
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3

Table of Contents

Table of Contents
ISSUE-TRACKER SYSTEM GUIDE

1. INTRO
1.1. Purpose
1.2. Audience

2. ARCHITECTURE
2.1. IOCM architecture definition

2.1.1. The Control components
2.1.2. The Model components
2.1.3. The Input Components
2.1.4. The Output Components
2.1.5. The Converter Components

2.2. Multi-instance setup
2.2.1. Multi-environment naming convention

3. BUSINESS LOGIC
3.1. Projects management
3.2. Increase the date for all projects
3.3. Categories

3.3.1. Issues / Issue items / items
3.3.2. to search for the project daily file

4. APPLICATION CONTROL FLOW
4.1. Shell control flow

1/4

ISSUE-TRACKER SYSTEM
GUIDE

1. INTRO

1.1. Purpose
The purpose of this guide is to provide description of the existing issue-tracker System and it's architecture

1.2. Audience
Any givien instance of the issue-tracker should have ONE and only ONE person which is responsible at the end for the
funtioning of THIS instance - so think carefully before attempting to take ownership for an instance. The author(s) of the
code are not responsible for the operation, bugs or whatever happens to a new instannce. As a responsible owner of an
instance you could create, share and assign issues to the authors of the source code, yet there is no service level
agreement, nor even promise to help.

2. ARCHITECTURE

2.1. IOCM architecture definition
The Input-Output Control Model architecture is and application architecture providing the highest possible abstraction for
allmost any software artifact, by dividing its components based on their abstract responsibilites, such as Input, Output ,
Control and Model.

2.1.1. The Control components
The Control components control the control flow in the application. The instantiate the Models and pass them to the
Readers , Converters and Writers for output.

2.1.2. The Model components
The model components model the DATA of the application - that is no configuration, nor control flow nor anything else
should be contained wihing the model.
Should you encounter data, which is not modelled yet , you should expand the Model and NOT provide differrent data
storage and passing techniques elsewhere in the code base ...

2.1.3. The Input
Components
The Input Components are generally named as "Readers". Their responsibility is to read the application data into Model(s).

2.1.4. The Output
Components
The Output Components are generally named as "Writers" Their responsibility is to write the already processed data from
the Models into the output media .

2.1.5. The Converter
Components
The Converters apply usually the business logic for converting the input data from the Models into the app specific data
back to the Models.

2.2. Multi-instance setup
The multi-instance setup refers to the capability of any installed and setup instance of the issue-tracker application to
"know" its version , environment type - developement , testing and production) and owner.

2.2.1. Multi-environment naming
convention
Each database used by the issue-tracker application has an <<environment abbreviation>> suffix refering to its
environment type. Running application layers against different db versions should be supported as much as possible.

3. BUSINESS
LOGIC

3.1. Projects management
You can manage multiple projects with the issue-tracker tool. Each project has its own data directories, database storage
and configurations. You could also have different envornments named dev,tst,prd for each project separately.
As the tool is backwards compatible you could have differrrent instances of the issue-tracker projects with different versions
(and set of features) operatiing against differrent project (each one in its own version).

2/4

You must pre-set the configuration variables of an issue-tracker project each time you start working on a project from the
shell

doParseIniEnvVars /vagrant/csitea/cnf/projects/isg-pub/isg-pub.issue-tracker.doc-pub-host.conf

3.2. Increase the date for all projects
to increase the date for all the projects at once use the following oneliner.

while read -r f ; do doParseIniEnvVars $f ; bash src/bash/issue-tracker/issue-tracker.sh -a increase-date ; done < <(find doParseIniEnvVars
/vagrant/csitea/cnf/projects/issue-tracker/ -type f)

3.3. Categories
Each issue item could be categorized under one and only one category. One category might have 1 or more issues.
The categories could contain letters ,numbers, dashes

Examples:
organisation-it
organisation-it-operations

3.3.1. Issues / Issue items /
items
Issue item is the shortest possible description of task , activity , note or anything requiring distinguishable and prerferable
measurable action or producing verfifiable outcome.
Issues could be of different types - tasks, activities, notes etc.

Examples:
go get the milk
do the homework
procurement e-mail discussion follow-up

3.3.2. to search for the project daily
file
to search for the project daily file run the following liner first to start the dev server of the react mini-app.
Than point your broser at the following url:
http://doc-pub-host:3307/
(Hardcoded for now …)

bash src/bash/issue-tracker/issue-tracker.sh -a mojo-morbo-start

4. APPLICATION CONTROL
FLOW
This section provides a generic control flow description for the shell based and ui based control flows.

4.1. Shell control flow
The shell control flow is based on the control model input output architecture.

Figure: 1 issue tracker control flow

3/4

4/4

	Table of Contents
	ISSUE-TRACKER SYSTEM GUIDE
	1. INTRO
	1.1. Purpose
	1.2. Audience

	2. ARCHITECTURE
	2.1. IOCM architecture definition
	2.1.1. The Control components
	2.1.2. The Model components
	2.1.3. The Input Components
	2.1.4. The Output Components
	2.1.5. The Converter Components

	2.2. Multi-instance setup
	2.2.1. Multi-environment naming convention

	3. BUSINESS LOGIC
	3.1. Projects management
	3.2. Increase the date for all projects
	3.3. Categories
	3.3.1. Issues / Issue items / items
	3.3.2. to search for the project daily file

	4. APPLICATION CONTROL FLOW
	4.1. Shell control flow

