
Back to Week 3 Lessons This Course: Functional Program Design in Scala Prev Next

Programming Assignment: Quickcheck

Deadline Pass this assignment by June 24, 11:59 PM PDT

 Passed and veri�ed · 10/10 points

Instructions

My submission

Discussions

Note: If you have paid for the Certi�cate, please make sure you are submitting
to the required assessment and not the optional assessment. If you
mistakenly use the token from the wrong assignment, your grades will not
appear

Attention: You are allowed to submit an unlimited number of times. Once you
have submitted your solution, you should see your grade and a feedback about your
code on the Coursera website within 20 minutes. If you want to improve your grade,
just submit an improved solution. The best of all your submissions will count as the
�nal grade.

Download the quickcheck.zip handout archive �le and extract it somewhere on your
machine.

In this assignment, you will work with the ScalaCheck library for automated
speci�cation-based testing.

You’re given several implementations of a purely functional data structure: a heap,
which is a priority queue supporting operations insert, meld, �ndMin, deleteMin.
Here is the interface:

https://www.coursera.org/learn/progfun2/home/welcome
https://www.coursera.org/learn/progfun2/lecture/62Xed/lecture-3-6-discrete-event-simulation-implementation-and-test
https://www.coursera.org/learn/progfun2/programming/ML01L/quickcheck
https://www.coursera.org/learn/progfun2/programming/DF4y7/quickcheck
https://www.coursera.org/learn/progfun2/programming/DF4y7/quickcheck/submission
https://www.coursera.org/learn/progfun2/programming/DF4y7/quickcheck/discussions
http://alaska.epfl.ch/~dockermoocs/progfun2/quickcheck.zip
https://github.com/rickynils/scalacheck/blob/master/doc/UserGuide.md
https://www.coursera.org/

All these operations are pure; they never modify the given heaps, and may return
new heaps. This purely functional interface is taken from Brodal & Okasaki’s paper,
Optimal Purely Functional Priority Queues.

A priority queue is a queue, in which each element is assigned a "priority". In
classical queues, elements can be retrieved in �rst-in, �rst-out order, whereas in a
priority queue, elements are retrieved as per the priority they are assigned. As such,
classical queues are therefore just priority queues where the priority is the order in
which elements are inserted.

As seen in the above interface, we can create a queue by

instantiating an empty queue.

inserting an element into a queue (with an attached priority), thereby creating a

new queue.

melding two queues, which results in a new queue that contains all the elements

of the �rst queue and all the elements of the second queue.

In addition, we can can test whether a queue is empty or not with isEmpty. If you
have a non-empty queue, you can �nd its minimum with �ndMin. You can also get a
smaller queue from a non-empty queue by deleting the minimum element with
deleteMin. In this assignment, the heap operates on Int elements with their values
as priorities, so �ndMin �nds the least integer in the heap.

You are given multiple implementations of IntHeaps in �le
src/main/scala/quickcheck/Heap.scala. Only one of these is correct, while the other
ones have bugs. Your goal is to write some properties that will be automatically
checked. All the properties you write should be satis�able by the correct
implementation, while at least one of them should fail in each incorrect
implementation, thus revealing it's buggy.

You should write your properties in the body of the QuickCheckHeap class in the �le
src/main/scala/quickcheck/QuickCheck.scala.

trait Heap {
 type H // type of a heap
 type A // type of an element
 def ord: Ordering[A] // ordering on elements

 def empty: H // the empty heap
 def isEmpty(h: H): Boolean // whether the given heap h is empty

 def insert(x: A, h: H): H // the heap resulting from inserting
 x into h
 def meld(h1: H, h2: H): H // the heap resulting from merging h1
 and h2

 def findMin(h: H): A // a minimum of the heap h
 def deleteMin(h: H): H // a heap resulting from deleting a
 minimum of h
}

1
2
3
4
5
6
7
8
9

10

11
12
13

14

http://www.brics.dk/RS/96/37/BRICS-RS-96-37.pdf
https://www.coursera.org/

Part 1: A Heap Generator

Before checking properties, we must �rst generate some heaps. Your �rst task is to
implement such a generator:

For doing this, you can take inspiration from the lecture on generators and monads.
Here are some basic generators that you can combine together to create larger
ones:

arbitrary[T] is a generator that generates an arbitrary value of type T. As we are

interested in IntHeaps it will generate arbitrary integer values, uniformly at

random.

oneOf(gen1, gen2) is a generator that picks one of gen1 or gen2, uniformly at

random.

const(v) is a generator that will always return the value v.

You can �nd many more useful ones either in the ScalaCheck user guide or in the
Scaladocs.

For instance, we can write a generator for maps of type Map[Int, Int] as follows:

Part 2: Writing Properties

Now that you have a generator, you can write property-based tests. The idea behind
property-based testing is to verify that certain properties hold on your
implementations. Instead of specifying exactly which inputs our properties should
satisfy, we instead generate random inputs, and run each property test on these
randomly generated inputs. This way we increase the likelihood that our
implementation is correct.

lazy val genHeap: Gen[H] = ???

lazy val genMap: Gen[Map[Int,Int]] = oneOf(
 const(Map.empty[Int,Int]),
 for {
 k <- arbitrary[Int]
 v <- arbitrary[Int]
 m <- oneOf(const(Map.empty[Int,Int]), genMap)
 } yield m.updated(k, v)
)

1

1
2
3
4
5
6
7
8

https://github.com/rickynils/scalacheck/blob/master/doc/UserGuide.md
https://www.scalacheck.org/files/scalacheck_2.11-1.13.4-api/index.html#org.scalacheck.Gen
https://www.coursera.org/

For example, we would like to check that adding a single element to an empty heap,
and then removing this element, should yield the element in question. We would
write this requirement as follows:

Another property we might be interested in is that, for any heap, adding the
minimal element, and then �nding it, should return the element in question:

In src/main/scala/quickcheck/QuickCheck.scala, write some more properties that
should be satis�ed. Your properties should at least cover the following relevant
facts:

If you insert any two elements into an empty heap, �nding the minimum of the

resulting heap should get the smallest of the two elements back.

If you insert an element into an empty heap, then delete the minimum, the

resulting heap should be empty.

Given any heap, you should get a sorted sequence of elements when continually

�nding and deleting minima. (Hint: recursion and helper functions are your

friends.)

Finding a minimum of the melding of any two heaps should return a minimum of

one or the other.

In order to get full credit, all tests should pass, that is you should correctly identify
each buggy implementation while only writing properties that are true of heaps.
Your properties should cover all of the above-stated relevant facts. You are free to
write as many or as few properties as you want in order to achieve a full passing
suite.

Note that this assignment asks you to write tests whose content captures all of the
above relevant facts, and whose execution correctly di�erentiates correct from
incorrect heaps among the heaps given to you. You need not worry about additional
buggy heaps that someone else might write.

property("min1") = forAll { a: Int =>
 val h = insert(a, empty)
 findMin(h) == a
}

property("gen1") = forAll { (h: H) =>
 val m = if (isEmpty(h)) 0 else findMin(h)
 findMin(insert(m, h)) == m
}

1
2
3
4

1
2
3
4

https://www.coursera.org/

How to submit
Copy the token below and run the submission script included in the

assignment download. When prompted, use your email address

sraaphorst@gemini.edu.

Generate new token

Your submission token is unique to you and should not be shared with

anyone. You may submit as many times as you like.

  

https://www.coursera.org/

