
CS 4260/5260: Introduction to AI
Homework 1 [points]: (Search).

Due: 2018, Central Time on BrightSpace

General Instructions:
If anything is ambiguous or unclear.
1. Discuss possible interpretations with other students, your TA, and instructor
2. Send e-mail to your TA first, and to your instructor if an issue is not resolved to your
satisfaction.
3. Make use of web sources.

Remember that after general discussions with others, you are required
to work out the problems by yourself. All submitted work must be your
own. Please refer back to the Honor code for clarifications.
Write legibly, be sure to staple all your answer sheets together, and write your
name, and the honor pledge on the top of the first answer sheet.
Start early, and avoid last minute stress!
	
Introduction	
	
In	this	project,	you	will	code	a	Pacman	agent	that	finds	paths	through	a	maze	world,	both	to	
reach	a	particular	location	and	to	collect	food	efficiently.	You	will	build	general	search	
algorithms	and	apply	them	to	Pacman	scenarios.	
	
The	code	for	this	project	is	stored	in	a	few	Racket	files	inside	the	racket-solver	folder.	The	file	
you	will	be	editing	is	called	student.rkt	Example	mazes	are	stored	in	text	files	with	.lay	
extensions	inside	the	layouts	folder.	
	
The	python	code	in	the	main	folder	provides	visualizations	of	your	final	search	path	like	the	one	
shown	below.	If	you	don’t	have	python	on	your	machine,	and	don’t	want	to	see	these	
visualizations,	you	can	ignore	these	files	(they	are	not	needed	to	run	your	code	and	will	not	be	
used	in	grading).	
	

	
	

How	to	Run	Your	Code	
	
The	code	for	this	project	consists	of	several	Python	files,	some	of	which	you	will	need	to	read	
and	understand	in	order	to	complete	the	assignment,	and	some	of	which	you	can	ignore.	You	
can	download	all	the	code	and	supporting	files	as	a	zip	archive.	
	
Your	code	should	return	a	list	of	characters	which	are	instructions	for	pacman	(i.e.	‘(#\S #\S
#\W) for	south	(down),	south,	west	(left)).	
	
To	run	your	code	in	racket	run:	
racket racket-solver/main.rkt -l <path to layout in layouts dir>
-s <search strategy> -r <heuristic>
	
If	you	are	using	Windows	change	this	to:	
racket racket-solver\main.rkt -l <path to layout in layouts dir>
-s <search strategy> -r <heuristic>
	
For	example:	
racket racket-solver/main.rkt -l layouts/tinyMaze.lay -s
tinyMazeSearch
	
or	for	Windows:	
racket racket-solver\main.rkt -l layouts\tinyMaze.lay -s
tinyMazeSearch
	
See	more	examples	in	racket-commands.txt	
	
To	visualize	your	code	with	python	(if	you	have	python	installed),	run:	
	
python pacman.py -l <name of layout file> -p RacketAgent -a
fn=<search strategy>,heuristic=<heuristic>
	
Note:	It	is	important	that	there	be	no	space	between	the	comma	and	heuristic.	
	
See	examples	in	commands.txt	
	
Problems	
There	are	three	search	strategies	that	you	need	to	implement	for	this	assignment:	DFS,	BFS	and	
A*.	
	
Depth	First	Search	
	
For	python	visualization:	

In	searchAgents.py,	you'll	find	a	fully	implemented	RacketAgent,	which	visualizes	a	path	
through	Pacman's	world	and	then	executes	that	path	step-by-step.	The	search	algorithms	for	
formulating	a	plan	are	not	implemented	--	that's	your	job.	
	
First,	test	that	the	RacketAgent	is	working	correctly	by	running:	
	
python pacman.py -l tinyMaze -p RacketAgent -a fn=tinyMazeSearch
	
The	command	above	tells	the	RacketAgent	to	use	tinyMazeSearch	as	its	search	algorithm,	
which	is	implemented	in	student.rkt	at	the	top	of	the	file.	Pacman	should	navigate	the	maze	
successfully.	
	
Racket	Part:	
Now	it's	time	to	write	full-fledged	generic	search	functions	to	help	Pacman	plan	routes!	
Pseudocode	and	examples	for	the	search	algorithms	you'll	write	can	be	found	in	the	lecture	
slides	from	week	2	and	in	section	3.5.2	of	the	textbook.	Remember	that	a	search	node	must	
contain	not	only	a	state	but	also	the	information	necessary	to	reconstruct	the	path	(plan)	which	
gets	to	that	state.	
	
Important	note:	The	functions	provided	in	utils.rkt	assume	that	nodes	on	the	frontier	are	
stored	as	tuples	of	type	(<path	to	state>,	state).	If	you	choose	to	store	your	path	differently,	
please	include	the	functions	needed	to	interpret	your	solution	in	student.rkt.	
	
Important	note:	All	of	your	search	functions	need	to	return	a	list	of	letters	representing	actions	
that	will	lead	the	agent	from	the	start	to	the	goal	(for	example	‘(#\S #\S #\W)for	south-
south-west).	These	actions	all	have	to	be	legal	moves	(valid	directions,	no	moving	through	
walls).	If	you	use	the	get-succ	function	provided	in	utils.py,	each	successor	comes	paired	with	
the	letter	that	describes	its	action.	
	
Your	function	must	return	this	list,	not	print	it.	If	you	are	printing	the	list	instead	of	returning	it,	
your	code	will	throw	an	error	when	you	run	the	racket	command	to	test	your	program.	
	
Hint:	Each	algorithm	is	very	similar.	Algorithms	for	DFS,	BFS,	and	A*	differ	only	in	the	details	of	
how	the	fringe	is	managed.	So,	concentrate	on	getting	DFS	right	and	the	rest	should	be	
relatively	straightforward.	
	
Implement	the	depth-first	search	(DFS)	algorithm	in	the	DFS	function	in	student.rkt.	To	make	
your	algorithm	complete,	write	the	graph	search	version	of	DFS,	which	avoids	expanding	any	
already	visited	states	(if	you	do	not	keep	track	of	already	visited	states,	your	code	will	be	very	
slow	and	may	exceed	the	stack	size	allowed	for	racket).	
	
To	test	your	code,	try	the	following	commands	in	your	command	line	(substitute	\	for	/	if	using	
Windows):	
	

racket racket-solver/main.rkt -l layouts/tinyMaze.lay -s dfs
racket racket-solver/main.rkt -l layouts/tinySearch.lay -s dfs
racket racket-solver/main.rkt -l layouts/smallMaze.lay -s dfs
racket racket-solver/main.rkt -l layouts/greedySearch.lay -s dfs
racket racket-solver/main.rkt -l layouts/mediumMaze.lay -s dfs
racket racket-solver/main.rkt -l layouts/bigMaze.lay -s dfs
	
Each	test	should	print	a	list	of	instructions	in	.5	–	3	seconds.	
	
If	you	would	like	to	see	your	output	visualized	using	the	python	libraries,	try	the	following	
commands:	
	
python pacman.py -l tinyMaze -p RacketAgent
python pacman.py -l tinySearch -p RacketAgent
python pacman.py -l smallMaze -p RacketAgent
python pacman.py -l greedySearch -p RacketAgent
python pacman.py -l mediumMaze -p RacketAgent
python pacman.py -l bigMaze -z .5 -p RacketAgent
	
Hint:	If	you	use	a	Stack	as	your	data	structure	and	add	nodes	to	the	frontier	in	the	same	order	
they	are	provided	by	get-succ,	the	solution	found	by	your	DFS	algorithm	for	mediumMaze	
should	have	a	length	of	234	(if	you	push	them	in	the	reverse	order	you	might	get	130).	Is	this	a	
least	cost	solution?	If	not,	think	about	what	depth-first	search	is	doing	to	get	a	sub-optimal	
path.	
	
Hint:	If	Pacman	moves	too	slowly	for	you	in	the	python	visualizations,	try	the	option	--
frameTime	0.	
	
Breadth	First	Search	
	
Implement	the	breadth-first	search	(BFS)	algorithm	in	the	BFS	function	in	student.rkt.	Again,	
write	a	graph	search	algorithm	that	avoids	expanding	any	already	visited	states.	Test	your	code	
the	same	way	you	did	for	depth-first	search.	
	
(again	substitute	\	for	/	if	using	Windows):	
	
racket racket-solver/main.rkt -l layouts/tinyMaze.lay -s bfs
racket racket-solver/main.rkt -l layouts/smallMaze.lay -s bfs
racket racket-solver/main.rkt -l layouts/greedySearch.lay -s bfs
racket racket-solver/main.rkt -l layouts/mediumMaze.lay -s bfs
racket racket-solver/main.rkt -l layouts/bigMaze.lay -s bfs
	
These	commands	should	each	take	.5	-	2	seconds	to	run.	
	

If	you	want	to,	you	can	also	try	tinySearch,	but	your	code	will	probably	take	10	seconds	or	more	
to	find	the	solution	using	BFS:	
	
racket racket-solver/main.rkt -l layouts/tinySearch.lay -s bfs
	
If	you	would	like	to	see	visuals	of	your	code	in	action,	try	the	following	python	commands:	
	
python pacman.py -l smallMaze -p RacketAgent -a fn=bfs
python pacman.py -l mediumMaze -p RacketAgent -a fn=bfs
python pacman.py -l greedySearch -p RacketAgent -a fn=bfs
python pacman.py -l bigMaze -p RacketAgent -a fn=bfs -z .5
	
Hint:	If	Pacman	moves	too	slowly	for	you,	try	the	option	--frameTime	0.	
	
A-Star	Search	
	
Implement	A*	graph	search	in	the	empty	function	A-star	in	student.rkt.	A*	takes	a	heuristic	
function	as	an	argument.	The	null-heuristic	function	in	utils.rkt	is	a	trivial	example.	
	
You	can	test	that	your	A*	implementation	is	working	correctly	by	running	the	following	racket	
commands	(again	substitute	\	for	/	if	using	Windows):	
	
racket racket-solver/main.rkt -l layouts/bigMaze.lay -s astar -r distance-to-food
racket racket-solver/main.rkt -l layouts/openMaze.lay -s astar -r distance-to-food
racket racket-solver/main.rkt -l layouts/greedySearch.lay -s astar -r count-food
racket racket-solver/main.rkt -l layouts/tinySearch.lay -s astar -r count-food

	
These	commands	should	each	take	.5	-	2	seconds	to	run.	
	
You	should	get	the	same	results	as	from	your	BFS	implementation,	but	in	less	time	(note	that	
tinySearch	should	now	only	take	a	few	seconds.	
	
If	you	would	like	to	see	visuals	of	your	code	in	action,	try	the	following	python	commands:	
	
python pacman.py -l bigMaze -z .5 -p RacketAgent -a fn=astar,heuristic=distance-to-food
python pacman.py -l openMaze -z .5 -p RacketAgent -a fn=astar,heuristic=distance-to-food
python pacman.py -l greedySearch -p RacketAgent -a fn=astar,heuristic=count-food
python pacman.py -l tinySearch -p RacketAgent -a fn=astar,heuristic=count-food

	
Some	Tips	for	Racket	
	

There	are	several	ways	in	which	Racket	works	differently	from	object	oriented	
languages,	as	you	no	doubt	discovered	in	Programming	Assignment	0.	This	section	contains	a	
few	pointers	on	how	to	do	some	things	in	Racket	that	might	feel	a	little	non-intuitive.
	

You	can	find	more	notes	on	how	to	use	functions	in	the	utils.rkt	file	and	examples	in	the	slides	
from	Thursday,	September	13.	
	
Assigning	and	Scoping	Variables	
	
Use	define	to	make	global	variables,	let	to	make	locally	scoped	variables	and	set!	to	
change	the	value	of	a	variable.	To	assign	multiple	variables	use	define-values,	let-
values	and	set!-values.	
	
While	loops	
To	make	a	while	loop	in	racket,	add	a	#:break	condition	to	an	infinite	for	loop.	For	example:	
	
(let ([x 0])

(for ([i (in-naturals 1)]
#:break (>= x 5))

(print (list i x))
 (set! x (add1 x))))

	
You	can	also	add	“continue”	type	statements	by	filtering	loops	with	the	#:unless	operator:	
	
(let ([x 0])

(for ([i (in-naturals 1)]
 #:unless (even? i)

#:break (>= x 5))
(print (list i x))

 (set! x (add1 x))))	
	
Using	Lists,	Stacks,	Queues	and	Priority	Queues	
	
Methods	of	stacks,	queues	and	priority	queues	have	been	provided	at	the	top	of	utils.rkt.	
	
You	will	notice	that	push	functions	return	the	datatype	and	pop	functions	return	the	popped	
item	and	the	data	type.	This	is	because	in	functional	languages	like	Racket	it	is	considered	good	
practice	not	to	mutate	objects	and	instead	re-assign	them	to	the	mutated	version	using	
functions	like	set!	and	set!-values.	
	
You	can	check	if	an	element	is	in	a	list	using	the	ismember?	function	(this	will	come	in	handy	
when	you	want	to	check	if	a	state	was	previously	visited).	
	
Acknowledgements	
	
The	python	code	and	idea	for	this	project	comes	from	UC	Berkley.	You	can	read	about	their	
python	version	of	this	project	at	http://ai.berkeley.edu		

