
Programming a quantum network

Axel Dahlberg Stephanie Wehner

July 20, 2018

1 Introduction

In this competition, you will program your own quantum protocol! Do you find yourself always
losing when you play the card-game bridge? Surprisingly, you can do better if you have access to
entanglement. See for example the following Youtube clip: www.youtube.com/watch?v=1YJs8AWykzs.
This is the case with many non-local games. Your challenge for this competition will be to explore,
play with and implement such games using the freely available simulator SimulaQron.

Here, some useful links and then it’s time to get started!

• SimulaQron Website: [www.simulaqron.org]

• SimulaQron on Github: [github.com/StephanieWehner/QI-Competition2018]

• Code for this competition in folder: [SimulaQron/competition]

• Arxiv Paper describing the inner workings of SimulaQron: [arxiv.org/abs/1712.08032]

• Google form for entering the competition [goo.gl/forms/SQdmru1weETWdv3i2]

Note: Please make use of the GitHub repository above and NOT the standard SimulaQron
repository.

1.1 Important dates and deadlines

• Start of competition: 19 July 2018

• Deadline for submitting your project: 19 October 2018

• Announcement of winner(s): 19 December 2018

2 Installation instructions

To install SimulaQron, follow the steps below. The first step provides the necessary prerequisites by
installing Anaconda. If you are familiar with installing Python packages, this can also be done without
Anaconda: To run SimulaQron you need Python 3 with the packages twisted, service identity
and qutip. Note that qutip also requires additional packages but these, together with twisted and
service identity, are all included in the latest version of Anaconda (but not older ones!). Furthermore
(IMPORTANT), you need for Python 3 to execute if you type python in a terminal.

If you do not know how to set this up, follow the instructions in step 1 below. To follow the
instructions you need to have access to a terminal. We are assuming here you that you use bash as
your terminal shell (e.g., standard on OSX or the GIT Bash install on Windows 10). On most Linux

1

www.youtube.com/watch?v=1YJs8AWykzs
www.simulaqron.org
github.com/StephanieWehner/QI-Competition2018
arxiv.org/abs/1712.08032
goo.gl/forms/SQdmru1weETWdv3i2

distributions press the keys Ctrl+Alt+T to open a terminal. For OSX you press Cmd+Space, type
terminal.app and press enter. For Git Bash on Windows an icon will be installed by default on your
desktop, which you can click to open bash.

Note: In the default configuration, SimulaQron starts up multiple servers on localhost (i.e., your
own computer) to form the simulated quantum internet hardware. SimulaQron does not provide any
access control to its simulated hardware, so you are responsible to securing access should this be
relevant for you. You can also run the different simulated nodes on different computers. We do not
take any responsibility for problems caused by SimulaQron.

1. Prerequisites:
The easiest way to get the required packages to run SimulaQron is to install Anaconda. Follow
the link below that corresponds to your operating system:

• Linux

• OSX

• Windows

and go through the instructions to install Anaconda. When you download the installer, make
sure to choose Anaconda and the 3.X version.

When you have installed Anaconda you should also get the Python package qutip. Do this by
typing the following in a terminal:

pip install qutip

Note: If you already have Anaconda and want to create a new environment for using SimulaQron
(maybe your current environment uses Python 2). Then type the following:

conda create -n new_env anaconda python =3

where new_env is the name of the new environment and can be chosen by you. Note that
older versions of Anaconda did not include Twisted - so you may wish to update Anaconda or
installed Twisted manually. You should include anaconda in the commands since this installs
all packages in the default Anaconda to the new environment. To activate this new environment
type source activate new_env on Linux and OSX or activate new_env on Windows.

2. Download SimulaQron:
SimulaQron is accessible on GitHub. To download SimulaQron you need to have git installed.
Installation instructions for git on your system can be found here. When you have git installed
open a terminal, navigate to a folder where you wish to install SimulaQron and type:

git clone https :// github.com/StephanieWehner/QI -Competition2018

The path to the folder you downloaded SimulaQron will be denoted yourPath below.

3. Starting SimulaQron:
To run an example or the automated test below you first need to start up the necessary processes
for SimulaQron. Open a terminal and navigate to the SimulaQron folder, by for example typing:

cd yourPath/QI -Competition2018/SimulaQron

You also need to set the following environment variables, by typing:

2

https://conda.io/docs/user-guide/install/linux.html
https://conda.io/docs/user-guide/install/macos.html
https://conda.io/docs/user-guide/install/windows.html
https://gist.github.com/derhuerst/1b15ff4652a867391f03

export NETSIM=yourPath/QI -Competition2018/SimulaQron

export PYTHONPATH=yourPath/QI -Competition2018:$PYTHONPATH

Then start SimulaQron by typing:

sh run/startAll.sh

in your open terminal. This will start the necessary background processes and setup up the
servers needed. Note that this will in fact kill all Python processes containing the strings Test,
setup or start on your computer, before SimulaQron. This is so that SimulaQron can easily be
restarted by running sh run/startAll.sh .

Hint: If something goes wrong with running SimulaQron and you need to kill the processes
running. The easiest way to do this is to simple type pkill python in any terminal. Note that

this will kill all of your Python processes.

Note: The default setting in SimulaQron is to only print warnings or errors. If you also want to
see what is happening you can turn on the debugging output by changing the field loglevel from

warning to debug in the file yourPath/QI-Competition2018/SimulaQron/config/settings.ini .

You need to restart SimulaQron for the changes to take effect. A lot of information will then be
printed, so it is not recommend to have debugging on unless you need to.

It is a good idea to at this point to test if everything is working, see the next step.

4. Running automated tests:
SimulaQron comes with automated tests which can be executed to see if everything is working.
Assuming that you went through the previous steps, navigate to the SimulaQron folder. Make
sure that loglevel in yourPath/QI-Competition2018/SimulaQron/config/settings.ini

is set to warning before running the tests! In the terminal type

sh tests/runTests.sh

which will start the tests.

Depending on your computer, the tests can take a lot of time, so be patient! If a test succeeds it
will say OK and otherwise FAIL . Some of the tests are probabilistic so there is a possibility
that they fail even if everything is working. So if one of the tests fails, try to run it again and
see if the error persists.

5. Configuring the network:
To run protocols in SimulaQron the network of nodes used need to be defined. By default

SimulaQron uses five nodes: Alice, Bob, Charlie, David and Eve. For this competition there
is probably no need to change this but it is possible, if you find the need. The files used to
configure this can be found in the folder yourPath/QI-Competition2018/SimulaQron/config

and information on how to do this can be found in the documentation.

On can start SimulaQron using different nodes than what is configured in the config-files. To
start SimulaQron using a network consisting of the nodes Adrian, Beth and Claire, simply type

sh run/startAll.sh Adrian Beth Claire

Note that this will actually change the config-files to use the nodes Adrian, Beth and Claire.
Also, note that this functionality can only be used when running all the nodes simulated by

3

https://stephaniewehner.github.io/SimulaQron/PreBetaDocs/GettingStarted.html

SimulaQron on a single computer, as the hostname is by default set to localhost for all nodes
and the port numbers are automatically chosen. A network with ten nodes n0 to n9 can be
started by typing

sh run/startAll.sh n0 n1 n2 n3 n4 n5 n6 n7 n8 n9

For the base example provided below, you need at least the nodes Alice and Bob to be running.

3 The Challenge

You’re challenge will be implement a non-local game using SimulaQron. In a non-local game, some
number of players gets an input each and their task is to give outputs such that certain constraints are
satisfied. If the constraints are satisfied, all the players win and otherwise they all lose. The players
are allowed to agree on a strategy ahead of time, however when the games starts, i.e. before they
receive their inputs, they are not allowed to communicate anymore. Furthermore, each player will
only learn their own input and will be ignorant of the other inputs. Figure 1 gives an illustration of a
general non-local game in the case of two players.

x

a

y

b

Figure 1: A non-local game with two players. The input to the players are x and y and their outputs
are a and b. Note that the players are not allowed to communicate anymore when they received their
inputs.

For some local games, it turns out that players can win with a higher probability if they make use
of entanglement, compared to the optimal classical strategy. For some games, players with access to
entanglement can win with unit probability, even though this is impossible for any classical strategy.
One such game is the Mermin-Peres magic square games, described below. We have provided a basic
example that realize a quantum strategy to win this game. You’re task is now to improve on this. To
get you started there are a few suggested exercises in section 5. However, what you want to improve
and what you want your submission to be, is completely up to you!

3.1 Mermin-Peres magic square game

The Mermin-Peres magic square game is a game played by two players: Alice and Bob. In each round
of the game Alice and Bob will receive a challenge from a judge. Depending on their answers, they
will either both win or both lose. The players are allowed to agree on a strategy prior to the game,
however once the game has started they cannot communicate anymore.

The judge will challenge Alice to provide a row from a 3× 3 binary matrix and Bob to provide
a column. Before the game starts, neither Alice or Bob knows what the row or column will be and
furthermore Alice will not know which column Bob is requested to provide and vice versa. Lets assume

4

that the request is for the rth row and the cth column and that Alice provides the row (ar0, ar1, ar2)
and Bob the column (b0c, b1c, b2c). Then Alice and Bob win the round of the game if

• They agree on the intersecting element, i.e. arc = brc.

• The row provided by Alice has an even parity, i.e. ar0 + ar1 + ar2 = 0 (mod 2).

• The column provided by Bob has an odd parity, i.e. b0c + b1c + b2c = 1 (mod 2).

1 1 0
1 0 1
1 0 ?

If one or more of the above restrictions is not satisfied then Alice and Bob lose the round.
It can be shown that the maximal winning probability for any classical strategy for the Mermin-

Peres magic square game is 8
9 . Surprisingly, if Alice and Bob have access to entanglement, they can in

fact win the game with probability 1.

3.1.1 An optimal quantum strategy

As mentioned, it is possible to win the Mermin-Peres magic square game with unit probability, if Alice
and Bob have access to shared entanglement. It is in fact sufficient for Alice and Bob to share two
entangled pairs of qubits per round of the game, i.e. if their qubits are in the state(

1√
2
|0〉a |0〉c +

1√
2
|1〉a |1〉c

)
⊗

(
1√
2
|0〉b |0〉d +

1√
2
|1〉b |1〉d

)
, (1)

where qubits a and c are held by Alice and b and c by Bob. See the base example below for how to
create such entangled states. There exist a set of measurements that Alice and Bob can perform of
their qubits such they win the game with certainty. One such set if given in table 1.

If you do not know how measurements work in quantum information, or if you do not know
how to perform such parity measurements in the above table, do not worry, there is a function in
SimulaQron that can be used to perform these measurements. This function is called parity_meas

and is described in the next section. If you do want to know more about the basics of quantum
information you can look at week 0 of the edX course Quantum Cryptography at www.edx.org/

course/quantum-cryptography-caltechx-delftx-qucryptox-0.

+X ⊗ I +X ⊗X +I ⊗X
−X ⊗ Z +Y ⊗ Y −Z ⊗X
+I ⊗X +Z ⊗ Z +Z ⊗ I

Table 1: Measurement operators that can be used to win Mermin-Peres magic square game with unit
probability.

For those that do know about measurement in quantum information, note that all elements for a
given row (or column) commute. This implies that these observables can be simultaneously measured.
Can you see that, if Alice and Bob performs the measurement corresponding to the rows and column
that they are given, Alice will obtain an even number of +1 measurement outcomes and Bob an odd
number? (Hint: What happens if you multiply the measurement operators?) Note that to be consistent
with the rules of the game, both players should output a 0 if they measure +1 and a 1 if they measure
−1.

In the base example we have provided the correct measurement when the requested row is 0 and
the requested column is 0. Your first exercise will be to implement the rest of the cases.

5

www.edx.org/course/quantum-cryptography-caltechx-delftx-qucryptox-0
www.edx.org/course/quantum-cryptography-caltechx-delftx-qucryptox-0

3.2 Further reading

Below is a list of references that you can use to expand your submission or for further reading if you
are curious:

• Wikipedia page on the Mermin-Peres magic square game and others: en.wikipedia.org/wiki/
Quantum_pseudo-telepathy

• Original paper on the Mermin-Peres magic square game: [6].

• A survey on non-local games: [3].

• Generalization of the magic square game to larger matrices: [5].

• Generalization to games on graphs: [1].

• Multi-partite non-local games: [2].

• Survey on uncertainty relations and applications: [4].

4 How to program SimulaQron

This section gives a brief explanation on how to write application programs for a quantum network
using SimulaQron. First, an overview of the setup of a network in SimulaQron is given 4.1. A basic
example on how to program the Mermin-Peres magic square game is provided in 4.2. Finally in 4.4 is
a list of useful commands.

4.1 The setup

In the standard version of the Mermin-Peres magic square game, there are two nodes: Alice and Bob.
Not necessarily important during this competition, but maybe useful to know, is that we will run

two servers on the nodes labelled Alice and Bob (localhost in the default configuration), that realize
the simulated quantum internet hardware and the CQC (classical quantum combiner) interface. See
item 5 of section 2 for how to setup a network with different nodes. In figure 2 there is a schematic
overview of how the communication is realized between the nodes. Firstly, the applications in each
node communicate with a CQC (classical-quantum-combiner) server that in turn talk to a SimulaQron
server. CQC is an interface between the classical control information in the network and the hardware,
here simulated by SimulaQron. The communication between the nodes needed to simulate the quantum
hardware is handled by the SimulaQron servers, denoted SimulaQron internal communication in the
figure. Note that such communication is needed since entanglement cannot be simulated locally.

The only thing relevant for you doing the exercise, is that SimulaQron comes with a Python library
that handles all the communication between the application and the CQC server. In this library,
the object CQCConnection takes care of this communication from your application to the CQC
backend of SimulaQron. This allows your application to issue instructions to the simulated quantum
internet hardware, such as creating qubits, making entanglement, etc. Any operation applied to the
qubits in this Python library is automatically translated to a message sent to the CQC server, by the
CQCConnection . For performing quantum operations, you thus only need to understand the Python

CQC library supplied with SimulaQron.
In your application protocol, you may wish to send some classical information yourself. For example,

Alice might wish to tell Bob which basis she measured in in BB84 QKD. On top of the quantum
network there will thus be classical communication between the applications, denoted Application
communication in the figure. Such communication would also be present in a real implementation of
a quantum network. It is your responsibility as the application programmer to realize this classical
communication. One way to do this is via standard socket programming in Python.

6

en.wikipedia.org/wiki/Quantum_pseudo-telepathy
en.wikipedia.org/wiki/Quantum_pseudo-telepathy

However, for convenience we have included a built-in feature in the Python library that realizes this
functionality, which have been developed for ease of use for someone not familiar with a client/server
setup. This communication is also handled by the object CQCConnection . Let assume that Alice

wants to send a classical message to Bob and that Alice and Bob are instances of CQCConnection

at the respective nodes. For Alice to send a message to Bob, Alice will simply apply the method
Alice.sendClassical("Bob",msg) , where msg is the message she wish to send to Bob. The method

opens a socket connection to Bob, sends the message and the closes the connection again. Note that
if this method is never called, a socket connection is never opened. Bob receives the messages by
Bob.recvClassical() .

We emphasise that to have classical communication between the applications, one is not forced to
use the built-in functionality realized by the CQCConnection . You can just as well setup your own
client/server communication using the method of your preference.

Application

SimulaQron
server

Alice Computer

Application

SimulaQron
server

Bob Computer

Application

CQC
server

SimulaQron
server

Eve Computer

SimulaQron
internal

communication

Application
communication

CQC
server

CQC
server

Figure 2: A schematic overview of the communication in a quantum network simulated by Simu-
laQron. The simulation of the quantum hardware at each node is handled by the SimulaQron server.
Communication between the SimulaQron servers are needed to simulate the network, for example to
simulate entanglement. Opting for this method enables a distributed simulation, i.e. the computers
in the figure can be physically different computers. The CQC servers provide an interface between
the applications running on the network and the simulated hardware. Finally the applications can
communicate classically, as they would do in a real implementation of a quantum network.

7

4.2 Base example

We have implemented a base example to help you get started that can be found in the folder
yourPath/QI-Competition2018/competition/base_example .

Let us now look more in detail on the actual code. How to run the code is described in the next
section. In the folder yourPath/QI-Competition2018/competition/base_example there are a few

files but the ones containing the actual code is aliceTest.py , bobTest.py .

4.2.1 Alice’s code

We will first look over the code for Alice, step-by-step.

Initialize the connection

Alice = CQCConnection("Alice")

First an object called CQCConnection is initialized. The CQCConnection is responsible for all the
communication between the node Alice and SimulaQron and also to other nodes, as described in
the previous section. When an operation is applied to a qubit , the CQCConnection is used to

communicate with SimulaQron. Operations can be applied to the qubit by for example writing
q.X() , q.H() or q1.cnot(q2) , where q1 and q2 are different qubit objects initialized with

the same CQCConnection . More useful commands are given in the section 4.4. Next, Alice creates
two EPR-pairs (entangled pairs) with Bob.

Create EPR pairs

q1 = Alice.createEPR("Bob")

q2 = Alice.createEPR("Bob")

The call to create EPR pairs is asymmetric and initialized by one of the nodes. As we will see below,
Bob will answer to this request by calling the method recvEPR . When the above code has been
executed (together with the code on Bob’s side), Alice and Bob have two qubits each, which are
pairwise entangled. By design, SimulaQron will not guarantee that commands are executed in the
order they are called, as in a real network. Because of this, we cannot assume that Alice’s qubit q1 is

entangled with Bob’s qubit q1 . To consistently order the qubits between the nodes, we will make use

of the provided entanglement information, and in particular the sequence ID. There are more things
contained in the entanglement information, but for now you only need to know about the sequence ID.
The sequence ID is an integer, which is unique for every EPR created between Alice and Bob1.

We will re-name the qubits such that qa is Alice’s qubit with the lowest sequence ID and qc the

other qubit held by Alice. Similarly for Bob and the qubits qb and qd . We then have that Alice’s

qubit qa is entangled with Bob’s qubit qb and similarly for qubits qc and qd .

Make sure we order the qubits consistently with Bob

Get sequence IDs

q1_ID = q1.get_entInfo (). id_AB

q2_ID = q2.get_entInfo (). id_AB

if q1_ID < q2_ID:

qa = q1

qc = q2

else:

qa = q2

qc = q1

Next Alice receives her challenge from the judge in the game, see section 3.1. Currently this will always
be row 0. Your task will be to extend this to make the game more exciting.

1The sequence ID is not globally unique in the network, however together with the information that the entanglement
is between the nodes Alice and Bob, this effectively gives a globally unique entanglement ID.

8

Get row

row = 0

Depending on the challenge from the judge, Alice will perform certain actions. The correct measurements
for the case where the row is 0, is already implemented below. You will need to fill in the other two
cases.

Some of the measurements that Alice needs to perform are so called parity measurements. Do not
worry if you do not know what a parity measurement is, you can simply use the function parity_meas .

Perform the three measurements

if row == 0:

m0 = parity_meas ([qa, qc], "XI", Alice)

m1 = parity_meas ([qa, qc], "XX", Alice)

m2 = parity_meas ([qa, qc], "IX", Alice)

else:

m0 = 0

m1 = 0

m2 = 0

Next the measurement outcomes are printed.

print("\n")

print("==========================")

print("App {}: row is:".format(Alice.name))

for _ in range(row):

print("(___)")

print("({}{}{})".format(m0, m1, m2))

for _ in range(2-row):

print("(___)")

print("==========================")

print("\n")

To not leave qubits in the simulation that will take up memory we measure these out. Using the
argument inplace=False will perform a destructive measurement and remove the qubit from the

simulation.

Clear qubits

qa.measure(inplace=False)

qc.measure(inplace=False)

Finally, we close the connection to the simulation backend.

Stop the connections

Alice.close ()

4.2.2 Bob’s code

We will now take a look what happens on Bob’s side. The code is essentially the same as for Alice,
except that Bob calls the method recvEPR instead of createEPR as mentioned above. Bob’s code is
given as follows:

Initialize the connection

Bob=CQCConnection("Bob")

Create EPR pairs

q1=Bob.recvEPR ()

q2=Bob.recvEPR ()

Make sure we order the qubits consistently with Alice

Get sequence IDs

q1_ID = q1.get_entInfo (). id_AB

q2_ID = q2.get_entInfo (). id_AB

if q1_ID < q2_ID:

9

qb=q1

qd=q2

else:

qb=q2

qd=q1

Get col

col = 0

Perform the three measurements

if col == 0:

m0 = parity_meas ([qb, qd], "XI", Bob)

m1 = parity_meas ([qb, qd], "XZ", Bob , negative=True)

m2 = parity_meas ([qb, qd], "IZ", Bob)

else:

m0 = 0

m1 = 0

m2 = 0

print("\n")

print("==========================")

print("App {}: column is:".format(Bob.name))

print("(" + "_"*col + str(m0) + "_"*(2-col) + ")")

print("(" + "_"*col + str(m1) + "_"*(2-col) + ")")

print("(" + "_"*col + str(m2) + "_"*(2-col) + ")")

print("==========================")

print("\n")

Clear qubits

qb.measure ()

qd.measure ()

Stop the connection

Bob.close()

4.3 Running the example

Now that we have seen what the code of Alice, Bob and Eve does it is time to run it and see what happens.
If this is not already up and running, start the background processes in a terminal by following step 3
in section 2. Navigate to the folder yourPath/QI-Competition2018/competition/base_example .

As in section 2, make sure the environment variables are set by for example typing in the new terminal:

export NETSIM=yourPath/QI -Competition2018/SimulaQron

export PYTHONPATH=yourPath/QI -Competition2018:$PYTHONPATH

To run the example, type:

sh run_example.sh

Now it is up to you to improve the code. In the next sections there are some instructions and
questions to get going. First we list some commands that can be useful to realize this.

4.4 Useful commands

Here we list some useful methods that can be applied to a CQCConnection object or a qubit object

below. The CQCConnection is initialized with the name of the node (string) as an argument.

CQCConnection. :

10

• sendQubit(q,name) Sends the qubit q (qubit) to the node name (string).

Return: None .

• recvQubit() Receives a qubit that has been sent to this node.

Return: qubit .

• createEPR(name) Creates an EPR-pair 1√
2
(|00〉+ |11〉) with the node name (string).

Return: qubit .

• recvEPR() Receives qubit from an EPR-pair created with another node (that called createEPR).

Return: qubit .

• sendClassical(name,msg) Sends a classical message msg (int in range(0,256) or list of such

int s) to the node name (string).

Return: None .

• recvClassical() Receives a classical message sent by another node by sendClassical .

Return bytes .

Here are some useful commands that can be applied to a qubit object. A qubit object is initialized

with the corresponding CQCConnection as input and will be in the state |0〉.

qubit. :

• X() , Y() , Z() , H() , K() , T() Single-qubit gates.

Return None .

• rot_X(step) , rot_Y(step) , rot_Z(step) Single-qubit rotations with the angle
(
step · 2π

256

)
.

Return None .

• CNOT(q) , CPHASE(q) Two-qubit gates with q (qubit) as target.

Return None .

• measure(inplace=False) Measures the qubit and returns outcome. If inplace (bool) then

the post-measurement state is kept afterwards, otherwise the qubit is removed (default).
Return int .

Note: A qubit simulated by SimulaQron is only removed from the simulation if it is measured
(inplace=False) or if it is sent to another node. If you therefore run a program multiple times which
generates qubits without measuring them you will quickly run out of qubits that a node can store. If
this happens you need to restart the background processes to reset the simulation. This can be done
by running sh run/startAll.sh again, as in step 3 in section 2.

5 Exercises

Below are a few exercises and suggestions on how to get started. As mentioned, it is completely up to
you what you choose your submission to be. Have fun and be creative!

11

• Complete the base example such that the correct measurements will be done for all combinations
of rows and columns.

• Extend the base example such that rows and columns other than 0 can actually be requested by
Alice and Bob. Do you want to randomize this or maybe be able to input this yourself to the
game?

• Make it a real game! Let someone playing the game actually choose the measurements to be
performed.

• Optimize the code?

• Make a graphical interface?

• Generalize to other non-local games?

• Include noise and see what effect this has?

• Implement a game of Bridge and include the option to use entanglement to be play better.

You can team up with others! In this case, please include a group name in your submission to the
competition (see below).

6 Submission instructions

You may submit any protocol you wish to our competition: a beautiful solution to the exercises or
suggestions above, extending them in any way you find useful, implementing any other quantum
internet protocol,....

We will hand out several prizes in our competition and showcase the best projects online. See
the website [www.simulaqron.org] for details on the different prizes - including the best prize for an
individual project that can win an internship with us here at QuTech in the summer!

If you want to participate in the competition, we ask that you fill out the following WebForm
[https://goo.gl/forms/SQdmru1weETWdv3i2] to enter in the competition.

Your submission should be a ZIP file which you will upload in the google form above.

1. Some information we will use on our website when showcasing the best and winning projects.
Please include this with your submission as a txt format in the folder INFO:

• Your real name: First Name, Last Name

• Name of group (if applicable)

• Email address

• Age (not relevant for prize selection)

• Occupation (not relevant for prize selection)

• School/University/Company (not relevant for prize selection)

• Title of your project

• Abstract describing your project (max. 200 words, will be used on the competition website
if you win, or make the top projects list)

• 300x300 Picture of yourself/your group (will be used on website if you win, or make the top
projects list). Called yourname.PNG (PNG format only)

2. In addition to all the code making up your submission, please include the following files into a
folder called ”DESCRIPTION”:

12

www.simulaqron.org
https://goo.gl/forms/SQdmru1weETWdv3i2

• A file called README.txt describing all files in your submission.

• A PDF describing the objective, summary and design overview of your submission (max. 2
pages)

• A script call run submission.sh which will execute your project.

7 Discussions and issues

If you have any issues or problems use the issue tracker on GitHub, do not send issues by email! This
allows us to keep track of issues and allow anyone to contribute in solving these. Please use the issue
tracker for the competition-repository github.com/StephanieWehner/QI-Competition2018

References

[1] Alex Arkhipov. Extending and Characterizing Quantum Magic Games. pages 1–20, 2012.

[2] Gilles Brassard, Anne Broadbent, and Alain Tapp. Recasting Mermin’s multi-player game into the
framework of pseudo-telepathy. Quant. Inf. Comp., 5(7), 2005.

[3] Richard Cleve, Peter Hoyer, Ben Toner, and John Watrous. Consequences and Limits of Nonlocal
Strategies. pages 1–25, 2004.

[4] Patrick J. Coles, Mario Berta, Marco Tomamichel, and Stephanie Wehner. Entropic uncertainty
relations and their applications. Reviews of Modern Physics, 89(1):1–65, 2017.

[5] Samir Kunkri, Guruprasad Kar, Sibasish Ghosh, and Anirban Roy. Winning strategies for pseudo-
telepathy games using single non-local box. Strategy, pages 1–9, 2008.

[6] N. David Mermin. Hidden variables and the two theorems of John Bell. Reviews of Modern Physics,
65(3):803–815, 1993.

13

github.com/StephanieWehner/QI-Competition2018

	Introduction
	Important dates and deadlines

	Installation instructions
	The Challenge
	Mermin-Peres magic square game
	An optimal quantum strategy

	Further reading

	How to program SimulaQron
	The setup
	Base example
	Alice's code
	Bob's code

	Running the example
	Useful commands

	Exercises
	Submission instructions
	Discussions and issues

