
Introductory C++ exercises

Rupert Nash

r.nash@epcc.ed.ac.uk

The files for this are on Github.

To check out the repository run:

git clone https://github.com/EPCCed/APT-CPP.git
cd APT-CPP/practicals/01

A linked list class

Check that you understand a linked list - see exercise 0 implemented in C if not.
A solution to that exercise is in this directory (list.c).

Reimplement this as a class

The goal of this is to implement a very similar linked-list as a C++ class.

In APT-CPP/practicals/01-list-array/1-list there is a Makefile, a test pro-
gram, a header file containing the class definition, and a partial implementation
in list.cpp. Running make will try to build the executable test. This program
generates some random numbers and adds them to an instance of your list class,
keeping them sorted.

When complete your program will produce output like:

$ ./test 100
Time to insert 100 integers = 0.000142364 s
Were correctly ordered
$ ./exA 1000
Time to insert 1000 integers = 0.0025844 s
Were correctly ordered

You need to edit list.cpp and complete the code. The design I have used is
very similar to the C implementation and is not idiomatic C++. If you can see
improvements - go ahead and try them - but note we will come back to this.

When you have this working, try to answer the following

1. How does it scale as you increase N? Try plotting on a log-log scale. Is
this what you expected? You may wish to make clean and recompile with
higher optimisation (add -O3 to the CXXFLAGS variable in the Makefile).

1

https://github.com/EPCCed/APT-CPP


2. Point out a few flaws in this design. Things to consider include: const-
correctness, RAII, having to use a non-standard iteration syntax.

Array

The array is a fundamental data structure, especially for processing large amounts
of data, as it allows the system to take advantage of the cache hierarchy.

Recall the array template examples from the lecture - in APT-CPP/practicals/01-list-array/2-array
is a basic implementation and a (hopefully) working test program, very similar
to the previous one.

Compile this and run it for a few problem sizes. What is the scaling? How does
this compare to the linked list?

We need to take a decision about copying - do we wish to allow implicit copying
which for large arrays is very slow? If not, should we add an explicit method to
do this? What would its signature be? How would we tell the compiler not to
allow this?

Libraries

Memory

While we’ve taken a RAII approach here, it comes with some overhead: we had
to implement (or delete) five functions: the destructor, the copy constructor,
the move constructor, the copy assignment operator, and the move assignment
operator. This concept is known as “the rule of five” (before C++11 it only had
three).

A more idiomatic approach is to wrap the resource into a class that does nothing
but manage a resource, then it can be used elsewhere and the compiler will
produce correct implicit constructors, destructor and assignment operators with
no boilerplate code!

See one of the below for an in-depth discussion: * http://en.cppreference.com/
w/cpp/language/rule_of_three * http://scottmeyers.blogspot.co.uk/2014/03/a-
concern-about-rule-of-zero.html

Fortunately the standard library includes several “smart pointers” that will do
this for you for memory! They can be accessed using the <memory> header.

They are:

• std::unique_ptr - this uniquely owns the pointed-to object. The object
is deleted (can be customised) when the smart pointer destructs or you
assign a new value. You cannot copy a unique_ptr. This should be your
default pointer type!

2

http://en.cppreference.com/w/cpp/language/rule_of_three
http://en.cppreference.com/w/cpp/language/rule_of_three
http://scottmeyers.blogspot.co.uk/2014/03/a-concern-about-rule-of-zero.html
http://scottmeyers.blogspot.co.uk/2014/03/a-concern-about-rule-of-zero.html


• std::shared_ptr - this shares ownership of the pointed-to object. All the
child shared_ptrs point to the same object. The object will be deleted
when all the pointers are either destructed or assigned a new value.

• std::weak_ptr - much like a shared_ptr but it doesn’t own a share of
the object. It can become invalid. Used to break reference cycles.

(There also exists a std::auto_ptr. This is deprecated and has been removed
from C++17, so do not use it.)

Have a look at the reference and re-implement Array using either a unique or
shared pointer.

Containers

The standard library also has a number of containers for objects. These include
a list template class (typically a doubly-linked list) and vector which is a
contiguous, dynamically-sized array, a bit like our Array<T>. There are also
hash tables, queues (single and double ended), stacks, etc.

The full list is here http://en.cppreference.com/w/cpp/container.

Replace your list with std::list<int> and compare performance.

Try the same with replacing your array with std::vector.

3

http://en.cppreference.com/w/cpp/memory

	Introductory C++ exercises
	Rupert Nash
	r.nash@epcc.ed.ac.uk
	A linked list class
	Reimplement this as a class

	Array
	Libraries
	Memory
	Containers



