_error_handler(igraph_error_handler_t* new_handler);

Installs a new error handler. If called with 0, it installs the default error handler (which is currently
igraph_error_handler_abort).

Arguments:

new_handler: The error handler function to install.

Returns:

The old error handler function. This should be saved and restored if new_handler is not needed any
more.

Error handling internals
If an error happens, the functions in the library call the IGRAPH_ERROR macro with a textual description
of the error and an igraph error code. This macro calls (through the igraph_error() function) the
installed error handler. Another useful macro is IGRAPH_CHECK(). This checks the return value of its
argument, which is normally a function call, and calls IGRAPH_ERROR if it is not IGRAPH_SUCCESS.

Error Handling

30

IGRAPH_ERROR — Trigger an error.

#define IGRAPH_ERROR(reason,igraph_errno)

igraph functions usually use this macro when they notice an error. It calls igraph_error() with the
proper parameters and if that returns the macro returns the "calling" function as well, with the error code. If
for some (suspicious) reason you want to call the error handler without returning from the current function,
call igraph_error() directly.

Arguments:

reason: Textual description of the error. This should be something more descriptive than
the text associated with the error code. Eg. if the error code is IGRAPH_EINVAL,
its associated text (see igraph_strerror()) is "Invalid value" and this string
should explain which parameter was invalid and maybe why.

igraph_errno: The igraph error code.

igraph_error — Trigger an error.

int igraph_error(const char *reason, const char *file, int line,
 int igraph_errno);

igraph functions usually call this function (most often via the IGRAPH_ERROR macro) if they notice an
error. It calls the currently installed error handler function with the supplied arguments.

Arguments:

reason: Textual description of the error.

file: The source file in which the error was noticed.

line: The number of line in the source file which triggered the error.

igraph_errno: The igraph error code.

Returns:

the error code (if it returns)

See also:

igraph_errorf().

igraph_errorf — Trigger an error, printf-like version.

int igraph_errorf(const char *reason, const char *file, int line,
 int igraph_errno, ...);

Error Handling

31

Arguments:

reason: Textual description of the error, interpreted as a printf format string.

file: The source file in which the error was noticed.

line: The line in the source file which triggered the error.

igraph_errno: The igraph error code.

...: Additional parameters, the values to substitute into the format string.

See also:

igraph_error().

IGRAPH_CHECK — Check the return value of a function call.

#define IGRAPH_CHECK(a)

Arguments:

a: An expression, usually a function call.

Executes the expression and checks its value. If this is not IGRAPH_SUCCESS, it calls IGRAPH_ERROR
with the value as the error code. Here is an example usage:

 IGRAPH_CHECK(vector_push_back(&v, 100));

There is only one reason to use this macro when writing igraph functions. If the user installs an er-
ror handler which returns to the auxiliary calling code (like igraph_error_handler_ignore and
igraph_error_handler_printignore), and the igraph function signalling the error is called
from another igraph function then we need to make sure that the error is propagated back to the auxiliary
(ie. non-igraph) calling function. This is achieved by using IGRAPH_CHECK on every igraph call which
can return an error code.

Deallocating memory
If a function runs into an error (and the program is not aborted) the error handler should deallocate all
temporary memory. This is done by storing the address and the destroy function of all temporary objects
in a stack. The IGRAPH_FINALLY function declares an object as temporary by placing its address in
the stack. If an igraph function returns with success it calls IGRAPH_FINALLY_CLEAN() with the
number of objects to remove from the stack. If an error happens however, the error handler should call
IGRAPH_FINALLY_FREE() to deallocate each object added to the stack. This means that the temporary
objects allocated in the calling function (and etc.) will be freed as well.

IGRAPH_FINALLY — Register an object for deallocation.

#define IGRAPH_FINALLY(func,ptr)

Error Handling

32

Arguments:

func: The address of the function which is normally called to destroy the object.

ptr: Pointer to the object itself.

This macro places the address of an object, together with the address of its destructor in a stack. This stack
is used if an error happens to deallocate temporarily allocated objects to prevent memory leaks.

IGRAPH_FINALLY_CLEAN — Signal clean deallocation of objects.

void IGRAPH_FINALLY_CLEAN(int num);

Removes the specified number of objects from the stack of temporarily allocated objects. Most often this
is called just before returning from a function.

Arguments:

num: The number of objects to remove from the bookkeeping stack.

IGRAPH_FINALLY_FREE — Deallocate all registered objects.

void IGRAPH_FINALLY_FREE(void);

Calls the destroy function for all objects in the stack of temporarily allocated objects. This is usually called
only from an error handler. It is not appropriate to use it instead of destroying each unneeded object of a
function, as it destroys the temporary objects of the caller function (and so on) as well.

Writing igraph functions with proper error handling
There are some simple rules to keep in order to have functions behaving well in erroneous situations.
First, check the arguments of the functions and call IGRAPH_ERROR if they are invalid. Second, call
IGRAPH_FINALLY on each dynamically allocated object and call IGRAPH_FINALLY_CLEAN() with
the proper argument before returning. Third, use IGRAPH_CHECK on all igraph function calls which can
generate errors.

The size of the stack used for this bookkeeping is fixed, and small. If you want to allocate several objects,
write a destroy function which can deallocate all of these. See the adjlist.c file in the igraph source
for an example.

For some functions these mechanisms are simply not flexible enough. These functions should define their
own error handlers and restore the error handler before they return.

Error handling and threads
It is likely that the igraph error handling method is not thread-safe, mainly because of the static global
stack which is used to store the address of the temporarily allocated objects. This issue might be addressed
in a later version of igraph.

33

Chapter 6. Memory (de)allocation
igraph_free — Deallocate memory that was
allocated by igraph functions

int igraph_free(void *p);

Some igraph functions return a pointer vector (igraph_vector_ptr_t) containing pointers to other igraph or
other data types. These data types are dynamically allocated and have to be deallocated manually, if the
user does not need them any more. This can be done by calling igraph_free on them.

Here is a complete example on how to use igraph_free properly.

#include <igraph.h>

int main(void)
{
 igraph_t graph;
 igraph_vector_ptr_t seps;
 long int i;

 igraph_famous(&graph, "tutte");
 igraph_vector_ptr_init(&seps, 0);
 igraph_minimum_size_separators(&graph, &seps);

 for (i=0; i<igraph_vector_ptr_size(&seps); i++) {
 igraph_vector_t *v=VECTOR(seps)[i];
 igraph_vector_print(v);
 igraph_vector_destroy(v);
 igraph_free(v);
 }

 igraph_vector_ptr_destroy(&seps);
 igraph_destroy(&graph);
 return 0;
}

Arguments:

p: Pointer to the piece of memory to be deallocated.

Returns:

Error code, currently always zero, meaning success.

Time complexity: platform dependent, ideally it should be O(1).

34

Chapter 7. Data structure library:
vector, matrix, other data types

About template types
Some of the container types listed in this section are defined for many base types. This is similar to tem-
plates in C++ and generics in Ada, but it is implemented via precompiler macros since the C language
cannot handle it. Here is the list of template types and the all base types they currently support:

vector Vector is currently defined for igraph_real_t, long int (long), char
(char), igraph_bool_t (bool). The default is igraph_real_t.

matrix Matrix is currently defined for igraph_real_t, long int (long), char
(char), igraph_bool_t (bool). The default is igraph_real_t.

array3 Array3 is currently defined for igraph_real_t, long int (long), char
(char), igraph_bool_t (bool). The default is igraph_real_t.

stack Stack is currently defined for igraph_real_t, long int (long), char
(char), igraph_bool_t (bool). The default is igraph_real_t.

double-ended queue Dqueue is currently defined for igraph_real_t, long int (long), char
(char), igraph_bool_t (bool). The default is igraph_real_t.

heap Heap is currently defined for igraph_real_t, long int (long), char
(char). In addition both maximum and minimum heaps are available.
The default is the igraph_real_t maximum heap.

The name of the base element (in parens) is added to the function names, except for te default type.

Some examples:

• igraph_vector_t is a vector of igraph_real_t elements. Its functions are igraph_vector_init,
igraph_vector_destroy, igraph_vector_sort, etc.

• igraph_vector_bool_t is a vector of igraph_bool_t elements, initialize it with
igraph_vector_bool_init, destroy it with igraph_vector_bool_destroy, etc.

• igraph_heap_t is a maximum heap with igraph_real_t elements. The corresponding functions are
igraph_heap_init, igraph_heap_pop, etc.

• igraph_heap_min_t is a minimum heap with igraph_real_t elements. The corresponding functions are
called igraph_heap_min_init, igraph_heap_min_pop, etc.

• igraph_heap_long_t is a maximum heap with long int elements. Its function have the
igraph_heap_long_ prefix.

• igraph_heap_min_long_t is a minimum heap containing long int elements. Its functions have the
igraph_heap_min_long_ prefix.

Note that the VECTOR and the MATRIX macros can be used on all vector and matrix types.

Data structure library: vec-
tor, matrix, other data types

35

Vectors

About igraph_vector_t objects
The igraph_vector_t data type is a simple and efficient interface to arrays containing numbers. It is some-
thing similar as (but much simpler than) the vector template in the C++ standard library.

Vectors are used extensively in igraph, all functions which expect or return a list of numbers use
igraph_vector_t to achieve this.

The igraph_vector_t type usually uses O(n) space to store n elements. Sometimes it uses more, this is
because vectors can shrink, but even if they shrink, the current implementation does not free a single bit
of memory.

The elements in an igraph_vector_t object are indexed from zero, we follow the usual C convention here.

The elements of a vector always occupy a single block of memory, the starting address of this memory
block can be queried with the VECTOR macro. This way, vector objects can be used with standard math-
ematical libraries, like the GNU Scientific Library.

Constructors and Destructors
igraph_vector_t objects have to be initialized before using them, this is analogous to calling a
constructor on them. There are a number of igraph_vector_t constructors, for your convenience.
igraph_vector_init() is the basic constructor, it creates a vector of the given length, filled
with zeros. igraph_vector_copy() creates a new identical copy of an already existing and ini-
tialized vector. igraph_vector_init_copy() creates a vector by copying a regular C array.
igraph_vector_init_seq() creates a vector containing a regular sequence with increment one.

igraph_vector_view() is a special constructor, it allows you to handle a regular C array as a vector
without copying its elements.

If a igraph_vector_t object is not needed any more, it should be destroyed to free its allocated memory by
calling the igraph_vector_t destructor, igraph_vector_destroy().

Note that vectors created by igraph_vector_view() are special, you mustn't call
igraph_vector_destroy() on these.

igraph_vector_init — Initializes a vector object (constructor).

int igraph_vector_init (igraph_vector_t* v, int long size);

Every vector needs to be initialized before it can be used, and there are a number of initialization functions
or otherwise called constructors. This function constructs a vector of the given size and initializes each
entry to 0. Note that igraph_vector_null() can be used to set each element of a vector to zero.
However, if you want a vector of zeros, it is much faster to use this function than to create a vector and
then invoke igraph_vector_null().

Every vector object initialized by this function should be destroyed (ie. the memory allocated for it should
be freed) when it is not needed anymore, the igraph_vector_destroy() function is responsible
for this.

Data structure library: vec-
tor, matrix, other data types

36

Arguments:

v: Pointer to a not yet initialized vector object.

size: The size of the vector.

Returns:

error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: operating system dependent, the amount of “time” required to allocate O(n) elements,
n is the number of elements.

igraph_vector_init_copy — Initializes a vector from an ordinary
C array (constructor).

int igraph_vector_init_copy(igraph_vector_t *v,
 igraph_real_t *data, long int length);

Arguments:

v: Pointer to an uninitialized vector object.

data: A regular C array.

length: The length of the C array.

Returns:

Error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: operating system specific, usually O(length).

igraph_vector_init_seq — Initializes a vector with a sequence.

int igraph_vector_init_seq(igraph_vector_t *v,
 igraph_real_t from, igraph_real_t to);

The vector will contain the numbers from, from+1, ..., to.

Arguments:

v: Pointer to an uninitialized vector object.

from: The lower limit in the sequence (inclusive).

to: The upper limit in the sequence (inclusive).

Data structure library: vec-
tor, matrix, other data types

37

Returns:

Error code: IGRAPH_ENOMEM: out of memory.

Time complexity: O(n), the number of elements in the vector.

igraph_vector_copy — Initializes a vector from another vector
object (constructor).

int igraph_vector_copy(igraph_vector_t *to,
 const igraph_vector_t *from);

The contents of the existing vector object will be copied to the new one.

Arguments:

to: Pointer to a not yet initialized vector object.

from: The original vector object to copy.

Returns:

Error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: operating system dependent, usually O(n), n is the size of the vector.

igraph_vector_destroy — Destroys a vector object.

void igraph_vector_destroy (igraph_vector_t* v);

All vectors initialized by igraph_vector_init() should be properly destroyed by
this function. A destroyed vector needs to be reinitialized by igraph_vector_init(),
igraph_vector_init_copy() or another constructor.

Arguments:

v: Pointer to the (previously initialized) vector object to destroy.

Time complexity: operating system dependent.

Initializing elements

igraph_vector_null — Sets each element in the vector to zero.

void igraph_vector_null (igraph_vector_t* v);

Data structure library: vec-
tor, matrix, other data types

38

Note that igraph_vector_init() sets the elements to zero as well, so it makes no sense to call this
function on a just initialized vector. Thus if you want to construct a vector of zeros, then you should use
igraph_vector_init().

Arguments:

v: The vector object.

Time complexity: O(n), the size of the vector.

igraph_vector_fill — Fill a vector with a constant element

void igraph_vector_fill (igraph_vector_t* v, igraph_real_t e);

Sets each element of the vector to the supplied constant.

Arguments:

vector: The vector to work on.

e: The element to fill with.

Time complexity: O(n), the size of the vector.

Accessing elements
The simplest way to access an element of a vector is to use the VECTOR macro. This macro can be used
both for querying and setting igraph_vector_t elements. If you need a function, igraph_vector_e()
queries and igraph_vector_set() sets an element of a vector. igraph_vector_e_ptr() re-
turns the address of an element.

igraph_vector_tail() returns the last element of a non-empty vector. There is no
igraph_vector_head() function however, as it is easy to write VECTOR(v)[0] instead.

VECTOR — Accessing an element of a vector.

#define VECTOR(v)

Usage:

 VECTOR(v)[0]

to access the first element of the vector, you can also use this in assignments, like:

 VECTOR(v)[10]=5;

Note that there are no range checks right now. This functionality might be redefined later as a real function
instead of a #define .

Arguments:

v: The vector object.

Data structure library: vec-
tor, matrix, other data types

39

Time complexity: O(1).

igraph_vector_e — Access an element of a vector.

igraph_real_t igraph_vector_e (const igraph_vector_t* v, long int pos);

Arguments:

v: The igraph_vector_t object.

pos: The position of the element, the index of the first element is zero.

Returns:

The desired element.

See also:

igraph_vector_e_ptr() and the VECTOR macro.

Time complexity: O(1).

igraph_vector_e_ptr — Get the address of an element of a vec-
tor

igraph_real_t* igraph_vector_e_ptr (const igraph_vector_t* v, long int pos);

Arguments:

v: The igraph_vector_t object.

pos: The position of the element, the position of the first element is zero.

Returns:

Pointer to the desired element.

See also:

igraph_vector_e() and the VECTOR macro.

Time complexity: O(1).

igraph_vector_set — Assignment to an element of a vector.

Data structure library: vec-
tor, matrix, other data types

40

void igraph_vector_set (igraph_vector_t* v,
 long int pos, igraph_real_t value);

Arguments:

v: The igraph_vector_t element.

pos: Position of the element to set.

value: New value of the element.

See also:

igraph_vector_e().

igraph_vector_tail — Returns the last element in a vector.

igraph_real_t igraph_vector_tail(const igraph_vector_t *v);

It is an error to call this function on an empty vector, the result is undefined.

Arguments:

v: The vector object.

Returns:

The last element.

Time complexity: O(1).

Vector views

igraph_vector_view — Handle a regular C array as a
igraph_vector_t.

const igraph_vector_t*igraph_vector_view (const igraph_vector_t *v,
 const igraph_real_t *data,
 long int length);

This is a special igraph_vector_t constructor. It allows to handle a regular C array as a igraph_vector_t
temporarily. Be sure that you don't ever call the destructor (igraph_vector_destroy()) on objects
created by this constructor.

Arguments:

v: Pointer to an uninitialized igraph_vector_t object.

Data structure library: vec-
tor, matrix, other data types

41

data: Pointer, the C array.

length: The length of the C array.

Returns:

Pointer to the vector object, the same as the v parameter, for convenience.

Time complexity: O(1)

Copying vectors

igraph_vector_copy_to — Copies the contents of a vector to a C
array.

void igraph_vector_copy_to(const igraph_vector_t *v, igraph_real_t *to);

The C array should have sufficient length.

Arguments:

v: The vector object.

to: The C array.

Time complexity: O(n), n is the size of the vector.

igraph_vector_update — Update a vector from another one.

int igraph_vector_update(igraph_vector_t *to,
 const igraph_vector_t *from);

After this operation the contents of to will be exactly the same from. to will be resized if it was originally
shorter or longer than from.

Arguments:

to: The vector to update.

from: The vector to update from.

Returns:

Error code.

Time complexity: O(n), the number of elements in from.

igraph_vector_append — Append a vector to another one.

Data structure library: vec-
tor, matrix, other data types

42

int igraph_vector_append(igraph_vector_t *to,
 const igraph_vector_t *from);

The target vector will be resized (except from is empty).

Arguments:

to: The vector to append to.

from: The vector to append, it is kept unchanged.

Returns:

Error code.

Time complexity: O(n), the number of elements in the new vector.

igraph_vector_swap — Swap elements of two vectors.

int igraph_vector_swap(igraph_vector_t *v1, igraph_vector_t *v2);

The two vectors must have the same length, otherwise an error happens.

Arguments:

v1: The first vector.

v2: The second vector.

Returns:

Error code.

Time complexity: O(n), the length of the vectors.

Exchanging elements

igraph_vector_swap_elements — Swap two elements in a vec-
tor.

int igraph_vector_swap_elements(igraph_vector_t *v,
 long int i, long int j);

Note that currently no range checking is performed.

Arguments:

v: The input vector.

i: Index of the first element.

Data structure library: vec-
tor, matrix, other data types

43

j: index of the second element. (Might be the same as the first.)

Returns:

Error code, currently always IGRAPH_SUCCESS.

Time complexity: O(1).

igraph_vector_reverse — Reverse the elements of a vector.

int igraph_vector_reverse(igraph_vector_t *v);

The first element will be last, the last element will be first, etc.

Arguments:

v: The input vector.

Returns:

Error code, currently always IGRAPH_SUCCESS.

Time complexity: O(n), the number of elements.

igraph_vector_shuffle — Shuffles a vector in-place using the
Fisher-Yates method

int igraph_vector_shuffle(igraph_vector_t *v);

The Fisher-Yates shuffle ensures that every implementation is equally probable when using a proper ran-
domness source. Of course this does not apply to pseudo-random generators as the cycle of these genera-
tors is less than the number of possible permutations of the vector if the vector is long enough.

Arguments:

v: The vector object.

Returns:

Error code, currently always IGRAPH_SUCCESS.

Time complexity: O(n), n is the number of elements in the vector.

References:

(Fisher & Yates 1963) R. A. Fisher and F. Yates. Statistical Tables for Biological, Agricultural
and Medical Research. Oliver and Boyd, 6th edition, 1963, page 37.

(Knuth 1998) D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Com-
puter Programming. Addison-Wesley, 3rd edition, 1998, page 145.

Data structure library: vec-
tor, matrix, other data types

44

Example 7.1. File examples/simple/igraph_fisher_yates_shuffle.c

Vector operations

igraph_vector_add_constant — Add a constant to the vector.

void igraph_vector_add_constant(igraph_vector_t *v, igraph_real_t plus);

plus is added to every element of v. Note that overflow might happen.

Arguments:

v: The input vector.

plus: The constant to add.

Time complexity: O(n), the number of elements.

igraph_vector_scale — Multiply all elements of a vector by a
constant

void igraph_vector_scale(igraph_vector_t *v, igraph_real_t by);

Arguments:

v: The vector.

by: The constant.

Returns:

Error code. The current implementation always returns with success.

Added in version 0.2.

Time complexity: O(n), the number of elements in a vector.

igraph_vector_add — Add two vectors.

int igraph_vector_add(igraph_vector_t *v1,
 const igraph_vector_t *v2);

Add the elements of v2 to v1, the result is stored in v1. The two vectors must have the same length.

Arguments:

v1: The first vector, the result will be stored here.

Data structure library: vec-
tor, matrix, other data types

45

v2: The second vector, its contents will be unchanged.

Returns:

Error code.

Time complexity: O(n), the number of elements.

igraph_vector_sub — Subtract a vector from another one.

int igraph_vector_sub(igraph_vector_t *v1,
 const igraph_vector_t *v2);

Subtract the elements of v2 from v1, the result is stored in v1. The two vectors must have the same length.

Arguments:

v1: The first vector, to subtract from. The result is stored here.

v2: The vector to subtract, it will be unchanged.

Returns:

Error code.

Time complexity: O(n), the length of the vectors.

igraph_vector_mul — Multiply two vectors.

int igraph_vector_mul(igraph_vector_t *v1,
 const igraph_vector_t *v2);

v1 will be multiplied by v2, elementwise. The two vectors must have the same length.

Arguments:

v1: The first vector, the result will be stored here.

v2: The second vector, it is left unchanged.

Returns:

Error code.

Time complexity: O(n), the number of elements.

igraph_vector_div — Divide a vector by another one.

int igraph_vector_div(igraph_vector_t *v1,

Data structure library: vec-
tor, matrix, other data types

46

 const igraph_vector_t *v2);

v1 is divided by v2, elementwise. They must have the same length. If the base type of the vector can
generate divide by zero errors then please make sure that v2 contains no zero if you want to avoid trouble.

Arguments:

v1: The dividend. The result is also stored here.

v2: The divisor, it is left unchanged.

Returns:

Error code.

Time complexity: O(n), the length of the vectors.

Vector comparisons

igraph_vector_all_e — Are all elements equal?

igraph_bool_t igraph_vector_all_e(const igraph_vector_t *lhs,
 const igraph_vector_t *rhs);

Arguments:

lhs: The first vector.

rhs: The second vector.

Returns:

Positive integer (=true) if the elements in the lhs are all equal to the corresponding elements in rhs.
Returns 0 (=false) if the lengths of the vectors don't match.

Time complexity: O(n), the length of the vectors.

igraph_vector_all_l — Are all elements less?

igraph_bool_t igraph_vector_all_l(const igraph_vector_t *lhs,
 const igraph_vector_t *rhs);

Arguments:

lhs: The first vector.

rhs: The second vector.

Returns:

Data structure library: vec-
tor, matrix, other data types

47

Positive integer (=true) if the elements in the lhs are all less than the corresponding elements in rhs.
Returns 0 (=false) if the lengths of the vectors don't match.

Time complexity: O(n), the length of the vectors.

igraph_vector_all_g — Are all elements greater?

igraph_bool_t igraph_vector_all_g(const igraph_vector_t *lhs,
 const igraph_vector_t *rhs);

Arguments:

lhs: The first vector.

rhs: The second vector.

Returns:

Positive integer (=true) if the elements in the lhs are all greater than the corresponding elements in
rhs. Returns 0 (=false) if the lengths of the vectors don't match.

Time complexity: O(n), the length of the vectors.

igraph_vector_all_le — Are all elements less or equal?

igraph_bool_t
igraph_vector_all_le(const igraph_vector_t *lhs,
 const igraph_vector_t *rhs);

Arguments:

lhs: The first vector.

rhs: The second vector.

Returns:

Positive integer (=true) if the elements in the lhs are all less than or equal to the corresponding elements
in rhs. Returns 0 (=false) if the lengths of the vectors don't match.

Time complexity: O(n), the length of the vectors.

igraph_vector_all_ge — Are all elements greater or equal?

igraph_bool_t
igraph_vector_all_ge(const igraph_vector_t *lhs,
 const igraph_vector_t *rhs);

Data structure library: vec-
tor, matrix, other data types

48

Arguments:

lhs: The first vector.

rhs: The second vector.

Returns:

Positive integer (=true) if the elements in the lhs are all greater than or equal to the corresponding
elements in rhs. Returns 0 (=false) if the lengths of the vectors don't match.

Time complexity: O(n), the length of the vectors.

Finding minimum and maximum

igraph_vector_min — Smallest element of a vector.

igraph_real_t igraph_vector_min(const igraph_vector_t* v);

The vector must be non-empty.

Arguments:

v: The input vector.

Returns:

The smallest element of v.

Time complexity: O(n), the number of elements.

igraph_vector_max — Gives the maximum element of the vector.

igraph_real_t igraph_vector_max(const igraph_vector_t* v);

If the size of the vector is zero, an arbitrary number is returned.

Arguments:

v: The vector object.

Returns:

The maximum element.

Time complexity: O(n), n is the size of the vector.

igraph_vector_which_min — Index of the smallest element.

Data structure library: vec-
tor, matrix, other data types

49

long int igraph_vector_which_min(const igraph_vector_t* v);

The vector must be non-empty. If the smallest element is not unique, then the index of the first is returned.

Arguments:

v: The input vector.

Returns:

Index of the smallest element.

Time complexity: O(n), the number of elements.

igraph_vector_which_max — Gives the position of the maximum
element of the vector.

long int igraph_vector_which_max(const igraph_vector_t* v);

If the size of the vector is zero, -1 is returned.

Arguments:

v: The vector object.

Returns:

The position of the first maximum element.

Time complexity: O(n), n is the size of the vector.

igraph_vector_minmax — Minimum and maximum elements of a
vector.

int igraph_vector_minmax(const igraph_vector_t *v,
 igraph_real_t *min, igraph_real_t *max);

Handy if you want to have both the smallest and largest element of a vector. The vector is only traversed
once. The vector must by non-empty.

Arguments:

v: The input vector. It must contain at least one element.

min: Pointer to a base type variable, the minimum is stored here.

max: Pointer to a base type variable, the maximum is stored here.

Data structure library: vec-
tor, matrix, other data types

50

Returns:

Error code.

Time complexity: O(n), the number of elements.

igraph_vector_which_minmax — Index of the minimum and maxi-
mum elements

int igraph_vector_which_minmax(const igraph_vector_t *v,
 long int *which_min, long int *which_max);

Handy if you need the indices of the smallest and largest elements. The vector is traversed only once. The
vector must to non-empty.

Arguments:

v: The input vector. It must contain at least one element.

which_min: The index of the minimum element will be stored here.

which_max: The index of the maximum element will be stored here.

Returns:

Error code.

Time complexity: O(n), the number of elements.

Vector properties

igraph_vector_empty — Decides whether the size of the vector is
zero.

igraph_bool_t igraph_vector_empty (const igraph_vector_t* v);

Arguments:

v: The vector object.

Returns:

Non-zero number (true) if the size of the vector is zero and zero (false) otherwise.

Time complexity: O(1).

igraph_vector_size — Gives the size (=length) of the vector.

Data structure library: vec-
tor, matrix, other data types

51

long int igraph_vector_size (const igraph_vector_t* v);

Arguments:

v: The vector object

Returns:

The size of the vector.

Time complexity: O(1).

igraph_vector_capacity — Returns the allocated capacity of the
vector

long int igraph_vector_capacity(const igraph_vector_t*v);

Note that this might be different from the size of the vector (as queried by igraph_vector_size(),
and specifies how many elements the vector can hold, without reallocation.

Arguments:

v: Pointer to the (previously initialized) vector object to query.

Returns:

The allocated capacity.

See also:

igraph_vector_size().

Time complexity: O(1).

igraph_vector_sum — Calculates the sum of the elements in the
vector.

igraph_real_t igraph_vector_sum(const igraph_vector_t *v);

For the empty vector 0.0 is returned.

Arguments:

v: The vector object.

Returns:

Data structure library: vec-
tor, matrix, other data types

52

The sum of the elements.

Time complexity: O(n), the size of the vector.

igraph_vector_prod — Calculates the product of the elements in
the vector.

igraph_real_t igraph_vector_prod(const igraph_vector_t *v);

For the empty vector one (1) is returned.

Arguments:

v: The vector object.

Returns:

The product of the elements.

Time complexity: O(n), the size of the vector.

igraph_vector_isininterval — Checks if all elements of a vec-
tor are in the given

igraph_bool_t igraph_vector_isininterval(const igraph_vector_t *v,
 igraph_real_t low,
 igraph_real_t high);

interval.

Arguments:

v: The vector object.

low: The lower limit of the interval (inclusive).

high: The higher limit of the interval (inclusive).

Returns:

True (positive integer) if all vector elements are in the interval, false (zero) otherwise.

Time complexity: O(n), the number of elements in the vector.

igraph_vector_maxdifference — The maximum absolute differ-
ence of m1 and m2

Data structure library: vec-
tor, matrix, other data types

53

igraph_real_t igraph_vector_maxdifference(const igraph_vector_t *m1,
 const igraph_vector_t *m2);

The element with the largest absolute value in m1 - m2 is returned. Both vectors must be non-empty, but
they not need to have the same length, the extra elements in the longer vector are ignored.

Arguments:

m1: The first vector.

m2: The second vector.

Returns:

The maximum absolute difference of m1 and m2.

Time complexity: O(n), the number of elements in the shorter vector.

Searching for elements

igraph_vector_contains — Linear search in a vector.

igraph_bool_t igraph_vector_contains(const igraph_vector_t *v,
 igraph_real_t e);

Check whether the supplied element is included in the vector, by linear search.

Arguments:

v: The input vector.

e: The element to look for.

Returns:

TRUE if the element is found and FALSE otherwise.

Time complexity: O(n), the length of the vector.

igraph_vector_search — Search from a given position

igraph_bool_t igraph_vector_search(const igraph_vector_t *v,
 long int from, igraph_real_t what,
 long int *pos);

The supplied element what is searched in vector v, starting from element index from. If found then the
index of the first instance (after from) is stored in pos.

Arguments:

v: The input vector.

Data structure library: vec-
tor, matrix, other data types

54

from: The index to start searching from. No range checking is performed.

what: The element to find.

pos: If not NULL then the index of the found element is stored here.

Returns:

Boolean, TRUE if the element was found, FALSE otherwise.

Time complexity: O(m), the number of elements to search, the length of the vector minus the from ar-
gument.

igraph_vector_binsearch — Finds an element by binary search-
ing a sorted vector.

igraph_bool_t igraph_vector_binsearch(const igraph_vector_t *v,
 igraph_real_t what, long int *pos);

It is assumed that the vector is sorted. If the specified element (what) is not in the vector, then the position
of where it should be inserted (to keep the vector sorted) is returned.

Arguments:

v: The igraph_vector_t object.

what: The element to search for.

pos: Pointer to a long int. This is set to the position of an instance of what in the vector if it is present.
If v does not contain what then pos is set to the position to which it should be inserted (to
keep the the vector sorted of course).

Returns:

Positive integer (true) if what is found in the vector, zero (false) otherwise.

Time complexity: O(log(n)), n is the number of elements in v.

igraph_vector_binsearch2 — Binary search, without returning
the index.

igraph_bool_t igraph_vector_binsearch2(const igraph_vector_t *v,
 igraph_real_t what);

It is assumed that the vector is sorted.

Arguments:

Data structure library: vec-
tor, matrix, other data types

55

v: The igraph_vector_t object.

what: The element to search for.

Returns:

Positive integer (true) if what is found in the vector, zero (false) otherwise.

Time complexity: O(log(n)), n is the number of elements in v.

Resizing operations

igraph_vector_clear — Removes all elements from a vector.

void igraph_vector_clear (igraph_vector_t* v);

This function simply sets the size of the vector to zero, it does not free any allocated memory. For that
you have to call igraph_vector_destroy().

Arguments:

v: The vector object.

Time complexity: O(1).

igraph_vector_reserve — Reserves memory for a vector.

int igraph_vector_reserve (igraph_vector_t* v, long int size);

igraph vectors are flexible, they can grow and shrink. Growing however occasionally needs the data in
the vector to be copied. In order to avoid this, you can call this function to reserve space for future growth
of the vector.

Note that this function does not change the size of the vector. Let us see a small example to clarify things:
if you reserve space for 100 elements and the size of your vector was (and still is) 60, then you can surely
add additional 40 elements to your vector before it will be copied.

Arguments:

v: The vector object.

size: The new allocated size of the vector.

Returns:

Error code: IGRAPH_ENOMEM if there is not enough memory.

Time complexity: operating system dependent, should be around O(n), n is the new allocated size of the
vector.

Data structure library: vec-
tor, matrix, other data types

56

igraph_vector_resize — Resize the vector.

int igraph_vector_resize(igraph_vector_t* v, long int newsize);

Note that this function does not free any memory, just sets the size of the vector to the given one. It can
on the other hand allocate more memory if the new size is larger than the previous one. In this case the
newly appeared elements in the vector are not set to zero, they are uninitialized.

Arguments:

v: The vector object

newsize: The new size of the vector.

Returns:

Error code, IGRAPH_ENOMEM if there is not enough memory. Note that this function never returns an
error if the vector is made smaller.

See also:

igraph_vector_reserve() for allocating memory for future extensions of a vector.
igraph_vector_resize_min() for deallocating the unnneded memory for a vector.

Time complexity: O(1) if the new size is smaller, operating system dependent if it is larger. In the latter
case it is usually around O(n), n is the new size of the vector.

igraph_vector_resize_min — Deallocate the unused memory of
a vector.

int igraph_vector_resize_min(igraph_vector_t*v);

Note that this function involves additional memory allocation and may result an out-of-memory error.

Arguments:

v: Pointer to an initialized vector.

Returns:

Error code.

See also:

igraph_vector_resize(), igraph_vector_reserve().

Time complexity: operating system dependent.

Data structure library: vec-
tor, matrix, other data types

57

igraph_vector_push_back — Appends one element to a vector.

int igraph_vector_push_back (igraph_vector_t* v, igraph_real_t e);

This function resizes the vector to be one element longer and sets the very last element in the vector to e.

Arguments:

v: The vector object.

e: The element to append to the vector.

Returns:

Error code: IGRAPH_ENOMEM: not enough memory.

Time complexity: operating system dependent. What is important is that a sequence of n subsequent calls
to this function has time complexity O(n), even if there hadn't been any space reserved for the new elements
by igraph_vector_reserve(). This is implemented by a trick similar to the C++ vector class: each
time more memory is allocated for a vector, the size of the additionally allocated memory is the same as the
vector's current length. (We assume here that the time complexity of memory allocation is at most linear.)

igraph_vector_pop_back — Removes and returns the last ele-
ment of a vector.

igraph_real_t igraph_vector_pop_back(igraph_vector_t* v);

It is an error to call this function with an empty vector.

Arguments:

v: The vector object.

Returns:

The removed last element.

Time complexity: O(1).

igraph_vector_insert — Inserts a single element into a vector.

int igraph_vector_insert(igraph_vector_t *v, long int pos,
 igraph_real_t value);

Note that this function does not do range checking. Insertion will shift the elements from the position given
to the end of the vector one position to the right, and the new element will be inserted in the empty space
created at the given position. The size of the vector will increase by one.

Data structure library: vec-
tor, matrix, other data types

58

Arguments:

v: The vector object.

pos: The position where the new element is to be inserted.

value: The new element to be inserted.

igraph_vector_remove — Removes a single element from a vec-
tor.

void igraph_vector_remove(igraph_vector_t *v, long int elem);

Note that this function does not do range checking.

Arguments:

v: The vector object.

elem: The position of the element to remove.

Time complexity: O(n-elem), n is the number of elements in the vector.

igraph_vector_remove_section — Deletes a section from a vec-
tor.

void igraph_vector_remove_section(igraph_vector_t *v,
 long int from, long int to);

Note that this function does not do range checking. The result is undefined if you supply invalid limits.

Arguments:

v: The vector object.

from: The position of the first element to remove.

to: The position of the first element not to remove.

Time complexity: O(n-from), n is the number of elements in the vector.

Sorting

igraph_vector_sort — Sorts the elements of the vector into as-
cending order.

void igraph_vector_sort(igraph_vector_t *v);

Data structure library: vec-
tor, matrix, other data types

59

This function uses the built-in sort function of the C library.

Arguments:

v: Pointer to an initialized vector object.

Time complexity: should be O(nlogn) for n elements.

Set operations on sorted vectors

igraph_vector_intersect_sorted — Calculates the intersection
of two sorted vectors

int igraph_vector_intersect_sorted(const igraph_vector_t *v1,
 const igraph_vector_t *v2, igraph_vector_t *result);

The elements that are contained in both vectors are stored in the result vector. All three vectors must be
initialized.

Instead of the naive intersection which takes O(n), this function uses the set intersection method of Ricardo
Baeza-Yates, which is more efficient when one of the vectors is significantly smaller than the other, and
gives similar performance on average when the two vectors are equal.

The algorithm keeps the multiplicities of the elements: if an element appears k1 times in the first vector
and k2 times in the second, the result will include that element min(k1, k2) times.

Reference: Baeza-Yates R: A fast set intersection algorithm for sorted sequences. In: Lecture
Notes in Computer Science, vol. 3109/2004, pp. 400--408, 2004. Springer Berlin/Heidelberg. ISBN:
978-3-540-22341-2.

Arguments:

v1: the first vector

v2: the second vector

result: the result vector, which will also be sorted.

Time complexity: O(m log(n)) where m is the size of the smaller vector and n is the size of the larger one.

igraph_vector_difference_sorted — Calculates the difference
between two sorted vectors (considered as sets)

int igraph_vector_difference_sorted(const igraph_vector_t *v1,
 const igraph_vector_t *v2, igraph_vector_t *result);

The elements that are contained in only the first vector but not the second are stored in the result vector.
All three vectors must be initialized.

Arguments:

Data structure library: vec-
tor, matrix, other data types

60

v1: the first vector

v2: the second vector

result: the result vector

Pointer vectors (igraph_vector_ptr_t)
The igraph_vector_ptr_t data type is very similar to the igraph_vector_t type, but it stores generic pointers
instead of real numbers.

This type has the same space complexity as igraph_vector_t, and most implemented operations work the
same way as for igraph_vector_t.

This type is mostly used to pass to or receive from a set of graphs to some igraph functions, such as
igraph_decompose(), which decomposes a graph to connected components.

The same VECTOR macro used for ordinary vectors can be used for pointer vectors as well, please note
that a typeless generic pointer will be provided by this macro and you may need to cast it to a specific
pointer before starting to work with it.

Pointer vectors may have an associated item destructor function which takes a pointer and returns noth-
ing. The item destructor will be called on each item in the pointer vector when it is destroyed by
igraph_vector_ptr_destroy() or igraph_vector_ptr_destroy_all(), or when its el-
ements are freed by igraph_vector_ptr_free_all(). Note that the semantics of an item destruc-
tor does not coincide with C++ destructors; for instance, when a pointer vector is resized to a smaller
size, the extra items will not be destroyed automatically! Nevertheless, item destructors may become
handy in many cases; for instance, a vector of graphs generated by igraph_decompose() can be de-
stroyed with a single call to igraph_vector_ptr_destroy_all() if the item destructor is set to
igraph_destroy().

igraph_vector_ptr_init — Initialize a pointer vector (construc-
tor).

int igraph_vector_ptr_init (igraph_vector_ptr_t* v, int long size);

This is the constructor of the pointer vector data type. All pointer vectors constructed this way should be
destroyed via calling igraph_vector_ptr_destroy().

Arguments:

v: Pointer to an uninitialized igraph_vector_ptr_t object, to be created.

size: Integer, the size of the pointer vector.

Returns:

Error code: IGRAPH_ENOMEM if out of memory

Time complexity: operating system dependent, the amount of “time” required to allocate size elements.

Data structure library: vec-
tor, matrix, other data types

61

igraph_vector_ptr_copy — Copy a pointer vector (constructor).

int igraph_vector_ptr_copy(igraph_vector_ptr_t *to, const igraph_vector_ptr_t *from);

This function creates a pointer vector by copying another one. This is shallow copy, only the pointers in
the vector will be copied.

It is potentially dangerous to copy a pointer vector with an associated item destructor. The copied vector
will inherit the item destructor, which may cause problems when both vectors are destroyed as the items
might get destroyed twice. Make sure you know what you are doing when copying a pointer vector with
an item destructor, or unset the item destructor on one of the vectors later.

Arguments:

to: Pointer to an uninitialized pointer vector object.

from: A pointer vector object.

Returns:

Error code: IGRAPH_ENOMEM if out of memory

Time complexity: O(n) if allocating memory for n elements can be done in O(n) time.

igraph_vector_ptr_destroy — Destroys a pointer vector.

void igraph_vector_ptr_destroy (igraph_vector_ptr_t* v);

The destructor for pointer vectors.

Arguments:

v: Pointer to the pointer vector to destroy.

Time complexity: operating system dependent, the “time” required to deallocate O(n) bytes, n is the num-
ber of elements allocated for the pointer vector (not necessarily the number of elements in the vector).

igraph_vector_ptr_free_all — Frees all the elements of a
pointer vector.

void igraph_vector_ptr_free_all (igraph_vector_ptr_t* v);

If an item destructor is set for this pointer vector, this function will first call the destructor on all elements
of the vector and then free all the elements using free(). If an item destructor is not set, the elements will
simply be freed.

Arguments:

Data structure library: vec-
tor, matrix, other data types

62

v: Pointer to the pointer vector whose elements will be freed.

Time complexity: operating system dependent, the “time” required to call the destructor n times and then
deallocate O(n) pointers, each pointing to a memory area of arbitrary size. n is the number of elements
in the pointer vector.

igraph_vector_ptr_destroy_all — Frees all the elements and
destroys the pointer vector.

void igraph_vector_ptr_destroy_all (igraph_vector_ptr_t* v);

This function is equivalent to igraph_vector_ptr_free_all() followed by
igraph_vector_ptr_destroy().

Arguments:

v: Pointer to the pointer vector to destroy.

Time complexity: operating system dependent, the “time” required to deallocate O(n) pointers, each point-
ing to a memory area of arbitrary size, plus the “time” required to deallocate O(n) bytes, n being the num-
ber of elements allocated for the pointer vector (not necessarily the number of elements in the vector).

igraph_vector_ptr_size — Gives the number of elements in the
pointer vector.

long int igraph_vector_ptr_size (const igraph_vector_ptr_t* v);

Arguments:

v: The pointer vector object.

Returns:

The size of the object, ie. the number of pointers stored.

Time complexity: O(1).

igraph_vector_ptr_clear — Removes all elements from a point-
er vector.

void igraph_vector_ptr_clear (igraph_vector_ptr_t* v);

This function resizes a pointer to vector to zero length. Note that the pointed objects are not deallocated,
you should call free() on them, or make sure that their allocated memory is freed in some other way, you'll
get memory leaks otherwise. If you have set up an item destructor earlier, the destructor will be called
on every element.

Data structure library: vec-
tor, matrix, other data types

63

Note that the current implementation of this function does not deallocate the memory required for storing
the pointers, so making a pointer vector smaller this way does not give back any memory. This behavior
might change in the future.

Arguments:

v: The pointer vector to clear.

Time complexity: O(1).

igraph_vector_ptr_push_back — Appends an element to the
back of a pointer vector.

int igraph_vector_ptr_push_back (igraph_vector_ptr_t* v, void* e);

Arguments:

v: The pointer vector.

e: The new element to include in the pointer vector.

Returns:

Error code.

See also:

igraph_vector_push_back() for the corresponding operation of the ordinary vector type.

Time complexity: O(1) or O(n), n is the number of elements in the vector. The pointer vector implemen-
tation ensures that n subsequent push_back operations need O(n) time to complete.

igraph_vector_ptr_e — Access an element of a pointer vector.

void* igraph_vector_ptr_e (const igraph_vector_ptr_t* v, long int pos);

Arguments:

v: Pointer to a pointer vector.

pos: The index of the pointer to return.

Returns:

The pointer at pos position.

Time complexity: O(1).

Data structure library: vec-
tor, matrix, other data types

64

igraph_vector_ptr_set — Assign to an element of a pointer vec-
tor.

void igraph_vector_ptr_set (igraph_vector_ptr_t* v, long int pos, void* value);

Arguments:

v: Pointer to a pointer vector.

pos: The index of the pointer to update.

value: The new pointer to set in the vector.

Time complexity: O(1).

igraph_vector_ptr_resize — Resizes a pointer vector.

int igraph_vector_ptr_resize(igraph_vector_ptr_t* v, long int newsize);

Note that if a vector is made smaller the pointed object are not deallocated by this function and the item
destructor is not called on the extra elements.

Arguments:

v: A pointer vector.

newsize: The new size of the pointer vector.

Returns:

Error code.

Time complexity: O(1) if the vector if made smaller. Operating system dependent otherwise, the amount
of “time” needed to allocate the memory for the vector elements.

igraph_vector_ptr_get_item_destructor — Gets the current
item destructor for this pointer vector.

igraph_finally_func_t* igraph_vector_ptr_get_item_destructor(const igraph_vector_ptr_t *v);

The item destructor is a function which will be called on every non-null pointer stored
in this vector when igraph_vector_ptr_destroy(), igraph_vector_ptr_destroy_all() or
igraph_vector_ptr_free_all() is called.

Returns:

The current item destructor.

Data structure library: vec-
tor, matrix, other data types

65

Time complexity: O(1).

igraph_vector_ptr_set_item_destructor — Sets the item de-
structor for this pointer vector.

igraph_finally_func_t* igraph_vector_ptr_set_item_destructor(
 igraph_vector_ptr_t *v, igraph_finally_func_t *func);

The item destructor is a function which will be called on every non-null pointer stored
in this vector when igraph_vector_ptr_destroy(), igraph_vector_ptr_destroy_all() or
igraph_vector_ptr_free_all() is called.

Returns:

The old item destructor.

Time complexity: O(1).

IGRAPH_VECTOR_PTR_SET_ITEM_DESTRUCTOR — Sets the item de-
structor for this pointer vector (macro version).

#define IGRAPH_VECTOR_PTR_SET_ITEM_DESTRUCTOR(v,

This macro is expanded to igraph_vector_ptr_set_item_destructor(), the only difference
is that the second argument is automatically cast to an igraph_finally_func_t*. The cast is nec-
essary in most cases as the destructor functions we use (such as igraph_vector_destroy()) take
a pointer to some concrete igraph data type, while igraph_finally_func_t expects void*

Matrices

About igraph_matrix_t objects
This type is just an interface to igraph_vector_t.

The igraph_matrix_t type usually stores n elements in O(n) space, but not always. See the documentation
of the vector type.

Matrix constructors and destructors

igraph_matrix_init — Initializes a matrix.

int igraph_matrix_init(igraph_matrix_t *m, long int nrow, long int ncol);

Every matrix needs to be initialized before using it. This is done by calling this function. A matrix has to
be destroyed if it is not needed any more; see igraph_matrix_destroy().

Data structure library: vec-
tor, matrix, other data types

66

Arguments:

m: Pointer to a not yet initialized matrix object to be initialized.

nrow: The number of rows in the matrix.

ncol: The number of columns in the matrix.

Returns:

Error code.

Time complexity: usually O(n), n is the number of elements in the matrix.

igraph_matrix_copy — Copies a matrix.

int igraph_matrix_copy(igraph_matrix_t *to, const igraph_matrix_t *from);

Creates a matrix object by copying from an existing matrix.

Arguments:

to: Pointer to an uninitialized matrix object.

from: The initialized matrix object to copy.

Returns:

Error code, IGRAPH_ENOMEM if there isn't enough memory to allocate the new matrix.

Time complexity: O(n), the number of elements in the matrix.

igraph_matrix_destroy — Destroys a matrix object.

void igraph_matrix_destroy(igraph_matrix_t *m);

This function frees all the memory allocated for a matrix object. The destroyed object needs to be reini-
tialized before using it again.

Arguments:

m: The matrix to destroy.

Time complexity: operating system dependent.

Initializing elements

igraph_matrix_null — Sets all elements in a matrix to zero.

Data structure library: vec-
tor, matrix, other data types

67

void igraph_matrix_null(igraph_matrix_t *m);

Arguments:

m: Pointer to an initialized matrix object.

Time complexity: O(n), n is the number of elements in the matrix.

igraph_matrix_fill — Fill with an element.

void igraph_matrix_fill(igraph_matrix_t *m, igraph_real_t e);

Set the matrix to a constant matrix.

Arguments:

m: The input matrix.

e: The element to set.

Time complexity: O(mn), the number of elements.

Copying matrices

igraph_matrix_copy_to — Copies a matrix to a regular C array.

void igraph_matrix_copy_to(const igraph_matrix_t *m, igraph_real_t *to);

The matrix is copied columnwise, as this is the format most programs and languages use. The C array
should be of sufficient size; there are (of course) no range checks.

Arguments:

m: Pointer to an initialized matrix object.

to: Pointer to a C array; the place to copy the data to.

Returns:

Error code.

Time complexity: O(n), n is the number of elements in the matrix.

igraph_matrix_update — Update from another matrix.

int igraph_matrix_update(igraph_matrix_t *to,
 const igraph_matrix_t *from);

Data structure library: vec-
tor, matrix, other data types

68

This function replicates from in the matrix to. Note that to must be already initialized.

Arguments:

to: The result matrix.

from: The matrix to replicate; it is left unchanged.

Returns:

Error code.

Time complexity: O(mn), the number of elements.

igraph_matrix_swap — Swap two matrices.

int igraph_matrix_swap(igraph_matrix_t *m1, igraph_matrix_t *m2);

The contents of the two matrices will be swapped. They must have the same dimensions.

Arguments:

m1: The first matrix.

m2: The second matrix.

Returns:

Error code.

Time complexity: O(mn), the number of elements in the matrices.

Accessing elements of a matrix

MATRIX — Accessing an element of a matrix.

#define MATRIX(m,i,j)

Note that there are no range checks right now. This functionality might be redefined as a proper function
later.

Arguments:

m: The matrix object.

i: The index of the row, starting with zero.

j: The index of the column, starting with zero.

Time complexity: O(1).

Data structure library: vec-
tor, matrix, other data types

69

igraph_matrix_e — Extract an element from a matrix.

igraph_real_t igraph_matrix_e(const igraph_matrix_t *m,
 long int row, long int col);

Use this if you need a function for some reason and cannot use the MATRIX macro. Note that no range
checking is performed.

Arguments:

m: The input matrix.

row: The row index.

col: The column index.

Returns:

The element in the given row and column.

Time complexity: O(1).

igraph_matrix_e_ptr — Pointer to an element of a matrix.

igraph_real_t* igraph_matrix_e_ptr(const igraph_matrix_t *m,
 long int row, long int col);

The function returns a pointer to an element. No range checking is performed.

Arguments:

m: The input matrix.

row: The row index.

col: The column index.

Returns:

Pointer to the element in the given row and column.

Time complexity: O(1).

igraph_matrix_set — Set an element.

void igraph_matrix_set(igraph_matrix_t* m, long int row, long int col,
 igraph_real_t value);

Set an element of a matrix. No range checking is performed.

Data structure library: vec-
tor, matrix, other data types

70

Arguments:

m: The input matrix.

row: The row index.

col: The column index.

value: The new value of the element.

Time complexity: O(1).

Operations on rows and columns

igraph_matrix_get_row — Extract a row.

int igraph_matrix_get_row(const igraph_matrix_t *m,
 igraph_vector_t *res, long int index);

Extract a row from a matrix and return it as a vector.

Arguments:

m: The input matrix.

res: Pointer to an initialized vector; it will be resized if needed.

index: The index of the row to select.

Returns:

Error code.

Time complexity: O(n), the number of columns in the matrix.

igraph_matrix_get_col — Select a column.

int igraph_matrix_get_col(const igraph_matrix_t *m,
 igraph_vector_t *res,
 long int index);

Extract a column of a matrix and return it as a vector.

Arguments:

m: The input matrix.

res: The result will we stored in this vector. It should be initialized and will be resized as needed.

index: The index of the column to select.

Returns:

Data structure library: vec-
tor, matrix, other data types

71

Error code.

Time complexity: O(n), the number of rows in the matrix.

igraph_matrix_set_row — Set a row from a vector.

int igraph_matrix_set_row(igraph_matrix_t *m,
 const igraph_vector_t *v, long int index);

Sets the elements of a row with the given vector. This has the effect of setting row index to have the
elements in the vector v. The length of the vector and the number of columns in the matrix must match,
otherwise an error is triggered.

Arguments:

m: The input matrix.

v: The vector containing the new elements of the row.

index: Index of the row to set.

Returns:

Error code.

Time complexity: O(n), the number of columns in the matrix.

igraph_matrix_set_col — Set a column from a vector.

int igraph_matrix_set_col(igraph_matrix_t *m,
 const igraph_vector_t *v, long int index);

Sets the elements of a column with the given vector. In effect, column index will be set with elements
from the vector v. The length of the vector and the number of rows in the matrix must match, otherwise
an error is triggered.

Arguments:

m: The input matrix.

v: The vector containing the new elements of the column.

index: Index of the column to set.

Returns:

Error code.

Time complexity: O(m), the number of rows in the matrix.

igraph_matrix_swap_rows — Swap two rows.

Data structure library: vec-
tor, matrix, other data types

72

int igraph_matrix_swap_rows(igraph_matrix_t *m,
 long int i, long int j);

Swap two rows in the matrix.

Arguments:

m: The input matrix.

i: The index of the first row.

j: The index of the second row.

Returns:

Error code.

Time complexity: O(n), the number of columns.

igraph_matrix_swap_cols — Swap two columns.

int igraph_matrix_swap_cols(igraph_matrix_t *m,
 long int i, long int j);

Swap two columns in the matrix.

Arguments:

m: The input matrix.

i: The index of the first column.

j: The index of the second column.

Returns:

Error code.

Time complexity: O(m), the number of rows.

igraph_matrix_select_rows — Select some rows of a matrix.

int igraph_matrix_select_rows(const igraph_matrix_t *m,
 igraph_matrix_t *res,
 const igraph_vector_t *rows);

This function selects some rows of a matrix and returns them in a new matrix. The result matrix should
be initialized before calling the function.

Arguments:

Data structure library: vec-
tor, matrix, other data types

73

m: The input matrix.

res: The result matrix. It should be initialized and will be resized as needed.

rows: Vector; it contains the row indices (starting with zero) to extract. Note that no range checking
is performed.

Returns:

Error code.

Time complexity: O(nm), n is the number of rows, m the number of columns of the result matrix.

igraph_matrix_select_cols — Select some columns of a matrix.

int igraph_matrix_select_cols(const igraph_matrix_t *m,
 igraph_matrix_t *res,
 const igraph_vector_t *cols);

This function selects some columns of a matrix and returns them in a new matrix. The result matrix should
be initialized before calling the function.

Arguments:

m: The input matrix.

res: The result matrix. It should be initialized and will be resized as needed.

cols: Vector; it contains the column indices (starting with zero) to extract. Note that no range checking
is performed.

Returns:

Error code.

Time complexity: O(nm), n is the number of rows, m the number of columns of the result matrix.

igraph_matrix_select_rows_cols — Select some rows and
columns of a matrix.

int igraph_matrix_select_rows_cols(const igraph_matrix_t *m,
 igraph_matrix_t *res,
 const igraph_vector_t *rows,
 const igraph_vector_t *cols);

This function selects some rows and columns of a matrix and returns them in a new matrix. The result
matrix should be initialized before calling the function.

Arguments:

m: The input matrix.

Data structure library: vec-
tor, matrix, other data types

74

res: The result matrix. It should be initialized and will be resized as needed.

rows: Vector; it contains the row indices (starting with zero) to extract. Note that no range checking
is performed.

cols: Vector; it contains the column indices (starting with zero) to extract. Note that no range checking
is performed.

Returns:

Error code.

Time complexity: O(nm), n is the number of rows, m the number of columns of the result matrix.

Matrix operations

igraph_matrix_add_constant — Add a constant to every ele-
ment.

void igraph_matrix_add_constant(igraph_matrix_t *m, igraph_real_t plus);

Arguments:

m: The input matrix.

plud: The constant to add.

Time complexity: O(mn), the number of elements.

igraph_matrix_scale — Multiplies each element of the matrix by
a constant.

void igraph_matrix_scale(igraph_matrix_t *m, igraph_real_t by);

Arguments:

m: The matrix.

by: The constant.

Added in version 0.2.

Time complexity: O(n), the number of elements in the matrix.

igraph_matrix_add — Add two matrices.

int igraph_matrix_add(igraph_matrix_t *m1,

Data structure library: vec-
tor, matrix, other data types

75

 const igraph_matrix_t *m2);

Add m2 to m1, and store the result in m1. The dimensions of the matrices must match.

Arguments:

m1: The first matrix; the result will be stored here.

m2: The second matrix; it is left unchanged.

Returns:

Error code.

Time complexity: O(mn), the number of elements.

igraph_matrix_sub — Difference of two matrices.

int igraph_matrix_sub(igraph_matrix_t *m1,
 const igraph_matrix_t *m2);

Subtract m2 from m1 and store the result in m1. The dimensions of the two matrices must match.

Arguments:

m1: The first matrix; the result is stored here.

m2: The second matrix; it is left unchanged.

Returns:

Error code.

Time complexity: O(mn), the number of elements.

igraph_matrix_mul_elements — Elementwise multiplication.

int igraph_matrix_mul_elements(igraph_matrix_t *m1,
 const igraph_matrix_t *m2);

Multiply m1 by m2 elementwise and store the result in m1. The dimensions of the two matrices must match.

Arguments:

m1: The first matrix; the result is stored here.

m2: The second matrix; it is left unchanged.

Returns:

Error code.

Data structure library: vec-
tor, matrix, other data types

76

Time complexity: O(mn), the number of elements.

igraph_matrix_div_elements — Elementwise division.

int igraph_matrix_div_elements(igraph_matrix_t *m1,
 const igraph_matrix_t *m2);

Divide m1 by m2 elementwise and store the result in m1. The dimensions of the two matrices must match.

Arguments:

m1: The dividend. The result is store here.

m2: The divisor. It is left unchanged.

Returns:

Error code.

Time complexity: O(mn), the number of elements.

igraph_matrix_sum — Sum of elements.

igraph_real_t igraph_matrix_sum(const igraph_matrix_t *m);

Returns the sum of the elements of a matrix.

Arguments:

m: The input matrix.

Returns:

The sum of the elements.

Time complexity: O(mn), the number of elements in the matrix.

igraph_matrix_prod — Product of the elements.

igraph_real_t igraph_matrix_prod(const igraph_matrix_t *m);

Note this function can result in overflow easily, even for not too big matrices.

Arguments:

m: The input matrix.

Returns:

Data structure library: vec-
tor, matrix, other data types

77

The product of the elements.

Time complexity: O(mn), the number of elements.

igraph_matrix_rowsum — Rowwise sum.

int igraph_matrix_rowsum(const igraph_matrix_t *m,
 igraph_vector_t *res);

Calculate the sum of the elements in each row.

Arguments:

m: The input matrix.

res: Pointer to an initialized vector; the result is stored here. It will be resized if necessary.

Returns:

Error code.

Time complexity: O(mn), the number of elements in the matrix.

igraph_matrix_colsum — Columnwise sum.

int igraph_matrix_colsum(const igraph_matrix_t *m,
 igraph_vector_t *res);

Calculate the sum of the elements in each column.

Arguments:

m: The input matrix.

res: Pointer to an initialized vector; the result is stored here. It will be resized if necessary.

Returns:

Error code.

Time complexity: O(mn), the number of elements in the matrix.

igraph_matrix_transpose — Transpose a matrix.

int igraph_matrix_transpose(igraph_matrix_t *m);

Calculate the transpose of a matrix. Note that the function reallocates the memory used for the matrix.

Arguments:

Data structure library: vec-
tor, matrix, other data types

78

m: The input (and output) matrix.

Returns:

Error code.

Time complexity: O(mn), the number of elements in the matrix.

Matrix comparisons

igraph_matrix_all_e — Are all elements equal?

igraph_bool_t igraph_matrix_all_e(const igraph_matrix_t *lhs,
 const igraph_matrix_t *rhs);

Arguments:

lhs: The first matrix.

rhs: The second matrix.

Returns:

Positive integer (=true) if the elements in the lhs are all equal to the corresponding elements in rhs.
Returns 0 (=false) if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

igraph_matrix_all_l — Are all elements less?

igraph_bool_t igraph_matrix_all_l(const igraph_matrix_t *lhs,
 const igraph_matrix_t *rhs);

Arguments:

lhs: The first matrix.

rhs: The second matrix.

Returns:

Positive integer (=true) if the elements in the lhs are all less than the corresponding elements in rhs.
Returns 0 (=false) if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

igraph_matrix_all_g — Are all elements greater?

Data structure library: vec-
tor, matrix, other data types

79

igraph_bool_t igraph_matrix_all_g(const igraph_matrix_t *lhs,
 const igraph_matrix_t *rhs);

Arguments:

lhs: The first matrix.

rhs: The second matrix.

Returns:

Positive integer (=true) if the elements in the lhs are all greater than the corresponding elements in
rhs. Returns 0 (=false) if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

igraph_matrix_all_le — Are all elements less or equal?

igraph_bool_t
igraph_matrix_all_le(const igraph_matrix_t *lhs,
 const igraph_matrix_t *rhs);

Arguments:

lhs: The first matrix.

rhs: The second matrix.

Returns:

Positive integer (=true) if the elements in the lhs are all less than or equal to the corresponding elements
in rhs. Returns 0 (=false) if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

igraph_matrix_all_ge — Are all elements greater or equal?

igraph_bool_t
igraph_matrix_all_ge(const igraph_matrix_t *lhs,
 const igraph_matrix_t *rhs);

Arguments:

lhs: The first matrix.

rhs: The second matrix.

Returns:

Data structure library: vec-
tor, matrix, other data types

80

Positive integer (=true) if the elements in the lhs are all greater than or equal to the corresponding
elements in rhs. Returns 0 (=false) if the dimensions of the matrices don't match.

Time complexity: O(nm), the size of the matrices.

Combining matrices

igraph_matrix_rbind — Combine two matrices rowwise.

int igraph_matrix_rbind(igraph_matrix_t *to,
 const igraph_matrix_t *from);

This function places the rows of from below the rows of to and stores the result in to. The number of
columns in the two matrices must match.

Arguments:

to: The upper matrix; the result is also stored here.

from: The lower matrix. It is left unchanged.

Returns:

Error code.

Time complexity: O(mn), the number of elements in the newly created matrix.

igraph_matrix_cbind — Combine matrices columnwise.

int igraph_matrix_cbind(igraph_matrix_t *to,
 const igraph_matrix_t *from);

This function places the columns of from on the right of to, and stores the result in to.

Arguments:

to: The left matrix; the result is stored here too.

from: The right matrix. It is left unchanged.

Returns:

Error code.

Time complexity: O(mn), the number of elements on the new matrix.

Finding minimum and maximum

igraph_matrix_min — Minimum element.

Data structure library: vec-
tor, matrix, other data types

81

igraph_real_t igraph_matrix_min(const igraph_matrix_t *m);

Returns the smallest element of a non-empty matrix.

Arguments:

m: The input matrix.

Returns:

The smallest element.

Time complexity: O(mn), the number of elements.

igraph_matrix_max — Returns the maximal element of a matrix.

igraph_real_t igraph_matrix_max(const igraph_matrix_t *m);

Arguments:

m: The matrix object.

Returns:

The maximum element. For empty matrix the returned value is undefined.

Added in version 0.2.

Time complexity: O(n), the number of elements in the matrix.

igraph_matrix_which_min — Indices of the minimum.

int igraph_matrix_which_min(const igraph_matrix_t *m,
 long int *i, long int *j);

Gives the indices of the (first) smallest element in a non-empty matrix.

Arguments:

m: The matrix.

i: Pointer to a long int. The row index of the minimum is stored here.

j: Pointer to a long int. The column index of the minimum is stored here.

Returns:

Error code.

Data structure library: vec-
tor, matrix, other data types

82

Time complexity: O(mn), the number of elements.

igraph_matrix_which_max — Indices of the maximum.

int igraph_matrix_which_max(const igraph_matrix_t *m,
 long int *i, long int *j);

Gives the indices of the (first) largest element in a non-empty matrix.

Arguments:

m: The matrix.

i: Pointer to a long int. The row index of the maximum is stored here.

j: Pointer to a long int. The column index of the maximum is stored here.

Returns:

Error code.

Time complexity: O(mn), the number of elements.

igraph_matrix_minmax — Minimum and maximum

int igraph_matrix_minmax(const igraph_matrix_t *m,
 igraph_real_t *min, igraph_real_t *max);

The maximum and minimum elements of a non-empty matrix.

Arguments:

m: The input matrix.

min: Pointer to a base type. The minimum is stored here.

max: Pointer to a base type. The maximum is stored here.

Returns:

Error code.

Time complexity: O(mn), the number of elements.

igraph_matrix_which_minmax — Indices of the minimum and
maximum

int igraph_matrix_which_minmax(const igraph_matrix_t *m,
 long int *imin, long int *jmin,

Data structure library: vec-
tor, matrix, other data types

83

 long int *imax, long int *jmax);

Find the positions of the smallest and largest elements of a non-empty matrix.

Arguments:

m: The input matrix.

imin: Pointer to a long int, the row index of the minimum is stored here.

jmin: Pointer to a long int, the column index of the minimum is stored here.

imax: Pointer to a long int, the row index of the maximum is stored here.

jmax: Pointer to a long int, the column index of the maximum is stored here.

Returns:

Error code.

Time complexity: O(mn), the number of elements.

Matrix properties

igraph_matrix_empty — Check for an empty matrix.

igraph_bool_t igraph_matrix_empty(const igraph_matrix_t *m);

It is possible to have a matrix with zero rows or zero columns, or even both. This functions checks for these.

Arguments:

m: The input matrix.

Returns:

Boolean, TRUE if the matrix contains zero elements, and FALSE otherwise.

Time complexity: O(1).

igraph_matrix_isnull — Check for a null matrix.

igraph_bool_t igraph_matrix_isnull(const igraph_matrix_t *m);

Checks whether all elements are zero.

Arguments:

m: The input matrix.

Returns:

Data structure library: vec-
tor, matrix, other data types

84

Boolean, TRUE is m contains only zeros and FALSE otherwise.

Time complexity: O(mn), the number of elements.

igraph_matrix_size — The number of elements in a matrix.

long int igraph_matrix_size(const igraph_matrix_t *m);

Arguments:

m: Pointer to an initialized matrix object.

Returns:

The size of the matrix.

Time complexity: O(1).

igraph_matrix_capacity — Returns the number of elements allo-
cated for a matrix.

long int igraph_matrix_capacity(const igraph_matrix_t *m);

Note that this might be different from the size of the matrix (as queried by igraph_matrix_size(),
and specifies how many elements the matrix can hold, without reallocation.

Arguments:

v: Pointer to the (previously initialized) matrix object to query.

Returns:

The allocated capacity.

See also:

igraph_matrix_size(), igraph_matrix_nrow(), igraph_matrix_ncol().

Time complexity: O(1).

igraph_matrix_nrow — The number of rows in a matrix.

long int igraph_matrix_nrow(const igraph_matrix_t *m);

Arguments:

Data structure library: vec-
tor, matrix, other data types

85

m: Pointer to an initialized matrix object.

Returns:

The number of rows in the matrix.

Time complexity: O(1).

igraph_matrix_ncol — The number of columns in a matrix.

long int igraph_matrix_ncol(const igraph_matrix_t *m);

Arguments:

m: Pointer to an initialized matrix object.

Returns:

The number of columns in the matrix.

Time complexity: O(1).

igraph_matrix_is_symmetric — Check for symmetric matrix.

igraph_bool_t igraph_matrix_is_symmetric(const igraph_matrix_t *m);

A non-square matrix is not symmetric by definition.

Arguments:

m: The input matrix.

Returns:

Boolean, TRUE if the matrix is square and symmetric, FALSE otherwise.

Time complexity: O(mn), the number of elements. O(1) for non-square matrices.

igraph_matrix_maxdifference — Maximum absolute difference
between two matrices.

igraph_real_t igraph_matrix_maxdifference(const igraph_matrix_t *m1,
 const igraph_matrix_t *m2);

Calculate the maximum absolute difference of two matrices. Both matrices must be non-empty. If their
dimensions differ then a warning is given and the comparison is performed by vectors columnwise from
both matrices. The remaining elements in the larger vector are ignored.

Data structure library: vec-
tor, matrix, other data types

86

Arguments:

m1: The first matrix.

m2: The second matrix.

Returns:

The element with the largest absolute value in m1 - m2.

Time complexity: O(mn), the elements in the smaller matrix.

Searching for elements

igraph_matrix_contains — Search for an element.

igraph_bool_t igraph_matrix_contains(const igraph_matrix_t *m,
 igraph_real_t e);

Search for the given element in the matrix.

Arguments:

m: The input matrix.

e: The element to search for.

Returns:

Boolean, TRUE if the matrix contains e, FALSE otherwise.

Time complexity: O(mn), the number of elements.

igraph_matrix_search — Search from a given position.

igraph_bool_t igraph_matrix_search(const igraph_matrix_t *m,
 long int from, igraph_real_t what,
 long int *pos,
 long int *row, long int *col);

Search for an element in a matrix and start the search from the given position. The search is performed
columnwise.

Arguments:

m: The input matrix.

from: The position to search from, the positions are enumerated columnwise.

what: The element to search for.

Data structure library: vec-
tor, matrix, other data types

87

pos: Pointer to a long int. If the element is found, then this is set to the position of its first appearance.

row: Pointer to a long int. If the element is found, then this is set to its row index.

col: Pointer to a long int. If the element is found, then this is set to its column index.

Returns:

Boolean, TRUE if the element is found, FALSE otherwise.

Time complexity: O(mn), the number of elements.

Resizing operations

igraph_matrix_resize — Resizes a matrix.

int igraph_matrix_resize(igraph_matrix_t *m, long int nrow, long int ncol);

This function resizes a matrix by adding more elements to it. The matrix contains arbitrary data after
resizing it. That is, after calling this function you cannot expect that element (i,j) in the matrix remains
the same as before.

Arguments:

m: Pointer to an already initialized matrix object.

nrow: The number of rows in the resized matrix.

ncol: The number of columns in the resized matrix.

Returns:

Error code.

Time complexity: O(1) if the matrix gets smaller, usually O(n) if it gets larger, n is the number of elements
in the resized matrix.

igraph_matrix_resize_min — Deallocates unused memory for a
matrix.

int igraph_matrix_resize_min(igraph_matrix_t *m);

Note that this function might fail if there is not enough memory available.

Also note, that this function leaves the matrix intact, i.e. it does not destroy any of the elements. However,
usually it involves copying the matrix in memory.

Arguments:

Data structure library: vec-
tor, matrix, other data types

88

m: Pointer to an initialized matrix.

Returns:

Error code.

See also:

igraph_matrix_resize().

Time complexity: operating system dependent.

igraph_matrix_add_rows — Adds rows to a matrix.

int igraph_matrix_add_rows(igraph_matrix_t *m, long int n);

Arguments:

m: The matrix object.

n: The number of rows to add.

Returns:

Error code, IGRAPH_ENOMEM if there isn't enough memory for the operation.

Time complexity: linear with the number of elements of the new, resized matrix.

igraph_matrix_add_cols — Adds columns to a matrix.

int igraph_matrix_add_cols(igraph_matrix_t *m, long int n);

Arguments:

m: The matrix object.

n: The number of columns to add.

Returns:

Error code, IGRAPH_ENOMEM if there is not enough memory to perform the operation.

Time complexity: linear with the number of elements of the new, resized matrix.

igraph_matrix_remove_row — Remove a row.

Data structure library: vec-
tor, matrix, other data types

89

int igraph_matrix_remove_row(igraph_matrix_t *m, long int row);

A row is removed from the matrix.

Arguments:

m: The input matrix.

row: The index of the row to remove.

Returns:

Error code.

Time complexity: O(mn), the number of elements in the matrix.

igraph_matrix_remove_col — Removes a column from a matrix.

int igraph_matrix_remove_col(igraph_matrix_t *m, long int col);

Arguments:

m: The matrix object.

col: The column to remove.

Returns:

Error code, always returns with success.

Time complexity: linear with the number of elements of the new, resized matrix.

Sparse matrices

About igraph_spmatrix_t objects
The igraph_spmatrix_t type stores a sparse matrix with the assumption that the number of nonzero elements
in the matrix scales linearly with the row or column count of the matrix (so most of the elements are zero).
Of course it can store an arbitrary real matrix, but if most of the elements are nonzero, one should use
igraph_matrix_t instead.

The elements are stored in column compressed format, so the elements in the same column are stored
adjacent in the computer's memory. The storage requirement for a sparse matrix is O(n) where n is the
number of nonzero elements. Actually it can be a bit larger, see the documentation of the vector type for
an explanation.

Sparse matrix constructors and destructors.

igraph_spmatrix_init — Initializes a sparse matrix.

Data structure library: vec-
tor, matrix, other data types

90

int igraph_spmatrix_init(igraph_spmatrix_t *m, long int nrow, long int ncol);

Every sparse matrix needs to be initialized before using it, this is done by calling this function. A matrix
has to be destroyed if it is not needed any more, see igraph_spmatrix_destroy().

Arguments:

m: Pointer to a not yet initialized sparse matrix object to be initialized.

nrow: The number of rows in the matrix.

ncol: The number of columns in the matrix.

Returns:

Error code.

Time complexity: operating system dependent.

igraph_spmatrix_copy — Copies a sparse matrix.

int igraph_spmatrix_copy(igraph_spmatrix_t *to, const igraph_spmatrix_t *from);

Creates a sparse matrix object by copying another one.

Arguments:

to: Pointer to an uninitialized sparse matrix object.

from: The initialized sparse matrix object to copy.

Returns:

Error code, IGRAPH_ENOMEM if there isn't enough memory to allocate the new sparse matrix.

Time complexity: O(n), the number of elements in the matrix.

igraph_spmatrix_destroy — Destroys a sparse matrix object.

void igraph_spmatrix_destroy(igraph_spmatrix_t *m);

This function frees all the memory allocated for a sparse matrix object. The destroyed object needs to be
reinitialized before using it again.

Arguments:

m: The matrix to destroy.

Data structure library: vec-
tor, matrix, other data types

91

Time complexity: operating system dependent.

Accessing elements of a sparse matrix

igraph_spmatrix_e — Accessing an element of a sparse matrix.

igraph_real_t igraph_spmatrix_e(const igraph_spmatrix_t *m,
 long int row, long int col);

Note that there are no range checks right now.

Arguments:

m: The matrix object.

row: The index of the row, starting with zero.

col: The index of the column, starting with zero.

Time complexity: O(log n), where n is the number of nonzero elements in the requested column.

igraph_spmatrix_set — Setting an element of a sparse matrix.

int igraph_spmatrix_set(igraph_spmatrix_t *m, long int row, long int col,
 igraph_real_t value);

Note that there are no range checks right now.

Arguments:

m: The matrix object.

row: The index of the row, starting with zero.

col: The index of the column, starting with zero.

value: The new value.

Time complexity: O(log n), where n is the number of nonzero elements in the requested column.

igraph_spmatrix_add_e — Adding a real value to an element of a
sparse matrix.

int igraph_spmatrix_add_e(igraph_spmatrix_t *m, long int row, long int col,
 igraph_real_t value);

Note that there are no range checks right now. This is implemented to avoid double lookup of a given
element in the matrix by using igraph_spmatrix_e() and igraph_spmatrix_set() consec-
utively.

Data structure library: vec-
tor, matrix, other data types

92

Arguments:

m: The matrix object.

row: The index of the row, starting with zero.

col: The index of the column, starting with zero.

value: The value to add.

Time complexity: O(log n), where n is the number of nonzero elements in the requested column.

Iterating over the non-zero elements of a sparse matrix
The igraph_spmatrix_iter_t type represents an iterator that can be used to step over the non-zero elements
of a sparse matrix in columnwise order efficiently. In general, you shouldn't modify the elements of the
matrix while iterating over it; doing so will probably invalidate the iterator, but there are no checks to
prevent you from doing this.

To access the row index of the current element of the iterator, use its ri field. Similarly, the ci field stores
the column index of the current element and the value field stores the value of the element.

igraph_spmatrix_iter_create — Creates a sparse matrix itera-
tor corresponding to the given matrix.

int igraph_spmatrix_iter_create(igraph_spmatrix_iter_t *mit, const igraph_spmatrix_t *m);

Arguments:

mit: pointer to the matrix iterator being initialized

m: pointer to the matrix we will be iterating over

Returns:

Error code. The current implementation is always successful.

Time complexity: O(1).

igraph_spmatrix_iter_reset — Resets a sparse matrix iterator.

int igraph_spmatrix_iter_reset(igraph_spmatrix_iter_t *mit);

After resetting, the iterator will point to the first nonzero element (if any).

Arguments:

mit: pointer to the matrix iterator being reset

Data structure library: vec-
tor, matrix, other data types

93

Returns:

Error code. The current implementation is always successful.

Time complexity: O(1).

igraph_spmatrix_iter_next — Moves a sparse matrix iterator to
the next nonzero element.

int igraph_spmatrix_iter_next(igraph_spmatrix_iter_t *mit);

You should call this function only if igraph_spmatrix_iter_end() returns FALSE (0).

Arguments:

mit: pointer to the matrix iterator being moved

Returns:

Error code. The current implementation is always successful.

Time complexity: O(1).

igraph_spmatrix_iter_end — Checks whether there are more el-
ements in the iterator.

igraph_bool_t igraph_spmatrix_iter_end(igraph_spmatrix_iter_t *mit);

You should call this function before calling igraph_spmatrix_iter_next() to make sure you
have more elements in the iterator.

Arguments:

mit: pointer to the matrix iterator being checked

Returns:

TRUE (1) if there are more elements in the iterator, FALSE (0) otherwise.

Time complexity: O(1).

igraph_spmatrix_iter_destroy — Frees the memory used by
the iterator.

void igraph_spmatrix_iter_destroy(igraph_spmatrix_iter_t *mit);

Data structure library: vec-
tor, matrix, other data types

94

The current implementation does not allocate any memory upon creation, so this function does noth-
ing. However, since there is no guarantee that future implementations will not allocate any memory in
igraph_spmatrix_iter_create(), you are still required to call this function whenever you are
done with the iterator.

Arguments:

mit: pointer to the matrix iterator being destroyed

Time complexity: O(1).

Matrix query operations

igraph_spmatrix_size — The number of elements in a sparse
matrix.

long int igraph_spmatrix_size(const igraph_spmatrix_t *m);

Arguments:

m: Pointer to an initialized sparse matrix object.

Returns:

The size of the matrix.

Time complexity: O(1).

igraph_spmatrix_nrow — The number of rows in a sparse matrix.

long int igraph_spmatrix_nrow(const igraph_spmatrix_t *m);

Arguments:

m: Pointer to an initialized sparse matrix object.

Returns:

The number of rows in the matrix.

Time complexity: O(1).

igraph_spmatrix_ncol — The number of columns in a sparse ma-
trix.

Data structure library: vec-
tor, matrix, other data types

95

long int igraph_spmatrix_ncol(const igraph_spmatrix_t *m);

Arguments:

m: Pointer to an initialized sparse matrix object.

Returns:

The number of columns in the sparse matrix.

Time complexity: O(1).

igraph_spmatrix_count_nonzero — The number of non-zero ele-
ments in a sparse matrix.

long int igraph_spmatrix_count_nonzero(const igraph_spmatrix_t *m);

Arguments:

m: Pointer to an initialized sparse matrix object.

Returns:

The size of the matrix.

Time complexity: O(1).

igraph_spmatrix_max — Returns the maximum element of a ma-
trix.

igraph_real_t igraph_spmatrix_max(const igraph_spmatrix_t *m,
 igraph_real_t *ridx, igraph_real_t *cidx);

If the matrix is empty, zero is returned.

Arguments:

m: the matrix object.

ridx: the row index of the maximum element if not NULL.

cidx: the column index of the maximum element if not NULL.

Time complexity: O(n), the number of nonzero elements in the matrix.

igraph_spmatrix_rowsums — Calculates the row sums of the ma-
trix.

Data structure library: vec-
tor, matrix, other data types

96

int igraph_spmatrix_rowsums(const igraph_spmatrix_t *m, igraph_vector_t *res);

Arguments:

m: The matrix.

res: An initialized igraph_vector_t, the result will be stored here. The vector will be resized as
needed.

Time complexity: O(n), the number of nonzero elements in the matrix.

igraph_spmatrix_colsums — Calculates the column sums of the
matrix.

int igraph_spmatrix_colsums(const igraph_spmatrix_t *m, igraph_vector_t *res);

Arguments:

m: The matrix.

res: An initialized igraph_vector_t, the result will be stored here. The vector will be resized as
needed.

Time complexity: O(n), the number of nonzero elements in the matrix.

Matrix operations

igraph_spmatrix_scale — Multiplies each element of the sparse
matrix by a constant.

void igraph_spmatrix_scale(igraph_spmatrix_t *m, igraph_real_t by);

Arguments:

m: The matrix.

by: The constant.

Time complexity: O(n), the number of elements in the matrix.

igraph_spmatrix_add_rows — Adds rows to a sparse matrix.

int igraph_spmatrix_add_rows(igraph_spmatrix_t *m, long int n);

Data structure library: vec-
tor, matrix, other data types

97

Arguments:

m: The sparse matrix object.

n: The number of rows to add.

Returns:

Error code.

Time complexity: O(1).

igraph_spmatrix_add_cols — Adds columns to a sparse matrix.

int igraph_spmatrix_add_cols(igraph_spmatrix_t *m, long int n);

Arguments:

m: The sparse matrix object.

n: The number of columns to add.

Returns:

Error code.

Time complexity: O(1).

igraph_spmatrix_resize — Resizes a sparse matrix.

int igraph_spmatrix_resize(igraph_spmatrix_t *m, long int nrow, long int ncol);

This function resizes a sparse matrix by adding more elements to it. The matrix retains its data even after
resizing it, except for the data which lies outside the new boundaries (if the new size is smaller).

Arguments:

m: Pointer to an already initialized sparse matrix object.

nrow: The number of rows in the resized matrix.

ncol: The number of columns in the resized matrix.

Returns:

Error code.

Time complexity: O(n). n is the number of elements in the old matrix.

Data structure library: vec-
tor, matrix, other data types

98

Printing sparse matrices

igraph_spmatrix_print — Prints a sparse matrix.

int igraph_spmatrix_print(const igraph_spmatrix_t* matrix);

Prints a sparse matrix to the standard output. Only the non-zero entries are printed.

Returns:

Error code.

Time complexity: O(n), the number of non-zero elements.

igraph_spmatrix_fprint — Prints a sparse matrix to the given
file.

int igraph_spmatrix_fprint(const igraph_spmatrix_t* matrix, FILE *file);

Prints a sparse matrix to the given file. Only the non-zero entries are printed.

Returns:

Error code.

Time complexity: O(n), the number of non-zero elements.

Sparse matrices, another kind

About sparse matrices
The igraph_sparsemat_t data type stores sparse matrices, i.e. matrices in which the majority of
the elements are zero.

The data type is essentially a wrapper to some of the functions in the CXSparse library, by Tim Davis, see
http://www.cise.ufl.edu/research/sparse/CXSparse/

Matrices can be stored in two formats: triplet and column-compressed. The triplet format is intended for
sparse matrix initialization, as it is easy to add new (non-zero) elements to it. Most of the computations
are done on sparse matrices in column-compressed format, after the user has converted the triplet matrix
to column-compressed, via igraph_sparsemat_compress().

Both formats are dynamic, in the sense that new elements can be added to them, possibly resulting the
allocation of more memory.

Row and column indices follow the C convention and are zero-based.

Example 7.2. File examples/simple/igraph_sparsemat.c

http://www.cise.ufl.edu/research/sparse/CXSparse/

Data structure library: vec-
tor, matrix, other data types

99

Example 7.3. File examples/simple/igraph_sparsemat2.c

Example 7.4. File examples/simple/igraph_sparsemat3.c

Example 7.5. File examples/simple/igraph_sparsemat4.c

Example 7.6. File examples/simple/igraph_sparsemat5.c

Example 7.7. File examples/simple/igraph_sparsemat6.c

Example 7.8. File examples/simple/igraph_sparsemat7.c

Example 7.9. File examples/simple/igraph_sparsemat8.c

Creating sparse matrix objects

igraph_sparsemat_init — Initialize a sparse matrix, in triplet for-
mat

int igraph_sparsemat_init(igraph_sparsemat_t *A, int rows, int cols, int nzmax);

This is the most common way to create a sparse matrix, together with the
igraph_sparsemat_entry() function, which can be used to add the non-zero elements one by
one. Once done, the user can call igraph_sparsemat_compress() to convert the matrix to col-
umn-compressed, to allow computations with it.

The user must call igraph_sparsemat_destroy() on the matrix to deallocate the memory, once
the matrix is no more needed.

Arguments:

A: Pointer to a not yet initialized sparse matrix.

rows: The number of rows in the matrix.

cols: The number of columns.

nzmax: The maximum number of non-zero elements in the matrix. It is not compulsory to get this right,
but it is useful for the allocation of the proper amount of memory.

Returns:

Error code.

Time complexity: TODO.

Data structure library: vec-
tor, matrix, other data types

100

igraph_sparsemat_copy — Copy a sparse matrix

int igraph_sparsemat_copy(igraph_sparsemat_t *to,
 const igraph_sparsemat_t *from);

Create a sparse matrix object, by copying another one. The source matrix can be either in triplet or col-
umn-compressed format.

Exactly the same amount of memory will be allocated to the copy matrix, as it is currently for the original
one.

Arguments:

to: Pointer to an uninitialized sparse matrix, the copy will be created here.

from: The sparse matrix to copy.

Returns:

Error code.

Time complexity: O(n+nzmax), the number of columns plus the maximum number of non-zero elements.

igraph_sparsemat_realloc — Allocate more (or less) memory
for a sparse matrix

int igraph_sparsemat_realloc(igraph_sparsemat_t *A, int nzmax);

Sparse matrices automatically allocate more memory, as needed. To control memory allocation, the user
can call this function, to allocate memory for a given number of non-zero elements.

Arguments:

A: The sparse matrix, it can be in triplet or column-compressed format.

nzmax: The new maximum number of non-zero elements.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_destroy — Deallocate memory used by a
sparse matrix

void igraph_sparsemat_destroy(igraph_sparsemat_t *A);

Data structure library: vec-
tor, matrix, other data types

101

One destroyed, the sparse matrix must be initialized again, before calling any other operation on it.

Arguments:

A: The sparse matrix to destroy.

Time complexity: O(1).

igraph_sparsemat_eye — Create a sparse identity matrix

int igraph_sparsemat_eye(igraph_sparsemat_t *A, int n, int nzmax,
 igraph_real_t value,
 igraph_bool_t compress);

Arguments:

A: An uninitialized sparse matrix, the result is stored here.

n: The number of rows and number of columns in the matrix.

nzmax: The maximum number of non-zero elements, this essentially gives the amount of memory
that will be allocated for matrix elements.

value: The value to store in the diagonal.

compress: Whether to create a column-compressed matrix. If false, then a triplet matrix is created.

Returns:

Error code.

Time complexity: O(n).

igraph_sparsemat_diag — Create a sparse diagonal matrix

int igraph_sparsemat_diag(igraph_sparsemat_t *A, int nzmax,
 const igraph_vector_t *values,
 igraph_bool_t compress);

Arguments:

A: An uninitialized sparse matrix, the result is stored here.

nzmax: The maximum number of non-zero elements, this essentially gives the amount of memory
that will be allocated for matrix elements.

values: The values to store in the diagonal, the size of the matrix defined by the length of this
vector.

compress: Whether to create a column-compressed matrix. If false, then a triplet matrix is created.

Data structure library: vec-
tor, matrix, other data types

102

Returns:

Error code.

Time complexity: O(n), the length of the diagonal vector.

Query properties of a sparse matrix

igraph_sparsemat_index — Index a sparse matrix, extract a sub-
matrix, or a single element

int igraph_sparsemat_index(const igraph_sparsemat_t *A,
 const igraph_vector_int_t *p,
 const igraph_vector_int_t *q,
 igraph_sparsemat_t *res,
 igraph_real_t *constres);

This function serves two purposes. First, it can extract submatrices from a sparse matrix. Second, as a
special case, it can extract a single element from a sparse matrix.

Arguments:

A: The input matrix, it must be in column-compressed format.

p: An integer vector, or a null pointer. The selected row index or indices. A null pointer
selects all rows.

q: An integer vector, or a null pointer. The selected column index or indices. A null pointer
selects all columns.

res: Pointer to an uninitialized sparse matrix, or a null pointer. If not a null pointer, then the
selected submatrix is stored here.

constres: Pointer to a real variable or a null pointer. If not a null pointer, then the first non-zero
element in the selected submatrix is stored here, if there is one. Otherwise zero is stored
here. This behavior is handy if one wants to select a single entry from the matrix.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_nrow — Number of rows

long int igraph_sparsemat_nrow(const igraph_sparsemat_t *A);

Arguments:

Data structure library: vec-
tor, matrix, other data types

103

A: The input matrix, in triplet or column-compressed format.

Returns:

The number of rows in the A matrix.

Time complexity: O(1).

igraph_sparsemat_ncol — Number of columns.

long int igraph_sparsemat_ncol(const igraph_sparsemat_t *A);

Arguments:

A: The input matrix, in triplet or column-compressed format.

Returns:

The number of columns in the A matrix.

Time complexity: O(1).

igraph_sparsemat_type — Type of a sparse matrix (triplet or col-
umn-compressed)

igraph_sparsemat_type_t igraph_sparsemat_type(const igraph_sparsemat_t *A);

Gives whether a sparse matrix is stored in the triplet format or in column-compressed format.

Arguments:

A: The input matrix.

Returns:

Either IGRAPH_SPARSEMAT_CC or IGRAPH_SPARSEMAT_TRIPLET.

Time complexity: O(1).

igraph_sparsemat_is_triplet — Is this sparse matrix in triplet
format?

igraph_bool_t igraph_sparsemat_is_triplet(const igraph_sparsemat_t *A);

Decides whether a sparse matrix is in triplet format.

Arguments:

Data structure library: vec-
tor, matrix, other data types

104

A: The input matrix.

Returns:

One if the input matrix is in triplet format, zero otherwise.

Time complexity: O(1).

igraph_sparsemat_is_cc — Is this sparse matrix in column-com-
pressed format?

igraph_bool_t igraph_sparsemat_is_cc(const igraph_sparsemat_t *A);

Decides whether a sparse matrix is in column-compressed format.

Arguments:

A: The input matrix.

Returns:

One if the input matrix is in column-compressed format, zero otherwise.

Time complexity: O(1).

Operations on sprase matrices

igraph_sparsemat_entry — Add an element to a sparse matrix

int igraph_sparsemat_entry(igraph_sparsemat_t *A, int row, int col,
 igraph_real_t elem);

This function can be used to add the entries to a sparse matrix, after initializing it with
igraph_sparsemat_init().

Arguments:

A: The input matrix, it must be in triplet format.

row: The row index of the entry to add.

col: The column index of the entry to add.

elem: The value of the entry.

Returns:

Error code.

Time complexity: TODO.

Data structure library: vec-
tor, matrix, other data types

105

igraph_sparsemat_fkeep — Filter the elements of a sparse matrix

int igraph_sparsemat_fkeep(igraph_sparsemat_t *A,
 int (*fkeep)(int, int, igraph_real_t, void*),
 void *other);

This function can be used to filter the (non-zero) elements of a sparse matrix. For all entries, it calls the
supplied function and depending on the return values either keeps, or deleted the element from the matrix.

Arguments:

A: The input matrix, in column-compressed format.

fkeep: The filter function. It must take four arguments: the first is an int, the row index of the entry,
the second is another int, the column index. The third is igraph_real_t, the value of the
entry. The fourth element is a void pointer, the other argument is passed here. The function
must return an int. If this is zero, then the entry is deleted, otherwise it is kept.

other: A void pointer that is passed to the filtering function.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_dropzeros — Drop the zero elements from a
sparse matrix

int igraph_sparsemat_dropzeros(igraph_sparsemat_t *A);

As a result of matrix operations, some of the entries in a sparse matrix might be zero. This function removes
these entries.

Arguments:

A: The input matrix, it must be in column-compressed format.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_droptol — Drop the almost zero elements of
a sparse matrix

Data structure library: vec-
tor, matrix, other data types

106

int igraph_sparsemat_droptol(igraph_sparsemat_t *A, igraph_real_t tol);

This function is similar to igraph_sparsemat_dropzeros(), but it also drops entries that are closer
to zero than the given tolerance threshold.

Arguments:

A: The input matrix, it must be in column-compressed format.

tol: Real number, giving the tolerance threshold.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_scale — Scale a sparse matrix

int igraph_sparsemat_scale(igraph_sparsemat_t *A, igraph_real_t by);

Multiplies all elements of a sparse matrix, by the given scalar.

Arguments:

A: The input matrix.

by: The scaling factor.

Returns:

Error code.

Time complexity: O(nz), the number of non-zero elements in the matrix.

igraph_sparsemat_permute — Permute the rows and columns of
a sparse matrix

int igraph_sparsemat_permute(const igraph_sparsemat_t *A,
 const igraph_vector_int_t *p,
 const igraph_vector_int_t *q,
 igraph_sparsemat_t *res);

Arguments:

A: The input matrix, it must be in column-compressed format.

p: Integer vector, giving the permutation of the rows.

q: Integer vector, the permutation of the columns.

Data structure library: vec-
tor, matrix, other data types

107

res: Pointer to an uninitialized sparse matrix, the result is stored here.

Returns:

Error code.

Time complexity: O(m+n+nz), the number of rows plus the number of columns plus the number of non-
zero elements in the matrix.

igraph_sparsemat_transpose — Transpose a sparse matrix

int igraph_sparsemat_transpose(const igraph_sparsemat_t *A,
 igraph_sparsemat_t *res,
 int values);

Arguments:

A: The input matrix, column-compressed or triple format.

res: Pointer to an uninitialized sparse matrix, the result is stored here.

values: If this is non-zero, the matrix transpose is calculated the normal way. If it is zero, then only
the pattern of the input matrix is stored in the result, the values are not.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_add — Sum of two sparse matrices

int igraph_sparsemat_add(const igraph_sparsemat_t *A,
 const igraph_sparsemat_t *B,
 igraph_real_t alpha,
 igraph_real_t beta,
 igraph_sparsemat_t *res);

Arguments:

A: The first input matrix, in column-compressed format.

B: The second input matrix, in column-compressed format.

alpha: Real scalar, A is multiplied by alpha before the addition.

beta: Real scalar, B is multiplied by beta before the addition.

res: Pointer to an uninitialized sparse matrix, the result is stored here.

Data structure library: vec-
tor, matrix, other data types

108

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_multiply — Matrix multiplication

int igraph_sparsemat_multiply(const igraph_sparsemat_t *A,
 const igraph_sparsemat_t *B,
 igraph_sparsemat_t *res);

Multiplies two sparse matrices.

Arguments:

A: The first input matrix (left hand side), in column-compressed format.

B: The second input matrix (right hand side), in column-compressed format.

res: Pointer to an uninitialized sparse matrix, the result is stored here.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_gaxpy — Matrix-vector product, added to an-
other vector.

int igraph_sparsemat_gaxpy(const igraph_sparsemat_t *A,
 const igraph_vector_t *x,
 igraph_vector_t *res);

Arguments:

A: The input matrix, in column-compressed format.

x: The input vector, its size must match the number of columns in A.

res: This vector is added to the matrix-vector product and it is overwritten by the result.

Returns:

Error code.

Time complexity: TODO.

Data structure library: vec-
tor, matrix, other data types

109

igraph_sparsemat_add_rows — Add rows to a sparse matrix

int igraph_sparsemat_add_rows(igraph_sparsemat_t *A, long int n);

The current matrix elements are retained and all elements in the new rows are zero.

Arguments:

A: The input matrix, in triplet or column-compressed format.

n: The number of rows to add.

Returns:

Error code.

Time complexity: O(1).

igraph_sparsemat_add_cols — Add columns to a sparse matrix

int igraph_sparsemat_add_cols(igraph_sparsemat_t *A, long int n);

The current matrix elements are retained, and all elements in the new columns are zero.

Arguments:

A: The input matrix, in triplet or column-compressed format.

n: The number of columns to add.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_resize — Resize a sparse matrix

int igraph_sparsemat_resize(igraph_sparsemat_t *A, long int nrow,
 long int ncol, int nzmax);

This function resizes a sparse matrix. The resized sparse matrix will be empty.

Arguments:

A: The initialized sparse matrix to resize.

nrow: The new number of rows.

Data structure library: vec-
tor, matrix, other data types

110

ncol: The new number of columns.

nzmax: The new maximum number of elements.

Returns:

Error code.

Time complexity: O(nzmax), the maximum number of non-zero elements.

Operations that change the internal representation

igraph_sparsemat_compress — Compress a sparse matrix, i.e.
convert it to column-compress format

int igraph_sparsemat_compress(const igraph_sparsemat_t *A,
 igraph_sparsemat_t *res);

Almost all sparse matrix operations require that the matrix is in column-compressed format.

Arguments:

A: The input matrix, it must be in triplet format.

res: Pointer to an uninitialized sparse matrix object, the compressed version of A is stored here.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_dupl — Remove duplicate elements from a
sparse matrix

int igraph_sparsemat_dupl(igraph_sparsemat_t *A);

It is possible that a column-compressed sparse matrix stores a single matrix entry in multiple pieces. The
entry is then the sum of all its pieces. (Some functions create matrices like this.) This function eliminates
the multiple pieces.

Arguments:

A: The input matrix, in column-compressed format.

Returns:

Error code.

Data structure library: vec-
tor, matrix, other data types

111

Time complexity: TODO.

Decompositions and solving linear systems

igraph_sparsemat_symblu — Symbolic LU decomposition

int igraph_sparsemat_symblu(long int order, const igraph_sparsemat_t *A,
 igraph_sparsemat_symbolic_t *dis);

LU decomposition of sparse matrices involves two steps, the first is calling this function, and then
igraph_sparsemat_lu().

Arguments:

order: The ordering to use: 0 means natural ordering, 1 means minimum degree ordering of A+A', 2 is
minimum degree ordering of A'A after removing the dense rows from A, and 3 is the minimum
degree ordering of A'A.

A: The input matrix, in column-compressed format.

dis: The result of the symbolic analysis is stored here. Once not needed anymore, it must be de-
stroyed by calling igraph_sparsemat_symbolic_destroy().

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_symbqr — Symbolic QR decomposition

int igraph_sparsemat_symbqr(long int order, const igraph_sparsemat_t *A,
 igraph_sparsemat_symbolic_t *dis);

QR decomposition of sparse matrices involves two steps, the first is calling this function, and then
igraph_sparsemat_qr().

Arguments:

order: The ordering to use: 0 means natural ordering, 1 means minimum degree ordering of A+A', 2 is
minimum degree ordering of A'A after removing the dense rows from A, and 3 is the minimum
degree ordering of A'A.

A: The input matrix, in column-compressed format.

dis: The result of the symbolic analysis is stored here. Once not needed anymore, it must be de-
stroyed by calling igraph_sparsemat_symbolic_destroy().

Returns:

Data structure library: vec-
tor, matrix, other data types

112

Error code.

Time complexity: TODO.

igraph_sparsemat_lsolve — Solve a lower-triangular linear sys-
tem

int igraph_sparsemat_lsolve(const igraph_sparsemat_t *L,
 const igraph_vector_t *b,
 igraph_vector_t *res);

Solve the Lx=b linear equation system, where the L coefficient matrix is square and lower-triangular, with
a zero-free diagonal.

Arguments:

L: The input matrix, in column-compressed format.

b: The right hand side of the linear system.

res: An initialized vector, the result is stored here.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_ltsolve — Solve an upper-triangular linear
system

int igraph_sparsemat_ltsolve(const igraph_sparsemat_t *L,
 const igraph_vector_t *b,
 igraph_vector_t *res);

Solve the L'x=b linear equation system, where the L matrix is square and lower-triangular, with a zero-free
diagonal.

Arguments:

L: The input matrix, in column-compressed format.

b: The right hand side of the linear system.

res: An initialized vector, the result is stored here.

Returns:

Error code.

Time complexity: TODO.

Data structure library: vec-
tor, matrix, other data types

113

igraph_sparsemat_usolve — Solve an upper-triangular linear
system

int igraph_sparsemat_usolve(const igraph_sparsemat_t *U,
 const igraph_vector_t *b,
 igraph_vector_t *res);

Solves the Ux=b upper triangular system.

Arguments:

U: The input matrix, in column-compressed format.

b: The right hand side of the linear system.

res: An initialized vector, the result is stored here.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_utsolve — Solve a lower-triangular linear
system

int igraph_sparsemat_utsolve(const igraph_sparsemat_t *U,
 const igraph_vector_t *b,
 igraph_vector_t *res);

This is the same as igraph_sparsemat_usolve(), but U'x=b is solved, where the apostrophe de-
notes the transpose.

Arguments:

U: The input matrix, in column-compressed format.

b: The right hand side of the linear system.

res: An initialized vector, the result is stored here.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_cholsol — Solve a symmetric linear system
via Cholesky decomposition

Data structure library: vec-
tor, matrix, other data types

114

int igraph_sparsemat_cholsol(const igraph_sparsemat_t *A,
 const igraph_vector_t *b,
 igraph_vector_t *res,
 int order);

Solve Ax=b, where A is a symmetric positive definite matrix.

Arguments:

A: The input matrix, in column-compressed format.

v: The right hand side.

res: An initialized vector, the result is stored here.

order: An integer giving the ordering method to use for the factorization. Zero is the natural ordering;
if it is one, then the fill-reducing minimum-degree ordering of A+A' is used.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_lusol — Solve a linear system via LU decom-
position

int igraph_sparsemat_lusol(const igraph_sparsemat_t *A,
 const igraph_vector_t *b,
 igraph_vector_t *res,
 int order,
 igraph_real_t tol);

Solve Ax=b, via LU factorization of A.

Arguments:

A: The input matrix, in column-compressed format.

b: The right hand side of the equation.

res: An initialized vector, the result is stored here.

order: The ordering method to use, zero means the natural ordering, one means the fill-reducing min-
imum-degree ordering of A+A', two means the ordering of A'*A, after removing the dense
rows from A. Three means the ordering of A'*A.

tol: Real number, the tolerance limit to use for the numeric LU factorization.

Returns:

Error code.

Data structure library: vec-
tor, matrix, other data types

115

Time complexity: TODO.

igraph_sparsemat_lu — LU decomposition of a sparse matrix

int igraph_sparsemat_lu(const igraph_sparsemat_t *A,
 const igraph_sparsemat_symbolic_t *dis,
 igraph_sparsemat_numeric_t *din, double tol);

Performs numeric sparse LU decomposition of a matrix.

Arguments:

A: The input matrix, in column-compressed format.

dis: The symbolic analysis for LU decomposition, coming from a call to the
igraph_sparsemat_symblu() function.

din: The numeric decomposition, the result is stored here. It can be used
to solve linear systems with changing right hand side vectors, by calling
igraph_sparsemat_luresol(). Once not needed any more, it must be destroyed by call-
ing igraph_sparsemat_symbolic_destroy() on it.

tol: The tolerance for the numeric LU decomposition.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_qr — QR decomposition of a sparse matrix

int igraph_sparsemat_qr(const igraph_sparsemat_t *A,
 const igraph_sparsemat_symbolic_t *dis,
 igraph_sparsemat_numeric_t *din);

Numeric QR decomposition of a sparse matrix.

Arguments:

A: The input matrix, in column-compressed format.

dis: The result of the symbolic QR analysis, from the function igraph_sparsemat_symbqr().

din: The result of the decomposition is stored here, it can be used to solve many lin-
ear systems with the same coefficient matrix and changing right hand sides, using the
igraph_sparsemat_qrresol() function. Once not needed any more, one should call
igraph_sparsemat_numeric_destroy() on it to free the allocated memory.

Returns:

Data structure library: vec-
tor, matrix, other data types

116

Error code.

Time complexity: TODO.

igraph_sparsemat_luresol — Solve linear system using a pre-
computed LU decomposition

int igraph_sparsemat_luresol(const igraph_sparsemat_symbolic_t *dis,
 const igraph_sparsemat_numeric_t *din,
 const igraph_vector_t *b,
 igraph_vector_t *res);

Uses the LU decomposition of a matrix to solve linear systems.

Arguments:

dis: The symbolic analysis of the coefficient matrix, the result of
igraph_sparsemat_symblu().

din: The LU decomposition, the result of a call to igraph_sparsemat_lu().

b: A vector that defines the right hand side of the linear equation system.

res: An initialized vector, the solution of the linear system is stored here.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_qrresol — Solve a linear system using a pre-
computed QR decomposition

int igraph_sparsemat_qrresol(const igraph_sparsemat_symbolic_t *dis,
 const igraph_sparsemat_numeric_t *din,
 const igraph_vector_t *b,
 igraph_vector_t *res);

Solves a linear system using a QR decomposition of its coefficient matrix.

Arguments:

dis: Symbolic analysis of the coefficient matrix, the result of igraph_sparsemat_symbqr().

din: The QR decomposition of the coefficient matrix, the result of igraph_sparsemat_qr().

b: Vector, giving the right hand side of the linear equation system.

res: An initialized vector, the solution is stored here. It is resized as needed.

Data structure library: vec-
tor, matrix, other data types

117

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_symbolic_destroy — Deallocate memory for
a symbolic decomposition

void igraph_sparsemat_symbolic_destroy(igraph_sparsemat_symbolic_t *dis);

Frees the memory allocated by igraph_sparsemat_symbqr() or
igraph_sparsemat_symblu().

Arguments:

dis: The symbolic analysis.

Time complexity: O(1).

igraph_sparsemat_numeric_destroy — Deallocate memory for a
numeric decomposition

void igraph_sparsemat_numeric_destroy(igraph_sparsemat_numeric_t *din);

Frees the memoty allocated by igraph_sparsemat_qr() or igraph_sparsemat_lu().

Arguments:

din: The LU or QR decomposition.

Time complexity: O(1).

Eigenvalues and eigenvectors

igraph_sparsemat_arpack_rssolve — Eigenvalues and eigen-
vectors of a symmetric sparse matrix via ARPACK

int igraph_sparsemat_arpack_rssolve(const igraph_sparsemat_t *A,
 igraph_arpack_options_t *options,
 igraph_arpack_storage_t *storage,
 igraph_vector_t *values,
 igraph_matrix_t *vectors,
 igraph_sparsemat_solve_t solvemethod);

Arguments:

Data structure library: vec-
tor, matrix, other data types

118

The: input matrix, must be column-compressed.

options: It is passed to igraph_arpack_rssolve(). See
igraph_arpack_options_t for the details. If mode is 1, then ARPACK uses
regular mode, if mode is 3, then shift and invert mode is used and the sigma struc-
ture member defines the shift.

storage: Storage for ARPACK. See igraph_arpack_rssolve() and
igraph_arpack_storage_t for details.

values: An initialized vector or a null pointer, the eigenvalues are stored here.

vectors: An initialised matrix, or a null pointer, the eigenvectors are stored here, in the
columns.

solvemethod: The method to solve the linear system, if mode is 3, i.e. the shift and invert mode is
used. Possible values:

IGRAPH_SPARSEMAT_SOLVE_LU The linear system is solved using LU decom-
position.

IGRAPH_SPARSEMAT_SOLVE_QR The linear system is solved using QR decom-
position.

Returns:

Error code.

Time complexity: TODO.

igraph_sparsemat_arpack_rnsolve — Eigenvalues and eigen-
vectors of a nonsymmetric sparse matrix via ARPACK

int igraph_sparsemat_arpack_rnsolve(const igraph_sparsemat_t *A,
 igraph_arpack_options_t *options,
 igraph_arpack_storage_t *storage,
 igraph_matrix_t *values,
 igraph_matrix_t *vectors);

Eigenvalues and/or eigenvectors of a nonsymmetric sparse matrix.

Arguments:

A: The input matrix, in column-compressed mode.

options: ARPACK options, it is passed to igraph_arpack_rnsolve(). See also
igraph_arpack_options_t for details.

storage: Storage for ARPACK, this is passed to igraph_arpack_rnsolve(). See
igraph_arpack_storage_t for details.

values: An initialized matrix, or a null pointer. If not a null pointer, then the eigenvalues are stored
here, the first column is the real part, the second column is the imaginary part.

Data structure library: vec-
tor, matrix, other data types

119

vectors: An initialized matrix, or a null pointer. If not a null pointer, then the eigenvectors are stored
here, please see igraph_arpack_rnsolve() for the format.

Returns:

Error code.

Time complexity: TODO.

Conversion to other data types

igraph_sparsemat — Create an igraph graph from a sparse matrix

int igraph_sparsemat(igraph_t *graph, const igraph_sparsemat_t *A,
 igraph_bool_t directed);

One edge is created for each non-zero entry in the matrix. If you have a symmetric matrix, and want to cre-
ate an undirected graph, then delete the entries in the upper diagonal first, or call igraph_simplify()
on the result graph to eliminate the multiple edges.

Arguments:

graph: Pointer to an uninitialized igraph_t object, the graphs is stored here.

A: The input matrix, in triplet or column-compressed format.

directed: Boolean scalar, whether to create a directed graph.

Returns:

Error code.

Time complexity: TODO.

igraph_get_sparsemat — Convert an igraph graph to a sparse
matrix

int igraph_get_sparsemat(const igraph_t *graph, igraph_sparsemat_t *res);

If the graph is undirected, then a symmetric matrix is created.

Arguments:

graph: The input graph.

res: Pointer to an uninitialized sparse matrix. The result will be stored here.

Returns:

Error code.

Data structure library: vec-
tor, matrix, other data types

120

Time complexity: TODO.

igraph_matrix_as_sparsemat — Convert a dense matrix to a
sparse matrix

int igraph_matrix_as_sparsemat(igraph_sparsemat_t *res,
 const igraph_matrix_t *mat,
 igraph_real_t tol);

Arguments:

res: An uninitialized sparse matrix, the result is stored here.

mat: The dense input matrix.

tol: Real scalar, the tolerance. Values closer than tol to zero are considered as zero, and will not be
included in the sparse matrix.

Returns:

Error code.

Time complexity: O(mn), the number of elements in the dense matrix.

igraph_sparsemat_as_matrix — Convert a sparse matrix to a
dense matrix

int igraph_sparsemat_as_matrix(igraph_matrix_t *res,
 const igraph_sparsemat_t *spmat);

Arguments:

res: Pointer to an initialized matrix, the result is stored here. It will be resized to the required size.

spmat: The input sparse matrix, in triplet or column-compressed format.

Returns:

Error code.

Time complexity: O(mn), the number of elements in the dense matrix.

Writing to a file, or to the screen

igraph_sparsemat_print — Print a sparse matrix to a file

Data structure library: vec-
tor, matrix, other data types

121

int igraph_sparsemat_print(const igraph_sparsemat_t *A,
 FILE *outstream);

Only the non-zero entries are printed. This function serves more as a debugging utility, as currently there
is no function that could read back the printed matrix from the file.

Arguments:

A: The input matrix, triplet or column-compressed format.

outstream: The stream to print it to.

Returns:

Error code.

Time complexity: O(nz) for triplet matrices, O(n+nz) for column-compressed matrices. nz is the number
of non-zero elements, n is the number columns in the matrix.

Stacks

igraph_stack_init — Initializes a stack.

int igraph_stack_init (igraph_stack_t* s, long int size);

The initialized stack is always empty.

Arguments:

s: Pointer to an uninitialized stack.

size: The number of elements to allocate memory for.

Returns:

Error code.

Time complexity: O(size).

igraph_stack_destroy — Destroys a stack object.

void igraph_stack_destroy (igraph_stack_t* s);

Deallocate the memory used for a stack. It is possible to reinitialize a destroyed stack again by
igraph_stack_init().

Arguments:

s: The stack to destroy.

Data structure library: vec-
tor, matrix, other data types

122

Time complexity: O(1).

igraph_stack_reserve — Reserve memory.

int igraph_stack_reserve (igraph_stack_t* s, long int size);

Reverse memory for future use. The actual size of the stack is unchanged.

Arguments:

s: The stack object.

size: The number of elements to reserve memory for. If it is not bigger than the current size then
nothing happens.

Returns:

Error code.

Time complexity: should be around O(n), the new allocated size of the stack.

igraph_stack_empty — Decides whether a stack ob-
ject is empty.

igraph_bool_t igraph_stack_empty (igraph_stack_t* s);

Arguments:

s: The stack object.

Returns:

Boolean, TRUE if the stack is empty, FALSE otherwise.

Time complexity: O(1).

igraph_stack_size — Returns the number of ele-
ments in a stack.

long int igraph_stack_size (const igraph_stack_t* s);

Arguments:

s: The stack object.

Data structure library: vec-
tor, matrix, other data types

123

Returns:

The number of elements in the stack.

Time complexity: O(1).

igraph_stack_clear — Removes all elements from a
stack.

void igraph_stack_clear (igraph_stack_t* s);

Arguments:

s: The stack object.

Time complexity: O(1).

igraph_stack_push — Places an element on the top of
a stack.

int igraph_stack_push(igraph_stack_t* s, igraph_real_t elem);

The capacity of the stack is increased, if needed.

Arguments:

s: The stack object.

elem: The element to push.

Returns:

Error code.

Time complexity: O(1) is no reallocation is needed, O(n) otherwise, but it is ensured that n push operations
are performed in O(n) time.

igraph_stack_pop — Removes and returns an element
from the top of a stack.

igraph_real_t igraph_stack_pop (igraph_stack_t* s);

The stack must contain at least one element, call igraph_stack_empty() to make sure of this.

Arguments:

Data structure library: vec-
tor, matrix, other data types

124

s: The stack object.

Returns:

The removed top element.

Time complexity: O(1).

igraph_stack_top — Query top element.

igraph_real_t igraph_stack_top (const igraph_stack_t* s);

Returns the top element of the stack, without removing it. The stack must be non-empty.

Arguments:

s: The stack.

Returns:

The top element.

Time complexity: O(1).

Double-ended queues
This is the classic data type of the double ended queue. Most of the time it is used if a First-In-First-Out
(FIFO) behavior is needed. See the operations below.

Example 7.10. File examples/simple/dqueue.c

igraph_dqueue_init — Initialize a double ended
queue (deque).

int igraph_dqueue_init (igraph_dqueue_t* q, long int size);

The queue will be always empty.

Arguments:

q: Pointer to an uninitialized deque.

size: How many elements to allocate memory for.

Returns:

Error code.

Data structure library: vec-
tor, matrix, other data types

125

Time complexity: O(size).

igraph_dqueue_destroy — Destroy a double ended
queue.

void igraph_dqueue_destroy (igraph_dqueue_t* q);

Arguments:

q: The queue to destroy

Time complexity: O(1).

igraph_dqueue_empty — Decide whether the queue is
empty.

igraph_bool_t igraph_dqueue_empty (const igraph_dqueue_t* q);

Arguments:

q: The queue.

Returns:

Boolean, TRUE if q contains at least one element, FALSE otherwise.

Time complexity: O(1).

igraph_dqueue_full — Check whether the queue is
full.

igraph_bool_t igraph_dqueue_full (igraph_dqueue_t* q);

If a queue is full the next igraph_dqueue_push() operation will allocate more memory.

Arguments:

q: The queue.

Returns:

TRUE if q is full, FALSE otherwise.

Time complecity: O(1).

Data structure library: vec-
tor, matrix, other data types

126

igraph_dqueue_clear — Remove all elements from
the queue.

void igraph_dqueue_clear (igraph_dqueue_t* q);

Arguments:

q: The queue

Time complexity: O(1).

igraph_dqueue_size — Number of elements in the
queue.

long int igraph_dqueue_size (const igraph_dqueue_t* q);

Arguments:

q: The queue.

Returns:

Integer, the number of elements currently in the queue.

Time complexity: O(1).

igraph_dqueue_head — Head of the queue.

igraph_real_t igraph_dqueue_head (const igraph_dqueue_t* q);

The queue must contain at least one element.

Arguments:

q: The queue.

Returns:

The first element in the queue.

Time complexity: O(1).

igraph_dqueue_back — Tail of the queue.

Data structure library: vec-
tor, matrix, other data types

127

igraph_real_t igraph_dqueue_back (const igraph_dqueue_t* q);

The queue must contain at least one element.

Arguments:

q: The queue.

Returns:

The last element in the queue.

Time complexity: O(1).

igraph_dqueue_pop — Remove the head.

igraph_real_t igraph_dqueue_pop (igraph_dqueue_t* q);

Removes and returns the first element in the queue. The queue must be non-empty.

Arguments:

q: The input queue.

Returns:

The first element in the queue.

Time complexity: O(1).

igraph_dqueue_pop_back — Remove the tail

igraph_real_t igraph_dqueue_pop_back (igraph_dqueue_t* q);

Removes and returns the last element in the queue. The queue must be non-empty.

Arguments:

q: The queue.

Returns:

The last element in the queue.

Time complexity: O(1).

igraph_dqueue_push — Appends an element.

Data structure library: vec-
tor, matrix, other data types

128

int igraph_dqueue_push (igraph_dqueue_t* q, igraph_real_t elem);

Append an element to the end of the queue.

Arguments:

q: The queue.

elem: The element to append.

Returns:

Error code.

Time complexity: O(1) if no memory allocation is needed, O(n), the number of elements in the queue
otherwise. But not that by allocating always twice as much memory as the current size of the queue we
ensure that n push operations can always be done in at most O(n) time. (Assuming memory allocation is
at most linear.)

Maximum and minimum heaps

igraph_heap_init — Initializes an empty heap object.

int igraph_heap_init(igraph_heap_t* h, long int alloc_size);

Creates an empty heap, but allocates size for some elements.

Arguments:

h: Pointer to an uninitialized heap object.

alloc_size: Number of elements to allocate memory for.

Returns:

Error code.

Time complexity: O(alloc_size), assuming memory allocation is a linear operation.

igraph_heap_init_array — Build a heap from an ar-
ray.

int igraph_heap_init_array(igraph_heap_t *h, igraph_real_t* data, long int len);

Initializes a heap object from an array, the heap is also built of course (constructor).

Arguments:

Data structure library: vec-
tor, matrix, other data types

129

h: Pointer to an uninitialized heap object.

data: Pointer to an array of base data type.

len: The length of the array at data.

Returns:

Error code.

Time complexity: O(n), the number of elements in the heap.

igraph_heap_destroy — Destroys an initialized heap
object.

void igraph_heap_destroy(igraph_heap_t* h);

Arguments:

h: The heap object.

Time complexity: O(1).

igraph_heap_empty — Decides whether a heap object
is empty.

igraph_bool_t igraph_heap_empty(igraph_heap_t* h);

Arguments:

h: The heap object.

Returns:

TRUE if the heap is empty, FALSE otherwise.

TIme complexity: O(1).

igraph_heap_push — Add an element.

int igraph_heap_push(igraph_heap_t* h, igraph_real_t elem);

Adds an element to the heap.

Arguments:

Data structure library: vec-
tor, matrix, other data types

130

h: The heap object.

elem: The element to add.

Returns:

Error code.

Time complexity: O(log n), n is the number of elements in the heap if no reallocation is needed, O(n)
otherwise. It is ensured that n push operations are performed in O(n log n) time.

igraph_heap_top — Top element.

igraph_real_t igraph_heap_top(igraph_heap_t* h);

For maximum heaps this is the largest, for minimum heaps the smallest element of the heap.

Arguments:

h: The heap object.

Returns:

The top element.

Time complexity: O(1).

igraph_heap_delete_top — Return and removes the
top element

igraph_real_t igraph_heap_delete_top(igraph_heap_t* h);

Removes and returns the top element of the heap. For maximum heaps this is the largest, for minimum
heaps the smallest element.

Arguments:

h: The heap object.

Returns:

The top element.

Time complexity: O(log n), n is the number of elements in the heap.

igraph_heap_size — Number of elements

Data structure library: vec-
tor, matrix, other data types

131

long int igraph_heap_size(igraph_heap_t* h);

Gives the number of elements in a heap.

Arguments:

h: The heap object.

Returns:

The number of elements in the heap.

Time complexity: O(1).

igraph_heap_reserve — Allocate more memory

int igraph_heap_reserve(igraph_heap_t* h, long int size);

Allocates memory for future use. The size of the heap is unchanged. If the heap is larger than the size
parameter then nothing happens.

Arguments:

h: The heap object.

size: The number of elements to allocate memory for.

Returns:

Error code.

Time complexity: O(size) if size is larger than the current number of elements. O(1) otherwise.

String vectors
The igraph_strvector_t type is a vector of strings. The current implementation is very simple and not too
efficient. It works fine for not too many strings, e.g. the list of attribute names is returned in a string vector
by igraph_cattribute_list(). Do not expect great performance from this type.

Example 7.11. File examples/simple/igraph_strvector.c

igraph_strvector_init — Initialize

int igraph_strvector_init(igraph_strvector_t *sv, long int len);

Reserves memory for the string vector, a string vector must be first initialized before calling other functions
on it. All elements of the string vector are set to the empty string.

Arguments:

Data structure library: vec-
tor, matrix, other data types

132

sv: Pointer to an initialized string vector.

len: The (initial) length of the string vector.

Returns:

Error code.

Time complexity: O(len).

igraph_strvector_copy — Initialization by copying.

int igraph_strvector_copy(igraph_strvector_t *to,
 const igraph_strvector_t *from);

Initializes a string vector by copying another string vector.

Arguments:

to: Pointer to an uninitialized string vector.

from: The other string vector, to be copied.

Returns:

Error code.

Time complexity: O(l), the total length of the strings in from.

igraph_strvector_destroy — Free allocated memory

void igraph_strvector_destroy(igraph_strvector_t *sv);

Destroy a string vector. It may be reinitialized with igraph_strvector_init() later.

Arguments:

sv: The string vector.

Time complexity: O(l), the total length of the strings, maybe less depending on the memory manager.

STR — Indexing string vectors

#define STR(sv,i)

This is a macro which allows to query the elements of a string vector in simpler way than
igraph_strvector_get(). Note this macro cannot be used to set an element, for that use
igraph_strvector_set().

Data structure library: vec-
tor, matrix, other data types

133

Arguments:

sv: The string vector

i: The the index of the element.

Returns:

The element at position i.

Time complexity: O(1).

igraph_strvector_get — Indexing

void igraph_strvector_get(const igraph_strvector_t *sv, long int idx,
 char **value);

Query an element of a string vector. See also the STR macro for an easier way.

Arguments:

sv: The input string vector.

idx: The index of the element to query.

Pointer: to a char*, the address of the string is stored here.

Time complexity: O(1).

igraph_strvector_set — Set an element

int igraph_strvector_set(igraph_strvector_t *sv, long int idx,
 const char *value);

The provided value is copied into the idx position in the string vector.

Arguments:

sv: The string vector.

idx: The position to set.

value: The new value.

Returns:

Error code.

Time complexity: O(l), the length of the new string. Maybe more, depending on the memory management,
if reallocation is needed.

Data structure library: vec-
tor, matrix, other data types

134

igraph_strvector_set2 — Sets an element

int igraph_strvector_set2(igraph_strvector_t *sv, long int idx,
 const char *value, int len);

This is almost the same as igraph_strvector_set, but the new value is not a zero terminated string,
but its length is given.

Arguments:

sv: The string vector.

idx: The position to set.

value: The new value.

len: The length of the new value.

Returns:

Error code.

Time complexity: O(l), the length of the new string. Maybe more, depending on the memory management,
if reallocation is needed.

igraph_strvector_remove — Removes a single ele-
ment from a string vector.

void igraph_strvector_remove(igraph_strvector_t *v, long int elem);

The string will be one shorter.

Arguments:

The: string vector.

elem: The index of the element to remove.

Time complexity: O(n), the length of the string.

igraph_strvector_append — Concatenate two string
vectors.

int igraph_strvector_append(igraph_strvector_t *to,
 const igraph_strvector_t *from);

Data structure library: vec-
tor, matrix, other data types

135

Arguments:

to: The first string vector, the result is stored here.

from: The second string vector, it is kept unchanged.

Returns:

Error code.

Time complexity: O(n+l2), n is the number of strings in the new string vector, l2 is the total length of
strings in the from string vector.

igraph_strvector_clear — Remove all elements

void igraph_strvector_clear(igraph_strvector_t *sv);

After this operation the string vector will be empty.

Arguments:

sv: The string vector.

Time complexity: O(l), the total length of strings, maybe less, depending on the memory manager.

igraph_strvector_resize — Resize

int igraph_strvector_resize(igraph_strvector_t* v, long int newsize);

If the new size is bigger then empty strings are added, if it is smaller then the unneeded elements are
removed.

Arguments:

v: The string vector.

newsize: The new size.

Returns:

Error code.

Time complexity: O(n), the number of strings if the vector is made bigger, O(l), the total length of the
deleted strings if it is made smaller, maybe less, depending on memory management.

igraph_strvector_size — Gives the size of a string
vector.

Data structure library: vec-
tor, matrix, other data types

136

long int igraph_strvector_size(const igraph_strvector_t *sv);

Arguments:

sv: The string vector.

Returns:

The length of the string vector.

Time complexity: O(1).

igraph_strvector_add — Adds an element to the
back of a string vector.

int igraph_strvector_add(igraph_strvector_t *v, const char *value);

Arguments:

v: The string vector.

value: The string to add, it will be copied.

Returns:

Error code.

Time complexity: O(n+l), n is the total number of strings, l is the length of the new string.

Adjacency lists
Sometimes it is easier to work with a graph which is in adjacency list format: a list of vectors; each vector
contains the neighbor vertices or incident edges of a given vertex. Typically, this representation is good
if we need to iterate over the neighbors of all vertices many times. E.g. when finding the shortest paths
between every pairs of vertices or calculating closeness centrality for all the vertices.

The igraph_adjlist_t stores the adjacency lists of a graph. After creation it is independent of the origi-
nal graph, it can be modified freely with the usual vector operations, the graph is not affected. E.g. the
adjacency list can be used to rewire the edges of a graph efficiently. If one used the straightforward
igraph_delete_edges() and igraph_add_edges() combination for this that needs O(|V|+|E|)
time for every single deletion and insertion operation, it is thus very slow if many edges are rewired. Ex-
tracting the graph into an adjacency list, do all the rewiring operations on the vectors of the adjacency list
and then creating a new graph needs (depending on how exactly the rewiring is done) typically O(|V|+|
E|) time for the whole rewiring process.

Lazy adjacency lists are a bit different. When creating a lazy adjacency list, the neighbors of the vertices are
not queried, only some memory is allocated for the vectors. When igraph_lazy_adjlist_get()
is called for vertex v the first time, the neighbors of v are queried and stored in a vector of the adjacency

Data structure library: vec-
tor, matrix, other data types

137

list, so they don't need to be queried again. Lazy adjacency lists are handy if you have an at least linear
operation (because initialization is generally linear in terms of number of vertices), but you don't know
how many vertices you will visit during the computation.

Example 7.12. File examples/simple/adjlist.c

Adjacent vertices

igraph_adjlist_init — Initialize an adjacency list of vertices
from a given graph

int igraph_adjlist_init(const igraph_t *graph, igraph_adjlist_t *al,
 igraph_neimode_t mode);

Create a list of vectors containing the neighbors of all vertices in a graph. The adjacency list is independent
of the graph after creation, e.g. the graph can be destroyed and modified, the adjacency list contains the
state of the graph at the time of its initialization.

Arguments:

graph: The input graph.

al: Pointer to an uninitialized igraph_adjlist_t object.

mode: Constant specifying whether outgoing (IGRAPH_OUT), incoming (IGRAPH_IN), or both (
IGRAPH_ALL) types of neighbors to include in the adjacency list. It is ignored for undirected
networks.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

igraph_adjlist_init_empty — Initialize an empty adjacency list

int igraph_adjlist_init_empty(igraph_adjlist_t *al, igraph_integer_t no_of_nodes);

Creates a list of vectors, one for each vertex. This is useful when you are constructing a graph using an
adjacency list representation as it does not require your graph to exist yet.

Arguments:

no_of_nodes: The number of vertices

al: Pointer to an uninitialized igraph_adjlist_t object.

Returns:

Data structure library: vec-
tor, matrix, other data types

138

Error code.

Time complexity: O(|V|), linear in the number of vertices.

igraph_adjlist_init_complementer — Adjacency lists for the
complementer graph

int igraph_adjlist_init_complementer(const igraph_t *graph,
 igraph_adjlist_t *al,
 igraph_neimode_t mode,
 igraph_bool_t loops);

This function creates adjacency lists for the complementer of the input graph. In the complementer graph
all edges are present which are not present in the original graph. Multiple edges in the input graph are
ignored.

Arguments:

graph: The input graph.

al: Pointer to a not yet initialized adjacency list.

mode: Constant specifying whether outgoing (IGRAPH_OUT), incoming (IGRAPH_IN), or both
(IGRAPH_ALL) types of neighbors (in the complementer graph) to include in the adjacency
list. It is ignored for undirected networks.

loops: Whether to consider loop edges.

Returns:

Error code.

Time complexity: O(|V|^2+|E|), quadratic in the number of vertices.

igraph_adjlist_destroy — Deallocate memory

void igraph_adjlist_destroy(igraph_adjlist_t *al);

Free all memory allocated for an adjacency list.

Arguments:

al: The adjacency list to destroy.

Time complexity: depends on memory management.

igraph_adjlist_get — Query a vector in an adjlist

#define igraph_adjlist_get(al,no)

Data structure library: vec-
tor, matrix, other data types

139

Returns a pointer to an igraph_vector_int_t object from an adjacency list. The vector can be modified as
desired.

Arguments:

al: The adjacency list object.

no: The vertex of which the vertex of adjacent vertices are returned.

Returns:

Pointer to the igraph_vector_int_t object.

Time complexity: O(1).

igraph_adjlist_clear — Removes all edges from an adjacency
list.

void igraph_adjlist_clear(igraph_adjlist_t *al);

Arguments:

al: The adjacency list. Time complexity: depends on memory management, typically O(n), where n is
the total number of elements in the adjacency list.

igraph_adjlist_sort — Sort each vector in an adjacency list.

void igraph_adjlist_sort(igraph_adjlist_t *al);

Sorts every vector of the adjacency list.

Arguments:

al: The adjacency list.

Time complexity: O(n log n), n is the total number of elements in the adjacency list.

igraph_adjlist_simplify — Simplify

int igraph_adjlist_simplify(igraph_adjlist_t *al);

Simplify an adjacency list, ie. remove loop and multiple edges.

Arguments:

al: The adjacency list.

Data structure library: vec-
tor, matrix, other data types

140

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of edges and vertices.

Incident edges

igraph_inclist_init — Initialize an incidence list of edges

int igraph_inclist_init(const igraph_t *graph,
 igraph_inclist_t *il,
 igraph_neimode_t mode);

Create a list of vectors containing the incident edges for all vertices. The incidence list is independent
of the graph after creation, subsequent changes of the graph object do not update the incidence list, and
changes to the incidence list do not update the graph.

Arguments:

graph: The input graph.

il: Pointer to an uninitialized incidence list.

mode: Constant specifying whether incoming edges (IGRAPH_IN), outgoing edges (
IGRAPH_OUT) or both (IGRAPH_ALL) to include in the incidence lists of directed graphs.
It is ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

igraph_inclist_destroy — Frees all memory allocated for an in-
cidence list.

void igraph_inclist_destroy(igraph_inclist_t *il);

Arguments:

eal: The incidence list to destroy.

Time complexity: depends on memory management.

igraph_inclist_get — Query a vector in an incidence list

Data structure library: vec-
tor, matrix, other data types

141

#define igraph_inclist_get(il,no)

Returns a pointer to an igraph_vector_t object from an incidence list containing edge ids. The vector can
be modified, resized, etc. as desired.

Arguments:

graph: il The incidence list.

no: The vertex for which the incident edges are returned.

Returns:

Pointer to an igraph_vector_t object.

Time complexity: O(1).

igraph_inclist_clear — Removes all edges from an incidence
list.

void igraph_inclist_clear(igraph_inclist_t *il);

Arguments:

il: The incidence list. Time complexity: depends on memory management, typically O(n), where n is
the total number of elements in the incidence list.

Lazy adjacency list for vertices

igraph_lazy_adjlist_init — Constructor

int igraph_lazy_adjlist_init(const igraph_t *graph,
 igraph_lazy_adjlist_t *al,
 igraph_neimode_t mode,
 igraph_lazy_adlist_simplify_t simplify);

Create a lazy adjacency list for vertices. This function only allocates some memory for stor-
ing the vectors of an adjacency list, but the neighbor vertices are not queried, only at the
igraph_lazy_adjlist_get() calls.

Arguments:

graph: The input graph.

al: Pointer to an uninitialized adjacency list object.

mode: Constant, it gives whether incoming edges (IGRAPH_IN), outgoing edges (
IGRPAH_OUT) or both types of edges (IGRAPH_ALL) are considered. It is ignored
for undirected graphs.

Data structure library: vec-
tor, matrix, other data types

142

simplify: Constant, it gives whether to simplify the vectors in the adjacency list (
IGRAPH_SIMPLIFY) or not (IGRAPH_DONT_SIMPLIFY).

Returns:

Error code.

Time complexity: O(|V|), the number of vertices, possibly, but depends on the underlying memory man-
agement too.

igraph_lazy_adjlist_destroy — Deallocate memory

void igraph_lazy_adjlist_destroy(igraph_lazy_adjlist_t *al);

Free all allocated memory for a lazy adjacency list.

Arguments:

al: The adjacency list to deallocate.

Time complexity: depends on the memory management.

igraph_lazy_adjlist_get — Query neighbor vertices

#define igraph_lazy_adjlist_get(al,no)

If the function is called for the first time for a vertex then the result is stored in the adjacency list and no
further query operations are needed when the neighbors of the same vertex are queried again.

Arguments:

al: The lazy adjacency list.

no: The vertex id to query.

Returns:

Pointer to a vector. It is allowed to modify it and modification does not affect the original graph.

Time complexity: O(d), the number of neighbor vertices for the first time, O(1) for subsequent calls.

igraph_lazy_adjlist_clear — Removes all edges from a lazy
adjacency list.

void igraph_lazy_adjlist_clear(igraph_lazy_adjlist_t *al);

Arguments:

Data structure library: vec-
tor, matrix, other data types

143

al: The lazy adjacency list. Time complexity: depends on memory management, typically O(n), where
n is the total number of elements in the adjacency list.

Lazy incidence list for edges

igraph_lazy_inclist_init — Initializes a lazy incidence list of
edges

int igraph_lazy_inclist_init(const igraph_t *graph,
 igraph_lazy_inclist_t *al,
 igraph_neimode_t mode);

Create a lazy incidence list for edges. This function only allocates some memory for storing the vectors of
an incidence list, but the incident edges are not queried, only when igraph_lazy_inclist_get()
is called.

Arguments:

graph: The input graph.

al: Pointer to an uninitialized incidence list.

mode: Constant, it gives whether incoming edges (IGRAPH_IN), outgoing edges (IGRPAH_OUT
) or both types of edges (IGRAPH_ALL) are considered. It is ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(|V|), the number of vertices, possibly. But it also depends on the underlying memory
management.

igraph_lazy_inclist_destroy — Deallocates memory

void igraph_lazy_inclist_destroy(igraph_lazy_inclist_t *il);

Frees all allocated memory for a lazy incidence list.

Arguments:

al: The incidence list to deallocate.

Time complexity: depends on memory management.

igraph_lazy_inclist_get — Query incident edges

#define igraph_lazy_inclist_get(al,no)

Data structure library: vec-
tor, matrix, other data types

144

If the function is called for the first time for a vertex, then the result is stored in the incidence list and no
further query operations are needed when the incident edges of the same vertex are queried again.

Arguments:

al: The lazy incidence list object.

no: The vertex id to query.

Returns:

Pointer to a vector. It is allowed to modify it and modification does not affect the original graph.

Time complexity: O(d), the number of incident edges for the first time, O(1) for subsequent calls with
the same no argument.

igraph_lazy_inclist_clear — Removes all edges from a lazy
incidence list.

void igraph_lazy_inclist_clear(igraph_lazy_inclist_t *il);

Arguments:

il: The lazy incidence list. Time complexity: depends on memory management, typically O(n), where
n is the total number of elements in the incidence list.

Deprecated functions

igraph_adjedgelist_init — Initialize an incidence list of edges

int igraph_adjedgelist_init(const igraph_t *graph,
 igraph_inclist_t *il,
 igraph_neimode_t mode);

This function was superseded by igraph_inclist_init() in igraph 0.6. Please use
igraph_inclist_init() instead of this function.

Deprecated in version 0.6.

igraph_adjedgelist_destroy — Frees all memory allocated for
an incidence list.

void igraph_adjedgelist_destroy(igraph_inclist_t *il);

This function was superseded by igraph_inclist_destroy() in igraph 0.6. Please use
igraph_inclist_destroy() instead of this function.

Data structure library: vec-
tor, matrix, other data types

145

Deprecated in version 0.6.

igraph_adjedgelist_get — Query a vector in an incidence list

#define igraph_adjedgelist_get(ael,no)

This macro was superseded by igraph_inclist_get() in igraph 0.6. Please use
igraph_inclist_get() instead of this macro.

Deprecated in version 0.6.

igraph_lazy_adjedgelist_init — Initializes a lazy incidence list
of edges

int igraph_lazy_adjedgelist_init(const igraph_t *graph,
 igraph_lazy_inclist_t *il,
 igraph_neimode_t mode);

This function was superseded by igraph_lazy_inclist_init() in igraph 0.6. Please use
igraph_lazy_inclist_init() instead of this function.

Deprecated in version 0.6.

igraph_lazy_adjedgelist_destroy — Frees all memory allocat-
ed for an incidence list.

void igraph_lazy_adjedgelist_destroy(igraph_lazy_inclist_t *il);

This function was superseded by igraph_lazy_inclist_destroy() in igraph 0.6. Please use
igraph_lazy_inclist_destroy() instead of this function.

Deprecated in version 0.6.

igraph_lazy_adjedgelist_get — Query a vector in a lazy inci-
dence list

#define igraph_lazy_adjedgelist_get(al,no)

This macro was superseded by igraph_lazy_inclist_get() in igraph 0.6. Please use
igraph_lazy_inclist_get() instead of this macro.

Deprecated in version 0.6.

146

Chapter 8. Random numbers
About random numbers in igraph, use cases

Some algorithms in igraph, e.g. the generation of random graphs, require random number generators
(RNGs). Prior to version 0.6 igraph did not have a sophisticated way to deal with random number gener-
ators at the C level, but this has changed. From version 0.6 different and multiple random number gener-
ators are supported.

The default random number generator

igraph_rng_default — Query the default random
number generator.

igraph_rng_t *igraph_rng_default();

Returns:

A pointer to the default random number generator.

See also:

igraph_rng_set_default()

igraph_rng_set_default — Set the default igraph
random number generator

void igraph_rng_set_default(igraph_rng_t *rng);

Arguments:

rng: The random number generator to use as default from now on. Calling
igraph_rng_destroy() on it, while it is still being used as the default will result craches
and/or unpredictable results.

Time complexity: O(1).

Creating random number generators

igraph_rng_init — Initialize a random number gener-
ator

Random numbers

147

int igraph_rng_init(igraph_rng_t *rng, const igraph_rng_type_t *type);

This function allocates memory for a random number generator, with the given type, and sets its seed to
the default.

Arguments:

rng: Pointer to an uninitialized RNG.

type: The type of the RNG, please see the documentation for the supported types.

Returns:

Error code.

Time complexity: depends on the type of the generator, but usually it should be O(1).

igraph_rng_destroy — Deallocate memory associated
with a random number generator

void igraph_rng_destroy(igraph_rng_t *rng);

Arguments:

rng: The RNG to destroy. Do not destroy an RNG that is used as the default igraph RNG.

Time complexity: O(1).

igraph_rng_seed — Set the seed of a random number
generator

int igraph_rng_seed(igraph_rng_t *rng, unsigned long int seed);

Arguments:

rng: The RNG.

seed: The new seed.

Returns:

Error code.

Time complexity: usually O(1), but may depend on the type of the RNG.

Random numbers

148

igraph_rng_min — Query the minimum possible inte-
ger for a random number generator

unsigned long int igraph_rng_min(igraph_rng_t *rng);

Arguments:

rng: The RNG.

Returns:

The smallest possible integer that can be generated by calling igraph_rng_get_integer() on
the RNG.

Time complexity: O(1).

igraph_rng_max — Query the maximum possible inte-
ger for a random number generator

unsigned long int igraph_rng_max(igraph_rng_t *rng);

Arguments:

rng: The RNG.

Returns:

The largest possible integer that can be generated by calling igraph_rng_get_integer() on the
RNG.

Time complexity: O(1).

igraph_rng_name — Query the type of a random num-
ber generator

const char *igraph_rng_name(igraph_rng_t *rng);

Arguments:

rng: The RNG.

Random numbers

149

Returns:

The name of the type of the generator. Do not deallocate or change the returned string pointer.

Time complexity: O(1).

Generating random numbers

igraph_rng_get_integer — Generate an integer ran-
dom number from an interval

long int igraph_rng_get_integer(igraph_rng_t *rng,
 long int l, long int h);

Arguments:

rng: Pointer to the RNG to use for the generation. Use igraph_rng_default() here to use the
default igraph RNG.

l: Lower limit, inclusive, it can be negative as well.

h: Upper limit, inclusive, it can be negative as well, but it should be at least l .

Returns:

The generated random integer.

Time complexity: depends on the generator, but should be usually O(1).

igraph_rng_get_unif — Generate real, uniform ran-
dom numbers from an interval

igraph_real_t igraph_rng_get_unif(igraph_rng_t *rng,
 igraph_real_t l, igraph_real_t h);

Arguments:

rng: Pointer to the RNG to use. Use igraph_rng_default() here to use the default igraph RNG.

l: The lower bound, it can be negative.

h: The upper bound, it can be negative, but it has to be larger than the lower bound.

Returns:

The generated uniformly distributed random number.

Random numbers

150

Time complexity: depends on the type of the RNG.

igraph_rng_get_unif01 — Generate real, uniform ran-
dom number from the unit interval

igraph_real_t igraph_rng_get_unif01(igraph_rng_t *rng);

Arguments:

rng: Pointer to the RNG to use. Use igraph_rng_default() here to use the default igraph RNG.

Returns:

The generated uniformly distributed random number.

Time complexity: depends on the type of the RNG.

igraph_rng_get_normal — Normally distributed ran-
dom numbers

igraph_real_t igraph_rng_get_normal(igraph_rng_t *rng,
 igraph_real_t m, igraph_real_t s);

Arguments:

rng: Pointer to the RNG to use. Use igraph_rng_default() here to use the default igraph RNG.

m: The mean.

s: Standard deviation.

Returns:

The generated normally distributed random number.

Time complexity: depends on the type of the RNG.

igraph_rng_get_geom — Generate geometrically dis-
tributed random numbers

igraph_real_t igraph_rng_get_geom(igraph_rng_t *rng, igraph_real_t p);

Random numbers

151

Arguments:

rng: Pointer to the RNG to use. Use igraph_rng_default() here to use the default igraph RNG.

p: The probability of success in each trial. Must be larger than zero and smaller or equal to 1.

Returns:

The generated geometrically distributed random number.

Time complexity: depends on the type of the RNG.

igraph_rng_get_binom — Generate binomially distrib-
uted random numbers

igraph_real_t igraph_rng_get_binom(igraph_rng_t *rng, long int n,
 igraph_real_t p);

Arguments:

rng: Pointer to the RNG to use. Use igraph_rng_default() here to use the default igraph RNG.

n: Number of observations.

p: Probability of an event.

Returns:

The generated binomially distributed random number.

Time complexity: depends on the type of the RNG.

Supported random number generators
By default igraph uses the MT19937 generator. Prior to igraph version 0.6, the generator supplied by the
standard C library was used. This means the GLIBC2 generator on GNU libc 2 systems, and maybe the
RAND generator on others.

igraph_rngtype_mt19937 — The MT19937 random
number generator

const igraph_rng_type_t igraph_rngtype_mt19937 = {
 /* name= */ "MT19937",
 /* min= */ 0,
 /* max= */ 0xffffffffUL,
 /* init= */ igraph_rng_mt19937_init,
 /* destroy= */ igraph_rng_mt19937_destroy,

Random numbers

152

 /* seed= */ igraph_rng_mt19937_seed,
 /* get= */ igraph_rng_mt19937_get,
 /* get_real= */ igraph_rng_mt19937_get_real,
 /* get_norm= */ 0,
 /* get_geom= */ 0,
 /* get_binom= */ 0,
 /* get_exp= */ 0
};

The MT19937 generator of Makoto Matsumoto and Takuji Nishimura is a variant of the twisted gen-
eralized feedback shift-register algorithm, and is known as the “Mersenne Twister” generator. It has a
Mersenne prime period of 2^19937 - 1 (about 10^6000) and is equi-distributed in 623 dimensions. It has
passed the diehard statistical tests. It uses 624 words of state per generator and is comparable in speed
to the other generators. The original generator used a default seed of 4357 and choosing s equal to zero
in gsl_rng_set reproduces this. Later versions switched to 5489 as the default seed, you can choose this
explicitly via igraph_rng_seed instead if you require it. For more information see, Makoto Matsumoto
and Takuji Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom
number generator”. ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1 (Jan. 1998),
Pages 3–30 The generator igraph_rngtype_mt19937 uses the second revision of the seeding procedure
published by the two authors above in 2002. The original seeding procedures could cause spurious artifacts
for some seed values. This generator was ported from the GNU Scientific Library.

igraph_rngtype_glibc2 — The random number gen-
erator type introduced in GNU libc 2

const igraph_rng_type_t igraph_rngtype_glibc2 = {
 /* name= */ "LIBC",
 /* min= */ 0,
 /* max= */ RAND_MAX,
 /* init= */ igraph_rng_glibc2_init,
 /* destroy= */ igraph_rng_glibc2_destroy,
 /* seed= */ igraph_rng_glibc2_seed,
 /* get= */ igraph_rng_glibc2_get,
 /* get_real= */ igraph_rng_glibc2_get_real,
 /* get_norm= */ 0,
 /* get_geom= */ 0,
 /* get_binom= */ 0,
 /* get_exp= */ 0
};

It is a linear feedback shift register generator with a 128-byte buffer. This generator was the default prior
to igraph version 0.6, at least on systems relying on GNU libc. This generator was ported from the GNU
Scientific Library.

igraph_rngtype_rand — The old BSD rand/stand ran-
dom number generator

const igraph_rng_type_t igraph_rngtype_rand = {

Random numbers

153

 /* name= */ "RAND",
 /* min= */ 0,
 /* max= */ 0x7fffffffUL,
 /* init= */ igraph_rng_rand_init,
 /* destroy= */ igraph_rng_rand_destroy,
 /* seed= */ igraph_rng_rand_seed,
 /* get= */ igraph_rng_rand_get,
 /* get_real= */ igraph_rng_rand_get_real,
 /* get_norm= */ 0,
 /* get_geom= */ 0,
 /* get_binom= */ 0,
 /* get_exp= */ 0
};

The sequence is x_{n+1} = (a x_n + c) mod m with a = 1103515245, c = 12345 and m = 2^31 =
2147483648. The seed specifies the initial value, x_1. The theoretical value of x_{10001} is 1910041713.
The period of this generator is 2^31. This generator is not very good -- the low bits of successive numbers
are correlated. This generator was ported from the GNU Scientific Library.

Use cases

Normal (default) use
If the user does not use any of the RNG functions explicitly, but calls some of the randomized igraph
functions, then a default RNG is set up the first time an igraph function needs random numbers. The seed
of this RNG is the output of the time(0) function call, using the time function from the standard C
library. This ensures that igraph creates a different random graph, each time the C program is called.

The created default generator is stored internally and can be queried with the igraph_rng_default()
function.

Reproducible simulations
If reproducible results are needed, then the user should set the seed of the default random
number generator explicitly, using the igraph_rng_seed() function on the default generator,
igraph_rng_default(). When setting the seed to the same number, igraph generates exactly the
same random graph (or series of random graphs).

Changing the default generator
By default igraph uses the igraph_rng_default() random number generator. This can be changed
any time by calling igraph_rng_set_default(), with an already initialized random number gen-
erator. Note that the old (replaced) generator is not destroyed, so no memory is deallocated.

Using multiple generators
igraph also provides functions to set up multiple random number generators, using the
igraph_rng_init() function, and then generating random numbers from them, e.g. with
igraph_rng_get_integer() and/or igraph_rng_get_unif() calls.

Note that initializing a new random number generator is independent of the generator that the igraph
functions themselves use. If you want to replace that, then please use igraph_rng_set_default().

Random numbers

154

Example

Example 8.1. File examples/simple/random_seed.c

155

Chapter 9. Graph Generators
Graph generators create graphs.

Almost all functions which create graph objects are documented here. The exceptions are
igraph_subgraph() and alike, these create graphs based on another graph.

Deterministic Graph Generators

igraph_create — Creates a graph with the specified
edges.

int igraph_create(igraph_t *graph, const igraph_vector_t *edges,
 igraph_integer_t n, igraph_bool_t directed);

Arguments:

graph: An uninitialized graph object.

edges: The edges to add, the first two elements are the first edge, etc.

n: The number of vertices in the graph, if smaller or equal to the highest vertex id in the
edges vector it will be increased automatically. So it is safe to give 0 here.

directed: Boolean, whether to create a directed graph or not. If yes, then the first edge points from
the first vertex id in edges to the second, etc.

Returns:

Error code: IGRAPH_EINVEVECTOR: invalid edges vector (odd number of vertices).
IGRAPH_EINVVID: invalid (negative) vertex id.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| the number of edges in the graph.

Example 9.1. File examples/simple/igraph_create.c

igraph_small — Shorthand to create a short graph,
giving the edges as arguments.

int igraph_small(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed,
 ...);

This function is handy when a relatively small graph needs to be created. Instead of giving the edges as
a vector, they are given simply as arguments and a '-1' needs to be given after the last meaningful edge
argument.

Graph Generators

156

Note that only graphs which have vertices less than the highest value of the 'int' type can be created this
way. If you give larger values then the result is undefined.

Arguments:

graph: Pointer to an uninitialized graph object. The result will be stored here.

n: The number of vertices in the graph; a nonnegative integer.

directed: Logical constant; gives whether the graph should be directed. Supported values are:

IGRAPH_DIRECTED The graph to be created will be directed.

IGRAPH_UNDIRECTED The graph to be created will be undirected.

...: The additional arguments giving the edges of the graph. Don't forget to supply an addi-
tional '-1' after the last (meaningful) argument.

Returns:

Error code.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph to create.

Example 9.2. File examples/simple/igraph_small.c

igraph_adjacency — Creates a graph object from an
adjacency matrix.

int igraph_adjacency(igraph_t *graph, igraph_matrix_t *adjmatrix,
 igraph_adjacency_t mode);

The order of the vertices in the matrix is preserved, i.e. the vertex corresponding to the first row/column
will be vertex with id 0, the next row is for vertex 1, etc.

Arguments:

graph: Pointer to an uninitialized graph object.

adjmatrix: The adjacency matrix. How it is interpreted depends on the mode argument.

mode: Constant to specify how the given matrix is interpreted as an adjacency matrix. Possible
values (A(i,j) is the element in row i and column j in the adjacency matrix adjmatrix):

IGRAPH_ADJ_DIRECTED the graph will be directed and an element gives the
number of edges between two vertices.

IGRAPH_ADJ_UNDIRECTED this is the same as IGRAPH_ADJ_MAX, for conve-
nience.

IGRAPH_ADJ_MAX undirected graph will be created and the number of
edges between vertices i and j is max(A(i,j), A(j,i)).

Graph Generators

157

IGRAPH_ADJ_MIN undirected graph will be created with min(A(i,j),
A(j,i)) edges between vertices i and j.

IGRAPH_ADJ_PLUS undirected graph will be created with A(i,j)+A(j,i)
edges between vertices i and j.

IGRAPH_ADJ_UPPER undirected graph will be created, only the upper right
triangle (including the diagonal) is used for the num-
ber of edges.

IGRAPH_ADJ_LOWER undirected graph will be created, only the lower left
triangle (including the diagonal) is used for creating
the edges.

Returns:

Error code, IGRAPH_NONSQUARE: non-square matrix.

Time complexity: O(|V||V|), |V| is the number of vertices in the graph.

Example 9.3. File examples/simple/igraph_adjacency.c

igraph_weighted_adjacency — Creates a graph ob-
ject from a weighted adjacency matrix.

int igraph_weighted_adjacency(igraph_t *graph, igraph_matrix_t *adjmatrix,
 igraph_adjacency_t mode, const char* attr,
 igraph_bool_t loops);

The order of the vertices in the matrix is preserved, i.e. the vertex corresponding to the first row/column
will be vertex with id 0, the next row is for vertex 1, etc.

Arguments:

graph: Pointer to an uninitialized graph object.

adjmatrix: The weighted adjacency matrix. How it is interpreted depends on the mode argument.
The common feature is that edges with zero weights are considered nonexistent (how-
ever, negative weights are permitted).

mode: Constant to specify how the given matrix is interpreted as an adjacency matrix. Possible
values (A(i,j) is the element in row i and column j in the adjacency matrix adjmatrix):

IGRAPH_ADJ_DIRECTED the graph will be directed and an element gives the
weight of the edge between two vertices.

IGRAPH_ADJ_UNDIRECTED this is the same as IGRAPH_ADJ_MAX, for conve-
nience.

IGRAPH_ADJ_MAX undirected graph will be created and the weight of the
edge between vertices i and j is max(A(i,j), A(j,i)).

Graph Generators

158

IGRAPH_ADJ_MIN undirected graph will be created with edge weight
min(A(i,j), A(j,i)) between vertices i and j.

IGRAPH_ADJ_PLUS undirected graph will be created with edge weight
A(i,j)+A(j,i) between vertices i and j.

IGRAPH_ADJ_UPPER undirected graph will be created, only the upper right
triangle (including the diagonal) is used for the edge
weights.

IGRAPH_ADJ_LOWER undirected graph will be created, only the lower left
triangle (including the diagonal) is used for the edge
weights.

attr: the name of the attribute that will store the edge weights. If NULL , it will use weight
as the attribute name.

loops: Logical scalar, whether to ignore the diagonal elements in the adjacency matrix.

Returns:

Error code, IGRAPH_NONSQUARE: non-square matrix.

Time complexity: O(|V||V|), |V| is the number of vertices in the graph.

Example 9.4. File examples/simple/igraph_weighted_adjacency.c

igraph_adjlist — Create a graph from an adjacency
list

int igraph_adjlist(igraph_t *graph, const igraph_adjlist_t *adjlist,
 igraph_neimode_t mode, igraph_bool_t duplicate);

An adjacency list is a list of vectors, containing the neighbors of all vertices. For operations that involve
many changes to the graph structure, it is recommended that you convert the graph into an adjacency list
via igraph_adjlist_init(), perform the modifications (these are cheap for an adjacency list) and
then recreate the igraph graph via this function.

Arguments:

graph: Pointer to an uninitialized graph object.

adjlist: The adjacency list.

mode: Whether or not to create a directed graph. IGRAPH_ALL means an undirected graph,
IGRAPH_OUT means a directed graph from an out-adjacency list (i.e. each list contains
the successors of the corresponding vertices), IGRAPH_IN means a directed graph from
an in-adjacency list

duplicate: Logical, for undirected graphs this specified whether each edge is included twice, in the
vectors of both adjacent vertices. If this is false (0), then it is assumed that every edge is
included only once. This argument is ignored for directed graphs.

Graph Generators

159

Returns:

Error code.

See also:

igraph_adjlist_init() for the opposite operation.

Time complexity: O(|V|+|E|).

igraph_star — Creates a star graph, every vertex con-
nects only to the center.

int igraph_star(igraph_t *graph, igraph_integer_t n, igraph_star_mode_t mode,
 igraph_integer_t center);

Arguments:

graph: Pointer to an uninitialized graph object, this will be the result.

n: Integer constant, the number of vertices in the graph.

mode: Constant, gives the type of the star graph to create. Possible values:

IGRAPH_STAR_OUT directed star graph, edges point from the center to the
other vertices.

IGRAPH_STAR_IN directed star graph, edges point to the center from the
other vertices.

IGRAPH_STAR_MUTUAL directed star graph with mutual edges.

IGRAPH_STAR_UNDIRECTED an undirected star graph is created.

center: Id of the vertex which will be the center of the graph.

Returns:

Error code:

IGRAPH_EINVVID invalid number of vertices.

IGRAPH_EINVAL invalid center vertex.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|V|), the number of vertices in the graph.

See also:

igraph_lattice(), igraph_ring(), igraph_tree() for creating other regular structures.

Graph Generators

160

Example 9.5. File examples/simple/igraph_star.c

igraph_lattice — Creates most kinds of lattices.

int igraph_lattice(igraph_t *graph, const igraph_vector_t *dimvector,
 igraph_integer_t nei, igraph_bool_t directed, igraph_bool_t mutual,
 igraph_bool_t circular);

Arguments:

graph: An uninitialized graph object.

dimvector: Vector giving the sizes of the lattice in each of its dimensions. Ie. the dimension of the
lattice will be the same as the length of this vector.

nei: Integer value giving the distance (number of steps) within which two vertices will be
connected.

directed: Boolean, whether to create a directed graph. The direction of the edges is determined by
the generation algorithm and is unlikely to suit you, so this isn't a very useful option.

mutual: Boolean, if the graph is directed this gives whether to create all connections as mutual.

circular: Boolean, defines whether the generated lattice is periodic.

Returns:

Error code: IGRAPH_EINVAL: invalid (negative) dimension vector.

Time complexity: if nei is less than two then it is O(|V|+|E|) (as far as I remember), |V| and |E| are the
number of vertices and edges in the generated graph. Otherwise it is O(|V|*d^o+|E|), d is the average degree
of the graph, o is the nei argument.

igraph_ring — Creates a ring graph, a one dimension-
al lattice.

int igraph_ring(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed,
 igraph_bool_t mutual, igraph_bool_t circular);

An undirected (circular) ring on n vertices is commonly known in graph theory as the cycle graph C_n.

Arguments:

graph: Pointer to an uninitialized graph object.

n: The number of vertices in the ring.

directed: Logical, whether to create a directed ring.

Graph Generators

161

mutual: Logical, whether to create mutual edges in a directed ring. It is ignored for undirected
graphs.

circular: Logical, if false, the ring will be open (this is not a real ring actually).

Returns:

Error code: IGRAPH_EINVAL: invalid number of vertices.

Time complexity: O(|V|), the number of vertices in the graph.

See also:

igraph_lattice() for generating more general lattices.

Example 9.6. File examples/simple/igraph_ring.c

igraph_tree — Creates a tree in which almost all ver-
tices have the same number of children.

int igraph_tree(igraph_t *graph, igraph_integer_t n, igraph_integer_t children,
 igraph_tree_mode_t type);

Arguments:

graph: Pointer to an uninitialized graph object.

n: Integer, the number of vertices in the graph.

children: Integer, the number of children of a vertex in the tree.

type: Constant, gives whether to create a directed tree, and if this is the case, also its orientation.
Possible values:

IGRAPH_TREE_OUT directed tree, the edges point from the parents to their
children,

IGRAPH_TREE_IN directed tree, the edges point from the children to their
parents.

IGRAPH_TREE_UNDIRECTED undirected tree.

Returns:

Error code: IGRAPH_EINVAL: invalid number of vertices. IGRAPH_INVMODE: invalid mode argu-
ment.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

See also:

Graph Generators

162

igraph_lattice(), igraph_star() for creating other regular structures.

Example 9.7. File examples/simple/igraph_tree.c

igraph_full — Creates a full graph (directed or undi-
rected, with or without loops).

int igraph_full(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed,
 igraph_bool_t loops);

In a full graph every possible edge is present, every vertex is connected to every other vertex. A full graph
in igraph should be distinguished from the concept of complete graphs as used in graph theory. If n
is a positive integer, then the complete graph K_n on n vertices is the undirected simple graph with the
following property. For any distinct pair (u,v) of vertices in K_n, uv (or equivalently vu) is an edge of
K_n. In igraph, a full graph on n vertices can be K_n, a directed version of K_n, or K_n with at least one
loop edge. In any case, if F is a full graph on n vertices as generated by igraph, then K_n is a subgraph
of the undirected version of F.

Arguments:

graph: Pointer to an uninitialized graph object.

n: Integer, the number of vertices in the graph.

directed: Logical, whether to create a directed graph.

loops: Logical, whether to include self-edges (loops).

Returns:

Error code: IGRAPH_EINVAL: invalid number of vertices.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| the number of edges in the graph. Of course
this is the same as O(|E|)=O(|V||V|) here.

See also:

igraph_lattice(), igraph_star(), igraph_tree() for creating other regular structures.

Example 9.8. File examples/simple/igraph_full.c

igraph_full_citation — Creates a full citation graph

int igraph_full_citation(igraph_t *graph, igraph_integer_t n,
 igraph_bool_t directed);

This is a directed graph, where every i->j edge is present if and only if j<i . If the directed
argument is zero then an undirected graph is created, and it is just a full graph.

Graph Generators

163

Arguments:

graph: Pointer to an uninitialized graph object, the result is stored here.

n: The number of vertices.

directed: Whether to created a directed graph. If zero an undirected graph is created.

Returns:

Error code.

Time complexity: O(|V|^2), as we have many edges.

igraph_famous — Create a famous graph by simply
providing its name

int igraph_famous(igraph_t *graph, const char *name);

The name of the graph can be simply supplied as a string. Note that this function creates graphs which
don't take any parameters, there are separate functions for graphs with parameters, eg. igraph_full()
for creating a full graph.

The following graphs are supported:

Bull The bull graph, 5 vertices, 5 edges, resembles the head of a bull if
drawn properly.

Chvatal This is the smallest triangle-free graph that is both 4-chromatic and
4-regular. According to the Grunbaum conjecture there exists an m-
regular, m-chromatic graph with n vertices for every m>1 and n>2.
The Chvatal graph is an example for m=4 and n=12. It has 24 edges.

Coxeter A non-Hamiltonian cubic symmetric graph with 28 vertices and 42
edges.

Cubical The Platonic graph of the cube. A convex regular polyhedron with
8 vertices and 12 edges.

Diamond A graph with 4 vertices and 5 edges, resembles a schematic dia-
mond if drawn properly.

Dodecahedral, Dodecahe-
dron

Another Platonic solid with 20 vertices and 30 edges.

Folkman The semisymmetric graph with minimum number of vertices, 20
and 40 edges. A semisymmetric graph is regular, edge transitive
and not vertex transitive.

Franklin This is a graph whose embedding to the Klein bottle can be colored
with six colors, it is a counterexample to the necessity of the Hea-
wood conjecture on a Klein bottle. It has 12 vertices and 18 edges.

Graph Generators

164

Frucht The Frucht Graph is the smallest cubical graph whose automor-
phism group consists only of the identity element. It has 12 vertices
and 18 edges.

Grotzsch The Grötzsch graph is a triangle-free graph with 11 vertices, 20
edges, and chromatic number 4. It is named after German math-
ematician Herbert Grötzsch, and its existence demonstrates that
the assumption of planarity is necessary in Grötzsch's theorem that
every triangle-free planar graph is 3-colorable.

Heawood The Heawood graph is an undirected graph with 14 vertices and 21
edges. The graph is cubic, and all cycles in the graph have six or
more edges. Every smaller cubic graph has shorter cycles, so this
graph is the 6-cage, the smallest cubic graph of girth 6.

Herschel The Herschel graph is the smallest nonhamiltonian polyhedral
graph. It is the unique such graph on 11 nodes, and has 18 edges.

House The house graph is a 5-vertex, 6-edge graph, the schematic draw of
a house if drawn properly, basically a triangle on top of a square.

HouseX The same as the house graph with an X in the square. 5 vertices
and 8 edges.

Icosahedral, Icosahedron A Platonic solid with 12 vertices and 30 edges.

Krackhardt_Kite A social network with 10 vertices and 18 edges. Krackhardt, D.
Assessing the Political Landscape: Structure, Cognition, and Power
in Organizations. Admin. Sci. Quart. 35, 342-369, 1990.

Levi The graph is a 4-arc transitive cubic graph, it has 30 vertices and
45 edges.

McGee The McGee graph is the unique 3-regular 7-cage graph, it has 24
vertices and 36 edges.

Meredith The Meredith graph is a quartic graph on 70 nodes and 140 edges
that is a counterexample to the conjecture that every 4-regular 4-
connected graph is Hamiltonian.

Noperfectmatching A connected graph with 16 vertices and 27 edges containing no per-
fect matching. A matching in a graph is a set of pairwise non-inci-
dent edges; that is, no two edges share a common vertex. A perfect
matching is a matching which covers all vertices of the graph.

Nonline A graph whose connected components are the 9 graphs whose pres-
ence as a vertex-induced subgraph in a graph makes a nonline
graph. It has 50 vertices and 72 edges.

Octahedral, Octahedron Platonic solid with 6 vertices and 12 edges.

Petersen A 3-regular graph with 10 vertices and 15 edges. It is the smallest
hypohamiltonian graph, ie. it is non-hamiltonian but removing any
single vertex from it makes it Hamiltonian.

Robertson The unique (4,5)-cage graph, ie. a 4-regular graph of girth 5. It has
19 vertices and 38 edges.

Graph Generators

165

Smallestcyclicgroup A smallest nontrivial graph whose automorphism group is cyclic.
It has 9 vertices and 15 edges.

Tetrahedral, Tetrahedron Platonic solid with 4 vertices and 6 edges.

Thomassen The smallest hypotraceable graph, on 34 vertices and 52 edges. A
hypotracable graph does not contain a Hamiltonian path but after
removing any single vertex from it the remainder always contains a
Hamiltonian path. A graph containing a Hamiltonian path is called
traceable.

Tutte Tait's Hamiltonian graph conjecture states that every 3-connected
3-regular planar graph is Hamiltonian. This graph is a counterex-
ample. It has 46 vertices and 69 edges.

Uniquely3colorable Returns a 12-vertex, triangle-free graph with chromatic number 3
that is uniquely 3-colorable.

Walther An identity graph with 25 vertices and 31 edges. An identity graph
has a single graph automorphism, the trivial one.

Zachary Social network of friendships between 34 members of a karate club
at a US university in the 1970s. See W. W. Zachary, An informa-
tion flow model for conflict and fission in small groups, Journal of
Anthropological Research 33, 452-473 (1977).

Arguments:

graph: Pointer to an uninitialized graph object.

name: Character constant, the name of the graph to be created, it is case insensitive.

Returns:

Error code, IGRAPH_EINVAL if there is no graph with the given name.

See also:

Other functions for creating graph structures: igraph_ring(), igraph_tree(),
igraph_lattice(), igraph_full().

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

igraph_lcf — Create a graph from LCF notation

int igraph_lcf(igraph_t *graph, igraph_integer_t n, ...);

LCF is short for Lederberg-Coxeter-Frucht, it is a concise notation for 3-regular Hamiltonian graphs. It
consists of three parameters: the number of vertices in the graph, a list of shifts giving additional edges to
a cycle backbone, and another integer giving how many times the shifts should be performed. See http://
mathworld.wolfram.com/LCFNotation.html for details.

http://mathworld.wolfram.com/LCFNotation.html
http://mathworld.wolfram.com/LCFNotation.html

Graph Generators

166

Arguments:

graph: Pointer to an uninitialized graph object.

n: Integer, the number of vertices in the graph.

...: The shifts and the number of repeats for the shifts, plus an additional 0 to mark the end of
the arguments.

Returns:

Error code.

See also:

See igraph_lcf_vector() for a similar function using a vector_t instead of the variable length
argument list.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 9.9. File examples/simple/igraph_lcf.c

igraph_lcf_vector — Create a graph from LCF nota-
tion

int igraph_lcf_vector(igraph_t *graph, igraph_integer_t n,
 const igraph_vector_t *shifts,
 igraph_integer_t repeats);

This function is essentially the same as igraph_lcf(), only the way for giving the arguments is dif-
ferent. See igraph_lcf() for details.

Arguments:

graph: Pointer to an uninitialized graph object.

n: Integer constant giving the number of vertices.

shifts: A vector giving the shifts.

repeats: An integer constant giving the number of repeats for the shifts.

Returns:

Error code.

See also:

igraph_lcf()

Graph Generators

167

Time complexity: O(|V|+|E|), linear in the number of vertices plus the number of edges.

igraph_atlas — Create a small graph from the “Graph
Atlas”.

int igraph_atlas(igraph_t *graph, int number);

The number of the graph is given as a parameter. The graphs are listed:

1. in increasing order of number of nodes;

2. for a fixed number of nodes, in increasing order of the number of edges;

3. for fixed numbers of nodes and edges, in increasing order of the degree sequence, for example 111223
< 112222;

4. for fixed degree sequence, in increasing number of automorphisms.

The data was converted from the NetworkX software package, see http://networkx.github.io .

See An Atlas of Graphs by Ronald C. Read and Robin J. Wilson, Oxford University Press, 1998.

Arguments:

graph: Pointer to an uninitialized graph object.

number: The number of the graph to generate.

Added in version 0.2.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 9.10. File examples/simple/igraph_atlas.c

igraph_de_bruijn — Generate a de Bruijn graph.

int igraph_de_bruijn(igraph_t *graph, igraph_integer_t m, igraph_integer_t n);

A de Bruijn graph represents relationships between strings. An alphabet of m letters are used and strings
of length n are considered. A vertex corresponds to every possible string and there is a directed edge from
vertex v to vertex w if the string of v can be transformed into the string of w by removing its first letter
and appending a letter to it.

Please note that the graph will have m to the power n vertices and even more edges, so probably you don't
want to supply too big numbers for m and n.

De Bruijn graphs have some interesting properties, please see another source, eg. Wikipedia for details.

Arguments:

http://networkx.github.io

Graph Generators

168

graph: Pointer to an uninitialized graph object, the result will be stored here.

m: Integer, the number of letters in the alphabet.

n: Integer, the length of the strings.

Returns:

Error code.

See also:

igraph_kautz().

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

igraph_kautz — Generate a Kautz graph.

int igraph_kautz(igraph_t *graph, igraph_integer_t m, igraph_integer_t n);

A Kautz graph is a labeled graph, vertices are labeled by strings of length n+1 above an alphabet with
m+1 letters, with the restriction that every two consecutive letters in the string must be different. There is
a directed edge from a vertex v to another vertex w if it is possible to transform the string of v into the
string of w by removing the first letter and appending a letter to it.

Kautz graphs have some interesting properties, see eg. Wikipedia for details.

Vincent Matossian wrote the first version of this function in R, thanks.

Arguments:

graph: Pointer to an uninitialized graph object, the result will be stored here.

m: Integer, m+1 is the number of letters in the alphabet.

n: Integer, n+1 is the length of the strings.

Returns:

Error code.

See also:

igraph_de_bruijn().

Time complexity: O(|V|* [(m+1)/m]^n +|E|), in practice it is more like O(|V|+|E|). |V| is the number of
vertices, |E| is the number of edges and m and n are the corresponding arguments.

igraph_extended_chordal_ring — Create an extend-
ed chordal ring

Graph Generators

169

int igraph_extended_chordal_ring(igraph_t *graph, igraph_integer_t nodes,
 const igraph_matrix_t *W);

An extended chordal ring is a regular graph, each node has the same degree. It can be obtained from a
simple ring by adding some extra edges specified by a matrix. Let p denote the number of columns in
the W matrix. The extra edges of vertex i are added according to column (i mod p) in W. The number of
extra edges is the number of rows in W: for each row j an edge i->i+w[ij] is added if i+w[ij] is less than
the number of total nodes.

See also Kotsis, G: Interconnection Topologies for Parallel Processing Systems, PARS Mitteilungen 11,
1-6, 1993.

Arguments:

graph: Pointer to an uninitialized graph object, the result will be stored here. The result is always an
undirected graph.

nodes: Integer constant, the number of vertices in the graph. It must be at least 3.

W: The matrix specifying the extra edges. The number of columns should divide the number of
total vertices.

Returns:

Error code.

See also:

igraph_ring().

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

igraph_connect_neighborhood — Connects every
vertex to its neighborhood

int igraph_connect_neighborhood(igraph_t *graph, igraph_integer_t order,
 igraph_neimode_t mode);

This function adds new edges to the input graph. For each vertex vertices reachable by at most order
steps and not yet connected to the vertex a new edge is created.

Note that the input graph is modified in place, no new graph is created, call igraph_copy() if you
want to keep the original graph as well.

For undirected graphs reachability is always symmetric: if vertex A can be reached from vertex B in at
most order steps, then the opposite is also true. Only one undirected (A,B) edge will be added in this case.

Arguments:

graph: The input graph, this is the output graph as well.

Graph Generators

170

order: Integer constant, it gives the distance within which the vertices will be connected to the source
vertex.

mode: Constant, it specifies how the neighborhood search is performed for directed graphs. If
IGRAPH_OUT then vertices reachable from the source vertex will be connected, IGRAPH_IN
is the opposite. If IGRAPH_ALL then the directed graph is considered as an undirected one.

Returns:

Error code.

See also:

igraph_lattice() uses this function to connect the neighborhood of the vertices.

Time complexity: O(|V|*d^o), |V| is the number of vertices in the graph, d is the average degree and o
is the order argument.

Games: Randomized Graph Generators
Games are randomized graph generators. Randomization means that they generate a different graph every
time you call them.

igraph_grg_game — Generating geometric random
graphs.

int igraph_grg_game(igraph_t *graph, igraph_integer_t nodes,
 igraph_real_t radius, igraph_bool_t torus,
 igraph_vector_t *x, igraph_vector_t *y);

A geometric random graph is created by dropping points (=vertices) randomly to the unit square and then
connecting all those pairs which are less than radius apart in Euclidean norm.

Original code contributed by Keith Briggs, thanks Keith.

Arguments:

graph: Pointer to an uninitialized graph object,

nodes: The number of vertices in the graph.

radius: The radius within which the vertices will be connected.

torus: Logical constant, if true periodic boundary conditions will be used, ie. the vertices are as-
sumed to be on a torus instead of a square.

Returns:

Error code.

Graph Generators

171

Time complexity: TODO, less than O(|V|^2+|E|).

Example 9.11. File examples/simple/igraph_grg_game.c

igraph_barabasi_game — Generates a graph based on
the Barabási-Albert model.

int igraph_barabasi_game(igraph_t *graph, igraph_integer_t n,
 igraph_real_t power,
 igraph_integer_t m,
 const igraph_vector_t *outseq,
 igraph_bool_t outpref,
 igraph_real_t A,
 igraph_bool_t directed,
 igraph_barabasi_algorithm_t algo,
 const igraph_t *start_from);

Arguments:

graph: An uninitialized graph object.

n: The number of vertices in the graph.

power: Power of the preferential attachment. The probability that a vertex is cited is propor-
tional to d^power+A, where d is its degree (see also the outpref argument), power
and A are given by arguments. In the classic preferential attachment model power=1.

m: The number of outgoing edges generated for each vertex. (Only if outseq is NULL.)

outseq: Gives the (out-)degrees of the vertices. If this is constant, this can be a NULL pointer
or an empty (but initialized!) vector, in this case m contains the constant out-degree.
The very first vertex has by definition no outgoing edges, so the first number in this
vector is ignored.

outpref: Boolean, if true not only the in- but also the out-degree of a vertex increases its citation
probability. Ie. the citation probability is determined by the total degree of the vertices.

A: The probability that a vertex is cited is proportional to d^power+A, where d is its degree
(see also the outpref argument), power and A are given by arguments. In the previous
versions of the function this parameter was implicitly set to one.

directed: Boolean, whether to generate a directed graph.

algo: The algorithm to use to generate the network. Possible values:

IGRAPH_BARABASI_BAG This is the algorithm that was previously (be-
fore version 0.6) solely implemented in igraph.
It works by putting the ids of the vertices into a
bag (multiset, really), exactly as many times as
their (in-)degree, plus once more. Then the re-

Graph Generators

172

quired number of cited vertices are drawn from
the bag, with replacement. This method might
generate multiple edges. It only works if pow-
er=1 and A=1.

IGRAPH_BARABASI_PSUMTREE This algorithm uses a partial prefix-sum tree to
generate the graph. It does not generate multiple
edges and works for any power and A values.

IGRAPH_BARABASI_PSUMTREE_MULTIPLEThis algorithm also uses a partial prefix-sum
tree to generate the graph. The difference is,
that now multiple edges are allowed. This
method was implemented under the name
igraph_nonlinear_barabasi_game
before version 0.6.

start_from: Either a null pointer, or a graph. In the latter case the graph as a starting configuration.
The graph must be non-empty, i.e. it must have at least one vertex. If a graph is sup-
plied here and the outseq argument is also given, then outseq should only contain
information on the vertices that are not in the start_from graph.

Returns:

Error code: IGRAPH_EINVAL: invalid n, m or outseq parameter.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 9.12. File examples/simple/igraph_barabasi_game.c

Example 9.13. File examples/simple/igraph_barabasi_game2.c

igraph_erdos_renyi_game — Generates a random (Er-
dos-Renyi) graph.

int igraph_erdos_renyi_game(igraph_t *graph, igraph_erdos_renyi_t type,
 igraph_integer_t n, igraph_real_t p_or_m,
 igraph_bool_t directed, igraph_bool_t loops);

Arguments:

graph: Pointer to an uninitialized graph object.

type: The type of the random graph, possible values:

IGRAPH_ERDOS_RENYI_GNM G(n,m) graph, m edges are selected uniformly ran-
domly in a graph with n vertices.

IGRAPH_ERDOS_RENYI_GNP G(n,p) graph, every possible edge is included in the
graph with probability p.

Graph Generators

173

n: The number of vertices in the graph.

p_or_m: This is the p parameter for G(n,p) graphs and the m parameter for G(n,m) graphs.

directed: Logical, whether to generate a directed graph.

loops: Logical, whether to generate loops (self) edges.

Returns:

Error code: IGRAPH_EINVAL: invalid type, n, p or m parameter. IGRAPH_ENOMEM: there is not
enough memory for the operation.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

See also:

igraph_barabasi_game(), igraph_growing_random_game()

Example 9.14. File examples/simple/igraph_erdos_renyi_game.c

igraph_watts_strogatz_game — The Watts-Strogatz
small-world model

int igraph_watts_strogatz_game(igraph_t *graph, igraph_integer_t dim,
 igraph_integer_t size, igraph_integer_t nei,
 igraph_real_t p, igraph_bool_t loops,
 igraph_bool_t multiple);

This function generates a graph according to the Watts-Strogatz model of small-world networks. The graph
is obtained by creating a circular undirected lattice and then rewire the edges randomly with a constant
probability.

See also: Duncan J Watts and Steven H Strogatz: Collective dynamics of “small world” networks, Nature
393, 440-442, 1998.

Arguments:

graph: The graph to initialize.

dim: The dimension of the lattice.

size: The size of the lattice along each dimension.

nei: The size of the neighborhood for each vertex. This is the same as the nei argument of
igraph_connect_neighborhood().

p: The rewiring probability. A real number between zero and one (inclusive).

loops: Logical, whether to generate loop edges.

multiple: Logical, whether to allow multiple edges in the generated graph.

Graph Generators

174

Returns:

Error code.

See also:

igraph_lattice(), igraph_connect_neighborhood() and
igraph_rewire_edges() can be used if more flexibility is needed, eg. a different type of lattice.

Time complexity: O(|V|*d^o+|E|), |V| and |E| are the number of vertices and edges, d is the average degree,
o is the nei argument.

igraph_rewire_edges — Rewire the edges of a graph
with constant probability

int igraph_rewire_edges(igraph_t *graph, igraph_real_t prob,
 igraph_bool_t loops, igraph_bool_t multiple);

This function rewires the edges of a graph with a constant probability. More precisely each end point of
each edge is rewired to a uniformly randomly chosen vertex with constant probability prob.

Note that this function modifies the input graph, call igraph_copy() if you want to keep it.

Arguments:

graph: The input graph, this will be rewired, it can be directed or undirected.

prob: The rewiring probability a constant between zero and one (inclusive).

loops: Boolean, whether loop edges are allowed in the new graph, or not.

multiple: Boolean, whether multiple edges are allowed in the new graph.

Returns:

Error code.

See also:

igraph_watts_strogatz_game() uses this function for the rewiring.

Time complexity: O(|V|+|E|).

igraph_degree_sequence_game — Generates a ran-
dom graph with a given degree sequence

int igraph_degree_sequence_game(igraph_t *graph, const igraph_vector_t *out_deg,

Graph Generators

175

 const igraph_vector_t *in_deg,
 igraph_degseq_t method);

Arguments:

graph: Pointer to an uninitialized graph object.

out_deg: The degree sequence for an undirected graph (if in_seq is of length zero), or the out-
degree sequence of a directed graph (if in_deq is not of length zero.

in_deg: It is either a zero-length vector or NULL (if an undirected graph is generated), or the in-
degree sequence.

method: The method to generate the graph. Possible values:

IGRAPH_DEGSEQ_SIMPLE For undirected graphs, this method puts all vertex
ids in a bag such that the multiplicity of a vertex
in the bag is the same as its degree. Then it draws
pairs from the bag until the bag becomes empty. This
method can generate both loop (self) edges and mul-
tiple edges. For directed graphs, the algorithm is ba-
sically the same, but two separate bags are used for
the in- and out-degrees.

IGRAPH_DEGSEQ_SIMPLE_NO_MULTIPLEThis method is similar to
IGRAPH_DEGSEQ_SIMPLE but tries to avoid mul-
tiple and loop edges and restarts the generation from
scratch if it gets stuck. It is not guaranteed to sample
uniformly from the space of all possible graphs with
the given sequence, but it is relatively fast and it will
eventually succeed if the provided degree sequence
is graphical, but there is no upper bound on the num-
ber of iterations.

IGRAPH_DEGSEQ_VL This method is a much more sophisticated genera-
tor than the previous ones. It can sample undirected,
connected simple graphs uniformly and uses Monte-
Carlo methods to randomize the graphs. This gener-
ator should be favoured if undirected and connected
graphs are to be generated and execution time is not a
concern. igraph uses the original implementation of
Fabien Viger; see http://www-rp.lip6.fr/~latapy/FV/
generation.html and the paper cited on it for the de-
tails of the algorithm.

Returns:

Error code: IGRAPH_ENOMEM: there is not enough memory to perform the operation.
IGRAPH_EINVAL: invalid method parameter, or invalid in- and/or out-degree vectors. The degree
vectors should be non-negative, out_deg should sum up to an even integer for undirected graphs; the
length and sum of out_deg and in_deg should match for directed graphs.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges for
IGRAPH_DEGSEQ_SIMPLE. The time complexity of the other modes is not known.

http://www-rp.lip6.fr/~latapy/FV/generation.html
http://www-rp.lip6.fr/~latapy/FV/generation.html

Graph Generators

176

See also:

igraph_barabasi_game(), igraph_erdos_renyi_game(),
igraph_is_degree_sequence(), igraph_is_graphical_degree_sequence()

Example 9.15. File examples/simple/
igraph_degree_sequence_game.c

igraph_k_regular_game — Generates a random graph
where each vertex has the same degree.

int igraph_k_regular_game(igraph_t *graph,
 igraph_integer_t no_of_nodes, igraph_integer_t k,
 igraph_bool_t directed, igraph_bool_t multiple);

This game generates a directed or undirected random graph where the degrees of vertices are equal to a
predefined constant k. For undirected graphs, at least one of k and the number of vertices must be even.

The game simply uses igraph_degree_sequence_game with appropriately constructed degree se-
quences.

Arguments:

graph: Pointer to an uninitialized graph object.

no_of_nodes: The number of nodes in the generated graph.

k: The degree of each vertex in an undirected graph, or the out-degree and in-degree of
each vertex in a directed graph.

directed: Whether the generated graph will be directed.

multiple: Whether to allow multiple edges in the generated graph.

Returns:

Error code: IGRAPH_EINVAL: invalid parameter; e.g., negative number of nodes, or odd number of
nodes and odd k for undirected graphs. IGRAPH_ENOMEM: there is not enough memory for the oper-
ation.

Time complexity: O(|V|+|E|) if multiple is true, otherwise not known.

igraph_static_fitness_game — Generates a non-
growing random graph with edge probabilities

int igraph_static_fitness_game(igraph_t *graph, igraph_integer_t no_of_edges,
 igraph_vector_t* fitness_out, igraph_vector_t* fitness_in,
 igraph_bool_t loops, igraph_bool_t multiple);

Graph Generators

177

proportional to node fitness scores. This game generates a directed or undirected random graph where the
probability of an edge between vertices i and j depends on the fitness scores of the two vertices involved.
For undirected graphs, each vertex has a single fitness score. For directed graphs, each vertex has an out-
and an in-fitness, and the probability of an edge from i to j depends on the out-fitness of vertex i and the
in-fitness of vertex j.

The generation process goes as follows. We start from N disconnected nodes (where N is given by the
length of the fitness vector). Then we randomly select two vertices i and j, with probabilities proportional
to their fitnesses. (When the generated graph is directed, i is selected according to the out-fitnesses and
j is selected according to the in-fitnesses). If the vertices are not connected yet (or if multiple edges are
allowed), we connect them; otherwise we select a new pair. This is repeated until the desired number of
links are created.

It can be shown that the expected degree of each vertex will be proportional to its fitness, although the
actual, observed degree will not be. If you need to generate a graph with an exact degree sequence, consider
igraph_degree_sequence_game instead.

This model is commonly used to generate static scale-free networks. To achieve this, you have
to draw the fitness scores from the desired power-law distribution. Alternatively, you may use
igraph_static_power_law_game which generates the fitnesses for you with a given exponent.

Reference: Goh K-I, Kahng B, Kim D: Universal behaviour of load distribution in scale-free networks.
Phys Rev Lett 87(27):278701, 2001.

Arguments:

graph: Pointer to an uninitialized graph object.

fitness_out: A numeric vector containing the fitness of each vertex. For directed graphs, this spec-
ifies the out-fitness of each vertex.

fitness_in: If NULL, the generated graph will be undirected. If not NULL, this argument specifies
the in-fitness of each vertex.

no_of_edges: The number of edges in the generated graph.

loops: Whether to allow loop edges in the generated graph.

multiple: Whether to allow multiple edges in the generated graph.

Returns:

Error code: IGRAPH_EINVAL: invalid parameter IGRAPH_ENOMEM: there is not enough memory for
the operation.

Time complexity: O(|V| + |E| log |E|).

igraph_static_power_law_game — Generates a non-
growing random graph with expected power-law degree
distributions.

int igraph_static_power_law_game(igraph_t *graph,

Graph Generators

178

 igraph_integer_t no_of_nodes, igraph_integer_t no_of_edges,
 igraph_real_t exponent_out, igraph_real_t exponent_in,
 igraph_bool_t loops, igraph_bool_t multiple,
 igraph_bool_t finite_size_correction);

This game generates a directed or undirected random graph where the degrees of vertices follow power-law
distributions with prescribed exponents. For directed graphs, the exponents of the in- and out-degree dis-
tributions may be specified separately.

The game simply uses igraph_static_fitness_game with appropriately constructed fitness vec-
tors. In particular, the fitness of vertex i is i-alpha, where alpha = 1/(gamma-1) and gamma is the exponent
given in the arguments.

To remove correlations between in- and out-degrees in case of directed graphs, the in-fitness vector will
be shuffled after it has been set up and before igraph_static_fitness_game is called.

Note that significant finite size effects may be observed for exponents smaller than 3 in the original for-
mulation of the game. This function provides an argument that lets you remove the finite size effects by
assuming that the fitness of vertex i is (i+i0-1)-alpha, where i0 is a constant chosen appropriately to ensure
that the maximum degree is less than the square root of the number of edges times the average degree; see
the paper of Chung and Lu, and Cho et al for more details.

References:

Goh K-I, Kahng B, Kim D: Universal behaviour of load distribution in scale-free networks. Phys Rev Lett
87(27):278701, 2001.

Chung F and Lu L: Connected components in a random graph with given degree sequences. Annals of
Combinatorics 6, 125-145, 2002.

Cho YS, Kim JS, Park J, Kahng B, Kim D: Percolation transitions in scale-free networks under the Achliop-
tas process. Phys Rev Lett 103:135702, 2009.

Arguments:

graph: Pointer to an uninitialized graph object.

no_of_nodes: The number of nodes in the generated graph.

no_of_edges: The number of edges in the generated graph.

exponent_out: The power law exponent of the degree distribution. For directed
graphs, this specifies the exponent of the out-degree distribution. It
must be greater than or equal to 2. If you pass IGRAPH_INFINITY
here, you will get back an Erdos-Renyi random network.

exponent_in: If negative, the generated graph will be undirected. If greater than or
equal to 2, this argument specifies the exponent of the in-degree dis-
tribution. If non-negative but less than 2, an error will be generated.

loops: Whether to allow loop edges in the generated graph.

multiple: Whether to allow multiple edges in the generated graph.

finite_size_correction: Whether to use the proposed finite size correction of Cho et al.

Returns:

Graph Generators

179

Error code: IGRAPH_EINVAL: invalid parameter IGRAPH_ENOMEM: there is not enough memory for
the operation.

Time complexity: O(|V| + |E| log |E|).

igraph_forest_fire_game — Generates a network ac-
cording to the “forest fire game”

int igraph_forest_fire_game(igraph_t *graph, igraph_integer_t nodes,
 igraph_real_t fw_prob, igraph_real_t bw_factor,
 igraph_integer_t pambs, igraph_bool_t directed);

The forest fire model intends to reproduce the following network characteristics, observed in real networks:

• Heavy-tailed in-degree distribution.

• Heavy-tailed out-degree distribution.

• Communities.

• Densification power-law. The network is densifying in time, according to a power-law rule.

• Shrinking diameter. The diameter of the network decreases in time.

The network is generated in the following way. One vertex is added at a time. This vertex connects to
(cites) ambs vertices already present in the network, chosen uniformly random. Now, for each cited
vertex v we do the following procedure:

1. We generate two random number, x and y , that are geometrically distributed with means p/(1-
p) and rp(1-rp) . (p is fw_prob , r is bw_factor .) The new vertex cites x outgoing
neighbors and y incoming neighbors of v , from those which are not yet cited by the new vertex. If
there are less than x or y such vertices available then we cite all of them.

2. The same procedure is applied to all the newly cited vertices.

See also: Jure Leskovec, Jon Kleinberg and Christos Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. KDD '05: Proceeding of the eleventh ACM SIGKDD in-
ternational conference on Knowledge discovery in data mining , 177--187, 2005.

Note however, that the version of the model in the published paper is incorrect in the sense that it cannot
generate the kind of graphs the authors claim. A corrected version is available from http://cs.stanford.edu/
people/jure/pubs/powergrowth-tkdd.pdf , our implementation is based on this.

Arguments:

graph: Pointer to an uninitialized graph object.

nodes: The number of vertices in the graph.

fw_prob: The forward burning probability.

bw_factor: The backward burning ratio. The backward burning probability is calculated as
bw.factor*fw.prob .

http://cs.stanford.edu/people/jure/pubs/powergrowth-tkdd.pdf
http://cs.stanford.edu/people/jure/pubs/powergrowth-tkdd.pdf

Graph Generators

180

pambs: The number of ambassador vertices.

directed: Whether to create a directed graph.

Returns:

Error code.

Time complexity: TODO.

igraph_rewire — Randomly rewires a graph while pre-
serving the degree distribution.

int igraph_rewire(igraph_t *graph, igraph_integer_t n, igraph_rewiring_t mode);

This function generates a new graph based on the original one by randomly rewiring edges while preserving
the original graph's degree distribution. Please note that the rewiring is done "in place", so no new graph
will be allocated. If you would like to keep the original graph intact, use igraph_copy() beforehand.

Arguments:

graph: The graph object to be rewired.

n: Number of rewiring trials to perform.

mode: The rewiring algorithm to be used. It can be one of the following:

IGRAPH_REWIRING_SIMPLE Simple rewiring algorithm which chooses two arbitrary
edges in each step (namely (a,b) and (c,d)) and substi-
tutes them with (a,d) and (c,b) if they don't exist. The
method will neither destroy nor create self-loops.

IGRAPH_REWIRING_SIMPLE_LOOPSSame as IGRAPH_REWIRING_SIMPLE but allows
the creation or destruction of self-loops.

Returns:

Error code:

IGRAPH_EINVMODE Invalid rewiring mode.

IGRAPH_EINVAL Graph unsuitable for rewiring (e.g. it has less than 4 nodes in case of
IGRAPH_REWIRING_SIMPLE)

IGRAPH_ENOMEM Not enough memory for temporary data.

Time complexity: TODO.

Example 9.16. File examples/simple/igraph_rewire.c

Graph Generators

181

igraph_growing_random_game — Generates a growing
random graph.

int igraph_growing_random_game(igraph_t *graph, igraph_integer_t n,
 igraph_integer_t m, igraph_bool_t directed,
 igraph_bool_t citation);

This function simulates a growing random graph. In each discrete time step a new vertex is added and a
number of new edges are also added. These graphs are known to be different from standard (not growing)
random graphs.

Arguments:

graph: Uninitialized graph object.

n: The number of vertices in the graph.

m: The number of edges to add in a time step (ie. after adding a vertex).

directed: Boolean, whether to generate a directed graph.

citation: Boolean, if TRUE, the edges always originate from the most recently added vertex.

Returns:

Error code: IGRAPH_EINVAL: invalid n or m parameter.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 9.17. File examples/simple/igraph_growing_random_game.c

igraph_callaway_traits_game — Simulate a growing
network with vertex types.

int igraph_callaway_traits_game (igraph_t *graph, igraph_integer_t nodes,
 igraph_integer_t types, igraph_integer_t edges_per_step,
 igraph_vector_t *type_dist,
 igraph_matrix_t *pref_matrix,
 igraph_bool_t directed);

The different types of vertices prefer to connect other types of vertices with a given probability.

The simulation goes like this: in each discrete time step a new vertex is added to the graph. The type of
this vertex is generated based on type_dist. Then two vertices are selected uniformly randomly from
the graph. The probability that they will be connected depends on the types of these vertices and is taken

Graph Generators

182

from pref_matrix. Then another two vertices are selected and this is repeated edges_per_step
times in each time step.

Arguments:

graph: Pointer to an uninitialized graph.

nodes: The number of nodes in the graph.

types: Number of node types.

edges_per_step: The number of edges to be add per time step.

type_dist: Vector giving the distribution of the vertex types.

pref_matrix: Matrix giving the connection probabilities for the vertex types.

directed: Logical, whether to generate a directed graph.

Returns:

Error code.

Added in version 0.2.

Time complexity: O(|V|e*log(|V|)), |V| is the number of vertices, e is edges_per_step.

igraph_establishment_game — Generates a graph
with a simple growing model with vertex types.

int igraph_establishment_game(igraph_t *graph, igraph_integer_t nodes,
 igraph_integer_t types, igraph_integer_t k,
 igraph_vector_t *type_dist,
 igraph_matrix_t *pref_matrix,
 igraph_bool_t directed);

The simulation goes like this: a single vertex is added at each time step. This new vertex tries to connect
to k vertices in the graph. The probability that such a connection is realized depends on the types of the
vertices involved.

Arguments:

graph: Pointer to an uninitialized graph.

nodes: The number of vertices in the graph.

types: The number of vertex types.

k: The number of connections tried in each time step.

type_dist: Vector giving the distribution of vertex types.

pref_matrix: Matrix giving the connection probabilities for different vertex types.

Graph Generators

183

directed: Logical, whether to generate a directed graph.

Returns:

Error code.

Added in version 0.2.

Time complexity: O(|V|*k*log(|V|)), |V| is the number of vertices and k is the k parameter.

igraph_preference_game — Generates a graph with
vertex types and connection preferences

int igraph_preference_game(igraph_t *graph, igraph_integer_t nodes,
 igraph_integer_t types,
 const igraph_vector_t *type_dist,
 igraph_bool_t fixed_sizes,
 const igraph_matrix_t *pref_matrix,
 igraph_vector_t *node_type_vec,
 igraph_bool_t directed,
 igraph_bool_t loops);

This is practically the nongrowing variant of igraph_establishment_game. A given number of
vertices are generated. Every vertex is assigned to a vertex type according to the given type probabilities.
Finally, every vertex pair is evaluated and an edge is created between them with a probability depending
on the types of the vertices involved.

In other words, this function generates a graph according to a block-model. Vertices are divided into groups
(or blocks), and the probability the two vertices are connected depends on their groups only.

Arguments:

graph: Pointer to an uninitialized graph.

nodes: The number of vertices in the graph.

types: The number of vertex types.

type_dist: Vector giving the distribution of vertex types. If NULL, all vertex types will have
equal probability. See also the fixed_sizes argument.

fixed_sizes: Boolean. If true, then the number of vertices with a given vertex type is fixed and
the type_dist argument gives these numbers for each vertex type. If true, and
type_dist is NULL, then the function tries to make vertex groups of the same
size. If this is not possible, then some groups will have an extra vertex.

pref_matrix: Matrix giving the connection probabilities for different vertex types. This should
be symmetric if the requested graph is undirected.

node_type_vec: A vector where the individual generated vertex types will be stored. If NULL , the
vertex types won't be saved.

Graph Generators

184

directed: Logical, whether to generate a directed graph. If undirected graphs are requested,
only the lower left triangle of the preference matrix is considered.

loops: Logical, whether loop edges are allowed.

Returns:

Error code.

Added in version 0.3.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

See also:

igraph_establishment_game()

Example 9.18. File examples/simple/igraph_preference_game.c

igraph_asymmetric_preference_game — Generates
a graph with asymmetric vertex types and connection
preferences

int igraph_asymmetric_preference_game(igraph_t *graph, igraph_integer_t nodes,
 igraph_integer_t types,
 igraph_matrix_t *type_dist_matrix,
 igraph_matrix_t *pref_matrix,
 igraph_vector_t *node_type_in_vec,
 igraph_vector_t *node_type_out_vec,
 igraph_bool_t loops);

This is the asymmetric variant of igraph_preference_game() . A given number of vertices are
generated. Every vertex is assigned to an "incoming" and an "outgoing" vertex type according to the given
joint type probabilities. Finally, every vertex pair is evaluated and a directed edge is created between them
with a probability depending on the "outgoing" type of the source vertex and the "incoming" type of the
target vertex.

Arguments:

graph: Pointer to an uninitialized graph.

nodes: The number of vertices in the graph.

types: The number of vertex types.

type_dist_matrix: Matrix giving the joint distribution of vertex types. If null, incoming and
outgoing vertex types are independent and uniformly distributed.

pref_matrix: Matrix giving the connection probabilities for different vertex types.

Graph Generators

185

node_type_in_vec: A vector where the individual generated "incoming" vertex types will be
stored. If NULL, the vertex types won't be saved.

node_type_out_vec: A vector where the individual generated "outgoing" vertex types will be
stored. If NULL, the vertex types won't be saved.

loops: Logical, whether loop edges are allowed.

Returns:

Error code.

Added in version 0.3.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

See also:

igraph_preference_game()

igraph_recent_degree_game — Stochastic graph gen-
erator based on the number of incident edges a node
has gained recently

int igraph_recent_degree_game(igraph_t *graph, igraph_integer_t n,
 igraph_real_t power,
 igraph_integer_t window,
 igraph_integer_t m,
 const igraph_vector_t *outseq,
 igraph_bool_t outpref,
 igraph_real_t zero_appeal,
 igraph_bool_t directed);

Arguments:

graph: Pointer to an uninitialized graph object.

n: The number of vertices in the graph, this is the same as the number of time steps.

power: The exponent, the probability that a node gains a new edge is proportional to the
number of edges it has gained recently (in the last window time steps) to power.

window: Integer constant, the size of the time window to use to count the number of recent
edges.

m: Integer constant, the number of edges to add per time step if the outseq parameter
is a null pointer or a zero-length vector.

outseq: The number of edges to add in each time step. This argument is ignored if it is a null
pointer or a zero length vector, is this case the constant m parameter is used.

Graph Generators

186

outpref: Logical constant, if true the edges originated by a vertex also count as recent incident
edges. It is false in most cases.

zero_appeal: Constant giving the attractiveness of the vertices which haven't gained any edge re-
cently.

directed: Logical constant, whether to generate a directed graph.

Returns:

Error code.

Time complexity: O(|V|*log(|V|)+|E|), |V| is the number of vertices, |E| is the number of edges in the graph.

igraph_barabasi_aging_game — Preferential attach-
ment with aging of vertices

int igraph_barabasi_aging_game(igraph_t *graph,
 igraph_integer_t nodes,
 igraph_integer_t m,
 const igraph_vector_t *outseq,
 igraph_bool_t outpref,
 igraph_real_t pa_exp,
 igraph_real_t aging_exp,
 igraph_integer_t aging_bin,
 igraph_real_t zero_deg_appeal,
 igraph_real_t zero_age_appeal,
 igraph_real_t deg_coef,
 igraph_real_t age_coef,
 igraph_bool_t directed);

In this game, the probability that a node gains a new edge is given by its (in-)degree (k) and age (l). This
probability has a degree dependent component multiplied by an age dependent component. The degree
dependent part is: deg_coef times k to the power of pa_exp plus zero_deg_appeal; and the age
dependent part is age_coef times l to the power of aging_exp plus zero_age_appeal.

The age is based on the number of vertices in the network and the aging_bin argument: vertices grew
one unit older after each aging_bin vertices added to the network.

Arguments:

graph: Pointer to an uninitialized graph object.

nodes: The number of vertices in the graph.

m: The number of edges to add in each time step. If the outseq argument is not
a null vector and not a zero-length vector.

outseq: The number of edges to add in each time step. If it is a null pointer or a ze-
ro-length vector then it is ignored and the m argument is used instead.

Graph Generators

187

outpref: Logical constant, whether the edges initiated by a vertex contribute to the prob-
ability to gain a new edge.

pa_exp: The exponent of the preferential attachment, a small positive number usually,
the value 1 yields the classic linear preferential attachment.

aging_exp: The exponent of the aging, this is a negative number usually.

aging_bin: Integer constant, the number of vertices to add before vertices in the network
grew one unit older.

zero_deg_appeal: The degree dependent part of the attractiveness of the zero degree vertices.

zero_age_appeal: The age dependent part of the attractiveness of the vertices of age zero. This
parameter is usually zero.

deg_coef: The coefficient for the degree.

age_coef: The coefficient for the age.

directed: Logical constant, whether to generate a directed graph.

Returns:

Error code.

Time complexity: O((|V|+|V|/aging_bin)*log(|V|)+|E|). |V| is the number of vertices, |E| the number of
edges.

igraph_recent_degree_aging_game — Preferential
attachment based on the number of edges gained re-
cently, with aging of vertices

int igraph_recent_degree_aging_game(igraph_t *graph,
 igraph_integer_t nodes,
 igraph_integer_t m,
 const igraph_vector_t *outseq,
 igraph_bool_t outpref,
 igraph_real_t pa_exp,
 igraph_real_t aging_exp,
 igraph_integer_t aging_bin,
 igraph_integer_t time_window,
 igraph_real_t zero_appeal,
 igraph_bool_t directed);

This game is very similar to igraph_barabasi_aging_game(), except that instead of the total
number of incident edges the number of edges gained in the last time_window time steps are counted.

The degree dependent part of the attractiveness is given by k to the power of pa_exp plus
zero_appeal; the age dependent part is l to the power to aging_exp. k is the number of edges gained
in the last time_window time steps, l is the age of the vertex.

Graph Generators

188

Arguments:

graph: Pointer to an uninitialized graph object.

nodes: The number of vertices in the graph.

m: The number of edges to add in each time step. If the outseq argument is not a null
vector or a zero-length vector then it is ignored.

outseq: Vector giving the number of edges to add in each time step. If it is a null pointer or a
zero-length vector then it is ignored and the m argument is used.

outpref: Logical constant, if true the edges initiated by a vertex are also counted. Normally
it is false.

pa_exp: The exponent for the preferential attachment.

aging_exp: The exponent for the aging, normally it is negative: old vertices gain edges with less
probability.

aging_bin: Integer constant, gives the scale of the aging. The age of the vertices is incremented
by one after every aging_bin vertex added.

time_window: The time window to use to count the number of incident edges for the vertices.

zero_appeal: The degree dependent part of the attractiveness for zero degree vertices.

directed: Logical constant, whether to create a directed graph.

Returns:

Error code.

Time complexity: O((|V|+|V|/aging_bin)*log(|V|)+|E|). |V| is the number of vertices, |E| the number of
edges.

igraph_cited_type_game — Simulate a citation based
on vertex types.

int igraph_cited_type_game(igraph_t *graph, igraph_integer_t nodes,
 const igraph_vector_t *types,
 const igraph_vector_t *pref,
 igraph_integer_t edges_per_step,
 igraph_bool_t directed);

Function to create a network based on some vertex categories. This function creates a citation network, in
each step a single vertex and edges_per_step citating edges are added, nodes with different categories
(may) have different probabilities to get cited, as given by the pref vector.

Note that this function might generate networks with multiple edges if edges_per_step is greater than
one. You might want to call igraph_simplify() on the result to remove multiple edges.

Arguments:

Graph Generators

189

graph: Pointer to an uninitialized graph object.

nodes: The number of vertices in the network.

types: Numeric vector giving the categories of the vertices, so it should contain nodes
non-negative integer numbers. Types are numbered from zero.

pref: The attractivity of the different vertex categories in a vector. Its length should be
the maximum element in types plus one (types are numbered from zero).

edges_per_step: Integer constant, the number of edges to add in each time step.

directed: Logical constant, whether to create a directed network.

Returns:

Error code.

See also:

igraph_citing_cited_type_game() for a bit more general game.

Time complexity: O((|V|+|E|)log|V|), |V| and |E| are number of vertices and edges, respectively.

igraph_citing_cited_type_game — Simulate a cita-
tion network based on vertex types.

int igraph_citing_cited_type_game(igraph_t *graph, igraph_integer_t nodes,
 const igraph_vector_t *types,
 const igraph_matrix_t *pref,
 igraph_integer_t edges_per_step,
 igraph_bool_t directed);

This game is similar to igraph_cited_type_game() but here the category of the citing vertex is
also considered.

An evolving citation network is modeled here, a single vertex and its edges_per_step citation are
added in each time step. The odds the a given vertex is cited by the new vertex depends on the category
of both the citing and the cited vertex and is given in the pref matrix. The categories of the citing vertex
correspond to the rows, the categories of the cited vertex to the columns of this matrix. Ie. the element in
row i and column j gives the probability that a j vertex is cited, if the category of the citing vertex is i.

Note that this function might generate networks with multiple edges if edges_per_step is greater than
one. You might want to call igraph_simplify() on the result to remove multiple edges.

Arguments:

graph: Pointer to an uninitialized graph object.

nodes: The number of vertices in the network.

types: A numeric matrix of length nodes, containing the categories of the vertices. The cate-
gories are numbered from zero.

Graph Generators

190

pref: The preference matrix, a square matrix is required, both the number of rows and columns
should be the maximum element in types plus one (types are numbered from zero).

directed: Logical constant, whether to create a directed network.

Returns:

Error code.

Time complexity: O((|V|+|E|)log|V|), |V| and |E| are number of vertices and edges, respectively.

igraph_sbm_game — Sample from a stochastic block
model

int igraph_sbm_game(igraph_t *graph, igraph_integer_t n,
 const igraph_matrix_t *pref_matrix,
 const igraph_vector_int_t *block_sizes,
 igraph_bool_t directed, igraph_bool_t loops);

This function samples graphs from a stochastic block model by (doing the equivalent of) Bernoulli trials for
each potential edge with the probabilities given by the Bernoulli rate matrix, pref_matrix. See Faust,
K., & Wasserman, S. (1992a). Blockmodels: Interpretation and evaluation. Social Networks, 14, 5-–61.

The order of the vertex ids in the generated graph corresponds to the block_sizes argument.

Arguments:

graph: The output graph.

n: Number of vertices.

pref_matrix: The matrix giving the Bernoulli rates. This is a KxK matrix, where K is the number
of groups. The probability of creating an edge between vertices from groups i and j
is given by element (i,j).

block_sizes: An integer vector giving the number of vertices in each group.

directed: Boolean, whether to create a directed graph. If this argument is false, then
pref_matrix must be symmetric.

loops: Boolean, whether to create self-loops.

Returns:

Error code.

Time complexity: O(|V|+|E|+K^2), where |V| is the number of vertices, |E| is the number of edges, and
K is the number of groups.

See also:

igraph_erdos_renyi_game() for a simple Bernoulli graph.

191

Chapter 10. Games on Graphs

Microscopic Update Rules

igraph_deterministic_optimal_imitation —
Adopt a strategy via deterministic optimal imitation.

int igraph_deterministic_optimal_imitation(const igraph_t *graph,
 igraph_integer_t vid,
 igraph_optimal_t optimality,
 const igraph_vector_t *quantities,
 igraph_vector_t *strategies,
 igraph_neimode_t mode);

A simple deterministic imitation strategy where a vertex revises its strategy to that which yields a local
optimal. Here "local" is with respect to the immediate neighbours of the vertex. The vertex retains its
current strategy where this strategy yields a locally optimal quantity. The quantity in this case could be
a measure such as fitness.

Arguments:

graph: The graph object representing the game network. This cannot be the empty or trivial
graph, but must have at least two vertices and one edge. If graph has one vertex, then
no strategy update would take place. Furthermore, if graph has at least two vertices
but zero edges, then strategy update would also not take place.

vid: The vertex whose strategy is to be updated. It is assumed that vid represents a vertex
in graph. No checking is performed and it is your responsibility to ensure that vid
is indeed a vertex of graph. If an isolated vertex is provided, i.e. the input vertex has
degree 0, then no strategy update would take place and vid would retain its current
strategy. Strategy update would also not take place if the local neighbourhood of vid
are its in-neighbours (respectively out-neighbours), but vid has zero in-neighbours
(respectively out-neighbours). Loops are ignored in computing the degree (in, out, all)
of vid.

optimality: Logical; controls the type of optimality to be used. Supported values are:

IGRAPH_MAXIMUM Use maximum deterministic imitation, where the strategy of the
vertex with maximum quantity (e.g. fitness) would be adopt-
ed. We update the strategy of vid to that which yields a local
maximum.

IGRAPH_MINIMUM Use minimum deterministic imitation. That is, the strategy of
the vertex with minimum quantity would be imitated. In other
words, update to the strategy that yields a local minimum.

quantities: A vector of quantities providing the quantity of each vertex in graph. Think of each
entry of the vector as being generated by a function such as the fitness function for the
game. So if the vector represents fitness quantities, then each vector entry is the fitness

Games on Graphs

192

of some vertex. The length of this vector must be the same as the number of vertices
in the vertex set of graph.

strategies: A vector of the current strategies for the vertex population. The updated strategy for
vid would be stored here. Each strategy is identified with a nonnegative integer, whose
interpretation depends on the payoff matrix of the game. Generally we use the strategy
ID as a row or column index of the payoff matrix. The length of this vector must be the
same as the number of vertices in the vertex set of graph.

mode: Defines the sort of neighbourhood to consider for vid. If graph is undirected, then we
use all the immediate neighbours of vid. Thus if you know that graph is undirected,
then it is safe to pass the value IGRAPH_ALL here. Supported values are:

IGRAPH_OUT Use the out-neighbours of vid. This option is only relevant when
graph is a directed graph.

IGRAPH_IN Use the in-neighbours of vid. Again this option is only relevant when
graph is a directed graph.

IGRAPH_ALL Use both the in- and out-neighbours of vid. This option is only rel-
evant if graph is a digraph. Also use this value if graph is undi-
rected.

Returns:

The error code IGRAPH_EINVAL is returned in each of the following cases: (1) Any of the parameters
graph, quantities, or strategies is a null pointer. (2) The vector quantities or strate-
gies has a length different from the number of vertices in graph. (3) The parameter graph is the
empty or null graph, i.e. the graph with zero vertices and edges.

Time complexity: O(2d), where d is the degree of the vertex vid.

Example 10.1. File examples/simple/
igraph_deterministic_optimal_imitation.c

igraph_moran_process — The Moran process in a net-
work setting.

int igraph_moran_process(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_vector_t *quantities,
 igraph_vector_t *strategies,
 igraph_neimode_t mode);

This is an extension of the classic Moran process to a network setting. The Moran process is a model of
haploid (asexual) reproduction within a population having a fixed size. In the network setting, the Moran
process operates on a weighted graph. At each time step a vertex a is chosen for reproduction and another
vertex b is chosen for death. Vertex a gives birth to an identical clone c, which replaces b. Vertex c is a
clone of a in that c inherits both the current quantity (e.g. fitness) and current strategy of a.

The graph G representing the game network is assumed to be simple, i.e. free of loops and without multiple
edges. If, on the other hand, G has a loop incident on some vertex v, then it is possible that when v is

Games on Graphs

193

chosen for reproduction it would forgo this opportunity. In particular, when v is chosen for reproduction
and v is also chosen for death, the clone of v would be v itself with its current vertex ID. In effect v forgoes
its chance for reproduction.

Arguments:

graph: The graph object representing the game network. This cannot be the empty or trivial
graph, but must have at least two vertices and one edge. The Moran process will not
take place in each of the following cases: (1) If graph has one vertex. (2) If graph
has at least two vertices but zero edges.

weights: A vector of all edge weights for graph. Thus weights[i] means the weight of the edge
with edge ID i. For the purpose of the Moran process, each weight is assumed to be
positive; it is your responsibility to ensure this condition holds. The length of this vector
must be the same as the number of edges in graph.

quantities: A vector of quantities providing the quantity of each vertex in graph. The quantity of
the new clone will be stored here. Think of each entry of the vector as being generated
by a function such as the fitness function for the game. So if the vector represents fitness
quantities, then each vector entry is the fitness of some vertex. The length of this vector
must be the same as the number of vertices in the vertex set of graph. For the purpose
of the Moran process, each vector entry is assumed to be nonnegative; no checks will be
performed for this. It is your responsibility to ensure that at least one entry is positive.
Furthermore, this vector cannot be a vector of zeros; this condition will be checked.

strategies: A vector of the current strategies for the vertex population. The strategy of the new
clone will be stored here. Each strategy is identified with a nonnegative integer, whose
interpretation depends on the payoff matrix of the game. Generally we use the strategy
ID as a row or column index of the payoff matrix. The length of this vector must be the
same as the number of vertices in the vertex set of graph.

mode: Defines the sort of neighbourhood to consider for the vertex a chosen for reproduction.
This is only relevant if graph is directed. If graph is undirected, then it is safe to
pass the value IGRAPH_ALL here. Supported values are:

IGRAPH_OUT Use the out-neighbours of a. This option is only relevant when graph
is directed.

IGRAPH_IN Use the in-neighbours of a. Again this option is only relevant when
graph is directed.

IGRAPH_ALL Use both the in- and out-neighbours of a. This option is only relevant
if graph is directed. Also use this value if graph is undirected.

Returns:

The error code IGRAPH_EINVAL is returned in each of the following cases: (1) Any of the parameters
graph, weights, quantities or strategies is a null pointer. (2) The vector quantities or
strategies has a length different from the number of vertices in graph. (3) The vector weights
has a length different from the number of edges in graph. (4) The parameter graph is the empty or
null graph, i.e. the graph with zero vertices and edges. (5) The vector weights, or the combination of
interest, sums to zero. (6) The vector quantities, or the combination of interest, sums to zero.

Time complexity: depends on the random number generator, but is usually O(n) where n is the number
of vertices in graph.

Games on Graphs

194

References:

(Lieberman et al. 2005) E. Lieberman, C. Hauert, and M. A. Nowak. Evolutionary dynamics
on graphs. Nature, 433(7023):312--316, 2005.

(Moran 1958) P. A. P. Moran. Random processes in genetics. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 54(1):60--71,
1958.

Example 10.2. File examples/simple/igraph_moran_process.c

igraph_roulette_wheel_imitation — Adopt a strat-
egy via roulette wheel selection.

int igraph_roulette_wheel_imitation(const igraph_t *graph,
 igraph_integer_t vid,
 igraph_bool_t islocal,
 const igraph_vector_t *quantities,
 igraph_vector_t *strategies,
 igraph_neimode_t mode);

A simple stochastic imitation strategy where a vertex revises its strategy to that of a vertex u chosen
proportionate to u's quantity (e.g. fitness). This is a special case of stochastic imitation, where a candidate
is not chosen uniformly at random but proportionate to its quantity.

Arguments:

graph: The graph object representing the game network. This cannot be the empty or trivial
graph, but must have at least two vertices and one edge. If graph has one vertex, then
no strategy update would take place. Furthermore, if graph has at least two vertices
but zero edges, then strategy update would also not take place.

vid: The vertex whose strategy is to be updated. It is assumed that vid represents a vertex
in graph. No checking is performed and it is your responsibility to ensure that vid
is indeed a vertex of graph. If an isolated vertex is provided, i.e. the input vertex has
degree 0, then no strategy update would take place and vid would retain its current
strategy. Strategy update would also not take place if the local neighbourhood of vid
are its in-neighbours (respectively out-neighbours), but vid has zero in-neighbours
(respectively out-neighbours). Loops are ignored in computing the degree (in, out, all)
of vid.

islocal: Boolean; this flag controls which perspective to use in computing the relative quantity.
If true then we use the local perspective; otherwise we use the global perspective. The
local perspective for vid is the set of all immediate neighbours of vid. In contrast,
the global perspective for vid is the vertex set of graph.

quantities: A vector of quantities providing the quantity of each vertex in graph. Think of each
entry of the vector as being generated by a function such as the fitness function for
the game. So if the vector represents fitness quantities, then each vector entry is the
fitness of some vertex. The length of this vector must be the same as the number of
vertices in the vertex set of graph. For the purpose of roulette wheel selection, each
vector entry is assumed to be nonnegative; no checks will be performed for this. It is

Games on Graphs

195

your responsibility to ensure that at least one entry is nonzero. Furthermore, this vector
cannot be a vector of zeros; this condition will be checked.

strategies: A vector of the current strategies for the vertex population. The updated strategy for
vid would be stored here. Each strategy is identified with a nonnegative integer, whose
interpretation depends on the payoff matrix of the game. Generally we use the strategy
ID as a row or column index of the payoff matrix. The length of this vector must be the
same as the number of vertices in the vertex set of graph.

mode: Defines the sort of neighbourhood to consider for vid. This is only relevant if we are
considering the local perspective, i.e. if islocal is true. If we are considering the
global perspective, then it is safe to pass the value IGRAPH_ALL here. If graph is
undirected, then we use all the immediate neighbours of vid. Thus if you know that
graph is undirected, then it is safe to pass the value IGRAPH_ALL here. Supported
values are:

IGRAPH_OUT Use the out-neighbours of vid. This option is only relevant when
graph is a digraph and we are considering the local perspective.

IGRAPH_IN Use the in-neighbours of vid. Again this option is only relevant when
graph is a directed graph and we are considering the local perspec-
tive.

IGRAPH_ALL Use both the in- and out-neighbours of vid. This option is only rele-
vant if graph is a digraph. Also use this value if graph is undirect-
ed or we are considering the global perspective.

Returns:

The error code IGRAPH_EINVAL is returned in each of the following cases: (1) Any of the parameters
graph, quantities, or strategies is a null pointer. (2) The vector quantities or strate-
gies has a length different from the number of vertices in graph. (3) The parameter graph is the
empty or null graph, i.e. the graph with zero vertices and edges. (4) The vector quantities sums
to zero.

Time complexity: O(n) where n is the number of vertices in the perspective to consider. If we consider the
global perspective, then n is the number of vertices in the vertex set of graph. On the other hand, for the
local perspective n is the degree of vid, excluding loops.

Reference:

(Yu & Gen 2010) X. Yu and M. Gen. Introduction to Evolutionary Algorithms. Springer, 2010,
pages 18--20.

Example 10.3. File examples/simple/
igraph_roulette_wheel_imitation.c

igraph_stochastic_imitation — Adopt a strategy
via stochastic imitation with uniform selection.

int igraph_stochastic_imitation(const igraph_t *graph,

Games on Graphs

196

 igraph_integer_t vid,
 igraph_imitate_algorithm_t algo,
 const igraph_vector_t *quantities,
 igraph_vector_t *strategies,
 igraph_neimode_t mode);

A simple stochastic imitation strategy where a vertex revises its strategy to that of a vertex chosen uni-
formly at random from its local neighbourhood. This is called stochastic imitation via uniform selection,
where the strategy to imitate is chosen via some random process. For the purposes of this function, we use
uniform selection from a pool of candidates.

Arguments:

graph: The graph object representing the game network. This cannot be the empty or trivial
graph, but must have at least two vertices and one edge. If graph has one vertex, then
no strategy update would take place. Furthermore, if graph has at least two vertices
but zero edges, then strategy update would also not take place.

vid: The vertex whose strategy is to be updated. It is assumed that vid represents a vertex
in graph. No checking is performed and it is your responsibility to ensure that vid
is indeed a vertex of graph. If an isolated vertex is provided, i.e. the input vertex has
degree 0, then no strategy update would take place and vid would retain its current
strategy. Strategy update would also not take place if the local neighbourhood of vid
are its in-neighbours (respectively out-neighbours), but vid has zero in-neighbours
(respectively out-neighbours). Loops are ignored in computing the degree (in, out, all)
of vid.

algo: This flag controls which algorithm to use in stochastic imitation. Supported values are:

IGRAPH_IMITATE_AUGMENTED Augmented imitation. Vertex vid imitates the
strategy of the chosen vertex u provided that do-
ing so would increase the quantity (e.g. fitness)
of vid. Augmented imitation can be thought of
as "imitate if better".

IGRAPH_IMITATE_BLIND Blind imitation. Vertex vid blindly imitates the
strategy of the chosen vertex u, regardless of
whether doing so would increase or decrease the
quantity of vid.

IGRAPH_IMITATE_CONTRACTED Contracted imitation. Here vertex vid imitates
the strategy of the chosen vertex u if doing so
would decrease the quantity of vid. Think of
contracted imitation as "imitate if worse".

quantities: A vector of quantities providing the quantity of each vertex in graph. Think of each
entry of the vector as being generated by a function such as the fitness function for the
game. So if the vector represents fitness quantities, then each vector entry is the fitness
of some vertex. The length of this vector must be the same as the number of vertices
in the vertex set of graph.

strategies: A vector of the current strategies for the vertex population. The updated strategy for
vid would be stored here. Each strategy is identified with a nonnegative integer, whose
interpretation depends on the payoff matrix of the game. Generally we use the strategy
ID as a row or column index of the payoff matrix. The length of this vector must be the
same as the number of vertices in the vertex set of graph.

Games on Graphs

197

mode: Defines the sort of neighbourhood to consider for vid. If graph is undirected, then we
use all the immediate neighbours of vid. Thus if you know that graph is undirected,
then it is safe to pass the value IGRAPH_ALL here. Supported values are:

IGRAPH_OUT Use the out-neighbours of vid. This option is only relevant when
graph is a directed graph.

IGRAPH_IN Use the in-neighbours of vid. Again this option is only relevant when
graph is a directed graph.

IGRAPH_ALL Use both the in- and out-neighbours of vid. This option is only rel-
evant if graph is a digraph. Also use this value if graph is undi-
rected.

Returns:

The error code IGRAPH_EINVAL is returned in each of the following cases: (1) Any of the parameters
graph, quantities, or strategies is a null pointer. (2) The vector quantities or strate-
gies has a length different from the number of vertices in graph. (3) The parameter graph is the
empty or null graph, i.e. the graph with zero vertices and edges. (4) The parameter algo refers to an
unsupported stochastic imitation algorithm.

Time complexity: depends on the uniform random number generator, but should usually be O(1).

Example 10.4. File examples/simple/
igraph_stochastic_imitation.c

198

Chapter 11. Vertex and Edge Selectors
and Sequences, Iterators
About selectors, iterators

Everything about vertices and vertex selectors also applies to edges and edge selectors unless explicitly
noted otherwise.

The vertex (and edge) selector notion was introduced in igraph 0.2. It is a way to reference a sequence of
vertices or edges independently of the graph.

While this might sound quite mysterious, it is actually very simple. For example, all vertices of a graph
can be selected by igraph_vs_all() and the graph independence means that igraph_vs_all()
is not parametrized by a graph object. That is, igraph_vs_all() is the general concept of selecting
all vertices of a graph. A vertex selector is then a way to specify the class of vertices to be visited. The
selector might specify that all vertices of a graph or all the neighbours of a vertex are to be visited. A vertex
selector is a way of saying that you want to visit a bunch of vertices, as opposed to a vertex iterator which
is a concrete plan for visiting each of the chosen vertices of a specific graph.

To determine the actual vertex IDs implied by a vertex selector, you need to apply the concept of selecting
vertices to a specific graph object. This can be accomplished by instantiating a vertex iterator using a
specific vertex selection concept and a specific graph object. The notion of vertex iterators can be thought
of in the following way. Given a specific graph object and the class of vertices to be visited, a vertex
iterator is a road map, plan or route for how to visit the chosen vertices.

Some vertex selectors have immediate versions. These have the prefix igraph_vss instead of
igraph_vs, e.g. igraph_vss_all() instead of igraph_vs_all(). The immediate versions are
to be used in the parameter list of the igraph functions, such as igraph_degree(). These functions are
not associated with any igraph_vs_t object, so they have no separate constructors and destructors (destroy
functions).

Vertex selector constructors
Vertex selectors are created by vertex selector constructors, can be instantiated with
igraph_vit_create(), and are destroyed with igraph_vs_destroy().

igraph_vs_all — Vertex set, all vertices of a graph.

int igraph_vs_all(igraph_vs_t *vs);

Arguments:

vs: Pointer to an uninitialized igraph_vs_t object.

Returns:

Error code.

Vertex and Edge Selectors
and Sequences, Iterators

199

See also:

igraph_vss_all(), igraph_vs_destroy()

This selector includes all vertices of a given graph in increasing vertex id order.

Time complexity: O(1).

igraph_vs_adj — Adjacent vertices of a vertex.

int igraph_vs_adj(igraph_vs_t *vs,
 igraph_integer_t vid, igraph_neimode_t mode);

All neighboring vertices of a given vertex are selected by this selector. The mode argument controls the
type of the neighboring vertices to be selected. The vertices are visited in increasing vertex ID order, as
of igraph version 0.4.

Arguments:

vs: Pointer to an uninitialized vertex selector object.

vid: Vertex ID, the center of the neighborhood.

mode: Decides the type of the neighborhood for directed graphs. This parameter is ignored for undi-
rected graphs. Possible values:

IGRAPH_OUT All vertices to which there is a directed edge from vid. That is, all the out-
neighbors of vid.

IGRAPH_IN All vertices from which there is a directed edge to vid. In other words, all the
in-neighbors of vid.

IGRAPH_ALL All vertices to which or from which there is a directed edge from/to vid. That
is, all the neighbors of vid considered as if the graph is undirected.

Returns:

Error code.

See also:

igraph_vs_destroy()

Time complexity: O(1).

igraph_vs_nonadj — Non-adjacent vertices of a ver-
tex.

int igraph_vs_nonadj(igraph_vs_t *vs, igraph_integer_t vid,

Vertex and Edge Selectors
and Sequences, Iterators

200

 igraph_neimode_t mode);

All non-neighboring vertices of a given vertex. The mode argument controls the type of neighboring
vertices not to select. Instead of selecting immediate neighbors of vid as is done by igraph_vs_adj(),
the current function selects vertices that are not immediate neighbors of vid.

Arguments:

vs: Pointer to an uninitialized vertex selector object.

vid: Vertex ID, the “center” of the non-neighborhood.

mode: The type of neighborhood not to select in directed graphs. Possible values:

IGRAPH_OUT All vertices will be selected except those to which there is a directed edge from
vid. That is, we select all vertices excluding the out-neighbors of vid.

IGRAPH_IN All vertices will be selected except those from which there is a directed edge
to vid. In other words, we select all vertices but the in-neighbors of vid.

IGRAPH_ALL All vertices will be selected except those from or to which there is a directed
edge to or from vid. That is, we select all vertices of vid except for its im-
mediate neighbors.

Returns:

Error code.

See also:

igraph_vs_destroy()

Time complexity: O(1).

Example 11.1. File examples/simple/igraph_vs_nonadj.c

igraph_vs_none — Empty vertex set.

int igraph_vs_none(igraph_vs_t *vs);

Creates an empty vertex selector.

Arguments:

vs: Pointer to an uninitialized vertex selector object.

Returns:

Error code.

See also:

Vertex and Edge Selectors
and Sequences, Iterators

201

igraph_vss_none(), igraph_vs_destroy()

Time complexity: O(1).

igraph_vs_1 — Vertex set with a single vertex.

int igraph_vs_1(igraph_vs_t *vs, igraph_integer_t vid);

This vertex selector selects a single vertex.

Arguments:

vs: Pointer to an uninitialized vertex selector object.

vid: The vertex id to be selected.

Returns:

Error Code.

See also:

igraph_vss_1(), igraph_vs_destroy()

Time complexity: O(1).

igraph_vs_vector — Vertex set based on a vector.

int igraph_vs_vector(igraph_vs_t *vs,
 const igraph_vector_t *v);

This function makes it possible to handle a vector_t temporarily as a vertex selector. The vertex selector
should be thought of like a view to the vector. If you make changes to the vector that also affects the vertex
selector. Destroying the vertex selector does not destroy the vector. (Of course.) Do not destroy the vector
before destroying the vertex selector, or you might get strange behavior.

Arguments:

vs: Pointer to an uninitialized vertex selector.

v: Pointer to a igraph_vector_t object.

Returns:

Error code.

See also:

igraph_vss_vector(), igraph_vs_destroy()

Vertex and Edge Selectors
and Sequences, Iterators

202

Time complexity: O(1).

Example 11.2. File examples/simple/igraph_vs_vector.c

igraph_vs_vector_small — Create a vertex set by
giving its elements.

int igraph_vs_vector_small(igraph_vs_t *vs, ...);

This function can be used to create a vertex selector with a couple of vertices. Do not forget to include a
-1 after the last vertex id. The behavior of the function is undefined if you don't use a -1 properly.

Note that the vertex ids supplied will be parsed as int 's so you cannot supply arbitrarily large (too
large for int) vertex ids here.

Arguments:

vs: Pointer to an uninitialized vertex selector object.

...: Additional parameters, these will be the vertex ids to be included in the vertex selector. Supply
a -1 after the last vertex id.

Returns:

Error code.

See also:

igraph_vs_destroy()

Time complexity: O(n), the number of vertex ids supplied.

igraph_vs_vector_copy — Vertex set based on a vec-
tor, with copying.

int igraph_vs_vector_copy(igraph_vs_t *vs,
 const igraph_vector_t *v);

This function makes it possible to handle a vector_t permanently as a vertex selector. The vertex selector
creates a copy of the original vector, so the vector can safely be destroyed after creating the vertex selector.
Changing the original vector will not affect the vertex selector. The vertex selector is responsible for
deleting the copy made by itself.

Arguments:

vs: Pointer to an uninitialized vertex selector.

v: Pointer to a igraph_vector_t object.

Vertex and Edge Selectors
and Sequences, Iterators

203

Returns:

Error code.

See also:

igraph_vs_destroy()

Time complexity: O(1).

igraph_vs_seq — Vertex set, an interval of vertices.

int igraph_vs_seq(igraph_vs_t *vs,
 igraph_integer_t from, igraph_integer_t to);

Creates a vertex selector containing all vertices with vertex id equal to or bigger than from and equal
to or smaller than to.

Arguments:

vs: Pointer to an uninitialized vertex selector object.

from: The first vertex id to be included in the vertex selector.

to: The last vertex id to be included in the vertex selector.

Returns:

Error code.

See also:

igraph_vss_seq(), igraph_vs_destroy()

Time complexity: O(1).

Example 11.3. File examples/simple/igraph_vs_seq.c

Generic vertex selector operations

igraph_vs_copy — Creates a copy of a vertex selector.

int igraph_vs_copy(igraph_vs_t* dest, const igraph_vs_t* src);

Arguments:

src: The selector being copied.

Vertex and Edge Selectors
and Sequences, Iterators

204

dest: An uninitialized selector that will contain the copy.

igraph_vs_destroy — Destroy a vertex set.

void igraph_vs_destroy(igraph_vs_t *vs);

This function should be called for all vertex selectors when they are not needed. The memory allocated
for the vertex selector will be deallocated. Do not call this function on vertex selectors created with the
immediate versions of the vertex selector constructors (starting with igraph_vss).

Arguments:

vs: Pointer to a vertex selector object.

Time complexity: operating system dependent, usually O(1).

igraph_vs_is_all — Check whether all vertices are in-
cluded.

igraph_bool_t igraph_vs_is_all(const igraph_vs_t *vs);

This function checks whether the vertex selector object was created by igraph_vs_all() or
igraph_vss_all(). Note that the vertex selector might contain all vertices in a given graph but if it
wasn't created by the two constructors mentioned here the return value will be FALSE.

Arguments:

vs: Pointer to a vertex selector object.

Returns:

TRUE (1) if the vertex selector contains all vertices and FALSE (0) otherwise.

Time complexity: O(1).

igraph_vs_size — Returns the size of the vertex selec-
tor.

int igraph_vs_size(const igraph_t *graph, const igraph_vs_t *vs,
 igraph_integer_t *result);

The size of the vertex selector is the number of vertices it will yield when it is iterated over.

Arguments:

graph: The graph over which we will iterate.

Vertex and Edge Selectors
and Sequences, Iterators

205

result: The result will be returned here.

igraph_vs_type — Returns the type of the vertex se-
lector.

int igraph_vs_type(const igraph_vs_t *vs);

Immediate vertex selectors

igraph_vss_all — All vertices of a graph (immediate
version).

igraph_vs_t igraph_vss_all(void);

Immediate vertex selector for all vertices in a graph. It can be used conveniently when some vertex property
(eg. betweenness, degree, etc.) should be calculated for all vertices.

Returns:

A vertex selector for all vertices in a graph.

See also:

igraph_vs_all()

Time complexity: O(1).

igraph_vss_none — Empty vertex set (immediate ver-
sion).

igraph_vs_t igraph_vss_none(void);

The immediate version of the empty vertex selector.

Returns:

An empty vertex selector.

See also:

igraph_vs_none()

Time complexity: O(1).

Vertex and Edge Selectors
and Sequences, Iterators

206

igraph_vss_1 — Vertex set with a single vertex (imme-
diate version).

igraph_vs_t igraph_vss_1(igraph_integer_t vid);

The immediate version of the single-vertex selector.

Arguments:

vid: The vertex to be selected.

Returns:

A vertex selector containing a single vertex.

See also:

igraph_vs_1()

Time complexity: O(1).

igraph_vss_vector — Vertex set based on a vector
(immediate version).

igraph_vs_t igraph_vss_vector(const igraph_vector_t *v);

This is the immediate version of igraph_vs_vector.

Arguments:

v: Pointer to a igraph_vector_t object.

Returns:

A vertex selector object containing the vertices in the vector.

See also:

igraph_vs_vector()

Time complexity: O(1).

igraph_vss_seq — An interval of vertices (immediate
version).

Vertex and Edge Selectors
and Sequences, Iterators

207

igraph_vs_t igraph_vss_seq(igraph_integer_t from, igraph_integer_t to);

The immediate version of igraph_vs_seq().

Arguments:

from: The first vertex id to be included in the vertex selector.

to: The last vertex id to be included in the vertex selector.

Returns:

Error code.

See also:

igraph_vs_seq()

Time complexity: O(1).

Vertex iterators

igraph_vit_create — Creates a vertex iterator from a
vertex selector.

int igraph_vit_create(const igraph_t *graph,
 igraph_vs_t vs, igraph_vit_t *vit);

This function instantiates a vertex selector object with a given graph. This is the step when the actual vertex
ids are created from the logical notion of the vertex selector based on the graph. Eg. a vertex selector
created with igraph_vs_all() contains knowledge that all vertices are included in a (yet indefinite)
graph. When instantiating it a vertex iterator object is created, this contains the actual vertex ids in the
graph supplied as a parameter.

The same vertex selector object can be used to instantiate any number vertex iterators.

Arguments:

graph: An igraph_t object, a graph.

vs: A vertex selector object.

vit: Pointer to an uninitialized vertex iterator object.

Returns:

Error code.

See also:

igraph_vit_destroy().

Vertex and Edge Selectors
and Sequences, Iterators

208

Time complexity: it depends on the vertex selector type. O(1) for vertex selectors creat-
ed with igraph_vs_all(), igraph_vs_none(), igraph_vs_1, igraph_vs_vector,
igraph_vs_seq(), igraph_vs_vector(), igraph_vs_vector_small(). O(d) for
igraph_vs_adj(), d is the number of vertex ids to be included in the iterator. O(|V|) for
igraph_vs_nonadj(), |V| is the number of vertices in the graph.

igraph_vit_destroy — Destroys a vertex iterator.

void igraph_vit_destroy(const igraph_vit_t *vit);

Deallocates memory allocated for a vertex iterator.

Arguments:

vit: Pointer to an initialized vertex iterator object.

See also:

igraph_vit_create()

Time complexity: operating system dependent, usually O(1).

Stepping over the vertices
After creating an iterator with igraph_vit_create(), it points to the first vertex in the vertex deter-
mined by the vertex selector (if there is any). The IGRAPH_VIT_NEXT() macro steps to the next vertex,
IGRAPH_VIT_END() checks whether there are more vertices to visit, IGRAPH_VIT_SIZE() gives
the total size of the vertices visited so far and to be visited. IGRAPH_VIT_RESET() resets the iterator,
it will point to the first vertex again. Finally IGRAPH_VIT_GET() gives the current vertex pointed to
by the iterator (call this only if IGRAPH_VIT_END() is false).

Here is an example on how to step over the neighbors of vertex 0:

igraph_vs_t vs;
igraph_vit_t vit;
...
igraph_vs_adj(&vs, 0, IGRAPH_ALL);
igraph_vit_create(&graph, vs, &vit);
while (!IGRAPH_VIT_END(vit)) {
 printf(" %li", (long int) IGRAPH_VIT_GET(vit));
 IGRAPH_VIT_NEXT(vit);
}
printf("\n");
...
igraph_vit_destroy(&vit);
igraph_vs_destroy(&vs);

IGRAPH_VIT_NEXT — Next vertex.

Vertex and Edge Selectors
and Sequences, Iterators

209

#define IGRAPH_VIT_NEXT(vit)

Steps the iterator to the next vertex. Only call this function if IGRAPH_VIT_END() returns false.

Arguments:

vit: The vertex iterator to step.

Time complexity: O(1).

IGRAPH_VIT_END — Are we at the end?

#define IGRAPH_VIT_END(vit)

Checks whether there are more vertices to step to.

Arguments:

vit: The vertex iterator to check.

Returns:

Logical value, if true there are no more vertices to step to.

Time complexity: O(1).

IGRAPH_VIT_SIZE — Size of a vertex iterator.

#define IGRAPH_VIT_SIZE(vit)

Gives the number of vertices in a vertex iterator.

Arguments:

vit: The vertex iterator.

Returns:

The number of vertices.

Time complexity: O(1).

IGRAPH_VIT_RESET — Reset a vertex iterator.

#define IGRAPH_VIT_RESET(vit)

Resets a vertex iterator. After calling this macro the iterator will point to the first vertex.

Vertex and Edge Selectors
and Sequences, Iterators

210

Arguments:

vit: The vertex iterator.

Time complexity: O(1).

IGRAPH_VIT_GET — Query the current position.

#define IGRAPH_VIT_GET(vit)

Gives the vertex id of the current vertex pointed to by the iterator.

Arguments:

vit: The vertex iterator.

Returns:

The vertex id of the current vertex.

Time complexity: O(1).

Edge selector constructors

igraph_es_all — Edge set, all edges.

int igraph_es_all(igraph_es_t *es,
 igraph_edgeorder_type_t order);

Arguments:

es: Pointer to an uninitialized edge selector object.

order: Constant giving the order in which the edges will be included in the selector. Possible values:
IGRAPH_EDGEORDER_ID, edge id order. IGRAPH_EDGEORDER_FROM, vertex id order,
the id of the source vertex counts for directed graphs. The order of the incident edges of a given
vertex is arbitrary. IGRAPH_EDGEORDER_TO, vertex id order, the id of the target vertex
counts for directed graphs. The order of the incident edges of a given vertex is arbitrary. For
undirected graph the latter two is the same.

Returns:

Error code.

See also:

igraph_ess_all(), igraph_es_destroy()

Vertex and Edge Selectors
and Sequences, Iterators

211

Time complexity: O(1).

igraph_es_incident — Edges incident on a given ver-
tex.

int igraph_es_incident(igraph_es_t *es,
 igraph_integer_t vid, igraph_neimode_t mode);

Arguments:

es: Pointer to an uninitialized edge selector object.

vid: Vertex id, of which the incident edges will be selected.

mode: Constant giving the type of the incident edges to select. This is ignored for undirect-
ed graphs. Possible values: IGRAPH_OUT, outgoing edges; IGRAPH_IN, incoming edges;
IGRAPH_ALL, all edges.

Returns:

Error code.

See also:

igraph_es_destroy()

Time complexity: O(1).

Example 11.4. File examples/simple/igraph_es_adj.c

igraph_es_none — Empty edge selector.

int igraph_es_none(igraph_es_t *es);

Arguments:

es: Pointer to an uninitialized edge selector object to initialize.

Returns:

Error code.

See also:

igraph_ess_none(), igraph_es_destroy()

Vertex and Edge Selectors
and Sequences, Iterators

212

Time complexity: O(1).

igraph_es_1 — Edge selector containing a single edge.

int igraph_es_1(igraph_es_t *es, igraph_integer_t eid);

Arguments:

es: Pointer to an uninitialized edge selector object.

eid: Edge id of the edge to select.

Returns:

Error code.

See also:

igraph_ess_1(), igraph_es_destroy()

Time complexity: O(1).

igraph_es_vector — Handle a vector as an edge se-
lector.

int igraph_es_vector(igraph_es_t *es,
 const igraph_vector_t *v);

Creates an edge selector which serves as a view to a vector containing edge ids. Do not destroy the vector
before destroying the view. Many views can be created to the same vector.

Arguments:

es: Pointer to an uninitialized edge selector.

v: Vector containing edge ids.

Returns:

Error code.

See also:

igraph_ess_vector(), igraph_es_destroy()

Time complexity: O(1).

Vertex and Edge Selectors
and Sequences, Iterators

213

igraph_es_fromto — Edge selector, all edges between
two vertex sets.

int igraph_es_fromto(igraph_es_t *es,
 igraph_vs_t from, igraph_vs_t to);

This function is not implemented yet.

Arguments:

es: Pointer to an uninitialized edge selector.

from: Vertex selector, their outgoing edges will be selected.

to: Vertex selector, their incoming edges will be selected from the previous selection.

Returns:

Error code.

See also:

igraph_es_destroy()

Time complexity: O(1).

Example 11.5. File examples/simple/igraph_es_fromto.c

igraph_es_seq — Edge selector, a sequence of edge
ids.

int igraph_es_seq(igraph_es_t *es,
 igraph_integer_t from, igraph_integer_t to);

All edge ids between from and to will be included in the edge selection.

Arguments:

es: Pointer to an uninitialized edge selector object.

from: The first edge id to be included.

to: The last edge id to be included.

Returns:

Error code.

Vertex and Edge Selectors
and Sequences, Iterators

214

See also:

igraph_ess_seq(), igraph_es_destroy()

Time complexity: O(1).

igraph_es_pairs — Edge selector, multiple edges de-
fined by their endpoints in a vector.

int igraph_es_pairs(igraph_es_t *es, const igraph_vector_t *v,
 igraph_bool_t directed);

The edges between the given pairs of vertices will be included in the edge selection. The vertex pairs
must be defined in the vector v , the first element of the vector is the first vertex of the first edge to be
selected, the second element is the second vertex of the first edge, the third element is the first vertex of
the second edge and so on.

Arguments:

es: Pointer to an uninitialized edge selector object.

v: The vector containing the endpoints of the edges.

directed: Whether the graph is directed or not.

Returns:

Error code.

See also:

igraph_es_pairs_small(), igraph_es_destroy()

Time complexity: O(n), the number of edges being selected.

Example 11.6. File examples/simple/igraph_es_pairs.c

igraph_es_pairs_small — Edge selector, multiple
edges defined by their endpoints as arguments.

int igraph_es_pairs_small(igraph_es_t *es, igraph_bool_t directed, ...);

The edges between the given pairs of vertices will be included in the edge selection. The vertex pairs must
be given as the arguments of the function call, the third argument is the first vertex of the first edge, the
fourth argument is the second vertex of the first edge, the fifth is the first vertex of the second edge and so
on. The last element of the argument list must be -1 to denote the end of the argument list.

Vertex and Edge Selectors
and Sequences, Iterators

215

Arguments:

es: Pointer to an uninitialized edge selector object.

directed: Whether the graph is directed or not.

Returns:

Error code.

See also:

igraph_es_pairs(), igraph_es_destroy()

Time complexity: O(n), the number of edges being selected.

igraph_es_vector_copy — Edge set, based on a vec-
tor, with copying.

int igraph_es_vector_copy(igraph_es_t *es, const igraph_vector_t *v);

This function makes it possible to handle a vector_t permanently as an edge selector. The edge selector
creates a copy of the original vector, so the vector can safely be destroyed after creating the edge selector.
Changing the original vector will not affect the edge selector. The edge selector is responsible for deleting
the copy made by itself.

Arguments:

es: Pointer to an uninitialized edge selector.

v: Pointer to a igraph_vector_t object.

Returns:

Error code.

See also:

igraph_es_destroy()

Time complexity: O(1).

Immediate edge selectors

igraph_ess_all — Edge set, all edges (immediate ver-
sion)

Vertex and Edge Selectors
and Sequences, Iterators

216

igraph_es_t igraph_ess_all(igraph_edgeorder_type_t order);

The immediate version of the all-vertices selector.

Arguments:

order: Constant giving the order of the edges in the edge selector. See igraph_es_all() for the
possible values.

Returns:

The edge selector.

See also:

igraph_es_all()

Time complexity: O(1).

igraph_ess_none — Immediate empty edge selector.

igraph_es_t igraph_ess_none(void);

Immediate version of the empty edge selector.

Returns:

Initialized empty edge selector.

See also:

igraph_es_none()

Time complexity: O(1).

igraph_ess_1 — Immediate version of the single edge
edge selector.

igraph_es_t igraph_ess_1(igraph_integer_t eid);

Arguments:

eid: The id of the edge.

Returns:

Vertex and Edge Selectors
and Sequences, Iterators

217

The edge selector.

See also:

igraph_es_1()

Time complexity: O(1).

igraph_ess_vector — Immediate vector view edge se-
lector.

igraph_es_t igraph_ess_vector(const igraph_vector_t *v);

This is the immediate version of the vector of edge ids edge selector.

Arguments:

v: The vector of edge ids.

Returns:

Edge selector, initialized.

See also:

igraph_es_vector()

Time complexity: O(1).

igraph_ess_seq — Immediate version of the sequence
edge selector.

igraph_es_t igraph_ess_seq(igraph_integer_t from, igraph_integer_t to);

Arguments:

from: The first edge id to include.

to: The last edge id to include.

Returns:

The initialized edge selector.

See also:

Vertex and Edge Selectors
and Sequences, Iterators

218

igraph_es_seq()

Time complexity: O(1).

Generic edge selector operations

igraph_es_copy — Creates a copy of an edge selector.

int igraph_es_copy(igraph_es_t* dest, const igraph_es_t* src);

Arguments:

src: The selector being copied.

dest: An uninitialized selector that will contain the copy.

See also:

igraph_es_destroy()

igraph_es_destroy — Destroys an edge selector ob-
ject.

void igraph_es_destroy(igraph_es_t *es);

Call this function on an edge selector when it is not needed any more. Do not call this function on edge
selectors created by immediate constructors, those don't need to be destroyed.

Arguments:

es: Pointer to an edge selector object.

Time complexity: operating system dependent, usually O(1).

igraph_es_is_all — Check whether an edge selector
includes all edges.

igraph_bool_t igraph_es_is_all(const igraph_es_t *es);

Arguments:

es: Pointer to an edge selector object.

Vertex and Edge Selectors
and Sequences, Iterators

219

Returns:

TRUE (1) if es was created with igraph_es_all() or igraph_ess_all(), and FALSE (0)
otherwise.

Time complexity: O(1).

igraph_es_size — Returns the size of the edge selec-
tor.

int igraph_es_size(const igraph_t *graph, const igraph_es_t *es,
 igraph_integer_t *result);

The size of the edge selector is the number of edges it will yield when it is iterated over.

Arguments:

graph: The graph over which we will iterate.

result: The result will be returned here.

igraph_es_type — Returns the type of the edge selec-
tor.

int igraph_es_type(const igraph_es_t *es);

Edge iterators

igraph_eit_create — Creates an edge iterator from
an edge selector.

int igraph_eit_create(const igraph_t *graph,
 igraph_es_t es, igraph_eit_t *eit);

This function creates an edge iterator based on an edge selector and a graph.

The same edge selector can be used to create many edge iterators, also for different graphs.

Arguments:

graph: An igraph_t object for which the edge selector will be instantiated.

es: The edge selector to instantiate.

Vertex and Edge Selectors
and Sequences, Iterators

220

eit: Pointer to an uninitialized edge iterator.

Returns:

Error code.

See also:

igraph_eit_destroy()

Time complexity: depends on the type of the edge selector. For edge selectors cre-
ated by igraph_es_all(), igraph_es_none(), igraph_es_1(), igraph_es_vector(),
igraph_es_seq() it is O(1). For igraph_es_incident() it is O(d) where d is the number of incident
edges of the vertex.

igraph_eit_destroy — Destroys an edge iterator.

void igraph_eit_destroy(const igraph_eit_t *eit);

Arguments:

eit: Pointer to an edge iterator to destroy.

See also:

igraph_eit_create()

Time complexity: operating system dependent, usually O(1).

Stepping over the edges
Just like for vertex iterators, macros are provided for stepping over a sequence of edges:
IGRAPH_EIT_NEXT() goes to the next edge, IGRAPH_EIT_END() checks whether there are
more edges to visit, IGRAPH_EIT_SIZE() gives the number of edges in the edge sequence,
IGRAPH_EIT_RESET() resets the iterator to the first edge and IGRAPH_EIT_GET() returns the id
of the current edge.

IGRAPH_EIT_NEXT — Next edge.

#define IGRAPH_EIT_NEXT(eit)

Steps the iterator to the next edge. Call this function only if IGRAPH_EIT_END() returns false.

Arguments:

eit: The edge iterator to step.

Time complexity: O(1).

Vertex and Edge Selectors
and Sequences, Iterators

221

IGRAPH_EIT_END — Are we at the end?

#define IGRAPH_EIT_END(eit)

Checks whether there are more edges to step to.

Arguments:

wit: The edge iterator to check.

Returns:

Logical value, if true there are no more edges to step to.

Time complexity: O(1).

IGRAPH_EIT_SIZE — Number of edges in the iterator.

#define IGRAPH_EIT_SIZE(eit)

Gives the number of edges in an edge iterator.

Arguments:

eit: The edge iterator.

Returns:

The number of edges.

Time complexity: O(1).

IGRAPH_EIT_RESET — Reset an edge iterator.

#define IGRAPH_EIT_RESET(eit)

Resets an edge iterator. After calling this macro the iterator will point to the first edge.

Arguments:

eit: The edge iterator.

Time complexity: O(1).

IGRAPH_EIT_GET — Query an edge iterator.

Vertex and Edge Selectors
and Sequences, Iterators

222

#define IGRAPH_EIT_GET(eit)

Gives the edge id of the current edge pointed to by an iterator.

Arguments:

eit: The edge iterator.

Returns:

The id of the current edge.

Time complexity: O(1).

223

Chapter 12. Graph, Vertex and Edge
Attributes

Attributes are numbers or strings (or basically any kind of data) associated with the vertices or edges of a
graph, or with the graph itself. Eg. you may label vertices with symbolic names or attach numeric weights
to the edges of a graph.

igraph attributes are designed to be flexible and extensible. In igraph attributes are implemented via an
interface abstraction: any type implementing the functions in the interface, can be used for storing vertex,
edge and graph attributes. This means that different attribute implementations can be used together with
igraph. This is reasonable: if igraph is used from Python attributes can be of any Python type, from GNU R
all R types are allowed. There is an experimental attribute implementation to be used when programming
in C, but by default it is currently turned off.

First we briefly look over how attribute handlers can be implemented. This is not something a user does
every day. It is rather typically the job of the high level interface writers. (But it is possible to write an
interface without implementing attributes.) Then we show the experimental C attribute handler.

The Attribute Handler Interface
It is possible to attach an attribute handling interface to igraph. This is simply a table of functions, of
type igraph_attribute_table_t. These functions are invoked to notify the attribute handling code
about the structural changes in a graph. See the documentation of this type for details.

By default there is no attribute interface attached to igraph, to attach one, call
igraph_i_set_attribute_table with your new table.

igraph_attribute_table_t — Table of functions to
perform operations on attributes

typedef struct igraph_attribute_table_t {
 int (*init)(igraph_t *graph, igraph_vector_ptr_t *attr);
 void (*destroy)(igraph_t *graph);
 int (*copy)(igraph_t *to, const igraph_t *from, igraph_bool_t ga,
 igraph_bool_t va, igraph_bool_t ea);
 int (*add_vertices)(igraph_t *graph, long int nv, igraph_vector_ptr_t *attr);
 int (*permute_vertices)(const igraph_t *graph,
 igraph_t *newgraph,
 const igraph_vector_t *idx);
 int (*combine_vertices)(const igraph_t *graph,
 igraph_t *newgraph,
 const igraph_vector_ptr_t *merges,
 const igraph_attribute_combination_t *comb);
 int (*add_edges)(igraph_t *graph, const igraph_vector_t *edges,
 igraph_vector_ptr_t *attr);
 int (*permute_edges)(const igraph_t *graph,
 igraph_t *newgraph, const igraph_vector_t *idx);
 int (*combine_edges)(const igraph_t *graph,
 igraph_t *newgraph,

Graph, Vertex and Edge Attributes

224

 const igraph_vector_ptr_t *merges,
 const igraph_attribute_combination_t *comb);
 int (*get_info)(const igraph_t *graph,
 igraph_strvector_t *gnames, igraph_vector_t *gtypes,
 igraph_strvector_t *vnames, igraph_vector_t *vtypes,
 igraph_strvector_t *enames, igraph_vector_t *etypes);
 igraph_bool_t (*has_attr)(const igraph_t *graph, igraph_attribute_elemtype_t type,
 const char *name);
 int (*gettype)(const igraph_t *graph, igraph_attribute_type_t *type,
 igraph_attribute_elemtype_t elemtype, const char *name);
 int (*get_numeric_graph_attr)(const igraph_t *graph, const char *name,
 igraph_vector_t *value);
 int (*get_string_graph_attr)(const igraph_t *graph, const char *name,
 igraph_strvector_t *value);
 int (*get_bool_graph_attr)(const igraph_t *igraph, const char *name,
 igraph_vector_bool_t *value);
 int (*get_numeric_vertex_attr)(const igraph_t *graph, const char *name,
 igraph_vs_t vs,
 igraph_vector_t *value);
 int (*get_string_vertex_attr)(const igraph_t *graph, const char *name,
 igraph_vs_t vs,
 igraph_strvector_t *value);
 int (*get_bool_vertex_attr)(const igraph_t *graph, const char *name,
 igraph_vs_t vs,
 igraph_vector_bool_t *value);
 int (*get_numeric_edge_attr)(const igraph_t *graph, const char *name,
 igraph_es_t es,
 igraph_vector_t *value);
 int (*get_string_edge_attr)(const igraph_t *graph, const char *name,
 igraph_es_t es,
 igraph_strvector_t *value);
 int (*get_bool_edge_attr)(const igraph_t *graph, const char *name,
 igraph_es_t es,
 igraph_vector_bool_t *value);
} igraph_attribute_table_t;

This type collects the functions defining an attribute handler. It has the following members:

Values:

init: This function is called whenever a new graph object is created, right
after it is created but before any vertices or edges are added. It is
supposed to set the attr member of the igraph_t object. It is
expected to return an error code.

destroy: This function is called whenever the graph object is destroyed, right
before freeing the allocated memory.

copy: This function is called when copying a graph with igraph_copy,
after the structure of the graph has been already copied. It is expect-
ed to return an error code.

add_vertices: Called when vertices are added to a graph, before adding the ver-
tices themselves. The number of vertices to add is supplied as an
argument. Expected to return an error code.

Graph, Vertex and Edge Attributes

225

permute_vertices: Typically called when a new graph is created based on an existing
one, e.g. if vertices are removed from a graph. The supplied index
vector defines which old vertex a new vertex corresponds to. Its
length must be the same as the number of vertices in the new graph.

combine_vertices: This function is called when the creation of a new graph involves a
merge (contraction, etc.) of vertices from another graph. The func-
tion is after the new graph was created. An argument specifies how
several vertices from the old graph map to a single vertex in the
new graph.

add_edges: Called when new edges have been added. The number of new edges
are supplied as well. It is expected to return an error code.

permute_edges: Typically called when a new graph is created and some of the new
edges should carry the attributes of some of the old edges. The idx
vector shows the mapping between the old edges and the new ones.
Its length is the same as the number of edges in the new graph, and
for each edge it gives the id of the old edge (the edge in the old
graph).

combine_edges: This function is called when the creation of a new graph involves a
merge (contraction, etc.) of edges from another graph. The function
is after the new graph was created. An argument specifies how sev-
eral edges from the old graph map to a single edge in the new graph.

get_info: Query the attributes of a graph, the names and types should be re-
turned.

has_attr: Check whether a graph has the named graph/vertex/edge attribute.

gettype: Query the type of a graph/vertex/edge attribute.

get_numeric_graph_attr: Query a numeric graph attribute. The value should be placed as the
first element of the value vector.

get_string_graph_attr: Query a string graph attribute. The value should be placed as the
first element of the value string vector.

get_bool_graph_attr: Query a boolean graph attribute. The value should be placed as the
first element of the value boolean vector.

get_numeric_vertex_attr: Query a numeric vertex attribute, for the vertices included in vs.

get_string_vertex_attr: Query a string vertex attribute, for the vertices included in vs.

get_bool_vertex_attr: Query a boolean vertex attribute, for the vertices included in vs.

get_numeric_edge_attr: Query a numeric edge attribute, for the edges included in es.

get_string_edge_attr: Query a string edge attribute, for the edges included in es.

get_bool_edge_attr: Query a boolean edge attribute, for the edges included in es.

Note that the get_*_*_attr are allowed to convert the attributes to numeric or string. E.g. if a vertex
attribute is a GNU R complex data type, then get_string_vertex_attribute may serialize it into
a string, but this probably makes sense only if add_vertices is able to deserialize it.

Graph, Vertex and Edge Attributes

226

igraph_i_set_attribute_table — Attach an at-
tribute table.

igraph_attribute_table_t *
igraph_i_set_attribute_table(const igraph_attribute_table_t * table);

This function attaches attribute handling code to the igraph library. Note that the attribute handler table
is not thread-local even if igraph is compiled in thread-local mode. In the vast majority of cases, this is
not a significant restriction.

Arguments:

table: Pointer to an igraph_attribute_table_t object containing the functions for attribute
manipulation. Supply NULL here if you don't want attributes.

Returns:

Pointer to the old attribute handling table.

Time complexity: O(1).

igraph_attribute_type_t — The possible types of
the attributes.

typedef enum { IGRAPH_ATTRIBUTE_DEFAULT=0,
 IGRAPH_ATTRIBUTE_NUMERIC=1,
 IGRAPH_ATTRIBUTE_BOOLEAN=5,
 IGRAPH_ATTRIBUTE_STRING=2,
 IGRAPH_ATTRIBUTE_R_OBJECT=3,
 IGRAPH_ATTRIBUTE_PY_OBJECT=4 } igraph_attribute_type_t;

Note that this is only the type communicated by the attribute interface towards igraph functions. Eg. in the
GNU R attribute handler, it is safe to say that all complex R object attributes are strings, as long as this
interface is able to serialize them into strings. See also igraph_attribute_table_t.

Values:

IGRAPH_ATTRIBUTE_DEFAULT: Currently not used for anything.

IGRAPH_ATTRIBUTE_NUMERIC: Numeric attribute.

IGRAPH_ATTRIBUTE_BOOLEAN: Logical values, true or false.

IGRAPH_ATTRIBUTE_STRING: Attribute that can be converted to a string.

IGRAPH_ATTRIBUTE_R_OBJECT:An R object. This is usually ignored by the igraph functions.

IGRAPH_ATTRIBUTE_PY_OBJECT:A Python object. Usually ignored by the igraph functions.

Graph, Vertex and Edge Attributes

227

Accessing attributes from C
There is an experimental attribute handler that can be used from C code. In this section we show how this
works. This attribute handler is by default not attached (the default is no attribute handler), so we first
need to attach it:

igraph_i_set_attribute_table(&igraph_cattribute_table);

Now the attribute functions are available. Please note that the attribute handler must be attached before
you call any other igraph functions, otherwise you might end up with graphs without attributes and an
active attribute handler, which might cause unexpected program behaviour. The rule is that you attach
the attribute handler in the beginning of your main() and never touch it again. (Detaching the attribute
handler might lead to memory leaks.)

It is not currently possible to have attribute handlers on a per-graph basis. All graphs in an application
must be managed with the same attribute handler. (Including the default case when there is no attribute
handler at all.

The C attribute handler supports attaching real numbers and character strings as attributes. No vectors are
allowed, ie. every vertex might have an attribute called name , but it is not possible to have a coords
graph (or other) attribute which is a vector of numbers.

Example 12.1. File examples/simple/cattributes.c

Example 12.2. File examples/simple/cattributes2.c

Example 12.3. File examples/simple/cattributes3.c

Example 12.4. File examples/simple/cattributes4.c

Query attributes

igraph_cattribute_list — List all attributes

int igraph_cattribute_list(const igraph_t *graph,
 igraph_strvector_t *gnames, igraph_vector_t *gtypes,
 igraph_strvector_t *vnames, igraph_vector_t *vtypes,
 igraph_strvector_t *enames, igraph_vector_t *etypes);

See igraph_attribute_type_t for the various attribute types.

Arguments:

graph: The input graph.

gnames: String vector, the names of the graph attributes.

Graph, Vertex and Edge Attributes

228

gtypes: Numeric vector, the types of the graph attributes.

vnames: String vector, the names of the vertex attributes.

vtypes: Numeric vector, the types of the vertex attributes.

enames: String vector, the names of the edge attributes.

etypes: Numeric vector, the types of the edge attributes.

Returns:

Error code.

Naturally, the string vector with the attribute names and the numeric vector with the attribute types are
in the right order, i.e. the first name corresponds to the first type, etc. Time complexity: O(Ag+Av+Ae),
the number of all attributes.

igraph_cattribute_has_attr — Checks whether a (graph, ver-
tex or edge) attribute exists

igraph_bool_t igraph_cattribute_has_attr(const igraph_t *graph,
 igraph_attribute_elemtype_t type,
 const char *name);

Arguments:

graph: The graph.

type: The type of the attribute, IGRAPH_ATTRIBUTE_GRAPH, IGRAPH_ATTRIBUTE_VERTEX
or IGRAPH_ATTRIBUTE_EDGE.

name: Character constant, the name of the attribute.

Returns:

Logical value, TRUE if the attribute exists, FALSE otherwise.

Time complexity: O(A), the number of (graph, vertex or edge) attributes, assuming attribute names are
not too long.

igraph_cattribute_GAN — Query a numeric graph attribute.

igraph_real_t igraph_cattribute_GAN(const igraph_t *graph, const char *name);

Returns the value of the given numeric graph attribute. The attribute must exist, otherwise an error is
triggered.

Arguments:

Graph, Vertex and Edge Attributes

229

graph: The input graph.

name: The name of the attribute to query.

Returns:

The value of the attribute.

See also:

GAN for a simpler interface.

Time complexity: O(Ag), the number of graph attributes.

GAN — Query a numeric graph attribute.

#define GAN(graph,n)

This is shorthand for igraph_cattribute_GAN().

Arguments:

graph: The graph.

n: The name of the attribute.

Returns:

The value of the attribute.

igraph_cattribute_GAB — Query a boolean graph attribute.

igraph_bool_t igraph_cattribute_GAB(const igraph_t *graph, const char *name);

Returns the value of the given numeric graph attribute. The attribute must exist, otherwise an error is
triggered.

Arguments:

graph: The input graph.

name: The name of the attribute to query.

Returns:

The value of the attribute.

See also:

Graph, Vertex and Edge Attributes

230

GAB for a simpler interface.

Time complexity: O(Ag), the number of graph attributes.

GAB — Query a boolean graph attribute.

#define GAB(graph,n)

This is shorthand for igraph_cattribute_GAB().

Arguments:

graph: The graph.

n: The name of the attribute.

Returns:

The value of the attribute.

igraph_cattribute_GAS — Query a string graph attribute.

const char* igraph_cattribute_GAS(const igraph_t *graph, const char *name);

Returns a const pointer to the string graph attribute specified in name. The attribute must exist, otherwise
an error is triggered.

Arguments:

graph: The input graph.

name: The name of the attribute to query.

Returns:

The value of the attribute.

See also:

GAS for a simpler interface.

Time complexity: O(Ag), the number of graph attributes.

GAS — Query a string graph attribute.

#define GAS(graph,n)

This is shorthand for igraph_cattribute_GAS().

Graph, Vertex and Edge Attributes

231

Arguments:

graph: The graph.

n: The name of the attribute.

Returns:

The value of the attribute.

igraph_cattribute_VAN — Query a numeric vertex attribute.

igraph_real_t igraph_cattribute_VAN(const igraph_t *graph, const char *name,
 igraph_integer_t vid);

The attribute must exist, otherwise an error is triggered.

Arguments:

graph: The input graph.

name: The name of the attribute.

vid: The id of the queried vertex.

Returns:

The value of the attribute.

See also:

VAN macro for a simpler interface.

Time complexity: O(Av), the number of vertex attributes.

VAN — Query a numeric vertex attribute.

#define VAN(graph,n,v)

This is shorthand for igraph_cattribute_VAN().

Arguments:

graph: The graph.

n: The name of the attribute.

v: The id of the vertex.

Returns:

Graph, Vertex and Edge Attributes

232

The value of the attribute.

igraph_cattribute_VANV — Query a numeric vertex attribute for
many vertices

int igraph_cattribute_VANV(const igraph_t *graph, const char *name,
 igraph_vs_t vids, igraph_vector_t *result);

Arguments:

graph: The input graph.

name: The name of the attribute.

vids: The vertices to query.

result: Pointer to an initialized vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

Time complexity: O(v), where v is the number of vertices in 'vids'.

VANV — Query a numeric vertex attribute for all vertices.

#define VANV(graph,n,vec)

This is a shorthand for igraph_cattribute_VANV().

Arguments:

graph: The graph.

n: The name of the attribute.

vec: Pointer to an initialized vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

igraph_cattribute_VAB — Query a boolean vertex attribute.

igraph_bool_t igraph_cattribute_VAB(const igraph_t *graph, const char *name,
 igraph_integer_t vid);

Graph, Vertex and Edge Attributes

233

The attribute must exist, otherwise an error is triggered.

Arguments:

graph: The input graph.

name: The name of the attribute.

vid: The id of the queried vertex.

Returns:

The value of the attribute.

See also:

VAB macro for a simpler interface.

Time complexity: O(Av), the number of vertex attributes.

VAB — Query a boolean vertex attribute.

#define VAB(graph,n,v)

This is shorthand for igraph_cattribute_VAB().

Arguments:

graph: The graph.

n: The name of the attribute.

v: The id of the vertex.

Returns:

The value of the attribute.

igraph_cattribute_VABV — Query a boolean vertex attribute for
many vertices

int igraph_cattribute_VABV(const igraph_t *graph, const char *name,
 igraph_vs_t vids, igraph_vector_bool_t *result);

Arguments:

graph: The input graph.

name: The name of the attribute.

Graph, Vertex and Edge Attributes

234

vids: The vertices to query.

result: Pointer to an initialized boolean vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

Time complexity: O(v), where v is the number of vertices in 'vids'.

VABV — Query a boolean vertex attribute for all vertices.

#define VABV(graph,n,vec)

This is a shorthand for igraph_cattribute_VABV().

Arguments:

graph: The graph.

n: The name of the attribute.

vec: Pointer to an initialized boolean vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

igraph_cattribute_VAS — Query a string vertex attribute.

const char* igraph_cattribute_VAS(const igraph_t *graph, const char *name,
 igraph_integer_t vid);

The attribute must exist, otherwise an error is triggered.

Arguments:

graph: The input graph.

name: The name of the attribute.

vid: The id of the queried vertex.

Returns:

The value of the attribute.

See also:

Graph, Vertex and Edge Attributes

235

The macro VAS for a simpler interface.

Time complexity: O(Av), the number of vertex attributes.

VAS — Query a string vertex attribute.

#define VAS(graph,n,v)

This is shorthand for igraph_cattribute_VAS().

Arguments:

graph: The graph.

n: The name of the attribute.

v: The id of the vertex.

Returns:

The value of the attribute.

igraph_cattribute_VASV — Query a string vertex attribute for
many vertices

int igraph_cattribute_VASV(const igraph_t *graph, const char *name,
 igraph_vs_t vids, igraph_strvector_t *result);

Arguments:

graph: The input graph.

name: The name of the attribute.

vids: The vertices to query.

result: Pointer to an initialized string vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

Time complexity: O(v), where v is the number of vertices in 'vids'. (We assume that the string attributes
have a bounded length.)

VASV — Query a string vertex attribute for all vertices.

Graph, Vertex and Edge Attributes

236

#define VASV(graph,n,vec)

This is a shorthand for igraph_cattribute_VASV().

Arguments:

graph: The graph.

n: The name of the attribute.

vec: Pointer to an initialized string vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

igraph_cattribute_EAN — Query a numeric edge attribute.

igraph_real_t igraph_cattribute_EAN(const igraph_t *graph, const char *name,
 igraph_integer_t eid);

The attribute must exist, otherwise an error is triggered.

Arguments:

graph: The input graph.

name: The name of the attribute.

eid: The id of the queried edge.

Returns:

The value of the attribute.

See also:

EAN for an easier interface.

Time complexity: O(Ae), the number of edge attributes.

EAN — Query a numeric edge attribute.

#define EAN(graph,n,e)

This is shorthand for igraph_cattribute_EAN().

Arguments:

graph: The graph.

Graph, Vertex and Edge Attributes

237

n: The name of the attribute.

e: The id of the edge.

Returns:

The value of the attribute.

igraph_cattribute_EANV — Query a numeric edge attribute for
many edges

int igraph_cattribute_EANV(const igraph_t *graph, const char *name,
 igraph_es_t eids, igraph_vector_t *result);

Arguments:

graph: The input graph.

name: The name of the attribute.

eids: The edges to query.

result: Pointer to an initialized vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

Time complexity: O(e), where e is the number of edges in 'eids'.

EANV — Query a numeric edge attribute for all edges.

#define EANV(graph,n,vec)

This is a shorthand for igraph_cattribute_EANV().

Arguments:

graph: The graph.

n: The name of the attribute.

vec: Pointer to an initialized vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

Graph, Vertex and Edge Attributes

238

igraph_cattribute_EAB — Query a boolean edge attribute.

igraph_bool_t igraph_cattribute_EAB(const igraph_t *graph, const char *name,
 igraph_integer_t eid);

The attribute must exist, otherwise an error is triggered.

Arguments:

graph: The input graph.

name: The name of the attribute.

eid: The id of the queried edge.

Returns:

The value of the attribute.

See also:

EAB for an easier interface.

Time complexity: O(Ae), the number of edge attributes.

EAB — Query a boolean edge attribute.

#define EAB(graph,n,e)

This is shorthand for igraph_cattribute_EAB().

Arguments:

graph: The graph.

n: The name of the attribute.

e: The id of the edge.

Returns:

The value of the attribute.

igraph_cattribute_EABV — Query a boolean edge attribute for
many edges

int igraph_cattribute_EABV(const igraph_t *graph, const char *name,

Graph, Vertex and Edge Attributes

239

 igraph_es_t eids, igraph_vector_bool_t *result);

Arguments:

graph: The input graph.

name: The name of the attribute.

eids: The edges to query.

result: Pointer to an initialized boolean vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

Time complexity: O(e), where e is the number of edges in 'eids'.

EABV — Query a boolean edge attribute for all edges.

#define EABV(graph,n,vec)

This is a shorthand for igraph_cattribute_EABV().

Arguments:

graph: The graph.

n: The name of the attribute.

vec: Pointer to an initialized vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

igraph_cattribute_EAS — Query a string edge attribute.

const char* igraph_cattribute_EAS(const igraph_t *graph, const char *name,
 igraph_integer_t eid);

The attribute must exist, otherwise an error is triggered.

Arguments:

graph: The input graph.

name: The name of the attribute.

eid: The id of the queried edge.

Graph, Vertex and Edge Attributes

240

Returns:

The value of the attribute.

\se EAS if you want to type less. Time complexity: O(Ae), the number of edge attributes.

EAS — Query a string edge attribute.

#define EAS(graph,n,e)

This is shorthand for igraph_cattribute_EAS().

Arguments:

graph: The graph.

n: The name of the attribute.

e: The id of the edge.

Returns:

The value of the attribute.

igraph_cattribute_EASV — Query a string edge attribute for
many edges

int igraph_cattribute_EASV(const igraph_t *graph, const char *name,
 igraph_es_t eids, igraph_strvector_t *result);

Arguments:

graph: The input graph.

name: The name of the attribute.

vids: The edges to query.

result: Pointer to an initialized string vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

Time complexity: O(e), where e is the number of edges in 'eids'. (We assume that the string attributes
have a bounded length.)

EASV — Query a string edge attribute for all edges.

Graph, Vertex and Edge Attributes

241

#define EASV(graph,n,vec)

This is a shorthand for igraph_cattribute_EASV().

Arguments:

graph: The graph.

n: The name of the attribute.

vec: Pointer to an initialized string vector, the result is stored here. It will be resized, if needed.

Returns:

Error code.

Set attributes

igraph_cattribute_GAN_set — Set a numeric graph attribute

int igraph_cattribute_GAN_set(igraph_t *graph, const char *name,
 igraph_real_t value);

Arguments:

graph: The graph.

name: Name of the graph attribute. If there is no such attribute yet, then it will be added.

value: The (new) value of the graph attribute.

Returns:

Error code.

\se SETGAN if you want to type less. Time complexity: O(1).

SETGAN — Set a numeric graph attribute

#define SETGAN(graph,n,value)

This is a shorthand for igraph_cattribute_GAN_set().

Arguments:

graph: The graph.

n: The name of the attribute.

Graph, Vertex and Edge Attributes

242

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_GAB_set — Set a boolean graph attribute

int igraph_cattribute_GAB_set(igraph_t *graph, const char *name,
 igraph_bool_t value);

Arguments:

graph: The graph.

name: Name of the graph attribute. If there is no such attribute yet, then it will be added.

value: The (new) value of the graph attribute.

Returns:

Error code.

\se SETGAN if you want to type less. Time complexity: O(1).

SETGAB — Set a boolean graph attribute

#define SETGAB(graph,n,value)

This is a shorthand for igraph_cattribute_GAB_set().

Arguments:

graph: The graph.

n: The name of the attribute.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_GAS_set — Set a string graph attribute.

Graph, Vertex and Edge Attributes

243

int igraph_cattribute_GAS_set(igraph_t *graph, const char *name,
 const char *value);

Arguments:

graph: The graph.

name: Name of the graph attribute. If there is no such attribute yet, then it will be added.

value: The (new) value of the graph attribute. It will be copied.

Returns:

Error code.

\se SETGAS if you want to type less. Time complexity: O(1).

SETGAS — Set a string graph attribute

#define SETGAS(graph,n,value)

This is a shorthand for igraph_cattribute_GAS_set().

Arguments:

graph: The graph.

n: The name of the attribute.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_VAN_set — Set a numeric vertex attribute

int igraph_cattribute_VAN_set(igraph_t *graph, const char *name,
 igraph_integer_t vid, igraph_real_t value);

The attribute will be added if not present already. If present it will be overwritten. The same value is
set for all vertices included in vid.

Arguments:

graph: The graph.

name: Name of the attribute.

vid: Vertices for which to set the attribute.

Graph, Vertex and Edge Attributes

244

value: The (new) value of the attribute.

Returns:

Error code.

See also:

SETVAN for a simpler way.

Time complexity: O(n), the number of vertices if the attribute is new, O(|vid|) otherwise.

SETVAN — Set a numeric vertex attribute

#define SETVAN(graph,n,vid,value)

This is a shorthand for igraph_cattribute_VAN_set().

Arguments:

graph: The graph.

n: The name of the attribute.

vid: Ids of the vertices to set.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_VAB_set — Set a boolean vertex attribute

int igraph_cattribute_VAB_set(igraph_t *graph, const char *name,
 igraph_integer_t vid, igraph_bool_t value);

The attribute will be added if not present already. If present it will be overwritten. The same value is
set for all vertices included in vid.

Arguments:

graph: The graph.

name: Name of the attribute.

vid: Vertices for which to set the attribute.

value: The (new) value of the attribute.

Graph, Vertex and Edge Attributes

245

Returns:

Error code.

See also:

SETVAB for a simpler way.

Time complexity: O(n), the number of vertices if the attribute is new, O(|vid|) otherwise.

SETVAB — Set a boolean vertex attribute

#define SETVAB(graph,n,vid,value)

This is a shorthand for igraph_cattribute_VAB_set().

Arguments:

graph: The graph.

n: The name of the attribute.

vid: Ids of the vertices to set.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_VAS_set — Set a string vertex attribute

int igraph_cattribute_VAS_set(igraph_t *graph, const char *name,
 igraph_integer_t vid, const char *value);

The attribute will be added if not present already. If present it will be overwritten. The same value is
set for all vertices included in vid.

Arguments:

graph: The graph.

name: Name of the attribute.

vid: Vertices for which to set the attribute.

value: The (new) value of the attribute.

Returns:

Graph, Vertex and Edge Attributes

246

Error code.

See also:

SETVAS for a simpler way.

Time complexity: O(n*l), n is the number of vertices, l is the length of the string to set. If the attribute
if not new then only O(|vid|*l).

SETVAS — Set a string vertex attribute

#define SETVAS(graph,n,vid,value)

This is a shorthand for igraph_cattribute_VAS_set().

Arguments:

graph: The graph.

n: The name of the attribute.

vid: Ids of the vertices to set.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_EAN_set — Set a numeric edge attribute

int igraph_cattribute_EAN_set(igraph_t *graph, const char *name,
 igraph_integer_t eid, igraph_real_t value);

The attribute will be added if not present already. If present it will be overwritten. The same value is
set for all edges included in vid.

Arguments:

graph: The graph.

name: Name of the attribute.

eid: Edges for which to set the attribute.

value: The (new) value of the attribute.

Returns:

Error code.

Graph, Vertex and Edge Attributes

247

See also:

SETEAN for a simpler way.

Time complexity: O(e), the number of edges if the attribute is new, O(|eid|) otherwise.

SETEAN — Set a numeric edge attribute

#define SETEAN(graph,n,eid,value)

This is a shorthand for igraph_cattribute_EAN_set().

Arguments:

graph: The graph.

n: The name of the attribute.

eid: Ids of the edges to set.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_EAB_set — Set a boolean edge attribute

int igraph_cattribute_EAB_set(igraph_t *graph, const char *name,
 igraph_integer_t eid, igraph_bool_t value);

The attribute will be added if not present already. If present it will be overwritten. The same value is
set for all edges included in vid.

Arguments:

graph: The graph.

name: Name of the attribute.

eid: Edges for which to set the attribute.

value: The (new) value of the attribute.

Returns:

Error code.

See also:

Graph, Vertex and Edge Attributes

248

SETEAB for a simpler way.

Time complexity: O(e), the number of edges if the attribute is new, O(|eid|) otherwise.

SETEAB — Set a boolean edge attribute

#define SETEAB(graph,n,eid,value)

This is a shorthand for igraph_cattribute_EAB_set().

Arguments:

graph: The graph.

n: The name of the attribute.

eid: Ids of the edges to set.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_EAS_set — Set a string edge attribute

int igraph_cattribute_EAS_set(igraph_t *graph, const char *name,
 igraph_integer_t eid, const char *value);

The attribute will be added if not present already. If present it will be overwritten. The same value is
set for all edges included in vid.

Arguments:

graph: The graph.

name: Name of the attribute.

eid: Edges for which to set the attribute.

value: The (new) value of the attribute.

Returns:

Error code.

See also:

SETEAS for a simpler way.

Graph, Vertex and Edge Attributes

249

Time complexity: O(e*l), n is the number of edges, l is the length of the string to set. If the attribute if
not new then only O(|eid|*l).

SETEAS — Set a string edge attribute

#define SETEAS(graph,n,eid,value)

This is a shorthand for igraph_cattribute_EAS_set().

Arguments:

graph: The graph.

n: The name of the attribute.

eid: Ids of the edges to set.

value: The new value of the attribute.

Returns:

Error code.

igraph_cattribute_VAN_setv — Set a numeric vertex attribute
for all vertices.

int igraph_cattribute_VAN_setv(igraph_t *graph, const char *name,
 const igraph_vector_t *v);

The attribute will be added if not present yet.

Arguments:

graph: The graph.

name: Name of the attribute.

v: The new attribute values. The length of this vector must match the number of vertices.

Returns:

Error code.

See also:

SETVANV for a simpler way.

Time complexity: O(n), the number of vertices.

Graph, Vertex and Edge Attributes

250

SETVANV — Set a numeric vertex attribute for all vertices

#define SETVANV(graph,n,v)

This is a shorthand for igraph_cattribute_VAN_setv().

Arguments:

graph: The graph.

n: The name of the attribute.

v: Vector containing the new values of the attributes.

Returns:

Error code.

igraph_cattribute_VAB_setv — Set a boolean vertex attribute
for all vertices.

int igraph_cattribute_VAB_setv(igraph_t *graph, const char *name,
 const igraph_vector_bool_t *v);

The attribute will be added if not present yet.

Arguments:

graph: The graph.

name: Name of the attribute.

v: The new attribute values. The length of this boolean vector must match the number of vertices.

Returns:

Error code.

See also:

SETVANV for a simpler way.

Time complexity: O(n), the number of vertices.

SETVABV — Set a boolean vertex attribute for all vertices

Graph, Vertex and Edge Attributes

251

#define SETVABV(graph,n,v)

This is a shorthand for igraph_cattribute_VAB_setv().

Arguments:

graph: The graph.

n: The name of the attribute.

v: Vector containing the new values of the attributes.

Returns:

Error code.

igraph_cattribute_VAS_setv — Set a string vertex attribute for
all vertices.

int igraph_cattribute_VAS_setv(igraph_t *graph, const char *name,
 const igraph_strvector_t *sv);

The attribute will be added if not present yet.

Arguments:

graph: The graph.

name: Name of the attribute.

sv: String vector, the new attribute values. The length of this vector must match the number of
vertices.

Returns:

Error code.

See also:

SETVASV for a simpler way.

Time complexity: O(n+l), n is the number of vertices, l is the total length of the strings.

SETVASV — Set a string vertex attribute for all vertices

#define SETVASV(graph,n,v)

This is a shorthand for igraph_cattribute_VAS_setv().

Arguments:

Graph, Vertex and Edge Attributes

252

graph: The graph.

n: The name of the attribute.

v: Vector containing the new values of the attributes.

Returns:

Error code.

igraph_cattribute_EAN_setv — Set a numeric edge attribute for
all vertices.

int igraph_cattribute_EAN_setv(igraph_t *graph, const char *name,
 const igraph_vector_t *v);

The attribute will be added if not present yet.

Arguments:

graph: The graph.

name: Name of the attribute.

v: The new attribute values. The length of this vector must match the number of edges.

Returns:

Error code.

See also:

SETEANV for a simpler way.

Time complexity: O(e), the number of edges.

SETEANV — Set a numeric edge attribute for all vertices

#define SETEANV(graph,n,v)

This is a shorthand for igraph_cattribute_EAN_setv().

Arguments:

graph: The graph.

n: The name of the attribute.

v: Vector containing the new values of the attributes.

Graph, Vertex and Edge Attributes

253

igraph_cattribute_EAB_setv — Set a boolean edge attribute for
all vertices.

int igraph_cattribute_EAB_setv(igraph_t *graph, const char *name,
 const igraph_vector_bool_t *v);

The attribute will be added if not present yet.

Arguments:

graph: The graph.

name: Name of the attribute.

v: The new attribute values. The length of this vector must match the number of edges.

Returns:

Error code.

See also:

SETEABV for a simpler way.

Time complexity: O(e), the number of edges.

SETEABV — Set a boolean edge attribute for all vertices

#define SETEABV(graph,n,v)

This is a shorthand for igraph_cattribute_EAB_setv().

Arguments:

graph: The graph.

n: The name of the attribute.

v: Vector containing the new values of the attributes.

igraph_cattribute_EAS_setv — Set a string edge attribute for all
vertices.

int igraph_cattribute_EAS_setv(igraph_t *graph, const char *name,
 const igraph_strvector_t *sv);

The attribute will be added if not present yet.

Graph, Vertex and Edge Attributes

254

Arguments:

graph: The graph.

name: Name of the attribute.

sv: String vector, the new attribute values. The length of this vector must match the number of
edges.

Returns:

Error code.

See also:

SETEASV for a simpler way.

Time complexity: O(e+l), e is the number of edges, l is the total length of the strings.

SETEASV — Set a string edge attribute for all vertices

#define SETEASV(graph,n,v)

This is a shorthand for igraph_cattribute_EAS_setv().

Arguments:

graph: The graph.

n: The name of the attribute.

v: Vector containing the new values of the attributes.

Remove attributes

igraph_cattribute_remove_g — Remove a graph attribute

void igraph_cattribute_remove_g(igraph_t *graph, const char *name);

Arguments:

graph: The graph object.

name: Name of the graph attribute to remove.

See also:

DELGA for a simpler way.

Graph, Vertex and Edge Attributes

255

DELGA — Remove a graph attribute.

#define DELGA(graph,n)

A shorthand for igraph_cattribute_remove_g().

Arguments:

graph: The graph.

n: The name of the attribute to remove.

igraph_cattribute_remove_v — Remove a vertex attribute

void igraph_cattribute_remove_v(igraph_t *graph, const char *name);

Arguments:

graph: The graph object.

name: Name of the vertex attribute to remove.

See also:

DELVA for a simpler way.

DELVA — Remove a vertex attribute.

#define DELVA(graph,n)

A shorthand for igraph_cattribute_remove_v().

Arguments:

graph: The graph.

n: The name of the attribute to remove.

igraph_cattribute_remove_e — Remove an edge attribute

void igraph_cattribute_remove_e(igraph_t *graph, const char *name);

Arguments:

Graph, Vertex and Edge Attributes

256

graph: The graph object.

name: Name of the edge attribute to remove.

See also:

DELEA for a simpler way.

DELEA — Remove an edge attribute.

#define DELEA(graph,n)

A shorthand for igraph_cattribute_remove_e().

Arguments:

graph: The graph.

n: The name of the attribute to remove.

igraph_cattribute_remove_all — Remove all graph/ver-
tex/edge attributes

void igraph_cattribute_remove_all(igraph_t *graph, igraph_bool_t g,
 igraph_bool_t v, igraph_bool_t e);

Arguments:

graph: The graph object.

g: Boolean, whether to remove graph attributes.

v: Boolean, whether to remove vertex attributes.

e: Boolean, whether to remove edge attributes.

See also:

DELGAS, DELVAS, DELEAS, DELALL for simpler ways.

DELGAS — Remove all graph attributes.

#define DELGAS(graph)

Calls igraph_cattribute_remove_all().

Graph, Vertex and Edge Attributes

257

Arguments:

graph: The graph.

DELVAS — Remove all vertex attributes.

#define DELVAS(graph)

Calls igraph_cattribute_remove_all().

Arguments:

graph: The graph.

DELEAS — Remove all edge attributes.

#define DELEAS(graph)

Calls igraph_cattribute_remove_all().

Arguments:

graph: The graph.

DELALL — Remove all attributes.

#define DELALL(graph)

All graph, vertex and edges attributes will be removed. Calls igraph_cattribute_remove_all().

Arguments:

graph: The graph.

258

Chapter 13. Structural Properties of
Graphs

These functions usually calculate some structural property of a graph, like its diameter, the degree of the
nodes, etc.

Basic Properties

igraph_are_connected — Decides whether two ver-
tices are connected

int igraph_are_connected(const igraph_t *graph,
 igraph_integer_t v1, igraph_integer_t v2,
 igraph_bool_t *res);

Arguments:

graph: The graph object.

v1: The first vertex.

v2: The second vertex.

res: Boolean, TRUE if there is an edge from v1 to v2, FALSE otherwise.

Returns:

The error code IGRAPH_EINVVID is returned if an invalid vertex ID is given.

The function is of course symmetric for undirected graphs.

Time complexity: O(min(log(d1), log(d2))), d1 is the (out-)degree of v1 and d2 is the (in-)degree of v2.

Shortest Path Related Functions

igraph_shortest_paths — The length of the shortest
paths between vertices.

int igraph_shortest_paths(const igraph_t *graph, igraph_matrix_t *res,
 const igraph_vs_t from, const igraph_vs_t to,
 igraph_neimode_t mode);

Arguments:

Structural Properties of Graphs

259

graph: The graph object.

res: The result of the calculation, a matrix. A pointer to an initialized matrix, to be more precise.
The matrix will be resized if needed. It will have the same number of rows as the length of
the from argument, and its number of columns is the number of vertices in the to argument.
One row of the matrix shows the distances from/to a given vertex to the ones in to. For the
unreachable vertices IGRAPH_INFINITY is returned.

from: Vector of the vertex ids for which the path length calculations are done.

to: Vector of the vertex ids to which the path length calculations are done. It is not allowed to
have duplicated vertex ids here.

mode: The type of shortest paths to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the lengths of the outgoing paths are calculated.

IGRAPH_IN the lengths of the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex id passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(n(|V|+|E|)), n is the number of vertices to calculate, |V| and |E| are the number of
vertices and edges in the graph.

See also:

igraph_get_shortest_paths() to get the paths themselves,
igraph_shortest_paths_dijkstra() for the weighted version.

igraph_shortest_paths_dijkstra — Weighted
shortest paths from some sources.

int igraph_shortest_paths_dijkstra(const igraph_t *graph,
 igraph_matrix_t *res,
 const igraph_vs_t from,
 const igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

This function is Dijkstra's algorithm to find the weighted shortest paths to all vertices from a single source.
(It is run independently for the given sources.) It uses a binary heap for efficient implementation.

Structural Properties of Graphs

260

Arguments:

graph: The input graph, can be directed.

res: The result, a matrix. A pointer to an initialized matrix should be passed here. The matrix will
be resized as needed. Each row contains the distances from a single source, to the vertices
given in the to argument. Unreachable vertices has distance IGRAPH_INFINITY.

from: The source vertices.

to: The target vertices. It is not allowed to include a vertex twice or more.

weights: The edge weights. They must be all non-negative for Dijkstra's algorithm to work. An error
code is returned if there is a negative edge weight in the weight vector. If this is a null
pointer, then the unweighted version, igraph_shortest_paths() is called.

mode: For directed graphs; whether to follow paths along edge directions (IGRAPH_OUT), or
the opposite (IGRAPH_IN), or ignore edge directions completely (IGRAPH_ALL). It is
ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(s*|E|log|E|+|V|), where |V| is the number of vertices, |E| the number of edges and s
the number of sources.

See also:

igraph_shortest_paths() for a (slightly) faster unweighted version or
igraph_shortest_paths_bellman_ford() for a weighted variant that works in the presence
of negative edge weights (but no negative loops).

Example 13.1. File examples/simple/dijkstra.c

igraph_shortest_paths_bellman_ford — Weight-
ed shortest paths from some sources allowing negative
weights.

int igraph_shortest_paths_bellman_ford(const igraph_t *graph,
 igraph_matrix_t *res,
 const igraph_vs_t from,
 const igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

This function is the Bellman-Ford algorithm to find the weighted shortest paths to all vertices from a single
source. (It is run independently for the given sources.). If there are no negative weights, you are better off
with igraph_shortest_paths_dijkstra() .

Arguments:

Structural Properties of Graphs

261

graph: The input graph, can be directed.

res: The result, a matrix. A pointer to an initialized matrix should be passed here, the matrix
will be resized if needed. Each row contains the distances from a single source, to all ver-
tices in the graph, in the order of vertex ids. For unreachable vertices the matrix contains
IGRAPH_INFINITY.

from: The source vertices.

weights: The edge weights. There mustn't be any closed loop in the graph that has a negative total
weight (since this would allow us to decrease the weight of any path containing at least a
single vertex of this loop infinitely). If this is a null pointer, then the unweighted version,
igraph_shortest_paths() is called.

mode: For directed graphs; whether to follow paths along edge directions (IGRAPH_OUT), or
the opposite (IGRAPH_IN), or ignore edge directions completely (IGRAPH_ALL). It is
ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(s*|E|*|V|), where |V| is the number of vertices, |E| the number of edges and s the
number of sources.

See also:

igraph_shortest_paths() for a faster unweighted version or
igraph_shortest_paths_dijkstra() if you do not have negative edge weights.

Example 13.2. File examples/simple/bellman_ford.c

igraph_shortest_paths_johnson — Calculate short-
est paths from some sources using Johnson's algo-
rithm.

int igraph_shortest_paths_johnson(const igraph_t *graph,
 igraph_matrix_t *res,
 const igraph_vs_t from,
 const igraph_vs_t to,
 const igraph_vector_t *weights);

See Wikipedia at http://en.wikipedia.org/wiki/Johnson's_algorithm for Johnson's algorithm. This algo-
rithm works even if the graph contains negative edge weights, and it is worth using it if we calculate the
shortest paths from many sources.

If no edge weights are supplied, then the unweighted version, igraph_shortest_paths() is called.

If all the supplied edge weights are non-negative, then Dijkstra's algorithm is used by calling
igraph_shortest_paths_dijkstra().

http://en.wikipedia.org/wiki/Johnson's_algorithm

Structural Properties of Graphs

262

Arguments:

graph: The input graph, typically it is directed.

res: Pointer to an initialized matrix, the result will be stored here, one line for each source vertex,
one column for each target vertex.

from: The source vertices.

to: The target vertices. It is not allowed to include a vertex twice or more.

weights: Optional edge weights. If it is a null-pointer, then the unweighted breadth-first search based
igraph_shortest_paths() will be called.

Returns:

Error code.

Time complexity: O(s|V|log|V|+|V||E|), |V| and |E| are the number of vertices and edges, s is the number
of source vertices.

See also:

igraph_shortest_paths() for a faster unweighted version or
igraph_shortest_paths_dijkstra() if you do not have negative edge weights,
igraph_shortest_paths_bellman_ford() if you only need to calculate shortest paths from
a couple of sources.

igraph_get_shortest_paths — Calculates the short-
est paths from/to one vertex.

int igraph_get_shortest_paths(const igraph_t *graph,
 igraph_vector_ptr_t *vertices,
 igraph_vector_ptr_t *edges,
 igraph_integer_t from, const igraph_vs_t to,
 igraph_neimode_t mode,
 igraph_vector_long_t *predecessors,
 igraph_vector_long_t *inbound_edges);

If there is more than one geodesic between two vertices, this function gives only one of them.

Arguments:

graph: The graph object.

vertices: The result, the ids of the vertices along the paths. This is a pointer vector, each
element points to a vector object. These should be initialized before passing them
to the function, which will properly clear and/or resize them and fill the ids of the
vertices along the geodesics from/to the vertices. Supply a null pointer here if you
don't need these vectors.

Structural Properties of Graphs

263

edges: The result, the ids of the edges along the paths. This is a pointer vector, each ele-
ment points to a vector object. These should be initialized before passing them to
the function, which will properly clear and/or resize them and fill the ids of the
vertices along the geodesics from/to the vertices. Supply a null pointer here if you
don't need these vectors.

from: The id of the vertex from/to which the geodesics are calculated.

to: Vertex sequence with the ids of the vertices to/from which the shortest paths will
be calculated. A vertex might be given multiple times.

mode: The type of shortest paths to be used for the calculation in directed graphs. Possible
values:

IGRAPH_OUT the outgoing paths are calculated.

IGRAPH_IN the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the
computation.

predecessors: A pointer to an initialized igraph vector or null. If not null, a vector containing
the predecessor of each vertex in the single source shortest path tree is returned
here. The predecessor of vertex i in the tree is the vertex from which vertex i was
reached. The predecessor of the start vertex (in the from argument) is itself by
definition. If the predecessor is -1, it means that the given vertex was not reached
from the source during the search. Note that the search terminates if all the vertices
in to are reached.

inbound_edges: A pointer to an initialized igraph vector or null. If not null, a vector containing the
inbound edge of each vertex in the single source shortest path tree is returned here.
The inbound edge of vertex i in the tree is the edge via which vertex i was reached.
The start vertex and vertices that were not reached during the search will have -1
in the corresponding entry of the vector. Note that the search terminates if all the
vertices in to are reached.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID from is invalid vertex id, or the length of to is not the same as the length
of res.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| the number of edges in the graph.

See also:

igraph_shortest_paths() if you only need the path length but not the paths themselves.

Example 13.3. File examples/simple/igraph_get_shortest_paths.c

Structural Properties of Graphs

264

igraph_get_shortest_path — Shortest path from one
vertex to another one.

int igraph_get_shortest_path(const igraph_t *graph,
 igraph_vector_t *vertices,
 igraph_vector_t *edges,
 igraph_integer_t from,
 igraph_integer_t to,
 igraph_neimode_t mode);

Calculates and returns a single unweighted shortest path from a given vertex to another one. If there are
more than one shortest paths between the two vertices, then an arbitrary one is returned.

This function is a wrapper to igraph_get_shortest_paths(), for the special case when only one
target vertex is considered.

Arguments:

graph: The input graph, it can be directed or undirected. Directed paths are considered in directed
graphs.

vertices: Pointer to an initialized vector or a null pointer. If not a null pointer, then the vertex ids
along the path are stored here, including the source and target vertices.

edges: Pointer to an uninitialized vector or a null pointer. If not a null pointer, then the edge ids
along the path are stored here.

from: The id of the source vertex.

to: The id of the target vertex.

mode: A constant specifying how edge directions are considered in directed graphs. Valid modes
are: IGRAPH_OUT, follows edge directions; IGRAPH_IN, follows the opposite direc-
tions; and IGRAPH_ALL, ignores edge directions. This argument is ignored for undirect-
ed graphs.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges in the graph.

See also:

igraph_get_shortest_paths() for the version with more target vertices.

igraph_get_shortest_paths_dijkstra — Calculates
the weighted shortest paths from/to one vertex.

Structural Properties of Graphs

265

int igraph_get_shortest_paths_dijkstra(const igraph_t *graph,
 igraph_vector_ptr_t *vertices,
 igraph_vector_ptr_t *edges,
 igraph_integer_t from,
 igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode,
 igraph_vector_long_t *predecessors,
 igraph_vector_long_t *inbound_edges);

If there is more than one path with the smallest weight between two vertices, this function gives only one
of them.

Arguments:

graph: The graph object.

vertices: The result, the ids of the vertices along the paths. This is a pointer vector, each
element points to a vector object. These should be initialized before passing them
to the function, which will properly clear and/or resize them and fill the ids of the
vertices along the geodesics from/to the vertices. Supply a null pointer here if you
don't need these vectors. Normally, either this argument, or the edges should be
non-null, but no error or warning is given if they are both null pointers.

edges: The result, the ids of the edges along the paths. This is a pointer vector, each ele-
ment points to a vector object. These should be initialized before passing them to
the function, which will properly clear and/or resize them and fill the ids of the
vertices along the geodesics from/to the vertices. Supply a null pointer here if you
don't need these vectors. Normally, either this argument, or the vertices should
be non-null, but no error or warning is given if they are both null pointers.

from: The id of the vertex from/to which the geodesics are calculated.

to: Vertex sequence with the ids of the vertices to/from which the shortest paths will
be calculated. A vertex might be given multiple times.

weights: a vector holding the edge weights. All weights must be positive.

mode: The type of shortest paths to be use for the calculation in directed graphs. Possible
values:

IGRAPH_OUT the outgoing paths are calculated.

IGRAPH_IN the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the
computation.

predecessors: A pointer to an initialized igraph vector or null. If not null, a vector containing
the predecessor of each vertex in the single source shortest path tree is returned
here. The predecessor of vertex i in the tree is the vertex from which vertex i was
reached. The predecessor of the start vertex (in the from argument) is itself by
definition. If the predecessor is -1, it means that the given vertex was not reached
from the source during the search. Note that the search terminates if all the vertices
in to are reached.

Structural Properties of Graphs

266

inbound_edges: A pointer to an initialized igraph vector or null. If not null, a vector containing the
inbound edge of each vertex in the single source shortest path tree is returned here.
The inbound edge of vertex i in the tree is the edge via which vertex i was reached.
The start vertex and vertices that were not reached during the search will have -1
in the corresponding entry of the vector. Note that the search terminates if all the
vertices in to are reached.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID from is invalid vertex id, or the length of to is not the same as the length
of res.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|E|log|E|+|V|), where |V| is the number of vertices and |E| is the number of edges

See also:

igraph_shortest_paths_dijkstra() if you only need the path length but not the paths them-
selves, igraph_get_shortest_paths() if all edge weights are equal.

Example 13.4. File examples/simple/
igraph_get_shortest_paths_dijkstra.c

igraph_get_shortest_path_dijkstra — Weighted
shortest path from one vertex to another one.

int igraph_get_shortest_path_dijkstra(const igraph_t *graph,
 igraph_vector_t *vertices,
 igraph_vector_t *edges,
 igraph_integer_t from,
 igraph_integer_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

Calculates a single (positively) weighted shortest path from a single vertex to another one, using Dijkstra's
algorithm.

This function is a special case (and a wrapper) to igraph_get_shortest_paths_dijkstra().

Arguments:

graph: The input graph, it can be directed or undirected.

vertices: Pointer to an initialized vector or a null pointer. If not a null pointer, then the vertex ids
along the path are stored here, including the source and target vertices.

Structural Properties of Graphs

267

edges: Pointer to an uninitialized vector or a null pointer. If not a null pointer, then the edge ids
along the path are stored here.

from: The id of the source vertex.

to: The id of the target vertex.

weights: Vector of edge weights, in the order of edge ids. They must be non-negative, otherwise
the algorithm does not work.

mode: A constant specifying how edge directions are considered in directed graphs.
IGRAPH_OUT follows edge directions, IGRAPH_IN follows the opposite directions, and
IGRAPH_ALL ignores edge directions. This argument is ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(|E|log|E|+|V|), |V| is the number of vertices, |E| is the number of edges in the graph.

See also:

igraph_get_shortest_paths_dijkstra() for the version with more target vertices.

igraph_get_all_shortest_paths — Finds all short-
est paths (geodesics) from a vertex to all other vertices.

int igraph_get_all_shortest_paths(const igraph_t *graph,
 igraph_vector_ptr_t *res,
 igraph_vector_t *nrgeo,
 igraph_integer_t from, const igraph_vs_t to,
 igraph_neimode_t mode);

Arguments:

graph: The graph object.

res: Pointer to an initialized pointer vector, the result will be stored here in igraph_vector_t objects.
Each vector object contains the vertices along a shortest path from from to another vertex.
The vectors are ordered according to their target vertex: first the shortest paths to vertex 0, then
to vertex 1, etc. No data is included for unreachable vertices.

nrgeo: Pointer to an initialized igraph_vector_t object or NULL. If not NULL the number of shortest
paths from from are stored here for every vertex in the graph. Note that the values will be
accurate only for those vertices that are in the target vertex sequence (see to), since the search
terminates as soon as all the target vertices have been found.

from: The id of the vertex from/to which the geodesics are calculated.

to: Vertex sequence with the ids of the vertices to/from which the shortest paths will be calculated.
A vertex might be given multiple times.

Structural Properties of Graphs

268

mode: The type of shortest paths to be use for the calculation in directed graphs. Possible values:

IGRAPH_OUT the lengths of the outgoing paths are calculated.

IGRAPH_IN the lengths of the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID from is invalid vertex id.

IGRAPH_EINVMODE invalid mode argument.

Added in version 0.2.

Time complexity: O(|V|+|E|) for most graphs, O(|V|^2) in the worst case.

igraph_get_all_shortest_paths_dijkstra — Finds
all shortest paths (geodesics) from a vertex to all other
vertices.

int igraph_get_all_shortest_paths_dijkstra(const igraph_t *graph,
 igraph_vector_ptr_t *res,
 igraph_vector_t *nrgeo,
 igraph_integer_t from, igraph_vs_t to,
 const igraph_vector_t *weights,
 igraph_neimode_t mode);

Arguments:

graph: The graph object.

res: Pointer to an initialized pointer vector, the result will be stored here in igraph_vector_t
objects. Each vector object contains the vertices along a shortest path from from to another
vertex. The vectors are ordered according to their target vertex: first the shortest paths to
vertex 0, then to vertex 1, etc. No data is included for unreachable vertices.

nrgeo: Pointer to an initialized igraph_vector_t object or NULL. If not NULL the number of short-
est paths from from are stored here for every vertex in the graph. Note that the values will
be accurate only for those vertices that are in the target vertex sequence (see to), since the
search terminates as soon as all the target vertices have been found.

from: The id of the vertex from/to which the geodesics are calculated.

to: Vertex sequence with the ids of the vertices to/from which the shortest paths will be calcu-
lated. A vertex might be given multiple times.

Structural Properties of Graphs

269

weights: a vector holding the edge weights. All weights must be non-negative.

mode: The type of shortest paths to be use for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing paths are calculated.

IGRAPH_IN the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the computa-
tion.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID from is invalid vertex id, or the length of to is not the same as the length
of res.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|E|log|E|+|V|), where |V| is the number of vertices and |E| is the number of edges

See also:

igraph_shortest_paths_dijkstra() if you only need the path length but not the paths them-
selves, igraph_get_all_shortest_paths() if all edge weights are equal.

Example 13.5. File examples/simple/
igraph_get_all_shortest_paths_dijkstra.c

igraph_average_path_length — Calculates the aver-
age geodesic length in a graph.

int igraph_average_path_length(const igraph_t *graph, igraph_real_t *res,
 igraph_bool_t directed, igraph_bool_t unconn);

Arguments:

graph: The graph object.

res: Pointer to a real number, this will contain the result.

directed: Boolean, whether to consider directed paths. Ignored for undirected graphs.

unconn: What to do if the graph is not connected. If TRUE the average of the geodesics within the
components will be returned, otherwise the number of vertices is used for the length of
non-existing geodesics. (The rationale behind this is that this is always longer than the
longest possible geodesic in a graph.)

Structural Properties of Graphs

270

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for data structures

Time complexity: O(|V||E|), the number of vertices times the number of edges.

Example 13.6. File examples/simple/igraph_average_path_length.c

igraph_path_length_hist — Create a histogram of all
shortest path lengths.

int igraph_path_length_hist(const igraph_t *graph, igraph_vector_t *res,
 igraph_real_t *unconnected, igraph_bool_t directed);

This function calculates a histogram, by calculating the shortest path length between each pair of vertices.
For directed graphs both directions might be considered and then every pair of vertices appears twice in
the histogram.

Arguments:

graph: The input graph.

res: Pointer to an initialized vector, the result is stored here. The first (i.e. zeroth) element
contains the number of shortest paths of length 1, etc. The supplied vector is resized
as needed.

unconnected: Pointer to a real number, the number of pairs for which the second vertex is not reach-
able from the first is stored here.

directed: Whether to consider directed paths in a directed graph (if not zero). This argument is
ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(|V||E|), the number of vertices times the number of edges.

See also:

igraph_average_path_length() and igraph_shortest_paths()

igraph_diameter — Calculates the diameter of a graph
(longest geodesic).

Structural Properties of Graphs

271

int igraph_diameter(const igraph_t *graph, igraph_integer_t *pres,
 igraph_integer_t *pfrom, igraph_integer_t *pto,
 igraph_vector_t *path,
 igraph_bool_t directed, igraph_bool_t unconn);

Arguments:

graph: The graph object.

pres: Pointer to an integer, if not NULL then it will contain the diameter (the actual distance).

pfrom: Pointer to an integer, if not NULL it will be set to the source vertex of the diameter path.

pto: Pointer to an integer, if not NULL it will be set to the target vertex of the diameter path.

path: Pointer to an initialized vector. If not NULL the actual longest geodesic path will be stored
here. The vector will be resized as needed.

directed: Boolean, whether to consider directed paths. Ignored for undirected graphs.

unconn: What to do if the graph is not connected. If TRUE the longest geodesic within a component
will be returned, otherwise the number of vertices is returned. (The rationale behind the
latter is that this is always longer than the longest possible diameter in a graph.)

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data.

Time complexity: O(|V||E|), the number of vertices times the number of edges.

Example 13.7. File examples/simple/igraph_diameter.c

igraph_diameter_dijkstra — Weighted diameter us-
ing Dijkstra's algorithm, non-negative weights only.

int igraph_diameter_dijkstra(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_real_t *pres,
 igraph_integer_t *pfrom,
 igraph_integer_t *pto,
 igraph_vector_t *path,
 igraph_bool_t directed,
 igraph_bool_t unconn);

The diameter of a graph is its longest geodesic. I.e. the (weighted) shortest path is calculated for all pairs
of vertices and the longest one is the diameter.

Arguments:

graph: The input graph, can be directed or undirected.

Structural Properties of Graphs

272

pres: Pointer to a real number, if not NULL then it will contain the diameter (the actual distance).

pfrom: Pointer to an integer, if not NULL it will be set to the source vertex of the diameter path.

pto: Pointer to an integer, if not NULL it will be set to the target vertex of the diameter path.

path: Pointer to an initialized vector. If not NULL the actual longest geodesic path will be stored
here. The vector will be resized as needed.

directed: Boolean, whether to consider directed paths. Ignored for undirected graphs.

unconn: What to do if the graph is not connected. If TRUE the longest geodesic within a component
will be returned, otherwise IGRAPH_INFINITY is returned.

Returns:

Error code.

Time complexity: O(|V||E|*log|E|), |V| is the number of vertices, |E| is the number of edges.

igraph_girth — The girth of a graph is the length of
the shortest circle in it.

int igraph_girth(const igraph_t *graph, igraph_integer_t *girth,
 igraph_vector_t *circle);

The current implementation works for undirected graphs only, directed graphs are treated as undirected
graphs. Loop edges and multiple edges are ignored.

If the graph is a forest (ie. acyclic), then zero is returned.

This implementation is based on Alon Itai and Michael Rodeh: Finding a minimum circuit in a graph
Proceedings of the ninth annual ACM symposium on Theory of computing , 1-10, 1977. The first imple-
mentation of this function was done by Keith Briggs, thanks Keith.

Arguments:

graph: The input graph.

girth: Pointer to an integer, if not NULL then the result will be stored here.

circle: Pointer to an initialized vector, the vertex ids in the shortest circle will be stored here. If NULL
then it is ignored.

Returns:

Error code.

Time complexity: O((|V|+|E|)^2), |V| is the number of vertices, |E| is the number of edges in the general
case. If the graph has no circles at all then the function needs O(|V|+|E|) time to realize this and then it stops.

Structural Properties of Graphs

273

Example 13.8. File examples/simple/igraph_girth.c

igraph_eccentricity — Eccentricity of some vertices

int igraph_eccentricity(const igraph_t *graph,
 igraph_vector_t *res,
 igraph_vs_t vids,
 igraph_neimode_t mode);

The eccentricity of a vertex is calculated by measuring the shortest distance from (or to) the vertex, to (or
from) all vertices in the graph, and taking the maximum.

This implementation ignores vertex pairs that are in different components. Isolated vertices have eccen-
tricity zero.

Arguments:

graph: The input graph, it can be directed or undirected.

res: Pointer to an initialized vector, the result is stored here.

vids: The vertices for which the eccentricity is calculated.

mode: What kind of paths to consider for the calculation: IGRAPH_OUT, paths that follow edge di-
rections; IGRAPH_IN, paths that follow the opposite directions; and IGRAPH_ALL, paths
that ignore edge directions. This argument is ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(v*(|V|+|E|)), where |V| is the number of vertices, |E| is the number of edges and v is
the number of vertices for which eccentricity is calculated.

See also:

igraph_radius().

Example 13.9. File examples/simple/igraph_eccentricity.c

igraph_radius — Radius of a graph

int igraph_radius(const igraph_t *graph, igraph_real_t *radius,
 igraph_neimode_t mode);

The radius of a graph is the defined as the minimum eccentricity of its vertices, see
igraph_eccentricity().

Structural Properties of Graphs

274

Arguments:

graph: The input graph, it can be directed or undirected.

radius: Pointer to a real variable, the result is stored here.

mode: What kind of paths to consider for the calculation: IGRAPH_OUT, paths that follow edge
directions; IGRAPH_IN, paths that follow the opposite directions; and IGRAPH_ALL, paths
that ignore edge directions. This argument is ignored for undirected graphs.

Returns:

Error code.

Time complexity: O(|V|(|V|+|E|)), where |V| is the number of vertices and |E| is the number of edges.

See also:

igraph_eccentricity().

Example 13.10. File examples/simple/igraph_radius.c

Neighborhood of a vertex

igraph_neighborhood_size — Calculates the size of
the neighborhood of a given vertex.

int igraph_neighborhood_size(const igraph_t *graph, igraph_vector_t *res,
 igraph_vs_t vids, igraph_integer_t order,
 igraph_neimode_t mode);

The neighborhood of a given order of a vertex includes all vertices which are closer to the vertex than the
order. Ie. order 0 is always the vertex itself, order 1 is the vertex plus its immediate neighbors, order 2 is
order 1 plus the immediate neighbors of the vertices in order 1, etc.

This function calculates the size of the neighborhood of the given order for the given vertices.

Arguments:

graph: The input graph.

res: Pointer to an initialized vector, the result will be stored here. It will be resized as needed.

vids: The vertices for which the calculation is performed.

order: Integer giving the order of the neighborhood.

mode: Specifies how to use the direction of the edges if a directed graph is analyzed. For
IGRAPH_OUT only the outgoing edges are followed, so all vertices reachable from the source
vertex in at most order steps are counted. For IGRAPH_IN all vertices from which the source

Structural Properties of Graphs

275

vertex is reachable in at most order steps are counted. IGRAPH_ALL ignores the direction
of the edges. This argument is ignored for undirected graphs.

Returns:

Error code.

See also:

igraph_neighborhood() for calculating the actual neighborhood,
igraph_neighborhood_graphs() for creating separate graphs from the neighborhoods.

Time complexity: O(n*d*o), where n is the number vertices for which the calculation is performed, d is
the average degree, o is the order.

igraph_neighborhood — Calculate the neighborhood
of vertices.

int igraph_neighborhood(const igraph_t *graph, igraph_vector_ptr_t *res,
 igraph_vs_t vids, igraph_integer_t order,
 igraph_neimode_t mode);

The neighborhood of a given order of a vertex includes all vertices which are closer to the vertex than the
order. Ie. order 0 is always the vertex itself, order 1 is the vertex plus its immediate neighbors, order 2 is
order 1 plus the immediate neighbors of the vertices in order 1, etc.

This function calculates the vertices within the neighborhood of the specified vertices.

Arguments:

graph: The input graph.

res: An initialized pointer vector. Note that the objects (pointers) in the vector will not be freed,
but the pointer vector will be resized as needed. The result of the calculation will be stored
here in vector_t objects.

vids: The vertices for which the calculation is performed.

order: Integer giving the order of the neighborhood.

mode: Specifies how to use the direction of the edges if a directed graph is analyzed. For
IGRAPH_OUT only the outgoing edges are followed, so all vertices reachable from the source
vertex in at most order steps are included. For IGRAPH_IN all vertices from which the
source vertex is reachable in at most order steps are included. IGRAPH_ALL ignores the
direction of the edges. This argument is ignored for undirected graphs.

Returns:

Error code.

See also:

Structural Properties of Graphs

276

igraph_neighborhood_size() to calculate the size of the neighborhood,
igraph_neighborhood_graphs() for creating graphs from the neighborhoods.

Time complexity: O(n*d*o), n is the number of vertices for which the calculation is performed, d is the
average degree, o is the order.

igraph_neighborhood_graphs — Create graphs from
the neighborhood(s) of some vertex/vertices.

int igraph_neighborhood_graphs(const igraph_t *graph, igraph_vector_ptr_t *res,
 igraph_vs_t vids, igraph_integer_t order,
 igraph_neimode_t mode);

The neighborhood of a given order of a vertex includes all vertices which are closer to the vertex than the
order. Ie. order 0 is always the vertex itself, order 1 is the vertex plus its immediate neighbors, order 2 is
order 1 plus the immediate neighbors of the vertices in order 1, etc.

This function finds every vertex in the neighborhood of a given parameter vertex and creates a graph from
these vertices.

The first version of this function was written by Vincent Matossian, thanks Vincent.

Arguments:

graph: The input graph.

res: Pointer to a pointer vector, the result will be stored here, ie. res will contain pointers to
igraph_t objects. It will be resized if needed but note that the objects in the pointer vector
will not be freed.

vids: The vertices for which the calculation is performed.

order: Integer giving the order of the neighborhood.

mode: Specifies how to use the direction of the edges if a directed graph is analyzed. For
IGRAPH_OUT only the outgoing edges are followed, so all vertices reachable from the source
vertex in at most order steps are counted. For IGRAPH_IN all vertices from which the source
vertex is reachable in at most order steps are counted. IGRAPH_ALL ignores the direction
of the edges. This argument is ignored for undirected graphs.

Returns:

Error code.

See also:

igraph_neighborhood_size() for calculating the neighborhood sizes only,
igraph_neighborhood() for calculating the neighborhoods (but not creating graphs).

Time complexity: O(n*(|V|+|E|)), where n is the number vertices for which the calculation is performed,
|V| and |E| are the number of vertices and edges in the original input graph.

Structural Properties of Graphs

277

Graph Components

igraph_subcomponent — The vertices in the same
component as a given vertex.

int igraph_subcomponent(const igraph_t *graph, igraph_vector_t *res, igraph_real_t vertex,
 igraph_neimode_t mode);

Arguments:

graph: The graph object.

res: The result, vector with the ids of the vertices in the same component.

vertex: The id of the vertex of which the component is searched.

mode: Type of the component for directed graphs, possible values:

IGRAPH_OUT the set of vertices reachable from the vertex,

IGRAPH_IN the set of vertices from which the vertex is reachable.

IGRAPH_ALL the graph is considered as an undirected graph. Note that this is not the
same as the union of the previous two.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID vertex is an invalid vertex id

IGRAPH_EINVMODE invalid mode argument passed.

Time complexity: O(|V|+|E|), |V| and |E| are the number of vertices and edges in the graph.

See also:

igraph_subgraph() if you want a graph object consisting only a given set of vertices and the edges
between them.

igraph_induced_subgraph — Creates a subgraph in-
duced by the specified vertices.

int igraph_induced_subgraph(const igraph_t *graph, igraph_t *res,
 const igraph_vs_t vids, igraph_subgraph_implementation_t impl);

Structural Properties of Graphs

278

This function collects the specified vertices and all edges between them to a new graph. As the vertex ids
in a graph always start with zero, this function very likely needs to reassign ids to the vertices.

Arguments:

graph: The graph object.

res: The subgraph, another graph object will be stored here, do not initialize this object before
calling this function, and call igraph_destroy() on it if you don't need it any more.

vids: A vertex selector describing which vertices to keep.

impl: This parameter selects which implementation should we use when constructing the new graph.
Basically there are two possibilities: IGRAPH_SUBGRAPH_COPY_AND_DELETE copies
the existing graph and deletes the vertices that are not needed in the new graph, while
IGRAPH_SUBGRAPH_CREATE_FROM_SCRATCH constructs the new graph from scratch
without copying the old one. The latter is more efficient if you are extracting a relatively
small subpart of a very large graph, while the former is better if you want to extract a sub-
graph whose size is comparable to the size of the whole graph. There is a third possibility:
IGRAPH_SUBGRAPH_AUTO will select one of the two methods automatically based on the
ratio of the number of vertices in the new and the old graph.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, invalid
vertex id in vids.

Time complexity: O(|V|+|E|), |V| and |E| are the number of vertices and edges in the original graph.

See also:

igraph_delete_vertices() to delete the specified set of vertices from a graph, the opposite of
this function.

igraph_subgraph_edges — Creates a subgraph with
the specified edges and their endpoints.

int igraph_subgraph_edges(const igraph_t *graph, igraph_t *res,
 const igraph_es_t eids, igraph_bool_t delete_vertices);

This function collects the specified edges and their endpoints to a new graph. As the vertex ids in a graph
always start with zero, this function very likely needs to reassign ids to the vertices.

Arguments:

graph: The graph object.

res: The subgraph, another graph object will be stored here, do not initialize this
object before calling this function, and call igraph_destroy() on it if you
don't need it any more.

Structural Properties of Graphs

279

eids: An edge selector describing which edges to keep.

delete_vertices: Whether to delete the vertices not incident on any of the specified edges as well.
If FALSE, the number of vertices in the result graph will always be equal to the
number of vertices in the input graph.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVEID, invalid
edge id in eids.

Time complexity: O(|V|+|E|), |V| and |E| are the number of vertices and edges in the original graph.

See also:

igraph_delete_edges() to delete the specified set of edges from a graph, the opposite of this
function.

igraph_subgraph — Creates a subgraph induced by
the specified vertices.

int igraph_subgraph(const igraph_t *graph, igraph_t *res,
 const igraph_vs_t vids);

This function is an alias to igraph_induced_subgraph(), it is left here to ensure API compatibility
with igraph versions prior to 0.6.

This function collects the specified vertices and all edges between them to a new graph. As the vertex ids
in a graph always start with zero, this function very likely needs to reassign ids to the vertices.

Arguments:

graph: The graph object.

res: The subgraph, another graph object will be stored here, do not initialize this object before
calling this function, and call igraph_destroy() on it if you don't need it any more.

vids: A vertex selector describing which vertices to keep.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, invalid
vertex id in vids.

Time complexity: O(|V|+|E|), |V| and |E| are the number of vertices and edges in the original graph.

See also:

igraph_delete_vertices() to delete the specified set of vertices from a graph, the opposite of
this function.

Structural Properties of Graphs

280

igraph_clusters — Calculates the (weakly or strongly)
connected components in a graph.

int igraph_clusters(const igraph_t *graph, igraph_vector_t *membership,
 igraph_vector_t *csize, igraph_integer_t *no,
 igraph_connectedness_t mode);

Arguments:

graph: The graph object to analyze.

membership: First half of the result will be stored here. For every vertex the id of its component is
given. The vector has to be preinitialized and will be resized. Alternatively this argu-
ment can be NULL, in which case it is ignored.

csize: The second half of the result. For every component it gives its size, the order is defined
by the component ids. The vector has to be preinitialized and will be resized. Alterna-
tively this argument can be NULL, in which case it is ignored.

no: Pointer to an integer, if not NULL then the number of clusters will be stored here.

mode: For directed graph this specifies whether to calculate weakly or strongly connected
components. Possible values: IGRAPH_WEAK, IGRAPH_STRONG. This argument is
ignored for undirected graphs.

Returns:

Error code: IGRAPH_EINVAL: invalid mode argument.

Time complexity: O(|V|+|E|), |V| and |E| are the number of vertices and edges in the graph.

igraph_is_connected — Decides whether the graph is
(weakly or strongly) connected.

int igraph_is_connected(const igraph_t *graph, igraph_bool_t *res,
 igraph_connectedness_t mode);

A graph with zero vertices (i.e. the null graph) is connected by definition.

Arguments:

graph: The graph object to analyze.

res: Pointer to a logical variable, the result will be stored here.

mode: For a directed graph this specifies whether to calculate weak or strong connectedness. Possible
values: IGRAPH_WEAK, IGRAPH_STRONG. This argument is ignored for undirected graphs.

Structural Properties of Graphs

281

Returns:

Error code: IGRAPH_EINVAL: invalid mode argument.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

igraph_decompose — Decompose a graph into con-
nected components.

int igraph_decompose(const igraph_t *graph, igraph_vector_ptr_t *components,
 igraph_connectedness_t mode,
 long int maxcompno, long int minelements);

Create separate graph for each component of a graph. Note that the vertex ids in the new graphs will be
different than in the original graph. (Except if there is only one component in the original graph.)

Arguments:

graph: The original graph.

components: This pointer vector will contain pointers to the subcomponent graphs. It should
be initialized before calling this function and will be resized to hold the graphs.
Don't forget to call igraph_destroy() and free() on the elements of this
pointer vector to free unneeded memory. Alternatively, you can simply call
igraph_decompose_destroy() that does this for you.

mode: Either IGRAPH_WEAK or IGRAPH_STRONG for weakly and strongly connected
components respectively. Right now only the former is implemented.

maxcompno: The maximum number of components to return. The first maxcompno components
will be returned (which hold at least minelements vertices, see the next parameter),
the others will be ignored. Supply -1 here if you don't want to limit the number of
components.

minelements: The minimum number of vertices a component should contain in order to place it in
the components vector. Eg. supply 2 here to ignore isolated vertices.

Returns:

Error code, IGRAPH_ENOMEM if there is not enough memory to perform the operation.

Added in version 0.2.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 13.11. File examples/simple/igraph_decompose.c

igraph_decompose_destroy — Free the memory allo-
cated by igraph_decompose().

Structural Properties of Graphs

282

void igraph_decompose_destroy(igraph_vector_ptr_t *complist);

Arguments:

complist: The list of graph components, as returned by igraph_decompose().

Time complexity: O(c), c is the number of components.

igraph_biconnected_components — Calculate bicon-
nected components

int igraph_biconnected_components(const igraph_t *graph,
 igraph_integer_t *no,
 igraph_vector_ptr_t *tree_edges,
 igraph_vector_ptr_t *component_edges,
 igraph_vector_ptr_t *components,
 igraph_vector_t *articulation_points);

A graph is biconnected if the removal of any single vertex (and its incident edges) does not disconnect it.

A biconnected component of a graph is a maximal biconnected subgraph of it. The biconnected compo-
nents of a graph can be given by the partition of its edges: every edge is a member of exactly one bicon-
nected component. Note that this is not true for vertices: the same vertex can be part of many biconnected
components.

Arguments:

graph: The input graph.

no: The number of biconnected components will be stored here.

tree_edges: If not a NULL pointer, then the found components are stored here, in a
list of vectors. Every vector in the list is a biconnected component, rep-
resented by its edges. More precisely, a spanning tree of the biconnect-
ed component is returned. Note you'll have to destroy each vector first
by calling igraph_vector_destroy() and then free() on it,
plus you need to call igraph_vector_ptr_destroy() on the list
to regain all allocated memory.

component_edges: If not a NULL pointer, then the edges of the biconnected components are
stored here, in the same form as for tree_edges.

components: If not a NULL pointer, then the vertices of the biconnected components
are stored here, in the same format as for the previous two arguments.

articulation_points: If not a NULL pointer, then the articulation points of the graph are stored
in this vector. A vertex is an articulation point if its removal increases the
number of (weakly) connected components in the graph.

Returns:

Structural Properties of Graphs

283

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges, but only if you do not calculate
components and component_edges. If you calculate components, then it is quadratic in the num-
ber of vertices. If you calculate component_edges as well, then it is cubic in the number of vertices.

See also:

igraph_articulation_points(), igraph_clusters().

Example 13.12. File examples/simple/
igraph_biconnected_components.c

igraph_articulation_points — Find the articulation
points in a graph.

int igraph_articulation_points(const igraph_t *graph,
 igraph_vector_t *res);

A vertex is an articulation point if its removal increases the number of connected components in the graph.

Arguments:

graph: The input graph.

res: Pointer to an initialized vector, the articulation points will be stored here.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

See also:

igraph_biconnected_components(), igraph_clusters()

Degree Sequences

igraph_is_degree_sequence — Determines whether a
degree sequence is valid.

int igraph_is_degree_sequence(const igraph_vector_t *out_degrees,
 const igraph_vector_t *in_degrees, igraph_bool_t *res);

A sequence of n integers is a valid degree sequence if there exists some graph where the degree of the i-
th vertex is equal to the i-th element of the sequence. Note that the graph may contain multiple or loop

Structural Properties of Graphs

284

edges; if you are interested in whether the degrees of some simple graph may realize the given sequence,
use igraph_is_graphical_degree_sequence.

In particular, the function checks whether all the degrees are non-negative. For undirected graphs, it also
checks whether the sum of degrees is even. For directed graphs, the function checks whether the lengths
of the two degree vectors are equal and whether their sums are also equal. These are known sufficient and
necessary conditions for a degree sequence to be valid.

Arguments:

out_degrees: an integer vector specifying the degree sequence for undirected graphs or the out-
degree sequence for directed graphs.

in_degrees: an integer vector specifying the in-degrees of the vertices for directed graphs. For
undirected graphs, this must be null.

res: pointer to a boolean variable, the result will be stored here

Returns:

Error code.

Time complexity: O(n), where n is the length of the degree sequence.

igraph_is_graphical_degree_sequence — Deter-
mines whether a sequence of integers can be a degree
sequence of some

int igraph_is_graphical_degree_sequence(const igraph_vector_t *out_degrees,
 const igraph_vector_t *in_degrees, igraph_bool_t *res);

simple graph.

References:

Hakimi SL: On the realizability of a set of integers as degrees of the vertices of a simple graph. J SIAM
Appl Math 10:496-506, 1962.

PL Erdos, I Miklos and Z Toroczkai: A simple Havel-Hakimi type algorithm to realize graphical degree
sequences of directed graphs. The Electronic Journal of Combinatorics 17(1):R66, 2010.

Arguments:

out_degrees: an integer vector specifying the degree sequence for undirected graphs or the out-
degree sequence for directed graphs.

in_degrees: an integer vector specifying the in-degrees of the vertices for directed graphs. For
undirected graphs, this must be null.

res: pointer to a boolean variable, the result will be stored here

Returns:

Structural Properties of Graphs

285

Error code.

Time complexity: O(n^2 log n) where n is the length of the degree sequence.

Centrality Measures

igraph_closeness — Closeness centrality calculations
for some vertices.

int igraph_closeness(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids, igraph_neimode_t mode,
 const igraph_vector_t *weights,
 igraph_bool_t normalized);

The closeness centrality of a vertex measures how easily other vertices can be reached from it (or the other
way: how easily it can be reached from the other vertices). It is defined as the number of the number of
vertices minus one divided by the sum of the lengths of all geodesics from/to the given vertex.

If the graph is not connected, and there is no path between two vertices, the number of vertices is used
instead the length of the geodesic. This is always longer than the longest possible geodesic.

Arguments:

graph: The graph object.

res: The result of the computation, a vector containing the closeness centrality scores for
the given vertices.

vids: Vector giving the vertices for which the closeness centrality scores will be computed.

mode: The type of shortest paths to be used for the calculation in directed graphs. Possible
values:

IGRAPH_OUT the lengths of the outgoing paths are calculated.

IGRAPH_IN the lengths of the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the com-
putation.

weights: An optional vector containing edge weights for weighted closeness. Supply a null point-
er here for traditional, unweighted closeness.

normalized: Boolean, whether to normalize results by multiplying by the number of vertices minus
one.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

Structural Properties of Graphs

286

IGRAPH_EINVVID invalid vertex id passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(n|E|), n is the number of vertices for which the calculation is done and |E| is the
number of edges in the graph.

See also:

Other centrality types: igraph_degree(), igraph_betweenness(). See
igraph_closeness_estimate() to estimate closeness values.

igraph_betweenness — Betweenness centrality of
some vertices.

int igraph_betweenness(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids, igraph_bool_t directed,
 const igraph_vector_t* weights, igraph_bool_t nobigint);

The betweenness centrality of a vertex is the number of geodesics going through it. If there are more than
one geodesic between two vertices, the value of these geodesics are weighted by one over the number
of geodesics.

Arguments:

graph: The graph object.

res: The result of the computation, a vector containing the betweenness scores for the specified
vertices.

vids: The vertices of which the betweenness centrality scores will be calculated.

directed: Logical, if true directed paths will be considered for directed graphs. It is ignored for
undirected graphs.

weights: An optional vector containing edge weights for calculating weighted betweenness. Supply
a null pointer here for unweighted betweenness.

nobigint: Logical, if true, then we don't use big integers for the calculation, setting this to 1 (=true)
should work for most graphs. It is currently ignored for weighted graphs.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, invalid
vertex id passed in vids.

Time complexity: O(|V||E|), |V| and |E| are the number of vertices and edges in the graph. Note that the
time complexity is independent of the number of vertices for which the score is calculated.

See also:

Structural Properties of Graphs

287

Other centrality types: igraph_degree(), igraph_closeness(). See
igraph_edge_betweenness() for calculating the betweenness score of the edges in a graph. See
igraph_betweenness_estimate() to estimate the betweenness score of the vertices in a graph.

Example 13.13. File examples/simple/igraph_betweenness.c

igraph_edge_betweenness — Betweenness centrality
of the edges.

int igraph_edge_betweenness(const igraph_t *graph, igraph_vector_t *result,
 igraph_bool_t directed,
 const igraph_vector_t *weights);

The betweenness centrality of an edge is the number of geodesics going through it. If there are more than
one geodesics between two vertices, the value of these geodesics are weighted by one over the number
of geodesics.

Arguments:

graph: The graph object.

result: The result of the computation, vector containing the betweenness scores for the edges.

directed: Logical, if true directed paths will be considered for directed graphs. It is ignored for
undirected graphs.

weights: An optional weight vector for weighted edge betweenness. Supply a null pointer here for
the unweighted version.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data.

Time complexity: O(|V||E|), |V| and |E| are the number of vertices and edges in the graph.

See also:

Other centrality types: igraph_degree(), igraph_closeness(). See
igraph_edge_betweenness() for calculating the betweenness score of the edges in a graph. See
igraph_edge_betweenness_estimate() to estimate the betweenness score of the edges in a
graph.

Example 13.14. File examples/simple/igraph_edge_betweenness.c

igraph_pagerank_algo_t — PageRank algorithm im-
plementation

Structural Properties of Graphs

288

typedef enum {
 IGRAPH_PAGERANK_ALGO_POWER=0,
 IGRAPH_PAGERANK_ALGO_ARPACK=1,
 IGRAPH_PAGERANK_ALGO_PRPACK=2
} igraph_pagerank_algo_t;

Algorithms to calculate PageRank.

Values:

IGRAPH_PAGERANK_ALGO_POWER:Use a simple power iteration, as it was implemented before igraph
version 0.5.

IGRAPH_PAGERANK_ALGO_ARPACK:Use the ARPACK library, this was the PageRank implementation
in igraph from version 0.5, until version 0.7.

IGRAPH_PAGERANK_ALGO_PRPACK:Use the PRPACK library. Currently this implementation is recom-
mended.

igraph_pagerank_power_options_t — Options for
the power method

typedef struct igraph_pagerank_power_options_t {
 igraph_integer_t niter;
 igraph_real_t eps;
} igraph_pagerank_power_options_t;

Values:

niter: The number of iterations to perform, integer.

eps: The algorithm will consider the calculation as complete if the difference of values between
iterations change less than this value for every vertex.

igraph_pagerank — Calculates the Google PageRank
for the specified vertices.

int igraph_pagerank(const igraph_t *graph, igraph_pagerank_algo_t algo,
 igraph_vector_t *vector,
 igraph_real_t *value, const igraph_vs_t vids,
 igraph_bool_t directed, igraph_real_t damping,
 const igraph_vector_t *weights, void *options);

Starting from version 0.7, igraph has three PageRank implementations, and the user can choose between
them. The first implementation is IGRAPH_PAGERANK_ALGO_POWER, also available as the (now dep-
recated) function igraph_pagerank_old(). The second implementation is based on the ARPACK
library, this was the default before igraph version 0.7: IGRAPH_PAGERANK_ALGO_ARPACK. The third

Structural Properties of Graphs

289

and recommmended implementation is IGRAPH_PAGERANK_ALGO_PRPACK. This is using the the
PRPACK package, see https://github.com/dgleich/prpack .

Please note that the PageRank of a given vertex depends on the PageRank of all other vertices, so even
if you want to calculate the PageRank for only some of the vertices, all of them must be calculated. Re-
questing the PageRank for only some of the vertices does not result in any performance increase at all.

For the explanation of the PageRank algorithm, see the following webpage: http://infolab.stanford.edu/
~backrub/google.html , or the following reference:

Sergey Brin and Larry Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine. Proceedings
of the 7th World-Wide Web Conference, Brisbane, Australia, April 1998.

Arguments:

graph: The graph object.

algo: The PageRank implementation to use. Possible val-
ues: IGRAPH_PAGERANK_ALGO_POWER, IGRAPH_PAGERANK_ALGO_ARPACK,
IGRAPH_PAGERANK_ALGO_PRPACK.

vector: Pointer to an initialized vector, the result is stored here. It is resized as needed.

value: Pointer to a real variable, the eigenvalue corresponding to the PageRank vector is stored
here. It should be always exactly one.

vids: The vertex ids for which the PageRank is returned.

directed: Boolean, whether to consider the directedness of the edges. This is ignored for undirected
graphs.

damping: The damping factor ("d" in the original paper)

weights: Optional edge weights, it is either a null pointer, then the edges are not weighted, or a
vector of the same length as the number of edges.

options: Options to the power method or ARPACK. For the pow-
er method, IGRAPH_PAGERANK_ALGO_POWER it must be a
pointer to a igraph_pagerank_power_options_t object. For
IGRAPH_PAGERANK_ALGO_ARPACK it must be a pointer to an
igraph_arpack_options_t object. See igraph_arpack_options_t for de-
tails. Note that the function overwrites the n (number of vertices), nev (1), ncv
(3) and which (LM) parameters and it always starts the calculation from a non-random
vector calculated based on the degree of the vertices.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, invalid
vertex id in vids.

Time complexity: depends on the input graph, usually it is O(|E|), the number of edges.

See also:

igraph_pagerank_old() for the old implementation,
igraph_personalized_pagerank() and igraph_personalized_pagerank_vs()

http://infolab.stanford.edu/~backrub/google.html
http://infolab.stanford.edu/~backrub/google.html

Structural Properties of Graphs

290

for the personalized PageRank measure, igraph_arpack_rssolve() and
igraph_arpack_rnsolve() for the underlying machinery.

Example 13.15. File examples/simple/igraph_pagerank.c

igraph_pagerank_old — Calculates the Google
PageRank for the specified vertices.

int igraph_pagerank_old(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids, igraph_bool_t directed,
 igraph_integer_t niter, igraph_real_t eps,
 igraph_real_t damping, igraph_bool_t old);

This is an old implementation, it is provided for compatibility with igraph versions earlier than 0.5. Please
use the new implementation igraph_pagerank() in new projects.

From version 0.7 this function is deprecated and its use gives a warning message.

Please note that the PageRank of a given vertex depends on the PageRank of all other vertices, so even
if you want to calculate the PageRank for only some of the vertices, all of them must be calculated. Re-
questing the PageRank for only some of the vertices does not result in any performance increase at all.

Since the calculation is an iterative process, the algorithm is stopped after a given count of iterations or if
the PageRank value differences between iterations are less than a predefined value.

For the explanation of the PageRank algorithm, see the following webpage: http://infolab.stanford.edu/
~backrub/google.html , or the following reference:

Sergey Brin and Larry Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine. Proceedings
of the 7th World-Wide Web Conference, Brisbane, Australia, April 1998.

Arguments:

graph: The graph object.

res: The result vector containing the PageRank values for the given nodes.

vids: Vector with the vertex ids

directed: Logical, if true directed paths will be considered for directed graphs. It is ignored for
undirected graphs.

niter: The maximum number of iterations to perform

eps: The algorithm will consider the calculation as complete if the difference of PageRank
values between iterations change less than this value for every node

damping: The damping factor ("d" in the original paper)

old: Boolean, whether to use the pre-igraph 0.5 way to calculate page rank. Not recommended
for new applications, only included for compatibility. If this is non-zero then the damp-

http://infolab.stanford.edu/~backrub/google.html
http://infolab.stanford.edu/~backrub/google.html

Structural Properties of Graphs

291

ing factor is not divided by the number of vertices before adding it to the weighted page
rank scores to calculate the new scores. I.e. the formula in the original PageRank paper
is used. Furthermore, if this is non-zero then the PageRank vector is renormalized after
each iteration.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, invalid
vertex id in vids.

Time complexity: O(|V|+|E|) per iteration. A handful iterations should be enough. Note that if the old-style
dumping is used then the iteration might not converge at all.

See also:

igraph_pagerank() for the new implementation.

igraph_personalized_pagerank — Calculates the
personalized Google PageRank for the specified ver-
tices.

int igraph_personalized_pagerank(const igraph_t *graph,
 igraph_pagerank_algo_t algo, igraph_vector_t *vector,
 igraph_real_t *value, const igraph_vs_t vids,
 igraph_bool_t directed, igraph_real_t damping,
 igraph_vector_t *reset,
 const igraph_vector_t *weights,
 void *options);

The personalized PageRank is similar to the original PageRank measure, but the random walk is reset in
every step with probability 1-damping to a non-uniform distribution (instead of the uniform distribution
in the original PageRank measure.

Please note that the personalized PageRank of a given vertex depends on the personalized PageRank of all
other vertices, so even if you want to calculate the personalized PageRank for only some of the vertices,
all of them must be calculated. Requesting the personalized PageRank for only some of the vertices does
not result in any performance increase at all.

Arguments:

graph: The graph object.

algo: The PageRank implementation to use. Possible val-
ues: IGRAPH_PAGERANK_ALGO_POWER, IGRAPH_PAGERANK_ALGO_ARPACK,
IGRAPH_PAGERANK_ALGO_PRPACK.

vector: Pointer to an initialized vector, the result is stored here. It is resized as needed.

value: Pointer to a real variable, the eigenvalue corresponding to the PageRank vector is stored
here. It should be always exactly one.

Structural Properties of Graphs

292

vids: The vertex ids for which the PageRank is returned.

directed: Boolean, whether to consider the directedness of the edges. This is ignored for undirected
graphs.

damping: The damping factor ("d" in the original paper)

reset: The probability distribution over the vertices used when resetting the random walk. It
is either a null pointer (denoting a uniform choice that results in the original PageRank
measure) or a vector of the same length as the number of vertices.

weights: Optional edge weights, it is either a null pointer, then the edges are not weighted, or a
vector of the same length as the number of edges.

options: Options to the power method or ARPACK. For the pow-
er method, IGRAPH_PAGERANK_ALGO_POWER it must be a
pointer to a igraph_pagerank_power_options_t object. For
IGRAPH_PAGERANK_ALGO_ARPACK it must be a pointer to an
igraph_arpack_options_t object. See igraph_arpack_options_t for de-
tails. Note that the function overwrites the n (number of vertices), nev (1), ncv
(3) and which (LM) parameters and it always starts the calculation from a non-random
vector calculated based on the degree of the vertices.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, invalid
vertex id in vids or an invalid reset vector in reset.

Time complexity: depends on the input graph, usually it is O(|E|), the number of edges.

See also:

igraph_pagerank() for the non-personalized implementation, igraph_arpack_rssolve()
and igraph_arpack_rnsolve() for the underlying machinery.

igraph_personalized_pagerank_vs — Calculates
the personalized Google PageRank for the specified ver-
tices.

int igraph_personalized_pagerank_vs(const igraph_t *graph,
 igraph_pagerank_algo_t algo, igraph_vector_t *vector,
 igraph_real_t *value, const igraph_vs_t vids,
 igraph_bool_t directed, igraph_real_t damping,
 igraph_vs_t reset_vids,
 const igraph_vector_t *weights,
 void *options);

The personalized PageRank is similar to the original PageRank measure, but the random walk is reset in
every step with probability 1-damping to a non-uniform distribution (instead of the uniform distribution
in the original PageRank measure.

Structural Properties of Graphs

293

This simplified interface takes a vertex sequence and resets the random walk to one of the vertices in the
specified vertex sequence, chosen uniformly. A typical application of personalized PageRank is when the
random walk is reset to the same vertex every time - this can easily be achieved using igraph_vss_1()
which generates a vertex sequence containing only a single vertex.

Please note that the personalized PageRank of a given vertex depends on the personalized PageRank of all
other vertices, so even if you want to calculate the personalized PageRank for only some of the vertices,
all of them must be calculated. Requesting the personalized PageRank for only some of the vertices does
not result in any performance increase at all.

Arguments:

graph: The graph object.

algo: The PageRank implementation to use. Possible values:
IGRAPH_PAGERANK_ALGO_POWER, IGRAPH_PAGERANK_ALGO_ARPACK,
IGRAPH_PAGERANK_ALGO_PRPACK.

vector: Pointer to an initialized vector, the result is stored here. It is resized as needed.

value: Pointer to a real variable, the eigenvalue corresponding to the PageRank vector is stored
here. It should be always exactly one.

vids: The vertex ids for which the PageRank is returned.

directed: Boolean, whether to consider the directedness of the edges. This is ignored for undi-
rected graphs.

damping: The damping factor ("d" in the original paper)

reset_vids: IDs of the vertices used when resetting the random walk.

weights: Optional edge weights, it is either a null pointer, then the edges are not weighted, or a
vector of the same length as the number of edges.

options: Options to the power method or ARPACK. For the pow-
er method, IGRAPH_PAGERANK_ALGO_POWER it must be a
pointer to a igraph_pagerank_power_options_t object. For
IGRAPH_PAGERANK_ALGO_ARPACK it must be a pointer to an
igraph_arpack_options_t object. See igraph_arpack_options_t for
details. Note that the function overwrites the n (number of vertices), nev (1), ncv
(3) and which (LM) parameters and it always starts the calculation from a non-ran-
dom vector calculated based on the degree of the vertices.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, invalid
vertex id in vids or an empty reset vertex sequence in vids_reset.

Time complexity: depends on the input graph, usually it is O(|E|), the number of edges.

See also:

igraph_pagerank() for the non-personalized implementation, igraph_arpack_rssolve()
and igraph_arpack_rnsolve() for the underlying machinery.

Structural Properties of Graphs

294

igraph_constraint — Burt's constraint scores.

int igraph_constraint(const igraph_t *graph, igraph_vector_t *res,
 igraph_vs_t vids, const igraph_vector_t *weights);

This function calculates Burt's constraint scores for the given vertices, also known as structural holes.

Burt's constraint is higher if ego has less, or mutually stronger related (i.e. more redundant) contacts. Burt's
measure of constraint, C[i], of vertex i's ego network V[i], is defined for directed and valued graphs,

C[i] = sum(sum((p[i,q] p[q,j])^2, q in V[i], q != i,j), j in V[], j != i)

for a graph of order (ie. number of vertices) N, where proportional tie strengths are defined as

p[i,j]=(a[i,j]+a[j,i]) / sum(a[i,k]+a[k,i], k in V[i], k != i),

a[i,j] are elements of A and the latter being the graph adjacency matrix. For isolated vertices, constraint
is undefined.

Burt, R.S. (2004). Structural holes and good ideas. American Journal of Sociology 110, 349-399.

The first R version of this function was contributed by Jeroen Bruggeman.

Arguments:

graph: A graph object.

res: Pointer to an initialized vector, the result will be stored here. The vector will be resized to
have the appropriate size for holding the result.

vids: Vertex selector containing the vertices for which the constraint should be calculated.

weights: Vector giving the weights of the edges. If it is NULL then each edge is supposed to have
the same weight.

Returns:

Error code.

Time complexity: O(|V|+E|+n*d^2), n is the number of vertices for which the constraint is calculated and
d is the average degree, |V| is the number of vertices, |E| the number of edges in the graph. If the weights
argument is NULL then the time complexity is O(|V|+n*d^2).

igraph_maxdegree — Calculate the maximum degree in
a graph (or set of vertices).

int igraph_maxdegree(const igraph_t *graph, igraph_integer_t *res,
 igraph_vs_t vids, igraph_neimode_t mode,
 igraph_bool_t loops);

Structural Properties of Graphs

295

The largest in-, out- or total degree of the specified vertices is calculated.

Arguments:

graph: The input graph.

res: Pointer to an integer (igraph_integer_t), the result will be stored here.

vids: Vector giving the vertex IDs for which the maximum degree will be calculated.

mode: Defines the type of the degree. IGRAPH_OUT, out-degree, IGRAPH_IN, in-degree,
IGRAPH_ALL, total degree (sum of the in- and out-degree). This parameter is ignored for
undirected graphs.

loops: Boolean, gives whether the self-loops should be counted.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex id. IGRAPH_EINVMODE: invalid mode argument.

Time complexity: O(v) if loops is TRUE, and O(v*d) otherwise. v is the number vertices for which the
degree will be calculated, and d is their (average) degree.

igraph_strength — Strength of the vertices, weighted
vertex degree in other words.

int igraph_strength(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids, igraph_neimode_t mode,
 igraph_bool_t loops, const igraph_vector_t *weights);

In a weighted network the strength of a vertex is the sum of the weights of all incident edges. In a non-
weighted network this is exactly the vertex degree.

Arguments:

graph: The input graph.

res: Pointer to an initialized vector, the result is stored here. It will be resized as needed.

vids: The vertices for which the calculation is performed.

mode: Gives whether to count only outgoing (IGRAPH_OUT), incoming (IGRAPH_IN) edges or
both (IGRAPH_ALL).

loops: A logical scalar, whether to count loop edges as well.

weights: A vector giving the edge weights. If this is a NULL pointer, then igraph_degree() is
called to perform the calculation.

Returns:

Error code.

Structural Properties of Graphs

296

Time complexity: O(|V|+|E|), linear in the number vertices and edges.

See also:

igraph_degree() for the traditional, non-weighted version.

igraph_eigenvector_centrality — Eigenvector cen-
trality of the vertices

int igraph_eigenvector_centrality(const igraph_t *graph,
 igraph_vector_t *vector,
 igraph_real_t *value,
 igraph_bool_t directed, igraph_bool_t scale,
 const igraph_vector_t *weights,
 igraph_arpack_options_t *options);

Eigenvector centrality is a measure of the importance of a node in a network. It assigns relative scores to all
nodes in the network based on the principle that connections to high-scoring nodes contribute more to the
score of the node in question than equal connections to low-scoring nodes. In practice, this is determined
by calculating the eigenvector corresponding to the largest positive eigenvalue of the adjacency matrix.
The centrality scores returned by igraph are always normalized such that the largest eigenvector centrality
score is one (with one exception, see below).

Since the eigenvector centrality scores of nodes in different components do not affect each other, it may
be beneficial for large graphs to decompose it first into weakly connected components and calculate the
centrality scores individually for each component.

Also note that the adjacency matrix of a directed acyclic graph or the adjacency matrix of an empty graph
does not possess positive eigenvalues, therefore the eigenvector centrality is not defined for these graphs.
igraph will return an eigenvalue of zero in such cases. The eigenvector centralities will all be equal for an
empty graph and will all be zeros for a directed acyclic graph. Such pathological cases can be detected by
asking igraph to calculate the eigenvalue as well (using the value parameter, see below) and checking
whether the eigenvalue is very close to zero.

Arguments:

graph: The input graph. It might be directed.

vector: Pointer to an initialized vector, it will be resized as needed. The result of the computation
is stored here. It can be a null pointer, then it is ignored.

value: If not a null pointer, then the eigenvalue corresponding to the found eigenvector is stored
here.

directed: Boolean scalar, whether to consider edge directions in a directed graph. It is ignored for
undirected graphs.

scale: If not zero then the result will be scaled such that the absolute value of the maximum
centrality is one.

weights: A null pointer (=no edge weights), or a vector giving the weights of the edges. The algo-
rithm might result complex numbers is some weights are negative. In this case only the
real part is reported.

Structural Properties of Graphs

297

options: Options to ARPACK. See igraph_arpack_options_t for details. Note that the
function overwrites the n (number of vertices) parameter and it always starts the calcu-
lation from a non-random vector calculated based on the degree of the vertices.

Returns:

Error code.

Time complexity: depends on the input graph, usually it is O(|V|+|E|).

See also:

igraph_pagerank and igraph_personalized_pagerank for modifications of eigenvector
centrality.

Example 13.16. File examples/simple/eigenvector_centrality.c

igraph_hub_score — Kleinberg's hub scores

int igraph_hub_score(const igraph_t *graph, igraph_vector_t *vector,
 igraph_real_t *value, igraph_bool_t scale,
 const igraph_vector_t *weights,
 igraph_arpack_options_t *options);

The hub scores of the vertices are defined as the principal eigenvector of A*A^T , where A is the
adjacency matrix of the graph, A^T is its transposed.

See the following reference on the meaning of this score: J. Kleinberg. Authoritative sources in a hyper-
linked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. Extended version
in Journal of the ACM 46(1999). Also appears as IBM Research Report RJ 10076, May 1997.

Arguments:

graph: The input graph. Can be directed and undirected.

vector: Pointer to an initialized vector, the result is stored here. If a null pointer then it is ignored.

value: If not a null pointer then the eigenvalue corresponding to the calculated eigenvector is stored
here.

scale: If not zero then the result will be scaled such that the absolute value of the maximum cen-
trality is one.

weights: A null pointer (=no edge weights), or a vector giving the weights of the edges.

options: Options to ARPACK. See igraph_arpack_options_t for details. Note that the func-
tion overwrites the n (number of vertices) parameter and it always starts the calculation
from a non-random vector calculated based on the degree of the vertices.

Returns:

Error code.

Structural Properties of Graphs

298

Time complexity: depends on the input graph, usually it is O(|V|), the number of vertices.

See also:

igraph_authority_score() for the companion measure, igraph_pagerank(),
igraph_personalized_pagerank(), igraph_eigenvector_centrality() for simi-
lar measures.

igraph_authority_score — Kleinerg's authority
scores

int igraph_authority_score(const igraph_t *graph, igraph_vector_t *vector,
 igraph_real_t *value, igraph_bool_t scale,
 const igraph_vector_t *weights,
 igraph_arpack_options_t *options);

The authority scores of the vertices are defined as the principal eigenvector of A^T*A , where A is the
adjacency matrix of the graph, A^T is its transposed.

See the following reference on the meaning of this score: J. Kleinberg. Authoritative sources in a hyper-
linked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. Extended version
in Journal of the ACM 46(1999). Also appears as IBM Research Report RJ 10076, May 1997.

Arguments:

graph: The input graph. Can be directed and undirected.

vector: Pointer to an initialized vector, the result is stored here. If a null pointer then it is ignored.

value: If not a null pointer then the eigenvalue corresponding to the calculated eigenvector is stored
here.

scale: If not zero then the result will be scaled such that the absolute value of the maximum cen-
trality is one.

weights: A null pointer (=no edge weights), or a vector giving the weights of the edges.

options: Options to ARPACK. See igraph_arpack_options_t for details. Note that the func-
tion overwrites the n (number of vertices) parameter and it always starts the calculation
from a non-random vector calculated based on the degree of the vertices.

Returns:

Error code.

Time complexity: depends on the input graph, usually it is O(|V|), the number of vertices.

See also:

igraph_hub_score() for the companion measure, igraph_pagerank(),
igraph_personalized_pagerank(), igraph_eigenvector_centrality() for simi-
lar measures.

Structural Properties of Graphs

299

Estimating Centrality Measures

igraph_closeness_estimate — Closeness centrality
estimations for some vertices.

int igraph_closeness_estimate(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids, igraph_neimode_t mode,
 igraph_real_t cutoff,
 const igraph_vector_t *weights,
 igraph_bool_t normalized);

The closeness centrality of a vertex measures how easily other vertices can be reached from it (or the
other way: how easily it can be reached from the other vertices). It is defined as the number of the number
of vertices minus one divided by the sum of the lengths of all geodesics from/to the given vertex. When
estimating closeness centrality, igraph considers paths having a length less than or equal to a prescribed
cutoff value.

If the graph is not connected, and there is no such path between two vertices, the number of vertices is
used instead the length of the geodesic. This is always longer than the longest possible geodesic.

Since the estimation considers vertex pairs with a distance greater than the given value as disconnected,
the resulting estimation will always be lower than the actual closeness centrality.

Arguments:

graph: The graph object.

res: The result of the computation, a vector containing the closeness centrality scores for
the given vertices.

vids: Vector giving the vertices for which the closeness centrality scores will be computed.

mode: The type of shortest paths to be used for the calculation in directed graphs. Possible
values:

IGRAPH_OUT the lengths of the outgoing paths are calculated.

IGRAPH_IN the lengths of the incoming paths are calculated.

IGRAPH_ALL the directed graph is considered as an undirected one for the com-
putation.

cutoff: The maximal length of paths that will be considered. If zero or negative, the exact
closeness will be calculated (no upper limit on path lengths).

weights: An optional vector containing edge weights for weighted closeness. Supply a null point-
er here for traditional, unweighted closeness.

normalized: Boolean, whether to normalize results by multiplying by the number of vertices minus
one.

Structural Properties of Graphs

300

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex id passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(n|E|), n is the number of vertices for which the calculation is done and |E| is the
number of edges in the graph.

See also:

Other centrality types: igraph_degree(), igraph_betweenness().

igraph_betweenness_estimate — Estimated be-
tweenness centrality of some vertices.

int igraph_betweenness_estimate(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vs_t vids, igraph_bool_t directed,
 igraph_real_t cutoff,
 const igraph_vector_t *weights,
 igraph_bool_t nobigint);

The betweenness centrality of a vertex is the number of geodesics going through it. If there are more than
one geodesic between two vertices, the value of these geodesics are weighted by one over the number
of geodesics. When estimating betweenness centrality, igraph takes into consideration only those paths
that are shorter than or equal to a prescribed length. Note that the estimated centrality will always be less
than the real one.

Arguments:

graph: The graph object.

res: The result of the computation, a vector containing the estimated betweenness scores for
the specified vertices.

vids: The vertices of which the betweenness centrality scores will be estimated.

directed: Logical, if true directed paths will be considered for directed graphs. It is ignored for
undirected graphs.

cutoff: The maximal length of paths that will be considered. If zero or negative, the exact be-
tweenness will be calculated (no upper limit on path lengths).

weights: An optional vector containing edge weights for calculating weighted betweenness. Supply
a null pointer here for unweighted betweenness.

nobigint: Logical, if true, then we don't use big integers for the calculation, setting this to 1 (=true)
should work for most graphs. It is currently ignored for weighted graphs.

Structural Properties of Graphs

301

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data. IGRAPH_EINVVID, invalid
vertex id passed in vids.

Time complexity: O(|V||E|), |V| and |E| are the number of vertices and edges in the graph. Note that the
time complexity is independent of the number of vertices for which the score is calculated.

See also:

Other centrality types: igraph_degree(), igraph_closeness(). See
igraph_edge_betweenness() for calculating the betweenness score of the edges in a graph.

igraph_edge_betweenness_estimate — Estimated
betweenness centrality of the edges.

int igraph_edge_betweenness_estimate(const igraph_t *graph, igraph_vector_t *result,
 igraph_bool_t directed, igraph_real_t cutoff,
 const igraph_vector_t *weights);

The betweenness centrality of an edge is the number of geodesics going through it. If there are more than
one geodesics between two vertices, the value of these geodesics are weighted by one over the number
of geodesics. When estimating betweenness centrality, igraph takes into consideration only those paths
that are shorter than or equal to a prescribed length. Note that the estimated centrality will always be less
than the real one.

Arguments:

graph: The graph object.

result: The result of the computation, vector containing the betweenness scores for the edges.

directed: Logical, if true directed paths will be considered for directed graphs. It is ignored for
undirected graphs.

cutoff: The maximal length of paths that will be considered. If zero or negative, the exact be-
tweenness will be calculated (no upper limit on path lengths).

weights: An optional weight vector for weighted betweenness. Supply a null pointer here for un-
weighted betweenness.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data.

Time complexity: O(|V||E|), |V| and |E| are the number of vertices and edges in the graph.

See also:

Other centrality types: igraph_degree(), igraph_closeness(). See
igraph_betweenness() for calculating the betweenness score of the vertices in a graph.

Structural Properties of Graphs

302

Centralization

igraph_centralization — Calculate the centraliza-
tion score from the node level scores

igraph_real_t igraph_centralization(const igraph_vector_t *scores,
 igraph_real_t theoretical_max,
 igraph_bool_t normalized);

For a centrality score defined on the vertices of a graph, it is possible to define a graph level centralization
index, by calculating the sum of the deviation from the maximum centrality score. Consequently, the higher
the centralization index of the graph, the more centralized the structure is.

In order to make graphs of different sizes comparable, the centralization index is usually normalized to a
number between zero and one, by dividing the (unnormalized) centralization score of the most centralized
structure with the same number of vertices.

For most centrality indices the most centralized structure is the star graph, a single center connected to all
other nodes in the network. There are some variation depending on whether the graph is directed or not,
whether loop edges are allowed, etc.

This function simply calculates the graph level index, if the node level scores and the theoretical maximum
are given. It is called by all the measure-specific centralization functions.

Arguments:

scores: A vector containing the node-level centrality scores.

theoretical_max: The graph level centrality score of the most centralized graph with the same
number of vertices. Only used if normalized set to true.

normalized: Boolean, whether to normalize the centralization by dividing the supplied the-
oretical maximum.

Returns:

The graph level index.

See also:

igraph_centralization_degree(), igraph_centralization_betweenness(),
igraph_centralization_closeness(), and
igraph_centralization_eigenvector_centrality() for specific centralization func-
tions.

Time complexity: O(n), the length of the score vector.

Example 13.17. File examples/simple/centralization.c

Structural Properties of Graphs

303

igraph_centralization_degree — Calculate vertex
degree and graph centralization

int igraph_centralization_degree(const igraph_t *graph, igraph_vector_t *res,
 igraph_neimode_t mode, igraph_bool_t loops,
 igraph_real_t *centralization,
 igraph_real_t *theoretical_max,
 igraph_bool_t normalized);

This function calculates the degree of the vertices by passing its arguments to igraph_degree();
and it calculates the graph level centralization index based on the results by calling
igraph_centralization().

Arguments:

graph: The input graph.

res: A vector if you need the node-level degree scores, or a null pointer otherwise.

mode: Constant the specifies the type of degree for directed graphs. Possible values:
IGRAPH_IN, IGRAPH_OUT and IGRAPH_ALL. This argument is ignored for
undirected graphs.

loops: Boolean, whether to consider loop edges when calculating the degree (and the
centralization).

centralization: Pointer to a real number, the centralization score is placed here.

theoretical_max: Pointer to real number or a null pointer. If not a null pointer, then the theoretical
maximum graph centrality score for a graph with the same number vertices is
stored here.

normalized: Boolean, whether to calculate a normalized centralization score. See
igraph_centralization() for how the normalization is done.

Returns:

Error code.

See also:

igraph_centralization(), igraph_degree().

Time complexity: the complexity of igraph_degree() plus O(n), the number of vertices queried, for
calculating the centralization score.

igraph_centralization_betweenness — Calculate
vertex betweenness and graph centralization

Structural Properties of Graphs

304

int igraph_centralization_betweenness(const igraph_t *graph,
 igraph_vector_t *res,
 igraph_bool_t directed,
 igraph_bool_t nobigint,
 igraph_real_t *centralization,
 igraph_real_t *theoretical_max,
 igraph_bool_t normalized);

This function calculates the betweenness centrality of the vertices by passing its arguments to
igraph_betweenness(); and it calculates the graph level centralization index based on the results
by calling igraph_centralization().

Arguments:

graph: The input graph.

res: A vector if you need the node-level betweenness scores, or a null pointer oth-
erwise.

directed: Boolean, whether to consider directed paths when calculating betweenness.

nobigint: Logical, if true, then we don't use big integers for the calculation, setting this to
zero (=false) should work for most graphs. It is currently ignored for weighted
graphs.

centralization: Pointer to a real number, the centralization score is placed here.

theoretical_max: Pointer to real number or a null pointer. If not a null pointer, then the theoretical
maximum graph centrality score for a graph with the same number vertices is
stored here.

normalized: Boolean, whether to calculate a normalized centralization score. See
igraph_centralization() for how the normalization is done.

Returns:

Error code.

See also:

igraph_centralization(), igraph_betweenness().

Time complexity: the complexity of igraph_betweenness() plus O(n), the number of vertices
queried, for calculating the centralization score.

igraph_centralization_closeness — Calculate ver-
tex closeness and graph centralization

int igraph_centralization_closeness(const igraph_t *graph,
 igraph_vector_t *res,
 igraph_neimode_t mode,

Structural Properties of Graphs

305

 igraph_real_t *centralization,
 igraph_real_t *theoretical_max,
 igraph_bool_t normalized);

This function calculates the closeness centrality of the vertices by passing its arguments to
igraph_closeness(); and it calculates the graph level centralization index based on the results by
calling igraph_centralization().

Arguments:

graph: The input graph.

res: A vector if you need the node-level closeness scores, or a null pointer otherwise.

mode: Constant the specifies the type of closeness for directed graphs. Possible values:
IGRAPH_IN, IGRAPH_OUT and IGRAPH_ALL. This argument is ignored
for undirected graphs. See igraph_closeness() argument with the same
name for more.

centralization: Pointer to a real number, the centralization score is placed here.

theoretical_max: Pointer to real number or a null pointer. If not a null pointer, then the theoretical
maximum graph centrality score for a graph with the same number vertices is
stored here.

normalized: Boolean, whether to calculate a normalized centralization score. See
igraph_centralization() for how the normalization is done.

Returns:

Error code.

See also:

igraph_centralization(), igraph_closeness().

Time complexity: the complexity of igraph_closeness() plus O(n), the number of vertices queried,
for calculating the centralization score.

igraph_centralization_eigenvector_centrality
— Calculate eigenvector centrality scores and graph
centralization

int igraph_centralization_eigenvector_centrality(
 const igraph_t *graph,
 igraph_vector_t *vector,
 igraph_real_t *value,
 igraph_bool_t directed,
 igraph_bool_t scale,
 igraph_arpack_options_t *options,
 igraph_real_t *centralization,

Structural Properties of Graphs

306

 igraph_real_t *theoretical_max,
 igraph_bool_t normalized);

This function calculates the eigenvector centrality of the vertices by passing its arguments to
igraph_eigenvector_centrality); and it calculates the graph level centralization index based
on the results by calling igraph_centralization().

Arguments:

graph: The input graph.

vector: A vector if you need the node-level eigenvector centrality scores, or a null point-
er otherwise.

value: If not a null pointer, then the leading eigenvalue is stored here.

scale: If not zero then the result will be scaled, such that the absolute value of the
maximum centrality is one.

options: Options to ARPACK. See igraph_arpack_options_t for details. Note
that the function overwrites the n (number of vertices) parameter and it always
starts the calculation from a non-random vector calculated based on the degree
of the vertices.

centralization: Pointer to a real number, the centralization score is placed here.

theoretical_max: Pointer to real number or a null pointer. If not a null pointer, then the theoretical
maximum graph centrality score for a graph with the same number vertices is
stored here.

normalized: Boolean, whether to calculate a normalized centralization score. See
igraph_centralization() for how the normalization is done.

Returns:

Error code.

See also:

igraph_centralization(), igraph_eigenvector_centrality().

Time complexity: the complexity of igraph_eigenvector_centrality() plus O(|V|), the num-
ber of vertices for the calculating the centralization.

igraph_centralization_degree_tmax — Theoretical
maximum for graph centralization based on degree

int igraph_centralization_degree_tmax(const igraph_t *graph,
 igraph_integer_t nodes,
 igraph_neimode_t mode,
 igraph_bool_t loops,
 igraph_real_t *res);

Structural Properties of Graphs

307

This function returns the theoretical maximum graph centrality based on vertex degree.

There are two ways to call this function, the first is to supply a graph as the graph argument, and then
the number of vertices is taken from this object, and its directedness is considered as well. The nodes
argument is ignored in this case. The mode argument is also ignored if the supplied graph is undirected.

The other way is to supply a null pointer as the graph argument. In this case the nodes and mode
arguments are considered.

The most centralized structure is the star. More specifically, for undirected graphs it is the star, for directed
graphs it is the in-star or the out-star.

Arguments:

graph: A graph object or a null pointer, see the description above.

nodes: The number of nodes. This is ignored if the graph argument is not a null pointer.

mode: Constant, whether the calculation is based on in-degree (IGRAPH_IN), out-degree (
IGRAPH_OUT) or total degree (IGRAPH_ALL). This is ignored if the graph argument
is not a null pointer and the given graph is undirected.

loops: Boolean scalar, whether to consider loop edges in the calculation.

res: Pointer to a real variable, the result is stored here.

Returns:

Error code.

Time complexity: O(1).

See also:

igraph_centralization_degree() and igraph_centralization().

igraph_centralization_betweenness_tmax — The-
oretical maximum for graph centralization based on be-
tweenness

int igraph_centralization_betweenness_tmax(const igraph_t *graph,
 igraph_integer_t nodes,
 igraph_bool_t directed,
 igraph_real_t *res);

This function returns the theoretical maximum graph centrality based on vertex betweenness.

There are two ways to call this function, the first is to supply a graph as the graph argument, and then
the number of vertices is taken from this object, and its directedness is considered as well. The nodes
argument is ignored in this case. The directed argument is also ignored if the supplied graph is
undirected.

Structural Properties of Graphs

308

The other way is to supply a null pointer as the graph argument. In this case the nodes and di-
rected arguments are considered.

The most centralized structure is the star.

Arguments:

graph: A graph object or a null pointer, see the description above.

nodes: The number of nodes. This is ignored if the graph argument is not a null pointer.

directed: Boolean scalar, whether to use directed paths in the betweenness calculation. This argu-
ment is ignored if graph is not a null pointer and it is undirected.

res: Pointer to a real variable, the result is stored here.

Returns:

Error code.

Time complexity: O(1).

See also:

igraph_centralization_betweenness() and igraph_centralization().

igraph_centralization_closeness_tmax — The-
oretical maximum for graph centralization based on
closeness

int igraph_centralization_closeness_tmax(const igraph_t *graph,
 igraph_integer_t nodes,
 igraph_neimode_t mode,
 igraph_real_t *res);

This function returns the theoretical maximum graph centrality based on vertex closeness.

There are two ways to call this function, the first is to supply a graph as the graph argument, and then
the number of vertices is taken from this object, and its directedness is considered as well. The nodes
argument is ignored in this case. The mode argument is also ignored if the supplied graph is undirected.

The other way is to supply a null pointer as the graph argument. In this case the nodes and mode
arguments are considered.

The most centralized structure is the star.

Arguments:

graph: A graph object or a null pointer, see the description above.

nodes: The number of nodes. This is ignored if the graph argument is not a null pointer.

Structural Properties of Graphs

309

mode: Constant, specifies what kinf of distances to consider to calculate closeness. See the mode
argument of igraph_closeness() for details. This argument is ignored if graph is not
a null pointer and it is undirected.

res: Pointer to a real variable, the result is stored here.

Returns:

Error code.

Time complexity: O(1).

See also:

igraph_centralization_closeness() and igraph_centralization().

igraph_centralization_eigenvector_centrality_tmax
— Theoretical maximum centralization for eigenvector
centrality

int igraph_centralization_eigenvector_centrality_tmax(
 const igraph_t *graph,
 igraph_integer_t nodes,
 igraph_bool_t directed,
 igraph_bool_t scale,
 igraph_real_t *res);

This function returns the theoretical maximum graph centrality based on vertex eigenvector centrality.

There are two ways to call this function, the first is to supply a graph as the graph argument, and then
the number of vertices is taken from this object, and its directedness is considered as well. The nodes
argument is ignored in this case. The directed argument is also ignored if the supplied graph is
undirected.

The other way is to supply a null pointer as the graph argument. In this case the nodes and di-
rected arguments are considered.

The most centralized directed structure is the in-star. The most centralized undirected structure is the graph
with a single edge.

Arguments:

graph: A graph object or a null pointer, see the description above.

nodes: The number of nodes. This is ignored if the graph argument is not a null pointer.

directed: Boolean scalar, whether to consider edge directions. This argument is ignored if graph
is not a null pointer and it is undirected.

scale: Whether to rescale the node-level centrality scores to have a maximum of one.

res: Pointer to a real variable, the result is stored here.

Structural Properties of Graphs

310

Returns:

Error code.

Time complexity: O(1).

See also:

igraph_centralization_closeness() and igraph_centralization().

Similarity Measures

igraph_bibcoupling — Bibliographic coupling.

int igraph_bibcoupling(const igraph_t *graph, igraph_matrix_t *res,
 const igraph_vs_t vids);

The bibliographic coupling of two vertices is the number of other vertices they both cite,
igraph_bibcoupling() calculates this. The bibliographic coupling score for each given vertex and
all other vertices in the graph will be calculated.

Arguments:

graph: The graph object to analyze.

res: Pointer to a matrix, the result of the calculation will be stored here. The number of its rows
is the same as the number of vertex ids in vids, the number of columns is the number of
vertices in the graph.

vids: The vertex ids of the vertices for which the calculation will be done.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex id.

Time complexity: O(|V|d^2), |V| is the number of vertices in the graph, d is the (maximum) degree of the
vertices in the graph.

See also:

igraph_cocitation()

igraph_cocitation — Cocitation coupling.

int igraph_cocitation(const igraph_t *graph, igraph_matrix_t *res,
 const igraph_vs_t vids);

Structural Properties of Graphs

311

Two vertices are cocited if there is another vertex citing both of them. igraph_cocitation() simply
counts how many times two vertices are cocited. The cocitation score for each given vertex and all other
vertices in the graph will be calculated.

Arguments:

graph: The graph object to analyze.

res: Pointer to a matrix, the result of the calculation will be stored here. The number of its rows
is the same as the number of vertex ids in vids, the number of columns is the number of
vertices in the graph.

vids: The vertex ids of the vertices for which the calculation will be done.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex id.

Time complexity: O(|V|d^2), |V| is the number of vertices in the graph, d is the (maximum) degree of the
vertices in the graph.

See also:

igraph_bibcoupling()

Example 13.18. File examples/simple/igraph_cocitation.c

igraph_similarity_jaccard — Jaccard similarity co-
efficient for the given vertices.

int igraph_similarity_jaccard(const igraph_t *graph, igraph_matrix_t *res,
 const igraph_vs_t vids, igraph_neimode_t mode, igraph_bool_t loops);

The Jaccard similarity coefficient of two vertices is the number of common neighbors divided by the
number of vertices that are neighbors of at least one of the two vertices being considered. This function
calculates the pairwise Jaccard similarities for some (or all) of the vertices.

Arguments:

graph: The graph object to analyze

res: Pointer to a matrix, the result of the calculation will be stored here. The number of its rows and
columns is the same as the number of vertex ids in vids.

vids: The vertex ids of the vertices for which the calculation will be done.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node.

IGRAPH_IN the incoming edges will be considered for each node.

Structural Properties of Graphs

312

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

loops: Whether to include the vertices themselves in the neighbor sets.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex id passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|V|^2 d), |V| is the number of vertices in the vertex iterator given, d is the (maximum)
degree of the vertices in the graph.

See also:

igraph_similarity_dice(), a measure very similar to the Jaccard coefficient

Example 13.19. File examples/simple/igraph_similarity.c

igraph_similarity_jaccard_pairs — Jaccard simi-
larity coefficient for given vertex pairs.

int igraph_similarity_jaccard_pairs(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vector_t *pairs, igraph_neimode_t mode, igraph_bool_t loops);

The Jaccard similarity coefficient of two vertices is the number of common neighbors divided by the
number of vertices that are neighbors of at least one of the two vertices being considered. This function
calculates the pairwise Jaccard similarities for a list of vertex pairs.

Arguments:

graph: The graph object to analyze

res: Pointer to a vector, the result of the calculation will be stored here. The number of elements
is the same as the number of pairs in pairs.

pairs: A vector that contains the pairs for which the similarity will be calculated. Each pair is defined
by two consecutive elements, i.e. the first and second element of the vector specifies the first
pair, the third and fourth element specifies the second pair and so on.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node.

IGRAPH_IN the incoming edges will be considered for each node.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

Structural Properties of Graphs

313

loops: Whether to include the vertices themselves in the neighbor sets.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex id passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(nd), n is the number of pairs in the given vector, d is the (maximum) degree of the
vertices in the graph.

See also:

igraph_similarity_jaccard() to calculate the Jaccard similarity between all pairs of a ver-
tex set, or igraph_similarity_dice() and igraph_similarity_dice_pairs() for a
measure very similar to the Jaccard coefficient

Example 13.20. File examples/simple/igraph_similarity.c

igraph_similarity_jaccard_es — Jaccard similarity
coefficient for a given edge selector.

int igraph_similarity_jaccard_es(const igraph_t *graph, igraph_vector_t *res,
 const igraph_es_t es, igraph_neimode_t mode, igraph_bool_t loops);

The Jaccard similarity coefficient of two vertices is the number of common neighbors divided by the
number of vertices that are neighbors of at least one of the two vertices being considered. This function
calculates the pairwise Jaccard similarities for the endpoints of edges in a given edge selector.

Arguments:

graph: The graph object to analyze

res: Pointer to a vector, the result of the calculation will be stored here. The number of elements
is the same as the number of edges in es.

es: An edge selector that specifies the edges to be included in the result.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node.

IGRAPH_IN the incoming edges will be considered for each node.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

loops: Whether to include the vertices themselves in the neighbor sets.

Structural Properties of Graphs

314

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex id passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(nd), n is the number of edges in the edge selector, d is the (maximum) degree of the
vertices in the graph.

See also:

igraph_similarity_jaccard() and igraph_similarity_jaccard_pairs() to cal-
culate the Jaccard similarity between all pairs of a vertex set or some selected ver-
tex pairs, or igraph_similarity_dice(), igraph_similarity_dice_pairs() and
igraph_similarity_dice_es() for a measure very similar to the Jaccard coefficient

Example 13.21. File examples/simple/igraph_similarity.c

igraph_similarity_dice — Dice similarity coeffi-
cient.

int igraph_similarity_dice(const igraph_t *graph, igraph_matrix_t *res,
 const igraph_vs_t vids, igraph_neimode_t mode, igraph_bool_t loops);

The Dice similarity coefficient of two vertices is twice the number of common neighbors divided by the
sum of the degrees of the vertices. This function calculates the pairwise Dice similarities for some (or all)
of the vertices.

Arguments:

graph: The graph object to analyze

res: Pointer to a matrix, the result of the calculation will be stored here. The number of its rows and
columns is the same as the number of vertex ids in vids.

vids: The vertex ids of the vertices for which the calculation will be done.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node.

IGRAPH_IN the incoming edges will be considered for each node.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

loops: Whether to include the vertices themselves as their own neighbors.

Returns:

Structural Properties of Graphs

315

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex id passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(|V|^2 d), |V| is the number of vertices in the vertex iterator given, d is the (maximum)
degree of the vertices in the graph.

See also:

igraph_similarity_jaccard(), a measure very similar to the Dice coefficient

Example 13.22. File examples/simple/igraph_similarity.c

igraph_similarity_dice_pairs — Dice similarity co-
efficient for given vertex pairs.

int igraph_similarity_dice_pairs(const igraph_t *graph, igraph_vector_t *res,
 const igraph_vector_t *pairs, igraph_neimode_t mode, igraph_bool_t loops);

The Dice similarity coefficient of two vertices is twice the number of common neighbors divided by the
sum of the degrees of the vertices. This function calculates the pairwise Dice similarities for a list of vertex
pairs.

Arguments:

graph: The graph object to analyze

res: Pointer to a vector, the result of the calculation will be stored here. The number of elements
is the same as the number of pairs in pairs.

pairs: A vector that contains the pairs for which the similarity will be calculated. Each pair is defined
by two consecutive elements, i.e. the first and second element of the vector specifies the first
pair, the third and fourth element specifies the second pair and so on.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node.

IGRAPH_IN the incoming edges will be considered for each node.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

loops: Whether to include the vertices themselves as their own neighbors.

Returns:

Error code:

Structural Properties of Graphs

316

IGRAPH_ENOMEM not enough memory for temporary data.

IGRAPH_EINVVID invalid vertex id passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(nd), n is the number of pairs in the given vector, d is the (maximum) degree of the
vertices in the graph.

See also:

igraph_similarity_dice() to calculate the Dice similarity between all pairs of a vertex
set, or igraph_similarity_jaccard(), igraph_similarity_jaccard_pairs() and
igraph_similarity_jaccard_es() for a measure very similar to the Dice coefficient

Example 13.23. File examples/simple/igraph_similarity.c

igraph_similarity_dice_es — Dice similarity coeffi-
cient for a given edge selector.

int igraph_similarity_dice_es(const igraph_t *graph, igraph_vector_t *res,
 const igraph_es_t es, igraph_neimode_t mode, igraph_bool_t loops);

The Dice similarity coefficient of two vertices is twice the number of common neighbors divided by the
sum of the degrees of the vertices. This function calculates the pairwise Dice similarities for the endpoints
of edges in a given edge selector.

Arguments:

graph: The graph object to analyze

res: Pointer to a vector, the result of the calculation will be stored here. The number of elements
is the same as the number of edges in es.

es: An edge selector that specifies the edges to be included in the result.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node.

IGRAPH_IN the incoming edges will be considered for each node.

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.

loops: Whether to include the vertices themselves as their own neighbors.

Returns:

Error code:

IGRAPH_ENOMEM not enough memory for temporary data.

Structural Properties of Graphs

317

IGRAPH_EINVVID invalid vertex id passed.

IGRAPH_EINVMODE invalid mode argument.

Time complexity: O(nd), n is the number of pairs in the given vector, d is the (maximum) degree of the
vertices in the graph.

See also:

igraph_similarity_dice() and igraph_similarity_dice_pairs() to calculate
the Dice similarity between all pairs of a vertex set or some selected vertex pairs,
or igraph_similarity_jaccard(), igraph_similarity_jaccard_pairs() and
igraph_similarity_jaccard_es() for a measure very similar to the Dice coefficient

Example 13.24. File examples/simple/igraph_similarity.c

igraph_similarity_inverse_log_weighted — Ver-
tex similarity based on the inverse logarithm of vertex
degrees.

int igraph_similarity_inverse_log_weighted(const igraph_t *graph,
 igraph_matrix_t *res, const igraph_vs_t vids, igraph_neimode_t mode);

The inverse log-weighted similarity of two vertices is the number of their common neighbors, weighted by
the inverse logarithm of their degrees. It is based on the assumption that two vertices should be considered
more similar if they share a low-degree common neighbor, since high-degree common neighbors are more
likely to appear even by pure chance.

Isolated vertices will have zero similarity to any other vertex. Self-similarities are not calculated.

See the following paper for more details: Lada A. Adamic and Eytan Adar: Friends and neighbors on the
Web. Social Networks, 25(3):211-230, 2003.

Arguments:

graph: The graph object to analyze.

res: Pointer to a matrix, the result of the calculation will be stored here. The number of its rows
is the same as the number of vertex ids in vids, the number of columns is the number of
vertices in the graph.

vids: The vertex ids of the vertices for which the calculation will be done.

mode: The type of neighbors to be used for the calculation in directed graphs. Possible values:

IGRAPH_OUT the outgoing edges will be considered for each node. Nodes will be weighted
according to their in-degree.

IGRAPH_IN the incoming edges will be considered for each node. Nodes will be weighted
according to their out-degree.

Structural Properties of Graphs

318

IGRAPH_ALL the directed graph is considered as an undirected one for the computation.
Every node is weighted according to its undirected degree.

Returns:

Error code: IGRAPH_EINVVID: invalid vertex id.

Time complexity: O(|V|d^2), |V| is the number of vertices in the graph, d is the (maximum) degree of the
vertices in the graph.

Example 13.25. File examples/simple/igraph_similarity.c

Spanning Trees

igraph_minimum_spanning_tree — Calculates one
minimum spanning tree of a graph.

int igraph_minimum_spanning_tree(const igraph_t* graph,
 igraph_vector_t* res, const igraph_vector_t* weights);

If the graph has more minimum spanning trees (this is always the case, except if it is a forest) this imple-
mentation returns only the same one.

Directed graphs are considered as undirected for this computation.

If the graph is not connected then its minimum spanning forest is returned. This is the set of the minimum
spanning trees of each component.

Arguments:

graph: The graph object.

res: An initialized vector, the IDs of the edges that constitute a spanning tree will be returned
here. Use igraph_subgraph_edges() to extract the spanning tree as a separate graph
object.

weights: A vector containing the weights of the edges in the same order as the simple edge iterator
visits them (i.e. in increasing order of edge IDs).

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data.

Time complexity: O(|V|+|E|) for the unweighted case, O(|E| log |V|) for the weighted case. |V| is the number
of vertices, |E| the number of edges in the graph.

See also:

Structural Properties of Graphs

319

igraph_minimum_spanning_tree_unweighted() and
igraph_minimum_spanning_tree_prim() if you only need the tree as a separate graph object.

Example 13.26. File examples/simple/
igraph_minimum_spanning_tree.c

igraph_minimum_spanning_tree_unweighted — Cal-
culates one minimum spanning tree of an unweighted
graph.

int igraph_minimum_spanning_tree_unweighted(const igraph_t *graph,
 igraph_t *mst);

If the graph has more minimum spanning trees (this is always the case, except if it is a forest) this imple-
mentation returns only the same one.

Directed graphs are considered as undirected for this computation.

If the graph is not connected then its minimum spanning forest is returned. This is the set of the minimum
spanning trees of each component.

Arguments:

graph: The graph object.

mst: The minimum spanning tree, another graph object. Do not initialize this object before passing
it to this function, but be sure to call igraph_destroy() on it if you don't need it any more.

Returns:

Error code: IGRAPH_ENOMEM, not enough memory for temporary data.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| the number of edges in the graph.

See also:

igraph_minimum_spanning_tree_prim() for weighted graphs,
igraph_minimum_spanning_tree() if you need the IDs of the edges that constitute the span-
ning tree.

igraph_minimum_spanning_tree_prim — Calculates
one minimum spanning tree of a weighted graph.

int igraph_minimum_spanning_tree_prim(const igraph_t *graph, igraph_t *mst,
 const igraph_vector_t *weights);

Structural Properties of Graphs

320

This function uses Prim's method for carrying out the computation, see Prim, R.C.: Shortest connection
networks and some generalizations, Bell System Technical Journal, Vol. 36, 1957, 1389--1401.

If the graph has more than one minimum spanning tree, the current implementation returns always the
same one.

Directed graphs are considered as undirected for this computation.

If the graph is not connected then its minimum spanning forest is returned. This is the set of the minimum
spanning trees of each component.

Arguments:

graph: The graph object.

mst: The result of the computation, a graph object containing the minimum spanning tree of
the graph. Do not initialize this object before passing it to this function, but be sure to call
igraph_destroy() on it if you don't need it any more.

weights: A vector containing the weights of the edges in the same order as the simple edge iterator
visits them (i.e. in increasing order of edge IDs).

Returns:

Error code: IGRAPH_ENOMEM, not enough memory. IGRAPH_EINVAL, length of weight vector does
not match number of edges.

Time complexity: O(|E| log |V|), |V| is the number of vertices, |E| the number of edges in the graph.

See also:

igraph_minimum_spanning_tree_unweighted() for unweighted graphs,
igraph_minimum_spanning_tree() if you need the IDs of the edges that constitute the span-
ning tree.

Example 13.27. File examples/simple/
igraph_minimum_spanning_tree.c

Transitivity or Clustering Coefficient

igraph_transitivity_undirected — Calculates the
transitivity (clustering coefficient) of a graph.

int igraph_transitivity_undirected(const igraph_t *graph,
 igraph_real_t *res,
 igraph_transitivity_mode_t mode);

The transitivity measures the probability that two neighbors of a vertex are connected. More precisely, this
is the ratio of the triangles and connected triples in the graph, the result is a single real number. Directed
graphs are considered as undirected ones.

Structural Properties of Graphs

321

Note that this measure is different from the local transitivity measure (see
igraph_transitivity_local_undirected()) as it calculates a single value for the whole
graph. See the following reference for more details:

S. Wasserman and K. Faust: Social Network Analysis: Methods and Applications. Cambridge: Cambridge
University Press, 1994.

Clustering coefficient is an alternative name for transitivity.

Arguments:

graph: The graph object.

res: Pointer to a real variable, the result will be stored here.

mode: Defines how to treat graphs with no connected triples. IGRAPH_TRANSITIVITY_NAN re-
turns NaN in this case, IGRAPH_TRANSITIVITY_ZERO returns zero.

Returns:

Error code: IGRAPH_ENOMEM: not enough memory for temporary data.

See also:

igraph_transitivity_local_undirected(),
igraph_transitivity_avglocal_undirected().

Time complexity: O(|V|*d^2), |V| is the number of vertices in the graph, d is the average node degree.

Example 13.28. File examples/simple/igraph_transitivity.c

igraph_transitivity_local_undirected — Cal-
culates the local transitivity (clustering coefficient) of a
graph.

int igraph_transitivity_local_undirected(const igraph_t *graph,
 igraph_vector_t *res,
 const igraph_vs_t vids,
 igraph_transitivity_mode_t mode);

The transitivity measures the probability that two neighbors of a vertex are connected. In case of the local
transitivity, this probability is calculated separately for each vertex.

Note that this measure is different from the global transitivity measure (see
igraph_transitivity_undirected()) as it calculates a transitivity value for each vertex indi-
vidually. See the following reference for more details:

D. J. Watts and S. Strogatz: Collective dynamics of small-world networks. Nature 393(6684):440-442
(1998).

Clustering coefficient is an alternative name for transitivity.

Structural Properties of Graphs

322

Arguments:

graph: The input graph, it can be directed but direction of the edges will be ignored.

res: Pointer to an initialized vector, the result will be stored here. It will be resized as needed.

vids: Vertex set, the vertices for which the local transitivity will be calculated.

mode: Defines how to treat vertices with degree less than two. IGRAPH_TRANSITIVITY_NAN
returns NaN for these vertices, IGRAPH_TRANSITIVITY_ZERO returns zero.

Returns:

Error code.

See also:

igraph_transitivity_undirected(),
igraph_transitivity_avglocal_undirected().

Time complexity: O(n*d^2), n is the number of vertices for which the transitivity is calculated, d is the
average vertex degree.

igraph_transitivity_avglocal_undirected — Av-
erage local transitivity (clustering coefficient).

int igraph_transitivity_avglocal_undirected(const igraph_t *graph,
 igraph_real_t *res,
 igraph_transitivity_mode_t mode);

The transitivity measures the probability that two neighbors of a vertex are connected. In case of the aver-
age local transitivity, this probability is calculated for each vertex and then the average is taken. Vertices
with less than two neighbors require special treatment, they will either be left out from the calculation or
they will be considered as having zero transitivity, depending on the mode argument.

Note that this measure is different from the global transitivity measure (see
igraph_transitivity_undirected()) as it simply takes the average local transitivity across
the whole network. See the following reference for more details:

D. J. Watts and S. Strogatz: Collective dynamics of small-world networks. Nature 393(6684):440-442
(1998).

Clustering coefficient is an alternative name for transitivity.

Arguments:

graph: The input graph, directed graphs are considered as undirected ones.

res: Pointer to a real variable, the result will be stored here.

mode: Defines how to treat vertices with degree less than two. IGRAPH_TRANSITIVITY_NAN
leaves them out from averaging, IGRAPH_TRANSITIVITY_ZERO includes them with zero

Structural Properties of Graphs

323

transitivity. The result will be NaN if the mode is IGRAPH_TRANSITIVITY_NAN and there
are no vertices with more than one neighbor.

Returns:

Error code.

See also:

igraph_transitivity_undirected(),
igraph_transitivity_local_undirected().

Time complexity: O(|V|*d^2), |V| is the number of vertices in the graph and d is the average degree.

igraph_transitivity_barrat — Weighted transitivi-
ty, as defined by A. Barrat.

int igraph_transitivity_barrat(const igraph_t *graph,
 igraph_vector_t *res,
 const igraph_vs_t vids,
 const igraph_vector_t *weights,
 igraph_transitivity_mode_t mode);

This is a local transitivity, i.e. a vertex-level index. For a given vertex i, from all triangles in which
it participates we consider the weight of the edges incident on i. The transitivity is the sum of these
weights divided by twice the strength of the vertex (see igraph_strength()) and the degree of the
vertex minus one. See Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras, Alessandro Vespignani:
The architecture of complex weighted networks, Proc. Natl. Acad. Sci. USA 101, 3747 (2004) at http://
arxiv.org/abs/cond-mat/0311416 for the exact formula.

Arguments:

graph: The input graph, edge directions are ignored for directed graphs. Note that the function does
NOT work for non-simple graphs.

res: Pointer to an initialized vector, the result will be stored here. It will be resized as needed.

vids: The vertices for which the calculation is performed.

weights: Edge weights. If this is a null pointer, then a warning is given and
igraph_transitivity_local_undirected() is called.

mode: Defines how to treat vertices with zero strength. IGRAPH_TRANSITIVITY_NAN says that
the transitivity of these vertices is NaN, IGRAPH_TRANSITIVITY_ZERO says it is zero.

Returns:

Error code.

Time complexity: O(|V|*d^2), |V| is the number of vertices in the graph, d is the average node degree.

See also:

http://arxiv.org/abs/cond-mat/0311416
http://arxiv.org/abs/cond-mat/0311416

Structural Properties of Graphs

324

igraph_transitivity_undirected(),
igraph_transitivity_local_undirected() and
igraph_transitivity_avglocal_undirected() for other kinds of (non-weighted) transi-
tivity.

Directedness conversion

igraph_to_directed — Convert an undirected graph
to a directed one

int igraph_to_directed(igraph_t *graph,
 igraph_to_directed_t mode);

If the supplied graph is directed, this function does nothing.

Arguments:

graph: The graph object to convert.

mode: Constant, specifies the details of how exactly the conversion is done. Possible
values: IGRAPH_TO_DIRECTED_ARBITRARY: the number of edges in the graph
stays the same, an arbitrarily directed edge is created for each undirected edge;
IGRAPH_TO_DIRECTED_MUTUAL: two directed edges are created for each undirected edge,
one in each direction.

Returns:

Error code.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

igraph_to_undirected — Convert a directed graph to
an undirected one.

int igraph_to_undirected(igraph_t *graph,
 igraph_to_undirected_t mode,
 const igraph_attribute_combination_t *edge_comb);

If the supplied graph is undirected, this function does nothing.

Arguments:

graph: The graph object to convert.

mode: Constant, specifies the details of how exactly the conversion is done. Possible values:
IGRAPH_TO_UNDIRECTED_EACH: the number of edges remains constant, an undi-

Structural Properties of Graphs

325

rected edge is created for each directed one, this version might create graphs with multi-
ple edges; IGRAPH_TO_UNDIRECTED_COLLAPSE: one undirected edge will be cre-
ated for each pair of vertices which are connected with at least one directed edge, no
multiple edges will be created. IGRAPH_TO_UNDIRECTED_MUTUAL creates an undi-
rected edge for each pair of mutual edges in the directed graph. Non-mutual edges are
lost. This mode might create multiple edges.

edge_comb: What to do with the edge attributes. See the igraph manual section about attributes for
details.

Returns:

Error code.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 13.29. File examples/simple/igraph_to_undirected.c

Spectral properties

igraph_laplacian — Returns the Laplacian matrix of a
graph

int igraph_laplacian(const igraph_t *graph, igraph_matrix_t *res,
 igraph_sparsemat_t *sparseres,
 igraph_bool_t normalized,
 const igraph_vector_t *weights);

The graph Laplacian matrix is similar to an adjacency matrix but contains -1's instead of 1's and the vertex
degrees are included in the diagonal. So the result for edge i--j is -1 if i!=j and is equal to the degree of
vertex i if i==j. igraph_laplacian will work on a directed graph; in this case, the diagonal will contain the
out-degrees. Loop edges will be ignored.

The normalized version of the Laplacian matrix has 1 in the diagonal and -1/sqrt(d[i]d[j]) if there is an
edge from i to j.

The first version of this function was written by Vincent Matossian.

Arguments:

graph: Pointer to the graph to convert.

res: Pointer to an initialized matrix object, the result is stored here. It will be resized if
needed. If it is a null pointer, then it is ignored. At least one of res and sparseres
must be a non-null pointer.

sparseres: Pointer to an initialized sparse matrix object, the result is stored here, if it is not a null
pointer. At least one of res and sparseres must be a non-null pointer.

normalized: Whether to create a normalized Laplacian matrix.

Structural Properties of Graphs

326

weights: An optional vector containing edge weights, to calculate the weighted Laplacian matrix.
Set it to a null pointer to calculate the unweighted Laplacian.

Returns:

Error code.

Time complexity: O(|V||V|), |V| is the number of vertices in the graph.

Example 13.30. File examples/simple/igraph_laplacian.c

Non-simple graphs: multiple and loop edges

igraph_is_simple — Decides whether the input graph
is a simple graph.

int igraph_is_simple(const igraph_t *graph, igraph_bool_t *res);

A graph is a simple graph if it does not contain loop edges and multiple edges.

Arguments:

graph: The input graph.

res: Pointer to a boolean constant, the result is stored here.

Returns:

Error code.

See also:

igraph_is_loop() and igraph_is_multiple() to find the loops and multiple edges,
igraph_simplify() to get rid of them, or igraph_has_multiple() to decide whether there
is at least one multiple edge.

Time complexity: O(|V|+|E|).

igraph_is_loop — Find the loop edges in a graph.

int igraph_is_loop(const igraph_t *graph, igraph_vector_bool_t *res,
 igraph_es_t es);

A loop edge is an edge from a vertex to itself.

Structural Properties of Graphs

327

Arguments:

graph: The input graph.

res: Pointer to an initialized boolean vector for storing the result, it will be resized as needed.

es: The edges to check, for all edges supply igraph_ess_all() here.

Returns:

Error code.

See also:

igraph_simplify() to get rid of loop edges.

Time complexity: O(e), the number of edges to check.

Example 13.31. File examples/simple/igraph_is_loop.c

igraph_is_multiple — Find the multiple edges in a
graph.

int igraph_is_multiple(const igraph_t *graph, igraph_vector_bool_t *res,
 igraph_es_t es);

An edge is a multiple edge if there is another edge with the same head and tail vertices in the graph.

Note that this function returns true only for the second or more appearances of the multiple edges.

Arguments:

graph: The input graph.

res: Pointer to a boolean vector, the result will be stored here. It will be resized as needed.

es: The edges to check. Supply igraph_ess_all() if you want to check all edges.

Returns:

Error code.

See also:

igraph_count_multiple(), igraph_has_multiple() and igraph_simplify().

Time complexity: O(e*d), e is the number of edges to check and d is the average degree (out-degree in
directed graphs) of the vertices at the tail of the edges.

Structural Properties of Graphs

328

Example 13.32. File examples/simple/igraph_is_multiple.c

igraph_has_multiple — Check whether the graph has
at least one multiple edge.

int igraph_has_multiple(const igraph_t *graph, igraph_bool_t *res);

An edge is a multiple edge if there is another edge with the same head and tail vertices in the graph.

Arguments:

graph: The input graph.

res: Pointer to a boolean variable, the result will be stored here.

Returns:

Error code.

See also:

igraph_count_multiple(), igraph_is_multiple() and igraph_simplify().

Time complexity: O(e*d), e is the number of edges to check and d is the average degree (out-degree in
directed graphs) of the vertices at the tail of the edges.

Example 13.33. File examples/simple/igraph_has_multiple.c

igraph_count_multiple — Count the number of ap-
pearances of the edges in a graph.

int igraph_count_multiple(const igraph_t *graph, igraph_vector_t *res, igraph_es_t es);

If the graph has no multiple edges then the result vector will be filled with ones. (An edge is a multiple
edge if there is another edge with the same head and tail vertices in the graph.)

Arguments:

graph: The input graph.

res: Pointer to a vector, the result will be stored here. It will be resized as needed.

es: The edges to check. Supply igraph_ess_all() if you want to check all edges.

Structural Properties of Graphs

329

Returns:

Error code.

See also:

igraph_is_multiple() and igraph_simplify().

Time complexity: O(e*d), e is the number of edges to check and d is the average degree (out-degree in
directed graphs) of the vertices at the tail of the edges.

igraph_simplify — Removes loop and/or multiple
edges from the graph.

int igraph_simplify(igraph_t *graph, igraph_bool_t multiple,
 igraph_bool_t loops,
 const igraph_attribute_combination_t *edge_comb);

Arguments:

graph: The graph object.

multiple: Logical, if true, multiple edges will be removed.

loops: Logical, if true, loops (self edges) will be removed.

edge_comb: What to do with the edge attributes. See the igraph manual section about attributes for
details.

Returns:

Error code: IGRAPH_ENOMEM if we are out of memory.

Time complexity: O(|V|+|E|).

Example 13.34. File examples/simple/igraph_simplify.c

Mixing patterns

igraph_assortativity_nominal — Assortativity of a
graph based on vertex categories

int igraph_assortativity_nominal(const igraph_t *graph,
 const igraph_vector_t *types,
 igraph_real_t *res,

Structural Properties of Graphs

330

 igraph_bool_t directed);

Assuming the vertices of the input graph belong to different categories, this function calculates the assor-
tativity coefficient of the graph. The assortativity coefficient is between minus one and one and it is one
if all connections stay within categories, it is minus one, if the network is perfectly disassortative. For a
randomly connected network it is (asymptotically) zero.

See equation (2) in M. E. J. Newman: Mixing patterns in networks, Phys. Rev. E 67, 026126 (2003) (http://
arxiv.org/abs/cond-mat/0209450) for the proper definition.

Arguments:

graph: The input graph, it can be directed or undirected.

types: Vector giving the vertex types. They are assumed to be integer numbers, starting with zero.

res: Pointer to a real variable, the result is stored here.

directed: Boolean, it gives whether to consider edge directions in a directed graph. It is ignored for
undirected graphs.

Returns:

Error code.

Time complexity: O(|E|+t), |E| is the number of edges, t is the number of vertex types.

See also:

igraph_assortativity if the vertex types are defines by numeric values (e.g. vertex degree),
instead of categories.

Example 13.35. File examples/simple/assortativity.c

igraph_assortativity — Assortativity based on nu-
meric properties of vertices

int igraph_assortativity(const igraph_t *graph,
 const igraph_vector_t *types1,
 const igraph_vector_t *types2,
 igraph_real_t *res,
 igraph_bool_t directed);

This function calculates the assortativity coefficient of the input graph. This coefficient is basically the
correlation between the actual connectivity patterns of the vertices and the pattern expected from the dis-
tribution of the vertex types.

See equation (21) in M. E. J. Newman: Mixing patterns in networks, Phys. Rev. E 67, 026126 (2003)
(http://arxiv.org/abs/cond-mat/0209450) for the proper definition. The actual calculation is performed us-
ing equation (26) in the same paper for directed graphs, and equation (4) in M. E. J. Newman: Assorta-
tive mixing in networks, Phys. Rev. Lett. 89, 208701 (2002) (http://arxiv.org/abs/cond-mat/0205405/) for
undirected graphs.

http://arxiv.org/abs/cond-mat/0209450
http://arxiv.org/abs/cond-mat/0209450
http://arxiv.org/abs/cond-mat/0209450
http://arxiv.org/abs/cond-mat/0205405/

Structural Properties of Graphs

331

Arguments:

graph: The input graph, it can be directed or undirected.

types1: The vertex values, these can be arbitrary numeric values.

types2: A second value vector to be using for the incoming edges when calculating assortativity
for a directed graph. Supply a null pointer here if you want to use the same values for
outgoing and incoming edges. This argument is ignored (with a warning) if it is not a null
pointer and undirected assortativity coefficient is being calculated.

res: Pointer to a real variable, the result is stored here.

directed: Boolean, whether to consider edge directions for directed graphs. It is ignored for undi-
rected graphs.

Returns:

Error code.

Time complexity: O(|E|), linear in the number of edges of the graph.

See also:

igraph_assortativity_nominal() if you have discrete vertex categories instead of numeric
labels, and igraph_assortativity_degree() for the special case of assortativity based on
vertex degree.

Example 13.36. File examples/simple/assortativity.c

igraph_assortativity_degree — Assortativity of a
graph based on vertex degree

int igraph_assortativity_degree(const igraph_t *graph,
 igraph_real_t *res,
 igraph_bool_t directed);

Assortativity based on vertex degree, please see the discussion at the documentation of
igraph_assortativity() for details.

Arguments:

graph: The input graph, it can be directed or undirected.

res: Pointer to a real variable, the result is stored here.

directed: Boolean, whether to consider edge directions for directed graphs. This argument is ignored
for undirected graphs. Supply 1 (=TRUE) here to do the natural thing, i.e. use directed ver-
sion of the measure for directed graphs and the undirected version for undirected graphs.

Returns:

Structural Properties of Graphs

332

Error code.

Time complexity: O(|E|+|V|), |E| is the number of edges, |V| is the number of vertices.

See also:

igraph_assortativity() for the general function calculating assortativity for any kind of nu-
meric vertex values.

Example 13.37. File examples/simple/assortativity.c

K-Cores

igraph_coreness — Finding the coreness of the ver-
tices in a network.

int igraph_coreness(const igraph_t *graph, igraph_vector_t *cores,
 igraph_neimode_t mode);

The k-core of a graph is a maximal subgraph in which each vertex has at least degree k. (Degree here
means the degree in the subgraph of course.). The coreness of a vertex is the highest order of a k-core
containing the vertex.

This function implements the algorithm presented in Vladimir Batagelj, Matjaz Zaversnik: An O(m) Al-
gorithm for Cores Decomposition of Networks.

Arguments:

graph: The input graph.

cores: Pointer to an initialized vector, the result of the computation will be stored here. It will be
resized as needed. For each vertex it contains the highest order of a core containing the vertex.

mode: For directed graph it specifies whether to calculate in-cores, out-cores or the undirected ver-
sion. It is ignored for undirected graphs. Possible values: IGRAPH_ALL undirected version,
IGRAPH_IN in-cores, IGRAPH_OUT out-cores.

Returns:

Error code.

Time complexity: O(|E|), the number of edges.

Topological sorting, directed acyclic graphs

igraph_is_dag — Checks whether a graph is a directed
acyclic graph (DAG) or not.

Structural Properties of Graphs

333

int igraph_is_dag(const igraph_t* graph, igraph_bool_t *res);

A directed acyclic graph (DAG) is a directed graph with no cycles.

Arguments:

graph: The input graph.

res: Pointer to a boolean constant, the result is stored here.

Returns:

Error code.

Time complexity: O(|V|+|E|), where |V| and |E| are the number of vertices and edges in the original input
graph.

See also:

igraph_topological_sorting() to get a possible topological sorting of a DAG.

igraph_topological_sorting — Calculate a possible
topological sorting of the graph.

int igraph_topological_sorting(const igraph_t* graph, igraph_vector_t *res,
 igraph_neimode_t mode);

A topological sorting of a directed acyclic graph is a linear ordering of its nodes where each node comes
before all nodes to which it has edges. Every DAG has at least one topological sort, and may have many.
This function returns a possible topological sort among them. If the graph is not acyclic (it has at least one
cycle), a partial topological sort is returned and a warning is issued.

Arguments:

graph: The input graph.

res: Pointer to a vector, the result will be stored here. It will be resized if needed.

mode: Specifies how to use the direction of the edges. For IGRAPH_OUT, the sorting order ensures
that each node comes before all nodes to which it has edges, so nodes with no incoming edges
go first. For IGRAPH_IN, it is quite the opposite: each node comes before all nodes from
which it receives edges. Nodes with no outgoing edges go first.

Returns:

Error code.

Time complexity: O(|V|+|E|), where |V| and |E| are the number of vertices and edges in the original input
graph.

Structural Properties of Graphs

334

See also:

igraph_is_dag() if you are only interested in whether a given graph is a DAG or not, or
igraph_feedback_arc_set() to find a set of edges whose removal makes the graph a DAG.

Example 13.38. File examples/simple/igraph_topological_sorting.c

igraph_feedback_arc_set — Calculates a feedback
arc set of the graph using different

int igraph_feedback_arc_set(const igraph_t *graph, igraph_vector_t *result,
 const igraph_vector_t *weights, igraph_fas_algorithm_t algo);

algorithms.

A feedback arc set is a set of edges whose removal makes the graph acyclic. We are usually interested in
minimum feedback arc sets, i.e. sets of edges whose total weight is minimal among all the feedback arc sets.

For undirected graphs, the problem is simple: one has to find a maximum weight spanning tree and then
remove all the edges not in the spanning tree. For directed graphs, this is an NP-hard problem, and various
heuristics are usually used to find an approximate solution to the problem. This function implements a
few of these heuristics.

Arguments:

graph: The graph object.

result: An initialized vector, the result will be returned here.

weights: Weight vector or NULL if no weights are specified.

algo: The algorithm to use to solve the problem if the graph is directed. Possible values:

IGRAPH_FAS_EXACT_IP Finds a minimum feedback arc set using integer pro-
gramming (IP). The complexity of this algorithm is
exponential of course.

IGRAPH_FAS_APPROX_EADES Finds a feedback arc set using the heuristic of Eades,
Lin and Smyth (1993). This is guaranteed to be small-
er than |E|/2 - |V|/6, and it is linear in the number of
edges (i.e. O(|E|)). For more details, see Eades P, Lin
X and Smyth WF: A fast and effective heuristic for
the feedback arc set problem. In: Proc Inf Process Lett
319-323, 1993.

Returns:

Error code: IGRAPH_EINVAL if an unknown method was specified or the weight vector is invalid.

Example 13.39. File examples/simple/igraph_feedback_arc_set.c

Structural Properties of Graphs

335

Example 13.40. File examples/simple/igraph_feedback_arc_set_ip.c

Time complexity: depends on algo, see the time complexities there.

Maximum cardinality search, graph decompo-
sition, chordal graphs

igraph_maximum_cardinality_search — Maximum
cardinality search

int igraph_maximum_cardinality_search(const igraph_t *graph,
 igraph_vector_t *alpha,
 igraph_vector_t *alpham1);

This function implements the maximum cardinality search algorithm discussed in Robert E Tarjan and
Mihalis Yannakakis: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hyper-
graphs, and selectively reduce acyclic hypergraphs. SIAM Journal of Computation 13, 566--579, 1984.

Arguments:

graph: The input graph. Can be directed, but the direction of the edges is ignored.

alpha: Pointer to an initialized vector, the result is stored here. It will be resized, as needed. Upon
return it contains the rank of the each vertex.

alpham1: Pointer to an initialized vector or a NULL pointer. If not NULL, then the inverse of alpha
is stored here.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in terms of the number of vertices and edges.

See also:

igraph_is_chordal().

igraph_is_chordal — Decides whether a graph is
chordal

int igraph_is_chordal(const igraph_t *graph,
 const igraph_vector_t *alpha,
 const igraph_vector_t *alpham1,

Structural Properties of Graphs

336

 igraph_bool_t *chordal,
 igraph_vector_t *fill_in,
 igraph_t *newgraph);

A graph is chordal if each of its cycles of four or more nodes has a chord, which is an edge joining two
nodes that are not adjacent in the cycle. An equivalent definition is that any chordless cycles have at most
three nodes. If either alpha or alpha1 is given, then the other is calculated by taking simply the inverse.
If neither are given, then igraph_maximum_cardinality_search() is called to calculate them.

Arguments:

graph: The input graph, it might be directed, but edge direction is ignored.

alpha: Either an alpha vector coming from igraph_maximum_cardinality_search()
(on the same graph), or a null pointer.

alpham1: Either an inverse alpha vector coming from
igraph_maximum_cardinality_search() (on the same graph) or a null pointer.

chordal: Pointer to a boolean, the result is stored here.

fill_in: Pointer to an initialized vector, or a null pointer. If not a null pointer, then the fill-in of
the graph is stored here. The fill-in is the set of edges that are needed to make the graph
chordal. The vector is resized as needed.

newgraph: Pointer to an uninitialized graph, or a null pointer. If not a null pointer, then a new trian-
gulated graph is created here. This essentially means adding the fill-in edges to the orig-
inal graph.

Returns:

Error code.

Time complexity: O(n).

See also:

igraph_maximum_cardinality_search().

Matchings

igraph_is_matching — Checks whether the given
matching is valid for the given graph.

int igraph_is_matching(const igraph_t* graph,
 const igraph_vector_bool_t* types, const igraph_vector_long_t* matching,
 igraph_bool_t* result);

This function checks a matching vector and verifies whether its length matches the number of vertices in
the given graph, its values are between -1 (inclusive) and the number of vertices (exclusive), and whether

Structural Properties of Graphs

337

there exists a corresponding edge in the graph for every matched vertex pair. For bipartite graphs, it also
verifies whether the matched vertices are in different parts of the graph.

Arguments:

graph: The input graph. It can be directed but the edge directions will be ignored.

types: If the graph is bipartite and you are interested in bipartite matchings only, pass the vertex
types here. If the graph is non-bipartite, simply pass NULL.

matching: The matching itself. It must be a vector where element i contains the ID of the vertex that
vertex i is matched to, or -1 if vertex i is unmatched.

result: Pointer to a boolean variable, the result will be returned here.

See also:

igraph_is_maximal_matching() if you are also interested in whether the matching is maximal
(i.e. non-extendable).

Time complexity: O(|V|+|E|) where |V| is the number of vertices and |E| is the number of edges.

Example 13.41. File examples/simple/
igraph_maximum_bipartite_matching.c

igraph_is_maximal_matching — Checks whether a
matching in a graph is maximal.

int igraph_is_maximal_matching(const igraph_t* graph,
 const igraph_vector_bool_t* types, const igraph_vector_long_t* matching,
 igraph_bool_t* result);

A matching is maximal if and only if there exists no unmatched vertex in a graph such that one of its
neighbors is also unmatched.

Arguments:

graph: The input graph. It can be directed but the edge directions will be ignored.

types: If the graph is bipartite and you are interested in bipartite matchings only, pass the vertex
types here. If the graph is non-bipartite, simply pass NULL.

matching: The matching itself. It must be a vector where element i contains the ID of the vertex that
vertex i is matched to, or -1 if vertex i is unmatched.

result: Pointer to a boolean variable, the result will be returned here.

See also:

igraph_is_matching() if you are only interested in whether a matching vector is valid for a given
graph.

Structural Properties of Graphs

338

Time complexity: O(|V|+|E|) where |V| is the number of vertices and |E| is the number of edges.

Example 13.42. File examples/simple/
igraph_maximum_bipartite_matching.c

igraph_maximum_bipartite_matching — Calculates
a maximum matching in a bipartite graph.

int igraph_maximum_bipartite_matching(const igraph_t* graph,
 const igraph_vector_bool_t* types, igraph_integer_t* matching_size,
 igraph_real_t* matching_weight, igraph_vector_long_t* matching,
 const igraph_vector_t* weights, igraph_real_t eps);

A matching in a bipartite graph is a partial assignment of vertices of the first kind to vertices of the second
kind such that each vertex of the first kind is matched to at most one vertex of the second kind and vice
versa, and matched vertices must be connected by an edge in the graph. The size (or cardinality) of a
matching is the number of edges. A matching is a maximum matching if there exists no other matching
with larger cardinality. For weighted graphs, a maximum matching is a matching whose edges have the
largest possible total weight among all possible matchings.

Maximum matchings in bipartite graphs are found by the push-relabel algorithm with greedy initialization
and a global relabeling after every n/2 steps where n is the number of vertices in the graph.

References: Cherkassky BV, Goldberg AV, Martin P, Setubal JC and Stolfi J: Augment or push: A com-
putational study of bipartite matching and unit-capacity flow algorithms. ACM Journal of Experimental
Algorithmics 3, 1998.

Kaya K, Langguth J, Manne F and Ucar B: Experiments on push-relabel-based maximum cardinali-
ty matching algorithms for bipartite graphs. Technical Report TR/PA/11/33 of the Centre Europeen de
Recherche et de Formation Avancee en Calcul Scientifique, 2011.

Arguments:

graph: The input graph. It can be directed but the edge directions will be ignored.

types: Boolean vector giving the vertex types of the graph.

matching_size: The size of the matching (i.e. the number of matched vertex pairs will be re-
turned here). It may be NULL if you don't need this.

matching_weight: The weight of the matching if the edges are weighted, or the size of the matching
again if the edges are unweighted. It may be NULL if you don't need this.

matching: The matching itself. It must be a vector where element i contains the ID of the
vertex that vertex i is matched to, or -1 if vertex i is unmatched.

weights: A null pointer (=no edge weights), or a vector giving the weights of the edges.
Note that the algorithm is stable only for integer weights.

eps: A small real number used in equality tests in the weighted bipartite matching
algorithm. Two real numbers are considered equal in the algorithm if their dif-
ference is smaller than eps. This is required to avoid the accumulation of nu-

Structural Properties of Graphs

339

merical errors. It is advised to pass a value derived from the DBL_EPSILON
constant in float.h here. If you are running the algorithm with no weights
vector, this argument is ignored.

Returns:

Error code.

Time complexity: O(sqrt(|V|) |E|) for unweighted graphs (according to the technical report referenced
above), O(|V||E|) for weighted graphs.

Example 13.43. File examples/simple/
igraph_maximum_bipartite_matching.c

Line graphs

igraph_linegraph — Create the line graph of a graph.

int igraph_linegraph(const igraph_t *graph, igraph_t *linegraph);

The line graph L(G) of a G undirected graph is defined as follows. L(G) has one vertex for each edge in
G and two vertices in L(G) are connected by an edge if their corresponding edges share an end point.

The line graph L(G) of a G directed graph is slightly different, L(G) has one vertex for each edge in G and
two vertices in L(G) are connected by a directed edge if the target of the first vertex's corresponding edge
is the same as the source of the second vertex's corresponding edge.

Edge i in the original graph will correspond to vertex i in the line graph.

The first version of this function was contributed by Vincent Matossian, thanks.

Arguments:

graph: The input graph, may be directed or undirected.

linegraph: Pointer to an uninitialized graph object, the result is stored here.

Returns:

Error code.

Time complexity: O(|V|+|E|), the number of edges plus the number of vertices.

Unfolding a graph into a tree

igraph_unfold_tree — Unfolding a graph into a tree,
by possibly multiplicating its vertices.

Structural Properties of Graphs

340

int igraph_unfold_tree(const igraph_t *graph, igraph_t *tree,
 igraph_neimode_t mode, const igraph_vector_t *roots,
 igraph_vector_t *vertex_index);

A graph is converted into a tree (or forest, if it is unconnected), by performing a breadth-first search on it,
and replicating vertices that were found a second, third, etc. time.

Arguments:

graph: The input graph, it can be either directed or undirected.

tree: Pointer to an uninitialized graph object, the result is stored here.

mode: For directed graphs; whether to follow paths along edge directions (IGRAPH_OUT),
or the opposite (IGRAPH_IN), or ignore edge directions completely
(IGRAPH_ALL). It is ignored for undirected graphs.

roots: A numeric vector giving the root vertex, or vertices (if the graph is not connected),
to start from.

vertex_index: Pointer to an initialized vector, or a null pointer. If not a null pointer, then a mapping
from the vertices in the new graph to the ones in the original is created here.

Returns:

Error code.

Time complexity: O(n+m), linear in the number vertices and edges.

Other Operations

igraph_density — Calculate the density of a graph.

int igraph_density(const igraph_t *graph, igraph_real_t *res,
 igraph_bool_t loops);

The density of a graph is simply the ratio number of edges and the number of possible edges. Note that den-
sity is ill-defined for graphs with multiple and/or loop edges, so consider calling igraph_simplify()
on the graph if you know that it contains multiple or loop edges.

Arguments:

graph: The input graph object.

res: Pointer to a real number, the result will be stored here.

loops: Logical constant, whether to include loops in the calculation. If this constant is TRUE then
loop edges are thought to be possible in the graph (this does not necessarily mean that the graph
really contains any loops). If this is FALSE then the result is only correct if the graph does
not contain loops.

Structural Properties of Graphs

341

Returns:

Error code.

Time complexity: O(1).

igraph_reciprocity — Calculates the reciprocity of a
directed graph.

int igraph_reciprocity(const igraph_t *graph, igraph_real_t *res,
 igraph_bool_t ignore_loops,
 igraph_reciprocity_t mode);

The measure of reciprocity defines the proportion of mutual connections, in a directed graph. It is most
commonly defined as the probability that the opposite counterpart of a directed edge is also included in
the graph. In adjacency matrix notation: sum(i, j, (A.*A')ij) / sum(i, j, Aij) , where
A.*A' is the element-wise product of matrix A and its transpose. This measure is calculated if the mode
argument is IGRAPH_RECIPROCITY_DEFAULT.

Prior to igraph version 0.6, another measure was implemented, defined as the probability of mutual con-
nection between a vertex pair if we know that there is a (possibly non-mutual) connection between them.
In other words, (unordered) vertex pairs are classified into three groups: (1) disconnected, (2) non-recip-
rocally connected, (3) reciprocally connected. The result is the size of group (3), divided by the sum of
group sizes (2)+(3). This measure is calculated if mode is IGRAPH_RECIPROCITY_RATIO.

Arguments:

graph: The graph object.

res: Pointer to an igraph_real_t which will contain the result.

ignore_loops: Whether to ignore loop edges.

mode: Type of reciprocity to calculate, possible values are
IGRAPH_RECIPROCITY_DEFAULT and IGRAPH_RECIPROCITY_RATIO,
please see their description above.

Returns:

Error code: IGRAPH_EINVAL: graph has no edges IGRAPH_ENOMEM: not enough memory for tem-
porary data.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| is the number of edges.

Example 13.44. File examples/simple/igraph_reciprocity.c

igraph_diversity — Structural diversity index of the
vertices

Structural Properties of Graphs

342

int igraph_diversity(igraph_t *graph, const igraph_vector_t *weights,
 igraph_vector_t *res, const igraph_vs_t vids);

This measure was defined in Nathan Eagle, Michael Macy and Rob Claxton: Network Diversity and Eco-
nomic Development, Science 328, 1029--1031, 2010.

It is simply the (normalized) Shannon entropy of the incident edges' weights. D(i)=H(i)/log(k[i]), and H(i)
= -sum(p[i,j] log(p[i,j]), j=1..k[i]), where p[i,j]=w[i,j]/sum(w[i,l], l=1..k[i]), k[i] is the (total) degree of
vertex i, and w[i,j] is the weight of the edge(s) between vertex i and j.

Arguments:

graph: The input graph, edge directions are ignored.

weights: The edge weights, in the order of the edge ids, must have appropriate length.

res: An initialized vector, the results are stored here.

vids: Vector with the vertex ids for which to calculate the measure.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear.

igraph_is_mutual — Check whether the edges of a di-
rected graph are mutual.

int igraph_is_mutual(igraph_t *graph, igraph_vector_bool_t *res, igraph_es_t es);

An (A,B) edge is mutual if the graph contains the (B,A) edge, too.

An undirected graph only has mutual edges, by definition.

Edge multiplicity is not considered here, e.g. if there are two (A,B) edges and one (B,A) edge, then all
three are considered to be mutual.

Arguments:

graph: The input graph.

res: Pointer to an initialized vector, the result is stored here.

es: The sequence of edges to check. Supply igraph_ess_all() for all edges, see
igraph_ess_all().

Returns:

Error code.

Structural Properties of Graphs

343

Time complexity: O(n log(d)), n is the number of edges supplied, d is the maximum in-degree of the
vertices that are targets of the supplied edges. An upper limit of the time complexity is O(n log(|E|)), |E|
is the number of edges in the graph.

igraph_avg_nearest_neighbor_degree — Average
nearest neighbor degree.

int igraph_avg_nearest_neighbor_degree(const igraph_t *graph,
 igraph_vs_t vids,
 igraph_vector_t *knn,
 igraph_vector_t *knnk,
 const igraph_vector_t *weights);

Calculates the average degree of the neighbors for each vertex, and optionally, the same quantity in the
function of vertex degree.

For isolate vertices knn is set to IGRAPH_NAN. The same is done in knnk for vertex degrees that don't
appear in the graph.

Arguments:

graph: The input graph, it can be directed but the directedness of the edges is ignored.

vids: The vertices for which the calculation is performed.

knn: Pointer to an initialized vector, the result will be stored here. It will be resized as needed.
Supply a NULL pointer here, if you only want to calculate knnk.

knnk: Pointer to an initialized vector, the average nearest neighbor degree in the function of vertex
degree is stored here. The first (zeroth) element is for degree one vertices, etc. Supply a
NULL pointer here if you don't want to calculate this.

weights: Optional edge weights. Supply a null pointer here for the non-weighted version. If this is not
a null pointer, then the strength of the vertices is used instead of the normal vertex degree,
see igraph_strength().

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

Example 13.45. File examples/simple/igraph_knn.c

igraph_get_adjacency — Returns the adjacency ma-
trix of a graph

Structural Properties of Graphs

344

int igraph_get_adjacency(const igraph_t *graph, igraph_matrix_t *res,
 igraph_get_adjacency_t type, igraph_bool_t eids);

The result is an incidence matrix, it contains numbers greater than one if there are multiple edges in the
graph.

Arguments:

graph: Pointer to the graph to convert

res: Pointer to an initialized matrix object, it will be resized if needed.

type: Constant giving the type of the adjacency matrix to create for undirected graphs. It is ignored
for directed graphs. Possible values:

IGRAPH_GET_ADJACENCY_UPPERthe upper right triangle of the matrix is used.

IGRAPH_GET_ADJACENCY_LOWERthe lower left triangle of the matrix is used.

IGRAPH_GET_ADJACENCY_BOTH the whole matrix is used, a symmetric matrix is re-
turned.

type: eids Logical, if true, then the edges ids plus one are stored in the adjacency matrix, instead of
the number of edges between the two vertices. (The plus one is needed, since edge ids start
from zero, and zero means no edge in this case.)

Returns:

Error code: IGRAPH_EINVAL invalid type argument.

See also:

igraph_get_adjacency_sparse if you want a sparse matrix representation

Time complexity: O(|V||V|), |V| is the number of vertices in the graph.

igraph_get_stochastic — Stochastic adjacency ma-
trix of a graph

int igraph_get_stochastic(const igraph_t *graph,
 igraph_matrix_t *matrix,
 igraph_bool_t column_wise);

Stochastic matrix of a graph. The stochastic matrix of a graph is its adjacency matrix, normalized row-
wise or column-wise, such that the sum of each row (or column) is one.

Arguments:

graph: The input graph.

sparsemat: Pointer to an initialized matrix, the result is stored here.

Structural Properties of Graphs

345

column_wise: Whether to normalize column-wise. For undirected graphs this argument does not
have any effect.

Returns:

Error code.

Time complexity: O(|V||V|), quadratic in the number of vertices.

See also:

igraph_get_stochastic_sparsemat(), the sparse version of this function.

igraph_get_stochastic_sparsemat — Stochastic ad-
jacency matrix of a graph

int igraph_get_stochastic_sparsemat(const igraph_t *graph,
 igraph_sparsemat_t *sparsemat,
 igraph_bool_t column_wise);

Stochastic matrix of a graph. The stochastic matrix of a graph is its adjacency matrix, normalized row-
wise or column-wise, such that the sum of each row (or column) is one.

Arguments:

graph: The input graph.

sparsemat: Pointer to an uninitialized sparse matrix, the result is stored here.

column_wise: Whether to normalize column-wise. For undirected graphs this argument does not
have any effect.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

See also:

igraph_get_stochastic(), the dense version of this function.

igraph_get_edgelist — Returns the list of edges in a
graph

int igraph_get_edgelist(const igraph_t *graph, igraph_vector_t *res, igraph_bool_t bycol);

Structural Properties of Graphs

346

The order of the edges is given by the edge ids.

Arguments:

graph: Pointer to the graph object

res: Pointer to an initialized vector object, it will be resized.

bycol: Logical, if true, the edges will be returned columnwise, eg. the first edge is res[0]->res[|
E|] , the second is res[1]->res[|E|+1] , etc.

Returns:

Error code.

Time complexity: O(|E|), the number of edges in the graph.

igraph_contract_vertices — Replace multiple ver-
tices with a single one.

int igraph_contract_vertices(igraph_t *graph,
 const igraph_vector_t *mapping,
 const igraph_attribute_combination_t
 *vertex_comb);

This function creates a new graph, by merging several vertices into one. The vertices in the new graph
correspond to sets of vertices in the input graph.

Arguments:

graph: The input graph, it can be directed or undirected.

mapping: A vector giving the mapping. For each vertex in the original graph, it should contain
its id in the new graph.

vertex_comb: What to do with the vertex attributes. See the igraph manual section about attributes
for details.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number or vertices plus edges.

347

Chapter 14. Graph visitors
Breadth-first search

igraph_bfs — Breadth-first search

int igraph_bfs(const igraph_t *graph,
 igraph_integer_t root, const igraph_vector_t *roots,
 igraph_neimode_t mode, igraph_bool_t unreachable,
 const igraph_vector_t *restricted,
 igraph_vector_t *order, igraph_vector_t *rank,
 igraph_vector_t *father,
 igraph_vector_t *pred, igraph_vector_t *succ,
 igraph_vector_t *dist, igraph_bfshandler_t *callback,
 void *extra);

A simple breadth-first search, with a lot of different results and the possibility to call a callback whenever
a vertex is visited. It is allowed to supply null pointers as the output arguments the user is not interested
in, in this case they will be ignored.

If not all vertices can be reached from the supplied root vertex, then additional root vertices will be used,
in the order of their vertex ids.

Arguments:

graph: The input graph.

root: The id of the root vertex. It is ignored if the roots argument is not a null pointer.

roots: Pointer to an initialized vector, or a null pointer. If not a null pointer, then it is a vector
containing root vertices to start the BFS from. The vertices are considered in the order
they appear. If a root vertex was already found while searching from another one, then
no search is conducted from it.

mode: For directed graphs, it defines which edges to follow. IGRAPH_OUT means follow-
ing the direction of the edges, IGRAPH_IN means the opposite, and IGRAPH_ALL
ignores the direction of the edges. This parameter is ignored for undirected graphs.

unreachable: Logical scalar, whether the search should visit the vertices that are unreachable from
the given root node(s). If true, then additional searches are performed until all vertices
are visited.

restricted: If not a null pointer, then it must be a pointer to a vector containing vertex ids. The
BFS is carried out only on these vertices.

order: If not null pointer, then the vertex ids of the graph are stored here, in the same order
as they were visited.

rank: If not a null pointer, then the rank of each vertex is stored here.

father: If not a null pointer, then the id of the father of each vertex is stored here.

Graph visitors

348

pred: If not a null pointer, then the id of vertex that was visited before the current one is
stored here. If there is no such vertex (the current vertex is the root of a search tree),
then -1 is stored.

succ: If not a null pointer, then the id of the vertex that was visited after the current one
is stored here. If there is no such vertex (the current one is the last in a search tree),
then -1 is stored.

dist: If not a null pointer, then the distance from the root of the current search tree is stored
here.

callback: If not null, then it should be a pointer to a function of type
igraph_bfshandler_t. This function will be called, whenever a new vertex is
visited.

extra: Extra argument to pass to the callback function.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

Example 14.1. File examples/simple/igraph_bfs.c

Example 14.2. File examples/simple/igraph_bfs2.c

igraph_bfshandler_t — Callback type for BFS func-
tion

typedef igraph_bool_t igraph_bfshandler_t(const igraph_t *graph,
 igraph_integer_t vid,
 igraph_integer_t pred,
 igraph_integer_t succ,
 igraph_integer_t rank,
 igraph_integer_t dist,
 void *extra);

igraph_bfs() is able to call a callback function, whenever a new vertex is found, while doing the
breadth-first search. This callback function must be of type igraph_bfshandler_t. It has the fol-
lowing arguments:

Arguments:

graph: The graph that that algorithm is working on. Of course this must not be modified.

vid: The id of the vertex just found by the breadth-first search.

pred: The id of the previous vertex visited. It is -1 if there is no previous vertex, because the current
vertex is the root is a search tree.

Graph visitors

349

succ: The id of the next vertex that will be visited. It is -1 if there is no next vertex, because the
current vertex is the last one in a search tree.

rank: The rank of the current vertex, it starts with zero.

dist: The distance (number of hops) of the current vertex from the root of the current search tree.

extra: The extra argument that was passed to igraph_bfs().

Returns:

A logical value, if TRUE (=non-zero), that is interpreted as a request to stop the BFS and return to the
caller. If a BFS is terminated like this, then all elements of the result vectors that were not yet calculated
at the point of the termination contain IGRAPH_NAN.

See also:

igraph_bfs()

Depth-first search

igraph_dfs — Depth-first search

int igraph_dfs(const igraph_t *graph, igraph_integer_t root,
 igraph_neimode_t mode, igraph_bool_t unreachable,
 igraph_vector_t *order,
 igraph_vector_t *order_out, igraph_vector_t *father,
 igraph_vector_t *dist, igraph_dfshandler_t *in_callback,
 igraph_dfshandler_t *out_callback,
 void *extra);

A simple depth-first search, with the possibility to call a callback whenever a vertex is discovered and/or
whenever a subtree is finished. It is allowed to supply null pointers as the output arguments the user is not
interested in, in this case they will be ignored.

If not all vertices can be reached from the supplied root vertex, then additional root vertices will be used,
in the order of their vertex ids.

Arguments:

graph: The input graph.

root: The id of the root vertex.

mode: For directed graphs, it defines which edges to follow. IGRAPH_OUT means follow-
ing the direction of the edges, IGRAPH_IN means the opposite, and IGRAPH_ALL
ignores the direction of the edges. This parameter is ignored for undirected graphs.

unreachable: Logical scalar, whether the search should visit the vertices that are unreachable from
the given root node(s). If true, then additional searches are performed until all ver-
tices are visited.

Graph visitors

350

order: If not null pointer, then the vertex ids of the graph are stored here, in the same order
as they were discovered.

order_out: If not a null pointer, then the vertex ids of the graphs are stored here, in the order
of the completion of their subtree.

father: If not a null pointer, then the id of the father of each vertex is stored here.

dist: If not a null pointer, then the distance from the root of the current search tree is
stored here.

in_callback: If not null, then it should be a pointer to a function of type
igraph_dfshandler_t. This function will be called, whenever a new vertex
is discovered.

out_callback: If not null, then it should be a pointer to a function of type
igraph_dfshandler_t. This function will be called, whenever the subtree of
a vertex is completed.

extra: Extra argument to pass to the callback function(s).

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

igraph_dfshandler_t — Callback type for the DFS
function

typedef igraph_bool_t igraph_dfshandler_t(const igraph_t *graph,
 igraph_integer_t vid,
 igraph_integer_t dist,
 void *extra);

igraph_dfs() is able to call a callback function, whenever a new vertex is discovered, and/or when-
ever a subtree is completed. These callbacks must be of type igraph_dfshandler_t. They have the
following arguments:

Arguments:

graph: The graph that that algorithm is working on. Of course this must not be modified.

vid: The id of the vertex just found by the depth-first search.

dist: The distance (number of hops) of the current vertex from the root of the current search tree.

extra: The extra argument that was passed to igraph_dfs().

Returns:

A logical value, if TRUE (=non-zero), that is interpreted as a request to stop the DFS and return to the
caller. If a DFS is terminated like this, then all elements of the result vectors that were not yet calculated
at the point of the termination contain IGRAPH_NAN.

Graph visitors

351

See also:

igraph_dfs()

352

Chapter 15. Cliques and Independent
Vertex Sets

These functions calculate various graph properties related to cliques and independent vertex sets.

Cliques

igraph_cliques — Find all or some cliques in a graph

int igraph_cliques(const igraph_t *graph, igraph_vector_ptr_t *res,
 igraph_integer_t min_size, igraph_integer_t max_size);

Cliques are fully connected subgraphs of a graph.

If you are only interested in the size of the largest clique in the graph, use igraph_clique_number()
instead.

The current implementation of this function searches for maximal independent vertex sets (see
igraph_maximal_independent_vertex_sets()) in the complementer graph using the algo-
rithm published in: S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirawaka. A new algorithm for generating
all the maximal independent sets. SIAM J Computing, 6:505--517, 1977.

Arguments:

graph: The input graph.

res: Pointer to a pointer vector, the result will be stored here, ie. res will contain pointers to
igraph_vector_t objects which contain the indices of vertices involved in a clique.
The pointer vector will be resized if needed but note that the objects in the pointer vector
will not be freed.

min_size: Integer giving the minimum size of the cliques to be returned. If negative or zero, no lower
bound will be used.

max_size: Integer giving the maximum size of the cliques to be returned. If negative or zero, no upper
bound will be used.

Returns:

Error code.

See also:

igraph_largest_cliques() and igraph_clique_number().

Time complexity: TODO

Cliques and Independent Vertex Sets

353

Example 15.1. File examples/simple/igraph_cliques.c

igraph_largest_cliques — Finds the largest
clique(s) in a graph.

int igraph_largest_cliques(const igraph_t *graph, igraph_vector_ptr_t *res);

A clique is largest (quite intuitively) if there is no other clique in the graph which contains more vertices.

Note that this is not necessarily the same as a maximal clique, ie. the largest cliques are always maximal
but a maximal clique is not always largest.

The current implementation of this function searches for maximal cliques using
igraph_maximal_cliques() and drops those that are not the largest.

The implementation of this function changed between igraph 0.5 and 0.6, so the order of the cliques and
the order of vertices within the cliques will almost surely be different between these two versions.

Arguments:

graph: The input graph.

res: Pointer to an initialized pointer vector, the result will be stored here. It will be resized as needed.
Note that vertices of a clique may be returned in arbitrary order.

Returns:

Error code.

See also:

igraph_cliques(), igraph_maximal_cliques()

Time complexity: O(3^(|V|/3)) worst case.

igraph_maximal_cliques — Find all maximal cliques
of a graph

int igraph_maximal_cliques(const igraph_t *graph,
 igraph_vector_ptr_t *res,
 igraph_integer_t min_size,
 igraph_integer_t max_size);

A maximal clique is a clique which can't be extended any more by adding a new vertex to it.

If you are only interested in the size of the largest clique in the graph, use igraph_clique_number()
instead.

Cliques and Independent Vertex Sets

354

The current implementation uses a modified Bron-Kerbosch algorithm to find the maximal cliques, see:
David Eppstein, Maarten Löffler, Darren Strash: Listing All Maximal Cliques in Sparse Graphs in Near-
Optimal Time. Algorithms and Computation, Lecture Notes in Computer Science Volume 6506, 2010,
pp 403-414.

The implementation of this function changed between igraph 0.5 and 0.6 and also between 0.6 and 0.7, so
the order of the cliques and the order of vertices within the cliques will almost surely be different between
these three versions.

Arguments:

graph: The input graph.

res: Pointer to a pointer vector, the result will be stored here, ie. res will contain pointers to
igraph_vector_t objects which contain the indices of vertices involved in a clique.
The pointer vector will be resized if needed but note that the objects in the pointer vector
will not be freed. Note that vertices of a clique may be returned in arbitrary order.

min_size: Integer giving the minimum size of the cliques to be returned. If negative or zero, no lower
bound will be used.

max_size: Integer giving the maximum size of the cliques to be returned. If negative or zero, no upper
bound will be used.

Returns:

Error code.

See also:

igraph_maximal_independent_vertex_sets(), igraph_clique_number()

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small
for sparse graphs.

Example 15.2. File examples/simple/igraph_maximal_cliques.c

igraph_maximal_cliques_count — Count the number
of maximal cliques in a graph

int igraph_maximal_cliques_count(const igraph_t *graph,
 igraph_integer_t *res,
 igraph_integer_t min_size,
 igraph_integer_t max_size);

The current implementation uses a modified Bron-Kerbosch algorithm to find the maximal cliques, see:
David Eppstein, Maarten Löffler, Darren Strash: Listing All Maximal Cliques in Sparse Graphs in Near-
Optimal Time. Algorithms and Computation, Lecture Notes in Computer Science Volume 6506, 2010,
pp 403-414.

Cliques and Independent Vertex Sets

355

Arguments:

graph: The input graph.

res: Pointer to a pointer vector, the result will be stored here, ie. res will contain pointers to
igraph_vector_t objects which contain the indices of vertices involved in a clique.
The pointer vector will be resized if needed but note that the objects in the pointer vector
will not be freed. Note that vertices of a clique may be returned in arbitrary order.

min_size: Integer giving the minimum size of the cliques to be returned. If negative or zero, no lower
bound will be used.

max_size: Integer giving the maximum size of the cliques to be returned. If negative or zero, no upper
bound will be used.

Returns:

Error code.

See also:

igraph_maximal_cliques().

Time complexity: O(d(n-d)3^(d/3)) worst case, d is the degeneracy of the graph, this is typically small
for sparse graphs.

Example 15.3. File examples/simple/igraph_maximal_cliques.c

igraph_clique_number — Find the clique number of
the graph

int igraph_clique_number(const igraph_t *graph, igraph_integer_t *no);

The clique number of a graph is the size of the largest clique.

Arguments:

graph: The input graph.

no: The clique number will be returned to the igraph_integer_t pointed by this variable.

Returns:

Error code.

See also:

igraph_cliques(), igraph_largest_cliques().

Cliques and Independent Vertex Sets

356

Time complexity: O(3^(|V|/3)) worst case.

Independent Vertex Sets

igraph_independent_vertex_sets — Find all inde-
pendent vertex sets in a graph

int igraph_independent_vertex_sets(const igraph_t *graph,
 igraph_vector_ptr_t *res,
 igraph_integer_t min_size,
 igraph_integer_t max_size);

A vertex set is considered independent if there are no edges between them.

If you are interested in the size of the largest independent vertex set, use
igraph_independence_number() instead.

The current implementation was ported to igraph from the Very Nauty Graph Library by Keith Briggs and
uses the algorithm from the paper S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirawaka. A new algorithm
for generating all the maximal independent sets. SIAM J Computing, 6:505--517, 1977.

Arguments:

graph: The input graph.

res: Pointer to a pointer vector, the result will be stored here, ie. res will contain pointers to
igraph_vector_t objects which contain the indices of vertices involved in an inde-
pendent vertex set. The pointer vector will be resized if needed but note that the objects
in the pointer vector will not be freed.

min_size: Integer giving the minimum size of the sets to be returned. If negative or zero, no lower
bound will be used.

max_size: Integer giving the maximum size of the sets to be returned. If negative or zero, no upper
bound will be used.

Returns:

Error code.

See also:

igraph_largest_independent_vertex_sets(),
igraph_independence_number().

Time complexity: TODO

Example 15.4. File examples/simple/igraph_independent_sets.c

Cliques and Independent Vertex Sets

357

igraph_largest_independent_vertex_sets — Finds
the largest independent vertex set(s) in a graph.

int igraph_largest_independent_vertex_sets(const igraph_t *graph,
 igraph_vector_ptr_t *res);

An independent vertex set is largest if there is no other independent vertex set with more vertices in the
graph.

The current implementation was ported to igraph from the Very Nauty Graph Library by Keith Briggs and
uses the algorithm from the paper S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirawaka. A new algorithm
for generating all the maximal independent sets. SIAM J Computing, 6:505--517, 1977.

Arguments:

graph: The input graph.

res: Pointer to a pointer vector, the result will be stored here. It will be resized as needed.

Returns:

Error code.

See also:

igraph_independent_vertex_sets(),
igraph_maximal_independent_vertex_sets().

Time complexity: TODO

igraph_maximal_independent_vertex_sets — Find
all maximal independent vertex sets of a graph

int igraph_maximal_independent_vertex_sets(const igraph_t *graph,
 igraph_vector_ptr_t *res);

A maximal independent vertex set is an independent vertex set which can't be extended any more by adding
a new vertex to it.

The algorithm used here is based on the following paper: S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shi-
rawaka. A new algorithm for generating all the maximal independent sets. SIAM J Computing, 6:505--517,
1977.

The implementation was originally written by Kevin O'Neill and modified by K M Briggs in the Very
Nauty Graph Library. I simply re-wrote it to use igraph's data structures.

If you are interested in the size of the largest independent vertex set, use
igraph_independence_number() instead.

Cliques and Independent Vertex Sets

358

Arguments:

graph: The input graph.

res: Pointer to a pointer vector, the result will be stored here, ie. res will contain pointers to
igraph_vector_t objects which contain the indices of vertices involved in an independent
vertex set. The pointer vector will be resized if needed but note that the objects in the pointer
vector will not be freed.

Returns:

Error code.

See also:

igraph_maximal_cliques(), igraph_independence_number()

Time complexity: TODO.

igraph_independence_number — Find the indepen-
dence number of the graph

int igraph_independence_number(const igraph_t *graph, igraph_integer_t *no);

The independence number of a graph is the cardinality of the largest independent vertex set.

The current implementation was ported to igraph from the Very Nauty Graph Library by Keith Briggs and
uses the algorithm from the paper S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirawaka. A new algorithm
for generating all the maximal independent sets. SIAM J Computing, 6:505--517, 1977.

Arguments:

graph: The input graph.

no: The independence number will be returned to the igraph_integer_t pointed by this vari-
able.

Returns:

Error code.

See also:

igraph_independent_vertex_sets().

Time complexity: TODO.

359

Chapter 16. Graph Isomorphism
The simple interface

igraph provides four set of functions to deal with graph isomorphism problems.

The igraph_isomorphic() and igraph_subisomorphic() functions make up the first set (in
addition with the igraph_permute_vertices() function). These functions choose the algorithm
which is best for the supplied input graph. (The choice is not very sophisticated though, see their docu-
mentation for details.)

The VF2 graph (and subgraph) isomorphism algorithm is implemented in igraph, these functions are the
second set. See igraph_isomorphic_vf2() and igraph_subisomorphic_vf2() for starters.

Functions for the BLISS algorithm constitute the third set, see igraph_isomorphic_bliss(). This
implementation only works for undirected graphs.

Finally, the isomorphism classes of all graphs with three and four vertices are precomputed and stored
in igraph, so for these small graphs there is a very simple fast way to decide isomorphism. See
igraph_isomorphic_34().

igraph_permute_vertices — Permute the vertices

int igraph_permute_vertices(const igraph_t *graph, igraph_t *res,
 const igraph_vector_t *permutation);

This function creates a new graph from the input graph by permuting its vertices according to the specified
mapping. Call this function with the output of igraph_canonical_permutation() to create the
canonical form of a graph.

Arguments:

graph: The input graph.

res: Pointer to an uninitialized graph object. The new graph is created here.

permutation: The permutation to apply. Vertex 0 is mapped to the first element of the vector, vertex
1 to the second, etc. Note that it is not checked that the vector contains every element
only once, and no range checking is performed either.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in terms of the number of vertices and edges.

igraph_isomorphic — Decides whether two graphs
are isomorphic

Graph Isomorphism

360

int igraph_isomorphic(const igraph_t *graph1, const igraph_t *graph2,
 igraph_bool_t *iso);

From Wikipedia: The graph isomorphism problem or GI problem is the graph theory problem of deter-
mining whether, given two graphs G1 and G2, it is possible to permute (or relabel) the vertices of one
graph so that it is equal to the other. Such a permutation is called a graph isomorphism.

This function decides which graph isomorphism algorithm to be used based on the input graphs. Right
now it does the following:

1. If one graph is directed and the other undirected then an error is triggered.

2. If the two graphs does not have the same number of vertices and edges it returns with FALSE.

3. Otherwise, if the graphs have three or four vertices then an O(1) algorithm is used with precomputed
data.

4. Otherwise, if the graphs are directed then VF2 is used, see igraph_isomorphic_vf2().

5. Otherwise BLISS is used, see igraph_isomorphic_bliss().

Please call the VF2 and BLISS functions directly if you need something more sophisticated, e.g. you need
the isomorphic mapping.

Arguments:

graph1: The first graph.

graph2: The second graph.

iso: Pointer to a logical variable, will be set to TRUE (1) if the two graphs are isomorphic, and
FALSE (0) otherwise.

Returns:

Error code.

See also:

igraph_isoclass(), igraph_isoclass_subgraph(),
igraph_isoclass_create().

Time complexity: exponential.

igraph_subisomorphic — Decide subgraph isomor-
phism

int igraph_subisomorphic(const igraph_t *graph1, const igraph_t *graph2,
 igraph_bool_t *iso);

Check whether graph2 is isomorphic to a subgraph of graph1. Currently this function just calls
igraph_subisomorphic_vf2() for all graphs.

Graph Isomorphism

361

Arguments:

graph1: The first input graph, may be directed or undirected. This is supposed to be the bigger graph.

graph2: The second input graph, it must have the same directedness as graph2, or an error is trig-
gered. This is supposed to be the smaller graph.

iso: Pointer to a boolean, the result is stored here.

Returns:

Error code.

Time complexity: exponential.

The BLISS algorithm
BLISS is a successor of the famous NAUTY algorithm and implementation. While using the same ideas
in general, with better heuristics and data structure BLISS outperforms NAUTY on most graphs.

BLISS was developed and implemented by Tommi Junttila and Petteri Kaski at Helsinki University of
Technology, Finland. See Tommi Juntilla's homepage at http://www.tcs.hut.fi/~tjunttil/ and the publication
at http://www.siam.org/proceedings/alenex/2007/alx07_013junttilat.pdf for more information.

BLISS version 0.35 is included in igraph.

igraph_bliss_sh_t — Splitting heuristics for BLISS

typedef enum { IGRAPH_BLISS_F=0, IGRAPH_BLISS_FL,
 IGRAPH_BLISS_FS, IGRAPH_BLISS_FM,
 IGRAPH_BLISS_FLM, IGRAPH_BLISS_FSM } igraph_bliss_sh_t;

Values:

IGRAPH_BLISS_F: First non-singleton cell.

IGRAPH_BLISS_FL: First largest non-singleton cell.

IGRAPH_BLISS_FS: First smallest non-singleton cell.

IGRAPH_BLISS_FM: First maximally non-trivially connected non-singleton cell.

IGRAPH_BLISS_FLM: Largest maximally non-trivially connected non-singleton cell.

IGRAPH_BLISS_FSM: Smallest maximally non-trivially connected non-singletion cell.

igraph_bliss_info_t — Information about a BLISS
run

http://www.tcs.hut.fi/~tjunttil/
http://www.siam.org/proceedings/alenex/2007/alx07_013junttilat.pdf

Graph Isomorphism

362

typedef struct igraph_bliss_info_t {
 unsigned long nof_nodes;
 unsigned long nof_leaf_nodes;
 unsigned long nof_bad_nodes;
 unsigned long nof_canupdates;
 unsigned long max_level;
 char *group_size;
} igraph_bliss_info_t;

Some secondary information found by the BLISS algorithm is stored here. It is useful if you wany to study
the internal working of the algorithm.

Values:

nof_nodes: The number of nodes in the search tree.

nof_leaf_nodes: The number of leaf nodes in the search tree.

nof_bad_nodes: Number of bad nodes.

nof_canupdates: Number of canrep updates.

max_level: Maximum level.

group_size: The size of the automorphism group of the graph, given as a string. It should be
deallocated via free() if not needed any more.

See http://www.tcs.hut.fi/Software/bliss/index.html for details about the algorithm and these parameters.

igraph_canonical_permutation — Canonical permu-
tation using BLISS

int igraph_canonical_permutation(const igraph_t *graph, igraph_vector_t *labeling,
 igraph_bliss_sh_t sh, igraph_bliss_info_t *info);

This function computes the canonical permutation which transforms the graph into a canonical form by
using the BLISS algorithm.

Arguments:

graph: The input graph, it is treated as undirected and the multiple edges are ignored.

labeling: Pointer to a vector, the result is stored here. The permutation takes vertex 0 to the first
element of the vector, vertex 1 to the second, etc. The vector will be resized as needed.

sh: The split heuristics to be used in BLISS. See igraph_bliss_sh_t.

info: If not NULL then information on BLISS internals is stored here. See
igraph_bliss_info_t.

Returns:

Error code.

http://www.tcs.hut.fi/Software/bliss/index.html

Graph Isomorphism

363

Time complexity: exponential, in practice it is fast for many graphs.

igraph_isomorphic_bliss — Graph isomorphism via
BLISS

int igraph_isomorphic_bliss(const igraph_t *graph1, const igraph_t *graph2,
 igraph_bool_t *iso, igraph_vector_t *map12,
 igraph_vector_t *map21,
 igraph_bliss_sh_t sh1, igraph_bliss_sh_t sh2,
 igraph_bliss_info_t *info1, igraph_bliss_info_t *info2);

This function uses the BLISS graph isomorphism algorithm, a successor of the famous NAUTY algo-
rithm and implementation. BLISS is open source and licensed according to the GNU GPL. See http://
www.tcs.hut.fi/Software/bliss/index.html for details. Currently the 0.35 version of BLISS is included in
igraph.

Arguments:

graph1: The first input graph, it is assumed to be undirected, directed graphs are treated as undirected
too. The algorithm eliminates multiple edges from the graph first.

graph2: The second input graph, it is assumed to be undirected, directed graphs are treated as undi-
rected too. The algorithm eliminates multiple edges from the graph first.

iso: Pointer to a boolean, the result is stored here.

map12: A vector or NULL pointer. If not NULL then an isomorphic mapping from graph1 to
graph2 is stored here. If the input graphs are not isomorphic then this vector is cleared, i.e.
it will have length zero.

map21: Similar to map12, but for the mapping from graph2 to graph1.

sh1: Splitting heuristics to be used for the first graph. See igraph_bliss_sh_t.

sh2: Splitting heuristics to be used for the second graph. See igraph_bliss_sh_t.

info1: If not NULL, information about the canonization of the first input graph is stored here. See
igraph_bliss_info_t for details. Note that if the two graphs have different number of
vertices or edges, then this is not filled.

info2: Same as info1, but for the second graph.

Returns:

Error code.

Time complexity: exponential, but in practice it is quite fast.

igraph_automorphisms — Number of automorphisms
using BLISS

http://www.tcs.hut.fi/Software/bliss/index.html
http://www.tcs.hut.fi/Software/bliss/index.html

Graph Isomorphism

364

int igraph_automorphisms(const igraph_t *graph,
 igraph_bliss_sh_t sh, igraph_bliss_info_t *info);

The number of automorphisms of a graph is computed using BLISS. The result is returned as part of the
info structure, in tag group_size. It is returned as a string, as it can be very high even for relatively
small graphs. If the GNU MP library is used then this number is exact, otherwise a long double is used
and it is only approximate. See also igraph_bliss_info_t.

Arguments:

graph: The input graph, it is treated as undirected and the multiple edges are ignored.

sh: The split heuristics to be used in BLISS. See igraph_bliss_sh_t.

info: The result is stored here, in particular in the group_size tag of info.

Returns:

Error code.

Time complexity: exponential, in practice it is fast for many graphs.

The VF2 algorithm

igraph_isomorphic_vf2 — Isomorphism via VF2

int igraph_isomorphic_vf2(const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1,
 const igraph_vector_int_t *edge_color2,
 igraph_bool_t *iso, igraph_vector_t *map12,
 igraph_vector_t *map21,
 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

This function performs the VF2 algorithm via calling igraph_isomorphic_function_vf2().

Note that this function cannot be used for deciding subgraph isomorphism, use
igraph_subisomorphic_vf2() for that.

Arguments:

graph1: The first graph, may be directed or undirected.

graph2: The second graph. It must have the same directedness as graph1, otherwise an
error is reported.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the isomorphism is calculated on the colored graphs; i.e. two vertices

Graph Isomorphism

365

can match only if their color also matches. Supply a null pointer here if your
graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument for
explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the two
graphs must have matching colors as well. Supply a null pointer here if your
graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

iso: Pointer to a logical constant, the result of the algorithm will be placed here.

map12: Pointer to an initialized vector or a NULL pointer. If not a NULL pointer then
the mapping from graph1 to graph2 is stored here. If the graphs are not iso-
morphic then the vector is cleared (ie. has zero elements).

map21: Pointer to an initialized vector or a NULL pointer. If not a NULL pointer then
the mapping from graph2 to graph1 is stored here. If the graphs are not iso-
morphic then the vector is cleared (ie. has zero elements).

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions node_compat_fn and
edge_compat_fn.

Returns:

Error code.

See also:

igraph_subisomorphic_vf2(), igraph_count_isomorphisms_vf2(),
igraph_get_isomorphisms_vf2(),

Time complexity: exponential, what did you expect?

Example 16.1. File examples/simple/igraph_isomorphic_vf2.c

igraph_count_isomorphisms_vf2 — Number of iso-
morphisms via VF2

int igraph_count_isomorphisms_vf2(const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,

Graph Isomorphism

366

 const igraph_vector_int_t *edge_color1,
 const igraph_vector_int_t *edge_color2,
 igraph_integer_t *count,
 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

This function counts the number of isomorphic mappings between two graphs. It uses the generic
igraph_isomorphic_function_vf2() function.

Arguments:

graph1: The first input graph, may be directed or undirected.

graph2: The second input graph, it must have the same directedness as graph1, or an
error will be reported.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the isomorphism is calculated on the colored graphs; i.e. two vertices
can match only if their color also matches. Supply a null pointer here if your
graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument for
explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the two
graphs must have matching colors as well. Supply a null pointer here if your
graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

count: Point to an integer, the result will be stored here.

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions node_compat_fn and
edge_compat_fn.

Returns:

Error code.

Time complexity: exponential.

igraph_get_isomorphisms_vf2 — Collect the isomor-
phic mappings

int igraph_get_isomorphisms_vf2(const igraph_t *graph1,

Graph Isomorphism

367

 const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1,
 const igraph_vector_int_t *edge_color2,
 igraph_vector_ptr_t *maps,
 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

This function finds all the isomorphic mappings between two graphs. It uses the
igraph_isomorphic_function_vf2() function. Call the function with the same graph as
graph1 and graph2 to get automorphisms.

Arguments:

graph1: The first input graph, may be directed or undirected.

graph2: The second input graph, it must have the same directedness as graph1, or an
error will be reported.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the isomorphism is calculated on the colored graphs; i.e. two vertices
can match only if their color also matches. Supply a null pointer here if your
graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument for
explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the two
graphs must have matching colors as well. Supply a null pointer here if your
graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

maps: Pointer vector. On return it is empty if the input graphs are no isomorphic. Other-
wise it contains pointers to igraph_vector_t objects, each vector is an isomorphic
mapping of graph2 to graph1. Please note that you need to 1) Destroy the vec-
tors via igraph_vector_destroy(), 2) free them via free() and then 3)
call igraph_vector_ptr_destroy() on the pointer vector to deallocate
all memory when maps is no longer needed.

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions node_compat_fn and
edge_compat_fn.

Returns:

Error code.

Time complexity: exponential.

Graph Isomorphism

368

igraph_isohandler_t — Callback type, called when an
isomorphism was found

typedef igraph_bool_t igraph_isohandler_t(const igraph_vector_t *map12,
 const igraph_vector_t *map21, void *arg);

See the details at the documentation of igraph_isomorphic_function_vf2().

Arguments:

map12: The mapping from the first graph to the second.

map21: The mapping from the second graph to the first, the inverse of map12 basically.

arg: This extra argument was passed to igraph_isomorphic_function_vf2() when it
was called.

Returns:

Boolean, whether to continue with the isomorphism search.

igraph_isocompat_t — Callback type, called to check
whether two vertices or edges are compatible

typedef igraph_bool_t igraph_isocompat_t(const igraph_t *graph1,
 const igraph_t *graph2,
 const igraph_integer_t g1_num,
 const igraph_integer_t g2_num,
 void *arg);

VF2 (subgraph) isomorphism functions can be restricted by defining relations on the vertices and/or edges
of the graphs, and then checking whether the vertices (edges) match according to these relations.

This feature is implemented by two callbacks, one for vertices, one for edges. Every time igraph tries to
match a vertex (edge) of the first (sub)graph to a vertex of the second graph, the vertex (edge) compatibility
callback is called. The callback returns a logical value, giving whether the two vertices match.

Both callback functions are of type igraph_isocompat_t.

Arguments:

graph1: The first graph.

graph2: The second graph.

g1_num: The id of a vertex or edge in the first graph.

g2_num: The id of a vertex or edge in the second graph.

Graph Isomorphism

369

arg: Extra argument to pass to the callback functions.

Returns:

Logical scalar, whether vertex (or edge) g1_num in graph1 is compatible with vertex (or edge)
g2_num in graph2.

igraph_isomorphic_function_vf2 — The generic
VF2 interface

int igraph_isomorphic_function_vf2(const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1,
 const igraph_vector_int_t *edge_color2,
 igraph_vector_t *map12,
 igraph_vector_t *map21,
 igraph_isohandler_t *isohandler_fn,
 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

This function is an implementation of the VF2 isomorphism algorithm, see P. Foggia, C. Sansone, M.
Vento, An Improved algorithm for matching large graphs, Proc. of the 3rd IAPR-TC-15 International
Workshop on Graph-based Representations, Italy, 2001.

For using it you need to define a callback function of type igraph_isohandler_t. This function will
be called whenever VF2 finds an isomorphism between the two graphs. The mapping between the two
graphs will be also provided to this function. If the callback returns a nonzero value then the search is
continued, otherwise it stops.

Arguments:

graph1: The first input graph.

graph2: The second input graph.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the isomorphism is calculated on the colored graphs; i.e. two vertices
can match only if their color also matches. Supply a null pointer here if your
graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument for
explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the two
graphs must have matching colors as well. Supply a null pointer here if your
graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

Graph Isomorphism

370

map12: Pointer to an initialized vector or NULL. If not NULL and the supplied graphs are
isomorphic then the permutation taking graph1 to graph is stored here. If not
NULL and the graphs are not isomorphic then a zero-length vector is returned.

map21: This is the same as map12, but for the permutation taking graph2 to graph1.

isohandler_fn: The callback function to be called if an isomorphism is found. See also
igraph_isohandler_t.

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions isohandler_fn, node_compat_fn
and edge_compat_fn.

Returns:

Error code.

Time complexity: exponential.

igraph_subisomorphic_vf2 — Decide subgraph iso-
morphism using VF2

int igraph_subisomorphic_vf2(const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1,
 const igraph_vector_int_t *edge_color2,
 igraph_bool_t *iso, igraph_vector_t *map12,
 igraph_vector_t *map21,
 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

Decides whether a subgraph of graph1 is isomorphic to graph2. It uses
igraph_subisomorphic_function_vf2().

Arguments:

graph1: The first input graph, may be directed or undirected. This is supposed to be the
larger graph.

graph2: The second input graph, it must have the same directedness as graph1. This is
supposed to be the smaller graph.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the subgraph isomorphism is calculated on the colored graphs; i.e.
two vertices can match only if their color also matches. Supply a null pointer here
if your graphs are not colored.

Graph Isomorphism

371

vertex_color2: An optional color vector for the second graph. See the previous argument for
explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the two
graphs must have matching colors as well. Supply a null pointer here if your
graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

iso: Pointer to a boolean. The result of the decision problem is stored here.

map12: Pointer to a vector or NULL. If not NULL, then an isomorphic mapping from
graph1 to graph2 is stored here.

map21: Pointer to a vector ot NULL. If not NULL, then an isomorphic mapping from
graph2 to graph1 is stored here.

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions node_compat_fn and
edge_compat_fn.

Returns:

Error code.

Time complexity: exponential.

igraph_count_subisomorphisms_vf2 — Number of
subgraph isomorphisms using VF2

int igraph_count_subisomorphisms_vf2(const igraph_t *graph1, const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1,
 const igraph_vector_int_t *edge_color2,
 igraph_integer_t *count,
 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

Count the number of isomorphisms between subgraphs of graph1 and graph2. This function uses
igraph_subisomorphic_function_vf2().

Arguments:

graph1: The first input graph, may be directed or undirected. This is supposed to be the
larger graph.

Graph Isomorphism

372

graph2: The second input graph, it must have the same directedness as graph1. This is
supposed to be the smaller graph.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the subgraph isomorphism is calculated on the colored graphs; i.e.
two vertices can match only if their color also matches. Supply a null pointer here
if your graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument for
explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the two
graphs must have matching colors as well. Supply a null pointer here if your
graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

count: Pointer to an integer. The number of subgraph isomorphisms is stored here.

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions node_compat_fn and
edge_compat_fn.

Returns:

Error code.

Time complexity: exponential.

igraph_get_subisomorphisms_vf2 — Return all sub-
graph isomorphic mappings

int igraph_get_subisomorphisms_vf2(const igraph_t *graph1,
 const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1,
 const igraph_vector_int_t *edge_color2,
 igraph_vector_ptr_t *maps,
 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

This function collects all isomorphic mappings of graph2 to a subgraph of graph1. It uses the
igraph_subisomorphic_function_vf2() function.

Arguments:

Graph Isomorphism

373

graph1: The first input graph, may be directed or undirected. This is supposed to be the
larger graph.

graph2: The second input graph, it must have the same directedness as graph1. This is
supposed to be the smaller graph.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the subgraph isomorphism is calculated on the colored graphs; i.e.
two vertices can match only if their color also matches. Supply a null pointer here
if your graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument for
explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the two
graphs must have matching colors as well. Supply a null pointer here if your
graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

maps: Pointer vector. On return it contains pointers to igraph_vector_t objects, each vec-
tor is an isomorphic mapping of graph2 to a subgraph of graph1. Please note
that you need to 1) Destroy the vectors via igraph_vector_destroy(), 2)
free them via free() and then 3) call igraph_vector_ptr_destroy()
on the pointer vector to deallocate all memory when maps is no longer needed.

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions node_compat_fn and
edge_compat_fn.

Returns:

Error code.

Time complexity: exponential.

igraph_subisomorphic_function_vf2 — Generic
VF2 function for subgraph isomorphism problems

int igraph_subisomorphic_function_vf2(const igraph_t *graph1,
 const igraph_t *graph2,
 const igraph_vector_int_t *vertex_color1,
 const igraph_vector_int_t *vertex_color2,
 const igraph_vector_int_t *edge_color1,
 const igraph_vector_int_t *edge_color2,
 igraph_vector_t *map12,
 igraph_vector_t *map21,

Graph Isomorphism

374

 igraph_isohandler_t *isohandler_fn,
 igraph_isocompat_t *node_compat_fn,
 igraph_isocompat_t *edge_compat_fn,
 void *arg);

This function is the pair of igraph_isomorphic_function_vf2(), for subgraph isomorphism
problems. It searches for subgraphs of graph1 which are isomorphic to graph2. When it founds an
isomorphic mapping it calls the supplied callback isohandler_fn. The mapping (and its inverse) and
the additional arg argument are supplied to the callback.

Arguments:

graph1: The first input graph, may be directed or undirected. This is supposed to be the
larger graph.

graph2: The second input graph, it must have the same directedness as graph1. This is
supposed to be the smaller graph.

vertex_color1: An optional color vector for the first graph. If color vectors are given for both
graphs, then the subgraph isomorphism is calculated on the colored graphs; i.e.
two vertices can match only if their color also matches. Supply a null pointer here
if your graphs are not colored.

vertex_color2: An optional color vector for the second graph. See the previous argument for
explanation.

edge_color1: An optional edge color vector for the first graph. The matching edges in the two
graphs must have matching colors as well. Supply a null pointer here if your
graphs are not edge-colored.

edge_color2: The edge color vector for the second graph.

map12: Pointer to a vector or NULL. If not NULL, then an isomorphic mapping from
graph1 to graph2 is stored here.

map21: Pointer to a vector ot NULL. If not NULL, then an isomorphic mapping from
graph2 to graph1 is stored here.

isohandler_fn: A pointer to a function of type igraph_isohandler_t. This will be called
whenever a subgraph isomorphism is found. If the function returns with a non-
zero value then the search is continued, otherwise it stops and the function returns.

node_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two nodes are compatible.

edge_compat_fn: A pointer to a function of type igraph_isocompat_t. This function will be
called by the algorithm to determine whether two edges are compatible.

arg: Extra argument to supply to functions isohandler_fn, node_compat_fn
and edge_compat_fn.

Returns:

Error code.

Time complexity: exponential.

Graph Isomorphism

375

The LAD algorithm

igraph_subisomorphic_lad — Check subgraph iso-
morphism with the LAD algorithm

int igraph_subisomorphic_lad(const igraph_t *pattern, const igraph_t *target,
 igraph_vector_ptr_t *domains,
 igraph_bool_t *iso, igraph_vector_t *map,
 igraph_vector_ptr_t *maps,
 igraph_bool_t induced, int time_limit);

Check whether pattern is isomorphic to a subgraph os target. The original LAD implementation by
Christine Solnon was used as the basis of this code.

See more about at http://liris.cnrs.fr/csolnon/LAD.html and in Christine Solnon: AllDifferent-based Fil-
tering for Subgraph Isomorphism. Artificial Intelligence, 174(12-13):850-864, August 2010, Elsevier

Arguments:

pattern: The smaller graph, it can be directed or undirected.

target: The bigger graph, it can be directed or undirected.

domains: A pointer vector, or a null pointer. If a pointer vector, then it must contain pointers to
igraph_vector_t objects and the length of the vector must match the number of
vertices in the pattern graph. For each vertex, the ids of the compatible vertices in
the target graph are listed.

iso: Pointer to a boolean, or a null pointer. If not a null pointer, then the boolean is set to
TRUE (1) if a subgraph isomorphism is found, and to FALSE (0) otherwise.

map: Pointer to a vector or a null pointer. If not a null pointer and a subgraph isomorphism
is found, the matching vertices from the target graph are listed here, for each vertex (in
vertex id order) from the pattern graph.

maps: Pointer vector or a null pointer. If not a null pointer, then all subgraph isomorphisms
are stored in the pointer vector, in igraph_vector_t objects.

induced: Boolean, whether to search for induced matching subgraphs.

time_limit: Processor time limit in seconds. Supply zero here for no limit. If the time limit is over,
then the function signals an error.

Returns:

Error code

See also:

igraph_subisomorphic_vf2() for the VF2 algorithm.

http://liris.cnrs.fr/csolnon/LAD.html

Graph Isomorphism

376

Time complexity: exponential.

Example 16.2. File examples/simple/igraph_subisomorphic_lad.c

Functions for graphs with 3 or 4 vertices

igraph_isomorphic_34 — Graph isomorphism for 3-4
vertices

int igraph_isomorphic_34(const igraph_t *graph1, const igraph_t *graph2,
 igraph_bool_t *iso);

This function uses precomputed indices to decide isomorphism problems for graphs with only 3 or 4
vertices.

Arguments:

graph1: The first input graph.

graph2: The second input graph. Must have the same directedness as graph1.

iso: Pointer to a boolean, the result is stored here.

Returns:

Error code.

Time complexity: O(1).

igraph_isoclass — Determine the isomorphism class
of a graph with 3 or 4 vertices

int igraph_isoclass(const igraph_t *graph, igraph_integer_t *isoclass);

All graphs with a given number of vertices belong to a number of isomorphism classes, with every graph
in a given class being isomorphic to each other.

This function gives the isomorphism class (a number) of a graph. Two graphs have the same isomorphism
class if and only if they are isomorphic.

The first isomorphism class is numbered zero and it is the empty graph, the last isomorphism class is the
full graph. The number of isomorphism class for directed graphs with three vertices is 16 (between 0 and
15), for undirected graph it is only 4. For graphs with four vertices it is 218 (directed) and 11 (undirected).

Arguments:

graph: The graph object.

Graph Isomorphism

377

isoclass: Pointer to an integer, the isomorphism class will be stored here.

Returns:

Error code.

See also:

igraph_isomorphic(), igraph_isoclass_subgraph(),
igraph_isoclass_create(), igraph_motifs_randesu().

Because of some limitations this function works only for graphs with three of four vertices.

Time complexity: O(|E|), the number of edges in the graph.

igraph_isoclass_subgraph — The isomorphism class
of a subgraph of a graph.

int igraph_isoclass_subgraph(const igraph_t *graph, igraph_vector_t *vids,
 igraph_integer_t *isoclass);

This function is only implemented for subgraphs with three or four vertices.

Arguments:

graph: The graph object.

vids: A vector containing the vertex ids to be considered as a subgraph. Each vertex id should
be included at most once.

isoclass: Pointer to an integer, this will be set to the isomorphism class.

Returns:

Error code.

See also:

igraph_isoclass(), igraph_isomorphic(), igraph_isoclass_create().

Time complexity: O((d+n)*n), d is the average degree in the network, and n is the number of vertices in
vids.

igraph_isoclass_create — Creates a graph from the
given isomorphism class.

Graph Isomorphism

378

int igraph_isoclass_create(igraph_t *graph, igraph_integer_t size,
 igraph_integer_t number, igraph_bool_t directed);

This function is implemented only for graphs with three or four vertices.

Arguments:

graph: Pointer to an uninitialized graph object.

size: The number of vertices to add to the graph.

number: The isomorphism class.

directed: Logical constant, whether to create a directed graph.

Returns:

Error code.

See also:

igraph_isoclass(), igraph_isoclass_subgraph(), igraph_isomorphic().

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph to create.

379

Chapter 17. Graph Motifs, Dyad Census
and Triad Census

This section deals with functions which find small induced subgraphs in a graph. These were first defined
for subgraphs of two and three vertices by Holland and Leinhardt, and named dyad census and triad census.

igraph_dyad_census — Calculating the dyad
census as defined by Holland and Leinhardt

int igraph_dyad_census(const igraph_t *graph, igraph_integer_t *mut,
 igraph_integer_t *asym, igraph_integer_t *null);

Dyad census means classifying each pair of vertices of a directed graph into three categories: mutual, there
is an edge from a to b and also from b to a; asymmetric, there is an edge either from a to b or from b to
a but not the other way and null, no edges between a and b.

Holland, P.W. and Leinhardt, S. (1970). A Method for Detecting Structure in Sociometric Data. American
Journal of Sociology, 70, 492-513.

Arguments:

graph: The input graph, a warning is given if undirected as the results are undefined for undirected
graphs.

mut: Pointer to an integer, the number of mutual dyads is stored here.

asym: Pointer to an integer, the number of asymmetric dyads is stored here.

null: Pointer to an integer, the number of null dyads is stored here.

Returns:

Error code.

See also:

igraph_reciprocity(), igraph_triad_census().

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

igraph_triad_census — Triad census, as
defined by Davis and Leinhardt

Graph Motifs, Dyad Cen-
sus and Triad Census

380

int igraph_triad_census(const igraph_t *graph, igraph_vector_t *res);

Calculating the triad census means classifying every triple of vertices in a directed graph. A triple can be
in one of 16 states:

003 A, B, C, the empty graph.

012 A->B, C, a graph with a single directed edge.

102 A<->B, C, a graph with a mutual connection between two vertices.

021D A<-B->C, the binary out-tree.

021U A->B<-C, the binary in-tree.

021C A->B->C, the directed line.

111D A<->B<-C.

111U A<->B->C.

030T A->B<-C, A->C.

030C A<-B<-C, A->C.

201 A<->B<->C.

120D A<-B->C, A<->C.

120U A->B<-C, A<->C.

120C A->B->C, A<->C.

210 A->B<->C, A<->C.

300 A<->B<->C, A<->C, the complete graph.

See also Davis, J.A. and Leinhardt, S. (1972). The Structure of Positive Interpersonal Relations in Small
Groups. In J. Berger (Ed.), Sociological Theories in Progress, Volume 2, 218-251. Boston: Houghton
Mifflin.

This function calls igraph_motifs_randesu() which is an implementation of the FANMOD motif
finder tool, see igraph_motifs_randesu() for details. Note that the order of the triads is not the
same for igraph_triad_census() and igraph_motifs_randesu().

Arguments:

graph: The input graph. A warning is given for undirected graphs, as the result is undefined for those.

res: Pointer to an initialized vector, the result is stored here in the same order as given in the list
above. Note that this order is different than the one used by igraph_motifs_randesu().

Returns:

Error code.

Graph Motifs, Dyad Cen-
sus and Triad Census

381

See also:

igraph_motifs_randesu(), igraph_dyad_census().

Time complexity: TODO.

Graph motifs

igraph_motifs_randesu — Count the number of mo-
tifs in a graph

int igraph_motifs_randesu(const igraph_t *graph, igraph_vector_t *hist,
 int size, const igraph_vector_t *cut_prob);

Motifs are small connected subgraphs of a given structure in a graph. It is argued that the motif profile (ie.
the number of different motifs in the graph) is characteristic for different types of networks and network
function is related to the motifs in the graph.

This function is able to find the different motifs of size three and four (ie. the number of different subgraphs
with three and four vertices) in the network.

In a big network the total number of motifs can be very large, so it takes a lot of time to find all of
them, a sampling method can be used. This function is capable of doing sampling via the cut_prob
argument. This argument gives the probability that a branch of the motif search tree will not be explored.
See S. Wernicke and F. Rasche: FANMOD: a tool for fast network motif detection, Bioinformatics 22(9),
1152--1153, 2006 for details.

Set the cut_prob argument to a zero vector for finding all motifs.

Directed motifs will be counted in directed graphs and undirected motifs in undirected graphs.

Arguments:

graph: The graph to find the motifs in.

hist: The result of the computation, it gives the number of motifs found for each isomorphism
class. See igraph_isoclass() for help about isomorphism classes. Note that this
function does not count isomorphism classes that are not connected and will report NaN
(more precisely IGRAPH_NAN) for them.

size: The size of the motifs to search for. Only three and four are implemented currently. The
limitation is not in the motif finding code, but the graph isomorphism code.

cut_prob: Vector of probabilities for cutting the search tree at a given level. The first element is the
first level, etc. Supply all zeros here (of length size) to find all motifs in a graph.

Returns:

Error code.

Graph Motifs, Dyad Cen-
sus and Triad Census

382

See also:

igraph_motifs_randesu_estimate() for estimating the number of motifs in a graph, this
can help to set the cut_prob parameter; igraph_motifs_randesu_no() to calculate the total
number of motifs of a given size in a graph; igraph_motifs_randesu_callback() for calling
a callback function for every motif found.

Time complexity: TODO.

Example 17.1. File examples/simple/igraph_motifs_randesu.c

igraph_motifs_randesu_no — Count the total number
of motifs in a graph

int igraph_motifs_randesu_no(const igraph_t *graph, igraph_integer_t *no,
 int size, const igraph_vector_t *cut_prob);

This function counts the total number of motifs in a graph without assigning isomorphism classes to them.

Directed motifs will be counted in directed graphs and undirected motifs in undirected graphs.

Arguments:

graph: The graph object to study.

no: Pointer to an integer type, the result will be stored here.

size: The size of the motifs to count.

cut_prob: Vector giving the probabilities that a branch of the search tree will be cut at a given level.

Returns:

Error code.

See also:

igraph_motifs_randesu(), igraph_motifs_randesu_estimate().

Time complexity: TODO.

igraph_motifs_randesu_estimate — Estimate the to-
tal number of motifs in a graph

int igraph_motifs_randesu_estimate(const igraph_t *graph, igraph_integer_t *est,
 int size, const igraph_vector_t *cut_prob,

Graph Motifs, Dyad Cen-
sus and Triad Census

383

 igraph_integer_t sample_size,
 const igraph_vector_t *parsample);

This function is useful for large graphs for which it is not feasible to count all the different motifs, because
there is very many of them.

The total number of motifs is estimated by taking a sample of vertices and counts all motifs in which these
vertices are included. (There is also a cut_prob parameter which gives the probabilities to cut a branch
of the search tree.)

Directed motifs will be counted in directed graphs and undirected motifs in undirected graphs.

Arguments:

graph: The graph object to study.

est: Pointer to an integer type, the result will be stored here.

size: The size of the motif to look for.

cut_prob: Vector giving the probabilities to cut a branch of the search tree and omit counting
the motifs in that branch. It contains a probability for each level. Supply size zeros
here to count all the motifs in the sample.

sample_size: The number of vertices to use as the sample. This parameter is only used if the
parsample argument is a null pointer.

parsample: Either pointer to an initialized vector or a null pointer. If a vector then the vertex ids
in the vector are used as a sample. If a null pointer then the sample_size argument
is used to create a sample of vertices drawn with uniform probability.

Returns:

Error code.

See also:

igraph_motifs_randesu(), igraph_motifs_randesu_no().

Time complexity: TODO.

igraph_motifs_randesu_callback — Finds motifs in
a graph and calls a function for each of them

int igraph_motifs_randesu_callback(const igraph_t *graph, int size,
 const igraph_vector_t *cut_prob, igraph_motifs_handler_t *callback,
 void* extra);

Similarly to igraph_motifs_randesu(), this function is able to find the different motifs of size
three and four (ie. the number of different subgraphs with three and four vertices) in the network. However,

Graph Motifs, Dyad Cen-
sus and Triad Census

384

instead of counting them, the function will call a callback function for each motif found to allow further
tests or post-processing.

The cut_prob argument also allows sampling the motifs, just like for
igraph_motifs_randesu(). Set the cut_prob argument to a zero vector for finding all motifs.

Arguments:

graph: The graph to find the motifs in.

size: The size of the motifs to search for. Only three and four are implemented currently. The
limitation is not in the motif finding code, but the graph isomorphism code.

cut_prob: Vector of probabilities for cutting the search tree at a given level. The first element is the
first level, etc. Supply all zeros here (of length size) to find all motifs in a graph.

callback: A pointer to a function of type igraph_motifs_handler_t. This function will be
called whenever a new motif is found.

extra: Extra argument to pass to the callback function.

Returns:

Error code.

Time complexity: TODO.

Example 17.2. File examples/simple/igraph_motifs_randesu.c

igraph_motifs_handler_t — Callback type for
igraph_motifs_randesu_callback

typedef igraph_bool_t igraph_motifs_handler_t(const igraph_t *graph,
 igraph_vector_t *vids,
 int isoclass,
 void* extra);

igraph_motifs_randesu_callback() calls a specified callback function whenever a new motif
is found during a motif search. This callback function must be of type igraph_motifs_handler_t.
It has the following arguments:

Arguments:

graph: The graph that that algorithm is working on. Of course this must not be modified.

vids: The IDs of the vertices in the motif that has just been found. This vector is owned by the
motif search algorithm, so do not modify or destroy it; make a copy of it if you need it later.

isoclass: The isomorphism class of the motif that has just been found. Use igraph_isoclass
or igraph_isoclass_subgraph to find out which isomorphism class belongs to a
given motif.

Graph Motifs, Dyad Cen-
sus and Triad Census

385

extra: The extra argument that was passed to igraph_motifs_randesu_callback().

Returns:

A logical value, if TRUE (=non-zero), that is interpreted as a request to stop the motif search and return
to the caller.

See also:

igraph_motifs_randesu_callback()

386

Chapter 18. Generating Layouts for
Graph Drawing
2D layout generators

Layout generator functions (or at least most of them) try to place the vertices and edges of a graph on a
2D plane or in 3D space in a way which visually pleases the human eye.

They take a graph object and a number of parameters as arguments and return an igraph_matrix_t, in which
each row gives the coordinates of a vertex.

igraph_layout_random — Places the vertices uniform
randomly on a plane.

int igraph_layout_random(const igraph_t *graph, igraph_matrix_t *res);

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized as needed.

Returns:

Error code. The current implementation always returns with success.

Time complexity: O(|V|), the number of vertices.

igraph_layout_circle — Places the vertices uniform-
ly on a circle, in the order of vertex ids.

int igraph_layout_circle(const igraph_t *graph, igraph_matrix_t *res);

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized as needed.

Returns:

Error code.

Generating Layouts
for Graph Drawing

387

Time complexity: O(|V|), the number of vertices.

igraph_layout_star — Generate a star-like layout

int igraph_layout_star(const igraph_t *graph, igraph_matrix_t *res,
 igraph_integer_t center, const igraph_vector_t *order);

Arguments:

graph: The input graph.

res: Pointer to an initialized matrix object. This will contain the result and will be resized as
needed.

center: The id of the vertex to put in the center.

order: A numeric vector giving the order of the vertices (including the center vertex!). If a null
pointer, then the vertices are placed in increasing vertex id order.

Returns:

Error code.

Time complexity: O(|V|), linear in the number of vertices.

See also:

igraph_layout_circle() and other layout generators.

igraph_layout_grid — Places the vertices on a regu-
lar grid on the plane.

int igraph_layout_grid(const igraph_t *graph, igraph_matrix_t *res, long int width);

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized as needed.

width: The number of vertices in a single row of the grid. When zero or negative, the width of the grid
will be the square root of the number of vertices, rounded up if needed.

Returns:

Error code. The current implementation always returns with success.

Generating Layouts
for Graph Drawing

388

Time complexity: O(|V|), the number of vertices.

igraph_layout_graphopt — Optimizes vertex layout
via the graphopt algorithm.

int igraph_layout_graphopt(const igraph_t *graph, igraph_matrix_t *res,
 igraph_integer_t niter,
 igraph_real_t node_charge, igraph_real_t node_mass,
 igraph_real_t spring_length,
 igraph_real_t spring_constant,
 igraph_real_t max_sa_movement,
 igraph_bool_t use_seed);

This is a port of the graphopt layout algorithm by Michael Schmuhl. graphopt version 0.4.1 was rewritten
in C and the support for layers was removed (might be added later) and a code was a bit reorganized to
avoid some unnecessary steps is the node charge (see below) is zero.

graphopt uses physical analogies for defining attracting and repelling forces among the vertices and then
the physical system is simulated until it reaches an equilibrium. (There is no simulated annealing or any-
thing like that, so a stable fixed point is not guaranteed.)

See also http://www.schmuhl.org/graphopt/ for the original graphopt.

Arguments:

graph: The input graph.

res: Pointer to an initialized matrix, the result will be stored here and its initial con-
tents is used the starting point of the simulation if the use_seed argument is
true. Note that in this case the matrix should have the proper size, otherwise a
warning is issued and the supplied values are ignored. If no starting positions
are given (or they are invalid) then a random staring position is used. The matrix
will be resized if needed.

niter: Integer constant, the number of iterations to perform. Should be a couple of
hundred in general. If you have a large graph then you might want to only do a
few iterations and then check the result. If it is not good enough you can feed it
in again in the res argument. The original graphopt default if 500.

node_charge: The charge of the vertices, used to calculate electric repulsion. The original
graphopt default is 0.001.

node_mass: The mass of the vertices, used for the spring forces. The original graphopt de-
faults to 30.

spring_length: The length of the springs, an integer number. The original graphopt defaults to
zero.

spring_constant: The spring constant, the original graphopt defaults to one.

max_sa_movement: Real constant, it gives the maximum amount of movement allowed in a single
step along a single axis. The original graphopt default is 5.

http://www.schmuhl.org/graphopt/

Generating Layouts
for Graph Drawing

389

use_seed: Logical scalar, whether to use the positions in res as a starting configuration.
See also res above.

Returns:

Error code.

Time complexity: O(n (|V|^2+|E|)), n is the number of iterations, |V| is the number of vertices, |E| the
number of edges. If node_charge is zero then it is only O(n|E|).

igraph_layout_bipartite — Simple layout for bipar-
tite graphs

int igraph_layout_bipartite(const igraph_t *graph,
 const igraph_vector_bool_t *types,
 igraph_matrix_t *res, igraph_real_t hgap,
 igraph_real_t vgap, long int maxiter);

The layout is created by first placing the vertices in two rows, according to their types. Then the positions
within the rows are optimized to minimize edge crossings, by calling igraph_layout_sugiyama().

Arguments:

graph: The input graph.

types: A boolean vector containing ones and zeros, the vertex types. Its length must match the
number of vertices in the graph.

res: Pointer to an initialized matrix, the result, the x and y coordinates are stored here.

hgap: The preferred minimum horizontal gap between vertices in the same layer (i.e. vertices of
the same type).

vgap: The distance between layers.

maxiter: Maximum number of iterations in the crossing minimization stage. 100 is a reasonable de-
fault; if you feel that you have too many edge crossings, increase this.

Returns:

Error code.

See also:

igraph_layout_sugiyama().

The DrL layout generator
DrL is a sophisticated layout generator developed and implemented by Shawn Martin et al. As of October
2012 the original DrL homepage is unfortunately not available. You can read more about this algorithm

Generating Layouts
for Graph Drawing

390

in the following technical report: Martin, S., Brown, W.M., Klavans, R., Boyack, K.W., DrL: Distributed
Recursive (Graph) Layout. SAND Reports, 2008. 2936: p. 1-10.

Only a subset of the complete DrL functionality is included in igraph, parallel runs and recursive, mul-
ti-level layouting is not supported.

The parameters of the layout are stored in an igraph_layout_drl_options_t structure, this can be
initialized by calling the function igraph_layout_drl_options_init(). The fields of this struc-
ture can then be adjusted by hand if needed. The layout is calculated by an igraph_layout_drl()
call.

igraph_layout_drl_options_t — Parameters for the DrL layout
generator

typedef struct igraph_layout_drl_options_t {
 igraph_real_t edge_cut;
 igraph_integer_t init_iterations;
 igraph_real_t init_temperature;
 igraph_real_t init_attraction;
 igraph_real_t init_damping_mult;
 igraph_integer_t liquid_iterations;
 igraph_real_t liquid_temperature;
 igraph_real_t liquid_attraction;
 igraph_real_t liquid_damping_mult;
 igraph_integer_t expansion_iterations;
 igraph_real_t expansion_temperature;
 igraph_real_t expansion_attraction;
 igraph_real_t expansion_damping_mult;
 igraph_integer_t cooldown_iterations;
 igraph_real_t cooldown_temperature;
 igraph_real_t cooldown_attraction;
 igraph_real_t cooldown_damping_mult;
 igraph_integer_t crunch_iterations;
 igraph_real_t crunch_temperature;
 igraph_real_t crunch_attraction;
 igraph_real_t crunch_damping_mult;
 igraph_integer_t simmer_iterations;
 igraph_real_t simmer_temperature;
 igraph_real_t simmer_attraction;
 igraph_real_t simmer_damping_mult;
} igraph_layout_drl_options_t;

Values:

edge_cut: The edge cutting parameter. Edge cutting is done in the late stages
of the algorithm in order to achieve less dense layouts. Edges are
cut if there is a lot of stress on them (a large value in the objective
function sum). The edge cutting parameter is a value between 0 and 1
with 0 representing no edge cutting and 1 representing maximal edge
cutting. The default value is 32/40.

Generating Layouts
for Graph Drawing

391

init_iterations: Number of iterations, initial phase.

init_temperature: Start temperature, initial phase.

init_attraction: Attraction, initial phase.

init_damping_mult: Damping factor, initial phase.

liquid_iterations: Number of iterations in the liquid phase.

liquid_temperature: Start temperature in the liquid phase.

liquid_attraction: Attraction in the liquid phase.

liquid_damping_mult: Multiplicatie damping factor, liquid phase.

expansion_iterations: Number of iterations in the expansion phase.

expansion_temperature: Start temperature in the expansion phase.

expansion_attraction: Attraction, expansion phase.

expansion_damping_mult: Damping factor, expansion phase.

cooldown_iterations: Number of iterations in the cooldown phase.

cooldown_temperature: Start temperature in the cooldown phase.

cooldown_attraction: Attraction in the cooldown phase.

cooldown_damping_mult: Damping fact int the cooldown phase.

crunch_iterations: Number of iterations in the crunch phase.

crunch_temperature: Start temperature in the crunch phase.

crunch_attraction: Attraction in the crunch phase.

crunch_damping_mult: Damping factor in the crunch phase.

simmer_iterations: Number of iterations in the simmer phase.

simmer_temperature: Start temperature in te simmer phase.

simmer_attraction: Attraction in the simmer phase.

simmer_damping_mult: Multiplicative damping factor in the simmer phase.

igraph_layout_drl_default_t — Predefined parameter tem-
plates for the DrL layout generator

typedef enum { IGRAPH_LAYOUT_DRL_DEFAULT=0,
 IGRAPH_LAYOUT_DRL_COARSEN,
 IGRAPH_LAYOUT_DRL_COARSEST,

Generating Layouts
for Graph Drawing

392

 IGRAPH_LAYOUT_DRL_REFINE,
 IGRAPH_LAYOUT_DRL_FINAL } igraph_layout_drl_default_t;

These constants can be used to initialize a set of DrL parameters. These can then be modified according
to the user's needs.

Values:

IGRAPH_LAYOUT_DRL_DEFAULT:The deafult parameters.

IGRAPH_LAYOUT_DRL_COARSEN:Slightly modified parameters to get a coarser layout.

IGRAPH_LAYOUT_DRL_COARSEST:An even coarser layout.

IGRAPH_LAYOUT_DRL_REFINE: Refine an already calculated layout.

IGRAPH_LAYOUT_DRL_FINAL: Finalize an already refined layout.

igraph_layout_drl_options_init — Initialize parameters for
the DrL layout generator

int igraph_layout_drl_options_init(igraph_layout_drl_options_t *options,
 igraph_layout_drl_default_t templ);

This function can be used to initialize the struct holding the parameters for the DrL layout generator. There
are a number of predefined templates available, it is a good idea to start from one of these by modifying
some parameters.

Arguments:

options: The struct to initialize.

templ: The template to use. Currently the following templates are sup-
plied: IGRAPH_LAYOUT_DRL_DEFAULT, IGRAPH_LAYOUT_DRL_COARSEN,
IGRAPH_LAYOUT_DRL_COARSEST, IGRAPH_LAYOUT_DRL_REFINE and
IGRAPH_LAYOUT_DRL_FINAL.

Returns:

Error code.

Time complexity: O(1).

igraph_layout_drl — The DrL layout generator

int igraph_layout_drl(const igraph_t *graph, igraph_matrix_t *res,
 igraph_bool_t use_seed,
 igraph_layout_drl_options_t *options,
 const igraph_vector_t *weights,

Generating Layouts
for Graph Drawing

393

 const igraph_vector_bool_t *fixed);

This function implements the force-directed DrL layout generator. Please see more in the following tech-
nical report: Martin, S., Brown, W.M., Klavans, R., Boyack, K.W., DrL: Distributed Recursive (Graph)
Layout. SAND Reports, 2008. 2936: p. 1-10.

Arguments:

graph: The input graph.

use_seed: Logical scalar, if true, then the coordinates supplied in the res argument are used as
starting points.

res: Pointer to a matrix, the result layout is stored here. It will be resized as needed.

options: The parameters to pass to the layout generator.

weights: Edge weights, pointer to a vector. If this is a null pointer then every edge will have the
same weight.

fixed: Pointer to a logical vector, or a null pointer. This can be used to fix the position of some
vertices. Vertices for which it is true will not be moved, but stay at the coordinates given
in the res matrix. This argument is ignored if it is a null pointer or if use_seed is false.

Returns:

Error code.

Time complexity: ???.

igraph_layout_drl_3d — The DrL layout generator, 3d version.

int igraph_layout_drl_3d(const igraph_t *graph, igraph_matrix_t *res,
 igraph_bool_t use_seed,
 igraph_layout_drl_options_t *options,
 const igraph_vector_t *weights,
 const igraph_vector_bool_t *fixed);

This function implements the force-directed DrL layout generator. Please see more in the technical report:
Martin, S., Brown, W.M., Klavans, R., Boyack, K.W., DrL: Distributed Recursive (Graph) Layout. SAND
Reports, 2008. 2936: p. 1-10.

This function uses a modified DrL generator that does the layout in three dimensions.

Arguments:

graph: The input graph.

use_seed: Logical scalar, if true, then the coordinates supplied in the res argument are used as
starting points.

res: Pointer to a matrix, the result layout is stored here. It will be resized as needed.

options: The parameters to pass to the layout generator.

Generating Layouts
for Graph Drawing

394

weights: Edge weights, pointer to a vector. If this is a null pointer then every edge will have the
same weight.

fixed: Pointer to a logical vector, or a null pointer. This can be used to fix the position of some
vertices. Vertices for which it is true will not be moved, but stay at the coordinates given
in the res matrix. This argument is ignored if it is a null pointer or if use_seed is false.

Returns:

Error code.

Time complexity: ???.

See also:

igraph_layout_drl() for the standard 2d version.

igraph_layout_fruchterman_reingold — Places the
vertices on a plane according to the Fruchterman-Rein-
gold algorithm.

int igraph_layout_fruchterman_reingold(const igraph_t *graph, igraph_matrix_t *res,
 igraph_integer_t niter, igraph_real_t maxdelta,
 igraph_real_t area, igraph_real_t coolexp,
 igraph_real_t repulserad, igraph_bool_t use_seed,
 const igraph_vector_t *weight,
 const igraph_vector_t *minx,
 const igraph_vector_t *maxx,
 const igraph_vector_t *miny,
 const igraph_vector_t *maxy);

This is a force-directed layout, see Fruchterman, T.M.J. and Reingold, E.M.: Graph Drawing by Force-
directed Placement. Software -- Practice and Experience, 21/11, 1129--1164, 1991. This function was
ported from the SNA R package.

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized
as needed.

niter: The number of iterations to do. A reasonable default value is 500.

maxdelta: The maximum distance to move a vertex in an iteration. A reasonable default value is
the number of vertices.

area: The area parameter of the algorithm. A reasonable default is the square of the number
of vertices.

Generating Layouts
for Graph Drawing

395

coolexp: The cooling exponent of the simulated annealing. A reasonable default is 1.5.

repulserad: Determines the radius at which vertex-vertex repulsion cancels out attraction of adja-
cent vertices. A reasonable default is area times the number of vertices.

use_seed: Logical, if true the supplied values in the res argument are used as an initial layout,
if false a random initial layout is used.

weight: Pointer to a vector containing edge weights, the attraction along the edges will be mul-
tiplied by these. It will be ignored if it is a null-pointer.

minx: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives the
minimum “x” coordinate for every vertex.

maxx: Same as minx, but the maximum “x” coordinates.

miny: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives the
minimum “y” coordinate for every vertex.

maxy: Same as miny, but the maximum “y” coordinates.

Returns:

Error code.

Time complexity: O(|V|^2) in each iteration, |V| is the number of vertices in the graph.

igraph_layout_kamada_kawai — Places the vertices
on a plane according the Kamada-Kawai algorithm.

int igraph_layout_kamada_kawai(const igraph_t *graph, igraph_matrix_t *res,
 igraph_integer_t niter, igraph_real_t sigma,
 igraph_real_t initemp, igraph_real_t coolexp,
 igraph_real_t kkconst, igraph_bool_t use_seed,
 const igraph_vector_t *minx,
 const igraph_vector_t *maxx,
 const igraph_vector_t *miny,
 const igraph_vector_t *maxy);

This is a force directed layout, see Kamada, T. and Kawai, S.: An Algorithm for Drawing General Undi-
rected Graphs. Information Processing Letters, 31/1, 7--15, 1989. This function was ported from the SNA
R package.

Arguments:

graph: A graph object.

res: Pointer to an initialized matrix object. This will contain the result (x-positions in column
zero and y-positions in column one) and will be resized if needed.

niter: The number of iterations to perform. A reasonable default value is 1000.

Generating Layouts
for Graph Drawing

396

sigma: Sets the base standard deviation of position change proposals. A reasonable default value
is the number of vertices / 4.

initemp: Sets the initial temperature for the annealing. A reasonable default value is 10.

coolexp: The cooling exponent of the annealing. A reasonable default value is 0.99.

kkconst: The Kamada-Kawai vertex attraction constant. Typical value: (number of vertices)^2

use_seed: Boolean, whether to use the values supplied in the res argument as the initial configura-
tion. If zero then a random initial configuration is used.

minx: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives the
minimum “x” coordinate for every vertex.

maxx: Same as minx, but the maximum “x” coordinates.

miny: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives the
minimum “y” coordinate for every vertex.

maxy: Same as miny, but the maximum “y” coordinates.

Returns:

Error code.

Time complexity: O(|V|^2) for each iteration, |V| is the number of vertices in the graph.

igraph_layout_mds — Place the vertices on a plane
using multidimensional scaling.

int igraph_layout_mds(const igraph_t* graph, igraph_matrix_t *res,
 const igraph_matrix_t *dist, long int dim,
 igraph_arpack_options_t *options);

This layout requires a distance matrix, where the intersection of row i and column j specifies the desired
distance between vertex i and vertex j. The algorithm will try to place the vertices in a space having a
given number of dimensions in a way that approximates the distance relations prescribed in the distance
matrix. igraph uses the classical multidimensional scaling by Torgerson; for more details, see Cox & Cox:
Multidimensional Scaling (1994), Chapman and Hall, London.

If the input graph is disconnected, igraph will decompose it first into its subgraphs, lay out the subgraphs
one by one using the appropriate submatrices of the distance matrix, and then merge the layouts using
igraph_layout_merge_dla. Since igraph_layout_merge_dla works for 2D layouts only,
you cannot run the MDS layout on disconnected graphs for more than two dimensions.

Arguments:

graph: A graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized if
needed.

Generating Layouts
for Graph Drawing

397

dist: The distance matrix. It must be symmetric and this function does not check whether the
matrix is indeed symmetric. Results are unspecified if you pass a non-symmetric matrix
here. You can set this parameter to null; in this case, the shortest path lengths between
vertices will be used as distances.

dim: The number of dimensions in the embedding space. For 2D layouts, supply 2 here.

options: This argument is currently ignored, it was used for ARPACK, but LAPACK is used now
for calculating the eigenvectors.

Returns:

Error code.

Added in version 0.6.

Time complexity: usually around O(|V|^2 dim).

igraph_layout_grid_fruchterman_reingold —
Force based layout generator for large graphs.

int igraph_layout_grid_fruchterman_reingold(const igraph_t *graph,
 igraph_matrix_t *res,
 igraph_integer_t niter, igraph_real_t maxdelta,
 igraph_real_t area, igraph_real_t coolexp,
 igraph_real_t repulserad,
 igraph_real_t cellsize,
 igraph_bool_t use_seed,
 const igraph_vector_t *weight);

This algorithm is the same as the Fruchterman-Reingold layout generator, but it partitions the 2d space to
a grid and and vertex repulsion is calculated only for vertices nearby.

Arguments:

graph: The graph object.

res: The result, the coordinates in a matrix. The parameter should point to an initialized
matrix object and will be resized.

niter: The number of iterations to do. A reasonable default value is 500.

maxdelta: The maximum distance to move a vertex in an iteration. A reasonable default value is
the number of vertices.

area: The area parameter of the algorithm. A reasonable default is the square of the number
of vertices.

coolexp: The cooling exponent of the simulated annealing. A reasonable default is 1.5.

repulserad: Determines the radius at which vertex-vertex repulsion cancels out attraction of adja-
cent vertices. A reasonable default is area times the number of vertices.

Generating Layouts
for Graph Drawing

398

cellsize: The size of the grid cells. A reasonable default is the fourth root of area (or the square
root of the number of vertices if area is also left at its default value)

use_seed: Logical, if true, the coordinates passed in res (should have the appropriate size) will
be used for the first iteration.

weight: Pointer to a vector containing edge weights, the attraction along the edges will be mul-
tiplied by these. It will be ignored if it is a null-pointer.

Returns:

Error code.

Added in version 0.2.

Time complexity: ideally (constant number of vertices in each cell) O(niter*(|V|+|E|)), in the worst case
O(niter*(|V|^2+|E|)).

igraph_layout_lgl — Force based layout algorithm
for large graphs.

int igraph_layout_lgl(const igraph_t *graph, igraph_matrix_t *res,
 igraph_integer_t maxit, igraph_real_t maxdelta,
 igraph_real_t area, igraph_real_t coolexp,
 igraph_real_t repulserad, igraph_real_t cellsize,
 igraph_integer_t proot);

This is a layout generator similar to the Large Graph Layout algorithm and program (http://
lgl.sourceforge.net/). But unlike LGL, this version uses a Fruchterman-Reingold style simulated annealing
algorithm for placing the vertices. The speedup is achieved by placing the vertices on a grid and calculating
the repulsion only for vertices which are closer to each other than a limit.

Arguments:

graph: The (initialized) graph object to place.

res: Pointer to an initialized matrix object to hold the result. It will be resized if needed.

maxit: The maximum number of cooling iterations to perform for each layout step. A reason-
able default is 150.

maxdelta: The maximum length of the move allowed for a vertex in a single iteration. A reasonable
default is the number of vertices.

area: This parameter gives the area of the square on which the vertices will be placed. A
reasonable default value is the number of vertices squared.

coolexp: The cooling exponent. A reasonable default value is 1.5.

repulserad: Determines the radius at which vertex-vertex repulsion cancels out attraction of adja-
cent vertices. A reasonable default value is area times the number of vertices.

http://lgl.sourceforge.net/
http://lgl.sourceforge.net/

Generating Layouts
for Graph Drawing

399

cellsize: The size of the grid cells, one side of the square. A reasonable default value is the fourth
root of area (or the square root of the number of vertices if area is also left at its
default value).

proot: The root vertex, this is placed first, its neighbors in the first iteration, second neighbors
in the second, etc. If negative then a random vertex is chosen.

Returns:

Error code.

Added in version 0.2.

Time complexity: ideally O(dia*maxit*(|V|+|E|)), |V| is the number of vertices, dia is the diameter of the
graph, worst case complexity is still O(dia*maxit*(|V|^2+|E|)), this is the case when all vertices happen
to be in the same grid cell.

igraph_layout_reingold_tilford — Reingold-Til-
ford layout for tree graphs

int igraph_layout_reingold_tilford(const igraph_t *graph,
 igraph_matrix_t *res,
 igraph_neimode_t mode,
 const igraph_vector_t *roots,
 const igraph_vector_t *rootlevel);

Arranges the nodes in a tree where the given node is used as the root. The tree is directed downwards and
the parents are centered above its children. For the exact algorithm, see:

Reingold, E and Tilford, J: Tidier drawing of trees. IEEE Trans. Softw. Eng., SE-7(2):223--228, 1981

If the given graph is not a tree, a breadth-first search is executed first to obtain a possible spanning tree.

Arguments:

graph: The graph object.

res: The result, the coordinates in a matrix. The parameter should point to an initialized matrix
object and will be resized.

mode: Specifies which edges to consider when building the tree. If it is IGRAPH_OUT then
only the outgoing, if it is IGRAPH_IN then only the incoming edges of a parent are
considered. If it is IGRAPH_ALL then all edges are used (this was the behavior in igraph
0.5 and before). This parameter also influences how the root vertices are calculated, if
they are not given. See the roots parameter.

roots: The index of the root vertex or root vertices. If this is a non-empty vector then the supplied
vertex ids are used as the roots of the trees (or a single tree if the graph is connected). If
it is a null pointer of a pointer to an empty vector, then the root vertices are automatically
calculated based on topological sorting, performed with the opposite mode than the mode
argument. After the vertices have been sorted, one is selected from each component.

Generating Layouts
for Graph Drawing

400

rootlevel: This argument can be useful when drawing forests which are not trees (i.e. they are
unconnected and have tree components). It specifies the level of the root vertices for
every tree in the forest. It is only considered if not a null pointer and the roots argument
is also given (and it is not a null pointer of an empty vector).

Returns:

Error code.

Added in version 0.2.

See also:

igraph_layout_reingold_tilford_circular().

Example 18.1. File examples/simple/
igraph_layout_reingold_tilford.c

igraph_layout_reingold_tilford_circular — Cir-
cular Reingold-Tilford layout for trees

int igraph_layout_reingold_tilford_circular(const igraph_t *graph,
 igraph_matrix_t *res,
 igraph_neimode_t mode,
 const igraph_vector_t *roots,
 const igraph_vector_t *rootlevel);

This layout is almost the same as igraph_layout_reingold_tilford(), but the tree is drawn in
a circular way, with the root vertex in the center.

Arguments:

graph: The graph object.

res: The result, the coordinates in a matrix. The parameter should point to an initialized matrix
object and will be resized.

mode: Specifies which edges to consider when building the tree. If it is IGRAPH_OUT then
only the outgoing, if it is IGRAPH_IN then only the incoming edges of a parent are
considered. If it is IGRAPH_ALL then all edges are used (this was the behavior in igraph
0.5 and before). This parameter also influences how the root vertices are calculated, if
they are not given. See the roots parameter.

roots: The index of the root vertex or root vertices. If this is a non-empty vector then the supplied
vertex ids are used as the roots of the trees (or a single tree if the graph is connected). If
it is a null pointer of a pointer to an empty vector, then the root vertices are automatically
calculated based on topological sorting, performed with the opposite mode than the mode
argument. After the vertices have been sorted, one is selected from each component.

rootlevel: This argument can be useful when drawing forests which are not trees (i.e. they are
unconnected and have tree components). It specifies the level of the root vertices for

Generating Layouts
for Graph Drawing

401

every tree in the forest. It is only considered if not a null pointer and the roots argument
is also given (and it is not a null pointer of an empty vector). Note that if you supply a
null pointer here and the graph has multiple components, all of the root vertices will be
mapped to the origin of the coordinate system, which does not really make sense.

Returns:

Error code.

See also:

igraph_layout_reingold_tilford().

igraph_layout_sugiyama — Sugiyama layout algo-
rithm for layered directed acyclic graphs.

int igraph_layout_sugiyama(const igraph_t *graph, igraph_matrix_t *res,
 igraph_t *extd_graph, igraph_vector_t *extd_to_orig_eids,
 const igraph_vector_t* layers, igraph_real_t hgap, igraph_real_t vgap,
 long int maxiter, const igraph_vector_t *weights);

This layout algorithm is designed for directed acyclic graphs where each vertex is assigned to a layer.
Layers are indexed from zero, and vertices of the same layer will be placed on the same horizontal line.
The X coordinates of vertices within each layer are decided by the heuristic proposed by Sugiyama et al
to minimize edge crossings.

You can also try to lay out undirected graphs, graphs containing cycles, or graphs without an a priori
layered assignment with this algorithm. igraph will try to eliminate cycles and assign vertices to layers,
but there is no guarantee on the quality of the layout in such cases.

The Sugiyama layout may introduce "bends" on the edges in order to obtain a visually more pleasing
layout. This is achieved by adding dummy nodes to edges spanning more than one layer. The resulting
layout assigns coordinates not only to the nodes of the original graph but also to the dummy nodes. The
layout algorithm will also return the extended graph with the dummy nodes. An edge in the original graph
may either be mapped to a single edge in the extended graph or a path that starts and ends in the original
source and target vertex and passes through multiple dummy vertices. In such cases, the user may also
request the mapping of the edges of the extended graph back to the edges of the original graph.

For more details, see K. Sugiyama, S. Tagawa and M. Toda, "Methods for Visual Understanding of Hier-
archical Systems". IEEE Transactions on Systems, Man and Cybernetics 11(2):109-125, 1981.

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will
be resized as needed. The first |V| rows of the layout will contain the coor-
dinates of the original graph, the remaining rows contain the positions of the
dummy nodes. Therefore, you can use the result both with graph or with
extended_graph.

Generating Layouts
for Graph Drawing

402

extended_graph: Pointer to an uninitialized graph object or NULL. The extended graph with
the added dummy nodes will be returned here. In this graph, each edge points
downwards to lower layers, spans exactly one layer and the first |V| vertices
coincide with the vertices of the original graph.

extd_to_orig_eids: Pointer to a vector or NULL. If not NULL, the mapping from the edge IDs of
the extended graph back to the edge IDs of the original graph will be stored
here.

layers: The layer index for each vertex or NULL if the layers should be determined
automatically by igraph.

hgap: The preferred minimum horizontal gap between vertices in the same layer.

vgap: The distance between layers.

maxiter: Maximum number of iterations in the crossing minimization stage. 100 is
a reasonable default; if you feel that you have too many edge crossings, in-
crease this.

weights: Weights of the edges. These are used only if the graph contains cycles; igraph
will tend to reverse edges with smaller weights when breaking the cycles.

3D layout generators

igraph_layout_random_3d — Random layout in 3D

int igraph_layout_random_3d(const igraph_t *graph, igraph_matrix_t *res);

Arguments:

graph: The graph to place.

res: Pointer to an initialized matrix object. It will be resized to hold the result.

Returns:

Error code. The current implementation always returns with success.

Added in version 0.2.

Time complexity: O(|V|), the number of vertices.

igraph_layout_sphere — Places vertices (more or
less) uniformly on a sphere.

int igraph_layout_sphere(const igraph_t *graph, igraph_matrix_t *res);

Generating Layouts
for Graph Drawing

403

The algorithm was described in the following paper: Distributing many points on a sphere by E.B. Saff
and A.B.J. Kuijlaars, Mathematical Intelligencer 19.1 (1997) 5--11.

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized as needed.

Returns:

Error code. The current implementation always returns with success.

Added in version 0.2.

Time complexity: O(|V|), the number of vertices in the graph.

igraph_layout_grid_3d — Places the vertices on a
regular grid in the 3D space.

int igraph_layout_grid_3d(const igraph_t *graph, igraph_matrix_t *res,
 long int width, long int height);

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized as
needed.

width: The number of vertices in a single row of the grid. When zero or negative, the width is de-
termined automatically.

height: The number of vertices in a single column of the grid. When zero or negative, the height is
determined automatically.

Returns:

Error code. The current implementation always returns with success.

Time complexity: O(|V|), the number of vertices.

igraph_layout_fruchterman_reingold_3d — 3D
Fruchterman-Reingold algorithm.

int igraph_layout_fruchterman_reingold_3d(const igraph_t *graph,
 igraph_matrix_t *res,
 igraph_integer_t niter, igraph_real_t maxdelta,

Generating Layouts
for Graph Drawing

404

 igraph_real_t volume, igraph_real_t coolexp,
 igraph_real_t repulserad,
 igraph_bool_t use_seed,
 const igraph_vector_t *weight,
 const igraph_vector_t *minx,
 const igraph_vector_t *maxx,
 const igraph_vector_t *miny,
 const igraph_vector_t *maxy,
 const igraph_vector_t *minz,
 const igraph_vector_t *maxz);

This is the 3D version of the force based Fruchterman-Reingold layout (see
igraph_layout_fruchterman_reingold for the 2D version

This function was ported from the SNA R package.

Arguments:

graph: Pointer to an initialized graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized
as needed.

niter: The number of iterations to do. A reasonable default value is 500.

maxdelta: The maximum distance to move a vertex in an iteration. A reasonable default value is
the number of vertices.

volume: The volume parameter of the algorithm. A reasonable default is the number of ver-
tices^3.

coolexp: The cooling exponent of the simulated annealing. A reasonable default is 1.5.

repulserad: Determines the radius at which vertex-vertex repulsion cancels out attraction of adja-
cent vertices. A reasonable default is volume times the number of vertices.

use_seed: Logical, if true the supplied values in the res argument are used as an initial layout,
if false a random initial layout is used.

weight: Pointer to a vector containing edge weights, the attraction along the edges will be mul-
tiplied by these. It will be ignored if it is a null-pointer.

minx: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives the
minimum “x” coordinate for every vertex.

maxx: Same as minx, but the maximum “x” coordinates.

miny: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives the
minimum “y” coordinate for every vertex.

maxy: Same as miny, but the maximum “y” coordinates.

minz: Pointer to a vector, or a NULL pointer. If not a NULL pointer then the vector gives the
minimum “z” coordinate for every vertex.

maxz: Same as minz, but the maximum “z” coordinates.

Generating Layouts
for Graph Drawing

405

Returns:

Error code.

Added in version 0.2.

Time complexity: O(|V|^2) in each iteration, |V| is the number of vertices in the graph.

igraph_layout_kamada_kawai_3d — 3D version of the
force based Kamada-Kawai layout.

int igraph_layout_kamada_kawai_3d(const igraph_t *graph, igraph_matrix_t *res,
 igraph_integer_t niter, igraph_real_t sigma,
 igraph_real_t initemp, igraph_real_t coolexp,
 igraph_real_t kkconst, igraph_bool_t use_seed,
 igraph_bool_t fixz,
 const igraph_vector_t *minx,
 const igraph_vector_t *maxx,
 const igraph_vector_t *miny,
 const igraph_vector_t *maxy,
 const igraph_vector_t *minz,
 const igraph_vector_t *maxz);

The pair of the igraph_layout_kamada_kawai 2D layout generator

This function was ported from the SNA R package.

Arguments:

graph: A graph object.

res: Pointer to an initialized matrix object. This will contain the result and will be resized if
needed.

niter: The number of iterations to perform. A reasonable default value is 1000.

sigma: Sets the base standard deviation of position change proposals. A reasonable default value
is the number of vertices / 4.

initemp: Sets the initial temperature for the annealing. A reasonable default value is 10.

coolexp: The cooling exponent of the annealing. A reasonable default value is 0.99.

kkconst: The Kamada-Kawai vertex attraction constant. Typical value: (number of vertices)^2

use_seed: Boolean, whether to use the values cupplied in the res argument as the initial configura-
tion. If zero then a random initial configuration is used.

fixz: Logical, whether to fix the third coordinate of the input matrix.

Returns:

Error code.

Generating Layouts
for Graph Drawing

406

Added in version 0.2.

Time complexity: O(|V|^2) for each iteration, |V| is the number of vertices in the graph.

Merging layouts

igraph_layout_merge_dla — Merge multiple layouts
by using a DLA algorithm

int igraph_layout_merge_dla(igraph_vector_ptr_t *thegraphs,
 igraph_vector_ptr_t *coords,
 igraph_matrix_t *res);

First each layout is covered by a circle. Then the layout of the largest graph is placed at the origin. Then
the other layouts are placed by the DLA algorithm, larger ones first and smaller ones last.

Arguments:

thegraphs: Pointer vector containing the graph object of which the layouts will be merged.

coords: Pointer vector containing matrix objects with the 2d layouts of the graphs in the-
graphs.

res: Pointer to an initialized matrix object, the result will be stored here. It will be resized
if needed.

Returns:

Error code.

Added in version 0.2. This function is experimental.

Time complexity: TODO.

407

Chapter 19. Reading and Writing
Graphs from and to Files

These functions can write a graph to a file, or read a graph from a file.

Note that as igraph uses the traditional C streams, it is possible to read/write files from/to memory, at least
on GNU operating systems supporting “non-standard” streams.

Simple edge list and similar formats

igraph_read_graph_edgelist — Reads an edge list
from a file and creates a graph.

int igraph_read_graph_edgelist(igraph_t *graph, FILE *instream,
 igraph_integer_t n, igraph_bool_t directed);

This format is simply a series of even number integers separated by whitespace. The one edge (ie. two
integers) per line format is thus not required (but recommended for readability). Edges of directed graphs
are assumed to be in from, to order.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: Pointer to a stream, it should be readable.

n: The number of vertices in the graph. If smaller than the largest integer in the file it will
be ignored. It is thus safe to supply zero here.

directed: Logical, if true the graph is directed, if false it will be undirected.

Returns:

Error code: IGRAPH_PARSEERROR: if there is a problem reading the file, or the file is syntactically
incorrect.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges. It is assumed that reading
an integer requires O(1) time.

igraph_write_graph_edgelist — Writes the edge list
of a graph to a file.

int igraph_write_graph_edgelist(const igraph_t *graph, FILE *outstream);

Reading and Writing
Graphs from and to Files

408

One edge is written per line, separated by a single space. For directed graphs edges are written in from,
to order.

Arguments:

graph: The graph object to write.

outstream: Pointer to a stream, it should be writable.

Returns:

Error code: IGRAPH_EFILE if there is an error writing the file.

Time complexity: O(|E|), the number of edges in the graph. It is assumed that writing an integer to the
file requires O(1) time.

igraph_read_graph_ncol — Reads a .ncol file used
by LGL.

int igraph_read_graph_ncol(igraph_t *graph, FILE *instream,
 igraph_strvector_t *predefnames,
 igraph_bool_t names,
 igraph_add_weights_t weights,
 igraph_bool_t directed);

Also useful for creating graphs from “named” (and optionally weighted) edge lists.

This format is used by the Large Graph Layout program (http://lgl.sourceforge.net), and it is simply a
symbolic weighted edge list. It is a simple text file with one edge per line. An edge is defined by two
symbolic vertex names separated by whitespace. (The symbolic vertex names themselves cannot contain
whitespace. They might follow by an optional number, this will be the weight of the edge; the number
can be negative and can be in scientific notation. If there is no weight specified to an edge it is assumed
to be zero.

The resulting graph is always undirected. LGL cannot deal with files which contain multiple or loop edges,
this is however not checked here, as igraph is happy with these.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: Pointer to a stream, it should be readable.

predefnames: Pointer to the symbolic names of the vertices in the file. If NULL is given here then
vertex ids will be assigned to vertex names in the order of their appearance in the
\c .ncol file. If it is not NULL and some unknown vertex names are found in the \c .ncol
file then new vertex ids will be assigned to them.

names: Logical value, if TRUE the symbolic names of the vertices will be added to the graph
as a vertex attribute called “name”.

http://lgl.sourceforge.net

Reading and Writing
Graphs from and to Files

409

weights: Whether to add the weights of the edges to the graph as an edge at-
tribute called “weight”. IGRAPH_ADD_WEIGHTS_YES adds the weights (even
if they are not present in the file, in this case they are assumed to
be zero). IGRAPH_ADD_WEIGHTS_NO does not add any edge attribute.
IGRAPH_ADD_WEIGHTS_IF_PRESENT adds the attribute if and only if there is at
least one explicit edge weight in the input file.

directed: Whether to create a directed graph. As this format was originally used only for undi-
rected graphs there is no information in the file about the directedness of the graph.
Set this parameter to IGRAPH_DIRECTED or IGRAPH_UNDIRECTED to create a
directed or undirected graph.

Returns:

Error code: IGRAPH_PARSEERROR: if there is a problem reading the file, or the file is syntactically
incorrect.

Time complexity: O(|V|+|E|log(|V|)) if we neglect the time required by the parsing. As usual |V| is the
number of vertices, while |E| is the number of edges.

See also:

igraph_read_graph_lgl(), igraph_write_graph_ncol()

igraph_write_graph_ncol — Writes the graph to a file
in .ncol format

int igraph_write_graph_ncol(const igraph_t *graph, FILE *outstream,
 const char *names, const char *weights);

.ncol is a format used by LGL, see igraph_read_graph_ncol() for details.

Note that having multiple or loop edges in an .ncol file breaks the LGL software but igraph does not
check for this condition.

Arguments:

graph: The graph to write.

outstream: The stream object to write to, it should be writable.

names: The name of the vertex attribute, if symbolic names are written to the file. If not, supply
0 here.

weights: The name of the edge attribute, if they are also written to the file. If you don't want
weights, supply 0 here.

Returns:

Error code: IGRAPH_EFILE if there is an error writing the file.

Reading and Writing
Graphs from and to Files

410

Time complexity: O(|E|), the number of edges. All file operations are expected to have time complexity
O(1).

See also:

igraph_read_graph_ncol(), igraph_write_graph_lgl()

igraph_read_graph_lgl — Reads a graph from an
.lgl file

int igraph_read_graph_lgl(igraph_t *graph, FILE *instream,
 igraph_bool_t names,
 igraph_add_weights_t weights,
 igraph_bool_t directed);

The .lgl format is used by the Large Graph Layout visualization software (http://lgl.sourceforge.net),
it can describe undirected optionally weighted graphs. From the LGL manual:

The second format is the LGL file format (.lgl file suffix). This is yet another graph
file format that tries to be as stingy as possible with space, yet keeping the edge file in
a human readable (not binary) format. The format itself is like the following:

 # vertex1name
vertex2name [optionalWeight]
vertex3name [optionalWeight]

Here, the first vertex of an edge is preceded with a pound sign '#'. Then each vertex that
shares an edge with that vertex is listed one per line on subsequent lines.

LGL cannot handle loop and multiple edges or directed graphs, but in igraph it is not an error to have
multiple and loop edges.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: A stream, it should be readable.

names: Logical value, if TRUE the symbolic names of the vertices will be added to the graph as
a vertex attribute called “name”.

weights: Whether to add the weights of the edges to the graph as an edge attribute called “weight”.
IGRAPH_ADD_WEIGHTS_YES adds the weights (even if they are not present in the file,
in this case they are assumed to be zero). IGRAPH_ADD_WEIGHTS_NO does not add any
edge attribute. IGRAPH_ADD_WEIGHTS_IF_PRESENT adds the attribute if and only if
there is at least one explicit edge weight in the input file.

directed: Whether to create a directed graph. As this format was originally used only for undirected
graphs there is no information in the file about the directedness of the graph. Set this
parameter to IGRAPH_DIRECTED or IGRAPH_UNDIRECTED to create a directed or
undirected graph.

http://lgl.sourceforge.net

Reading and Writing
Graphs from and to Files

411

Returns:

Error code: IGRAPH_PARSEERROR: if there is a problem reading the file, or the file is syntactically
incorrect.

Time complexity: O(|V|+|E|log(|V|)) if we neglect the time required by the parsing. As usual |V| is the
number of vertices, while |E| is the number of edges.

See also:

igraph_read_graph_ncol(), igraph_write_graph_lgl()

Example 19.1. File examples/simple/igraph_read_graph_lgl.c

igraph_write_graph_lgl — Writes the graph to a file
in .lgl format

int igraph_write_graph_lgl(const igraph_t *graph, FILE *outstream,
 const char *names, const char *weights,
 igraph_bool_t isolates);

.lgl is a format used by LGL, see igraph_read_graph_lgl() for details.

Note that having multiple or loop edges in an .lgl file breaks the LGL software but igraph does not
check for this condition.

Arguments:

graph: The graph to write.

outstream: The stream object to write to, it should be writable.

names: The name of the vertex attribute, if symbolic names are written to the file. If not supply
0 here.

weights: The name of the edge attribute, if they are also written to the file. If you don't want
weights supply 0 here.

isolates: Logical, if TRUE isolated vertices are also written to the file. If FALSE they will be
omitted.

Returns:

Error code: IGRAPH_EFILE if there is an error writing the file.

Time complexity: O(|E|), the number of edges if isolates is FALSE, O(|V|+|E|) otherwise. All file
operations are expected to have time complexity O(1).

See also:

Reading and Writing
Graphs from and to Files

412

igraph_read_graph_lgl(), igraph_write_graph_ncol()

Example 19.2. File examples/simple/igraph_write_graph_lgl.c

igraph_read_graph_dimacs — Read a graph in DI-
MACS format.

int igraph_read_graph_dimacs(igraph_t *graph, FILE *instream,
 igraph_strvector_t *problem,
 igraph_vector_t *label,
 igraph_integer_t *source,
 igraph_integer_t *target,
 igraph_vector_t *capacity,
 igraph_bool_t directed);

This function reads the DIMACS file format, more specifically the version for network flow problems,
see the files at ftp://dimacs.rutgers.edu/pub/netflow/general-info/

This is a line-oriented text file (ASCII) format. The first character of each line defines the type of the line.
If the first character is c the line is a comment line and it is ignored. There is one problem line (p in the
file, it must appear before any node and arc descriptor lines. The problem line has three fields separated
by spaces: the problem type (min , max or asn), the number of vertices and number of edges in the
graph. Exactly two node identification lines are expected (n), one for the source, one for the target vertex.
These have two fields: the id of the vertex and the type of the vertex, either s (=source) or t (=target).
Arc lines start with a and have three fields: the source vertex, the target vertex and the edge capacity.

Vertex ids are numbered from 1.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: The file to read from.

source: Pointer to an integer, the id of the source node will be stored here. (The igraph vertex id,
which is one less than the actual number in the file.) It is ignored if NULL .

target: Pointer to an integer, the (igraph) id of the target node will be stored here. It is ignored
if NULL .

capacity: Pointer to an initialized vector, the capacity of the edges will be stored here if not NULL .

directed: Boolean, whether to create a directed graph.

Returns:

Error code.

Time complexity: O(|V|+|E|+c), the number of vertices plus the number of edges, plus the size of the file
in characters.

See also:

Reading and Writing
Graphs from and to Files

413

igraph_write_graph_dimacs()

igraph_write_graph_dimacs — Write a graph in DI-
MACS format.

int igraph_write_graph_dimacs(const igraph_t *graph, FILE *outstream,
 long int source, long int target,
 const igraph_vector_t *capacity);

This function writes a graph to an output stream in DIMACS format, describing a maximum flow problem.
See ftp://dimacs.rutgers.edu/pub/netflow/general-info/

This file format is discussed in the documentation of igraph_read_graph_dimacs(), see that for
more information.

Arguments:

graph: The graph to write to the stream.

outstream: The stream.

source: Integer, the id of the source vertex for the maximum flow.

target: Integer, the id of the target vertex.

capacity: Pointer to an initialized vector containing the edge capacity values.

Returns:

Error code.

Time complexity: O(|E|), the number of edges in the graph.

See also:

igraph_read_graph_dimacs()

Binary formats

igraph_read_graph_graphdb — Read a graph in the
binary graph database format.

int igraph_read_graph_graphdb(igraph_t *graph, FILE *instream,
 igraph_bool_t directed);

This is a binary format, used in the graph database for isomorphism testing. From the (now defunct) graph
database homepage:

Reading and Writing
Graphs from and to Files

414

The graphs are stored in a compact binary format, one graph per file. The file is com-
posed of 16 bit words, which are represented using the so-called little-endian conven-
tion, i.e. the least significant byte of the word is stored first.

Then, for each node, the file contains the list of edges coming out of the node itself.
The list is represented by a word encoding its length, followed by a word for each edge,
representing the destination node of the edge. Node numeration is 0-based, so the first
node of the graph has index 0.

Only unlabelled graphs are implemented.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: The stream to read from.

directed: Logical scalar, whether to create a directed graph.

Returns:

Error code.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Example 19.3. File examples/simple/igraph_read_graph_graphdb.c

GraphML format

igraph_read_graph_graphml — Reads a graph from a
GraphML file.

int igraph_read_graph_graphml(igraph_t *graph, FILE *instream,
 int index);

GraphML is an XML-based file format for representing various types of graphs. Currently only the most
basic import functionality is implemented in igraph: it can read GraphML files without nested graphs and
hyperedges. Attributes of the graph are loaded only if an attribute interface is attached, ie. if you use igraph
from R or Python.

Graph attribute names are taken from the attr.name attributes of the key tags in the GraphML file.
Since attr.name is not mandatory, igraph will fall back to the id attribute of the key tag if attr.name
is missing.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: A stream, it should be readable.

Reading and Writing
Graphs from and to Files

415

index: If the GraphML file contains more than one graph, the one specified by this index will be
loaded. Indices start from zero, so supply zero here if your GraphML file contains only
a single graph.

Returns:

Error code: IGRAPH_PARSEERROR: if there is a problem reading the file, or the file is syntactically
incorrect. IGRAPH_UNIMPLEMENTED: the GraphML functionality was disabled at compile-time

Example 19.4. File examples/simple/graphml.c

igraph_write_graph_graphml — Writes the graph to
a file in GraphML format

int igraph_write_graph_graphml(const igraph_t *graph, FILE *outstream,
 igraph_bool_t prefixattr);

GraphML is an XML-based file format for representing various types of graphs. See the GraphML Primer
(http://graphml.graphdrawing.org/primer/graphml-primer.html) for detailed format description.

Arguments:

graph: The graph to write.

outstream: The stream object to write to, it should be writable.

prefixattr: Logical value, whether to put a prefix in front of the attribute names to ensure unique-
ness if the graph has vertex and edge (or graph) attributes with the same name.

Returns:

Error code: IGRAPH_EFILE if there is an error writing the file.

Time complexity: O(|V|+|E|) otherwise. All file operations are expected to have time complexity O(1).

Example 19.5. File examples/simple/graphml.c

GML format

igraph_read_graph_gml — Read a graph in GML for-
mat.

int igraph_read_graph_gml(igraph_t *graph, FILE *instream);

http://graphml.graphdrawing.org/primer/graphml-primer.html

Reading and Writing
Graphs from and to Files

416

GML is a simple textual format, see http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-in-
formatik/projects.html for details.

Although all syntactically correct GML can be parsed, we implement only a subset of this format, some
attributes might be ignored. Here is a list of all the differences:

1. Only node and edge attributes are used, and only if they have a simple type: integer, real or string.
So if an attribute is an array or a record, then it is ignored. This is also true if only some values of the
attribute are complex.

2. Top level attributes except for Version and the first graph attribute are completely ignored.

3. Graph attributes except for node and edge are completely ignored.

4. There is no maximum line length.

5. There is no maximum keyword length.

6. Character entities in strings are not interpreted.

7. We allow inf (infinity) and nan (not a number) as a real number. This is case insensitive, so nan
, NaN and NAN are equal.

Please contact us if you cannot live with these limitations of the GML parser.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: The stream to read the GML file from.

Returns:

Error code.

Time complexity: should be proportional to the length of the file.

See also:

igraph_read_graph_graphml() for a more modern format,
igraph_write_graph_gml() for writing GML files.

Example 19.6. File examples/simple/gml.c

igraph_write_graph_gml — Write the graph to a
stream in GML format

int igraph_write_graph_gml(const igraph_t *graph, FILE *outstream,
 const igraph_vector_t *id, const char *creator);

GML is a quite general textual format, see http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretis-
che-informatik/projects.html for details.

http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-informatik/projects.html
http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-informatik/projects.html
http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-informatik/projects.html
http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-informatik/projects.html

Reading and Writing
Graphs from and to Files

417

The graph, vertex and edges attributes are written to the file as well, if they are numeric of string.

As igraph is more forgiving about attribute names, it might be necessary to simplify the them before writing
to the GML file. This way we'll have a syntactically correct GML file. The following simple procedure is
performed on each attribute name: first the alphanumeric characters are extracted, the others are ignored.
Then if the first character is not a letter then the attribute name is prefixed with “igraph”. Note that this
might result identical names for two attributes, igraph does not check this.

The “id” vertex attribute is treated specially. If the id argument is not 0 then it should be a numeric vector
with the vertex ids and the “id” vertex attribute is ignored (if there is one). If id is 0 and there is a numeric
“id” vertex attribute that is used instead. If ids are not specified in either way then the regular igraph vertex
ids are used.

Note that whichever way vertex ids are specified, their uniqueness is not checked.

If the graph has edge attributes named “source” or “target” they're silently ignored. GML uses these at-
tributes to specify the edges, so we cannot write them to the file. Rename them before calling this function
if you want to preserve them.

Arguments:

graph: The graph to write to the stream.

outstream: The stream to write the file to.

id: Either NULL or a numeric vector with the vertex ids. See details above.

creator: An optional string to write to the stream in the creator line. If this is 0 then the current
date and time is added.

Returns:

Error code.

Time complexity: should be proportional to the number of characters written to the file.

See also:

igraph_read_graph_gml() for reading GML files, igraph_read_graph_graphml() for
a more modern format.

Example 19.7. File examples/simple/gml.c

Pajek format

igraph_read_graph_pajek — Reads a file in Pajek for-
mat

int igraph_read_graph_pajek(igraph_t *graph, FILE *instream);

Reading and Writing
Graphs from and to Files

418

Arguments:

graph: Pointer to an uninitialized graph object.

file: An already opened file handler.

Returns:

Error code.

Only a subset of the Pajek format is implemented. This is partially because this format is not very well
documented, but also because igraph does not support some Pajek features, like multigraphs.

Starting from version 0.6.1 igraph reads bipartite (two-mode) graphs from Pajek files and add the type
vertex attribute for them. Warnings are given for invalid edges, i.e. edges connecting vertices of the same
type.

The list of the current limitations:

1. Only .net files are supported, Pajek project files (.paj) are not. These might be supported in the
future if there is need for it.

2. Time events networks are not supported.

3. Hypergraphs (ie. graphs with non-binary edges) are not supported.

4. Graphs with both directed and non-directed edges are not supported, are they cannot be represented
in igraph.

5. Only Pajek networks are supported, permutations, hierarchies, clusters and vectors are not.

6. Graphs with multiple edge sets are not supported.

If there are attribute handlers installed, igraph also reads the vertex and edge attributes from the
file. Most attributes are renamed to be more informative: `color' instead of `c', `xfact' instead of
`x_fact', `yfact' instead of `y_fact', `labeldist' instead of `lr', `labeldegree2' instead of
`lphi', `framewidth' instead of `bw', `fontsize' instead of `fos', `rotation' instead of `phi',
`radius' instead of `r', `diamondratio' instead of `q', `labeldegree' instead of `la', `vertex-
size' instead of `size', `color' instead of `ic', `framecolor' instead of `bc', `labelcolor' in-
stead of `lc', these belong to vertices.

Edge attributes are also renamed, `s' to `arrowsize', `w' to `edgewidth', `h1' to `hook1', `h2' to
`hook2', `a1' to `angle1', `a2' to `angle2', `k1' to `velocity1', `k2' to `velocity2', `ap' to
`arrowpos', `lp' to `labelpos', `lr' to `labelangle', `lphi' to `labelangle2', `la' to `la-
beldegree', `fos' to `fontsize', `a' to `arrowtype', `p' to `linepattern', `l' to `label', `lc'
to `labelcolor', `c' to `color'.

In addition the following vertex attributes might be added: `id' if there are vertex ids in the file, `x' and
`y' or `x' and `y' and `z' if there are vertex coordinates in the file.

The `weight' edge attribute might be added if there are edge weights present.

See the pajek homepage: http://vlado.fmf.uni-lj.si/pub/networks/pajek/ for more info on Pajek and the Pa-
jek manual: http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/pajekman.pdf for information on the Pajek
file format.

http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/pajekman.pdf

Reading and Writing
Graphs from and to Files

419

Time complexity: O(|V|+|E|+|A|), |V| is the number of vertices, |E| the number of edges, |A| the number of
attributes (vertex + edge) in the graph if there are attribute handlers installed.

See also:

igraph_write_graph_pajek() for writing Pajek files, igraph_read_graph_graphml()
for reading GraphML files.

Example 19.8. File examples/simple/foreign.c

igraph_write_graph_pajek — Writes a graph to a file
in Pajek format.

int igraph_write_graph_pajek(const igraph_t *graph, FILE *outstream);

The Pajek vertex and edge parameters (like color) are determined by the attributes of the vertices and
edges, of course this requires an attribute handler to be installed. The names of the corresponding vertex
and edge attributes are listed at igraph_read_graph_pajek(), eg. the `color' vertex attributes
determines the color (`c' in Pajek) parameter.

As of version 0.6.1 igraph writes bipartite graphs into Pajek files correctly, i.e. they will be also bipartite
when read into Pajek. As Pajek is less flexible for bipartite graphs (the numeric ids of the vertices must be
sorted according to vertex type), igraph might need to reorder the vertices when writing a bipartite Pajek
file. This effectively means that numeric vertex ids usually change when a bipartite graph is written to a
Pajek file, and then read back into igraph.

Arguments:

graph: The graph object to write.

outstream: The file to write to. It should be opened and writable. Make sure that you open the file in
binary format if you use MS Windows, otherwise end of line characters will be messed
up. (igraph will be able to read back these messed up files, but Pajek won't.)

Returns:

Error code.

Time complexity: O(|V|+|E|+|A|), |V| is the number of vertices, |E| is the number of edges, |A| the number
of attributes (vertex + edge) in the graph if there are attribute handlers installed.

See also:

igraph_read_graph_pajek() for reading Pajek graphs,
igraph_write_graph_graphml() for writing a graph in GraphML format, this suites igraph
graphs better.

Example 19.9. File examples/simple/igraph_write_graph_pajek.c

Reading and Writing
Graphs from and to Files

420

UCINET's DL file format

igraph_read_graph_dl — Read a file in the DL format
of UCINET

int igraph_read_graph_dl(igraph_t *graph, FILE *instream,
 igraph_bool_t directed);

This is a simple textual file format used by UCINET. See http://www.analytictech.com/net-
works/dataentry.htm for examples. All the forms described here are supported by igraph. Vertex names
and edge weights are also supported and they are added as attributes. (If an attribute handler is attached.)

Note the specification does not mention whether the format is case sensitive or not. For igraph DL files
are case sensitive, i.e. Larry and larry are not the same.

Arguments:

graph: Pointer to an uninitialized graph object.

instream: The stream to read the DL file from.

directed: Logical scalar, whether to create a directed file.

Returns:

Error code.

Time complexity: linear in terms of the number of edges and vertices, except for the matrix format, which
is quadratic in the number of vertices.

Example 19.10. File examples/simple/igraph_read_graph_dl.c

Graphviz format

igraph_write_graph_dot — Write the graph to a
stream in DOT format

int igraph_write_graph_dot(const igraph_t *graph, FILE* outstream);

DOT is the format used by the widely known GraphViz software, see http://www.graphviz.org for details.
The grammar of the DOT format can be found here: http://www.graphviz.org/doc/info/lang.html

This is only a preliminary implementation, only the vertices and the edges are written but not the attributes
or any visualization information.

Arguments:

http://www.analytictech.com/networks/dataentry.htm
http://www.analytictech.com/networks/dataentry.htm
http://www.graphviz.org
http://www.graphviz.org/doc/info/lang.html

Reading and Writing
Graphs from and to Files

421

graph: The graph to write to the stream.

outstream: The stream to write the file to.

Time complexity: should be proportional to the number of characters written to the file.

See also:

igraph_write_graph_graphml() for a more modern format.

Example 19.11. File examples/simple/dot.c

422

Chapter 20. Maximum Flows, Minimum
Cuts and related measures
Maximum Flows

igraph_maxflow — Maximum network flow between a
pair of vertices

int igraph_maxflow(const igraph_t *graph, igraph_real_t *value,
 igraph_vector_t *flow, igraph_vector_t *cut,
 igraph_vector_t *partition, igraph_vector_t *partition2,
 igraph_integer_t source, igraph_integer_t target,
 const igraph_vector_t *capacity,
 igraph_maxflow_stats_t *stats);

This function implements the Goldberg-Tarjan algorithm for calculating value of the maximum flow in a
directed or undirected graph. The algorithm was given in Andrew V. Goldberg, Robert E. Tarjan: A New
Approach to the Maximum-Flow Problem, Journal of the ACM, 35(4), 921-940, 1988.

The input of the function is a graph, a vector of real numbers giving the capacity of the edges and two
vertices of the graph, the source and the target. A flow is a function assigning positive real numbers to the
edges and satisfying two requirements: (1) the flow value is less than the capacity of the edge and (2) at
each vertex except the source and the target, the incoming flow (ie. the sum of the flow on the incoming
edges) is the same as the outgoing flow (ie. the sum of the flow on the outgoing edges). The value of the
flow is the incoming flow at the target vertex. The maximum flow is the flow with the maximum value.

Arguments:

graph: The input graph, either directed or undirected.

value: Pointer to a real number, the value of the maximum will be placed here, unless it is
a null pointer.

flow: If not a null pointer, then it must be a pointer to an initialized vector. The vector will
be resized, and the flow on each edge will be placed in it, in the order of the edge ids.
For undirected graphs this argument is bit trickier, since for these the flow direction is
not predetermined by the edge direction. For these graphs the elements of the flow
vector can be negative, this means that the flow goes from the bigger vertex id to the
smaller one. Positive values mean that the flow goes from the smaller vertex id to the
bigger one.

cut: A null pointer or a pointer to an initialized vector. If not a null pointer, then the minimum
cut corresponding to the maximum flow is stored here, i.e. all edge ids that are part of
the minimum cut are stored in the vector.

partition: A null pointer or a pointer to an initialized vector. If not a null pointer, then the first
partition of the minimum cut that corresponds to the maximum flow will be placed
here. The first partition is always the one that contains the source vertex.

Maximum Flows, Minimum
Cuts and related measures

423

partition2: A null pointer or a pointer to an initialized vector. If not a null pointer, then the second
partition of the minimum cut that corresponds to the maximum flow will be placed
here. The second partition is always the one that contains the target vertex.

source: The id of the source vertex.

target: The id of the target vertex.

capacity: Vector containing the capacity of the edges. If NULL, then every edge is considered
to have capacity 1.0.

stats: Counts of the number of different operations preformed by the algorithm are stored
here.

Returns:

Error code.

Time complexity: O(|V|^3). In practice it is much faster, but i cannot prove a better lower bound for the
data structure i've used. In fact, this implementation runs much faster than the hi_pr implementation
discussed in B. V. Cherkassky and A. V. Goldberg: On implementing the push-relabel method for the
maximum flow problem, (Algorithmica, 19:390--410, 1997) on all the graph classes i've tried.

See also:

igraph_mincut_value(), igraph_edge_connectivity(),
igraph_vertex_connectivity() for properties based on the maximum flow.

Example 20.1. File examples/simple/flow.c

Example 20.2. File examples/simple/flow2.c

igraph_maxflow_value — Maximum flow in a network
with the push/relabel algorithm

int igraph_maxflow_value(const igraph_t *graph, igraph_real_t *value,
 igraph_integer_t source, igraph_integer_t target,
 const igraph_vector_t *capacity,
 igraph_maxflow_stats_t *stats);

This function implements the Goldberg-Tarjan algorithm for calculating value of the maximum flow in a
directed or undirected graph. The algorithm was given in Andrew V. Goldberg, Robert E. Tarjan: A New
Approach to the Maximum-Flow Problem, Journal of the ACM, 35(4), 921-940, 1988.

The input of the function is a graph, a vector of real numbers giving the capacity of the edges and two
vertices of the graph, the source and the target. A flow is a function assigning positive real numbers to the
edges and satisfying two requirements: (1) the flow value is less than the capacity of the edge and (2) at
each vertex except the source and the target, the incoming flow (ie. the sum of the flow on the incoming

Maximum Flows, Minimum
Cuts and related measures

424

edges) is the same as the outgoing flow (ie. the sum of the flow on the outgoing edges). The value of the
flow is the incoming flow at the target vertex. The maximum flow is the flow with the maximum value.

According to a theorem by Ford and Fulkerson (L. R. Ford Jr. and D. R. Fulkerson. Maximal flow through
a network. Canadian J. Math., 8:399-404, 1956.) the maximum flow between two vertices is the same as
the minimum cut between them (also called the minimum s-t cut). So igraph_st_mincut_value()
gives the same result in all cases as igraph_maxflow_value().

Note that the value of the maximum flow is the same as the minimum cut in the graph.

Arguments:

graph: The input graph, either directed or undirected.

value: Pointer to a real number, the result will be placed here.

source: The id of the source vertex.

target: The id of the target vertex.

capacity: Vector containing the capacity of the edges. If NULL, then every edge is considered to
have capacity 1.0.

stats: Counts of the number of different operations preformed by the algorithm are stored here.

Returns:

Error code.

Time complexity: O(|V|^3).

See also:

igraph_maxflow() to calculate the actual flow. igraph_mincut_value(),
igraph_edge_connectivity(), igraph_vertex_connectivity() for properties based
on the maximum flow.

igraph_dominator_tree — Calculates the dominator
tree of a flowgraph

int igraph_dominator_tree(const igraph_t *graph,
 igraph_integer_t root,
 igraph_vector_t *dom,
 igraph_t *domtree,
 igraph_vector_t *leftout,
 igraph_neimode_t mode);

A flowgraph is a directed graph with a distinguished start (or root) vertex r, such that for any vertex v,
there is a path from r to v. A vertex v dominates another vertex w (not equal to v), if every path from r
to w contains v. Vertex v is the immediate dominator or w, v=idom(w), if v dominates w and every other
dominator of w dominates v. The edges {(idom(w), w)| w is not r} form a directed tree, rooted at r, called

Maximum Flows, Minimum
Cuts and related measures

425

the dominator tree of the graph. Vertex v dominates vertex w if and only if v is an ancestor of w in the
dominator tree.

This function implements the Lengauer-Tarjan algorithm to construct the dominator tree of a directed
graph. For details please see Thomas Lengauer, Robert Endre Tarjan: A fast algorithm for finding domina-
tors in a flowgraph, ACM Transactions on Programming Languages and Systems (TOPLAS) I/1, 121--141,
1979.

Arguments:

graph: A directed graph. If it is not a flowgraph, and it contains some vertices not reachable from
the root vertex, then these vertices will be collected in the leftout vector.

root: The id of the root (or source) vertex, this will be the root of the tree.

dom: Pointer to an initialized vector or a null pointer. If not a null pointer, then the immediate
dominator of each vertex will be stored here. For vertices that are not reachable from the
root, IGRAPH_NAN is stored here. For the root vertex itself, -1 is added.

domtree: Pointer to an uninitialized igraph_t, or NULL. If not a null pointer, then the dominator tree
is returned here. The graph contains the vertices that are unreachable from the root (if any),
these will be isolates.

leftout: Pointer to an initialized vector object, or NULL. If not NULL, then the ids of the vertices that
are unreachable from the root vertex (and thus not part of the dominator tree) are stored here.

mode: Constant, must be IGRAPH_IN or IGRAPH_OUT. If it is IGRAPH_IN, then all directions
are considered as opposite to the original one in the input graph.

Returns:

Error code.

Time complexity: very close to O(|E|+|V|), linear in the number of edges and vertices. More precisely, it
is O(|V|+|E|alpha(|E|,|V|)), where alpha(|E|,|V|) is a functional inverse of Ackermann's function.

Example 20.3. File examples/simple/dominator_tree.c

igraph_maxflow_stats_t — A simple data type to re-
turn some statistics from the

typedef struct {
 int nopush, norelabel, nogap, nogapnodes, nobfs;

push-relabel maximum flow solver.

Arguments:

nopush: The number of push operations performed.

norelabel: The number of relabel operarions performed.

Maximum Flows, Minimum
Cuts and related measures

426

nogap: The number of times the gap heuristics was used.

nogapnodes: The total number of vertices that were omitted form further calculations because of the
gap heuristics.

nobfs: The number of times the reverse BFS was run to assign good values to the height func-
tion. This includes an initial run before the whole algorithm, so it is always at least one.

Cuts and minimum cuts

igraph_st_mincut — Minimum cut between a source
and a target vertex

int igraph_st_mincut(const igraph_t *graph, igraph_real_t *value,
 igraph_vector_t *cut, igraph_vector_t *partition,
 igraph_vector_t *partition2,
 igraph_integer_t source, igraph_integer_t target,
 const igraph_vector_t *capacity);

Finds the edge set that has the smallest total capacity among all edge sets that disconnect the source and
target vertices.

The calculation is performed using maximum flow techniques, by calling igraph_maxflow().

Arguments:

graph: The input graph.

value: Pointer to a real variable, the value of the cut is stored here.

cut: Pointer to a real vector, the edge ids that are included in the cut are stored here. This
argument is ignored if it is a null pointer.

partition: Pointer to a real vector, the vertex ids of the vertices in the first partition of the cut are
stored here. The first partition is always the one that contains the source vertex. This
argument is ignored if it is a null pointer.

partition2: Pointer to a real vector, the vertex ids of the vertices in the second partition of the cut
are stored here. The second partition is always the one that contains the target vertex.
This argument is ignored if it is a null pointer.

source: Integer, the id of the source vertex.

target: Integer, the id of the target vertex.

capacity: Vector containing the capacity of the edges. If a null pointer, then every edge is con-
sidered to have capacity 1.0.

Returns:

Error code.

Maximum Flows, Minimum
Cuts and related measures

427

See also:

igraph_maxflow().

Time complexity: see igraph_maxflow().

igraph_st_mincut_value — The minimum s-t cut in a
graph

int igraph_st_mincut_value(const igraph_t *graph, igraph_real_t *value,
 igraph_integer_t source, igraph_integer_t target,
 const igraph_vector_t *capacity);

The minimum s-t cut in a weighted (=valued) graph is the total minimum edge weight needed to remove
from the graph to eliminate all paths from a given vertex (source) to another vertex (target). Directed
paths are considered in directed graphs, and undirected paths in undirected graphs.

The minimum s-t cut between two vertices is known to be same as the maximum flow between these two
vertices. So this function calls igraph_maxflow_value() to do the calculation.

Arguments:

graph: The input graph.

value: Pointer to a real variable, the result will be stored here.

source: The id of the source vertex.

target: The id of the target vertex.

capacity: Pointer to the capacity vector, it should contain non-negative numbers and its length should
be the same the the number of edges in the graph. It can be a null pointer, then every edge
has unit capacity.

Returns:

Error code.

Time complexity: O(|V|^3), see also the discussion for igraph_maxflow_value(), |V| is the number
of vertices.

igraph_all_st_cuts — List all edge-cuts between two
vertices in a directed graph

int igraph_all_st_cuts(const igraph_t *graph,
 igraph_vector_ptr_t *cuts,
 igraph_vector_ptr_t *partition1s,
 igraph_integer_t source,
 igraph_integer_t target);

Maximum Flows, Minimum
Cuts and related measures

428

This function lists all edge-cuts between a source and a target vertex. Every cut is listed exactly once.
The implemented algorithm is described in JS Provan and DR Shier: A Paradigm for listing (s,t)-cuts in
graphs, Algorithmica 15, 351--372, 1996.

Arguments:

graph: The input graph, is must be directed.

cuts: An initialized pointer vector, the cuts are stored here. It is a list of pointers to
igraph_vector_t objects. Each vector will contain the ids of the edges in the cut. This
argument is ignored if it is a null pointer. To free all memory allocated for cuts, you
need call igraph_vector_destroy() and then igraph_free() on each el-
ement, before destroying the pointer vector itself.

partition1s: An initialized pointer vector, the list of vertex sets, generating the actual edge cuts, are
stored here. Each vector contains a set of vertex ids. If X is such a set, then all edges
going from X to the complement of X form an (s,t) edge-cut in the graph. This argu-
ment is ignored if it is a null pointer. To free all memory allocated for partition1s,
you need call igraph_vector_destroy() and then igraph_free() on each
element, before destroying the pointer vector itself.

source: The id of the source vertex.

target: The id of the target vertex.

Returns:

Error code.

Time complexity: O(n(|V|+|E|)), where |V| is the number of vertices, |E| is the number of edges, and n is
the number of cuts.

Example 20.4. File examples/simple/igraph_all_st_cuts.c

igraph_all_st_mincuts — All minimum s-t cuts of a
directed graph

int igraph_all_st_mincuts(const igraph_t *graph, igraph_real_t *value,
 igraph_vector_ptr_t *cuts,
 igraph_vector_ptr_t *partition1s,
 igraph_integer_t source,
 igraph_integer_t target,
 const igraph_vector_t *capacity);

This function lists all minimum edge cuts between two vertices, in a directed graph. The implemented
algorithm is described in JS Provan and DR Shier: A Paradigm for listing (s,t)-cuts in graphs, Algorithmica
15, 351--372, 1996.

Arguments:

graph: The input graph, it must be directed.

Maximum Flows, Minimum
Cuts and related measures

429

value: Pointer to a real number, the value of the minimum cut is stored here, unless it is a
null pointer.

cuts: An initialized pointer vector, the cuts are stored here. It is a list of pointers to
igraph_vector_t objects. Each vector will contain the ids of the edges in the cut. This
argument is ignored if it is a null pointer. To free all memory allocated for cuts, you
need call igraph_vector_destroy() and then igraph_free() on each el-
ement, before destroying the pointer vector itself.

partition1s: An initialized pointer vector, the list of vertex sets, generating the actual edge cuts,
are stored here. Each vector contains a set of vertex ids. If X is such a set, then all
edges going from X to the complement of X form an (s,t) edge-cut in the graph. This
argument is ignored if it is a null pointer.

source: The id of the source vertex.

target: The id of the target vertex.

capacity: Vector of edge capacities. If this is a null pointer, then all edges are assumed to have
capacity one.

Returns:

Error code.

Time complexity: O(n(|V|+|E|))+O(F), where |V| is the number of vertices, |E| is the number of edges,
and n is the number of cuts; O(F) is the time complexity of the maximum flow algorithm, see
igraph_maxflow().

Example 20.5. File examples/simple/igraph_all_st_mincuts.c

igraph_mincut — Calculates the minimum cut in a
graph.

int igraph_mincut(const igraph_t *graph,
 igraph_real_t *value,
 igraph_vector_t *partition,
 igraph_vector_t *partition2,
 igraph_vector_t *cut,
 const igraph_vector_t *capacity);

This function calculates the minimum cut in a graph. The minimum cut is the minimum set of edges which
needs to be removed to disconnect the graph. The minimum is calculated using the weights (capacity)
of the edges, so the cut with the minimum total capacity is calculated.

For directed graphs an implementation based on calculating 2|V|-2 maximum flows is used. For undirected
graphs we use the Stoer-Wagner algorithm, as described in M. Stoer and F. Wagner: A simple min-cut
algorithm, Journal of the ACM, 44 585-591, 1997.

The first implementation of the actual cut calculation for undirected graphs was made by Gregory Benison,
thanks Greg.

Maximum Flows, Minimum
Cuts and related measures

430

Arguments:

graph: The input graph.

value: Pointer to a float, the value of the cut will be stored here.

partition: Pointer to an initialized vector, the ids of the vertices in the first partition after separating
the graph will be stored here. The vector will be resized as needed. This argument is
ignored if it is a NULL pointer.

partition2: Pointer to an initialized vector the ids of the vertices in the second partition will be
stored here. The vector will be resized as needed. This argument is ignored if it is a
NULL pointer.

cut: Pointer to an initialized vector, the ids of the edges in the cut will be stored here. This
argument is ignored if it is a NULL pointer.

capacity: A numeric vector giving the capacities of the edges. If a null pointer then all edges
have unit capacity.

Returns:

Error code.

See also:

igraph_mincut_value(), a simpler interface for calculating the value of the cut only.

Time complexity: for directed graphs it is O(|V|^4), but see the remarks at igraph_maxflow(). For
undirected graphs it is O(|V||E|+|V|^2 log|V|). |V| and |E| are the number of vertices and edges respectively.

Example 20.6. File examples/simple/igraph_mincut.c

igraph_mincut_value — The minimum edge cut in a
graph

int igraph_mincut_value(const igraph_t *graph, igraph_real_t *res,
 const igraph_vector_t *capacity);

The minimum edge cut in a graph is the total minimum weight of the edges needed to remove from the
graph to make the graph not strongly connected. (If the original graph is not strongly connected then this
is zero.) Note that in undirected graphs strong connectedness is the same as weak connectedness.

The minimum cut can be calculated with maximum flow techniques, although the current implementation
does this only for directed graphs and a separate non-flow based implementation is used for undirected
graphs. See Mechthild Stoer and Frank Wagner: A simple min-cut algorithm, Journal of the ACM 44
585--591, 1997. For directed graphs the maximum flow is calculated between a fixed vertex and all the
other vertices in the graph and this is done in both directions. Then the minimum is taken to get the
minimum cut.

Maximum Flows, Minimum
Cuts and related measures

431

Arguments:

graph: The input graph.

res: Pointer to a real variable, the result will be stored here.

capacity: Pointer to the capacity vector, it should contain the same number of non-negative numbers
as the number of edges in the graph. If a null pointer then all edges will have unit capacity.

Returns:

Error code.

See also:

igraph_mincut(), igraph_maxflow_value(), igraph_st_mincut_value().

Time complexity: O(log(|V|)*|V|^2) for undirected graphs and O(|V|^4) for directed graphs, but see also
the discussion at the documentation of igraph_maxflow_value().

Connectivity

igraph_st_edge_connectivity — Edge connectivity
of a pair of vertices

int igraph_st_edge_connectivity(const igraph_t *graph, igraph_integer_t *res,
 igraph_integer_t source,
 igraph_integer_t target);

The edge connectivity of two vertices (source and target) in a graph is the minimum number of edges
that have to be deleted from the graph to eliminate all paths from source to target.

This function uses the maximum flow algorithm to calculate the edge connectivity.

Arguments:

graph: The input graph, it has to be directed.

res: Pointer to an integer, the result will be stored here.

source: The id of the source vertex.

target: The id of the target vertex.

Returns:

Error code.

Time complexity: O(|V|^3).

See also:

Maximum Flows, Minimum
Cuts and related measures

432

igraph_maxflow_value(), igraph_edge_connectivity(),
igraph_st_vertex_connectivity(), igraph_vertex_connectivity().

igraph_edge_connectivity — The minimum edge
connectivity in a graph.

int igraph_edge_connectivity(const igraph_t *graph, igraph_integer_t *res,
 igraph_bool_t checks);

This is the minimum of the edge connectivity over all pairs of vertices in the graph.

The edge connectivity of a graph is the same as group adhesion as defined in Douglas R. White and
Frank Harary: The cohesiveness of blocks in social networks: node connectivity and conditional density,
Sociological Methodology 31:305--359, 2001.

Arguments:

graph: The input graph.

res: Pointer to an integer, the result will be stored here.

checks: Logical constant. Whether to check that the graph is connected and also the degree of the
vertices. If the graph is not (strongly) connected then the connectivity is obviously zero.
Otherwise if the minimum degree is one then the edge connectivity is also one. It is a good idea
to perform these checks, as they can be done quickly compared to the connectivity calculation
itself. They were suggested by Peter McMahan, thanks Peter.

Returns:

Error code.

Time complexity: O(log(|V|)*|V|^2) for undirected graphs and O(|V|^4) for directed graphs, but see also
the discussion at the documentation of igraph_maxflow_value().

See also:

igraph_st_edge_connectivity(), igraph_maxflow_value(),
igraph_vertex_connectivity().

igraph_st_vertex_connectivity — The vertex con-
nectivity of a pair of vertices

int igraph_st_vertex_connectivity(const igraph_t *graph,
 igraph_integer_t *res,
 igraph_integer_t source,
 igraph_integer_t target,
 igraph_vconn_nei_t neighbors);

Maximum Flows, Minimum
Cuts and related measures

433

The vertex connectivity of two vertices (source and target) is the minimum number of vertices that
have to be deleted to eliminate all paths from source to target. Directed paths are considered in
directed graphs.

The vertex connectivity of a pair is the same as the number of different (ie. node-independent) paths from
source to target.

The current implementation uses maximum flow calculations to obtain the result.

Arguments:

graph: The input graph.

res: Pointer to an integer, the result will be stored here.

source: The id of the source vertex.

target: The id of the target vertex.

neighbors: A constant giving what to do if the two vertices are connected. Pos-
sible values: IGRAPH_VCONN_NEI_ERROR, stop with an error message,
IGRAPH_VCONN_NEGATIVE, return -1. IGRAPH_VCONN_NUMBER_OF_NODES,
return the number of nodes. IGRAPH_VCONN_IGNORE, ignore the fact that the two
vertices are connected and calculated the number of vertices needed to eliminate all paths
except for the trivial (direct) paths between source and vertex. TOOD: what about
neighbors?

Returns:

Error code.

Time complexity: O(|V|^3), but see the discussion at igraph_maxflow_value().

See also:

igraph_vertex_connectivity(), igraph_edge_connectivity(),
igraph_maxflow_value().

igraph_vertex_connectivity — The vertex connec-
tivity of a graph

int igraph_vertex_connectivity(const igraph_t *graph, igraph_integer_t *res,
 igraph_bool_t checks);

The vertex connectivity of a graph is the minimum vertex connectivity along each pairs of vertices in the
graph.

The vertex connectivity of a graph is the same as group cohesion as defined in Douglas R. White and
Frank Harary: The cohesiveness of blocks in social networks: node connectivity and conditional density,
Sociological Methodology 31:305--359, 2001.

Maximum Flows, Minimum
Cuts and related measures

434

Arguments:

graph: The input graph.

res: Pointer to an integer, the result will be stored here.

checks: Logical constant. Whether to check that the graph is connected and also the degree of the
vertices. If the graph is not (strongly) connected then the connectivity is obviously zero. Oth-
erwise if the minimum degree is one then the vertex connectivity is also one. It is a good idea
to perform these checks, as they can be done quickly compared to the connectivity calculation
itself. They were suggested by Peter McMahan, thanks Peter.

Returns:

Error code.

Time complexity: O(|V|^5).

See also:

igraph_st_vertex_connectivity(), igraph_maxflow_value(), and
igraph_edge_connectivity().

Edge- and Vertex-Disjoint Paths

igraph_edge_disjoint_paths — The maximum num-
ber of edge-disjoint paths between two vertices.

int igraph_edge_disjoint_paths(const igraph_t *graph, igraph_integer_t *res,
 igraph_integer_t source,
 igraph_integer_t target);

A set of paths between two vertices is called edge-disjoint if they do not share any edges. The maximum
number of edge-disjoint paths are calculated by this function using maximum flow techniques. Directed
paths are considered in directed graphs.

Note that the number of disjoint paths is the same as the edge connectivity of the two vertices using uniform
edge weights.

Arguments:

graph: The input graph, can be directed or undirected.

res: Pointer to an integer variable, the result will be stored here.

source: The id of the source vertex.

target: The id of the target vertex.

Returns:

Maximum Flows, Minimum
Cuts and related measures

435

Error code.

Time complexity: O(|V|^3), but see the discussion at igraph_maxflow_value().

See also:

igraph_vertex_disjoint_paths(), igraph_st_edge_connectivity(),
igraph_maxflow_value().

igraph_vertex_disjoint_paths — Maximum number
of vertex-disjoint paths between two vertices.

int igraph_vertex_disjoint_paths(const igraph_t *graph, igraph_integer_t *res,
 igraph_integer_t source,
 igraph_integer_t target);

A set of paths between two vertices is called vertex-disjoint if they share no vertices. The calculation is
performed by using maximum flow techniques.

Note that the number of vertex-disjoint paths is the same as the vertex connectivity of the two vertices in
most cases (if the two vertices are not connected by an edge).

Arguments:

graph: The input graph.

res: Pointer to an integer variable, the result will be stored here.

source: The id of the source vertex.

target: The id of the target vertex.

Returns:

Error code.

Time complexity: O(|V|^3).

See also:

igraph_edge_disjoint_paths(), igraph_vertex_connectivity(),
igraph_maxflow_value().

Graph Adhesion and Cohesion

igraph_adhesion — Graph adhesion, this is (almost)
the same as edge connectivity.

Maximum Flows, Minimum
Cuts and related measures

436

int igraph_adhesion(const igraph_t *graph, igraph_integer_t *res,
 igraph_bool_t checks);

This quantity is defined by White and Harary in The cohesiveness of blocks in social networks: node
connectivity and conditional density, (Sociological Methodology 31:305--359, 2001) and basically it is
the edge connectivity of the graph with uniform edge weights.

Arguments:

graph: The input graph, either directed or undirected.

res: Pointer to an integer, the result will be stored here.

checks: Logical constant. Whether to check that the graph is connected and also the degree of the
vertices. If the graph is not (strongly) connected then the adhesion is obviously zero. Other-
wise if the minimum degree is one then the adhesion is also one. It is a good idea to perform
these checks, as they can be done quickly compared to the edge connectivity calculation it-
self. They were suggested by Peter McMahan, thanks Peter. *

Returns:

Error code.

Time complexity: O(log(|V|)*|V|^2) for undirected graphs and O(|V|^4) for directed graphs, but see also
the discussion at the documentation of igraph_maxflow_value().

See also:

igraph_cohesion(), igraph_maxflow_value(), igraph_edge_connectivity(),
igraph_mincut_value().

igraph_cohesion — Graph cohesion, this is the same
as vertex connectivity.

int igraph_cohesion(const igraph_t *graph, igraph_integer_t *res,
 igraph_bool_t checks);

This quantity was defined by White and Harary in “The cohesiveness of blocks in social networks: node
connectivity and conditional density”, (Sociological Methodology 31:305--359, 2001) and it is the same
as the vertex connectivity of a graph.

Arguments:

graph: The input graph.

res: Pointer to an integer variable, the result will be stored here.

checks: Logical constant. Whether to check that the graph is connected and also the degree of the
vertices. If the graph is not (strongly) connected then the cohesion is obviously zero. Other-
wise if the minimum degree is one then the cohesion is also one. It is a good idea to perform

Maximum Flows, Minimum
Cuts and related measures

437

these checks, as they can be done quickly compared to the vertex connectivity calculation
itself. They were suggested by Peter McMahan, thanks Peter.

Returns:

Error code.

Time complexity: O(|V|^4), |V| is the number of vertices. In practice it is more like O(|V|^2), see
igraph_maxflow_value().

See also:

igraph_vertex_connectivity(), igraph_adhesion(),
igraph_maxflow_value().

Cohesive Blocks

igraph_cohesive_blocks — Identifies the hierarchical
cohesive block structure of a graph

int igraph_cohesive_blocks(const igraph_t *graph,
 igraph_vector_ptr_t *blocks,
 igraph_vector_t *cohesion,
 igraph_vector_t *parent,
 igraph_t *block_tree);

Cohesive blocking is a method of determining hierarchical subsets of graph vertices based on their struc-
tural cohesion (or vertex connectivity). For a given graph G, a subset of its vertices S is said to be maximally
k-cohesive if there is no superset of S with vertex connectivity greater than or equal to k. Cohesive blocking
is a process through which, given a k-cohesive set of vertices, maximally l-cohesive subsets are recursively
identified with l>k. Thus a hiearchy of vertex subsets is found, whith the entire graph G at its root. See
the following reference for details: J. Moody and D. R. White. Structural cohesion and embeddedness: A
hierarchical concept of social groups. American Sociological Review, 68(1):103--127, Feb 2003.

This function implements cohesive blocking and calculates the complete cohesive block hierarchy of a
graph.

Arguments:

graph: The input graph. It must be undirected and simple. See igraph_is_simple().

blocks: If not a null pointer, then it must be an initialized vector of pointers and the cohesive
blocks are stored here. Each block is encoded with a numeric vector, that contains the
vertex ids of the block.

cohesion: If not a null pointer, then it must be an initialized vector and the cohesion of the blocks
is stored here, in the same order as the blocks in the blocks pointer vector.

parent: If not a null pointer, then it must be an initialized vector and the block hierarchy is
stored here. For each block, the id (i.e. the position in the blocks pointer vector) of
its parent block is stored. For the top block in the hierarchy, -1 is stored.

Maximum Flows, Minimum
Cuts and related measures

438

block_tree: If not a null pointer, then it must be a pointer to an uninitialized graph, and the block
hierarchy is stored here as an igraph graph. The vertex ids correspond to the order of
the blocks in the blocks vector.

Returns:

Error code.

Time complexity: TODO.

Example 20.7. File examples/simple/cohesive_blocks.c

439

Chapter 21. Vertex separators
igraph_is_separator — Decides whether
the removal of a set of vertices disconnects the
graph

int igraph_is_separator(const igraph_t *graph,
 const igraph_vs_t candidate,
 igraph_bool_t *res);

Arguments:

graph: The input graph. It may be directed, but edge directions are ignored.

condidate: The candidate separator. It must not contain all vertices.

res: Pointer to a boolean variable, the result is stored here.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number vertices and edges.

Example 21.1. File examples/simple/igraph_is_separator.c

igraph_is_minimal_separator — Decides
whether a set of vertices is a minimal separator

int igraph_is_minimal_separator(const igraph_t *graph,
 const igraph_vs_t candidate,
 igraph_bool_t *res);

A set of vertices is a minimal separator, if the removal of the vertices disconnects the graph, and this is
not true for any subset of the set.

This implementation first checks that the given candidate is a separator, by calling
igraph_is_separator(). If it is a separator, then it checks that each subset of size n-1, where n is
the size of the candidate, is not a separator.

Arguments:

graph: The input graph. It may be directed, but edge directions are ignored.

candidate: Pointer to a vector of long integers, the candidate minimal separator.

Vertex separators

440

res: Pointer to a boolean variable, the result is stored here.

Returns:

Error code.

Time complexity: O(n(|V|+|E|)), |V| is the number of vertices, |E| is the number of edges, n is the number
vertices in the candidate separator.

Example 21.2. File examples/simple/
igraph_is_minimal_separator.c

igraph_all_minimal_st_separators — List
all vertex sets that are minimal (s,t) separators
for some s and t

int igraph_all_minimal_st_separators(const igraph_t *graph,
 igraph_vector_ptr_t *separators);

This function lists all vertex sets that are minimal (s,t) separators for some (s,t) vertex pair.

See more about the implemented algorithm in Anne Berry, Jean-Paul Bordat and Olivier Cogis: Generat-
ing All the Minimal Separators of a Graph, In: Peter Widmayer, Gabriele Neyer and Stephan Eidenbenz
(editors): Graph-theoretic concepts in computer science, 1665, 167--172, 1999. Springer.

Arguments:

graph: The input graph. It may be directed, but edge directions are ignored.

separators: An initialized pointer vector, the separators are stored here. It is a list of point-
ers to igraph_vector_t objects. Each vector will contain the ids of the vertices
in the separator. To free all memory allocated for separators, you need call
igraph_vector_destroy() and then igraph_free() on each element, be-
fore destroying the pointer vector itself.

Returns:

Error code.

Time complexity: O(n|V|^3), |V| is the number of vertices, n is the number of separators.

Example 21.3. File examples/simple/igraph_minimal_separators.c

igraph_minimum_size_separators — Find
all minimum size separating vertex sets

Vertex separators

441

int igraph_minimum_size_separators(const igraph_t *graph,
 igraph_vector_ptr_t *separators);

This function lists all separator vertex sets of minimum size. A vertex set is a separator if its removal
disconnects the graph.

The implementation is based on the following paper: Arkady Kanevsky: Finding all minimum-size sepa-
rating vertex sets in a graph, Networks 23, 533--541, 1993.

Arguments:

graph: The input graph, it may be directed, but edge directions will be ignored.

separators: An initialized pointer vector, the separators are stored here. It is a list of point-
ers to igraph_vector_t objects. Each vector will contain the ids of the vertices
in the separator. To free all memory allocated for separators, you need call
igraph_vector_destroy() and then igraph_free() on each element, be-
fore destroying the pointer vector itself.

Returns:

Error code.

Time complexity: TODO.

Example 21.4. File examples/simple/
igraph_minimum_size_separators.c

442

Chapter 22. Detecting Community
Structure

Common functions related to community struc-
ture

igraph_modularity — Calculate the modularity of a
graph with respect to some vertex types

int igraph_modularity(const igraph_t *graph,
 const igraph_vector_t *membership,
 igraph_real_t *modularity,
 const igraph_vector_t *weights);

The modularity of a graph with respect to some division (or vertex types) measures how good the division
is, or how separated are the different vertex types from each other. It is defined as Q=1/(2m) * sum((Aij
- ki*kj / (2m)) delta(ci,cj), i, j), here `m' is the number of edges, `Aij' is the element of the `A' adjacency
matrix in row ̀ i' and column ̀ j', ̀ ki' is the degree of ̀ i', ̀ kj' is the degree of ̀ j', ̀ ci' is the type (or component)
of `i', `cj' that of `j', the sum goes over all `i' and `j' pairs of vertices, and `delta(x,y)' is one if x=y and
zero otherwise.

Modularity on weighted graphs is also meaningful. When taking edge weights into account, `Aij' becomes
the weight of the corresponding edge (or 0 if there is no edge), `ki' is the total weight of edges incident on
vertex `i', `kj' is the total weight of edges incident on vertex `j' and `m' is the total weight of all edges.

See also Clauset, A.; Newman, M. E. J.; Moore, C. Finding community structure in very large networks,
Physical Review E, 2004, 70, 066111.

Arguments:

graph: The input graph.

membership: Numeric vector which gives the type of each vertex, ie. the component to which it
belongs. It does not have to be consecutive, i.e. empty communities are allowed.

modularity: Pointer to a real number, the result will be stored here.

weights: Weight vector or NULL if no weights are specified.

Returns:

Error code.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Detecting Community Structure

443

igraph_community_optimal_modularity — Calculate
the community structure with the highest modularity val-
ue

int igraph_community_optimal_modularity(const igraph_t *graph,
 igraph_real_t *modularity,
 igraph_vector_t *membership,
 const igraph_vector_t *weights);

This function calculates the optimal community structure for a graph, in terms of maximal modularity
score.

The calculation is done by transforming the modularity maximization into an integer programming prob-
lem, and then calling the GLPK library to solve that. Please see Ulrik Brandes et al.: On Modularity Clus-
tering, IEEE Transactions on Knowledge and Data Engineering 20(2):172-188, 2008.

Note that modularity optimization is an NP-complete problem, and all known algorithms for it have ex-
ponential time complexity. This means that you probably don't want to run this function on larger graphs.
Graphs with up to fifty vertices should be fine, graphs with a couple of hundred vertices might be possible.

Arguments:

graph: The input graph. It is always treated as undirected.

modularity: Pointer to a real number, or a null pointer. If it is not a null pointer, then a optimal
modularity value is returned here.

membership: Pointer to a vector, or a null pointer. If not a null pointer, then the membership vector
of the optimal community structure is stored here.

weights: Vector giving the weights of the edges. If it is NULL then each edge is supposed to
have the same weight.

Returns:

Error code.

See also:

igraph_modularity(), igraph_community_fastgreedy() for an algorithm that finds a
local optimum in a greedy way.

Time complexity: exponential in the number of vertices.

Example 22.1. File examples/simple/
igraph_community_optimal_modularity.c

igraph_community_to_membership — Create mem-
bership vector from community structure dendrogram

Detecting Community Structure

444

int igraph_community_to_membership(const igraph_matrix_t *merges,
 igraph_integer_t nodes,
 igraph_integer_t steps,
 igraph_vector_t *membership,
 igraph_vector_t *csize);

This function creates a membership vector from a community structure dendrogram. A membership vector
contains for each vertex the id of its graph component, the graph components are numbered from zero, see
the same argument of igraph_clusters() for an example of a membership vector.

Many community detection algorithms return with a merges matrix,
igraph_community_walktrap() and igraph_community_edge_betweenness() are
two examples. The matrix contains the merge operations performed while mapping the hierarchical struc-
ture of a network. If the matrix has n-1 rows, where n is the number of vertices in the graph, then it
contains the hierarchical structure of the whole network and it is called a dendrogram.

This function performs steps merge operations as prescribed by the merges matrix and returns the
current state of the network.

If merges is not a complete dendrogram, it is possible to take steps steps if steps is not bigger than
the number lines in merges.

Arguments:

merges: The two-column matrix containing the merge operations. See
igraph_community_walktrap() for the detailed syntax.

nodes: The number of leaf nodes in the dendrogram

steps: Integer constant, the number of steps to take.

membership: Pointer to an initialized vector, the membership results will be stored here, if not NULL.
The vector will be resized as needed.

csize: Pointer to an initialized vector, or NULL. If not NULL then the sizes of the components
will be stored here, the vector will be resized as needed.

See also:

igraph_community_walktrap(), igraph_community_edge_betweenness(),
igraph_community_fastgreedy() for community structure detection algorithms.

Time complexity: O(|V|), the number of vertices in the graph.

igraph_reindex_membership — Makes the IDs in a
membership vector continuous

int igraph_reindex_membership(igraph_vector_t *membership,
 igraph_vector_t *new_to_old);

This function reindexes component IDs in a membership vector in a way that the new IDs start from zero
and go up to C-1, where C is the number of unique component IDs in the original vector. This function
was contributed by Tom Gregorovic.

Detecting Community Structure

445

Arguments:

membership: Numeric vector which gives the type of each vertex, ie. the component to which it
belongs. The vector will be altered in-place.

new_to_old: Pointer to a vector which will contain the old component ID for each new one, or NULL,
in which case it is not returned. The vector will be resized as needed.

Time complexity: should be O(n log n) for n elements.

igraph_compare_communities — Compares commu-
nity structures using various metrics

int igraph_compare_communities(const igraph_vector_t *comm1,
 const igraph_vector_t *comm2, igraph_real_t* result,
 igraph_community_comparison_t method);

This function assesses the distance between two community structures using the variation of information
(VI) metric of Meila (2003), the normalized mutual information (NMI) of Danon et al (2005), the split-
join distance of van Dongen (2000), the Rand index of Rand (1971) or the adjusted Rand index of Hubert
and Arabie (1985).

References:

Meila M: Comparing clusterings by the variation of information. In: Schölkopf B, Warmuth MK (eds.).
Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and
7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science,
vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1.

Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech
P09008, 2005.

van Dongen S: Performance criteria for graph clustering and Markov cluster experiments. Technical Re-
port INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands,
Amsterdam, May 2000.

Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850,
1971.

Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985.

Arguments:

comm1: the membership vector of the first community structure

comm2: the membership vector of the second community structure

result: the result is stored here.

method: the comparison method to use. IGRAPH_COMMCMP_VI selects the variation of information
(VI) metric of Meila (2003), IGRAPH_COMMCMP_NMI selects the normalized mutual infor-
mation measure proposed by Danon et al (2005), IGRAPH_COMMCMP_SPLIT_JOIN se-
lects the split-join distance of van Dongen (2000), IGRAPH_COMMCMP_RAND selects the
unadjusted Rand index (1971) and IGRAPH_COMMCMP_ADJUSTED_RAND selects the ad-
justed Rand index.

Detecting Community Structure

446

Returns:

Error code.

Time complexity: O(n log(n)).

igraph_split_join_distance — Calculates the split-
join distance of two community structures

int igraph_split_join_distance(const igraph_vector_t *comm1,
 const igraph_vector_t *comm2, igraph_integer_t *distance12,
 igraph_integer_t *distance21);

The split-join distance between partitions A and B is the sum of the projection distance of A from B and
the projection distance of B from A. The projection distance is an asymmetric measure and it is defined
as follows:

First, each set in partition A is evaluated against all sets in partition B. For each set in partition A, the
best matching set in partition B is found and the overlap size is calculated. (Matching is quantified by the
size of the overlap between the two sets). Then, the maximal overlap sizes for each set in A are summed
together and subtracted from the number of elements in A.

The split-join distance will be returned in two arguments, distance12 will contain the projection dis-
tance of the first partition from the second, while distance21 will be the projection distance of the
second partition from the first. This makes it easier to detect whether a partition is a subpartition of the
other, since in this case, the corresponding distance will be zero.

Reference:

van Dongen S: Performance criteria for graph clustering and Markov cluster experiments. Technical Re-
port INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands,
Amsterdam, May 2000.

Arguments:

comm1: the membership vector of the first community structure

comm2: the membership vector of the second community structure

distance12: pointer to an igraph_integer_t, the projection distance of the first community
structure from the second one will be returned here.

distance21: pointer to an igraph_integer_t, the projection distance of the second community
structure from the first one will be returned here.

Returns:

Error code.

\see igraph_compare_communities() with the IGRAPH_COMMCMP_SPLIT_JOIN method if
you are not interested in the individual distances but only the sum of them. Time complexity: O(n log(n)).

Detecting Community Structure

447

Community structure based on statistical me-
chanics

igraph_community_spinglass — Community detec-
tion based on statistical mechanics

int igraph_community_spinglass(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_real_t *modularity,
 igraph_real_t *temperature,
 igraph_vector_t *membership,
 igraph_vector_t *csize,
 igraph_integer_t spins,
 igraph_bool_t parupdate,
 igraph_real_t starttemp,
 igraph_real_t stoptemp,
 igraph_real_t coolfact,
 igraph_spincomm_update_t update_rule,
 igraph_real_t gamma,
 /* the rest is for the NegSpin implementation */
 igraph_spinglass_implementation_t implementation,
/* igraph_matrix_t *adhesion, */
/* igraph_matrix_t *normalised_adhesion, */
/* igraph_real_t *polarization, */
 igraph_real_t gamma_minus);

This function implements the community structure detection algorithm proposed by Joerg Reichardt and
Stefan Bornholdt. The algorithm is described in their paper: Statistical Mechanics of Community Detec-
tion, http://arxiv.org/abs/cond-mat/0603718 .

From version 0.6 igraph also supports an extension to the algorithm that allows negative edge weights.
This is described in V.A. Traag and Jeroen Bruggeman: Community detection in networks with positive
and negative links, http://arxiv.org/abs/0811.2329 .

Arguments:

graph: The input graph, it may be directed but the direction of the edge is not used in
the algorithm.

weights: The vector giving the edge weights, it may be NULL, in which case all edges are
weighted equally. Edge weights should be positive, altough this is not tested.

modularity: Pointer to a real number, if not NULL then the modularity score of the solution
will be stored here. This is the gereralized modularity that simplifies to the one
defined in M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113 (2004), if
the gamma parameter is one.

temperature: Pointer to a real number, if not NULL then the temperature at the end of the al-
gorithm will be stored here.

http://arxiv.org/abs/cond-mat/0603718
http://arxiv.org/abs/0811.2329

Detecting Community Structure

448

membership: Pointer to an initialized vector or NULL. If not NULL then the result of the clus-
tering will be stored here, for each vertex the number of its cluster is given, the
first cluster is numbered zero. The vector will be resized as needed.

csize: Pointer to an initialized vector or NULL. If not NULL then the sizes of the clusters
will stored here in cluster number order. The vector will be resized as needed.

spins: Integer giving the number of spins, ie. the maximum number of clusters. Usually
it is not a program to give a high number here, the default was 25 in the original
code. Even if the number of spins is high the number of clusters in the result
might small.

parupdate: A logical constant, whether to update all spins in parallel. The default for this
argument was FALSE (ie. 0) in the original code. It is not implemented in the
IGRAPH_SPINCOMM_INP_NEG implementation.

starttemp: Real number, the temperature at the start. The value of this argument was 1.0 in
the original code.

stoptemp: Real number, the algorithm stops at this temperature. The default was 0.01 in the
original code.

coolfact: Real number, the coolinf factor for the simulated annealing. The default was 0.99
in the original code.

update_rule: The type of the update rule. Possible values:
IGRAPH_SPINCOMM_UPDATE_SIMPLE and
IGRAPH_SPINCOMM_UPDATE_CONFIG. Basically this parameter defined
the null model based on which the actual clustering is done. If this is
IGRAPH_SPINCOMM_UPDATE_SIMPLE then the random graph (ie. G(n,p)),
if it is IGRAPH_SPINCOMM_UPDATE then the configuration model is used. The
configuration means that the baseline for the clustering is a random graph with
the same degree distribution as the input graph.

gamma: Real number. The gamma parameter of the algorithm. This defined the weight of
the missing and existing links in the quality function for the clustering. The de-
fault value in the original code was 1.0, which is equal weight to missing and ex-
isting edges. Smaller values make the existing links contibute more to the energy
function which is minimized in the algorithm. Bigger values make the missing
links more important. (If my understanding is correct.)

implementation: Constant, chooses between the two implementations of the spin-glass algorithm
that are included in igraph. IGRAPH_SPINCOMM_IMP_ORIG selects the orig-
inal implementation, this is faster, IGRAPH_SPINCOMM_INP_NEG selects a
new implementation by Vincent Traag that allows negative edge weights.

gamma_minus: Real number. Parameter for the IGRAPH_SPINCOMM_IMP_NEG implemen-
tation. This specifies the balance between the importance of present and
non-present negative weighted edges in a community. Smaller values of
gamma_minus lead to communities with lesser negative intra-connectivity. If
this argument is set to zero, the algorithm reduces to a graph coloring algorithm,
using the number of spins as the number of colors.

Returns:

Error code.

Detecting Community Structure

449

See also:

igraph_community_spinglass_single() for calculating the community of a single vertex.

Time complexity: TODO.

Example 22.2. File examples/simple/spinglass.c

igraph_community_spinglass_single — Community
of a single node based on statistical mechanics

int igraph_community_spinglass_single(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_integer_t vertex,
 igraph_vector_t *community,
 igraph_real_t *cohesion,
 igraph_real_t *adhesion,
 igraph_integer_t *inner_links,
 igraph_integer_t *outer_links,
 igraph_integer_t spins,
 igraph_spincomm_update_t update_rule,
 igraph_real_t gamma);

This function implements the community structure detection algorithm proposed by Joerg Reichardt and
Stefan Bornholdt. It is described in their paper: Statistical Mechanics of Community Detection, http://
arxiv.org/abs/cond-mat/0603718 .

This function calculates the community of a single vertex without calculating all the communities in the
graph.

Arguments:

graph: The input graph, it may be directed but the direction of the edges is not used in the
algorithm.

weights: Pointer to a vector with the weights of the edges. Alternatively NULL can be supplied
to have the same weight for every edge.

vertex: The vertex id of the vertex of which ths community is calculated.

community: Pointer to an initialized vector, the result, the ids of the vertices in the community of
the input vertex will be stored here. The vector will be resized as needed.

cohesion: Pointer to a real variable, if not NULL the cohesion index of the community will be
stored here.

adhesion: Pointer to a real variable, if not NULL the adhesion index of the community will be
stored here.

inner_links: Pointer to an integer, if not NULL the number of edges within the community is stored
here.

http://arxiv.org/abs/cond-mat/0603718
http://arxiv.org/abs/cond-mat/0603718

Detecting Community Structure

450

outer_links: Pointer to an integer, if not NULL the number of edges between the community and
the rest of the graph will be stored here.

spins: The number of spins to use, this can be higher than the actual number of clusters in
the network, in which case some clusters will contain zero vertices.

update_rule: The type of the update rule. Possible values:
IGRAPH_SPINCOMM_UPDATE_SIMPLE and
IGRAPH_SPINCOMM_UPDATE_CONFIG. Basically this parameter defined the
null model based on which the actual clustering is done. If this is
IGRAPH_SPINCOMM_UPDATE_SIMPLE then the random graph (ie. G(n,p)), if it
is IGRAPH_SPINCOMM_UPDATE then the configuration model is used. The config-
uration means that the baseline for the clustering is a random graph with the same
degree distribution as the input graph.

gamma: Real number. The gamma parameter of the algorithm. This defined the weight of the
missing and existing links in the quality function for the clustering. The default value
in the original code was 1.0, which is equal weight to missing and existing edges.
Smaller values make the existing links contibute more to the energy function which
is minimized in the algorithm. Bigger values make the missing links more important.
(If my understanding is correct.)

Returns:

Error code.

See also:

igraph_community_spinglass() for the traditional version of the algorithm.

Time complexity: TODO.

Community structure based on eigenvectors of
matrices

The function documented in these section implements the “leading eigenvector” method developed by
Mark Newman and published in MEJ Newman: Finding community structure using the eigenvectors of
matrices, Phys Rev E 74:036104 (2006).

The heart of the method is the definition of the modularity matrix, B, which is B=A-P, A being the ad-
jacency matrix of the (undirected) network, and P contains the probability that certain edges are present
according to the “configuration model” In other words, a Pij element of P is the probability that there is
an edge between vertices i and j in a random network in which the degrees of all vertices are the same
as in the input graph.

The leading eigenvector method works by calculating the eigenvector of the modularity matrix for the
largest positive eigenvalue and then separating vertices into two community based on the sign of the
corresponding element in the eigenvector. If all elements in the eigenvector are of the same sign that means
that the network has no underlying community structure. Check Newman's paper to understand why this
is a good method for detecting community structure.

The leading eigenvector community structure detection method is implemented in
igraph_community_leading_eigenvector(). After the initial split, the following splits are
done in a way to optimize modularity regarding to the original network.

Detecting Community Structure

451

Example 22.3. File examples/simple/
igraph_community_leading_eigenvector.c

igraph_community_leading_eigenvector — Leading
eigenvector community finding (proper version).

int igraph_community_leading_eigenvector(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_matrix_t *merges,
 igraph_vector_t *membership,
 igraph_integer_t steps,
 igraph_arpack_options_t *options,
 igraph_real_t *modularity,
 igraph_bool_t start,
 igraph_vector_t *eigenvalues,
 igraph_vector_ptr_t *eigenvectors,
 igraph_vector_t *history,
 igraph_community_leading_eigenvector_callback_t *callback,
 void *callback_extra);

Newman's leading eigenvector method for detecting community structure. This is the proper implementa-
tion of the recursive, divisive algorithm: each split is done by maximizing the modularity regarding the
original network, see MEJ Newman: Finding community structure in networks using the eigenvectors of
matrices, Phys Rev E 74:036104 (2006).

Arguments:

graph: The undirected input graph.

weights: The weights of the edges, or a null pointer for unweighted graphs.

merges: The result of the algorithm, a matrix containing the information about the splits
performed. The matrix is built in the opposite way however, it is like the result of
an agglomerative algorithm. If at the end of the algorithm (after steps steps was
done) there are “p” communities, then these are numbered from zero to “p-1”.
The first line of the matrix contains the first “merge” (which is in reality the last
split) of two communities into community “p”, the merge in the second line forms
community “p+1”, etc. The matrix should be initialized before calling and will
be resized as needed. This argument is ignored of it is NULL.

membership: The membership of the vertices after all the splits were performed will be stored
here. The vector must be initialized before calling and will be resized as needed.
This argument is ignored if it is NULL. This argument can also be used to supply a
starting configuration for the community finding, in the format of a membership
vector. In this case the start argument must be set to 1.

steps: The maximum number of steps to perform. It might happen that some component
(or the whole network) has no underlying community structure and no further
steps can be done. If you want as many steps as possible then supply the number
of vertices in the network here.

Detecting Community Structure

452

options: The options for ARPACK. n is always overwritten. ncv is set to at least 4.

modularity: If not a null pointer, then it must be a pointer to a real number and the modularity
score of the final division is stored here.

start: Boolean, whether to use the community structure given in the membership
argument as a starting point.

eigenvalues: Pointer to an initialized vector or a null pointer. If not a null pointer, then the
eigenvalues calculated along the community structure detection are stored here.
The non-positive eigenvalues, that do not result a split, are stored as well.

eigenvectors: If not a null pointer, then the eigenvectors that are calculated in each step
of the algorithm, are stored here, in a pointer vector. Each eigenvector is
stored in an igraph_vector_t object. The user is responsible of deal-
locating the memory that belongs to the individual vectors, by calling first
igraph_vector_destroy(), and then free() on them.

history: Pointer to an initialized vector or a null pointer. If not a null pointer, then a trace
of the algorithm is stored here, encoded numerically. The various operations:

IGRAPH_LEVC_HIST_START_FULLStart the algorithm from an initial state
where each connected component is a sep-
arate community.

IGRAPH_LEVC_HIST_START_GIVENStart the algorithm from a given commu-
nity structure. The next value in the vec-
tor contains the initial number of commu-
nities.

IGRAPH_LEVC_HIST_SPLIT Split a community into two communities.
The id of the splitted community is given
in the next element of the history vector.
The id of the first new community is the
same as the id of the splitted communi-
ty. The id of the second community equals
to the number of communities before the
split.

IGRAPH_LEVC_HIST_FAILED Tried to split a community, but it was not
worth it, as it does not result in a bigger
modularity value. The id of the communi-
ty is given in the next element of the vec-
tor.

callback: A null pointer or a function of type
igraph_community_leading_eigenvector_callback_t. If given,
this callback function is called after each eigenvector/eigenvalue calculation.
If the callback returns a non-zero value, then the community finding algo-
rithm stops. See the arguments passed to the callback at the documentation of
igraph_community_leading_eigenvector_callback_t.

callback_extra: Extra argument to pass to the callback function.

Returns:

Detecting Community Structure

453

Error code.

See also:

igraph_community_walktrap() and igraph_community_spinglass() for other com-
munity structure detection methods.

Time complexity: O(|E|+|V|^2*steps), |V| is the number of vertices, |E| the number of edges, “steps” the
number of splits performed.

igraph_community_leading_eigenvector_callback_t
— Callback for the leading eigenvector community find-
ing method.

typedef int igraph_community_leading_eigenvector_callback_t(
 const igraph_vector_t *membership,
 long int comm,
 igraph_real_t eigenvalue,
 const igraph_vector_t *eigenvector,
 igraph_arpack_function_t *arpack_multiplier,
 void *arpack_extra,
 void *extra);

The leading eigenvector community finding implementation in igraph is able to call a
callback function, after each eigenvalue calculation. This callback function must be of
igraph_community_leading_eigenvector_callback_t type. The following arguments are
passed to the callback:

Arguments:

membership: The actual membership vector, before recording the potential change implied
by the newly found eigenvalue.

comm: The id of the community that the algorithm tried to split in the last iteration.
The community ids are indexed from zero here!

eigenvalue: The eigenvalue the algorithm has just found.

eigenvector: The eigenvector corresponding to the eigenvalue the algorithm just found.

arpack_multiplier: A function that was passed to igraph_arpack_rssolve() to solve the
last eigenproblem.

arpack_extra: The extra argument that was passed to the ARPACK solver.

extra: Extra argument that as passed to
igraph_community_leading_eigenvector().

See also:

igraph_community_leading_eigenvector(), igraph_arpack_function_t,
igraph_arpack_rssolve().

Detecting Community Structure

454

igraph_le_community_to_membership — Vertex
membership from the leading eigenvector community
structure

int igraph_le_community_to_membership(const igraph_matrix_t *merges,
 igraph_integer_t steps,
 igraph_vector_t *membership,
 igraph_vector_t *csize);

This function creates a membership vector from the result of
igraph_community_leading_eigenvector(), It takes membership and performs steps
merges, according to the supplied merges matrix.

Arguments:

merges: The matrix defining the merges to make. This is usually from the output of the leading
eigenvector community structure detection routines.

steps: The number of steps to make according to merges.

membership: Initially the starting membership vector, on output the resulting membership vector,
after performing steps merges.

csize: Optionally the sizes of the communities is stored here, if this is not a null pointer, but
an initialized vector.

Returns:

Error code.

Time complexity: O(|V|), the number of vertices.

Walktrap: community structure based on ran-
dom walks

igraph_community_walktrap — This function is the
implementation of the Walktrap community

int igraph_community_walktrap(const igraph_t *graph,
 const igraph_vector_t *weights,
 int steps,
 igraph_matrix_t *merges,
 igraph_vector_t *modularity,
 igraph_vector_t *membership);

Detecting Community Structure

455

finding algorithm, see Pascal Pons, Matthieu Latapy: Computing communities in large networks using
random walks, http://arxiv.org/abs/physics/0512106

Currently the original C++ implementation is used in igraph, see http://www-rp.lip6.fr/~latapy/PP/
walktrap.html I'm grateful to Matthieu Latapy and Pascal Pons for providing this source code.

In contrast to the original implementation, isolated vertices are allowed in the graph and they are assumed
to have a single incident loop edge with weight 1.

Arguments:

graph: The input graph, edge directions are ignored.

weights: Numeric vector giving the weights of the edges. If it is a NULL pointer then all edges
will have equal weights. The weights are expected to be positive.

steps: Integer constant, the length of the random walks.

merges: Pointer to a matrix, the merges performed by the algorithm will be stored here (if not
NULL). Each merge is a row in a two-column matrix and contains the ids of the merged
clusters. Clusters are numbered from zero and cluster numbers smaller than the number
of nodes in the network belong to the individual vertices as singleton clusters. In each
step a new cluster is created from two other clusters and its id will be one larger than the
largest cluster id so far. This means that before the first merge we have n clusters (the
number of vertices in the graph) numbered from zero to n-1. The first merge creates
cluster n, the second cluster n+1, etc.

modularity: Pointer to a vector. If not NULL then the modularity score of the current clustering is
stored here after each merge operation.

membership: Pointer to a vector. If not a NULL pointer, then the membership vector corresponding
to the maximal modularity score is stored here. If it is not a NULL pointer, then neither
modularity nor merges may be NULL.

Returns:

Error code.

See also:

igraph_community_spinglass(), igraph_community_edge_betweenness().

Time complexity: O(|E||V|^2) in the worst case, O(|V|^2 log|V|) typically, |V| is the number of vertices, |
E| is the number of edges.

Example 22.4. File examples/simple/walktrap.c

Edge betweenness based community detection

igraph_community_edge_betweenness — Community
finding based on edge betweenness

http://arxiv.org/abs/physics/0512106
http://www-rp.lip6.fr/~latapy/PP/walktrap.html
http://www-rp.lip6.fr/~latapy/PP/walktrap.html

Detecting Community Structure

456

int igraph_community_edge_betweenness(const igraph_t *graph,
 igraph_vector_t *result,
 igraph_vector_t *edge_betweenness,
 igraph_matrix_t *merges,
 igraph_vector_t *bridges,
 igraph_vector_t *modularity,
 igraph_vector_t *membership,
 igraph_bool_t directed,
 const igraph_vector_t *weights);

Community structure detection based on the betweenness of the edges in the network. The algorithm was
invented by M. Girvan and M. Newman, see: M. Girvan and M. E. J. Newman: Community structure in
social and biological networks, Proc. Nat. Acad. Sci. USA 99, 7821-7826 (2002).

The idea is that the betweenness of the edges connecting two communities is typically high, as many of the
shortest paths between nodes in separate communities go through them. So we gradually remove the edge
with highest betweenness from the network, and recalculate edge betweenness after every removal. This
way sooner or later the network falls off to two components, then after a while one of these components falls
off to two smaller components, etc. until all edges are removed. This is a divisive hierarchical approach,
the result is a dendrogram.

Arguments:

graph: The input graph.

result: Pointer to an initialized vector, the result will be stored here, the ids of the
removed edges in the order of their removal. It will be resized as needed. It
may be NULL if the edge IDs are not needed by the caller.

edge_betweenness: Pointer to an initialized vector or NULL. In the former case the edge between-
ness of the removed edge is stored here. The vector will be resized as needed.

merges: Pointer to an initialized matrix or NULL. If not NULL then merges per-
formed by the algorithm are stored here. Even if this is a divisive al-
gorithm, we can replay it backwards and note which two clusters were
merged. Clusters are numbered from zero, see the merges argument of
igraph_community_walktrap() for details. The matrix will be re-
sized as needed.

bridges: Pointer to an initialized vector of NULL. If not NULL then all edge removals
which separated the network into more components are marked here.

modularity: If not a null pointer, then the modularity values of the different divisions are
stored here, in the order corresponding to the merge matrix. The modularity
values will take weights into account if weights is not null.

membership: If not a null pointer, then the membership vector, corresponding to the highest
modularity value, is stored here.

directed: Logical constant, whether to calculate directed betweenness (ie. directed
paths) for directed graphs. It is ignored for undirected graphs.

weights: An optional vector containing edge weights. If null, the unweighted edge be-
tweenness scores will be calculated and used. If not null, the weighted edge
betweenness scores will be calculated and used.

Detecting Community Structure

457

Returns:

Error code.

See also:

igraph_community_eb_get_merges(), igraph_community_spinglass(),
igraph_community_walktrap().

Time complexity: O(|V||E|^2), as the betweenness calculation requires O(|V||E|) and we do it |E|-1 times.

Example 22.5. File examples/simple/
igraph_community_edge_betweenness.c

igraph_community_eb_get_merges — Calculating the
merges, ie. the dendrogram for an edge betweenness
community structure

int igraph_community_eb_get_merges(const igraph_t *graph,
 const igraph_vector_t *edges,
 const igraph_vector_t *weights,
 igraph_matrix_t *res,
 igraph_vector_t *bridges,
 igraph_vector_t *modularity,
 igraph_vector_t *membership);

This function is handy if you have a sequence of edge which are gradually removed from the network
and you would like to know how the network falls apart into separate components. The edge sequence
may come from the igraph_community_edge_betweenness() function, but this is not neces-
sary. Note that igraph_community_edge_betweenness can also calculate the dendrogram, via
its merges argument.

Arguments:

graph: The input graph.

edges: Vector containing the edges to be removed from the network, all edges are expected
to appear exactly once in the vector.

weights: An optional vector containing edge weights. If null, the unweighted modularity scores
will be calculated. If not null, the weighted modularity scores will be calculated. Ig-
nored if both modularity and membership are nulls.

res: Pointer to an initialized matrix, if not NULL then the dendrogram will be stored here, in
the same form as for the igraph_community_walktrap() function: the matrix
has two columns and each line is a merge given by the ids of the merged components.
The component ids are number from zero and component ids smaller than the number
of vertices in the graph belong to individual vertices. The non-trivial components con-

Detecting Community Structure

458

taining at least two vertices are numbered from n, n is the number of vertices in the
graph. So if the first line contains a and b that means that components a and b are
merged into component n, the second line creates component n+1, etc. The matrix will
be resized as needed.

bridges: Pointer to an initialized vector or NULL. If not null then the index of the edge removals
which split the network will be stored here. The vector will be resized as needed.

modularity: If not a null pointer, then the modularity values for the different divisions, correspond-
ing to the merges matrix, will be stored here.

membership: If not a null pointer, then the membership vector for the best division (in terms of
modularity) will be stored here.

Returns:

Error code.

See also:

igraph_community_edge_betweenness().

Time complexity: O(|E|+|V|log|V|), |V| is the number of vertices, |E| is the number of edges.

Community structure based on the optimiza-
tion of modularity

igraph_community_fastgreedy — Finding community
structure by greedy optimization of modularity

int igraph_community_fastgreedy(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_matrix_t *merges,
 igraph_vector_t *modularity,
 igraph_vector_t *membership);

This function implements the fast greedy modularity optimization algorithm for finding community struc-
ture, see A Clauset, MEJ Newman, C Moore: Finding community structure in very large networks, http://
www.arxiv.org/abs/cond-mat/0408187 for the details.

Some improvements proposed in K Wakita, T Tsurumi: Finding community structure in mega-scale social
networks, http://www.arxiv.org/abs/cs.CY/0702048v1 have also been implemented.

Arguments:

graph: The input graph. It must be a graph without multiple edges. This is checked and an
error message is given for graphs with multiple edges.

weights: Potentially a numeric vector containing edge weights. Supply a null pointer here for
unweighted graphs. The weights are expected to be non-negative.

http://www.arxiv.org/abs/cond-mat/0408187
http://www.arxiv.org/abs/cond-mat/0408187
http://www.arxiv.org/abs/cs.CY/0702048v1

Detecting Community Structure

459

merges: Pointer to an initialized matrix or NULL, the result of the computation is stored here.
The matrix has two columns and each merge corresponds to one merge, the ids of the
two merged components are stored. The component ids are numbered from zero and
the first n components are the individual vertices, n is the number of vertices in the
graph. Component n is created in the first merge, component n+1 in the second merge,
etc. The matrix will be resized as needed. If this argument is NULL then it is ignored
completely.

modularity: Pointer to an initialized vector or NULL pointer, in the former case the modularity
scores along the stages of the computation are recorded here. The vector will be resized
as needed.

membership: Pointer to a vector. If not a null pointer, then the membership vector corresponding to
the best split (in terms of modularity) is stored here.

Returns:

Error code.

See also:

igraph_community_walktrap(), igraph_community_edge_betweenness() for oth-
er community detection algorithms, igraph_community_to_membership() to convert the den-
drogram to a membership vector.

Time complexity: O(|E||V|log|V|) in the worst case, O(|E|+|V|log^2|V|) typically, |V| is the number of ver-
tices, |E| is the number of edges.

Example 22.6. File examples/simple/
igraph_community_fastgreedy.c

igraph_community_multilevel — Finding community
structure by multi-level optimization of modularity

int igraph_community_multilevel(const igraph_t *graph,
 const igraph_vector_t *weights, igraph_vector_t *membership,
 igraph_matrix_t *memberships, igraph_vector_t *modularity);

This function implements the multi-level modularity optimization algorithm for finding community struc-
ture, see VD Blondel, J-L Guillaume, R Lambiotte and E Lefebvre: Fast unfolding of community hier-
archies in large networks, J Stat Mech P10008 (2008) for the details (preprint: http://arxiv.org/abs/arX-
iv:0803.0476). It is based on the modularity measure and a hierarchical approach. Initially, each vertex
is assigned to a community on its own. In every step, vertices are re-assigned to communities in a local,
greedy way: each vertex is moved to the community with which it achieves the highest contribution to
modularity. When no vertices can be reassigned, each community is considered a vertex on its own, and
the process starts again with the merged communities. The process stops when there is only a single vertex
left or when the modularity cannot be increased any more in a step. This function was contributed by Tom
Gregorovic.

Arguments:

http://arxiv.org/abs/arXiv:0803.0476
http://arxiv.org/abs/arXiv:0803.0476

Detecting Community Structure

460

graph: The input graph. It must be an undirected graph.

weights: Numeric vector containing edge weights. If NULL, every edge has equal weight. The
weights are expected to be non-negative.

membership: The membership vector, the result is returned here. For each vertex it gives the ID of
its community. The vector must be initialized and it will be resized accordingly.

memberships: Numeric matrix that will contain the membership vector after each level, if not NULL.
It must be initialized and it will be resized accordingly.

modularity: Numeric vector that will contain the modularity score after each level, if not NULL.
It must be initialized and it will be resized accordingly.

Returns:

Error code.

Time complexity: in average near linear on sparse graphs.

Example 22.7. File examples/simple/
igraph_community_multilevel.c

Label propagation

igraph_community_label_propagation — Communi-
ty detection based on label propagation

int igraph_community_label_propagation(const igraph_t *graph,
 igraph_vector_t *membership,
 const igraph_vector_t *weights,
 const igraph_vector_t *initial,
 igraph_vector_bool_t *fixed,
 igraph_real_t *modularity);

This function implements the community detection method described in: Raghavan, U.N. and Albert, R.
and Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys
Rev E 76, 036106. (2007). This version extends the original method by the ability to take edge weights
into consideration and also by allowing some labels to be fixed.

Weights are taken into account as follows: when the new label of node i is determined, the algorithm
iterates over all edges incident on node i and calculate the total weight of edges leading to other nodes
with label 0, 1, 2, ..., k-1 (where k is the number of possible labels). The new label of node i will then be
the label whose edges (among the ones incident on node i) have the highest total weight.

Arguments:

graph: The input graph, should be undirected to make sense.

membership: The membership vector, the result is returned here. For each vertex it gives the ID of
its community (label).

Detecting Community Structure

461

weights: The weight vector, it should contain a positive weight for all the edges.

initial: The initial state. If NULL, every vertex will have a different label at the beginning.
Otherwise it must be a vector with an entry for each vertex. Non-negative values denote
different labels, negative entries denote vertices without labels.

fixed: Boolean vector denoting which labels are fixed. Of course this makes sense only if you
provided an initial state, otherwise this element will be ignored. Also note that vertices
without labels cannot be fixed.

modularity: If not a null pointer, then it must be a pointer to a real number. The modularity score
of the detected community structure is stored here.

Returns:

Error code.

Time complexity: O(m+n)

Example 22.8. File examples/simple/
igraph_community_label_propagation.c

The InfoMAP algorithm

igraph_community_infomap — Find community struc-
ture that minimizes the expected

int igraph_community_infomap(const igraph_t * graph,
 const igraph_vector_t *e_weights,
 const igraph_vector_t *v_weights,
 int nb_trials,
 igraph_vector_t *membership,
 igraph_real_t *codelength);

description length of a random walker trajectory. Implementation of the InfoMap community detection
algorithm.of Martin Rosvall and Carl T. Bergstrom. See : Visualization of the math and the map genera-
tor: www.mapequation.org [2] The original paper: M. Rosvall and C. T. Bergstrom, Maps of information
flow reveal community structure in complex networks, PNAS 105, 1118 (2008) [http://dx.doi.org/10.1073/
pnas.0706851105 , http://arxiv.org/abs/0707.0609] [3] A more detailed paper: M. Rosvall, D. Axels-
son, and C. T. Bergstrom, The map equation, Eur. Phys. J. Special Topics 178, 13 (2009). [http://
dx.doi.org/10.1140/epjst/e2010-01179-1 , http://arxiv.org/abs/0906.1405]

The original C++ implementation of Martin Rosvall is used, see http://www.tp.umu.se/~rosvall/down-
loads/infomap_undir.tgz . Intergation in igraph has be done by Emmanuel Navarro (who is grateful to *
Martin Rosvall and Carl T. Bergstrom for providing this source code.)

Note that the graph must not contain isolated vertices.

If you want to specify a random seed (as in original implementation) you can use igraph_rng_seed().

http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1073/pnas.0706851105
http://arxiv.org/abs/0707.0609
http://dx.doi.org/10.1140/epjst/e2010-01179-1
http://dx.doi.org/10.1140/epjst/e2010-01179-1
http://arxiv.org/abs/0906.1405
http://www.tp.umu.se/~rosvall/downloads/infomap_undir.tgz
http://www.tp.umu.se/~rosvall/downloads/infomap_undir.tgz

Detecting Community Structure

462

Arguments:

graph: The input graph.

e_weights: Numeric vector giving the weights of the edges. If it is a NULL pointer then all edges
will have equal weights. The weights are expected to be positive.

v_weights: Numeric vector giving the weights of the vertices. If it is a NULL pointer then all
vertices will have equal weights. The weights are expected to be positive.

nb_trials: The number of attempts to partition the network (can be any integer value equal or
larger than 1).

membership: Pointer to a vector. The membership vector is stored here.

codelength: Pointer to a real. If not NULL the code length of the partition is stored here.

Returns:

Error code.

See also:

igraph_community_spinglass(), igraph_community_edge_betweenness(),
igraph_community_walktrap().

Time complexity: TODO.

463

Chapter 23. Graphlets
Introduction

Graphlet decomposition models a weighted undirected graph via the union of potentially overlapping dense
social groups. This is done by a two-step algorithm. In the first step a candidate set of groups (a candidate
basis) is created by finding cliques if the thresholded input graph. In the second step these the graph is
projected on the candidate basis, resulting a weight coefficient for each clique in the candidate basis.

igraph contains three functions for performing the graph decomponsition of a graph. The first is
igraph_graphlets(), which performed both steps on the method and returns a list of subgraphs,
with their corresponding weights. The second and third functions correspond to the first and sec-
ond steps of the algorithm, and they are useful if the user wishes to perform them individually:
igraph_graphlets_candidate_basis() and igraph_graphlets_project().

Performing graphlet decomposition
igraph_graphlets — Calculate graphlets basis and
project the graph on it

int igraph_graphlets(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_vector_ptr_t *cliques,
 igraph_vector_t *Mu, int niter);

This function simply calls igraph_graphlets_candidate_basis() and
igraph_graphlets_project(), and then orders the graphlets according to decreasing weights.

Arguments:

graph: The input graph, it must be a simple graph, edge directions are ignored.

weights: Weights of the edges, a vector.

cliques: An initialized vector of pointers. The graphlet basis is stored here. Each element of the
pointer vector will be a vector of vertex ids.

Mu: An initialized vector, the weights of the graphlets will be stored here.

niter: Integer scalar, the number of iterations to perform for the projection step.

Returns:

Error code.

See also: igraph_graphlets_candidate_basis() and igraph_graphlets_project().

igraph_graphlets_candidate_basis — Calculate a
candidate graphlets basis

Graphlets

464

int igraph_graphlets_candidate_basis(const igraph_t *graph,
 const igraph_vector_t *weights,
 igraph_vector_ptr_t *cliques,
 igraph_vector_t *thresholds);

Arguments:

graph: The input graph, it must be a simple graph, edge directions are ignored.

weights: Weights of the edges, a vector.

cliques: An initialized vector of pointers. The graphlet basis is stored here. Each element of the
pointer vector will be a vector of vertex ids.

thresholds: An initialized vector, the (highest possible) weight thresholds for finding the basis sub-
graphs are stored here.

Returns:

Error code.

See also: igraph_graphlets() and igraph_graphlets_project().

igraph_graphlets_project — Project a graph on a
graphlets basis

int igraph_graphlets_project(const igraph_t *graph,
 const igraph_vector_t *weights,
 const igraph_vector_ptr_t *cliques,
 igraph_vector_t *Mu, igraph_bool_t startMu,
 int niter);

Note that the graph projected does not have to be the same that was used to calculate the graphlet basis,
but it is assumed that it has the same number of vertices, and the vertex ids of the two graphs match.

Arguments:

graph: The input graph, it must be a simple graph, edge directions are ignored.

weights: Weights of the edges in the input graph, a vector.

cliques: The graphlet basis, a pointer vector, in which each element is a vector of vertex ids.

Mu: An initialized vector, the weights of the graphlets will be stored here. This vector is also
used to initialize the the weight vector for the iterative algorithm, if the startMu argument
is true (non-zero).

startMu: If true (non-zero), then the supplied Mu vector is used as the starting point of the iteration.
Otherwise a constant 1 vector is used.

niter: Integer scalar, the number of iterations to perform.

Graphlets

465

Returns:

Error code.

See also: igraph_graphlets() and igraph_graphlets_candidate_basis().

466

Chapter 24. Hierarchical random
graphs
Introduction

A hierarchical random graph is an ensemble of undirected graphs with n vertices. It is defined via a binary
tree with n leaf and n-1 internal vertices, where the internal vertices are labeled with probabilities. The
probability that two vertices are connected in the random graph is given by the probability label at their
closest common ancestor.

Please read the following two articles for more about hierarchical random graphs: A. Clauset, C. Moore,
and M.E.J. Newman. Hierarchical structure and the prediction of missing links in networks. Nature 453,
98 - 101 (2008); and A. Clauset, C. Moore, and M.E.J. Newman. Structural Inference of Hierarchies in
Networks. In E. M. Airoldi et al. (Eds.): ICML 2006 Ws, Lecture Notes in Computer Science 4503, 1-13.
Springer-Verlag, Berlin Heidelberg (2007).

igraph contains functions for fitting HRG models to a given network (igraph_hrg_fit), for generat-
ing networks from a given HRG ensemble (igraph_hrg_game, igraph_hrg_sample), converting
an igraph graph to a HRG and back (igraph_hrg_create, igraph_hrg_dendrogram), for cal-
culating a consensus tree from a set of sampled HRGs (igraph_hrg_consensus) and for predicting
missing edges in a network based on its HRG models (igraph_hrg_predict).

The igraph HRG implementation is heavily based on the code published by Aaron Clauset, at his website,
http://tuvalu.santafe.edu/~aaronc/hierarchy/

Representing HRGs

igraph_hrg_t — Data structure to store a hierarchical
random graph

typedef struct igraph_hrg_t {
 igraph_vector_t left, right, prob, edges, vertices;
} igraph_hrg_t;

A hierarchical random graph (HRG) can be given as a binary tree, where the internal vertices are labeled
with real numbers.

Note that you don't necessarily have to know this internal representation for using the HRG functions, just
pass the HRG objects created by one igraph function, to another igraph function.

It has the following members:

Values:

left: Vector that contains the left children of the internal tree vertices. The first vertex is always
the root vertex, so the first element of the vector is the left child of the root vertex. Internal
vertices are denoted with negative numbers, starting from -1 and going down, i.e. the root
vertex is -1. Leaf vertices are denoted by non-negative number, starting from zero and up.

http://tuvalu.santafe.edu/~aaronc/hierarchy/

Hierarchical random graphs

467

right: Vector that contains the right children of the vertices, with the same encoding as the left
vector.

prob: The connection probabilities attached to the internal vertices, the first number belongs to
the root vertex (i.e. internal vertex -1), the second to internal vertex -2, etc.

edges: The number of edges in the subtree below the given internal vertex.

vertices: The number of vertices in the subtree below the given internal vertex, including itself.

igraph_hrg_init — Allocate memory for a HRG.

int igraph_hrg_init(igraph_hrg_t *hrg, int n);

This function must be called before passing an igraph_hrg_t to an igraph function.

Arguments:

hrg: Pointer to the HRG data structure to initialize.

n: The number of vertices in the graph that is modeled by this HRG. It can be zero, if this is not
yet known.

Returns:

Error code.

Time complexity: O(n), the number of vertices in the graph.

igraph_hrg_destroy — Deallocate memory for an
HRG.

void igraph_hrg_destroy(igraph_hrg_t *hrg);

The HRG data structure can be reinitialized again with an igraph_hrg_destroy call.

Arguments:

hrg: Pointer to the HRG data structure to deallocate.

Time complexity: operating system dependent.

igraph_hrg_size — Returns the size of the HRG, the
number of leaf nodes.

int igraph_hrg_size(const igraph_hrg_t *hrg);

Hierarchical random graphs

468

Arguments:

hrg: Pointer to the HRG.

Returns:

The number of leaf nodes in the HRG.

Time complexity: O(1).

igraph_hrg_resize — Resize a HRG.

int igraph_hrg_resize(igraph_hrg_t *hrg, int newsize);

Arguments:

hrg: Pointer to an initialized (see igraph_hrg_init) HRG.

newsize: The new size, i.e. the number of leaf nodes.

Returns:

Error code.

Time complexity: O(n), n is the new size.

Fitting HRGs

igraph_hrg_fit — Fit a hierarchical random graph
model to a network

int igraph_hrg_fit(const igraph_t *graph,
 igraph_hrg_t *hrg,
 igraph_bool_t start,
 int steps);

Arguments:

graph: The igraph graph to fit the model to. Edge directions are ignored in directed graphs.

hrg: Pointer to an initialized HRG, the result of the fitting is stored here. It can also be used to pass
a HRG to the function, that can be used as the starting point of the Markov Chain Monte Carlo
fitting, if the start argument is true.

start: Logical, whether to start the fitting from the given HRG.

steps: Integer, the number of MCMC steps to take in the fitting procedure. If this is zero, then the
fitting stop is a convergence criteria is fulfilled.

Hierarchical random graphs

469

Returns:

Error code.

Time complexity: TODO.

igraph_hrg_consensus — Calculate a consensus tree
for a HRG.

int igraph_hrg_consensus(const igraph_t *graph,
 igraph_vector_t *parents,
 igraph_vector_t *weights,
 igraph_hrg_t *hrg,
 igraph_bool_t start,
 int num_samples);

The calculation can be started from the given HRG (hrg), or (if start is false), a HRG is first fitted
to the given graph.

Arguments:

graph: The input graph.

parents: An initialized vector, the results are stored here. For each vertex, the id of its parent
vertex is stored, or -1, if the vertex is the root vertex in the tree. The first n vertex ids
(from 0) refer to the original vertices of the graph, the other ids refer to vertex groups.

weights: Numeric vector, counts the number of times a given tree split occured in the generated
network samples, for each internal vertices. The order is the same as in parents.

hrg: A hierarchical random graph. It is used as a starting point for the sampling, if the
start argument is true. It is modified along the MCMC.

start: Logical, whether to use the supplied HRG (in hrg) as a starting point for the MCMC.

num_samples: The number of samples to generate for creating the consensus tree.

Returns:

Error code.

Time complexity: TODO.

HRG sampling

igraph_hrg_sample — Sample from a hierarchical ran-
dom graph model

Hierarchical random graphs

470

int igraph_hrg_sample(const igraph_t *input_graph,
 igraph_t *sample,
 igraph_vector_ptr_t *samples,
 int no_samples,
 igraph_hrg_t *hrg,
 igraph_bool_t start);

Sample from a hierarchical random graph ensemble. The ensemble can be given as a graph
(input_graph), or as a HRG object (hrg). If a graph is given, then first an MCMC optimization is
performed to find the optimal fitting model; then the MCMC is used to sample the graph(s).

Arguments:

input_graph: An igraph graph, or a null pointer. If not a null pointer, then a HRG is first fitted to
the graph, possibly starting from the given HRG, if the start argument is true. If is
is a null pointer, then the given HRG is used as a starting point, to find the optimum
of the Markov chain, before the sampling.

sample: Pointer to an uninitialized graph, or a null pointer. If only one sample is requested,
and it is not a null pointer, then the sample is stored here.

samples: An initialized vector of pointers. If more than one samples are requested, then
they are stored here. Note that to free this data structure, you need to call
igraph_destroy on each graph first, then free() on all pointers, and finally
igraph_vector_ptr_destroy.

no_samples: The number of samples to generate.

hrg: A HRG. It is modified during the sampling.

start: Logical, whether to start the MCMC from the given HRG.

Returns:

Error code.

Time complexity: TODO.

igraph_hrg_game — Generate a hierarchical random
graph

int igraph_hrg_game(igraph_t *graph,
 const igraph_hrg_t *hrg);

This function is a simple shortcut to igraph_hrg_sample. It creates a single graph, from the given
HRG.

Arguments:

graph: Pointer to an uninitialized graph, the new graph is created here.

hrg: The hierarchical random graph model to sample from. It is modified during the MCMC process.

Hierarchical random graphs

471

Returns:

Error code.

Time complexity: TODO.

Conversion to and from igraph graphs

igraph_hrg_dendrogram — Create a dendrogram from
a hierarchical random graph.

int igraph_hrg_dendrogram(igraph_t *graph,
 const igraph_hrg_t *hrg);

Creates the igraph graph equivalent of an igraph_hrg_t data structure.

Arguments:

graph: Pointer to an uninitialized graph, the result is stored here.

hrg: The hierarchical random graph to convert.

Returns:

Error code.

Time complexity: O(n), the number of vertices in the graph.

igraph_hrg_create — Create a HRG from an igraph
graph.

int igraph_hrg_create(igraph_hrg_t *hrg,
 const igraph_t *graph,
 const igraph_vector_t *prob);

Arguments:

hrg: Pointer to an initialized igraph_hrg_t. The result is stored here.

graph: The igraph graph to convert. It must be a directed binary tree, with n-1 internal and n leaf
vertices. The root vertex must have in-degree zero.

prob: The vector of probabilities, this is used to label the internal nodes of the hierarchical random
graph. The values corresponding to the leaves are ignored.

Returns:

Hierarchical random graphs

472

Error code.

Time complexity: O(n), the number of vertices in the tree.

Predicting missing edges

igraph_hrg_predict — Predict missing edges in a
graph, based on HRG models

int igraph_hrg_predict(const igraph_t *graph,
 igraph_vector_t *edges,
 igraph_vector_t *prob,
 igraph_hrg_t *hrg,
 igraph_bool_t start,
 int num_samples,
 int num_bins);

Samples HRG models for a network, and estimated the probability that an edge was falsely observed as
non-existent in the network.

Arguments:

graph: The input graph.

edges: The list of missing edges is stored here, the first two elements are the first edge, the
next two the second edge, etc.

prob: Vector of probabilies for the existence of missing edges, in the order corresponding
to edges.

hrg: A HRG, it is used as a starting point if start is true. It is also modified during the
MCMC sampling.

start: Logical, whether to start the MCMC from the given HRG.

num_samples: The number of samples to generate.

num_bins: Controls the resolution of the edge probabilities. Higher numbers result higher reso-
lution.

Returns:

Error code.

Time complexity: TODO.

473

Chapter 25. Spectral Coarse Graining
Introduction

The SCG functions provide a framework, called Spectral Coarse Graining (SCG), for reducing large graphs
while preserving their spectral-related features, that is features closely related with the eigenvalues and
eigenvectors of a graph matrix (which for now can be the adjacency, the stochastic, or the Laplacian
matrix).

Common examples of such features comprise the first-passage-time of random walkers on Markovian
graphs, thermodynamic properties of lattice models in statistical physics (e.g. Ising model), and the epi-
demic threshold of epidemic network models (SIR and SIS models).

SCG differs from traditional clustering schemes by producing a coarse-grained graph (not just a partition
of the vertices), representative of the original one. As shown in [1], Principal Component Analysis can
be viewed as a particular SCG, called exact SCG, where the matrix to be coarse-grained is the covariance
matrix of some data set.

SCG should be of interest to practitioners of various fields dealing with problems where matrix eigenpairs
play an important role, as for instance is the case of dynamical processes on networks.

SCG in brief
The main idea of SCG is to operate on a matrix a shrinkage operation specifically designed to preserve
some of the matrix eigenpairs while not altering other important matrix features (such as its structure).
Mathematically, this idea was expressed as follows. Consider a (complex) n x n matrix M and form the
product

M'=LMR*,

where n' < n and L, R are from C[n'xn]} and are such that LR*=I[n'] (R* denotes the conjugate transpose
of R). Under these assumptions, it can be shown that P=R*L is an n'-rank projector and that, if (lambda,
v) is a (right) eigenpair of M (i.e. Mv=lambda v} and P is orthogonal, there exists an eigenvalue lambda'
of M' such that

|lambda-lambda'| <= const ||e[P](v)|| [1+O(||e[P](v)||2)],

where ||e[P](v)||=||v-Pv||. Hence, if P (or equivalently L, R) is chosen so as to make ||e[P](v)|| as small as
possible, one can preserve to any desired level the original eigenvalue lambda in the coarse-grained matrix
M'; under extra assumptions on M, this result can be generalized to eigenvectors [1]. This leads to the
following generic definition of a SCG problem.

Given M (C[nxn]) and (lambda, v), a (right) eigenpair of M to be preserved by the coarse graining, the
problem is to find a projector P' solving

min(||e[P](v)||, p in Omega),

where Omega is a set of projectors in C[nxn] described by some ad hoc constraints c[1], ..., c[r] (e.g. c[1]:
P in R[nxn], c[2]: P=t(P), c[3]: P[i,j] >= 0}, etc).

Choosing pertinent constraints to solve the SCG problem is of great importance in applications. For in-
stance, in the absence of constraints the SCG problem is solved trivially by P'=vv* (v is assumed normal-
ized). We have designed a particular constraint, called homogeneous mixing, which ensures that vertices

Spectral Coarse Graining

474

belonging to the same group are merged consistently from a physical point of view (see [1] for details).
Under this constraint the SCG problem reduces to finding the partition of 1, ..., n (labeling the original
vertices) minimizing

||e[P](v)||2 = sum([v(i)-(Pv)(i)]2; alpha=1,...,n', i in alpha),

where alpha denotes a group (i.e. a block) in a partition of {1, ..., n}, and |alpha| is the number of elements
in alpha.

If M is symmetric or stochastic, for instance, then it may be desirable (or mandatory) to choose L, R so that
M' is symmetric or stochastic as well. This structural constraint has led to the construction of particular
semi-projectors for symmetric [1], stochastic [3] and Laplacian [2] matrices, that are made available.

In short, the coarse graining of matrices and graphs involves:

1. Retrieving a matrix or a graph matrix M from the problem.

2. Computing the eigenpairs of M to be preserved in the coarse-grained graph or matrix.

3. Setting some problem-specific constraints (e.g. dimension of the coarse-grained object).

4. Solving the constrained SCG problem, that is finding P'.

5. Computing from P' two semi-projectors L' and R' (e.g. following the method proposed in [1]).

6. Working out the product M'=L'MR'* and, if needed, defining from M' a coarse-grained graph.

Functions for performing SCG
The main functions are igraph_scg_adjacency(), igraph_scg_laplacian() and
igraph_scg_stochastic(). These functions handle all the steps involved in the Spectral Coarse
Graining (SCG) of some particular matrices and graphs as described above and in reference [1]. In more
details, they compute some prescribed eigenpairs of a matrix or a graph matrix, (for now adjacency, Lapla-
cian and stochastic matrices are available), work out an optimal partition to preserve the eigenpairs, and
finally output a coarse-grained matrix or graph along with other useful information.

These steps can also be carried out independently: (1) Use igraph_get_adjacency(),
igraph_get_sparsemat(), igraph_laplacian(), igraph_get_stochastic() or
igraph_get_stochastic_sparsemat() to compute a matrix M. (2) Work out some prescribed
eigenpairs of M e.g. by means of igraph_arpack_rssolve() or igraph_arpack_rnsolve().
(3) Invoke one the four algorithms of the function igraph_scg_grouping() to get a partition that
will preserve the eigenpairs in the coarse-grained matrix. (4) Compute the semi-projectors L and R using
igraph_scg_semiprojectors() and from there the coarse-grained matrix M'=LMR*. If neces-
sary, construct a coarse-grained graph from M' (e.g. as in [1]).

References
[1] D. Morton de Lachapelle, D. Gfeller, and P. De Los Rios, Shrinking Matrices while Preserving their
Eigenpairs with Application to the Spectral Coarse Graining of Graphs. Submitted to SIAM Journal on
Matrix Analysis and Applications, 2008. http://people.epfl.ch/david.morton

[2] D. Gfeller, and P. De Los Rios, Spectral Coarse Graining and Synchronization in Oscillator Networks.
Physical Review Letters, 100(17), 2008. http://arxiv.org/abs/0708.2055

[3] D. Gfeller, and P. De Los Rios, Spectral Coarse Graining of Complex Networks, Physical Review
Letters, 99(3), 2007. http://arxiv.org/abs/0706.0812

http://people.epfl.ch/david.morton
http://arxiv.org/abs/0708.2055
http://arxiv.org/abs/0706.0812

Spectral Coarse Graining

475

SCG functions

igraph_scg_adjacency — Spectral coarse graining,
symmetric case.

int igraph_scg_adjacency(const igraph_t *graph,
 const igraph_matrix_t *matrix,
 const igraph_sparsemat_t *sparsemat,
 const igraph_vector_t *ev,
 igraph_integer_t nt,
 const igraph_vector_t *nt_vec,
 igraph_scg_algorithm_t algo,
 igraph_vector_t *values,
 igraph_matrix_t *vectors,
 igraph_vector_t *groups,
 igraph_bool_t use_arpack,
 igraph_integer_t maxiter,
 igraph_t *scg_graph,
 igraph_matrix_t *scg_matrix,
 igraph_sparsemat_t *scg_sparsemat,
 igraph_matrix_t *L,
 igraph_matrix_t *R,
 igraph_sparsemat_t *Lsparse,
 igraph_sparsemat_t *Rsparse);

This function handles all the steps involved in the Spectral Coarse Graining (SCG) of some matrices and
graphs as described in the reference below.

Arguments:

graph: The input graph. Exactly one of graph, matrix and sparsemat must be given,
the other two must be NULL pointers.

matrix: The input matrix. Exactly one of graph, matrix and sparsemat must be giv-
en, the other two must be NULL pointers.

sparsemat: The input sparse matrix. Exactly one of graph, matrix and sparsemat must
be given, the other two must be NULL pointers.

ev: A vector of positive integers giving the indexes of the eigenpairs to be preserved.
1 designates the eigenvalue with largest algebraic value, 2 the one with second
largest algebraic value, etc.

nt: Positive integer. When algo is IGRAPH_SCG_OPTIMUM, it gives the num-
ber of groups to partition each eigenvector separately. When algo is
IGRAPH_SCG_INTERV or IGRAPH_SCG_INTERV_KM, it gives the num-
ber of intervals to partition each eigenvector. This is ignored when algo is
IGRAPH_SCG_EXACT.

nt_vec: A numeric vector of length one or the length must match the number of eigen-
vectors given in V, or a NULL pointer. If not NULL, then this argument gives the

Spectral Coarse Graining

476

number of groups or intervals, and nt is ignored. Different number of groups or
intervals can be specified for each eigenvector.

algo: The algorithm to solve the SCG problem. Possi-
ble values: IGRAPH_SCG_OPTIMUM, IGRAPH_SCG_INTERV_KM,
IGRAPH_SCG_INTERV and IGRAPH_SCG_EXACT. Please see the details about
them above.

values: If this is not NULL and the eigenvectors are re-calculated, then the eigenvalues are
stored here.

vectors: If this is not NULL, and not a zero-length matrix, then it is interpreted as the eigen-
vectors to use for the coarse-graining. Otherwise the eigenvectors are re-calculat-
ed, and they are stored here. (If this is not NULL.)

groups: If this is not NULL, and not a zero-length vector, then it is interpreted as the vector
of group labels. (Group labels are integers from zero and are sequential.) Otherwise
group labels are re-calculated and stored here, if this argument is not a null pointer.

use_arpack: Whether to use ARPACK for solving the eigenproblem. Currently ARPACK is
not implemented.

maxiter: A positive integer giving the number of iterations of the k-means algorithm when
algo is IGRAPH_SCG_INTERV_KM. It is ignored in other cases. A reasonable
(initial) value for this argument is 100.

scg_graph: If not a NULL pointer, then the coarse-grained graph is returned here.

scg_matrix: If not a NULL pointer, then it must be an initialied matrix, and the coarse-grained
matrix is returned here.

scg_sparsemat: If not a NULL pointer, then the coarse grained matrix is returned here, in sparse
matrix form.

L: If not a NULL pointer, then it must be an initialized matrix and the left semi-pro-
jector is returned here.

R: If not a NULL pointer, then it must be an initialized matrix and the right semi-pro-
jector is returned here.

Lsparse: If not a NULL pointer, then the left semi-projector is returned here.

Rsparse: If not a NULL pointer, then the right semi-projector is returned here.

Returns:

Error code.

Time complexity: TODO.

See also:

igraph_scg_grouping(), igraph_scg_semiprojectors(),
igraph_scg_stochastic() and igraph_scg_laplacian().

Example 25.1. File examples/simple/scg.c

Spectral Coarse Graining

477

igraph_scg_stochastic — Spectral coarse graining,
stochastic case.

int igraph_scg_stochastic(const igraph_t *graph,
 const igraph_matrix_t *matrix,
 const igraph_sparsemat_t *sparsemat,
 const igraph_vector_t *ev,
 igraph_integer_t nt,
 const igraph_vector_t *nt_vec,
 igraph_scg_algorithm_t algo,
 igraph_scg_norm_t norm,
 igraph_vector_complex_t *values,
 igraph_matrix_complex_t *vectors,
 igraph_vector_t *groups,
 igraph_vector_t *p,
 igraph_bool_t use_arpack,
 igraph_integer_t maxiter,
 igraph_t *scg_graph,
 igraph_matrix_t *scg_matrix,
 igraph_sparsemat_t *scg_sparsemat,
 igraph_matrix_t *L,
 igraph_matrix_t *R,
 igraph_sparsemat_t *Lsparse,
 igraph_sparsemat_t *Rsparse);

This function handles all the steps involved in the Spectral Coarse Graining (SCG) of some matrices and
graphs as described in the reference below.

Arguments:

graph: The input graph. Exactly one of graph, matrix and sparsemat must be given,
the other two must be NULL pointers.

matrix: The input matrix. Exactly one of graph, matrix and sparsemat must be giv-
en, the other two must be NULL pointers.

sparsemat: The input sparse matrix. Exactly one of graph, matrix and sparsemat must
be given, the other two must be NULL pointers.

ev: A vector of positive integers giving the indexes of the eigenpairs to be preserved.
1 designates the eigenvalue with largest magnitude, 2 the one with second largest
magnitude, etc.

nt: Positive integer. When algo is IGRAPH_SCG_OPTIMUM, it gives the num-
ber of groups to partition each eigenvector separately. When algo is
IGRAPH_SCG_INTERV or IGRAPH_SCG_INTERV_KM, it gives the num-
ber of intervals to partition each eigenvector. This is ignored when algo is
IGRAPH_SCG_EXACT.

nt_vec: A numeric vector of length one or the length must match the number of eigen-
vectors given in V, or a NULL pointer. If not NULL, then this argument gives the
number of groups or intervals, and nt is ignored. Different number of groups or
intervals can be specified for each eigenvector.

Spectral Coarse Graining

478

algo: The algorithm to solve the SCG problem. Possi-
ble values: IGRAPH_SCG_OPTIMUM, IGRAPH_SCG_INTERV_KM,
IGRAPH_SCG_INTERV and IGRAPH_SCG_EXACT. Please see the details about
them above.

norm: Either IGRAPH_SCG_NORM_ROW or IGRAPH_SCG_NORM_COL. Specifies
whether the rows or the columns of the stochastic matrix sum up to one.

values: If this is not NULL and the eigenvectors are re-calculated, then the eigenvalues are
stored here.

vectors: If this is not NULL, and not a zero-length matrix, then it is interpreted as the eigen-
vectors to use for the coarse-graining. Otherwise the eigenvectors are re-calculat-
ed, and they are stored here. (If this is not NULL.)

groups: If this is not NULL, and not a zero-length vector, then it is interpreted as the vector
of group labels. (Group labels are integers from zero and are sequential.) Otherwise
group labels are re-calculated and stored here, if this argument is not a null pointer.

p: If this is not NULL, and not zero length, then it is interpreted as the stationary prob-
ability distribution of the Markov chain corresponding to the input matrix/graph.
Its length must match the number of vertices in the input graph (or number of rows
in the input matrix). If not given, then the stationary distribution is calculated and
stored here. (Unless this argument is a NULL pointer, in which case it is not stored.)

use_arpack: Whether to use ARPACK for solving the eigenproblem. Currently ARPACK is
not implemented.

maxiter: A positive integer giving the number of iterations of the k-means algorithm when
algo is IGRAPH_SCG_INTERV_KM. It is ignored in other cases. A reasonable
(initial) value for this argument is 100.

scg_graph: If not a NULL pointer, then the coarse-grained graph is returned here.

scg_matrix: If not a NULL pointer, then it must be an initialied matrix, and the coarse-grained
matrix is returned here.

scg_sparsemat: If not a NULL pointer, then the coarse grained matrix is returned here, in sparse
matrix form.

L: If not a NULL pointer, then it must be an initialized matrix and the left semi-pro-
jector is returned here.

R: If not a NULL pointer, then it must be an initialized matrix and the right semi-pro-
jector is returned here.

Lsparse: If not a NULL pointer, then the left semi-projector is returned here.

Rsparse: If not a NULL pointer, then the right semi-projector is returned here.

Returns:

Error code.

Time complexity: TODO.

See also:

Spectral Coarse Graining

479

igraph_scg_grouping(), igraph_scg_semiprojectors(),
igraph_scg_adjacency() and igraph_scg_laplacian().

Example 25.2. File examples/simple/scg2.c

igraph_scg_laplacian — Spectral coarse graining,
laplacian matrix.

int igraph_scg_laplacian(const igraph_t *graph,
 const igraph_matrix_t *matrix,
 const igraph_sparsemat_t *sparsemat,
 const igraph_vector_t *ev,
 igraph_integer_t nt,
 const igraph_vector_t *nt_vec,
 igraph_scg_algorithm_t algo,
 igraph_scg_norm_t norm,
 igraph_scg_direction_t direction,
 igraph_vector_complex_t *values,
 igraph_matrix_complex_t *vectors,
 igraph_vector_t *groups,
 igraph_bool_t use_arpack,
 igraph_integer_t maxiter,
 igraph_t *scg_graph,
 igraph_matrix_t *scg_matrix,
 igraph_sparsemat_t *scg_sparsemat,
 igraph_matrix_t *L,
 igraph_matrix_t *R,
 igraph_sparsemat_t *Lsparse,
 igraph_sparsemat_t *Rsparse);

This function handles all the steps involved in the Spectral Coarse Graining (SCG) of some matrices and
graphs as described in the reference below.

Arguments:

graph: The input graph. Exactly one of graph, matrix and sparsemat must be given,
the other two must be NULL pointers.

matrix: The input matrix. Exactly one of graph, matrix and sparsemat must be giv-
en, the other two must be NULL pointers.

sparsemat: The input sparse matrix. Exactly one of graph, matrix and sparsemat must
be given, the other two must be NULL pointers.

ev: A vector of positive integers giving the indexes of the eigenpairs to be preserved.
1 designates the eigenvalue with largest magnitude, 2 the one with second largest
magnitude, etc.

nt: Positive integer. When algo is IGRAPH_SCG_OPTIMUM, it gives the num-
ber of groups to partition each eigenvector separately. When algo is
IGRAPH_SCG_INTERV or IGRAPH_SCG_INTERV_KM, it gives the num-

Spectral Coarse Graining

480

ber of intervals to partition each eigenvector. This is ignored when algo is
IGRAPH_SCG_EXACT.

nt_vec: A numeric vector of length one or the length must match the number of eigen-
vectors given in V, or a NULL pointer. If not NULL, then this argument gives the
number of groups or intervals, and nt is ignored. Different number of groups or
intervals can be specified for each eigenvector.

algo: The algorithm to solve the SCG problem. Possi-
ble values: IGRAPH_SCG_OPTIMUM, IGRAPH_SCG_INTERV_KM,
IGRAPH_SCG_INTERV and IGRAPH_SCG_EXACT. Please see the details about
them above.

norm: Either IGRAPH_SCG_NORM_ROW or IGRAPH_SCG_NORM_COL. Specifies
whether the rows or the columns of the Laplacian matrix sum up to zero.

direction: Whether to work with left or right eigenvectors. Possible values:
IGRAPH_SCG_DIRECTION_DEFAULT, IGRAPH_SCG_DIRECTION_LEFT,
IGRAPH_SCG_DIRECTION_RIGHT. This argument is currently ignored and
right eigenvectors are always used.

values: If this is not NULL and the eigenvectors are re-calculated, then the eigenvalues are
stored here.

vectors: If this is not NULL, and not a zero-length matrix, then it is interpreted as the eigen-
vectors to use for the coarse-graining. Otherwise the eigenvectors are re-calculat-
ed, and they are stored here. (If this is not NULL.)

groups: If this is not NULL, and not a zero-length vector, then it is interpreted as the vector
of group labels. (Group labels are integers from zero and are sequential.) Otherwise
group labels are re-calculated and stored here, if this argument is not a null pointer.

use_arpack: Whether to use ARPACK for solving the eigenproblem. Currently ARPACK is
not implemented.

maxiter: A positive integer giving the number of iterations of the k-means algorithm when
algo is IGRAPH_SCG_INTERV_KM. It is ignored in other cases. A reasonable
(initial) value for this argument is 100.

scg_graph: If not a NULL pointer, then the coarse-grained graph is returned here.

scg_matrix: If not a NULL pointer, then it must be an initialied matrix, and the coarse-grained
matrix is returned here.

scg_sparsemat: If not a NULL pointer, then the coarse grained matrix is returned here, in sparse
matrix form.

L: If not a NULL pointer, then it must be an initialized matrix and the left semi-pro-
jector is returned here.

R: If not a NULL pointer, then it must be an initialized matrix and the right semi-pro-
jector is returned here.

Lsparse: If not a NULL pointer, then the left semi-projector is returned here.

Rsparse: If not a NULL pointer, then the right semi-projector is returned here.

Spectral Coarse Graining

481

Returns:

Error code.

Time complexity: TODO.

See also:

igraph_scg_grouping(), igraph_scg_semiprojectors(),
igraph_scg_stochastic() and igraph_scg_adjacency().

Example 25.3. File examples/simple/scg3.c

igraph_scg_grouping — SCG problem solver

int igraph_scg_grouping(const igraph_matrix_t *V,
 igraph_vector_t *groups,
 igraph_integer_t nt,
 const igraph_vector_t *nt_vec,
 igraph_scg_matrix_t mtype,
 igraph_scg_algorithm_t algo,
 const igraph_vector_t *p,
 igraph_integer_t maxiter);

This function solves the Spectral Coarse Graining (SCG) problem; either exactly, or approximately but
faster.

The algorithm IGRAPH_SCG_OPTIMUM solves exactly the SCG problem for each eigenvector in V. The
running time of this algorithm is O(max(nt) m^2) for the symmetric and laplacian matrix problems It is
O(m^3) for the stochastic problem. Here m is the number of rows in V. In all three cases, the memory
usage is O(m^2).

The algorithms IGRAPH_SCG_INTERV and IGRAPH_SCG_INTERV_KM solve approximately the SCG
problem by performing a (for now) constant binning of the components of the eigenvectors, that is
nt VECTOR(nt_vec)[i]) constant-size bins are used to partition V[,i] . When algo
is IGRAPH_SCG_INTERV_KM, the (Lloyd) k-means algorithm is run on each partition obtained by
IGRAPH_SCG_INTERV to improve accuracy.

Once a minimizing partition (either exact or approximate) has been found for each eigenvector, the final
grouping is worked out as follows: two vertices are grouped together in the final partition if they are
grouped together in each minimizing partition. In general the size of the final partition is not known in
advance when the number of columns in V is larger than one.

Finally, the algorithm IGRAPH_SCG_EXACT groups the vertices with equal components in each eigen-
vector. The last three algorithms essentially have linear running time and memory load.

Arguments:

V: The matrix of eigenvectors to be preserved by coarse graining, each column is an eigen-
vector.

groups: Pointer to an initialized vector, the result of the SCG is stored here.

Spectral Coarse Graining

482

nt: Positive integer. When algo is IGRAPH_SCG_OPTIMUM, it gives the number of groups
to partition each eigenvector separately. When algo is IGRAPH_SCG_INTERV or
IGRAPH_SCG_INTERV_KM, it gives the number of intervals to partition each eigenvec-
tor. This is ignored when algo is IGRAPH_SCG_EXACT.

nt_vec: A numeric vector of length one or the length must match the number of eigenvectors given
in V, or a NULL pointer. If not NULL, then this argument gives the number of groups or
intervals, and nt is ignored. Different number of groups or intervals can be specified for
each eigenvector.

mtype: The type of semi-projectors used in the SCG. Possible val-
ues are IGRAPH_SCG_SYMMETRIC, IGRAPH_SCG_STOCHASTIC and
IGRAPH_SCG_LAPLACIAN.

algo: The algorithm to solve the SCG problem. Possible values: IGRAPH_SCG_OPTIMUM,
IGRAPH_SCG_INTERV_KM, IGRAPH_SCG_INTERV and IGRAPH_SCG_EXACT.
Please see the details about them above.

p: A probability vector, or NULL. This argument must be given if mtype is
IGRAPH_SCG_STOCHASTIC, but it is ignored otherwise. For the stochastic case it gives
the stationary probability distribution of a Markov chain, the one specified by the graph/
matrix under study.

maxiter: A positive integer giving the number of iterations of the k-means algorithm when algo is
IGRAPH_SCG_INTERV_KM. It is ignored in other cases. A reasonable (initial) value for
this argument is 100.

Returns:

Error code.

Time complexity: see description above.

See also:

igraph_scg_adjacency(), igraph_scg_laplacian(),
igraph_scg_stochastic().

Example 25.4. File examples/simple/igraph_scg_grouping.c

Example 25.5. File examples/simple/igraph_scg_grouping2.c

Example 25.6. File examples/simple/igraph_scg_grouping3.c

Example 25.7. File examples/simple/igraph_scg_grouping4.c

igraph_scg_semiprojectors — Compute SCG se-
mi-projectors for a given partition

Spectral Coarse Graining

483

int igraph_scg_semiprojectors(const igraph_vector_t *groups,
 igraph_scg_matrix_t mtype,
 igraph_matrix_t *L,
 igraph_matrix_t *R,
 igraph_sparsemat_t *Lsparse,
 igraph_sparsemat_t *Rsparse,
 const igraph_vector_t *p,
 igraph_scg_norm_t norm);

The three types of semi-projectors are defined as follows. Let gamma(j) label the group of vertex j in a
partition of all the vertices.

The symmetric semi-projectors are defined as

L[alpha,j] = R[alpha,j] = 1/sqrt(|alpha|) delta[alpha,gamma(j)],

the (row) Laplacian semi-projectors as

L[alpha,j] = 1/|alpha| delta[alpha,gamma(j)]

and

R[alpha,j] = delta[alpha,gamma(j)],

and the (row) stochastic semi-projectors as

L[alpha,j] = p[1][j] / sum(p[1][k]; k in gamma(j)) delta[alpha,gamma(j)]

and

R[alpha,j] = delta[alpha,gamma(j)],

where p[1] is the (left) eigenvector associated with the one-eigenvalue of the stochastic matrix. L and R are
defined in a symmetric way when norm is IGRAPH_SCG_NORM_COL. All these semi-projectors verify
various properties described in the reference.

Arguments:

groups: A vector of integers, giving the group label of every vertex in the partition. Group labels
should start at zero and should be sequential.

mtype: The type of semi-projectors. For now IGRAPH_SCG_SYMMETRIC,
IGRAPH_SCG_STOCHASTIC and IGRAP_SCG_LAPLACIAN are supported.

L: If not a NULL pointer, then it must be a pointer to an initialized matrix. The left semi-pro-
jector is stored here.

R: If not a NULL pointer, then it must be a pointer to an initialized matrix. The right semi-pro-
jector is stored here.

Lsparse: If not a NULL pointer, then it must be a pointer to an uninitialized sparse matrix. The left
semi-projector is stored here.

Rsparse: If not a NULL pointer, then it must be a pointer to an uninitialized sparse matrix. The right
semi-projector is stored here.

Spectral Coarse Graining

484

p: NULL, or a probability vector of the same length as groups. p is the stationary probability
distribution of a Markov chain when mtype is IGRAPH_SCG_STOCHASTIC. This argu-
ment is ignored in all other cases.

norm: Either IGRAPH_SCG_NORM_ROW or IGRAPH_SCG_NORM_COL. Specifies whether the
rows or the columns of the Laplacian matrix sum up to zero, or whether the rows or the
columns of the stochastic matrix sum up to one.

Returns:

Error code.

Time complexity: TODO.

See also:

igraph_scg_adjacency(), igraph_scg_stochastic() and
igraph_scg_laplacian(), igraph_scg_grouping().

Example 25.8. File examples/simple/igraph_scg_semiprojectors.c

Example 25.9. File examples/simple/igraph_scg_semiprojectors2.c

Example 25.10. File examples/simple/igraph_scg_semiprojectors3.c

igraph_scg_norm_eps — Calculate SCG residuals

int igraph_scg_norm_eps(const igraph_matrix_t *V,
 const igraph_vector_t *groups,
 igraph_vector_t *eps,
 igraph_scg_matrix_t mtype,
 const igraph_vector_t *p,
 igraph_scg_norm_t norm);

Computes |v[i]-Pv[i]|, where v[i] is the i-th eigenvector in V and P is the projector corresponding to the
mtype argument.

Arguments:

V: The matrix of eigenvectors to be preserved by coarse graining, each column is an eigenvector.

groups: A vector of integers, giving the group label of every vertex in the partition. Group labels
should start at zero and should be sequential.

eps: Pointer to a real value, the result is stored here.

mtype: The type of semi-projectors. For now IGRAPH_SCG_SYMMETRIC,
IGRAPH_SCG_STOCHASTIC and IGRAP_SCG_LAPLACIAN are supported.

Spectral Coarse Graining

485

p: NULL, or a probability vector of the same length as groups. p is the stationary probability
distribution of a Markov chain when mtype is IGRAPH_SCG_STOCHASTIC. This argu-
ment is ignored in all other cases.

norm: Either IGRAPH_SCG_NORM_ROW or IGRAPH_SCG_NORM_COL. Specifies whether the
rows or the columns of the Laplacian matrix sum up to zero, or whether the rows or the
columns of the stochastic matrix sum up to one.

Returns:

Error code.

Time complexity: TODO.

See also:

igraph_scg_adjacency(), igraph_scg_stochastic() and
igraph_scg_laplacian(), igraph_scg_grouping(),
igraph_scg_semiprojectors().

486

Chapter 26. Graph Operators
Union and intersection

igraph_disjoint_union — Creates the union of two
disjoint graphs

int igraph_disjoint_union(igraph_t *res, const igraph_t *left,
 const igraph_t *right);

First the vertices of the second graph will be relabeled with new vertex ids to have two disjoint sets of
vertex ids, then the union of the two graphs will be formed. If the two graphs have |V1| and |V2| vertices
and |E1| and |E2| edges respectively then the new graph will have |V1|+|V2| vertices and |E1|+|E2| edges.

Both graphs need to have the same directedness, ie. either both directed or both undirected.

The current version of this function cannot handle graph, vertex and edge attributes, they will be lost.

Arguments:

res: Pointer to an uninitialized graph object, the result will stored here.

left: The first graph.

right: The second graph.

Returns:

Error code.

See also:

igraph_disjoint_union_many() for creating the disjoint union of more than two graphs,
igraph_union() for non-disjoint union.

Time complexity: O(|V1|+|V2|+|E1|+|E2|).

Example 26.1. File examples/simple/igraph_disjoint_union.c

igraph_disjoint_union_many — The disjint union of
many graphs.

int igraph_disjoint_union_many(igraph_t *res,
 const igraph_vector_ptr_t *graphs);

Graph Operators

487

First the vertices in the graphs will be relabeled with new vertex ids to have pairwise disjoint vertex id
sets and then the union of the graphs is formed. The number of vertices and edges in the result is the total
number of vertices and edges in the graphs.

Both graphs need to have the same directedness, ie. either both directed or both undirected.

The current version of this function cannot handle graph, vertex and edge attributes, they will be lost.

Arguments:

res: Pointer to an uninitialized graph object, the result of the operation will be stored here.

graphs: Pointer vector, contains pointers to initialized graph objects.

Returns:

Error code.

See also:

igraph_disjoint_union() for an easier syntax if you have only two graphs,
igraph_union_many() for non-disjoint union.

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the result.

igraph_union — Calculates the union of two graphs.

int igraph_union(igraph_t *res,
 const igraph_t *left, const igraph_t *right,
 igraph_vector_t *edge_map1, igraph_vector_t *edge_map2);

The number of vertices in the result is that of the larger graph from the two arguments. The result graph
contains edges which are present in at least one of the operand graphs.

Arguments:

res: Pointer to an uninitialized graph object, the result will be stored here.

left: The first graph.

right: The second graph.

edge_map1: Pointer to an initialized vector or a null pointer. If not a null pointer, it will contain a
mapping from the edges of the first argument graph (left) to the edges of the result
graph.

edge_map2: The same as edge_map1, but for the second graph, right.

Returns:

Error code.

Graph Operators

488

See also:

igraph_union_many() for the union of many graphs, igraph_intersection() and
igraph_difference() for other operators.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| the number of edges in the result graph.

Example 26.2. File examples/simple/igraph_union.c

igraph_union_many — Creates the union of many
graphs.

int igraph_union_many(igraph_t *res, const igraph_vector_ptr_t *graphs,
 igraph_vector_ptr_t *edgemaps);

The result graph will contain as many vertices as the largest graph among the arguments does, and an edge
will be included in it if it is part of at least one operand graph.

The directedness of the operand graphs must be the same.

Arguments:

res: Pointer to an uninitialized graph object, this will contain the result.

graphs: Pointer vector, contains pointers to the operands of the union operator, graph objects of
course.

edgemaps: If not a null pointer, then it must be an initialized pointer vector and the mappings of edges
from the graphs to the result graph will be stored here, in the same order as graphs. Each
mapping is stored in a separate igraph_vector_t object.

Returns:

Error code.

See also:

igraph_union() for the union of two graphs, igraph_intersection_many(),
igraph_intersection() and igraph_difference for other operators.

Time complexity: O(|V|+|E|), |V| is the number of vertices in largest graph and |E| is the number of edges
in the result graph.

Example 26.3. File examples/simple/igraph_union.c

igraph_intersection — Collect the common edges
from two graphs.

Graph Operators

489

int igraph_intersection(igraph_t *res,
 const igraph_t *left, const igraph_t *right,
 igraph_vector_t *edge_map1,
 igraph_vector_t *edge_map2);

The result graph contains only edges present both in the first and the second graph. The number of vertices
in the result graph is the same as the larger from the two arguments.

Arguments:

res: Pointer to an uninitialized graph object. This will contain the result of the operation.

left: The first operand, a graph object.

right: The second operand, a graph object.

edge_map1: Null pointer, or an initialized igraph_vector_t. If the latter, then a mapping from the edges
of the result graph, to the edges of the left input graph is stored here.

edge_map2: Null pointer, or an igraph_vector_t. The same as edge_map1, but for the right input
graph.

Returns:

Error code.

See also:

igraph_intersection_many() to calculate the intersection of many graphs at once,
igraph_union(), igraph_difference() for other operators.

Time complexity: O(|V|+|E|), |V| is the number of nodes, |E| is the number of edges in the smaller graph
of the two. (The one containing less vertices is considered smaller.)

Example 26.4. File examples/simple/igraph_intersection.c

igraph_intersection_many — The intersection of
more than two graphs.

int igraph_intersection_many(igraph_t *res,
 const igraph_vector_ptr_t *graphs,
 igraph_vector_ptr_t *edgemaps);

This function calculates the intersection of the graphs stored in the graphs argument. Only those edges
will be included in the result graph which are part of every graph in graphs.

The number of vertices in the result graph will be the maximum number of vertices in the argument graphs.

Graph Operators

490

Arguments:

res: Pointer to an uninitialized graph object, the result of the operation will be stored here.

graphs: Pointer vector, contains pointers to graphs objects, the operands of the intersection oper-
ator.

edgemaps: If not a null pointer, then it must be an initialized pointer vector and the mappings of edges
from the graphs to the result graph will be stored here, in the same order as graphs. Each
mapping is stored in a separate igraph_vector_t object. For the edges that are not in the
intersection, -1 is stored.

Returns:

Error code.

See also:

igraph_intersection() for the intersection of two graphs, igraph_union_many(),
igraph_union() and igraph_difference() for other operators.

Time complexity: O(|V|+|E|), |V| is the number of vertices, |E| is the number of edges in the smallest graph
(ie. the graph having the less vertices).

Other set-like operators

igraph_difference — Calculate the difference of two
graphs

int igraph_difference(igraph_t *res,
 const igraph_t *orig, const igraph_t *sub);

The number of vertices in the result is the number of vertices in the original graph, ie. the left, first operand.
In the results graph only edges will be included from orig which are not present in sub.

Arguments:

res: Pointer to an uninitialized graph object, the result will be stored here.

orig: The left operand of the operator, a graph object.

sub: The right operand of the operator, a graph object.

Returns:

Error code.

See also:

Graph Operators

491

igraph_intersection() and igraph_union() for other operators.

Time complexity: O(|V|+|E|), |V| is the number vertices in the smaller graph, |E| is the number of edges
in the result graph.

Example 26.5. File examples/simple/igraph_difference.c

igraph_complementer — Create the complementer of a
graph

int igraph_complementer(igraph_t *res, const igraph_t *graph,
 igraph_bool_t loops);

The complementer graph means that all edges which are not part of the original graph will be included
in the result.

Arguments:

res: Pointer to an uninitialized graph object.

graph: The original graph.

loops: Whether to add loop edges to the complementer graph.

Returns:

Error code.

See also:

igraph_union(), igraph_intersection() and igraph_difference().

Time complexity: O(|V|+|E1|+|E2|), |V| is the number of vertices in the graph, |E1| is the number of edges
in the original and |E2| in the complementer graph.

Example 26.6. File examples/simple/igraph_complementer.c

igraph_compose — Calculates the composition of two
graphs

int igraph_compose(igraph_t *res, const igraph_t *g1, const igraph_t *g2,
 igraph_vector_t *edge_map1, igraph_vector_t *edge_map2);

The composition of graphs contains the same number of vertices as the bigger graph of the two operands.
It contains an (i,j) edge if and only if there is a k vertex, such that the first graphs contains an (i,k) edge
and the second graph a (k,j) edge.

Graph Operators

492

This is of course exactly the composition of two binary relations.

Two two graphs must have the same directedness, otherwise the function returns with an error message.
Note that for undirected graphs the two relations are by definition symmetric.

Arguments:

res: Pointer to an uninitialized graph object, the result will be stored here.

g1: The firs operand, a graph object.

g2: The second operand, another graph object.

edge_map1: If not a null pointer, then it must be a pointer to an initialized vector, and a mapping from
the edges of the result graph to the edges of the first graph is stored here.

edge_map1: If not a null pointer, then it must be a pointer to an initialized vector, and a mapping from
the edges of the result graph to the edges of the second graph is stored here.

Returns:

Error code.

Time complexity: O(|V|*d1*d2), |V| is the number of vertices in the first graph, d1 and d2 the average
degree in the first and second graphs.

Example 26.7. File examples/simple/igraph_compose.c

493

Chapter 27. Using BLAS, LAPACK
and ARPACK for igraph matrices and
graphs
BLAS interface in igraph

BLAS is a highly optimized library for basic linear algebra operations such as vector-vector, matrix-vector
and matrix-matrix product. Please see http://www.netlib.org/blas/ for details and a reference implemen-
tation in Fortran. igraph contains some wrapper functions that can be used to call BLAS routines in a
somewhat more user-friendly way. Not all BLAS routines are included in igraph, and even those which
are included might not have wrappers; the extension of the set of wrapped functions will probably be dri-
ven by igraph's internal requirements. The wrapper functions usually substitute double-precision floating
point arrays used by BLAS with igraph_vector_t and igraph_matrix_t instances and also remove those
parameters (such as the number of rows/columns) that can be inferred from the passed arguments directly.

igraph_blas_dgemv — Matrix-vector multiplication us-
ing BLAS, vector version.

void igraph_blas_dgemv(igraph_bool_t transpose, igraph_real_t alpha,
 const igraph_matrix_t* a, const igraph_vector_t* x,
 igraph_real_t beta, igraph_vector_t* y);

This function is a somewhat more user-friendly interface to the dgemv function in BLAS. dgemv per-
forms the operation y = alpha*A*x + beta*y, where x and y are vectors and A is an appropriately sized
matrix (symmetric or unsymmetric).

Arguments:

transpose: whether to transpose the matrix A

alpha: the constant alpha

a: the matrix A

x: the vector x

beta: the constant beta

y: the vector y (which will be modified in-place)

Time complexity: O(nk) if the matrix is of size n x k

See also:

igraph_blas_dgemv_array if you have arrays instead of vectors.

Example 27.1. File examples/simple/blas.c

http://www.netlib.org/blas/

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

494

igraph_blas_dgemv_array — Matrix-vector multiplica-
tion using BLAS, array version.

void igraph_blas_dgemv_array(igraph_bool_t transpose, igraph_real_t alpha,
 const igraph_matrix_t* a, const igraph_real_t* x,
 igraph_real_t beta, igraph_real_t* y);

This function is a somewhat more user-friendly interface to the dgemv function in BLAS. dgemv per-
forms the operation y = alpha*A*x + beta*y, where x and y are vectors and A is an appropriately sized
matrix (symmetric or unsymmetric).

Arguments:

transpose: whether to transpose the matrix A

alpha: the constant alpha

a: the matrix A

x: the vector x as a regular C array

beta: the constant beta

y: the vector y as a regular C array (which will be modified in-place)

Time complexity: O(nk) if the matrix is of size n x k

See also:

igraph_blas_dgemv if you have vectors instead of arrays.

LAPACK interface in igraph
LAPACK is written in Fortran90 and provides routines for solving systems of simultaneous linear equa-
tions, least-squares solutions of linear systems of equations, eigenvalue problems, and singular value prob-
lems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also
provided, as are related computations such as reordering of the Schur factorizations and estimating condi-
tion numbers. Dense and banded matrices are handled, but not general sparse matrices. In all areas, similar
functionality is provided for real and complex matrices, in both single and double precision.

igraph provides an interface to a very limited set of LAPACK functions, using the regular igraph data
structures.

See more about LAPACK at http://www.netlib.org/lapack/

Matrix factorization, solving linear systems

igraph_lapack_dgetrf — LU factorization of a general M-by-N
matrix

http://www.netlib.org/lapack/

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

495

int igraph_lapack_dgetrf(igraph_matrix_t *a, igraph_vector_int_t *ipiv,
 int *info);

The factorization has the form A = P * L * U where P is a permutation matrix, L is lower triangular with
unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

Arguments:

a: The input/output matrix. On entry, the M-by-N matrix to be factored. On exit, the factors L and
U from the factorization A = P * L * U; the unit diagonal elements of L are not stored.

ipiv: An integer vector, the pivot indices are stored here, unless it is a null pointer. Row i of the matrix
was interchanged with row ipiv[i].

info: LAPACK error code. Zero on successful exit. If positive and i, then U(i,i) is exactly zero. The
factorization has been completed, but the factor U is exactly singular, and division by zero will
occur if it is used to solve a system of equations. If LAPACK returns an error, i.e. a negative
info value, then an igraph error is generated as well.

Returns:

Error code.

Time complexity: TODO.

igraph_lapack_dgetrs — Solve general system of linear equa-
tions using LU factorization

int igraph_lapack_dgetrs(igraph_bool_t transpose, const igraph_matrix_t *a,
 igraph_vector_int_t *ipiv, igraph_matrix_t *b);

This function calls LAPACK to solve a system of linear equations A * X = B or A' * X = B with a general
N-by-N matrix A using the LU factorization computed by igraph_lapack_dgetrf.

Arguments:

transpose: Logical scalar, whether to transpose the input matrix.

a: A matrix containing the L and U factors from the factorization A = P*L*U.

ipiv: An integer vector, the pivot indices from igraph_lapack_dgetrf must be given
here.

b: The right hand side matrix must be given here.

Returns:

Error code.

Time complexity: TODO.

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

496

igraph_lapack_dgesv — Solve system of linear equations with LU
factorization

int igraph_lapack_dgesv(igraph_matrix_t *a, igraph_vector_int_t *ipiv,
 igraph_matrix_t *b, int *info);

This function computes the solution to a real system of linear equations A * X = B, where A is an N-by-
N matrix and X and B are N-by-NRHS matrices.

The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P * L * U,
where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form
of A is then used to solve the system of equations A * X = B.

Arguments:

a: Matrix. On entry the N-by-N coefficient matrix, on exit, the factors L and U from the factoriza-
tion A=P*L*U; the unit diagonal elements of L are not stored.

ipiv: An integer vector or a null pointer. If not a null pointer, then the pivot indices that define the
permutation matrix P, are stored here. Row i of the matrix was interchanged with row IPIV(i).

b: Matrix, on entry the right hand side matrix should be stored here. On exit, if there was no error,
and the info argument is zero, then it contains the solution matrix X.

info: The LAPACK info code. If it is positive, then U(info,info) is exactly zero. In this case the fac-
torization has been completed, but the factor U is exactly singular, so the solution could not be
computed.

Returns:

Error code.

Time complexity: TODO.

Example 27.2. File examples/simple/igraph_lapack_dgesv.c

Eigenvalues and eigenvectors of matrices

igraph_lapack_dsyevr — Selected eigenvalues and optionally
eigenvectors of a symmetric matrix

int igraph_lapack_dsyevr(const igraph_matrix_t *A,
 igraph_lapack_dsyev_which_t which,
 igraph_real_t vl, igraph_real_t vu, int vestimate,
 int il, int iu, igraph_real_t abstol,
 igraph_vector_t *values, igraph_matrix_t *vectors,
 igraph_vector_int_t *support);

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

497

Calls the DSYEVR LAPACK function to compute selected eigenvalues and, optionally, eigenvectors of
a real symmetric matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

See more in the LAPACK documentation.

Arguments:

A: Matrix, on entry it contains the symmetric input matrix. Only the leading N-by-N upper
triangular part is used for the computation.

which: Constant that gives which eigenvalues (and possibly the corresponding eigenvec-
tors) to calculate. Possible values are IGRAPH_LAPACK_DSYEV_ALL, all eigenval-
ues; IGRAPH_LAPACK_DSYEV_INTERVAL, all eigenvalues in the half-open interval
(vl,vu]; IGRAPH_LAPACK_DSYEV_SELECT, the il-th through iu-th eigenvalues.

vl: If which is IGRAPH_LAPACK_DSYEV_INTERVAL, then this is the lower bound of
the interval to be searched for eigenvalues. See also the vestimate argument.

vu: If which is IGRAPH_LAPACK_DSYEV_INTERVAL, then this is the upper bound of
the interval to be searched for eigenvalues. See also the vestimate argument.

vestimate: An upper bound for the number of eigenvalues in the (vl,vu] interval, if which is
IGRAPH_LAPACK_DSYEV_INTERVAL. Memory is allocated only for the given num-
ber of eigenvalues (and eigenvectors), so this upper bound must be correct.

il: The index of the smallest eigenvalue to return, if which is
IGRAPH_LAPACK_DSYEV_SELECT.

iu: The index of the largets eigenvalue to return, if which is
IGRAPH_LAPACK_DSYEV_SELECT.

abstol: The absolute error tolerance for the eigevalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval [a,b] of width less than or equal
to abstol + EPS * max(|a|,|b|), where EPS is the machine precision.

values: An initialized vector, the eigenvalues are stored here, unless it is a null pointer. It will
be resized as needed.

vectors: An initialized matrix, the eigenvectors are stored in its columns, unless it is a null pointer.
It will be resized as needed.

support: An integer vector. If not a null pointer, then it will be resized to (2*max(1,M)) (M is a the
total number of eigenvalues found). Then the support of the eigenvectors in vectors
is stored here, i.e., the indices indicating the nonzero elements in vectors. The i-th
eigenvector is nonzero only in elements support(2*i-1) through support(2*i).

Returns:

Error code.

Time complexity: TODO.

Example 27.3. File examples/simple/igraph_lapack_dsyevr.c

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

498

igraph_lapack_dgeev — Eigenvalues and optionally eigenvectors
of a non-symmetric matrix

int igraph_lapack_dgeev(const igraph_matrix_t *A,
 igraph_vector_t *valuesreal,
 igraph_vector_t *valuesimag,
 igraph_matrix_t *vectorsleft,
 igraph_matrix_t *vectorsright,
 int *info);

This function calls LAPACK to compute, for an N-by-N real nonsymmetric matrix A, the eigenvalues
and, optionally, the left and/or right eigenvectors.

The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The
left eigenvector u(j) of A satisfies u(j)**H * A = lambda(j) * u(j)**H where u(j)**H denotes the conjugate
transpose of u(j).

The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

Arguments:

A: matrix. On entry it contains the N-by-N input matrix.

valuesreal: Pointer to an initialized vector, or a null pointer. If not a null pointer, then the real
parts of the eigenvalues are stored here. The vector will be resized as needed.

valuesimag: Pointer to an initialized vector, or a null pointer. If not a null pointer, then the imag-
inary parts of the eigenvalues are stored here. The vector will be resized as needed.

vectorsleft: Pointer to an initialized matrix, or a null pointer. If not a null pointer, then the left
eigenvectors are stored in the columns of the matrix. The matrix will be resized as
needed.

vectorsright: Pointer to an initialized matrix, or a null pointer. If not a null pointer, then the right
eigenvectors are stored in the columns of the matrix. The matrix will be resized as
needed.

info: This argument is used for two purposes. As an input argument it gives whether an
igraph error should be generated if the QR algorithm fails to compute all eigenval-
ues. If info is non-zero, then an error is generated, otherwise only a warning is
given. On exit it contains the LAPACK error code. Zero means successful exit. A
negative values means that some of the arguments had an illegal value, this always
triggers an igraph error. An i positive value means that the QR algorithm failed to
compute all the eigenvalues, and no eigenvectors have been computed; element i
+1:N of valuesreal and valuesimag contain eigenvalues which have con-
verged. This case only generates an igraph error, if info was non-zero on entry.

Returns:

Error code.

Time complexity: TODO.

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

499

Example 27.4. File examples/simple/igraph_lapack_dgeev.c

igraph_lapack_dgeevx — Eigenvalues/vectors of nonsymmetric
matrices, expert mode

int igraph_lapack_dgeevx(igraph_lapack_dgeevx_balance_t balance,
 const igraph_matrix_t *A,
 igraph_vector_t *valuesreal,
 igraph_vector_t *valuesimag,
 igraph_matrix_t *vectorsleft,
 igraph_matrix_t *vectorsright,
 int *ilo, int *ihi, igraph_vector_t *scale,
 igraph_real_t *abnrm,
 igraph_vector_t *rconde,
 igraph_vector_t *rcondv,
 int *info);

This function calculates the eigenvalues and optionally the left and/or right eigenvectors of a nonsymmetric
N-by-N real matrix.

Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues
and eigenvectors (ilo, \pihi, scale, and abnrm), reciprocal condition numbers for the eigenvalues
(rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).

The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The
left eigenvector u(j) of A satisfies u(j)**H * A = lambda(j) * u(j)**H where u(j)**H denotes the conjugate
transpose of u(j).

The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

Balancing a matrix means permuting the rows and columns to make it more nearly upper triangular, and
applying a diagonal similarity transformation D * A * D**(-1), where D is a diagonal matrix, to make
its rows and columns closer in norm and the condition numbers of its eigenvalues and eigenvectors small-
er. The computed reciprocal condition numbers correspond to the balanced matrix. Permuting rows and
columns will not change the condition numbers (in exact arithmetic) but diagonal scaling will. For further
explanation of balancing, see section 4.10.2 of the LAPACK Users' Guide.

Arguments:

balance: Scalar that indicated, whether the input matrix should be balanced. Possible values:

IGRAPH_LAPACK_DGEEVX_BALANCE_NONEno not diagonally scale or permute.

IGRAPH_LAPACK_DGEEVX_BALANCE_PERMperform permutations to make the matrix
more nearly upper triangular. Do not diago-
nally scale.

IGRAPH_LAPACK_DGEEVX_BALANCE_SCALEdiagonally scale the matrix, i.e. replace A by
D*A*D**(-1), where D is a diagonal matrix,
chosen to make the rows and columns of A
more equal in norm. Do not permute.

IGRAPH_LAPACK_DGEEVX_BALANCE_BOTHboth diagonally scale and permute A.

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

500

A: The input matrix, must be square.

valuesreal: An initialized vector, or a NULL pointer. If not a NULL pointer, then the real parts
of the eigenvalues are stored here. The vector will be resized, as needed.

valuesimag: An initialized vector, or a NULL pointer. If not a NULL pointer, then the imaginary
parts of the eigenvalues are stored here. The vector will be resized, as needed.

vectorsleft: An initialized matrix or a NULL pointer. If not a null pointer, then the left eigenvec-
tors are stored here. The order corresponds to the eigenvalues and the eigenvectors
are stored in a compressed form. If the j-th eigenvalue is real then column j contains
the corresponding eigenvector. If the j-th and (j+1)-th eigenvalues form a complex
conjugate pair, then the j-th and (j+1)-th columns contain their corresponding eigen-
vectors.

vectorsright: An initialized matrix or a NULL pointer. If not a null pointer, then the right eigen-
vectors are stored here. The format is the same, as for the vectorsleft argument.

ilo:

ihi: ilo and ihi are integer values determined when A was balanced. The balanced
A(i,j) = 0 if I>J and J=1,...,ilo-1 or I=ihi+1,...,N.

scale: Pointer to an initialized vector or a NULL pointer. If not a NULL pointer, then details
of the permutations and scaling factors applied when balancing

A,: are stored here. If P(j) is the index of the row and column interchanged with row
and column j, and D(j) is the scaling factor applied to row and column j, then

scale(J) = P(J), for J =
1,...,ilo-1

scale(J) = D(J), for J =
ilo,...,ihi

scale(J) = P(J) for J =
ihi+1,...,N.
The order in which the interchanges are made is N to ihi+1, then 1 to ilo-1.

abnrm: Pointer to a real variable, the one-norm of the balanced matrix is stored here. (The
one-norm is the maximum of the sum of absolute values of elements in any column.)

rconde: An initialized vector or a NULL pointer. If not a null pointer, then the reciprocal
condition numbers of the eigenvalues are stored here.

rcondv: An initialized vector or a NULL pointer. If not a null pointer, then the reciprocal
condition numbers of the right eigenvectors are stored here.

info: This argument is used for two purposes. As an input argument it gives whether an
igraph error should be generated if the QR algorithm fails to compute all eigenval-
ues. If info is non-zero, then an error is generated, otherwise only a warning is
given. On exit it contains the LAPACK error code. Zero means successful exit. A
negative values means that some of the arguments had an illegal value, this always
triggers an igraph error. An i positive value means that the QR algorithm failed to
compute all the eigenvalues, and no eigenvectors have been computed; element i
+1:N of valuesreal and valuesimag contain eigenvalues which have con-
verged. This case only generated an igraph error, if info was non-zero on entry.

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

501

Returns:

Error code.

Time complexity: TODO

Example 27.5. File examples/simple/igraph_lapack_dgeevx.c

ARPACK interface in igraph
ARPACK is a library for solving large scale eigenvalue problems. The package is designed to compute
a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropri-
ate for large sparse or structured matrices A where structured means that a matrix-vector product w
<- Av requires order n rather than the usual order n^2 floating point operations. Please see http://
www.caam.rice.edu/software/ARPACK/ for details.

The eigenvalue calculation in ARPACK (in the simplest case) involves the calculation of the Av prod-
uct where A is the matrix we work with and v is an arbitrary vector. A user-defined function of type
igraph_arpack_function_t is expected to perform this product. If the product can be done effi-
ciently, e.g. if the matrix is sparse, then ARPACK is usually able to calculate the eigenvalues very quickly.

In igraph, eigenvalue/eigenvector calculations usually involve the following steps:

1. Initialization of an igraph_arpack_options_t data structure using
igraph_arpack_options_init.

2. Setting some options in the initialized igraph_arpack_options_t object.

3. Defining a function of type igraph_arpack_function_t. The input of this function is a vector,
and the output should be the output matrix multiplied by the input vector.

4. Calling igraph_arpack_rssolve() (is the matrix is symmetric), or
igraph_arpack_rnsolve().

The igraph_arpack_options_t object can be used multiple times.

If we have many eigenvalue problems to solve, then it might worth to create an
igraph_arpack_storage_t object, and initialize it via igraph_arpack_storage_init().
This structure contains all memory needed for ARPACK (with the given upper limit regerd-
ing to the size of the eigenvalue problem). Then many problems can be solved us-
ing the same igraph_arpack_storage_t object, without always reallocating the re-
quired memory. The igraph_arpack_storage_t object needs to be destroyed by calling
igraph_arpack_storage_destroy() on it, when it is not needed any more.

igraph does not contain all ARPACK routines, only the ones dealing with symmetric and non-symmetric
eigenvalue problems using double precision real numbers.

Data structures

igraph_arpack_options_t — Options for ARPACK

http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

502

typedef struct igraph_arpack_options_t {
 /* INPUT */
 char bmat[1]; /* I-standard problem, G-generalized */
 int n; /* Dimension of the eigenproblem */
 char which[2]; /* LA, SA, LM, SM, BE */
 int nev; /* Number of eigenvalues to be computed */
 igraph_real_t tol; /* Stopping criterion */
 int ncv; /* Number of columns in V */
 int ldv; /* Leading dimension of V */
 int ishift; /* 0-reverse comm., 1-exact with tridiagonal */
 int mxiter; /* Maximum number of update iterations to take */
 int nb; /* Block size on the recurrence, only 1 works */
 int mode; /* The kind of problem to be solved (1-5)
 1: A*x=l*x, A symmetric
 2: A*x=l*M*x, A symm. M pos. def.
 3: K*x = l*M*x, K symm., M pos. semidef.
 4: K*x = l*KG*x, K s. pos. semidef. KG s. indef.
 5: A*x = l*M*x, A symm., M symm. pos. semidef. */
 int start; /* 0: random, 1: use the supplied vector */
 int lworkl; /* Size of temporary storage, default is fine */
 igraph_real_t sigma; /* The shift for modes 3,4,5 */
 igraph_real_t sigmai; /* The imaginary part of shift for rnsolve */
 /* OUTPUT */
 int info; /* What happened, see docs */
 int ierr; /* What happened in the dseupd call */
 int noiter; /* The number of iterations taken */
 int nconv;
 int numop; /* Number of OP*x operations */
 int numopb; /* Number of B*x operations if BMAT='G' */
 int numreo; /* Number of steps of re-orthogonalizations */
 /* INTERNAL */
 int iparam[11];
 int ipntr[14];
} igraph_arpack_options_t;

This data structure contains the options of thee ARPACK eigenvalue solver routines. It must be initialized
by calling igraph_arpack_options_init() on it. Then it can be used for multiple ARPACK
calls, as the ARPACK solvers do not modify it. Input options:

Values:

bmat: Character. Whether to solve a standard ('I') ot a generalized problem ('B').

n: Dimension of the eigenproblem.

which: Specifies which eigenvalues/vectors to compute. Possible values for symmetric matrices:

LA Compute nev largest (algebraic) eigenvalues.

SA Compute nev smallest (algebraic) eigenvalues.

LM Compute nev largest (in magnitude) eigenvalues.

SM Compute nev smallest (in magnitude) eigenvalues.

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

503

BE Compute nev eigenvalues, half from each end of the spectrum. When nev is odd,
compute one more from the high en than from the low end.

Possible values for non-symmetric matrices:

LM Compute nev largest (in magnitude) eigenvalues.

SM Compute nev smallest (in magnitude) eigenvalues.

LR Compute nev eigenvalues of largest real part.

SR Compute nev eigenvalues of smallest real part.

LI Compute nev eigenvalues of largest imaginary part.

SI Compute nev eigenvalues of smallest imaginary part.

nev: The number of eigenvalues to be computed.

tol: Stopping criterion: the relative accuracy of the Ritz value is considered acceptable if its error
is less than tol times its estimated value. If this is set to zero then machine precision is used.

ncv: Number of Lanczos vectors to be generated. Setting this to zero means that
igraph_arpack_rssolve and igraph_arpack_rnsolve will determine a suitable
value for ncv automatically.

ldv: Numberic scalar. It should be set to zero in the current igraph implementation.

ishift: Either zero or one. If zero then the shifts are provided by the user via reverse communication.
If one then exact shifts with respect to the reduced tridiagonal matrix T. Please always set
this to one.

mxiter: Maximum number of Arnoldi update iterations allowed.

nb: Blocksize to be used in the recurrence. Please always leave this on the default value, one.

mode: The type of the eigenproblem to be solved. Possible values if the input matrix is symmetric:

1. A*x=lambda*x, A is symmetric.

2. A*x=lambda*M*x, A is symmetric, M is symmetric positive definite.

3. K*x=lambda*M*x, K is symmetric, M is symmetric positive semi-definite.

4. K*x=lambda*KG*x, K is symmetric positive semi-definite, KG is symmetric indefinite.

5. A*x=lambda*M*x, A is symmetric, M is symmetric positive semi-definite. (Cayley trans-
formed mode.)

Please note that only mode ==1 was tested and other values might not work properly. Possible
values if the input matrix is not symmetric:

1. A*x=lambda*x.

2. A*x=lambda*M*x, M is symmetric positive definite.

3. A*x=lambda*M*x, M is symmetric semi-definite.

4. A*x=lambda*M*x, M is symmetric semi-definite.

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

504

Please note that only mode == 1 was tested and other values might not work properly.

start: Whether to use the supplied starting vector (1), or use a random starting vector (0). The
starting vector must be supplied in the first column of the vectors argument of the
igraph_arpack_rssolve() of igraph_arpack_rnsolve() call.

Output options:

Values:

info: Error flag of ARPACK. Possible values:

0 Normal exit.

1 Maximum number of iterations taken.

3 No shifts could be applied during a cycle of the Implicitly restarted Arnoldi iteration. One
possibility is to increase the size of ncv relative to nev.

ARPACK can return other error flags as well, but these are converted to igraph errors, see
igraph_error_type_t.

ierr: Error flag of the second ARPACK call (one eigenvalue computation usually involves two
calls to ARPACK). This is always zero, as other error codes are converted to igraph errors.

noiter: Number of Arnoldi iterations taken.

nconv: Number of converged Ritz values. This represents the number of Ritz values that satisfy the
convergence critetion.

numop: Total number of matrix-vector multiplications.

numopb: Not used currently.

numreo: Total number of steps of re-orthogonalization.

Internal options:

Values:

lworkl: Do not modify this option.

sigma: The shift for the shift-invert mode.

sigmai: The imaginary part of the shift, for the non-symmetric or complex shift-invert mode.

iparam: Do not modify this option.

ipntr: Do not modify this option.

igraph_arpack_storage_t — Storage for ARPACK

typedef struct igraph_arpack_storage_t {
 int maxn, maxncv, maxldv;

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

505

 igraph_real_t *v;
 igraph_real_t *workl;
 igraph_real_t *workd;
 igraph_real_t *d;
 igraph_real_t *resid;
 igraph_real_t *ax;
 int *select;
 igraph_real_t *di; /* These two only for non-symmetric problems */
 igraph_real_t *workev;
} igraph_arpack_storage_t;

Public members, do not modify them directly, these are considered to be read-only.

Values:

maxn: Maximum rank of matrix.

maxncv: Maximum NCV.

maxldv: Maximum LDV.

These members are considered to be private:

Values:

workl: Working memory.

workd: Working memory.

d: Memory for eigenvalues.

resid: Memory for residuals.

ax: Working memory.

select: Working memory.

di: Memory for eigenvalues, non-symmetric case only.

workev: Working memory, non-symmetric case only.

igraph_arpack_function_t — Type of the ARPACK callback
function

typedef int igraph_arpack_function_t(igraph_real_t *to, const igraph_real_t *from,
 int n, void *extra);

Arguments:

to: Pointer to an igraph_real_t, the result of the matrix-vector product is expected to be
stored here.

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

506

from: Pointer to an igraph_real_t, the input matrix should be multiplied by the vector stored
here.

n: The length of the vector (which is the same as the order of the input matrix).

extra: Extra argument to the matrix-vector calculation function. This is coming from the
igraph_arpack_rssolve() or igraph_arpack_rnsolve() function.

Returns:

Error code, if not zero, then the ARPACK solver considers this as an error, stops and calls the igraph
error handler.

igraph_arpack_options_init — Initialize ARPACK options

void igraph_arpack_options_init(igraph_arpack_options_t *o);

Initializes ARPACK options, set them to default values. You can always pass the initialized
igraph_arpack_options_t object to built-in igraph functions without any modification. The built-
in igraph functions modify the options to perform their calculation, e.g. igraph_pagerank() always
searches for the eigenvalue with the largest magnitude, regardless of the supplied value.

If you want to implement your own function involving eigenvalue calculation using ARPACK, however,
you will likely need to set up the fields for yourself.

Arguments:

o: The igraph_arpack_options_t object to initialize.

Time complexity: O(1).

igraph_arpack_storage_init — Initialize ARPACK storage

int igraph_arpack_storage_init(igraph_arpack_storage_t *s, long int maxn,
 long int maxncv, long int maxldv,
 igraph_bool_t symm);

You only need this function if you want to run multiple eigenvalue calculations using ARPACK,
and want to spare the memory allocation/deallocation between each two runs. Otherwise it is safe
to supply a null pointer as the storage argument of both igraph_arpack_rssolve() and
igraph_arpack_rnsolve() to make memory allocated and deallocated automatically.

Don't forget to call the igraph_arpack_storage_destroy() function on the storage object if you
don't need it any more.

Arguments:

s: The igraph_arpack_storage_t object to initialize.

maxn: The maximum order of the matrices.

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

507

maxncv: The maximum NCV parameter intended to use.

maxldv: The maximum LDV parameter intended to use.

symm: Whether symmetric or non-symmetric problems will be solved using this
igraph_arpack_storage_t. (You cannot use the same storage both with symmetric
and non-symmetric solvers.)

Returns:

Error code.

Time complexity: O(maxncv*(maxldv+maxn)).

igraph_arpack_storage_destroy — Deallocate ARPACK storage

void igraph_arpack_storage_destroy(igraph_arpack_storage_t *s);

Arguments:

s: The igraph_arpack_storage_t object for which the memory will be deallocated.

Time complexity: operating system dependent.

ARPACK solvers

igraph_arpack_rssolve — ARPACK solver for symmetric matri-
ces

int igraph_arpack_rssolve(igraph_arpack_function_t *fun, void *extra,
 igraph_arpack_options_t *options,
 igraph_arpack_storage_t *storage,
 igraph_vector_t *values, igraph_matrix_t *vectors);

This is the ARPACK solver for symmetric matrices. Please use igraph_arpack_rnsolve() for
non-symmetric matrices.

Arguments:

fun: Pointer to an igraph_arpack_function_t object, the function that performs the ma-
trix-vector multiplication.

extra: An extra argument to be passed to fun.

options: An igraph_arpack_options_t object.

storage: An igraph_arpack_storage_t object, or a null pointer. In the latter case memory
allocation and deallocation is performed automatically. Either this or the vectors argu-
ment must be non-null if the ARPACK iteration is started from a given starting vector. If
both are given vectors take precedence.

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

508

values: If not a null pointer, then it should be a pointer to an initialized vector. The eigenvalues will
be stored here. The vector will be resized as needed.

vectors: If not a null pointer, then it must be a pointer to an initialized matrix. The eigenvectors will
be stored in the columns of the matrix. The matrix will be resized as needed. Either this or
the vectors argument must be non-null if the ARPACK iteration is started from a given
starting vector. If both are given vectors take precedence.

Returns:

Error code.

Time complexity: depends on the matrix-vector multiplication. Usually a small number of iterations is
enough, so if the matrix is sparse and the matrix-vector multiplication can be done in O(n) time (the number
of vertices), then the eigenvalues are found in O(n) time as well.

igraph_arpack_rnsolve — ARPACK solver for non-symmetric
matrices

int igraph_arpack_rnsolve(igraph_arpack_function_t *fun, void *extra,
 igraph_arpack_options_t *options,
 igraph_arpack_storage_t *storage,
 igraph_matrix_t *values, igraph_matrix_t *vectors);

Please always consider calling igraph_arpack_rssolve() if your matrix is symmetric, it is much
faster. igraph_arpack_rnsolve() for non-symmetric matrices.

Note that ARPACK is not called for 2x2 matrices as an exact algebraic solution exists in these cases.

Arguments:

fun: Pointer to an igraph_arpack_function_t object, the function that performs the ma-
trix-vector multiplication.

extra: An extra argument to be passed to fun.

options: An igraph_arpack_options_t object.

storage: An igraph_arpack_storage_t object, or a null pointer. In the latter case memory
allocation and deallocation is performed automatically.

values: If not a null pointer, then it should be a pointer to an initialized matrix. The (possibly com-
plex) eigenvalues will be stored here. The matrix will have two columns, the first column
contains the real, the second the imaginary parts of the eigenvalues. The matrix will be re-
sized as needed.

vectors: If not a null pointer, then it must be a pointer to an initialized matrix. The eigenvectors will
be stored in the columns of the matrix. The matrix will be resized as needed.

Returns:

Error code.

Using BLAS, LAPACK
and ARPACK for igraph

matrices and graphs

509

Time complexity: depends on the matrix-vector multiplication. Usually a small number of iterations is
enough, so if the matrix is sparse and the matrix-vector multiplication can be done in O(n) time (the number
of vertices), then the eigenvalues are found in O(n) time as well.

igraph_arpack_unpack_complex — Make the result of the non-
symmetric ARPACK solver more readable

int igraph_arpack_unpack_complex(igraph_matrix_t *vectors, igraph_matrix_t *values,
 long int nev);

This function works on the output of igraph_arpack_rnsolve and brushes it up a bit: it only keeps
nev eigenvalues/vectors and every eigenvector is stored in two columns of the vectors matrix.

The output of the non-symmetric ARPACK solver is somewhat hard to parse, as real eigenvectors occupy
only one column in the matrix, and the complex conjugate eigenvectors are not stored at all (usually).
The other problem is that the solver might return more eigenvalues than requested. The common use of
this function is to call it directly after igraph_arpack_rnsolve with its vectors and values
argument and options->nev as nev.

Arguments:

vectors: The eigenvector matrix, as returned by igraph_arpack_rnsolve. It will be resized,
typically it will be larger.

values: The eigenvalue matrix, as returned by igraph_arpack_rnsolve. It will be resized,
typically extra, unneeded rows (=eigenvalues) will be removed.

nev: The number of eigenvalues/vectors to keep. Can be less or equal than the number originally
requested from ARPACK.

Returns:

Error code.

Time complexity: linear in the number of elements in the vectors matrix.

510

Chapter 28. Bipartite, i.e. two-mode
graphs
Bipartite networks in igraph

A bipartite network contains two kinds of vertices and connections are only possible between two vertices
of different kind. There are many natural examples, e.g. movies and actors as vertices and a movie is
connected to all participating actors, etc.

igraph does not have direct support for bipartite networks, at least not at the C language level. In other
words the igraph_t structure does not contain information about the vertex types. The C functions for
bipartite networks usually have an additional input argument to graph, called types, a boolean vector
giving the vertex types.

Most functions creating bipartite networks are able to create this extra vector, you just need to supply an
initialized boolean vector to them.

Create two-mode networks

igraph_create_bipartite — Create a bipartite graph

int igraph_create_bipartite(igraph_t *graph, const igraph_vector_bool_t *types,
 const igraph_vector_t *edges,
 igraph_bool_t directed);

This is a simple wrapper function to create a bipartite graph. It does a little more than
igraph_create(), e.g. it checks that the graph is indeed bipartite with respect to the given types
vector. If there is an edge connecting two vertices of the same kind, then an error is reported.

Arguments:

graph: Pointer to an uninitialized graph object, the result is created here.

types: Boolean vector giving the vertex types. The length of the vector defines the number of
vertices in the graph.

edges: Vector giving the edges of the graph. The highest vertex id in this vector must be smaller
than the length of the types vector.

directed: Boolean scalar, whether to create a directed graph.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

Example 28.1. File examples/simple/igraph_bipartite_create.c

Bipartite, i.e. two-mode graphs

511

igraph_full_bipartite — Create a full bipartite net-
work

int igraph_full_bipartite(igraph_t *graph,
 igraph_vector_bool_t *types,
 igraph_integer_t n1, igraph_integer_t n2,
 igraph_bool_t directed,
 igraph_neimode_t mode);

A bipartite network contains two kinds of vertices and connections are only possible between two vertices
of different kind. There are many natural examples, e.g. movies and actors as vertices and a movie is
connected to all participating actors, etc.

igraph does not have direct support for bipartite networks, at least not at the C language level. In other
words the igraph_t structure does not contain information about the vertex types. The C functions for
bipartite networks usually have an additional input argument to graph, called types, a boolean vector
giving the vertex types.

Most functions creating bipartite networks are able to create this extra vector, you just need to supply an
initialized boolean vector to them.

Arguments:

graph: Pointer to an igraph_t object, the graph will be created here.

types: Pointer to a boolean vector. If not a null pointer, then the vertex types will be stored here.

n1: Integer, the number of vertices of the first kind.

n2: Integer, the number of vertices of the second kind.

directed: Boolean, whether to create a directed graph.

mode: A constant that gives the type of connections for directed graphs. If IGRAPH_OUT, then
edges point from vertices of the first kind to vertices of the second kind; if IGRAPH_IN,
then the opposite direction is realized; if IGRAPH_ALL, then mutual edges will be created.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

See also:

igraph_full() for non-bipartite full graphs.

igraph_bipartite_game — Generate a bipartite ran-
dom graph (similar to Erdos-Renyi)

Bipartite, i.e. two-mode graphs

512

int igraph_bipartite_game(igraph_t *graph, igraph_vector_bool_t *types,
 igraph_erdos_renyi_t type,
 igraph_integer_t n1, igraph_integer_t n2,
 igraph_real_t p, igraph_integer_t m,
 igraph_bool_t directed, igraph_neimode_t mode);

Similarly to unipartite (one-mode) networks, we can define the G(n,p), and G(n,m) graph classes for bi-
partite graphs, via their generating process. In G(n,p) every possible edge between top and bottom vertices
is realized with probablity p, independently of the rest of the edges. In G(n,m), we uniformly choose m
edges to realize.

Arguments:

graph: Pointer to an uninitialized igraph graph, the result is stored here.

types: Pointer to an initialized boolean vector, or a null pointer. If not a null pointer, then the
vertex types are stored here. Bottom vertices come first, n1 of them, then n2 top vertices.

type: The type of the random graph, possible values:

IGRAPH_ERDOS_RENYI_GNM G(n,m) graph, m edges are selected uniformly ran-
domly in a graph with n vertices.

IGRAPH_ERDOS_RENYI_GNP G(n,p) graph, every possible edge is included in the
graph with probability p.

n1: The number of bottom vertices.

n2: The number of top verices.

p: The connection probability for G(n,p) graphs. It is ignored for G(n,m) graphs.

m: The number of edges for G(n,m) graphs. It is ignored for G(n,p) graphs.

directed: Boolean, whether to generate a directed graph. See also the mode argument.

mode: Specifies how to direct the edges in directed graphs. If it is IGRAPH_OUT, then directed
edges point from bottom vertices to top vertices. If it is IGRAPH_IN, edges point from
top vertices to bottom vertices. IGRAPH_OUT and IGRAPH_IN do not generate mutu-
al edges. If this argument is IGRAPH_ALL, then each edge direction is considered inde-
pendently and mutual edges might be generated. This argument is ignored for undirected
graphs.

Returns:

Error code.

See also:

igraph_erdos_renyi_game.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

Bipartite, i.e. two-mode graphs

513

Incidence matrices

igraph_incidence — Create a bipartite graph from an
incidence matrix

int igraph_incidence(igraph_t *graph, igraph_vector_bool_t *types,
 const igraph_matrix_t *incidence,
 igraph_bool_t directed,
 igraph_neimode_t mode, igraph_bool_t multiple);

A bipartite (or two-mode) graph contains two types of vertices and edges always connect vertices of dif-
ferent types. An incidence matrix is an nxm matrix, n and m are the number of vertices of the two types,
respectively. Nonzero elements in the matrix denote edges between the two corresponding vertices.

Note that this function can operate in two modes, depending on the multiple argument. If it is FALSE
(i.e. 0), then a single edge is created for every non-zero element in the incidence matrix. If multiple
is TRUE (i.e. 1), then the matrix elements are rounded up to the closest non-negative integer to get the
number of edges to create between a pair of vertices.

This function does not create multiple edges if multiple is FALSE, but might create some if it is TRUE.

Arguments:

graph: Pointer to an uninitialized graph object.

types: Pointer to an initialized boolean vector, or a null pointer. If not a null pointer, then the
vertex types are stored here. It is resized as needed.

incidence: The incidence matrix.

directed: Gives whether to create an undirected or a directed graph.

mode: Specifies the direction of the edges in a directed graph. If IGRAPH_OUT, then edges
point from vertices of the first kind (corresponding to rows) to vertices of the second kind
(corresponding to columns); if IGRAPH_IN, then the opposite direction is realized; if
IGRAPH_ALL, then mutual edges will be created.

multiple: How to interpret the incidence matrix elements. See details below.

Returns:

Error code.

Time complexity: O(n*m), the size of the incidence matrix.

igraph_get_incidence — Convert a bipartite graph in-
to an incidence matrix

Bipartite, i.e. two-mode graphs

514

int igraph_get_incidence(const igraph_t *graph,
 const igraph_vector_bool_t *types,
 igraph_matrix_t *res,
 igraph_vector_t *row_ids,
 igraph_vector_t *col_ids);

Arguments:

graph: The input graph, edge directions are ignored.

types: Boolean vector containing the vertex types.

res: Pointer to an initialized matrix, the result is stored here. An element of the matrix gives the
number of edges (irrespectively of their direction) between the two corresponding vertices.

row_ids: Pointer to an initialized vector or a null pointer. If not a null pointer, then the vertex ids (in
the graph) corresponding to the rows of the result matrix are stored here.

col_ids: Pointer to an initialized vector or a null pointer. If not a null pointer, then the vertex ids
corresponding to the columns of the result matrix are stored here.

Returns:

Error code.

Time complexity: O(n*m), n and m are number of vertices of the two different kind.

See also:

igraph_incidence() for the opposite operation.

Project a two-mode graphs

igraph_bipartite_projection_size — Calculate the
number of vertices and edges in the bipartite projections

int igraph_bipartite_projection_size(const igraph_t *graph,
 const igraph_vector_bool_t *types,
 igraph_integer_t *vcount1,
 igraph_integer_t *ecount1,
 igraph_integer_t *vcount2,
 igraph_integer_t *ecount2);

This function calculates the number of vertices and edges in the two projections of a bipartite network.
This is useful if you have a big bipartite network and you want to estimate the amount of memory you
would need to calculate the projections themselves.

Arguments:

graph: The input graph.

Bipartite, i.e. two-mode graphs

515

types: Boolean vector giving the vertex types of the graph.

vcount1: Pointer to an igraph_integer_t, the number of vertices in the first projection is stored
here.

ecount1: Pointer to an igraph_integer_t, the number of edges in the first projection is stored
here.

vcount2: Pointer to an igraph_integer_t, the number of vertices in the second projection is
stored here.

ecount2: Pointer to an igraph_integer_t, the number of edges in the second projection is stored
here.

Returns:

Error code.

See also:

igraph_bipartite_projection() to calculate the actual projection.

Time complexity: O(|V|*d^2+|E|), |V| is the number of vertices, |E| is the number of edges, d is the average
(total) degree of the graphs.

Example 28.2. File examples/simple/
igraph_bipartite_projection.c

igraph_bipartite_projection — Create one or both
projections of a bipartite (two-mode) network

int igraph_bipartite_projection(const igraph_t *graph,
 const igraph_vector_bool_t *types,
 igraph_t *proj1,
 igraph_t *proj2,
 igraph_vector_t *multiplicity1,
 igraph_vector_t *multiplicity2,
 igraph_integer_t probe1);

Creates one or both projections of a bipartite graph.

Arguments:

graph: The bipartite input graph. Directedness of the edges is ignored.

types: Boolean vector giving the vertex types of the graph.

proj1: Pointer to an uninitialized graph object, the first projection will be created here. It
a null pointer, then it is ignored, see also the probe1 argument.

Bipartite, i.e. two-mode graphs

516

multiplicity1: Pointer to a vector, or a null pointer. If not the latter, then the multiplicity of the
edges is stored here. E.g. if there is an A-C-B and also an A-D-B triple in the
bipartite graph (but no more X, such that A-X-B is also in the graph), then the
multiplicity of the A-B edge in the projection will be 2.

multiplicity2: The same as multiplicity1, but for the other projection.

proj2: Pointer to an uninitialized graph object, the second projection is created here, if it
is not a null pointer. See also the probe1 argument.

Returns:

Error code.

See also:

igraph_bipartite_projection_size() to calculate the number of vertices and edges in the
projections, without creating the projection graphs themselves.

Time complexity: O(|V|*d^2+|E|), |V| is the number of vertices, |E| is the number of edges, d is the average
(total) degree of the graphs.

Example 28.3. File examples/simple/
igraph_bipartite_projection.c

Other operations on bipartite graphs

igraph_is_bipartite — Check whether a graph is bi-
partite

int igraph_is_bipartite(const igraph_t *graph,
 igraph_bool_t *res,
 igraph_vector_bool_t *type);

This function simply checks whether a graph \emph{could} be bipartite. It tries to find a mapping that
gives a possible division of the vertices into two classes, such that no two vertices of the same class are
connected by an edge.

The existence of such a mapping is equivalent of having no circuits of odd length in the graph. A graph
with loop edges cannot bipartite.

Note that the mapping is not necessarily unique, e.g. if the graph has at least two components, then the
vertices in the separate components can be mapped independently.

Arguments:

graph: The input graph.

res: Pointer to a boolean, the result is stored here.

Bipartite, i.e. two-mode graphs

517

type: Pointer to an initialized boolean vector, or a null pointer. If not a null pointer and a mapping
was found, then it is stored here. If not a null pointer, but no mapping was found, the contents
of this vector is invalid.

Returns:

Error code.

Time complexity: O(|V|+|E|), linear in the number of vertices and edges.

518

Chapter 29. Advanced igraph
programming
Using igraph in multi-threaded programs

The igraph library is considered thread-safe on platforms that support thread-local storage. This currently
includes Linux and MS Windows operating systems, but not Mac OSX. The best way to check whether
an igraph build is thread-safe is checking the IGRAPH_THREAD_SAFE macro.

IGRAPH_THREAD_SAFE — Macro that is defined to be 1 if
the current build of the

#define IGRAPH_THREAD_SAFE

igraph library is thread-safe, and 0 if it is not.

Thread-safe ARPACK library
Note that igraph is only thread-safe if it was built with the internal ARPACK library, i.e. the one that
comes with igraph. The standard ARPACK library is not thread-safe.

Progress handlers

About progress handlers
It is often useful to report the progress of some long calculation, to allow the user to follow the computation
and guess the total running time. A couple of igraph functions support this at the time of writing, hopefully
more will support it in the future.

To see the progress of a computation, the user has to install a progress handler, as there is none installed
by default. If an igraph function supports progress reporting, then it calls the installed progress handler
periodically, and passes a percentage value to it, the percentage of computation already performed. To
install a progress handler, you need to call igraph_set_progress_handler(). Currently there is
a single pre-defined progress handler, called igraph_progress_handler_stderr().

Setting up progress handlers

igraph_progress_handler_t — Type of progress handler func-
tions

typedef int igraph_progress_handler_t(const char *message, igraph_real_t percent,
 void *data);

Advanced igraph programming

519

This is the type of the igraph progress handler functions. There is currently one such predefined function,
igraph_progress_handler_stderr(), but the user can write and set up more sophisticated ones.

Arguments:

message: A string describing the function or algorithm that is reporting the progress. Current igraph
functions always use the name message argument if reporting from the same function.

percent: Numeric, the percentage that was completed by the algorithm or function.

data: User-defined data. Current igraph functions that report progress pass a null pointer here.
Users can write their own progress handlers and functions with progress reporting, and then
pass some meaningfull context here.

Returns:

If the return value of the progress handler is not IGRAPH_SUCCESS (=0),
then igraph_progress() returns the error code IGRAPH_INTERRUPTED. The
IGRAPH_PROGRESS() macro frees all memory and finishes the igraph function with error code
IGRAPH_INTERRUPTED in this case.

igraph_set_progress_handler — Install a progress handler, or
remove the current handler

igraph_progress_handler_t *
igraph_set_progress_handler(igraph_progress_handler_t new_handler);

There is a single simple predefined progress handler: igraph_progress_handler_stderr().

Arguments:

new_handler: Pointer to a function of type igraph_progress_handler_t, the progress han-
dler function to install. To uninstall the current progress handler, this argument can
be a null pointer.

Returns:

Pointer to the previously installed progress handler function.

Time complexity: O(1).

igraph_progress_handler_stderr — A simple predefined
progress handler

int igraph_progress_handler_stderr(const char *message, igraph_real_t percent,
 void* data);

This simple progress handler first prints message, and then the percentage complete value in a short
message to standard error.

Advanced igraph programming

520

Arguments:

message: A string describing the function or algorithm that is reporting the progress. Current igraph
functions always use the name message argument if reporting from the same function.

percent: Numeric, the percentage that was completed by the algorithm or function.

data: User-defined data. Current igraph functions that report progress pass a null pointer here.
Users can write their own progress handlers and functions with progress reporting, and then
pass some meaningfull context here.

Returns:

This function always returns with IGRAPH_SUCCESS.

Time complexity: O(1).

Invoking the progress handler

IGRAPH_PROGRESS — Report progress.

#define IGRAPH_PROGRESS(message,

The standard way to report progress from an igraph function

Arguments:

message: A string, a textual message that references the calculation under progress.

percent: Numeric scalar, the percentage that is complete.

data: User-defined data, this can be used in user-defined progress handler functions, from user-
written igraph functions.

Returns:

If the progress handler returns with IGRAPH_INTERRUPTED, then this macro frees up the igraph
allocated memory for temporary data and returns to the caller with IGRAPH_INTERRUPTED.

igraph_progress — Report progress

int igraph_progress(const char *message, igraph_real_t percent, void *data);

Note that the usual way to report progress is the IGRAPH_PROGRESS macro, as that takes care of the
return value of the progress handler.

Arguments:

message: A string describing the function or algorithm that is reporting the progress. Current igraph
functions always use the name message argument if reporting from the same function.

Advanced igraph programming

521

percent: Numeric, the percentage that was completed by the algorithm or function.

data: User-defined data. Current igraph functions that report progress pass a null pointer here.
Users can write their own progress handlers and functions with progress reporting, and then
pass some meaningfull context here.

Returns:

If there is a progress handler installed and it does not return IGRAPH_SUCCESS, then
IGRAPH_INTERRUPTED is returned.

Time complexity: O(1).

igraph_progressf — Report progress, printf-like version

int igraph_progressf(const char *message, igraph_real_t percent, void *data,
 ...);

This is a more flexible version of igraph_progress(), with a printf-like template string. First the
template string is filled with the additional arguments and then igraph_progress() is called.

Note that there is an upper limit for the length of the message string, currently 1000 characters.

Arguments:

message: A string describing the function or algorithm that is reporting the progress. For this function
this is a template string, using the same syntax as the standard libc printf function.

percent: Numeric, the percentage that was completed by the algorithm or function.

data: User-defined data. Current igraph functions that report progress pass a null pointer here.
Users can write their own progress handlers and functions with progress reporting, and then
pass some meaningfull context here.

...: Additional argument that were specified in the message argument.

Returns:

If there is a progress handler installed and it does not return IGRAPH_SUCCESS, then
IGRAPH_INTERRUPTED is returned. \return

Writing progress handlers
To write a new progress handler, one needs to create a function of type
igraph_progress_handler_t. The new progress handler can then be installed with the
igraph_set_progress_handler() function.

One can assume that the first progress handler call from a calculation will be call with zero as the per-
centage argument, and the last call from a function will have 100 as the percentage argument. Note,
however, that if an error happens in the middle of a computation, then the 100 percent call might be omitted.

Advanced igraph programming

522

Writing igraph functions with progress reporting
If you want to write a function that uses igraph and supports progress reporting, you need to include
igraph_progress() calls in your function, usually via the IGRAPH_PROGRESS() macro.

It is good practice to always include a call to igraph_progress() with a zero percentage argu-
ment, before the computation; and another call with 100 percentage value after the computation is
completed.

It is also good practice not to call igraph_progress() too often, as this would slow down the com-
putation. It might not be worth to support progress reporting in functions with linear or log-linear time
complexity, as these are fast, even with a large amount of data. For functions with quadratic or higher time
complexity make sure that the time complexity of the progress reporting is constant or at least linear. In
practice this means having at most O(n) progress checks and at most 100 \reg igraph_progress() calls.

Multi-threaded programs
In multi-threaded programs, each thread has its own progress handler, if thread-local storage is supported
and igraph is thread-safe. See the IGRAPH_THREAD_SAFE macro for checking whether an igraph build
is thread-safe.

Status handlers

Status reporting
In addition to the possibility of reporting the progress of an igraph computation via
igraph_progress(), it is also possible to report simple status messages from within igraph functions,
without having to judge how much of the computation was performed already. For this one needs to install
a status handler function.

Status handler functions must be of type igraph_status_handler_t and they can be install by a call
to igraph_set_status_handler(). Currently there is a simple predefined status handler function,
called igraph_status_handler_stderr(), but the user can define new ones.

Igraph functions report their status via a call to the IGRAPH_STATUS() or the IGRAPH_STATUSF()
macro.

Setting up status handlers

igraph_status_handler_t — The type of the igraph status han-
dler functions

typedef int igraph_status_handler_t(const char *message, void *data);

Arguments:

message: The status message.

data: Additional context, with user-defined semantics. Existing igraph functions pass a null point-
er here.

Advanced igraph programming

523

igraph_set_status_handler — Install of uninstall a status han-
dler function.

igraph_status_handler_t *
igraph_set_status_handler(igraph_status_handler_t new_handler);

To uninstall the currently installed status handler, call this function with a null pointer.

Arguments:

new_handler: The status handler function to install.

Returns:

The previously installed status handler function.

Time complexity: O(1).

igraph_status_handler_stderr — A simple predefined status
handler function.

int igraph_status_handler_stderr(const char *message, void *data);

A simple status handler function, that writes the status message to the standard errror.

Arguments:

message: The status message.

data: Additional context, with user-defined semantics. Existing igraph functions pass a null point-
er here.

Returns:

Error code.

Time complexity: O(1).

Invoking the status handler

IGRAPH_STATUS — Report the status of an igraph function.

#define IGRAPH_STATUS(message,

Typically this function is called only a handful of times from an igraph function. E.g. if an algorithm has
three major steps, then it is logical to call it three times, to signal the three major steps.

Advanced igraph programming

524

Arguments:

message: The status message.

data: Additional context, with user-defined semantics. Existing igraph functions pass a null point-
er here.

Returns:

If the status handler returns with a value other than IGRAPH_SUCCESS, then the function that called
this macro returns as well, with error code IGRAPH_INTERRUPTED.

IGRAPH_STATUSF — Report the status from an igraph function

#define IGRAPH_STATUSF(args)

This is the more flexible version of IGRAPH_STATUS(), having a printf-like syntax. As this macro takes
variable number of arguments, they must be all supplied as a single argument, enclosed in parentheses.
Then igraph_statusf() is called with the given arguments.

Arguments:

args: The arguments to pass to igraph_statusf().

Returns:

If the status handler returns with a value other than IGRAPH_SUCCESS, then the function that called
this macro returns as well, with error code IGRAPH_INTERRUPTED.

igraph_status — Report status from an igraph function.

int igraph_status(const char *message, void *data);

It calls the installed status handler function, if there is one. Otherwise it does nothing. Note that the stan-
dard way to report the status from an igraph function is the IGRAPH_STATUS or IGRAPH_STATUSF
macro, as these take care of the termination of the calling function if the status handler returns with
IGRAPH_INTERRUPTED.

Arguments:

message: The status message.

data: Additional context, with user-defined semantics. Existing igraph functions pass a null point-
er here.

Returns:

Error code. If a status handler function was called and it did not return with IGRAPH_SUCCESS, then
IGRAPH_INTERRUPTED is returned by igraph_status().

Advanced igraph programming

525

Time complexity: O(1).

igraph_statusf — Report status, more flexible printf-like version.

int igraph_statusf(const char *message, void *data, ...);

This is the more flexible version of igraph_status(), that has a syntax similar to the printf stan-
dard C library function. It substitutes the values of the additional arguments into the message template
string and calls igraph_status().

Arguments:

message: Status message template string, the syntax is the same as for the printf function.

data: Additional context, with user-defined semantics. Existing igraph functions pass a null point-
er here.

...: The additional arguments to fill the template given in the message argument.

Returns:

Error code. If a status handler function was called and it did not return with IGRAPH_SUCCESS, then
IGRAPH_INTERRUPTED is returned by igraph_status().

526

Chapter 30. Not Graph Related
Functions
Igraph version number

igraph_version — Return the version of the igraph C
library

int igraph_version(const char **version_string,
 int *major,
 int *minor,
 int *subminor);

Arguments:

version_string: Pointer to a string pointer. If not null, it is set to the igraph version string, e.g.
"0.6" or "0.5.3". This string should not be modified or deallocated.

major: If not a null pointer, then it is set to the major igraph version. E.g. for version
"0.5.3" this is 0.

minor: If not a null pointer, then it is set to the minor igraph version. E.g. for version
"0.5.3" this is 5.

subminor: If not a null pointer, then it is set to the subminor igraph version. E.g. for version
"0.5.3" this is 3.

Returns:

Error code.

Time complexity: O(1).

Example 30.1. File examples/simple/igraph_version.c

Running Mean of a Time Series

igraph_running_mean — Calculates the running mean
of a vector.

int igraph_running_mean(const igraph_vector_t *data, igraph_vector_t *res,

Not Graph Related Functions

527

 igraph_integer_t binwidth);

The running mean is defined by the mean of the previous binwidth values.

Arguments:

data: The vector containing the data.

res: The vector containing the result. This should be initialized before calling this function and
will be resized.

binwidth: Integer giving the width of the bin for the running mean calculation.

Returns:

Error code.

Time complexity: O(n), n is the length of the data vector.

Random Sampling from Very Long Sequences

igraph_random_sample — Generates an increasing
random sequence of integers.

int igraph_random_sample(igraph_vector_t *res, igraph_real_t l, igraph_real_t h,
 igraph_integer_t length);

This function generates an increasing sequence of random integer numbers from a given interval. The
algorithm is taken literally from (Vitter 1987). This method can be used for generating numbers from a
very large interval. It is primarily created for randomly selecting some edges from the sometimes huge set
of possible edges in a large graph.

Note that the type of the lower and the upper limit is igraph_real_t, not igraph_integer_t.
This does not mean that you can pass fractional numbers there; these values must still be integral, but we
need the longer range of igraph_real_t in several places in the library (for instance, when generating
Erdos-Renyi graphs).

Arguments:

res: Pointer to an initialized vector. This will hold the result. It will be resized to the proper size.

l: The lower limit of the generation interval (inclusive). This must be less than or equal to the
upper limit, and it must be integral. Passing a fractional number here results in undefined
behaviour.

h: The upper limit of the generation interval (inclusive). This must be greater than or equal to
the lower limit, and it must be integral. Passing a fractional number here results in undefined
behaviour.

length: The number of random integers to generate.

Not Graph Related Functions

528

Returns:

The error code IGRAPH_EINVAL is returned in each of the following cases: (1) The given lower limit
is greater than the given upper limit, i.e. l > h. (2) Assuming that l < h and N is the sample size, the
above error code is returned if N > |h - l|, i.e. the sample size exceeds the size of the candidate pool.

Time complexity: according to (Vitter 1987), the expected running time is O(length).

Reference:

(Vitter 1987) J. S. Vitter. An efficient algorithm for sequential random sampling. ACM Transac-
tions on Mathematical Software, 13(1):58--67, 1987.

Example 30.2. File examples/simple/igraph_random_sample.c

Convex hull of a set of points on a plane

igraph_convex_hull — Determines the convex hull of
a given set of points in the 2D plane

int igraph_convex_hull(const igraph_matrix_t *data, igraph_vector_t *resverts,
 igraph_matrix_t *rescoords);

The convex hull is determined by the Graham scan algorithm. See the following reference for details:

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0262032937. Pages 949-955 of section
33.3: Finding the convex hull.

Arguments:

data: vector containing the coordinates. The length of the vector must be even, since it contains
X-Y coordinate pairs.

resverts: the vector containing the result, e.g. the vector of vertex indices used as the corners of
the convex hull. Supply NULL here if you are only interested in the coordinates of the
convex hull corners.

rescoords: the matrix containing the coordinates of the selected corner vertices. Supply NULL here
if you are only interested in the vertex indices.

Returns:

Error code: IGRAPH_ENOMEM: not enough memory

Time complexity: O(n log(n)) where n is the number of vertices

Example 30.3. File examples/simple/igraph_convex_hull.c

Not Graph Related Functions

529

Fitting power-law distributions to empirical da-
ta

igraph_plfit_result_t — Result of fitting a pow-
er-law distribution to a vector

typedef struct igraph_plfit_result_t {
 igraph_bool_t continuous;
 double alpha;
 double xmin;
 double L;
 double D;
 double p;
} igraph_plfit_result_t;

This data structure contains the result of igraph_power_law_fit(), which tries to fit a power-law
distribution to a vector of numbers. The structure contains the following members:

Values:

continuous: Whether the fitted power-law distribution was continuous or discrete.

alpha: The exponent of the fitted power-law distribution.

xmin: The minimum value from which the power-law distribution was fitted. In other words,
only the values larger than xmin were used from the input vector.

L: The log-likelihood of the fitted parameters; in other words, the probability of observing
the input vector given the parameters.

D: The test statistic of a Kolmogorov-Smirnov test that compares the fitted distribution
with the input vector. Smaller scores denote better fit.

p: The p-value of the Kolmogorov-Smirnov test. Small p-values (less than 0.05) indicate
that the test rejected the hypothesis that the original data could have been drawn from
the fitted power-law distribution.

igraph_power_law_fit — Fits a power-law distribu-
tion to a vector of numbers

int igraph_power_law_fit(const igraph_vector_t* data, igraph_plfit_result_t* result,
 igraph_real_t xmin, igraph_bool_t force_continuous);

This function fits a power-law distribution to a vector containing samples from a distribution (that is
assumed to follow a power-law of course). In a power-law distribution, it is generally assumed that P(X=x)

Not Graph Related Functions

530

is proportional to x-alpha, where x is a positive number and alpha is greater than 1. In many real-world
cases, the power-law behaviour kicks in only above a threshold value xmin. The goal of this functions is
to determine alpha if xmin is given, or to determine xmin and the corresponding value of alpha.

The function uses the maximum likelihood principle to determine alpha for a given xmin; in other words,
the function will return the alpha value for which the probability of drawing the given sample is the highest.
When xmin is not given in advance, the algorithm will attempt to find the optimal xmin value for which
the p-value of a Kolmogorov-Smirnov test between the fitted distribution and the original sample is the
largest. The function uses the method of Clauset, Shalizi and Newman to calculate the parameters of the
fitted distribution. See the following reference for details:

Aaron Clauset, Cosma R .Shalizi and Mark E.J. Newman: Power-law distributions in empirical data. SIAM
Review 51(4):661-703, 2009.

Arguments:

data: vector containing the samples for which a power-law distribution is to
be fitted. Note that you have to provide the samples, not the probabil-
ity density function or the cumulative distribution function. For exam-
ple, if you wish to fit a power-law to the degrees of a graph, you can
use the output of igraph_degree directly as an input argument to
igraph_power_law_fit

result: the result of the fitting algorithm. See igraph_plfit_result_t for
more details.

xmin: the minimum value in the sample vector where the power-law behaviour is
expected to kick in. Samples smaller than xmin will be ignored by the algo-
ritm. Pass zero here if you want to include all the samples. If xmin is negative,
the algorithm will attempt to determine its best value automatically.

force_continuous: assume that the samples in the data argument come from a continuous dis-
tribution even if the sample vector contains integer values only (by chance). If
this argument is false, igraph will assume a continuous distribution if at least
one sample is non-integer and assume a discrete distribution otherwise.

Returns:

Error code: IGRAPH_ENOMEM: not enough memory IGRAPH_EINVAL: one of the arguments is in-
valid IGRAPH_EOVERFLOW: overflow during the fitting process IGRAPH_EUNDERFLOW: underflow
during the fitting process IGRAPH_FAILURE: the underlying algorithm signaled a failure without re-
turning a more specific error code

Time complexity: in the continuous case, O(n log(n)) if xmin is given. In the discrete case, the time
complexity is dominated by the complexity of the underlying L-BFGS algorithm that is used to optimize
alpha. If xmin is not given, the time complexity is multiplied by the number of unique samples in the
input vector (although it should be faster in practice).

Example 30.4. File examples/simple/igraph_power_law_fit.c

531

Chapter 31. Licenses for igraph and
this manual
THE GNU GENERAL PUBLIC LICENSE

Copyright © 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change it. By con-
trast, the GNU General Public License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This General Public License applies to most
of the Free Software Foundation's software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others
will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program", below,

Licenses for igraph and this manual

532

refers to any such program or work, and a "work based on the Program" means either the Program or
any derivative work under copyright law: that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are out-
side its scope. The act of running the Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent of having been made by running
the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in them-
selves, then this License, and its terms, do not apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work
under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which must be distrib-
uted under the terms of Sections 1 and 2 above on a medium customarily used for software interchange;
or,

Licenses for igraph and this manual

533

b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding source code.
(This alternative is allowed only for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of the
source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these
terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights
granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance

Licenses for igraph and this manual

534

on consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and con-
ditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published
by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

Licenses for igraph and this manual

535

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands ̀ show w' and ̀ show c' should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than `show w' and `show c';
they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copy-
right disclaimer" for the program, if necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of
this License.

The GNU Free Documentation License
Copyright © 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

Licenses for igraph and this manual

536

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent

Licenses for igraph and this manual

537

file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edit-
ed only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements",
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either in-
clude a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download

Licenses for igraph and this manual

538

using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the mod-
ifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/
or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

Licenses for igraph and this manual

539

M.Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Ver-
sion.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant
Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sec-
tions and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms de-
fined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but dif-
ferent contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

Licenses for igraph and this manual

540

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation's users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Doc-
ument is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all
the license notices in the Document, and any Warranty Disclaimers, provided that you also include the
original English version of this License and the original versions of those notices and disclaimers. In case
of a disagreement between the translation and the original version of this License or a notice or disclaimer,
the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

G.1.1 ADDENDUM: How to use this License for your doc-
uments

To use this License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Licenses for igraph and this manual

541

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

542

Index
A
add_edge, 17
add_edges, 18
add_vertices, 18
adhesion, 435
adjacency, 156
adjacent, 20
adjedgelist_destroy, 144
adjedgelist_get, 145
adjedgelist_init, 144
adjlist, 158
adjlist_clear, 139
adjlist_destroy, 138
adjlist_get, 138
adjlist_init, 137
adjlist_init_complementer, 138
adjlist_init_empty, 137
adjlist_simplify, 139
adjlist_sort, 139
all_minimal_st_separators, 440
all_st_cuts, 427
all_st_mincuts, 428
are_connected, 258
arpack_function_t, 505
arpack_options_init, 506
arpack_options_t, 501
arpack_rnsolve, 508
arpack_rssolve, 507
arpack_storage_destroy, 507
arpack_storage_init, 506
arpack_storage_t, 504
arpack_unpack_complex, 509
articulation_points, 283
assortativity, 330
assortativity_degree, 331
assortativity_nominal, 329
asymmetric_preference_game, 184
atlas, 167
attribute_table_t, 223
attribute_type_t, 226
authority_score, 298
automorphisms, 363
average_path_length, 269
avg_nearest_neighbor_degree, 343

B
barabasi_aging_game, 186
barabasi_game, 171
betweenness, 286
betweenness_estimate, 300

bfs, 347
bfshandler_t, 348
bibcoupling, 310
biconnected_components, 282
bipartite_game, 511
bipartite_projection, 515
bipartite_projection_size, 514
blas_dgemv, 493
blas_dgemv_array, 494
bliss_info_t, 361
bliss_sh_t, 361

C
callaway_traits_game, 181
canonical_permutation, 362
cattribute_EAB, 238
cattribute_EABV, 238
cattribute_EAB_set, 247
cattribute_EAB_setv, 253
cattribute_EAN, 236
cattribute_EANV, 237
cattribute_EAN_set, 246
cattribute_EAN_setv, 252
cattribute_EAS, 239
cattribute_EASV, 240
cattribute_EAS_set, 248
cattribute_EAS_setv, 253
cattribute_GAB, 229
cattribute_GAB_set, 242
cattribute_GAN, 228
cattribute_GAN_set, 241
cattribute_GAS, 230
cattribute_GAS_set, 242
cattribute_has_attr, 228
cattribute_list, 227
cattribute_remove_all, 256
cattribute_remove_e, 255
cattribute_remove_g, 254
cattribute_remove_v, 255
cattribute_VAB, 232
cattribute_VABV, 233
cattribute_VAB_set, 244
cattribute_VAB_setv, 250
cattribute_VAN, 231
cattribute_VANV, 232
cattribute_VAN_set, 243
cattribute_VAN_setv, 249
cattribute_VAS, 234
cattribute_VASV, 235
cattribute_VAS_set, 245
cattribute_VAS_setv, 251
centralization, 302
centralization_betweenness, 303

Index

543

centralization_betweenness_tmax, 307
centralization_closeness, 304
centralization_closeness_tmax, 308
centralization_degree, 303
centralization_degree_tmax, 306
centralization_eigenvector_centrality, 305
centralization_eigenvector_centrality_tmax, 309
CHECK, 31
cited_type_game, 188
citing_cited_type_game, 189
cliques, 352
clique_number, 355
closeness, 285
closeness_estimate, 299
clusters, 280
cocitation, 310
cohesion, 436
cohesive_blocks, 437
community_eb_get_merges, 457
community_edge_betweenness, 455
community_fastgreedy, 458
community_infomap, 461
community_label_propagation, 460
community_leading_eigenvector, 451
community_leading_eigenvector_callback_t, 453
community_multilevel, 459
community_optimal_modularity, 443
community_spinglass, 447
community_spinglass_single, 449
community_to_membership, 443
community_walktrap, 454
compare_communities, 445
complementer, 491
compose, 491
connect_neighborhood, 169
constraint, 294
contract_vertices, 346
convex_hull, 528
copy, 10
coreness, 332
count_isomorphisms_vf2, 365
count_multiple, 328
count_subisomorphisms_vf2, 371
create, 155
create_bipartite, 510

D
decompose, 281
decompose_destroy, 281
degree, 16
degree_sequence_game, 174
DELALL, 257
DELEA, 256

DELEAS, 257
delete_edges, 19
delete_vertices, 19
DELGA, 255
DELGAS, 256
DELVA, 255
DELVAS, 257
density, 340
destroy, 11
deterministic_optimal_imitation, 191
de_bruijn, 167
dfs, 349
dfshandler_t, 350
diameter, 270
diameter_dijkstra, 271
difference, 490
disjoint_union, 486
disjoint_union_many, 486
diversity, 341
dominator_tree, 424
dqueue_back, 126
dqueue_clear, 126
dqueue_destroy, 125
dqueue_empty, 125
dqueue_full, 125
dqueue_head, 126
dqueue_init, 124
dqueue_pop, 127
dqueue_pop_back, 127
dqueue_push, 127
dqueue_size, 126
dyad_census, 379

E
EAB, 238
EABV, 239
EAN, 236
EANV, 237
EAS, 240
EASV, 240
eccentricity, 273
ecount, 11
edge, 12
edge_betweenness, 287
edge_betweenness_estimate, 301
edge_connectivity, 432
edge_disjoint_paths, 434
eigenvector_centrality, 296
eit_create, 219
eit_destroy, 220
EIT_END, 221
EIT_GET, 221
EIT_NEXT, 220

Index

544

EIT_RESET, 221
EIT_SIZE, 221
empty, 9
empty_attrs, 9
erdos_renyi_game, 172
ERROR, 30
error, 30
errorf, 30
error_handler_abort, 22
error_handler_ignore, 22
error_handler_printignore, 22
error_handler_t, 21
error_type_t, 22
ess_1, 216
ess_all, 215
ess_none, 216
ess_seq, 217
ess_vector, 217
establishment_game, 182
es_1, 212
es_all, 210
es_copy, 218
es_destroy, 218
es_fromto, 213
es_incident, 211
es_is_all, 218
es_none, 211
es_pairs, 214
es_pairs_small, 214
es_seq, 213
es_size, 219
es_type, 219
es_vector, 212
es_vector_copy, 215
extended_chordal_ring, 168

F
famous, 163
feedback_arc_set, 334
FINALLY, 31
FINALLY_CLEAN, 32
FINALLY_FREE, 32
forest_fire_game, 179
free, 33
full, 162
full_bipartite, 511
full_citation, 162

G
GAB, 230
GAN, 229
GAS, 230
get_adjacency, 343

get_all_shortest_paths, 267
get_all_shortest_paths_dijkstra, 268
get_edgelist, 345
get_eid, 12
get_eids, 13
get_eids_multi, 14
get_incidence, 513
get_isomorphisms_vf2, 366
get_shortest_path, 264
get_shortest_paths, 262
get_shortest_paths_dijkstra, 264
get_shortest_path_dijkstra, 266
get_sparsemat, 119
get_stochastic, 344
get_stochastic_sparsemat, 345
get_subisomorphisms_vf2, 372
girth, 272
graphlets, 463
graphlets_candidate_basis, 463
graphlets_project, 464
grg_game, 170
growing_random_game, 181

H
has_multiple, 328
heap_delete_top, 130
heap_destroy, 129
heap_empty, 129
heap_init, 128
heap_init_array, 128
heap_push, 129
heap_reserve, 131
heap_size, 130
heap_top, 130
hrg_consensus, 469
hrg_create, 471
hrg_dendrogram, 471
hrg_destroy, 467
hrg_fit, 468
hrg_game, 470
hrg_init, 467
hrg_predict, 472
hrg_resize, 468
hrg_sample, 469
hrg_size, 467
hrg_t, 466
hub_score, 297

I
incidence, 513
incident, 16
inclist_clear, 141
inclist_destroy, 140

Index

545

inclist_get, 140
inclist_init, 140
independence_number, 358
independent_vertex_sets, 356
induced_subgraph, 277
intersection, 488
intersection_many, 489
isoclass, 376
isoclass_create, 377
isoclass_subgraph, 377
isocompat_t, 368
isohandler_t, 368
isomorphic, 359
isomorphic_34, 376
isomorphic_bliss, 363
isomorphic_function_vf2, 369
isomorphic_vf2, 364
is_bipartite, 516
is_chordal, 335
is_connected, 280
is_dag, 332
is_degree_sequence, 283
is_directed, 16
is_graphical_degree_sequence, 284
is_loop, 326
is_matching, 336
is_maximal_matching, 337
is_minimal_separator, 439
is_multiple, 327
is_mutual, 342
is_separator, 439
is_simple, 326
i_set_attribute_table, 226

K
kautz, 168
k_regular_game, 176

L
lapack_dgeev, 498
lapack_dgeevx, 499
lapack_dgesv, 496
lapack_dgetrf, 494
lapack_dgetrs, 495
lapack_dsyevr, 496
laplacian, 325
largest_cliques, 353
largest_independent_vertex_sets, 357
lattice, 160
layout_bipartite, 389
layout_circle, 386
layout_drl, 392
layout_drl_3d, 393

layout_drl_default_t, 391
layout_drl_options_init, 392
layout_drl_options_t, 390
layout_fruchterman_reingold, 394
layout_fruchterman_reingold_3d, 403
layout_graphopt, 388
layout_grid, 387
layout_grid_3d, 403
layout_grid_fruchterman_reingold, 397
layout_kamada_kawai, 395
layout_kamada_kawai_3d, 405
layout_lgl, 398
layout_mds, 396
layout_merge_dla, 406
layout_random, 386
layout_random_3d, 402
layout_reingold_tilford, 399
layout_reingold_tilford_circular, 400
layout_sphere, 402
layout_star, 387
layout_sugiyama, 401
lazy_adjedgelist_destroy, 145
lazy_adjedgelist_get, 145
lazy_adjedgelist_init, 145
lazy_adjlist_clear, 142
lazy_adjlist_destroy, 142
lazy_adjlist_get, 142
lazy_adjlist_init, 141
lazy_inclist_clear, 144
lazy_inclist_destroy, 143
lazy_inclist_get, 143
lazy_inclist_init, 143
lcf, 165
lcf_vector, 166
le_community_to_membership, 454
linegraph, 339

M
MATRIX, 68
matrix_add, 74
matrix_add_cols, 88
matrix_add_constant, 74
matrix_add_rows, 88
matrix_all_e, 78
matrix_all_g, 78
matrix_all_ge, 79
matrix_all_l, 78
matrix_all_le, 79
matrix_as_sparsemat, 120
matrix_capacity, 84
matrix_cbind, 80
matrix_colsum, 77
matrix_contains, 86

Index

546

matrix_copy, 66
matrix_copy_to, 67
matrix_destroy, 66
matrix_div_elements, 76
matrix_e, 69
matrix_empty, 83
matrix_e_ptr, 69
matrix_fill, 67
matrix_get_col, 70
matrix_get_row, 70
matrix_init, 65
matrix_isnull, 83
matrix_is_symmetric, 85
matrix_max, 81
matrix_maxdifference, 85
matrix_min, 80
matrix_minmax, 82
matrix_mul_elements, 75
matrix_ncol, 85
matrix_nrow, 84
matrix_null, 66
matrix_prod, 76
matrix_rbind, 80
matrix_remove_col, 89
matrix_remove_row, 88
matrix_resize, 87
matrix_resize_min, 87
matrix_rowsum, 77
matrix_scale, 74
matrix_search, 86
matrix_select_cols, 73
matrix_select_rows, 72
matrix_select_rows_cols, 73
matrix_set, 69
matrix_set_col, 71
matrix_set_row, 71
matrix_size, 84
matrix_sub, 75
matrix_sum, 76
matrix_swap, 68
matrix_swap_cols, 72
matrix_swap_rows, 71
matrix_transpose, 77
matrix_update, 67
matrix_which_max, 82
matrix_which_min, 81
matrix_which_minmax, 82
maxdegree, 294
maxflow, 422
maxflow_stats_t, 425
maxflow_value, 423
maximal_cliques, 353
maximal_cliques_count, 354
maximal_independent_vertex_sets, 357

maximum_bipartite_matching, 338
maximum_cardinality_search, 335
mincut, 429
mincut_value, 430
minimum_size_separators, 440
minimum_spanning_tree, 318
minimum_spanning_tree_prim, 319
minimum_spanning_tree_unweighted, 319
modularity, 442
moran_process, 192
motifs_handler_t, 384
motifs_randesu, 381
motifs_randesu_callback, 383
motifs_randesu_estimate, 382
motifs_randesu_no, 382

N
neighborhood, 275
neighborhood_graphs, 276
neighborhood_size, 274
neighbors, 15

P
pagerank, 288
pagerank_algo_t, 287
pagerank_old, 290
pagerank_power_options_t, 288
path_length_hist, 270
permute_vertices, 359
personalized_pagerank, 291
personalized_pagerank_vs, 292
plfit_result_t, 529
power_law_fit, 529
preference_game, 183
PROGRESS, 520
progress, 520
progressf, 521
progress_handler_stderr, 519
progress_handler_t, 518

R
radius, 273
random_sample, 527
read_graph_dimacs, 412
read_graph_dl, 420
read_graph_edgelist, 407
read_graph_gml, 415
read_graph_graphdb, 413
read_graph_graphml, 414
read_graph_lgl, 410
read_graph_ncol, 408
read_graph_pajek, 417
recent_degree_aging_game, 187

Index

547

recent_degree_game, 185
reciprocity, 341
reindex_membership, 444
rewire, 180
rewire_edges, 174
ring, 160
rngtype_glibc2, 152
rngtype_mt19937, 151
rngtype_rand, 152
rng_default, 146
rng_destroy, 147
rng_get_binom, 151
rng_get_geom, 150
rng_get_integer, 149
rng_get_normal, 150
rng_get_unif, 149
rng_get_unif01, 150
rng_init, 146
rng_max, 148
rng_min, 148
rng_name, 148
rng_seed, 147
rng_set_default, 146
roulette_wheel_imitation, 194
running_mean, 526

S
sbm_game, 190
scg_adjacency, 475
scg_grouping, 481
scg_laplacian, 479
scg_norm_eps, 484
scg_semiprojectors, 482
scg_stochastic, 477
SETEAB, 248
SETEABV, 253
SETEAN, 247
SETEANV, 252
SETEAS, 249
SETEASV, 254
SETGAB, 242
SETGAN, 241
SETGAS, 243
SETVAB, 245
SETVABV, 250
SETVAN, 244
SETVANV, 250
SETVAS, 246
SETVASV, 251
set_error_handler, 29
set_progress_handler, 519
set_status_handler, 523
set_warning_handler, 26

shortest_paths, 258
shortest_paths_bellman_ford, 260
shortest_paths_dijkstra, 259
shortest_paths_johnson, 261
similarity_dice, 314
similarity_dice_es, 316
similarity_dice_pairs, 315
similarity_inverse_log_weighted, 317
similarity_jaccard, 311
similarity_jaccard_es, 313
similarity_jaccard_pairs, 312
simplify, 329
small, 155
sparsemat, 119
sparsemat_add, 107
sparsemat_add_cols, 109
sparsemat_add_rows, 109
sparsemat_arpack_rnsolve, 118
sparsemat_arpack_rssolve, 117
sparsemat_as_matrix, 120
sparsemat_cholsol, 113
sparsemat_compress, 110
sparsemat_copy, 100
sparsemat_destroy, 100
sparsemat_diag, 101
sparsemat_droptol, 105
sparsemat_dropzeros, 105
sparsemat_dupl, 110
sparsemat_entry, 104
sparsemat_eye, 101
sparsemat_fkeep, 105
sparsemat_gaxpy, 108
sparsemat_index, 102
sparsemat_init, 99
sparsemat_is_cc, 104
sparsemat_is_triplet, 103
sparsemat_lsolve, 112
sparsemat_ltsolve, 112
sparsemat_lu, 115
sparsemat_luresol, 116
sparsemat_lusol, 114
sparsemat_multiply, 108
sparsemat_ncol, 103
sparsemat_nrow, 102
sparsemat_numeric_destroy, 117
sparsemat_permute, 106
sparsemat_print, 120
sparsemat_qr, 115
sparsemat_qrresol, 116
sparsemat_realloc, 100
sparsemat_resize, 109
sparsemat_scale, 106
sparsemat_symblu, 111
sparsemat_symbolic_destroy, 117

Index

548

sparsemat_symbqr, 111
sparsemat_transpose, 107
sparsemat_type, 103
sparsemat_usolve, 113
sparsemat_utsolve, 113
split_join_distance, 446
spmatrix_add_cols, 97
spmatrix_add_e, 91
spmatrix_add_rows, 96
spmatrix_colsums, 96
spmatrix_copy, 90
spmatrix_count_nonzero, 95
spmatrix_destroy, 90
spmatrix_e, 91
spmatrix_fprint, 98
spmatrix_init, 89
spmatrix_iter_create, 92
spmatrix_iter_destroy, 93
spmatrix_iter_end, 93
spmatrix_iter_next, 93
spmatrix_iter_reset, 92
spmatrix_max, 95
spmatrix_ncol, 94
spmatrix_nrow, 94
spmatrix_print, 98
spmatrix_resize, 97
spmatrix_rowsums, 95
spmatrix_scale, 96
spmatrix_set, 91
spmatrix_size, 94
stack_clear, 123
stack_destroy, 121
stack_empty, 122
stack_init, 121
stack_pop, 123
stack_push, 123
stack_reserve, 122
stack_size, 122
stack_top, 124
star, 159
static_fitness_game, 176
static_power_law_game, 177
STATUS, 523
status, 524
STATUSF, 524
statusf, 525
status_handler_stderr, 523
status_handler_t, 522
stochastic_imitation, 195
STR, 132
strength, 295
strerror, 26
strvector_add, 136
strvector_append, 134

strvector_clear, 135
strvector_copy, 132
strvector_destroy, 132
strvector_get, 133
strvector_init, 131
strvector_remove, 134
strvector_resize, 135
strvector_set, 133
strvector_set2, 134
strvector_size, 135
st_edge_connectivity, 431
st_mincut, 426
st_mincut_value, 427
st_vertex_connectivity, 432
subcomponent, 277
subgraph, 279
subgraph_edges, 278
subisomorphic, 360
subisomorphic_function_vf2, 373
subisomorphic_lad, 375
subisomorphic_vf2, 370

T
THREAD_SAFE, 518
topological_sorting, 333
to_directed, 324
to_undirected, 324
transitivity_avglocal_undirected, 322
transitivity_barrat, 323
transitivity_local_undirected, 321
transitivity_undirected, 320
tree, 161
triad_census, 379

U
unfold_tree, 339
union, 487
union_many, 488

V
VAB, 233
VABV, 234
VAN, 231
VANV, 232
VAS, 235
VASV, 235
vcount, 11
VECTOR, 38
vector_add, 44
vector_add_constant, 44
vector_all_e, 46
vector_all_g, 47
vector_all_ge, 47

Index

549

vector_all_l, 46
vector_all_le, 47
vector_append, 41
vector_binsearch, 54
vector_binsearch2, 54
vector_capacity, 51
vector_clear, 55
vector_contains, 53
vector_copy, 37
vector_copy_to, 41
vector_destroy, 37
vector_difference_sorted, 59
vector_div, 45
vector_e, 39
vector_empty, 50
vector_e_ptr, 39
vector_fill, 38
vector_init, 35
vector_init_copy, 36
vector_init_seq, 36
vector_insert, 57
vector_intersect_sorted, 59
vector_isininterval, 52
vector_max, 48
vector_maxdifference, 52
vector_min, 48
vector_minmax, 49
vector_mul, 45
vector_null, 37
vector_pop_back, 57
vector_prod, 52
vector_ptr_clear, 62
vector_ptr_copy, 61
vector_ptr_destroy, 61
vector_ptr_destroy_all, 62
vector_ptr_e, 63
vector_ptr_free_all, 61
vector_ptr_get_item_destructor, 64
vector_ptr_init, 60
vector_ptr_push_back, 63
vector_ptr_resize, 64
vector_ptr_set, 64
vector_ptr_set_item_destructor, 65
VECTOR_PTR_SET_ITEM_DESTRUCTOR, 65
vector_ptr_size, 62
vector_push_back, 57
vector_remove, 58
vector_remove_section, 58
vector_reserve, 55
vector_resize, 56
vector_resize_min, 56
vector_reverse, 43
vector_scale, 44
vector_search, 53

vector_set, 39
vector_shuffle, 43
vector_size, 50
vector_sort, 58
vector_sub, 45
vector_sum, 51
vector_swap, 42
vector_swap_elements, 42
vector_tail, 40
vector_update, 41
vector_view, 40
vector_which_max, 49
vector_which_min, 48
vector_which_minmax, 50
version, 526
vertex_connectivity, 433
vertex_disjoint_paths, 435
vit_create, 207
vit_destroy, 208
VIT_END, 209
VIT_GET, 210
VIT_NEXT, 208
VIT_RESET, 209
VIT_SIZE, 209
vss_1, 206
vss_all, 205
vss_none, 205
vss_seq, 206
vss_vector, 206
vs_1, 201
vs_adj, 199
vs_all, 198
vs_copy, 203
vs_destroy, 204
vs_is_all, 204
vs_nonadj, 199
vs_none, 200
vs_seq, 203
vs_size, 204
vs_type, 205
vs_vector, 201
vs_vector_copy, 202
vs_vector_small, 202

W
WARNING, 27
warning, 27
warningf, 27
warning_handler_ignore, 28
warning_handler_print, 28
warning_handler_t, 26
watts_strogatz_game, 173
weighted_adjacency, 157

Index

550

write_graph_dimacs, 413
write_graph_dot, 420
write_graph_edgelist, 407
write_graph_gml, 416
write_graph_graphml, 415
write_graph_lgl, 411
write_graph_ncol, 409
write_graph_pajek, 419

