
Judgmental Eye
In this lengthy exercise, you’ll tie together a number of important concepts:

HTML

CSS

Forms

Python processing of data files

Flask servers

Relational databases

ORMs / SQLAlchemy

In addition, we’ll introduce a machine learning algorithm in the final further study.

The overall goal of the exercise is to build a website where users can login and add or update ratings of
films. If time allows, in the further study we will add another feature, which predicts how the users will
rate films. This prediction is based on analysis of how other users rated that film, depending on how
similar those other users are to the user. Lastly, we’ll add The Eye, a system user with terrible taste in
movies who will berate users for their movie ratings – again, using machine learning to decide how The
Eye would rate things.

Object Relational Mappers

If you worked on the project-tracker exercise, you saw how we used classes to model objects that
ultimately were stored in a database. In this project, we’ll take this idea further, and introduce a tool
called an ORM <https://en.wikipedia.org/wiki/Object-relational_mapping>.

In 2003, Martin Fowler <https://en.wikipedia.org/wiki/Martin_Fowler> documented a technique called
“Active Record,” a scheme which can be diagrammed like so:

Database Concept Object-Oriented Concept

Table Class

Column Attribute

Row Instance

In essence, a table definition is more or less equivalent to a class definition. Each column can be thought
of as an attribute or property of that class. Each row is also analogous to an instantiation of the class.
The analogy isn’t perfect, but it serves us well enough. The analogy allows us to construct software that,

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

1 of 19 10/29/18, 2:25 PM

through the magic of “introspection” (self-examination), can automatically write and execute SQL
queries for us without the programmer having to stop and think about the SQL required to accomplish a
task.

Here’s an example. Given the following SQL:

CREATE TABLE users
(user_id SERIAL PRIMARY KEY NOT NULL,
email VARCHAR(64),
password VARCHAR(64));

Here is how you might set up the class:

class User(object):
"""A user of our website; stored in a database."""

__tablename__ = "users"

def __init__(self, user_id, email, password):
"""Create a user, given id, email, and password."""

self.user_id = user_id
self.email = email
self.password = password

@classmethod
def get_by_id(cls, user_id):

"""Get a user from database by ID and return instance."""

QUERY = """SELECT user_id, email, password
 FROM users WHERE user_id = :id"""

cursor = db.session.execute(QUERY, {'id': user_id})
user_id, email, password = cursor.fetchone()
return cls(user_id, email, password)

def change_password(self, password):
"""Change password for the user."""

QUERY = ("UPDATE users SET password = :password " +
"WHERE user_id = :id")

db.session.execute(QUERY, {'password': password,
'id': self.user_id})

db.session.commit()

And, with that class, here’s how you would update a user’s password:

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

2 of 19 10/29/18, 2:25 PM

jessica = User.get_by_id(5)
jessica.change_password("my-new-password")

There’s nothing wrong here yet, but if we wanted to be able to update the user’s email address as well,
we start having to write significant amounts of repetitive code.

An ORM provides us with a slightly different workflow. Instead of writing a bunch of code to handle SQL,
it instead peeks at your class definitions (“introspects it”) and uses the information gathered to generate
appropriate SQL. Our User class definition changes:

Given this, our ORM can deduce the original schema we generated earlier. The generation of the SQL
schema can be left to the software. Furthermore, our previous example of changing a user’s password
can be done as follows:

jessica = User.query.get(2)
jessica.password = "my-new-password"
db.session.commit()

The change_password() function no longer exists in that form; its existence is obviated as we can access
columns directly as if they were object attributes, as long as we commit the database after every
modification to an object. Overall, the amount of overhead code required to store data for an app
dropped precipitously when ORMs first appeared, allowing lone programmers to single-handedly build a
full-stack application in shorter time periods.

For this project, we will continue using SQLAlchemy <http://sqlalchemy.org> as our ORM.

There are other ORMs out there, each implementing the ideas in Fowler’s book slightly differently.

Note: Other ORMs

The other primary competing Python-based ORM is the one that is bundled with Django
<https://docs.djangoproject.com/en/dev/topics/db/queries/>. The one restriction for that one is
that it cannot easily be used outside of Django, so we won’t consider it here.

Setup

There are a number of Python libraries we’ll need for this project.

We’ll create a virtual environment and install them, using a requirements.txt file that has the names and
exact versions of products we’d like to use:

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

3 of 19 10/29/18, 2:25 PM

$ vviirrttuuaalleennvv eennvv
New python executable in env/bin/python
Installing setuptools, pip...done.
$ ssoouurrccee eennvv//bbiinn//aaccttiivvaattee
(env) $ ppiipp33 iinnssttaallll --rr rreeqquuiirreemmeennttss..ttxxtt
Downloading/unpacking Flask (from -r requirements.txt (line 1))
Downloading Flask-0.10.1.tar.gz (544kB): 544kB downloaded
......

Successfully installed Flask Flask-SQLAlchemy Jinja2
Cleaning up...
(env) $

Awesome.

Investigating Our Data

The dataset we’ll be using is something called the MovieLens 100k <http://grouplens.org/datasets
/movielens/> dataset. It consists of many ratings of movies from users. We’ll mine this data for
correlations, but first we need to know what it looks like.

The data has already been unpacked for you in the seed_data/ directory. Take a look:

u.data

u.item

u.user

These files have been extracted from the MovieLens 100k; in the original documentation that came with
the data set was the following information:

u.item

Information about the items (movies); this is a | -separated list of:

movie id | movie title | release date | video release date |
IMDb URL | unknown | Action | Adventure | Animation |
Children's | Comedy | Crime | Documentary | Drama | Fantasy |
Film-Noir | Horror | Musical | Mystery | Romance | Sci-Fi |
Thriller | War | Western |

The last 19 fields are the genres, a 1 indicates the movie is of that genre, a 0 indicates it is not; movies can
be in several genres at once (however, we won’t be using genre information at all in this exercise).

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

4 of 19 10/29/18, 2:25 PM

The movie ids are the ones used in the u.data data set.

u.user

Demographic information about the users; this is a | - separated list of:

user id | age | gender | occupation | zip code

The user ids are the ones used in the u.data data set.

u.data

The full user data set, 100,000 ratings by 943 users on 1682 items. Each user has rated at least 20 movies.
Users and items are numbered consecutively from 1. The data is randomly ordered. This is a tab (\t)
separated list of:

user_id \t movie_id \t score \t timestamp.

The score column is an integer between 1 and 5 that will form the basis for our rating system throughout
this exercise.

We don’t use them for our data set, but it’s good to understand the formatting for the time stamp here–
they’re integers, and measured in what UNIX calls “epoch time”–seconds since 1/1/1970 UTC.

What’s the Model?

Spend a little bit trying to decipher the files before moving on. It will make it easier to remember that in
this data set, “items” are movies.

Stop here and think about how these three files constitute a “model” – that is, how they cooperate
together to provide a set of information. It might help to imagine how, given a movie name, you could
find a list of the users who rated that movie.

Thinking About the Model

If you caught the copious hints, you should be thinking that each of these files is a table in a database.
Every one of the columns in the file is the same as a database column. To reconstruct an entire record
(who rated what movie) we first go to the u.data table to get a user_id and a movie_id. We take those
numbers and search their respective files for the row id that matches, then glue all three rows together.

Building the Database

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

5 of 19 10/29/18, 2:25 PM

Okay, so our data is in files and we need to put them into database tables. Great, we’ll start writing a
schema. Identify the tables we’ll need to make, and sketch out the schema.

We’re not going to use all the genre data for movies, nor are we going to keep track of users’ genders or
occupations.

However, we’ll add authentication data to the user schema, adding both an email and password, while
making the remaining user data optional. Sketch out a rough schema as well as any relationships
between the tables (has many, belongs to, etc).

Going by our files, we can come up with the following skeleton:

Model

User

Name Type

user_id integer, primary key

email optional string

password optional string

age optional integer

zipcode optional string (technically, these aren’t numeric)

Movie

Name Type

movie_id integer, primary key

title string

released_at datetime

imdb_url string

Rating

Name Type

rating_id integer, primary key

movie_id integer

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

6 of 19 10/29/18, 2:25 PM

Name Type

user_id integer

score integer

Relationships

A user has many ratings

A rating belongs to a user

A movie has many ratings

A rating belongs to a movie

A user has many movies through ratings

A movie has many users through ratings

We can draw that model as a diagram as such:

Model

Users

user_id*
email

password
age

zipcode

Ratings
rating_id*
movie_id
user_id
score

Movies
movie_id*
title

released_at
imdb_url

Now, to write the SQL.

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

7 of 19 10/29/18, 2:25 PM

Well, not so fast. Writing SQL can be tedious work. It needs to be done, but it gets tricky remembering
the syntax. We’ll write code that writes our schemas for us.

First, look in your project directory. You should see a model.py file. We’ll begin the alchemy.

SQLAlchemy is powerful software, and the process it uses to transmute python into SQL and back is
indeed alchemical. While it would be most excellent for you to understand exactly what’s happening, at
this stage we just need to be able use it reliably. Trust the incantations, then open your model.py file,
and we’ll take a look at the User model sample that has been provided.

class User(db.Model):
"""User of ratings website."""

So far, the only thing out of the ordinary is the inheritance from a class named Model, which we find on
the db object. This is how we declare a class to be managed by SQLAlchemy.

This db.Model class is required for SQLAlchemy’s magic to work.

The next few lines are how we define our table and its columns:

class User(db.Model):
"""User of ratings website."""

__tablename__ = "users"

user_id = db.Column(db.Integer,
autoincrement=True,
primary_key=True)

email = db.Column(db.String(64), nullable=True)

We’ll go over it line by line, but try not to find the deeper reasons for this syntax: this is a fairly non-
standard use of python class attributes. It’s allowed by the language definition, but ultimately, these
lines we just added are SQLAlchemy specific and only make sense in that context. It’s good to remember
them, but it’s equally good to remember how to look them up.

The first line:

__tablename__ = "users"

Simply informs SQLAlchemy that instances of this class will be stored in a table named users.

The next:

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

8 of 19 10/29/18, 2:25 PM

user_id = db.Column(db.Integer, autoincrement=True, primary_key=True)

Tells SQLAlchemy to add a column to the table named user_id. It will contain an integer, and be the
primary key for our table: it will uniquely identify every row in the table.

The next line contains something slightly different:

email = db.Column(db.String(64), nullable=True)

This behaves as you’d expect, with the exception of the nullable=True part. That tells SQLAlchemy (and
thus, PostgreSQL) that this column is optional. It’s allowed to be NULL. Since our MovieLens 100k data
set is anonymized, we won’t have any email addresses for any of the users we’re given. However, to
simplify things, we’ll be using the same table to store new users who can log in via email, so we need to
make the field available for them.

The remaining columns follow in a similar fashion.

The word String is not a built-in python class (that one is str), nor is Integer (int, respectively). These are
the SQLAlchemy-managed versions of the same data types. You’ll find that they’re imported from db, at
the top of the file. SQLAlchemy has a number of other data types as well, including datetimes, booleans,
floats, etc., all imported from the same place.

The last thing of note is that there is no __init__() method. SQLAlchemy’s Model superclass provides
one for you that uses keyword arguments when initializing objects.

In our terminal window with the activated virtual environment, run your model.py with the -i option:

(env) $ ppyytthhoonn33 --ii mmooddeell..ppyy
Connected to DB.
>>>

We’ve put some code at the bottom of the model.py file already that connects to the database. Open a
second terminal window and type:

(env) $ ppssqqll rraattiinnggss

to verify that the ratings database does not exist. You should see:

psql: FATAL: database "ratings" does nnoott exist

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

9 of 19 10/29/18, 2:25 PM

Now in your terminal create your empty database by typing:

(env) $ ccrreeaatteeddbb rraattiinnggss

Then, back in the same python console execute the method on the database connection that creates the
tables:

>>> ddbb..ccrreeaattee__aallll(())

Back in your second window type:

(env) $ ppssqqll rraattiinnggss

This time you should see something like:

psql (9.4.4)
Type "help" ffoorr help.

ratings=#

Enter \d (the “d” stands for “describe”) to see what tables are in the ratings database, and then \d
users and you should see something like this:

ratings=# \d
 List of relations
 Schema | Name | Type | Owner
--------+-----------------------+----------+--------------
 public | users | table | hackbright
 public | users_user_id_seq | sequence | hackbright
(2 rows)

ratings=# \d users
 Table "public.users"
 Column | Type | Modifiers
----------+-----------------------+---
 user_id | integer | not null default nextval ...
 email | character varying(64) |
 password | character varying(64) |
 age | integer |
 zipcode | character varying(15) |
Indexes:

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

10 of 19 10/29/18, 2:25 PM

 "users_pkey" PRIMARY KEY, btree (user_id)

Mind = blown

To Do

Quit both psql and python.

Drop your ratings database (dropdb ratings).

Create two additional classes, Movie and Rating, to hold the information that we want to keep from
those files (refer to the SQLAlchemy tutorial <http://docs.sqlalchemy.org/en/latest/orm/tutorial.html> if
necessary.)

Movie

Name Type

movie_id integer, primary key

title string

released_at datetime

imdb_url string

Rating

Name Type

rating_id integer, primary key

movie_id integer

user_id integer

score integer

Note: DateTime

Be sure to define your data type as db.DateTime for the released_at column in your Movie table –
this will become important later.

When you’re done, repeat the process of running db.create_all() to create your tables. Reopen your
PostgreSQL database in your second window.

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

11 of 19 10/29/18, 2:25 PM

STOP. Get a code review. Seriously: a mistake here will be a pain to fix later, and we’d love to give
you good advice on design.

Populating Our Tables with Data

In your PostgreSQL window, insert a new row into your users table:

ratings=# IINNSSEERRTT IINNTTOO uusseerrss ((eemmaaiill,, ppaasssswwoorrdd,, aaggee,, zziippccooddee))
ratings=# VVAALLUUEESS ((''jjeessssiiccaa@@ggmmaaiill..ccoomm'',, ''mmyyppaassss'',, 2299,, ''9944111144''));;

Now, we will transmute SQL into Python. First, query to see your shiny new record in PostgreSQL:

ratings=# SSEELLEECCTT ** FFRROOMM uusseerrss;;
user_id | email | password | age | zipcode
----------+-----------------------+----------+----------+----------
1 | jessica@gmail.com <mailto:jessica%40gmail.com> | mypass | 29 | 94114

Switch to another terminal window and do the following:

$ ppyytthhoonn33 --ii mmooddeell..ppyy
Connected to DB.
>>> jjeessssiiccaa == UUsseerr..qquueerryy..ggeett((11))
>>> pprriinntt((jjeessssiiccaa..eemmaaiill))
jessica@gmail.com <mailto:jessica%40gmail.com>

The 1 in the get() method is the id of the User we want to get from our table. If your database has a
different id for the user you want to find, use that instead.

Before we go further, let’s see what happens if we print out the user directly:

>>> pprriinntt((jjeessssiiccaa))
<__main__.User object at 0x10741f850>

When you print out an object in Python (either in a script or in the Python console), Python normally
prints something like <User object at 0x11244222> , which just tells us the location in memory of that
object. That’s not very helpful; it would be more helpful to get some useful information for debugging
what user we’re dealing with.

Therefore, we’ll add a magic method to User, __repr__() . If you define this method on a class, when

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

12 of 19 10/29/18, 2:25 PM

Python tries to “represent” an instance of this class, it will use this instead.

def __repr__(self):
"""Provide helpful representation when printed."""

return f"<User user_id={self.user_id} email={self.email}>"

To get this new Python code, you’ll need to quit the Python console and re-start:

$ ppyytthhoonn33 --ii mmooddeell..ppyy
Connected to DB.
>>> jjeessssiiccaa == UUsseerr..qquueerryy..ggeett((11))
>>> pprriinntt((jjeessssiiccaa))
<User user_id=1 email=jessica@gmail.com <mailto:email=jessica%40gmail.com>>

That’s helpful.

Let’s update her password to be something more secure:

>>> jjeessssiiccaa..ppaasssswwoorrdd == ""qqffuujjff33""

Now, let’s query the database to see if that worked:

ratings=# SSEELLEECCTT ** FFRROOMM uusseerrss;;
user_id | email | password | age | zipcode
----------+-----------------------+----------+----------+----------
1 | jessica@gmail.com <mailto:jessica%40gmail.com> | mypass | 29 | 94114

The new password isn’t there! What gives? Well, like when we did raw SQL (and not dissimilar to Git), we
need to commit data after we’ve modified it.

In Python:

>>> ddbb..sseessssiioonn..ccoommmmiitt(())

And query again:

ratings=# SSEELLEECCTT ** FFRROOMM uusseerrss;;
user_id | email | password | age | zipcode

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

13 of 19 10/29/18, 2:25 PM

----------+-----------------------+----------+----------+----------
1 | jessica@gmail.com <mailto:jessica%40gmail.com> | qfujf3 | 29 | 94114

SQLAlchemy took our python and wrote the appropriate SQL update query for us behind the scenes.
This is a powerful idea, because now we can write programs, only worrying about the classes and data
we’re interested in, and not how to write the SQL we need to save it somewhere.

Once more, for effect:

Reversing Direction

We inserted data in SQL, then got it back out on the python end, where we could update it. Now, let’s do
the reverse, where we insert data in from python. Let’s make a record for Jada.

>>> jjaaddaa == UUsseerr((eemmaaiill==""jjaaddaa@@ggmmaaiill..ccoomm"",, ppaasssswwoorrdd==""aabbcc112233"",, aaggee==2255,,
... zziippccooddee==""9944110033""))

If we query the database, we get nothing:

ratings=# SSEELLEECCTT ** FFRROOMM uusseerrss;;
user_id | email | password | age | zipcode
----------+-----------------------+----------+----------+----------
1 | jessica@gmail.com <mailto:jessica%40gmail.com> | qfujf3 | 29 | 94114

Right, we have to commit first. Actually, we have to do more than commit. Right now, we have a User
object that we created in Python, but that isn’t reflected in the database immediately. There are times
when we want to do exactly this, so SQLAlchemy forces us to be explicit when we want to insert
something into the database as well. We do this by adding an object to our session. Here, the Git parallel
is particularly strong.

>>> ddbb..sseessssiioonn..aadddd((jjaaddaa))
>>> ddbb..sseessssiioonn..ccoommmmiitt(())

Now, in PostgreSQL, one more time:

ratings=# SSEELLEECCTT ** FFRROOMM uusseerrss;;
user_id | email | password | age | zipcode
----------+-----------------------+----------+----------+----------
1 | jessica@gmail.com <mailto:jessica%40gmail.com> | qfujf3 | 29 | 94114
2 | jada@gmail.com <mailto:jada%40gmail.com> | abc123 | 25 | 94103

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

14 of 19 10/29/18, 2:25 PM

Now that our object has been “added” to the database, it is being tracked, and if we need to update it,
we only need to commit after modifying it:

>>> jjaaddaa..ppaasssswwoorrdd == ""bbuunnnniieess""
>>> ddbb..sseessssiioonn..ccoommmmiitt(())

and to confirm:

ratings=# SSEELLEECCTT ** FFRROOMM uusseerrss WWHHEERREE uusseerr__iidd == 22;;
user_id | email | password | age | zipcode
----------+-----------------------+----------+----------+----------
2 | jada@gmail.com <mailto:jada%40gmail.com> | bunnies | 25 | 94103

Let’s do one more thing. So far, we’ve relied on PostgreSQL to assign unique ids to our users. We can
specify an id when creating a user.

>>> jjuuaanniittaa == UUsseerr((uusseerr__iidd==55,, eemmaaiill==""jjuuaanniittaa@@ggmmaaiill..ccoomm"",,
... ppaasssswwoorrdd==""aabbcc112233"",, aaggee==4422,, zziippccooddee==""9944110033""))
>>> ddbb..sseessssiioonn..aadddd((jjuuaanniittaa))
>>> ddbb..sseessssiioonn..ccoommmmiitt(())

If we query the database, we should see this:

ratings=# SSEELLEECCTT ** FFRROOMM uusseerrss WWHHEERREE eemmaaiill==''jjuuaanniittaa@@ggmmaaiill..ccoomm'';;
user_id | email | password | age | zipcode
----------+-----------------------+----------+----------+----------
5 | juanita@gmail.com <mailto:juanita%40gmail.com> | abc123 | 42 | 94103

Experiment with adding, committing, and querying to make sure you understand how data goes into
PostgreSQL through Python, and how to get it back out. Add new records on both the PostgreSQL and
Python sides, and use .get() to get them back out. Change some fields, then commit them back and
see how the columns get updated. Do this for all three tables, then get ready to wipe them out.

First, drop your ratings database using the dropdb command. Then, recreate your database using the
createdb command. Reconnect to your model.py file and run db.create_all() in order to recreate

your ratings database.

(env) $ ddrrooppddbb rraattiinnggss
(env) $ ccrreeaatteeddbb rraattiinnggss
(env) $ ppyytthhoonn33 --ii mmooddeell..ppyy

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

15 of 19 10/29/18, 2:25 PM

Connected to DB.
>>> ddbb..ccrreeaattee__aallll(())

Reading Data From Seed Files

Now that we know how to insert single rows into the database, we have to bulk insert a bunch of our
movie data. You’ll find a file, seed.py, which contains a rough outline of what needs to happen. You’ll
need to open up the seed files corresponding to each table, read each row in, parse it, then insert it into
the database using our SQLAlchemy object interface.

The general steps are:

Open and read a file1.
Parse a line2.
Create an object3.
Add the object to the db.session4.
Repeat until all objects are added5.
Commit6.

We’ve supplied the first, load_users , to give you a sense of what to do for the others. Read it carefully.
Each of the files is formatted slightly differently, so you’ll have to modify the second two functions to
account for those changes.

There are two particular challenges to pay attention to as you write your own load functions:

In the u.item file, the dates are given as strings like “31-Oct-2015”. We need to store this in the
database as an actual date object, not as a string that just looks like a date. To do this, you’ll need to
research the Python datetime library to find the function that can parse a string into a datetime
object.

The movies include the year of release at the end of the title, like “Balloonicorn’s Big Adventure
(2010)” – but we don’t want to include that parenthetical date in the database (we’re already storing
the release date as a separate field, so it’s duplicative, plus it’s ugly). Find a way to remove it from the
title.

Feeling stumped on your datetime conversion? Here’s a hint:

Datetime Conversion

You will need to use strptime from the datetime library. Here’s some example code:

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

16 of 19 10/29/18, 2:25 PM

if released_str:
released_at = datetime.datetime.strptime(released_str, "%d-%b-%Y")

else:
released_at = None

Autoincrement

Much like the Take-A-Number dispenser at the deli, Postgres uses sequences to set the values for
autoincrement columns. By default, the sequence starts at 1. Since we loaded in the user_ids from the
data file when we seeded our database, we haven’t used the sequence yet. When we create a new user
later on, Postgres will attempt to assign it id 1 (the first number in the sequence), and this will generate
an error, because there already is a user with user_id 1.

To prevent this error, we’ve included a function set_val_user_id in seed.py. This function queries users
to find the maximum id, and then sets our sequence next value to be one more than that max.

If you want to better understand how this function works, enter psql from the terminal. Just as \dt
shows a list of the tables, \d lists all tables, views, and sequences. After you seed the database, you can
see that you have:

ratings=# d
 List of relations
 Schema | Name | Type | Owner
--------+-----------------------+----------+-----------
 public | movies | table | user
 public | movies_movie_id_seq | sequence | user
 public | ratings | table | user
 public | ratings_rating_id_seq | sequence | user
 public | users | table | user
 public | users_user_id_seq | sequence | user

We are adjusting the users_user_id_seq, using the Postgres function setval. You can read more about
Postgres functions on sequences here <http://www.postgresql.org/docs/8.2/static/functions-
sequence.html>.

Once you have written your importing code and satisfied yourself that it is importing all of the data
properly, ask for a code review.

Once you’ve finished your code review, you can either, depending on your schedule:

Further Study <further-study.html>
Exercise: Judgmental Eye Part 2 <index-2.html>

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

17 of 19 10/29/18, 2:25 PM

Solution <solution/index.html>

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

18 of 19 10/29/18, 2:25 PM

Judgmental Eye https://fellowship.hackbrightacademy.com/materials/ft24a/exercises/...

19 of 19 10/29/18, 2:25 PM

