
CS-320 – Spring 2018: Project 1	

Submission Due on Mycourses: Saturday, March 17th at 10pm	

Project demos: during lab sessions and office hours on Tuesday, March 20th	

The goal of this project is to measure the effectiveness of various branch direction
prediction (“taken” or “non-taken”) schemes on several traces of conditional branch
instructions. Each trace contains a large number of branch instructions, and for each
branch, the program counter (expressed as a word address) and the actual outcome of
the branch are recorded in one line of the trace file. Several trace files are provided for
evaluating your predictor designs.

Your goal is to write a program in C or C++ that would use these traces to measure the
accuracy of various dynamic branch predictors that we studied in class. The branch
outcomes from the trace file should be used to train your predictors. You will need to
present results for each trace separately, details of what exactly needs to be submitted
are provided below.

The following predictors have to be implemented:

1) [5%] Always Taken.

2) [5%] Always Non-Taken.

3) [20%] Bimodal Predictor with a single bit of history stored in each predictor
entry. Determine the prediction accuracy of this predictor for the table size of 16,
32, 128, 256, 512, 1024 and 2048 entries. Assume that the initial state of all
prediction counters is “Taken” (T)	

4) [20%] Bimodal Predictor with 2-bit saturating counters stored in each
predictor entry. Repeat the same experiments as in part (3) above. Assume that
the initial state of all prediction counters is “Strongly Taken” (TT)

5) [25%] Gshare predictor, where the PC is XOR-ed with the global history bits to
generate the index into the predictor table. Fix the table size at 2048 entries and
determine the prediction accuracy as a function of the number of bits in the
global history register. Vary the history length from 3 bits to 11 bits in 1-bit
increments. Assume that the initial state of all prediction counters is “Strongly
Taken” (TT). The global history register should be initialized to contain all zeroes
(where 0=NT and 1=T). The global history register should be maintained such
that the least significant bit of the register represents the result of the most recent
branch, and the most significant bit of the register represents the result of the
least recent branch in the history.

6) [25%] Tournament Predictor. The tournament predictor selects between gshare
and bimodal predictor for every branch. Configure gshare with 2048-entry table
and 11 bits of global history, and configure bimodal predictor with 2048-entry
table. Furthermore, configure the selector table with 2048 entries and use the
same index as you use for bimodal predictor to index into the selector table (that
is, the PC). For each entry in the selector, the two-bit counter encodes the
following states: 00 – prefer Gshare, 01 – weakly prefer Gshare, 10 – weakly
prefer Bimodal, 11 – prefer bimodal. If the two predictors provide the same
prediction, then the corresponding selector counter remains the same. If one of
the predictors is correct and the other one is wrong, then the selector’s counter is
decremented or incremented to move towards the predictor that was correct.
Initialize all the component predictors to “Strongly Taken” and initialize the
selector’s counters to “Prefer Gshare”.

Materials on Mycourses:

There is a tar/gzipped archive of materials on Mycourses that contains the following:

1.) A sample output file called sample_output.txt complete with comments	

2.) A directory called examples, containing short snippets of code that show how to read
the input	

3.) A directory called traces, containing the following 6 trace files:	

 long_trace1.txt (23532921 branch instructions)	

long_trace2.txt (27946011 branch instructions)	

long_trace3.txt (14796021 branch instructions)	

short_trace1.txt (3771697 branch instructions)	

short_trace2.txt (2866495 branch instructions)	

 short_trace3.txt (2229289 branch instructions)	

4.) A directory called correct_outputs, containing the correct outputs for the given
 traces. These can and should be used to check that your program works
 correctly and outputs the results in the required format.	

 	

Yongheng Li

Yongheng Li

Yongheng Li

To access these materials, download a copy from Mycourses, cd into the directory
where you placed the tar/gzipped archive and issue the following command:

tar -xzvf project1.tar.gz

This will create a new directory (named project1) containing the files mentioned above.

Submission requirements:	

NOTE: Please carefully read and follow all directions while preparing your
submissions. Submissions will be graded using a script and failure to follow
these directions will likely end up crashing the script causing the TAs to have to
grade your submission by hand. If this happens points will be deducted from
your grade. Examples of things to watch out for: the directory inside your tar
archive isn't named with your BU-ID, incorrectly named executable after 'make',
using standard input and output for I/O, and not using command-line arguments
for the names of the input and output files.	

You need to submit your source code, so that we can compile it and test for
correctness. For checking your code, we will be using the same traces that you used for
generating your results, plus some more traces that you will not have access to.

The code that you submit should compile into a single executable called predictors
with a simple `make` command. This executable should run all of the predictors on the
given trace, which will be specified via command line options as follows:

./predictors input_trace.txt output.txt

Where: -input_trace.txt – file containing branch trace	

 -output.txt – file to place output statistics	

The output file should have the following format: (an example text file is on Mycourses
too with comments, which should not be output by your program)

#,@;

#,@;

#,@; #,@; #,@; #,@; #,@; #,@; #,@;

#,@; #,@; #,@; #,@; #,@; #,@; #,@;

#,@; #,@; #,@; #,@; #,@; #,@; #,@; #,@; #,@;

#,@;

Where each

corresponds to the number of correct predictions made by each of the predictors

@ corresponds to the number of branches.

First line: Provides the number of correct predictions for the always taken predictor

Second line: Provides the number of correct predictions for the always taken
predictor

Third line: Gives the correct predictions for all seven variations of the bimodal predictor
with a single bit of history (Table of size 16, 32 …. Etc). Check the first page for required
variations.

Fourth line: Repeats the third line for the two bit saturating counter based bimodal
predictor

Fifth Line: shows the number of correct predictions for the nine variations of Gshare
predictor.

The last line: The tournament predictor.

The number of correct predictions and branches should be separated by a comma.

Every configuration of predictor should be separated by a semicolon(;) and a space.

Submissions will be checked using a script that will compare your output file to the
correct output file using the UNIX `diff` tool, so if your output does not EXACTLY match
the correct output the grading program will mark it as wrong. The TA will have to check
such submissions by hand which will result in at least a few points being deducted. 	

See below for example output trace:

713587,2229289;
1515702,2229289;
1647420,2229289; 1677782,2229289; 1710823,2229289; 1714667,2229289;
1717491,2229289; 1720853,2229289; 1721863,2229289;
1759474,2229289; 1806790,2229289; 1854601,2229289; 1867857,2229289;
1869249,2229289; 1877770,2229289; 1879557,2229289;
1916797,2229289; 1918069,2229289; 1916932,2229289; 1913809,2229289;
1919048,2229289; 1932155,2229289; 1916428,2229289; 1912770,2229289;
1901305,2229289;
1948993,2229289;

The MyCourses submissions are due on October 22th at Midnight.	

Another requirement is to present your project to the TA either during the lab sessions
Tuesday, October 24th or during office hours that week. An online signup sheet will be
created for demos.	

Submission Rules:

You must submit all of the following:

1.) All source code

2.) A Makefile

3.) A README, which minimally contains your Name, BU-ID (everything before the
@ in your Binghamton University e-mail), B Number, and whether or not you did
the extra credit (explained below). Other things to include might be: what
works/what doesn't, things you found interesting, etc.	

These materials should be turned in as follows: (using my name and BU-ID as an
example)

Dmitry’s e-mail is: dponomar@binghamton.edu so his BU-ID is dponomar	

1.) Create a new directory whose name is your BU-ID:

mkdir dponomar/

2.) Copy all relevant files into this new directory (please do not include any .o files,
executables, or copies of the traces)	

3.) Create a tar/gzipped archive whose name is also your BU-ID from the directory
as follows:

tar -czvf dponomar.tar.gz dponomar/

(This should output name of all archived files, make sure there are no .o files,
executables or trace files in this list before submission)	

4.) Submit tar/gzipped archive via MyCourses

Extra Credit:

[up to 20%] Beating the tournament predictor. The tournament predictor described
above should provide the best accuracy compared to all other predictors that you
implemented in this project. As specified in the question above, the tournament
predictor requires 12144 bits to implement it (three 2048-entry tables, with each entry
being two bits). To receive this extra credit, come up with a design of a branch predictor
that beats the tournament predictor without increasing the number of bits needed to
implement the prediction logic. Your solution should be general (i.e. you cannot
somehow hard-code the optimal solution only for the traces given) and should provide
benefits on at least some of the provided traces. Note that simply changing the initial
state of the existing predictors (even if that increases accuracy slightly) will not give you
the extra credit. You should describe your new design in detail in the project report
document and explain the intuition behind your approach. Don’t be afraid to innovate
and test your ideas – we will account for both ideas and results in determining the extra
credit grade. Feel free to read some related research papers to get inspired with ideas
(for example, you can look up the TAGE predictor and try to implement that). Note: If
you decide to do the extra credit, when submitting your code do not print any output
from this predictor. However, be sure to note that you completed the extra credit in
your README file. Additionally, your README should contain details of the design that
you implemented including an analysis of how many bits the design requires to
implement.	

Clarifications

This is a list of things that may or may not be explicitly mentioned above, that you
should watch out for:

- Both bimodal predictors do not require you to test with a table size of 64.

- Gshare's global history register should be maintained as follows: the least significant
bit of the register should represent the result of the most recent branch, while the most
significant bit represents the least recent branch. This has been added to its description
above as well.

- Gshare predictor should use modulo operator before XOR when selecting an index
from the table.

- The tournament predictor should use a 2-bit bimodal predictor and a Gshare predictor.	

