


Getting	started	with	Spring	Framework
Second	Edition

	
	

Ashish	Sarin,	J	Sharma



	
Table	of	contents
Preface

How	to	use	this	book
Conventions	used	in	this	book
Feedback	and	questions
About	the	authors

Chapter	1	–	Introduction	to	Spring	Framework
1-1	Introduction
1-2	Spring	Framework	modules
1-3	Spring	IoC	container
1-4	Benefits	of	using	Spring	Framework
Consistent	approach	to	managing	local	and	global	transactions
Declarative	transaction	management
Security
JMX	(Java	Management	Extensions)
JMS	(Java	Message	Service)
Caching
1-5	A	simple	Spring	application
Identifying	application	objects	and	their	dependencies
Creating	POJO	classes	corresponding	to	identified	application	objects
Creating	the	configuration	metadata
Creating	an	instance	of	Spring	container
Access	beans	from	the	Spring	container
1-6	Frameworks	built	on	top	of	Spring
1-7	Summary

Chapter	2	–	Spring	Framework	basics
2-1	Introduction
2-2	Programming	to	interfaces	design	principle
Scenario:	Dependent	class	contains	reference	to	the	concrete	class	of	dependency
Scenario:	Dependent	class	contains	reference	to	the	interface	implemented	by	the
dependency
Spring’s	support	for	‘programming	to	interfaces’	design	approach



2-3	Different	approaches	to	instantiating	Spring	beans
Instantiating	beans	via	static	factory	methods
Instantiating	beans	via	instance	factory	methods
2-4	Dependency	injection	techniques
Setter-based	DI
Constructor-based	DI
2-5	Bean	scopes
Singleton
Prototype
Choosing	the	right	scope	for	your	beans
2-6	Summary

Chapter	3	-	Configuring	beans
3-1	Introduction
3-2	Bean	definition	inheritance
MyBank	–	Bean	definition	inheritance	example
What	gets	inherited	?
3-3	Constructor	argument	matching
Passing	simple	values	and	bean	references	using	<constructor-arg>	element
Constructor	argument	matching	based	on	type
Constructor	argument	matching	based	on	name
3-4	Configuring	different	types	of	bean	properties	and	constructor	arguments
Built-in	property	editors	in	Spring
Specifying	values	for	different	collection	types
Specifying	values	for	arrays
Default	collection	implementation	for	<list>,	<set>	and	<map>	elements
3-5	Built-in	property	editors
CustomCollectionEditor
CustomMapEditor
CustomDateEditor
3-6	Registering	property	editors	with	the	Spring	container
Creating	a	PropertyEditorRegistrar	implementation
Configuring	the	CustomEditorConfigurer	class
3-7	Concise	bean	definitions	with	p	and	c	namespaces
p-namespace
c-namespace
3-8	Spring’s	util	schema



<list>
<map>
<set>
<properties>
<constant>
<property-path>
3-9	FactoryBean	interface
MyBank	application	–	Storing	events	in	the	database
MyBank	–	FactoryBean	example
Accessing	the	FactoryBean	instance
3-10	Summary

Chapter	4	-	Dependency	injection
4-1	Introduction
4-2	Inner	beans
4-3	Explicitly	controlling	the	bean	initialization	order	with	depends-on	attribute
MyBank	–	implied	dependencies	between	beans
Implicit	dependency	problem
4-4	Singleton-	and	prototype-scoped	bean’s	dependencies
Singleton-scoped	bean’s	dependencies
Prototype-scoped	bean’s	dependencies
4-5	Obtaining	new	instances	of	prototype	beans	inside	singleton	beans
ApplicationContextAware	interface
<lookup-method>	element
<replaced-method>	element
4-6	Autowiring	dependencies
byType
constructor
byName
default	/	no
Making	beans	unavailable	for	autowiring
Autowiring	limitations
4-7	Summary

Chapter	5	-	Customizing	beans	and	bean	definitions
5-1	Introduction
5-2	Customizing	bean’s	initialization	and	destruction	logic



Making	Spring	invoke	cleanup	method	specified	by	the	destory-method	attribute
Cleanup	methods	and	prototype-scoped	beans
Specifying	default	bean	initialization	and	destruction	methods	for	all	beans
InitializingBean	and	DisposableBean	lifecycle	interfaces
JSR	250’s	@PostConstruct	and	@PreDestroy	annotations
5-3	Interacting	with	newly	created	bean	instances	using	BeanPostProcessor
BeanPostProcessor	example	–	Validating	bean	instances
BeanPostProcessor	example	–	Resolving	bean	dependencies
BeanPostProcessor	behavior	for	FactoryBeans
RequiredAnnotationBeanPostProcessor
DestructionAwareBeanPostProcessor
5-4	Modifying	bean	definitions	using	BeanFactoryPostProcessor
BeanFactoryPostProcessor	example
PropertySourcesPlaceholderConfigurer
PropertyOverrideConfigurer
5-5	Summary

Chapter	6-	Annotation-driven	development	with	Spring
6-1	Introduction
6-2	Identifying	Spring	components	with	@Component
6-3	@Autowired	-	autowiring	dependencies	by	type
6-4	@Qualifier	–	autowiring	dependencies	by	name
6-5	JSR	330’s	@Inject	and	@Named	annotations
6-6	JSR	250’s	@Resource	annotation
6-7	@Scope,	@Lazy,	@DependsOn	and	@Primary	annotations
6-8	Simplifying	component	configuration	using	@Value	annotation
6-9	Validating	objects	using	Spring’s	Validator	interface
6-10	Specifying	constraints	using	JSR	303	annotations
JSR	303	support	in	Spring
6-11	Programmatically	configuring	Spring	beans	using	@Configuration	and	@Bean
annotations
6-12	Summary

Chapter	7	-	Database	interaction	using	Spring
7-1	Introduction
7-2	MyBank	application’s	requirements



7-3	Developing	the	MyBank	application	using	Spring’s	JDBC	module
Configuring	a	data	source
Creating	DAOs	that	use	Spring’s	JDBC	module	classes
7-4	Developing	the	MyBank	application	using	Hibernate
Configuring	SessionFactory	instance
Creating	DAOs	that	use	Hibernate	API	for	database	interaction
7-5	Transaction	management	using	Spring
MyBank’s	transaction	management	requirements
Programmatic	transaction	management
Declarative	transaction	management
Spring’s	support	for	JTA
7-6	Summary

Chapter	8	-	Messaging,	emailing,	asynchronous	method	execution,	and	caching	using
Spring
8-1	Introduction
8-2	MyBank	application’s	requirements
8-3	Sending	JMS	messages
Configuring	ActiveMQ	broker	to	run	in	embedded	mode
Configuring	a	JMS	ConnectionFactory
Sending	JMS	messages	using	JmsTemplate
Sending	JMS	messages	within	a	transaction
Dynamic	JMS	destinations	and	JmsTemplate	configuration
JmsTemplate	and	message	conversion
8-4	Receiving	JMS	messages
Synchronously	receiving	JMS	messages	using	JmsTemplate
Asynchronously	receiving	JMS	messages	using	message	listener	containers
8-5	Sending	emails
8-6	Task	scheduling	and	asynchronous	execution
TaskExecutor	interface
TaskScheduler	interface
@Async	and	@Scheduled	annotations
8-7	Caching
Configuring	a	CacheManager
Caching	annotations	-	@Cacheable,	@CacheEvict	and	@CachePut
8-8	Running	the	MyBank	application
8-9	Summary



Chapter	9	-	Aspect-oriented	programming
9-1	Introduction
9-2	A	simple	AOP	example
9-3	Spring	AOP	framework
Proxy	creation
expose-proxy	attribute
9-4	Pointcut	expressions
@Pointcut	annotation
execution	and	args	pointcut	designators
bean	pointcut	designator
Annotations-based	pointcut	designators
9-5	Advice	types
Before	advice
After	returning	advice
After	throwing	advice
After	advice
Around	advice
9-6	Spring	AOP	-	XML	schema-style
Configuring	an	AOP	aspect
Configuring	an	advice
Associating	a	pointcut	expression	with	an	advice
9-7	Summary

Chapter	10	–	Spring	Web	MVC	basics
10-1	Introduction
10-2	Directory	structure	of	sample	web	projects
10-3	Understanding	the	‘Hello	World’	web	application
HelloWorldController.java	–	Hello	World	web	application’s	controller	class
helloworld.jsp	–	JSP	page	that	shows	the	‘Hello	World	!!’	message
myapp-config.xml	–	Web	application	context	XML	file
web.xml	–	Web	application	deployment	descriptor
10-4	DispatcherServlet	–	the	front	controller
Accessing	ServletContext	and	ServletConfig	objects
10-5	Developing	controllers	using	@Controller	and	@RequestMapping	annotations
Developing	a	‘Hello	World’	web	application	using	an	annotated	controller
10-6	MyBank	web	application’s	requirements



10-7	Spring	Web	MVC	annotations	-	@RequestMapping	and	@RequestParam
Mapping	requests	to	controllers	or	controller	methods	using	@RequestMapping
@RequestMapping	annotated	methods	arguments
@RequestMapping	annotated	methods	return	types
Passing	request	parameters	to	controller	methods	using	@RequestParam
10-8	Validation
10-9	Handling	exceptions	using	@ExceptionHandler	annotation
10-11	Loading	root	web	application	context	XML	file(s)
10-12	Summary

Chapter	11	–	Validation	and	data	binding	in	Spring	Web	MVC
11-1	Introduction
11-2	Adding	and	retrieving	model	attributes	using	@ModelAttribute	annotation
Adding	model	attributes	using	method-level	@ModelAttribute	annotation
Retrieving	model	attributes	using	@ModelAttribute	annotation
Request	processing	and	@ModelAttribute	annotated	methods
Behavior	of	@ModelAttribute	annotated	method	arguments
RequestToViewNameTranslator
11-3	Caching	model	attributes	using	@SessionAttributes	annotation
11-4	Data	binding	support	in	Spring
WebDataBinder	–	data	binder	for	web	request	parameters
Configuring	a	WebDataBinder	instance
Allowing	or	disallowing	fields	from	data	binding	process
Inspecting	data	binding	and	validation	errors	using	BindingResult	object
11-5	Validation	support	in	Spring
Validating	model	attributes	using	Spring’s	Validator	interface
Specifying	constraints	using	JSR	303	annotations
Validating	objects	that	use	JSR	303	annotations
11-6	Spring’s	form	tag	library
HTML5	support	in	Spring’s	form	tag	library
11-7	Summary

Chapter	12	–Developing	RESTful	web	services	using	Spring	Web	MVC
12-1	Introduction
12-2	Fixed	deposit	web	service
12-3	Implementing	a	RESTful	web	service	using	Spring	Web	MVC



JSON	(JavaScript	Object	Notation)
FixedDepositWS	web	service	implementation
12-4	Accessing	RESTful	web	services	using	RestTemplate
12-5	Converting	Java	objects	to	HTTP	requests	and	responses	and	vice	versa	using
HttpMessageConverter
12-6	@PathVariable	and	@MatrixVariable	annotations
12-7	Summary

Chapter	13	–	More	Spring	Web	MVC	–	internationalization,	file	upload	and
asynchronous	request	processing
13-1	Introduction
13-2	Pre-	and	post-processing	requests	using	handler	interceptors
Implementing	and	configuring	a	handler	interceptor
13-3	Internationalizing	using	resource	bundles
MyBank	web	application’s	requirements
Internationalizing	and	localizing	MyBank	web	application
13-4	Asynchronously	processing	requests
Asynchronous	request	processing	configuration
Returning	Callable	from	@RequestMapping	methods
Returning	DeferredResult	from	@RequestMapping	methods
Setting	default	timeout	value
Intercepting	asynchronous	requests
13-5	Type	conversion	and	formatting	support	in	Spring
Creating	a	custom	Converter
Configuring	and	using	a	custom	Converter
Creating	a	custom	Formatter
Configuring	a	custom	Formatter
Creating	AnnotationFormatterFactory	to	format	only	@AmountFormat	annotated
fields
Configuring	AnnotationFormatterFactory	implementation
13-6	File	upload	support	in	Spring	Web	MVC
Uploading	files	using	CommonsMultipartResolver
Uploading	files	using	StandardServletMultipartResolver
13-7	Summary

Chapter	14	–	Securing	applications	using	Spring	Security
14-1	Introduction



14-2	Security	requirements	of	the	MyBank	web	application
14-3	Securing	MyBank	web	application	using	Spring	Security
Web	request	security	configuration
Authentication	configuration
Securing	JSP	content	using	Spring	Security’s	JSP	tab	library
Securing	methods
14-4	MyBank	web	application	-	securing	FixedDepositDetails	instances	using	Spring
Security’s	ACL	module
Deploying	and	using	ch14-bankapp-db-security	project
Database	tables	to	store	ACL	and	user	information
User	authentication
Web	request	security
JdbcMutableAclService	configuration
Method-level	security	configuration
Domain	object	instance	security
Managing	ACL	entries	programmatically
MutableAcl	and	security
14-5	Summary

Appendix	A	–	Importing	and	deploying	sample	projects	in	Eclipse	IDE	(or	IntelliJ
IDEA)
A-1	Setting	up	the	development	environment
A-2	Importing	a	sample	project	into	Eclipse	IDE	(or	IntelliJ	IDEA)
Importing	a	sample	project
Configuring	the	M2_REPO	classpath	variable	in	the	Eclipse	IDE
A-3	Configuring	Eclipse	IDE	with	Tomcat	7	server
A-4	Deploying	a	web	project	on	Tomcat	7	server
Running	the	Tomcat	7	server	in	embedded	mode

	
	
	
	
	
	
	



	
	
	
	
	



Preface
How	to	use	this	book
Download	sample	projects

This	 book	 comes	with	many	 sample	 projects	 that	 you	 can	 download	 from	 the	 following	Google	Code
project:	http://code.google.com/p/getting-started-with-spring-framework-2edition/.	You	can	download	the
sample	projects	as	a	single	ZIP	file	or	you	can	checkout	the	sample	projects	using	SVN.	For	more	details,
refer	to	the	above	URL.

Import	sample	projects	into	your	Eclipse	or	IntelliJ	IDEA	IDE

If	you	see	IMPORT	chapter<chapter-number>/<project	name>	at	 any	point	while	 reading	 the	book,
you	should	import	the	specified	project	into	your	Eclipse	or	IntelliJ	IDEA	IDE	(or	any	other	IDE	that	you
are	using).	The	sample	projects	use	Maven	3.x	build	tool	for	building	the	project;	therefore,	you’ll	find	a
pom.xml	file	inside	each	of	the	projects.	A	pom.xml	file	is	also	provided	at	the	root	of	the	source	code
distribution,	which	builds	all	the	projects.

Refer	appendix	A	to	see	the	steps	required	for	importing	and	running	the	sample	projects.

Refer	to	code	examples

Each	 example	 listing	 specifies	 the	 sample	 project	 name	 (using	Project	 label)	 and	 the	 location	 of	 the
source	file	(using	Source	location	label).	If	the	Project	and	Source	location	labels	are	not	specified,	you
can	assume	that	the	code	shown	in	the	example	listing	is	not	being	used	anywhere	in	the	sample	projects,
and	it	has	been	shown	purely	to	simplify	understanding.

Conventions	used	in	this	book
Italics	has	been	used	for	emphasizing	terms

Comic	 Sans	 MS	 has	 been	 used	 for	 example	 listings,	 Java	 code,	 configuration	 details	 in	 XML	 and
properties	files

Comic	 Sans	 MS	 has	 been	 used	 in	 example	 listings	 to	 highlight	 important	 parts	 of	 the	 code	 or
configuration

A	NOTE	highlights	an	importaint	point.
	

	

Feedback	and	questions
You	 can	 post	 your	 feedback	 and	 questions	 to	 the	 authors	 in	 the	 following	 Google	 Groups	 forum:
https://groups.google.com/forum/#!forum/getting-started-with-spring-framework

About	the	authors
Ashish	Sarin	is	a	Sun	Certified	Enterprise	Architect	with	more	than	14	years	of	experience	in	architecting
applications.	He	is	the	author	of	Spring	Roo	1.1	Cookbook	(by	Packt	Publishing)	and	Portlets	in	Action

http://code.google.com/p/getting-started-with-spring-framework-2edition/
https://groups.google.com/forum/#!forum/getting-started-with-spring-framework


(by	Manning	Publications)

J	Sharma	is	a	freelance	Java	developer	with	extensive	experience	in	developing	Spring	applications.



Chapter	1	–	Introduction	to	Spring	Framework



1-1	Introduction
In	the	traditional	Java	enterprise	application	development	efforts,	it	was	a	developer’s	responsibility	to
create	well-structured,	maintainable	and	easily	testable	applications.	The	developers	used	myriad	design
patterns	to	address	these	non-business	requirements	of	an	application.	This	not	only	led	to	low	developer
productivity,	but	also	adversely	affected	the	quality	of	developed	applications.

Spring	 Framework	 (or	 ‘Spring’	 in	 short)	 is	 an	 open	 source	 application	 framework	 from	SpringSource
(http://www.springsource.org)	 that	 simplifies	 developing	 Java	 enterprise	 applications.	 It	 provides	 the
infrastructure	for	developing	well-structured,	maintainable	and	easily	 testable	applications.	When	using
Spring	 Framework,	 a	 developer	 only	 needs	 to	 focus	 on	 writing	 the	 business	 logic	 of	 the	 application,
resulting	in	improved	developer	productivity.	You	can	use	Spring	Framework	to	develop	standalone	Java
applications,	web	applications,	applets,	or	any	other	type	of	Java	application.

This	chapter	starts	off	with	an	introduction	to	Spring	Framework	modules	and	its	benefits.	At	the	heart	of
Spring	Framework	is	its	Inversion	of	Control	(IoC)	container,	which	provides	dependency	injection	(DI)
feature.	 	 This	 chapter	 introduces	Spring’s	DI	 feature	 and	 IoC	 container,	 and	 shows	 how	 to	 develop	 a
standalone	 Java	 application	 using	 Spring.	 Towards	 the	 end	 of	 this	 chapter,	 we’ll	 look	 at	 some	 of	 the
SpringSource’s	projects	that	use	Spring	Framework	as	their	foundation.	This	chapter	will	set	the	stage	for
the	remaining	chapters	that	delve	deeper	into	the	Spring	Framework.

NOTE	In	this	book,	we’ll	use	an	example	Internet	Banking	application,	MyBank,	to	introduce	Spring
Framework	features.

http://www.springsource.org/


1-2	Spring	Framework	modules
Spring	Framework	consists	of	multiple	modules	that	are	grouped	based	on	the	application	development
features	they	address.	The	following	table	describes	the	different	module	groups	in	Spring	Framework:

Module	group Description

Core	container
Contains	modules	that	form	the	foundation	of	Spring	Framework.	The	modules	in	this	group
provide	Spring’s	DI	feature	and	IoC	container	implementation.

	

	

AOP	and
instrumentation

	

Contains	 modules	 that	 support	 AOP	 (Aspect-oriented	 Programming)	 and	 class
instrumentation.

Data	Access/Integration
Contains	modules	 that	 simplify	 interaction	with	 databases	 and	messaging	 providers.	 This
module	group	also	contains	modules	that	support	programmatic	and	declarative	transaction
management,	and	object/XML	mapping	implementations,	like	JAXB	and	Castor.

Web Contains	modules	that	simplify	developing	web	and	portlet	applications.

Test Contains	a	single	module	that	simplifies	creating	unit	and	integration	tests.

	
The	above	 table	shows	that	Spring	covers	every	aspect	of	enterprise	application	development;	you	can
use	Spring	for	developing	web	applications,	accessing	databases,	managing	transactions,	creating	unit	and
integration	 tests,	 and	 so	on.	The	Spring	Framework	modules	 are	designed	 in	 such	a	way	 that	you	only
need	to	include	the	modules	that	your	application	needs.	For	instance,	to	use	Spring’s	DI	feature	in	your
application,	you	only	need	to	include	the	modules	grouped	under	Core	container.	As	you	progress	through
this	book,	you’ll	find	details	of	some	of	the	modules	that	are	part	of	Spring,	and	examples	that	show	how
they	are	used	in	developing	applications.

The	following	figure	shows	the	inter-dependencies	of	different	modules	of	Spring:

	
Figure	1-1	Spring	modules	inter-dependencies

You	can	infer	from	the	above	figure	that	the	modules	contained	in	the	Core	container	group	are	central	to
the	Spring	Framework,	and	other	modules	depend	on	it.	Equally	important	are	the	modules	contained	in
the	AOP	and	 instrumentation	group	because	 they	provide	AOP	features	 to	other	modules	 in	 the	Spring
Framework.

Now,	that	you	have	some	basic	idea	about	the	areas	of	application	development	covered	by	Spring,	let’s



look	at	the	Spring	IoC	container.



1-3	Spring	IoC	container
A	Java	application	consists	of	objects	that	interact	with	each	other	to	provide	application	behavior.	The
objects	with	which	an	object	 interacts	are	referred	 to	as	 its	dependencies.	For	 instance,	 if	an	object	X
interacts	with	objects	Y	and	Z,	then	Y	and	Z	are	dependencies	of	object	X.	DI	is	a	design	pattern	in	which
the	dependencies	of	an	object	are	typically	specified	as	arguments	to	its	constructor	and	setter	methods.
And,	these	dependencies	are	injected	into	the	object	when	it’s	created.

In	 a	 Spring	 application,	 Spring	 IoC	 container	 (also	 referred	 to	 as	 Spring	 container)	 is	 responsible	 for
creating	 application	 objects	 and	 injecting	 their	 dependencies.	 The	 application	 objects	 that	 the	 Spring
container	creates	and	manages	are	referred	as	beans.	As	 the	Spring	container	 is	responsible	for	putting
together	application	objects,	you	don’t	need	to	implement	design	patterns,	like	Factory,	Service	Locator,
and	so	on,	to	compose	your	application.	DI	is	also	referred	to	as	Inversion	of	Control	(IoC)	because	the
responsibility	of	creating	and	injecting	dependencies	is	not	with	the	application	object	but	with	the	Spring
container.

Let’s	say	that	the	MyBank	application	(which	is	the	name	of	our	sample	application)	contains	two	objects,
FixedDepositController	 and	 FixedDepositService.	 The	 following	 example	 listing	 shows	 that	 the
FixedDepositController	object	depends	on	FixedDepositService	object:

Example	listing	1-1:	FixedDepositController	class

public	class	FixedDepositController	{
				private	FixedDepositService	fixedDepositService;
	
				public	FixedDepositController()	{
								fixedDepositService	=	new	FixedDepositService();
				}
			
				public	boolean	submit()	{
							//--	save	the	fixed	deposit	details
						fixedDepositService.save(.....);
				}
}

In	 the	 above	 example	 listing,	 FixedDepositController’s	 constructor	 creates	 an	 instance	 of
FixedDepositService	 which	 is	 later	 used	 in	 FixedDepositController’s	 submit	 method.	 As
FixedDepositController	 interacts	 with	 FixedDepositService,	 FixedDepositService	 represents	 a
dependency	of	FixedDepositController.

To	 configure	 FixedDepositController	 as	 a	 Spring	 bean,	 you	 first	 need	 to	 modify	 the
FixedDepositController	class	of	example	listing	1-1	such	that	it	accepts	FixedDepositService	dependency
as	 a	 constructor	 argument	 or	 as	 a	 setter	 method	 argument.	 The	 following	 example	 listing	 shows	 the
modified	FixedDepositController	class:

Example	 listing	 1-2:	 FixedDepositController	 class	 –	 FixedDepositService	 is	 passed	 as	 a	 constructor
argument



public	class	FixedDepositController	{
				private	FixedDepositService	fixedDepositService;
	
				public	FixedDepositController(FixedDepositService	fixedDepositService)	{
								this.fixedDepositService	=	fixedDepositService;
				}
			
				public	boolean	submit()	{
							//--	save	the	fixed	deposit	details
						fixedDepositService.save(.....);
				}
}

The	above	example	listing	shows	that	the	FixedDepositService	instance	is	now	passed	as	a	constructor
argument	to	the	FixedDepositController	instance.	Now,	the	FixedDepositService	class	can	be	configured
as	 a	 Spring	 bean.	Notice	 that	 the	 FixedDepositController	 class	 doesn’t	 implement	 or	 extend	 from	 any
Spring	interface	or	class.

For	a	given	application,	information	about	application	objects	and	their	dependencies	is	specified	using
configuration	metadata.	 Spring	 IoC	 container	 reads	 application’s	 configuration	metadata	 to	 instantiate
application	objects	and	inject	their	dependencies.	The	following	example	listing	shows	the	configuration
metadata	(in	XML	format)	for	an	application	that	consists	of	MyController	and	MyService	classes:

Example	listing	1-3:	Configuration	metadata

<beans	.....>
				<bean	id="myController"	class="sample.spring.controller.MyController">
								<constructor-arg	index="0"	ref="myService"	/>
				</bean>
	
				<bean	id="myService"	class="sample.spring.service.MyService"/>
</beans>

In	the	above	example	listing,	each	<bean>	element	defines	an	application	object	 that	 is	managed	by	the
Spring	container,	and	the	<constructor-arg>	element	specifies	that	an	instance	of	MyService	is	passed	as
an	argument	to	MyController’s	constructor.	The	<bean>	element	is	discussed	in	detail	later	in	this	chapter,
and	the	<constructor-arg>	element	is	discussed	in	chapter	2.

Spring	 container	 reads	 the	 configuration	 metadata	 (like	 the	 one	 shown	 in	 example	 listing	 1-3)	 of	 an
application	 and	 creates	 the	 application	 objects	 defined	 by	 <bean>	 elements	 and	 injects	 their
dependencies.	 Spring	 container	 makes	 use	 of	 Java	 Reflection	 API
(http://docs.oracle.com/javase/tutorial/reflect/index.html)	 to	 create	 application	 objects	 and	 inject	 their
dependencies.	The	following	figure	summarizes	how	the	Spring	container	works:

http://docs.oracle.com/javase/tutorial/reflect/index.html


Figure	 1-2	 Spring	 container	 reads	 application’s	 configuration	metadata	 and	 creates	 a	 fully-configured
application

The	configuration	metadata	can	be	supplied	to	the	Spring	container	via	XML	(as	shown	in	example	listing
1-3),	Java	annotations	(refer	chapter	6)	and	also	through	the	Java	code	(refer	chapter	6).

As	the	Spring	container	is	responsible	for	creating	and	managing	application	objects,	enterprise	services
(like	 transaction	management,	 security,	 remote	 access,	 and	 so	 on)	 can	 be	 transparently	 applied	 to	 the
objects	by	the	Spring	container.	The	ability	of	the	Spring	container	to	enhance	the	application	objects	with
additional	 functionality	 makes	 it	 possible	 for	 you	 to	 model	 your	 application	 objects	 as	 simple	 Java
objects	(also	referred	to	as	POJOs	or	Plain	Old	Java	Objects).	 	Java	classes	corresponding	to	POJOs
are	 referred	 to	 as	POJO	 classes,	 which	 are	 nothing	 but	 Java	 classes	 that	 don’t	 implement	 or	 extend
framework-specific	interfaces	or	classes.	The	enterprise	services,	like	transaction	management,	security,
remote	access,	and	so	on,	required	by	these	POJOs	are	transparently	provided	by	the	Spring	container.

Now,	that	we	know	how	Spring	container	works,	let’s	look	at	some	examples	that	demonstrate	benefits	of
developing	applications	using	Spring.



1-4	Benefits	of	using	Spring	Framework
In	the	previous	section,	we	discussed	the	following	benefits	of	using	Spring:

§	 	Spring	 simplifies	composing	 Java	applications	by	 taking	care	of	creating	application	objects	and
injecting	their	dependencies

§		Spring	promotes	developing	applications	as	POJOs

Spring	also	simplifies	interaction	with	JMS	providers,	JNDI,	MBean	servers,	email	servers,	databases,
and	so	on,	by	providing	a	layer	of	abstraction	that	takes	care	of	the	boilerplate	code.

Let’s	 take	 a	 quick	 look	 at	 a	 few	examples	 to	 better	 understand	 the	benefits	 of	 developing	 applications
using	Spring.

Consistent	approach	to	managing	local	and	global	transactions
If	 you	 are	 using	 Spring	 for	 developing	 transactional	 applications,	 you	 can	 use	 Spring’s	 declarative
transaction	management	support	to	manage	transactions.

The	following	example	listing	shows	the	FixedDepositService	class	of	MyBank	application:

Example	listing	1-4	–	FixedDepositService	class

public	class	FixedDepositService	{
				public	FixedDepositDetails	getFixedDepositDetails(	.....	)	{	.....	}
				public	boolean	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	{	.....	}
}

The	FixedDepositService	 class	 is	 a	 POJO	 class	 that	 defines	methods	 to	 create	 and	 retrieve	 details	 of
fixed	deposits.	The	following	figure	shows	the	form	for	creating	a	new	fixed	deposit:

	
Figure	1-3	HTML	form	for	creating	a	new	fixed	deposit
	
A	customer	enters	the	fixed	deposit	amount,	tenure	and	email	id	information	in	the	above	form	and	clicks
the	Save	 button	 to	 create	 a	 new	 fixed	 deposit.	 The	 FixedDepositService’s	 createFixedDeposit	method
(refer	example	listing	1-1)	is	invoked	to	create	the	fixed	deposit.	The	createFixedDeposit	method	debits
the	amount	entered	by	the	customer	from	his	bank	account,	and	creates	a	fixed	deposit	of	the	same	amount.

Let’s	say	that	information	about	the	bank	balance	of	customers	is	stored	in	BANK_ACCOUNT_DETAILS
database	table,	and	the	fixed	deposit	details	are	stored	in	FIXED_DEPOSIT_DETAILS	database	table.	If



a	 customer	 creates	 a	 fixed	 deposit	 of	 amount	 x,	 amount	 x	 is	 subtracted	 from	 the
BANK_ACCOUNT_DETAILS	table,	and	a	new	record	is	inserted	in	FIXED_DEPOSIT_DETAILS	table
to	reflect	the	newly	created	fixed	deposit.	If	BANK_ACCOUNT_DETAILS	table	is	not	updated	or	a	new
record	is	not	inserted	in	FIXED_DEPOSIT_DETAILS	table,	it’ll	leave	the	system	in	an	inconsistent	state.
This	means	the	createFixedDeposit	method	must	be	executed	within	a	transaction.

The	 database	 used	 by	 the	MyBank	 application	 represents	 a	 transactional	 resource.	 In	 the	 traditional
approach	 to	perform	a	set	of	database	modifications	as	a	single	unit	of	work,	you’ll	 first	disable	auto-
commit	mode	 of	 JDBC	 connection,	 then	 execute	 SQL	 statements,	 and	 finally	 commit	 (or	 rollback)	 the
transaction.	 The	 following	 example	 listing	 shows	 how	 to	 manage	 database	 transactions	 in	 the
createFixedDeposit	method	using	the	traditional	approach:

Example	listing	1-5	–	Programmatically	managing	database	transaction	using	JDBC	Connection	object

import	java.sql.Connection;
import	java.sql.SQLException;
	
public	class	FixedDepositService	{
						public	FixedDepositDetails	getFixedDepositDetails(	.....	)	{	.....	}
					
						public	boolean	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	{	
																		Connection	con	=	.....	;
																		try	{
																con.setAutoCommit(false);
																//--	execute	SQL	statements	that	modify	database	tables
																con.commit();
																		}	catch(SQLException	sqle)	{
																								if(con	!=	null)	{
																					con.rollback();
																									}
																		}
																		.....
											}
}

The	above	example	listing	shows	that	the	createFixedDeposit	method	programmatically	manages	database
transaction	using	JDBC	Connection	object.	This	approach	is	suitable	for	application	scenarios	in	which	a
single	database	is	involved.	Transactions	that	are	resource-specific,	like	the	transaction	associated	with	a
JDBC	Connection,	are	referred	to	as	local	transactions.

When	multiple	 transactional	 resources	 are	 involved,	 JTA	 (Java	Transaction	API)	 is	 used	 for	managing
transactions.	For	instance,	if	you	want	to	send	a	JMS	message	to	a	messaging	middleware	(a	transactional
resource)	and	update	a	database	(another	transactional	resource)	in	the	same	transaction,	you	must	use	a
JTA	 transaction	 manager	 to	 manage	 transactions.	 JTA	 transactions	 are	 also	 referred	 to	 as	 global	 (or
distributed)	transactions.	To	use	JTA,	you	fetch	UserTransaction	object	(which	is	part	of	JTA	API)	from
JNDI	and	programmatically	start	and	commit	(or	rollback)	transactions.

As	 you	 can	 see,	 you	 can	 either	 use	JDBC	Connection	 (for	 local	 transactions)	 or	UserTransaction	 (for



global	 transactions)	object	 to	programmatically	manage	 transactions.	 It	 is	 important	 to	note	 that	a	 local
transaction	 cannot	 run	 within	 a	 global	 transaction.	 This	 means	 that	 if	 you	 want	 database	 updates	 in
createFixedDeposit	method	(refer	example	listing	1-5)	to	be	part	of	a	JTA	transaction,	you	need	to	modify
the	createFixedDeposit	method	to	use	the	UserTransaction	object	for	transaction	management.
Spring	 simplifies	 transaction	 management	 by	 providing	 a	 layer	 of	 abstraction	 that	 gives	 a	 consistent
approach	 to	 managing	 both	 local	 and	 global	 transactions.	 	 This	 means	 that	 if	 you	 write	 the
createFixedDeposit	method	(refer	example	 listing	1-5)	using	Spring’s	 transaction	abstraction,	you	don’t
need	to	modify	the	method	when	you	switch	from	local	to	global	transaction	management,	or	vice	versa.
Spring’s	transaction	abstraction	is	explained	in	chapter	7.

Declarative	transaction	management
Spring	gives	you	the	option	to	use	declarative	transaction	management.	You	can	annotate	a	method	with
Spring’s	@Transactional	annotation	and	let	Spring	handle	transactions,	as	shown	here:

Example	listing	1-6	–	@Transactional	annotation	usage

import	org.springframework.transaction.annotation.Transactional;
	
public	class	FixedDepositService	{
				public	FixedDepositDetails	getFixedDepositDetails(	.....	)	{	.....	}
	
		
		@Transactional
				public	boolean	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	{	.....	}
}

The	above	example	listing	shows	that	the	FixedDepositService	class	doesn’t	 implement	or	extend	from
any	 Spring-specific	 interface	 or	 class	 to	 use	 Spring’s	 transaction	 management	 facility.	 The	 Spring
Framework	 transparently	 provides	 transaction	 management	 feature	 to	 @Transactional	 annotated
createFixedDeposit	 method.	 This	 shows	 that	 Spring	 is	 a	 non-invasive	 framework	 because	 it	 doesn’t
require	your	 application	objects	 to	be	dependent	 upon	Spring-specific	 classes	or	 interfaces.	Also,	 you
don’t	need	to	directly	work	with	transaction	management	APIs	to	manage	transactions.

Security
Security	 is	 an	 important	 aspect	 of	 any	 Java	 application.	 Spring	 Security
(http://static.springsource.org/spring-security/site/)	 is	 a	 SpringSource’s	 project	 that	 is	 built	 on	 top	 of
Spring	Framework.	Spring	Security	provides	authentication	and	authorization	features	that	you	can	use	for
securing	Java	applications.

Let’s	 say	 that	 the	 following	 3	 user	 roles	 have	 been	 identified	 for	 the	 MyBank	 application:
LOAN_CUSTOMER,	 SAVINGS_ACCOUNT_CUSTOMER	 and	 APPLICATION_ADMIN.	 A	 customer
must	be	associated	with	the	SAVINGS_ACCOUNT_CUSTOMER	or	the	APPLICATION_ADMIN	role	to
invoke	 the	createFixedDeposit	method	of	FixedDepositService	class	 (refer	 example	 listing	1-6).	Using
Spring	Security	you	can	easily	address	 this	 requirement	by	annotating	createFixedDeposit	method	with
Spring	Security’s	@Secured	annotation,	as	shown	in	the	following	example	listing:

Example	listing	1-7	–	Secured	createFixedDeposit	method

http://static.springsource.org/spring-security/site/


import	org.springframework.transaction.annotation.Transactional;
import	org.springframework.security.access.annotation.Secured;
	
public	class	FixedDepositService	{
															public	FixedDepositDetails	getFixedDepositDetails(	.....	)	{	.....	}
	

	
@Transactional
@Secured({	"SAVINGS_ACCOUNT_CUSTOMER",	"APPLICATION_ADMIN"	})
public	boolean	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	{	.....	}

}

If	 you	 annotate	 a	method	with	Spring	Security’s	@Secured	 annotation,	 security	 feature	 is	 transparently
applied	 to	 the	 method	 by	 the	 Spring	 Security	 framework.	 The	 above	 example	 listing	 shows	 that	 for
implementing	method-level	security	you	don’t	need	to	extend	or	implement	any	Spring-specific	classes	or
interfaces.	Also,	you	don’t	need	to	write	security-related	code	in	your	business	methods.

Spring	Security	framework	is	discussed	in	detail	in	chapter	14.

JMX	(Java	Management	Extensions)
Spring’s	JMX	support	simplifies	incorporating	JMX	technology	in	your	applications.

Let’s	say	that	the	fixed	deposit	facility	of	MyBank	application	should	only	be	available	to	customers	from
9:00	 AM	 to	 6:00	 PM	 everyday.	 To	 address	 this	 requirement,	 a	 variable	 is	 added	 to	 the
FixedDepositService	class,	which	acts	as	a	flag	indicating	whether	the	fixed	deposit	service	is	active	or
inactive.	The	following	example	listing	shows	the	FixedDepositService	class	that	uses	such	a	flag:

Example	listing	1-8	–	FixedDepositService	with	active	variable

public	class	FixedDepositService	{
				private	boolean	active;
		
				public	FixedDepositDetails	getFixedDepositDetails(	.....	)	{
													if(active)	{	.....	}
				}
				public	boolean	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	{
													if(active)	{	.....	}
				}
			public	void	activateService()	{
										active	=	true;
			}
			public	void	deactivateService()	{
										active	=	false;
			}
}

The	above	example	listing	shows	that	a	variable	named	active	is	added	to	the	FixedDepositService	class.



If	 the	value	of	 the	 active	variable	 is	 true,	 the	getFixedDepositDetails	 and	 createFixedDeposit	methods
work	 as	 expected.	 If	 the	 value	 of	 the	 active	 variable	 is	 false,	 the	 getFixedDepositDetails	 and
createFixedDeposit	 methods	 throw	 an	 exception	 indicating	 that	 the	 fixed	 deposit	 service	 is	 currently
inactive.	The	activateService	and	deactivateService	methods	set	the	value	of	active	variable	to	true	and
false,	respectively.

Now,	 who	 calls	 the	 activateService	 and	 deactivateService	 methods?	 Let’s	 say	 a	 separate	 scheduler
application,	 Bank	 App	 Scheduler,	 runs	 at	 9:00	 AM	 and	 6:00	 PM	 to	 execute	 activateService	 and
deactivateService	 methods,	 respectively.	 The	 Bank	 App	 Scheduler	 application	 uses	 JMX	 (Java
Management	Extensions)	API	to	remotely	interact	with	FixedDepositService	instance.

NOTE	 Refer	 to	 the	 following	 article	 to	 learn	 more	 about	 JMX:
http://docs.oracle.com/javase/tutorial/jmx/index.html.

As	Bank	App	Scheduler	uses	JMX	to	change	the	value	of	the	active	variable	of	the	FixedDepositService
instance,	you	need	to	register	the	FixedDepositService	instance	as	a	managed	bean	(or	MBean)	with	an
MBean	 server,	 and	 expose	 FixedDepositService’s	 activateService	 and	 deactivateService	 methods	 as
JMX	operations.	In	Spring,	you	register	instances	of	a	class	with	the	MBean	server	by	annotating	the	class
with	Spring’s	@ManagedResource	 annotation,	 and	 expose	 the	methods	of	 the	 class	 as	 JMX	operations
using	Spring’s	@ManagedOperation	annotation.

The	following	example	listing	shows	usage	of	@ManagedResource	and	@ManagedOperation	annotations
to	 register	 instances	 of	 the	 FixedDepositService	 class	 with	 the	 MBean	 server,	 and	 to	 expose	 its
activateService	and	deactivateService	methods	as	JMX	operations:

Example	listing	1-9	–	FixedDepositService	class	that	uses	Spring’s	JMX	support

import	org.springframework.jmx.export.annotation.ManagedOperation;
import	org.springframework.jmx.export.annotation.ManagedResource;
	
@ManagedResource(objectName	=		"fixed_deposit_service:name=FixedDepositService")
public	class	FixedDepositService	{
				private	boolean	active;
	
				public	FixedDepositDetails	getFixedDepositDetails(	.....	)	{
								if(active)	{	.....	}
				}
				public	boolean	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	{
								if(active)	{	.....	}
				}
	
	
			@ManagedOperation
				public	void	activateService()	{
								active	=	true;
				}
	
		@ManagedOperation

http://docs.oracle.com/javase/tutorial/jmx/index.html


				public	void	deactivateService()	{
								active	=	false;
				}
}

The	 above	 example	 listing	 shows	 that	 the	FixedDepositService	 class	doesn’t	 directly	use	 JMX	API	 to
register	its	instances	with	the	MBean	server	and	to	expose	its	methods	as	JMX	operations.

JMS	(Java	Message	Service)
Spring’s	JMS	support	simplifies	sending	and	receiving	messages	from	JMS	providers.

In	MyBank	application,	when	a	customer	submits	a	request	to	receive	details	of	their	fixed	deposits	via
email,	 the	 FixedDepositService	 sends	 the	 request	 details	 to	 a	 JMS	 messaging	 middleware	 (like
ActiveMQ).	The	request	is	later	processed	by	a	message	listener.	Spring	simplifies	interaction	with	JMS
providers	 by	 providing	 a	 layer	 of	 abstraction.	 The	 following	 example	 listing	 shows	 how
FixedDepositService	class	sends	request	details	to	a	JMS	provider	using	Spring’s	JmsTemplate:

Example	listing	1-10	–	FixedDepositService	that	sends	JMS	messages

import	org.springframework.beans.factory.annotation.Autowired;
import	org.springframework.jms.core.JmsTemplate;
	
public	class	FixedDepositService	{
			@Autowired
			private	transient	JmsTemplate	jmsTemplate;
				.....
				public	boolean	submitRequest(Request	request)	{
							jmsTemplate.convertAndSend(request);
				}
}

The	above	example	listing	shows	that	the	FixedDepositService	defines	a	variable	of	type	JmsTemplate,
and	is	annotated	with	Spring’s	@Autowired	annotation.	For	now,	you	can	assume	that	 the	@Autowired
annotation	provides	access	to	a	JmsTemplate	instance.	The	JmsTemplate	instance	knows	about	 the	JMS
destination	to	which	the	JMS	message	is	to	be	sent.	How	the	JmsTemplate	is	configured	is	described	in
detail	 in	 chapter	 8.	 The	 FixedDepositService’s	 submitRequest	 method	 invokes	 JmsTemplate’s
convertAndSend	 method	 to	 send	 request	 details	 (represented	 by	 Request	 argument	 of	 submitRequest
method)	as	a	JMS	message	to	the	JMS	provider.

Once	again,	the	above	example	listing	shows	that	if	you	are	using	Spring	Framework	to	send	messages	to
JMS	providers,	then	you	don’t	need	to	directly	deal	with	JMS	API.

Caching
Spring’s	cache	abstraction	provides	a	consistent	approach	to	use	caching	in	your	application.

It’s	common	to	use	caching	solutions	to	improve	the	performance	of	an	application.	MyBank	application
uses	a	caching	product	 to	 improve	the	performance	of	read	operations	for	 fixed	deposit	details.	Spring
Framework	simplifies	interacting	with	different	caching	solutions	by	abstracting	caching-related	logic.



The	following	example	listing	shows	that	the	FixedDepositService’s	getFixedDepositDetails	method	uses
Spring’s	cache	abstraction	feature	to	cache	fixed	deposit	details:

Example	listing	1-11	–	FixedDepositService	that	caches	fixed	deposit	details

import	org.springframework.cache.annotation.Cacheable;
	
public	class	FixedDepositService	{
			
			@Cacheable("FixedDeposits")
				public	FixedDepositDetails	getFixedDepositDetails(	.....	)	{	.....	}
			
				public	boolean	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	{	.....	}
}

In	 the	 above	 example	 listing,	 Spring’s	@Cacheable	 annotation	 indicates	 that	 the	 fixed	 deposit	 details
returned	 by	 the	 getFixedDepositDetails	 method	 are	 cached.	 If	 the	 getFixedDepositDetails	 method	 is
invoked	with	 the	 same	 argument	 value(s),	 the	 getFixedDepositDetails	method	 is	not	 executed,	 and	 the
fixed	deposit	details	are	returned	from	the	cache.	This	shows	that	if	you	are	using	Spring	Framework	you
don’t	need	to	write	caching-related	logic	in	your	classes.	Spring’s	cache	abstraction	is	explained	in	detail
in	chapter	8.

In	 this	 section,	 we	 saw	 that	 Spring	 Framework	 simplifies	 developing	 enterprise	 applications	 by
transparently	providing	services	 to	POJOs,	 thereby	shielding	developers	 from	lower	 level	API	details.
Spring	 also	 provides	 easy	 integration	with	 standard	 frameworks,	 like	Hibernate,	 iBATIS,	Quartz,	 JSF,
Struts,	EJB,	and	so	on,	which	makes	Spring	an	ideal	choice	for	enterprise	application	development.

Now,	that	we	have	looked	at	some	of	the	benefits	of	using	Spring	Framework,	let’s	take	a	look	at	how	to
develop	a	simple	Spring	application.



1-5	A	simple	Spring	application
In	this	section,	we’ll	look	at	a	simple	Spring	application	that	uses	Spring’s	DI	feature.	To	use	Spring’s	DI
feature	in	an	application,	follow	these	steps:

1.				identify	application	objects	and	their	dependencies

2.				create	POJO	classes	corresponding	to	the	application	objects	identified	in	step	1

3.				create	configuration	metadata	that	depicts	application	objects	and	their	dependencies

4.				create	an	instance	of	Spring	IoC	container	and	pass	the	configuration	metadata	to	it

5.				access	application	objects	from	the	Spring	IoC	container	instance

Let’s	now	look	at	above	mentioned	steps	in	the	context	of	MyBank	application.

Identifying	application	objects	and	their	dependencies
We	discussed	earlier	that	the	MyBank	application	shows	a	form	for	creating	a	fixed	deposit	(refer	figure
1-3)	 to	 its	 users	 for	 creating	 a	 fixed	 deposit.	 The	 following	 sequence	 diagram	 shows	 the	 application
objects	(and	their	interaction)	that	come	into	picture	when	the	user	submits	the	form:

Figure	1-4	MyBank’s	application	objects	and	their	dependencies

In	 the	 above	 sequence	 diagram,	 FixedDepositController	 represents	 a	 web	 controller	 that	 receives	 the
request	when	 the	form	is	submitted.	The	fixed	deposit	details	are	contained	 in	 the	FixedDepositDetails
object.	The	FixedDepositController	 invokes	 the	 createFixedDeposit	method	 of	 FixedDepositService	 (a
service	layer	object).	Then,	FixedDepositService	invokes	FixedDepositDao	object	(a	data	access	object)
to	 save	 the	 fixed	 deposit	 details	 in	 the	 application’s	 data	 store.	 So,	 we	 can	 interpret	 from	 the	 above
diagram	 that	 FixedDepositService	 is	 a	 dependency	 of	 FixedDepositController	 object,	 and
FixedDepositDao	is	a	dependency	of	FixedDepositService	object.

IMPORT	 chapter	 1/ch01-bankapp-xml	 (This	 project	 shows	 a	 simple	 Spring	 application	 that	 uses
Spring’s	DI	 feature.	 To	 run	 the	 application,	 execute	 the	main	method	 of	 the	MyBankApp	 class	 of	 this
project)

Creating	POJO	classes	corresponding	to	identified	application	objects
Once	you	have	 identified	application	objects,	 the	next	 step	 is	 to	create	POJO	classes	corresponding	 to
these	 application	 objects.	 POJO	 classes	 corresponding	 to	 the	 FixedDepositController,



FixedDepositService	 and	 FixedDepositDao	 application	 objects	 are	 available	 in	 ch01-bankapp-xml
project.	The	ch01-bankapp-xml	project	represents	a	simplified	version	of	MyBank	application	that	uses
Spring’s	DI	feature.	You	should	import	the	ch01-bankapp-xml	project	 into	your	IDE	as	in	the	remaining
steps	we’ll	be	looking	at	the	files	contained	in	this	project.

In	 section	 1-3	 we	 discussed	 that	 a	 dependency	 is	 passed	 to	 an	 application	 object	 as	 a	 constructor
argument	 or	 as	 a	 setter	 method	 argument.	 The	 following	 code	 listing	 shows	 that	 an	 instance	 of
FixedDepositService	(a	dependency	of	FixedDepositController)	is	passed	as	a	setter	method	argument	to
the	FixedDepositController	object:

Example	listing	1-12	–	FixedDepositController	class
Project	–	ch01-bankapp-xml
Source	location	-	src/main/java/sample/spring/chapter01/bankapp
	
package	sample.spring.chapter01.bankapp;
.....
public	class	FixedDepositController	{
				.....
				private	FixedDepositService	fixedDepositService;
				.....
				public	void	setFixedDepositService(FixedDepositService	fixedDepositService)	{
								logger.info("Setting	fixedDepositService	property");
					this.fixedDepositService	=	fixedDepositService;
				}
				.....			
				public	void	submit()	{
								fixedDepositService.createFixedDeposit(new	FixedDepositDetails(	1,	10000,
											365,	"someemail@something.com"));
				}
				.....
}

In	 the	 above	 example	 listing,	 FixedDepositService	 dependency	 is	 passed	 to	 FixedDepositController
through	setFixedDepositService	method.	We’ll	soon	see	that	the	setFixedDepositService	setter	method	is
invoked	by	Spring.

NOTE	 If	 you	 look	 at	 the	FixedDepositController,	FixedDepositService	 and	 FixedDepositDao	 classes,
you’ll	 notice	 that	 none	 of	 these	 classes	 implement	 any	 Spring-specific	 interface	 or	 extend	 from	 any
Spring-specific	class.

Let’s	 now	 look	 at	 how	 application	 objects	 and	 their	 dependencies	 are	 specified	 in	 the	 configuration
metadata.

Creating	the	configuration	metadata
We	 saw	 in	 section	 1-3	 that	 the	 configuration	 metadata	 specifies	 application	 objects	 and	 their
dependencies,	which	 is	 read	 by	 the	 Spring	 container	 to	 instantiate	 application	 objects	 and	 inject	 their
dependencies.	In	this	section,	we’ll	first	look	at	what	other	information	is	contained	in	the	configuration



metadata,	followed	by	an	in-depth	look	at	how	configuration	metadata	is	specified	in	XML	format.

The	 configuration	 metadata	 specifies	 information	 about	 the	 enterprise	 services	 (like	 transaction
management,	security	and	remote	access)	that	are	required	by	the	application.	For	instance,	 if	you	want
Spring	 to	 manage	 transactions,	 you	 need	 to	 configure	 an	 implementation	 of	 Spring’s
PlatformTransactionManager	 interface	 in	 the	 configuration	 metadata.	 The	 PlatformTransactionManager
implementation	 is	 responsible	 for	managing	 transactions	 (refer	 chapter	 7	 to	 know	more	 about	Spring’s
transaction	management	feature).

If	your	application	interacts	with	messaging	middlewares	(like	ActiveMQ),	databases	(like	MySQL),	e-
mail	servers,	and	so	on,	then	Spring-specific	objects	that	simplify	interacting	with	these	external	systems
are	also	defined	 in	 the	configuration	metadata.	For	 instance,	 if	your	application	sends	or	 receives	JMS
messages	 from	 ActiveMQ,	 then	 you	 can	 configure	 Spring’s	 JmsTemplate	 class	 in	 the	 configuration
metadata	 to	 simplify	 interaction	 with	 ActiveMQ.	 We	 saw	 in	 example	 listing	 1-10	 that	 if	 you	 use
JmsTemplate	for	sending	messages	to	a	JMS	provider,	then	you	don’t	need	to	deal	with	lower-level	JMS
API	(refer	chapter	8	to	know	more	about	Spring’s	support	for	interacting	with	JMS	providers).

You	can	supply	the	configuration	metadata	to	the	Spring	container	via	an	XML	file	or	through	annotations
in	POJO	classes.	Starting	with	Spring	3.0,	you	can	also	supply	the	configuration	metadata	to	the	Spring
container	through	Java	classes	annotated	with	Spring’s	@Configuration	annotation.	In	this	section,	we’ll
see	how	configuration	metadata	 is	 specified	 in	XML	format.	 In	chapter	6,	we’ll	 see	how	configuration
metadata	is	supplied	via	annotations	in	POJO	classes	and	through	@Configuration	annotated	Java	classes.

You	 provide	 the	 configuration	metadata	 for	 an	 application	 in	 XML	 format	 by	 creating	 an	 application
context	XML	file	that	contains	information	about	the	application	objects	and	their	dependencies.	Example
listing	 1-3	 showed	 how	 an	 application	 context	 XML	 file	 looks	 like.	 The	 following	 XML	 shows	 the
application	 context	 XML	 file	 of	 MyBank	 application	 that	 consists	 of	 FixedDepositController,
FixedDepositService	 and	FixedDepositDao	 objects	 (refer	 figure	 1-4	 to	 see	 how	 these	 objects	 interact
with	each	other):

Example	listing	1-13	–	applicationContext.xml	-	MyBank’s	application	context	XML	file
Project	–	ch01-bankapp-xml
Source	location	-	src/main/resources/META-INF/spring
	
<?xml	version="1.0"	encoding="UTF-8"	standalone="no"?>
<beans	xmlns	=	"http://www.springframework.org/schema/beans"
				xmlns:xsi	=	"http://www.w3.org/2001/XMLSchema-instance"
				xsi:schemaLocation	=	"http://www.springframework.org/schema/beans
														http://www.springframework.org/schema/beans/spring-beans-4.0.xsd">
	
				<bean	id="controller"
														class="sample.spring.chapter01.bankapp.FixedDepositController">
								<property	name="fixedDepositService"	ref="service"	/>
				</bean>
	
				<bean	id="service"	class="sample.spring.chapter01.bankapp.FixedDepositService">
								<property	name="fixedDepositDao"	ref="dao"	/>



				</bean>
	
				<bean	id="dao"	class="sample.spring.chapter01.bankapp.FixedDepositDao"/>
</beans>
	
The	following	are	the	important	points	to	note	about	the	application	context	XML	file	shown	above:

·								The	<beans>	element	is	the	root	element	of	the	application	context	XML	file,	and	is	defined	in
spring-beans-4.0.xsd	schema	(also	referred	to	as	Spring’s	beans	schema).	The	spring-beans-4.0.xsd
schema	 is	 contained	 in	 spring-beans-4.0.0.RELEASE.jar	 JAR	 file	 that	 comes	 with	 the	 Spring
Framework	distribution.

·								Each	<bean>	element	configures	an	application	object	that	is	managed	by	the	Spring	container.	In
Spring	Framework’s	 terminology,	a	<bean>	element	 represents	a	bean	definition.	The	object	 that
the	Spring	container	creates	based	on	the	bean	definition	is	referred	to	as	a	bean.	The	id	attribute
specifies	a	unique	name	for	the	bean,	and	the	class	attribute	specifies	the	fully-qualified	class	name
of	the	bean.	You	can	also	use	the	name	attribute	of	<bean>	element	to	specify	aliases	for	the	bean.
In	MyBank	application,	 the	application	objects	are	FixedDepositController,	 FixedDepositService
and	FixedDepositDao;	therefore,	we	have	3	<bean>	elements	-	one	for	each	application	object.	As
application	 objects	 configured	 by	 <bean>	 elements	 are	 managed	 by	 the	 Spring	 container,	 the
responsibility	 for	 creating	 them	 and	 injecting	 their	 dependencies	 is	 with	 the	 Spring	 container.
Instead	of	directly	creating	instances	of	application	objects	defined	by	<bean>	elements,	you	should
obtain	them	from	the	Spring	container.	Later	in	this	section,	we’ll	look	at	how	to	obtain	application
objects	managed	by	Spring	container.

·	 	 	 	 	 	 	 	No	<bean>	 element	 is	 defined	 corresponding	 to	 the	 FixedDepositDetails	 domain	 object	 of
MyBank	 application.	 This	 is	 because	 domain	 objects	 are	 not	 typically	 managed	 by	 the	 Spring
container;	they	are	created	by	the	ORM	framework	(like	Hibernate)	used	by	the	application,	or	you
create	them	programmatically	using	the	new	operator.

·	 	 	 	 	 	 	 	 The	 <property>	 element	 specifies	 a	 dependency	 (or	 a	 configuration	 property)	 of	 the	 bean
configured	by	the	<bean>	element.	The	<property>	element	corresponds	to	a	JavaBean-style	setter
method	 in	 the	 bean	 class	 which	 is	 invoked	 by	 the	 Spring	 container	 to	 set	 a	 dependency	 (or	 a
configuration	property)	of	the	bean.

Let’s	now	look	at	how	dependencies	are	injected	via	setter	methods.

Injecting	dependencies	via	setter	methods

To	 understand	 how	 dependencies	 are	 injected	 via	 setter	methods	 defined	 in	 the	 bean	 class,	 let’s	 once
again	look	at	the	FixedDepositController	class	of	MyBank	application:

Example	listing	1-14	–	FixedDepositController	class
Project	–	ch01-bankapp-xml
Source	location	-	src/main/java/sample/spring/chapter01/bankapp
	
package	sample.spring.chapter01.bankapp;
	



import	org.apache.log4j.Logger;
	
public	class	FixedDepositController	{
				private	static	Logger	logger	=	Logger.getLogger(FixedDepositController.class);
	
				private	FixedDepositService	fixedDepositService;
	
				public	FixedDepositController()	{
							logger.info("initializing");
				}
	
			public	void	setFixedDepositService(FixedDepositService	fixedDepositService)	{
							logger.info("Setting	fixedDepositService	property");
					this.fixedDepositService	=	fixedDepositService;
				}
				.....
}

The	 above	 example	 listing	 shows	 that	 the	 FixedDepositController	 class	 declares	 an	 instance	 variable
named	fixedDepositService	of	type	FixedDepositService.	The	fixedDepositService	variable	is	set	by	the
setFixedDepositService	method	-	a	JavaBean-style	setter	method	for	fixedDepositService	variable.	This
is	an	example	of	setter-based	DI,	wherein	a	setter	method	satisfies	a	dependency.

The	 following	 figure	 describes	 the	 bean	 definition	 for	 the	 FixedDepositController	 class	 in	 the
applicationContext.xml	file	(refer	example	listing	1-13):

Figure	1-5	Defining	dependencies	using	<property>	elements

The	 above	 bean	 definition	 shows	 that	 the	 FixedDepositController	 bean	 defines	 its	 dependence	 on
FixedDepositService	bean	via	<property>	element.	The	<property>	element’s	name	attribute	corresponds
to	the	JavaBean-style	setter	method	in	the	bean	class	that	is	invoked	by	the	Spring	container	at	the	time	of
bean	creation.	The	<property>	element’s	ref	attribute	identifies	the	Spring	bean	whose	instance	needs	to
be	created	and	passed	to	 the	JavaBean-style	setter	method.	The	value	of	ref	attribute	must	match	 the	 id
attribute’s	 value	 (or	 one	 of	 the	 names	 specified	 by	 the	 name	 attribute)	 of	 a	 <bean>	 element	 in	 the
configuration	metadata.

In	figure	1-5,	the	value	of	<property>	element’s	name	attribute	is	fixedDepositService,	which	means	that



the	 <property>	 element	 corresponds	 to	 the	 setFixedDepositService	 setter	 method	 of
FixedDepositController	 class	 (refer	 example	 listing	 1-14).	 As	 the	 value	 of	 <property>	 element’s	 ref
attribute	 is	 service,	 the	<property>	 element	 refers	 to	 the	<bean>	element	whose	 id	 attribute’s	 value	 is
service.	Now,	the	<bean>	element	whose	id	attribute’s	value	is	service	is	the	FixedDepositService	bean
(refer	 example	 listing	 1-13).	 Spring	 container	 creates	 an	 instance	 of	 FixedDepositService	 class	 (a
dependency),	 and	 invokes	 the	 setFixedDepositService	 method	 (a	 JavaBean-style	 setter	 method	 for
fixedDepositService	 variable)	 of	 FixedDepositController	 (a	 dependent	 object),	 passing	 the
FixedDepositService	instance.

In	the	context	of	FixedDepositController	application	object,	the	following	figure	summarizes	the	purpose
of	name	and	ref	attributes	of	<property>	element:

Figure	 1-6	 <property>	 element’s	 name	 attribute	 corresponds	 to	 a	 JavaBean-style	 setter	 method	 that
satisfies	a	bean	dependency,	and	ref	attribute	refers	to	another	bean.

The	 above	 figure	 shows	 that	 fixedDepositService	 value	 of	 name	 attribute	 corresponds	 to	 the
setFixedDepositService	method	of	FixedDepositController	class,	and	service	value	of	ref	attribute	refers
to	the	bean	whose	id	is	service.

NOTE	It	is	fairly	common	to	refer	to	a	bean	definition	by	its	name	(which	is	id	attribute’s	value)	or	type
(which	 is	class	attribute’s	value)	or	 the	 interface	 implemented	by	 the	bean	class.	For	 instance,	you	can
refer	 to	 ‘FixedDepositController	 bean’	 as	 ‘controller	 bean’.	 And,	 if	 the	 FixedDepositController	 class
implements	 FixedDepositControllerIntf	 interface,	 you	 can	 refer	 to	 ‘FixedDepositController	 bean’	 as
‘FixedDepositControllerIntf	bean’.

The	following	diagram	summarizes	how	the	Spring	container	creates	beans	and	injects	their	dependencies
based	on	the	configuration	metadata	supplied	by	the	applicationContext.xml	file	(refer	example	listing	1-
13)	of	MyBank	application:



Figure	1-7	-	The	sequence	in	which	Spring	IoC	container	creates	beans	and	injects	their	dependencies.

The	 above	 figure	 shows	 the	 sequence	 of	 steps	 followed	 by	 the	 Spring	 IoC	 container	 to	 create
FixedDepositController,	 FixedDepositService	 and	 FixedDepositDao	 beans	 and	 inject	 their
dependencies.	 	 Before	 attempting	 to	 create	 beans,	 the	 Spring	 container	 reads	 and	 validates	 the
configuration	metadata	 supplied	 by	 the	 applicationContext.xml	 file.	 The	 order	 in	 which	 the	 beans	 are
created	 by	 the	 Spring	 container	 depends	 on	 the	 order	 in	 which	 they	 are	 defined	 in	 the
applicationContext.xml	 file.	 	 Spring	 container	 ensures	 that	 the	 dependencies	 of	 a	 bean	 are	 completely
configured	 before	 the	 setter	 method	 is	 invoked.	 For	 example,	 the	 FixedDepositController	 bean	 is
dependent	on	FixedDepositService	bean;	therefore,	Spring	container	configures	the	FixedDepositService
bean	before	invoking	the	setFixedDepositService	method	of	FixedDepositController	bean.

The	 bean	 definitions	 that	 we	 have	 seen	 so	 far,	 instruct	 Spring	 container	 to	 create	 bean	 instances	 by
invoking	the	no-argument	constructor	of	the	bean	class,	and	inject	dependencies	using	setter-based	DI.	In
chapter	 2,	we’ll	 look	 at	 bean	 definitions	 that	 instruct	 Spring	 container	 to	 create	 a	 bean	 instance	 via	 a
factory	method	 defined	 in	 a	 class.	Also,	we’ll	 look	at	how	 to	 inject	dependencies	 through	constructor
arguments	(referred	to	as	constructor-based	DI),	through	arguments	to	the	factory	method	that	creates	the
bean	instance,	and	by	using	setter-based	DI	on	the	bean	instance	returned	by	the	factory	method.

Let’s	now	look	at	how	to	create	an	instance	of	Spring	container	and	pass	configuration	metadata	to	it.

Creating	an	instance	of	Spring	container
Spring’s	ApplicationContext	 object	 represents	 an	 instance	 of	 Spring	 container.	 Spring	 provides	 a	 few
built-in	 implementations	 of	 ApplicationContext	 interface,	 like	 ClassPathXmlApplicationContext,
FileSystemXmlApplicationContext,	XmlWebApplicationContext,	 XmlPortletApplicationContext,	 and	 so
on.	 The	 choice	 of	 the	 ApplicationContext	 implementation	 depends	 on	 how	 you	 have	 defined	 the
configuration	 metadata	 (using	 XML,	 annotations	 or	 Java	 code),	 and	 the	 type	 of	 your	 application
(standalone,	 web	 or	 portlet	 application).	 For	 instance,	 ClassPathXmlApplicationContext	 and
FileSystemXmlApplicationContext	 classes	 are	 suitable	 for	 standalone	 applications	 in	 which
configuration	 metadata	 is	 supplied	 in	 XML	 format,	 XmlWebApplicationContext	 is	 suitable	 for	 web
applications	 in	 which	 the	 configuration	 metadata	 is	 supplied	 in	 XML	 format,
AnnotationConfigWebApplicationContext	 is	 suitable	 for	 web	 applications	 in	 which	 configuration
metadata	is	supplied	through	Java	code,	and	so	on.



As	 MyBank	 application	 represents	 a	 standalone	 application,	 we	 can	 use	 either
ClassPathXmlApplicationContext	 or	 FileSystemXmlApplicationContext	 class	 to	 create	 an	 instance	 of
Spring	 container.	You	 should	 note	 that	 the	ClassPathXmlApplicationContext	 class	 loads	 an	 application
context	XML	file	from	the	specified	classpath	location,	and	the	FileSystemXmlApplicationContext	class
loads	an	application	context	XML	file	from	the	specified	location	on	the	filesystem.

The	 following	 BankApp	 class	 of	 MyBank	 application	 shows	 that	 an	 instance	 of	 Spring	 container	 is
created	using	the	ClassPathXmlApplicationContext	class:

Example	listing	1-15	–	BankApp	class
Project	–	ch01-bankapp-xml
Source	location	-	src/main/java/sample/spring/chapter01/bankapp
	
package	sample.spring.chapter01.bankapp;
	
import	org.springframework.context.ApplicationContext;
import	org.springframework.context.support.ClassPathXmlApplicationContext;
	
public	class	BankApp	{
				.....
				public	static	void	main(String	args[])	{
						ApplicationContext	context	=	new	ClassPathXmlApplicationContext(
										"classpath:META-INF/spring/applicationContext.xml");
								.....
				}
}

The	above	example	listing	shows	the	BankApp’s	main	method,	which	is	responsible	for	bootstrapping	the
Spring	container.	The	classpath	location	of	the	application	context	XML	file	is	passed	to	the	constructor
of	 ClassPathXmlApplicationContext	 class.	 The	 creation	 of	 ClassPathXmlApplicationContext	 instance
results	in	creation	of	those	beans	in	the	application	context	XML	file	that	are	singleton-scoped	and	set	to
be	pre-instantiated.	 In	chapter	2,	we’ll	discuss	bean	scopes,	 and	what	 it	means	 to	have	beans	pre-	 or
lazily-instantiated	 by	 Spring	 container.	 For	 now,	 you	 can	 assume	 that	 the	 beans	 defined	 in	 the
applicationContext.xml	 file	 of	MyBank	 application	 are	 singleton-scoped	 and	 set	 to	 be	 pre-instantiated.
This	 means	 that	 the	 beans	 defined	 in	 the	 applicationContext.xml	 file	 are	 created	 when	 an	 instance	 of
ClassPathXmlApplicationContext	is	created.

Now,	that	we	have	seen	how	to	create	an	instance	of	the	Spring	container,	 let’s	look	at	how	to	retrieve
bean	instances	from	the	Spring	container.

Access	beans	from	the	Spring	container
The	application	objects	defined	via	<bean>	elements	are	created	and	managed	by	 the	Spring	container.
You	 can	 access	 instances	 of	 these	 application	 objects	 by	 calling	 one	 of	 the	 getBean	 methods	 of	 the
ApplicationContext	interface.

The	 following	 example	 listing	 shows	 the	main	method	 of	 BankApp	 class	 that	 retrieves	 an	 instance	 of
FixedDepositController	bean	from	the	Spring	container	and	invokes	its	methods:



Example	listing	1-16	–	BankApp	class
Project	–	ch01-bankapp-xml
Source	location	-	src/main/java/sample/spring/chapter01/bankapp
	
package	sample.spring.chapter01.bankapp;
	
import	org.apache.log4j.Logger;
import	org.springframework.context.ApplicationContext;
import	org.springframework.context.support.ClassPathXmlApplicationContext;
	
public	class	BankApp	{
				private	static	Logger	logger	=	Logger.getLogger(BankApp.class);
	
				public	static	void	main(String	args[])	{
									ApplicationContext	context	=	new	ClassPathXmlApplicationContext(
												"classpath:META-INF/spring/applicationContext.xml");
								
									FixedDepositController	fixedDepositController	=
													(FixedDepositController)	context.getBean("controller");
									logger.info("Submission	status	of	fixed	deposit	:	"	+	fixedDepositController.submit());
									logger.info("Returned	fixed	deposit	info	:	"	+	fixedDepositController.get());
				}
}

At	 first,	 the	 ApplicationContext’s	 getBean	 method	 is	 invoked	 to	 retrieve	 an	 instance	 of
FixedDepositController	 bean	 from	 the	 Spring	 container,	 followed	 by	 invocation	 of	 submit	 and	 get
methods	of	FixedDepositController	bean.	The	argument	passed	to	the	getBean	method	is	the	name	of	the
bean	whose	instance	you	want	to	retrieve	from	the	Spring	container.	The	name	of	the	bean	passed	to	the
getBean	method	must	be	the	value	of	the	id	or	name	attribute	of	the	bean	that	you	want	to	retrieve.	If	no
bean	 with	 the	 specified	 name	 is	 registered	 with	 the	 Spring	 container,	 an	 exception	 is	 thrown	 by	 the
getBean	method.

In	 example	 listing	 1-16,	 to	 configure	 the	FixedDepositController	 instance,	we	 didn’t	 programmatically
create	an	 instance	of	FixedDepositService	and	 set	 it	 on	 the	FixedDepositController	 instance.	Also,	we
didn’t	 create	 an	 instance	 of	 FixedDepositDao	 and	 set	 it	 on	 the	 FixedDepositService	 instance.	 This	 is
because	the	task	of	creating	dependencies,	and	injecting	them	into	the	the	dependent	objects	is	handled	by
the	Spring	container.

If	 you	go	 to	 ch01-bankapp-xml	 project	 and	 execute	 the	main	method	 of	BankApp	 class,	 you’ll	 see	 the
following	output	on	the	console:
INFO		sample.spring.chapter01.bankapp.FixedDepositController	-	initializing
INFO		sample.spring.chapter01.bankapp.FixedDepositService	-	initializing
INFO		sample.spring.chapter01.bankapp.FixedDepositDao	-	initializing
INFO		sample.spring.chapter01.bankapp.FixedDepositService	-	Setting	fixedDepositDao	property
INFO	sample.spring.chapter01.bankapp.FixedDepositController	-	Setting	fixedDepositService	property
INFO		sample.spring.chapter01.bankapp.BankApp	-	Submission	status	of	fixed	deposit	:	true



INFO		sample.spring.chapter01.bankapp.BankApp	-	Returned	fixed	deposit	info	:	id	:1,	deposit	amount	:	10000.0,	tenure	:	365,	email	:
someemail@something.com

The	 above	 output	 shows	 that	 Spring	 container	 creates	 an	 instance	 of	 each	 of	 the	 beans	 defined	 in	 the
applicationContext.xml	file	of	MyBank	application.	Also,	Spring	container	uses	setter-based	DI	to	inject
an	 instance	 of	 FixedDepositService	 into	 FixedDepositController	 instance,	 and	 an	 instance	 of
FixedDepositDao	into	the	FixedDepositService	instance.

Let’s	now	look	at	some	of	the	frameworks	that	are	built	on	top	of	Spring	Framework.



1-6	Frameworks	built	on	top	of	Spring
Though	 there	 are	 many	 frameworks	 from	 SpringSource	 that	 use	 Spring	 Framework	 as	 the	 foundation,
we’ll	 look	at	 some	of	 the	widely	popular	ones.	For	a	more	comprehensive	 list	of	 frameworks,	and	for
more	details	about	an	 individual	 framework,	 it’s	 recommended	 that	you	visit	 the	SpringSource	website
(www.springsource.org).

The	following	table	provides	a	high-level	overview	of	the	frameworks	from	SpringSource	that	are	built
on	top	of	Spring	Framework:
	

Framework Description

Spring	Security
Authentication	and	authorization	framework	for	enterprise	applications.	You	need	to
configure	 a	 few	 beans	 in	 your	 application	 context	 XML	 file	 to	 incorporate
authentication	and	authorization	features	into	your	application.

Spring	Data

Provides	 a	 consistent	 programming	 model	 to	 interact	 with	 different	 types	 of
databases.	For	instance,	you	can	use	it	to	interact	with	non-relational	databases,	like
MongoDB	or	Neo4j,	and	you	can	also	use	it	for	accessing	relational	databases	using
JPA.

Spring	Batch If	your	application	requires	bulk	processing,	this	framework	is	for	you.

Spring	Integration Provides	Enterprise	Application	Integration	(EAI)	capabilities	to	applications.

Spring	Social If	 your	 application	 requires	 interaction	with	 social	media	websites,	 like	 Facebook
and	Twitter,	then	you’ll	find	this	framework	highly	useful.

Spring	BlazeDS
Integration

If	you	are	developing	an	Adobe	Flex	based	application,	you	can	use	this	framework
to	connect	Flex	frontend	with	Spring-based	business	tier.

	

As	the	frameworks	mentioned	in	the	above	table	are	built	on	top	of	Spring	Framework,	before	using	any
of	these	frameworks	make	sure	that	they	are	compatible	with	the	Spring	Framework	version	that	you	are
using.

http://www.springsource.org


1-7	Summary
In	this	chapter,	we	looked	at	the	benefits	of	using	Spring	Framework.	We	also	looked	at	a	simple	Spring
application	that	showed	how	to	specify	configuration	metadata	in	XML	format,	create	the	Spring	container
instance	and	retrieve	beans	from	it.	In	the	next	chapter,	we’ll	look	at	some	of	the	foundation	concepts	of
Spring	Framework.



Chapter	2	–	Spring	Framework	basics



2-1	Introduction
In	the	previous	chapter,	we	saw	that	the	Spring	container	invokes	the	no-argument	constructor	of	a	bean
class	to	create	a	bean	instance,	and	setter-based	DI	is	used	to	set	bean	dependencies.	In	this	chapter,	we’ll
go	a	step	further	and	look	at:

§		Spring’s	support	for	‘programming	to	interfaces’	design	principle

§		different	approaches	to	instantiating	Spring	beans

§		constructor-based	DI	for	passing	bean	dependencies	as	constructor	arguments

§		constructor-	and	setter-based	DI	for	passing	simple	String	values	to	beans,	and

§		bean	scopes

Let’s	 begin	 this	 chapter	with	 looking	 at	 how	Spring	 improves	 testability	 of	 applications	 by	 supporting
‘programming	to	interfaces’	design	principle.



2-2	Programming	to	interfaces	design	principle
In	section	1-5	of	chapter	1,	we	saw	that	a	dependent	POJO	class	contained	reference	to	the	concrete	class
of	 the	 dependency.	 For	 example,	 the	 FixedDepositController	 class	 contained	 reference	 to	 the
FixedDepositService	 class,	 and	 the	 FixedDepositService	 class	 contained	 reference	 to	 the
FixedDepositDao	class.	If	a	dependent	class	has	direct	reference	to	the	concrete	class	of	the	dependency,
it	 results	 in	 tight	 coupling	 between	 the	 classes.	 This	 means	 that	 if	 you	 want	 to	 substitute	 a	 different
implementation	of	the	dependency,	it’d	require	changing	the	dependent	class.

Let’s	now	look	at	a	scenario	in	which	a	dependent	class	contains	direct	reference	to	the	concrete	class	of
the	dependency.

Scenario:	Dependent	class	contains	reference	to	the	concrete	class	of	dependency
Let’s	 say	 that	 the	 FixedDepositDao	 class	 makes	 use	 of	 plain	 JDBC	 to	 interact	 with	 the	 database.	 To
simplify	 database	 interaction,	 you	 create	 another	 DAO	 implementation,	 FixedDepositHibernateDao,
which	uses	Hibernate	ORM	for	database	interaction.	Now,	to	switch	from	plain	JDBC	to	Hibernate	ORM
implementation,	you’ll	need	to	change	FixedDepositService	class	to	use	FixedDepositHibernateDao	class
instead	of	FixedDepositDao,	as	shown	in	the	following	example	listing:

	

Example	listing	2-1	–	FixedDepositService	class
	
public	class	FixedDepositService	{
			private	FixedDepositHibernateDao	fixedDepositDao;
	
			public	void	setFixedDepositDao(FixedDepositHibernateDao	fixedDepositDao)	{
							this.fixedDepositDao	=	fixedDepositDao;
			}
	
					public	FixedDepositDetails	getFixedDepositDetails(long	id)	{
									return	fixedDepositDao.getFixedDepositDetails(id);
					}
	
					public	boolean	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	{
									return	fixedDepositDao.createFixedDeposit(fixedDepositDetails);
					}
}

The	 above	 example	 listing	 shows	 that	 reference	 to	 FixedDepositDao	 class	 was	 replaced	 by
FixedDepositHibernateDao	so	that	Hibernate	ORM	can	be	used	for	database	interaction.		This	shows	that
if	 a	 dependent	 class	 refers	 to	 the	 concrete	 implementation	 class	 of	 the	 dependency,	 then	 substituting	 a
different	implementation	requires	changes	in	the	dependent	class.

Let’s	now	look	at	a	scenario	in	which	a	dependent	class	contains	reference	to	the	interface	implemented
by	the	dependency.



Scenario:	Dependent	class	contains	reference	to	 the	 interface	 implemented	by	the
dependency
We	know	that	a	Java	interface	defines	a	contract	 to	which	the	implementation	classes	conform.	So,	 if	a
class	 depends	on	 the	 interface	 implemented	by	 the	dependency,	 no	 change	 is	 required	 in	 the	 class	 if	 a
different	 implementation	of	 the	 dependency	 is	 substituted.	The	 application	design	 approach	 in	which	 a
class	 depends	 on	 the	 interface	 implemented	 by	 the	 dependency	 is	 referred	 to	 as	 ‘programming	 to
interfaces’.	The	interface	implemented	by	the	dependency	class	is	referred	to	as	a	dependency	interface.

As	it	is	a	good	design	practice	to	‘program	to	interfaces’	than	to	‘program	to	classes’,	the	following	class
diagram	shows	that	it	is	a	good	design	if	ABean	class	depends	on	BBean	interface	and	not	on	BBeanImpl
class	that	implements	BBean	interface:

	

	

	

Figure	2-1	-	‘Program	to	interfaces’	is	a	good	design	practice	than	to	‘program	to	classes’

The	 following	class	diagram	shows	how	FixedDepositService	 class	 can	make	use	 of	 ‘programming	 to
interfaces’	design	approach	to	easily	switch	the	strategy	used	for	database	interaction:

Figure	2-2	–	The	FixedDepositService	depends	on	FixedDepositDao	interface,	which	is	implemented	by
FixedDepositJdbcDao	and	FixedDepositHibernateDao	classes.

The	 above	 figure	 shows	 that	 the	 FixedDepositService	 class	 is	 not	 directly	 dependent	 on	 the
FixedDepositJdbcDao	or	FixedDepositHibernateDao	class.	Instead,	FixedDepositService	depends	on	the
FixedDepositDao	 interface	 (the	 dependency	 interface)	 implemented	 by	 FixedDepositJdbcDao	 and



FixedDepositHibernateDao	 classes.	 Now,	 depending	 on	 whether	 you	 want	 to	 use	 plain	 JDBC	 or
Hibernate	 ORM	 framework,	 you	 supply	 an	 instance	 of	 FixedDepositJdbcDao	 or
FixedDepositHibernateDao	to	the	FixedDepositService	instance.

As	 FixedDepositService	 depends	 on	 FixedDepositDao	 interface,	 you	 can	 support	 other	 database
interaction	 strategies	 in	 the	 future.	Let’s	 say	 that	you	decide	 to	use	 iBATIS	 (now	 renamed	 to	MyBatis)
persistence	 framework	 for	 database	 interaction.	 You	 can	 use	 iBATIS	 without	 making	 any	 changes	 to
FixedDepositService	 class	 by	 simply	 creating	 a	 new	 FixedDepositIbatisDao	 class	 that	 implements
FixedDepositDao	 interface,	 and	 supplying	 an	 instance	 of	 FixedDepositIbatisDao	 to	 the
FixedDepositService	instance.

So	far	we	have	seen	that	‘programming	to	interfaces’	design	approach	results	in	loose	coupling	between	a
dependent	class	and	its	dependencies.	Let’s	now	look	at	how	this	design	approach	improves	testability	of
the	dependent	classes.

Improved	testability	of	dependent	classes

In	 figure	 2-2,	 we	 saw	 that	 the	 FixedDepositService	 class	 holds	 reference	 to	 the	 FixedDepositDao
interface.	FixedDepositJdbcDao	and	FixedDepositHibernateDao	are	concrete	implementation	classes	of
FixedDepositDao	interface.	Now,	to	simplify	unit	testing	of	FixedDepositService	class,	you	can	substitute
a	mock	implementation	of	FixedDepositDao	interface	that	doesn’t	require	a	database.

If	 the	 FixedDepositService	 class	 had	 direct	 reference	 to	 FixedDepositJdbcDao	 or
FixedDepositHibernateDao	 class,	 testing	 FixedDepositService	 class	 would	 have	 required	 setting	 up	 a
database	for	testing	purposes.	This	shows	that	by	using	a	mock	implementation	of	dependency	interface,
you	can	save	the	effort	to	setup	the	infrastructure	for	unit	testing	your	dependent	classes.

Let’s	now	see	how	Spring	supports	‘programming	to	interfaces’	design	approach	in	applications.

Spring’s	support	for	‘programming	to	interfaces’	design	approach
To	use	 ‘programming	 to	 interfaces’	design	approach	 in	your	Spring	application,	you	need	 to	ensure	 the
following	things:

§		the	<bean>	elements	in	the	configuration	metadata	specify	the	concrete	classes	of	the	dependency

§	 	 the	dependent	bean	classes	 refer	 to	 the	dependency	 interface	 instead	of	 the	concrete	class	of	 the
dependency

Let’s	 now	 look	 at	 the	 modified	 MyBank	 application	 that	 uses	 ‘programming	 to	 interfaces’	 design
approach.

IMPORT	 chapter	 2/ch02-bankapp-interfaces	 (This	 project	 shows	 how	 ‘programming	 to	 interfaces’
design	approach	is	used	in	creating	Spring	applications.	To	run	the	application,	execute	the	main	method
of	the	BankApp	class	of	this	project)

	

	

MyBank	application	that	uses	‘programming	to	interfaces’	design	approach



The	 following	 class	 diagram	 depicts	 the	 modified	 MyBank	 application	 that	 uses	 ‘programming	 to
interfaces’	design	approach:

Figure	2-3	-	MyBank	application	that	uses	‘program	to	interfaces’	design	approach

The	above	figure	shows	that	a	dependent	class	depends	on	the	interface	implemented	by	the	dependency,
and	 not	 on	 the	 concrete	 implementation	 class	 of	 the	 dependency.	 For	 instance,	 the
FixedDepositControllerImpl	 class	 depends	 on	 the	 FixedDepositService	 interface,	 and	 the
FixedDepositServiceImpl	class	depends	on	the	FixedDepositDao	interface.

The	following	example	 listing	shows	 the	FixedDepositServiceImpl	class	based	on	 the	design	shown	 in
figure	2-3:

Example	listing	2-2	–	FixedDepositService	class
Project	–	ch02-bankapp-interfaces
Source	location	-	src/main/java/sample/spring/chapter02/bankapp
	
package	sample.spring.chapter02.bankapp;
	
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
			private	FixedDepositDao	fixedDepositDao;
				.....
				public	void	setFixedDepositDao(FixedDepositDao	fixedDepositDao)	{																				
								this.fixedDepositDao	=	fixedDepositDao;
				}
	
				public	FixedDepositDetails	getFixedDepositDetails(long	id)	{
								return	fixedDepositDao.getFixedDepositDetails(id);
				}
	
				public	boolean	createFixedDeposit(FixedDepositDetails	fdd)	{
								return	fixedDepositDao.createFixedDeposit(fdd);



				}
}

The	 above	 example	 listing	 shows	 that	 the	 FixedDepositServiceImpl	 class	 contains	 reference	 to	 the
FixedDepositDao	 interface.	 The	 FixedDepositDao	 implementation	 that	 you	 want	 to	 inject	 into	 the
FixedDepositServiceImpl	instance	is	specified	in	the	application	context	XML	file.	As	shown	in	figure	2-
3,	 you	 can	 inject	 any	 one	 of	 the	 following	 concrete	 implementations	 of	 FixedDepositDao	 interface:
FixedDepositIbatisDao,	FixedDepositJdbcDao	and	FixedDepositHibernateDao.

The	 following	example	 listing	shows	 the	applicationContext.xml	 file	 that	 caters	 to	 the	design	 shown	 in
figure	2-3:

Example	listing	2-3	–	applicationContext.xml	-	MyBank’s	application	context	XML	file
Project	–	ch02-bankapp-interfaces
Source	location	-	src/main/resources/META-INF/spring
	
<?xml	version="1.0"	encoding="UTF-8"	standalone="no"?>
<beans	.....>
	
				<bean	id="controller"
										class="sample.spring.chapter02.bankapp.controller.FixedDepositControllerImpl">
								<property	name="fixedDepositService"	ref="service"	/>
				</bean>
	
				<bean	id="service"	class="sample.spring.chapter02.bankapp.service.FixedDepositServiceImpl">
								<property	name="fixedDepositDao"	ref="dao"	/>
				</bean>
	
				<bean	id="dao"	class="sample.spring.chapter02.bankapp.dao.FixedDepositHibernateDao"/>
</beans>

The	 above	 applicationContext.xml	 file	 shows	 that	 an	 instance	 of	 FixedDepositHibernateDao	 (an
implementation	 of	 FixedDepositDao	 interface)	 is	 injected	 into	 FixedDepositServiceImpl.	 Now,	 if	 you
decide	to	use	iBATIS	instead	of	Hibernate	for	persistence,	then	all	you	need	to	do	is	to	change	the	class
attribute	of	the	dao	bean	definition	in	the	applicationContext.xml	file	to	refer	to	the	fully-qualified	name	of
the	FixedDepositIbatisDao	class.

Let’s	now	look	at	different	ways	in	which	Spring	container	can	instantiate	beans.



2-3	Different	approaches	to	instantiating	Spring	beans
So	far	we	have	seen	bean	definition	examples	that	 instruct	Spring	container	to	create	bean	instances	by
invoking	the	no-argument	constructor	of	the	bean	class.	Consider	the	following	bean	definition:

<bean	id=”myBean”	class=”mypackage.MyBean”/>

In	 the	 above	 bean	 definition,	 MyBean	 class	 represents	 a	 POJO	 class	 that	 defines	 a	 no-argument
constructor.	MyBean	 class	doesn’t	 implement	 any	Spring-specific	 interface	or	 extend	 from	any	Spring-
specific	 class.	This	 effectively	means	 that	 the	Spring	 container	 can	 create	 and	manage	 instance	 of	 any
class	that	provides	a	no-argument	constructor.

NOTE	 It	 is	 important	 to	 note	 that	 the	 Spring	 container	 can	 create	 and	manage	 instance	 of	 any	 class,
irrespective	of	whether	the	class	provides	a	no-argument	constructor	or	not.	In	section	2-4,	we’ll	look	at
bean	definitions	in	which	the	constructor	of	the	bean	class	accepts	one	or	more	arguments.

If	you	have	an	existing	project	that	uses	factory	classes	to	create	object	instances,	you	can	still	use	Spring
container	to	manage	objects	created	by	these	factories.	Let’s	now	look	at	how	Spring	container	invokes	a
static	or	an	instance	factory	method	of	a	class	to	manage	the	returned	object	instance.

Instantiating	beans	via	static	factory	methods
In	figure	2-3,	we	saw	that	the	FixedDepositDao	interface	is	implemented	by	FixedDepositHibernateDao,
FixedDepositIbatisDao	 and	 FixedDepositJdbcDao	 classes.	 The	 following	 example	 listing	 shows	 a
FixedDepositDaoFactory	class	that	defines	a	static	factory	method	for	creating	and	returning	an	instance
of	FixedDepositDao	based	on	the	argument	passed	to	the	static	method:

Example	listing	2-4	–	FixedDepositDaoFactory	class
	
public	class	FixedDepositDaoFactory	{
				private	FixedDepositDaoFactory()	{	}
														
				public	static	FixedDepositDao	getFixedDepositDao(String	daoType)	{
								FixedDepositDao	fixedDepositDao	=	null;
	
								if("jdbc".equalsIgnoreCase(daoType))	{
														fixedDepositDao	=	new	FixedDepositJdbcDao();
								}
								if("hibernate".equalsIgnoreCase(daoType))	{
														fixedDepositDao	=	new	FixedDepositHibernateDao();
								}
								.....
						return	fixedDepositDao;
				}								
}

The	above	example	listing	shows	that	the	FixedDepositDaoFactory	class	defines	a	getFixedDepositDao
static	method	 that	creates	and	returns	an	 instance	of	FixedDepositJdbcDao,	FixedDepositHibernateDao



or	FixedDepositIbatisDao	class,	depending	on	the	value	of	the	daoType	argument.

The	following	bean	definition	for	the	FixedDepositDaoFactory	class	instructs	Spring	container	to	invoke
FixedDepositDaoFactory’s	getFixedDepositDao	method	 to	 obtain	 an	 instance	 of	 FixedDepositJdbcDao
class:

Example	listing	2-5	–	Bean	definition	for	the	FixedDepositDaoFactory	class
	
<bean	id="dao"	class="sample.spring.FixedDepositDaoFactory"
														factory-method="getFixedDepositDao">
						<constructor-arg	index=”0”	value="jdbc"/>
</bean>

In	the	above	bean	definition,	class	attribute	specifies	the	fully-qualified	name	of	the	class	that	defines	the
static	factory	method.	The	factory-method	attribute	specifies	the	name	of	the	static	factory	method	that	the
Spring	container	invokes	to	obtain	an	instance	of	FixedDepositDao	object.	The	<constructor-arg>	element
is	 defined	 in	Spring’s	 beans	schema	 and	 is	 used	 for	 passing	 arguments	 to	 constructors,	 and	 static	 and
instance	factory	methods.	The	index	attribute	refers	to	the	location	of	the	argument	in	the	constructor,	or	in
the	static	or	instance	factory	method.	In	the	above	bean	definition,	the	value	0	of	 index	attribute	means
that	 the	 <constructor-arg>	 element	 is	 supplying	 value	 for	 the	 first	 argument,	which	 is	 daoType,	 of	 the
getFixedDepositDao	factory	method.	The	value	attribute	specifies	the	argument	value.	If	a	factory	method
accepts	multiple	arguments,	you	need	to	define	a	<constructor-arg>	element	for	each	of	the	arguments.

It	is	important	to	note	that	calling	ApplicationContext’s	getBean	method	to	obtain	dao	bean	(refer	example
listing	 2-5)	 will	 result	 in	 invocation	 of	 the	 FixedDepositDaoFactory’s	 getFixedDepositDao	 factory
method.	 This	 means	 that	 calling	 getBean("dao")	 returns	 the	 FixedDepositDao	 instance	 created	 by	 the
getFixedDepositDao	factory	method,	and	not	an	instance	of	FixedDepositDaoFactory	class.

Now,	that	we	have	seen	the	configuration	of	the	factory	class	that	creates	an	instance	of	FixedDepositDao,
the	 following	 example	 listing	 shows	 how	 to	 inject	 an	 instance	 of	 FixedDepositDao	 into
FixedDepositServiceImpl	class:

Example	listing	2-6	–	Injecting	object	instances	created	by	static	factory	method
	
<bean	id="service"	class="sample.spring.chapter02.bankapp.FixedDepositServiceImpl">
				<property	name=“fixedDepositDao"	ref="dao"	/>
</bean>
	
<bean	id="dao"	class="sample.spring.chapter02.basicapp.FixedDepositDaoFactory"
								factory-method="getFixedDepositDao">
								<constructor-arg	index=”0”	value="jdbc"/>
</bean>
	
In	 the	 above	 example	 listing,	 <property>	 element	 injects	 an	 instance	 of	 FixedDepositDao	 returned	 by
FixedDepositDaoFactory’s	getFixedDepositDao	 factory	method	 into	FixedDepositServiceImpl	 instance.
If	 you	 compare	 the	 bean	 definition	 for	 the	 FixedDepositServiceImpl	 class	 shown	 above	 with	 the	 one
shown	 in	 example	 listing	 2-3,	 you’ll	 notice	 that	 they	 are	 exactly	 the	 same.	 This	 shows	 that	 the	 bean
dependencies	are	 specified	 the	 same	way	 irrespective	of	how	 (using	no-argument	 constructor	or	static



factory	method)	the	Spring	container	creates	bean	instances.

Let’s	now	look	at	how	Spring	container	instantiate	beans	by	invoking	an	instance	factory	method.

Instantiating	beans	via	instance	factory	methods
The	following	example	listing	shows	the	FixedDepositDaoFactory	class	that	defines	an	instance	 factory
method	for	creating	and	returning	an	instance	of	FixedDepositDao:

Example	listing	2-7	–	FixedDepositDaoFactory	class
	
public	class	FixedDepositDaoFactory	{
				public	FixedDepositDaoFactory()	{
				}
														
			public	FixedDepositDao	getFixedDepositDao(String	daoType)	{
								FixedDepositDao	FixedDepositDao	=	null;
	
								if("jdbc".equalsIgnoreCase(daoType))	{
														FixedDepositDao	=	new	FixedDepositJdbcDao();
								}
								if(“hibernate”.equalsIgnoreCase(daoType))	{
														FixedDepositDao	=	new	FixedDepositHiberateDao();
								}
								.....
						return	fixedDepositDao;
				}								
}

If	a	class	defines	an	instance	factory	method,	the	class	must	define	a	public	constructor	so	that	the	Spring
container	can	create	an	instance	of	that	class.	In	the	above	example	listing,	the	FixedDepositDaoFactory
class	 defines	 a	 public	 no-argument	 constructor.	 The	 FixedDepositDaoFactory’s	 getFixedDepositDao
method	is	an	instance	factory	method	that	creates	and	returns	an	instance	of	FixedDepositDao.

The	 following	 example	 listing	 shows	 how	 to	 instruct	 Spring	 container	 to	 invoke
FixedDepositDaoFactory’s	getFixedDepositDao	method	to	obtain	an	instance	of	FixedDepositDao:

Example	listing	2-8	–	Configuration	to	invoke	FixedDepositDaoFactory’s	getFixedDepositDao	method
	
<bean	id="daoFactory"	class="sample.spring.chapter02.basicapp.FixedDepositDaoFactory"	/>
	
<bean	id="dao"	factory-bean="daoFactory"	factory-method="getFixedDepositDao">
								<constructor-arg	index="0"	value="jdbc"/>
</bean>
	
<bean	id="service"	class="sample.spring.chapter02.bankapp.FixedDepositServiceImpl">
				<property	name=“fixedDepositDao"	ref="dao"	/>
</bean>



	
The	above	example	listing	shows	that	the	FixedDepositDaoFactory	class	(a	class	that	contains	 instance
factory	 method)	 is	 configured	 like	 a	 regular	 Spring	 bean,	 and	 a	 separate	 <bean>	 element	 is	 used	 to
configure	the	instance	factory	method	details.	To	configure	details	of	an	instance	factory	method,	factory-
bean	and	factory-method	attributes	of	<bean>	element	are	used.	The	factory-bean	attribute	 refers	 to	 the
bean	that	defines	the	instance	factory	method,	and	the	factory-method	attribute	specifies	the	name	of	the
instance	 factory	 method.	 In	 the	 above	 example	 listing,	 <property>	 element	 injects	 an	 instance	 of
FixedDepositDao	 returned	 by	 FixedDepositDaoFactory’s	 getFixedDepositDao	 factory	 method	 into
FixedDepositServiceImpl	instance.

As	with	static	factory	methods,	you	can	pass	arguments	to	instance	factory	methods	using	<constructor-
arg>	 element.	 It	 is	 important	 to	 note	 that	 invoking	ApplicationContext’s	getBean	method	 to	 obtain	 dao
bean	 in	 the	 above	 example	 listing	 will	 result	 in	 invocation	 of	 the	 FixedDepositDaoFactory’s
getFixedDepositDao	factory	method.

So	 far	we	have	 looked	 at	 bean	definition	 examples	 in	which	dependencies	 are	 injected	 into	beans	via
setter	methods.	Let’s	now	look	at	different	DI	mechanisms	that	you	can	use	for	injecting	dependencies.



2-4	Dependency	injection	techniques
In	 Spring,	 dependency	 injection	 is	 performed	 by	 passing	 arguments	 to	 a	 bean’s	 constructor	 and	 setter
methods.	If	you	are	using	a	static	or	instance	factory	method	to	create	bean	instances,	you	can	pass	bean
dependencies	 to	 the	 factory	 method	 or	 you	 can	 set	 them	 on	 the	 bean	 instance	 returned	 by	 the	 factory
method.

We’ll	now	look	at	examples	that	demonstrate	different	DI	techniques.

Setter-based	DI
So	far	in	this	book,	we’ve	seen	examples	of	setter-based	DI.	In	setter-based	DI,	<property>	elements	are
used	 to	 specify	 bean	 dependencies.	 The	 <property>	 element	 is	 also	 used	 to	 pass	 configuration
information	(if	any)	required	by	the	bean.

Let’s	say	that	the	MyBank	application	contains	a	PersonalBankingService	service	that	allows	customers
to	retrieve	bank	account	statement,	check	bank	account	details,	update	contact	number,	change	password,
and	 contact	 customer	 service.	The	PersonalBankingService	class	uses	 JmsMessageSender	 (for	 sending
JMS	 messages),	 EmailMessageSender	 (for	 sending	 emails)	 and	 WebServiceInvoker	 (for	 invoking
external	web	 services)	objects	 to	 accomplish	 it’s	 intended	 functionality.	The	 following	example	 listing
shows	the	PersonalBankingService	class:

Example	listing	2-9	–	PersonalBankingService	class
	
public	class	PersonalBankingService	{
				private	JmsMessageSender	jmsMessageSender;
				private	EmailMessageSender	emailMessageSender;
				private	WebServiceInvoker	webServiceInvoker;
				.....
			public	void	setJmsMessageSender(JmsMessageSender	jmsMessageSender)	{
								this.jmsMessageSender	=	jmsMessageSender;
				}
	
			public	void	setEmailMessageSender(EmailMessageSender	emailMessageSender)	{
								this.emailMessageSender	=	emailMessageSender;
				}
	
			public	void	setWebServiceInvoker(WebServiceInvoker	webServiceInvoker)	{
								this.webServiceInvoker	=	webServiceInvoker;
				}
				.....
}

The	 above	 example	 listing	 shows	 that	 a	 setter	 method	 is	 defined	 for	 JmsMessageSender,
EmailMessageSender	and	WebServiceInvoker	dependencies	of	PersonalBankingService	class.

We	 can	 use	 setter-based	DI	 to	 inject	 the	 dependencies	 of	 the	PersonalBankingService	 class,	 as	 shown
here:



Example	listing	2-10	–	Bean	definitions	for	PersonalBankingService	class	and	its	dependencies
	
				<bean	id="personalBankingService"	class="PersonalBankingService">
								<property	name="emailMessageSender"	ref="emailMessageSender"	/>
								<property	name="jmsMessageSender"	ref="jmsMessageSender"	/>
								<property	name="webServiceInvoker"	ref="webServiceInvoker"	/>
				</bean>
	
				<bean	id="jmsMessageSender"	class="JmsMessageSender">
								.....
				</bean>
				<bean	id="webServiceInvoker"	class="WebServiceInvoker"	/>
								.....
				</bean>
				<bean	id="emailMessageSender"	class="EmailMessageSender"	/>
								.....
				</bean>

The	 personalBankingService	 bean	 definition	 shows	 that	 a	 <property>	 element	 is	 specified	 for	 each
dependency	of	PersonalBankingService	class.

PersonalBankingService	uses	EmailMessageSender	bean	to	send	an	email	notification	to	the	customer’s
email	address	in	case	customer	changes	his	contact	number.	EmailMessageSender	requires	email	server
address,	 and	 username	 and	 password	 for	 authenticating	with	 the	 email	 server.	 The	 following	 example
listing	shows	that	the	<property>	element	can	also	be	used	for	setting	bean	properties	of	type	String:

Example	listing	2-11	EmailMessageSender	class	and	the	corresponding	bean	definition

public	class	EmailMessageSender	{
			private	String	host;
			private	String	username;
			private	String	password;
				.....
				public	void	setHost(String	host)	{
								this.host	=	host;
				}
	
				public	void	setUsername(String	username)	{
								this.username	=	username;
				}
	
				public	void	setPassword(String	password)	{
								this.password	=	password;
				}
				.....
}
			



				<bean	id="emailMessageSender"	class="EmailMessageSender">
								<property	name="host"	value="smtp.gmail.com"/>
								<property	name="username"	value="myusername"/>
								<property	name="password"	value="mypassword"/>
				</bean>

The	 above	 example	 listing	 shows	 that	 <property>	 elements	 have	 been	 used	 to	 set	 host,	 username	 and
password	properties	of	EmailMessageSender	bean.	The	value	attribute	specifies	the	String	value	to	be	set
for	 the	 bean	 property	 identified	 by	 the	 name	 attribute.	 The	 host,	 username	 and	 password	 properties
represent	configuration	information	required	by	EmailMessageSender	bean.	In	chapter	3,	we’ll	see	how
the	 <property>	 element	 is	 used	 to	 set	 primitive	 type	 (like	 int,	 long,	 and	 so	 on),	 collection	 type	 (like
java.util.List,	java.util.Map,	and	so	on)	and	custom	type	(like	Address)	properties.

Setter-based	DI	 is	 also	 used	 to	 inject	 dependencies	 into	 beans	 created	 by	 static	 and	 instance	 factory
methods.	Let’s	look	at	how	to	use	setter-based	DI	in	conjunction	with	static	and	instance	factory	methods.

Injecting	dependencies	into	bean	instances	created	by	factory	methods

You	can	use	setter-based	DI	to	inject	dependencies	of	the	bean	instance	returned	by	a	static	or	instance
factory	method.

Consider	the	following	FixedDepositJdbcDao	class	that	defines	a	databaseInfo	property:

Example	listing	2-12	–	FixedDepositJdbcDao	class
	
public	class	FixedDepositJdbcDao	{
			private	DatabaseInfo	databaseInfo;
				.....
				public	FixedDepositJdbcDao()	{	}
	
			public	void	setDatabaseInfo(DatabaseInfo	databaseInfo)	{
								this.	databaseInfo	=	databaseInfo;
				}
				.....
}

In	 the	 above	 example	 listing,	 the	 databaseInfo	 attribute	 represents	 a	 dependency	 of	 the
FixedDepositJdbcDao	class	that	is	fulfilled	by	setDatabaseInfo	method.

The	 following	 FixedDepositDaoFactory	 class	 defines	 a	 factory	 method	 responsible	 for	 creating	 and
returning	an	instance	of	FixedDepositDaoJdbc	class:

Example	listing	2-13	–	FixedDepositDaoFactory	class
	
public	class	FixedDepositDaoFactory	{
				public	FixedDepositDaoFactory()	{
				}
														
			public	FixedDepositDao	getFixedDepositDao(String	daoType)	{



								FixedDepositDao	FixedDepositDao	=	null;
	
								if("jdbc".equalsIgnoreCase(daoType))	{
									FixedDepositDao	=	new	FixedDepositJdbcDao();
								}
								if(“hibernate”.equalsIgnoreCase(daoType))	{
														FixedDepositDao	=	new	FixedDepositHiberateDao();
								}
								.....
								return	fixedDepositDao;
				}								
}

In	the	above	example	listing,	the	getFixedDepositDao	method	is	an	instance	factory	method	for	creating
FixedDepositDao	 instances.	 The	 getFixedDepositDao	 method	 creates	 an	 instance	 of
FixedDepositJdbcDao	instance	if	the	value	of	daoType	argument	is	jdbc.	 It	 is	 important	 to	note	 that	 the
getFixedDepositDao	method	doesn’t	set	the	databaseInfo	property	of	the	FixedDepositJdbcDao	instance.

As	we	saw	in	example	 listing	2-8,	 the	following	bean	definitions	 instruct	Spring	container	 to	create	an
instance	 of	 FixedDepositJdbcDao	 by	 invoking	 the	 getFixedDepositDao	 instance	 factory	 method	 of
FixedDepositDaoFactory	class:

	

Example	listing	2-14	–	Configuration	to	invoke	FixedDepositDaoFactory’s	getFixedDepositDao	method
	
<bean	id="daoFactory"	class="FixedDepositDaoFactory"	/>

<bean	id="dao"	factory-bean="daoFactory"	factory-method="getFixedDepositDao">
								<constructor-arg	index="0"	value="jdbc"/>
</bean>

The	dao	bean	definition	results	in	invocation	of	FixedDepositDaoFactory’s	getFixedDepositDao	method,
which	 creates	 and	 returns	 an	 instance	 of	 FixedDepositJdbcDao.	 But,	 the	 FixedDepositJdbcDao’s
databaseInfo	property	is	not	set.	To	set	the	databaseInfo	dependency,	you	can	perform	setter-based	DI	on
the	FixedDepositJdbcDao	instance	returned	by	the	getFixedDepositDao	method,	as	shown	here:

Example	listing	2-15	–	Configuration	to	invoke	FixedDepositDaoFactory’s	getFixedDepositDao	method
and	set	databaseInfo	property	of	returned	FixedDepositJdbcDao	instance

<bean	id="daoFactory"	class="FixedDepositDaoFactory"	/>
	
<bean	id="dao"	factory-bean="daoFactory"	factory-method="getFixedDepositDao">
								<constructor-arg	index="0"	value="jdbc"/>
					<property	name="databaseInfo"	ref="databaseInfo"/>
</bean>
	
<bean	id="databaseInfo"	class="DatabaseInfo"	/>



The	 above	 bean	 definition	 shows	 that	 <property>	 element	 is	 used	 to	 set	 databaseInfo	 property	 of
FixedDepositJdbcDao	 instance	 returned	 by	 getFixedDepositDao	 instance	 factory	 method.	 As	 with	 the
instance	factory	method,	you	can	use	the	<property>	element	to	inject	dependencies	into	the	bean	instance
returned	by	the	static	factory	method.

Let’s	now	look	at	how	to	inject	bean	dependencies	via	constructor	arguments.

Constructor-based	DI
In	constructor-based	DI,	dependencies	of	a	bean	are	passed	as	arguments	to	the	bean	class’s	constructor.
For	 instance,	 the	 following	 example	 listing	 shows	 PersonalBankingService	 class	 whose	 constructor
accepts	JmsMessageSender,	EmailMessageSender	and	WebServiceInvoker	objects:

	
	
	
	
Example	listing	2-16	–	PersonalBankingService	class
	
public	class	PersonalBankingService	{
				private	JmsMessageSender	jmsMessageSender;
				private	EmailMessageSender	emailMessageSender;
				private	WebServiceInvoker	webServiceInvoker;
				.....
			public	PersonalBankingService(JmsMessageSender	jmsMessageSender,
							EmailMessageSender	emailMessageSender,
							WebServiceInvoker	webServiceInvoker)	{
	
								this.jmsMessageSender	=	jmsMessageSender;
								this.emailMessageSender	=	emailMessageSender;
								this.webServiceInvoker	=	webServiceInvoker;
				}
				.....
}

The	 arguments	 to	 the	 PersonalBankingService’s	 constructor	 represent	 dependencies	 of	 the
PersonalBankingService	 class.	 The	 following	 example	 listing	 shows	 how	 dependencies	 of
PersonalBankingService	instance	are	supplied	via	<constructor-arg>	elements:

Example	listing	2-17	–	PersonalBankingService	bean	definition
	
				<bean	id="personalBankingService"	class="PersonalBankingService">
					<constructor-arg	index="0"	ref="jmsMessageSender"	/>
					<constructor-arg	index="1"	ref="emailMessageSender"	/>
					<constructor-arg	index="2"	ref="webServiceInvoker"	/>
				</bean>
	
				<bean	id="jmsMessageSender"	class="JmsMessageSender">



								.....
				</bean>
				<bean	id="webServiceInvoker"	class="WebServiceInvoker"	/>
								.....
				</bean>
				<bean	id="emailMessageSender"	class="EmailMessageSender"	/>
								.....
				</bean>

In	 the	 above	 example	 listing,	 <constructor-arg>	 elements	 specify	 details	 of	 the	 constructor	 arguments
passed	to	the	PersonalBankingService	instance.	The	index	attribute	specifies	the	index	of	the	constructor
argument.	If	the	index	attribute	value	is	0,	it	means	that	the	<constructor-arg>	element	corresponds	to	the
first	constructor	argument,	and	if	the	index	attribute	value	is	1,	it	means	that	the	<constructor-arg>	element
corresponds	to	the	second	constructor	argument,	and	so	on.	We	saw	earlier	that	ref	attribute	of	<property>
element	 is	used	for	passing	reference	 to	a	bean.	Similarly,	 ref	attribute	of	<constructor-arg>	element	 is
used	for	passing	reference	to	a	bean.	Like	the	<property>	element,	the	<constructor-arg>	element	is	also
used	to	pass	configuration	information	(if	any)	required	by	the	bean.

You	 should	 note	 that	 the	 <constructor-arg>	 element	 is	 also	 used	 for	 passing	 arguments	 to	 static	 and
instance	factory	methods	that	create	bean	instances	(refer	section	2-3).

NOTE	 Instead	of	 using	 ref	 attribute	of	<property>	 and	<constructor-arg>	 elements,	 you	 can	 use	 <ref>
element	inside	the	<property>	and	<constructor-arg>	elements	to	set	reference	to	beans.	The	ref	attribute
is	preferred	as	it	makes	the	XML	less	verbose.

The	 following	 example	 listing	 shows	 the	 EmailMessageSender	 class	 and	 the	 corresponding	 bean
definition	that	demonstrates	use	of	<constructor-arg>	elements	to	supply	values	for	String	type	constructor
arguments:

Example	listing	2-18	EmailMessageSender	class	and	the	corresponding	bean	definition

public	class	EmailMessageSender	{
		private	String	host;
		private	String	username;
		private	String	password;
				.....
				public	EmailMessageSender(String	host,	String	username,	String	password)	{
								this.host	=	host;
								this.username	=	username;
								this.password	=	password;
				}
				.....
}
				<bean	id="emailMessageSender"	class="EmailMessageSender">
								<constructor-arg	index="0"	value="smtp.gmail.com"/>
								<constructor-arg	index="1"	value="myusername"/>
								<constructor-arg	index="2"	value="mypassword"/>
				</bean>



So	far	we	have	seen	that	<constructor-arg>	element	is	used	for	injecting	bean	dependencies	and	passing
values	for	String	type	constructor	arguments.	In	chapter	3,	we’ll	see	how	the	<constructor-arg>	element	is
used	to	set	primitive	type	(like	int,	long,	and	so	on),	collection	type	(like	java.util.List,	java.util.Map,	and
so	on)	and	custom	type	(like	Address)	properties.

Let’s	now	look	at	how	we	can	use	constructor-based	DI	along	with	setter-based	DI.

Using	a	mix	of	constructor-	and	setter-based	DI	mechanisms

If	a	bean	class	requires	both	constructor-	and	setter-based	DI	mechanisms,	you	can	use	a	combination	of
<constructor-arg>	and	<property>	elements	to	inject	dependencies.

The	 following	 example	 listing	 shows	 a	 bean	 class	 whose	 dependencies	 are	 injected	 as	 arguments	 to
constructor	and	setter	methods:

Example	listing	2-19	–	PersonalBankingService	class
	
public	class	PersonalBankingService	{
				private	JmsMessageSender	jmsMessageSender;
				private	EmailMessageSender	emailMessageSender;
				private	WebServiceInvoker	webServiceInvoker;
				.....
			public	PersonalBankingService(JmsMessageSender	jmsMessageSender,
												EmailMessageSender	emailMessageSender)	{
								this.jmsMessageSender	=	jmsMessageSender;
								this.emailMessageSender	=	emailMessageSender;
				}
			
			public	void	setWebServiceInvoker(WebServiceInvoker	webServiceInvoker)	{
								this.webServiceInvoker	=	webServiceInvoker;
				}
				.....
}

In	 the	 PersonalBankingService	 class,	 jmsMessageSender	 and	 emailMessageSender	 dependencies	 are
injected	 as	 constructor	 arguments,	 and	 webServiceInvoker	 dependency	 is	 injected	 via	 the
setWebServiceInvoker	 setter	method.	The	 following	 bean	 definition	 shows	 that	 both	 <constructor-arg>
and	<property>	elements	are	used	to	inject	dependencies	of	PersonalBankingService	class:

Example	listing	2-20	–	Mixing	constructor-	and	setter-based	DI	mechanisms
	
				<bean	id="dataSource"	class="PersonalBankingService">
								<constructor-arg	index="0"	ref="jmsMessageSender"	/>
								<constructor-arg	index="1"	ref="emailMessageSender"	/>
								<property	name="webServiceInvoker"	ref="webServiceInvoker"	/>
				</bean>

Now,	 that	we	have	seen	how	 to	 instruct	Spring	container	 to	create	beans	and	perform	DI,	 let’s	 look	at



different	scopes	that	you	can	specify	for	beans.



2-5	Bean	scopes
You	may	want	to	specify	the	scope	of	a	bean	to	control	whether	a	shared	instance	of	the	bean	is	created
(singleton	scope),	or	a	new	bean	instance	is	created	every	time	the	bean	is	requested	(prototype	scope)
from	the	Spring	container.	The	scope	of	a	bean	is	defined	by	the	scope	attribute	of	the	<bean>	element.	If
the	scope	attribute	is	not	specified,	it	means	that	the	bean	is	a	singleton-scoped	bean.

NOTE	In	web	application	scenarios,	Spring	allows	you	to	specify	additional	scopes:	request,	 session
and	 globalSession.	 These	 scopes	 determine	 the	 lifetime	 of	 the	 bean	 instance.	 For	 instance,	 a	 request-
scoped	bean’s	 lifetime	 is	 limited	 to	a	 single	HTTP	 request.	As	 in	 this	 chapter	we’ll	not	 be	 discussing
Spring	Web	MVC	or	Spring	Portlet	MVC,	we’ll	restrict	the	discussion	to	singleton	and	prototype	scopes.
The	request,	session	and	globalSession	scopes	are	described	in	chapter	10.

IMPORT	chapter	2/ch02-bankapp-scopes	 (This	project	 shows	usage	of	 singleton	and	prototype	 bean
scopes.	To	run	the	application,	execute	the	main	method	of	the	BankApp	class	of	this	project.	The	project
also	contains	2	JUnit	tests,	PrototypeTest	and	SingletonTest	that	you	can	execute)

Singleton
The	singleton	scope	 is	 the	default	 scope	 for	all	 the	beans	defined	 in	 the	application	context	XML	file.
Instance	 of	 a	 singleton-scoped	 bean	 is	 created	when	 the	 Spring	 container	 is	 created,	 and	 is	 destroyed
when	the	Spring	container	is	destroyed.	Spring	container	creates	a	single	instance	of	a	singleton-scoped
bean,	which	is	shared	by	all	the	beans	that	depend	on	it.

The	following	example	listing	shows	the	applicationContext.xml	file	of	ch02-bankapp-scopes	project	 in
which	all	the	beans	are	singleton-scoped:

Example	listing	2-21	–	applicationContext.xml	-	Singleton-scoped	beans
Project	–	ch02-bankapp-scopes
Source	location	-	src/main/resources/META-INF/spring
	
<beans	.....	>
				<bean	id="controller"
											class="sample.spring.chapter02.bankapp.controller.FixedDepositControllerImpl">
								<property	name=“fixedDepositService"	ref="service"	/>
				</bean>
	
				<bean	id="service"
									class="sample.spring.chapter02.bankapp.service.FixedDepositServiceImpl">
								<property	name=“fixedDepositDao"	ref="dao"	/>
				</bean>
	
				<bean	id="dao"	class="sample.spring.chapter02.bankapp.dao.FixedDepositDaoImpl"	/>
				.....
</beans>

In	the	above	applicationContext.xml	file,	controller,	service	and	dao	beans	are	singleton-scoped	because
no	 scope	 attribute	 is	 specified	 for	 the	 <bean>	 elements.	 This	 means	 that	 only	 a	 single	 instance	 of



FixedDepositControllerImpl,	FixedDepositServiceImpl	and	FixedDepositDaoImpl	classes	 is	 created	by
the	Spring	container.	As	these	beans	are	singleton-scoped,	Spring	container	returns	the	same	instance	of
the	bean	every	time	we	retrieve	one	of	these	beans	using	ApplicationContext’s	getBean	method.

NOTE	If	the	scope	attribute	is	not	specified	or	the	value	of	scope	attribute	is	singleton,	it	means	that	the
bean	is	singleton-scoped.

The	following	example	listing	shows	the	testInstances	method	of	SingletonTest	(a	JUnit	test	class)	class	of
ch02-bankapp-scopes	 project.	 The	 testInstances	 method	 tests	 whether	 multiple	 invocation	 of
ApplicationContext’s	getBean	method	returns	the	same	or	different	instance	of	the	controller	bean:

Example	listing	2-22	–	SingletonTest	JUnit	test	class
Project	–	ch02-bankapp-scopes
Source	location	-	src/test/java/sample/spring/chapter02/bankapp
	
package	sample.spring.chapter02.bankapp;
	
import	static	org.junit.Assert.assertSame;
import	org.junit.BeforeClass;
import	org.junit.Test;
	
import	sample.spring.chapter02.bankapp.controller.FixedDepositController;
	
public	class	SingletonTest	{
				private	static	ApplicationContext	context;
	
				@BeforeClass
			public	static	void	init()	{
								context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
				}
	
				@Test
			public	void	testInstances()	{
								FixedDepositController	controller1	=	(FixedDepositController)	context.getBean("controller");
								FixedDepositController	controller2	=	(FixedDepositController)	context.getBean("controller");
								assertSame("Different	FixedDepositController	instances",	controller1,	controller2);
				}
				.....
}

In	the	above	example	listing,	JUnit’s	@BeforeClass	annotation	specifies	 that	 the	init	method	 is	 invoked
before	any	of	the	test	methods	(that	is,	methods	annotated	with	JUnit’s	@Test	annotation)	in	the	class.	This
means	 that	@BeforeClass	 annotated	 method	 is	 invoked	 only	 once,	 and	@Test	 annotated	 methods	 are
executed	only	after	the	execution	of	@BeforeClass	annotated	method.	Note	that	the	init	method	is	a	static
method.	The	 init	method	 creates	 an	 instance	of	ApplicationContext	 object	 by	 passing	 the	 configuration
metadata	 (shown	 in	 example	 listing	 2-21)	 to	 the	 ClassPathXmlApplicationContext’s	 constructor.	 The



testInstances	method	obtains	2	instances	of	controller	bean	and	checks	whether	both	the	instances	are	the
same	by	using	JUnit’s	assertSame	assertion.	As	the	controller	bean	is	singleton-scoped,	controller1	and
controller2	 bean	 instances	 are	 the	 same.	 For	 this	 reason,	 SingletonTest’s	 testInstances	 test	 executes
without	any	assertion	errors.

The	following	figure	shows	that	 the	Spring	container	returns	 the	same	instance	of	controller	bean	when
you	call	the	ApplicationContext’s	getBean	method	multiple	times:

Figure	2-4	Multiple	requests	for	a	singleton-scoped	bean	results	in	the	same	bean	instance	returned	by	the
Spring	container

The	 above	 figure	 shows	 that	multiple	 calls	 to	 obtain	 controller	 bean	 returns	 the	 same	 instance	 of	 the
controller	bean.

	

	

NOTE	In	figure	2-4,	the	controller	bean	instance	is	represented	by	a	2-compartment	rectangle.	The	top
compartment	shows	the	name	of	the	bean	(that	is,	the	value	of	the	id	attribute	of	the	<bean>	element)	and
the	bottom	compartment	shows	the	type	of	the	bean	(that	is,	the	value	of	the	class	attribute	of	the	<bean>
element).	 In	 the	 rest	 of	 this	 book,	 we’ll	 use	 this	 convention	 to	 show	 bean	 instances	 inside	 a	 Spring
container.

A	singleton-scoped	bean	instance	is	shared	amongst	the	beans	that	depend	on	it.	The	following	example
listing	 shows	 the	 testReference	 method	 of	 SingletonTest	 JUnit	 test	 class	 that	 checks	 if	 the
FixedDepositDao	 instance	 referenced	 by	 the	 FixedDepositController	 instance	 is	 the	 same	 as	 the	 one
obtained	directly	by	calling	getBean	method	of	ApplicationContext:

Example	listing	2-23	–	testReference	method	of	SingletonTest	JUnit	test	class
Project	–	ch02-bankapp-scopes
Source	location	-	src/test/java/sample/spring/chapter02/bankapp
	
package	sample.spring.chapter02.bankapp;
	
import	static	org.junit.Assert.assertSame;
import	org.junit.Test;																																				



	
public	class	SingletonTest	{
				private	static	ApplicationContext	context;
				.....
				@Test
			public	void	testReference()	{
								FixedDepositController	controller	=	(FixedDepositController)	context.getBean("controller");
	
								FixedDepositDao	fixedDepositDao1	=
														controller.getFixedDepositService().getFixedDepositDao();
								FixedDepositDao	fixedDepositDao2	=	(FixedDepositDao)	context.getBean("dao");
						assertSame("Different	FixedDepositDao	instances",	fixedDepositDao1,	fixedDepositDao2);
				}
}

In	the	above	example	listing,	the	testReference	method	first	retrieves	the	FixedDepositDao	instance	(refer
fixedDepositDao1	variable	in	the	above	example	listing)	referenced	by	the	FixedDepositController	bean,
followed	 by	 directly	 retrieving	 another	 instance	 of	 FixedDepositDao	 bean	 (refer	 fixedDepositDao2
variable	 in	 the	 above	 example	 listing)	 using	ApplicationContext’s	 getBean	method.	 If	 you	 execute	 the
testReference	 test,	 you’ll	 see	 that	 the	 test	 completes	 successfully	 because	 the	 fixedDepositDao1	 and
fixedDepositDao2	instances	are	the	same.

Figure	2-5	shows	that	the	FixedDepositDao	instance	referenced	by	FixedDepositController	instance	is	the
same	as	the	one	returned	by	invoking	getBean("dao")	method	on	ApplicationContext.

Figure	2-5	Singleton-scoped	bean	instance	is	shared	between	beans	that	depend	on	it

The	above	figure	shows	 that	 the	FixedDepositDao	 instance	referenced	by	FixedDepositController	 bean
instance	 and	 the	 one	 retrieved	 directly	 by	 calling	ApplicationContext’s	 getBean	 are	 same.	 If	 there	 are
multiple	 beans	 dependent	 on	 a	 singleton-scoped	 bean,	 then	 all	 the	 dependent	 beans	 share	 the	 same
singleton-scoped	bean	instance.



Let’s	 now	 look	 at	whether	 or	 not	 the	 same	 singleton-scoped	 bean	 instance	 is	 shared	 between	multiple
Spring	container	instances.

Singleton-scoped	beans	and	multiple	Spring	container	instances

The	scope	of	a	singleton-scoped	bean	instance	is	limited	to	the	Spring	container	instance.	This	means	that
if	 you	 create	 2	 instances	 of	 the	 Spring	 container	 using	 the	 same	 configuration	 metadata,	 each	 Spring
container	has	its	own	instances	of	the	singleton-scoped	beans.

The	following	example	listing	shows	the	testSingletonScope	method	of	SingletonTest	class,	which	 tests
whether	the	FixedDepositController	bean	instance	retrieved	from	two	different	Spring	container	instances
are	same	or	different:

	
Example	listing	2-24	–	testSingletonScope	method	of	SingletonTest	JUnit	test	class
Project	–	ch02-bankapp-scopes
Source	location	-	src/test/java/sample/spring/chapter02/bankapp

package	sample.spring.chapter02.bankapp;
	
import	static	org.junit.Assert.assertNotSame;
	
public	class	SingletonTest	{
				private	static	ApplicationContext	context;
				.....
				@BeforeClass
			public	static	void	init()	{
								context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
				}
	
				@Test
			public	void	testSingletonScope()	{
								ApplicationContext	anotherContext	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
	
								FixedDepositController	fixedDepositController1	=	(FixedDepositController)	anotherContext
																.getBean("controller");
	
								FixedDepositController	fixedDepositController2	=
																			(FixedDepositController)	context	.getBean("controller");
	
						assertNotSame("Same	FixedDepositController	instances",
																			fixedDepositController1,	fixedDepositController2);
				}
}



The	SingletonTest’s	init	method	(annotated	with	JUnit’s	@BeforeClass	annotation)	creates	an	instance	of
ApplicationContext	(identified	by	context	variable)	before	any	@Test	annotated	method	is	executed.	The
testSingletonScope	method	creates	one	more	 instance	of	Spring	container	 (identified	by	anotherContext
variable)	 using	 the	 same	 applicationContext.xml	 file.	 An	 instance	 of	 FixedDepositController	 bean	 is
retrieved	 from	 both	 the	 Spring	 containers	 and	 checked	 if	 they	 are	 not	 the	 same.	 If	 you	 execute	 the
testSingletonScope	 test,	 you’ll	 find	 that	 the	 test	 completes	 successfully	 because	 the
FixedDepositController	bean	instance	retrieved	from	context	instance	is	different	from	the	one	retrieved
from	anotherContext	instance.

The	following	figure	depicts	the	behavior	exhibited	by	the	testSingletonScope	method:

Figure	2-6	Each	Spring	container	creates	its	own	instance	of	a	singleton-scoped	bean

The	above	figure	shows	that	each	Spring	container	creates	its	own	instance	of	controller	bean.	This	is	the
reason	why	context	and	anotherContext	 instances	 return	different	 instances	of	controller	bean	when	you
call	getBean("controller")	method.

The	testSingletonScope	method	showed	that	each	Spring	container	creates	its	own	instance	of	a	singleton-
scoped	bean.	It	is	important	to	note	that	Spring	container	creates	an	instance	of	a	singleton-scoped	bean
for	 each	 bean	 definition.	 The	 following	 example	 listing	 shows	 multiple	 bean	 definitions	 for	 the
FixedDepositDaoImpl	class:

Example	listing	2-25	–	applicationContext.xml	-	Multiple	bean	definitions	for	the	same	class
Project	–	ch02-bankapp-scopes
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="dao"	class="sample.spring.chapter02.bankapp.dao.FixedDepositDaoImpl"	/>
				<bean	id="anotherDao"
																				class="sample.spring.chapter02.bankapp.dao.FixedDepositDaoImpl"	/>

The	bean	definitions	shown	in	the	above	example	listing	are	for	FixedDepositDaoImpl	class.	As	scope
attribute	is	not	specified,	bean	definitions	shown	in	the	above	example	listing	represent	singleton-scoped
beans.	Even	if	multiple	bean	definitions	are	defined	for	a	class,	Spring	container	creates	a	bean	instance
corresponding	 to	 each	 bean	 definition.	 This	 means	 that	 Spring	 container	 creates	 distinct	 instances	 of
FixedDepositDaoImpl	 class	 corresponding	 to	 dao	 and	 anotherDao	 bean	 definitions.	 The	 following
example	 listing	 shows	 SingletonScope’s	 testSingletonScopePerBeanDef	 method	 that	 tests	 whether	 the



FixedDepositDaoImpl	 instances	 corresponding	 to	 dao	 and	 anotherDao	 bean	 definitions	 are	 same	 or
different:

Example	listing	2-26	–	testSingletonScopePerBeanDef	method	of	SingletonTest	JUnit	test	class
Project	–	ch02-bankapp-scopes
Source	location	-	src/test/java/sample/spring/chapter02/bankapp

package	sample.spring.chapter02.bankapp;
	
import	static	org.junit.Assert.assertNotSame;
	
public	class	SingletonTest	{
				private	static	ApplicationContext	context;
				.....
				@Test
				public	void	testSingletonScopePerBeanDef()	{
								FixedDepositDao	fixedDepositDao1	=	(FixedDepositDao)	context.getBean("dao");
								FixedDepositDao	fixedDepositDao2	=	(FixedDepositDao)	context.getBean("anotherDao");
						assertNotSame("Same	FixedDepositDao	instances",	fixedDepositDao1,	fixedDepositDao2);
				}
}
In	 the	above	example	 listing,	 fixedDepositDao1	and	fixedDepositDao2	variables	 represent	 instances	of
FixedDepositDaoImpl	class	that	Spring	container	creates	corresponding	to	the	dao	and	anotherDao	bean
definitions,	 respectively.	 If	 you	 execute	 the	 testSingleScopePerBeanDef	 test,	 it’ll	 execute	 without	 any
assertion	 errors	 because	 the	 fixedDepositDao1	 instance	 (corresponding	 to	 dao	 bean	 definition)	 and
fixedDepositDao2	instance	(corresponding	to	anotherDao	bean	definition)	are	distinct.

The	following	figure	summarizes	that	a	singleton-scoped	bean	is	created	per	bean	definition:

Figure	2-7	There	is	one	singleton-scoped	bean	instance	per	bean	definition

The	above	figure	shows	that	there	exists	one	instance	of	singleton-scoped	bean	per	bean	definition	in	the
Spring	container.

We	 mentioned	 earlier	 that	 a	 singleton-scoped	 bean	 is	 pre-instantiated	 by	 default,	 which	 means	 an
instance	of	a	singleton-scoped	bean	is	created	when	you	create	an	instance	of	the	Spring	container.	Let’s
now	look	at	how	you	can	lazily	initialize	a	singleton-scoped	bean.



Lazily	initializing	a	singleton-scoped	bean

You	 can	 instruct	 Spring	 container	 to	 create	 an	 instance	 of	 a	 singleton-scoped	 bean	 only	 when	 it	 is
requested	 for	 the	 first	 time.	 The	 following	 lazyExample	 bean	 definition	 shows	 how	 to	 instruct	 Spring
container	to	lazy	initialize	lazyBean	bean:

Example	listing	2-27	–	Lazily	initializing	a	singleton-scoped	bean
	
<bean	id="lazyBean"	class="example.LazyBean"	lazy-init=”true”/>

The	<bean>	element’s	lazy-init	attribute	specifies	whether	the	bean	instance	is	created	lazily	or	eagerly.	If
the	value	is	true	(as	 in	case	of	 the	bean	definition	shown	above),	 the	bean	instance	is	 initialized	by	the
Spring	container	when	it	receives	the	request	for	the	bean	for	the	first	time.

The	following	sequence	diagram	shows	how	lazy-init	attribute	affects	the	creation	of	a	singleton-scoped
bean	instance:

Figure	2-8	A	lazily-initialized	singleton-scoped	bean	instance	is	created	when	it	is	requested	for	the	first
time	by	the	application

In	 the	 above	 diagram,	BeanA	 represents	 a	 singleton-scoped	 bean	 instance	 that	 is	not	 set	 to	 be	 lazily-
initialized,	and	LazyBean	represents	a	singleton-scoped	bean	that	is	set	to	be	lazily-initialized.	When	the
Spring	 container	 instance	 is	 created,	 BeanA	 is	 also	 instantiated	 because	 it	 is	 not	 set	 to	 be	 lazily-
initialized.	On	 the	 other	 hand,	 LazyBean	 is	 instantiated	 when	ApplicationContext’s	 getBean	 method	 is
invoked	for	the	time	first	time	to	retrieve	an	instance	of	LazyBean	from	the	Spring	container.

NOTE	You	can	use	<beans>	element’s	default-lazy-init	attribute	to	specify	default	initialization	strategy
for	beans	defines	in	the	application	context	XML	file.	If	the	<bean>	element’s	lazy-init	attribute	specifies
a	different	value	than	the	<beans>	element’s	default-lazy-init,	the	value	specified	by	the	lazy-init	attribute
applies	to	the	bean.

As	a	singleton-scoped	bean	can	be	lazily-initialized	or	pre-instantiated	by	the	Spring	container,	you	may
be	thinking	at	this	time	whether	you	should	define	your	singleton-scoped	beans	to	be	lazily-initialized	or
pre-instantiated.	In	most	application	scenarios,	it	is	beneficial	to	pre-instantiate	singleton-scoped	beans	to
discover	 configuration	 issues	 at	 the	 time	 of	 creation	 of	 the	 Spring	 container.	 The	 following	 example



listing	shows	a	aBean	singleton-scoped	bean	that	is	set	to	be	lazily-initialized,	and	that	depends	on	bBean
bean:

Example	listing	2-28	–	A	lazily-initialized	singleton-scoped	bean
	
public	class	ABean	{
			private	BBean	bBean;
		
				public	void	setBBean(BBean	bBean)	{
								this.bBean	=	bBean;
				}
					.....
}
	
<bean	id="aBean"	class="ABean"	lazy-init="true">
			<property	name="bBean"	value="bBean"	/>
</bean>
	
<bean	id="bBean"	class="BBean"	/>

In	the	above	example	listing,	ABean’s	bBean	property	refers	to	the	BBean	bean.	Notice	that	instead	of	ref
attribute,	 value	 attribute	 of	 <property>	 element	 has	 been	 used	 to	 set	 ABean’s	 bBean	 property.	 If	 you
create	an	ApplicationContext	instance	by	passing	it	the	XML	file	containing	the	above	bean	definition,	no
errors	 will	 be	 reported.	 But,	 when	 you	 try	 to	 fetch	 the	 aBean	 bean	 by	 invoking	 ApplicationContext’s
getBean	method,	you’ll	get	the	following	error	message:
Caused	by:	java.lang.IllegalStateException:	Cannot	convert	value	of	type	[java.lang.String]	to	required	type	[BBean]	for	property	'bBean:	no
matching	editors	or	conversion	strategy	found

The	 above	 error	 message	 is	 shown	 because	 the	 Spring	 container	 fails	 to	 convert	 the	 String	 value	 of
ABean’s	bBean	property	to	BBean	type.	This	highlights	a	simple	configuration	issue	in	which	instead	of
specifying	<bean>	element’s	ref	attribute,	value	attribute	was	specified.	If	the	aBean	bean	was	defined	as
pre-instantiated	(instead	of	lazily-initialized),	the	above	configuration	issue	could	have	been	caught	at	the
time	we	created	an	instance	of	ApplicationContext,	and	not	when	we	tried	to	obtain	an	instance	of	aBean
bean	from	the	ApplicationContext.

Let’s	now	look	at	prototype-scoped	beans	in	Spring.

Prototype
A	prototype-scoped	bean	is	different	from	a	singleton-scoped	bean	in	the	sense	that	the	Spring	container
always	 returns	 a	 new	 instance	 of	 a	 prototype-scoped	 bean.	 Another	 distinctive	 feature	 of	 prototype-
scoped	beans	is	that	they	are	always	lazily-initialized.

The	 following	 FixedDepositDetails	 bean	 in	 the	 applicationContext.xml	 file	 of	 ch02-bankapp-scopes
project	represents	a	prototype-scoped	bean:

Example	listing	2-29	–	applicationContext.xml	-	A	prototype-scoped	bean	example
Project	–	ch02-bankapp-scopes
Source	location	-	src/main/resources/META-INF/spring



	
<bean	id="FixedDepositDetails"
								class="sample.spring.chapter02.bankapp.domain.FixedDepositDetails"
								scope="prototype"	/>

The	above	example	listing	shows	that	the	<bean>	element’s	scope	attribute	value	is	set	to	prototype.	This
means	that	the	FixedDepositDetails	bean	is	a	prototype-scoped	bean.

The	 following	 testInstances	 method	 of	 PrototypeTest	 JUnit	 test	 class	 shows	 that	 the	 2	 instances	 of
FixedDepositDetails	bean	retrieved	from	the	Spring	container	are	different:

Example	listing	2-30	–	testInstances	method	of	PrototypeTest	JUnit	test	class
Project	–	ch02-bankapp-scopes
Source	location	-	src/test/java/sample/spring/chapter02/bankapp

package	sample.spring.chapter02.bankapp;
	
import	static	org.junit.Assert.assertNotSame;
	
public	class	PrototypeTest	{
				private	static	ApplicationContext	context;
				.....
				@Test
				public	void	testInstances()	{
								FixedDepositDetails	fixedDepositDetails1	=
																	(FixedDepositDetails)context.getBean("fixedDepositDetails");
								FixedDepositDetails	fixedDepositDetails2	=
																		(FixedDepositDetails)	context.getBean("fixedDepositDetails");
	
								assertNotSame("Same	FixedDepositDetails	instances",
													fixedDepositDetails1,	fixedDepositDetails2);
				}
}

If	 you	 execute	 the	 testInstances	 test,	 it’ll	 complete	 without	 any	 assertion	 errors	 because	 the	 2
FixedDepositDetails	 instances	 (fixedDepositDetails1	 and	 fixedDepositDetails2)	 obtained	 from	 the
ApplicationContext	are	different.

Let’s	now	look	at	how	to	choose	the	right	scope	(singleton	or	prototype)	for	a	bean.

Choosing	the	right	scope	for	your	beans
If	a	bean	doesn’t	maintain	any	conversational	state	(that	is,	it	is	stateless	in	nature),	it	should	be	defined	as
a	 singleton-scoped	bean.	 If	 a	 bean	maintains	 conversational	 state,	 it	 should	be	defined	 as	 a	 prototype-
scoped	bean.	FixedDepositServiceImpl,	FixedDepositDaoImpl	and	FixedDepositControllerImpl	beans	of
MyBank	 application	 are	 stateless	 in	 nature;	 therefore,	 they	 are	 defined	 as	 singleton-scoped	 beans.
FixedDepositDetails	 bean	 (a	 domain	 object)	 of	 MyBank	 application	 maintains	 conversational	 state;
therefore,	it	is	defined	as	a	prototype-scoped	bean.



NOTE	If	you	are	using	an	ORM	framework	(like	Hibenate	or	iBATIS)	in	your	application,	the	domain
objects	are	created	either	by	the	ORM	framework	or	you	create	them	programmatically	in	your
application	code	using	the	new	operator.	It	is	because	of	this	reason	domain	objects	are	not	defined	in	the
application	context	XML	file	if	the	application	uses	an	ORM	framework	for	persistence.



2-6	Summary
In	 this	 chapter,	we	discussed	 some	of	 the	basics	of	Spring	Framework.	We	 looked	at	 ‘programming	 to
interfaces’	design	approach,	different	approaches	to	create	bean	instances,	constructor-based	DI	and	bean
scopes.	In	the	next	chapter,	we’ll	look	at	how	to	set	different	types	(like	int,	long,	Map,	Set,	and	so	on)	of
bean	properties	and	constructor	arguments.



Chapter	3	-	Configuring	beans



3-1	Introduction
In	previous	chapters,	we	 touched	upon	some	of	 the	basic	concepts	of	Spring	Framework.	We	saw	how
Spring	beans	and	their	dependencies	are	specified	in	the	application	context	XML	file.	We	also	looked	at
singleton-	and	prototype-scoped	beans,	and	discussed	the	implications	of	assigning	these	scopes	to	beans.
In	this	chapter,	we’ll	look	at:

§		bean	definition	inheritance
§		how	arguments	to	a	bean	class’s	constructor	are	resolved
§		how	to	configure	bean	properties	and	constructor	arguments	of	primitive	type	(like	int,	float,	and	so

on),	collection	type	(like	java.util.List,	java.util.Map,	and	so	on),	custom	type	(like	Address),	and
so	on

§	 	 how	 you	 can	make	 the	 application	 context	XML	 file	 less	 verbose	 by	 using	 p-namespace	 and	 c-
namespace	to	specify	bean	properties	and	constructor	arguments,	respectively

§	 	Spring’s	FactoryBean	 interface	 that	allows	you	 to	write	your	own	factory	class	 for	creating	bean
instances



3-2	Bean	definition	inheritance
We	saw	in	chapter	1	and	2	that	a	bean	definition	in	the	application	context	XML	file	specifies	the	fully-
qualified	name	of	the	bean	class	and	its	dependencies.	In	some	scenarios,	to	make	a	bean	definition	less
verbose,	you	may	want	a	bean	definition	to	inherit	configuration	information	from	another	bean	definition.
Let’s	look	at	one	such	scenario	in	MyBank	application.

IMPORT	chapter	3/ch03-bankapp-inheritance	 (This	project	 shows	 the	MyBank	application	 that	uses
bean	definition	inheritance.	To	run	the	application,	execute	the	main	method	of	the	BankApp	class	of	this
project)

MyBank	–	Bean	definition	inheritance	example
In	the	previous	chapter,	we	saw	that	the	MyBank	application	accesses	database	through	DAOs.	Let’s	say
that	 the	 MyBank	 application	 defines	 a	 DatabaseOperations	 class	 that	 simplifies	 interacting	 with	 the
database.	So,	all	 the	DAOs	in	the	MyBank	application	depend	on	DatabaseOperations	class	 to	perform
database	operations,	as	shown	in	the	following	figure:

Figure	 3-1	 -	 DAO	 classes	 in	MyBank	 application	 make	 use	 of	 DatabaseOperations	 class	 to	 perform
database	interaction

The	above	figure	shows	that	the	FixedDepositDao	and	PersonalBankingDao	classes	are	dependent	on	the
DatabaseOperations	 class.	 The	 following	 application	 context	XML	 file	 shows	 the	 bean	 definitions	 for
these	classes:

Example	listing	3-1	–	DAO	beans	are	dependent	on	DatabaseOperations	bean
	
				<bean	id="databaseOperations"
								class="sample.spring.chapter01.bankapp.utils.DatabaseOperations"	/>
	
				<bean	id="personalBankingDao"
								class="sample.spring.chapter01.bankapp.dao.PersonalBankingDaoImpl">
								<property	name="databaseOperations"	ref="databaseOperations"	/>
				</bean>
	



				<bean	id="FixedDepositDao"
								class="sample.spring.chapter01.bankapp.dao.FixedDepositDaoImpl">
								<property	name="databaseOperations"	ref="databaseOperations"	/>
				</bean>

Both	 the	 personalBankingDao	 and	 FixedDepositDao	 bean	 definitions	 use	 the	 <property>	 element	 to
perform	dependency	injection	of	the	DatabaseOperations	instance.	As	the	name	of	the	property	that	refers
to	the	DatabaseOperations	instance	is	databaseOperations	in	both	the	bean	definitions,	it	implies	that	both
PersonalBankingDaoImpl	 and	FixedDepositDaoImpl	 classes	 define	 a	 setDatabaseOperations	method	 to
allow	Spring	container	to	inject	DatabaseOperations	instance.

If	 multiple	 beans	 in	 your	 application	 share	 a	 common	 set	 of	 configuration	 (properties,	 constructor
arguments,	and	so	on),	you	can	create	a	bean	definition	that	acts	as	a	parent	for	other	bean	definitions.	In
case	 of	 personalBankingDao	 and	 fixedDepositDao	 bean	 definitions,	 the	 common	 configuration	 is	 the
databaseOperations	 property.	 The	 following	 example	 listing	 shows	 that	 the	 personalBankingDao	 and
fixedDepositDao	bean	definitions	make	use	of	bean	definition	inheritance:

Example	listing	3-2	–	applicationContext.xml	-	MyBank’s	application	context	XML	file
Project	–	ch03-bankapp-inheritance
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="databaseOperations"
								class="sample.spring.chapter03.bankapp.utils.DatabaseOperations"	/>
	
				<bean	id="daoTemplate"	abstract="true">
								<property	name="databaseOperations"	ref="databaseOperations"	/>
				</bean>
							
				<bean	id="FixedDepositDao"	parent="daoTemplate"
								class="sample.spring.chapter03.bankapp.dao.FixedDepositDaoImpl"	/>
							
				<bean	id="personalBankingDao"	parent="daoTemplate"
								class="sample.spring.chapter03.bankapp.dao.PersonalBankingDaoImpl"	/>

In	the	above	example	listing,	the	daoTemplate	bean	definition	defines	the	common	configuration	shared	by
both	 the	 fixedDepositDao	 and	personalBankingDao	bean	definitions.	As	both	 the	 fixedDepositDao	 and
personalBankingDao	bean	definitions	require	the	databaseOperations	dependency	(refer	example	 listing
3-1),	 the	daoTemplate	bean	definition	defines	 the	databaseOperations	dependency	using	 the	<property>
element.	The	<bean>	element’s	parent	attribute	specifies	the	name	of	the	bean	definition	from	which	the
configuration	 is	 inherited.	 As	 the	 parent	 attribute	 value	 is	 daoTemplate	 for	 fixedDepositDao	 and
personalBankingDao	 bean	 definitions,	 they	 inherit	 databaseOperations	 property	 from	 the	 daoTemplate
bean	definition.	The	example	listings	3-1	and	3-2	are	same,	except	that	the	example	listing	3-2	makes	use
of	bean	definition	inheritance.

If	the	<bean>	element’s	abstract	attribute	value	is	set	to	true,	it	means	that	the	bean	definition	is	abstract.
It	 is	 important	 to	 note	 that	 the	 Spring	 container	 doesn’t	 attempt	 to	 create	 a	 bean	 corresponding	 to	 an
abstract	bean	definition.	It	is	important	to	note	that	you	can’t	define	a	bean	to	be	dependent	on	an	abstract



bean,	that	is,	you	can’t	use	<property>	or	<constructor-arg>	element	to	refer	to	an	abstract	bean.

In	 example	 listing	 3-2,	 daoTemplate	 bean	 definition	 is	 abstract.	 You	 may	 have	 noticed	 that	 the
daoTemplate	bean	definition	doesn’t	specify	the	class	attribute.	If	a	parent	bean	definition	doesn’t	specify
the	class	attribute,	child	bean	definitions	(like	the	fixedDepositDao	and	personalBankingDao)	specify	the
class	 attribute.	 It	 is	 important	 to	 note	 that	 if	 you	 don’t	 specify	 the	 class	 attribute,	 you	must	 define	 the
parent	 bean	 definition	 as	 abstract	 so	 that	 Spring	 container	 doesn’t	 attempt	 to	 create	 a	 bean	 instance
corresponding	to	it.

To	verify	 that	 the	fixedDepositDao	and	personalBankingDao	bean	definitions	 inherit	daoTemplate	 bean
definition’s	databaseOperations	property,	execute	 the	main	method	of	BankApp	class	of	 ch03-bankapp-
inheritance	 project.	 BankApp’s	 main	 method	 invokes	 methods	 on	 the	 fixedDepositDao	 and
personalBankingDao	beans;	those	beans	in	turn	invoke	methods	on	the	DatabaseOperations	instance.	If	a
DatabaseOperations	 instance	 is	not	 injected	 into	 the	 fixedDepositDao	 and	 personalBankingDao	 beans,
java.lang.NullPointerException	will	be	thrown.

The	following	diagram	summarizes	how	bean	definition	 inheritance	works	 in	case	of	FixedDepositDao
and	personalBankingDao	bean	definitions:

Figure	3-2	–	Bean	definition	inheritance	in	MyBank	application

The	above	 figure	 shows	 that	 the	 fixedDepositDao	and	personalBankingDao	bean	definitions	 inherit	 the
databaseOperations	 property	 (shown	 in	 italics	 in	 the	 boxes	 labeled	 fixedDepositDao	 and
personalBankingDao)	from	the	daoTemplate	bean	definition.	The	above	figure	also	depicts	that	the	Spring
container	 doesn’t	 attempt	 to	 create	 a	 bean	 instance	 corresponding	 to	 the	 daoTemplate	 bean	 definition
because	it	is	marked	as	abstract.

Let’s	now	look	at	what	configuration	information	gets	inherited	from	the	parent	bean	definition.

What	gets	inherited	?
A	child	bean	definition	inherits	the	following	configuration	information	from	the	parent	bean	definition:

·								properties	–	specified	via	<property>	elements
·								constructor	arguments	–	specified	via	<constructor-arg>	elements
·								method	overrides	(discussed	in	section	4-5	of	chapter	4)



·								initialization	and	destroy	methods	(discussed	in	chapter	5),	and
·								factory	methods	–	specified	via	factory-method	attribute	of	<bean>	element	(refer	section	2-3	of

chapter	2	to	know	how	static	and	instance	factory	methods	are	used	for	creating	beans)
IMPORT	chapter	3/ch03-bankapp-inheritance-example	 (This	project	shows	 the	MyBank	application
that	uses	bean	definition	inheritance.	In	this	project,	you’ll	see	multiple	scenarios	in	which	bean	definition
inheritance	is	used.	To	run	the	application,	execute	the	main	method	of	the	BankApp	class	of	this	project)

Let’s	now	look	at	some	of	the	bean	definition	inheritance	examples.

Bean	definition	inheritance	example	–	parent	bean	definition	is	not	abstract

The	following	example	 listing	shows	a	bean	inheritance	example	 in	which	the	parent	bean	definition	is
not	abstract,	and	the	child	bean	definitions	define	an	additional	dependency:

Example	listing	3-3	–	applicationContext.xml	-	Bean	definition	inheritance	–	parent	bean	definition	is	not
abstract
Project	–	ch03-bankapp-inheritance-examples
Source	location	-	src/main/resources/META-INF/spring
	
			<bean	id="serviceTemplate"
									class="sample.spring.chapter03.bankapp.base.ServiceTemplate">
								<property	name="jmsMessageSender"	ref="jmsMessageSender"	/>
								<property	name="emailMessageSender"	ref="emailMessageSender"	/>
								<property	name="webServiceInvoker"	ref="webServiceInvoker"	/>
				</bean>
							
			<bean	id="fixedDepositService"	class=".....FixedDepositServiceImpl"
										parent="serviceTemplate">
								<property	name=“fixedDepositDao"	ref="fixedDepositDao"	/>
				</bean>
	
			<bean	id="personalBankingService"	class=".....PersonalBankingServiceImpl"
										parent="serviceTemplate">
								<property	name="personalBankingDao"	ref="personalBankingDao"	/>
				</bean>
	
				<bean	id="userRequestController"	class=".....UserRequestControllerImpl">
							<property	name="serviceTemplate"	ref="serviceTemplate"	/>
				</bean>

A	 little	background	before	we	delve	 into	 the	details	of	 the	above	 listed	configuration:	 a	 service	 in	 the
MyBank	 application	may	 send	 JMS	messages	 to	 a	messaging-middleware	 or	 send	 emails	 to	 an	 email
server	or	 it	may	 invoke	an	external	web	service.	 In	 the	above	example	 listing,	 the	 jmsMessageSender,
emailMessageSender	 and	 webServiceInvoker	 beans	 simplify	 these	 tasks	 by	 providing	 a	 layer	 of
abstraction.	The	serviceTemplate	bean	provides	access	to	jmsMessageSender,	emailMessageSender	and
webServiceInvoker	 beans.	 This	 is	 the	 reason	 why	 the	 serviceTemplate	 bean	 is	 dependent	 on	 the



jmsMessageSender,	emailMessageSender	and	webServiceInvoker	beans.

Example	 listing	 3-3	 shows	 that	 the	 serviceTemplate	 bean	 definition	 is	 the	 parent	 bean	 definition	 of
fixedDepositService	and	personalBankingService	bean	definitions.	Notice	that	the	serviceTemplate	bean
definition	is	not	abstract;	the	class	attribute	specifies	ServiceTemplate	as	the	class.	In	our	previous	bean
definition	 inheritance	 example	 (refer	 example	 listing	 3-2),	 child	 bean	 definitions	 didn’t	 define	 any
properties.	In	the	above	example	listing,	notice	that	the	fixedDepositService	and	personalBankingService
child	bean	definitions	define	fixedDepositDao	and	personalBankingDao	properties,	respectively.

As	 parent	 bean	 definition’s	 properties	 are	 inherited	 by	 the	 child	 bean	 definitions,
FixedDepositServiceImpl	 and	 PersonalBankingServiceImpl	 classes	 must	 define	 setter	 methods	 for
jmsMessageSender,	 emailMessageSender	 and	 webServiceInvoker	 properties.	 You	 have	 the	 option	 to
either	 define	 setter	 methods	 in	 FixedDepositServiceImpl	 and	 PersonalBankingServiceImpl	 classes	 or
make	 FixedDepositServiceImpl	 and	 PersonalBankingServiceImpl	 classes	 as	 subclasses	 of
ServiceTemplate	 class.	 In	 ch03-bankapp-inheritance-examples,	 the	 FixedDepositServiceImpl	 and
PersonalBankingServiceImpl	classes	are	subclasses	of	ServiceTemplate	class.

The	following	example	listing	shows	the	PersonalBankingServiceImpl	class:

Example	listing	3-4	–	PersonalBankingServiceImpl	class
Project	–	ch03-bankapp-inheritance-examples
Source	location	-	src/main/java/sample/spring/chapter03/bankapp/service
	
package	sample.spring.chapter03.bankapp.service;
	
public	class	PersonalBankingServiceImpl	extends	ServiceTemplate	implements
													PersonalBankingService	{
	
				private	PersonalBankingDao	personalBankingDao;
	
			public	void	setPersonalBankingDao(PersonalBankingDao	personalBankingDao)	{
						this.personalBankingDao	=	personalBankingDao;
			}
	
				@Override
				public	BankStatement	getMiniStatement()	{
								return	personalBankingDao.getMiniStatement();
				}
}

In	 example	 listing	 3-3,	 we	 saw	 that	 the	 personalBankingService	 bean	 definition	 specifies
personalBankingDao	 as	 a	 dependency.	 In	 the	 above	 example	 listing,	 the	 setPersonalBankingDao	 setter
method	 corresponds	 to	 the	 personalBankingDao	 dependency.	 Also,	 notice	 that	 the
PersonalBankingServiceImpl	class	is	a	subclass	of	the	ServiceTemplate	class.

The	following	diagram	shows	that	a	parent	bean	definition	(like	serviceTemplate)	need	not	be	abstract,
child	 bean	 definitions	 (like	 fixedDepositService	 and	 personalBankingService)	 may	 define	 additional
properties,	 and	 classes	 represented	 by	 parent	 (like	 ServiceTemplate	 class)	 and	 child	 bean	 definitions



(like	 FixedDepositServiceImpl	 and	 PersonalBankingServiceImpl)	 may	 themselves	 be	 related	 by
inheritance:

Figure	3-3	–	Child	bean	definitions	add	additional	properties,	parent	bean	definition	is	not	abstract,	and
parent-child	relationship	exists	between	the	classes	represented	by	the	parent	and	child	bean	definitions

Figure	3-3	shows:

·								Spring	container	creates	an	instance	of	serviceTemplate	bean	because	it’s	not	defined	as	abstract

·								FixedDepositServiceImpl	and	PersonalBankingServiceImpl	classes	(corresponding	to	the	child
bean	 definitions)	 are	 subclasses	 of	 ServiceTemplate	 class	 –	 the	 class	 corresponding	 to	 the
serviceTemplate	parent	bean	definition.

·	 	 	 	 	 	 	 	 And,	 fixedDepositService	 and	 personalBankingService	 bean	 definitions	 define	 additional
properties,	fixedDepositDao	and	personalBankingDao,	respectively.	You	should	note	that	the	child
bean	definitions	can	also	define	additional	constructor	arguments	and	method	overrides	(discussed
in	section	4-5).

As	serviceTemplate	bean	definition	is	not	abstract,	other	beans	can	define	serviceTemplate	bean	as	their
dependency.	 For	 instance,	 in	 example	 listing	 3-3,	 the	 serviceTemplate	 bean	 is	 a	 dependency	 of
userRequestController	 bean.	 You	 can	 infer	 from	 this	 discussion	 that	 if	 a	 parent	 bean	 definition	 is	 not
abstract,	the	functionality	offered	by	the	parent	bean	can	be	utilized	not	only	by	child	beans	but	also	by
other	beans	in	the	application	context.

Bean	definition	inheritance	example	–	inheriting	factory	method	configuration

Child	bean	definitions	can	use	bean	definition	inheritance	to	inherit	factory	method	configuration	from	the
parent	bean	definition.	Let’s	look	at	an	example	that	shows	factory	method	configurations	are	inherited	by
child	bean	definitions.



The	following	ControllerFactory	class	defines	a	getController	instance	factory	method:

Example	listing	3-5	–	ControllerFactory	class
Project	–	ch03-bankapp-inheritance-examples
Source	location	-	src/main/java/sample/spring/chapter03/bankapp/controller
	
package	sample.spring.chapter03.bankapp.controller;
	
public	class	ControllerFactory	{
	
			public	Object	getController(String	controllerName)	{
								Object	controller	=	null;
								if	("fixedDepositController".equalsIgnoreCase(controllerName))	{
												controller	=	new	FixedDepositControllerImpl();
								}
								if	("personalBankingController".equalsIgnoreCase(controllerName))	{
												controller	=	new	PersonalBankingControllerImpl();
								}
								return	controller;
				}									
}

The	 above	 example	 listing	 shows	 that	 the	 getController	 factory	 method	 creates	 an	 instance	 of
FixedDepositControllerImpl	 or	 PersonalBankingControllerImpl	 class,	 depending	 upon	 the	 value	 of	 the
controllerName	argument	passed	to	it.	If	the	value	of	controllerName	argument	is	fixedDepositController,
the	getController	method	creates	 an	 instance	of	FixedDepositControllerImpl	 class.	And,	 if	 the	value	of
controllerName	argument	is	personalBankingController,	 the	getController	method	creates	an	 instance	of
PersonalBankingControllerImpl	class.

The	 following	bean	definitions	 in	 the	 applicationContext.xml	 file	of	 ch03-bankapp-inheritance-example
project	 show	 that	 the	 child	 bean	 definitions	 inherit	 the	 getController	 instance	 factory	 method
configuration	from	the	parent	bean	definition:

Example	 listing	 3-6	 –	 applicationContext.xml	 -	 Bean	 definition	 inheritance	 –	 inheriting	 the	 factory
method	configuration
Project	–	ch03-bankapp-inheritance-examples
Source	location	-	src/main/resources/META-INF/spring
	
					<bean	id="controllerFactory"
											class="sample.spring.chapter03.bankapp.controller.ControllerFactory"	/>
	
			<bean	id="controllerTemplate"	factory-bean="controllerFactory"
								factory-method="getController"	abstract="true">
			</bean>
	
			<bean	id="fixedDepositController"	parent="controllerTemplate">
								<constructor-arg	index="0"	value="fixedDepositController"	/>



								<property	name=“fixedDepositService"	ref="fixedDepositService"	/>
					</bean>
	
			<bean	id="personalBankingController"	parent="controllerTemplate">
								<constructor-arg	index="0"	value="personalBankingController"	/>
								<property	name="personalBankingService"	ref="personalBankingService"	/>
					</bean>

In	 the	 above	 example	 listing,	 the	 ControllerFactory	 class	 represents	 a	 factory	 class	 that	 defines	 a
getController	 instance	 factory	 method.	 The	 controllerTemplate	 bean	 definition	 specifies	 that	 the
ControllerFactory’s	getController	 factory	method	 is	used	 for	creating	bean	 instances.	The	getController
method	 (refer	 example	 listing	 3-5)	 creates	 an	 instance	 of	 FixedDepositControllerImpl	 or
PersonalBankingControllerImpl	bean,	depending	on	the	argument	passed	to	the	getController	method.

As	 the	 controllerTemplate	 bean	 definition	 has	 been	 defined	 as	 abstract,	 it	 is	 up	 to	 the
fixedDepositController	 and	 personalBankingController	 child	 bean	 definitions	 to	 use	 the	 getController
factory	method	configuration.	The	fixedDepositController	bean	definition	would	like	to	pass	an	argument
to	 the	 ControllerFactory’s	 getController	 factory	 method	 so	 that	 it	 creates	 an	 instance	 of
FixedDepositControllerImpl	bean.	And,	personalBankingController	bean	definition	would	like	to	pass	an
argument	 to	 the	 ControllerFactory’s	 getController	 factory	 method	 so	 that	 it	 creates	 an	 instance	 of
PersonalBankingControllerImpl	 bean.	 We	 saw	 in	 section	 2-3	 of	 chapter	 2	 that	 the	 <constructor-arg>
element	 is	 used	 to	 pass	 an	 argument	 to	 an	 instance	 factory	 method.	 In	 example	 listing	 3-6,	 the
<constructor-arg>	element	has	been	used	by	fixedDepositController	and	personalBankingController	child
bean	definitions	to	pass	‘fixedDepositService’	and	‘personalBankingService’	values,	respectively,	to	the
getController	factory	method.

It	 is	 recommended	 that	 you	 now	 run	 the	main	method	 of	 BankApp	 class	 of	 ch03-bankapp-inheritance-
examples	project	to	see	usage	of	the	bean	definition	inheritance	examples	discussed	in	this	section.

Let’s	now	look	at	how	constructor	arguments	are	matched.



3-3	Constructor	argument	matching
In	the	previous	chapter,	we	saw	that	the	constructor	arguments	are	specified	in	the	bean	definitions	using
the	<constructor-arg>	element.	In	this	section,	we’ll	look	at	how	Spring	container	matches	a	constructor
argument	specified	by	a	<constructor-arg>	element	to	the	corresponding	constructor	argument	specified	in
the	bean	class’s	constructor.

Before	we	go	into	the	details	of	constructor	argument	matching,	let’s	look	back	at	how	we	pass	arguments
to	a	bean	class’s	constructor.

IMPORT	 chapter	 3/ch03-bankapp-constructor-args-by-type	 (This	 project	 shows	 the	 MyBank
application	 in	 which	 bean	 class’s	 constructor	 arguments	 are	 matched	 by	 type	 (explained	 later	 in	 this
section).	To	run	the	application,	execute	the	main	method	of	the	BankApp	class	of	this	project)

Passing	simple	values	and	bean	references	using	<constructor-arg>	element
If	 a	 constructor	 argument	 is	 of	 simple	 Java	 type	 (like	 int,	 String,	 and	 so	 on),	 the	 <constructor-arg>
element’s	value	attribute	is	used	to	specify	the	value	of	the	constructor	argument.	If	a	constructor	argument
is	 a	 reference	 to	 a	 bean,	 you	 specify	 the	 name	 of	 the	 bean	 using	 the	 <constructor-arg>	 element’s	 ref
attribute.

The	following	example	listing	shows	the	UserRequestControllerImpl	class	of	ch03-bankapp-constructor-
args-by-type	project	whose	constructor	accepts	an	argument	of	type	ServiceTemplate:

Example	listing	3-7	–	UserRequestControllerImpl	class
Project	–	ch03-bankapp-constructor-args-by-type
Source	location	-	src/main/java/sample/spring/chapter03/bankapp/controller
	
package	sample.spring.chapter03.bankapp.controller;
	
public	class	UserRequestControllerImpl	implements	UserRequestController	{
				private	ServiceTemplate	serviceTemplate;
			
			public	UserRequestControllerImpl(ServiceTemplate	serviceTemplate)	{
								this.serviceTemplate	=	serviceTemplate;
				}
			
				@Override
				public	void	submitRequest(Request	request)	{
								//--	do	something	using	ServiceTemplate
								serviceTemplate.getJmsMessageSender();	//--	For	ex.,	send	JMS	message
								.....
				}
}

The	 following	 example	 listing	 shows	 that	 a	 reference	 to	 ServiceTemplate	 instance	 (represented	 by
serviceTemplate	bean	definition)	is	passed	to	UserRequestControllerImpl’s	constructor	using	ref	attribute
of	<constructor-arg>	element:



Example	 listing	 3-8	 –	 applicationContext.xml	 -	 Passing	 reference	 to	 a	 Spring	 bean	 as	 constructor
argument
Project	–	ch03-bankapp-constructor-args-by-type
Source	location	-	src/main/resources/META-INF/spring
	
<bean	id="serviceTemplate"	class="sample.spring.chapter03.bankapp.base.ServiceTemplate">
				.....
</bean>
	
<bean	id="userRequestController"
							class="sample.spring.chapter03.bankapp.controller.UserRequestControllerImpl">
		<constructor-arg	index="0"	ref="serviceTemplate"	/>
</bean>

With	 this	 background	 information	 on	 how	 to	 pass	 simple	 values	 and	 bean	 references	 as	 constructor
arguments,	let’s	now	look	at	how	Spring	container	matches	constructor	argument	types	to	locate	the	bean’s
constructor	to	be	invoked.

Constructor	argument	matching	based	on	type
If	the	<constructor-arg>	element’s	index	attribute	is	not	specified,	Spring	container	locates	the	constructor
to	be	invoked	by	matching	the	types	referenced	by	the	<constructor-arg>	elements	with	the	argument	types
specified	in	the	bean	class’s	constructor(s).

Let’s	first	look	at	how	Spring	container	matches	constructor	arguments	when	the	constructor	arguments	are
Spring	beans	that	are	not	related	by	inheritance.

Constructor	arguments	representing	distinct	Spring	beans

The	 following	 example	 listing	 shows	 the	ServiceTemplate	 class	 that	 defines	 a	 constructor	 that	 accepts
references	to	JmsMessageSender,	EmailMessageSender	and	WebServiceInvoker	beans:

Example	listing	3-9	–	ServiceTemplate	class
Project	–	ch03-bankapp-constructor-args-by-type
Source	location	-	src/main/java/sample/spring/chapter03/bankapp/base
	
package	sample.spring.chapter03.bankapp.base;
	
public	class	ServiceTemplate	{
						.....
				public	ServiceTemplate(JmsMessageSender	jmsMessageSender,
									EmailMessageSender	emailMessageSender,
									WebServiceInvoker	webServiceInvoker)	{
										.....
				}
}

The	 following	example	 listing	 shows	 the	bean	definitions	 for	 the	ServiceTemplate	 class	 and	 the	beans



referenced	by	ServiceTemplate:

Example	 listing	3-10	–	applicationContext.xml	 -	Bean	definition	 for	 the	ServiceTemplate	 class	 and	 its
dependencies
Project	–	ch03-bankapp-constructor-args-by-type
Source	location	-	src/main/resources/META-INF/spring
	
<bean	id="serviceTemplate"	class="sample.spring.chapter03.bankapp.base.ServiceTemplate">
				<constructor-arg	ref="emailMessageSender"	/>
				<constructor-arg	ref="jmsMessageSender"	/>
				<constructor-arg	ref="webServiceInvoker"	/>
</bean>
	
<bean	id="jmsMessageSender"	class="sample.spring.chapter03.bankapp.base.JmsMessageSender"	/>
<bean	 id="emailMessageSender"	 class="sample.spring.chapter03.bankapp.base.EmailMessageSender"
/>
<bean	id="webServiceInvoker"	class="sample.spring.chapter03.bankapp.base.WebServiceInvoker"	/>

In	 the	above	example	 listing,	 the	<constructor-arg>	elements	of	serviceTemplate	bean	don’t	 specify	 the
index	 attribute.	 The	 order	 in	 which	 the	 constructor	 arguments	 are	 specified	 by	 	 the	 <constructor-arg>
elements	 is:	 EmailMessageSender,	 JmsMessageSender,	 WebServiceInvoker.	 The	 order	 in	 which
constructor	 arguments	 are	 specified	 in	 the	ServiceTemplate	 class’s	 constructor	 is:	 JmsMessageSender,
EmailMessageSender,	WebServiceInvoker.	As	you	can	see,	the	order	in	which	constructor	arguments	are
defined	by	 the	<constructor-arg>	elements	 is	different	 from	the	order	specified	by	 the	ServiceTemplate
class’s	constructor.

If	 you	 execute	 the	 main	 method	 of	 BankApp	 class	 of	 ch03-bankapp-constructor-args-by-type	 project,
you’ll	 find	 that	 the	Spring	 container	 successfully	 creates	 an	 instance	 of	 ServiceTemplate	 bean.	This	 is
because	JmsMessageSender,	EmailMessageSender	and	WebServiceInvoker	classes	are	distinct	in	nature
(that	is,	they	are	not	related	by	inheritance),	which	makes	it	easier	for	the	Spring	container	to	inject	their
instances	into	the	ServiceTemplate	class’s	constructor	in	the	correct	order.

If	 the	constructor	argument	types	are	related	by	inheritance,	Spring	container	needs	extra	instructions	to
help	 resolve	 constructor	 arguments.	 Let’s	 now	 look	 at	 how	 Spring	 container	 matches	 constructor
arguments	when	beans	referenced	by	the	constructor	arguments	are	related	by	inheritance.

Constructor	arguments	representing	related	Spring	beans

Consider	the	following	SampleBean	bean	class	whose	constructor	accepts	argument	types	that	are	related
by	inheritance:

Example	listing	3-11	–	SampleBean	class

public	class	SampleBean	{
				public	SampleBean(ABean	aBean,	BBean	bBean)	{	.....	}
				.....
}

The	 above	 example	 listing	 shows	 that	 the	 SampleBean	 class’s	 constructor	 accepts	 ABean	 and	 BBean



types	as	arguments.	ABean	and	BBean	represent	Spring	beans	that	are	related	by	inheritance;	BBean	is	a
subclass	of	ABean.

The	 following	 application	 context	 XML	 file	 shows	 the	 bean	 definitions	 for	 SampleBean,	 ABean	 and
BBean	classes:

	

	

Example	listing	3-12	–	Bean	definitions	for	SampleBean,	ABean	and	BBean	classes

				<bean	id="aBean"	class="example.ABean"/>
				<bean	id="bBean"	class="example.BBean"/>
			
				<bean	id="sampleBean"	class="example.SampleBean">
								<constructor-arg	ref="bBean"/>
								<constructor-arg	ref="aBean"/>
				</bean>

As	aBean	and	bBean	beans	are	related	by	inheritance,	Spring	container	applies	constructor	arguments	to
the	 SampleBean’s	 constructor	 in	 the	 order	 in	 which	 <constructor-arg>	 elements	 appear	 in	 the	 bean
definition	for	the	SampleBean	class.	In	the	above	sampleBean	bean	definition,	the	first	<constructor-arg>
element	refers	to	bBean	bean	and	the	second	<constructor-arg>	element	refers	to	aBean	bean.	This	means
that	 bBean	 is	 passed	 as	 the	 first	 constructor	 argument	 and	 aBean	 is	 passed	 as	 the	 second	 constructor
argument	 to	 the	SampleBean	constructor.	As	 instance	of	ABean	 (the	superclass)	can’t	be	passed	where
BBean	(the	subclass)	instance	is	expected,	the	second	<constructor-arg>	element	in	the	sampleBean	bean
definition	results	 in	exception	being	 thrown	by	 the	Spring	container.	To	handle	such	scenarios,	you	can
use	 <constructor-arg>	 element’s	 index	 or	 type	 attribute	 to	 identify	 the	 constructor	 argument	 to	 which
<constructor-arg>	element	applies.	For	instance,	the	following	sampleBean	bean	definition	makes	use	of
type	 attribute	 to	 indicate	 the	 type	 of	 the	 constructor	 argument	 to	 which	 the	 <constructor-arg>	 element
applies:

Example	 listing	3-13	–	<constructor-arg>	element’s	 type	 attribute	 identifies	 the	 type	of	 the	 constructor
argument

				<bean	id="sampleBean"	class="example.SampleBean">
								<constructor-arg	type="sample.spring.chapter03.bankapp.controller.BBean"	ref="bBean"/>
								<constructor-arg	type="sample.spring.chapter03.bankapp.controller.ABean"	ref="aBean"/>
				</bean>

The	<constructor-arg>	element’s	type	attribute	specifies	the	fully-qualified	name	of	the	type	to	which	the
<constructor-arg>	element	applies.	In	the	above	example	listing,	the	first	<constructor-arg>	applies	to	the
constructor	argument	of	type	BBean,	and	the	second	<constructor-arg>	element	applies	to	the	constructor
argument	 of	 type	 ABean.	 Specifying	 the	 type	 attribute	 takes	 away	 the	 ambiguity	 that	 arises	 when
constructor	arguments	are	related	by	inheritance.

NOTE	If	two	or	more	constructor	arguments	are	of	the	same	type,	the	only	option	is	to	use	index
attribute	to	identify	the	constructor	argument	to	which	each	<constructor-arg>	element	applies.



	

So	far	we	have	 looked	at	constructor	argument	 type	matching	scenarios	 in	which	constructor	arguments
represented	 distinct	 or	 related	 Spring	 beans.	 We’ll	 now	 look	 at	 how	 constructor	 argument	 types	 are
matched	for	standard	Java	types	(like	int,	long,	boolean,	String,	Date,	and	so	on)	and	custom	types.

Constructor	arguments	representing	standard	Java	types	and	custom	types

If	the	type	of	a	constructor	argument	is	a	primitive	type	(like	int,	long,	boolean,	and	so	on)	or	a	String	type
or	 a	 custom	 type	 (like	Address),	 the	<constructor-arg>	 element’s	 value	 attribute	 is	 used	 to	 specify	 the
value.	 If	 there	 are	 2	 or	more	 constructor	 arguments	 into	which	 the	 string	 value	 specified	 by	 the	 value
attribute	can	be	converted,	it’ll	not	be	possible	for	the	Spring	container	to	derive	the	type	(for	example,
whether	the	value	represents	an	int	or	long	or	String)	of	the	constructor	argument.	In	such	scenarios,	you
need	to	explicitly	specify	the	type	of	the	constructor	argument	using	the	type	attribute.

The	following	example	listing	shows	the	TransferFundsServiceImpl	class	that	defines	a	constructor	which
accepts	arguments	of	types	String,	boolean,	long	and	int:

Example	listing	3-14	–	TransferFundsServiceImpl	class
Project	–	ch03-bankapp-constructor-args-by-type
Source	location	-	src/main/java/sample/spring/chapter03/bankapp/service
	
package	sample.spring.chapter03.bankapp.service;
	
public	class	TransferFundsServiceImpl	implements	TransferFundsService	{
				public	TransferFundsServiceImpl(String	webServiceUrl,	boolean	active,	long	timeout,
							int	numberOfRetrialAttempts)	{.....}
				.....
}

As	 the	 above	 example	 listing	 shows,	 TransferFundsServiceImpl	 constructor	 accepts	 the	 following
arguments:	webServiceUrl,	active,	timeout	and	numberOfRetrialAttempts.	The	following	bean	definition
for	 the	 TransferFundsServiceImpl	 class	 shows	 how	 constructor	 argument	 values	 can	 be	 passed	 to	 the
TransferFundsServiceImpl’s	constructor:

Example	listing	3-15	–	Bean	definition	for	the	TransferFundsServiceImpl	class
	
				<bean	id="transferFundsService"
								class="sample.spring.chapter03.bankapp.service.TransferFundsServiceImpl">
								<constructor-arg	value="http://someUrl.com/xyz"	/>
								<constructor-arg	value="true"	/>
					<constructor-arg	value="5"	/>
					<constructor-arg	value="200"	/>
				</bean>

Let’s	assume	that	the	3rd	<constructor-arg>	element	(value	attribute’s	value	is	‘5’)	is	supposed	to	supply
value	for	the	numberOfRetrialAttempts	constructor	argument,	and	the	4th	<constructor-arg>	element	(value
attribute’s	 value	 is	 ‘200’)	 is	 supposed	 to	 supply	 value	 for	 the	 timeout	 constructor	 argument.	 Spring



container	applies	<constructor-arg>	elements	to	the	TransferFundsServiceImpl’s	constructor	in	the	order
in	which	<constructor-arg>	elements	appear	in	the	transferFundsService	bean	definition.	This	means	that
the	 3rd	 <constructor-arg>	 element	 applies	 to	 timeout	 argument,	 and	 the	 4th	 <constructor-arg>	 element
applies	to	numberOfRetrialAttempts	argument.	To	handle	such	ambiguities,	you	can	specify	the	type	of	a
constructor	argument	via	<constructor-arg>	element’s	 type	attribute,	as	shown	in	 the	following	example
listing:

Example	listing	3-16	–	applicationContext.xml	-	<constructor-arg>	element’s	type	attribute
Project	–	ch03-bankapp-constructor-args-by-type
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="transferFundsService"
								class="sample.spring.chapter03.bankapp.service.TransferFundsServiceImpl">
								<constructor-arg	type="java.lang.String"	value="http://someUrl.com/xyz"	/>
								<constructor-arg	type="boolean"	value="true"	/>
								<constructor-arg	type="int"	value="5"	/>
								<constructor-arg	type="long"	value="200"	/>
				</bean>

In	the	above	bean	definition	for	the	TransferFundsServiceImpl	class,	type	attribute	is	used	to	specify	the
constructor	 argument	 type.	 Spring	 container	 can	 now	 use	 type	matching	 to	 correctly	 apply	 constructor
arguments.

NOTE	If	two	or	more	constructor	arguments	are	of	the	same	type,	the	only	option	is	to	use	index	attribute
for	identifying	the	constructor	argument	to	which	each	<constructor-arg>	element	applies.

In	this	section,	we	saw	how	type	matching	is	performed	by	Spring	to	resolve	constructor	arguments.	Let’s
now	look	at	how	you	can	instruct	Spring	to	perform	constructor	argument	matching	based	on	constructor
argument’s	name.

IMPORT	 chapter	 3/ch03-bankapp-constructor-args-by-name	 (This	 project	 shows	 the	 MyBank
application	 in	which	bean	 class’s	 constructor	 arguments	 are	matched	by	name.	To	 run	 the	 application,
execute	the	main	method	of	the	BankApp	class	of	this	project)

Constructor	argument	matching	based	on	name
The	 <constructor-arg>	 element’s	 name	 attribute	 is	 used	 for	 specifying	 the	 name	 of	 the	 constructor
argument	 to	 which	 the	 <constructor-arg>	 element	 applies.	 The	 following	 example	 listing	 shows	 once
again	the	TransferFundsServiceImpl	class	whose	constructor	accepts	multiple	arguments:

Example	listing	3-17	–	TransferFundsServiceImpl	class
Project	–	ch03-bankapp-constructor-args-by-name
Source	location	-	src/main/java/sample/spring/chapter03/bankapp/service
	
package	sample.spring.chapter03.bankapp.service;
	
public	class	TransferFundsServiceImpl	implements	TransferFundsService	{
				.....



			public	TransferFundsServiceImpl(String	webServiceUrl,	boolean	active,	long	timeout,
						int	numberOfRetrialAttempts)	{	.....	}
}
	
The	 above	 example	 listing	 shows	 that	 the	 names	 of	 the	 constructor	 arguments	 defined	 by
TransferFundsServiceImpl’s	 constructor	 are:	 webServiceUrl,	 active,	 timeout	 and
numberOfRetrialAttempts.

NOTE	The	TransferFundsServiceImpl	class’s	constructor	accepts	arguments	that	are	simple	Java	types
(like,	int,	long,	boolean,	String,	and	so	on),	but	the	concept	explained	in	this	section	also	applies	to
scenarios	in	which	constructor	arguments	are	references	to	Spring	beans.
	
The	following	bean	definition	for	 the	TransferFundsServiceImpl	class	uses	<constructor-arg>	element’s
name	 attribute	 to	 specify	 the	 name	of	 the	 constructor	 argument	 to	which	 the	<constructor-arg>	 element
applies:

Example	listing	3-18	–	applicationContext.xml	-	<constructor-arg>	element’s	name	attribute
Project	–	ch03-bankapp-constructor-args-by-name
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="transferFundsService"
								class="sample.spring.chapter03.bankapp.service.TransferFundsServiceImpl">
	
					<constructor-arg	name="webServiceUrl"	value="http://someUrl.com/xyz"	/>
					<constructor-arg	name="active"	value="true"	/>
					<constructor-arg	name="numberOfRetrialAttempts"	value="5"	/>
					<constructor-arg	name="timeout"	value="200"	/>
				</bean>
	
The	above	configuration	will	work	only	if	TransferFundsServiceImpl	class	is	compiled	with	debug	 flag
enabled	(refer	to	-g	option	of	javac).	When	the	debug	flag	is	enabled,	names	of	constructor	arguments	are
preserved	 in	 the	 generated	 .class	 file.	 If	 you	 don’t	 compile	 your	 classes	with	 debug	 flag	 enabled,	 the
constructor	argument	names	are	lost	during	compilation,	and	Spring	has	no	way	to	locate	the	constructor
argument	 corresponding	 to	 the	 constructor	 argument	name	 specified	by	 the	<constructor-arg>	 element’s
name	attribute.

If	you	don’t	want	to	compile	your	classes	using	debug	flag	enabled,	you	can	use	@ConstructorProperties
annotation	(introduced	 in	Java	SE	6)	 to	clearly	spell	out	names	of	 the	constructor	arguments,	as	shown
here	for	TransferFundsServiceImpl	class:

Example	listing	3-19	–	@ConstructorProperties	annotation
Project	–	ch03-bankapp-constructor-args-by-name
Source	location	-	src/main/java/sample/spring/chapter03/bankapp/service
	
package	sample.spring.chapter03.bankapp.service;
	



import	java.beans.ConstructorProperties;
	
public	class	TransferFundsServiceImpl	implements	TransferFundsService	{
	
			@ConstructorProperties({"webServiceUrl","active","timeout","numberOfRetrialAttempts"})
					public	TransferFundsServiceImpl(String	webServiceUrl,	boolean	active,	long	timeout,
												int	numberOfRetrialAttempts)	{	.....	}
}

In	 the	 above	 example	 listing,	 @ConstructorProperties	 annotation	 specifies	 the	 names	 of	 constructor
arguments	in	the	order	in	which	they	appear	in	the	bean	class’s	constructor.	You	must	ensure	that	you	use
the	same	constructor	argument	names	in	the	<constructor-arg>	elements.

Let’s	now	look	at	how	the	@ConstructorProperties	annotation	affects	bean	definition	inheritance.

@ConstructorProperties	annotation	and	bean	definition	inheritance

If	 the	 constructor	 of	 the	 class	 corresponding	 to	 the	 parent	 bean	 definition	 is	 annotated	 with
@ConstructorProperties	annotation,	 the	bean	class	corresponding	to	the	child	bean	definition	must	also
be	annotated	with	@ConstructorProperties	annotation.

The	 following	 example	 listing	 shows	 the	 serviceTemplate	 (parent	 bean	 definition)	 and
FixedDepositService	(child	bean	definition)	bean	definitions:

Example	listing	3-20	–	applicationContext.xml	-	Parent	and	child	bean	definitions
Project	–	ch03-bankapp-constructor-args-by-name
Source	location	-	src/main/resources/META-INF/spring

				<bean	id="serviceTemplate"
								class="sample.spring.chapter03.bankapp.base.ServiceTemplate">
								<constructor-arg	name="emailMessageSender"	ref="emailMessageSender"	/>
								<constructor-arg	name="jmsMessageSender"	ref="jmsMessageSender"	/>
								<constructor-arg	name="webServiceInvoker"	ref="webServiceInvoker"	/>
				</bean>
	
				<bean	id="FixedDepositService"
								class="sample.spring.chapter03.bankapp.service.FixedDepositServiceImpl"
								parent="serviceTemplate">
											<property	name=“fixedDepositDao"	ref="FixedDepositDao"	/>
				</bean>

The	above	example	listing	shows	that	the	serviceTemplate	bean	definition	is	not	abstract,	which	means
that	 the	 Spring	 container	 will	 create	 an	 instance	 of	 serviceTemplate	 bean.	 The	 serviceTemplate	 bean
definition	 specifies	 3	 <constructor-arg>	 elements,	 corresponding	 to	 the	 3	 arguments	 defined	 by	 the
ServiceTemplate	class	(refer	example	listing	3-21).	As	we	have	specified	constructor	arguments	by	name
in	 the	 serviceTemplate	 bean	 definition,	 the	 ServiceTemplate	 class’s	 constructor	 is	 annotated	 with	 the
@ConstructorProperties	annotation	to	ensure	that	constructor	argument	names	are	available	to	Spring	at
runtime,	as	shown	here:



Example	listing	3-21	–	ServiceTemplate	class
Project	–	ch03-bankapp-constructor-args-by-name
Source	location	-	src/main/java/sample/spring/chapter03/bankapp/base
	
package	sample.spring.chapter03.bankapp.base;
	
import	java.beans.ConstructorProperties;
	
public	class	ServiceTemplate	{
				.....
			@ConstructorProperties({"jmsMessageSender","emailMessageSender","webServiceInvoker"})
				public	ServiceTemplate(JmsMessageSender	jmsMessageSender,
												EmailMessageSender	emailMessageSender,
												WebServiceInvoker	webServiceInvoker)	{	.....	}
}

As	 FixedDepositService	 is	 a	 child	 bean	 definition	 of	 serviceTemplate,	 the	 <constructor-arg>
configuration	in	serviceTemplate	bean	definition	is	inherited	by	the	FixedDepositService	bean	definition.
This	means	that	the	FixedDepositServiceImpl	class	must	define	a	constructor	that	accepts	the	same	set	of
arguments	 as	 defined	 by	 the	 ServiceTemplate	 class,	 and	 it	 must	 also	 be	 annotated	 with
@ConstructorProperties	 annotation.	 If	 you	 don’t	 annotate	 FixedDepositServiceImpl’s	 constructor	 with
@ConstructorProperties	annotation,	Spring	container	will	not	be	able	to	match	the	inherited	<constructor-
arg>	elements	with	the	constructor	arguments	specified	in	the	FixedDepositServiceImpl’s	constructor.

You	can’t	use	@ConstructorProperties	annotation	for	passing	arguments	by	name	to	a	static	or	 instance
factory	method,	as	explained	next.

@ConstructorProperties	annotation	and	factory	methods

We	 saw	 in	 section	 2-3	 of	 chapter	 2	 that	 the	 <constructor-arg>	 elements	 are	 also	 used	 for	 passing
arguments	to	static	and	instance	factory	methods.	You	might	think	that	you	can	pass	arguments	by	name	to
static	 and	 instance	 factory	 methods	 by	 specifying	 the	 <constructor-arg>	 element’s	 name	 attribute	 and
annotating	 the	 factory	 method	 with	 @ConstructorProperties	 annotation.	 You	 should	 note	 that
@ConstructorProperties	 annotation	 is	 meant	 only	 for	 constructors;	 you	 can’t	 annotate	 methods	 with
@ConstructorProperties	 annotation.	So,	 if	 you	want	 to	pass	 arguments	by	name	 to	 a	 static	 or	 instance
factory	method,	the	only	option	you	have	is	to	compile	classes	with	debug	flag	enabled.

NOTE	If	you	compile	classes	with	debug	flag	enabled,	it	results	in	.class	files	that	are	larger	in	size,	but
has	no	impact	on	the	runtime	performance	of	the	application.	It	only	results	in	increased	loading	time	for
the	classes.
	

Let’s	now	look	at	how	to	enable	or	disable	debug	flag	in	Eclipse	IDE.

Enabling	(or	disabling)	the	debug	flag	in	Eclipse	IDE

In	Eclipse	IDE,	follow	these	steps	to	enable	the	debug	flag	for	projects:



1.				Go	to	Windows	à	Preferences	and	select	the	option	Java	à	Compiler

2.				You’ll	now	see	a	section	titled	‘Classfile	Generation’.	In	this	section,	if	you	check	the	checkbox
labeled	‘Add	variable	attributes	to	generated	class	files	(used	by	the	debugger)’,	the	debug	flag	is
enabled.	Unchecking	this	checkbox	will	disable	the	debug	flag.

So	far	we	have	mostly	seen	bean	definition	examples	in	which	bean	properties	and	constructor	arguments
were	references	to	other	beans.	We’ll	now	look	at	bean	definition	examples	in	which	bean	properties	and
constructor	arguments	are	of	primitive	type,	collection	type,	java.util.Date,	java.util.Properties,	and	so	on.



3-4	 Configuring	 different	 types	 of	 bean	 properties	 and	 constructor
arguments
In	real	world	application	development	scenarios,	properties	and	constructor	arguments	of	a	Spring	bean
could	 range	 from	 a	 String	 type	 to	 reference	 to	 another	 bean	 to	 any	 other	 standard	 (like	 java.util.Date,
java.util.Map)	or	custom	(like	Address)	type.	So	far	we	have	seen	examples	of	how	to	supply	value	for
String	 type	 bean	 properties	 (using	 value	 attribute	 of	 <property>	 element)	 and	 String	 type	 constructor
arguments	 (using	 value	 attribute	 of	 <constructor-arg>	 element).	 We	 also	 looked	 at	 how	 to	 inject
dependencies	via	bean	properties	(using	ref	attribute	of	<property>	element)	and	constructor	arguments
(using	ref	attribute	of	<constructor-arg>	elements).

In	this	section,	we’ll	look	at	built-in	PropertyEditor	implementations	in	Spring	that	simplify	passing	bean
properties	 and	 constructor	 arguments	 of	 types	 java.util.Date,	 java.util.Currency,	 primitive	 type,	 and	 so
on.		We’ll	also	look	at	how	to	specify	values	for	collection	types	(like	java.util.List	and	java.util.Map)	in
the	 application	 context	 XML	 file,	 and	 how	 to	 register	 a	 custom	 PropertyEditor	 implementation	 with
Spring.

Let’s	 now	 look	 at	 bean	 definition	 examples	 that	 demonstrate	 use	 of	 built-in	 PropertyEditor
implementations.

IMPORT	 chapter	 3/ch03-simple-types-examples	 (This	 project	 shows	 a	 Spring	 application	 in	which
bean	 properties	 and	 constructor	 arguments	 are	 of	 primitive	 type,	 java.util.Date,	 java.util.List,
java.util.Map,	 and	 so	 on.	 This	 project	 also	 shows	 how	 to	 register	 a	 custom	 PropertyEditor
implementation	with	Spring	container.	To	run	the	application,	execute	the	main	method	of	the	SampleApp
class	of	this	project)

Built-in	property	editors	in	Spring
JavaBeans	PropertyEditors	provide	the	necessary	logic	for	converting	a	Java	type	to	a	string	value,	and
vice	versa.	Spring	provides	a	couple	of	built-in	PropertyEditors	that	are	used	for	converting	string	value
of	 a	 bean	 property	 or	 a	 constructor	 argument	 (specified	 via	 value	 attribute	 of	 <property>	 and
<constructor-arg>	elements)	to	the	actual	Java	type	of	the	property	or	constructor	argument.

Before	we	 look	at	examples	 involving	built-in	PropertyEditors,	 let’s	 first	understand	 the	 importance	of
PropertyEditors	in	setting	values	of	bean	properties	or	constructor	arguments.

Consider	the	following	BankDetails	class	that	we	want	to	configure	as	a	singleton-scoped	bean	with	pre-
defined	values	for	its	attributes:

Example	listing	3-22	–	BankDetails	class
	
public	class	BankDetails	{
				private	String	bankName;
	
				public	void	setBankName(String	bankName)	{
								this.bankName	=	bankName;
				}
}



In	the	above	example	listing,	bankName	is	an	attribute	of	the	BankDetails	class,	and	is	of	type	String.	The
following	bean	definition	for	the	BankDetails	class	shows	how	to	set	the	value	of	bankName	attribute	 to
‘My	Personal	Bank’:

Example	listing	3-23	–	Bean	definition	for	the	BankDetails	class
	
<bean	id=	"bankDetails"	class=	"BankDetails">
				<property	name=	"bankName"	value=	"My	Personal	Bank"/>
</bean>

In	 the	 above	 bean	 definition,	 the	 <property>	 element’s	 value	 attribute	 specifies	 a	 string	 value	 for	 the
bankName	property.	As	you	can	see,	if	a	bean	property	is	of	type	String,	you	can	simply	set	that	property
value	using	<property>	element’s	value	 attribute.	Similarly,	 if	 a	 constructor	 argument	 is	of	 type	String,
you	can	set	the	constructor	argument	value	using	<constructor-arg>	element’s	value	attribute.

Let’s	say	that	the	following	attributes	(along	with	their	setter	methods)	are	added	to	the	BankDetails	class:
a	 bankPrimaryBusiness	 attribute	 of	 type	 byte[],	 a	 headOfficeAddress	 attribute	 of	 type	 char[],	 a
privateBank	 attribute	 of	 type	 char,	 a	 primaryCurrency	 attribute	 of	 type	 java.util.Currency,	 a
dateOfInception	 attribute	 of	 type	 java.util.Date,	 and	 a	 branchAddresses	 attribute	 of	 type
java.util.Properties.	The	following	example	listing	shows	the	modified	BankDetails	class:

Example	listing	3-24	–	BankDetails	class	containing	different	types	of	properties
Project	–	ch03-simple-types-examples
Source	location	-	src/main/java/sample/spring/chapter03/beans
	
package	sample.spring.chapter03.beans;
.....
public	class	BankDetails	{
				private	String	bankName;
				private	byte[]	bankPrimaryBusiness;
				private	char[]	headOfficeAddress;
				private	char	privateBank;
				private	Currency	primaryCurrency;
				private	Date	dateOfInception;
				private	Properties	branchAddresses;
				.....
				public	void	setBankName(String	bankName)	{
								this.bankName	=	bankName;
				}
				//--	more	setter	methods
}

You	can	configure	the	BankDetails	class	as	a	Spring	bean	by	specifying	string	values	for	the	properties,
and	 letting	 the	 Spring	 container	 convert	 these	 string	 values	 into	 the	 corresponding	 Java	 types	 of	 the
properties	by	using	registered	JavaBeans	PropertyEditor	implementations.

The	following	bean	definition	for	the	BankDetails	class	shows	that	simple	string	values	are	specified	for
different	property	types:



Example	listing	3-25	–	applicationContext.xml	-	Bean	definition	for	the	BankDetails	class
Project	–	ch03-simple-types-examples
Source	location	-	src/main/resources/META-INF/spring

			<bean	id="bankDetails"	class="sample.spring.chapter03.beans.BankDetails">
								<property	name="bankName"	value="My	Personal	Bank"	/>
								<property	name="bankPrimaryBusiness"	value="Retail	banking"	/>
								<property	name="headOfficeAddress"	value="Address	of	head	office"	/>
								<property	name="privateBank"	value="Y"	/>
								<property	name="primaryCurrency"	value="INR"	/>
								<property	name="dateOfInception"	value="30-01-2012"></property>
					<property	name="branchAddresses">
											<value>
															x	=	Branch	X's	address
															y	=	Branch	Y's	address
											</value>
						</property>
				</bean>

The	above	example	 listing	shows	 that	 string	values	are	specified	 for	properties	of	 types	 java.util.Date,
java.util.Currency,	 char[],	 byte[],	 char	 and	 java.util.Properties.	 Spring	 container	 uses	 registered
PropertyEditors	 for	 converting	 the	 string	 value	 of	 the	 property	 or	 constructor	 argument	 to	 the
corresponding	Java	type	of	the	property	or	constructor	argument.	For	instance,	Spring	container	converts
the	 value	 ‘30-01-2012’	 of	 dateOfInception	 property	 to	 java.util.Date	 type	 using	 CustomDateEditor	 (a
built-in	PropertyEditor	implementation	for	java.util.Date	type).

If	 you	 look	 at	 how	 branchAddresses	 property	 (of	 type	 java.util.Properties)	 is	 configured	 in	 example
listing	3-25,	 you’ll	 notice	 that	 instead	of	<property>	 element’s	 value	 attribute,	<value>	 sub-element	 of
<property>	 element	 has	 been	 used	 to	 specify	 the	 value	 for	 the	 property.	 In	 case	 of	 single-valued
properties,	the	use	of	<property>	element’s	value	attribute	is	preferred	over	<value>	sub-element.	But,	if
you	need	to	specify	multiple	values	for	a	property	or	the	values	need	to	be	specified	on	separate	lines	(as
in	the	case	of	branchAddresses	property),	 the	<value>	sub-element	 is	preferred	over	value	attribute.	 In
the	 next	 section,	 you’ll	 see	 that	 values	 for	 properties	 (or	 constructor	 arguments)	 of	 type
java.util.Properties	 can	 also	 be	 specified	 using	 <props>	 sub-element	 of	 <property>	 (	 or	 <constructor-
arg>)	element.

Spring	comes	with	couple	of	built-in	PropertyEditor	implementations	that	perform	the	task	of	converting
values	specified	in	the	application	context	XML	file	to	the	Java	type	of	the	bean	property	or	constructor
argument.	The	following	table	describes	some	of	the	built-in	PropertyEditor	implementations	in	Spring:

Built-in	 PropertyEditor
implementation Description

CustomBooleanEditor converts	string	value	to	Boolean	or	boolean	type

CustomNumberEditor converts	string	value	to	a	number	(like	int,	long,	and	so	on)

ChracterEditor converts	string	value	to	char	type

ByteArrayPropertyEditor converts	string	value	to	byte[]

CustomDateEditor converts	string	value	to	java.util.Date	type

PropertiesEditor converts	string	value	to	java.util.Properties	type



	
The	above	table	shows	only	a	subset	of	built-in	PropertyEditor	implementations	in	Spring.	For	a	complete
list,	refer	to	the	org.springframework.beans.propertyeditors	package	of	Spring.	It	is	important	to	note	that
not	 all	 built-in	 PropertyEditor	 implementations	 in	 Spring	 are	 registered	 with	 the	 Spring	 container	 by
default.	 For	 instance,	 you	 need	 to	 explicitly	 register	 CustomDateEditor	 to	 allow	 Spring	 container	 to
perform	conversion	from	a	string	value	to	a	java.util.Date	type.		Later	in	this	section,	we’ll	look	at	how
you	can	register	property	editors	with	Spring	container.

Let’s	 now	 look	 at	 how	 to	 specify	 values	 for	 bean	 properties	 (or	 constructor	 arguments)	 of	 types
java.util.List,	java.util.Set	and	java.util.Map.

Specifying	values	for	different	collection	types
The	 <list>,	 <map>	 and	 <set>	 sub-elements	 (defined	 in	 Spring’s	 beans	 schema)	 of	 <property>	 and
<constructor-arg>	 elements	 are	 used	 to	 set	 properties	 and	 constructor	 arguments	 of	 type	 java.util.List,
java.util.Map	and	java.util.Set,	respectively.

NOTE	Spring’s	util	schema	also	provides	<list>,	<set>	and	<map>	elements	that	simplify	setting
properties	and	constructor	arguments	of	different	collection	types.	Later	in	this	chapter,	we’ll	look	at
Spring’s	util	schema	elements	in	detail.

The	following	DataTypesExample	class	shows	that	its	constructor	accepts	arguments	of	different	types:

Example	listing	3-26	–	DataTypesExample	class
Project	–	ch03-simple-types-examples
Source	location	-	src/main/java/sample/spring/chapter03/beans
	
package	sample.spring.chapter03.beans;
	
import	java.beans.ConstructorProperties;
.....
public	class	DataTypesExample	{
				private	static	Logger	logger	=	Logger.getLogger(DataTypesExample.class);
			
				@SuppressWarnings("rawtypes")
				@ConstructorProperties({	"byteArrayType",	"charType",	"charArray",
												"classType",	"currencyType",	"booleanType",	"dateType",	"longType",
												"doubleType",	"propertiesType",	"listType",	"mapType",	"setType",
												"anotherPropertiesType"	})
				public	DataTypesExample(byte[]	byteArrayType,	char	charType,
												char[]	charArray,	Class	classType,	Currency	currencyType,
												boolean	booleanType,	Date	dateType,	long	longType,
												double	doubleType,	Properties	propertiesType,	List<Integer>	listType,
												Map	mapType,	Set	setType,	Properties	anotherPropertiesType)		{
								.....
								logger.info("classType	"	+	classType.getName());
								logger.info("listType	"	+	listType);



								logger.info("mapType	"	+	mapType);
								logger.info("setType	"	+	setType);
								logger.info("anotherPropertiesType	"	+	anotherPropertiesType);
				}
}

The	 above	 example	 listing	 shows	 that	 the	DataTypesExample	 class’s	 constructor	 accepts	 arguments	 of
types	java.util.List,	java.util.Map,	java.util.Set	and	java.util.Properties,	and	so	on,	and	logs	 the	value	of
each	constructor	argument.

The	following	example	listing	shows	the	bean	definition	for	the	DataTypesExample	class:

Example	listing	3-27	–	applicationContext.xml	-	Bean	definition	for	DataTypesExample	class
Project	–	ch03-simple-types-examples
Source	location	-	src/main/resources/META-INF/spring

				<bean	id="dataTypes"	class="sample.spring.chapter03.beans.DataTypesExample">
								.....
								<constructor-arg	name="anotherPropertiesType">
										<props>
														<prop	key="book">Getting	started	with	the	Spring	Framework</prop>
										</props>
								</constructor-arg>
								<constructor-arg	name="listType"	value-type="java.lang.Integer"	>
										<list>
														<value>1</value>
														<value>2</value>
										</list>
								</constructor-arg>
								<constructor-arg	name="mapType">
															<map>
																<entry>
																				<key>
																									<value>map	key	1</value>
																				</key>
																				<value>map	key	1’s	value</value>
																</entry>
											</map>
								</constructor-arg>
								<constructor-arg	name="setType">
												<set>
																	<value>Element	1</value>
																	<value>Element	2</value>
												</set>
								</constructor-arg>
				</bean>



The	above	example	listing	shows:

·	 	 	 	 	 	 	 	 the	 value	 of	 anotherPropertiesType	 (of	 type	 java.util.Properties)	 is	 specified	 using	 the
<props>	sub-element	of	<constructor-arg>	element.	Each	<prop>	element	specifies	a	key-value
pair;	the	key	attribute	specifies	the	key	value	and	the	content	of	<prop>	element	is	the	value	for
the	key.	Instead	of	using	<props>	element,	you	can	use	<value>	sub-element	of	<constructor-arg>
element	to	specify	the	value	for	anotherPropertiesType	argument.

·								the	value	of	listType	constructor	argument	(of	type	java.util.List)		is	specified	using	the	<list>
sub-element	 of	 <constructor-arg>.	 The	 <value>	 sub-elements	 of	 <list>	 element	 specify	 items
contained	 in	 the	 list.	 The	 <list>	 element’s	 value-type	 attribute	 specifies	 the	 Java	 type	 of	 the
elements	 that	 the	 java.util.List	 type	 constructor	 argument	 accepts.	 As	 the	 listType	 constructor
argument	is	of	type	List<Integer>	(refer	example	listing	3-26),	the	value-type	attribute’s	value	is
specified	as	java.lang.Integer.	The	value-type	attribute	is	optional,	and	is	particularly	useful	 if
you	 are	 using	 a	 parameterized	 List	 type,	 like	 List<Integer>.	 If	 you	 specify	 the	 value-type
attribute,	Spring	container	uses	the	registered	property	editors	to	perform	conversion	of	values
to	the	type	specified	by	the	value-type	attribute,	followed	by	converting	(if	required)	the	values
to	the	type	accepted	by	the	parameterized	List	type.	If	you	don’t	specify	the	value-type	attribute,
Spring	container	simply	uses	the	registered	property	editors	to	perform	conversion	of	values	to
the	type	accepted	by	the	parameterized	List	type.

·	 	 	 	 	 	 	 	 the	value	of	mapType	constructor	argument	 (of	 type	 java.util.Map)	 	 is	 specified	using	 the
<map>	sub-element	of	<constructor-arg>.	The	<entry>	 sub-element	of	<map>	 specifies	 a	 key-
value	pair	contained	in	the	Map;	the	<key>	element	specifies	 the	key	and	 the	<value>	element
specifies	the	value	for	the	key.	The	key-type	and	value-type	attributes	of	<map>	element	specify
the	 Java	 type	 of	 keys	 and	 values	 that	 java.util.Map	 accepts.	 The	 key-type	 and	 value-type
attributes	 are	 optional,	 and	 especially	 useful	 if	 you	 are	 using	 parameterized	 Map	 type,	 like
Map<Integer,	Integer>.	Spring	container	uses	registered	property	editors	to	perform	conversion
of	keys	and	values	 to	 the	 types	 specified	by	 the	key-type	 and	value-type	 attributes,	 and	 to	 the
types	accepted	by	the	parameterized	Map	type.

·		 	 	 	 	 	 	 	 the	value	of	the	setType	constructor	argument	(of	type	java.util.Set)	 is	specified	using	 the
<set>	 sub-element	 of	 <constructor-arg>.	 Each	 <value>	 sub-element	 of	 <set>	 specifies	 an
element	contained	in	the	Set.	The	value-type	attribute	of	<set>	element	specifies	the	Java	type	of
elements	that	java.util.Set	accepts.	The	value-type	attribute	is	optional,	and	is	useful	if	you	are
using	 parameterized	 Set	 type,	 like	 Set<Integer>.	 Spring	 container	 uses	 registered	 property
editors	to	perform	conversion	of	values	to	the	type	specified	by	the	value-type	attribute,	and	to
the	type	accepted	by	the	parameterized	Set	type.

In	DataTypesExample	 class	 (refer	 example	 listing	 3-26	 and	 3-27),	 constructor	 arguments	 of	 type	 List,
Map	 and	Set	 contained	 elements	 of	 type	 String	 or	 Integer.	 In	 an	 application,	 a	 collection	may	 contain
elements	 of	 type	Map,	 Set,	 Class,	 Properties,	 or	 any	 other	 Java	 type.	 The	 elements	 contained	 in	 the
collection	can	also	be	bean	references.	To	address	such	scenarios,	Spring	allows	you	to	use	elements	like
<map>,	<set>,	<list>,	<props>,	<ref>,	and	so	on,	as	sub-elements	of	<list>,	<map>	and	<set>	elements.
Let’s	now	look	at	examples	that	demonstrate	how	to	add	different	types	of	elements	to	Map,	List	and	Set
type	constructor	arguments	and	bean	properties.



Adding	elements	of	type	List,	Map,	Set	and	Properties	to	collection	types

If	a	bean	property	or	constructor	argument	is	of	 type	List<List>,	simply	use	a	nested	<list>	element,	as
shown	here:

Example	listing	3-28	–	Configuration	example:	List	inside	a	List
	
<constructor-arg	name="nestedList">
				<list>
								<list>
												<value>A	simple	String	value	in	the	nested	list</value>
												<value>Another	simple	String	value	in	nested	list</value>
								</list>
				</list>
</constructor-arg>

The	 <constructor-arg>	 element	 shown	 in	 the	 above	 example	 listing	 supplies	 value	 for	 a	 constructor
argument	named	nestedList	which	is	of	type	List<List>.	The	nested	<list>	element	represents	an	element
of	 type	List.	Similarly,	you	can	use	<map>,	<set>	and	<props>	elements	 inside	a	<list>	 element	 to	 set
value	 of	 properties	 or	 constructor	 arguments	 of	 type	 List<Map>,	 List<Set>	 and	 List<Properties>,
respectively.	As	with	the	<list>	element,	a	<set>	element	can	contain	<set>,	<list>,	<map>	or	<props>
element.	In	case	of	a	<map>	element,	you	can	use	<map>,	<set>,	<list>	or	<props>	element	to	specify	key
and	value	of	an	entry.

The	following	example	listing	shows	how	you	can	specify	values	for	a	Map<List,	Set>	 type	constructor
argument:

Example	listing	3-29	–	Configuration	example:	Map	containing	List	type	as	key	and	Set	type	as	value
	
				<constructor-arg	name="nestedListAndSetMap">
												<map>
																<entry>
																				<key>
																		<list>
																					<value>a	List	element</value>
																			</list>
																				</key>
														<set>
																		<value>a	Set	element</value>
														</set>
																</entry>
												</map>
				</constructor-arg>

The	 above	 example	 listing	 shows	 that	 the	 nestedListAndSetMap	 constructor	 argument	 is	 of	Map	 type
whose	key	is	of	 type	List	and	value	is	of	type	Set.	The	<key>	element	can	have	either	of	 the	following
elements	 as	 its	 sub-element:	<map>,	<set>,	<list>	 and	<props>.	 The	 value	 for	 the	 key	 can	 be	 defined



using	<map>,	<set>,	<list>	or	<props>	element.

Adding	bean	references	to	collection	types

You	can	use	<ref>	elements	inside	<list>	and	<set>	elements	to	add	references	to	beans	into	properties
and	constructor	arguments	of	type	List	and	Set,	respectively.

The	 following	 example	 listing	 shows	 how	 references	 to	 beans	 are	 added	 to	 a	 List	 type	 constructor
argument:

Example	listing	3-30	–	Configuration	example:	List	containing	reference	to	beans

<bean	.....>
				<constructor-arg	name="myList">
								<list>
									<ref	bean="aBean"	/>
									<ref	bean="bBean"	/>
								</list>
				</constructor-arg>
</bean>
	
<bean	id="aBean"	class="somepackage.ABean"	/>
<bean	id="bBean"	class="somepackage.BBean"	/>

The	above	example	 listing	shows	 that	 the	myList	constructor	argument	 is	of	 type	List	and	 it	 contains	 2
elements	-	a	reference	to	aBean	bean	and	a	reference	to	bBean	bean.	The	<ref>	element’s	bean	attribute
specifies	the	name	of	the	bean	referenced	by	the	<ref>	element.

As	with	the	<list>	element,	you	can	use	<ref>	elements	inside	<set>	element	to	add	bean	references	to	a
Set	 type	 constructor	 argument	 or	 bean	property.	 In	 case	of	<map>	 element,	 you	 can	 use	<ref>	 element
inside	a	<key>	element	to	specify	a	bean	reference	as	a	key,	and	use	the	<ref>	element	to	specify	a	bean
reference	as	a	value	for	the	key.	The	following	example	listing	shows	a	Map	 type	constructor	argument
that	contains	a	single	key-value	pair	in	which	both	key	and	value	are	references	to	beans:

Example	listing	3-31	–	Configuration	example:	Map	containing	bean	references	as	keys	and	values

<bean	.....>
				<constructor-arg	name="myMapWithBeanRef">
									<map>
														<entry>
																		<key>
																<ref	bean="aBean"	/>
																		</key>
												<ref	bean="bBean"	/>
														</entry>
									</map>
				</constructor-arg>
</bean>
	



<bean	id="aBean"	class="somepackage.ABean"	/>
<bean	id="bBean"	class="somepackage.BBean"	/>

The	above	example	 listing	 shows	 that	myMapWithBeanRef	 constructor	 argument	 is	 of	 type	Map	 and	 it
contains	 a	 key-value	pair	 in	which	 the	key	 is	 a	 reference	 to	 aBean	bean	 and	 corresponding	value	 is	 a
reference	to	bBean	bean.

Adding	bean	names	to	collection	types

If	you	want	to	add	a	bean	name	(as	specified	by	the	id	attribute	of	<bean>	element)	to	a	List,	Map	or	Set
type	 constructor	 argument	 or	 bean	 property,	 you	 can	 use	 the	<idref>	element	 inside	<map>,	 <set>	 and
<list>	 elements.	The	 following	example	 listing	 shows	a	Map	 type	 constructor	 argument	 that	 contains	 a
single	key-value	pair,	where	bean	name	is	the	key	and	bean	reference	is	the	value:

Example	listing	3-32	–	Configuration	example:	Map	containing	bean	name	as	key	and	bean	reference	as
value

				<constructor-arg	name="myExample">
								<map>
												<entry>
																<key>
														<idref	bean="sampleBean"	/>
																</key>
																<ref	bean="sampleBean"	/>
												</entry>
								</map>
				</constructor-arg>
	
				<bean	id="sampleBean"	class="somepackage.SampleBean"	/>

The	above	example	listing	shows	that	the	myExample	constructor	argument	is	of	type	Map	whose	key	is
the	string	value	‘sampleBean’	and	value	is	the	sampleBean	bean.	We	could	have	used	<value>	element	to
set	‘sampleBean’	string	value	as	the	key,	but	<idref>	element	 is	used	because	Spring	container	verifies
existence	of	the	sampleBean	bean	when	the	application	is	deployed.

NOTE	You	can	use	the	<idref>	element	inside	a	<property>	or	<constructor-arg>	element	to	set	a	bean
name	as	the	value	of	a	bean	property	or	constructor	argument.

Adding	null	values	to	collection	types

You	can	add	a	null	value	to	collections	of	type	Set	and	List	using	<null>	element.	The	following	example
listing	shows	how	to	add	a	null	value	to	a	Set	type	constructor	argument	using	<null>	element:

Example	listing	3-33	–	Configuration	example:	Set	containing	a	null	element

				<constructor-arg	name="setWithNullElement">
								<set>
												<value>Element	1</value>
												<value>Element	2</value>



												<null	/>
								</set>
				</constructor-arg>

In	 the	above	example	 listing,	setWithNullElement	constructor	argument	contains	3	elements:	Element	1,
Element	2	and	null.

To	add	a	null	key	to	a	Map	type	constructor	argument	or	property,	you	can	use	<null>	element	inside	the
<key>	element.	And,	to	add	a	null	value,	you	can	add	a	<null>	element	inside	the	<entry>	element.	The
following	 example	 listing	 shows	 a	Map	 type	 constructor	 argument	 that	 contains	 a	 null	 key	 and	 a	 null
value:

Example	listing	3-34	–	Configuration	example:	Map	containing	a	null	key	and	a	null	value

					<constructor-arg	name="mapType">
								<map>
												<entry>
																<key>
																						<null	/>
																</key>
																<null	/>
												</entry>
								</map>
				</constructor-arg>

The	above	example	listing	shows	that	an	element	with	null	key	and	null	value	is	added	to	 the	mapType
constructor	argument	using	<null>	element.

NOTE	You	can	also	use	<null>	element	inside	<property>	and	<constructor-arg>	elements	to	set	null
values	for	properties	and	constructor	arguments,	respectively.

Let’s	now	look	at	how	to	specify	values	for	array	type	properties	and	constructor	arguments.

Specifying	values	for	arrays
If	 a	 bean	 class	 defines	 an	 array	 type	 property,	 you	 can	 set	 its	 value	 using	 the	 <array>	 sub-element	 of
<property>	 element.	 Similarly,	 you	 can	 set	 an	 array	 type	 constructor	 argument	 using	 the	 <array>	 sub-
element	of	<constructor-arg>	element.

The	following	example	listing	shows	how	you	can	set	a	bean	property	of	type	int[]:

Example	listing	3-35	–	Configuration	example:	Setting	value	of	a	bean	property	of	type	int[]

				<property	name="numbersProperty">
								<array>
												<value>1</value>
												<value>2</value>
								</array>			
				</property>

In	the	above	example	listing,	each	<value>	sub-element	of	the	<array>	element	represents	an	element	in



the	numbersProperty	array.	The	property	editors	registered	with	the	Spring	container	are	used	to	convert
the	string	value	specified	by	each	of	the	<value>	element	to	int	type.	You	can	use	<array>	element	inside
<list>,	<set>	and	<map>	elements.	You	can	also	use	<list>,	<set>,	<map>,	<props>	and	<ref>	elements
inside	an	<array>	element	to	create	arrays	of	List,	Set,	Map,	Properties	and	bean	references,	respectively.
If	you	want	to	create	an	array	of	arrays,	you	can	use	<array>	elements	inside	an	<array>	element.

We	discussed	that	<list>,	<map>	and	<set>	elements	are	used	to	set	properties	or	constructor	arguments
of	 type	List,	Map	and	Set,	 respectively.	Let’s	now	 look	at	 the	default	 collection	 implementation	 that	 is
created	by	Spring	for	each	of	these	elements.

Default	collection	implementation	for	<list>,	<set>	and	<map>	elements
The	 following	 table	 shows	 the	 default	 collection	 implementation	 that	 is	 created	 by	 Spring	 for	 <list>,
<set>	and	<map>	elements:

Collection	element Default	collection	implementation	created	by	Spring

<list> java.util.ArrayList

<set> java.util.LinkedHashSet

<map> java.util.LinkedHashMap

	
The	above	table	suggests:

·	 	 	 	 	 	 	 	 if	a	property’s	 (or	a	constructor	argument’s)	value	 is	 specified	using	<list>	 element,	Spring
creates	an	instance	of	ArrayList	and	assigns	it	to	the	property	(or	the	constructor	argument).

·	 	 	 	 	 	 	 	 if	 a	property’s	 (or	a	 constructor	argument’s)	value	 is	 specified	using	<set>	 element,	Spring
creates	an	instance	of	LinkedHashSet	and	assigns	it	to	the	property	(or	the	constructor	argument).

·	 	 	 	 	 	 	 	 if	a	property’s	(or	a	constructor	argument’s)	value	is	specified	using	<map>	element,	Spring
creates	an	instance	of	LinkedHashMap	and	assigns	it	to	the	property	(or	the	constructor	argument).

It	 is	 likely	 that	 you	 may	 want	 to	 substitute	 a	 different	 implementation	 of	 List,	 Set	 or	Map	 to	 a	 bean
property	or	a	constructor	argument.	For	instance,	instead	of	java.util.ArrayList,	you	may	want	to	assign	an
instance	of	java.util.LinkedList	 to	a	bean	property	of	 type	List.	 In	such	scenarios,	 it	 is	 recommended	 to
use	 <list>,	 <map>	 and	 <set>	 elements	 of	 Spring’s	 util	 schema	 (explained	 in	 section	 3-8).	 The	 <list>,
<set>	and	<map>	elements	of	Spring’s	util	schema	provide	the	option	to	specify	the	fully-qualified	name
of	the	concrete	collection	class	that	you	want	to	assign	to	the	property	or	constructor	argument	of	the	bean.

Let’s	now	look	at	some	of	the	built-in	property	editors	provided	by	Spring.



3-5	Built-in	property	editors
Spring	 provides	 a	 couple	 of	 built-in	 property	 editors	 that	 are	 useful	when	 setting	 bean	 properties	 and
constructor	 arguments.	 Let’s	 take	 a	 quick	 look	 at	 CustomCollectionEditor,	 CustomMapEditor	 and
CustomDateEditor	built-in	property	editors.	To	view	the	complete	list	of	built-in	property	editors,	refer	to
org.springframework.beans.propertyeditors	package.

CustomCollectionEditor
CustomCollectionEditor	 property	 editor	 is	 responsible	 for	 converting	 a	 source	 Collection	 (like,
java.util.LinkedList)	 type	 to	 the	 target	 Collection	 (like,	 java.util.ArrayList)	 type.	 By	 default,
CustomCollectionEditor	is	registered	for	Set,	SortedSet	and	List	types.

Consider	 the	 following	CollectionTypesExample	class	 that	 defines	 attributes	 (and	 corresponding	 setter
methods)	of	type	Set	and	List:

Example	listing	3-36	–	CollectionTypesExample	class
Project	–	ch03-simple-types-examples
Source	location	-	src/main/java/sample/spring/chapter03/beans
	
package	sample.spring.chapter03.beans;
	
import	java.util.List;													
import	java.util.Set;
	
public	class	CollectionTypesExample	{
		private	Set	setType;
		private	List	listType;
				.....
				//--	setter	methods	for	attributes
				public	void	setSetType(Set	setType)	{
								this.setType	=	setType;
				}
				.....
}

CollectionTypesExample	class	defines	setType	and	listType	attributes	of	type	Set	and	List,	 respectively.
The	following	example	listing	shows	the	bean	definition	for	CollectionTypesExample	class:

Example	listing	3-37	–	applicationContext.xml	-	Bean	definition	for	CollectionTypesExample	class
Project	–	ch03-simple-types-examples
Source	location	-	src/main/resources/META-INF/spring

				<bean	class="sample.spring.chapter03.beans.CollectionTypesExample">
								<property	name="listType">
										<set>
														<value>set	element	1</value>
														<value>set	element	2</value>



										</set>
								</property>
								<property	name="setType">
										<list>
														<value>list	element	1</value>
														<value>list	element	2</value>
										</list>
								</property>
								.....
				</bean>

You	might	think	that	the	above	configuration	is	incorrect	because	<set>	element	has	been	used	to	set	the
value	of	 listType	property	 (of	 type	List),	 and	<list>	 element	 has	 been	used	 to	 set	 the	value	of	 setType
property	(of	type	Set).

The	above	configuration	is	completely	legal,	and	the	Spring	container	does	not	complain.	This	is	because
CustomCollectionEditor	 converts	 the	 ArrayList	 instance	 (created	 corresponding	 to	 the	 <list>	 type
element)	to	LinkedHashSet	type	(an	implementation	of	Set	type)	before	setting	the	setType	property.	Also,
CustomCollectionEditor	converts	 the	LinkedHashSet	 instance	 (created	 corresponding	 to	 the	 <set>	 type
element)	to	ArrayList	type	(an	implementation	of	List	type)	before	setting	the	listType	property.

Figure	3-4	–	CustomCollectionEditor	converts	the	LinkedHashSet	to	ArrayList	type

Figure	3-4	shows	that	the	CustomCollectionEditor	converts	the	LinkedHashSet	type	to	ArrayList	to	set	the
value	of	CollectionTypesExample’s	 listType	 property.	The	 figure	 shows	 the	 sequence	 of	 steps	 that	 are
performed	 by	 Spring	 to	 set	 the	 value	 of	 listType	 property.	 First,	 Spring	 creates	 an	 instance	 of
LinkedHashSet	corresponding	to	the	<set>	element.	As	the	listType	property	is	of	type	List	(refer	example
listing	3-36),	the	CustomCollectionEditor	comes	into	picture	for	setting	the	listType	property’s	value.	 If
the	 type	 of	 the	 bean	 property	 is	 List,	 CustomCollectionEditor	 creates	 an	 instance	 of	 ArrayList	 and
populates	it	with	the	elements	from	the	LinkedHashSet.	In	the	end,	the	value	of	the	listType	variable	is	set
to	the	ArrayList	implementation	created	by	CustomCollectionEditor.

It	is	important	to	note	that	if	a	property	or	constructor	argument	type	is	a	concrete	collection	class	(like
LinkedList),	CustomCollectionEditor	simply	creates	an	instance	of	the	concrete	collection	class	and	adds
elements	 to	 it	 from	 the	 source	 collection.	 The	 following	 figure	 shows	 a	 scenario	 in	 which	 the	 bean



property	is	of	type	java.util.Vector	(a	concrete	collection	class):

Figure	3-5	CustomCollectionEditor	converts	the	ArrayList	to	Vector	type

The	 above	 figure	 shows	 that	 the	 CustomCollectionEditor	 creates	 an	 instance	 of	 Vector	 (a	 concrete
collection	class)	and	adds	elements	to	it	from	the	source	collection,	ArrayList.

Let’s	now	look	at	CustomMapEditor	property	editor.

CustomMapEditor
CustomMapEditor	property	editor	deals	with	converting	a	source	Map	 type	(like	HashMap)	 to	 a	 target
Map	type	(like	TreeMap).	By	default,	CustomMapEditor	is	registered	only	for	SortedMap	type.

Figure	3-6	shows	a	scenario	in	which	CustomMapEditor	converts	LinkedHashMap	(the	source	Map	type)
to	TreeMap	(an	implementation	of	SortedMap	type).

Figure	3-6	shows	the	sequence	of	steps	performed	by	Spring	to	set	the	value	of	mapType	property.	First,
Spring	 creates	 an	 instance	 of	 LinkedHashMap	 corresponding	 to	 the	 <map>	 element.	 As	 the	 mapType
property	is	of	type	SortedMap,	CustomMapEditor	comes	into	picture	while	setting	the	value	of	mapType
property.	 CustomMapEditor	 creates	 an	 instance	 of	 TreeMap	 (a	 concrete	 implementation	 of	 SortedSet
interface),	adds	key-value	pairs	from	LinkedHashMap	to	the	newly	created	TreeMap	instance	and	assigns
the	TreeMap	instance	to	the	mapType	property.



Figure	3-6	CustomMapEditor	converts	the	LinkedHashMap	(the	source	Map	type)	to	TreeMap	(the	target
Map	type)	type

CustomDateEditor
CustomDateEditor	is	a	property	editor	for	java.util.Date	type	bean	properties	and	constructor	arguments.
CustomDateEditor	supports	a	custom	java.text.DateFormat	that	is	used	for	formatting	a	date/time	string	to
a	 java.util.Date	 type	 object,	 and	 parsing	 a	 java.util.Date	 type	 object	 to	 a	 date/time	 string.	 In	 the	 next
section,	we’ll	see	how	CustomDateEditor	is	used	for	setting	bean	properties	and	constructor	arguments	of
type	 java.util.Date.	 In	ch03-simple-types-examples	project,	CustomDateEditor	 converts	 the	 string	value
of	a	bean	property	(refer	dateOfInception	attribute	of	BankDetails	class)	or	constructor	argument	 (refer
dateType	constructor	argument	of	DataTypesExample	class)	to	java.util.Date	type.

In	ch03-simple-types-examples	 project,	 some	 of	 the	 other	 built-in	 property	 editors	 that	 are	 utilized	 by
beans	 include:	 ByteArrayPropertyEditor	 -	 for	 converting	 a	 string	 value	 to	 byte[]	 (refer
bankPrimaryBusiness	attribute	of	BankDetails	class),	CurrencyEditor	–	for	converting	a	currency	code	to
a	 java.util.Currency	 object	 (refer	 primaryCurrency	 attribute	 of	 BankDetails	 class),	
CharacterArrayPropertyEditor	 –	 for	 converting	 a	 string	 value	 to	 a	 char[]	 (refer	 headOfficeAddress
attribute	of	BankDetails	class),	and	so	on.

Let’s	now	look	at	how	to	register	property	editors	with	the	Spring	container.



3-6	Registering	property	editors	with	the	Spring	container
Spring’s	BeanWrapperImpl	class	registers	a	couple	of	built-in	property	editors	with	the	Spring	container.
For	instance,	CustomCollectionEditor,	CustomMapEditor,	CurrencyEditor,	ByteArrayPropertyEditor	and
CharacterArrayEditor	 property	 editors	 are	 registered	 by	 default	 with	 the	 Spring	 container.	 But,
CustomDateEditor	 property	 editor	 is	 not	 registered	 by	 default	 with	 the	 Spring	 container.	 To	 register
property	editors	with	 the	Spring	container,	you	can	use	Spring’s	CustomEditorConfigurer	special	 bean.
CustomEditorConfigurer	 class	 implements	 Spring’s	 BeanFactoryPostProcessor	 interface	 (explained	 in
detail	in	section	5-4	of	chapter	5),	and	it	is	automatically	detected	and	executed	by	the	Spring	container.

In	 ch03-simple-types-examples	 project,	 BankDetails	 class	 (refer	 example	 listing	 3-24)	 defines	 a
dateOfInception	property	of	type	java.util.Date.	The	value	specified	for	 the	dateOfInception	property	 is
‘30-01-2012’	 (refer	 example	 listing	 3-25).	 To	 convert	 the	 string	 value	 ‘30-01-2012’	 to	 java.util.Date
type,	you	must	register	a	custom	property	editor	for	java.util.Date	type	or	you	can	register	Spring’s	built-
in	CustomDateEditor	property	editor	with	the	Spring	container.

To	register	property	editors	with	the	Spring	container,	you	need	to	do	the	following:

1.	 	 	 	 Create	 a	 class	 that	 implements	 Spring’s	 PropertyEditorRegistrar	 interface.	 This	 class	 is
responsible	for	registering	property	editors	with	the	Spring	container.

2.				Configure	the	PropertyEditorRegistrar	implementation	as	a	Spring	bean	in	the	application	context
XML	file.

3.				Configure	Spring’s	CustomEditorConfigurer	special	bean	in	the	application	context	XML	file,	and
provide	it	with	reference	to	the	PropertyEditorRegistrar	implementation	(that	you	created	in	step	1
and	configured	in	step	2).

Let’s	 now	 see	 how	 CustomDateEditor	 is	 registered	 with	 the	 Spring	 container	 in	 ch03-simple-types-
examples	project.

Creating	a	PropertyEditorRegistrar	implementation
The	 following	 example	 listing	 shows	 the	 MyPropertyEditorRegistrar	 class	 that	 implements
PropertyEditorRegistrar	interface:

Example	listing	3-38	–	MyPropertyEditorRegistrar	class
Project	–	ch03-simple-types-examples
Source	location	-	src/main/java/sample/spring/chapter03/beans
	
package	sample.spring.chapter03.beans;
	
import	java.text.SimpleDateFormat;
import	java.util.Date;
	
import	org.springframework.beans.PropertyEditorRegistrar;
import	org.springframework.beans.PropertyEditorRegistry;
import	org.springframework.beans.propertyeditors.CustomDateEditor;
	



public	class	MyPropertyEditorRegistrar	implements	PropertyEditorRegistrar	{
	
				@Override
				public	void	registerCustomEditors(PropertyEditorRegistry	registry)	{
								registry.registerCustomEditor(Date.class,	new	CustomDateEditor(
																new	SimpleDateFormat("dd-MM-yyyy"),	false));
				}
}

The	 above	 example	 listing	 shows	 that	 the	 MyPropertyEditorRegistrar	 class	 implements	 Spring’s
PropertyEditorRegistrar	 interface,	 and	 provides	 implementation	 for	 registerCustomEditors	 method
defined	 in	 the	 PropertyEditorRegistrar	 interface.	 The	 PropertyEditorRegistry	 instance	 passed	 to	 the
registerCustomEditors	 method	 is	 used	 for	 registering	 property	 editors.	 PropertyEditorRegistry’s
registerCustomEditor	 method	 is	 used	 for	 registering	 a	 PropertyEditor	 implementation	 with	 the	 Spring
container.	 In	 the	 above	 example	 listing,	 PropertyEditorRegistry’s	 registerCustomEditor	 is	 used	 for
registering	a	CustomDateEditor	property	editor	with	the	Spring	container.

Configuring	the	CustomEditorConfigurer	class
The	 following	 example	 listing	 shows	 how	 the	 CustomEditorConfigurer	 class	 is	 configured	 in	 the
application	context	XML	file:

Example	listing	3-39	–	applicationContext.xml	-	CustomEditorConfigurer	configuration
Project	–	ch03-simple-types-examples
Source	location	-	src/main/resources/META-INF/spring

				<bean	id="	myPropertyEditorRegistrar"
												class="sample.spring.chapter03.beans.MyPropertyEditorRegistrar	"	/>
	
				<bean	id="editorConfigurer"
											class="org.springframework.beans.factory.config.CustomEditorConfigurer">
								<property	name="propertyEditorRegistrars">
												<list>
																<ref	bean="myPropertyEditorRegistrar"/>
												</list>
								</property>
				</bean>

In	 the	 above	 example	 listing,	 myPropertyEditorRegistrar	 bean	 definition	 configures
MyPropertyEditorRegistrar	class	as	a	Spring	bean.	MyPropertyEditorRegistrar	class	implements	Spring’s
PropertyEditorRegistrar	 interface,	 and	 is	 responsible	 for	 registering	 additional	 property	 editors	 with
Spring	 container.	 CustomEditorConfigurer’s	 propertyEditorRegistrars	 property	 specifies	 a	 list	 of
PropertyEditorRegistrar	 implementations.	 In	 the	 above	 example	 listing,	 myPropertyEditorRegistrar	 is
specified	 as	 one	 of	 the	 values	 of	 propertyEditorRegistrars	 property.	 CustomEditorConfigurer	 bean	 is
automatically	detected	and	executed	by	the	Spring	container,	resulting	in	registration	of	property	editors
by	the	MyPropertyEditorRegistrar	instance.

Let’s	 now	 look	 at	 how	 to	 use	 p-namespace	 (for	 bean	 properties)	 and	 c-namespace	 (for	 constructor



arguments)	to	write	concise	bean	definitions	in	application	context	XML	files.



3-7	Concise	bean	definitions	with	p	and	c	namespaces
To	 make	 bean	 definitions	 less	 verbose	 in	 application	 context	 XML	 files,	 Spring	 provides	 p	 and	 c
namespaces	 to	specify	values	 for	bean	properties	and	constructor	arguments,	 respectively.	The	p	 and	 c
namespaces	are	alternatives	to	using	<property>	and	<constructor-arg>	elements,	respectively.

Let’s	first	look	at	p-namespace.

IMPORT	chapter	3/ch03-namespaces-example	(This	project	shows	a	Spring	application	in	which	bean
properties	 and	 constructor	 arguments	 are	 set	 using	 p-	 and	 c-namespaces,	 respectively.	 To	 run	 the
application,	execute	the	main	method	of	the	SampleApp	class	of	this	project)

p-namespace
To	use	p-namespace	to	set	bean	properties,	specify	bean	properties	as	attributes	of	the	<bean>	element,
and	specify	each	bean	property	to	be	in	the	p-namespace.

The	following	bean	definition	shows	how	to	use	p-namespace	to	set	bean	properties:

Example	listing	3-40	–	applicationContext.xml	-	p-namespace	example
Project	–	ch03-namespaces-example
Source	location	-	src/main/resources/META-INF/spring

<beans	xmlns="http://www.springframework.org/schema/beans"
				xmlns:p="http://www.springframework.org/schema/p"	xsi:schemaLocation=".....">
	
				<bean	id="bankDetails"	class="sample.spring.chapter03.beans.BankDetails"
								p:bankName="My	Personal	Bank"	p:bankPrimaryBusiness="Retail	banking"
								p:headOfficeAddress="Address	of	head	office"	p:privateBank="Y"
								p:primaryCurrency="INR"	p:dateOfInception="30-01-2012"
								p:branchAddresses-ref="branchAddresses"/>
				.....
</beans>

In	 the	 application	 context	 XML	 file	 shown	 above,	 p-namespace	 is	 specified	 via	 xmlns	 attribute.	 The
bankDetails	bean	definition	makes	use	of	the	p	prefix	for	the	p-namespace	to	specify	bean	properties.	If
you	 compare	 the	 above	 example	 listing	 with	 the	 example	 listing	 3-25,	 you’ll	 notice	 that	 the	 above
example	 listing	 is	 less	verbose.	Even	 though	 it	 is	possible	 to	use	a	mix	of	<property>	elements	 and	p-
namespace	 to	 specify	bean	properties,	 it’s	 recommended	 that	you	choose	one	 style	 for	 specifying	bean
properties	and	use	it	consistently	in	bean	definitions.

NOTE	 As	 p-namespace	 is	 implemented	 as	 part	 of	 Spring,	 there	 is	 no	 schema	 corresponding	 to	 p-
namespace.	 For	 this	 reason,	 you	 don’t	 see	 any	 schema	 reference	 corresponding	 to	 p-namespace	 in
example	 listing	 3-40.	 If	 you	 want	 your	 IDE	 to	 autocomplete	 bean	 property	 names	 when	 using	 p-
namespace,	consider	using	IntelliJ	IDEA	or	SpringSource	Tool	Suite	(STS).

If	a	bean	property	is	not	a	reference	to	another	bean,	it	is	specified	using	the	following	syntax:

p:<property-name>="<property-value>"



	
here,	<property-name>	is	the	name	of	the	bean	property,	and	<property-value>	is	the	value	of	the	bean
property.

If	a	bean	property	is	a	reference	to	another	bean,	it	is	specified	using	the	following	syntax:

p:<property-name>-ref="<bean-reference>"
	
here,	<property-name>	 is	the	name	of	the	bean	property,	and	<bean-reference>	 is	the	id	 (or	name)	of
the	referenced	bean.	It	is	important	to	note	that	the	name	of	the	bean	property	is	followed	by	--ref.	As	the
branchAddresses	property	of	BankDetails	bean	represents	a	reference	to	the	branchAddresses	bean,	 the
branchAddresses	property	is	specified	as	p:branchAddresses-ref	in	example	listing	3-40.

Let’s	now	look	at	how	c-namespace	is	used	for	setting	constructor	arguments.

c-namespace
To	 use	 c-namespace	 to	 supply	 values	 for	 constructor	 arguments,	 specify	 constructor	 arguments	 as
attributes	of	the	<bean>	element,	and	specify	each	constructor	argument	to	be	in	the	c-namespace.

The	following	example	listing	shows	the	BankStatement	class	that	we’ll	configure	as	a	Spring	bean	using
c-namespace.

Example	listing	3-41	–	BankStatement	class
Project	–	ch03-namespaces-example
Source	location	-	src/main/java/sample/spring/chapter03/beans
	
package	sample.spring.chapter03.beans;
	
import	java.beans.ConstructorProperties;
	
public	class	BankStatement	{
				.....
				@ConstructorProperties({	"transactionDate",	"amount",	"transactionType",
												"referenceNumber"	})
				public	BankStatement(Date	transactionDate,	double	amount,
												String	transactionType,	String	referenceNumber)	{
								this.transactionDate	=	transactionDate;
								this.amount	=	amount;
								.....
				}
				.....
}

The	following	bean	definition	for	the	BankStatement	class	shows	usage	of	c-namespace	for	setting	values
of	constructor	arguments:

Example	listing	3-42	–	applicationContext.xml	-	c-namespace	example
Project	–	ch03-namespaces-example



Source	location	-	src/main/resources/META-INF/spring

<beans	xmlns="http://www.springframework.org/schema/beans"
			xmlns:c="http://www.springframework.org/schema/c"
				xsi:schemaLocation=".....">
				.....
				<bean	id="bankStatement"	class="sample.spring.chapter03.beans.BankStatement"
								c:transactionDate	=	"30-01-2012"
								c:amount	=	"1000"
								c:transactionType	=	"Credit"
								c:referenceNumber	=	"1110202"	/>
					.....
</beans>

In	 the	 above	 example	 listing,	 c-namespace	 is	 specified	 via	 xmlns	 attribute.	 The	 bankStatement	 bean
definition	makes	 use	 of	 the	 c	 prefix	 for	 the	 c-namespace	 to	 specify	 constructor	 arguments.	 The	 syntax
followed	for	specifying	constructor	arguments	using	c-namespace	is	similar	to	what	we	saw	in	case	of	p-
namespace.

NOTE	 As	 c-namespace	 is	 implemented	 as	 part	 of	 Spring,	 there	 is	 no	 schema	 corresponding	 to	 c-
namespace.	 For	 this	 reason,	 you	 don’t	 see	 any	 schema	 reference	 corresponding	 to	 c-namespace	 in
example	 listing	3-42.	 If	you	want	your	 IDE	 to	autocomplete	constructor	argument	names	when	using	c-
namespace,	consider	using	IntelliJ	IDEA	or	SpringSource	Tool	Suite	(STS).

If	a	constructor	argument	is	not	a	reference	to	another	bean,	it	is	specified	using	the	following	syntax:

c:<constructor-argument-name>="<constructor-argument-value>"
	
here,	 <constructor-argument-name>	 is	 the	 name	 of	 the	 constructor	 argument,	 and	 <constructor-
argument-value>	is	the	value	of	the	constructor	argument.

If	a	constructor	argument	is	a	reference	to	another	bean,	it	is	specified	using	the	following	syntax:

c:<constructor-argument-name>-ref="<bean-reference>"
	
here,	<constructor-argument-name>	is	the	name	of	the	constructor	argument,	and	<bean-reference>	 is
the	id	(or	name)	of	the	referenced	bean.	It	is	important	to	note	that	the	name	of	the	constructor	argument	is
followed	by	--ref.	For	instance,	if	a	constructor	argument	named	myargument	represents	a	reference	to	a
bean	with	id	‘x’,	you	specify	myargument	constructor	argument	as:

c:myargument-ref	=	"x"

As	mentioned	 earlier,	 if	 a	 class	 is	 compiled	with	 debug	 flag	 enabled,	 constructor	 argument	 names	 are
preserved	 in	 the	 generated	 .class	 file.	 If	 the	BankStatement	 class	 is	not	 compiled	with	 the	 debug	 flag
enabled,	the	configuration	shown	in	example	listing	3-42	will	not	work.	In	such	cases,	you	supply	values
for	constructor	arguments	using	their	index,	as	shown	here:

Example	listing	3-43	–	Supplying	values	for	constructor	arguments	using	their	index
	



<beans	xmlns="http://www.springframework.org/schema/beans"
			xmlns:c="http://www.springframework.org/schema/c"
				xsi:schemaLocation=".....">
				.....
				<bean	id="bankStatement"	class="sample.spring.chapter03.beans.BankStatement"
								c:_0	=	"30-01-2012"
								c:_1	=	"1000"
								c:_2	=	"Credit"
								c:_3	=	"1110202"	/>
						.....
</beans>

The	 above	 example	 listing	 shows	 bean	 definition	 for	 the	BankStatement	 class,	which	 uses	 constructor
argument	 index	 instead	of	 constructor	 arguments	 name	 to	 supply	values.	 It	 is	 important	 to	 note	 that	 the
index	of	the	constructor	argument	is	prefixed	with	an	underscore	because	attribute	names	in	XML	cannot
begin	with	a	numeric	value.	If	a	constructor	argument	is	a	reference	to	another	bean,	-ref	must	be	added	to
the	 index	 of	 the	 constructor	 argument.	 For	 instance,	 if	 the	 constructor	 argument	 at	 index	 0	 represents
reference	to	another	bean,	 it	 is	specified	as	c:_0-ref.	Even	 though	 it’s	possible	 to	use	a	combination	of
<constructor-arg>	elements	and	c-namespace	to	specify	constructor	arguments,	it’s	recommended	that	you
choose	one	style	of	specifying	constructor	arguments	and	use	it	consistently	in	bean	definitions.

We	saw	earlier	how	<list>,	<map>	and	<set>	elements	are	used	to	set	properties	or	constructor	arguments
of	 type	List,	Map	and	Set,	 respectively.	Let’s	now	 look	at	Spring’s	util	 schema	 that	 simplifies	 creating
collection	types,	Properties	type,	constants,	and	so	on,	and	exposing	them	as	a	Spring	beans.



3-8	Spring’s	util	schema
Spring’s	 util	 schema	 simplifies	 configuring	 beans	 by	 providing	 a	 concise	 way	 to	 perform	 common
configuration	tasks.	The	following	table	describes	the	various	elements	of	util	schema:

Element Description

<list> Creates	a	java.util.List	type,	and	exposes	it	as	a	bean

<map> Creates	a	java.util.Map	type,	and	exposes	it	as	a	bean

<set> Creates	a	java.util.Set	type,	and	exposes	it	as	a	bean

<constant> Exposes	a	public	static	field	on	a	type	as	a	bean

<property-path> Exposes	a	bean	property	as	a	bean

<properties> Creates	a	java.util.Properties	from	a	properties	file,	and	exposes	it	as	a	bean

	
NOTE	 All	 the	 elements	 of	 Spring’s	 util	 schema	 accept	 a	 scope	 attribute	 that	 identifies	 whether	 the
exposed	bean	is	a	singleton-	or	prototype-scoped.

Spring	provides	a	FactoryBean	interface	that	can	be	implemented	to	create	a	factory	object	responsible
for	creating	bean	instances.	Instead	of	using	util	schema’s	elements	mentioned	in	the	above	table,	you	can
use	an	out-of-the-box	FactoryBean	implementation	provided	by	Spring	to	perform	the	same	functionality.
In	this	section,	we’ll	look	at	the	util	schema’s	elements	and	the	built-in	FactoryBean	implementations	that
you	can	use	instead	of	util	schema’s	elements.

IMPORT	chapter	3/ch03-util-schema-examples	 (This	 project	 shows	 a	 Spring	 application	 that	makes
use	of	Spring’s	util	schema	elements	to	create	shared	instances	of	List,	Set,	Map,	and	so	on.	To	run	 the
application,	execute	the	main	method	of	the	SampleApp	class	of	this	project)

Let’s	first	look	at	the	<list>	element.

<list>
The	<list>	element	of	Spring’s	util	 schema	 is	used	 for	 creating	objects	of	 type	 java.util.List,	 as	 shown
here:

Example	listing	3-44	–	applicationContext.xml	-	util	schema’s	<list>	element
Project	–	ch03-util-schema-examples
Source	location	-	src/main/resources/META-INF/spring

<beans	xmlns="http://www.springframework.org/schema/beans"									
								xmlns:util="http://www.springframework.org/schema/util"
								xsi:schemaLocation=".....	http://www.springframework.org/schema/util
								http://www.springframework.org/schema/util/spring-util-4.0.xsd">			
	
				<bean	id="dataTypes"	class="sample.spring.chapter03.beans.DataTypesExample">
								.....
					<constructor-arg	name="listType"	ref="listType"	/>
								.....
				</bean>
	



			<util:list	id="listType"	list-class="java.util.ArrayList">
										<value>A	simple	String	value	in	list</value>
										<value>Another	simple	String	value	in	list</value>
			</util:list>
</beans>

First,	you	need	to	 include	Spring’s	util	schema	to	access	 its	elements.	 In	 the	above	example	 listing,	 the
<list>	element	of	util	schema	creates	an	instance	of	java.util.ArrayList	and	exposes	it	as	a	bean.	The	id
attribute	 specifies	 the	 bean	 id	 with	 which	 the	 java.util.ArrayList	 instance	 is	 exposed,	 and	 list-class
attribute	 specifies	 the	 concrete	 implementation	 of	 java.util.List	 that	 you	 want	 to	 create.	 If	 you	 don’t
specify	 the	 list-class	 attribute,	 an	 instance	 of	 java.util.ArrayList	 is	 created	 by	 default.	 The	 <value>
element	of	Spring’s	beans	schema	is	used	to	specify	individual	elements	of	the	list.

As	 util	 schema’s	 <list>	 element	 exposes	 a	 List	 instance	 as	 a	 bean,	 you	 can	 refer	 to	 the	 exposed	 List
instance	from	other	beans.	For	 instance,	 in	 the	above	example	listing,	 the	 listType	constructor	argument
(of	 type	 java.util.List)	of	DataTypesExample	bean	specifies	 listType	as	 the	value	of	 the	 ref	 attribute	 to
refer	to	the	List	instance	created	by	the	util	schema’s	<list>	element.

If	 you	 compare	 the	 util	 schema’s	 <list>	 element	 shown	 in	 the	 above	 example	 listing	 with	 the	 beans
schema’s	<list>	element	(refer	example	 listing	3-27),	you’ll	notice	 that	 the	util	 schema’s	<list>	element
gives	you	control	over	 the	List	 implementation	 to	 create.	 	 For	 instance,	 if	 you	want	 to	 create	 a	Vector
instead	of	an	ArrayList	instance,	specify	java.util.Vector	as	the	value	of	the	list-class	attribute.

Let’s	now	look	at	Spring’s	ListFactoryBean	which	you	can	use	instead	of	util	schema’s	<list>	element.

ListFactoryBean

An	alternative	to	using	util	schema’s	<list>	element	is	Spring’s	ListFactoryBean	–	a	factory	that	is	used
for	creating	instances	of	java.util.List	and	making	them	available	as	Spring	beans.

The	following	example	listing	shows	how	the	ListFactoryBean	can	be	used	instead	of	 the	util	 schema’s
<list>	element:

Example	listing	3-45	–	ListFactoryBean	example
	
<beans	.....>			
	
				<bean	id="dataTypes"	class="sample.spring.chapter03.beans.DataTypesExample">
								.....
					<constructor-arg	name="listType"	ref="listType"	/>
								.....
				</bean>
	
			<bean	id="listType"	class="	org.springframework.beans.factory.config.ListFactoryBean">
								<property	name="sourceList">
																<list>
																				<value>A	simple	String	value	in	list</value>
																				<value>Another	simple	String	value	in	list</value>



																</list>
								</property>
			</bean>
</beans>

In	the	above	example	listing,	the	sourceList	property	of	ListFactoryBean	specifies	the	elements	in	the	list.
By	default,	ListFactoryBean	creates	an	instance	of	java.util.ArrayList.	If	you	want	the	ListFactoryBean	to
create	an	instance	of	any	other	List	implementation	(like	Vector),	set	the	ListFactoryBean’s	targetListClass
property.	The	targetListClass	property	specifies	the	fully-qualified	name	of	the	concrete	implementation
class	of	java.util.List	interface	that	should	be	created	by	the	ListFactoryBean.

If	you	compare	example	listings	3-44	and	3-45,	you’ll	notice	that	using	util	schema’s	<list>	element	is	a
lot	simpler	than	using	the	ListFactoryBean	to	create	a	List	instance	and	expose	it	as	a	bean.

<map>
The	 <map>	 element	 of	 Spring’s	 util	 schema	 is	 used	 for	 creating	 an	 object	 of	 type	 java.util.Map	 and
exposing	it	as	a	bean,	as	shown	here:

Example	listing	3-46	–	applicationContext.xml	-	util	schema’s	<map>	element
Project	–	ch03-util-schema-examples
Source	location	-	src/main/resources/META-INF/spring

<beans	.....
						xmlns:util="http://www.springframework.org/schema/util"
				xsi:schemaLocation=".....	http://www.springframework.org/schema/util		
				http://www.springframework.org/schema/util/spring-util-4.0.xsd">
	
				<bean	id="dataTypes"	class="sample.spring.chapter03.beans.DataTypesExample">
								.....
					<constructor-arg	name="mapType"	ref="mapType"	/>
								.....
				</bean>
	
			<util:map	id="mapType"	map-class="java.util.TreeMap">
										<entry	key="map	key	1"	value="map	key	1’s	value"/>
			</util:map>
					.....
</beans>

In	the	above	example	listing,	util	schema’s	<map>	element	creates	an	instance	of	java.util.TreeMap	and
exposes	 it	 as	 a	 bean.	The	 id	 attribute	 specifies	 the	 id	with	which	 the	 bean	 is	made	 available	 to	 other
beans,	and	map-class	attribute	specifies	the	fully-qualified	name	of	the	concrete	implementation	class	of
java.util.Map	 interface	 that	 should	 be	 created	 by	 the	<map>	 element.	The	<entry>	 element	 of	 Spring’s
beans	schema	specifies	a	key-value	pair	in	the	created	Map	instance.

As	the	<map>	element	exposes	a	Map	 instance	as	a	bean,	 the	exposed	Map	 instance	can	be	referenced
from	other	beans.	For	instance,	in	the	above	example	listing,	DataTypesExample’s	mapType	constructor



argument	 (of	 type	 java.util.Map)	 specifies	 value	 of	 ref	 attribute	 as	 mapType	 to	 refer	 to	 the	 TreeMap
instance	created	by	the	<map>	element.

NOTE	We	saw	earlier	in	this	chapter	that	<key>	and	<value>	sub-elements	of	<entry>	are	used	to	specify
a	key-value	pair	contained	in	the	Map	instance.	The	example	listing	3-46	shows	that	you	can	also	specify
a	key-value	pair	contained	in	the	Map	instance	by	using	<entry>	element’s	key	and	value	attributes.

If	 you	 compare	 the	 util	 schema’s	 <map>	 element	 shown	 in	 the	 above	 example	 listing	 with	 the	 beans
schema’s	 <map>	 element	 in	 example	 listing	 3-27,	 you’ll	 notice	 that	 the	 util	 schema’s	 <map>	 element
gives	 you	 control	 over	 the	 Map	 implementation	 to	 create.	 	 For	 instance,	 if	 you	 want	 to	 use
LinkedHashMap	 instead	 of	 TreeMap,	 specify	 java.util.LinkedHashMap	 as	 the	 value	 of	 map-class
attribute.	 If	 you	 don’t	 specify	 the	 map-class	 attribute,	 Spring	 container	 creates	 an	 instance	 of
java.util.LinkedHashMap	by	default.

Let’s	now	look	at	Spring’s	MapFactoryBean	that	you	can	use	instead	of	util	schema’s	<map>	element.

MapFactoryBean

Instead	of	using	util	schema’s	<map>	element,	you	can	use	Spring’s	MapFactoryBean	–	a	factory	that	 is
used	for	creating	instances	of	java.util.Map	and	making	them	available	as	Spring	beans.

The	following	example	listing	shows	how	MapFactoryBean	is	used:

Example	listing	3-47	–	MapFactoryBean	example
	
<beans	.....>
	
				<bean	id="dataTypes"	class="sample.spring.chapter03.beans.DataTypesExample">
								.....
					<constructor-arg	name="mapType"	ref="mapType"	/>
								.....
				</bean>
	
				<bean	id="mapType"	class="org.springframework.beans.factory.config.MapFactoryBean">
								<property	name="sourceMap">
																		<map>
																								<entry	key="map	key	1"	value="map	key	1’s	value"/>
																		</map>
								</property>
				</bean>
				.....
</beans>

In	 the	 above	 example	 listing,	 MapFactoryBean’s	 sourceMap	 property	 specifies	 the	 key-value	 pairs
contained	in	the	Map	 instance	created	by	 the	MapFactoryBean.	By	default,	MapFactoryBean	creates	an
instance	of	java.util.LinkedHashMap.	You	can	control	 the	Map	 instance	created	by	MapFactoryBean	by
setting	 the	 targetMapClass	 property.	 The	 targetMapClass	 specifies	 the	 fully-qualified	 name	 of	 the
concrete	implementation	class	of	java.util.Map	interface.	For	instance,	if	you	specify	java.util.HashMap



as	the	value	of	targetMapClass,	MapFactoryBean	creates	an	instance	of	java.util.HashMap.

If	 you	 compare	 example	 listings	 3-46	 and	 3-47,	 you’ll	 notice	 that	 using	 util	 schema’s	 <map>	 element
results	in	a	more	concise	configuration	than	MapFactoryBean	for	creating	Map	instances.

<set>
The	<set>	element	of	Spring’s	util	schema	is	used	for	creating	an	object	of	type	java.util.Set	and	exposing
it	as	a	bean,	as	shown	here:

Example	listing	3-48	–	applicationContext.xml	-	util	schema’s	<set>	element
Project	–	ch03-util-schema-examples
Source	location	-	src/main/resources/META-INF/spring

<beans	.....
					xmlns:util="http://www.springframework.org/schema/util"
					xsi:schemaLocation=".....	http://www.springframework.org/schema/util
					http://www.springframework.org/schema/util/spring-util-4.0.xsd">
	
					<bean	id="dataTypes"	class="sample.spring.chapter03.beans.DataTypesExample">
									.....
						<constructor-arg	name="setType"	ref="setType"	/>
					</bean>
			<util:set	id="setType"	set-class="java.util.HashSet">
										<value>Element	1</value>
										<value>Element	2</value>
			</util:set>
					.....
</beans>

In	the	above	example	listing,	util	schema’s	<set>	element	creates	an	instance	of	HashSet	and	exposes	it	as
a	Spring	bean	with	id	as	setType.	The	id	attribute	specifies	the	id	with	which	the	bean	is	made	available
to	 other	 beans,	 and	 the	 set-class	 attribute	 specifies	 the	 concrete	 implementation	 class	 of	 java.util.Set
interface	 that	 should	 be	 created	 by	 the	 <set>	 element.	The	<value>	 element	 of	 Spring’s	 beans	 schema
specifies	an	element	in	the	created	Set	instance.

The	Set	 instance	created	by	 the	<set>	element	can	be	 referenced	 from	other	beans.	For	 instance,	 in	 the
above	example	listing,	DataTypesExample’s	setType	constructor	argument	(of	type	java.util.Set)	refers	to
the	HashSet	instance	created	by	the	<set>	element.

Instead	of	using	util	schema’s	<set>	element,	you	can	use	Spring’s	SetFactoryBean	to	create	a	Set	instance
and	expose	it	as	a	Spring	bean.

SetFactoryBean

Spring’s	SetFactoryBean	is	a	factory	object	for	creating	instances	of	java.util.Set	type.

The	following	example	listing	shows	how	you	can	use	SetFactoryBean	to	perform	the	same	function	as	the
util	schema’s	<set>	element:



Example	listing	3-49	–	SetFactoryBean	example
	
<beans	.....>
	
				<bean	id="dataTypes"	class="sample.spring.chapter03.beans.DataTypesExample">
								.....
					<constructor-arg	name="setType"	ref="setType"	/>
								.....
				</bean>
	
			<bean	id="setType"	class="org.springframework.beans.factory.config.SetFactoryBean">
								<property	name="sourceSet">
																	<set>
																								<value>Element	1</value>
																								<value>Element	2</value>
																	</set>
								</property>
			</bean>
				.....
</beans>

In	the	above	example	listing,	SetFactoryBean’s	sourceSet	property	specifies	the	elements	contained	in	the
Set	instance	created	by	the	SetFactoryBean.	SetFactoryBean’s	targetSetClass	property	specifies	the	fully-
qualified	 name	 of	 the	 class	 that	 implements	 java.util.Set	 interface.	 If	 the	 targetSetClass	 property	 is
specified,	SetFactoryBean	creates	an	 instance	of	 the	class	specified	by	 the	 targetSetClass	 property	 and
makes	 it	 available	 as	 a	 Spring	 bean.	 For	 instance,	 if	 you	 specify	 java.util.HashSet	 as	 the	 value	 of
targetSetClass,	SetFactoryBean	creates	an	instance	of	java.util.HashSet.	If	the	targetSetClass	property	 is
unspecified,	SetFactoryBean	creates	an	instance	of	java.util.LinkedHashSet.

The	 above	 example	 listing	 shows	 that	 using	 util	 schema’s	 <set>	 element	 results	 in	 a	 more	 concise
configuration	than	using	SetFactoryBean	for	creating	Set	instances.

<properties>
The	util	schema’s	<properties>	element	is	useful	if	you	want	to	create	an	instance	of	java.util.Properties
object	from	a	properties	file,	and	expose	the	java.util.Properties	object	as	a	bean.

The	following	example	listing	shows	how	the	<properties>	element	is	used:

Example	listing	3-50	–	applicationContext.xml	-	util	schema’s	<properties>	element
Project	–	ch03-util-schema-examples
Source	location	-	src/main/resources/META-INF/spring

<beans	.....
				xmlns:util="http://www.springframework.org/schema/util"
				xsi:schemaLocation=".....http://www.springframework.org/schema/util
				http://www.springframework.org/schema/util/spring-util-4.0.xsd">
	



				<bean	id="bankDetails"	class="sample.spring.chapter03.beans.BankDetails">
								.....
					<property	name="branchAddresses"	ref="branchAddresses"	/>
				</bean>
				.....
			<util:properties	id="branchAddresses"
								location="classpath:META-INF/addresses.properties"	/>
</beans>

In	the	above	example	listing,	<properties>	element	creates	an	instance	of	java.util.Properties	containing
properties	loaded	from	the	addresses.properties	file	(specified	by	the	location	attribute),	and	exposes	the
java.util.Properties	instance	as	a	bean	with	branchAddresses	as	the	id	(specified	by	the	id	attribute).	The
above	 example	 listing	 also	 shows	 that	 the	 branchAddresses	 property	 (of	 type	 java.util.Properties)	 of
BankDetails	bean	refers	to	the	branchAddresses	bean	created	by	the	util	schema’s	<properties>	element.

An	alternative	to	using	the	<properties>	element	is	Spring’s	PropertiesFactoryBean.

PropertiesFactoryBean

Spring’s	PropertiesFactoryBean	is	a	factory	for	creating	instances	of	java.util.Properties.

The	 following	 example	 listing	 shows	 how	 you	 can	 use	 PropertiesFactoryBean	 to	 perform	 the	 same
function	as	the	util	schema’s	<properties>	element:

Example	listing	3-51	–	PropertiesFactoryBean	example
	
<beans	.....>
	
				<bean	id="bankDetails"	class="sample.spring.chapter03.beans.BankDetails">
									.....
						<property	name="branchAddresses"	ref="branchAddresses"	/>
				</bean>
	
			<bean	id="branchAddresses"
											class="org.springframework.beans.factory.config.PropertiesFactoryBean">
								<property	name="location"	value="classpath:META-INF/addresses.properties"/>
			</bean>
				.....
</beans>

In	 the	above	example	 listing,	bean	definition	for	Spring’s	PropertiesFactoryBean	creates	an	 instance	of
java.util.Properties	 from	 the	 properties	 loaded	 from	 addresses.properties	 file	 (specified	 by	 location
property),	and	exposes	the	java.util.Properties	instance	as	a	bean	with	branchAddresses	as	the	id.

<constant>
The	util	schema’s	<constant>	element	is	used	for	exposing	an	object’s	public	static	field	as	a	Spring	bean.

The	following	example	listing	shows	an	example	usage	of	<constant>	element:



Example	listing	3-52	–	applicationContext.xml	-	util	schema’s	<constant>	element
Project	–	ch03-util-schema-examples
Source	location	-	src/main/resources/META-INF/spring

<beans	.....	xmlns:util="http://www.springframework.org/schema/util"
						xsi:schemaLocation=".....	http://www.springframework.org/schema/util
						http://www.springframework.org/schema/util/spring-util-4.0.xsd">
	
				<bean	id="dataTypes"	class="sample.spring.chapter03.beans.DataTypesExample">
								.....
					<constructor-arg	name="booleanType"	ref="booleanTrue"	/>
								.....
				</bean>
	
			<util:constant	id="booleanTrue"	static-field="java.lang.Boolean.TRUE"	/>
					.....
</beans>

The	util	schema’s	<constant>	element	exposes	the	value	specified	by	its	static-field	attribute	as	a	Spring
bean.	 In	 the	 above	 example	 listing,	 <constant>	 element	 exposes	 a	 bean	 whose	 value	 is
java.lang.Boolean.TRUE	and	id	is	booleanTrue.	You	can	specify	any	public	static	field	as	the	value	of	the
static-field	attribute	and	 refer	 to	 it	 from	other	beans	 in	 the	Spring	container.	For	 instance,	 in	 the	above
example	 listing,	 booleanType	 bean	 is	 referenced	 by	 DataTypesExample’s	 booleanType	 constructor
argument	of	type	boolean.

A	 rather	 less	 concise	 way	 to	 expose	 public	 static	 fields	 as	 Spring	 beans	 is	 to	 use	 Spring’s
FieldRetrievingFactoryBean.

FieldRetrievingFactoryBean

Spring’s	FieldRetrievingFactoryBean	is	a	factory	for	retrieving	value	of	a	public	static	field	specified	by
the	 FieldRetrievingFactoryBean’s	 staticField	 property.	 The	 value	 retrieved	 by	 the
FieldRetrievingFactoryBean	 is	exposed	as	a	bean.	You	can	also	use	 the	FieldRetrievingFactoryBean	 to
retrieve	a	non-static	field	value.

The	following	example	listing	shows	an	example	usage	of	FieldRetrievingFactoryBean:

Example	listing	3-53	–	FieldRetrievingFactoryBean	example
	
<beans	.....>
	
				<bean	id="dataTypes"	class="sample.spring.chapter03.beans.DataTypesExample">
								.....
					<constructor-arg	name="booleanType"	ref="booleanTrue"	/>
								.....
				</bean>
	
			<bean	id="booleanTrue"



											class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">
							<property	name="staticField"	value="	java.lang.Boolean.TRUE"/>
			</bean>
				.....
</beans>

In	the	above	example	listing,	FieldRetrievingFactoryBean	retrieves	the	value	of	java.lang.Boolean.TRUE
field	 and	 exposes	 it	 as	 a	 bean.	The	bean	 exposed	by	 the	FieldRetrievingFactoryBean	 is	 referenced	 by
DataTypesExample’s	booleanType	constructor	argument	of	type	boolean.

<property-path>
The	util	schema’s	<property-path>	element	is	used	to	expose	a	bean	property	value	as	a	bean.

The	following	example	listing	shows	an	example	usage	of	<property-path>	element:

Example	listing	3-54	–	applicationContext.xml	-	util	schema’s	<property-path>	element
Project	–	ch03-util-schema-examples
Source	location	-	src/main/resources/META-INF/spring

<beans	.....
				xmlns:util="http://www.springframework.org/schema/util"
				xsi:schemaLocation=".....	http://www.springframework.org/schema/util
				http://www.springframework.org/schema/util/spring-util-4.0.xsd">
	
				<bean	id="bankDetails"	class="sample.spring.chapter03.beans.BankDetails">
								.....
					<property	name="dateOfInception"	ref="dateType"	/>
								.....
				</bean>
	
			<util:property-path	id="dateType"	path="dataTypes.dateType"	/>
	
				<bean	id="dataTypes"	class="sample.spring.chapter03.beans.DataTypesExample">
								.....
					<property	name="dateType"	value="30-01-2012"	/>
								.....
				</bean>
</beans>

In	 the	 above	 example	 listing,	DataTypesExample’s	 dateType	 property	 (of	 type	 java.util.Date)	 value	 is
specified	 as	 ‘30-01-2012’.	 The	 <property-path>	 element	 retrieves	 the	 DataTypesExample’s	 dateType
property	and	exposes	it	as	a	bean	with	id	as	dateType.	The	path	attribute	of	<property-path>	element	has
the	following	syntax:

<bean-name>.<bean-property>

Here,	<bean-name>	is	the	id	or	name	of	the	bean,	and	<bean-property>	is	the	name	of	the	property.



As	<property-path>	element	exposes	a	bean,	 the	exposed	bean	can	be	 referenced	by	other	beans	 in	 the
Spring	 container.	 For	 instance	 in	 the	 above	 example	 listing,	 dateType	 bean	 is	 referenced	 by
dateOfInception	property	of	BankDetails	bean.

Instead	 of	 using	 <property-path>	 element,	 you	 can	 use	 Spring’s	 PropertyPathFactoryBean	 to	 expose	 a
bean	property	value	as	a	bean.

PropertyPathFactoryBean

PropertyPathFactoryBean	 is	 a	 factory	 used	 for	 creating	 bean	 instances	 that	 represent	 a	 bean	 property
value.

The	following	example	listing	shows	how	to	use	PropertyPathFactoryBean:

Example	listing	3-55	–	PropertyPathFactoryBean	example
	
<beans	.....
				xmlns:util="http://www.springframework.org/schema/util"
				xsi:schemaLocation=".....	http://www.springframework.org/schema/util
				http://www.springframework.org/schema/util/spring-util-4.0.xsd">
	
				<bean	id="bankDetails"	class="sample.spring.chapter03.beans.BankDetails">
								.....
					<property	name="dateOfInception"	ref="dateType"	/>
								.....
				</bean>
	
			<bean	id="dataType"
					class="org.springframework.beans.factory.config.PropertyPathFactoryBean">
							<property	name="targetBeanName"	value="dataTypes"/>
							<property	name="propertyPath"	value="dateType"/>
			</bean>
			
				<bean	id="dataTypes"	class="sample.spring.chapter03.beans.DataTypesExample">
								.....
					<property	name="dateType"	value="30-01-2012"	/>
								.....
				</bean>
</beans>

In	 the	 above	 example	 listing,	 PropertyPathFactoryBean	 is	 used	 to	 create	 an	 instance	 of	 a	 bean	 that
represents	the	value	of	dateType	property	of	dataTypes	bean.	PropertyPathFactoryBean’s	targetBeanName
attribute	specifies	the	id	or	name	of	 the	bean	that	contains	 the	property,	and	PropertyPathFactoryBean’s
propertyPath	attribute	 specifies	 the	name	of	 the	property	whose	value	 is	 to	be	exposed	as	a	bean.	The
bean	 instance	 created	 by	 PropertyPathFactoryBean	 can	 be	 accessed	 by	 other	 beans	 in	 the	 Spring
container.	 In	 the	 above	 example	 listing,	 the	 dataType	 bean	 created	 by	 PropertyPathFactoryBean	 is
referenced	by	dateOfInception	property	(of	type	java.util.Date)	of	BankDetails	bean.



Now,	 that	we	 have	 taken	 an	 in-depth	 look	 at	 util	 schema	 elements,	 let’s	 look	 at	 Spring’s	 FactoryBean
interface.



3-9	FactoryBean	interface
Spring’s	FactoryBean	interface	is	implemented	by	classes	that	act	as	a	factory	for	creating	bean	instances.
In	the	previous	section,	we	saw	that	the	classes	that	implement	the	FactoryBean	interface	are	configured
in	the	application	context	XML	file	like	any	other	bean.	FactoryBean	is	particularly	useful	if	you	want	to
perform	complicated	conditional	checks	to	decide	on	which	bean	type	to	create,	and	to	execute	complex
bean	initialization	logic.

Let’s	now	look	at	an	application	scenario	in	which	we’ll	use	FactoryBean	for	selecting	a	bean	type,	and
then	creating	it.

MyBank	application	–	Storing	events	in	the	database
In	MyBank	 application,	 important	 events,	 like	 credit	 and	 debit	 transactions,	 open	 and	 liquidate	 fixed
deposits,	and	so	on,	are	saved	in	the	database.	MyBank	may	directly	save	these	events	in	the	database	or
indirectly	by	first	sending	the	events	to	a	messaging	middleware	or	a	web	service.	The	following	table
describes	the	classes	that	are	defined	by	the	MyBank	application	for	directly	or	indirectly	saving	events:

Class Description

DatabaseEventSender

	
Class	that	contains	the	functionality	for	saving	events	in	the	database

MessagingEventSender Class	that	contains	the	functionality	for	sending	events	to	a	messaging	middleware

WebServiceEventSender Class	that	contains	the	functionality	for	sending	events	to	a	remote	web	service

	
The	decision	to	directly	save	the	events	in	the	database	or	to	send	them	to	a	messaging	middleware	or	a
web	 service	 is	 based	 on	 configuration.	 For	 instance,	 if	 MyBank	 finds	 that	 there	 exists	 a
database.properties	 file,	MyBank	 reads	 the	 configuration	 information	 (like	 database	 url,	 username	 and
password)	from	the	database.properties	file	and	creates	the	DatabaseEventSender	instance.	Similarly,	if	a
messging.properties	file	exists,	MyBank	creates	an	instance	of	MessagingEventSender	instance,	and	if	a
webservice.properties	file	exists,	an	instance	of	WebServiceEventSender	is	created.

Initializing	 DatabaseEventSender,	 MessagingEventSender	 and	 WebServiceEventSender	 instances	 may
require	 executing	 complex	 initialization	 logic.	 For	 instance,	 you	 need	 to	 create	 (or	 obtain	 from	 JNDI)
javax.jms.ConnectionFactory	 and	 javax.jms.Destination	 instances	 and	 set	 them	 on	 the
MessagingEventSender	 instance	 so	 that	 the	 MessagingEventSender	 can	 send	 JMS	 messages	 to	 the
messaging	middleware.

The	 following	 class	 diagram	 shows	 that	 the	 FixedDepositServiceImpl	 class	 of	 MyBank	 uses	 either
DatabaseEventSender	 or	 MessagingEventSender	 or	 WebServiceEventSender	 instance	 to	 directly	 or
indirectly	save	events	related	to	fixed	deposits	in	the	database:



Figure	3-7	FixedDepositServiceImpl	class	uses	one	of	the	implementations	of	EventSender	interface.

In	the	above	class	diagram,	sendEvent	method	of	EventSender	interface	defines	the	contract	for	directly
or	 indirectly	 saving	 events	 in	 the	 database.	 DatabaseEventSender,	 MessagingEventSender	 and
WebServiceEventSender	 classes	 implement	 the	 EventSender	 interface	 and	 provide	 an	 appropriate
implementation	for	the	sendEvent	method.

Let’s	now	look	at	how	FactoryBean	simplifies	choosing	the	right	implementation	of	EventSender	interface
and	initializing	it.

IMPORT	chapter	3/ch03-bankapp-factorybean	(This	project	shows	the	MyBank	application	that	uses	a
FactoryBean	 implementation	 to	create	objects	of	 type	EventSender.	To	 run	 the	 application,	 execute	 the
main	method	of	the	BankApp	class	of	this	project)

MyBank	–	FactoryBean	example
In	 MyBank,	 selecting	 the	 right	 EventSender	 implementation	 and	 initializing	 it	 is	 an	 involved	 task;
therefore,	it	represents	an	ideal	scenario	for	using	a	FactoryBean	implementation.	FactoryBean	 interface
defines	the	following	methods	that	you	need	to	implement:

·		 	 	 	 	 	 	getObjectType:	returns	the	 type	of	the	object	managed	by	the	FactoryBean	 implementation.	 In
case	of	MyBank,	the	FactoryBean	implementation	creates	and	returns	objects	of	type	EventSender.

·								getObject:	returns	the	object	managed	by	the	FactoryBean	implementation.	In	case	of	MyBank,
the	 getObject	 method	 returns	 an	 instance	 of	 DatabaseEventSender	 or	 MessagingEventSender	 or
WebServiceEventSender.

·	 	 	 	 	 	 	 	 isSingleton:	 returns	 true	 if	 the	FactoryBean	 implementation	 is	 a	 factory	 for	 singleton-scoped
objects.	If	the	isSingleton	method	returns	true,	the	object	returned	by	the	getObject	method	is	cached
by	the	Spring	container	and	the	same	instance	is	returned	on	subsequent	requests.	If	the	FactoryBean
implementation	is	a	factory	for	prototype-scoped	objects,	return	false	from	the	isSingleton	method.
If	 the	 isSingleton	method	 returns	 false,	 a	 fresh	 instance	 is	 created	 by	 getObject	method	 on	 every
request.	 In	 case	 of	 MyBank,	 FactoryBean	 implementation	 returns	 an	 instance	 of
DatabaseEventSender	or	MessagingEventSender	 or	WebServiceEventSender	class.	Once	 created,
the	 same	 instance	 is	 used	 throughout	 the	 lifetime	 of	 the	 MyBank	 application;	 therefore,	 the
isSingleton	method	returns	true	in	case	of	MyBank.

The	following	example	listing	shows	the	EventSenderFactoryBean	–	the	FactoryBean	implementation	that



creates	and	returns	objects	of	type	EventSender:

Example	listing	3-56	–	EventSenderFactoryBean	class
Project	–	ch03-bankapp-factorybean
Source	location	-	src/main/java/sample/spring/chapter03/bankapp/event
	
package	sample.spring.chapter03.bankapp.event;
	
import	org.springframework.beans.factory.FactoryBean;
import	org.springframework.beans.factory.FactoryBeanNotInitializedException;
import	org.springframework.core.io.ClassPathResource;
.....
public	class	EventSenderFactoryBean	implements	FactoryBean<EventSender>	{
				private	String	databasePropertiesFile;
				private	String	webServicePropertiesFile;
				private	String	messagingPropertiesFile;
						.....
				public	EventSender	getObject()	throws	Exception	{
								EventSender	eventSender	=	null;
								Properties	properties	=	new	Properties();
	
								ClassPathResource	databaseProperties	=	null;
								if(databasePropertiesFile	!=	null)	{
																	databaseProperties	=	new	ClassPathResource(databasePropertiesFile);
								}
								.....
						if	(databaseProperties	!=	null	&&	databaseProperties.exists())	{
												InputStream	inStream	=	databaseProperties.getInputStream();
												properties.load(inStream);
								eventSender	=	new	DatabaseEventSender(properties);
						}
								else	if	(webServiceProperties	!=	null		&&	webServiceProperties.exists())	{.....}
								else	if	(messagingProperties	!=	null		&&	messagingProperties.exists())	{.....}
	
								return	eventSender;
				}
	
			public	Class<?>	getObjectType()	{
								return	EventSender.class;
				}
	
			public	boolean	isSingleton()	{
								return	true;
				}
}



The	 above	 example	 listing	 shows	 that	 the	EventSenderFactoryBean	 implements	 FactoryBean	 interface.
The	 EventSender	 parameter	 in	 FactoryBean<EventSender>	 indicates	 that	 the	 FactoryBean’s	 getObject
returns	 objects	 of	 type	 EventSender.	 The	 databasePropertiesFile,	 webServicePropertiesFile	 and
messagingPropertiesFile	 are	 properties	 of	 the	 EventSenderFactoryBean	 class,	 and	 they	 represent	 the
location	of	database.properties,	webservice.properties	and	messaging.properties	files	in	the	classpath.

The	getObject	method	uses	Spring’s	ClassPathResource	class	to	verify	whether	the	specified	properties
file	 exists	 in	 the	 classpath	or	not.	 If	 the	properties	 file	 exists,	 properties	 from	 that	 file	 are	 loaded	 and
passed	 as	 to	 the	 EventSender	 implementation	 class’s	 constructor.	 For	 instance,	 in	 the	 above	 example
listing,	if	database.properties	file	(represented	by	databasePropertiesFile	property)	exists,	properties	are
loaded	 from	 the	 database.properties	 file	 and	 passed	 as	 an	 argument	 to	 the	 DatabaseEventSender’s
constructor.	The	getObjectType	method	returns	EventSender	type	because	the	EventSenderFactoryBean’s
getObject	method	returns	objects	of	type	EventSender.	The	isSingleton	method	returns	true,	which	means
that	the	object	returned	by	getObject	method	is	cached	by	Spring	and	the	same	instance	is	returned	every
time	EventSenderFactoryBean’s	getObject	method	is	invoked.

Now,	 that	 you	 have	 seen	 how	EventSenderFactoryBean	 class	 is	 implemented	 in	 the	MyBank,	 you	 can
guess	how	Spring’s	built-in	FactoryBean	implementations,	like	ListFactoryBean	(for	creating	instances	of
List	type),	MapFactoryBean	(for	creating	instances	of	Map	type),	SetFactoryBean	(for	creating	instances
of	Set	type),	and	so	on,	are	implemented.

The	 following	 example	 listing	 shows	 how	 EventSenderFactoryBean	 is	 configured	 in	 the	 application
context	XML	file:

Example	listing	3-57	–	applicationContext.xml	-	EventSenderFactoryBean	configuration
Project	–	ch03-bankapp-factorybean
Source	location	-	src/main/resources/META-INF/spring

<beans	.....>
	
				<bean	id="service"
								class="sample.spring.chapter03.bankapp.service.FixedDepositServiceImpl">
								.....
							<property	name="eventSender"	ref="eventSenderFactory"	/>
				</bean>
				.....
			<bean	id="eventSenderFactory"
									class="sample.spring.chapter03.bankapp.event.EventSenderFactoryBean">
										<property	name="databasePropertiesFile"	value="META-INF/config/database.properties"/>
			</bean>
</beans>

The	above	example	 listing	 shows	 that	 the	EventSenderFactoryBean	 is	 configured	 like	any	other	Spring
bean.	Even	 though	a	FactoryBean	 implementation	 is	configured	 like	any	other	Spring	bean,	 it	 is	 treated
differently	by	the	Spring	container.	One	of	the	most	important	differences	is	that	if	a	bean	is	dependent	on
a	 FactoryBean	 implementation,	 the	 Spring	 container	 invokes	 the	 getObject	 method	 of	 the	 FactoryBean
implementation	and	injects	the	returned	object	into	the	dependent	bean.



NOTE	You	should	note	that	FactoryBean’s	getObject	method	is	invoked	only	once	by	the	Spring
container	if	the	isSingleton	method	returns	true.

In	 the	 above	 example	 listing,	 bean	 definition	 for	 the	 FixedDepositServiceImpl	 class	 shows	 that	 it	 is
dependent	 on	 the	 EventSenderFactoryBean	 –	 a	 FactoryBean	 implementation.	 So,	 the	 Spring	 container
invokes	the	EventSenderFactoryBean’s	getObject	method	and	injects	the	returned	EventSender	object	into
the	FixedDepositServiceImpl	instance.

The	 following	 example	 listing	 shows	 the	 FixedDepositServiceImpl	 class	 that	 requires	 EventSender
instance	created	by	EventSenderFactoryBean:

Example	listing	3-58	–	FixedDepositServiceImpl	class
Project	–	ch03-bankapp-factorybean
Source	location	-	src/main/java/sample/spring/chapter03/bankapp/service
	
package	sample.spring.chapter03.bankapp.service;
	
import	sample.spring.chapter03.bankapp.event.EventSender;
	
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				.....
			private	EventSender	eventSender;
	
			public	void	setEventSender(EventSender	eventSender)	{
								this.eventSender	=	eventSender;
			}
				.....
				public	void	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	{
								.....
						eventSender.sendEvent(event);
				}
}

The	 above	 example	 listing	 shows	 that	 the	 FixedDepositServiceImpl	 class	 depends	 on	 an	 EventSender
instance	and	not	on	the	EventSenderFactoryBean	instance.	The	Spring	container	obtains	the	EventSender
instance	by	invoking	EventSenderFactoryBean’s	getObject	method,	and	injects	the	obtained	EventSender
instance	into	the	FixedDepositServiceImpl	instance.

Let’s	now	 look	at	how	 to	access	 the	FactoryBean	 itself	 and	not	 the	bean	 it	 creates	 and	 returns	via	 the
getObject	method.

Accessing	the	FactoryBean	instance
If	 you	want	 to	 obtain	 the	 FactoryBean	 itself	 from	 the	 Spring	 container,	 prefix	 the	 name	 (or	 id)	 of	 the
factory	bean	with	ampersand	‘&’.

Let’s	say	that	 the	FixedDepositServiceImpl	class	 requires	access	 to	 the	EventSenderFactoryBean	 itself,
as	shown	here:



Example	 listing	 3-59	 –	 FixedDepositServiceImpl	 class	 that	 depends	 on	 the	 EventSenderFactoryBean
itself
	
package	sample.spring.chapter03.bankapp.service;
	
import	sample.spring.chapter03.bankapp.event.EventSenderFactoryBean;
import	sample.spring.chapter03.bankapp.event.EventSender;
	
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				.....
			private	EventSenderFactoryBean	eventSenderFactoryBean;
	
			public	void	setEventSenderFactoryBean	(EventSenderFactoryBean	eventSenderFactoryBean)	{
						this.	eventSenderFactoryBean	=	eventSenderFactoryBean;
			}
				.....
				public	void	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	{
								.....
						EventSender	eventSender	=	eventSenderFactoryBean.getObject();
						evenSender.sendEvent(event);
				}
}

In	the	above	example	listing,	the	FixedDepositServiceImpl	class	depends	on	the	EventSenderFactoryBean
itself,	and	uses	its	getObject	method	to	obtain	an	instance	of	EventSender	object.

We	saw	in	example	listing	3-57	that	when	you	define	the	EventSenderFactoryBean	bean	as	a	dependency
of	 FixedDepositServiceImpl	 bean,	 the	 Spring	 container	 invokes	 the	 getObject	 method	 of
EventSenderFactoryBean	and	injects	 the	returned	EventSender	object	 into	 the	FixedDepositServiceImpl
bean.	To	 instruct	 the	Spring	 container	 to	 inject	 the	EventSenderFactoryBean	 itself,	 add	 ampersand	 ‘&’
prefix	to	 the	 id	(or	name)	of	 the	bean	specified	by	the	ref	attribute,	as	shown	in	 the	following	example
listing:

Example	listing	3-60	–	Injecting	the	EventSenderFactoryBean	instance	into	the	FixedDepositServiceImpl
bean
	
<beans	.....>
	
				<bean	id="service"	class="sample.spring.chapter03.bankapp.service.FixedDepositServiceImpl">
								.....
								<property	name="eventSenderFactoryBean"	ref="&amp;eventSenderFactory"	/>
				</bean>
				.....
			<bean	id="eventSenderFactory"
													class="sample.spring.chapter03.bankapp.event.EventSenderFactoryBean">
								<property	name="databasePropertiesFile"	value="META-INF/config/database.properties"/>



				</bean>
</beans>

In	 the	 above	 example	 listing,	 the	 following	 <property>	 element	 specifies	 that	 the
FixedDepositServiceImpl	bean	is	dependent	on	EventSenderFactoryBean:

<property	name="eventSenderFactoryBean"	ref="&amp;eventSenderFactory"	/>

Notice	that	the	ref	attribute’s	value	is	"&amp;eventSenderFactory".	The	&amp;	prefix	instructs	the	Spring
container	to	inject	the	EventSenderFactoryBean	instance	itself	into	the	FixedDepositServiceImpl	bean.

The	 use	 of	 ampersand	 ‘&’	 is	 also	 required	when	 you	want	 to	 retrieve	 the	 FactoryBean	 instance	 itself
using	ApplicationContext’s	getBean	method.	The	following	example	listing	shows	the	BankApp	class	of
MyBank	application	 that	 retrieves	 the	EventSender	object	created	by	 the	EventSenderFactoryBean,	 and
the	EventSenderFactoryBean	instance	itself:

Example	listing	3-61	–	BankApp	class
Project	–	ch03-bankapp-factorybean
Source	location	-	src/main/java/sample/spring/chapter03/bankapp

package	sample.spring.chapter03.bankapp;
.....
public	class	BankApp	{
				private	static	Logger	logger	=	Logger.getLogger(BankApp.class);
			
				public	static	void	main(String	args[])	{
								ApplicationContext	context	=	new	ClassPathXmlApplicationContext(
								.....
						logger.info("Invoking	getBean(\"eventFactory\")	returns	:	"	+
												context.getBean("eventSenderFactory"));
						logger.info("Invoking	getBean(\"&eventFactory\")	returns	:	"	+
												context.getBean("&eventSenderFactory"));
				}
}

If	 you	 execute	 the	 main	 method	 of	 the	 BankApp	 class	 shown	 above,	 you’ll	 find	 that	 calling
getBean("eventSenderFactory")	 returns	 an	 instance	 of	 DatabaseEventSender	 class,	 and
getBean("&eventSenderFactory")	returns	EventSenderFactoryBean	instance.



3-10	Summary
In	 this	 chapter,	we	 saw	how	you	 can	use	 bean	definition	 inheritance	 to	 create	 less	 verbose	 and	 easily
manageable	bean	definitions.	The	majority	of	this	chapter	focused	on	how	to	set	different	types	of	bean
properties	and	constructor	arguments	using	built-in	FactoryBean	 implementations,	Spring’s	util	 schema,
and	 p-	 and	 c-namespaces.	 We	 also	 looked	 at	 some	 of	 the	 built-in	 PropertyEditor	 implementations	 in
Spring	and	how	to	register	additional	property	editors	with	the	Spring	container.	In	the	next	chapter,	we’ll
take	an	in-depth	look	at	dependency	injection	feature	of	Spring.



Chapter	4	-	Dependency	injection



4-1	Introduction
In	 the	 previous	 chapter,	 we	 looked	 at	 how	 to	 configure	 beans	 using	 Spring’s	 util	 schema,	 p-	 and	 c-
namespaces,	FactoryBean	implementations,	and	so	on.	In	this	chapter	we	focus	on	different	dependency
injection	 scenarios	which	we	 typically	come	across	 in	 real	world	application	development	 efforts	 and
how	Spring	addresses	these	scenarios.

We’ll	begin	this	chapter	with	a	look	at	inner	beans	-	an	alternative	to	using	the	ref	attribute	of	<property>
and	<constructor-arg>	 elements.	We’ll	 then	 look	 at	 depends-on	 attribute	 of	 the	 <bean>	 element.	 In	 the
second	 half	 of	 this	 chapter,	we’ll	 look	 at	 issues	 that	may	 arise	when	 singleton-	 and	 prototype-scoped
beans	 collaborate	 to	 provide	 application	 behavior.	 We’ll	 wrap	 this	 chapter	 with	 an	 in-depth	 look	 at
Spring’s	autowiring	feature.

IMPORT	chapter	4/ch04-bankapp-dependencies	(This	project	shows	usage	of	inner	beans	and	<bean>
element’s	depends-on	attribute.	This	project	also	shows	implications	of	defining	dependence	of	singleton-
scoped	beans	on	prototype-scoped	beans,	and	vice	versa.	To	run	the	application,	execute	the	main	method
of	the	BankApp	class	of	this	project)



4-2	Inner	beans
If	a	dependency	of	a	bean	is	not	shared	by	multiple	beans,	you	can	consider	defining	the	dependency	as	an
inner	 bean.	 An	 inner	 bean	 is	 defined	 inside	 a	 <property>	 or	 <constructor-arg>	 element	 by	 using	 the
<bean>	element	of	Spring’s	beans	schema.	You	should	note	 that	an	 inner	bean	 is	only	accessible	 to	 the
bean	definition	enclosing	it,	and	not	to	other	beans	registered	with	the	Spring	container.

The	following	example	listing	shows	how	we	generally	represent	bean	dependencies:

Example	listing	4-1	–	Dependency	specified	using	<property>	element’s	ref	attribute
	
				<bean	id="service"
									class="sample.spring.chapter04.bankapp.service.FixedDepositServiceImpl">
					<property	name=“fixedDepositDao"	ref="dao"	/>
				</bean>
	
				<bean	id="dao"	class="sample.spring.chapter04.bankapp.dao.FixedDepositDaoImpl"	/>

The	above	example	listing	shows	that	the	service	bean	is	dependent	on	dao	bean.	If	service	bean	is	the
only	bean	that	is	dependent	on	the	dao	bean,	then	you	can	define	the	dao	bean	as	an	inner	bean	of	service
bean.

Example	listing	4-2	–	applicationContext.xml	-	Inner	bean	example
Project	–	ch04-bankapp-dependencies
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="service"
											class="sample.spring.chapter04.bankapp.service.FixedDepositServiceImpl">
								<property	name=“fixedDepositDao">
									<bean	class="sample.spring.chapter04.bankapp.dao.FixedDepositDaoImpl"	/>
								</property>
				</bean>

In	 the	 above	 example	 listing,	 the	 bean	 definition	 for	 the	 FixedDepositDaoImpl	 class	 is	 inside	 the
<property>	element	of	service	bean.	If	you	compare	the	above	example	listing	with	4-1,	you’ll	notice	that
the	<property>	 element	 no	 longer	 specifies	 the	 ref	 attribute,	 and	 the	 <bean>	 element	 corresponding	 to
FixedDepositDaoImpl	class	doesn’t	have	the	id	attribute	anymore.

The	<bean>	element	corresponding	to	an	inner	bean	definition	doesn’t	specify	an	id	attribute	because	an
inner	 bean	 is	not	 registered	with	 the	 Spring	 container.	 If	 you	 specify	 an	 id	 attribute	 for	 an	 inner	 bean
definition,	it	is	ignored	by	the	Spring	container.	An	inner	bean	is	always	prototype-scoped;	therefore,	if
the	 <bean>	 element	 corresponding	 to	 an	 inner	 bean	 definition	 specifies	 the	 scope	 attribute,	 then	 it	 is
ignored	by	the	Spring	container.	It	is	important	to	note	that	an	inner	bean	is	anonymous	in	nature,	and	it’s
not	 accessible	 to	 other	 beans	 (except	 the	 bean	 that	 contains	 the	 inner	 bean	 definition)	 in	 the	 Spring
container.

NOTE	As	in	case	of	normal	bean	definition,	you	can	use	<property>,	<constructor-arg>,	and	so	on,
elements	inside	the	<bean>	element	of	the	inner	bean	definition.



In	the	previous	chapter,	we	saw	that	Spring’s	util	schema	elements	are	used	to	create	beans	that	represent
a	 List,	 Set,	 Map,	 and	 so	 on.	 We	 saw	 that	 the	 beans	 created	 by	 Spring’s	 util	 schema	 elements	 are
referenced	 by	 other	 beans.	 The	 concept	 of	 inner	 beans	makes	 it	 possible	 to	 use	 Spring’s	 util	 schema
elements	 inside	 <property>	 and	 <constructor-arg>	 elements	 also,	 as	 shown	 in	 the	 following	 example
listing:

Example	listing	4-3	–	util	schema’s	<list>	element	defines	an	inner	bean
	
<beans	xmlns="http://www.springframework.org/schema/beans"									
														xmlns:util="http://www.springframework.org/schema/util"
														xsi:schemaLocation=".....	http://www.springframework.org/schema/util
																					http://www.springframework.org/schema/util/spring-util-4.0.xsd">			
	
				<bean	id="someBean"	class="com.sample.SomeBean">
								.....
								<constructor-arg	name="listType">
											<util:list	list-class="java.util.ArrayList">
																						<value>A	simple	String	value	in	list</value>
																						<value>Another	simple	String	value	in	list</value>
											</util:list>
							</constructor-arg>
								.....
				</bean>
</beans>

In	the	above	example	listing,	the	listType	constructor	argument	is	of	type	java.util.List.	The	value	passed
to	the	listType	constructor	argument	is	specified	by	the	util	schema’s	<list>	element.	Note	that	we	didn’t
specify	the	id	attribute	of	the	<list>	element	because	Spring	container	ignores	ids	of	inner	beans.

Let’s	now	look	at	depends-on	attribute	of	<bean>	element.



4-3	Explicitly	controlling	the	bean	initialization	order	with	depends-on
attribute
In	section	1-4	of	chapter	1,	we	discussed	that	beans	are	created	in	the	order	in	which	they	are	defined	in
the	application	context	XML	file.	The	order	in	which	beans	are	created	is	also	decided	based	on	the	inter-
dependencies	of	beans.	For	instance,	if	bean	A	accepts	an	instance	of	bean	B	as	a	constructor	argument,
the	Spring	container	will	create	bean	B	before	bean	A	irrespective	of	the	order	in	which	they	are	defined
in	the	application	context	XML	file.	This	behavior	of	the	Spring	container	ensures	that	the	dependencies
of	a	bean	(bean	B	is	a	dependency	in	our	example)	are	completely	configured	before	they	are	injected	into
the	dependent	bean	(bean	A	is	a	dependent	bean	in	our	example).

In	 some	 application	 scenarios,	 bean	 dependencies	 are	 not	 explicitly	 specified	 via	 <property>	 and
<constructor-arg>	 elements.	 If	 the	 bean	 dependencies	 are	 not	 explicit,	 you	 can	 use	 <bean>	 element’s
depends-on	 attribute	 to	 explicitly	 specify	 dependencies	 of	 a	 bean.	 Spring	 container	 ensures	 that	 bean
dependencies	 specified	 by	 the	 depends-on	 attribute	 are	 initialized	 before	 the	 bean	 that	 specifies	 the
depends-on	attribute.

Let’s	now	look	at	an	example	scenario	in	which	depends-on	attribute	is	used	to	control	the	initialization
order	of	beans.

MyBank	–	implied	dependencies	between	beans
In	the	MyBank	application	of	the	previous	chapter,	a	FactoryBean	implementation	created	an	EventSender
object	that	was	used	by	the	FixedDepositServiceImpl	instance	to	directly	or	indirectly	store	events	in	the
database	 (refer	 section	 3-9	 of	 chapter	 3	 for	 details).	 Let’s	 say	 that	 instead	 of	 using	 a	 FactoryBean
implementation	 for	 creating	 an	 EventSender	 implementation,	 the	 approach	 shown	 in	 the	 following
diagram	is	adopted:

Figure	4-1	–	EventSenderSelectorServiceImpl	class	writes	the	name	of	the	EventSender	 implementation
in	the	appConfig.properties	file,	which	is	later	read	by	the	FixedDepositServiceImpl	instance

The	above	diagram	shows	that:

·								an	EventSenderSelectorServiceImpl	class	is	used	to	decide	on	the	EventSender	implementation
(DatabaseEventSender	 or	WebServiceEventSender	 or	MessagingEventSender)	 to	 be	 used	 by	 the
FixedDepositServiceImpl	class

·	 	 	 	 	 	 	 	 EventSenderSelectorServiceImpl	 class	 stores	 the	 fully-qualified	 name	 of	 the	 EventSender
implementation	in	the	appConfig.properties	file



·	 	 	 	 	 	 	 	 FixedDepositServiceImpl	 class	 reads	 the	 fully-qualified	 name	 of	 the	 EventSender
implementation	from	the	appConfig.properties	 file,	creates	 the	EventSender	object	and	uses	 it	 for
storing	fixed	deposit	events	in	the	database

The	 above	 approach	 suggests	 that	 the	 FixedDepositServiceImpl	 instance	 won’t	 work	 correctly	 if
EventSenderSelectorServiceImpl	 fails	 to	 save	 the	 fully-qualified	 name	 of	 the	 EventSender
implementation	 in	 the	 appConfig.properties	 file.	 This	means	 that	 the	FixedDepositServiceImpl	 class	 is
implicitly	dependent	on	the	EventSenderSelectorServiceImpl	class.

Let’s	 now	 look	 at	 the	 implication	 of	 implicit	 dependence	 of	 FixedDepositServiceImpl	 instance	 on	 the
EventSenderSelectorServiceImpl	instance.

Implicit	dependency	problem
Consider	 the	 following	 application	 context	 XML	 file	 that	 contains	 bean	 definitions	 for
FixedDepositServiceImpl	and	EventSenderSelectorServiceImpl	classes:

Example	listing	4-4	–	applicationContext.xml	-	Implicit	dependency	example
Project	–	ch04-bankapp-dependencies
Source	location	-	src/main/resources/META-INF/spring
	
<beans	.....>
				<bean	id="service"
									class="sample.spring.chapter04.bankapp.service.FixedDepositServiceImpl">
								.....
					<constructor-arg	index="0"	value="META-INF/config/appConfig.properties"	/>
				</bean>
	
				<bean	id="eventSenderSelectorService"
											class="sample.spring.chapter04.bankapp.service.EventSenderSelectorServiceImpl">
					<constructor-arg	index="0"	value="META-INF/config/appConfig.properties"	/>
				</bean>
</beans>

The	 above	 application	 context	 XML	 file	 shows	 that	 both	 FixedDepositServiceImpl	 and
EventSenderSelectorServiceImpl	class’s	constructor	accept	location	of	the	appConfig.properties	file.	The
EventSenderSelectorServiceImpl	instance	uses	the	appConfig.properties	file	for	communicating	the	fully-
qualified	name	of	the	EventSender	implementation	class	to	the	FixedDepositServiceImpl	instance.	As	an
explicit	 dependence	 doesn’t	 exist	 between	 service	 and	 eventSenderSelectorService	 beans,	 Spring
container	creates	 their	 instances	 in	 the	order	 in	which	 they	are	defined	 in	 the	application	context	XML
file.	 As	 the	 service	 bean	 is	 defined	 before	 the	 eventSenderSelectorService	 bean,
FixedDepositServiceImpl	 instance	 is	 created	 before	 EventSenderSelectorServiceImpl	 instance.	 We’ll
soon	 see	 that	 if	 FixedDepositServiceImpl	 instance	 is	 created	 before	 EventSenderSelectorServiceImpl
instance,	the	FixedDepositServiceImpl	 instance	will	not	be	able	 to	 read	 the	name	of	 the	fully-qualified
EventSender	implementation	class	from	the	appConfig.properties	file.

Let’s	 now	 take	 an	 in-depth	 look	 at	 the	 EventSenderSelectorServiceImpl	 and	 FixedDepositServiceImpl
classes,	and	the	appConfig.properties	file.



EventSenderSelectorServiceImpl	–	the	writer

The	following	example	listing	shows	the	EventSenderSelectorServiceImpl	class:

Example	listing	4-5	–	EventSenderSelectorServiceImpl	class
Project	–	ch04-bankapp-dependencies
Source	location	-	src/main/java/sample/spring/chapter04/bankapp/service
	
package	sample.spring.chapter04.bankapp.service;
	
import	org.springframework.core.io.ClassPathResource;
import	sample.spring.chapter04.bankapp.Constants;
	
public	class	EventSenderSelectorServiceImpl	{
	
				public	EventSenderSelectorServiceImpl(String	configFile)	throws	Exception	{
						ClassPathResource	resource	=	new	ClassPathResource(configFile);
								OutputStream	os	=	new	FileOutputStream(resource.getFile());
	
								Properties	properties	=	new	Properties();
						properties
								.setProperty(Constants.EVENT_SENDER_CLASS_PROPERTY,
												"sample.spring.chapter04.bankapp.event.DatabaseEventSender");
						properties.store(os,	null);
									.....
				}
}

The	above	example	listing	shows	that	the	location	of	appConfig.properties	file	is	passed	as	a	constructor
argument	 to	 the	 EventSenderSelectorServiceImpl	 class’s	 constructor.	 The
EventSenderSelectorServiceImpl	class’s	constructor	writes	a	property	named	eventSenderClass	 (which
is	 the	value	of	EVENT_SENDER_CLASS_PROPERTY	constant	 defined	 in	 the	Constants	 class)	 to	 the
appConfig.properties	 file.	 The	 eventSenderClass	 property	 specifies	 the	 fully-qualified	 name	 of	 the
EventSender	 implementation	 to	 be	 used	 by	 the	 FixedDepositServiceImpl	 instance	 for	 directly	 or
indirectly	 saving	 events	 in	 the	 database.	 For	 the	 sake	 of	 simplicity,	 EventSenderSelectorServiceImpl
class’s	 constructor	 sets	 the	 fully-qualified	 name	 of	 the	 DatabaseEventSender	 class	 as	 the	 value	 of
eventSenderClass	property.

appConfig.properties

The	 following	 is	 the	 entry	 that	 gets	 added	 to	 the	 appConfig.properties	 file	 by
EventSenderSelectorServiceImpl	class:

eventSenderClass=sample.spring.chapter04.bankapp.event.DatabaseEventSender

FixedDepositServiceImpl	–	the	reader

The	eventSenderClass	property	written	by	 the	EventSenderSelectorServiceImpl	 instance	 is	 read	 by	 the



FixedDepositServiceImpl	instance,	as	shown	in	the	following	example	listing:

Example	listing	4-6	–	FixedDepositServiceImpl	class
Project	–	ch04-bankapp-dependencies
Source	location	-	src/main/java/sample/spring/chapter04/bankapp/service
	
package	sample.spring.chapter04.bankapp.service;
	
import	org.springframework.core.io.ClassPathResource;
import	sample.spring.chapter04.bankapp.Constants;
	
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				private	FixedDepositDao	fixedDepositDao;
			private	EventSender	eventSender;
	
				public	FixedDepositServiceImpl(String	configFile)	throws	Exception	{
					ClassPathResource	configProperties	=	new	ClassPathResource(configFile);
	
								if	(configProperties.exists())	{
													InputStream	inStream	=	configProperties.getInputStream();
													Properties	properties	=	new	Properties();
									properties.load(inStream);
	
									String	eventSenderClassString	=
													properties.getProperty(Constants.EVENT_SENDER_CLASS_PROPERTY);
	
													if	(eventSenderClassString	!=	null)	{
													Class<?>	eventSenderClass	=	Class.forName(eventSenderClassString);
													eventSender	=	(EventSender)	eventSenderClass.newInstance();
																			logger.info("Created	EventSender	class");
													}	else	{
																			logger.info("appConfig.properties	file	doesn't	contain	the	information	"	+
																																								"about	EventSender	class");
													}
								}
				}
	
				public	void	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	throws	Exception	{
							.....
					eventSender.sendEvent(event);
				}
}

The	 above	 example	 listing	 shows	 following	 sequence	 of	 actions	 are	 performed	 by	 the	 constructor	 of
FixedDepositServiceImpl	class:



·	 	 	 	 	 	 	 	 loads	 properties	 from	 the	 appConfig.properties	 file.	 The	 configFile	 constructor	 argument
represents	the	location	of	the	appConfig.properties	file.

·	 	 	 	 	 	 	 	 obtains	 property	 named	 eventSenderClass	 (represented	 by
EVENT_SENDER_CLASS_PROPERTY	 constant	 defined	 in	 the	 Constants	 class)	 from	 the
properties	 loaded	 from	 the	appConfig.properties	 file.	The	value	of	 eventSenderClass	 property	 is
the	 fully-qualified	 name	 of	 the	 EventSender	 implementation	 class	 that	 FixedDepositServiceImpl
needs	to	use.	The	value	of	eventSenderClass	property	is	stored	in	the	eventSenderClassString	local
variable.

·	 	 	 	 	 	 	 	 creates	 an	 instance	 of	 the	EventSender	 implementation	 class	whose	 fully-qualified	 name	 is
stored	 in	 the	 eventSenderClassString	 variable,	 and	 stores	 the	 newly	 created	 instance	 into	 an
instance	 variable	 named	 eventSender.	 The	 eventSender	 variable	 is	 later	 used	 by	 the
FixedDepositServiceImpl’s	createFixedDeposit	method	(refer	to	the	createFixedDeposit	method	in
the	above	example	listing)	to	directly	or	indirectly	store	events	in	the	database.

You	should	note	that	if	a	property	named	eventSenderClass	is	not	found	in	the	appConfig.properties	file,
the	eventSenderClassString	variable	 is	not	 set.	 In	 this	 case,	 the	FixedDepositServiceImpl’s	 constructor
prints	the	following	message	on	the	console:	‘appConfig.properties	file	doesn't	contain	the	information
about	EventSender	class’.

In	 example	 listing	 4-4,	 we	 looked	 at	 bean	 definitions	 for	 EventSenderSelectorServiceImpl	 and
FixedDepositServiceImpl	classes,	 and	 concluded	 that	 the	 FixedDepositServiceImpl	 instance	 is	 created
before	EventSenderSelectorServiceImpl	instance	because	Spring	container	initializes	beans	in	the	order
in	which	they	appear	in	the	application	context	XML	file.	We	saw	in	example	listing	4-5	that	the	creation
of	 EventSenderSelectorServiceImpl	 instance	 results	 in	 writing	 an	 eventSenderClass	 property	 to	 the
appConfig.properties	 file.	 So,	 if	 the	 FixedDepositServiceImpl	 instance	 is	 created	 before	 the
EventSenderSelectorServiceImpl	 instance,	 the	 FixedDepositServiceImpl	 instance	 will	 not	 find	 any
eventSenderClass	property	in	the	appConfig.properties	file.	This	shows	that	the	FixedDepositServiceImpl
class	 is	 implicitly	 dependent	 on	 the	 EventSenderSelectorServiceImpl	 class;	 therefore,	 the
EventSenderSelectorServiceImpl	instance	must	be	created	before	the	FixedDepositServiceImpl	instance.

How	to	address	implicit	dependency	problem?

We	can	solve	the	implicit	dependency	problem	in	two	ways:

·	 	 	 	 	 	 	 	 we	 change	 the	 order	 in	 which	 bean	 definitions	 for	 EventSenderSelectorServiceImpl	 and
FixedDepositServiceImpl	 classes	 are	 defined	 in	 the	 application	 context	 XML	 file.	 If	 the	 bean
definition	for	the	EventSenderSelectorServiceImpl	class	appears	before	the	bean	definition	for	the
FixedDepositServiceImpl	 class,	 the	 EventSenderSelectorServiceImpl	 instance	 will	 be	 created
before	the	FixedDepositServiceImpl	instance.

·	 	 	 	 	 	 	 	 use	 <bean>	 element’s	 depends-on	 attribute	 to	 explicitly	 specify	 that	 the	 service	 bean
(corresponding	 to	 the	 FixedDepositServiceImpl	 class)	 is	 dependent	 on	 the
eventSenderSelectorService	bean	(corresponding	to	the	EventSenderSelectorServiceImpl	class).

The	following	example	listing	shows	the	usage	of	<bean>	element’s	depends-on	attribute:

	



	
Example	listing	4-7	–	<bean>	element’s	depends-on	attribute
	
<beans	.....>
				<bean	id="service"
											class="sample.spring.chapter04.bankapp.service.FixedDepositServiceImpl"
								depends-on="eventSenderSelectorService">
								.....
				</bean>
	
				<bean	id="eventSenderSelectorService"
											class="sample.spring.chapter04.bankapp.service.EventSenderSelectorServiceImpl">
								.....
				</bean>
</beans>

In	 the	 above	 example	 listing,	 the	 service	 bean	 uses	 depends-on	 attribute	 to	 explicitly	 specify	 that	 it	 is
dependent	on	the	eventSenderSelectorService	bean.	The	depends-on	attribute	specifies	the	ids	or	names
of	 the	beans	on	which	 the	bean	 is	dependent.	As	 the	 service	bean	 specifies	 that	 it	 is	 dependent	on	 the
eventSenderSelectorService	 bean,	 Spring	 container	 creates	 eventSenderSelectorService	 bean
(corresponding	 to	 the	 EventSenderSelectorServiceImpl	 class)	 instance	 before	 service	 bean
(corresponding	to	the	FixedDepositServiceImpl	class)	instance.

NOTE	 If	 you	 execute	 the	main	method	 of	 the	 BankApp	 class	 of	 ch04-bankapp-dependencies	 project,
you’ll	 find	 that	 the	 FixedDepositServiceImpl	 instance	 is	 created	before	 EventSenderSelectServiceImpl
instance.	 For	 this	 reason,	 the	 following	message	 is	 printed	 on	 the	 console:	 ‘appConfig.properties	 file
doesn't	contain	the	information	about	EventSender	class’.

Multiple	implicit	dependencies

If	a	bean	has	multiple	implicit	dependencies,	you	can	specify	ids	or	names	of	all	those	dependencies	as
the	value	of	depends-on	attribute,	as	shown	here:

Example	listing	4-8	–	depends-on	attribute	example	-	multiple	implicit	dependencies
	
<beans	.....>
				<bean	id="abean"	.....	depends-on="bBean,	cBean">
								.....
				</bean>
					.....
</beans>

The	above	example	listing	shows	that	you	can	specify	multiple	bean	ids	or	names	as	the	value	of	depends-
on	attribute.

depends-on	attribute	and	bean	definition	inheritance

It	 is	 important	 to	 note	 that	 the	 depends-on	 attribute	 is	 not	 inherited	 by	 child	 bean	 definitions.	 The



following	 example	 listing	 shows	 an	 abstract	 serviceTemplate	 parent	 bean	 definition	 that	 uses	 the
depends-on	attribute	to	specify	baseService	bean	as	a	dependency:

Example	listing	4-9	–	depends-on	attribute	–	bean	definition	inheritance
	
				<bean	id="serviceTemplate"	class=".....ServiceTemplate"	depends-on="baseService"
								abstract="true"/>
							
				<bean	id="someService"	class=".....SomeServiceImpl"	parent="serviceTemplate"/>
	
				<bean	id="someOtherService"	class=".....SomeOtherServiceImpl"	parent="serviceTemplate"/>
	
			<bean	id="baseService"	class=".....BaseServiceImpl"	/>

In	the	above	example	listing,	someService	and	someOtherService	child	bean	definitions	don’t	inherit	the
depends-on	 attribute	 from	 the	 serviceTemplate	 parent	 bean	 definition.	As	 the	 Spring	 container	 creates
beans	in	the	order	in	which	they	are	defined	in	the	application	context	XML	file,	the	baseService	bean	is
created	after	the	creation	of	someService	and	someOtherService	beans.

Let’s	 now	 look	 at	 how	 the	Spring	 container	manages	 dependencies	 of	 singleton-	 and	prototype-scoped
beans.



4-4	Singleton-	and	prototype-scoped	bean’s	dependencies
A	singleton-scoped	bean	(and	its	singleton-scoped	dependencies)	is	created	when	the	ApplicationContext
instance	 is	 created.	And,	 a	 prototype-scoped	 bean	 (and	 its	 prototype-scoped	 dependencies)	 is	 created
each	time	ApplicationContext’s	getBean	method	is	invoked	to	obtain	the	prototype-scoped	bean.

If	 a	 singleton-scoped	 bean	 is	 dependent	 on	 a	 prototype-scoped	 bean,	 or	 vice	 versa,	 things	 get	 a	 bit
complicated.	For	instance,	if	a	singleton-scoped	bean	is	dependent	on	a	prototype-scoped	bean,	you	might
ask	 the	 question	whether	 the	 Spring	 container	will	 create	 the	 prototype-scoped	 bean	 (the	 dependency)
before	the	singleton-scoped	bean	(the	dependent	bean)?	or	the	Spring	container	will	create	and	inject	the
prototype-scoped	bean	instance	only	when	you	call	the	ApplicationContext’s	getBean	method	to	retrieve
the	 singleton-scoped	 bean	 instance?	 The	 answers	 to	 these	 questions	 lies	 in	 the	 way	 singleton-	 and
prototype-scoped	dependencies	of	a	bean	are	managed	by	the	Spring	container,	as	explained	next.

Singleton-scoped	bean’s	dependencies
The	 following	 example	 listing	 shows	 the	 singleton-scoped	 customerRequestService	 bean	 of	 MyBank
application,	and	its	dependencies:

Example	listing	4-10	–	applicationContext.xml	-	Dependencies	of	customerRequestService	bean
Project	–	ch04-bankapp-dependencies
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="customerRequestService"
								class="sample.spring.chapter04.bankapp.service.CustomerRequestServiceImpl">
								<constructor-arg	name="customerRequestDetails"	ref="customerRequestDetails"	/>
								<constructor-arg	name="customerRequestDao"	ref="customerRequestDao"	/>
				</bean>
	
				<bean	id="customerRequestDetails"
								class="sample.spring.chapter04.bankapp.domain.CustomerRequestDetails"
								scope="prototype"	/>
	
				<bean	id="customerRequestDao"
								class="sample.spring.chapter04.bankapp.dao.CustomerRequestDaoImpl"	/>

The	above	example	 listing	shows	 that	 the	customerRequestService	 (singleton-scoped)	bean	depends	on
customerRequestDetails	 (prototype-scoped)	 and	 customerRequestDao	 (singleton-scoped)	 beans.
CustomerRequestService	object	(represented	by	the	customerRequestService	bean)	represents	a	service
that	 is	 invoked	 when	 a	 bank	 customer	 creates	 a	 new	 request,	 like	 a	 cheque	 book	 request.
CustomerRequestService	puts	 the	details	of	 the	customer	 request	 into	a	CustomerRequestDetails	 object
(represented	 by	 the	 customerRequestDetails	 bean)	 and	 saves	 it	 in	 the	 data	 store	 using
CustomerRequestDao	object	(represented	by	the	customerRequestDao	bean).

The	following	example	listing	shows	the	main	method	of	BankApp	class	 that	 loads	the	bean	definitions
shown	in	example	listing	4-10:

Example	listing	4-11	–	BankApp	class



Project	–	ch04-bankapp-dependencies
Source	location	-	src/main/java/sample/spring/chapter04/bankapp
	
package	sample.spring.chapter04.bankapp;
	
import	org.springframework.context.ApplicationContext;
import	org.springframework.context.support.ClassPathXmlApplicationContext;
	
public	class	BankApp	{
				private	static	Logger	logger	=	Logger.getLogger(BankApp.class);
	
				public	static	void	main(String	args[])	throws	Exception	{
						ApplicationContext	context	=	new	ClassPathXmlApplicationContext(
													"classpath:META-INF/spring/applicationContext.xml");
									.....
						logger.info("Beginning	with	accessing	CustomerRequestService");
									CustomerRequestService	customerRequestService_1
																			=	context.getBean(CustomerRequestService.class);
									.....
									CustomerRequestService	customerRequestService_2
																		=	context.getBean(CustomerRequestService.class);
									.....
						logger.info("Done	with	accessing	CustomerRequestService");
				}
}

The	 above	 example	 listing	 shows	 that	 after	 the	 ApplicationContext	 instance	 is	 created,
ApplicationContext’s	getBean	method	is	invoked	twice	to	obtain	reference	to	the	customerRequestService
bean.

If	you	execute	the	main	method	of	the	BankApp	class,	you’ll	see	the	following	output:
Created	CustomerRequestDetails	instance
Created	CustomerRequestDaoImpl	instance
Created	CustomerRequestServiceImpl	instance
.....
Beginning	with	accessing	CustomerRequestService
Done	with	accessing	CustomerRequestService

The	‘Created.....’	messages	shown	in	 the	above	output	are	printed	by	 the	constructors	of	 the	respective
bean	 classes.	 The	 above	 output	 shows	 that	 the	 customerRequestDetails	 (prototype-scoped)	 and
customerRequestDao	(singleton-scoped)	dependencies	of	the	customerRequestService	(singleton-scoped)
bean	 are	 created	 and	 injected	 into	 the	 customerRequestService	 instance	 when	 the	 Spring	 container	 is
created.	As	no	 ‘Created	 .....’	message	was	printed	on	 the	console	between	 ‘Beginning	 .....’	 and	 ‘Done
.....’	 messages,	 no	 bean	 instances	 were	 created	 by	 the	 Spring	 container	 when	 ApplicationContext’s
getBean	method	was	invoked	to	retrieve	the	customerRequestService	bean.

Figure	4-2	shows	the	sequence	diagram	that	depicts	the	sequence	of	events	that	occur	when	BankApp’s



main	method	 (refer	 example	 listing	4-11)	 is	 executed.	Figure	 4-2	 shows	 that	when	Spring	 container	 is
created,	 the	 customerRequestDetails	 (prototype-scoped)	 and	 customerRequestDao	 (singleton-scoped)
beans	are	first	created,	followed	by	creation	of	customerRequestService	(singleton-scoped).	Constructor-
based	 DI	 is	 used	 to	 inject	 the	 customerRequestDetails	 and	 customerRequestDao	 beans	 into	 the
customerRequestService	bean.	As	a	singleton-scoped	bean	is	created	only	once	by	the	Spring	container,
the	Spring	container	has	only	one	opportunity	to	inject	customerRequestService	bean’s	dependencies.	For
this	reason,	the	Spring	container	injects	prototype-scoped	customerRequestDetails	bean	instance	into	the
customerRequestService	 bean	 only	 once.	 The	 implication	 of	 this	 behavior	 is	 that	 the
customerRequestService	bean	ends	up	holding	reference	to	the	same	customerRequestDetails	bean	during
its	lifetime.

Figure	 4-2	 -	 The	 sequence	 of	 events	 that	 occur	 when	 the	 Spring	 container	 is	 created	 and	 the
customerRequestService	bean	is	retrieved	from	the	Spring	container

It	 is	 important	 to	 note	 that	 even	 if	 setter-based	 DI	 was	 used	 to	 inject	 the	 prototype-scoped
customerRequestDetails	 dependency	 of	 the	 customerRequestService	 bean,	 the	 Spring	 container	 would
have	 called	 the	 setter	method	only	once	 during	 the	 lifetime	 of	 the	 customerRequestService	 bean.	 This
means	that	irrespective	of	whether	setter-	or	constructor-based	DI	is	used,	a	singleton	bean	is	created	and
configured	only	once	during	it’s	lifetime.

Now,	once	the	Spring	container	is	created,	any	request	for	the	singleton-scoped	customerRequestService
bean	returns	the	same	cached	instance	of	the	customerRequestService	bean.	For	this	reason,	no	‘Created
.....’	message	was	written	out	to	the	console	between	‘Beginning	.....’	and	‘Done	.....’	messages	when	we
executed	BankApp’s	main	method	(refer	example	listing	4-11).

As	 the	 singleton-scoped	 customerRequestService	 bean	 always	 holds	 reference	 to	 the	 same	 prototype-
scoped	customerRequestDetails	bean,	 it	may	adversely	affect	 the	behavior	of	MyBank	application.	For
instance,	 if	 multiple	 customers	 simultaneously	 submit	 request	 to	 the	 CustomerRequestServiceImpl
instance,	all	the	requests	will	result	in	modifying	the	same	instance	of	the	CustomerRequestDetails	object
held	by	the	CustomerRequestService.		Ideally,	CustomerRequestServiceImpl	should	create	a	new	instance
of	CustomerRequestDetails	object	on	every	request.	In	section	4-5,	we’ll	see	what	modifications	we	need
to	make	to	the	bean	class	of	a	singleton-scoped	bean	so	that	it	can	retrieve	a	new	instance	of	a	prototype-
scoped	bean	on	every	method	call.



Let’s	now	look	at	how	the	Spring	container	manages	prototype-	and	singleton-scoped	dependencies	of	a
prototype-scoped	bean.

Prototype-scoped	bean’s	dependencies
In	MyBank,	 a	 customer	 registers	 with	 the	MyBank	 application	 by	 following	 a	 sequence	 of	 steps.	 For
instance,	 a	 customer	 first	 enters	 personal	 information	 and	 his	 account	 details,	 and	 if	 the	 MyBank
application	 finds	 a	 matching	 record,	 the	 customer	 is	 asked	 for	 his	 debit	 card	 details.	 The
CustomerRegistrationServiceImpl	class	of	MyBank	application	contains	 the	necessary	business	 logic	 to
register	customers.	As	the	customers	follow	a	sequence	of	steps	to	register	with	the	MyBank	application,
the	CustomerRegistrationServiceImpl	object	maintains	conversational	state	between	method	calls.

The	 following	 example	 listing	 shows	 the	 prototype-scoped	 customerRegistrationService	 bean
(representing	the	CustomerRegistrationServiceImpl	class)	of	MyBank	application,	and	its	dependencies:

Example	listing	4-12	–	applicationContext.xml	-	customerRegistrationService	bean	and	its	dependencies
Project	–	ch04-bankapp-dependencies
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="customerRegistrationService"
								class="sample.spring.chapter04.bankapp.service.CustomerRegistrationServiceImpl"
								scope="prototype">
							<constructor-arg	name="customerRegistrationDetails"	ref="customerRegistrationDetails"	/>
							<constructor-arg	name="customerRegistrationDao"	ref="customerRegistrationDao"	/>
				</bean>
				<bean	id="customerRegistrationDetails"
								class="sample.spring.chapter04.bankapp.domain.CustomerRegistrationDetails"
								scope="prototype"	/>
	
				<bean	id="customerRegistrationDao"
								class="sample.spring.chapter04.bankapp.dao.CustomerRegistrationDaoImpl"	/>

The	above	example	listing	shows	that	the	customerRegistrationService	(prototype-scoped)	bean	depends
on	 customerRegistrationDetails	 (prototype-scoped)	 and	 customerRegistrationDao	 (singleton-scoped)
beans.

CustomerRegistrationServiceImpl	 instance	 maintains	 progress	 of	 the	 registration	 process,	 and	 stores
information	 provided	 by	 the	 customer	 during	 the	 registration	 process	 in	 a	CustomerRegistrationDetails
object	(represented	by	the	customerRegistrationDetails	bean).	As	both	CustomerRegistrationServiceImpl
and	 CustomerRegistrationDetails	 objects	 are	 stateful	 in	 nature,	 both	 customerRegistrationService	 and
customerRegistrationDetails	beans	are	defined	as	prototype-scoped	beans.

The	following	example	listing	shows	the	main	method	of	BankApp	class	that	loads	customer	registration
related	beans	(refer	example	listing	4-12)	and	performs	registrations	for	2	customers:

Example	listing	4-13	–	BankApp	class
Project	–	ch04-bankapp-dependencies
Source	location	-	src/main/java/sample/spring/chapter04/bankapp



	
package	sample.spring.chapter04.bankapp;
	
import	org.springframework.context.ApplicationContext;
import	org.springframework.context.support.ClassPathXmlApplicationContext;
	
public	class	BankApp	{
				private	static	Logger	logger	=	Logger.getLogger(BankApp.class);
	
				public	static	void	main(String	args[])	throws	Exception	{
							ApplicationContext	context	=	new	ClassPathXmlApplicationContext(
										"classpath:META-INF/spring/applicationContext.xml");
										.....
							logger.info("Beginning	with	accessing	CustomerRegistrationService");
	
							CustomerRegistrationService	customerRegistrationService_1	=	context
											.getBean(CustomerRegistrationService.class);
										customerRegistrationService_1.setAccountNumber("account_1");
										customerRegistrationService_1.setAddress("address_1");
										customerRegistrationService_1.setDebitCardNumber("debitCardNumber_1");
										customerRegistrationService_1.register();
							logger.info("registered	customer	with	id	account_1");
	
							CustomerRegistrationService	customerRegistrationService_2	=	context
											.getBean(CustomerRegistrationService.class);
										
												.....
								logger.info("registered	customer	with	id	account_2");
								logger.info("Done	with	accessing	CustomerRegistrationService");
				}
}

The	 above	 example	 listing	 shows	 that	 the	BankApp’s	main	method	 calls	ApplicationContext’s	 getBean
method	 twice	 to	 obtain	 reference	 to	 customerRegistrationService	 bean.	 Once	 the
customerRegistrationService	 bean	 instance	 is	 retrieved,	 the	 setAccountNumber,	 setAddress,
setDebitCardNumber	 and	 register	methods	 are	 invoked	 on	 it.	 If	 you	 execute	 BankApp’s	main	 method,
you’ll	see	the	following	output	on	the	console:

Created	CustomerRegistrationDaoImpl	instance
.....
Beginning	with	accessing	CustomerRegistrationService
Created	CustomerRegistrationDetails	instance
Created	CustomerRegistrationServiceImpl	instance
registered	customer	with	id	account_1
Created	CustomerRegistrationDetails	instance
Created	CustomerRegistrationServiceImpl	instance



registered	customer	with	id	account_2
Done	with	accessing	CustomerRegistrationService

The	‘Created.....’	messages	shown	in	 the	above	output	are	printed	by	 the	constructors	of	 the	respective
bean	 classes.	 The	 above	 output	 shows	 that	 the	 singleton-scoped	 customerRegistrationDao	 bean
(representing	the	CustomerRegistrationDaoImpl	class)	is	created	only	once	when	the	ApplicationContext
instance	 is	 created.	 The	 ‘Created.....’	 messages	 between	 ‘Beginning.....’	 and	 ‘Done.....’	 messages
indicate	 that	each	 time	ApplicationContext’s	getBean	method	 is	 invoked	 to	obtain	 the	prototype-scoped
customerRegistrationService	 bean,	 a	 new	 instance	 of	 the	 customerRegistrationService	 bean	 and	 its
prototype-scoped	dependency	(the	customerRegistrationDetails	bean)	is	created	by	the	Spring	container.

Figure	4-3	shows	the	sequence	diagram	that	depicts	the	sequence	of	events	that	occur	when	BankApp’s
main	 method	 (refer	 example	 listing	 4-13)	 is	 executed.	 The	 figure	 shows	 that	 the	 singleton-scoped
customerRegistrationDao	bean	is	created	only	once	when	ApplicationContext	instance	is	created.	When
the	prototype-scoped	customerRegistrationService	bean	is	requested	from	the	Spring	container,	the	Spring
container	 first	 creates	 an	 instance	 of	 customerRegistrationDetails	 bean	 (which	 is	 the	 prototype-scoped
dependency	 of	 the	 customerRegistrationService	 bean),	 followed	 by	 the	 creation	 of	 the
customerRegistrationService	bean.	This	shows	that	if	a	prototype-scoped	bean	X	is	dependent	on	another
prototype-scoped	bean	Y,	Spring	container	will	create	a	new	instance	of	X	and	Y	each	time	you	request
bean	X	from	the	Spring	container.

Figure	 4-3	 –	 The	 sequence	 of	 events	 that	 occur	 when	 the	 Spring	 container	 is	 created	 and	 the
customerRegistrationService	bean	is	retrieved	from	the	Spring	container

Earlier	in	this	section,	we	saw	that	if	a	singleton-scoped	bean	is	dependent	on	a	prototype-scoped	bean,
then	 throughout	 its	 lifetime	 the	 singleton-scoped	 bean	 is	 associated	 with	 the	 same	 instance	 of	 the
prototype-scoped	bean.	Let’s	now	look	at	different	ways	in	which	a	singleton-scoped	bean	can	retrieve	a
new	instance	of	a	prototype-scoped	bean	from	the	Spring	container.



4-5	Obtaining	new	instances	of	prototype	beans	inside	singleton	beans
In	 the	 previous	 section,	 we	 saw	 that	 the	 prototype-scoped	 dependency	 of	 a	 singleton-scoped	 bean	 is
injected	at	 the	time	of	creation	of	the	singleton-scoped	bean	(refer	figure	4-2).	Spring	container	creates
instance	of	a	singleton-scoped	bean	only	once;	therefore,	the	singleton-scoped	bean	holds	reference	to	the
same	prototype-scoped	bean	instance	during	its	lifetime.	A	singleton-scoped	bean’s	methods	can	retrieve
a	 new	 instance	 of	 their	 prototype-scoped	 dependency	 from	 the	 Spring	 container	 using	 any	 one	 of	 the
following	approaches:

·								make	the	singleton-scoped	bean’s	class	implement	Spring’s	ApplicationContextAware	interface

·								use	the	<lookup-method>	element	of	Spring’s	beans	schema

·								use	the	<replaced-method>	element	of	Spring’s	beans	schema

NOTE	It	is	possible	to	use	the	new	keyword	to	create	an	instance	of	the	prototype-scoped	bean’s	class	in
a	singleton-scoped	bean’s	method	and	use	it.	As	the	responsibility	of	creating	a	bean	instance	is	with	the
Spring	container,	we	should	not	attempt	to	directly	create	a	bean	instance	using	the	new	keyword.

IMPORT	chapter	4/ch04-bankapp-context-aware	(This	project	shows	a	scenario	in	which	a	singleton-
scoped	bean	implements	Spring’s	ApplicationContextAware	interface	to	obtain	instances	of	a	prototype-
scoped	bean	from	the	Spring	container.	To	run	the	application,	execute	the	main	method	of	the	BankApp
class	of	this	project)

Let’s	first	begin	by	looking	at	the	ApplicationContextAware	interface.

ApplicationContextAware	interface
Spring’s	 ApplicationContextAware	 interface	 is	 implemented	 by	 beans	 that	 require	 access	 to	 the
ApplicationContext	 instance	 in	 which	 they	 are	 running.	 ApplicationContextAware	 interface	 defines	 a
single	method,	 setApplicationContext,	 which	 provides	 the	 implementing	 beans	 with	 an	 instance	 of	 the
ApplicationContext	object.

ApplicationContextAware	interface	is	a	lifecycle	interface,	which	means	that	 the	Spring	container	calls
the	beans	implementing	the	ApplicationContextAware	interface	at	appropriate	times	during	their	lifetime.
For	instance,	ApplicationContextAware’s	setApplicationContext	method	is	called	by	the	Spring	container
after	the	bean	instance	is	created	but	before	the	bean	instance	is	completely	initialized.	A	bean	instance	is
considered	completely	initialized	only	after	its	 initialization	method	 (refer	section	5-2	of	chapter	5)	 is
called	by	the	Spring	container.	It	is	important	to	note	that	after	a	bean	instance	is	completely	initialized,	it
is	 injected	 into	 the	dependent	bean	 instances	by	 the	Spring	container.	 In	 chapter	5,	we’ll	 look	at	 some
more	lifecycle	interfaces	in	Spring.

A	bean	that	implements	the	ApplicationContextAware	interface	can	access	other	beans	registered	with	the
ApplicationContext	instance	by	calling	ApplicationContext’s	getBean	method.	This	means	that	if	the	bean
class	 of	 a	 singleton-scoped	 bean	 implements	 ApplicationContextAware	 interface,	 it	 can	 fetch	 a	 new
instance	of	a	prototype-scoped	bean	from	the	Spring	container	by	calling	ApplicationContext’s	getBean
method.	As	the	singleton-scoped	bean	explicitly	obtains	its	prototype-scoped	dependency	from	the	Spring
container	by	calling	ApplicationContext’s	getBean	method,	you	don’t	need	to	define	the	prototype-scoped
bean	as	a	dependency	of	the	singleton-scoped	bean	in	the	application	context	XML	file.



The	following	example	listing	shows	the	CustomerRequestServiceImpl	class	that	needs	a	new	instance	of
CustomerRequestDetails	 object	 each	 time	 CustomerRequestServiceImpl’s	 submitRequest	 method	 is
called:

Example	listing	4-14	–	CustomerRequestServiceImpl	class
Project	–	ch04-bankapp-context-aware
Source	location	-	src/main/java/sample/spring/chapter04/bankapp/service
	
package	sample.spring.chapter04.bankapp.service;
	
import	sample.spring.chapter04.bankapp.dao.CustomerRequestDao;
import	sample.spring.chapter04.bankapp.domain.CustomerRequestDetails;
	
public	class	CustomerRequestServiceImpl	implements	CustomerRequestService	{
			private	CustomerRequestDetails	customerRequestDetails;
				private	CustomerRequestDao	customerRequestDao;
	
				@ConstructorProperties({	"customerRequestDetails",	"customerRequestDao"	})
				public	CustomerRequestServiceImpl(CustomerRequestDetails	customerRequestDetails,
									CustomerRequestDao	customerRequestDao)	{
						this.customerRequestDetails	=	customerRequestDetails;
						this.customerRequestDao	=	customerRequestDao;
				}
	
				public	void	submitRequest(String	requestType,	String	requestDescription)	{
								//	--	populate	CustomerRequestDetails	object	and	save	it
						customerRequestDetails.setType(requestType);
						customerRequestDetails.setDescription(requestDescription);
									customerRequestDao.submitRequest(customerRequestDetails);			
				}
}

The	above	example	listing	shows	that	the	CustomerRequestDetails	and	CustomerRequestDao	objects	are
passed	as	arguments	to	the	CustomerRequestServiceImpl	class’s	constructor.	The	submitRequest	method
populates	 the	 CustomerRequestDetails	 instance	 and	 saves	 it	 into	 the	 database	 by	 calling
CustomerRequestDao’s	submitRequest	method.	 If	multiple	customers	simultaneously	submit	 request,	 the
submitRequest	method	will	 end	up	modifying	 the	 same	 instance	of	 the	CustomerRequestDetails	 object,
resulting	 in	 undesired	 behavior	 of	MyBank	 application.	To	 address	 this	 issue,	 the	 submitRequest	must
obtain	a	new	instance	of	the	CustomerRequestDetails	object	from	the	Spring	container	on	each	invocation.

The	 following	example	 listing	 shows	 the	CustomerRequestServiceContextAwareImpl	 class	 (a	modified
version	of	CustomerRequestServiceImpl	class	that	we	saw	in	example	listing	4-14)	that	implements	the
ApplicationContextAware	interface:

Example	 listing	 4-15	 –	 CustomerRequestServiceContextAwareImpl	 class	 that	 implements	 Spring’s
ApplicationContextAware	interface
Project	–	ch04-bankapp-context-aware



Source	location	-	src/main/java/sample/spring/chapter04/bankapp/service
	
package	sample.spring.chapter04.bankapp.service;
	
import	org.springframework.context.ApplicationContext;
import	org.springframework.context.ApplicationContextAware;
	
public	class	CustomerRequestServiceContextAwareImpl	implements
				CustomerRequestService,	ApplicationContextAware	{
			
				private	CustomerRequestDao	customerRequestDao;
				private	ApplicationContext	applicationContext;
	
				@ConstructorProperties({	"customerRequestDao"	})
	 	 	public	CustomerRequestServiceContextAwareImpl(CustomerRequestDao	customerRequestDao)
{
								this.customerRequestDao	=	customerRequestDao;
				}
	
			public	void	setApplicationContext(ApplicationContext	applicationContext)
												throws	BeansException	{
					this.applicationContext	=	applicationContext;
			}
														
				public	void	submitRequest(String	requestType,	String	requestDescription)	{
					CustomerRequestDetails	customerRequestDetails	=	applicationContext
																.getBean(CustomerRequestDetails.class);
							customerRequestDetails.setType(requestType);
							customerRequestDetails.setDescription(requestDescription);
							customerRequestDao.submitRequest(customerRequestDetails);
				}
}

In	 the	 above	 example	 listing,	 setApplicationContext	 method	 provides
CustomerRequestServiceContextAwareImpl	 with	 an	 instance	 of	 ApplicationContext	 object.	 The
ApplicationContext	 instance	 is	 later	 used	 by	 the	 submitRequest	 method	 to	 obtain	 an	 instance	 of
CustomerRequestDetails	object	from	the	Spring	container.

As	 the	 CustomerRequestServiceContextAwareImpl	 class	 explicitly	 obtains	 CustomerRequestDetails
object	 from	 the	 Spring	 container,	 you	 don’t	 need	 to	 use	 Spring’s	 DI	 mechanism	 to	 inject
CustomerRequestDetails	 instance	 into	 the	CustomerRequestServiceContextAwareImpl	 instance.	 For	 this
reason,	 CustomerRequestServiceContextAwareImpl	 class’s	 constructor	 (refer	 example	 listing	 4-15)
doesn’t	specify	CustomerRequestDetails	object	as	an	argument.	If	you	now	go	to	ch04-bankapp-context-
aware	project	and	execute	BankApp’s	main	method,	you’ll	find	that	on	each	invocation	of	submitRequest
method	a	new	instance	of	CustomerRequestDetails	object	is	fetched	from	the	Spring	container.



In	the	context	of	MyBank,	we	saw	that	the	ApplicationContextAware	interface	is	useful	if	a	bean	requires
access	 to	 other	 beans.	The	downside	 of	 implementing	 the	ApplicationContextAware	 interface	 is	 that	 it
couples	 your	 bean	 class	 to	Spring	Framework.	You	 can	 avoid	 coupling	your	 bean	 classes	with	Spring
Framework	and	still	access	other	beans	from	the	Spring	container	by	using	method	injection	 techniques
offered	by	<lookup-method>	and	<replaced-method>	elements	of	Spring’s	beans	schema.

Let’s	first	look	at	the	<lookup-method>	element.

IMPORT	 chapter	 4/ch04-bankapp-lookup-method	 (This	 project	 shows	 the	MyBank	 application	 that
uses	<lookup-method>	element	of	Spring’s	beans	schema.	To	run	the	application,	execute	the	main	method
of	the	BankApp	class	of	this	project)

<lookup-method>	element
If	a	bean	class	defines	a	bean	lookup	method	whose	return	type	represents	a	bean,	the	<lookup-method>
element	 instructs	 the	 Spring	 container	 to	 provide	 implementation	 for	 this	 method.	 The	 method
implementation	provided	by	the	Spring	container	is	responsible	for	retrieving	the	bean	instance	from	the
Spring	container	and	returning	it.

The	 <lookup-method>	 element’s	 bean	 attribute	 specifies	 the	 name	 of	 the	 bean	 to	 be	 looked-up	 and
returned	by	 the	method	 implementation,	and	 the	name	attribute	 specifies	 the	name	of	 the	method	whose
implementation	 is	 to	 be	 provided	 by	 the	 Spring	 container.	 It	 is	 important	 to	 note	 that	 the	 bean	 lookup
method	defined	by	the	bean	class	can	be	an	abstract	or	a	concrete	method.

NOTE	The	use	of	<lookup-method>	element	to	instruct	the	Spring	container	to	provide	implementation
for	a	bean	lookup	method	is	referred	to	as	a	‘Method	Injection	techinique’	because	the	<lookup-method>
element	injects	a	bean	lookup	method	implementation	into	the	bean	class.

The	 following	 example	 listing	 shows	 CustomerRequestServiceImpl’s	 getCustomerRequestDetails
abstract	method	that	returns	an	instance	of	CustomerRequestDetails	instance:

Example	listing	4-16	–	CustomerRequestServiceImpl	class	–	defining	a	bean	lookup	method
Project	–	ch04-bankapp-lookup-method
Source	location	-	src/main/java/sample/spring/chapter04/bankapp/service
	
package	sample.spring.chapter04.bankapp.service;
	
public	abstract	class	CustomerRequestServiceImpl	implements	CustomerRequestService	{
				private	CustomerRequestDao	customerRequestDao;
	
				@ConstructorProperties({	"customerRequestDao"	})
				public	CustomerRequestServiceImpl(CustomerRequestDao	customerRequestDao)	{
								this.customerRequestDao	=	customerRequestDao;
				}
	
				public	abstract	CustomerRequestDetails	getCustomerRequestDetails();
	
				@Override



				public	void	submitRequest(String	requestType,	String	requestDescription)	{
								//	--	populate	CustomerRequestDetails	object	and	save	it
					CustomerRequestDetails	customerRequestDetails	=	getCustomerRequestDetails();
								.....
				}
}

The	 above	 example	 listing	 shows	 that	 the	 CustomerRequestServiceImpl	 class	 is	 defined	 as	 abstract
because	it	contains	an	abstract	bean	lookup	method,	getCustomerRequestDetails.	Instead	of	abstract,	we
could	 have	 very	 well	 defined	 the	 getCustomerRequestDetails	 method	 as	 a	 concrete	 method.	 The
submitRequest	 method	 invokes	 the	 getCustomerRequestDetails	 method	 to	 access	 a
CustomerRequestDetails	instance.

The	 following	 example	 listing	 shows	 bean	 definitions	 for	 CustomerRequestServiceImpl	 and
CustomerRequestDetails	classes:

Example	listing	4-17	–	applicationContext.xml	-	<lookup-method>	element	usage
Project	–	ch04-bankapp-lookup-method
Source	location	-	src/main/resources/META-INF/spring

				<bean	id="customerRequestService"
								class="sample.spring.chapter04.bankapp.service.CustomerRequestServiceImpl">
								<constructor-arg	name="customerRequestDao"	ref="customerRequestDao"	/>
								<lookup-method	bean="customerRequestDetails"	name="getCustomerRequestDetails"/>
				</bean>
	
				<bean	id="customerRequestDetails"
								class="sample.spring.chapter04.bankapp.domain.CustomerRequestDetails"
								scope="prototype"	/>

The	 above	 example	 listing	 shows	 that	 the	 bean	 definition	 for	 the	 CustomerRequestServiceImpl	 class
contains	 a	 <lookup-method>	 element.	 The	 value	 of	 <lookup-method>	 element’s	 name	 attribute	 is
getCustomerRequestDetails,	 which	 instructs	 the	 Spring	 container	 to	 provide	 implementation	 for	 the
getCustomerRequestDetails	lookup	method	(refer	example	listing	4-16)	of	CustomerRequestServiceImpl
class.	The	value	of	<lookup-method>	element’s	bean	attribute	 is	customerRequestDetails,	which	means
that	 the	 implementation	 of	 getCustomerRequestDetails	 method	 retrieves	 a	 bean	 with	 id	 (or	 name)	 as
customerRequestDetails	 from	 the	 Spring	 container	 and	 returns	 it	 to	 the	 calling	 method.	 As	 the
customerRequestDetails	 bean	 represents	 a	 CustomerRequestDetails	 object	 (refer	 to	 the
customerRequestDetails	 bean	 definition	 in	 example	 listing	 4-17),	 the	 implementation	 of
getCustomerRequestDetails	method	returns	a	CustomerRequestDetails	object.

In	 example	 listing	 4-16,	 the	 CustomerRequestService’s	 submitRequest	 method	 invokes	 the
getCustomerRequestDetails	 bean	 lookup	 method	 to	 obtain	 a	 CustomerRequestDetails	 instance.	 As
CustomerRequestDetails	class	is	represented	as	a	prototype-scoped	bean	in	the	application	context	XML
file	 (refer	 example	 listing	4-17),	 each	 invocation	of	 the	 submitRequest	method	 results	 in	 retrieval	of	 a
new	instance	of	CustomerRequestDetails	object	from	the	Spring	container.

To	 check	 that	 the	 <lookup-method>	 element	 provides	 correct	 implementation	 for	 the



CustomerRequestService’s	 getCustomerRequestDetails	 bean	 lookup	 method,	 the	 main	 method	 of
BankApp	class	obtains	an	instance	of	CustomerRequestService	from	the	Spring	container	and	invokes	its
submitRequest	method	multiple	times.	If	each	invocation	of	the	submitRequest	method	results	in	retrieval
of	 a	 fresh	 instance	 of	CustomerRequestDetails	 object	 from	 the	 Spring	 container,	 then	 it	means	 that	 the
<lookup-method>	 element	 provides	 correct	 implementation	 for	 the	 CustomerRequestService’s
getCustomerRequestDetails	method.

The	following	example	listing	shows	the	BankApp’s	main	method	that	invokes	CustomerRequestService’s
submitRequest	method	multiple	times:

Example	listing	4-18	–	BankApp	class
Project	–	ch04-bankapp-lookup-method
Source	location	-	src/main/java/sample/spring/chapter04/bankapp
	
package	sample.spring.chapter04.bankapp;
.....
public	class	BankApp	{
				private	static	Logger	logger	=	Logger.getLogger(BankApp.class);
	
				public	static	void	main(String	args[])	throws	Exception	{
								ApplicationContext	context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
								.....
								logger.info("Beginning	with	accessing	CustomerRequestService");
								CustomerRequestService	customerRequestService_1	=	context
																.getBean(CustomerRequestService.class);
								customerRequestService_1.submitRequest("checkBookRequest",
																"Request	to	send	a	50-leaf	check	book");
								customerRequestService_1.submitRequest("checkBookRequest",
																"Request	to	send	a	100-leaf	check	book");
								.....
								logger.info("Done	with	accessing	CustomerRequestService");
				}
}

If	you	execute	the	BankApp’s	main	method,	you’ll	see	the	following	output	on	the	console:
Beginning	with	accessing	CustomerRequestService
Created	CustomerRequestDetails	instance
Created	CustomerRequestDetails	instance
.....
Done	with	accessing	CustomerRequestService

The	‘Created.....’	messages	shown	in	 the	above	output	are	printed	by	 the	constructors	of	 the	respective
bean	classes.	The	above	output	shows	that	each	invocation	of	CustomerRequestService’s	submitRequest
method	resulted	in	retrieval	of	a	new	CustomerRequestDetails	instance	from	the	Spring	container.

As	the	implementation	of	the	bean	lookup	method	is	provided	by	the	Spring	container,	some	restrictions



apply	to	the	signature	of	the	bean	lookup	methods.	For	instance,	the	bean	lookup	method	must	be	defined
as	public	or	protected,	and	it	must	not	accept	any	arguments.	As	the	bean	class	containing	the	bean	lookup
method	is	subclassed	at	runtime	by	the	Spring	container	to	provide	the	implementation	for	the	bean	lookup
method,	the	bean	class	and	the	bean	lookup	method	must	not	be	defined	as	final.

NOTE	As	 the	bean	class	 containing	 the	bean	 lookup	method	needs	 to	be	 subclassed	 at	 runtime	by	 the
Spring	container	to	provide	implementation	for	the	bean	lookup	method,	the	Spring	container	uses	CGLIB
(http://cglib.sourceforge.net/)	 library	to	perform	subclassing	of	the	bean	class.	Starting	with	Spring	3.2,
the	 CGLIB	 classes	 are	 packaged	 within	 the	 spring-core	 JAR	 file	 itself;	 therefore,	 you	 don’t	 need	 to
explicitly	specify	that	your	project	is	dependent	on	CGLIB	JAR	file.

The	<lookup-method>	 element	 provides	 a	method	 injection	 technique	 in	which	 a	 bean	 class	 defines	 a
bean	lookup	method	whose	implementation	is	provided	by	the	Spring	container.	Instead	of	using	<lookup-
method>	 element,	 you	 can	 consider	 using	 <replaced-method>	 element	 of	 Spring’s	 beans	 schema	 to
perform	method	injection.

IMPORT	chapter	4/ch04-bankapp-replaced-method	(This	project	shows	the	MyBank	application	that
uses	 <replaced-method>	 element	 of	 Spring’s	 beans	 schema.	 To	 run	 the	 application,	 execute	 the	 main
method	of	the	BankApp	class	of	this	project)

<replaced-method>	element
The	<replaced-method>	element	allows	you	to	replace	any	arbitrary	method	in	a	bean	class
with	 a	 different	 implementation.	 The	 following	 example	 listing	 shows	 the
CustomerRequestServiceImpl	 class	 that	we’ll	 be	 using	 as	 an	 example	 to	 demonstrate	 use	 of
<replaced-method>	element:

Example	listing	4-19	–	CustomerRequestServiceImpl	class
Project	–	ch04-bankapp-replaced-method
Source	location	-	src/main/java/sample/spring/chapter04/bankapp/service
	
package	sample.spring.chapter04.bankapp.service;
.....
public	class	CustomerRequestServiceImpl	implements	CustomerRequestService	{
				private	CustomerRequestDao	customerRequestDao;
				.....
				public	Object	getMyBean(String	beanName)	{
								return	null;
				}
	
				@Override
				public	void	submitRequest(String	requestType,	String	requestDescription)	{
								//	--	populate	CustomerRequestDetails	object	and	save	it
								CustomerRequestDetails	customerRequestDetails	=
														(CustomerRequestDetails)	getMyBean("customerRequestDetails");
								customerRequestDetails.setType(requestType);
								customerRequestDetails.setDescription(requestDescription);

http://cglib.sourceforge.net/


								customerRequestDao.submitRequest(customerRequestDetails);
				}
}

The	 above	 example	 listing	 shows	 that	 the	 CustomerRequestServiceImpl	 class	 defines	 a	 getMyBean
method.	The	getMyBean	method	accepts	name	of	a	bean	as	an	argument,	and	instead	of	returning	the	bean
instance	 corresponding	 to	 the	 bean	 name	 argument,	 the	 getMyBean	 method	 returns	 null.	 The
submitRequest	method	passes	customerRequestDetails	string	as	argument	 to	 the	getMyBean	method	and
assumes	 that	 the	 getMyBean	 method	 returns	 an	 instance	 of	 customerRequestDetails	 bean.	 Using
<replaced-method>	element,	you	can	override	the	getMyBean	method	with	a	method	that	returns	the	bean
instance	corresponding	to	the	bean	name	argument.

The	 <replaced-method>	 element	 needs	 information	 about	 the	 overridden	 method	 (which	 is
CustomerRequestServiceImpl	getMyBean	method	 in	 our	 example	 scenario)	 and	 the	overriding	method.
The	overriding	method	is	provided	by	the	class	that	implements	Spring’s	MethodReplacer	interface.	The
following	 example	 listing	 shows	 MyMethodReplacer	 class	 that	 implements	 the	 MethodReplacer
interface:

Example	listing	4-20	–	MyMethodReplacer	class
Project	–	ch04-bankapp-replaced-method
Source	location	-	src/main/java/sample/spring/chapter04/bankapp/service
	
package	sample.spring.chapter04.bankapp.service;
	
import	org.springframework.beans.factory.support.MethodReplacer;
import	org.springframework.context.ApplicationContextAware;
	
public	class	MyMethodReplacer	implements	MethodReplacer,	ApplicationContextAware	{
				private	ApplicationContext	applicationContext;
	
				@Override
				public	Object	reimplement(Object	obj,	Method	method,	Object[]	args)	throws	Throwable	{
								return	applicationContext.getBean((String)	args[0]);
				}
	
				@Override
				public	void	setApplicationContext(ApplicationContext	applicationContext)
												throws	BeansException	{
								this.applicationContext	=	applicationContext;
				}
}

Spring’s	MethodReplacer	interface	defines	a	reimplement	method	whose	implementation	is	provided	by
the	 MyMethodReplacer	 class.	 The	 reimplement	 method	 represents	 the	 overriding	 method.
MyMethodReplacer	 class	 also	 implements	 Spring’s	 ApplicationContextAware	 interface	 so	 that	 the
reimplement	 method	 can	 access	 the	 ApplicationContext	 instance.	 The	 reimplement	 method	 uses	 the
ApplicationContext’s	getBean	method	to	retrieve	beans	from	the	Spring	container.



The	reimplement	method	accepts	the	following	arguments:

·								Object	obj	–	identifies	the	object	whose	method	we	are	overriding.	In	our	example	scenario,	the
obj	object	is	the	CustomerRequestServiceImpl	object.

·	 	 	 	 	 	 	 	Method	method	 –	 identifies	 the	 bean	 class’s	method	 that	 is	 overridden	 by	 the	 reimplement
method.	In	our	example	scenario,	this	is	CustomerRequestServiceImpl’s	getMyBean	method.

·								Object[]	args	–	identifies	arguments	passed	to	the	method	that	we	are	overriding.	In	our	example
scenario,	args	 represents	 the	 arguments	 passed	 to	 the	CustomerRequestServiceImpl’s	 getMyBean
method.	In	example	listing	4-20,	args[0]	in	the	reimplement	method	refers	the	bean	name	argument
passed	to	the	CustomerRequestServiceImpl’s	getMyBean	method.

If	you	now	look	at	MyMethodReplacer’s	reimplement	method	in	example	listing	4-20,	you	can	infer	that	it
uses	args	 argument	 to	 first	 obtain	 bean	 name	 passed	 to	 the	CustomerRequestServiceImpl’s	 getMyBean
method,	and	then	calls	ApplicationContext’s	getBean	method	 to	obtain	 the	corresponding	bean	 instance.
As	 MyMethodReplacer’s	 reimplement	 method	 overrides	 CustomerRequestServiceImpl’s	 getMyBean
method,	call	 to	getMyBean	method	at	 runtime	 returns	 the	bean	 instance	whose	name	was	passed	 to	 the
getMyBean	method.

The	 <replaced-method>	 element	 informs	 the	 Spring	 container	 that	 MyMethodReplacer’s	 reimplement
method	overrides	CustomerRequestServiceImpl’s	getMyBean	method,	as	shown	in	the	following	example
listing:

Example	listing	4-21	–	applicationContext.xml	-	<replaced-method>	element	usage
Project	–	ch04-bankapp-replaced-method
Source	location	-	src/main/resources/META-INF/spring

				<bean	id="customerRequestService"
								class="sample.spring.chapter04.bankapp.service.CustomerRequestServiceImpl">
								<constructor-arg	name="customerRequestDao"	ref="customerRequestDao"	/>
								<replaced-method	name="getMyBean"	replacer="methodReplacer"	/>
				</bean>
	
				<bean	id="methodReplacer"
								class="sample.spring.chapter04.bankapp.service.MyMethodReplacer"	/>

The	 above	 example	 listing	 shows	 bean	 definitions	 for	 MyMethodReplacer	 and
CustomerRequestServiceImpl	classes.	The	<replace-method>	element’s	name	attribute	specifies	name	of
the	 method	 that	 you	 want	 to	 override,	 and	 the	 replacer	 attribute	 specifies	 reference	 to	 the	 bean	 that
implements	the	MethodReplacer	 interface.	The	method	specified	by	the	name	attribute	 is	overridden	by
the	reimplement	method	of	the	bean	referenced	by	the	replacer	attribute.

As	 in	 case	 of	 <lookup-method>	 element,	 the	 main	 method	 of	 the	 BankApp	 class	 of	 ch04-bankapp-
replaced-method	 project	 validates	 whether	 or	 not	 the	 <replaced-method>	 element	 overrides	 the
CustomerRequestService’s	 getMyBean	 method	 with	 the	 MyMethodReplacer’s	 reimplement	 method.
BankApp	class	of	ch04-bankapp-replaced-method	project	is	same	as	the	one	we	saw	in	example	listing
4-18	 for	 ch04-bankapp-lookup-method	project.	 If	 you	 execute	 the	main	method	 of	 the	BankApp	 class,
you’ll	find	that	<replaced-method>	element	overrides	CustomerRequestServiceImpl’s	getMyBean	method



with	MyMethodReplacer’s	 reimplement	method;	 therefore,	 a	 fresh	 instance	 of	 CustomerRequestDetails
instance	is	retrieved	from	the	Spring	container	each	time	CustomerRequestServiceImpl’s	submitRequest
method	(refer	example	listing	4-19)	is	invoked.

It	 is	 important	 to	 note	 that	 you	 can	 use	 <replaced-method>	 element	 to	 replace	 an	 abstract	 or	 concrete
method	 of	 a	 bean	 class	with	 a	 different	method	 implementation.	 For	 instance,	 we	 could	 have	 defined
getMyBean	method	as	an	abstract	method	and	used	 the	<replaced-method>	element	 in	 the	same	way	as
described	in	this	section.

NOTE	As	the	bean	class	needs	to	be	subclassed	at	runtime	by	the	Spring	container	to	replace	a	bean
method	with	a	different	method,	the	Spring	container	uses	CGLIB	(http://cglib.sourceforge.net/)	library	to
perform	subclassing	of	the	bean	class.	Starting	with	Spring	3.2,	the	CGLIB	classes	are	packaged	within
the	spring-core	JAR	file	itself;	therefore,	you	don’t	need	to	explicitly	specify	that	your	project	is
dependent	on	CGLIB	JAR	file.

Let’s	now	look	at	how	<replaced-method>	element	uniquely	identifies	the	bean	method	to	be	overridden.

Uniquely	identifying	the	bean	method

You	may	 come	 across	 scenarios	 in	which	 the	 bean	method	 that	 you	want	 to	 replace	 using	 <replaced-
method>	element	can’t	be	uniquely	identified	by	name.	For	instance,	the	following	example	listing	shows
a	bean	class	that	contains	overloaded	perform	methods:

Example	listing	4-22	–	Overloaded	methods	in	a	bean	class
	
public	class	MyBean	{
															public	void	perform(String	task1,	String	task2)	{	.....	}
															public	void	perform(String	task)	{	.....	}
															public	void	perform(my.Task	task)	{	.....	}
}

In	 the	above	example	 listing,	 the	MyBean	class	contains	multiple	methods	named	perform.	To	uniquely
identify	the	bean	method	to	be	overridden,	the	<replaced-method>	element	uses	<arg-type>	sub-elements
to	 specify	method	 argument	 types.	 For	 instance,	 the	 following	 example	 listing	 shows	 how	 <replaced-
method>	element	specifies	that	the	perform(String,	String)	method	of	MyBean	class	should	be	replaced:

Example	listing	4-23	–	<replaced-method>	element	with	<arg-type>	sub-element
	
				<bean	id="mybean"	class="MyBean">
								<replaced-method	name="perform	"	replacer=".....">
												<arg-type>java.lang.String</arg-type>
												<arg-type>java.lang.String</arg-type>
								</replaced-method>
				</bean>

Instead	of	using	the	fully-qualified	name	as	the	value	of	<arg-type>	element,	you	can	use	a	substring	of	the
fully-qualified	name	as	the	value.	For	instance,	 instead	of	using	java.lang.String,	you	can	specify	Str	or
String	as	the	value	of	<arg-type>	element	in	the	above	example	listing.

http://cglib.sourceforge.net/


Let’s	now	look	at	Spring’s	autowiring	feature	that	saves	you	the	effort	of	specifying	bean	dependencies	in
the	application	context	XML	file.



4-6	Autowiring	dependencies
In	 Spring,	 you	 have	 the	 option	 to	 either	 explicitly	 specify	 bean	 dependencies	 using	 <property>	 and
<constructor-arg>	elements	or	let	Spring	automatically	resolve	bean	dependencies.	The	process	in	which
dependencies	are	automatically	resolved	by	Spring	is	referred	to	as	‘autowiring’.

IMPORT	chapter	4/ch04-bankapp-autowiring	 (This	 project	 shows	 the	MyBank	 application	 that	 uses
Spring’s	autowiring	feature	for	dependency	injection.	To	run	the	application,	execute	the	main	method	of
the	BankApp	class	of	this	project)

The	<bean>	element’s	autowire	attribute	specifies	how	a	bean’s	dependencies	are	automatically	resolved
by	Spring.	The	 autowire	 attribute	 can	 take	 any	 one	 of	 the	 following	 values:	 default,	 byName,	 byType,
constructor	and	no.	Let’s	now	look	at	each	of	these	attribute	values	in	detail.

NOTE	You	should	note	that	the	<bean>	element’s	autowire	attribute	is	not	inherited	by	child	bean
definitions.

byType
If	you	specify	autowire	attribute’s	value	as	byType,	Spring	autowires	bean	properties	based	on	their	type.
For	 instance,	 if	 a	 bean	 A	 defines	 a	 property	 of	 type	 X,	 Spring	 finds	 a	 bean	 of	 type	 X	 in	 the
ApplicationContext	and	injects	it	into	bean	A.	Let’s	look	at	an	example	usage	of	byType	autowiring	in	the
MyBank	application.

The	following	example	listing	shows	the	MyBank	application’s	CustomerRegistrationServiceImpl	class:

Example	listing	4-24	–	CustomerRegistrationServiceImpl	class
Project	–	ch04-bankapp-autowiring
Source	location	-	src/main/java/sample/spring/chapter04/bankapp/service
	
package	sample.spring.chapter04.bankapp.service;
	
public	class	CustomerRegistrationServiceImpl	implements	CustomerRegistrationService	{
	
				private	CustomerRegistrationDetails	customerRegistrationDetails;
				private	CustomerRegistrationDao	customerRegistrationDao;
				....
				public	void	setCustomerRegistrationDetails(
												CustomerRegistrationDetails	customerRegistrationDetails)	{
								this.customerRegistrationDetails	=	customerRegistrationDetails;
				}
				public	void	setCustomerRegistrationDao(
												CustomerRegistrationDao	customerRegistrationDao)	{
								this.customerRegistrationDao	=	customerRegistrationDao;
				}
				.....
}



The	 above	 example	 listing	 shows	 that	 the	 CustomerRegistrationServiceImpl	 class	 defines	 properties
named	customerRegistrationDetails	 (of	 type	CustomerRegistrationDetails)	and	customerRegistrationDao
(of	 type	 CustomerRegistrationDao).	 This	 means	 that	 the	 CustomerRegistrationDetails	 and
CustomerRegistrationDao	objects	are	dependencies	of	CustomerRegistrationServiceImpl	object.

The	 following	 example	 listing	 shows	 bean	 definitions	 for	 CustomerRegistrationServiceImpl,
CustomerRegistrationDetails	 and	 CustomerRegistrationDaoImpl	 (an	 implementation	 of
CustomerRegistrationDao	interface)	classes:

Example	listing	4-25	–	applicationContext.xml	-	autowiring	byType	configuration
Project	–	ch04-bankapp-autowiring
Source	location	-	src/main/resources/META-INF/spring

<bean	id="customerRegistrationService"
								class="sample.spring.chapter04.bankapp.service.CustomerRegistrationServiceImpl"
								scope="prototype"	autowire="byType"	/>
	
<bean	id="customerRegistrationDetails"
								class="sample.spring.chapter04.bankapp.domain.CustomerRegistrationDetails"
								scope="prototype"	/>
	
<bean	id="customerRegistrationDao"
								class="sample.spring.chapter04.bankapp.dao.CustomerRegistrationDaoImpl"	/>

In	the	above	example	listing,	the	customerRegistrationService	bean	definition	doesn’t	contain	<property>
elements	for	setting	customerRegistrationDetails	and	customerRegistrationDao	properties	(refer	example
listing	4-24).	Instead,	the	<bean>	element	specifies	autowire	attribute’s	value	as	byType	to	instruct	Spring
to	 automatically	 resolve	 dependencies	 of	 the	 customerRegistrationService	 bean	 based	 on	 their	 type.
Spring	 looks	 for	 beans	 of	 types	 CustomerRequestDetails	 and	 CustomerRegistrationDao	 in	 the
ApplicationContext,	 and	 injects	 them	 into	 the	 customerRegistrationService	 bean.	 As
customerRegistrationDetails	 and	 customerRegistrationDao	 beans	 represent	 beans	 of	 types
CustomerRegistrationDetails	 and	 CustomerRegistrationDao,	 the	 Spring	 container	 injects
customerRegistrationDetails	and	customerRegistrationDao	beans	into	customerRegistrationService	bean.

It	 may	 happen	 that	 Spring	 doesn’t	 find	 any	 bean	 registered	 with	 the	 ApplicationContext	 whose	 type
matches	 the	property	 type.	 In	 such	cases,	 no	exception	 is	 thrown	and	 the	bean	property	 is	not	 set.	 For
instance,	 if	 a	 bean	 defines	 a	 property	 x	 of	 type	Y,	 and	 there	 is	 no	 bean	 of	 type	Y	 registered	with	 the
ApplicationContext	 instance,	 the	 property	 x	 is	 not	 set.	 If	 Spring	 finds	 multiple	 beans	 in	 the
ApplicationContext	that	match	the	property	type,	an	exception	is	thrown.	In	such	cases,	 instead	of	using
autowiring	feature,	use	<property>	elements	to	explicitly	identify	bean	dependencies	or	set	a	bean	as	the
primary	candidate	for	autowiring	by	setting	the	value	of	primary	attribute	of	<bean>	element	to	true.

constructor
If	 you	 specify	 autowire	 attribute’s	 value	 as	 constructor,	 Spring	 autowires	 bean	 class’s	 constructor
arguments	based	on	their	type.	For	instance,	if	bean	A’s	constructor	accepts	arguments	of	type	X	and	Y,
Spring	finds	beans	of	types	X	and	Y	in	the	ApplicationContext	and	injects	them	as	arguments	to	bean	A’s
constructor.	Let’s	look	at	an	example	usage	of	constructor	autowiring	in	the	MyBank	application.



The	following	example	listing	shows	the	MyBank	application’s	CustomerRequestServiceImpl	class:

Example	listing	4-26	–	CustomerRequestServiceImpl	class
Project	–	ch04-bankapp-autowiring
Source	location	-	src/main/java/sample/spring/chapter04/bankapp/service
	
package	sample.spring.chapter04.bankapp.service;
	
public	class	CustomerRequestServiceImpl	implements	CustomerRequestService	{
				private	CustomerRequestDetails	customerRequestDetails;
				private	CustomerRequestDao	customerRequestDao;
	
				@ConstructorProperties({	"customerRequestDetails",	"customerRequestDao"	})
				public	CustomerRequestServiceImpl(
												CustomerRequestDetails	customerRequestDetails,
												CustomerRequestDao	customerRequestDao)	{
								this.customerRequestDetails	=	customerRequestDetails;
								this.customerRequestDao	=	customerRequestDao;
				}
				.....
}

The	 CustomerRequestServiceImpl	 class	 defines	 a	 constructor	 that	 accepts	 arguments	 of	 type
CustomerRequestDetails	and	CustomerRequestDao.

The	 following	 example	 listing	 shows	 bean	 definitions	 for	 CustomerRequestServiceImpl,
CustomerRequestDetails	 and	 CustomerRequestDaoImpl	 (an	 implementation	 of	 CustomerRequestDao
interface)	classes:

Example	listing	4-27	–	applicationContext.xml	-	constructor	autowiring
Project	–	ch04-bankapp-autowiring
Source	location	-	src/main/resources/META-INF/spring

				<bean	id="customerRequestService"
								class="sample.spring.chapter04.bankapp.service.CustomerRequestServiceImpl"
								autowire="constructor">
				</bean>
	
				<bean	id="customerRequestDetails"
								class="sample.spring.chapter04.bankapp.domain.CustomerRequestDetails"	scope="prototype"	/>
	
				<bean	id="customerRequestDao"
								class="sample.spring.chapter04.bankapp.dao.CustomerRequestDaoImpl"	/>

In	 the	above	example	 listing,	 the	customerRequestService	bean	definition	specifies	autowire	 attribute’s
value	 as	 constructor,	 which	 means	 that	 Spring	 locates	 beans	 of	 types	 CustomerRequestDetails	 and
CustomerRequestDao	 in	 the	 ApplicationContext,	 and	 passes	 them	 as	 arguments	 to
CustomerRequestServiceImpl	 class’s	 constructor.	As	 customerRequestDetails	 and	 customerRequestDao



beans	 are	 of	 type	 CustomerRequestDetails	 and	 CustomerRequestDao,	 Spring	 automatically	 injects
instances	of	these	beans	into	customerRequestService	bean.

If	Spring	doesn’t	 find	any	bean	 in	 the	ApplicationContext	whose	 type	matches	 the	constructor	argument
type,	 the	 constructor	 argument	 is	 not	 set.	 If	 Spring	 finds	multiple	 beans	 in	 the	ApplicationContext	 that
match	 the	 constructor	 argument	 type,	 an	 exception	 is	 thrown;	 therefore,	 in	 such	 scenarios	 use
<constructor-arg>	 elements	 to	 explicitly	 identify	 bean	 dependencies	 or	 set	 a	 bean	 as	 the	 primary
candidate	for	autowiring	by	setting	value	of	primary	attribute	of	<bean>	element	to	true.

byName
If	 you	 specify	 autowire	 attribute’s	 value	 as	 byName,	 Spring	 autowires	 bean	 properties	 based	 on	 their
names.	 For	 instance,	 if	 a	 bean	 A	 defines	 a	 property	 named	 x,	 Spring	 finds	 a	 bean	 named	 x	 in	 the
ApplicationContext	and	injects	it	into	bean	A.	Let’s	look	at	an	example	usage	of	byName	autowiring	in	the
MyBank	application.

The	following	example	listing	shows	the	MyBank	application’s	FixedDepositServiceImpl	class:

Example	listing	4-28	–	FixedDepositServiceImpl	class
Project	–	ch04-bankapp-autowiring
Source	location	-	src/main/java/sample/spring/chapter04/bankapp/service
	
package	sample.spring.chapter04.bankapp.service;
	
import	sample.spring.chapter04.bankapp.dao.FixedDepositDao;
import	sample.spring.chapter04.bankapp.domain.FixedDepositDetails;
	
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				private	FixedDepositDao	myFixedDepositDao;
	
				public	void	setMyFixedDepositDao(FixedDepositDao	myFixedDepositDao)	{
								this.myFixedDepositDao	=	myFixedDepositDao;
				}
				.....
}

The	 above	 example	 listing	 shows	 that	 FixedDepositServiceImpl	 class	 defines	 a	 property	 named
myFixedDepositDao	of	type	FixedDepositDao.

The	 following	 example	 listing	 shows	 bean	 definitions	 for	 FixedDepositServiceImpl	 and
FixedDepositDaoImpl	(an	implementation	of	FixedDepositDao	interface)	classes:

Example	listing	4-29	–	applicationContext.xml	-	byName	autowiring
Project	–	ch04-bankapp-autowiring
Source	location	-	src/main/resources/META-INF/spring

				<bean	id="FixedDepositService"
								class="sample.spring.chapter04.bankapp.service.FixedDepositServiceImpl"
								autowire="byName"	/>



	
				<bean	id="myFixedDepositDao"
								class="sample.spring.chapter04.bankapp.dao.FixedDepositDaoImpl"	/>

In	the	above	example	listing,	FixedDepositService	bean	definition	specifies	autowire	attribute’s	value	as
byName,	 which	 means	 properties	 of	 FixedDepositService	 bean	 are	 automatically	 resolved	 by	 Spring
based	on	their	names.	In	listing	4-28,	we	saw	that	the	FixedDepositServiceImpl	class	defines	a	property
named	 myFixedDepositDao;	 therefore,	 Spring	 looks	 for	 a	 bean	 named	 myFixedDepositDao	 in	 the
ApplicationContext	 and	 injects	 it	 into	 FixedDepositService	 bean.	 In	 the	 above	 example	 listing,
myFixedDepositDao	 bean	 definition	 represents	 the	 FixedDepositDaoImpl	 class,	 which	 means	 that	 an
instance	 of	 FixedDepositDaoImpl	 is	 injected	 for	 property	 named	 myFixedDepositDao	 in	 the
FixedDepositService	bean.

default	/	no
If	you	specify	autowire	attribute’s	value	as	default	or	no,	autowiring	feature	is	disabled	for	the	bean.	As
Spring’s	 default	 behavior	 is	 to	 use	 no	 autowiring	 for	 beans,	 specifying	 autowire	 attribute’s	 value	 as
default	means	no	autowiring	will	be	performed	for	the	bean.	You	can	explicitly	specify	that	a	bean	must
not	use	Spring’s	autowiring	feature	by	specifying	autowire	attribute’s	value	as	no.

NOTE	You	can	change	the	default	autowiring	behavior	of	beans	by	setting	the	default-autowire	attribute
of	<beans>	element.	For	 instance,	 if	you	 set	default-autowire	attribute’s	value	 to	byType,	 it	 effectively
means	setting	value	of	autowire	attribute	of	all	the	<bean>	elements	in	the	application	context	XML	file	to
byType.	You	should	note	that	if	a	<bean>	element’s	autowire	attribute	specifies	a	different	value	than	the
<beans>	element’s	default-autowire	attribute,	the	<bean>	element’s	autowire	attribute	value	applies	to	the
bean.

The	 following	 example	 listing	 shows	 the	 bean	 definition	 for	 the	 MyBank	 application’s
CustomerRegistrationServiceImpl	class	that	specifies	autowire	attribute’s	value	as	no:

Example	listing	4-30	–	applicationContext.xml	-	no	autowiring
Project	–	ch04-bankapp-autowiring
Source	location	-	src/main/resources/META-INF/spring

				<bean	id="customerRegistrationService_"
								class="sample.spring.chapter04.bankapp.service.CustomerRegistrationServiceImpl"
								scope="prototype"	autowire="no"	/>

Example	 listing	 4-24	 showed	 that	 the	 CustomerRegistrationServiceImpl	 class	 defines
customerRegistrationDetails	(of	type	CustomerRegistrationDetails)	and	customerRegistrationDao	(of	type
CustomerRegistrationDao)	 properties.	 As	 the	 autowire	 attribute’s	 value	 is	 specified	 as	 no	 for
customerRegistrationService_	bean,	autowiring	is	disabled	for	customerRegistrationService_	bean.	This
means	 that	 the	 customerRegistrationDetails	 and	 customerRegistrationDao	 properties	 of
customerRegistrationService_	bean	are	not	set	by	Spring.

So	 far	 in	 this	 section	we	 have	 seen	 different	 ways	 in	which	 bean	 dependencies	 can	 be	 autowired	 by
Spring.	Let’s	now	look	at	how	we	can	make	a	bean	unavailable	 for	autowiring	purposes	using	<bean>
element’s	autowire-candidate	attribute.



Making	beans	unavailable	for	autowiring
The	default	behavior	of	the	Spring	container	is	to	make	beans	available	for	autowiring.	You	can	make	a
bean	unavailable	to	other	beans	for	autowiring	purposes	by	setting	autowire-candidate	attribute’s	value	to
false.

In	 MyBank	 application,	 the	 AccountStatementServiceImpl	 class	 defines	 a	 property	 of	 type
AccountStatementDao.	The	following	example	listing	shows	the	AccountStatementServiceImpl	class:

Example	listing	4-31	–	AccountStatementServiceImpl	class
Project	–	ch04-bankapp-autowiring
Source	location	-	src/main/java/sample/spring/chapter04/bankapp/service
	
package	sample.spring.chapter04.bankapp.service;
	
import	sample.spring.chapter04.bankapp.dao.AccountStatementDao;
import	sample.spring.chapter04.bankapp.domain.AccountStatement;
	
public	class	AccountStatementServiceImpl	implements	AccountStatementService	{
				private	AccountStatementDao	accountStatementDao;
			
				public	void	setAccountStatementDao(AccountStatementDao	accountStatementDao)	{
								this.accountStatementDao	=	accountStatementDao;
				}
				.....
}

The	 following	 example	 listing	 shows	 bean	 definitions	 for	 AccountStatementServiceImpl	 and
AccountStatementDaoImpl	(an	implementation	of	AccountStatementDao	interface)	classes:

Example	listing	4-32	–	applicationContext.xml	-	autowire-candidate	attribute
Project	–	ch04-bankapp-autowiring
Source	location	-	src/main/resources/META-INF/spring

<bean	id="accountStatementService"
								class="sample.spring.chapter04.bankapp.service.AccountStatementServiceImpl"
								autowire="byType"	/>
	
<bean	id="accountStatementDao"
								class="sample.spring.chapter04.bankapp.dao.AccountStatementDaoImpl"
								autowire-candidate="false"	/>

In	 the	above	example	 listing,	 the	accountStatementService	bean	definition	specifies	autowire	attribute’s
value	as	byType,	which	means	AccountStatementDao	property	 type	of	accountStatementService	bean	 is
autowired	by	 type.	As	accountStatementDao	bean	 is	of	 type	AccountStatementDao,	you	might	 think	 that
Spring	 will	 inject	 accountStatementDao	 bean	 instance	 into	 accountStatementService	 bean.	 But,	 Spring
won’t	 consider	 accountStatementDao	 bean	 for	 autowiring	 purposes	 because	 the	 accountStatementDao
bean	definition	specifies	autowire-candidate	attribute’s	value	as	false.



NOTE	You	should	note	that	a	bean	that	is	unavailable	to	other	beans	for	autowiring	purposes	can	itself
make	use	of	Spring’s	autowiring	feature	to	automatically	resolve	it’s	dependencies.

As	 mentioned	 earlier,	 the	 default	 behavior	 of	 the	 Spring	 container	 is	 to	 make	 beans	 available	 for
autowiring	 purposes.	 To	 make	 only	 only	 a	 select	 set	 of	 beans	 available	 for	 autowiring	 purposes,	 set
<beans>	 element’s	 default-autowire-candidates	 attribute.	 The	 default-autowire-candidates	 attribute
specifies	 a	 bean	 name	 pattern,	 and	 only	 beans	 whose	 names	 match	 the	 specified	 pattern	 are	 made
available	 for	 autowiring.	 	The	 following	example	 listing	 shows	an	example	usage	of	default-autowire-
candidates	attribute:

Example	listing	4-33	–	default-autowire-candidates	attribute	example

<beans	default-autowire-candidates="*Dao"	>
				.....
				<bean	id="customerRequestDetails"
								class="sample.spring.chapter04.bankapp.domain.CustomerRequestDetails"
								scope="prototype"	autowire-candidate="true"/>
	
				<bean	id="customerRequestDao"
								class="sample.spring.chapter04.bankapp.dao.CustomerRequestDaoImpl"	/>
	
				<bean	id="customerRegistrationDao"
								class="sample.spring.chapter04.bankapp.dao.CustomerRegistrationDaoImpl"	/>
				.....
</beans>

In	the	above	example	listing,	default-autowire-candidates	value	 is	set	 to	*Dao,	which	means	 that	beans
whose	 names	 end	 with	 Dao	 (like	 customerRequestDao	 and	 customerRegistrationDao	 beans)	 will	 be
available	 for	 autowiring	 purposes.	 If	 a	 bean	 name	 doesn’t	match	 the	 pattern	 specified	 by	 the	 default-
autowire-candidates	 attribute	 (like	 customerRequestDetails	 bean),	 you	 can	 still	 make	 it	 available	 for
autowiring	purposes	by	setting	the	autowire-candidate	attribute	of	 the	corresponding	<bean>	element	 to
true.

Let’s	now	look	at	limitations	of	using	autowiring	in	applications.

Autowiring	limitations
We	saw	that	autowiring	feature	saves	the	effort	to	explicitly	specify	bean	dependencies	using	<property>
and	<constructor-arg>	elements.	The	downsides	of	using	autowiring	feature	are:

·								You	can’t	use	autowiring	to	set	properties	or	constructor	arguments	that	are	of	simple	Java	types
(like	 int,	 long,	boolean,	String,	Date,	 and	 so	on).	You	can	autowire	arrays,	 typed	collections	and
maps	if	the	autowire	attribute’s	value	is	set	to	byType	or	constructor.

·	 	 	 	 	 	 	 	As	bean	dependencies	 are	 automatically	 resolved	by	Spring,	 it	 results	 in	hiding	 the	overall
structure	of	the	application.	If	you	use	<property>	and	<constructor-arg>	elements	to	specify	bean
dependencies,	it	results	in	explicitly	documenting	the	overall	structure	of	the	application.	You	can
easily	 understand	 and	 maintain	 an	 application	 in	 which	 bean	 dependencies	 are	 explicitly
documented.	For	this	reason,	it	is	not	recommended	to	use	autowiring	in	large	applications.





4-7	Summary
In	this	chapter,	we	looked	at	how	Spring	caters	to	different	dependency	injection	scenarios.	We	looked	at
how	 you	 can	 use	 ApplicationContextAware	 interface,	 <replaced-method>	 and	 <lookup-method>	 sub-
elements	of	<bean>	element	 to	programmatically	 retrieve	a	bean	 instance	 from	 the	ApplicationContext.
We	 also	 looked	 at	 how	 Spring’s	 autowiring	 feature	 can	 save	 the	 effort	 for	 explicitly	 specifying	 bean
dependencies	 in	 the	 application	 context	XML	 file.	 In	 the	 next	 chapter,	we’ll	 look	 at	 how	 to	 customize
beans	and	bean	definitions.



Chapter	5	-	Customizing	beans	and	bean	definitions



5-1	Introduction
So	far	in	this	book	we	have	seen	examples	in	which	the	Spring	container	created	a	bean	instance	based	on
the	bean	definition	specified	in	the	application	context	XML	file.	In	this	chapter,	we’ll	go	a	step	further
and	look	at:

·								how	to	incorporate	custom	initialization	and	destruction	logic	for	a	bean
·								how	to	interact	with	a	newly	created	bean	instance	by	implementing	Spring’s	BeanPostProcessor

interface
·								how	to	modify	bean	definitions	by	implementing	Spring’s	BeanFactoryPostProcessor	interface



5-2	Customizing	bean’s	initialization	and	destruction	logic
We	 saw	 in	 earlier	 chapters	 that	 the	 Spring	 container	 is	 responsible	 for	 creating	 a	 bean	 instance	 and
injecting	its	dependencies.	After	creating	a	bean	instance	by	invoking	the	constructor	of	the	bean	class,	the
Spring	container	sets	bean	properties	by	 invoking	bean’s	setter	methods.	 If	you	want	 to	execute	custom
initialization	 logic	 (like	 opening	 a	 file,	 creating	 a	 database	 connection,	 and	 so	 on)	 after	 the	 bean
properties	are	set	but	before	the	bean	is	completely	initialized	by	the	Spring	container,	you	can	do	so	by
specifying	the	name	of	the	initialization	method	as	the	value	of	init-method	attribute	of	<bean>	element.
Similarly,	 if	you	want	 to	 execute	 custom	cleanup	 logic	before	 the	Spring	container	 containing	 the	bean
instance	 is	 destroyed,	 you	 can	 specify	 the	 name	 of	 the	 cleanup	 method	 as	 the	 value	 of	 destroy-
method	attribute	of	<bean>	element.

IMPORT	 chapter	 5/ch05-bankapp-customization	 (This	 project	 shows	 the	 MyBank	 application	 that
uses	 <bean>	 element’s	 init-method	 and	 destroy-method	 elements	 to	 specify	 custom	 initialization	 and
destruction	methods.	To	test	whether	the	initialization	method	is	executed,	execute	the	main	method	of	the
BankApp	 class	 of	 this	 project.	 To	 test	 whether	 the	 destruction	 method	 is	 executed,	 execute	 the	 main
method	of	the	BankAppWithHook	class	of	this	project.)

The	 following	 example	 listing	 shows	 the	 MyBank’s	 FixedDepositDaoImpl	 class	 that	 defines	 an
initialization	method	named	initializeDbConnection	for	obtaining	connection	to	MyBank’s	database,	and	a
destruction	method	named	releaseDbConnection	for	releasing	the	connection:

Example	listing	5-1	–	FixedDepositDaoImpl	class	-	Custom	initialization	and	destruction	logic
Project	–	ch05-bankapp-customization
Source	location	-	src/main/java/sample/spring/chapter05/bankapp/dao
	
package	sample.spring.chapter05.bankapp.dao;
	
public	class	FixedDepositDaoImpl	implements	FixedDepositDao	{
				private	static	Logger	logger	=	Logger.getLogger(FixedDepositDaoImpl.class);
				private	DatabaseConnection	connection;
	
				public	FixedDepositDaoImpl()	{
								logger.info("FixedDepositDaoImpl's	constructor	invoked");
				}
	
				public	void	initializeDbConnection()	{
								logger.info("FixedDepositDaoImpl’s	initializeDbConnection	method	invoked");
								connection	=	DatabaseConnection.getInstance();
				}
	
				public	boolean	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	{
								logger.info("FixedDepositDaoImpl’s	createFixedDeposit	method	invoked");
								//	--	save	the	fixed	deposits	and	then	return	true
								return	true;
				}



	
				public	void	releaseDbConnection()	{
								logger.info("FixedDepositDaoImpl’s	releaseDbConnection	method	invoked");
								connection.releaseConnection();
				}
}

In	 the	above	example	 listing,	 the	DatabaseConnection	object	 is	used	 for	 interacting	with	 the	MyBank’s
database.	 FixedDepositDaoImpl	 class	 defines	 an	 initializeDbConnection	 method	 that	 initializes	 the
DatabaseConnection	 object,	 which	 is	 later	 used	 by	 the	 createFixedDeposit	 method	 for	 saving	 fixed
deposit	details	in	the	MyBank’s	database.

The	 following	 example	 listing	 shows	 the	 MyBank’s	 FixedDepositServiceImpl	 class	 that	 uses
FixedDepositDaoImpl	instance	to	create	new	fixed	deposits:

Example	listing	5-2	–	FixedDepositServiceImpl	class
Project	–	ch05-bankapp-customization
Source	location	-	src/main/java/sample/spring/chapter05/bankapp/service
	
package	sample.spring.chapter05.bankapp.service;
	
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				private	static	Logger	logger	=	Logger.getLogger(FixedDepositServiceImpl.class);
				private	FixedDepositDao	myFixedDepositDao;
	
				public	void	setMyFixedDepositDao(FixedDepositDao	myFixedDepositDao)	{
								logger.info("FixedDepositServiceImpl's	setMyFixedDepositDao	method	invoked");
								this.myFixedDepositDao	=	myFixedDepositDao;
				}
	
				@Override
				public	void	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	throws	Exception	{
								//	--	create	fixed	deposit
								myFixedDepositDao.createFixedDeposit(fixedDepositDetails);
				}
}

The	 above	 example	 listing	 shows	 that	 the	 FixedDepositDaoImpl	 instance	 is	 a	 dependency	 of
FixedDepositServiceImpl,	 and	 is	 passed	 as	 an	 argument	 to	 the	 setMyFixedDepositDao	 setter-method.
And,	 if	 FixedDepositServiceImpl’s	 createFixedDeposit	 method	 is	 invoked,	 it	 results	 in	 invocation	 of
FixedDepositDaoImpl’s	createFixedDeposit	method.

The	 following	 example	 listing	 shows	 bean	 definitions	 for	 FixedDepositDaoImpl	 and
FixedDepositServiceImpl	classes:

Example	listing	5-3	–	applicationContext.xml	–	usage	of	init-method	and	destroy-method	attributes
Project	–	ch05-bankapp-customization
Source	location	-	src/main/resources/META-INF/spring



	
<beans	.....>
				<bean	id="FixedDepositService"
								class="sample.spring.chapter05.bankapp.service.FixedDepositServiceImpl">
								<property	name="myFixedDepositDao"	ref="myFixedDepositDao"	/>
				</bean>
	
				<bean	id="myFixedDepositDao"
								class="sample.spring.chapter05.bankapp.dao.FixedDepositDaoImpl"
								init-method="initializeDbConnection"	destroy-method="releaseDbConnection"	/>
</beans>

The	 above	 example	 listing	 shows	 that	 the	 <bean>	 element	 corresponding	 to	 the	 FixedDepositDaoImpl
class	 specifies	 initializeDbConnection	 and	 releaseDbConnection	 as	 the	 values	 of	 init-method	 and
destroy-method	attributes,	respectively.

NOTE	It	is	important	to	note	that	the	initialization	and	destruction	methods	specified	by	the	init-method
and	destroy-method	attributes	of	<bean>	element	must	not	accept	any	arguments,	but	can	be	defined	to
throw	exceptions.

The	 following	 example	 listing	 shows	 BankApp	 class	 whose	 main	 method	 retrieves
FixedDepositServiceImpl	instance	from	the	ApplicationContext	and	 invokes	FixedDepositServiceImpl’s
createFixedDeposit	method:

Example	listing	5-4	–	BankApp	class
Project	–	ch05-bankapp-customization
Source	location	-	src/main/java/sample/spring/chapter05/bankapp
	
package	sample.spring.chapter05.bankapp;
	
public	class	BankApp	{
				public	static	void	main(String	args[])	throws	Exception	{
								ApplicationContext	context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
	
								FixedDepositService	FixedDepositService	=	context.getBean(FixedDepositService.class);
								FixedDepositService.createFixedDeposit(new	FixedDepositDetails(1,	1000,
																12,	"someemail@somedomain.com"));
				}
}

If	you	now	execute	the	BankApp’s	main	method,	you’ll	see	the	following	output	on	the	console:
FixedDepositDaoImpl's	constructor	invoked
FixedDepositDaoImpl’s	initializeDbConnection	method	invoked
FixedDepositServiceImpl's	setMyFixedDepositDao	method	invoked
FixedDepositDaoImpl’s	createFixedDeposit	method	invoked

The	above	output	shows	that	the	Spring	container	first	creates	FixedDepositDaoImpl’s	instance,	and	then



invokes	 initializeDbConnection	 method.	 After	 the	 invocation	 of	 initializeDbConnection	 method,	 the
FixedDepositDaoImpl	instance	is	injected	into	the	FixedDepositServiceImpl	instance.	This	shows	that	the
Spring	container	injects	a	dependency	(the	FixedDepositDaoImpl	instance)	into	the	dependent	bean	(the
FixedDepositServiceImpl	 instance)	after	 the	 initialization	method	of	 the	 dependency	 is	 invoked	by	 the
Spring	container.

You	may	have	noticed	that	the	output	from	executing	BankApp’s	main	method	didn’t	contain	the	following
message:	FixedDepositDaoImpl’s	releaseDbConnection	method	invoked	(refer	FixedDepositDaoImpl’s
releaseDbConnection	 method	 in	 example	 listing	 5-1).	 This	 means	 that	 the	 FixedDepositDaoImpl’s
releaseDbConnection	 method	 was	 not	 called	 by	 the	 Spring	 container	 when	 BankApp’s	 main	 method
exited.	In	a	real	world	application	development	scenario,	this	means	that	the	database	connection	held	by
FixedDepositDaoImpl	 instance	 is	 never	 released.	 Let’s	 now	 see	 how	 you	 can	make	 Spring	 gracefully
destroy	singleton-scoped	bean	instances	by	calling	the	cleanup	method	specified	by	the	<bean>	element’s
destroy-method	attribute.

Making	Spring	invoke	cleanup	method	specified	by	the	destory-method	attribute
The	 web	 version	 of	 ApplicationContext	 implementation	 is	 represented	 by	 Spring’s
WebApplicationContext	object.	WebApplicationContext	implementation	has	the	necessary	logic	to	invoke
the	cleanup	method	(specified	by	the	destroy-method	attribute)	of	singleton-scoped	bean	instances	before
the	web	application	is	shutdown.

NOTE	The	approach	described	in	this	section	on	making	Spring	gracefully	destroy	singleton-scoped	bean
instances	by	calling	the	cleanup	method	is	specific	to	standalone	applications.

The	following	example	listing	shows	the	BankAppWithHook	class	(a	modified	version	of	BankApp	class
shown	 in	example	 listing	5-4)	whose	main	method	 ensures	 that	 cleanup	methods	 (specified	by	<bean>
element’s	destroy-method	attribute)	of	all	singleton-scoped	beans	registered	with	the	Spring	container	are
invoked	when	the	main	method	exits:

Example	listing	5-5	–	BankAppWithHook	class	–	registering	a	shutdown	hook	with	JVM
Project	–	ch05-bankapp-customization
Source	location	-	src/main/java/sample/spring/chapter05/bankapp
	
package	sample.spring.chapter05.bankapp;
	
public	class	BankAppWithHook	{
				public	static	void	main(String	args[])	throws	Exception	{
								AbstractApplicationContext	context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
	
								context.registerShutdownHook();
	
								FixedDepositService	FixedDepositService	=	context.getBean(FixedDepositService.class);
								FixedDepositService.createFixedDeposit(new	FixedDepositDetails(1,	1000,
																12,	"someemail@somedomain.com"));
				}
}



Spring’s	 AbstractionApplicationContext	 class	 implements	 ApplicationContext	 interface	 and	 defines	 a
registerShutdownHook	 method	 that	 registers	 a	 shutdown	 hook	 with	 the	 JVM.	 The	 shutdown	 hook	 is
responsible	for	closing	the	ApplicationContext	when	the	JVM	is	shutdown.	In	the	above	example	listing,
you’ll	 notice	 that	 the	 ClassPathXmlApplicationContext	 instance	 is	 assigned	 to
AbstractionApplicationContext	 type,	 and	 the	AbstractionApplicationContext’s	 registerShutdownHook	 is
called	to	register	a	shutdown	hook	with	the	JVM.	When	the	BankAppWithHook’s	main	method	exists,	the
shutdown	hook	destroys	all	cached	singleton	bean	instances	and	closes	the	ApplicationContext	instance.

If	you	execute	BankAppWithHook’s	main	method	of	ch05-bankapp-customization	project,	you’ll	see	 the
following	output	on	the	console:

FixedDepositDaoImpl's	constructor	invoked
FixedDepositDaoImpl’s	initializeDbConnection	method	invoked
FixedDepositServiceImpl's	setMyFixedDepositDao	method	invoked
FixedDepositDaoImpl's	releaseDbConnection	method	invoked

The	message	 ‘FixedDepositDaoImpl's	releaseDbConnection	method	 invoked’	on	 the	console	confirms
that	 the	 FixedDepositDaoImpl’s	 releaseDbConnection	 method	 (refer	 FixedDepositDaoImpl’s
releaseDbConnection	 method	 in	 example	 listing	 5-1)	 was	 invoked.	 As	 you	 can	 see,	 registering	 a
shutdown	 hook	 with	 the	 JVM	 resulted	 in	 invocation	 of	 the	 cleanup	 method	 of	 the	 singleton-scoped
myFixedDepositDao	bean	(corresponding	to	the	FixedDepositDaoImpl	class).

Let’s	now	look	at	the	impact	of	shutdown	hook	on	prototype-scoped	beans.

Cleanup	methods	and	prototype-scoped	beans
In	 case	 of	 prototype-scoped	 beans,	 destroy-method	 attribute	 is	 ignored	 by	 the	 Spring	 container.	 The
destroy-method	attribute	 is	 ignored	because	 the	Spring	container	expects	 that	 the	object	 that	 fetches	 the
prototype-scoped	 bean	 instance	 from	 the	 ApplicationContext	 is	 responsible	 for	 explicitly	 calling	 the
cleanup	method	on	the	prototype-scoped	bean	instance.

NOTE	Lifecycles	of	prototype-	and	singleton-scoped	beans	are	same,	except	that	the	Spring	container
will	not	call	the	cleanup	method	(specified	by	the	destroy-init	attribute)	of	the	prototype-scoped	bean
instance.

Let’s	 now	 look	 at	 how	you	 can	 specify	 default	 initialization	 and	 destruction	methods	 for	 all	 the	 beans
contained	in	the	application	context	XML	file.

Specifying	default	bean	initialization	and	destruction	methods	for	all	beans
You	can	use	the	default-init-method	and	default-destroy-method	attributes	of	<beans>	element	to	specify
default	initialization	and	destruction	methods	for	beans,	as	shown	in	the	following	example	listing:

Example	listing	5-6	–	default-init-method	and	default-destroy-method	attributes
	
<beans		.....	default-init-method="initialize"	default-destroy-method="release">
				<bean	id="A"	class="....."	init-method="initializeService"	/>
				<bean	id="B"	class="....."	/>
</beans>

If	 multiple	 beans	 define	 initialization	 or	 cleanup	methods	 with	 the	 same	 name,	 it	 makes	 sense	 to	 use



default-init-method	and	default-destroy-method	attributes.	By	specifying	init-method	and	destroy-method
attributes,	a	<bean>	element	can	override	the	values	specified	by	<beans>	element’s	default-init-method
and	default-destroy-method	attributes.	For	 instance,	 in	 the	above	example	 listing,	bean	A	specifies	 init-
method	 attribute	 value	 as	 initializeService,	 which	 means	 initializeService	 method	 (and	 not	 initialize
method	specified	by	the	default-init-method	attribute	of	<beans>	element)	 is	 the	initialization	method	of
bean	A.

Instead	 of	 using	 init-method	 and	 destroy-method	 attributes	 of	 <bean>	 element	 to	 specify	 custom
initialization	 and	 destruction	 methods,	 you	 can	 use	 Spring’s	 InitializingBean	 and	 DisposableBean
lifecycle	interfaces.

InitializingBean	and	DisposableBean	lifecycle	interfaces
A	bean	that	implements	lifecycle	interfaces,	like	ApplicationContextAware	(refer	section	4-5	of	chapter
4),	InitializingBean	and	DisposableBean,	receives	callbacks	from	the	Spring	container	to	give	a	chance	to
the	 bean	 instance	 to	 perform	 some	 action,	 or	 to	 provide	 bean	 instance	 with	 some	 information.	 For
instance,	 if	 a	 bean	 implements	 ApplicationContextAware	 interface,	 container	 invokes
setApplicationContext	 method	 of	 the	 bean	 instance	 to	 provide	 the	 bean	 with	 a	 reference	 to	 the
ApplicationContext	in	which	the	bean	is	deployed.

InitializingBean	 interface	 defines	 an	 afterPropertiesSet	method	 that	 is	 invoked	 by	 the	 Spring	 container
after	the	bean	properties	are	set.	Beans	perform	initialization	work	in	the	afterPropertiesSet	method,	like
obtaining	connection	to	a	database,	opening	a	flat	file	for	reading,	and	so	on.	DisposableBean	 interface
defines	a	destroy	method	that	is	invoked	by	the	Spring	container	when	the	bean	instance	is	destroyed.

NOTE	 As	 with	 the	 ApplicationContextAware	 lifecycle	 interface,	 beans	 should	 avoid	 implementing
InitializingBean	and	DisposableBean	interfaces	because	it	couples	application	code	with	Spring.

Let’s	 now	 look	 at	 JSR	 250’s	 @PostConstruct	 and	 @PreDestroy	 annotations	 for	 specifying	 bean
initialization	and	destruction	methods.

JSR	250’s	@PostConstruct	and	@PreDestroy	annotations
JSR	250	(Common	Annotations	for	the	Java	Platform)	defines	standard	annotations	that	are	used	across
different	 Java	 technologies.	 JSR	 250’s	 @PostConstruct	 and	 @PreDestroy	 annotations	 identify
initialization	 and	 destruction	 methods	 of	 an	 object.	 A	 bean	 class	 in	 Spring	 can	 set	 a	 method	 as	 an
initialization	method	by	annotating	it	with	@PostConstruct,	and	set	a	method	as	a	destruction	method	by
annotating	it	with	@PreDestroy	annotation.

NOTE	Refer	JSR	250	home	page	(http://jcp.org/en/jsr/detail?id=250)	for	more	details.

IMPORT	chapter	5/ch05-bankapp-jsr250	 (This	project	 shows	 the	MyBank	application	 that	uses	 JSR
250’s	 @PostConstruct	 and	 @PreDestroy	 annotations	 to	 identify	 custom	 initialization	 and	 destruction
methods,	respectively.	To	test	whether	the	initialization	method	is	executed,	execute	the	main	method	of
the	BankApp	class	of	 this	project.	To	test	whether	 the	destruction	method	is	executed,	execute	 the	main
method	of	the	BankAppWithHook	class	of	this	project.)

The	following	example	listing	shows	the	FixedDepositDaoImpl	class	of	ch05-bankapp-jsr250	project	that
uses	@PostConstruct	and	@PreDestroy	annotations:

http://jcp.org/en/jsr/detail?id=250


Example	listing	5-7	–	FixedDepositDaoImpl	class	-	@PostConstruct	and	@PreDestroy	annotations
Project	–	ch05-bankapp-jsr250
Source	location	-	src/main/java/sample/spring/chapter05/bankapp/dao
	
package	sample.spring.chapter05.bankapp.dao;
	
import	javax.annotation.PostConstruct;
import	javax.annotation.PreDestroy;
	
public	class	FixedDepositDaoImpl	implements	FixedDepositDao	{
				private	DatabaseConnection	connection;
				.....
				@PostConstruct
				public	void	initializeDbConnection()	{
								logger.info("FixedDepositDaoImplís	initializeDbConnection	method	invoked");
								connection	=	DatabaseConnection.getInstance();
				}
				.....
				@PreDestroy
				public	void	releaseDbConnection()	{
								logger.info("FixedDepositDaoImpl's	releaseDbConnection	method	invoked");
								connection.releaseConnection();
				}
}

In	 the	 above	 example	 listing,	 the	 FixedDepositDaoImpl	 class	 uses	@PostConstruct	 and	 @PreDestroy
annotations	 to	 identify	 initialization	and	destruction	methods.	You	should	note	 that	@PostConstruct	 and
@PreDestroy	annotations	are	not	specific	to	Spring.

NOTE	Java	SE	6	provides	annotations	defined	by	JSR	250;	if	you	are	using	Java	SE	6	or	later,	you	don’t
need	to	include	JSR	250	JAR	file	in	your	application’s	classpath.	If	you	are	using	Java	SE	5,	you	need	to
include	JSR	250	JAR	file	and	the	related	JAR	files	in	your	application’s	classpath.

	

To	use	@PostConstruct	and	@PreDestroy	annotations	in	your	application,	you	need	to	configure	Spring’s
CommonAnnotationBeanPostProcessor	class	in	the	application	context	XML	file,	as	shown	here:

Example	listing	5-8	–	applicationContext.xml	–	CommonAnnotationBeanPostProcessor	configuration
Project	–	ch05-bankapp-jsr250
Source	location	-	src/main/resources/META-INF/spring
	
<beans	.....>
				<bean	id="FixedDepositService"
								class="sample.spring.chapter05.bankapp.service.FixedDepositServiceImpl">
								<property	name="myFixedDepositDao"	ref="myFixedDepositDao"	/>
				</bean>



	
				<bean	id="myFixedDepositDao"
								class="sample.spring.chapter05.bankapp.dao.FixedDepositDaoImpl"	/>
	
				<bean
								class="org.springframework.context.annotation.CommonAnnotationBeanPostProcessor"/>
</beans>

CommonAnnotationBeanPostProcessor	 implements	 Spring’s	 BeanPostProcessor	 interface	 (explained	 in
the	next	section),	and	is	responsible	for	processing	JSR	250	annotations.

If	 you	 execute	 the	 main	 method	 of	 BankApp	 and	 BankAppWithHook	 classes,	 you’ll	 notice	 that	 the
@PostConstruct	 and	 @PreDestroy	 annotated	 methods	 of	 FixedDepositDaoImpl	 class	 are	 executed	 at
creation	and	destruction	of	FixedDepositDaoImpl	instance,	respectively.

We’ll	now	look	at	Spring’s	BeanPostProcessor	 interface	 that	allows	you	to	 interact	with	newly	created
bean	instances	before	or	after	they	are	initialized	by	the	Spring	container.



5-3	 Interacting	 with	 newly	 created	 bean	 instances	 using
BeanPostProcessor
BeanPostProcessor	 is	 used	 to	 interact	 with	 newly	 created	 bean	 instances	 before	 and/or	 after	 their
initialization	 method	 (refer	 section	 5-2)	 is	 invoked	 by	 the	 Spring	 container.	 You	 can	 use
BeanPostProcessor	to	execute	custom	logic	before	and/or	after	bean’s	initialization	method	is	invoked	by
the	Spring	container.

NOTE	A	bean	that	implements	Spring’s	BeanPostProcessor	interface	is	a	special	bean	type;
the	Spring	container	automatically	detects	and	executes	a	BeanPostProcessor	bean.

BeanPostProcessor	interface	defines	the	following	methods:

·	 	 	 	 	 	 	 	Object	postProcessBeforeInitialization(Object	 bean,	 String	 beanName)	 –	 this	method	 is
invoked	before	the	initialization	method	of	a	bean	instance	is	invoked

·	 	 	 	 	 	 	 	 Object	 postProcessAfterInitialization(Object	 bean,	 String	 beanName)	 –	 this	 method	 is
invoked	after	the	initialization	method	of	a	bean	instance	is	invoked

BeanPostProcessor’s	methods	accept	newly	created	bean	instance	and	its	name	as	arguments,	and	return
the	same	or	modified	bean	instance.	For	instance,	if	you	have	configured	a	FixedDepositDaoImpl	class	as
a	bean	with	id	value	as	myFixedDepositDao	in	the	application	context	XML	file	(refer	example	listing	5-
8),	 the	 BeanPostProcessor’s	 methods	 receive	 an	 instance	 of	 FixedDepositDaoImpl	 class	 and
myFixedDepositDao	string	value	as	arguments.	The	BeanPostProcessor’s	methods	may	return	the	original
bean	 instance	 as-is	 or	 they	may	modify	 the	 bean	 instance	 or	 they	may	 return	 an	 object	 that	wraps	 the
original	bean	instance.

You	 configure	 a	BeanPostProcessor	 implementation	 in	 the	 application	 context	XML	 file	 like	 any	 other
Spring	bean.	Spring	container	 automatically	detects	beans	 that	 implement	BeanPostProcessor	 interface,
and	creates	 their	 instance	before	 creating	 instance	 of	 any	other	 bean	defined	 in	 the	 application	 context
XML	 file.	 Once	 the	 BeanPostProcessor	 beans	 are	 created,	 the	 Spring	 container	 invokes	 each
BeanPostProcessor’s	postProcessBeforeInitialization	and	postProcessAfterInitialization	methods	for	each
bean	instance	created	by	the	Spring	container.

Let’s	 say	 that	 you	 have	 defined	 a	 singleton-scoped	 bean	 ABean	 and	 a	 BeanPostProcessor	 bean,
MyBeanPostProcessor,	 in	 the	application	context	XML	file.	Figure	5-1	 shows	a	 sequence	diagram	 that
depicts	the	sequence	in	which	MyBeanPostProcessor’s	methods	are	invoked	by	the	Spring	container.

The	init	method	call	in	the	sequence	diagram	represents	a	call	to	the	initialization	method	of	the	bean.	The
sequence	 diagram	 shows	 that	 the	 MyBeanPostProcessor	 instance	 is	 created	 before	 the	 ABean	 bean
instance	 is	 created.	 As	 a	 BeanPostProcessor	 implementation	 is	 configured	 like	 any	 other	 bean,	 if
MyBeanPostProcessor	defines	an	initialization	method,	container	invokes	the	initialization	method	of	the
MyBeanPostProcessor	instance.	After	ABean’s	instance	is	created,	setter	methods	of	the	ABean	 instance
are	invoked	by	the	Spring	container	to	satisfy	its	dependencies,	and	to	provide	the	bean	instance	with	the
required	configuration	information.	After	properties	are	set,	but	before	ABean’s	 initialization	method	 is
invoked,	 the	 Spring	 container	 invokes	MyBeanPostProcessor’s	 postProcessBeforeInitialization	method.
After	ABean’s	 initialization	 method	 is	 invoked,	MyBeanPostProcessor’s	 postProcessAfterInitialization
method	is	called	by	the	Spring	container.



Figure	 5-1	 –	 The	 Spring	 container	 invokes	 MyBeanPostProcessor’s	 methods	 before	 and	 after	 the
initialization	of	ABean’s	initialization	method

It’s	 only	 after	 invocation	 of	 postProcessAfterInitialization	 method,	 a	 bean	 instance	 is	 considered
completely	 initialized	 by	 the	 Spring	 container.	 For	 instance,	 if	 a	BBean	 bean	 is	 dependent	 on	ABean,
container	 will	 inject	 ABean	 instance	 into	 BBean	 only	 after	 MyBeanPostProcessor’s
postProcessAfterInitialization	is	invoked	for	both	ABean	and	BBean	instances.

You	should	note	that	if	the	bean	definition	for	a	BeanPostProcessor	bean	specifies	that	it	should	be	lazily
created	 (refer	 <bean>	 element’s	 lazy-init	 attribute	 or	 <beans>	 element’s	 default-lazy-init	 attribute	 in
section	 2-5	 of	 chapter	 2),	 the	 Spring	 container	 ignores	 lazy	 initialization	 configuration	 and	 creates	 the
BeanPostProcessor	 bean	 instance	 before	 creating	 instances	 of	 singleton-scoped	 beans	 defined	 in	 the
application	context	XML	file.	You	should	note	 that	 the	beans	 that	 implement	BeanFactoryPostProcessor
interface	 (explained	 in	 section	 5-4)	 are	 created	 before	 the	 beans	 that	 implement	 BeanPostProcessor
interface.

Let’s	now	look	at	some	example	scenarios	in	which	you	can	use	Spring’s	BeanPostProcessor.

IMPORT	 chapter	 5/ch05-bankapp-beanpostprocessor	 (This	 project	 shows	 the	 MyBank	 application
that	 uses	 BeanPostProcessor	 implementations	 to	 validate	 bean	 instances	 and	 to	 resolve	 bean
dependencies.	To	verify	that	the	BeanPostProcessor	implementations	function	correctly,	execute	the	main
method	of	the	BankApp	class	of	this	project.)

BeanPostProcessor	example	–	Validating	bean	instances
In	a	Spring	application,	you	may	want	 to	verify	 that	a	bean	instance	is	configured	correctly	before	it	 is
injected	into	dependent	beans	or	accessed	by	other	objects	in	the	application.	Let’s	see	how	we	can	use	a
BeanPostProcessor	 implementation	 to	 give	 an	 opportunity	 to	 each	 bean	 instance	 to	 validate	 its
configuration	before	the	bean	instance	is	made	available	to	dependent	beans	or	other	application	objects.

The	following	example	listing	shows	the	MyBank’s	InstanceValidator	interface	that	must	be	implemented
by	beans	whose	configuration	we	want	to	validate	using	a	BeanPostProcessor	implementation:



Example	listing	5-9	–	InstanceValidator	interface
Project	–	ch05-bankapp-beanpostprocessor
Source	location	-	src/main/java/sample/spring/chapter05/bankapp/common

package	sample.spring.chapter05.bankapp.common;
	
public	interface	InstanceValidator	{
				void	validateInstance();
}

InstanceValidator	interface	defines	a	validateInstance	method	that	verifies	whether	the	bean	instance	was
correctly	 initialized	 or	 not.	 We’ll	 soon	 see	 that	 the	 validateInstance	 method	 is	 invoked	 by	 a
BeanPostProcessor	implementation.

The	following	example	 listing	shows	 the	FixedDepositDaoImpl	class	 that	 implements	 InstanceValidator
interface:

Example	listing	5-10	–	FixedDepositDaoImpl	class
Project	–	ch05-bankapp-beanpostprocessor
Source	location	-	src/main/java/sample/spring/chapter05/bankapp/dao

package	sample.spring.chapter05.bankapp.dao;
	
import	org.apache.log4j.Logger;
import	sample.spring.chapter05.bankapp.common.InstanceValidator;
	
public	class	FixedDepositDaoImpl	implements	FixedDepositDao,	InstanceValidator	{
				private	static	Logger	logger	=	Logger.getLogger(FixedDepositDaoImpl.class);
			private	DatabaseConnection	connection;
	
				public	FixedDepositDaoImpl()	{
								logger.info("FixedDepositDaoImpl's	constructor	invoked");
				}
	
				public	void	initializeDbConnection()	{
								logger.info("FixedDepositDaoImplís	initializeDbConnection	method	invoked");
								connection	=	DatabaseConnection.getInstance();
				}
	
				@Override
				public	void	validateInstance()	{
								logger.info("Validating	FixedDepositDaoImpl	instance");
								if(connection	==	null)	{
												logger.error("Failed	to	obtain	DatabaseConnection	instance");
								}
				}
}



In	the	above	example	listing,	the	initializeDbConnection	method	is	the	initialization	method	that	retrieves
an	instance	of	DatabaseConnection	by	calling	getInstance	static	method	of	DatabaseConnection	class.	The
connection	 attribute	 is	 null	 if	 FixedDepositDaoImpl	 instance	 fails	 to	 retrieve	 an	 instance	 of
DatabaseConnection.	 If	 connection	 attribute	 is	 null,	 the	 validateInstance	method	 logs	 an	 error	message
indicating	 that	 the	 FixedDepositDaoImpl	 instance	 is	 not	 correctly	 initialized.	 As	 the
initializeDbConnection	 initialization	method	 sets	 the	 value	 of	 connection	 attribute,	 the	 validateInstance
method	 must	 be	 invoked	 after	 the	 initializeDbConnection	 method.	 In	 a	 real	 world	 application
development	scenario,	if	a	bean	instance	is	not	configured	correctly,	the	validateInstance	method	may	take
some	 corrective	 action	 or	 throw	 a	 runtime	 exception	 to	 stop	 the	 application	 from	 starting	 up.	 For
simplicity,	 the	 validateInstance	 method	 logs	 an	 error	 message	 if	 a	 bean	 instance	 is	 not	 configured
correctly.

The	 following	 example	 listing	 shows	 the	 InstanceValidationBeanPostProcessor	 class	 that	 implements
Spring’s	BeanPostProcessor	interface,	and	is	responsible	for	invoking	validateInstance	method	of	newly
created	beans:

Example	listing	5-11	–	InstanceValidationBeanPostProcessor	class
Project	–	ch05-bankapp-beanpostprocessor
Source	location	-	src/main/java/sample/spring/chapter05/bankapp/postprocessor

package	sample.spring.chapter05.bankapp.postprocessor;
	
import	org.springframework.beans.BeansException;
import	org.springframework.beans.factory.config.BeanPostProcessor;
import	org.springframework.core.Ordered;
	
public	class	InstanceValidationBeanPostProcessor	implements	BeanPostProcessor,	Ordered	{
				private	static	Logger	logger	=	Logger.getLogger(InstanceValidationBeanPostProcessor.class);
				private	int	order;
	
				public	InstanceValidationBeanPostProcessor()	{
								logger.info("Created	InstanceValidationBeanPostProcessor	instance");
				}
	
				@Override
				public	Object	postProcessBeforeInitialization(Object	bean,	String	beanName)
												throws	BeansException	{
								logger.info("postProcessBeforeInitialization	method	invoked");
								return	bean;
				}
	
				@Override
				public	Object	postProcessAfterInitialization(Object	bean,	String	beanName)
												throws	BeansException	{
								logger.info("postProcessAfterInitialization	method	invoked");
								if	(bean	instanceof	InstanceValidator)	{



												((InstanceValidator)	bean).validateInstance();
								}
								return	bean;
				}
	
				public	void	setOrder(int	order)	{
								this.order	=	order;
				}
	
				@Override
				public	int	getOrder()	{
								return	order;
				}
}

The	 above	 example	 listing	 shows	 that	 the	 InstanceValidationBeanPostProcessor	 class	 implements
Spring’s	BeanPostProcessor	and	Ordered	interfaces.	The	postProcessBeforeInitialization	method	simply
returns	the	bean	instance	passed	to	the	method.	In	the	postProcessAfterInitialization	method,	 if	 the	bean
instance	is	found	to	be	of	type	InstanceValidator,	the	bean	instance’s	validateInstance	method	is	invoked.
This	means	 that	 if	 a	 bean	 implements	 InstanceValidator	 interface,	 InstanceValidationBeanPostProcessor
calls	validateInstance	method	of	the	bean	instance	after	 the	initialization	method	of	the	bean	instance	is
invoked	by	the	Spring	container.

The	 Ordered	 interface	 defines	 a	 getOrder	 method	 which	 returns	 an	 integer	 value.	 The	 integer	 value
returned	 by	 the	 getOrder	method	 determines	 the	 priority	 of	 a	 BeanPostProcessor	 implementation	 with
respect	 to	other	BeanPostProcessor	 implementations	configured	 in	 the	application	context	XML	file.	A
BeanPostProcessor	with	higher	order	value	is	considered	at	a	 lower	priority,	and	 is	executed	after	 the
BeanPostProcessor	implementations	with	lower	order	values	are	executed.	As	we	want	the	integer	value
returned	by	 the	getOrder	method	 to	be	 configured	 as	 a	bean	property,	 a	 setOrder	method	 and	 an	order
instance	variable	are	defined	in	the	InstanceValidationBeanPostProcessor	class.

The	following	example	listing	shows	bean	definitions	for	InstanceValidationBeanPostProcessor	class:

Example	listing	5-12	–	InstanceValidationBeanPostProcessor	bean	definition
Project	–	ch05-bankapp-beanpostprocessor
Source	location	-	src/main/resources/META-INF/spring
	
<bean	class="…...bankapp.postprocessor.InstanceValidationBeanPostProcessor">
								<property	name="order"	value="1"	/>
</bean>

In	 the	above	bean	definition,	<bean>	element’s	 id	attribute	 is	not	 specified	because	we	 typically	don’t
want	 InstanceValidationBeanPostProcessor	 to	 be	 a	 dependency	 of	 any	 other	 bean.	 The	 <property>
element	sets	the	value	of	order	property	to	1.

Let’s	now	look	at	a	BeanPostProcessor	implementation	that	is	used	for	resolving	bean	dependencies.

BeanPostProcessor	example	–	Resolving	bean	dependencies



In	 chapter	 4,	 we	 saw	 that	 if	 a	 bean	 implements	 Spring’s	 ApplicationContextAware	 interface,	 it	 can
programmatically	 obtain	 bean	 instances	 using	 ApplicationContext’s	 getBean	 method.	 Implementing
ApplicationContextAware	interface	couples	the	application	code	with	Spring,	and	for	that	reason	it	is	not
recommended	 to	 implement	 ApplicationContextAware	 interface.	 In	 this	 section,	 we’ll	 look	 at	 a
BeanPostProcessor	implementation	that	provides	beans	with	an	object	that	wraps	an	ApplicationContext
instance,	 resulting	 in	 application	 code	 that	 is	not	 directly	 dependent	 on	ApplicationContextAware	 and
ApplicationContext	interfaces	of	Spring.

The	following	example	listing	shows	the	MyBank’s	DependencyResolver	interface	that	is	implemented	by
beans	who	want	to	programmatically	retrieve	their	dependencies	from	the	ApplicationContext:

Example	listing	5-13	–	DependencyResolver	interface
Project	–	ch05-bankapp-beanpostprocessor
Source	location	-	src/main/java/sample/spring/chapter05/bankapp/common

package	sample.spring.chapter05.bankapp.common;
	
public	interface	DependencyResolver	{
				void	resolveDependency(MyApplicationContext	myApplicationContext);
}

DependencyResolver	defines	a	resolveDependency	method	that	accepts	a	MyApplicationContext	object	–
a	 wrapper	 around	 ApplicationContext	 object.	 We’ll	 soon	 see	 that	 the	 resolveDependency	 method	 is
invoked	by	a	BeanPostProcessor	implementation.

The	 following	 example	 listing	 shows	 the	 FixedDepositServiceImpl	 class	 that	 implements
DependencyResolver	interface:

Example	listing	5-14	–	FixedDepositServiceImpl	class
Project	–	ch05-bankapp-beanpostprocessor
Source	location	-	src/main/java/sample/spring/chapter05/bankapp/service

package	sample.spring.chapter05.bankapp.service;
	
import	sample.spring.chapter05.bankapp.common.DependencyResolver;
import	sample.spring.chapter05.bankapp.common.MyApplicationContext;
	
public	class	FixedDepositServiceImpl	implements	FixedDepositService,	DependencyResolver	{
				private	FixedDepositDao	fixedDepositDao;
				.....
				@Override
				public	void	resolveDependency(MyApplicationContext	myApplicationContext)	{
								FixedDepositDao	=	myApplicationContext.getBean(FixedDepositDao.class);
				}
}

The	FixedDepositServiceImpl	class	defines	a	FixedDepositDao	attribute	of	type	FixedDepositDao.	The
resolveDependency	 method	 is	 responsible	 for	 obtaining	 an	 instance	 of	 FixedDepositDao	 object	 from



MyApplicationContext	 (a	 wrapper	 around	 Spring’s	 ApplicationContext	 object)	 and	 assigning	 it	 to	 the
FixedDepositDao	attribute.

The	 following	 example	 listing	 shows	 that	 the	 DependencyResolutionBeanPostProcessor	 class	 invokes
resolveDependency	method	on	beans	that	implement	DependencyResolver	interface:

Example	listing	5-15	–	DependencyResolutionBeanPostProcessor	class
Project	–	ch05-bankapp-beanpostprocessor
Source	location	-	src/main/java/sample/spring/chapter05/bankapp/postprocessor

package	sample.spring.chapter05.bankapp.postprocessor;
	
import	org.springframework.beans.factory.config.BeanPostProcessor;
import	org.springframework.core.Ordered;
import	sample.spring.chapter05.bankapp.common.MyApplicationContext;
	
public	class	DependencyResolutionBeanPostProcessor	implements	BeanPostProcessor,
								Ordered	{
				private	MyApplicationContext	myApplicationContext;
				private	int	order;
			
				public	void	setMyApplicationContext(MyApplicationContext	myApplicationContext)	{
								this.myApplicationContext	=	myApplicationContext;
				}
	
				public	void	setOrder(int	order)	{
								this.order	=	order;
				}
			
				@Override
				public	int	getOrder()	{
								return	order;
				}
	
				@Override
				public	Object	postProcessBeforeInitialization(Object	bean,	String	beanName)
												throws	BeansException	{
								if	(bean	instanceof	DependencyResolver)	{
												((DependencyResolver)	bean).resolveDependency(myApplicationContext);
								}
								return	bean;
				}
	
				@Override
				public	Object	postProcessAfterInitialization(Object	bean,	String	beanName)
												throws	BeansException	{



								return	bean;
				}
}

The	 DependencyResolutionBeanPostProcessor	 class	 implements	 Spring’s	 BeanPostProcessor	 and
Ordered	 interfaces.	 The	 myApplicationContext	 attribute	 (of	 type	 MyApplicationContext)	 represents	 a
dependency	 of	 DependencyResolutionBeanPostProcessor.	 The	 postProcessBeforeInitialization	 method
invokes	 resolveDependency	 method	 on	 bean	 instances	 that	 implement	 DependencyResolver	 interface,
passing	the	MyApplicationContext	object	as	argument.	The	postProcessAfterInitialization	method	simply
returns	the	bean	instance	passed	to	the	method.

The	 following	 example	 listing	 shows	 the	 MyApplicationContext	 class	 that	 acts	 as	 a	 wrapper	 around
Spring’s	ApplicationContext	object:

Example	listing	5-16	–	MyApplicationContext	class
Project	–	ch05-bankapp-beanpostprocessor
Location	-	src/main/java/sample/spring/chapter05/bankapp/common

package	sample.spring.chapter05.bankapp.common;
	
import	org.springframework.context.ApplicationContext;
import	org.springframework.context.ApplicationContextAware;
	
public	class	MyApplicationContext	implements	ApplicationContextAware	{
				private	ApplicationContext	applicationContext;
			
				@Override
				public	void	setApplicationContext(ApplicationContext	applicationContext)
												throws	BeansException	{
								this.applicationContext	=	applicationContext;
				}
			
				public	<T>	T	getBean(Class<T>	klass)	{
								return	applicationContext.getBean(klass);
				}
}

The	 MyApplicationContext	 class	 implements	 Spring’s	 ApplicationContextAware	 interface	 to	 obtain
reference	 to	 the	ApplicationContext	 object	 in	which	 the	 bean	 is	 deployed.	 The	MyApplicationContext
class	 defines	 a	 getBean	 method	 that	 returns	 a	 bean	 instance	 with	 the	 given	 name	 from	 the
ApplicationContext	instance.

The	following	example	 listing	shows	the	bean	definitions	for	DependencyResolutionBeanPostProcessor
and	MyApplicationContext	classes:

Example	listing	5-17	–	applicationContext.xml
Project	–	ch05-bankapp-beanpostprocessor
Source	location	-	src/main/resources/META-INF/spring



	
				<bean	class=".....postprocessor.DependencyResolutionBeanPostProcessor">
								<property	name="myApplicationContext"	ref="myApplicationContext"	/>
								<property	name="order"	value="0"	/>
				</bean>
	
				<bean	id="myApplicationContext"	class=".....bankapp.common.MyApplicationContext"	/>

The	 bean	 definition	 for	 DependencyResolutionBeanPostProcessor	 class	 shows	 that	 its	 order	 property
value	 is	 set	 to	 0.	 Example	 listing	 5-12	 showed	 that	 the	 InstanceValidationBeanPostProcessor’s	 order
property	value	is	1.	As	 lower	order	property	value	means	higher	priority,	 the	Spring	container	applies
DependencyResolutionBeanPostProcessor	 to	 a	 bean	 instance,	 followed	 by	 applying	 the
InstanceValidationBeanPostProcessor.

The	following	example	listing	shows	the	main	method	of	BankApp	class	that	checks	the	functionality	of
DependencyResolutionBeanPostProcessor	and	InstanceValidationBeanPostProcessor:

Example	listing	5-18	–	BankApp	class
Project	–	bankapp-beanpostprocessor
Location	-	src/main/java/sample/spring/chapter05/bankapp

package	sample.spring.chapter05.bankapp;
	
public	class	BankApp	{
				public	static	void	main(String	args[])	throws	Exception	{
								AbstractApplicationContext	context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
								context.registerShutdownHook();
							
								FixedDepositService	FixedDepositService	=	context.getBean(FixedDepositService.class);
								FixedDepositService.createFixedDeposit(new	FixedDepositDetails(1,	1000,	12,
													"someemail@somedomain.com"));
								.....
				}
}

BankApp’s	main	method	retrieves	an	instance	of	FixedDepositService	from	the	ApplicationContext	and
executes	FixedDepositService’s	createFixedDeposit	method.	When	you	execute	BankApp’s	main	method,
you’ll	notice	that	the	Spring	container	creates	instance	of	DependencyResolutionBeanPostProcessor	and
InstanceValidationBeanPostProcessor	 beans	 before	 creating	 instance	 of	 any	 other	 bean	 defined	 in	 the
application	 context	 XML	 file.	 And,	 the	 DependencyResolutionBeanPostProcessor	 (order	 value	 0)	 is
applied	to	a	newly	created	bean	instance	before	the	InstanceValidationBeanPostProcessor	(order	value	1)
is	applied.

You	 should	 note	 that	 the	 Spring	 container	 doesn’t	 apply	 a	 BeanPostProcessor	 implementation	 to	 other
BeanPostProcessor	 implementations.	 For	 instance,	 in	 the	 MyBank	 application,
DependencyResolutionBeanPostProcessor’s	 postProcessBeforeInitialization	 and
postProcessAfterInitialization	 methods	 are	 not	 invoked	 by	 the	 Spring	 container	 when	 an	 instance	 of



InstanceValidationBeanPostProcessor	is	created.

Let’s	 now	 look	 at	 the	 behavior	 of	 a	 BeanPostProcessor	 implementation	 for	 a	 bean	 that	 implements
FactoryBean	interface.

BeanPostProcessor	behavior	for	FactoryBeans
In	 section	 3-9	 of	 chapter	 3,	we	 discussed	 that	 a	 bean	 that	 implements	 Spring’s	 FactoryBean	 interface
represents	 a	 factory	 for	 creating	 bean	 instances.	 The	 question	 that	 you	might	 be	 asking	 at	 this	 time	 is
whether	 a	BeanPostProcessor	 implementation	 applies	 to	 a	 FactoryBean	 implementation	 or	 to	 the	 bean
instances	 created	 by	 the	 FactoryBean	 implementation.	 Later	 in	 this	 section,	 we’ll	 see	 that	 a
BeanPostProcessor’s	 postProcessBeforeInitialization	 and	 postProcessAfterInitialization	 methods	 are
invoked	 for	 a	 FactoryBean	 instance	 created	 by	 the	 Spring	 container.	 And,	 only
postProcessAfterInitialization	method	is	invoked	for	bean	instances	created	by	a	FactoryBean.

The	following	example	listing	shows	the	EventSenderFactoryBean	(a	FactoryBean	implementation)	class
of	MyBank	application	that	creates	instances	of	EventSender	bean:

Example	listing	5-19	–	EventSenderFactoryBean	class
Project	–	ch05-bankapp-beanpostprocessor
Location	-	src/main/java/sample/spring/chapter05/bankapp/factory

package	sample.spring.chapter05.bankapp.factory;
	
import	org.springframework.beans.factory.FactoryBean;
import	org.springframework.beans.factory.InitializingBean;
	
public	class	EventSenderFactoryBean	implements	FactoryBean<EventSender>,	InitializingBean	{
				.....
				@Override
				public	EventSender	getObject()	throws	Exception	{
								logger.info("getObject	method	of	EventSenderFactoryBean	invoked");
								return	new	EventSender();
				}
	
				@Override
				public	Class<?>	getObjectType()	{
								return	EventSender.class;
				}
	
				@Override
				public	boolean	isSingleton()	{
								return	false;
				}
	
				@Override
				public	void	afterPropertiesSet()	throws	Exception	{



								logger.info("afterPropertiesSet	method	of	EventSenderFactoryBean	invoked");
				}
}

EventSenderFactoryBean	 class	 implements	 Spring’s	 InitializingBean	 and	 FactoryBean	 interfaces.	 The
getObject	 method	 returns	 an	 instance	 of	 EventSender	 object.	 As	 the	 isSingleton	 method	 returns	 false,
EventSenderFactoryBean’s	 getObject	 method	 is	 invoked	 each	 time	 EventSenderFactoryBean	 receives
request	for	an	EventSender	object.

The	 following	 example	 listing	 shows	 the	 main	 method	 of	 BankApp	 class	 of	 ch05-bankapp-
beanpostprocessor	project	that	retrieves	EventSender	instances	from	the	EventSenderFactoryBean:

Example	listing	5-20	–	BankApp	class
Project	–	ch05-bankapp-beanpostprocessor
Location	-	src/main/java/sample/spring/chapter05/bankapp

package	sample.spring.chapter05.bankapp;
	
public	class	BankApp	{
				public	static	void	main(String	args[])	throws	Exception	{
								AbstractApplicationContext	context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
								context.registerShutdownHook();
								.....
								context.getBean("eventSenderFactory");
								context.getBean("eventSenderFactory");
				}
}

In	 the	 above	 example	 listing,	 the	ApplicationContext’s	getBean	method	 is	 called	 twice	 to	 retrieve	 two
distinct	 EventSender	 instances	 from	 the	 EventSenderFactoryBean.	 If	 you	 execute	 BankApp’s	 main
method,	you’ll	see	the	following	messages	printed	on	the	console:
Created	EventSenderFactoryBean
DependencyResolutionBeanPostProcessor's	postProcessBeforeInitialization	method	invoked	for.....EventSenderFactoryBean
InstanceValidationBeanPostProcessor's	postProcessBeforeInitialization	method	invoked	for	.....EventSenderFactoryBean
afterPropertiesSet	method	of	EventSenderFactoryBean	invoked
DependencyResolutionBeanPostProcessor's	postProcessAfterInitialization	method	invoked	for.....EventSenderFactoryBean
InstanceValidationBeanPostProcessor's	postProcessAfterInitialization	method	invoked	for	bean	.....EventSenderFactoryBean

The	 above	 output	 shows	 that	 a	 BeanPostProcessor’s	 postProcessBeforeInitialization	 and
postProcessAfterInitialization	methods	are	invoked	for	the	EventSenderFactoryBean	instance	created	by
the	Spring	container.

Execution	of	BankApp’s	main	method	also	shows	the	following	output	on	the	console:
getObject	method	of	EventSenderFactoryBean	invoked
DependencyResolutionBeanPostProcessor's	postProcessAfterInitialization	method	invoked	for.....EventSender
getObject	method	of	EventSenderFactoryBean	invoked
DependencyResolutionBeanPostProcessor's	postProcessAfterInitialization	method	invoked	for.....EventSender



The	above	output	 shows	 that	only	 the	postProcessAfterInitialization	method	of	 a	BeanPostProcessor	 is
invoked	for	the	EventSender	instance	created	by	the	EventSenderFactoryBean.	If	you	want,	you	can	make
modifications	to	an	EventSender	instance	in	the	postProcessAfterInitialization	method.
	
Let’s	now	look	at	Spring’s	built-in	RequiredAnnotationBeanPostProcessor	that	you	can	use	to	ensure	that
required	(or	mandatory)	bean	properties	are	configured	in	the	application	context	XML	file.

RequiredAnnotationBeanPostProcessor
If	 the	 setter-method	 for	 a	 bean	 property	 is	 annotated	 with	 Spring’s	 @Required	 annotation,	 Spring’s
RequiredAnnotationBeanPostProcessor	 (a	 BeanPostProcessor	 implementation)	 checks	 if	 the	 bean
property	is	configured	in	the	application	context	XML	file.

NOTE	You	should	note	that	the	RequiredAnnotationBeanPostProcessor	is	not	automatically	registered
with	the	Spring	container,	you	need	to	register	it	explicitly	by	defining	it	in	the	application	context	XML
file.

The	following	example	listing	shows	an	example	usage	of	@Required	annotation:

Example	listing	5-21	–	@Required	annotation	usage
	
import	org.springframework.beans.factory.annotation.Required;
	
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				private	FixedDepositDao	fixedDepositDao;
	
				@Required
				public	void	setFixedDepositDao(FixedDepositDao	fixedDepositDao)	{
								this.fixedDepositDao	=	fixedDepositDao;
				}
				.....
}

In	 the	 above	 example	 listing,	 the	 setFixedDepositDao	 setter-method	 for	 FixedDepositDao	 property	 is
annotated	with	@Required	annotation.	If	you	have	defined	RequiredAnnotationBeanPostProcessor	in	the
application	context	XML	file,	the	RequiredAnnotationBeanPostProcessor	will	check	if	you	have	specified
a	<property>	element	(or	used	p-namespace)	to	set	the	value	of	FixedDepositDao	property.	If	you	haven’t
configured	the	FixedDepositDao	property	in	the	bean	definition	for	the	FixedDepositServiceImpl	class	in
the	 application	 context	 XML	 file,	 it’ll	 result	 in	 an	 exception.	 This	 shows	 that	 you	 can	 use
RequiredAnnotationBeanPostProcessor	 to	 ensure	 that	 all	 bean	 instances	 in	 your	 application	 are
configured	properly	in	the	application	context	XML	file.

RequiredAnnotationBeanPostProcessor	 only	 ensures	 that	 a	 bean	 property	 is	 configured	 in	 the	 bean
definition.	It	doesn’t	ensure	that	the	configured	property	value	is	correct.	For	instance,	you	can	configure	a
property’s	 value	 as	 null,	 instead	 of	 a	 valid	 value.	 For	 this	 reason,	 beans	may	 still	 need	 to	 implement
initialization	methods	to	check	if	the	properties	are	correctly	set.

Let’s	 now	 look	 at	 Spring’s	 DestructionAwareBeanPostProcessor	 interface	 that	 is	 a	 sub-interface	 of



Spring’s	BeanPostProcessor	interface.

DestructionAwareBeanPostProcessor
So	far	we	have	seen	that	a	BeanPostProcessor	implementation	is	used	for	interacting	with	newly	created
bean	 instances.	 In	 some	 scenarios	 you	 may	 also	 want	 to	 interact	 with	 a	 bean	 instance	 before	 it	 is
destroyed.	 To	 interact	 with	 a	 bean	 instance	 before	 it	 is	 destroyed,	 configure	 a	 bean	 that	 implements
Spring’s	 DestructionAwareBeanPostProcessor	 interface	 in	 the	 application	 context	 XML	 file.
DestructionAwareBeanPostProcessor	 is	 a	 sub-interface	of	BeanPostProcessor	 interface	 and	 defines	 the
following	method:

void	postProcessBeforeDestruction(Object	bean,	String	beanName)

The	postProcessBeforeDestruction	method	accepts	the	bean	instance,	which	is	about	to	be	destroyed	by
the	 Spring	 container,	 and	 its	 name	 as	 arguments.	 Spring	 container	 invokes	 the
postProcessBeforeDestruction	method	for	each	singleton-scoped	bean	instance	before	the	bean	instance	is
destroyed	by	 the	Spring	container.	Usually,	 the	postProcessBeforeDestruction	method	 is	used	 to	 invoke
custom	 destruction	 methods	 on	 the	 bean	 instances.	 It	 is	 important	 to	 note	 that	 the
postProcessBeforeDestruction	method	is	not	called	for	prototype-scoped	beans.

We’ll	now	look	at	Spring’s	BeanFactoryPostProcessor	interface,	which	allows	you	to	make	modifications
to	bean	definitions.



5-4	Modifying	bean	definitions	using	BeanFactoryPostProcessor
Spring’s	BeanFactoryPostProcessor	interface	is	implemented	by	classes	that	want	to	make	modifications
to	 bean	 definitions.	A	BeanFactoryPostProcessor	 is	 executed	after	 bean	 definitions	 are	 loaded	 by	 the
Spring	container,	but	before	any	bean	instance	is	created.	A	BeanFactoryPostProcessor	is	created	before
any	 other	 bean	 defined	 in	 the	 application	 context	 XML	 file,	 giving	 the	 BeanFactoryPostProcessor	 an
opportunity	 to	 make	 modifications	 to	 bean	 definitions	 of	 other	 beans.	 You	 configure	 a
BeanFactoryPostProcessor	implementation	in	the	application	context	XML	file	like	any	other	Spring	bean.

NOTE	Instead	of	bean	definitions,	if	you	want	to	modify	or	interact	with	bean	instances,	use	a
BeanPostProcessor	(refer	to	section	5-3)	and	not	a	BeanFactoryPostProcessor.

BeanFactoryPostProcessor	 interface	 defines	 a	 single	 method	 -	 postProcessBeanFactory.	 This	 method
accepts	an	argument	of	type	ConfigurableListableBeanFactory	that	can	be	used	to	obtain	and	modify	bean
definitions	 loaded	 by	 the	 Spring	 container.	 It	 is	 possible	 to	 create	 a	 bean	 instance	 inside
postProcessBeanFactory	method	itself	by	calling	ConfigurableListableBeanFactory’s	getBean	method,	but
bean	 creation	 inside	 postProcessBeanFactory	method	 is	not	 recommended.	 It	 is	 important	 to	 note	 that
BeanPostProcessors	 (refer	 section	 5-3)	 are	 not	 executed	 for	 bean	 instances	 created	 inside
postProcessBeanFactory	method.

It	is	important	to	note	that	a	ConfigurableListableBeanFactory	provides	access	to	the	Spring	container	just
like	 the	 ApplicationContext	 object.	 ConfigurableListableBeanFactory	 additionally	 allows	 you	 to
configure	 the	 Spring	 container,	 iterate	 over	 beans,	 and	 modify	 bean	 definitions.	 For	 instance,	 using
ConfigurableListableBeanFactory	object	you	can	register	PropertyEditorRegistrars	 (refer	section	3-6	of
chapter	 3),	 register	 BeanPostProcessors,	 and	 so	 on.	 Later	 in	 this	 section,	 we’ll	 see	 how
ConfigurableListableBeanFactory	object	is	used	to	modify	bean	definitions.

Let’s	now	look	at	how	we	can	use	a	BeanFactoryPostProcessor	to	modify	bean	definitions.

IMPORT	 chapter	 5/ch05-bankapp-beanfactorypostprocessor	 (This	 project	 shows	 the	 MyBank
application	 that	 uses	 a	 BeanFactoryPostProcessor	 implementation	 to	 disable	 autowiring	 across	 the
application,	and	log	an	error	message	if	a	singleton-scoped	bean	is	found	to	be	dependent	on	a	prototype-
scoped	bean.	To	verify	that	the	BeanFactoryPostProcessor	implementation	functions	correctly,	execute	the
main	method	of	the	BankApp	class	of	this	project.)

BeanFactoryPostProcessor	example
In	 the	 previous	 chapter,	 we	 saw	 that	 autowiring	 hides	 the	 overall	 structure	 of	 the	 application	 (refer
section	4-6	of	chapter	4).	We	also	discussed	 that	 instead	of	using	<property>	element	 to	 specify	 that	a
singleton-scoped	 bean	 is	 dependent	 on	 a	 prototype-scoped	 bean,	 you	 should	 use	 <lookup-method>	 or
<replaced-method>	element	(refer	section	4-4	and	4-5	of	chapter	4	for	more	details)	to	programmatically
obtain	 a	 prototype-scoped	 dependency	 of	 a	 singleton-bean.	 We’ll	 now	 look	 at	 a
BeanFactoryPostProcessor	 implementation	 that	makes	 beans	unavailable	 for	 autowiring	 (refer	 <bean>
element’s	autowire-candidate	attribute	described	in	section	4-6	of	chapter	4)	and	logs	an	error	message	if
it	finds	a	singleton-scoped	bean	is	dependent	on	a	prototype-scoped	bean.	For	simplicity,	we	assume	that
a	singleton-scoped	bean	uses	<property>	element	 to	 specify	 that	 it	 is	dependent	on	a	prototype-scoped
bean.



NOTE	A	bean	that	implements	Spring’s	BeanFactoryPostProcessor	interface	is	a	special	bean	 type;	 the
Spring	container	automatically	detects	and	executes	a	BeanFactoryPostProcessor	bean.

The	 following	 example	 listing	 shows	 the	 MyBank’s	 ApplicationConfigurer	 class	 that	 implements
BeanFactoryPostProcessor	interface:

Example	listing	5-22	–	ApplicationConfigurer	class	–	a	BeanFactoryPostProcessor	implementation
Project	–	ch05-bankapp-beanfactorypostprocessor
Source	location	-	src/main/java/sample/spring/chapter05/bankapp/postprocessor

package	sample.spring.chapter05.bankapp.postprocessor;
	
import	org.springframework.beans.factory.config.BeanDefinition;
import	org.springframework.beans.factory.config.BeanFactoryPostProcessor;
import	org.springframework.beans.factory.config.ConfigurableListableBeanFactory;
	
public	class	ApplicationConfigurer	implements	BeanFactoryPostProcessor	{
	
				public	ApplicationConfigurer()	{
								logger.info("Created	ApplicationConfigurer	instance");
				}
	
				@Override
				public	void	postProcessBeanFactory(
												ConfigurableListableBeanFactory	beanFactory)	throws	BeansException	{
								String[]	beanDefinitionNames	=	beanFactory.getBeanDefinitionNames();
	
								//	--	get	all	the	bean	definitions
								for	(int	i	=	0;	i	<	beanDefinitionNames.length;	i++)	{
												String	beanName	=	beanDefinitionNames[i];
												BeanDefinition	beanDefinition	=	beanFactory.getBeanDefinition(beanName);
												beanDefinition.setAutowireCandidate(false);
	
												//	--	obtain	dependencies	of	a	bean
												if	(beanDefinition.isSingleton())	{
																if	(hasPrototypeDependency(beanFactory,	beanDefinition))	{
																				logger.error("Singleton-scoped	"	+	beanName
																												+	"	bean	is	dependent	on	a	prototype-scoped	bean.");
																}
												}
								}
				}
				.....
}													

The	following	sequence	of	actions	is	performed	by	the	postProcessBeanFactory	method:



1.	 	 	 	 First,	 the	 postProcessBeanFactory	 method	 calls	 ConfigurableListableBeanFactory’s
getBeanDefinitionNames	method	 to	obtain	names	of	all	 the	bean	definitions	 loaded	by	 the	Spring
container.	You	should	note	 that	 the	name	of	a	bean	definition	 is	 the	value	of	<bean>	element’s	 id
attribute.

2.	 	 	 	 Once	 the	 names	 of	 all	 the	 bean	 definitions	 are	 obtained,	 the	 postProcessBeanFactory	 method
invokes	ConfigurableListableBeanFactory’s	getBeanDefinition	method	to	obtain	the	BeanDefinition
object	 corresponding	 to	 each	 bean	 definition.	 The	 getBeanDefinition	 method	 accepts	 a	 bean
definition	name	(obtained	in	step	1)	as	argument.

3.	 	 	 	 A	 BeanDefinition	 object	 represents	 a	 bean	 definition,	 and	 can	 be	 used	 to	 modify	 bean
configuration.	For	each	bean	definition	loaded	by	the	Spring	container,	the	postProcessBeanFactory
method	invokes	BeanDefinition’s	setAutowireCandidate	method	to	make	all	 the	beans	unavailable
for	autowiring.

4.	 	 	 	BeanDefinition’s	 isSingleton	method	 returns	 true	 if	 a	 bean	 definition	 is	 for	 a	 singleton-scoped
bean.	 If	 a	 bean	 definition	 is	 for	 a	 singleton-scoped	 bean,	 the	 postProcessBeanFactory	 method
invokes	hasPrototypeDependency	method	to	check	if	the	singleton-scoped	bean	is	dependent	on	any
prototype-scoped	bean.	And,	if	the	singleton-scoped	bean	is	dependent	on	a	prototype-scoped	bean,
the	postProcessBeanFactory	method	logs	an	error	message.

The	 following	 example	 listing	 shows	 the	 implementation	 of	 ApplicationConfigurer’s
hasPrototypeDependency	method	that	returns	true	if	a	bean	is	dependent	on	a	prototype-scoped	bean:

Example	listing	5-23	–	ApplicationConfigurer’s	hasPrototypeDependency	method
Project	–	ch05-bankapp-beanfactorypostprocessor
Source	location	-	src/main/java/sample/spring/chapter05/bankapp/postprocessor

import	org.springframework.beans.MutablePropertyValues;
import	org.springframework.beans.PropertyValue;
import	org.springframework.beans.factory.config.RuntimeBeanReference;
	
public	class	ApplicationConfigurer	implements	BeanFactoryPostProcessor	{
				.....
				private	boolean	hasPrototypeDependency(ConfigurableListableBeanFactory	beanFactory,
												BeanDefinition	beanDefinition)	{
								boolean	isPrototype	=	false;
								MutablePropertyValues	mutablePropertyValues	=	beanDefinition.getPropertyValues();
								PropertyValue[]	propertyValues	=	mutablePropertyValues.getPropertyValues();
	
								for	(int	j	=	0;	j	<	propertyValues.length;	j++)	{
												if	(propertyValues[j].getValue()			instanceof				RuntimeBeanReference)	{
																String	dependencyBeanName	=	((RuntimeBeanReference)	propertyValues[j]
																								.getValue()).getBeanName();
																BeanDefinition	dependencyBeanDef	=	beanFactory
																																																																																								.getBeanDefinition(dependencyBeanName);
																if	(dependencyBeanDef.isPrototype())	{
																				isPrototype	=	true;



																				break;
																}
												}
								}
								return	isPrototype;
				}
}

The	 hasPrototypeDependency	 method	 checks	 if	 the	 bean	 represented	 by	 BeanDefinition	 argument	 is
dependent	on	a	prototype-scoped	bean.	The	ConfigurableListableBeanFactory	argument	provides	access
to	bean	definitions	 loaded	by	 the	Spring	container.	The	 following	 sequence	of	actions	 is	performed	by
hasPrototypeDependency	method	 to	 find	 if	 the	 bean	 represented	 by	 the	BeanDefinition	 argument	 has	 a
prototype-scoped	dependency:

1.				First,	hasPrototypeDependency	method	calls	BeanDefinition’s	getPropertyValues	method	to	obtain
bean	 properties	 defined	 by	 <property>	 elements.	 BeanDefinition’s	 getPropertyValues	 returns	 an
object	of	type	MutablePropertyValues	which	you	can	use	to	modify	bean	properties.	For	instance,
you	 can	 add	 additional	 properties	 to	 the	 bean	 definition	 by	 using	 addPropertyValue	 and
addPropertyValues	methods	of	MutablePropertyValues.

2.	 	 	 	As	we	want	 to	 iterate	 over	 all	 the	 bean	properties	 and	 check	 if	 any	bean	property	 refers	 to	 a
prototype-scoped	 bean,	 the	 getPropertyValues	 method	 of	MutablePropertyValues	 is	 invoked	 to
retrieve	an	array	of	PropertyValue	objects.	A	PropertyValue	object	holds	information	about	a	bean
property.

3.	 	 	 	 If	 a	bean	property	 refers	 to	a	Spring	bean,	 calling	PropertyValue’s	getValue	method	 returns	 an
instance	 of	 RuntimeBeanReference	 object	 that	 holds	 name	 of	 the	 referenced	 bean.	 As	 we	 are
interested	 in	 bean	 properties	 that	 reference	 Spring	 beans,	 the	 return	 value	 of	 PropertyValue’s
getValue	method	is	checked	if	 it	 represents	an	 instance	of	RuntimeBeanReference	 type.	 If	 it	does,
the	object	returned	by	PropertyValue’s	getValue	method	is	cast	to	RuntimeBeanReference	type,	and
the	name	of	the	referenced	bean	is	obtained	by	calling	the	RuntimeBeanReference’s	getBeanName
method.

4.	 	 	 	Now,	 that	we	 have	 the	 name	 of	 the	 bean	 referenced	 by	 the	 bean	 property,	 the	BeanDefinition
object	 for	 the	 referenced	 bean	 is	 obtained	 by	 calling	 ConfigurableListableBeanFactory’s
getBeanDefinition	method.	 You	 can	 check	 if	 the	 referenced	 bean	 is	 a	 prototype-scoped	 bean	 by
calling	BeanDefinition’s	isPrototype	method.

The	following	sequence	diagram	summarizes	how	hasPrototypeDependency	method	works:



Figure	5-2	–	hasPrototypeDependency	method	iterates	over	bean	definitions	of	dependencies,	and	returns
true	if	a	prototype-scoped	dependency	is	found

In	 the	 above	 sequence	 diagram	 ConfigurableListableBeanFactory	 object	 has	 been	 depicted	 as	 ‘Bean
factory’	object.

The	 following	 example	 listing	 shows	 the	 application	 context	 XML	 file	 of	 ch05-bankapp-
beanfactorypostprocessor	 project	 that	 contains	 bean	 definitions	 for	 ApplicationConfigurer	 class	 (a
BeanFactoryPostProcessor	 implementation),	 InstanceValidationBeanPostProcessor	 class	 (a
BeanPostProcessor	implementation),	along	with	bean	definitions	for	application-specific	objects:

Example	listing	5-24	–	applicationContext.xml	-	BeanFactoryPostProcessor	bean	definition
Project	–	ch05-bankapp-beanfactorypostprocessor
Source	location	-	src/main/resources/META-INF/spring
	
<beans	.....>
				.....
				<bean	id="FixedDepositDao"
								class="sample.spring.chapter05.bankapp.dao.FixedDepositDaoImpl".....	>
								<property	name=“fixedDepositDetails"	ref="FixedDepositDetails"	/>
				</bean>
	
				<bean	id="FixedDepositDetails"
								class="sample.spring.chapter05.bankapp.domain.FixedDepositDetails"
								scope="prototype"	/>
	
				<bean	class=".....postprocessor.InstanceValidationBeanPostProcessor">
								<property	name="order"	value="1"	/>
				</bean>
	



				<bean
								class="sample.spring.chapter05.bankapp.postprocessor.ApplicationConfigurer"	/>
</beans>

In	 the	 bean	 definitions	 shown	 above,	 the	 singleton-scoped	 FixedDepositDao	 bean	 is	 dependent	 on	 the
prototype-scoped	FixedDepositDetails	bean.

If	 you	 execute	 the	main	method	 of	 BankApp	 class	 of	 ch05-bankapp-beanfactorypostprocessor	 project,
you’ll	see	the	following	output	on	the	console:
Created	ApplicationConfigurer	instance
Singleton-scoped	FixedDepositDao	bean	is	dependent	on	a	prototype-scoped	bean.
Created	InstanceValidationBeanPostProcessor	instance

The	 above	 output	 shows	 that	 the	 Spring	 container	 creates	 ApplicationConfigurer	 (a
BeanFactoryPostProcessor)	 and	 executes	 ApplicationConfigurer’s	 postProcessBeanFactory	 method
before	creating	InstanceValidationBeanPostProcessor	 (a	BeanPostProcessor)	 instance.	 It	 is	 important	 to
note	 that	 the	 beans	 that	 implement	 the	BeanFactoryPostProcessor	 interface	 are	 processed	before	 beans
that	 implement	 the	BeanPostProcessor	 interface.	For	 this	 reason,	you	can’t	use	a	BeanPostProcessor	 to
make	modifications	 to	 a	BeanFactoryPostProcessor	 instance.	The	BeanFactoryPostProcessor	 gives	 you
the	 opportunity	 to	 modify	 bean	 definitions	 loaded	 by	 the	 Spring	 container,	 and	 the
BeanFactoryPostProcessor	 gives	 you	 the	 opportunity	 to	 make	 modifications	 to	 newly	 created	 bean
instances.

Let’s	now	look	at	some	of	the	similarities	between	BeanPostProcessors	and	BeanFactoryPostProcessors:

·	 	 	 	 	 	 	 	you	can	configure	multiple	BeanFactoryPostProcessors	 in	 the	application	context	XML	file.	To
control	 the	 order	 in	 which	 BeanFactoryPostProcessors	 are	 executed	 by	 the	 Spring	 container,
implement	Spring’s	Ordered	interface	(refer	section	5-3	to	know	more	about	Ordered	interface).

·	 	 	 	 	 	 	 	 even	 if	you	specify	 that	a	BeanFactoryPostProcessor	 implementation	 is	 lazily	 initialized	by	 the
Spring	 container,	 BeanFactoryPostProcessors	 are	 created	 when	 the	 Spring	 container	 instance	 is
created.

In	chapter	3,	we	 looked	at	CustomEditorConfigurer	–	 a	BeanFactoryPostProcessor	 implementation	 that
Spring	 provides	 out-of-the-box	 for	 registering	 custom	 property	 editors.	 Let’s	 now	 look	 at	 some	more
BeanFactoryPostProcessor	implementations	that	Spring	provides	out-of-the-box.

PropertySourcesPlaceholderConfigurer
So	far	we	have	seen	bean	definition	examples	in	which	<property>	or	<constructor-arg>	element’s	value
attribute	 is	 used	 to	 specify	 the	 actual	 string	 value	 of	 a	 bean	 property	 or	 a	 constructor	 argument.
PropertySourcesPlaceholderConfigurer	 (a	BeanFactoryPostProcessor)	 let’s	you	specify	 the	actual	string
value	of	bean	properties	and	constructor	arguments	 in	a	properties	file.	In	the	bean	definition,	you	only
specify	property	 placeholders	 (of	 the	 form	 ${<property_name_in_properties_file>})	 as	 the	 value	 of
<property>	 or	 <constructor-arg>	 element’s	 value	 attribute.	 When	 bean	 definitions	 are	 loaded	 by	 the
Spring	container,	 the	PropertySourcesPlaceholderConfigurer	pulls	 the	actual	values	 from	 the	properties
file	and	replaces	the	property	placeholders	in	the	bean	definitions	with	actual	values.

IMPORT	 chapter	 5/ch05-propertySourcesPlaceholderConfigurer-example	 (This	 project	 shows	 a



Spring	application	that	uses	Spring’s	PropertySourcesPlaceholderConfigurer	to	set	bean	properties	from
the	 properties	 specified	 in	 external	 properties	 files.	 To	 verify	 that	 the
PropertySourcesPlaceholderConfigurer	 functions	 correctly,	 execute	 the	main	method	 of	 the	 SampleApp
class	of	this	project.)

The	 following	 example	 listing	 shows	 bean	 definitions	 for	 DataSource	 and	 WebServiceConfiguration
classes	that	use	property	placeholders:

Example	listing	5-25	–	applicationContext.xml	-	Bean	definitions	that	use	property	placeholders
Project	–	ch05-propertySourcesPlaceholderConfigurer-example
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="datasource"	class="sample.spring.chapter05.domain.DataSource">
								<property	name="url"	value="${database.url}"	/>
								<property	name="username"	value="${database.username}"	/>
								<property	name="password"	value="${database.password}"	/>
								<property	name="driverClass"	value="${database.driverClass}"	/>
				</bean>
	
				<bean	id="webServiceConfiguration"	
													class="sample.spring.chapter05.domain.WebServiceConfiguration">
								<property	name="webServiceUrl"	value="${webservice.url}"	/>
				</bean>

The	 above	 example	 listing	 shows	 that	 each	 <property>	 element’s	 value	 attribute	 specifies	 a	 property
placeholder.	 When	 bean	 definitions	 are	 loaded	 by	 the	 Spring	 container,
PropertySourcesPlaceholderConfigurer	 replaces	 property	 placeholders	 with	 values	 from	 a	 properties
file.	 For	 instance,	 if	 a	 database.username	 property	 is	 defined	 in	 a	 properties	 file,	 the	 value	 of
database.username	property	replaces	the	${database.username}	property	placeholder	of	dataSource	bean.

The	 bean	 definition	 for	 the	 PropertySourcesPlaceholderConfigurer	 specifies	 properties	 files	 to	 be
searched	for	finding	replacement	for	a	property	placeholder,	as	shown	in	the	following	example	listing:

Example	listing	5-26	–	applicationContext.xml-PropertySourcesPlaceholderConfigurer	bean	definition
Project	–	ch05-propertySourcesPlaceholderConfigurer-example
Source	location	-	src/main/resources/META-INF/spring
	
				<bean
								class="org.springframework.context.support.PropertySourcesPlaceholderConfigurer">
								<property	name="locations">
												<list>
																<value>classpath:database.properties</value>
																<value>classpath:webservice.properties</value>
												</list>
								</property>
								<property	name="ignoreUnresolvablePlaceholders"	value="false"	/>
				</bean>



PropertySourcesPlaceholderConfigurer’s	locations	property	specifies	properties	files	to	be	searched	for
finding	 the	 value	 for	 a	 property	 placeholder.	 In	 the	 above	 example	 listing,
PropertySourcesPlaceholderConfigurer	 looks	 for	 the	 value	 of	 a	 property	 placeholder	 in
database.properties	 and	 webservice.properties	 files.	 The	 ignoreUnresolvablePlaceholders	 property
specifies	whether	PropertySourcesPlaceholderConfigurer	silently	ignores	or	throws	an	exception	in	case
a	property	placeholder	value	is	not	found	in	any	of	the	properties	files	specified	by	the	locations	property.
The	value	false	indicates	that	the	PropertySourcesPlaceholderConfigurer	will	throw	an	exception	if	value
for	a	property	placeholder	is	not	found	in	database.properties	or	webservice.properties	files.

The	 following	 example	 listing	 shows	 the	 properties	 defined	 in	 database.properties	 and
webservice.properties	files:

Example	listing	5-27	–	Properties	defined	in	database.properties	and	webservice.properties	files
Project	–	ch05-propertySourcesPlaceholderConfigurer-example
Source	location	-	src/main/resources/META-INF
	
----------------	database.properties	file	------------------
database.url=some_url
database.username=some_username
database.password=some_password
database.driverClass=some_driverClass
	
----------------	webservice.properties	file	------------------
webservice.url=some_url

If	 you	 compare	 the	 properties	 defined	 in	 database.properties	 and	webservice.properties	 files	with	 the
property	 placeholders	 specified	 in	 datasource	 and	 webServiceConfiguration	 bean	 definitions	 (refer
example	listing	5-25),	you’ll	notice	that	for	each	property	placeholder	a	property	is	defined	in	one	of	the
properties	files.

The	main	method	 of	 SampleApp	 class	 of	 ch05-propertySourcesPlaceholderConfigurer-example	 project
retrieves	WebServiceConfiguration	and	DataSource	beans	 from	 the	ApplicationContext	 and	 prints	 their
properties	on	the	console.	If	you	execute	SampleApp’s	main	method,	you’ll	see	 the	following	output	on
the	console:

DataSource 	[url=some_url,	username=some_username,	password=some_password,	driverClass=some_driverClass]
WebServiceConfiguration	[webServiceUrl=some_url]

The	above	output	shows:

·	 	 	 	 	 	 	 	 DataSource’s	 url	 property	 is	 set	 to	 some_url,	 username	 to	 some_username,	 password	 to
some_password	and	driverClass	to	some_driverClass.

·								WebServiceConfiguration’s	webServiceUrl	property	is	set	to	some_url.

If	 you	 remove	 a	 property	 from	 either	 database.properties	 or	 webservice.properties	 file,	 executing
SampleApp’s	main	method	will	result	in	an	exception.

Let’s	now	look	at	localOverride	property	of	PropertySourcesPlaceholderConfigurer.



localOverride	property

If	you	want	local	properties	(set	via	<props>	element)	to	override	properties	read	from	properties	file,
you	can	set	PropertySourcesPlaceholderConfigurer’s	localOverride	property	to	true.

IMPORT	 chapter	 5/ch05-localoverride-example	 (This	 project	 shows	 a	 Spring	 application	 that	 uses
PropertySourcesPlaceholderConfigurer’s	localOverride	property.	To	run	the	application,	execute	the	main
method	of	the	SampleApp	class	of	this	project.)

The	 following	 example	 listing	 shows	 bean	 definitions	 for	 DataSource	 and	 WebServiceConfiguration
classes:

Example	listing	5-28	–	applicationContext.xml	-	Bean	definitions	that	use	property	placeholders
Project	–	ch05-localOverride-example
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="datasource"	class="sample.spring.chapter05.domain.DataSource">
								<property	name="url"	value="${database.url}"	/>
								<property	name="username"	value="${database.username}"	/>
								<property	name="password"	value="${database.password}"	/>
								<property	name="driverClass"	value="${database.driverClass}"	/>
				</bean>
	
				<bean	id="webServiceConfiguration"	
													class="sample.spring.chapter05.domain.WebServiceConfiguration">
								<property	name="webServiceUrl"	value="${webservice.url}"	/>
				</bean>

The	 bean	 definitions	 for	 DataSource	 and	 WebServiceConfiguration	 classes	 are	 same	 as	 we	 saw	 in
example	listing	5-25.

The	 following	 example	 listing	 shows	 the	 properties	 defined	 in	 database.properties	 and
webservice.properties	files:

Example	listing	5-29	–	Properties	defined	in	database.properties	and	webservice.properties	files
Project	–	ch05-localOverride-example
Source	location	-	src/main/resources/META-INF
	
----------------	database.properties	file	------------------
database.url=some_url
database.username=some_username
	
----------------	webservice.properties	file	------------------
webservice.url=some_url

If	 you	 compare	 the	 properties	 defined	 in	 database.properties	 and	webservice.properties	 files	with	 the
property	 placeholders	 specified	 in	 datasource	 and	 webServiceConfiguration	 bean	 definitions	 (refer
example	 listing	 5-28),	 you’ll	 notice	 that	 properties	 are	 not	 defined	 for	 ${database.password}	 and



${database.driverClass}	placeholders	in	the	database.properties	file.

The	 following	 example	 listing	 shows	 the	 bean	 definition	 for	 PropertySourcesPlaceholderConfigurer
class:

Example	listing	5-30	–	applicationContext.xml	-	PropertySourcesPlaceholderConfigurer	bean	definition
Project	–	ch05-localOverride-example
Source	location	-	src/main/resources/META-INF/spring
	
				<bean
								class="org.springframework.context.support.PropertySourcesPlaceholderConfigurer">
								<property	name="locations">
												<list>
																<value>classpath:database.properties</value>
																<value>classpath:webservice.properties</value>
												</list>
								</property>
								<property	name="properties">
												<props>
																<prop	key="database.password">locally-set-password</prop>
																<prop	key="database.driverClass">locally-set-driverClass</prop>
																<prop	key="webservice.url">locally-set-webServiceUrl</prop>
												</props>
								</property>
								<property	name="ignoreUnresolvablePlaceholders"	value="false"	/>
								<property	name="localOverride"	value="true"	/>
				</bean>

The	 properties	 property	 of	 PropertySourcesPlaceholderConfigurer	 defines	 local	 properties.	 The
database.password,	 database.driverClass	 and	 webservice.url	 properties	 are	 local	 properties.	 The
localOverride	 property	 specifies	 whether	 local	 properties	 take	 precedence	 over	 properties	 read	 from
external	properties	files.	As	the	value	of	localOverride	property	is	true,	local	properties	take	precedence.

The	 main	 method	 of	 SampleApp	 class	 in	 ch05-localOverride-example	 project	 retrieves
WebServiceConfiguration	and	DataSource	beans	from	the	ApplicationContext	and	prints	their	properties
on	the	console.	If	you	execute	SampleApp’s	main	method,	you’ll	see	the	following	output	on	the	console:

DataSource	[url=some_url,	username=some_username,	password=locally-set-password,	driverClass=locally-set-driverClass]
WebServiceConfiguration	[webServiceUrl=locally-set-webServiceUrl]

The	output	 shows	 that	 the	value	of	DataSource’s	password	 and	driverClass	 properties	 are	 locally-set-
password	 and	 locally-set-driverClass,	 respectively.	 This	 means	 that	 the	 values	 for	 DataSource’s
password	 and	 driverClass	 properties	 come	 from	 the	 local	 properties	 defined	 by	 the
PropertySourcesPlaceholderConfigurer	 bean	 (refer	 example	 listing	 5-30).	 This	 shows	 that	 if	 the
PropertySourcesPlaceholderConfigurer	can’t	find	a	property	for	a	placeholder	in	the	external	properties
files,	 it	 searches	 for	 the	 property	 in	 the	 local	 properties	 defined	 by
PropertySourcesPlaceholderConfigurer	bean.	The	output	also	shows	that	the	WebServiceConfiguration’s
webServiceUrl	 property	 value	 comes	 from	 the	 local	 properties	 defined	 by	 the



PropertySourcesPlaceholderConfigurer	 bean	 (refer	 example	 listing	 5-30).	 The	 value	 of
PropertySourcesPlaceholderConfigurer’s	 localOverride	 property	 is	 set	 to	 true;	 therefore,	 the	 locally
defined	 webservice.url	 property	 takes	 precedence	 over	 the	 webservice.url	 property	 read	 from	 the
webservice.properties	file.

NOTE	Instead	of	using	PropertySourcesPlaceholderConfigurer’s	properties	property,	you	can	use
<properties>	element	of	Spring’s	util	schema	(refer	section	3-8	of	chapter	3)	or	PropertiesFactoryBean
(refer	section	3-8	of	chapter	3)	to	define	local	properties.

Instead	 of	 directly	 configuring	 the	 PropertySourcesPlaceholderConfigurer	 bean	 in	 your	 application
context	 XML	 file,	 you	 can	 use	 the	 <property-placeholder>	 element	 of	 Spring’s	 context	 schema.	 The
<property-placeholder>	element	configures	a	PropertySourcesPlaceholderConfigurer	instance.	Let’s	now
look	at	the	<property-placeholder>	element	in	detail.

IMPORT	 chapter	 5/ch05-property-placeholder-element-example	 (This	 project	 shows	 a	 Spring
application	that	uses	the	<property-placeholder>	element.	To	run	the	application,	execute	the	main	method
of	the	SampleApp	class	of	this	project.)

<property-placeholder>	element

The	 following	 example	 listing	 shows	 how	 the	 <property-placeholder>	 element	 is	 used	 to	 configure	 a
PropertySourcesPlaceholderConfigurer	instance	with	the	same	configuration	as	the	one	we	configured	in
example	listing	5-30:

Example	listing	5-31	–	applicationContext.xml	-	<property-placeholder>	element
Project	–	ch05-property-placeholder-element-example
Source	location	-	src/main/resources/META-INF/spring
	
<beans	xmlns="http://www.springframework.org/schema/beans"
				xmlns:context="http://www.springframework.org/schema/context"
				xmlns:util="http://www.springframework.org/schema/util"	.....>
				…..
				<context:property-placeholder	ignore-unresolvable="false"
								location="classpath:database.properties,	classpath:webservice.properties"
								local-override="true"	order="1"	properties-ref="localProps"	/>
			
				<util:properties	id="localProps">
								<prop	key="database.password">locally-set-password</prop>
								<prop	key="database.driverClass">locally-set-driverClass</prop>
								<prop	key="webservice.url">locally-set-webServiceUrl</prop>
				</util:properties>
</beans>

In	 the	 above	 example	 listing,	 reference	 to	Spring’s	 context	 schema	 is	 included	 so	 that	 its	 elements	 are
accessible.	The	above	example	listing	shows	that	the	use	of	<property-placeholder>	element	results	in	a
less	verbose	configuration	of	PropertySourcesPlaceholderConfigurer.	The	 ignore-unresolvable,	 location
and	local-override	attributes	correspond	to	ignoreUnresolvablePlaceholders,	locations	and	localOverride
properties	 of	 PropertySourcesPlaceholderConfigurer.	 As	 the	 PropertySourcesPlaceholderConfigurer



class	implements	Spring’s	Ordered	interface,	the	order	attribute’s	value	is	used	to	set	the	order	property
of	 PropertySourcesPlaceholderConfigurer	 instance.	 The	 properties-ref	 attribute	 refers	 to	 a
java.util.Properties	 object	 that	 represents	 the	 local	 properties.	 In	 the	 above	 example	 listing,	 the
<properties>	 element	 of	 Spring’s	 util	 schema	 (refer	 section	 3-8	 of	 chapter	 3)	 creates	 an	 instance	 of
java.util.Properties	object,	which	is	referenced	by	the	properties-ref	attribute	of	<property-placeholder>
element.

Let’s	now	look	at	Spring’s	PropertyOverrideConfigurer	(a	BeanFactoryPostProcessor)	which	allows	you
to	specify	values	for	bean	properties	in	external	properties	files.

PropertyOverrideConfigurer
PropertyOverrideConfigurer	 is	 similar	 to	 PropertySourcesPlaceholderConfigurer	 in	 the	 sense	 that	 it
allows	 you	 to	 specify	 a	 bean	 property	 value	 in	 external	 properties	 file.	 When	 using
PropertyOverrideConfigurer,	 bean	 property	 value	 is	 specified	 in	 the	 following	 format	 in	 external
properties	files:

<bean-name>.<bean-property-name>=<value>

here,	<bean-name>	 is	 the	name	of	 the	bean,	<bean-property-name>	 is	 the	name	of	 the	bean	property,
and	<value>	is	the	value	that	you	want	to	assign	to	the	bean	property.

The	notable	differences	between	PropertyOverrideConfigurer	and	PropertySourcesPlaceholderConfigurer
classes	are:

·								You	can	use	PropertyOverrideConfigurer	only	for	externalizing	values	of	bean	properties,	that	is,
you	can’t	use	PropertyOverrideConfigurer	to	externalize	values	of	constructor	arguments.

·	 	 	 	 	 	 	 	PropertySourcesPlaceholderConfigurer	doesn’t	provide	you	with	an	option	 to	specify	default
values	 for	 properties.	 But,	 PropertyOverrideConfigurer	 allows	 you	 to	 specify	 default	 values	 for
bean	properties.

Let’s	now	look	at	an	example	usage	of	PropertyOverrideConfigurer.

IMPORT	 chapter	 5/ch05-propertyOverrideConfigurer-example	 (This	 project	 shows	 a	 Spring
application	 that	 uses	 Spring’s	 PropertyOverrideConfigurer.	 To	 run	 the	 application,	 execute	 the	 main
method	of	the	SampleApp	class	of	this	project.)

PropertyOverrideConfigurer	example

The	 following	 example	 listing	 shows	 bean	 definitions	 for	 DataSource	 and	 WebServiceConfiguration
classes	whose	properties	we’ll	set	using	PropertyOverrideConfigurer:

Example	 listing	 5-32	 –	 applicationContext.xml	 -	 Bean	 definitions	 for	 DataSource	 and
WebServiceConfiguration
Project	–	ch05-propertyOverrideConfigurer-example
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="datasource"	class="sample.spring.chapter05.domain.DataSource">
								<property	name="url"	value="test	url	value"	/>
								<property	name="username"	value="test	username	value"	/>



								<property	name="password"	value="test	password	value"	/>
								<property	name="driverClass"	value="test	driverClass	value"	/>
				</bean>
	
				<bean	id="webServiceConfiguration"
												class="sample.spring.chapter05.domain.WebServiceConfiguration">
								<property	name="webServiceUrl"	value="this	webservice	url	needs	to	be	replaced"	/>
				</bean>

In	 the	 above	 example	 listing,	 the	 <bean>	 element’s	 value	 attribute	 specifies	 default	 value	 of	 a	 bean
property.

The	 following	example	 listing	 shows	 the	bean	definition	 for	 the	PropertyOverrideConfigurer	class	 that
replaces	 the	 default	 values	 of	 bean	 properties	 (shown	 in	 example	 listing	 5-32)	with	 values	 read	 from
database.properties	and	webservice.properties	files:

Example	listing	5-33	–	applicationContext.xml	-	PropertyOverrideConfigurer	configuration
Project	–	ch05-propertyOverrideConfigurer-example
Source	location	-	src/main/resources/META-INF/spring
	
				<bean
								class="org.springframework.beans.factory.config.PropertyOverrideConfigurer">
								<property	name="locations">
												<list>
																<value>classpath:database.properties</value>
																<value>classpath:webservice.properties</value>
												</list>
								</property>
				</bean>

In	 the	 above	 example	 listing,	PropertyOverrideConfigurer’s	 locations	 property	 specifies	 the	 properties
files	that	contain	values	for	bean	properties.

NOTE	 Instead	 of	 directly	 configuring	 PropertyOverrideConfigurer,	 you	 can	 use	 <property-override>
element	of	Spring’s	context	schema	to	configure	a	PropertyOverrideConfigurer	instance.

The	 following	 example	 listing	 shows	 database.properties	 and	webservice.properties	 files	 that	 contain
values	of	bean	properties:

Example	listing	5-34	–	Properties	defined	in	database.properties	and	webservice.properties
Project	–	ch05-propertyOverrideConfigurer-example
Source	location	-	src/main/resources/META-INF
	
----------------	database.properties	file	------------------
datasource.url=some_url
datasource.username=some_username
datasource.password=some_password
	



----------------	webservice.properties	file	------------------
webServiceConfiguration.webServiceUrl=some_url

The	 entries	 in	 the	 database.properties	 and	 webservice.properties	 files	 show	 that	 the	 property	 name
follows	 the	pattern:	<bean-name>.<property-name>.	When	bean	definitions	are	 loaded	by	 the	Spring
container,	PropertyOverrideConfigurer	replaces	the	default	value	of	a	bean	property	with	the	value	read
for	that	bean	property	from	the	database.properties	and	webservice.properties	files.	For	instance,	the	url
property	 of	 datasource	 bean	 is	 set	 to	 the	 value	 of	 datasource.url	 property	 defined	 in	 the
database.properties	 file.	Similarly,	webServiceUrl	 property	 of	webServiceConfiguration	 bean	 is	 set	 to
the	value	of	webServiceConfiguration.webServiceUrl	property	defined	in	the	webservice.properties	file.

If	 no	 value	 is	 found	 for	 a	 bean	 property	 in	 the	 external	 properties	 files,	 the	 bean	 property	 retains	 its
default	value.	Example	listing	5-32	shows	that	the	driverClass	property	of	datasource	bean	has	the	default
value	 ‘test	 driverClass	 value’.	 Example	 listing	 5-34	 shows	 that	 there	 is	 no	 property	 named
datasource.driverClass	 defined	 in	 the	 database.properties	 or	webservice.properties	 file;	 therefore,	 the
driverClass	bean	property	retains	its	default	value.

The	main	method	 of	 SampleApp	 class	 of	 ch05-propertyOverrideConfigurer-example	 project	 retrieves
WebServiceConfiguration	and	DataSource	beans	from	the	ApplicationContext	and	prints	their	properties
on	the	console.	If	you	execute	SampleApp’s	main	method,	you’ll	see	the	following	output	on	the	console:
DataSource	[url=some_url,	username=some_username,	password=some_password,	driverClass=test	driverClass	value]
WebServiceConfiguration	[webServiceUrl=some_url]

The	 above	 output	 shows	 that	 the	 default	 values	 of	 all	 bean	 properties,	 except	 that	 of	 driverClass,	 are
replaced	by	the	property	values	specified	in	the	external	properties	files.

As	 PropertyOverrideConfigurer	 and	 PropertySourcesPlaceholderConfigurer	 inherit	 from	 Spring’s
PropertyResourceConfigurer	 class,	 you’ll	 notice	 that	 both	 of	 these	 classes	 share	 many	 common
configuration	options.	For	instance,	you	can	set	PropertyOverrideConfigurer’s	localOverride	property	to
control	whether	the	local	properties	get	precedence	over	properties	read	from	external	properties	files,
you	can	set	PropertyOverrideConfigurer’s	properties	property	to	define	local	properties,	and	so	on.



5-5	Summary
In	this	chapter,	we	saw	how	to	add	custom	initialization	and	destruction	logic	to	a	bean	instance.	We	also
looked	at	how	you	can	modify	newly	created	bean	instances	using	BeanPostProcessor	 implementations,
and	modify	bean	definitions	using	BeanFactoryPostProcessor	 implementations.	 Spring	 internally	makes
use	of	BeanPostProcessors	and	BeanFactoryPostProcessors	 to	provide	many	framework	features.	 In	 the
next	chapter,	we’ll	look	at	Spring’s	support	for	annotation-driven	development.



Chapter	6-	Annotation-driven	development	with	Spring



6-1	Introduction
In	previous	chapters,	we	saw	that	the	bean	definitions	contained	in	the	application	context	XML	file	are
used	 as	 a	 blueprint	 by	 the	 Spring	 container	 to	 create	 bean	 instances.	 A	 bean	 definition	 specifies
information	 about	 bean	 dependencies,	 initialization	 and	 destruction	 methods	 of	 a	 bean,	 lazy	 or	 eager
initialization	 strategy	 for	 the	 bean	 instance,	 bean	 scope,	 and	 so	 on.	 In	 this	 section,	 we’ll	 look	 at
annotations	 that	you	can	use	 to	specify	 the	same	 information	 in	 the	bean	class	 itself,	 thereby	saving	 the
effort	 to	explicitly	configure	a	bean	 in	 the	application	context	XML	file.	We’ll	 also	 touch	upon	Spring
Expression	Language	(SpEL)	and	how	to	validate	objects	using	Spring’s	Validator	interface	and	through
JSR	303	annotations.	We’ll	end	this	chapter	with	a	quick	look	at	how	to	programmatically	define	Spring
beans	using	Spring’s	@Configuration	and	@Bean	annotations.

Let’s	 first	 begin	with	 looking	 at	 Spring’s	@Component	 annotation	 that	 indicates	 that	 a	 particular	 class
represents	a	Spring	component.



6-2	Identifying	Spring	components	with	@Component
Spring’s	@Component	 annotation	 is	 a	 type-level	 annotation,	 which	 indicates	 that	 a	 class	 represents	 a
Spring	component.	It	is	recommended	that	you	use	more	specialized	forms	of	@Component	annotation	to
annotate	controllers,	services	and	data	access	objects	(DAOs)	of	your	application.	For	instance,	annotate
controllers	with	@Controller,	services	with	@Service,	and	DAOs	with	@Repository	annotation.

IMPORT	chapter	6/ch06-bankapp-annotations	 (This	project	shows	 the	MyBank	application	 that	uses
annotations	for	registering	beans	with	the	Spring	container	and	for	autowiring	dependencies.	To	run	 the
application,	execute	the	main	method	of	the	BankApp	class	of	this	project.)

The	 following	 example	 listing	 shows	 the	MyBank’s	 FixedDepositServiceImpl	 class	 that	makes	 use	 of
@Service	annotation:

Example	listing	6-1	–	FixedDepositServiceImpl	class	-	@Service	annotation	usage
Project	–	ch06-bankapp-annotations
Source	location	-	src/main/java/sample/spring/chapter06/bankapp/service

package	sample.spring.chapter06.bankapp.service;
	
import	org.springframework.stereotype.Service;
	
@Service(value="FixedDepositService")
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{	.....	}

As	 FixedDepositSerivceImpl	 class	 is	 annotated	 with	 @Service	 annotation,	 FixedDepositServiceImpl
class	 represents	 a	 Spring	 component.	@Service	 annotation	 accepts	 a	 value	 attribute	 that	 specifies	 the
name	 with	 which	 the	 component	 is	 registered	 as	 a	 bean	 with	 the	 Spring	 container.	 For	 instance,
FixedDepositServiceImpl	 class	 is	 registered	 with	 Spring	 container	 as	 a	 bean	 with	 the	 name
FixedDepositService.	The	value	attribute	serves	the	same	purpose	as	the	<bean>	element’s	id	attribute.

Like	@Service	annotation,	@Component,	@Repository	and	@Controller	annotations	specify	the	name	of
the	 component	 via	 value	 attribute.	You	 can	 specify	 the	 name	of	 a	 Spring	 component	without	 explicitly
specifying	 the	 value	 attribute.	 This	 means	 that	 @Service(value="FixedDepositService")	 is	 same	 as
@Service("FixedDepositService").	If	you	don’t	specify	a	name	for	the	component,	Spring	assumes	name
of	 the	 component	 is	 same	 as	 the	 name	of	 the	 component	 class.	Only	 difference	 is	 that	 the	 name	of	 the
component	begins	with	a	lowercase	letter.	You	should	specify	a	custom	name	for	a	component	because	it’s
particularly	helpful	when	autowiring	dependencies	‘by	name’.

If	 you	 enable	 classpath-scanning	 feature	 of	 Spring,	 bean	 classes	 annotated	 with	 @Component,
@Controller,	 @Service	 or	 @Repository	 annotations	 are	 automatically	 registered	 with	 the	 Spring
container.	You	 enable	 classpath	 scanning	 feature	 of	 Spring	 by	 using	 the	 <component-scan>	 element	 of
Spring’s	context	schema.

The	following	example	listing	shows	usage	of	<component-scan>	element:

Example	listing	6-2	–	applicationContext.xml
Project	–	ch06-bankapp-annotations



Source	location	-	src/main/resources/META-INF/spring
	
<beans	xmlns="http://www.springframework.org/schema/beans"
				xmlns:context="http://www.springframework.org/schema/context"
				xsi:schemaLocation=".....http://www.springframework.org/schema/context
										http://www.springframework.org/schema/context/spring-context-4.0.xsd">
	
				<context:component-scan	base-package="sample.spring"/>
</beans>

In	 the	 above	 example	 listing,	 reference	 to	Spring’s	 context	 schema	 is	 included	 so	 that	 its	 elements	 are
accessible.	The	<component-scan>	 element’s	 base-package	 attribute	 specifies	 comma-separated	 list	 of
packages	 that	 should	 be	 searched	 for	 Spring	 components.	 As	 the	 base-package	 attribute’s	 value	 is
sample.spring,	Spring	components	are	 searched	 inside	sample.spring	package	and	 its	 sub-packages.	As
the	FixedDepositServiceImpl	class	shown	in	example	listing	6-1	is	annotated	with	@Service	annotation
and	is	located	in	package	sample.spring.chapter06.bankapp.service,	the	<component-scan>	element	in	the
above	example	listing	automatically	registers	FixedDepositServiceImpl	class	as	a	bean	with	 the	Spring
container.	This	is	equivalent	to	the	following	bean	definition	for	the	FixedDepositServiceImpl	class	in	the
application	context	XML	file:

Example	listing	6-3	–	Bean	definition	for	the	FixedDepositServiceImpl	class
	
<bean	id="FixedDepositService"	
													class="sample.spring.chapter06.bankapp.service.FixedDepositServiceImpl"	/>

If	you	want	to	filter	the	component	classes	that	should	be	considered	for	automatic	registration	with	the
Spring	 container,	 use	 the	 resource-pattern	attribute	of	<component-scan>	element.	 The	 default	 value	 of
resource-pattern	 attribute	 is	 **/*.class,	 which	 means	 all	 the	 component	 classes	 under	 the	 package(s)
specified	by	the	base-package	attribute	will	be	considered	for	automatic	registration.	The	<include-filter>
and	<exclude-filter>	sub-elements	of	<component-scan>	element	provide	a	more	concise	way	to	specify
component	 classes	 that	 should	 be	 considered	 for	 automatic	 registration,	 and	 the	 classes	 that	 should	 be
ignored.	 For	 instance,	 the	 following	 example	 listing	 shows	 an	 example	 usage	 of	 <include-filter>	 and
<exclude-filter>	elements:

Example	listing	6-4	–	<include-filter>	and	<exclude-filter>	elements
	
<beans	.....>
				<context:component-scan	base-package="sample.example">
									<context:include-filter	type="annotation"	expression="example.annotation.MyAnnotation"/>
									<context:exclude-filter	type="regex"	expression=".*Details"/>			
				</context:component-scan>
</beans>

The	<exclude-filter>	and	<include-filter>	elements	define	a	type	attribute	that	specifies	the	strategy	used
for	filtering	component	classes,	and	the	expression	attribute	specifies	the	corresponding	filter	expression.
In	 the	above	example	 listing,	 the	<include-filter>	element	 specifies	 that	 the	 component	 classes	 that	 are
annotated	with	MyAnnotation	type-level	annotation	are	automatically	registered	with	the	Spring	container,



and	the	<exclude-filter>	element	specifies	that	the	component	classes	whose	names	end	with	Details	are
ignored	by	the	<component-scan>	element.

The	 following	 table	 describes	 the	 possible	 values	 that	 the	 type	 attributes	 of	 <include-filter>	 and
<exclude-filter>	elements	can	accept:

	

	
Value	of	type	attribute Description

annotation

If	 the	 type	 attribute’s	 value	 is	 annotation,	 the	 expression	 attribute	 specifies	 the	 fully-
qualified	class	name	of	the	annotation	that	a	component	class	must	be	annotated	with.	For
instance,	 if	 the	 expression	 attribute’s	 value	 is	 example.annotation.MyAnnotation,
component	classes	 that	are	annotated	with	MyAnnotation	annotation	are	considered	 for
inclusion	 (in	 case	 of	 <include-filter>	 element)	 or	 exclusion	 (in	 case	 of	 <exclude-filter>
element).

assignable If	 the	 type	 attribute’s	 value	 is	 assignable,	 the	 expression	 attribute	 specifies	 the	 fully-
qualified	name	of	a	class	or	interface	to	which	a	component	class	must	be	assignable.

aspectj If	 the	 type	 attribute’s	 value	 is	 aspectj,	 the	 expression	 attribute	 specifies	 an	 AspectJ
expression	that	is	used	for	filtering	the	component	classes.

regex If	the	type	attribute’s	value	is	regex,	the	expression	attribute	specifies	a	regular	expression
that	is	used	for	filtering	component	classes	by	their	names.

custom
If	 the	 type	 attribute’s	 value	 is	 custom,	 an	 implementation	 of
org.springframework.core.type.TypeFilter	 interface	 is	 specified	 by	 the	 expression
attribute	for	filtering	the	component	classes.

	

NOTE	 In	 this	 section,	 we	 looked	 at	 an	 example	 usage	 of	 @Service	 annotation.	 @Component,
@Controller	 and	@Repository	 annotations	 are	 specified	 the	 same	way	 as	@Service	 annotation.	 Refer
CustomerRegistrationDetails	and	CustomerRequestDetails	classes	of	 	ch06-bankapp-annotations	project
to	 see	 usage	 of	 @Component	 annotation.	 Refer	 DAO	 classes	 contained	 in	 ch06-bankapp-annotations
project	to	see	usage	of	@Repository	annotation.

As	Spring	components	are	not	defined	in	the	application	context	XML	file,	you	don’t	have	the	option	to
use	 <property>	 or	 <constructor-arg>	 element	 to	 specify	 their	 dependencies.	 For	 this	 reason,	 Spring
components	make	use	of	annotations	like	@Autowired,	@Inject,	and	so	on,	to	specify	their	dependencies.

Let’s	now	look	at	Spring’s	@Autowired	annotation.



6-3	@Autowired	-	autowiring	dependencies	by	type
@Autowired	 annotation	 is	 used	 to	 autowire	 dependencies	 ‘by	 type’.	 Spring’s	@Autowired	 annotation
provides	 the	 same	 functionality	 as	 the	 Spring’s	 autowiring	 feature	 that	we	 discussed	 in	 chapter	 4,	 but
@Autowired	annotation	offers	 a	more	cleaner	 and	 flexible	 approach	 to	 autowiring	bean	dependencies.
@Autowired	annotation	can	be	used	at	constructor-level,	method-level	and	field-level.

The	following	example	listing	shows	the	AccountStatementServiceImpl	class	 that	uses	 the	@Autowired
annotation	at	the	field-level:

Example	listing	6-5	–	AccountStatementServiceImpl	class	 -	@Autowired	annotation	usage	at	 the	field-
level
Project	–	ch06-bankapp-annotations
Source	location	-	src/main/java/sample/spring/chapter06/bankapp/service

package	sample.spring.chapter06.bankapp.service;
	
import	org.springframework.beans.factory.annotation.Autowired;
import	org.springframework.stereotype.Service;
	
@Service(value="accountStatementService")
public	class	AccountStatementServiceImpl	implements	AccountStatementService	{
	
				@Autowired
				private	AccountStatementDao	accountStatementDao;
			
				@Override
				public	AccountStatement	getAccountStatement(Date	from,	Date	to)	{
								return	accountStatementDao.getAccountStatement(from,	to);
				}
}

In	the	above	example	listing,	the	accountStatementDao	field	(of	type	AccountStatementDao)	is	annotated
with	@Autowired	 annotation.	 	When	 an	 instance	 of	AccountStatementServiceImpl	 is	 created,	 Spring’s
AutowiredAnnotationBeanPostProcessor	 (a	 BeanPostProcessor	 implementation)	 is	 responsible	 for
autowiring	accountStatementDao	field.	The	AutowiredAnnotationBeanPostProcessor	 retrieves	 reference
to	an	AccountStatementDao	type	bean	from	the	Spring	container	and	assigns	it	to	the	accountStatementDao
field.	It	 is	 important	to	note	that	the	field	annotated	with	@Autowired	annotation	need	not	be	public	or
have	a	corresponding	public	setter	method.

	

	

NOTE	Spring’s	AutowiredAnnotationBeanPostProcessor	performs	autowiring	of	fields,	methods	and
constructors	that	are	annotated	with	Spring’s	@Autowired	or	JSR	330’s	@Inject	(explained	in	section	6-
5)	annotation.



The	 following	 example	 listing	 shows	 the	 CustomerRegistrationServiceImpl	 class	 that	 uses	 the
@Autowired	annotation	at	the	method-level:

Example	 listing	 6-6	 –	 CustomerRegistrationServiceImpl	 class	 -	 @Autowired	 annotation	 usage	 at	 the
method-level
Project	–	ch06-bankapp-annotations
Source	location	-	src/main/java/sample/spring/chapter06/bankapp/service

package	sample.spring.chapter06.bankapp.service;
	
@Service("customerRegistrationService")
@Scope(value	=	ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public	class	CustomerRegistrationServiceImpl	implements	CustomerRegistrationService	{
	
				private	CustomerRegistrationDetails	customerRegistrationDetails;
				.....
				@Autowired
				public	void	obtainCustomerRegistrationDetails(
												CustomerRegistrationDetails	customerRegistrationDetails)	{
								this.customerRegistrationDetails	=	customerRegistrationDetails;
				}
				.....
				@Override
				public	void	setAccountNumber(String	accountNumber)	{
								customerRegistrationDetails.setAccountNumber(accountNumber);
				}
				.....
}

In	the	above	example	listing,	obtainCustomerRegistrationDetails	method	 is	annotated	with	@Autowired
annotation.	 If	 a	 method	 is	 annotated	 with	 @Autowired	 annotation,	 the	 arguments	 of	 the	 method	 are
autowired.	As	obtainCustomerRegistrationDetails	method	 is	annotated	with	@Autowired	annotation,	 its
CustomerRegistrationDetails	argument	is	autowired	by	type.	 It	 is	 important	 to	note	 that	an	@Autowired
annotated	method	need	not	be	public.

NOTE	 A	 method	 annotated	 with	 @Autowired	 annotation	 is	 invoked	 after	 the	 component	 instance	 is
created,	and	the	fields	annotated	with	@Autowired	annotation	are	injected	with	matching	bean	instances.

The	 following	 example	 listing	 shows	 the	CustomerRequestServiceImpl	 class	 that	 defines	 a	 constructor
annotated	with	@Autowired	annotation:

Example	listing	6-7	–	CustomerRequestServiceImpl	class	-	@Autowired	annotation	usage	at	constructor-
level
Project	–	ch06-bankapp-annotations
Source	location	-	src/main/java/sample/spring/chapter06/bankapp/service

package	sample.spring.chapter06.bankapp.service;
	



@Service(value="customerRequestService")
public	class	CustomerRequestServiceImpl	implements	CustomerRequestService	{
				private	CustomerRequestDetails	customerRequestDetails;
				private	CustomerRequestDao	customerRequestDao;
	
				@Autowired
				public	CustomerRequestServiceImpl(CustomerRequestDetails	customerRequestDetails,
												CustomerRequestDao	customerRequestDao)	{
								this.customerRequestDetails	=	customerRequestDetails;
								this.customerRequestDao	=	customerRequestDao;
				}
				.....
}

In	 the	 above	 example	 listing,	 the	 CustomerRequestServiceImpl’s	 constructor	 is	 annotated	 with
@Autowired	annotation.	If	a	constructor	is	annotated	with	@Autowired	annotation,	the	arguments	of	the
constructor	are	autowired.	As	CustomerRequestServiceImpl’s	constructor	is	annotated	with	@Autowired
annotation,	its	CustomerRequestDetails	and	CustomerRequestDao	arguments	are	autowired	by	type.	 It	 is
important	to	note	that	an	@Autowired	annotated	constructor	need	not	be	public.

When	using	the	@Autowired	annotation,	exception	is	thrown	if	a	bean	matching	the	required	type	is	not
found.	 For	 instance,	 in	 example	 listing	 6-7,	 if	 a	 bean	 of	 type	 CustomerRequestDetails	 or
CustomerRequestDao	is	not	found	to	be	registered	with	the	Spring	container,	an	exception	is	thrown	while
creating	the	CustomerRequestServiceImpl	instance.	@Autowired’s	required	attribute	specifies	whether	it
is	mandatory	or	optional	to	autowire	dependencies.	If	you	set	@Autowired’s	required	attribute	value	 to
false,	autowiring	of	dependencies	is	considered	optional.	This	means	that	if	the	required	attribute’s	value
is	 set	 to	 false,	 exception	 is	 not	 thrown	 if	 no	 bean	 matching	 the	 required	 type	 is	 found	 in	 the	 Spring
container.	By	default,	 value	 of	 required	 attribute	 is	 true;	 dependencies	must	 be	 satisfied	 by	 the	 Spring
container.

If	a	component	class	defines	an	@Autowired	annotated	constructor	with	required	attribute’s	value	set	to
true,	 it	 can’t	 have	 another	 @Autowired	 annotated	 constructor.	 For	 instance,	 consider	 the	 following
example	listing	that	defines	2	constructors	annotated	with	the	@Autowired	annotation:

Example	listing	6-8	–	A	component	class	that	defines	2	@Autowired	annotated	constructors

@Service(value="customerRequestService")
public	class	CustomerRequestServiceImpl	implements	CustomerRequestService	{
				.....
				@Autowired(required=false)
				public	CustomerRequestServiceImpl(CustomerRequestDetails	customerRequestDetails)	{	.....	}
	
				@Autowired
				public	CustomerRequestServiceImpl(CustomerRequestDetails	customerRequestDetails,
												CustomerRequestDao	customerRequestDao)	{	.....	}
}

As	autowiring	of	dependencies	is	required	(@Autowired’s	required	attribute	is	set	to	true)	for	one	of	the



constructors	 and	 optional	 (@Autowired’s	 required	 attribute	 is	 set	 to	 false)	 for	 the	 other	 in	 the	 above
example	listing,	it	results	in	an	exception	thrown	by	Spring.

A	 component	 class	 can	 define	 multiple	 @Autowired	 annotated	 constructors	 with	 required	 attribute’s
value	set	to	false.	In	such	a	case,	one	of	the	constructors	will	be	invoked	by	Spring	to	create	an	instance
of	 the	 component	 class.	 The	 following	 example	 listing	 shows	 a	 component	 class	 that	 defines	 2
constructors	annotated	with	@Autowired	(required	=	false),	and	a	default	constructor:

Example	listing	6-9	–	A	component	class	that	defines	multiple	@Autowired	annotated	constructors	with
required	attribute	value	set	to	false

@Service(value="customerRequestService")
public	class	CustomerRequestServiceImpl	implements	CustomerRequestService	{
				public	CustomerRequestServiceImpl()	{
								.....
				}
				@Autowired(required=false)
				public	CustomerRequestServiceImpl(CustomerRequestDetails	customerRequestDetails)	{
								.....
				}
	
				@Autowired(required=false)
				public	CustomerRequestServiceImpl(CustomerRequestDetails	customerRequestDetails,
												CustomerRequestDao	customerRequestDao)	{
								.....
					}
}

In	the	above	example	listing,	both	the	@Autowired	annotated	constructors	are	candidates	for	autowiring
by	Spring	to	create	an	instance	of	the	CustomerRequestServiceImpl	class.	The	constructor	with	the	largest
number	of	 satisfied	dependencies	 is	 chosen.	 In	 case	of	CustomerRequestServiceImpl	 class,	 if	 beans	of
types	CustomerRequestDetails	and	CustomerRequestDao	are	registered	with	the	Spring	container,	Spring
invokes	CustomerRequestServiceImpl(CustomerRequestDetails,	 CustomerRequestDao)	 constructor.	 If	 a
bean	 of	 type	 CustomerRequestDetails	 is	 registered	 with	 container	 but	 no	 bean	 of	 type
CustomerRequestDao	 is	 registered,	 CustomerRequestServiceImpl(CustomerRequestDetails)	 constructor
is	 invoked.	 In	 case	 none	 of	 the	 dependencies	 are	 found,	 the	 default	 constructor	 of
CustomerRequestServiceImpl	class	is	invoked.

Let’s	now	look	at	how	you	can	use	Spring’s	@Qualifier	annotation	along	with	@Autowired	annotation	to
autowire	dependencies	by	name.



6-4	@Qualifier	–	autowiring	dependencies	by	name
You	can	use	Spring’s	@Qualifier	annotation	along	with	@Autowired	annotation	to	autowire	dependencies
by	name.	The	@Qualifier	annotation	can	be	used	at	field-level,	method-parameter-level	and	constructor-
argument-level.

The	following	example	listing	shows	the	FixedDepositServiceImpl	class	that	uses	@Qualifier	annotation:

Example	listing	6-10	–	FixedDepositServiceImpl	class	-	@Qualifier	annotation	usage
Project	–	ch06-bankapp-annotations
Source	location	-	src/main/java/sample/spring/chapter06/bankapp/service

package	sample.spring.chapter06.bankapp.service;
	
import	org.springframework.beans.factory.annotation.Autowired;
import	org.springframework.beans.factory.annotation.Qualifier;
	
@Service(value="FixedDepositService")
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
			
				@Autowired
				@Qualifier(value="myFixedDepositDao")
				private	FixedDepositDao	myFixedDepositDao;
				.....
}

In	 the	above	example	 listing,	myFixedDepositDao	field	 is	annotated	with	@Autowired	 and	@Qualifier
annotations.	@Qualifier	annotation’s	value	attribute	specifies	the	name	of	the	bean	to	be	assigned	to	the
myFixedDepositDao	field.

Spring	 first	 finds	 autowiring	 candidates	 ‘by	 type’	 for	 the	 fields,	 constructors	 and	 methods	 that	 are
annotated	 with	 @Autowired	 annotation.	 Then,	 Spring	 uses	 the	 bean	 name	 specified	 by	 @Qualifier
annotation	to	locate	a	unique	bean	from	the	list	of	autowiring	candidates.	For	example,	in	example	listing
6-10,	Spring	first	finds	beans	of	type	FixedDepositDao	for	myFixedDepositDao	field,	and	then	locates	the
bean	 named	 myFixedDepositDao	 from	 the	 list	 of	 autowiring	 candidates.	 If	 a	 bean	 named
myFixedDepositDao	is	found,	Spring	assigns	it	to	the	myFixedDepositDao	field.

NOTE	 @Qualifier(value="myFixedDepositDao")	 is	 same	 as	 @Qualifier("myFixedDepositDao");	 you
don’t	need	to	use	the	value	attribute	to	specify	the	name	of	the	bean	to	be	autowired.

The	 following	 example	 listing	 shows	 usage	 of	 @Qualifier	 annotation	 at	 method-parameter-level	 and
constructor-argument-level:

Example	listing	6-11	–	@Qualifier	usage	at	method-parameter-level	and	constructor-argument-level

public	class	Sample	{
			
				@Autowired



				public	Sample(@Qualifier("aBean")	ABean	bean)	{	....	}
	
				@Autowired
				public	void	doSomething(@Qualifier("bBean")	BBean	bean,	CBean	cBean)	{	.....	}
}

In	the	above	example	listing,	@Qualifier	annotation	is	specified	for	a	constructor	argument	and	a	method
argument.	When	creating	an	instance	of	Sample	class,	Spring	finds	a	bean	of	type	ABean	with	name	aBean
and	 passes	 it	 as	 an	 argument	 to	 the	 Sample	 class’s	 constructor.	 When	 calling	 Sample’s	 doSomething
method,	Spring	finds	a	bean	of	type	BBean	(whose	name	is	bBean)	and	another	bean	of	type	CBean,	and
passes	both	these	beans	as	arguments	to	the	doSomething	method.	It	 is	 important	 to	note	that	 the	BBean
dependency	is	autowired	by	name,	and	CBean	dependency	is	autowired	by	type.

Let’s	 now	 look	 at	 JSR	 330’s	@Inject	 and	@Named	 annotations	 that	 you	 can	 use	 instead	 of	 Spring’s
@Autowired	and	@Qualifier	annotations.



6-5	JSR	330’s	@Inject	and	@Named	annotations
JSR	 330	 (Dependency	 Injection	 for	 Java)	 standardizes	 dependency	 injection	 annotations	 for	 the	 Java
platform.	JSR	330	defines	@Inject	and	@Named	annotations	that	are	similar	to	Spring’s	@Autowired	and
@Qualifier	annotations,	respectively.	Spring	provides	support	for	@Inject	and	@Named	annotations.

IMPORT	chapter	6/ch06-bankapp-jsr330	 (This	project	 shows	 the	MyBank	application	 that	uses	 JSR
330’s	@Inject	and	@Named	annotations	for	autowiring	dependencies.	To	run	the	application,	execute	the
main	method	of	the	BankApp	class	of	this	project.)

The	 following	 example	 listing	 shows	 the	 FixedDepositServiceImpl	 class	 that	makes	 use	 of	 JSR	 330’s
@Inject	and	@Named	annotations:

Example	listing	6-12	–	FixedDepositServiceImpl	class
Project	–	ch06-bankapp-jsr330
Source	location	-	src/main/java/sample/spring/chapter06/bankapp/service

package	sample.spring.chapter06.bankapp.service;
	
import	javax.inject.Inject;
import	javax.inject.Named;
	
@Named(value="FixedDepositService")
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
			
				@Inject
				@Named(value="myFixedDepositDao")
				private	FixedDepositDao	myFixedDepositDao;
				.....
}

If	 you	 compare	 the	 FixedDepositServiceImpl	 class	 shown	 in	 the	 above	 example	 listing	 with	 the
FixedDepositServiceImpl	class	in	example	listing	6-10,	you’ll	notice	that	JSR	330’s	@Named	annotation
has	been	used	in	place	of	@Service	and	@Qualifier	annotations,	and	JSR	330’s	@Inject	annotation	has
been	used	in	place	of	@Autowired	annotation.

@Autowired	 and	 @Inject	 annotations	 have	 the	 same	 semantics;	 they	 are	 used	 for	 autowiring
dependencies	by	 type.	Like	@Autowired	annotation,	@Inject	can	be	used	at	method-level,	 constructor-
level	 and	 field-level.	Dependency	 injection	 of	 constructors	 is	 performed	 first,	 followed	by	 fields,	 and
then	methods.	We	 saw	 earlier	 that	@Autowired	 annotation’s	 required	 attribute	 specifies	 whether	 it	 is
mandatory	or	 optional	 to	 autowire	 dependencies.	@Inject	 doesn’t	 have	 any	 equivalent	 of	@Autowired
annotation’s	required	attribute.

If	@Named	 annotation	 is	 used	 at	 the	 type-level,	 it	 acts	 like	 Spring’s	@Component	 annotation.	And,	 if
@Named	 annotation	 is	 used	 at	 the	 method-parameter-level	 or	 constructor-argument-level,	 it	 acts	 like
Spring’s	 @Qualifier	 annotation.	 If	 a	 class	 is	 annotated	 with	 @Named	 annotation,	 <component-scan>
element	 of	 Spring’s	 context	 schema	 treats	 it	 like	 a	 component	 class	 annotated	 with	 @Component
annotation.



To	use	@Named	 and	@Inject	 annotations,	 you	need	 to	 include	 JSR	330	 JAR	 file	 in	 your	 project.	The
ch06-bankapp-jsr330	project	includes	JSR	330	JAR	file	through	the	following	<dependency>	element	in
the	pom.xml	file:

<dependency>
					<groupId>javax.inject</groupId>
					<artifactId>javax.inject</artifactId>
					<version>1</version>
</dependency>

In	 chapter	 5,	 we	 looked	 at	 JSR	 250’s	@PostConstruct	 and	@PreDestroy	 annotations	 that	 are	 used	 to
identify	 initialization	 and	 destruction	 methods	 of	 a	 bean.	 Let’s	 now	 look	 at	 JSR	 250’s	 @Resource
annotation	that	you	can	use	for	autowiring	dependencies	by	name.



6-6	JSR	250’s	@Resource	annotation
Spring	 supports	 autowiring	 ‘by	 name’	 of	 fields	 and	 methods	 via	 JSR	 250’s	 @Resource	 annotation.
@Resource	annotation’s	name	attribute	specifies	the	name	of	the	bean	to	be	autowired.	It	is	important	to
note	that	you	can’t	use	@Resource	annotation	for	autowiring	constructor	arguments.

The	following	example	listing	shows	how	FixedDepositServiceImpl	class	from	example	listing	6-12	can
be	rewritten	using	@Resource	annotation:

Example	listing	6-13	–	@Resource	annotation	usage	at	field-level
	
import	javax.annotation.Resource;
	
@Named(value="FixedDepositService")
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
			
				@Resource(name="myFixedDepositDao")
				private	FixedDepositDao	myFixedDepositDao;
				.....
}

In	 the	above	example	 listing,	@Resource	annotation	has	been	used	 for	 autowiring	myFixedDepositDao
field.	 As	 the	 value	 of	 name	 attribute	 is	 myFixedDepositDao,	 Spring	 locates	 a	 bean	 named
myFixedDepositDao	in	the	Spring	container	and	assigns	it	to	myFixedDepositDao	field.

Instead	 of	 using	@Autowired	 and	@Qualifier	 annotations,	 you	 should	 use	 @Resource	 annotation	 for
autowiring	 dependencies	 ‘by	 name’.	 As	 mentioned	 earlier,	 if	 you	 are	 using	 @Autowired-@Qualifier
combination	to	perform	autowiring	‘by	name’,	Spring	first	finds	beans	based	on	the	type	of	the	field	(or
the	type	of	the	method	argument	or	constructor	argument)	to	be	autowired,	followed	by	narrowing	down	to
a	 unique	 bean	 based	 on	 the	 bean	 name	 specified	 by	 @Qualifier	 annotation.	 But,	 if	 you	 are	 using
@Resource	 annotation,	 Spring	 uses	 bean	 name	 specified	 by	@Resource	 annotation	 to	 locate	 a	 unique
bean.	This	means	that	when	you	use	@Resource	annotation,	type	of	the	field	(or	setter	method	argument)
to	be	autowired	is	not	taken	into	consideration	by	Spring.

NOTE	As	@Autowired,	@Inject	and	@Resource	annotations	are	processed	by	BeanPostProcessors,	you
should	 not	 use	 these	 annotations	 in	 component	 classes	 that	 implement	 BeanFactoryPostProcessor	 or
BeanPostProcessor	interface.

Let’s	now	look	at	@Scope,	@Lazy,	@DependsOn	and	@Primary	annotations.



6-7	@Scope,	@Lazy,	@DependsOn	and	@Primary	annotations
You	specify	the	scope	(prototype	or	singleton)	of	a	Spring	component	using	Spring’s	@Scope	annotation.
By	default,	 Spring	 components	 are	 singleton-scoped.	 If	 you	want	 a	Spring	 component	 to	 be	 prototype-
scoped,	you	have	 to	 specify	 so	via	@Scope	annotation.	@Scope	 annotation	plays	 the	 same	 role	 as	 the
<bean>	element’s	scope	attribute	(refer	section	2-5	of	chapter	2	to	know	more	about	the	scope	attribute).

The	following	example	listing	shows	the	CustomerRequestDetails	class	that	uses	@Scope	annotation:

Example	listing	6-14	–	@Scope	annotation	usage
Project	–	ch06-bankapp-jsr330
Source	location	-	src/main/java/sample/spring/chapter06/bankapp/domain

package	sample.spring.chapter06.bankapp.domain;
	
import	javax.inject.Named;
import	org.springframework.beans.factory.config.ConfigurableBeanFactory;
import	org.springframework.context.annotation.Scope;
	
@Named(value="customerRequestDetails")
@Scope(value=ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public	class	CustomerRequestDetails	{	.....	}

The	@Scope	annotation	accepts	a	value	attribute	that	specifies	the	scope	of	the	component.	You	can	set
value	attribute’s	value	to	prototype	or	singleton	to	indicate	whether	the	component	is	singleton-scoped	or
prototype-scoped,	 or	 you	 can	 set	 value	 attribute’s	 value	 to	 ConfigurableBeanFactory’s
SCOPE_SINGLETON	(value	is	singleton)	or	SCOPE_PROTOTYPE	(value	is	prototype)	constants.

By	default,	singleton-scoped	Spring	components	are	eagerly	initialized,	that	is,	they	are	instantiated	when
the	Spring	container	is	created.	If	you	want	a	singleton-scoped	component	to	be	lazily	created,	annotate
the	component	class	of	a	singleton-scoped	component	with	@Lazy	annotation.

NOTE	 @Lazy	 annotation	 serves	 the	 same	 purpose	 as	 the	 <bean>	 element’s	 lazy-init
attribute.	Refer	section	2-5	of	chapter	2	to	know	more	about	lazy-init	attribute.
	
The	following	example	listing	shows	usage	of	@Lazy	annotation:
	
Example	listing	6-15	–	@Lazy	annotation	usage

@Lazy(value=true)
@Component
public	class	Sample	{	.....	}

@Lazy	annotation’s	value	attribute	specifies	whether	the	component	is	lazily	or	eagerly	initialized.	If	the
value	attribute’s	value	is	true,	it	means	that	the	component	is	lazily	initialized.

You	 specify	 implicit	 bean	dependencies	 using	@DependsOn	 annotation.	The	 following	 example	 listing
shows	usage	of	@DependsOn	annotation:



Example	listing	6-16	–	@DependsOn	annotation	usage

@DependsOn(value	=	{"beanA",	"beanB"})
@Component
public	class	Sample	{	.....	}

In	the	above	example	listing,	@DependsOn	annotation	on	the	Sample	class	instructs	the	Spring	container
to	create	beanA	and	beanB	beans	before	creating	an	instance	of	Sample	class.

NOTE	@DependsOn	annotation	serves	the	same	purpose	as	the	<bean>	element’s	depends-on	attribute.
Refer	section	4-3	of	chapter	4	to	know	more	about	depends-on	attribute.

	

	

If	multiple	autowiring	candidates	are	available	for	a	dependency,	@Primary	annotation	designates	a	bean
as	 a	 primary	 candidate	 for	 autowiring.	 The	 following	 example	 listing	 shows	 usage	 of	 @Primary
annotation:

Example	listing	6-17	–	@Primary	annotation	usage

@Primary
@Component
public	class	Sample	{	.....	}

NOTE	@Primary	annotation	serves	 the	same	purpose	as	 the	<bean>	element’s	primary	attribute.	Refer
section	4-6	of	chapter	4	to	know	more	about	primary	attribute.

Let’s	now	look	at	Spring’s	@Value	annotation	that	simplifies	configuring	component	classes.



6-8	Simplifying	component	configuration	using	@Value	annotation
In	 previous	 chapters,	 we	 saw	 examples	 in	 which	 configuration	 information	 required	 by	 beans	 was
specified	via	value	attribute	of	<property>	and	<constructor-arg>	elements.	As	Spring	components	are	not
defined	 in	 the	 application	 context	 XML	 file,	 Spring’s	 @Value	 annotation	 is	 used	 to	 serve	 the	 same
purpose	 as	 the	 value	 attribute	 of	 <property>	 and	<constructor-arg>	 elements.	You	 should	 note	 that	 the
@Value	 annotation	 can	 be	 used	 at	 field-level,	 method-level,	 method-parameter-level	 and	 constructor-
argument-level.

IMPORT	 chapter	 6/ch06-value-annotation	 (This	 project	 shows	 an	 application	 that	 uses	 Spring’s
@Value	annotation	to	configure	Spring	components.	To	run	the	application,	execute	the	main	method	of	the
SampleApp	class	of	this	project.)

The	following	example	listing	shows	an	example	usage	of	@Value	annotation	at	field-level:

Example	listing	6-18	–	Sample	class	-	@Value	annotation	usage
Project	–	ch06-value-annotation
Source	location	-	src/main/java/sample/spring/chapter06/beans

package	sample.spring.chapter06.beans;
	
import	org.springframework.beans.factory.annotation.Value;
	
@Component(value="sample")
public	class	Sample	{
				@Value("Some	currency")
				private	String	currency;
				.....
}

In	 the	 above	 example	 listing,	 currency	 field	 is	 annotated	 with	 @Value	 annotation.	 The	 @Value
annotation’s	value	 attribute	 specifies	 the	 default	 value	 for	 the	 field.	 It	 is	 optional	 to	 specify	 the	 value
attribute;	therefore,	@Value(value="Some	currency")	is	same	as	@Value("Some	currency").

You	can	also	use	a	Spring	Expression	Language	(SpEL)	expression	as	the	value	of	@Value	annotation.
SpEL	 is	 an	 expression	 language	 that	 you	 can	 use	 to	 query	 and	 manipulate	 objects	 at	 runtime.	 The
following	example	listing	shows	@Value	annotations	that	make	use	of	SpEL	expressions:

Example	listing	6-19	–	Sample	class	-	@Value	annotation	that	uses	SpEL	expressions
Project	–	ch06-value-annotation
Source	location	-	src/main/java/sample/spring/chapter06/beans

package	sample.spring.chapter06.beans;
	
import	org.springframework.beans.factory.annotation.Value;
	
@Component(value="sample")
public	class	Sample	{



				@Value("#{configuration.environment}")
				private	String	environment;
				.....
				@Value("#{configuration.getCountry()}")
				private	String	country;
	
				@Value("#{configuration.state}")
				private	String	state;
				.....
}

The	 above	 example	 listing	 shows	 that	 the	@Value	 annotation	 specifies	 a	 value	 that	 has	 the	 syntax	 #
{<spel-expression>}.	 The	 SpEL	 expression	 specified	 by	 @Value	 annotation	 is	 processed	 by	 a
BeanPostProcessor.	The	SpEL	expressions	can	make	use	of	<beanName>.<field	or	property	or	method>
format	to	obtain	its	value.	For	instance,	#{configuration.environment}	means	obtain	value	of	environment
property	 of	 bean	 named	 configuration,	 and	 #{configuration.getCountry()}	 means	 invoke	 getCountry
method	of	bean	named	configuration.

The	 following	 example	 listing	 shows	 the	 Java	 class	 of	 the	 configuration	 bean	 referenced	 by	 SpEL
expressions	shown	in	example	listing	6-19:

	
	
	
	
Example	listing	6-20	–	Configuration	component	class
Project	–	ch06-value-annotation
Source	location	-	src/main/java/sample/spring/chapter06/beans

package	sample.spring.chapter06.beans;
	
import	org.springframework.stereotype.Component;
	
@Component("configuration")
public	class	Configuration	{
				public	static	String	environment	=	"DEV";
	
				public	String	getCountry()	{
								return	"Some	country";
				}
	
				public	String	getState()	{
								return	"Some	state";
				}
	
				public	String[]	splitName(String	name)	{
								return	name.split("	");



				}
	
				public	String	getCity()	{
								return	"Some	city";
				}
}

The	above	example	listing	shows	that	the	Configuration	class	represents	a	Spring	component	that	defines
fields	 and	 methods.	 If	 you	 compare	 example	 listing	 6-19	 with	 6-20,	 you’ll	 notice	 that	 #
{configuration.environment}	 expression	 refers	 to	 the	 static	 environment	 variable	 defined	 in	 the
Configuration	 class,	 #{configuration.getCountry()}	 expression	 refers	 to	 Configuration’s	 getCountry
method,	and	#{configuration.state}	expression	refers	to	Configuration’s	getState	method.

The	main	method	of	SampleApp	class	in	ch06-value-annotation	project	 retrieves	an	 instance	of	Sample
bean	from	the	ApplicationContext	and	prints	 the	value	of	various	attributes	of	Sample	bean	 instance.	 If
you	execute	SampleApp’s	main	method,	you’ll	see	the	following	output:
Sample	[environment=DEV,	currency=Some	currency,	country=Some	country,	state=Some	state ,	splitName=[FirstName,	LastName],
city=Some	city]

The	above	output	shows:

·	 	 	 	 	 	 	 	 #{configuration.environment}	 expression	 results	 in	Sample’s	environment	 field	 value	 set	 to
DEV,	which	is	the	value	specified	by	public	static	field	environment	of	Configuration	class.

·	 	 	 	 	 	 	 	#{configuration.getCountry()}	expression	results	 in	Sample’s	country	field	value	set	 to	Some
country,	which	is	the	value	returned	by	invoking	Configuration’s	getCountry	method.

·								#{configuration.state}	expression	results	in	Sample’s	state	field	value	set	to	Some	state,	which	is
the	value	returned	by	invoking	Configuration’s	getState	method.

The	above	example	shows	that	you	can	use	SpEL	to	retrieve	configuration	information	from	other	beans.

NOTE	SpEL	is	a	very	powerful	expression	language,	and	it	offers	many	more	capabilities	than	described
in	this	book.	It	is	recommended	that	you	refer	to	Spring	reference	documentation	to	know	about	SpEL.

The	following	example	listing	shows	usage	of	@Value	annotation	at	method-level	and	method-parameter-
level:

Example	listing	6-21	–	Sample	class	-	@Value	annotation	usage	at	method-level	and	method-parameter-
level
Project	–	ch06-value-annotation
Source	location	-	src/main/java/sample/spring/chapter06/beans

package	sample.spring.chapter06.beans;
	
import	org.springframework.beans.factory.annotation.Autowired;
import	org.springframework.beans.factory.annotation.Value;
	
@Component(value="sample")
public	class	Sample	{



				.....
				private	String[]	splitName;
				private	String	city;
	
				@Autowired
				public	void	splitName(@Value("#{configuration.splitName(FirstName	LastName')}")
																																												String[]	splitName)	{
								this.splitName	=	splitName;
				}
	
				@Autowired
				@Value("#{configuration.getCity()}")
				public	void	city(String	city)	{
								this.city	=	city;
				}
				.....
}

The	above	example	listing	shows	that	the	methods	that	are	annotated	with	@Autowired	annotation	make
use	of	@Value	annotation	at	method-level	and	method-parameter-level.	You	should	note	that	the	@Value
annotation	can	be	used	at	method-level	and	method-parameter-level	only	if	the	method	is	annotated	with
@Autowired	 or	 @Resource	 or	 @Inject	 annotation.	 SpEL	 expression	 #
{configuration.splitName('FirstName	 LastName')}	 results	 in	 invocation	 of	 Configuration’s	 splitName
method	with	‘FirstName	LastName’	as	argument.	This	shows	that	SpEL	expressions	can	be	used	to	invoke
methods	that	accept	arguments.

NOTE	@Value	annotation	is	processed	by	a	BeanPostProcessor;	 therefore,	you	should	not	use	@Value
annotation	 in	 component	 classes	 that	 implement	 BeanFactoryPostProcessor	 or	 BeanPostProcessor
interface.

Usage	of	SpEL	is	not	limited	to	@Value	annotations,	you	can	also	use	SpEL	in	bean	definitions	contained
in	the	application	context	XML	file.

IMPORT	chapter	6/ch06-spel-example	(This	project	shows	an	application	that	uses	SpEL	expressions
in	 bean	 definitions.	 To	 run	 the	 application,	 execute	 the	 main	 method	 of	 the	 SampleApp	 class	 of	 this
project.)

The	following	example	listing	shows	how	SpEL	is	used	in	bean	definitions:

Example	listing	6-22	–	applicationContext.xml	–	SpEL	expressions	in	bean	definitions
Project	–	ch06-spel-example
Source	location	-	src/main/resources/META-INF/spring
	
	<beans	.....	>
				<bean	id="sample"	class="sample.spring.chapter06.beans.Sample">
								<property	name="environment"	value="#{configuration.environment}"	/>
								<property	name="currency"	value="Some	currency"	/>
								<property	name="country"	value="#{configuration.getCountry()}"	/>



								<property	name="state"	value="#{configuration.state}"	/>
				</bean>
	
				<bean	id="configuration"	class="sample.spring.chapter06.beans.Configuration"	/>
</beans>

The	 above	 example	 listing	 shows	 that	 the	 bean	 definition	 for	 the	 Sample	 class	 makes	 use	 of	 SpEL
expressions	(that	refer	to	Configuration	bean)	to	set	default	values	for	environment,	currency,	country	and
state	properties.

Let’s	 now	 look	 at	 how	 you	 can	 perform	 validation	 of	 objects	 in	 Spring	 applications	 using	 Spring’s
Validator	interface.



6-9	Validating	objects	using	Spring’s	Validator	interface
Spring’s	Validator	 interface	 is	 part	 of	 Spring	Validation	API	 that	 allows	 you	 to	 perform	 validation	 of
objects.	You	can	use	the	Validator	interface	for	performing	validation	of	objects	in	any	of	the	application
layers.	For	instance,	you	can	use	the	Validator	interface	to	validate	objects	in	the	web	layer	as	well	as	in
the	persistence	layer.

NOTE	An	alternative	to	using	the	Validator	interface	is	to	use	JSR	303	annotations	to	specify	constraints
that	apply	on	an	object.	JSR	303	annotations	are	explained	in	the	next	section.

IMPORT	 chapter	 6/ch06-validator-interface	 (This	 project	 shows	 the	 MyBank	 application	 that	 uses
Spring’s	Validator	 interface	 to	validate	FixedDepositDetails	object.	To	 run	 the	application,	 execute	 the
main	method	of	the	BankApp	class	of	this	project.)

The	 FixedDepositDetails	 object	 of	 MyBank	 application	 represents	 details	 of	 a	 fixed	 deposit.	 The
following	example	listing	shows	the	FixedDepositDetails	class:

Example	listing	6-23	–	FixedDepositDetails	class
Project	–	ch06-validator-interface
Source	location	-	src/main/java/sample/spring/chapter06/bankapp/domain

package	sample.spring.chapter06.bankapp.domain;
	
public	class	FixedDepositDetails	{
				private	long	id;
				private	float	depositAmount;
				private	int	tenure;
				private	String	email;
	
				public	FixedDepositDetails(long	id,	float	depositAmount,	int	tenure,
												String	email)	{
								this.id	=	id;
								this.depositAmount	=	depositAmount;
								this.tenure	=	tenure;
								this.email	=	email;
				}
				.....
				//--	getters	and	setters	for	instance	variables
				public	float	getDepositAmount()	{
								return	depositAmount;
				}
				…..
}

The	above	example	 listing	 shows	 that	 the	FixedDepositDetails	 class	defines	 id,	depositAmount,	 tenure
and	email	instance	variables.	Let’s	say	that	before	the	fixed	deposit	details	are	saved	in	the	system,	we
need	to	make	sure	that	the	fixed	deposit	amount	(represented	by	the	depositAmount	instance	variable)	is



not	0.

To	 validate	 the	 FixedDepositDetails	 object’s	 depositAmount	 property,	 we	 need	 to	 create	 an
implementation	 of	 Spring’s	 Validator	 interface.	 The	 following	 example	 listing	 shows	 a	 validator	 for
objects	of	type	FixedDepositDetails:

Example	listing	6-24	–	FixedDepositValidator	class	–	Spring’s	Validator	interface	implementation
Project	–	ch06-validator-interface
Source	location	-	src/main/java/sample/spring/chapter06/bankapp/validator

package	sample.spring.chapter06.bankapp.validator;
	
import	org.springframework.validation.Errors;
import	org.springframework.validation.Validator;
	
public	class	FixedDepositValidator	implements	Validator	{
	
				@Override
				public	boolean	supports(Class<?>	clazz)	{
								return	FixedDepositDetails.class.isAssignableFrom(clazz);
				}
	
				@Override
				public	void	validate(Object	target,	Errors	errors)	{
								FixedDepositDetails	fixedDepositDetails	=	(FixedDepositDetails)	target;
								if	(fixedDepositDetails.getDepositAmount()	==	0)	{
												errors.reject("zeroDepositAmount");
								}
				}
}

The	 Validator	 interface	 defines	 supports	 and	 validate	 methods.	 The	 supports	 method	 checks	 if	 the
supplied	 object	 instance	 (represented	 by	 the	 clazz	 attribute)	 can	 be	 validated.	 If	 the	 supports	 method
returns	 true,	 the	 validate	 method	 is	 used	 to	 validate	 the	 object.	 In	 the	 above	 example	 listing,	 the
FixedDepositValidator’s	 supports	 method	 checks	 if	 the	 supplied	 object	 instance	 is	 of	 type
FixedDepositDetails.	 If	 the	 supports	method	 returns	 true,	 the	 FixedDepositValidator’s	 validate	 method
validates	 the	 object.	 The	 validate	 method	 accepts	 the	 object	 instance	 to	 be	 validated,	 and	 an	 Errors
instance.	The	Errors	instance’s	reject	method	is	used	to	store	errors	that	occur	during	validation.	You	can
later	inspect	the	Errors	instance	to	know	more	about	validation	errors.

The	 following	 example	 listing	 shows	 that	 the	 FixedDepositServiceImpl’s	 createFixedDeposit	 method
uses	the	FixedDepositValidator	(refer	example	listing	6-24)	to	validate	FixedDepositDetails	objects:

Example	listing	6-25	–	FixedDepositServiceImpl	class	–	Validating	FixedDepositDetails	object
Project	–	ch06-validator-interface
Source	location	-	src/main/java/sample/spring/chapter06/bankapp/service

package	sample.spring.chapter06.bankapp.service;



	
import	org.springframework.validation.BeanPropertyBindingResult;
import	sample.spring.chapter06.bankapp.validator.FixedDepositValidator;
	
@Service(value="FixedDepositService")
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
	
				@Autowired
				@Qualifier(value="myFixedDepositDao")
				private	FixedDepositDao	myFixedDepositDao;
			
				@Override
				public	void	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	throws	Exception	{
								BeanPropertyBindingResult	bindingResult	=
																	new	BeanPropertyBindingResult(fixedDepositDetails,	"Errors");
								FixedDepositValidator	validator	=	new	FixedDepositValidator();
								validator.validate(fixedDepositDetails,	bindingResult);
	
								if(bindingResult.getErrorCount()	>	0)	{
												logger.error("Errors	were	found	while	validating	FixedDepositDetails	instance");
								}	else	{
												myFixedDepositDao.createFixedDeposit(fixedDepositDetails);
												logger.info("Created	fixed	deposit");
								}
				}
}

FixedDepositServiceImpl’s	 createFixedDeposit	 method	 validates	 the	 FixedDepositDetails	 object
(represented	by	fixedDepositDetails	argument)	before	it	is	saved	into	the	data	store	by	FixedDepositDao.
The	createFixedDeposit	method	shown	in	the	above	example	listing	performs	the	following	tasks:

·	 	 	 	 	 	 	 	 creates	 an	 instance	 of	 FixedDepositValidator	 and	 Spring’s	 BeanPropertyBindingResult	 -	 a
default	implementation	of	Errors	interface	provided	out-of-the-box	by	Spring

·								invokes	FixedDepositValidator’s	validate	method,	passing	FixedDepositDetails	object	and	the
BeanPropertyBindingResult	instance

·		 	 	 	 	 	 	 invokes	BeanPropertyBindingResult’s	getErrorCount	method	 to	check	 if	any	validation	errors
were	reported.	If	no	validation	errors	are	reported,	FixedDepositDao’s	createFixedDeposit	method
is	called	to	save	fixed	deposit	details	in	the	data	store.

The	 following	example	 listing	 shows	BankApp’s	main	method	 that	 invokes	FixedDepositServiceImpl’s
createFixedDeposit	method	(refer	example	listing	6-25)	to	check	if	the	validation	is	performed	correctly
by	FixedDepositValidator’s	validate	method:

Example	listing	6-26	–	BankApp	class
Project	–	ch06-validator-interface
Source	location	-	src/main/java/sample/spring/chapter06/bankapp



package	sample.spring.chapter06.bankapp;
	
public	class	BankApp	{
				public	static	void	main(String	args[])	throws	Exception	{
								ApplicationContext	context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
	
								FixedDepositService	FixedDepositService	=	context.getBean(FixedDepositService.class);
	
								FixedDepositService.createFixedDeposit(new	FixedDepositDetails(1,	0,
																12,	"someemail@somedomain.com"));
								FixedDepositService.createFixedDeposit(new	FixedDepositDetails(1,	1000,
																12,	"someemail@somedomain.com"));
				}
}

First,	 FixedDepositService’s	 createFixedDeposit	 method	 is	 passed	 a	 FixedDepositDetails	 object	 with
depositAmount	value	as	0,	followed	by	a	FixedDepositDetails	object	with	depositAmount	value	as	1000.

If	you	execute	BankApp’s	main	method,	you’ll	see	the	following	output	on	the	console:
Errors	were	found	while	validating	FixedDepositDetails	instance
Created	fixed	deposit

The	 output	 ‘Errors	 were	 found	 while	 validating	 FixedDepositDetails	 instance’	 shows	 that
FixedDepositValidator	 reported	 errors	 when	 the	 FixedDepositDetails	 instance	 with	 0	 as	 the
depositAmount	value	was	validated.	The	output	‘Created	fixed	deposit’	shows	that	the	no	errors	were
reported	when	the	FixedDepositDetails	instance	with	1000	as	the	depositAmount	value	was	validated.

NOTE	 Spring’s	 Validator	 interface	 is	 typically	 used	 in	 Spring	 MVC	 based	 web	 applications	 while
binding	information	entered	by	a	user	in	the	HTML	form	to	the	corresponding	form-backing	object.

Let’s	now	look	at	how	you	can	specify	constraints	on	bean	properties	using	JSR	303	annotations,	and	let
Spring	perform	the	validation.



6-10	Specifying	constraints	using	JSR	303	annotations
JSR	 303	 (Bean	 Validation	 API)	 allows	 you	 to	 use	 annotations	 to	 specify	 constraints	 on	 JavaBeans
components.	When	using	JSR	303	with	Spring,	you	annotate	bean	properties	with	JSR	303	annotations,
and	Spring	takes	care	of	validating	the	bean	and	providing	the	validation	result.

IMPORT	chapter	6/ch06-jsr303-validation	(This	project	shows	the	MyBank	application	that	uses	JSR
303	annotations.	To	run	the	application,	execute	the	main	method	of	the	BankApp	class	of	this	project.)

The	 following	 example	 listing	 shows	 the	 FixedDepositDetails	 class	 that	 makes	 use	 of	 JSR	 303
annotations:

Example	listing	6-27	–	FixedDepositDetails	class	–	JSR	303	annotations
Project	–	ch06-jsr303-validation
Source	location	-	src/main/java/sample/spring/chapter06/bankapp/domain

package	sample.spring.chapter06.bankapp.domain;
	
import	javax.validation.constraints.*;
import	org.hibernate.validator.constraints.NotBlank;
	
public	class	FixedDepositDetails	{
				@NotNull
				private	long	id;
			
				@Min(1000)
				@Max(500000)
				private	float	depositAmount;
			
				@Min(6)
				private	int	tenure;
			
				@NotBlank
				@Size(min=5,	max=100)
				private	String	email;
	
				public	FixedDepositDetails(long	id,	float	depositAmount,	int	tenure,	String	email)	{
								this.id	=	id;
								this.depositAmount	=	depositAmount;
								this.tenure	=	tenure;
								this.email	=	email;
				}
				.....
}

@NotNull,	@Min,	@Max,	@NotBlank	and	@Size	are	some	of	the	annotations	defined	by	JSR	303	Bean
Validation	API.	The	above	example	listing	shows	that	by	using	JSR	303	annotations	FixedDepositDetails



class	clearly	specifies	the	constraints	that	apply	on	its	fields.	On	the	other	hand,	if	you	are	using	Spring
Validation	API	to	validate	an	object,	constraint	information	is	contained	in	the	Validator	 implementation
(refer	example	listing	6-24).

The	 following	 table	 describes	 the	 constraints	 enforced	 by	 JSR	 303	 annotations	 on	 the
FixedDepositDetails	object	shown	in	example	listing	6-27:

	JSR	303	annotation Constraint	description

@NotNull

The	annotated	field	must	not	be	null.

For	instance,	FixedDepositDetails’	id	field	must	not	be	null.

	

@Min
The	annotated	field’s	value	must	be	greater	than	or	equal	to	the	specified	minimum	value.

For	instance,	@Min(1000)	annotation	on	depositAmount	field	of	FixedDepositDetails	object
means	that	depositAmount’s	value	must	be	greater	than	or	equal	to	1000.

@Max
The	annotated	field’s	value	must	be	less	than	or	equal	to	the	specified	value.

For	 instance,	 @Max(500000)	 annotation	 on	 depositAmount	 field	 of	 FixedDepositDetails
object	means	that	the	depositAmount’s	value	must	be	less	than	or	equal	to	500000.

@NotBlank
The	annotated	field’s	value	must	not	be	null	or	empty.

For	instance,	FixedDepositDetails’	email	field	must	not	be	empty	or	null.

@Size

The	annotated	field’s	size	must	be	between	the	specified	min	and	max	attributes.

For	instance,	@Size(min=5,	max=100)	annotation	on	email	field	of	FixedDepositDetails	object
means	that	the	size	of	the	email	field	must	be	greater	than	or	equal	to	5	and	less	than	or	equal
to	100.

	

NOTE	To	use	JSR	303	annotations,	ch06-jsr303-validation	project	specifies	dependency	on	JSR	303
API	JAR	file	(validation-api-1.0.0.GA)	and	Hibernate	Validator	framework	(hibernate-validation-
4.3.0.Final).	The	Hibernate	Validator	framework	provides	the	reference	implementation	for	JSR	303.

If	you	look	at	the	import	statements	in	example	listing	6-27,	you’ll	notice	that	the	@NotBlank	annotation	is
defined	by	Hibernate	Validator	framework,	and	not	by	JSR	303.	Hibernate	Validator	framework	provides
additional	annotations	that	you	can	use	along	with	JSR	303	annotations.

Now,	 that	 we	 have	 specified	 JSR	 303	 constraints	 on	 FixedDepositDetails	 class,	 let’s	 look	 at	 how	 to
validate	FixedDepositDetails	object	using	Spring.

JSR	303	support	in	Spring
Spring	 supports	 validating	 objects	 that	 make	 use	 of	 JSR	 303	 constraints.	 Spring’s
LocalValidatorFactoryBean	class	 is	 responsible	 for	detecting	 the	presence	of	a	JSR	303	provider	 (like
Hibernate	 Validator)	 in	 the	 application’s	 classpath	 and	 initializing	 it.	 It	 is	 important	 to	 note	 that	 the
LocalValidatorFactoryBean	 implements	 JSR	 303’s	 Validator	 and	ValidatorFactory	 interfaces,	 and	 also
Spring’s	Validator	interface.

The	 following	 example	 listing	 shows	 the	 configuration	 of	 LocalValidatorFactoryBean	 class	 in	 the
application	context	XML	file:

Example	listing	6-28	–	applicationContext.xml	–	Spring’s	LocalValidatorFactoryBean	configuration
Project	–	ch06-jsr303-validation
Source	location	-	src/main/resources/META-INF/spring

<bean	id="validator"			



													class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean"	/>

As	you	can	see,	LocalValidatorFactoryBean	is	configured	like	any	other	Spring	bean.	Now	that	we	have
configured	LocalValidatorFactoryBean,	let’s	see	how	it	is	used	to	perform	validation.

The	 following	 example	 listing	 shows	 the	 FixedDepositServiceImpl	 class	 which	 requires	 that	 the
FixedDepositDetails	object	is	validated	before	fixed	deposit	details	are	saved	in	the	data	store:

Example	listing	6-29	–	FixedDepositServiceImpl	class	–	validating	FixedDepositDetails	object
Project	–	ch06-jsr303-validation
Source	location	-	src/main/java/sample/spring/chapter06/bankapp/service

package	sample.spring.chapter06.bankapp.service;
	
import	org.springframework.validation.BeanPropertyBindingResult;
import	org.springframework.validation.Validator;
.....
@Service(value="FixedDepositService")
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
							
				@Autowired
				private	Validator	validator;
	
				@Autowired
				@Qualifier(value="myFixedDepositDao")
				private	FixedDepositDao	myFixedDepositDao;
	
				@Override
				public	void	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	throws	Exception	{
								BeanPropertyBindingResult	bindingResult	=
											new	BeanPropertyBindingResult(fixedDepositDetails,	"Errors");
								validator.validate(fixedDepositDetails,	bindingResult);
							
							if(bindingResult.getErrorCount()	>	0)	{
												logger.error("Errors	were	found	while	validating	FixedDepositDetails	instance");
								}	else	{
												myFixedDepositDao.createFixedDeposit(fixedDepositDetails);
												logger.info("Created	fixed	deposit");
								}
				}
}

The	above	example	 listing	shows	 that	Spring’s	Validator	 implementation	 is	 referenced	by	 the	validator
field.	 As	 LocalValidatorFactoryBean	 implements	 Spring’s	 Validator	 interface,
LocalValidatorFactoryBean	 instance	 is	 assigned	 to	 the	 validator	 field.	 FixedDepositServiceImpl’s
createFixedDeposit	 method	 invokes	 Validator’s	 validate	 method	 to	 perform	 validation	 of
FixedDepositDetails	object.



One	of	the	interesting	things	to	notice	in	example	listing	6-29	is	that	we	are	not	dealing	with	JSR	303	API
to	 perform	 validation	 of	 FixedDepositDetails	 object.	 Instead,	 we	 have	 used	 Spring	 Validation	 API	 to
perform	validation.	This	is	possible	because	LocalValidatorFactoryBean	implements	validate	method	of
Spring’s	Validator	 interface	 to	use	JSR	303	API	 to	perform	validation	of	objects,	shielding	developers
from	JSR	303-specific	API	details.

As	 LocalValidatorFactoryBean	 implements	 JSR	 303’s	 Validator	 and	 ValidatorFactory	 interfaces,	 you
have	the	option	to	use	JSR	303	API	to	perform	validation	of	FixedDepositDetails	object.	The	following
example	listing	shows	an	alternative	implementation	of	FixedDepositServiceImpl	class	that	makes	use	of
JSR	303’s	Validator	to	perform	validation:

Example	listing	6-30	–	FixedDepositServiceImplJsr303	class	-	validating	FixedDepositDetails	object
Project	–	ch06-jsr303-validation
Source	location	-	src/main/java/sample/spring/chapter06/bankapp/service

package	sample.spring.chapter06.bankapp.service;
	
import	javax.validation.ConstraintViolation;
import	javax.validation.Validator;
	
@Service(value	=	"FixedDepositServiceJsr303")
public	class	FixedDepositServiceJsr303Impl	implements	FixedDepositService	{
				.....
				@Autowired
				private	Validator	validator;
	
				@Autowired
				@Qualifier(value	=	"myFixedDepositDao")
				private	FixedDepositDao	myFixedDepositDao;
	
				@Override
				public	void	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	throws	Exception	{
								Set<ConstraintViolation<FixedDepositDetails>>	violations	=
										validator.validate(fixedDepositDetails);
	
								Iterator<ConstraintViolation<FixedDepositDetails>>	itr	=	violations.iterator();
	
								if	(itr.hasNext())	{
												logger.error("Errors	were	found	while	validating	FixedDepositDetails	instance");
								}	else	{
												myFixedDepositDao.createFixedDeposit(fixedDepositDetails);
												logger.info("Created	fixed	deposit");
								}
				}
}

The	above	example	listing	shows	that	JSR	303’s	Validator	implementation	is	referenced	by	the	validator



field.	 As	 LocalValidatorFactoryBean	 implements	 JSR	 303’s	 Validator	 interface,
LocalValidatorFactoryBean	 instance	 is	 assigned	 to	 the	 validator	 field.	 The	 createFixedDeposit	method
validates	FixedDepositDetails	object	by	calling	Validator’s	validate	method.	The	validate	method	returns
a	java.util.Set	object	that	contains	the	constraint	violations	reported	by	JSR	303	provider.	You	can	check
the	java.util.Set	object	returned	by	the	validate	method	to	know	if	any	constraint	violations	were	reported.
For	 instance,	 in	 the	 above	 example	 listing,	 the	 createFixedDeposit	 method	 calls	 FixedDepositDao’s
createFixedDeposit	method	only	if	java.util.Set	doesn’t	contain	any	constraint	violations.

In	this	section,	we	saw	how	to	use	Spring’s	support	for	JSR	303	to	perform	validation	of	objects.	We	only
looked	at	constraints,	like	@NotNull,	@Size,	and	so	on,	that	are	provided	out-of-the-box	by	JSR	303.	It	is
important	to	note	that	JSR	303	allows	you	to	create	custom	constraints	and	use	them	in	your	application.
For	instance,	you	can	create	a	@MyConstraint	custom	constraint	and	a	corresponding	validator	to	enforce
that	constraint	on	objects.

Let’s	now	look	at	annotations	that	you	can	use	to	programmatically	configure	Spring	beans.



6-11	 Programmatically	 configuring	 Spring	 beans	 using
@Configuration	and	@Bean	annotations
You	can	use	@Configuration	and	@Bean	annotations	to	programmatically	configure	Spring	beans.	If	you
annotate	 a	 class	with	@Configuration	 annotation,	 it	 indicates	 that	 the	 class	 contains	@Bean	 annotated
methods	that	return	bean	instances	meant	to	be	registered	with	the	Spring	container.
	
NOTE	To	use	@Configuration	annotated	classes	for	defining	beans,	CGLIB	library	is	required	because
Spring	extends	@Configuration	annotated	classes	to	add	behavior	to	the	@Bean	annotated	methods.
Starting	with	Spring	3.2,	the	CGLIB	classes	are	packaged	within	the	spring-core	JAR	file	itself;	therefore,
you	don’t	need	to	explicitly	specify	that	your	project	is	dependent	on	CGLIB	JAR	file.

IMPORT	chapter	6/ch06-bankapp-configuration	(This	project	shows	the	MyBank	application	that	uses
@Configuration	 and	@Bean	 annotations	 to	 programmatically	 configure	 beans.	 To	 run	 the	 application,
execute	the	main	method	of	the	BankApp	class	of	this	project.)

The	 following	 example	 listing	 shows	 the	 BankAppConfiguration	 class	 that	 is	 annotated	 with
@Configuration	annotation:
	
Example	listing	6-31	–	BankAppConfiguration	class	-	@Configuration	and	@Bean	annotations
Project	–	ch06-bankapp-configuration
Source	location	-	src/main/java/sample/spring/chapter06/bankapp
	
package	sample.spring.chapter06.bankapp;
	
import	org.springframework.context.annotation.Bean;
import	org.springframework.context.annotation.Configuration;
import	org.springframework.context.annotation.Scope;
.....
@Configuration
public	class	BankAppConfiguration	{
				.....
				@Bean(name	=	"customerRegistrationService")
				@Scope(value	=	ConfigurableBeanFactory.SCOPE_PROTOTYPE)
				public	CustomerRegistrationService	customerRegistrationService()	{
								return	new	CustomerRegistrationServiceImpl();
				}
				.....
}

BankAppConfiguration	class	defines	@Bean	annotated	methods	that	return	bean	instances.	@Bean’s	name
attribute	specifies	the	name	with	which	the	returned	bean	instance	is	registered	with	the	Spring	container.
@Scope	annotation	specifies	the	scope	(singleton	or	prototype)	of	the	returned	bean	instance.
	

NOTE	@Scope	 annotation	 is	 also	 used	 at	 the	 type-level	 to	 specify	 the	 scope	 of	 a	 Spring	 component.



Refer	example	listing	6-14	that	shows	usage	of	@Scope	annotation	at	type-level.

In	 example	 listing	 6-31,	 the	 customerRegistrationService	 method	 returns	 an	 instance	 of
CustomerRegistrationService	bean	that	is	registered	with	the	Spring	container	as	a	prototype-scoped	bean
named	customerRegistrationService.	The	customerRegistrationService	method	has	the	same	effect	as	the
following	bean	definition	in	the	application	context	XML	file:

<bean	id="customerRegistrationService"	scope="prototype”				
										class="sample.spring.chapter06.bankapp.service.CustomerRegistrationServiceImpl"	/>

The	following	table	describes	the	attributes	of	@Bean	annotation	that	you	can	use	to	configure	the	bean
instance:

Value	of	type	attribute Description

Autowire

Same	as	<bean>	element’s	autowire	attribute	(refer	section	4-6	of	chapter	4	to	know	more
about	 autowire	 attribute).	 If	 the	 bean	 returned	 by	 the	 @Bean	 annotated	 method	 is
dependent	on	other	beans,	you	can	use	autowire	 attribute	 to	 instruct	Spring	 to	 perform
autowiring	of	dependencies	by	name	or	type.

initMethod Same	as	<bean>	element’s	init-method	 attribute	 (refer	 section	 5-2	 of	 chapter	 5	 to	 know
more	about	init-method	attribute)

destroyMethod Same	 as	 <bean>	 element’s	 destroy-method	 attribute	 (refer	 section	 5-2	 of	 chapter	 5	 to
know	more	about	destroy-method	attribute)

	
It	is	important	to	note	that	@Bean	annotated	methods	may	also	be	annotated	with	@Lazy,	@DependsOn,
@Primary	and	@Scope	annotations.	These	annotations	apply	to	the	object	instance	returned	by	the	@Bean
annotated	method.	For	instance,	@DependsOn	annotation	specifies	the	implicit	dependencies	of	the	object
instance	 returned	 by	 the	 @Bean	 annotated	 method.	 Also,	 if	 the	 bean	 instance	 returned	 by	 @Bean
annotated	 method	 implements	 lifecycle	 interfaces	 (like	 InitializingBean	 and	 DisposableBean),	 and
Spring’s	*Aware	 interfaces	 (like	ApplicationContextAware,	BeanNameAware,	 and	 so	 on),	 it’ll	 receive
callbacks	from	the	Spring	container.

In	 the	 examples	 that	we	 have	 seen	 so	 far,	we	 created	 an	 instance	 of	ClassPathXmlApplicationContext
class	 (an	 implementation	of	ApplicationContext	 interface)	 to	 represent	 the	Spring	 container.	 If	 you	 are
using	 an	 @Configuration	 annotated	 class	 as	 the	 source	 of	 beans,	 you	 need	 to	 create	 an	 instance	 of
AnnotationConfigApplicationContext	 class	 (another	 implementation	 of	ApplicationContext	 interface)	 to
represent	the	Spring	container.

The	 following	 example	 listing	 shows	 the	 BankApp	 class	 that	 creates	 an	 instance	 of
AnnotationConfigApplicationContext	 class	 and	 retrieves	 beans	 from	 the	 newly	 created
AnnotationConfigApplicationContext	instance:

Example	listing	6-32	–	BankApp	class	-	AnnotationConfigApplicationContext	usage
Project	–	ch06-bankapp-configuration
Source	location	-	src/main/java/sample/spring/chapter06/bankapp
	
package	sample.spring.chapter06.bankapp;
	
import	org.springframework.context.annotation.AnnotationConfigApplicationContext;
	
public	class	BankApp	{



	
				public	static	void	main(String	args[])	throws	Exception	{
								AnnotationConfigApplicationContext	context	=
														new	AnnotationConfigApplicationContext(BankAppConfiguration.class);
								.....
								FixedDepositService	FixedDepositService	=	context.getBean(FixedDepositService.class);
								FixedDepositService.createFixedDeposit(new	FixedDepositDetails(1,	1000,
																12,	"someemail@somedomain.com"));
								.....
				}
}

In	 the	 above	 example	 listing,	 the	 BankAppConfiguration	 class	 is	 passed	 as	 an	 argument	 to	 the
AnnotationConfigApplicationContext’s	 constructor.	 As	 AnnotationConfigApplicationContext	 class
implements	ApplicationContext	interface,	you	can	access	registered	beans	in	the	same	way	as	in	case	of
ClassPathXmlApplicationContext.

You	 should	 note	 that	@Bean	 annotated	 methods	 can	 also	 be	 defined	 in	@Component	 and	 JSR	 330’s
@Named	annotated	classes.	 In	case	you	have	defined	beans	 in	multiple	@Configuration,	@Component
and	 @Named	 annotated	 classes,	 pass	 all	 these	 classes	 to	 the	 AnnotationConfigApplicationContext’s
constructor.

The	 following	 example	 listing	 shows	 @Bean	 annotated	 methods	 of	 BankAppConfiguration	 class	 that
return	a	BeanFactoryPostProcessor	and	a	BeanPostProcessor	implementation:

Example	 listing	 6-33	 –	 BankAppConfiguration	 class	 –	 defining	 BeanFactoryPostProcessor	 and
BeanPostProcessor	beans
Project	–	ch06-bankapp-configuration
Source	location	-	src/main/java/sample/spring/chapter06/bankapp

package	sample.spring.chapter06.bankapp;
	
import	org.springframework.context.annotation.Bean;
	
@Configuration
public	class	BankAppConfiguration	{
				.....
				@Bean
				public	ExampleBeanPostProcessor	exampleBeanPostProcessor()	{
								return	new	ExampleBeanPostProcessor();
				}
			
				@Bean
				public	static	BeanNamePrinterBeanFactoryPostProcessor	applicationConfigurer()	{
								return	new	BeanNamePrinterBeanFactoryPostProcessor();
				}
}



In	 the	above	example	 listing,	ExampleBeanPostProcessor	 instance	 represents	a	BeanPostProcessor	 that
prints	 a	 message	 on	 the	 console	 before	 and	 after	 a	 newly	 created	 bean	 instance	 is	 initialized,	 and
BeanNamePrinterBeanFactoryPostProcessor	 instance	 represents	 a	 BeanFactoryPostProcessor
implementation	that	prints	names	of	all	the	beans	registered	with	the	Spring	container.

If	you	go	to	ch06-bankapp-configuration	project	and	execute	BankApp’s	main	method,	you’ll	notice	 that
the	BeanNamePrinterBeanFactoryPostProcessor	 is	 invoked	 before	 any	 bean	 defined	 in	@Configuration
annotated	class	 is	created	by	 the	Spring	container,	and	 the	ExampleBeanPostProcessor	 is	 invoked	each
time	a	new	bean	instance	is	created	by	the	Spring	container.	This	shows	that	whether	you	configure	beans
declaratively	 (via	 application	 context	 XML	 file)	 or	 programmatically	 (via	 @Configuration	 annotated
class),	 beans	 that	 implement	 callback	 interfaces	 (like	 ApplicationContextAware,	 BeanNameAware,
InitializingBean,	 DisposableBean,	 BeanFactoryPostProcessor,	 and	 so	 on)	 receive	 callback	 from	 the
Spring	container.



6-12	Summary
This	chapter	looked	at	annotations	that	you	can	use	to	simplify	developing	Spring	applications.	We	looked
at	 how	 to	 designate	 a	 bean	 class	 as	 a	 Spring	 component	 using	 Spring’s	 @Component,	 @Service,
@Repository	and	@Controller	 annotations,	perform	classpath	 scanning	 to	automatically	 register	Spring
components	 with	 container,	 validate	 objects	 using	 Spring	 Validation	 API	 and	 JSR	 303’s	 annotations,
perform	dependency	injection	using	Spring’s	@Autowired,	JSR	330’s	@Inject	and	JSR	250’s	@Resource
annotations,	and	use	@Configuration	and	@Bean	 annotations	 to	 configure	beans	programmatically.	The
next	chapter	shows	how	Spring	simplifies	interacting	with	databases.



Chapter	7	-	Database	interaction	using	Spring



7-1	Introduction
Spring	simplifies	interaction	with	databases	by	providing	a	layer	of	abstraction	on	top	of	JDBC.	Spring
also	 simplifies	 using	 ORM	 (Object	 Relational	 Mapping)	 frameworks,	 like	 Hibernate
(http://www.hibernate.org/)	 and	 MyBatis	 (http://www.mybatis.org),	 for	 database	 interaction.	 In	 this
chapter,	 we’ll	 look	 at	 examples	 that	 demonstrate	 how	 Spring	 simplifies	 developing	 applications	 that
interact	with	databases.

NOTE	The	examples	described	in	this	chapter	make	use	of	Hibernate	4.	If	you	are	using
Hibernate	 3,	 the	 changes	 that	 you’ll	 need	 to	make	 to	 the	 configuration	 are	 specified	 at
relevant	places.
	
We’ll	begin	this	chapter	by	looking	at	a	sample	application	that	uses	Spring’s	JDBC	abstraction	to	interact
with	MySQL	 database.	 After	 that,	 we	 we’ll	 develop	 the	 same	 application	 using	 Spring’s	 support	 for
Hibernate	 framework.	 We’ll	 wrap	 this	 chapter	 by	 looking	 at	 Spring’s	 support	 for	 programmatic	 and
declarative	transaction	management.

Let’s	first	look	at	the	MyBank	application’s	requirements	that	we’ll	be	developing	in	this	chapter.

http://www.hibernate.org/
http://www.mybatis.org


7-2	MyBank	application’s	requirements
MyBank	application	is	an	internet	banking	application	that	allows	bank	customers	to	check	bank	account
details,	 generate	 bank	 statement,	 create	 fixed	deposits,	 request	 cheque	book,	 and	 so	on.	The	 following
figure	 shows	 the	 BANK_ACCOUNT_DETAILS	 and	 FIXED_DEPOSIT_DETAILS	 tables	 in	 which
MyBank	application’s	data	is	stored:

Figure	7-1	Database	tables	used	by	the	MyBank	application

BANK_ACCOUNT_DETAILS	 table	 contains	 information	 about	 bank	 accounts,	 and
FIXED_DEPOSIT_DETAILS	 table	 contains	 information	 about	 fixed	 deposits.	 The	 above	 figure	 shows
that	 there	 is	 many-to-one	 relationship	 between	 FIXED_DEPOSIT_DETAILS	 and
BANK_ACCOUNT_DETAILS	 tables.	 When	 a	 bank	 customer	 opens	 a	 new	 fixed	 deposit,	 the	 fixed
deposit	 amount	 is	 deducted	 from	 the	 BANK_ACCOUNT_DETAILS	 table’s	 BALANCE_AMOUNT
column,	and	the	fixed	deposit	details	are	saved	in	the	FIXED_DEPOSIT_DETAILS	table.

The	columns	of	BANK_ACCOUNT_DETAILS	table	are:

·								ACCOUNT_ID	–	account	identifier	that	uniquely	identifies	a	customer’s	bank	account.

·	 	 	 	 	 	 	 	 BALANCE_AMOUNT	 –	 holds	 the	 current	 balance	 in	 the	 bank	 account.	When	 a	 customer
requests	for	opening	a	fixed	deposit,	the	fixed	deposit	amount	is	deducted	from	this	column.

·								LAST_TRANSACTION_TS	–	specifies	the	date/time	when	the	last	transaction	was	performed
on	this	account.

The	columns	of	FIXED_DEPOSIT_DETAILS	table	are:

·								FIXED_DEPOSIT_ID	–	fixed	deposit	identifier	that	uniquely	identifies	a	fixed	deposit.	When	a
customer	opens	a	 fixed	deposit,	a	unique	 fixed	deposit	 identifier	 is	generated	by	 the	MyBank	for
future	reference	by	the	customer.	The	value	of	FIXED_DEPOSIT_ID	column	is	auto-generated	by
MySQL	database.

·	 	 	 	 	 	 	 	ACCOUNT_ID	–	foreign	key	that	 identifies	 the	bank	account	with	which	the	fixed	deposit	 is
associated.	Every	quarter,	interest	generated	by	the	fixed	deposit	is	credited	into	the	bank	account
identified	by	this	column.

·								FD_CREATION_DATE	–	the	date	on	which	the	fixed	deposit	was	created

·								AMOUNT	–	fixed	deposit	amount

·								TENURE	–	fixed	deposit	tenure	(in	months).	Fixed	deposit	tenure	must	be	greater	than	or	equal



to	12	months	and	less	than	or	equal	to	60	months.

·								ACTIVE	–	indicates	whether	the	fixed	deposit	is	currently	active	or	not.	An	active	fixed	deposit
generates	interest	on	the	fixed	deposit	amount.

Let’s	now	look	at	how	we	can	create	the	MyBank	application	using	Spring’s	JDBC	module.



7-3	Developing	the	MyBank	application	using	Spring’s	JDBC	module
Spring’s	JDBC	module	simplifies	interaction	with	data	sources	by	taking	care	of	lower	level	details	of
opening	and	closing	connections,	managing	transactions,	processing	exceptions,	and	so	on.	In	this	section,
we’ll	 develop	 the	 MyBank	 application	 (as	 described	 in	 the	 previous	 section)	 using	 Spring’s	 JDBC
module.	 For	 the	 sake	 of	 simplicity,	 we’ll	 develop	 only	 the	 services	 and	 DAOs	 that	 form	 part	 of	 the
MyBank	application.

IMPORT	chapter	7/ch07-bankapp-jdbc	(This	project	shows	the	MyBank	application	that	uses	Spring’s
JDBC	 module	 to	 interact	 with	 the	 database.	 To	 run	 the	 application,	 execute	 the	 main	 method	 of	 the
BankApp	class	of	 this	project.	Before	executing	BankApp’s	main	method,	 install	MySQL	database	 and
execute	the	spring_bank_app_db.sql	SQL	script	contained	in	the	sql	folder	of	ch07-bankapp-jdbc	project.
Executing	 spring_bank_app_db.sql	 script	 creates	 SPRING_BANK_APP_DB	 database	 and	 adds
BANK_ACCOUNT_DETAILS	 and	 FIXED_DEPOSIT_DETAILS	 tables	 to	 the
SPRING_BANK_APP_DB	 database.	 Also,	 modify	 the	 src/main/resources/META-
INF/spring/database.properties	file	to	point	to	your	MySQL	installation.)

In	MyBank	application,	you	first	need	to	configure	a	javax.sql.DataSource	object	that	identifies	the	data
source	with	which	the	MyBank	application	interacts,	followed	by	implementing	DAOs	that	use	Spring’s
JDBC	module	classes	to	interact	with	the	data	source.	Let’s	look	at	each	of	these	steps	in	detail.

Configuring	a	data	source
If	 you	 are	 using	 Spring	 to	 develop	 a	 standalone	 application,	 you	 can	 configure	 the	 data	 source	 in	 the
application	 context	 XML	 file.	 If	 you	 are	 developing	 an	 enterprise	 application,	 you	 can	 define	 a	 data
source	 that	 is	 bound	 to	 the	 application	 server’s	 JNDI,	 and	 retrieve	 the	 JNDI-bound	 data	 source	 in	 the
application	context	XML	file	for	use	by	the	application.	In	case	of	ch07-bankapp-jdbc	project,	 the	data
source	is	configured	in	the	application	context	XML	file.

The	 following	 example	 listing	 shows	 how	 MyBank	 application’s	 data	 source	 is	 configured	 in	 the
application	context	XML	file:

Example	listing	7-1	–	applicationContext.xml	–	data	source	configuration
Project	–	ch07-bankapp-jdbc
Source	location	-	src/main/resources/META-INF/spring
	
				<context:property-placeholder	location="classpath*:META-INF/spring/database.properties"	/>
	
				<bean	id="dataSource"
								class="org.apache.commons.dbcp.BasicDataSource"	destroy-method="close"	>
								<property	name="driverClassName"	value="${database.driverClassName}"	/>
								<property	name="url"	value="${database.url}"	/>
								<property	name="username"	value="${database.username}"	/>
								<property	name="password"	value="${database.password}"	/>
				</bean>

In	the	above	example	listing,	the	<property-placeholder>	element	(refer	section	5-4	of	chapter	5	for	more
details)	of	Spring’s	context	schema	loads	properties	from	the	META-INF/spring/database.properties	 file



and	makes	them	available	to	bean	definitions	in	the	application	context	XML	file.	The	dataSource	bean
represents	a	javax.sql.DataSource	object	that	acts	as	a	factory	for	creating	connections	to	the	data	source.
BasicDataSource	class	 is	an	 implementation	of	 javax.sql.DataSource	 interface	 that	 supports	connection
pooling	 feature.	 BasicDataSource	 class	 is	 part	 of	 Apache	 Commons	 DBCP	 project
(http://commons.apache.org/dbcp/)	 and	 supports	 database	 connection	 pooling	 feature.	 The	 values	 for
driverClassName,	 url,	 username	 and	 password	 properties	 of	 BasicDataSource	 class	 comes	 from	 the
properties	defined	in	the	database.properties	file.	The	close	method	of	BasicDataSource	class	closes	all
idle	 connections	 in	 the	 pool.	 As	 the	 bean	 definition	 for	 the	 BasicDataSource	 class	 specifies	 value	 of
destroy-method	attribute	as	close,	all	idle	connections	in	the	pool	are	closed	when	the	dataSource	bean
instance	is	destroyed	by	the	Spring	container.

Configuring	a	data	source	in	Java	EE	environments

If	 you	 are	 developing	 an	 enterprise	 application	 that	 is	 deployed	 in	 an	 application	 server,	 you	 can	 use
Spring’s	jee	schema’s	<jndi-lookup>	element	to	make	the	JNDI-bound	data	source	available	as	a	Spring
bean	in	the	ApplicationContext:

<jee:jndi-lookup	jndi-name="java:comp/env/jdbc/bankAppDb"	id="dataSource"	/>

here,	jndi-name	attribute	specifies	the	JNDI	name	with	which	the	javax.sql.DataSource	object	is	bound	to
the	JNDI,	and	id	attribute	specifies	the	name	with	which	the	javax.sql.DataSource	object	is	registered	as
a	bean	in	the	ApplicationContext.

Let’s	now	look	at	some	of	the	Spring’s	JDBC	module	classes	that	you	can	use	in	your	DAOs	to	interact
with	the	database.

Creating	DAOs	that	use	Spring’s	JDBC	module	classes
Spring’s	JDBC	module	defines	multiple	classes	that	simplify	database	interaction.	We’ll	first	look	at	the
JdbcTemplate	class	that	is	at	the	heart	of	Spring’s	JDBC	module.	The	other	classes	that	we’ll	discuss	in
this	 section	 are	 NamedParameterJdbcTemplate	 and	 SimpleJdbcInsert.	 To	 learn	 about	 other	 Spring’s
JDBC	module	classes,	refer	to	Spring’s	reference	documentation.

JdbcTemplate

JdbcTemplate	class	takes	care	of	managing	Connection,	Statement	and	ResultSet	objects,	catching	JDBC
exceptions	 and	 translating	 them	 into	 easily	 understandable	 exceptions	 (like
IncorrectResultSetColumnCountException	 and	 CannotGetJdbcConnectionException),	 performing	 batch
operations,	and	so	on.	An	application	developer	only	needs	to	provide	SQL	to	the	JdbcTemplate	class,
and	extract	results	after	the	SQL	is	executed.

As	JdbcTemplate	acts	as	a	wrapper	around	javax.sql.DataSource	object,	you	don’t	need	to	directly	deal
with	a	javax.sql.DataSource	object.	A	JdbcTemplate	instance	is	typically	initialized	with	reference	to	the
javax.sql.DataSource	 object	 from	 which	 it	 needs	 to	 obtain	 connections,	 as	 shown	 in	 the	 following
example	listing:

Example	listing	7-2	–	applicationContext.xml	–	JdbcTemplate	configuration
Project	–	ch07-bankapp-jdbc
Source	location	-	src/main/resources/META-INF/spring
	

http://commons.apache.org/dbcp/


				<bean	id="jdbcTemplate"	class="org.springframework.jdbc.core.JdbcTemplate">
								<property	name="dataSource"	ref="dataSource"	/>
				</bean>
	
				<bean	id="dataSource"	class="org.apache.commons.dbcp.BasicDataSource".....>
							.....
				</bean>

The	above	example	listing	shows	that	the	JdbcTemplate	class	defines	a	dataSource	property	that	refers	to
a	javax.sql.DataSource	object.

If	 your	 application	 uses	 a	 JNDI-bound	 data	 source,	 use	 the	 <jndi-lookup>	 element	 of	 jee	 schema	 to
register	the	JNDI-bound	data	source	as	a	bean	with	the	Spring	container.	Now,	the	the	JdbcTemplate	class
can	 refer	 to	 the	 javax.sql.DataSource	 bean	 registered	 by	 the	 <jndi-lookup>	 element,	 as	 shown	 in	 the
following	example	listing:

Example	listing	7-3	–	JdbcTemplate	configuration	for	JNDI-bound	data	source
	
<beans	.....
											xmlns:jee="http://www.springframework.org/schema/jee"
											xsi:schemaLocation=".....
																http://www.springframework.org/schema/jee
															http://www.springframework.org/schema/jee/spring-jee-4.0.xsd">
			
				<bean	id="jdbcTemplate"	class="org.springframework.jdbc.core.JdbcTemplate">
								<property	name="dataSource"	ref="dataSource"	/>
				</bean>
			
				<jee:jndi-lookup	jndi-name="java:comp/env/jdbc/bankAppDb"	id="dataSource"	/>

				.....
</beans>

In	the	above	example	listing,	reference	to	Spring’s	jee	schema	is	included	in	the	application	context	XML
file.	 The	 <jndi-lookup>	 element	 retrieves	 javax.sql.DataSource	 object	 from	 JNDI	 and	 exposes	 it	 as	 a
bean	named	dataSource,	which	is	referenced	by	the	JdbcTemplate	class.

JdbcTemplate	instance	is	thread-safe,	which	means	multiple	DAOs	of	your	application	can	share	the	same
instance	 of	 JdbcTemplate	 class	 to	 interact	 with	 the	 database.	 The	 following	 example	 listing	 shows
FixedDepositDaoImpl’s	createFixedDeposit	method	that	makes	use	of	JdbcTemplate	to	save	fixed	deposit
details	in	the	database:

Example	listing	7-4	–	FixedDepositDaoImpl	class	–	saving	data	using	JdbcTemplate
Project	–	ch07-bankapp-jdbc
Source	location	-	src/main/java/sample/spring/chapter07/bankapp/dao
	
package	sample.spring.chapter07.bankapp.dao;
	



import	java.sql.*;
import	org.springframework.jdbc.core.JdbcTemplate;
import	org.springframework.jdbc.core.PreparedStatementCreator;
import	org.springframework.jdbc.support.GeneratedKeyHolder;
import	org.springframework.jdbc.support.KeyHolder;
import	org.springframework.stereotype.Repository;
	
@Repository(value	=	"FixedDepositDao")
public	class	FixedDepositDaoImpl	implements	FixedDepositDao	{
	
				@Autowired
				private	JdbcTemplate	jdbcTemplate;
				.....
				public	int	createFixedDeposit(final	FixedDepositDetails	fixedDepositDetails)	{
								final	String	sql	=
												"insert	into	fixed_deposit_details(account_id,	fixedDeposit_creation_date,	amount,
												tenure,	active)	values(?,	?,	?,	?,	?)";
	
								KeyHolder	keyHolder	=	new	GeneratedKeyHolder();
	
								jdbcTemplate.update(new	PreparedStatementCreator()	{
	
												@Override
												public	PreparedStatement	createPreparedStatement(Connection	con)
																				throws	SQLException	{
																PreparedStatement	ps	=	con.prepareStatement(sql,	new	String[]	{
																			"fixed_deposit_id"	});
																ps.setInt(1,	fixedDepositDetails.getBankAccountId());
																ps.setDate(2,
																					new	java.sql.Date(fixedDepositDetails.getFixedDepositCreationDate().getTime()));
																.....
																return	ps;
												}
								},	keyHolder);
	
						return	keyHolder.getKey().intValue();
				}
				.....
}

In	 the	 above	 example	 listing,	 the	 FixedDepositDaoImpl	 class	 is	 annotated	with	 Spring’s	@Repository
annotation	because	the	FixedDepositDaoImpl	class	represents	a	DAO	class.	JdbcTemplate	 instance	 that
we	 configured	 in	 the	 application	 context	 XML	 file	 (refer	 example	 listing	 7-2)	 is	 autowired	 into	 the
FixedDepositDaoImpl	 class.	 JdbcTemplate’s	 update	 method	 accepts	 an	 instance	 of
PreparedStatementCreator	and	an	 instance	of	KeyHolder.	PreparedStatementCreator	 is	 used	 to	 perform



insert,	update	or	delete	operation	on	the	database.	Spring’s	KeyHolder	interface	represents	a	holder	for
the	keys	that	are	auto-generated	when	insert	SQL	statements	are	executed.	GeneratedKeyHolder	class	 is
the	default	implementation	of	KeyHolder	interface.

Once	 the	 INSERT	 SQL	 statement	 is	 successfully	 executed,	 the	 auto-generated	 keys	 are	 added	 to	 the
GeneratedKeyHolder	instance.	You	can	extract	the	auto-generated	keys	from	the	GeneratedKeyHolder	by
calling	 the	getKey	method.	 In	example	 listing	7-4,	 the	createFixedDeposit	method	 inserts	 fixed	deposit
details	into	the	FIXED_DEPOSIT_DETAILS	table	and	returns	the	auto-generated	key.	Example	listing	7-
4	shows	that	you	don’t	need	to	worry	about	catching	SQLException	that	may	be	thrown	by	the	execution
of	 PreparedStatement.	 This	 is	 because	 JdbcTemplate	 is	 responsible	 for	 catching	 SQLExceptions	 and
handling	them.

Let’s	now	look	at	NamedParameterJdbcTemplate	class.

NamedParameterJdbcTemplate	

As	shown	in	example	listing	7-4,	if	you	are	using	JdbcTemplate	class	for	database	interaction,	parameters
to	 be	 passed	 to	 the	 SQL	 statement	 are	 specified	 using	 ?	 placeholders.	 Spring’s
NamedParameterJdbcTemplate	is	a	wrapper	around	JdbcTemplate	instance	that	allows	you	to	use	named
parameters	in	the	SQL	statement	rather	than	using	?	.

The	following	example	 listing	shows	how	the	NamedParameterJdbcTemplate	class	 is	configured	 in	 the
application	context	XML	file:

	
Example	listing	7-5	–	applicationContext.xml	–	NamedParameterJdbcTemplate	configuration
Project	–	ch07-bankapp-jdbc
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="namedJdbcTemplate"
								class="org.springframework.jdbc.core.namedparam.NamedParameterJdbcTemplate">
								<constructor-arg	index="0"	ref="dataSource"	/>
				</bean>
	
				<bean	id="dataSource"	class="org.apache.commons.dbcp.BasicDataSource".....>
							.....
				</bean>

The	 above	 example	 listing	 shows	 that	 the	 NamedParameterJdbcTemplate	 class	 accepts
javax.sql.DataSource	object	as	constructor	argument.

The	 following	 example	 listing	 shows	 the	 FixedDepositDaoImpl	 class	 that	 uses
NamedParameterJdbcTemplate	to	fetch	fixed	deposit	details	from	the	FIXED_DEPOSIT_DETAILS	table:

Example	listing	7-6	–	FixedDepositDaoImpl	class	–	NamedParameterJdbcTemplate	usage
Project	–	ch07-bankapp-jdbc
Source	location	-	src/main/java/sample/spring/chapter07/bankapp/dao
	
package	sample.spring.chapter07.bankapp.dao;



	
import	java.sql.ResultSet;
import	org.springframework.jdbc.core.RowMapper;
import	org.springframework.jdbc.core.namedparam.MapSqlParameterSource;
import	org.springframework.jdbc.core.namedparam.NamedParameterJdbcTemplate;
import	org.springframework.jdbc.core.namedparam.SqlParameterSource;
.....
@Repository(value	=	"FixedDepositDao")
public	class	FixedDepositDaoImpl	implements	FixedDepositDao	{
				.....
				@Autowired
				private	NamedParameterJdbcTemplate	namedParameterJdbcTemplate;
				.....
				public	FixedDepositDetails	getFixedDeposit(final	int	FixedDepositId)	{
								final	String	sql	=	"select	*	from	fixed_deposit_details	where	fixed_deposit_id
															=	:FixedDepositId";
	
								SqlParameterSource	namedParameters	=	new	MapSqlParameterSource(
																"FixedDepositId",	FixedDepositId);
	
								return	namedParameterJdbcTemplate.queryForObject(sql,	namedParameters,
																new	RowMapper<FixedDepositDetails>()	{
																				public	FixedDepositDetails	mapRow(ResultSet	rs,	int	rowNum)	throws	SQLException	{
																								FixedDepositDetails	fixedDepositDetails	=	new	FixedDepositDetails();
																								fixedDepositDetails.setActive(rs.getString("active"));
																								.....
																								return	fixedDepositDetails;
																				}
																});
				}
}

NamedParameterJdbcTemplate	 instance	 that	 we	 configured	 in	 the	 application	 context	 XML	 file	 (refer
example	listing	7-5)	is	autowired	into	FixedDepositDaoImpl	class.	In	the	above	example	listing,	the	SQL
query	 passed	 to	 NamedParameterJdbcTemplate’s	 queryForObject	 method	 contains	 a	 named	 parameter
FixedDepositId.	 The	 named	 parameter	 values	 are	 supplied	 via	 an	 implementation	 of	 Spring’s
SqlParameterSource	 interface.	 MapSqlParameterSource	 class	 is	 an	 implementation	 of
SqlParameterSource	 interface	 that	stores	named	parameters	(and	their	values)	 in	a	 java.util.Map.	 In	 the
above	 example	 listing,	 MapSqlParameterSource	 instance	 holds	 value	 of	 FixedDepositId	 named
parameter.	NamedParameterJdbcTemplate’s	queryForObject	method	executes	the	supplied	SQL	query	and
returns	a	single	object.	Spring’s	RowMapper	object	is	used	for	mapping	each	returned	row	to	an	object.
In	 the	 above	 example	 listing,	 RowMapper	 maps	 the	 returned	 row	 in	 the	 ResultSet	 to	 a
FixedDepositDetails	object.

Let’s	now	look	at	Spring’s	SimpleJdbcInsert	class.



SimpleJdbcInsert

SimpleJdbcInsert	class	makes	use	of	database	metadata	to	simplify	creating	a	basic	SQL	insert	statement
for	a	table.

The	following	example	listing	shows	the	BankAccountDaoImpl	class	that	makes	use	of	SimpleJdbcInsert
to	insert	bank	account	details	into	BANK_ACCOUNT_DETAILS	table:

Example	listing	7-7	–	BankAccountDaoImpl	class	–	SimpleJdbcInsert	usage
Project	–	ch07-bankapp-jdbc
Source	location	-	src/main/java/sample/spring/chapter07/bankapp/dao
	
package	sample.spring.chapter07.bankapp.dao;
	
import	javax.sql.DataSource;
import	org.springframework.jdbc.core.simple.SimpleJdbcInsert;
.....
@Repository(value	=	"bankAccountDao")
public	class	BankAccountDaoImpl	implements	BankAccountDao	{
				private	SimpleJdbcInsert	insertBankAccountDetail;
	
				@Autowired
				private	void	setDataSource(DataSource	dataSource)	{
								this.insertBankAccountDetail	=	new	SimpleJdbcInsert(dataSource)
																.withTableName("bank_account_details")
																.usingGeneratedKeyColumns("account_id");
				}
	
				@Override
				public	int	createBankAccount(final	BankAccountDetails	bankAccountDetails)	{
								Map<String,	Object>	parameters	=	new	HashMap<String,	Object>(2);
								parameters.put("balance_amount",	bankAccountDetails.getBalanceAmount());
								parameters.put("last_transaction_ts",	new	java.sql.Date(
																bankAccountDetails.getLastTransactionTimestamp().getTime()));
	
								Number	key	=	insertBankAccountDetail.executeAndReturnKey(parameters);
								return	key.intValue();
				}
				.....
}

As	the	setDataSource	method	is	annotated	with	@Autowired	annotation,	 javax.sql.DataSource	object	 is
passed	 as	 an	 argument	 to	 the	 setDataSource	 method.	 In	 the	 setDataSource	 method,	 an	 instance	 of
SimpleJdbcInsert	is	created	by	passing	reference	to	javax.sql.DataSource	object	to	the	SimpleJdbcInsert
constructor.

SimpleJdbcInsert’s	 withTableName	 method	 sets	 the	 name	 of	 the	 table	 into	 which	 you	 want	 to	 insert



record(s).	 As	 we	 want	 to	 insert	 bank	 account	 details	 into	 BANK_ACCOUNT_DETAILS	 table,
‘bank_account_details’	 string	 value	 is	 passed	 as	 argument	 to	 the	 withTableName	 method.
SimpleJdbcInsert’s	 usingGeneratedKeyColumns	method	 sets	 names	 of	 table	 columns	 that	 contain	 auto-
generated	keys.	In	case	of	BANK_ACCOUNT_DETAILS	table,	ACCOUNT_ID	column	contains	the	auto-
generated	key;	therefore,	‘account_id’	string	value	is	passed	to	the	usingGeneratedKeyColumns	method.
The	 actual	 insert	 operation	 is	 performed	 by	 calling	 SimpleJdbcInsert’s	 executeAndReturnKey	 method.
The	 executeAndReturnKey	 method	 accepts	 a	 java.util.Map	 type	 argument	 that	 contains	 table	 column
names	 and	 their	 corresponding	 values,	 and	 returns	 the	 generated	 key	 value.	 You	 should	 note	 that	 the
SimpleJdbcInsert	class	internally	uses	JdbcTemplate	to	execute	the	actual	SQL	insert	operation.

If	you	look	at	BankAccountDaoImpl	class	of	ch07-bankapp-jdbc	project,	you’ll	notice	that	it	makes	use	of
both	 SimpleJdbcInsert	 and	 JdbcTemplate	 classes	 to	 interact	 with	 the	 database.	 Similarly,
FixedDepositDaoImpl	 class	 of	 ch07-bankapp-jdbc	 project	 uses	 both	 JdbcTemplate	 and
NamedParameterJdbcTemplate	 classes	 for	 database	 interaction.	 This	 shows	 that	 you	 can	 use	 a
combination	of	Spring’s	JDBC	module	classes	to	interact	with	a	database.

NOTE	As	ch07-bankapp-jdbc	project	makes	use	of	Spring’s	JDBC	module	and	uses	Spring’s	Transaction
Management	feature	(explained	in	section	7-5),	 the	pom.xml	file	of	ch07-bankapp-jdbc	project	depends
on	spring-jdbc	and	spring-tx	JAR	files.

Let’s	now	look	at	BankApp	class	of	ch07-bankapp-jdbc	project	that	creates	a	bank	account	and	opens	a
fixed	deposit	corresponding	to	it.

BankApp	class

BankApp	 class	 of	 ch07-bankapp-jdbc	 project	 runs	 the	 MyBank	 application	 as	 a	 standalone	 Java
application.	BankApp’s	main	method	creates	a	bank	account	 in	 the	BANK_ACCOUNT_DETAILS	table
and	 creates	 a	 fixed	 deposit	 (corresponding	 to	 the	 newly	 created	 bank	 account)	 in	 the
FIXED_DEPOSIT_DETAILS	table.

The	following	example	listing	shows	the	BankApp	class:

Example	listing	7-8	–	BankApp	class
Project	–	ch07-bankapp-jdbc
Source	location	-	src/main/java/sample/spring/chapter07/bankapp
	
package	sample.spring.chapter07.bankapp;
.....
public	class	BankApp	{
				private	static	Logger	logger	=	Logger.getLogger(BankApp.class);
	
				public	static	void	main(String	args[])	throws	Exception	{
								ApplicationContext	context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
	
							BankAccountService	bankAccountService	=	context.getBean(BankAccountService.class);
							BankAccountDetails	bankAccountDetails	=	new	BankAccountDetails();
							.....



							int	bankAccountId	=	bankAccountService.createBankAccount(bankAccountDetails);
							.....
							FixedDepositService	FixedDepositService	=	context.getBean(FixedDepositService.class);
							FixedDepositDetails	fixedDepositDetails	=	new	FixedDepositDetails();
							.....
							int	FixedDepositId	=	FixedDepositService.createFixedDeposit(fixedDepositDetails);
							.....
				}
}

In	the	above	example	listing,	the	BankAccountService	object	interacts	with	BankAccountDaoImpl	 (refer
example	 listing	 7-7)	 to	 create	 a	 bank	 account,	 and	 FixedDepositService	 object	 interacts	 with
FixedDepositDaoImpl	(refer	example	listing	7-4	and	7-6)	object	to	open	a	fixed	deposit	corresponding	to
the	newly	created	bank	account.	If	you	execute	BankApp’s	main	method,	you’ll	find	that	a	new	record	is
inserted	into	both	BANK_ACCOUNT_DETAILS	and	FIXED_DEPOSIT_DETAILS	tables.

In	 this	 section,	 we	 looked	 at	 how	 Spring’s	 JDBC	 module	 simplifies	 updating	 or	 fetching	 data	 from
databases.	Spring’s	JDBC	module	can	also	be	used	for	the	following	purposes:

·								executing	stored	procedures	and	functions.	For	instance,	you	can	use	Spring’s	SimpleJdbcCall
class	for	executing	stored	procedures	and	functions

·								executing	prepared	statements	in	batches

·	 	 	 	 	 	 	 	 accessing	 relational	 databases	 in	 an	 object-oriented	manner.	 For	 instance,	 you	 can	 extend
Spring’s	 MappingSqlQuery	 class	 to	 create	 an	 SQL	 query	 and	 map	 the	 returned	 ResultSet	 to	 a
domain	object.

·								configuring	an	embedded	database	instance.	For	instance,	you	can	Spring’s	jdbc	schema	to	create
an	 instance	of	HSQL,	H2	or	Derby	databases,	 and	 register	 the	database	 instance	with	 the	Spring
container	as	a	bean	of	type	javax.sql.DataSource.

Let’s	 now	 look	 at	 how	 we	 can	 use	 Spring’s	 support	 for	 Hibernate	 ORM	 framework	 to	 interact	 with
databases.



7-4	Developing	the	MyBank	application	using	Hibernate
Spring’s	ORM	module	provides	 integration	with	Hibernate,	 Java	Persistence	API	 (JPA),	MyBatis,	 and
Java	Data	Objects	(JDO).	In	this	section,	we’ll	see	how	Spring	simplifies	using	Hibernate	framework	for
database	 interaction.	 As	 Hibernate	 itself	 is	 a	 JPA	 provider,	 we’ll	 use	 JPA	 annotations	 to	 map	 our
persistent	entity	classes	to	database	tables.

IMPORT	 chapter	 7/ch07-bankapp-hibernate	 (This	 project	 shows	 the	 MyBank	 application	 that	 uses
Hibernate	to	interact	with	the	database.	To	run	the	application,	execute	the	main	method	of	the	BankApp
class	of	this	project.)

Let’s	first	look	at	how	to	configure	Hibernate’s	SessionFactory	instance.

Configuring	SessionFactory	instance
SessionFactory	is	a	factory	for	creating	Hibernate’s	Session	object.	It	is	the	Session	object	that	is	used	by
DAOs	 to	 perform	 create,	 read,	 delete	 and	 update	 operations	 on	 persistent	 entities.	 Spring’s
org.springframework.orm.hibernate4.LocalSessionFactoryBean	(a	FactoryBean	implementation)	creates	a
SessionFactory	instance	that	can	be	used	by	DAO	classes	for	obtaining	a	Session	instance.

NOTE	 If	 you	 want	 to	 use	 JPA’s	 EntityManager	 in	 your	 application’s	 DAOs	 for	 database	 interaction,
configure	 Spring’s	 LocalContainerEntityManagerFactoryBean	 instead	 of
org.springframework.orm.hibernate4.LocalSessionFactoryBean.

The	 following	 example	 listing	 shows	 how	 the	 LocalSessionFactoryBean	 class	 is	 configured	 in	 the
application	context	XML	file:

Example	listing	7-9	–	applicationContext.xml	-	LocalSessionFactoryBean	configuration
Project	–	ch07-bankapp-hibernate
Source	location	-	src/main/java/sample/spring/chapter07/bankapp
	
				<bean	id="sessionFactory"
								class="	org.springframework.orm.hibernate4.LocalSessionFactoryBean">
								<property	name="dataSource"	ref="dataSource"	/>
								<property	name="packagesToScan"	value="sample.spring"	/>
				</bean>

The	dataSource	property	specifies	reference	to	a	bean	of	type	javax.sql.DataSource.	The	packagesToScan
property	specifies	the	package(s)	under	which	Spring	looks	for	persistent	classes.	For	instance,	the	above
example	 listing	 specifies	 that	 if	 a	 persistent	 class	 is	 annotated	 with	 JPA’s	@Entity	 annotation,	 and	 is
located	 inside	 sample.spring	 package	 (or	 its	 sub-packages),	 it	 is	 automatically	 detected	 by
org.springframework.orm.hibernate4.	LocalSessionFactoryBean.	An	alternative	to	using	packagesToScan
property	is	to	explicitly	specify	all	the	persistent	classes	using	annotatedClasses	property,	as	shown	in	the
following	example	listing:

Example	listing	7-10	LocalSessionFactoryBean’s	annotatedClasses	property
	
				<bean	id="sessionFactory"



								class="org.springframework.orm.hibernate4.LocalSessionFactoryBean">
								<property	name="dataSource"	ref="dataSource"	/>
								<property	name="annotatedClasses">
												<list>
																<value>sample.spring.chapter07.bankapp.domain.BankAccountDetails</value>
																<value>sample.spring.chapter07.bankapp.domain.FixedDepositDetails</value>
												</list>
								</property>
				</bean>

In	 the	 above	 example	 listing,	 annotatedClasses	 property	 (of	 type	 java.util.List)	 lists	 down	 all	 the
persistent	classes	in	the	application.

NOTE	If	you	are	using	Hibernate	3,	use	Spring’s
org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean	instead	of
org.springframework.orm.hibernate4.LocalSessionFactoryBean	to	create	a	SessionFactory	instance.

As	 we	 have	 configured	 LocalSessionFactoryBean,	 let’s	 now	 look	 at	 DAOs	 that	 make	 use	 of
SessionFactory	instance	created	by	LocalSessionFactoryBean	to	perform	database	operations.

Creating	DAOs	that	use	Hibernate	API	for	database	interaction
To	interact	with	 the	database,	DAOs	need	access	 to	Hibernate’s	Session	object.	To	access	Hibernate’s
Session	 object,	 inject	 the	 SessionFactory	 instance	 created	 by	 LocalSessionFactoryBean	 bean	 (refer
example	 listing	 7-9)	 into	 DAOs,	 and	 use	 the	 injected	 SessionFactory	 instance	 to	 obtain	 a	 Session
instance.

The	following	example	listing	shows	the	FixedDepositDaoImpl	class	that	uses	Hibernate	API	for	saving
and	retrieving	the	FixedDepositDetails	persistent	entity:

Example	listing	7-11	–	FixedDepositDaoImpl	class	-	Hibernate	API	usage
Project	–	ch07-bankapp-hibernate
Source	location	-	src/main/java/sample/spring/chapter07/bankapp/dao
	
package	sample.spring.chapter07.bankapp.dao;
	
import	org.hibernate.SessionFactory;
.....
@Repository(value	=	"FixedDepositDao")
public	class	FixedDepositDaoImpl	implements	FixedDepositDao	{
	
				@Autowired
				private	SessionFactory	sessionFactory;
	
				public	int	createFixedDeposit(final	FixedDepositDetails	fixedDepositDetails)	{
								sessionFactory.getCurrentSession().save(fixedDepositDetails);
								return	fixedDepositDetails.getFixedDepositId();
				}



	
				public	FixedDepositDetails	getFixedDeposit(final	int	FixedDepositId)	{
								String	hql	=	"from	FixedDepositDetails	as	FixedDepositDetails	where	"
																+	"FixedDepositDetails.FixedDepositId	="
																+	FixedDepositId;
								return	(FixedDepositDetails)	sessionFactory.getCurrentSession()
																.createQuery(hql).uniqueResult();
				}
}

The	 above	 example	 listing	 shows	 that	 an	 instance	 of	 SessionFactory	 is	 autowired	 into
FixedDepositDaoImpl	instance,	which	is	later	used	by	createFixedDeposit	and	getFixedDeposit	methods
to	save	and	retrieve	FixedDepositDetails	persistent	entity.	Autowiring	of	SessionFactory	instance	shows
that	you	can	autowire	an	object	created	by	Spring’s	FactoryBean	implementation	by	simply	defining	the
type	 created	 by	 the	 FactoryBean	 and	 annotating	 it	 with	@Autowired	 annotation	 (refer	 section	 3-9	 of
chapter	 3	 to	 know	 more	 about	 Spring’s	 FactoryBean	 interface).	 The	 createFixedDeposit	 and
getFixedDeposit	 methods	 call	 SessionFactory’s	 getCurrentSession	 method	 to	 obtain	 an	 instance	 of
Session.	 It	 is	 important	 to	 note	 that	 the	 call	 to	 getCurrentSession	 method	 returns	 the	 Session	 object
associated	with	the	current	transaction	or	thread.	Using	getCurrentSession	method	is	useful	if	you	want
Spring	to	manage	transactions,	which	is	the	case	in	MyBank	application.

Let’s	now	look	at	Spring’s	programmatic	and	declarative	transaction	management	feature.



7-5	Transaction	management	using	Spring
Spring	Framework	supports	both	programmatic	and	declarative	transaction	management.	In	programmatic
transaction	management,	Spring’s	transaction	management	abstraction	is	used	to	explicitly	start,	end	and
commit	 transactions.	 In	declarative	 transaction	management,	you	annotate	methods	 that	execute	within	a
transaction	with	Spring’s	@Transactional	annotation.

Let’s	first	look	at	the	transaction	management	requirement	of	MyBank	application	described	in	section	7-
2.

MyBank’s	transaction	management	requirements
In	section	7-2,	it	was	mentioned	that	when	a	bank	customer	opens	a	new	fixed	deposit,	the	fixed	deposit
amount	is	deducted	from	the	BANK_ACCOUNT_DETAILS	table’s	BALANCE_AMOUNT	column,	and
the	fixed	deposit	details	are	saved	in	the	FIXED_DEPOSIT_DETAILS	table.

The	following	sequence	diagram	shows	that	the	createFixedDeposit	method	of	FixedDepositServiceImpl
class	saves	the	fixed	deposit	details	in	FIXED_DEPOSIT_DETAILS	table	and	deducts	the	fixed	deposit
amount	from	the	corresponding	bank	account	in	BANK_ACCOUNT_DETAILS	table:

Figure	7-2	 The	 sequence	 of	 actions	 performed	 by	MyBank	 application	when	 a	 customer	 opens	 a	 new
fixed	deposit

The	 above	 sequence	 diagram	 shows	 that	 FixedDepositServiceImpl’s	 createFixedDeposit	 method	 calls
FixedDepositDaoImpl’s	 createFixedDeposit	 method	 and	 BankAccountDaoImpl’s	 subtractFromAccount
method.	 FixedDepositDaoImpl’s	 createFixedDeposit	 method	 saves	 the	 fixed	 deposit	 details	 in	 the
FIXED_DEPOSIT_DETAILS	 table.	 BankAccountDaoImpl’s	 subtractFromAccount	 method	 first	 checks
that	 the	customer’s	bank	account	contains	sufficient	balance	 to	create	 the	 fixed	deposit	of	 the	specified
amount.	 If	 sufficient	balance	 is	 available	 in	 customer’s	bank	account,	 the	 subtractFromAccount	method
deducts	the	fixed	deposit	amount	from	the	customer’s	bank	account.	If	sufficient	balance	isn’t	available,
an	 exception	 is	 thrown	 by	 BankAccountDaoImpl’s	 subtractFromAccount	 method.	 If
FixedDepositDaoImpl’s	 createFixedDeposit	 or	 BankAccountDaoImpl’s	 subtractFromAccount	 method



fails	for	some	reason,	the	system	will	be	left	in	an	inconsistent	state;	therefore,	both	the	methods	must	be
executed	within	a	transaction.

Let’s	 now	 look	 at	 how	 you	 can	 use	 Spring	 to	 programmatically	 manage	 transactions	 in	 the	 MyBank
application.

Programmatic	transaction	management
You	can	programmatically	manage	transactions	by	using	Spring’s	TransactionTemplate	class	or	by	using
an	 implementation	 of	 Spring’s	 PlatformTransactionManager	 interface.	 TransactionTemplate	 class
simplifies	 transaction	management	 by	 taking	 care	 of	 initiating	 and	 committing	 transactions.	 You	 only
need	to	provide	an	implementation	of	Spring’s	TransactionCallback	interface	that	contains	the	code	to	be
executed	within	a	transaction.

IMPORT	 chapter	 7/ch07-bankapp-tx-jdbc	 (This	 project	 shows	 the	 MyBank	 application	 that	 uses
Spring’s	TransactionTemplate	class	for	programmatically	managing	transactions.	To	run	the	application,
execute	 the	 main	 method	 of	 the	 BankApp	 class	 of	 this	 project.	 Create	 SPRING_BANK_APP_DB
database,	 and	BANK_ACCOUNT_DETAILS	and	FIXED_DEPOSIT_DETAILS	 tables	 as	 described	 for
ch07-bankapp-jdbc	project)

The	following	example	listing	shows	how	the	TransactionTemplate	class	is	configured	in	the	application
context	XML	file:

Example	listing	7-12	–	applicationContext.xml	-	TransactionTemplate	configuration
Project	–	ch07-bankapp-tx-jdbc
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="dataSource"	class="org.apache.commons.dbcp.BasicDataSource".....>
								.....
				</bean>
	
				<bean	id="txManager"
								class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
								<property	name="dataSource"	ref="dataSource"	/>
				</bean>
	
				<bean	id="transactionTemplate"
								class="org.springframework.transaction.support.TransactionTemplate">
								<property	name="transactionManager"	ref="txManager"/>
								<property	name="isolationLevelName"	value="ISOLATION_READ_UNCOMMITTED"	/>
								<property	name="propagationBehaviorName"	value="PROPAGATION_REQUIRED"	/>
				</bean>

TransactionTemplate’s	 transactionManager	 property	 refers	 to	 Spring’s	 PlatformTransactionManager
implementation	that	is	responsible	for	managing	transactions.

TransactionTemplate’s	isolationLevelName	property	specifies	the	transaction	isolation	level	to	be	set	for
the	transactions	managed	by	the	transaction	manager.	The	value	of	isolationLevelName	property	refers	to



a	 constant	 defined	 by	 Spring’s	 TransactionDefinition	 interface.	 For	 instance,
ISOLATION_READ_UNCOMMITTED	 is	 a	 constant	 defined	 by	 TransactionDefinition	 interface	 that
indicates	that	the	uncommitted	changes	by	a	transaction	can	be	read	by	other	transactions.

TransactionTemplate’s	 propagationBehaviorName	 property	 specifies	 the	 transaction	 propagation
behavior.	 The	 value	 of	 propagationBehaviorName	 property	 refers	 to	 a	 constant	 defined	 by	 Spring’s
TransactionDefinition	 interface.	 For	 instance,	 PROPAGATION_REQUIRED	 is	 a	 constant	 defined	 by
TransactionDefinition	interface	that	indicates:

·								if	a	method	is	not	invoked	within	a	transaction,	the	transaction	manager	starts	a	new	transaction
and	executes	the	method	in	the	newly	created	transaction

·								if	a	method	is	invoked	within	a	transaction,	the	transaction	manager	executes	the	method	in	the
same	transaction

Spring	provides	a	 couple	of	built-in	PlatformTransactionManager	 implementations	 that	 you	 can	 choose
from,	 depending	 upon	 the	 data	 access	 technology	 used	 by	 your	 application.	 For	 instance,
DataSourceTransactionManager	 is	appropriate	 for	managing	 transactions	 in	applications	 that	use	 JDBC
for	interacting	with	a	database,	HibernateTransactionManager	is	appropriate	when	Hibernate	is	used	for
database	 interaction	and	 JpaTransactionManager	when	 JPA’s	EntityManager	 is	 used	 for	 data	 access.	 In
example	 listing	 7-12,	 TransactionTemplate’s	 transactionManager	 property	 refers	 to	 a
DataSourceTransactionManager	 instance	 because	 the	 MyBank	 application	 of	 ch07-bankapp-tx-jdbc
project	 uses	 JDBC	 for	 data	 access.	 The	 example	 listing	 7-12	 shows	 that
DataSourceTransactionManager’s	 dataSource	 property	 refers	 to	 a	 javax.sql.DataSource	 object	 that
represents	the	database	whose	transactions	are	managed	by	the	DataSourceTransactionManager	instance.

The	following	example	 listing	shows	 the	FixedDepositServiceImpl	class	 that	uses	TransactionTemplate
instance	for	transaction	management:

Example	listing	7-13	–	FixedDepositServiceImpl	class	that	uses	TransactionTemplate
Project	–	ch07-bankapp-tx-jdbc
Source	location	-	src/main/java/sample/spring/chapter07/bankapp/service

package	sample.spring.chapter07.bankapp.service;
	
import	org.springframework.transaction.TransactionStatus;
import	org.springframework.transaction.support.TransactionCallback;
import	org.springframework.transaction.support.TransactionTemplate;
.....
@Service(value	=	"FixedDepositService")
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
	
				@Autowired
				private	TransactionTemplate	transactionTemplate;
				.....
				@Override
				public	int	createFixedDeposit(final	FixedDepositDetails	fixedDepositDetails)	throws	Exception	{
								transactionTemplate.execute(new	TransactionCallback<FixedDepositDetails>()	{



																				public	FixedDepositDetails	doInTransaction(TransactionStatus	status)	{
																								try	{
																												myFixedDepositDao.createFixedDeposit(fixedDepositDetails);
																												bankAccountDao.subtractFromAccount(
																																			fixedDepositDetails.getBankAccountId(),
																																													fixedDepositDetails.getFixedDepositAmount()
																												);
																								}	catch	(Exception	e)	{	status.setRollbackOnly();	}
																								return	fixedDepositDetails;
																				}
																});
								return	fixedDepositDetails.getFixedDepositId();
				}
				.....
}

The	above	example	listing	shows	FixedDepositServiceImpl’s	createFixedDeposit	method	(refer	figure	7-
2	for	more	details)	that	saves	fixed	deposit	details	in	the	FIXED_DEPOSIT_DETAILS	table,	and	deducts
the	fixed	deposit	amount	from	the	corresponding	bank	account	in	the	BANK_ACCOUNT_DETAILS	table.

You	 create	 an	 implementation	 of	 TransactionCallback	 interface	 to	 define	 the	 actions	 that	 you	 want	 to
execute	within	a	transaction.	And,	TransactionTemplate’s	execute	method	executes	the	actions	contained
in	 the	 TransactionCallback	 instance	 within	 a	 transaction.	 TransactionCallback	 interface	 defines	 a
doInTransaction	 method	 that	 you	 implement	 to	 provide	 the	 actions	 that	 should	 be	 executed	 within	 a
transaction.	 TransactionCallback’s	 doInTransaction	 method	 is	 invoked	 within	 a	 transaction	 by
TransactionTemplate’s	execute	method.	The	doInTransaction	method	 accepts	 a	TransactionStatus	 object
that	you	can	use	to	control	the	outcome	of	the	transaction.	In	example	listing	7-13,	TransactionCallback’s
doInTransaction	 method	 contains	 calls	 to	 FixedDepositDaoImpl’s	 createFixedDeposit	 method	 and
BankAccountDaoImpl’s	subtractFromAccount	method	because	we	want	both	the	methods	to	be	executed
within	a	single	 transaction.	As	we’d	want	 to	roll	back	the	 transaction	if	either	of	 the	methods	fails,	 the
setRollbackOnly	 method	 of	 TransactionStatus	 is	 invoked	 in	 case	 of	 an	 exception.	 If	 you	 call
TransactionStatus’s	setRollbackOnly	method,	the	TransactionTemplate	instance	roll	backs	the	transaction.
A	 transaction	will	 be	 automatically	 rolled	back	 if	 the	 actions	 contained	 in	 the	doInTransaction	method
result	in	a	java.lang.RuntimeException.

TransactionCallback	instance	accepts	a	generic	type	argument	which	refers	to	the	object	type	returned	by
the	 doInTransaction	method.	 In	 example	 listing	 7-13,	 a	 FixedDepositDetails	 object	 is	 returned	 by	 the
doInTransaction	 method.	 If	 you	 don’t	 want	 the	 doInTransaction	 method	 to	 return	 any	 object,	 use	 the
TransactionCallbackWithoutResult	abstract	class	that	implements	the	TransactionCallback	interface.	The
TransactionCallbackWithoutResult	 class	 allows	 you	 to	 create	 TransactionCallback	 implementations	 in
which	doInTransaction	method	doesn’t	return	a	value.

The	 following	 example	 listing	 shows	 the	 main	 method	 of	 BankApp	 class	 that	 calls
BankAccountServiceImpl’s	 createBankAccount	 method	 to	 create	 a	 bank	 account,	 and
FixedDepositServiceImpl’s	 createFixedDeposit	 method	 to	 create	 a	 fixed	 deposit	 corresponding	 to	 the
newly	created	bank	account:



Example	listing	7-14	–	BankApp	class
Project	–	ch07-bankapp-tx-jdbc
Source	location	-	src/main/java/sample/spring/chapter07/bankapp

package	sample.spring.chapter07.bankapp;
	
public	class	BankApp	{
				.....
				public	static	void	main(String	args[])	throws	Exception	{
								ApplicationContext	context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
	
								BankAccountService	bankAccountService	=	context.getBean(BankAccountService.class);
								FixedDepositService	FixedDepositService	=	context.getBean(FixedDepositService.class);
	
								BankAccountDetails	bankAccountDetails	=	new	BankAccountDetails();
							bankAccountDetails.setBalanceAmount(1000);
								.....
							int	bankAccountId	=	bankAccountService.createBankAccount(bankAccountDetails);
	
								FixedDepositDetails	fixedDepositDetails	=	new	FixedDepositDetails();
								fixedDepositDetails.setFixedDepositAmount(1500);
								fixedDepositDetails.setBankAccountId(bankAccountId);
								.....
								int	FixedDepositId	=	FixedDepositService.createFixedDeposit(fixedDepositDetails);
								.....
				}
}

The	 above	 example	 listing	 shows	 that	 a	 bank	 account	 is	 first	 created	with	 a	 balance	 amount	 of	 1000,
followed	by	creating	a	fixed	deposit	of	amount	1500.	As	fixed	deposit	amount	is	greater	than	the	balance
in	 the	 bank	 account,	 BankAccountDaoImpl’s	 subtractFromAccount	 method	 throws	 an	 exception	 (refer
BankAccountDaoImpl’s	subtractFromAccount	method	or	figure	7-2).

If	 you	 execute	 BankApp’s	 main	 method,	 you’ll	 notice	 that	 the	 fixed	 deposit	 is	 not	 created	 in	 the
FIXED_DEPOSIT_DETAILS	 table,	 and	 1500	 amount	 is	 not	 deducted	 from	 the
BANK_ACCOUNT_DETAILS	 table.	This	 shows	 that	 both	FixedDepositDaoImpl’s	 createFixedDeposit
and	BankAccountDaoImpl’s	subtractFromAccount	are	executed	in	the	same	transaction.

Instead	 of	 using	 TransactionTemplate	 class,	 you	 can	 directly	 use	 a	 PlatformTransactionManager
implementation	 to	 programmatically	 manage	 transactions.	 When	 using	 PlatformTransactionManager
implementation,	 you	 are	 required	 to	 explicitly	 initiate	 and	 commit	 (or	 roll	 back)	 transactions.	 For	 this
reason,	 it	 is	 recommended	 to	 use	 TransactionTemplate	 instead	 of	 directly	 using	 a
PlatformTransactionManager	implementation.

Let’s	now	look	at	declarative	transaction	management	feature	of	Spring.



Declarative	transaction	management
Programmatic	transaction	management	couples	your	application	code	with	Spring-specific	classes.	On	the
other	 hand,	 declarative	 transaction	management	 requires	 you	 to	 only	 annotate	methods	 or	 classes	with
Spring’s	@Transactional	 annotation.	 If	 you	want	 to	 execute	 a	method	within	 a	 transaction,	 annotate	 the
method	 with	 @Transactional	 annotation.	 If	 you	 want	 to	 execute	 all	 the	 methods	 of	 a	 class	 within	 a
transaction,	annotate	the	class	with	@Transactional	annotation.

NOTE	Instead	of	using	@Transactional	annotation	for	declarative	transaction	management,	you	can	use
Spring’s	tx	schema	elements	to	identify	transactional	methods.	As	using	Spring’s	tx	schema	results	in
verbose	application	context	XML	file,	we’ll	be	only	looking	at	using	@Transactional	annotation	for
declarative	transaction	management.

IMPORT	chapter	7/ch07-bankapp-jdbc	and	chapter	7/ch07-bankapp-hibernate	 (The	 ch07-bankapp-
jdbc	 project	 shows	 the	MyBank	 application	 that	 uses	 Spring’s	 JDBC	module	 for	 database	 interaction
(refer	section	7-3	to	learn	more	about	ch07-bankapp-jdbc	project).	The	ch07-bankapp-hibernate	project
shows	the	MyBank	application	that	uses	Hibernate	to	interact	with	the	database	(refer	section	7-4	to	learn
more	about	ch07-bankapp-hibernate	project).

You	enable	declarative	transaction	management	using	<annotation-driven>	element	of	Spring’s	tx	schema.
The	 following	 example	 listing	 shows	 the	 <annotation-driven>	 element’s	 usage	 in	 ch07-bankapp-jdbc
project:

Example	listing	7-15	–	applicationContext.xml	-	<annotation-driven>	element
Project	–	ch07-bankapp-jdbc
Source	location	-	src/main/resources/META-INF/spring
	
<beans	.....	xmlns:tx="http://www.springframework.org/schema/tx"
				xsi:schemaLocation=".....http://www.springframework.org/schema/tx
								http://www.springframework.org/schema/tx/spring-tx-4.0.xsd">
				.....
				<tx:annotation-driven	transaction-manager="txManager"	/>
	
				<bean	id="txManager"
								class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
								<property	name="dataSource"	ref="dataSource"	/>
				</bean>
				.....
</beans>

In	 the	 above	 example	 listing,	Spring’s	 tx	schema	 is	 included	 so	 that	 its	 elements	 are	 accessible	 in	 the
application	 context	 XML	 file.	 The	 <annotation-driven>	 element	 enables	 declarative	 transaction
management.	The	<annotation-driven>	element’s	 transaction-manager	attribute	specifies	 reference	 to	 the
PlatformTransactionManager	 implementation	 to	 use	 for	 transaction	 management.	 The	 above	 example
listing	 shows	 that	 the	 DataSourceTransactionManager	 is	 used	 as	 the	 transaction	 manager	 in	 ch07-
bankapp-jdbc	project.

The	 following	 example	 listing	 shows	 how	 you	 can	 use	 declarative	 transaction	 management	 in	 ch07-



bankapp-hibernate	project	that	uses	Hibernate	ORM	for	data	access:

Example	listing	7-16	–	applicationContext.xml	-	<annotation-driven>	element
Project	–	ch07-bankapp-hibernate
Source	location	-	src/main/resources/META-INF/spring
	
<beans	.....	xmlns:tx="http://www.springframework.org/schema/tx"
				xsi:schemaLocation=".....http://www.springframework.org/schema/tx
								http://www.springframework.org/schema/tx/spring-tx-4.0.xsd">
				.....
				<tx:annotation-driven	transaction-manager="txManager"	/>
	
				<bean	id="txManager"
								class="org.springframework.orm.hibernate4.HibernateTransactionManager">
								<property	name="sessionFactory"	ref="sessionFactory"/>
				</bean>
				.....
</beans>

If	 you	 compare	 the	 above	 example	 listing	 with	 7-15,	 you’ll	 notice	 that	 the	 only	 difference	 is	 in	 the
PlatformTransactionManager	 implementation	 referenced	 by	 the	 transaction-manager	 attribute	 of
<annotation-driven>	 element.	 The	 above	 example	 listing	 shows	 that	 if	 Hibernate	 ORM	 is	 used	 for
database	 interaction,	 the	 org.springframework.orm.hibernate4.HibernateTransactionManager
implementation	of	PlatformTransactionManager	is	used	for	managing	transactions.

NOTE	 If	 you	 are	 using	 Hibernate	 3,	 set	 transaction-manager	 attribute	 to
org.springframework.orm.hibernate3.HibernateTransactionManager	 instead	 of
org.springframework.orm.hibernate4.HibernateTransactionManager.

	

	

The	 following	example	 listing	 shows	 the	FixedDepositServiceImpl	 class	 that	makes	use	of	 declarative
transaction	management:

Example	listing	7-17	–	FixedDepositServiceImpl	class	-	@Transactional	annotation	usage
Project	–	ch07-bankapp-jdbc
Source	location	-	src/main/java/sample/spring/chapter07/bankapp/service

package	sample.spring.chapter07.bankapp.service;
	
import	org.springframework.transaction.annotation.Transactional;
.....
@Service(value	=	"FixedDepositService")
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				.....
				@Transactional



				public	int	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	throws	Exception	{
								bankAccountDao.subtractFromAccount(fixedDepositDetails.getBankAccountId(),
												fixedDepositDetails.getFixedDepositAmount());
								return	myFixedDepositDao.createFixedDeposit(fixedDepositDetails);
				}
				.....
}

In	the	above	example	listing,	the	createFixedDeposit	method	is	annotated	with	@Transactional	annotation.
This	means	that	the	createFixedDeposit	method	is	executed	within	a	transaction.	The	transaction	manager
specified	via	the	transaction-manager	attribute	of	<annotation-driven>	element	(refer	example	listing	7-15
and	 7-16)	 is	 used	 for	 managing	 the	 transaction.	 If	 a	 java.lang.RuntimeException	 is	 thrown	 during
execution	of	createFixedDeposit	method,	the	transaction	is	automatically	rolled	back.

@Transactional	annotation	defines	attributes	that	you	can	use	to	configure	the	behavior	of	the	transaction
manager.	 For	 instance,	 you	 can	use	 the	 rollbackFor	 attribute	 to	 specify	 exception	 classes	 that	 result	 in
transaction	 roll	 back.	 The	 exception	 classes	 specified	 by	 rollbackFor	 attribute	must	 be	 subclasses	 of
java.lang.Throwable	class.	Similarly,	you	can	use	 isolation	attribute	 to	specify	 the	 transaction	 isolation
level.

In	case	your	application	defines	multiple	transaction	managers,	you	can	use	@Transactional	annotation’s
value	attribute	to	specify	the	bean	name	of	the	PlatformTransactionManager	implementation	that	you	want
to	use	 for	managing	 transactions.	The	 following	example	 listing	shows	 that	2	 transaction	managers,	 tx1
and	 tx2,	 are	 defined	 in	 the	 application	 context	 XML	 file.	 The	 tx1	 transaction	 manager	 is	 used	 by
SomeServiceImpl’s	methodA	and	tx2	transaction	manager	is	used	by	SomeServiceImpl’s	methodB:

	
Example	listing	7-18	–	@Transactional’s	value	attribute	usage
	
-----------------------	SomeServiceImpl	class	------------------------
	
@Service
public	class	SomeServiceImpl	implements	SomeService	{
				.....
				@Transactional(value	=	"tx1")
				public	int	methodA()	{.....}
	
				@Transactional(value	=	"tx2")
				public	int	methodB()	{.....}
}
-----------------------	application	context	XML	file	------------------------
	
				<tx:annotation-driven	/>
	
				<bean	id="tx1"
								class="org.springframework.orm.hibernate4.HibernateTransactionManager">
								<property	name="sessionFactory1"	ref="sessionFactory1"/>



				</bean>
	
				<bean	id="tx2"
								class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
								<property	name="dataSource"	ref="dataSource"	/>
				</bean>

In	the	above	example	listing,	the	<annotation-driven>	element	of	Spring’s	tx	schema	doesn’t	specify	the
transaction-manager	 attribute	 because	 the	 transaction	 manager	 to	 use	 for	 managing	 transactions	 is
specified	 by	 the	 @Transactional	 annotation	 itself.	 In	 the	 above	 example	 listing,	 @Transactional
annotation’s	value	attribute	specifies	the	transaction	manager	to	use	for	managing	transactions.	This	means
that	 SomeServiceImpl’s	 methodA	 executes	 under	 tx1	 transaction	 manager	 and	 SomeServiceImpl’s
methodB	executes	under	tx2	transaction	manager.

Let’s	now	look	at	Spring’s	support	for	JTA	(Java	Transaction	API)	transactions.

Spring’s	support	for	JTA
In	chapter	1,	we	discussed	that	when	multiple	transactional	resources	are	involved	in	a	transaction,	JTA	is
used	 for	 transaction	 management.	 Spring	 provides	 a	 generic	 JtaTransactionManager	 class	 (a
PlatformTransactionManager	 implementation)	 that	 you	 can	 use	 in	 applications	 to	 manage	 JTA
transactions.

Figure	 7-3	 JTA	 transaction	 managers	 and	 resource-specific	 transaction	 managers	 implement
PlatformTransactionManager	interface

In	most	 application	 server	 environments,	 the	 JtaTransactionManager	will	meet	 your	 requirements.	But,
Spring	 also	 provides	 vendor-specific	 PlatformTransactionManager	 implementations	 that	 leverage
application	 server-specific	 features	 to	 manage	 JTA	 transactions.	 The	 vendor-specific	 JTA	 transaction
managers	 provided	 by	 Spring	 are:	 OC4JJtaTransactionManager	 (for	 Oracle	 OC4J),
WebLogicJtaTransactionManager	 (for	 WebLogic	 application	 server),
WebSphereUowTransactionManager	 (for	 WebSphere	 application	 server).	 Figure	 7-3	 summarizes	 how
JTA	 transaction	 managers	 and	 resource-specific	 transaction	 managers	 are	 related	 to	 the
PlatformTransactionManager	 interface.	 The	 figure	 shows	 that	 the	 PlatformTransactionManager	 is
implemented	by	both	JTA	transaction	manager	classes	and	resource-specific	transaction	manager	classes.



Let’s	 now	 look	 at	 how	Spring	 simplifies	 configuring	 a	 JTA	 transaction	manager	 in	 application	 context
XML	file.

Configuring	a	JTA	transaction	manager	using	<jta-transaction-manager>	element

Spring’s	 tx	 schema	 provides	 a	 <jta-transaction-manager>	 element	 that	 automatically	 detects	 the
application	 server	 in	which	 the	 application	 is	 deployed	 and	 configures	 an	 appropriate	 JTA	 transaction
manager.	This	 saves	 the	 effort	 for	 explicitly	 configuring	 an	 application	 server-specific	 JTA	 transaction
manager	 in	 the	 application	 context	XML	 file.	For	 instance,	 if	 you	deploy	an	 application	 in	WebSphere
application	 server,	 the	 <jta-transaction-manager>	 element	 configures	 an	 instance	 of
WebSphereUowTransactionManager	 instance.	 If	 the	 same	 application	 is	 deployed	 in	 WebLogic
application	 server,	 the	 <jta-transaction-manager>	 element	 configures	 an	 instance	 of
WebLogicJtaTransactionManager	instance.	If	the	application	is	deployed	in	any	application	server	other
than	OC4J,	WebSphere	 or	WebLogic,	 the	 <jta-transaction-manager>	 element	 configures	 an	 instance	 of
JtaTransactionManager	instance.



7-6	Summary
In	 this	 chapter,	 we	 saw	 that	 Spring	 supports	 database	 interaction	 using	 JDBC	 and	 Hibernate	 ORM
framework.	 We	 also	 saw	 how	 we	 can	 use	 Spring	 to	 manage	 transactions	 programmatically	 and
declaratively.	 In	 the	next	 chapter,	we’ll	 look	at	how	Spring	 simplifies	 sending	emails,	 interaction	with
messaging	middlewares,	and	perform	transparent	caching	of	data.



Chapter	8	-	Messaging,	emailing,	asynchronous	method
execution,	and	caching	using	Spring



8-1	Introduction
In	 the	 previous	 chapter,	we	 saw	 that	 Spring	 simplifies	 database	 interaction.	 In	 the	 context	 of	MyBank
application,	this	chapter	goes	a	step	further	and	shows	how	Spring	simplifies:

·								sending	and	receiving	JMS	messages	from	a	JMS	provider,	like	ActiveMQ

·								sending	email	messages

·								asynchronously	executing	methods

·								storing	and	retrieving	data	from	cache

Let’s	first	look	at	the	MyBank	application’s	requirements	that	we’ll	implement	in	this	chapter.



8-2	MyBank	application’s	requirements
MyBank	 application	 allows	 its	 customers	 to	 open	 fixed	 deposits	 and	 retrieve	 details	 of	 their	 existing
fixed	deposits.	Figure	8-1	shows	the	sequence	of	events	that	occur	when	a	customer	requests	for	opening
a	new	fixed	deposit.

First,	 FixedDepositService’s	 createFixedDeposit	 method	 is	 invoked	 that	 sends	 2	 JMS	 messages	 –	 a
message	 containing	 customer’s	 email	 id,	 and	 a	 message	 that	 contains	 fixed	 deposit	 details.
EmailMessageListener	retrieves	 the	JMS	message	containing	 the	email	 id	of	 the	customer	and	sends	an
email	 to	 the	 customer	 informing	 that	 the	 request	 for	 opening	 a	 fixed	 deposit	 has	 been	 received.
FixedDepositMessageListener	retrieves	the	JMS	message	containing	fixed	deposit	details	and	saves	the
fixed	deposit	details	in	the	database.

A	 scheduled	 job	 runs	 every	 5	 seconds	 to	 check	 if	 any	 new	 fixed	 deposits	 have	 been	 created	 in	 the
database.	 If	 the	 job	 finds	 any	 new	 fixed	 deposits,	 it	 subtracts	 the	 fixed	 deposit	 amount	 from	 the	 bank
account	of	 the	customer	and	sends	an	email	 to	the	customer	informing	that	 the	fixed	deposit	request	has
been	successfully	processed.

	

Figure	8-1	MyBank	application	behavior	when	a	customer	requests	for	opening	a	new	fixed	deposit

The	 following	 diagram	 shows	 the	 behavior	 of	 MyBank	 application	 when	 FixedDepositService’s
findFixedDepositsByBankAccount	method	 is	 invoked	 to	 retrieve	 all	 fixed	 deposits	 corresponding	 to	 a
bank	account:



Figure	 8-2	 MyBank	 application	 behavior	 when	 a	 customer	 requests	 for	 the	 details	 of	 all	 his	 fixed
deposits

The	above	 figure	 shows	 that	when	FixedDepositService’s	 findFixedDepositsByBankAccount	method	 is
invoked,	the	fixed	deposit	information	is	fetched	from	the	database	and	cached	into	memory.		If	you	can
FixedDepositService’s	findFixedDepositsByBankAccount	again,	the	fixed	deposit	information	is	fetched
from	the	cache	and	not	from	the	database.

Let’s	 now	 look	 at	 how	 Spring	 is	 used	 in	 the	 MyBank	 application	 to	 send	 JMS	 messages	 to	 JMS
destinations	configured	in	ActiveMQ.

IMPORT	chapter	8/ch08-bankapp	(To	get	the	most	of	out	of	this	chapter,	install	MySQL	database	and
execute	 the	 spring_bank_app_db.sql	 SQL	 script	 contained	 in	 the	 sql	 folder	 of	 ch08-bankapp	 project.
Executing	 spring_bank_app_db.sql	 script	 creates	 SPRING_BANK_APP_DB	 database	 and	 adds
BANK_ACCOUNT_DETAILS	 and	 FIXED_DEPOSIT_DETAILS	 tables	 to	 the
SPRING_BANK_APP_DB	 database.	 Modify	 the	 src/main/resources/META-
INF/spring/database.properties	 to	 point	 to	 your	MySQL	 installation.	 To	 get	 the	 email	 feature	working,
modify	src/main/resources/META-INF/spring/email.properties	to	specify	the	email	server	and	the	email
account	to	use	for	sending	emails.	Modify	the	BankApp	class	to	specify	the	email	id	of	the	customer	to
whom	the	emails	are	sent)



8-3	Sending	JMS	messages
Spring	simplifies	interaction	with	JMS	providers	by	providing	a	layer	of	abstraction	on	top	of	JMS	API.
In	the	context	of	MyBank	application,	this	section	shows	how	to	synchronously	and	asynchronously	send
and	receive	messages	from	an	ActiveMQ	broker	using	Spring.	For	the	sake	of	simplicity,	the	ActiveMQ
broker	is	configured	to	run	in	embedded	mode	in	ch08-bankapp	project.

NOTE	In	Spring,	JMS	support	classes	are	defined	in	spring-jms	JAR	file;	therefore,	you	must	define	that
your	application	depends	on	spring-jms	JAR	file	to	use	Spring’s	support	for	JMS.

Configuring	ActiveMQ	broker	to	run	in	embedded	mode
An	embedded	ActiveMQ	broker	runs	in	the	same	JVM	as	the	application.	You	can	use	ActiveMQ’s	XML
schema	 to	 configure	 an	 embedded	 ActiveMQ	 broker	 in	 a	 Spring	 application.	 The	 following	 example
listing	 shows	 how	ActiveMQ’s	 XML	 schema	 is	 used	 to	 configure	 an	 embedded	 ActiveMQ	 broker	 in
MyBank	application:

Example	listing	8-1	–	applicationContext.xml	–	embedded	ActiveMQ	broker	configuration
Project	–	ch08-bankapp
Source	location	-	src/main/resources/META-INF/spring
	
<beans	.....
				xmlns:amq="http://activemq.apache.org/schema/core"
				xsi:schemaLocation=".....http://activemq.apache.org/schema/core
									http://activemq.apache.org/schema/core/activemq-core-5.7.0.xsd.....">
	
				<amq:broker>
								<amq:transportConnectors>
												<amq:transportConnector	uri="tcp://localhost:61616"	/>
								</amq:transportConnectors>
				</amq:broker>
				.....
</beans>

In	 the	 above	 example	 listing,	 the	 amq	 namespace	 refers	 to	ActiveMQ’s	XML	 schema	 (activemq-core-
5.7.0.xsd)	that	allows	you	to	configure	an	embedded	ActiveMQ	broker.	The	<broker>	element	configures
an	embedded	ActiveMQ	broker	with	name	 localhost.	The	<transportConnectors>	 element	 specifies	 the
transport	 connectors	on	which	 the	embedded	ActiveMQ	broker	allows	clients	 to	connect.	 In	 the	above
example	listing,	the	<transportConnector>	sub-element	of	<transportConnectors>	specifies	that	clients	can
connect	to	the	embedded	ActiveMQ	broker	on	port	number	61616	using	a	TCP	socket.

Let’s	now	look	at	how	to	configure	a	JMS	ConnectionFactory	for	creating	connections	to	the	embedded
ActiveMQ	instance.

Configuring	a	JMS	ConnectionFactory
The	 following	 example	 listing	 shows	 how	 a	 JMS	 ConnectionFactory	 is	 configured	 in	 the	 application
context	XML	file:



Example	listing	8-2	–	applicationContext.xml	–	JMS	ConnectionFactory	configuration
Project	–	ch08-bankapp
Source	location	-	src/main/resources/META-INF/spring
	
<beans	.....
				xmlns:amq="http://activemq.apache.org/schema/core"
				xsi:schemaLocation=".....http://activemq.apache.org/schema/core
									http://activemq.apache.org/schema/core/activemq-core-5.7.0.xsd.....">
				.....
				<amq:connectionFactory	brokerURL="vm://localhost"	id="jmsFactory"	/>
	
				<bean	class="org.springframework.jms.connection.CachingConnectionFactory"
								id="cachingConnectionFactory">
								<property	name="targetConnectionFactory"	ref="jmsFactory"	/>
				</bean>
				.....
</beans>

In	 the	 above	 example	 listing,	 the	 <connectionFactory>	 element	 of	 amq	 schema	 creates	 a	 JMS
ConnectionFactory	 instance	 that	 is	 used	 for	 creating	 connections	 to	 the	 embedded	ActiveMQ	 instance
(refer	 example	 listing	8-1).	The	brokerUrl	 attribute	 specifies	 the	URL	 for	 connecting	 to	 the	ActiveMQ
broker.	As	we	are	using	embedded	ActiveMQ	broker,	the	brokerUrl	specifies	that	VM	protocol	(specified
by	vm://)	is	used	to	connect	to	the	ActiveMQ	broker	instance.

Spring’s	 CachingConnectionFactory	 is	 an	 adapter	 for	 the	 JMS	 ConnectionFactory	 (specified	 by	 the
targetConnectionFactory	 property),	 that	 provides	 the	 additional	 feature	 of	 caching	 instances	 of	 JMS
Session,	MessageProducer	and	MessageConsumer.

Let’s	now	look	at	how	to	use	Spring’s	JmsTemplate	class	to	send	JMS	messages.

Sending	JMS	messages	using	JmsTemplate	
Spring’s	 JmsTemplate	 class	 simplifies	 synchronously	 sending	 and	 receiving	 JMS	 messages.	 For	 the
purpose	 of	 this	 chapter,	 we’ll	 only	 look	 at	 how	 to	 send	 JMS	 messages	 using	 JmsTemplate.	 Like
TransactionTemplate	(refer	section	7-5	of	chapter	7)	and	JdbcTemplate	(refer	section	7-3	of	chapter	7)
classes,	the	JmsTemplate	class	provides	a	layer	of	abstraction	so	that	you	don’t	have	to	deal	with	lower-
level	JMS	API.

The	following	example	listing	shows	how	the	JmsTemplate	class	is	configured	in	the	application	context
XML	file	of	MyBank	application	to	send	messages	to	the	embedded	ActiveMQ	instance:

Example	listing	8-3	–	applicationContext.xml	–JmsTemplate	configuration
Project	–	ch08-bankapp
Source	location	-	src/main/resources/META-INF/spring
	
<beans	.....
				xmlns:amq="http://activemq.apache.org/schema/core"
				xsi:schemaLocation=".....http://activemq.apache.org/schema/core



									http://activemq.apache.org/schema/core/activemq-core-5.7.0.xsd.....">
				.....
				<bean	class="org.springframework.jms.core.JmsTemplate"	id="jmsTemplate">
								<property	name="connectionFactory"	ref="cachingConnectionFactory"	/>
								<property	name="defaultDestination"	ref="FixedDepositDestination"	/>
				</bean>
	
				<amq:queue	id="FixedDepositDestination"	physicalName="aQueueDestination"	/>
				<amq:queue	id="emailQueueDestination"	physicalName="emailQueueDestination"	/>
				.....
</beans>

JmsTemplate’s	connectionFactory	property	specifies	the	JMS	ConnectionFactory	that	is	used	for	creating
a	connection	with	the	JMS	provider.	JmsTemplate’s	defaultDestination	property	refers	to	the	default	JMS
destination	 to	 which	 the	 JmsTemplate	 sends	 JMS	 messages.	 In	 the	 above	 example	 listing,
connectionFactory	property	refers	to	the	CachingConnectionFactory	instance	(refer	example	listing	8-2),
and	defaultDestination	property	 refers	 to	 the	 JMS	queue	destination	created	by	amq	 schema’s	<queue>
element.

The	amq	schema’s	<queue>	element	creates	a	JMS	queue	destination	in	ActiveMQ.	In	example	listing	8-
3,	the	first	<queue>	element	creates	a	JMS	queue	destination	named	aQueueDestination	in	ActiveMQ,	and
the	 second	 <queue>	 element	 creates	 a	 JMS	 queue	 destination	 named	 emailQueueDestination	 in
ActiveMQ.	 The	 physicalName	 attribute	 refers	 to	 the	 name	 with	 which	 the	 JMS	 queue	 destination	 is
created	 in	 ActiveMQ,	 and	 id	 attribute	 refers	 to	 the	 name	 with	 which	 the	 JMS	 queue	 destination	 is
accessed	by	other	beans	in	the	Spring	container.	In	example	listing	8-3,	JmsTemplate’s	defaultDestination
property	 refers	 to	 the	 id	 attribute	 of	 the	 <queue>	 element	 that	 creates	 the	 aQueueDestination	 JMS
destination;	 therefore,	 the	 aQueueDestination	 is	 the	 default	 JMS	 destination	 to	which	 the	 JmsTemplate
instance	sends	JMS	messages.

JMS	Session	used	by	JmsTemplate	has	 the	acknowledgement	mode	set	 to	auto-acknowledge	and	 is	not
transacted	in	nature.	If	you	want	JmsTemplate	to	use	transacted	Sessions,	set	JmsTemplate’s	 transacted
property	to	true.	In	case	of	transacted	Sessions,	a	new	transaction	begins	when	the	Session	is	created	by
the	application,	or	when	the	 transaction	 is	committed	or	rolled	back.	This	means	 that	a	 transacted	JMS
Session	 is	 always	 associated	 with	 a	 transaction.	 You	 can	 use	 a	 transacted	 JMS	 Session	 to	 send	 and
receive	 JMS	 messages	 within	 a	 transaction.	 If	 you	 use	 JmsTemplate	 with	 Spring’s
JmsTransactionManager,	the	JmsTemplate	instance	will	always	get	a	transacted	JMS	Session.

Let’s	now	look	at	how	JmsTransactionManager	is	configured,	and	JMS	messages	are	sent	by	JmsTemplate
within	a	transaction.

Sending	JMS	messages	within	a	transaction
In	chapter	7,	we	saw	that	Spring	provides	a	couple	of	PlatformTransactionManager	implementations	that
provide	 resource-specific	 transaction	 management.	 In	 your	 JMS	 applications,	 you	 can	 use	 Spring’s
JmsTransactionManager	 (an	 implementation	 of	 PlatformTransactionManager)	 class	 for	 managing
transactions	 for	 a	 single	 JMS	 ConnectionFactory.	 As	 JmsTransactionManager	 implements
PlatformTransactionManager,	 you	 can	 use	 TransactionTemplate	 for	 programmatically	 managing	 JMS
transactions	or	you	can	use	@Transactional	annotation	for	declaratively	managing	JMS	transactions.



The	following	example	listing	shows	the	configuration	of	Spring’s	JmsTransactionManager	in	application
context	XML	file:

Example	listing	8-4	–	applicationContext.xml	–	JmsTransactionManager	configuration
Project	–	ch08-bankapp
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="jmsTxManager"	class="org.springframework.jms.connection.JmsTransactionManager">
								<property	name="connectionFactory"	ref="cachingConnectionFactory"	/>
				</bean>

JmsTransactionManager’s	connectionFactory	property	specifies	reference	to	the	JMS	ConnectionFactory
for	which	 the	 JmsTransactionManager	manages	 transactions.	 In	 the	 above	 example	 listing,	 reference	 to
Spring’s	 CachingConnectionFactory	 bean	 (refer	 example	 listing	 8-2)	 is	 specified	 as	 the	 value	 for
connectionFactory	 property.	 As	 the	 CachingConnectionFactory	 caches	 JMS	 Sessions,	 using
CachingConnectionFactory	with	JmsTransactionManager	results	in	reduced	utilization	of	resources.

If	you	want	to	programmatically	manage	JMS	transactions	using	TransactionTemplate	class,	configure	the
TransactionTemplate	class	in	the	application	context	XML	file.	If	you	want	to	use	declarative	transaction
management,	use	<annotation-driven>	element	of	Spring’s	tx	schema.

The	following	example	listing	shows	the	FixedDepositServiceImpl	class	that	makes	use	of	JmsTemplate
to	send	messages	to	the	embedded	ActiveMQ	broker:

Example	listing	8-5	–	FixedDepositServiceImpl	class	–	send	JMS	messages	using	JmsTemplate
Project	–	ch08-bankapp
Source	location	-	src/main/java/sample/spring/chapter08/bankapp/service
	
package	sample.spring.chapter08.bankapp.service;
	
import	javax.jms.*;
import	org.springframework.jms.core.JmsTemplate;
import	org.springframework.jms.core.MessageCreator;
	
@Service(value	=	"FixedDepositService")
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				@Autowired
				private	JmsTemplate	jmsTemplate;
				.....
				@Override
				@Transactional("jmsTxManager")
				public	void	createFixedDeposit(final	FixedDepositDetails	fixedDepositDetails)throws	Exception	{
	
								jmsTemplate.send("emailQueueDestination",	new	MessageCreator()	{
												public	Message	createMessage(Session	session)	throws	JMSException	{
																TextMessage	textMessage	=	session.createTextMessage();
																textMessage.setText(fixedDepositDetails.getEmail());



																return	textMessage;
												}
								});
								//	--this	JMS	message	goes	to	the	default	destination	configured	for	the	JmsTemplate
								jmsTemplate.send(new	MessageCreator()	{
												public	Message	createMessage(Session	session)	throws	JMSException	{
																ObjectMessage	objectMessage	=	session.createObjectMessage();
																objectMessage.setObject(fixedDepositDetails);
																return	objectMessage;
												}
								});
				}
				.....
}

The	 above	 example	 listing	 shows	 that	 JmsTemplate’s	 send	 method	 is	 used	 to	 send	 messages	 to
emailQueueDestination	and	aQueueDestination	JMS	destinations.	Refer	example	 listing	8-3	 to	 see	how
these	 JMS	 destinations	 are	 configured	 in	 the	 application	 context	 XML	 file.	 The	 name	 of	 the	 JMS
destination	 passed	 to	 JmsTemplate’s	send	method	 is	 resolved	 to	 the	 actual	 JMS	Destination	 object	 by
Spring’s	 DynamicDestinationResolver	 instance	 (an	 implementation	 of	 Spring’s	 DestinationResolver
interface).	 If	 you	 have	 configured	 JMS	 destinations	 in	 the	 application	 context	 XML	 file	 using	 amq
schema’s	 <queue>	 (or	 <topic>)	 element,	 the	 JMS	 destination	 name	 passed	 to	 the	 JmsTemplate’s	 send
message	 is	 the	 value	 of	 id	 attribute	 of	 the	 <queue>	 (or	 <topic>)	 element	 corresponding	 to	 the	 JMS
destination	to	which	you	want	to	send	messages.

In	 example	 listing	 8-5,	 the	 FixedDepositServiceImpl’s	 createFixedDeposit	 method	 is	 annotated	 with
@Transactional("jmsTxManager"),	which	means	 that	 the	 createFixedDeposit	method	 executes	within	 a
transaction,	and	the	transaction	is	managed	by	jmsTxManager	transaction	manager	(refer	example	listing
8-4	to	see	how	jmsTxManager	is	configured).	JmsTemplate’s	send	method	accepts	the	name	of	the	JMS
destination	(to	which	the	JMS	message	is	to	be	sent)	and	a	MessageCreator	instance.	If	you	don’t	specify
the	JMS	destination,	the	send	method	sends	the	JMS	message	to	the	default	destination	that	you	configured
for	the	JmsTemplate	using	defaultDestination	property	(refer	example	listing	8-3).

In	MessageCreator’s	createMessage	method	you	create	the	JMS	message	that	you	want	to	send.	You	don’t
need	 to	 explicitly	 handle	 checked	 exceptions	 thrown	 by	 JMS	 API,	 as	 they	 are	 taken	 care	 by	 the
JmsTemplate	 itself.	 Example	 listing	 8-5	 shows	 that	 if	 you	 are	 using	 JmsTemplate,	 you	 don’t	 need	 to
explicitly	 obtain	Connection	 from	ConnectionFactory,	 create	 Session	 from	Connection,	 and	 so	 on,	 for
sending	 JMS	 messages.	 So,	 using	 JmsTemplate	 hides	 the	 lower-level	 JMS	 API	 details	 from	 the
developers.

In	 example	 listing	 8-5,	 the	 TextMessage	 and	ObjectMessage	 instances	 represent	 JMS	messages.	 Both,
TextMessage	 and	 ObjectMessage	 classes	 implement	 javax.jms.Message	 interface.	 In	 the	 MyBank
application,	the	TextMessage	 instance	has	been	used	 to	send	 the	email	 id	(a	simple	string	value)	of	 the
customer	 requesting	 to	 open	 a	 fixed	 deposit,	 and	 the	 ObjectMessage	 instance	 has	 been	 used	 to	 send
FixedDepositDetails	 object	 (a	 Serializable	 object)	 that	 contains	 fixed	 deposit	 information.	 As	 the
FixedDepositServiceImpl’s	createFixedDeposit	method	executes	within	a	JMS	transaction,	either	both	the
messages	are	sent	to	the	ActiveMQ	instance	or	none.



Instead	of	using	@Transactional	annotation,	you	can	programmatically	manage	JMS	transactions	by	using
the	TransactionTemplate	class	(refer	section	7-5	of	chapter	7).	The	following	example	listing	shows	how
you	 can	 configure	 the	 TransactionTemplate	 class	 to	 use	 JmsTransactionManager	 for	 transaction
management:

Example	listing	8-6	–	TransactionTemplate	configuration
	
				<bean	id="jmsTxManager"
								class="org.springframework.jms.connection.JmsTransactionManager">
								<property	name="connectionFactory"	ref="cachingConnectionFactory"	/>
				</bean>
	
				<bean	id="transactionTemplate"
								class="org.springframework.transaction.support.TransactionTemplate">
								<property	name="transactionManager"	ref="jmsTxManager"	/>
				</bean>

In	 the	 above	 example	 listing,	 TransactionTemplate’s	 transactionManager	 property	 refers	 to	 the
JmsTransactionManager	bean.

Once	you	have	configured	the	TransactionTemplate	class,	you	can	use	it	to	manage	JMS	transactions.	The
following	example	listing	shows	a	variant	of	FixedDepositServiceImpl’s	createFixedDeposit	method	that
uses	TransactionTemplate	for	managing	JMS	transactions:

Example	listing	8-7	–	Programmatically	managing	JMS	transactions	using	TransactionTemplate
	
package	sample.spring.chapter08.bankapp.service;
	
import	javax.jms.*;
import	org.springframework.jms.core.JmsTemplate;
import	org.springframework.jms.core.MessageCreator;
	
@Service(value	=	"FixedDepositService")
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				@Autowired
				private	JmsTemplate	jmsTemplate;
	
				@Autowired
				private	TransactionTemplate	transactionTemplate;
				.....
				public	void	createFixedDeposit(final	FixedDepositDetails	fixedDepositDetails)throws	Exception	{
	
								transactionTemplate.execute(new	TransactionCallbackWithoutResult()	{
												protected	void	doInTransactionWithoutResult(TransactionStatus	status)	{
																		jmsTemplate.send("emailQueueDestination",	new	MessageCreator()	{	.....	});
																		jmsTemplate.send(new	MessageCreator()	{	.....	});
													}



									});			
				}
				.....
}

The	above	example	listing	shows	that	JMS	messages	are	sent	from	within	the	doInTransaction	method	of
TransactionCallbackWithoutResult	class	so	that	they	are	in	the	same	JMS	transaction.	This	is	similar	to
how	 we	 programmatically	 managed	 JDBC	 transactions	 (refer	 section	 7-5	 of	 chapter	 7)	 using
TransactionTemplate.

So	far	we	have	seen	examples	in	which	JmsTemplate	is	used	to	send	messages	to	a	pre-configured	JMS
destination.	Let’s	now	look	at	how	to	configure	JmsTemplate	class	 if	an	application	uses	dynamic	JMS
destinations.

Dynamic	JMS	destinations	and	JmsTemplate	configuration
If	 your	 application	 uses	 dynamic	 JMS	 destinations	 (that	 is,	 JMS	 destinations	 are	 created	 by	 the
application	at	runtime),	you	must	specify	the	JMS	destination	type	(queue	or	topic)	using	pubSubDomain
property	of	JmsTemplate.	The	pubSubDomain	property	is	used	to	determine	the	JMS	destination	type	to
which	the	JmsTemplate	sends	JMS	messages.	If	you	don’t	specify	the	pubSubDomain	property,	by	default
JMS	queue	is	assumed	to	be	the	destination	type.

The	following	example	listing	shows	the	JmsTemplate	that	sends	messages	to	a	dynamically	created	JMS
topic:

Example	listing	8-8	–	Using	JmsTemplate	for	sending	messages	to	dynamic	JMS	topic	destinations
	
--------------------------	applicationContext.xml	---------------------
	
				<bean	class="org.springframework.jms.core.JmsTemplate"	id="jmsTemplate">
								<property	name="connectionFactory"	ref="cachingConnectionFactory"	/>
								<property	name="defaultDestination"	ref="FixedDepositDestination"	/>
								<property	name="pubSubDomain"	value="true"	/>
				</bean>
	
------------------	Dynamic	topic	creation	------------------
	
								jmsTemplate.send("dynamicTopic",	new	MessageCreator()	{
												public	Message	createMessage(Session	session)	throws	JMSException	{
																session.createTopic("dynamicTopic");
																ObjectMessage	objectMessage	=	session.createObjectMessage();
																objectMessage.setObject(someObject);
																return	objectMessage;
												}
								});

In	 the	 above	 example	 listing,	 JmsTemplate’s	 pubSubDomain	 property	 is	 set	 to	 true,	 which	means	 that
when	 dynamic	 destinations	 are	 used,	 Spring	 resolves	 a	 dynamic	 destination’s	 name	 to	 a	 JMS	 topic.



Notice	that	the	name	of	the	JMS	destination	passed	to	JmsTemplate’s	send	method	is	dynamicTopic,	and	a
JMS	 topic	 with	 the	 same	 name	 is	 created	 by	 MessageCreator’s	 createMessage	 method.	 As	 no
dynamicTopic	 JMS	destination	 is	 configured	 in	 the	application	context	XML	file,	Spring	doesn’t	know
whether	 the	 dynamicTopic	 JMS	 destination	 is	 a	 queue	 or	 a	 topic.	 As	 JmsTemplate’s	 pubSubDomain
property	 is	 set	 to	 true,	 Spring’s	 DynamicDestinationResolver	 resolves	 dynamicTopic	 JMS	 destination
name	to	the	dynamicTopic	JMS	topic	created	at	runtime	by	MessageCreator’s	createMessage	method.	 If
you	 had	not	 set	 JmsTemplate’s	 pubSubDomain	 property,	 Spring’s	 DynamicDestinationResolver	 would
have	tried	resolving	dynamicTopic	JMS	destination	name	to	a	dynamicTopic	JMS	queue.

Let’s	now	look	at	how	JmsTemplate	simplifies	sending	Java	objects	as	JMS	messages.

JmsTemplate	and	message	conversion
JmsTemplate	 defines	multiple	 convertAndSend	methods	 that	 convert	 and	 send	 a	 Java	 object	 as	 a	 JMS
message.	 By	 default,	 JmsTemplate	 is	 configured	 with	 a	 SimpleMessageConverter	 instance	 (an
implementation	of	Spring’s	MessageConverter	interface)	that	converts	Java	objects	to	JMS	messages,	and
vice	versa.

MessageConverter	interface	defines	the	following	methods:

·								Object	toMessage(Object	object,	Session	session)	–	converts	the	Java	object	(represented
by	object	argument)	to	a	JMS	Message	using	the	supplied	JMS	Session	(represented	by
session	argument)

·								Object	fromMessage(Message	message)		-	converts	Message	argument	to	Java	object

Spring’s	 SimpleMessageConverter	 class	 provides	 conversion	 between	 String	 and	 JMS	 TextMessage,
byte[]	 and	 JMS	 BytesMessage,	 Map	 and	 JMS	 MapMessage,	 and	 Serializable	 object	 and	 JMS
ObjectMessage.	 If	 you	 want	 to	 modify	 the	 JMS	 Message	 created	 by	 JmsTemplate’s	 convertAndSend
method,	you	can	use	a	MessagePostProcessor	implementation	to	make	modifications.

The	 following	 example	 listing	 shows	 a	 scenario	 in	 which	 a	MessagePostProcessor	 implementation	 is
used	to	modify	the	JMS	message	created	by	JmsTemplate’s	convertAndSend	method:

Example	listing	8-9	–	JmsTemplate’s	convertAndSend	method	usage
	
								jmsTemplate.convertAndSend("aDestination",	"Hello,	World	!!",
																new	MessagePostProcessor()	{
																				public	Message	postProcessMessage(Message	message)throws	JMSException	{
																								message.setBooleanProperty("printOnConsole",	true);
																								return	message;
																				}
																});

In	 the	 above	 example	 listing,	 ‘Hello,	 World	 !!’	 string	 is	 passed	 to	 the	 convertAndSend	 method.	 The
convertAndSend	 method	 creates	 a	 JMS	 TextMessage	 instance	 and	 makes	 it	 available	 to	 the
MessagePostProcessor	implementation	to	perform	any	post	processing	of	the	message	before	it	is	sent.	In
the	above	example	 listing,	MessagePostProcessor’s	postProcessMessage	method	sets	a	printOnConsole
property	on	the	JMS	message	before	it	is	sent	to	aDestination.



So	far	we	have	seen	how	to	send	JMS	messages	to	JMS	destinations	using	JmsTemplate.	Let’s	now	look
at	 how	 to	 receive	 JMS	 messages	 from	 JMS	 destinations	 using	 JmsTemplate	 and	 Spring’s	 message
listener	containers.



8-4	Receiving	JMS	messages
You	 can	 receive	 JMS	messages	 synchronously	 using	 JmsTemplate	 and	asynchronously	 using	 Spring’s
message	listener	containers.

Synchronously	receiving	JMS	messages	using	JmsTemplate
JmsTemplate	defines	multiple	receive	methods	that	you	can	use	to	synchronously	receive	JMS	messages.
It	is	important	to	note	that	call	to	JmsTemplate’s	receive	method	causes	the	calling	thread	to	block	until	a
JMS	 message	 is	 obtained	 from	 the	 JMS	 destination.	 To	 ensure	 that	 the	 calling	 thread	 is	 not	 blocked
indefinitely,	 you	 must	 specify	 an	 appropriate	 value	 for	 JmsTemplate’s	 receiveTimeout	 property.	 The
receiveTimeout	 property	 specifies	 the	 amount	 of	 time	 (in	milliseconds)	 the	 calling	 thread	 should	wait
before	giving	up.

JmsTemplate	also	defines	multiple	 receiveAndConvert	methods	 that	 automatically	 convert	 the	 received
JMS	message	 to	a	 Java	object.	By	default,	 JmsTemplate	 uses	SimpleMessageConverter	 for	 performing
conversions.

Asynchronously	receiving	JMS	messages	using	message	listener	containers
You	can	use	Spring’s	message	listener	containers	to	asynchronously	 receive	JMS	messages.	A	message
listener	 container	 takes	 care	of	 transaction	 and	 resource	management	 aspects,	 so	 that	 you	can	 focus	on
writing	the	message	processing	logic.

A	 message	 listener	 container	 receives	 messages	 from	 JMS	 destinations	 and	 dispatches	 them	 to	 JMS
MessageListener	implementations	for	processing.	The	following	example	listing	shows	how	to	configure
a	message	listener	container	using	<listener-container>	element	of	Spring’s	jms	schema:

Example	listing	8-10	–	applicationContext.xml	–	message	listener	container	configuration
Project	–	ch08-bankapp
Source	location	-	src/main/resources/META-INF/spring
	
<beans	.....	xmlns:jms="http://www.springframework.org/schema/jms"
				xsi:schemaLocation=".....
									http://www.springframework.org/schema/jms
									http://www.springframework.org/schema/jms/spring-jms-4.0.xsd">
				.....
				<jms:listener-container	connection-factory="cachingConnectionFactory"
								destination-type="queue"		transaction-manager="jmsTxManager">
	
								<jms:listener	destination="aQueueDestination"	ref="FixedDepositMessageListener"	/>
								<jms:listener	destination="emailQueueDestination"	ref="emailMessageListener"	/>
				</jms:listener-container>
	
				<bean	class="sample.spring.chapter08.bankapp.jms.EmailMessageListener"
								id="emailMessageListener"	/>
	
				<bean	class="sample.spring.chapter08.bankapp.jms.FixedDepositMessageListener"



								id="FixedDepositMessageListener"	/>
				.....
</beans>

In	 the	above	example	 listing,	Spring’s	 jms	 schema	 is	 included	 so	 that	 its	 elements	 are	 available	 in	 the
application	context	XML	file.	The	<listener-container>	element	configures	a	message	 listener	container
for	 each	 of	 the	MessageListener	 implementations	 defined	 by	 <listener>	 sub-elements.	 The	 connection-
factory	 attribute	 specifies	 reference	 to	 the	 JMS	 ConnectionFactory	 bean	 that	 the	 message	 listener
container	 uses	 to	 obtain	 connections	 to	 the	 JMS	 provider.	 As	 we	 are	 using	 Spring’s
CachingConnectionFactory	 in	 the	 MyBank	 application,	 the	 connection-factory	 attribute	 refers	 to	 the
cachingConnectionFactory	bean	defined	in	the	application	context	XML	file	of	MyBank	application	(refer
example	 listing	 8-2).	 The	 destination-type	 attribute	 specifies	 the	 JMS	 destination	 type	 with	 which	 the
message	listener	container	is	associated	with.	The	possible	values	that	the	destination-type	attribute	can
accept	are:	queue,	topic	and	durableTopic.

The	 transaction-manager	 attribute	 of	 <listener-container>	 element	 specifies	 a
PlatformTransactionManager	 implementation	 that	 ensures	 JMS	 message	 reception	 and	 message
processing	by	MessageListener	happens	within	a	 transaction.	 In	 the	above	example	 listing,	 the	value	of
transaction-manager	attribute	refers	to	the	JmsTransactionManager	implementation	(refer	example	listing
8-4)	 configured	 for	 the	MyBank	 application.	 If	 a	MessageListener	 implementation	 interacts	with	 other
transactional	 resources	 also,	 consider	 using	 Spring’s	 JtaTransactionManager	 instead	 of
JmsTransactionManager.	 In	 a	 standalone	application,	you	can	use	 embedded	 transaction	managers,	 like
Atomikos	(http://www.atomikos.com/),	to	perform	JTA	transactions	in	your	application.

NOTE	 By	 default,	 the	 <listener-container>	 element	 creates	 an	 instance	 of	 Spring’s
DefaultMessageListenerContainer	 class	 corresponding	 to	 each	 JMS	 MessageListener	 implementation
specified	by	<listener>	sub-elements.

Each	 <listener>	 element	 specifies	 a	 JMS	 MessageListener	 implementation	 which	 is	 asynchronously
invoked	 by	 the	message	 listener	 container.	 The	 <listener>	 element’s	 destination	 attribute	 specifies	 the
JMS	destination	name	from	which	MessageListener	implementation	receives	its	messages	via	the	message
listener	 container.	 The	 <listener>	 element’s	 ref	 attribute	 specifies	 reference	 to	 the	 MessageListener
implementation	 responsible	 for	 processing	 the	 JMS	messages	 received	 from	 the	 destination.	 Example
listing	 8-10	 shows	 that	 the	 FixedDepositMessageListener	 (a	 MessageListener	 implementation)	 is
responsible	 for	 processing	 messages	 received	 from	 aQueueDestination	 destination,	 and	 the
EmailMessageListener	 (a	 MessageListener	 implementation)	 is	 responsible	 for	 processing	 messages
received	from	emailQueueDestination	destination.

MessageListener	interface	defines	an	onMessage	method	that	is	asynchronously	invoked	by	the	message
listener	 container.	 The	 message	 listener	 container	 passes	 the	 JMS	 Message	 received	 from	 the	 JMS
destination	to	the	onMessage	method.	The	onMessage	method	is	responsible	for	processing	the	received
JMS	 message.	 The	 following	 example	 listing	 shows	 implementation	 of	 MyBank	 application’s
FixedDepositMessageListener	that	is	responsible	for	retrieving	FixedDepositDetails	object	from	the	JMS
Message,	and	then	saving	the	fixed	deposit	information	contained	in	the	FixedDepositDetails	object	into
the	database:

Example	listing	8-11	–	FixedDepositMessageListener	class	–	processing	JMS	message
Project	–	ch08-bankapp

http://www.atomikos.com/


Source	location	-	src/main/java/sample/spring/chapter08/bankapp/jms
	
package	sample.spring.chapter08.bankapp.jms;
	
import	javax.jms.MessageListener;
import	javax.jms.ObjectMessage;
import	sample.spring.chapter08.bankapp.domain.FixedDepositDetails;
.....
public	class	FixedDepositMessageListener	implements	MessageListener	{
				@Autowired
				@Qualifier(value	=	"FixedDepositDao")
				private	FixedDepositDao	myFixedDepositDao;
	
				@Autowired
				private	BankAccountDao	bankAccountDao;
	
				@Transactional
				public	int	createFixedDeposit(FixedDepositDetails	fixedDepositDetails)	{
								bankAccountDao.subtractFromAccount(fixedDepositDetails.getBankAccountId(),
												fixedDepositDetails.getFixedDepositAmount());
								return	myFixedDepositDao.createFixedDeposit(fixedDepositDetails);
				}
	
				@Override
				public	void	onMessage(Message	message)	{
								ObjectMessage	objectMessage	=	(ObjectMessage)	message;
								FixedDepositDetails	fixedDepositDetails	=	null;
								try	{
												fixedDepositDetails	=	(FixedDepositDetails)	objectMessage.getObject();
								}	catch	(JMSException	e)	{
												e.printStackTrace();
								}
								if	(fixedDepositDetails	!=	null)	{
												createFixedDeposit(fixedDepositDetails);
								}
				}
}

In	 the	 above	 example	 listing,	 FixedDepositMessageListener’s	 onMessage	 method	 obtains	 the
FixedDepositDetails	object	from	the	JMS	message	and	saves	the	fixed	deposit	details	into	the	database.
FixedDepositMessageListener’s	createFixedDeposit	method	 is	 responsible	 for	 saving	 the	 fixed	 deposit
information	 into	 the	 database.	 As	 the	 createFixedDeposit	 method	 is	 annotated	 with	 @Transactional
annotation,	 it	 is	 executed	 under	 the	 transaction	 managed	 by	DataSourceTransactionManager	 (refer	 the
applicationContext.xml	file	of	ch08-bankapp	project).	The	message	 listener	container	 receives	 the	JMS
message	and	executes	FixedDepositMessageListener’s	onMessage	method	under	the	transaction	managed



by	JmsTransactionManager	(refer	example	listing	8-10).

As	 onMessage	 and	 createFixedDeposit	 methods	 execute	 under	 different	 transaction	 managers,	 the
database	update	is	not	rolled	back	if	the	JMS	transaction	fails	for	some	reason,	and	the	JMS	message	is
not	 redelivered	 to	 the	MessageListener	 if	 the	 database	 update	 fails	 for	 some	 reason.	 If	 you	want	 JMS
message	reception	(and	processing)	and	the	database	update	to	be	part	of	the	same	transaction,	you	should
use	JTA	transactions.

In	this	section,	we	looked	at	how	to	send	and	receive	JMS	messages	using	Spring.	Let’s	now	look	at	how
Spring	simplifies	sending	emails.



8-5	Sending	emails
Spring	 simplifies	 sending	 emails	 from	 an	 application	 by	 providing	 a	 layer	 of	 abstraction	 on	 top	 of
JavaMail	API.	Spring	takes	care	of	resource	management	and	exception	handling	aspects,	so	that	you	can
focus	on	writing	the	necessary	logic	required	to	prepare	the	email	message.

To	 send	 emails	 using	 Spring,	 you	 first	 need	 to	 configure	 Spring’s	 JavaMailSenderImpl	 class	 in	 your
application	context	XML	file.	The	JavaMailSenderImpl	 class	 acts	 as	 a	wrapper	 around	 JavaMail	API.
The	 following	 example	 listing	 shows	 how	 JavaMailSenderImpl	 class	 is	 configured	 in	 MyBank
application:

Example	listing	8-12	–	applicationContext.xml	–	JavaMailSenderImpl	class	configuration
Project	–	ch08-bankapp
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	id="mailSender"	class="org.springframework.mail.javamail.JavaMailSenderImpl">
								<property	name="host"	value="${email.host}"	/>
								<property	name="protocol"	value="${email.protocol}"	/>
								.....
								<property	name="javaMailProperties">
												<props>
																<prop	key="mail.smtp.auth">true</prop>
																<prop	key="mail.smtp.starttls.enable">true</prop>
												</props>
								</property>
				</bean>

JavaMailSenderImpl	 class	 defines	 properties,	 like	 host,	 port,	 protocol,	 and	 so	 on,	 that	 provide
information	about	 the	mail	 server.	The	 javaMailProperties	 property	 specifies	 configuration	 information
that	is	used	by	JavaMailSenderImpl	instance	for	creating	a	JavaMail	Session	object.	The	mail.smtp.auth
property	 value	 is	 set	 to	 true,	 which	 means	 that	 SMTP	 (Simple	 Mail	 Transfer	 Protocol)	 is	 used	 for
authentication	 with	 the	 mail	 server.	 The	 mail.smtp.starttls.enable	 property	 value	 is	 set	 to	 true,	 which
means	TLS-protected	connection	is	used	for	authenticating	with	the	mail	server.

Example	 listing	8-12	shows	 that	 the	values	of	some	of	 the	properties	of	JavaMailSenderImpl	class	are
specified	using	property	placeholders.	For	instance,	host	property	value	is	specified	as	${email.host}	and
protocol	 property	 value	 as	 ${email.protocol}.	 The	 value	 of	 these	 property	 placeholders	 comes	 from
email.properties	file	 located	 in	src/main/resources/META-INF/spring	directory.	The	following	example
listing	shows	the	contents	of	email.properties	file:

Example	listing	8-13	–	email.properties
Project	–	ch08-bankapp
Source	location	-	src/main/resources/META-INF/spring
	
email.host=smtp.gmail.com
email.port=587
email.protocol=smtp



email.username=<enter-email-id>
email.password=<enter-email-password>

The	 above	 example	 listing	 shows	 that	 email.properties	 file	 contains	 mail	 server	 information,
communication	protocol	 information,	and	the	mail	account	 to	use	for	connecting	to	 the	mail	server.	The
properties	specified	 in	 the	email.properties	 file	are	used	 to	configure	 the	JavaMailSenderImpl	 instance
(refer	example	listing	8-12).

NOTE	The	classes	that	provide	abstraction	on	top	of	JavaMail	API	are	defined	in	spring-context-support
JAR	file.	So,	to	use	Spring’s	support	for	sending	emails,	you	must	define	that	your	application	depends	on
spring-context-support	JAR	file.

Spring’s	 SimpleMailMessage	 class	 represents	 a	 simple	 email	 message.	 SimpleMailMessage	 defines
properties,	 like	 to,	cc,	subject,	 text,	and	so	on,	 that	you	can	set	 to	construct	 the	email	message	 that	you
want	to	send	from	your	application.

The	 following	 example	 listing	 shows	 the	MyBank’s	 application	 context	 XML	 file	 that	 configures	 two
SimpleMailMessage	instances	corresponding	to	the	two	email	messages	that	we	send	from	the	MyBank
application:

Example	listing	8-14	–	applicationContext.xml	–	SimpleMailMessage	configuration
Project	–	ch08-bankapp
Source	location	-	src/main/resources/META-INF/spring
	
				<bean	class="org.springframework.mail.SimpleMailMessage"	id="requestReceivedTemplate">
								<property	name="subject"	value="${email.subject.request.received}"	/>
								<property	name="text"	value="${email.text.request.received}"	/>
				</bean>
	
				<bean	class="org.springframework.mail.SimpleMailMessage"	id="requestProcessedTemplate">
								<property	name="subject"	value="${email.subject.request.processed}"	/>
								<property	name="text"	value="${email.text.request.processed}"	/>
				</bean>

In	the	above	example	listing,	the	requestReceivedTemplate	bean	represents	the	email	message	that	is	sent
to	 the	 customer	 informing	 that	 the	 request	 for	 opening	 a	 fixed	 deposit	 has	 been	 received,	 and
requestProcessedTemplate	bean	represents	 the	email	message	that	 is	sent	 to	 the	customer	informing	that
the	request	for	opening	the	fixed	deposit	has	been	successfully	processed.	SimpleMailMessage’s	subject
property	 specifies	 the	 subject	 line	of	 the	 email,	 and	 text	 property	 specifies	 the	body	of	 the	 email.	The
values	 for	 these	 properties	 are	 defined	 in	 the	 emailtemplate.properties	 file,	 as	 shown	 in	 the	 following
example	listing:

Example	listing	8-15	–	emailtemplate.properties
Project	–	ch08-bankapp
Source	location	-	src/main/resources/META-INF/spring
	
email.subject.request.received=Fixed	deposit	request	received
email.text.request.received=Your	request	for	creating	the	fixed	deposit	has	been	received



	
email.subject.request.processed=Fixed	deposit	request	processed
email.text.request.processed=Your	request	for	creating	the	fixed	deposit	has	been	processed

We	 have	 so	 far	 seen	 how	 to	 configure	 JavaMailSenderImpl	 and	 SimpleMailMessage	 classes	 in	 the
application	context	XML	file.	Let’s	now	look	at	how	to	send	email	messages.

The	 following	 example	 listing	 shows	 the	 MyBank	 application’s	 EmailMessageListener	 class	 (a	 JMS
MessageListener	 implementation)	 that	 retrieves	 customer’s	 email	 address	 from	 the	 JMS	 message	 and
sends	an	email	to	the	customer	informing	that	the	request	for	opening	a	fixed	deposit	has	been	received:

Example	listing	8-16	–	EmailMessageListener	class	–	sending	emails	using	MailSender
Project	–	ch08-bankapp
Source	location	-	src/main/java/sample/spring/chapter08/bankapp/jms
	
package	sample.spring.chapter08.bankapp.jms;
	
import	org.springframework.mail.MailSender;
import	org.springframework.mail.SimpleMailMessage;
.....
public	class	EmailMessageListener	implements	MessageListener	{
				@Autowired
				private	transient	MailSender	mailSender;
	
				@Autowired
				@Qualifier("requestReceivedTemplate")
				private	transient	SimpleMailMessage	simpleMailMessage;
	
				public	void	sendEmail()	{
								mailSender.send(simpleMailMessage);
				}
	
				public	void	onMessage(Message	message)	{
								TextMessage	textMessage	=	(TextMessage)	message;
								try	{
												simpleMailMessage.setTo(textMessage.getText());
								}	catch	(Exception	e)	{
												e.printStackTrace();
								}
								sendEmail();
				}
}

The	above	example	listing	shows	that	the	MailSender’s	send	method	sends	the	email	message	represented
by	 the	 SimpleMailMessage	 instance.	 As	 JavaMailSenderImpl	 class	 implements	 Spring’s	 MailSender
interface,	 the	 JavaMailSenderImpl	 instance	 (refer	 example	 listing	 8-12)	 is	 autowired	 into	 the
EmailMessageListener	 instance.	 SimpleMailMessage	 instance	 named	 requestReceivedTemplate	 (refer



example	 listing	 8-14)	 is	 also	 autowired	 into	 the	 EmailMessageListener	 instance.	 As
SimpleMailMessage’s	 to	 property	 identifies	 the	 email	 recipient,	 the	 onMessage	 method	 retrieves	 the
email	id	of	the	customer	from	the	JMS	message	and	sets	it	as	the	value	of	to	property.

Spring’s	MailSender	interface	represents	a	generic	interface	that	is	independent	of	JavaMail	API,	and	is
suited	 for	 sending	 simple	 email	 messages.	 Spring’s	 JavaMailSender	 interface	 (a	 sub-interface	 of
MailSender)	is	dependent	on	JavaMail	API,	and	defines	the	functionality	for	sending	MIME	messages.	A
MIME	message	 is	used	 if	you	want	 to	send	emails	containing	 inline	 images,	attachments,	and	so	on.	A
MIME	 message	 is	 represented	 by	 a	 MimeMessage	 class	 in	 JavaMail	 API.	 Spring	 provides	 a
MimeMessageHelper	class	and	a	MimeMessagePreparator	callback	interface	 that	you	can	use	 to	create
and	populate	a	MimeMessage	instance.

The	 following	 example	 listing	 shows	 the	 MyBank	 application’s	 FixedDepositProcessorJob	 class	 that
subtracts	the	fixed	deposit	amount	from	the	customer’s	bank	account	and	sends	an	email	to	the	customer
informing	that	the	request	for	opening	the	fixed	deposit	has	been	processed:

Example	listing	8-17	–	FixedDepositProcessorJob	class	–	JavaMailSender	usage
Project	–	ch08-bankapp
Source	location	-	src/main/java/sample/spring/chapter08/bankapp/job
	
package	sample.spring.chapter08.bankapp.job;
	
import	javax.mail.internet.MimeMessage;
import	org.springframework.mail.javamail.JavaMailSender;
	
public	class	FixedDepositProcessorJob	{
				.....
				@Autowired
				private	transient	JavaMailSender	mailSender;
	
				@Autowired
				@Qualifier("requestProcessedTemplate")
				private	transient	SimpleMailMessage	simpleMailMessage;
	
				private	List<FixedDepositDetails>	getInactiveFixedDeposits()	{
								return	myFixedDepositDao.getInactiveFixedDeposits();
				}
	
				public	void	sendEmail()	throws	AddressException,	MessagingException	{
								List<FixedDepositDetails>	inactiveFixedDeposits	=	getInactiveFixedDeposits();
	
								for	(FixedDepositDetails	fixedDeposit	:	inactiveFixedDeposits)	{
												MimeMessage	mimeMessage	=	mailSender.createMimeMessage();
												MimeMessageHelper	mimeMessageHelper	=	new	MimeMessageHelper(mimeMessage);
												mimeMessageHelper.setTo(fixedDeposit.getEmail());
												mimeMessageHelper.setSubject(simpleMailMessage.getSubject());



												mimeMessageHelper.setText(simpleMailMessage.getText());
												mailSender.send(mimeMessage);
								}
								myFixedDepositDao.setFixedDepositsAsActive(inactiveFixedDeposits);
				}
}

The	above	example	listing	shows	that	JavaMailSender’s	send	method	is	used	to	send	a	MIME	message.
As	 JavaMailSenderImpl	 instance	 implements	 Spring’s	 JavaMailSender	 interface,	 JavaMailSenderImpl
instance	 (refer	 example	 listing	 8-12)	 is	 autowired	 into	 the	 FixedDepositProcessorJob	 instance.
SimpleMailMessage	 instance	 named	 requestProcessedTemplate	 (refer	 example	 listing	 8-14)	 is	 also
autowired	 into	 the	FixedDepositProcessorJob	 instance.	The	mailSender	 instance	variable	 is	 defined	of
type	 JavaMailSender	 (and	 not	MailSender)	 because	 the	 FixedDepositProcessorJob	 creates	 and	 sends
MIME	messages.	FixedDepositProcessorJob’s	sendEmail	method	creates	an	instance	of	a	MimeMessage
using	 JavaMailSender’s	 createMimeMessage	 method.	 Spring’s	 MimeMessageHelper	 is	 then	 used	 to
populate	the	MimeMessage	instance	with	to,	subject	and	text	properties.

The	 following	 example	 listing	 shows	 how	 the	 FixedDepositProcessorJob’s	 sendEmail	 method	 can	 be
written	using	Spring’s	MimeMessagePreparator	callback	interface	instead	of	MimeMessageHelper:

Example	listing	8-18	–	MimeMessagePreparator	usage
	
import	javax.mail.Message;
import	javax.mail.internet.InternetAddress;
import	org.springframework.mail.javamail.MimeMessagePreparator;
	
public	class	FixedDepositProcessorJob	{
				.....
				public	void	sendEmail_()	throws	AddressException,	MessagingException	{
								List<FixedDepositDetails>	inactiveFixedDeposits	=	getInactiveFixedDeposits();
								for	(final	FixedDepositDetails	fixedDeposit	:	inactiveFixedDeposits)	{
												mailSender.send(new	MimeMessagePreparator()	{
																@Override
																public	void	prepare(MimeMessage	mimeMessage)	throws	Exception	{
																				mimeMessage.setRecipient(Message.RecipientType.TO,
																												new	InternetAddress(fixedDeposit.getEmail()));
																				mimeMessage.setSubject(simpleMailMessage.getText());
																				mimeMessage.setText(simpleMailMessage.getText());
																}
												});
								}
								myFixedDepositDao.setFixedDepositsAsActive(inactiveFixedDeposits);
				}
}

The	above	example	shows	that	a	MimeMessagePreparator	instance	is	passed	to	JavaMailSender’s	send
method	 to	 prepare	 a	 MimeMessage	 instance	 for	 sending.	 MimeMessagePreparator’s	 prepare	 method



provides	a	new	instance	of	MimeMessage	that	you	need	to	populate.	In	the	above	example	listing,	notice
that	setting	the	MimeMessage’s	recipient	property	requires	you	to	deal	with	lower-level	JavaMail	API.	In
example	 listing	 8-17,	MimeMessageHelper’s	 setTo	method	 accepted	 an	 email	 id	 of	 the	 recipient	 as	 a
string	argument	to	set	the	MimeMessage’s	recipient	property.	For	this	reason,	you	should	consider	using
MimeMessageHelper	 to	 populate	 the	 MimeMessage	 instance	 passed	 to	 the	 prepare	 method	 of
MimeMessagePreparator.

Let’s	now	look	at	how	you	can	use	Spring	to	execute	a	task	asynchronously,	and	to	schedule	execution	of	a
task	in	the	future.



8-6	Task	scheduling	and	asynchronous	execution
You	 can	 asynchronously	 execute	 java.lang.Runnable	 tasks	 using	 Spring’s	 TaskExecutor,	 and	 you	 can
schedule	 execution	of	 java.lang.Runnable	 tasks	 using	 Spring’s	TaskScheduler.	 Instead	 of	 directly	 using
TaskExecutor	and	TaskScheduler,	you	can	use	Spring’s	@Async	and	@Scheduled	annotations	to	execute	a
method	asynchronously	and	to	schedule	execution	of	a	method,	respectively.

Let’s	first	look	at	TaskExecutor	and	TaskScheduler	interfaces.

TaskExecutor	interface
Java	 5	 introduced	 the	 concept	 of	 executors	 for	 executing	 java.lang.Runnable	 tasks.	 An	 executor
implements	 java.util.concurrent.Executor	 interface	 that	 defines	 a	 single	 method,	 execute(Runnable
runnable).	Spring’s	TaskExecutor	extends	java.util.concurrent.Executor	interface.	Spring	also	provides	a
couple	 of	 TaskExecutor	 implementations	 that	 you	 can	 choose	 from	 depending	 upon	 your	 application’s
requirements.	Depending	upon	 the	TaskExecutor	 implementation	you	choose,	 the	Runnable	 task	may	 be
executed	 synchronously	 or	 asynchronously,	 using	 a	 thread	 pool	 or	 CommonJ,	 and	 so	 on.	 Some	 of	 the
TaskExecutor	 implementations	 provided	 by	 Spring	 are:	 ThreadPoolTaskExecutor	 (asynchronously
executes	tasks	using	a	thread	from	a	thread	pool),	SyncTaskExecutor	(executes	tasks	synchronously)	and
SimpleAsyncTaskExecutor	(asynchronously	executes	each	task	in	a	new	thread).

ThreadPoolTaskExecutor	 is	 the	 most	 commonly	 used	 TaskExecutor	 implementation	 that	 uses	 Java	 5’s
ThreadPoolExecutor	 to	 execute	 tasks.	 The	 following	 example	 listing	 shows	 how	 to	 configure	 a
ThreadPoolTaskExecutor	instance	in	the	application	context	XML	file:

Example	listing	8-19	–ThreadPoolTaskExecutor	configuration
	
				<bean	id="myTaskExecutor"
											class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
								<property	name="corePoolSize"	value="5"	/>
								<property	name="maxPoolSize"	value="10"	/>
								<property	name="queueCapacity"	value="15"	/>
								<property	name="rejectedExecutionHandler"	ref="abortPolicy"/>
				</bean>
			
				<bean	id="abortPolicy"	class="java.util.concurrent.ThreadPoolExecutor.AbortPolicy"/>

The	corePoolSize	property	specifies	the	minimum	number	of	threads	in	the	thread	pool.	The	maxPoolSize
property	 specifies	 the	maximum	 number	 of	 threads	 that	 can	 be	 accommodated	 in	 the	 thread	 pool.	 The
queueCapacity	 property	 specifies	 the	 maximum	 number	 of	 tasks	 that	 can	 wait	 in	 the	 queue	 if	 all	 the
threads	 in	 the	 thread	pool	are	busy	executing	 tasks.	The	 rejectedExecutionHandler	property	 specifies	 a
handler	for	tasks	rejected	by	the	ThreadPoolTaskExecutor.	A	task	is	rejected	by	ThreadPoolTaskExecutor
if	the	queue	is	full	and	there	is	no	thread	available	in	the	thread	pool	for	executing	the	submitted	task.	The
rejectedExecutionHandler	 property	 refers	 to	 an	 instance	 of
java.util.concurrent.RejectedExecutionHandler	object.

In	 example	 listing	 8-19,	 the	 rejectedExecutionHandler	 property	 refers	 to
java.util.concurrent.ThreadPoolExecutor.AbortPolicy	 instance	 that	 always	 throws



RejectedExecutionException.	 The	 other	 possible	 handlers	 for	 rejected	 tasks	 are:
java.util.concurrent.ThreadPoolExecutor.CallerRunsPolicy	 (the	 rejected	 task	 is	 executed	 in	 caller’s
thread),	 java.util.concurrent.ThreadPoolExecutor.DiscardOldestPolicy	 (the	 handler	 discards	 the	 oldest
task	 from	 the	 queue	 and	 retries	 executing	 the	 rejected	 task),	 and
java.util.concurrent.ThreadPoolExecutor.DiscardPolicy	(the	handler	simply	discards	the	rejected	task).

The	 <executor>	 element	 of	 Spring’s	 task	 schema	 simplifies	 configuring	 a	 ThreadPoolTaskExecutor
instance,	as	shown	in	the	following	example	listing:

Example	listing	8-20	–ThreadPoolTaskExecutor	configuration	using	Spring’s	task	schema

<beans	.....	xmlns:task="http://www.springframework.org/schema/task"
				xsi:schemaLocation=".....http://www.springframework.org/schema/task
										http://www.springframework.org/schema/task/spring-task-4.0.xsd">
	
				<task:executor	id="	myTaskExecutor"	pool-size="5-10"
										queue-capacity="15"	rejection-policy="ABORT"	/>
</beans>

In	the	above	example	listing,	the	<executor>	element	configures	a	ThreadPoolTaskExecutor	instance.	The
pool-size	attribute	specifies	the	core	pool	size	and	the	maximum	pool	size.	In	the	above	example	listing,	5
is	 the	 core	 pool	 size	 and	 10	 is	 the	 maximum	 pool	 size.	 The	 queue-capacity	 attribute	 sets	 the
queueCapacity	 property,	 and	 rejection-policy	 attribute	 specifies	 the	 handler	 for	 rejected	 tasks.	 The
possible	 values	 of	 rejection-policy	 attribute	 are	ABORT,	CALLER_RUNS,	DISCARD_OLDEST,	 and
DISCARD.

Once	you	have	configured	a	ThreadPoolTaskExecutor	instance	by	explicitly	defining	it	as	a	Spring	bean
(refer	example	listing	8-19)	or	by	using	Spring’s	task	schema	(refer	example	listing	8-20),	you	can	inject
the	ThreadPoolTaskExecutor	instance	into	beans	that	want	to	asynchronously	execute	java.lang.Runnable
tasks,	as	shown	in	the	following	example	listing:

Example	listing	8-21	–Executing	tasks	using	ThreadPoolTaskExecutor

import	org.springframework.beans.factory.annotation.Autowired;
import	org.springframework.core.task.TaskExecutor;
	
@Component
public	class	Sample	{
				@Autowired
				private	TaskExecutor	taskExecutor;
				
				public	void	executeTask(Runnable	task)	{
								taskExecutor.execute(task);
				}
}

In	the	above	example	listing,	an	instance	of	ThreadPoolTaskExecutor	is	autowired	into	the	Sample	class,
and	is	later	used	by	Sample’s	executeTask	method	to	execute	a	java.lang.Runnable	task.



TaskExecutor	 executes	 a	 java.lang.Runnable	 task	 immediately	 after	 it	 is	 submitted,	 and	 the	 task	 is
executed	only	once.	If	you	want	to	schedule	execution	of	a	java.lang.Runnable	task,	and	you	want	the	task
to	be	executed	periodically,	you	should	use	a	TaskScheduler	implementation.

TaskScheduler	interface
Spring’s	TaskScheduler	 interface	 provides	 the	 abstraction	 to	 schedule	 execution	 of	 java.lang.Runnable
tasks.	 	 Spring’s	 Trigger	 interface	 abstracts	 the	 time	 when	 a	 java.lang.Runnable	 task	 is	 executed.	 You
associate	a	TaskScheduler	instance	with	a	Trigger	 instance	 to	schedule	execution	of	 java.lang.Runnable
tasks.	PeriodicTrigger	(an	implementation	of	Trigger	interface)	is	used	if	you	want	periodic	execution	of
tasks.	CronTrigger	(another	implementation	of	Trigger	interface)	accepts	a	cron	expression	that	indicates
the	date/time	when	the	task	is	executed.

ThreadPoolTaskScheduler	 is	 one	 of	 the	 most	 commonly	 used	 implementations	 of	 TaskScheduler	 that
internally	 uses	 Java	 5’s	 ScheduledThreadPoolExecutor	 (an	 implementation	 of	 Java	 5’s
ScheduledExecutorService	 interface)	 to	 schedule	 task	 execution.	 You	 can	 configure	 a
ThreadPoolTaskScheduler	implementation	and	associate	it	with	a	Trigger	implementation	to	schedule	task
execution.	The	following	example	listing	shows	how	ThreadPoolTaskScheduler	is	configured	and	used:

Example	listing	8-22	–ThreadPoolTaskExecutor	configuration	and	usage

------------	ThreadPoolTaskScheduler	configuration	---------------------
	
				<bean	id="myScheduler"
															class="org.springframework.scheduling.concurrent.ThreadPoolTaskScheduler">
								<property	name="poolSize"	value="5"/>
				</bean>
	
---------------	ThreadPoolTaskScheduler	usage	---------------------
	
import	org.springframework.scheduling.TaskScheduler;
import	org.springframework.scheduling.support.PeriodicTrigger;
	
@Component
public	class	Sample	{
				@Autowired
				@Qualifier("myScheduler")
				private	TaskScheduler	taskScheduler;
	
				public	void	executeTask(Runnable	task)	{
								taskScheduler.schedule(task,	new	PeriodicTrigger(5000));
				}
}

In	 the	 above	 example	 listing,	 ThreadPoolTaskScheduler’s	 poolSize	 property	 specifies	 the	 number	 of
threads	in	the	thread	pool.	To	schedule	a	task	for	execution,	ThreadPoolTaskScheduler’s	schedule	method
is	 called,	 passing	 the	 java.lang.Runnable	 task	 and	 a	 Trigger	 instance.	 In	 the	 above	 example	 listing,



PeriodicTrigger	instance	is	passed	to	ThreadPoolTaskScheduler’s	schedule	method.	The	argument	to	the
PeriodicTrigger	constructor	specifies	the	time	interval	(in	milliseconds)	between	task	executions.

The	 <scheduler>	 element	 of	 Spring’s	 task	 schema	 simplifies	 configuring	 a	 ThreadPoolTaskScheduler
instance.	The	ThreadPoolTaskScheduler	instance	created	by	the	<scheduler>	element	can	be	used	by	the
<scheduled-tasks>	element	of	Spring’s	task	schema	to	schedule	execution	of	bean	methods.	The	following
example	listing	shows	how	<scheduler>	and	<scheduled-tasks>	elements	are	used	by	MyBank	application
to	execute	FixedDepositProcessorJob’s	sendEmail	method	every	5	seconds:

Example	listing	8-23	–<scheduler>	and	<scheduled-tasks>	elements
Project	–	ch08-bankapp
Source	location	-	src/main/java/sample/spring/chapter08/bankapp/job
	
				<task:scheduler	id="emailScheduler"	pool-size="10"	/>
	
				<task:scheduled-tasks	scheduler="emailScheduler">
								<task:scheduled	ref="FixedDepositProcessorJob"	method="sendEmail"	fixed-rate="5000"	/>
				</task:scheduled-tasks>
			
				<bean	id="FixedDepositProcessorJob"
								class="sample.spring.chapter08.bankapp.job.FixedDepositProcessorJob"	/>

In	 the	above	example	 listing,	 the	<scheduler>	element	configures	a	ThreadPoolTaskScheduler	 instance.
The	id	attribute	of	the	<scheduler>	element	specifies	the	name	with	which	the	ThreadPoolTaskScheduler
instance	is	accessed	by	other	beans	in	the	Spring	container.	The	<scheduled-tasks>	element’s	scheduler
attribute	 specifies	 reference	 to	 the	 ThreadPoolTaskScheduler	 instance	 that	 is	 used	 for	 scheduling
execution	of	bean	methods.	In	the	above	example	listing,	the	ThreadPoolTaskScheduler	instance	created
by	the	<scheduler>	element	is	referenced	by	the	<scheduled-tasks>	element’s	scheduled	attribute.

The	<scheduled-tasks>	element	 contains	one	or	more	<scheduled>	elements.	The	<scheduled>	 element
contains	information	about	the	bean	method	to	be	executed	and	the	trigger	for	the	bean	method	execution.
The	ref	attribute	specifies	reference	to	a	Spring	bean,	the	method	attribute	specifies	a	method	of	the	bean
referenced	by	 the	ref	attribute,	and	 the	fixed-rate	attribute	 (an	 interval-based	 trigger)	 specifies	 the	 time
interval	 between	 successive	 method	 executions.	 In	 example	 listing	 8-23,	 the	 <scheduled>	 element
specifies	that	FixedDepositProcessorJob’s	sendEmail	method	is	executed	every	5	seconds.

Instead	 of	 using	 fixed-rate	 attribute	 of	 the	 <scheduled>	 element,	 you	 can	 use	 fixed-delay	 (an	 interval-
based	trigger)	or	cron	(a	cron-based	trigger)	or	trigger	(reference	to	a	Trigger	implementation)	attribute,
to	specify	a	trigger	for	the	bean	method	execution.

Let’s	now	look	at	Spring’s	@Async	and	@Scheduled	annotations.

@Async	and	@Scheduled	annotations
If	you	annotate	a	bean	method	with	Spring’s	@Async	annotation,	it	is	asynchronously	executed	by	Spring.
If	 you	 annotate	 a	 bean	method	with	 Spring’s	@Scheduled	 annotation,	 it	 is	 scheduled	 for	 execution	 by
Spring.

Use	of	@Async	and	@Scheduled	annotations	is	enabled	by	<annotation-driven>	element	of	Spring’s	task



schema,	as	shown	in	the	following	example	listing:

Example	listing	8-24	–	Enabling	@Async	and	@Scheduled	annotations
	
				<task:annotation-driven	executor="anExecutor"	scheduler="aScheduler"/>
	
				<task:executor	id="anExecutor"/>
			
				<task:scheduled-tasks	scheduler="aScheduler">
								<task:scheduled	ref="sampleJob"	method="doSomething"	fixed-rate="5000"	/>
				</task:scheduled-tasks>

The	<annotation-driven>	element’s	executor	attribute	specifies	reference	to	a	Spring’s	TaskExecutor	 (or
Java	5’s	Executor)	instance	that	is	used	for	executing	@Async	annotated	methods.	The	scheduler	attribute
specifies	reference	to	a	Spring’s	TaskScheduler	(or	Java	5’s	ScheduledExecutorService)	instance	that	is
used	for	executing	@Scheduled	annotated	methods.

Let’s	now	look	at	@Async	annotation	in	detail.

@Async	annotation

The	following	example	listing	highlights	some	of	the	important	points	that	you	need	to	know	when	using
@Async	annotation:

Example	listing	8-25	–@Async	annotation	usage
	
import	java.util.concurrent.Future;
import	org.springframework.scheduling.annotation.Async;
import	org.springframework.scheduling.annotation.AsyncResult;
import	org.springframework.stereotype.Component;
	
@Component
public	class	Sample	{
				@Async
				public	void	doA()	{	.....	}
			
				@Async(value="someExecutor")
				public	void	doB(String	str)	{	.....	}
			
				@Async
				public	Future<String>	doC()	{
								return	new	AsyncResult<String>("Hello");
				}
}

@Async	annotation’s	value	attribute	specifies	the	Spring’s	TaskExecutor	(or	Java	5’s	Executor)	 instance
to	use	 for	asynchronously	executing	 the	method.	As	 the	@Async	annotation	on	 the	doA	method	doesn’t
specify	the	executor	 to	use,	Spring’s	SimpleAsyncTaskExector	 is	used	for	asynchronously	executing	 the



doA	 method.	 @Async	 annotation	 on	 the	 doB	 method	 specifies	 the	 value	 attribute’s	 value	 as
someExecutor,	which	means	the	bean	named	someExecutor	(of	type	TaskExecutor	or	Java	5’s	Executor)	is
used	for	asynchronously	executing	the	doB	method.	@Async	annotated	methods	can	accept	arguments,	like
the	doB	method	in	the	above	example	listing.	@Async	annotated	methods	can	either	return	void	(like	the
doA	and	doB	methods)	or	a	Future	 instance	 (like	 the	doC	method).	To	 return	 a	Future	 instance,	 you’ll
need	 to	wrap	 the	value	 that	you	want	 to	 return	 into	an	AsyncResult	 object,	 and	 return	 the	AsyncResult
object.

Let’s	now	look	at	@Scheduled	annotation	in	detail.

@Scheduled	annotation

The	following	example	listing	highlights	some	of	the	important	points	that	you	need	to	know	when	using
@Scheduled	annotation:

Example	listing	8-26	–@Scheduled	annotation	usage
	
import	org.springframework.scheduling.annotation.Scheduled;
	
@Component
public	class	Sample	{
				@Scheduled(cron="0	0	9-17	*	*	MON-FRI")
				public	void	doA()	{	.....	}
	
				@Scheduled(fixedRate	=	5000)
				public	void	doB()	{	.....	}
}
	

A	method	annotated	with	@Scheduled	annotation	must	return	void	and	must	not	be	defined	to	accept	any
arguments.	You	must	specify	cron,	fixedRate	or	fixedDelay	attribute	of	@Scheduled	annotation.

It	is	important	to	note	that	if	the	@Async	(or	@Scheduled)	annotation	is	specified	on	one	or	more	methods
of	a	class,	you	are	required	to	include	CGLIB	JAR	file	in	your	application’s	classpath.	If	the	@Async	(or
@Scheduled)	 annotation	 is	 specified	 only	 on	 the	 methods	 defined	 in	 an	 interface,	 you	 don’t	 need	 to
include	CGLIB	JAR	file.	Starting	with	Spring	3.2,	the	CGLIB	classes	are	packaged	within	the	spring-core
JAR	file	 itself;	 therefore,	you	don’t	need	 to	explicitly	specify	 that	your	project	 is	dependent	on	CGLIB
JAR	file.

NOTE	If	you	want	to	use	the	Quartz	Scheduler	(http://quartz-scheduler.org/)	in	your	Spring	application,
you	can	use	the	integration	classes	provided	by	Spring	that	simplify	using	the	Quartz	Scheduler.

Spring	 simplifies	 using	 caching	 in	 an	 application	 by	 providing	 an	 abstraction	 on	 top	 of
java.util.concurrent.ConcurrentMap	and	Ehcache	(http://ehcache.org/).

http://quartz-scheduler.org/
http://ehcache.org/


8-7	Caching
If	you	want	to	use	caching	in	your	application,	you	can	consider	using	Spring’s	cache	abstraction.	Spring’s
cache	abstraction	shields	developers	from	directly	dealing	with	the	underlying	caching	implementation’s
API.	 Starting	 with	 Spring	 3.2,	 cache	 abstraction	 is	 available	 out-of-the-box	 for
java.util.concurrent.ConcurrentMap,	Ehcache	 and	 for	 caching	 solutions	 that	 implement	 JSR	107	 –	 Java
Temporary	Caching	API	(referred	to	as	JCACHE).

NOTE	If	you	are	using	a	caching	solution	which	is	not	currently	supported	by	Spring’s	cache	abstraction,
you	 have	 the	 option	 to	 either	 directly	 use	 the	API	 of	 the	 caching	 solution	 or	 create	 adapters	 that	map
Spring’s	cache	abstraction	to	the	caching	solution.

Spring	 provides	 a	 CacheManager	 interface	 that	 defines	 methods	 for	 managing	 a	 collection	 of	 Cache
instances.	 A	 CacheManager	 instance	 acts	 as	 a	 wrapper	 around	 the	 cache	 manager	 provided	 by	 the
underlying	 caching	 solution.	 For	 instance,	 EhCacheCacheManager	 is	 a	 wrapper	 around	 Ehcache’s
net.sf.ehcache.CacheManager,	 JCacheCacheManager	 is	 a	 wrapper	 around	 JSR	 107	 provider’s
javax.cache.CacheManager	 implementation,	 and	 so	 on.	 A	 Cache	 instance	 is	 a	 wrapper	 around	 the
underlying	 cache,	 and	 it	 provides	 methods	 for	 interacting	 with	 the	 underlying	 cache.	 For	 instance,
EhCacheCache	 (a	 Cache	 implementation)	 is	 a	 wrapper	 around	 net.sf.ehcache.Ehcache,	 and
JCacheCache	 (a	 Cache	 implementation)	 is	 a	 wrapper	 around	 JSR	 107	 provider’s	 javax.cache.Cache
instance.

Spring	 also	 provides	 a	 ConcurrentMapCacheManager	 that	 you	 can	 use	 if	 you	 want	 to	 use
java.util.concurrent.ConcurrentMap	 as	 the	 underlying	 cache.	 The	 Cache	 instance	 managed	 by
ConcurrentMapCacheManager	 is	 a	 ConcurrentMapCache.	 The	 following	 diagram	 summarizes
relationship	between	CacheManager	and	Cache	interfaces	provided	by	Spring’s	caching	abstraction:

NOTE	 If	 you	 want	 to	 use	 Spring’s	 caching	 abstraction	 for	 a	 caching	 solution	 that	 is	 not	 currently
supported	by	Spring’s	 caching	 abstraction,	 all	 you	need	 to	 do	 is	 to	 provide	CacheManager	 and	Cache
implementations	for	the	caching	solution.

	

	



Figure	8-3	A	CacheManager	implementation	acts	as	wrapper	around	the	cache	manager	of	the	underlying
caching	solution,	and	a	Cache	implementation	provides	operations	to	interact	with	the	underlying	cache.

The	above	figure	shows	that	CacheManager	manages	Cache	 instances.	EhCacheCacheManager	manages
EhCacheCache	 instances	 (underlying	 cache	 store	 is	 Ehcache),	 JCacheCacheManager	 manages
JCacheCache	 instances	 (underlying	 cache	 store	 is	 a	 caching	 solution	 that	 implements	 JSR	 107),
ConcurrentMapCacheManager	 manages	 ConcurrentMapCache	 instances	 (underlying	 cache	 store	 is
java.util.concurrent.ConcurrentMap),	and	so	on.

Figure	 8-3	 shows	 a	 SimpleCacheManager	 class	 that	 implements	 CacheManager	 interface.
SimpleCacheManager	is	useful	for	simple	caching	scenarios	and	for	testing	purposes.	For	instance,	if	you
want	 to	 use	 java.util.concurrent.ConcurrentMap	 as	 the	 underlying	 cache	 store,	 you	 can	 use
SimpleCacheManager,	instead	of	ConcurrentMapCacheManager,	to	manage	the	cache.

Let’s	now	look	at	how	a	CacheManager	is	configured	in	the	application	context	XML	file.

Configuring	a	CacheManager
In	 MyBank	 application,	 a	 collection	 of	 java.util.concurrent.ConcurrentMap	 instances	 are	 used	 as	 the
underlying	cache	store;	therefore,	SimpleCacheManager	is	used	to	manage	the	cache.

The	 following	 example	 listing	 shows	 how	 a	 SimpleCacheManager	 instance	 is	 configured	 in	 MyBank
application:

Example	listing	8-27	–	SimpleCacheManager	configuration
Project	–	ch08-bankapp
Source	location	-	src/main/resources/META-INF/spring/
	
				<bean	id="myCacheManager"
									class="org.springframework.cache.support.SimpleCacheManager">
								<property	name="caches">
												<set>
																<bean
																				class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean">
																				<property	name="name"	value="FixedDepositList"	/>
																</bean>
																<bean
																				class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean">
																				<property	name="name"	value="FixedDeposit"	/>
																</bean>
												</set>
								</property>
				</bean>

SimpleCacheManager’s	 caches	 property	 specifies	 a	 collection	 of	 caches	 managed	 by	 the
SimpleCacheManager	 instance.	ConcurrentMapCacheFactoryBean	 is	a	FactoryBean	 implementation	 that
simplifies	 configuring	 a	 ConcurrentMapCache	 instance	 -	 a	 Cache	 instance	 that	 uses	 a
java.util.concurrent.ConcurrentHashMap	 instance	 (an	 implementation	 of



java.util.concurrent.ConcurrentMap	 interface)	 as	 the	 underlying	 cache	 store.
ConcurrentMapCacheFactoryBean’s	name	property	specifies	a	name	for	the	cache.	In	the	above	example
listing,	the	FixedDepositList	and	FixedDeposit	caches	are	managed	by	the	SimpleCacheManager	instance.

Let’s	now	look	at	how	to	use	Spring’s	caching	annotations	in	applications.

Caching	annotations	-	@Cacheable,	@CacheEvict	and	@CachePut
After	you	have	configured	an	appropriate	CacheManager	 for	your	application,	you	need	 to	choose	how
you	 want	 to	 use	 Spring’s	 cache	 abstraction.	 You	 can	 use	 Spring’s	 cache	 abstraction	 either	 by	 using
caching	 annotations	 (like	 @Cacheable,	 @CacheEvict	 and	 @CachePut)	 or	 by	 using	 Spring’s	 cache
schema.	As	using	Spring’s	cache	schema	for	caching	results	 in	a	verbose	application	context	XML	file,
we’ll	be	only	looking	at	using	caching	annotations	for	declarative	caching.

To	use	caching	annotations,	you	need	to	configure	<annotation-driven>	element	of	Spring’s	cache	schema,
as	shown	here	for	the	MyBank	application:

Example	listing	8-28	–	Enable	caching	annotations	using	<annotation-driven>
Project	–	ch08-bankapp
Source	location	-	src/main/resources/META-INF/spring/
	
<beans	.....xmlns:cache="http://www.springframework.org/schema/cache"		
							xsi:schemaLocation=".....
							http://www.springframework.org/schema/cache
							http://www.springframework.org/schema/cache/spring-cache.xsd">
	
							<cache:annotation-driven	cache-manager="myCacheManager"/>
					.....
</beans>

In	the	above	example	listing,	Spring’s	cache	schema	is	included	so	that	its	elements	are	accessible	in	the
application	 context	XML	 file.	The	<annotation-driven>	element’s	 cache-manager	 attribute	 refers	 to	 the
CacheManager	bean	 that	 is	 used	 for	managing	 the	 cache.	You	don’t	 need	 to	 specify	 the	 cache-manager
attribute	if	the	CacheManager	bean	is	named	cacheManager.

Now,	that	we	have	enabled	caching	annotations,	let’s	look	at	different	caching	annotations.

@Cacheable

@Cacheable	annotation	on	a	method	indicates	that	the	value	returned	by	the	method	is	cached.	Spring’s
DefaultKeyGenerator	class	is	used	by	default	to	generate	the	key	with	which	the	method’s	return	value	is
stored	 in	 the	 cache.	DefaultKeyGenerator	 uses	method	 signature	 and	method	 arguments	 to	 compute	 the
key.	 You	 can	 use	 a	 custom	 key	 generator	 by	 providing	 an	 implementation	 of	 Spring’s	 KeyGenerator
interface,	and	specifying	it	as	the	value	of	key-generator	attribute	of	<annotation-driven>	element.

The	following	example	listing	shows	the	usage	of	@Cacheable	annotation	to	cache	the	value	returned	by
FixedDepositService’s	findFixedDepositsByBankAccount	method	in	the	MyBank	application:

Example	listing	8-29	–	@Cacheable	annotation
Project	–	ch08-bankapp



Source	location	-	src/main/java/sample/spring/chapter08/bankapp/service
	
package	sample.spring.chapter08.bankapp.service;
	
import	org.springframework.cache.annotation.Cacheable;
.....
@Service(value	=	"FixedDepositService")
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				.....
				@Cacheable(value	=	{	"FixedDepositList"	})
				public	List<FixedDepositDetails>	findFixedDepositsByBankAccount(int	bankAccountId)	{
								logger.info("findFixedDepositsByBankAccount	method	invoked");
								return	myFixedDepositDao.findFixedDepositsByBankAccount(bankAccountId);
				}
}

@Cacheable	 annotation’s	 value	 attribute	 specifies	 the	 cache	 region	 into	 which	 the	 returned	 value	 is
cached.	In	listing	8-27,	we	created	a	cache	region	named	FixedDepositList	for	the	MyBank	application.	In
the	 above	 example	 listing,	 the	 @Cacheable	 annotation	 specifies	 that	 the	 value	 returned	 by	 the
findFixedDepositsByBankAccount	method	is	stored	in	the	FixedDepositList	cache.	It	is	important	to	note
that	@Cacheable	annotated	method	 is	not	 invoked	 if	 the	 same	set	of	argument	values	are	passed	 to	 the
method.	But,	@Cacheable	annotated	method	will	be	invoked	if	you	pass	a	different	value	for	at	least	one
of	the	arguments.

@CacheEvict

If	 you	 want	 to	 evict	 data	 from	 the	 cache	 when	 a	 method	 is	 called,	 annotate	 the	 method	 with	 the
@CacheEvict	 annotation.	 In	 the	MyBank	 application,	 when	 a	 new	 fixed	 deposit	 is	 created,	 the	 fixed
deposit	details	cached	by	FixedDepositServiceImpl’s	findFixedDepositsByBankAccount	method	must	be
evicted	from	the	cache.	This	ensures	that	when	the	next	time	findFixedDepositsByBankAccount	method	is
invoked,	the	newly	created	fixed	deposit	is	also	fetched	from	the	database.	The	following	example	listing
shows	usage	of	@CacheEvict	annotation:

Example	listing	8-30	–	@CacheEvict	annotation
Project	–	ch08-bankapp
Source	location	-	src/main/java/sample/spring/chapter08/bankapp/service
	
package	sample.spring.chapter08.bankapp.service;
	
import	org.springframework.cache.annotation.CacheEvict;
.....
@Service(value	=	"FixedDepositService")
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				.....
				@Transactional("jmsTxManager")
				@CacheEvict(value	=	{	"FixedDepositList"	},	allEntries=true,	beforeInvocation	=	true)



	 	 	 	public	void	createFixedDeposit(final	FixedDepositDetails	 fixedDepositDetails)	 throws	Exception	{
.....	}
				.....
}

In	 the	 above	 example	 listing,	 the	@CacheEvict	 annotation	 on	 the	 createFixedDeposit	 method	 instructs
Spring	 to	 remove	 all	 the	 cached	 entries	 from	 the	 cache	 region	 named	 FixedDepositList.	 The	 value
attribute	specifies	the	cache	region	from	which	to	evict	the	cached	item,	and	allEntries	attribute	specifies
whether	or	not	all	entries	from	the	specified	cache	region	are	evicted.	If	you	want	 to	evict	a	particular
cached	item,	use	the	key	attribute	to	specify	the	key	with	which	the	item	is	cached.	You	can	also	specify
conditional	 eviction	 of	 items	by	using	 the	 condition	 attribute.	The	 condition	 and	key	 attributes	 support
specifying	 values	 using	 SpEL	 (refer	 section	 6-8	 of	 chapter	 6	 for	more	 details),	 making	 it	 possible	 to
perform	 sophisticated	 cache	 evictions.	 The	 beforeInvocation	 attribute	 specifies	 whether	 the	 cache
eviction	is	performed	before	or	after	the	method	execution.	As	the	value	of	beforeInvocation	attribute	is
set	to	true,	cache	is	evicted	before	the	createFixedDeposit	method	is	invoked.

@CachePut

Spring	 also	 provides	 a	@CachePut	 annotation	 that	 indicates	 that	 a	method	 is	always	 invoked,	 and	 the
value	 returned	 by	 the	 method	 is	 put	 into	 the	 cache.	 @CachePut	 annotation	 is	 different	 from	 the
@Cacheable	 annotation	 in	 the	 sense	 that	 @Cacheable	 annotation	 instructs	 Spring	 to	 skip	 the	 method
invocation	if	the	method	is	called	with	the	same	set	of	argument	values.

The	following	example	listing	shows	usage	of	@CachePut	annotation	by	FixedDepositServiceImpl	class
of	MyBank	application:

Example	listing	8-31	–	@CachePut	annotation
Project	–	ch08-bankapp
Source	location	-	src/main/java/sample/spring/chapter08/bankapp/service
	
package	sample.spring.chapter08.bankapp.service;
	
import	org.springframework.cache.annotation.CachePut;
import	org.springframework.cache.annotation.Cacheable;
.....
@Service(value	=	"FixedDepositService")
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				.....
				@CachePut(value={"FixedDeposit"},	key="#FixedDepositId")
				public	FixedDepositDetails	getFixedDeposit(int	FixedDepositId)	{
								logger.info("getFixedDeposit	method	invoked	with	FixedDepositId	"	+	FixedDepositId);
								return	myFixedDepositDao.getFixedDeposit(FixedDepositId);
				}
	
				@Cacheable(value={"FixedDeposit"},	key="#FixedDepositId")
				public	FixedDepositDetails	getFixedDepositFromCache(int	FixedDepositId)	{
									logger.info("getFixedDepositFromCache	method	invoked	with	FixedDepositId	"



											+	FixedDepositId);
									throw	new	RuntimeException("This	method	throws	exception	because	"
												+	"FixedDepositDetails	object	must	come	from	the	cache");			
					}
				.....
}

In	the	above	example	listing,	the	getFixedDeposit	method	is	annotated	with	@CachePut	annotation,	which
means	that	the	getFixedDeposit	method	is	always	invoked,	and	the	returned	FixedDepositDetails	object	is
stored	into	the	cache	named	FixedDeposit.	The	value	attribute	specifies	the	name	of	the	cache	into	which
the	FixedDepositDetails	object	 is	 stored.	The	key	 attribute	 specifies	 the	key	 to	 be	used	 for	 storing	 the
returned	FixedDepositDetails	object	into	the	cache.	As	you	can	see,	key	attribute	makes	use	of	SpEL	to
specify	the	key.	The	#FixedDepositId	value	of	key	attribute	refers	to	the	FixedDepositId	argument	passed
to	 the	 getFixedDeposit	 method.	 To	 summarize,	 the	 FixedDepositDetails	 object	 returned	 by	 the
getFixedDeposit	method	 is	 stored	 in	 the	 cache	 named	 FixedDeposit,	 and	 the	 value	 of	 FixedDepositId
method	argument	is	used	as	the	key.

In	 example	 listing	 8-31,	 FixedDepositServiceImpl’s	 getFixedDepositFromCache	 method	 retrieves	 the
FixedDepositDetails	object	from	the	cache	based	on	the	key	attribute	value	specified	by	the	@Cacheable
annotation.	 Notice	 that	 the	 body	 of	 the	 getFixedDepositFromCache	 method	 does	 nothing	 but	 throw	 a
RuntimeException.	 The	 key	 attribute	 value	 refers	 to	 the	 FixedDepositId	 argument	 passed	 to	 the
getFixedDepositFromCache	 method.	 If	 the	 FixedDepositDetails	 object	 is	 not	 found	 in	 the	 cache,	 the
getFixedDepositFromCache	method	is	invoked,	which	will	result	in	RuntimeException.

Let’s	now	look	at	what	happens	when	you	run	the	MyBank	application	of	ch08-bankapp	project.



8-8	Running	the	MyBank	application
BankApp	 class	 of	MyBank	 application	 defines	 the	 main	method	 of	 the	 application.	 The	main	 method
accesses	 methods	 of	 FixedDepositService	 and	BankAccountService	 instances	 to	 demonstrate	 different
features	that	we	discussed	in	this	chapter.

The	following	example	listing	shows	the	MyBank	application’s	BankApp	class:

Example	listing	8-32	–	BankApp	class
Project	–	ch08-bankapp
Source	location	-	src/main/java/sample/spring/chapter08/bankapp
	
package	sample.spring.chapter08.bankapp;
	
import	org.springframework.context.ApplicationContext;
import	org.springframework.context.support.ClassPathXmlApplicationContext;
	
public	class	BankApp	{
				public	static	void	main(String	args[])	throws	Exception	{
								ApplicationContext	context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
	
								BankAccountService	bankAccountService	=	context.getBean(BankAccountService.class);
								BankAccountDetails	bankAccountDetails	=	new	BankAccountDetails();
								.....
							int	bankAccountId	=	bankAccountService.createBankAccount(bankAccountDetails);
	
								FixedDepositService	FixedDepositService	=	context.getBean(FixedDepositService.class);
								FixedDepositDetails	fixedDepositDetails	=	new	FixedDepositDetails();
								.....
							fixedDepositDetails.setEmail("someUser@someDomain.com");
							FixedDepositService.createFixedDeposit(fixedDepositDetails);
								.....
							FixedDepositService.findFixedDepositsByBankAccount(bankAccountId);
							FixedDepositService.findFixedDepositsByBankAccount(bankAccountId);
	
							FixedDepositService.createFixedDeposit(fixedDepositDetails);
								.....
							List<FixedDepositDetails>	FixedDepositDetailsList	=	FixedDepositService
																.findFixedDepositsByBankAccount(bankAccountId);
	
								for	(FixedDepositDetails	detail	:	FixedDepositDetailsList)	{
												FixedDepositService.getFixedDeposit(detail.getFixedDepositId());
								}
	



								for	(FixedDepositDetails	detail	:	FixedDepositDetailsList)	{
												FixedDepositService.getFixedDepositFromCache(detail.getFixedDepositId());
								}
								.....
				}
}

In	the	above	example	listing,	following	sequence	of	actions	are	performed	by	the	main	method:

Step	 1.	 First,	 a	 bank	 account	 is	 created	 in	 the	 BANK_ACCOUNT_DETAILS	 table	 by	 calling
BankAccountService’s	createBankAccount	method.

Step	 2.	 Corresponding	 to	 the	 newly	 created	 bank	 account,	 a	 fixed	 deposit	 is	 created	 in	 the
FIXED_DEPOSIT_DETAILS	 table	 by	 calling	 FixedDepositService’s	 createFixedDeposit	 method.	 You
should	make	sure	that	email	property	of	FixedDepositDetails	object	is	set	to	the	email	id	where	you	can
check	the	emails.	The	createFixedDeposit	method	sends	2	JMS	messages	(refer	example	listing	8-5).	One
JMS	message	contains	the	email	id	specified	by	the	FixedDepositDetails	object’s	email	property,	and	is
processed	by	EmailMessageListener	(refer	example	listing	8-16)	that	sends	an	email	to	the	customer.	The
other	JMS	message	is	processed	by	FixedDepositMessageListener	(refer	example	listing	8-11)	that	saves
the	 fixed	 deposit	 details	 in	 the	 FIXED_DEPOSIT_DETAILS	 table.	 You	 should	 also	 note	 that
FixedDepositServiceImpl’s	createFixedDeposit	method	is	annotated	with	@CacheEvict	annotation	(refer
example	listing	8-30)	that	results	in	removing	all	the	items	cached	in	FixedDepositList	cache.

Step	3.	FixedDepositService’s	findFixedDepositsByBankAccount	method	is	invoked	that	retrieves	fixed
deposits	 corresponding	 to	 the	 bank	 account	 that	 we	 created	 in	 Step	 1.	 As	 the
findFixedDepositsByBankAccount	 method	 is	 annotated	 with	 @Cacheable	 annotation	 (refer	 example
listing	8-29),	fixed	deposits	returned	by	the	findFixedDepositsByBankAccount	method	are	stored	 in	 the
cache	 named	 FixedDepositList.	 Listing	 8-29	 showed	 that	 findFixedDepositsByBankAccount	 method
writes	the	following	message	to	the	console	‘findFixedDepositsByBankAccount	method	invoked’.	In	the
above	example	listing,	the	findFixedDepositsByBankAccount	is	called	twice	for	the	same	bankAccountId
argument,	but	you’ll	notice	that	only	once	‘findFixedDepositsByBankAccount	method	invoked’	is	written
to	 the	 console.	 This	 is	 because	 the	 second	 call	 to	 the	 findFixedDepositsByBankAccount	 results	 in
retrieving	 fixed	 deposit	 details	 from	 the	 cache	 named	 FixedDepositList,	 and	 the
findFixedDepositsByBankAccount	method	is	not	executed.

Step	 4.	 Corresponding	 to	 the	 bank	 account	 created	 in	 Step	 1,	 another	 fixed	 deposit	 is	 created	 in	 the
FIXED_DEPOSIT_DETAILS	table	by	calling	FixedDepositService’s	createFixedDeposit	method.	Now,
the	 FixedDepositServiceImpl’s	 createFixedDeposit	 method	 is	 annotated	 with	 @CacheEvict	 annotation
(refer	example	listing	8-30)	that	results	in	removing	all	the	items	cached	in	FixedDepositList	cache.

Step	 5.	 FixedDepositService’s	 findFixedDepositsByBankAccount	 method	 is	 invoked	 once	 again.	 This
time	 findFixedDepositsByBankAccount	 is	 executed	 because	 the	 previous	 call	 to	 createFixedDeposit
method	 (refer	Step	 4)	 resulted	 in	 evicting	 all	 the	 items	 from	 the	FixedDepositList	 cache.	At	 this	 time,
you’ll	 once	 again	 see	 ‘findFixedDepositsByBankAccount	 method	 invoked’	 message	 written	 on	 the
console.	 The	 fixed	 deposits	 returned	 by	 the	 findFixedDepositsByBankAccount	 method	 are	 cached	 in
FixedDepositList	cache	because	the	method	is	annotated	with	@Cacheable	annotation.

Step	6.	For	each	fixed	deposit	retrieved	in	Step	5,	FixedDepositService’s	getFixedDeposit	method	(refer



example	 listing	8-31)	 is	 invoked.	The	getFixedDeposit	method	 accepts	 the	 fixed	deposit	 identifier	 and
returns	 the	 fixed	deposit	 information	 from	 the	database.	The	getFixedDeposit	method	 is	 annotated	with
@CachePut,	which	means	it	is	always	invoked.	The	fixed	deposit	returned	by	the	getFixedDeposit	method
is	cached	in	the	FixedDeposit	cache.

Step	7.	For	 each	 fixed	deposit	 retrieved	 in	Step	5,	FixedDepositService’s	 getFixedDepositFromCache
method	(refer	example	listing	8-31)	is	invoked.	The	getFixedDepositFromCache	method	accepts	the	fixed
deposit	identifier	and	throws	a	RuntimeException	on	execution.	The	getFixedDepositFromCache	method
is	 annotated	 with	 @Cacheable,	 and	 is	 executed	 only	 when	 the	 fixed	 deposit	 is	 not	 found	 in	 the
FixedDeposit	cache.	As	all	the	fixed	deposits	were	cached	by	the	getFixedDeposit	method	in	Step	6,	the
getFixedDepositFromCache	method	is	never	executed.

Step	8.	Every	5	seconds,	the	FixedDepositProcessorJob	(refer	example	listing	8-17)	checks	if	any	new
fixed	 deposits	 have	 been	 created	 in	 the	 database.	 If	 new	 fixed	 deposits	 are	 found	 in	 the	 database,	 the
FixedDepositProcessorJob	activates	the	fixed	deposit	and	sends	an	email	to	the	customer,	confirming	that
the	fixed	deposit	request	has	been	successfully	processed.



8-9	Summary
In	 this	 chapter,	 we	 touched	 upon	 some	 of	 the	 frequently	 used	 features	 of	 Spring.	We	 saw	 that	 Spring
simplifies	sending	and	receiving	JMS	messages,	sending	emails,	asynchronously	invoking	bean	methods,
scheduling	 bean	 methods	 for	 execution,	 and	 caching	 data.	 In	 the	 next	 chapter,	 we’ll	 look	 at	 Spring’s
support	for	AOP	(Aspect-oriented	programming).



Chapter	9	-	Aspect-oriented	programming



9-1	Introduction
Aspect-oriented	 programming	 (AOP)	 is	 a	 programming	 approach	 in	 which	 responsibilities	 that	 are
distributed	across	multiple	classes	are	encapsulated	into	a	separate	class,	referred	to	as	an	‘aspect’.	The
responsibilities	 that	 are	 distributed	 across	multiple	 classes	 are	 referred	 to	 as	 ‘cross-cutting	 concerns’.
Logging,	transaction	management,	caching,	security,	and	so	on,	are	examples	of	cross-cutting	concerns.

Spring	 provides	 an	 AOP	 framework	 that	 is	 used	 internally	 by	 Spring	 for	 implementing	 declarative
services,	 like	 transaction	management	 (refer	 chapter	 7)	 and	 caching	 (refer	 chapter	 8).	 Instead	 of	 using
Spring	AOP	 framework,	 you	 can	 consider	 using	AspectJ	 (http://www.eclipse.org/aspectj/)	 as	 the	AOP
framework	 for	 your	 application.	As	Spring	AOP	 framework	 is	 sufficient	 for	most	AOP	 scenarios,	 and
provides	integration	with	the	Spring	container,	this	chapter	focuses	on	Spring	AOP	framework.

Let’s	begin	this	chapter	by	looking	at	an	example	usage	of	AOP.

http://www.eclipse.org/aspectj/


9-2	A	simple	AOP	example
Let’s	say	 that	 for	auditing	purposes	we	want	 to	capture	 the	arguments	passed	 to	 the	methods	of	classes
defined	in	the	service	layer	of	MyBank	application.	A	simple	approach	to	log	details	of	method	arguments
is	to	write	the	logging	logic	inside	each	method.	But,	this	would	mean	that	each	method	is	additionally
responsible	 for	 logging	 details	 of	 method	 arguments.	 As	 the	 responsibility	 to	 log	 details	 of	 method
arguments	is	distributed	across	multiple	classes	and	methods,	it	represents	a	cross-cutting	concern.

To	address	a	cross-cutting	concern	using	AOP,	you	need	to	follow	these	steps:

·								create	a	Java	class	(referred	to	as	an	aspect)

·								add	implementation	of	the	cross-cutting	concern	to	the	Java	class,	and

·								use	a	regular	expression	to	specify	the	methods	to	which	the	cross-cutting	concern	applies

In	terms	of	AOP	terminology,	the	methods	of	an	aspect	that	implement	cross-cutting	concerns	are	referred
to	as	advices.	And,	 each	 advice	 is	 associated	with	 a	pointcut	 that	 identifies	 the	methods	 to	which	 the
advice	applies.	The	methods	to	which	an	advice	applies	are	referred	to	as	join	points.

In	Spring	AOP,	you	have	the	option	to	develop	an	aspect	using	AspectJ	annotation-style	or	XML	schema-
style.	 In	AspectJ	annotation-style,	AspectJ	annotations,	 like	@Aspect,	@Pointcut,	@Before,	 and	 so	on,
are	 used	 to	 develop	 an	 aspect.	 In	 XML	 schema-style,	 elements	 of	 Spring’s	 aop	 schema	 are	 used	 to
configure	a	Spring	bean	as	an	aspect.

IMPORT	chapter	9/ch09-simple-aop	(The	ch09-simple-aop	project	shows	the	MyBank	application	that
uses	Spring	AOP	to	log	details	of	method	arguments	passed	to	the	methods	defined	by	the	classes	in	the
service	 layer	of	MyBank	application.	To	 run	 the	application,	execute	 the	main	method	of	 the	BankApp
class	of	this	project)

The	 following	 example	 listing	 shows	 the	 logging	 aspect	 that	 logs	 details	 of	 the	 arguments	 passed	 to
service	methods	in	MyBank	application:

Example	listing	9-1	–	LoggingAspect	class
Project	–	ch09-simple-aop
Source	location	-	src/main/java/sample/spring/chapter09/bankapp/aspects
	
package	sample.spring.chapter09.bankapp.aspects;
	
import	org.aspectj.lang.JoinPoint;
import	org.aspectj.lang.annotation.Aspect;
import	org.aspectj.lang.annotation.Before;
import	org.springframework.stereotype.Component;
	
@Aspect
@Component
public	class	LoggingAspect	{
				private	Logger	logger	=	Logger.getLogger(LoggingAspect.class);



	
				@Before(value	=	"execution(*	sample.spring.chapter09.bankapp.service.*Service.*(..))")
				public	void	log(JoinPoint	joinPoint)	{
								logger.info("Entering	"
																+	joinPoint.getTarget().getClass().getSimpleName()	+	"'s	"
																+	joinPoint.getSignature().getName());
	
							Object[]	args	=	joinPoint.getArgs();
								for	(int	i	=	0;	i	<	args.length;	i++)	{
												logger.info("args["	+	i	+	"]	-->"	+	args[i]);
								}
				}
}

	

In	example	listing	9-1:

·								AspectJ’s	@Aspect	type-level	annotation	specifies	that	the	LoggingAspect	class	is	an	AOP	aspect

·								AspectJ’s	@Before	method-level	annotation	specifies	that	the	log	method	represents	an	advice	that
is	applied	before	the	methods	matched	by	the	value	attribute	are	executed.	Refer	section	9-5	to	learn
about	different	advice	types	that	you	can	create.

·								@Before	annotation’s	value	attribute	specifies	a	pointcut	expression	 that	is	used	by	Spring	AOP
framework	to	identify	methods	(referred	to	as	target	methods)	to	which	an	advice	applies.	In	section
9-4,	we’ll	 take	 an	 in-depth	 look	 at	 pointcut	 expressions.	For	now,	you	 can	 assume	 that	 the	 pointcut
expression	 execution(*	 sample.spring.chapter09.bankapp.service.*Service.*(..))	 specifies	 that
LoggingAspect’s	log	method	is	applied	to	all	the	public	methods	defined	by	classes	(or	interfaces)	in
sample.spring.chapter09.bankapp.service	package,	and	whose	names	end	with	Service.

·	 	 	 	 	 	 	 	The	 log	method’s	JoinPoint	argument	 represents	 the	 target	method	 to	which	 the	advice	 is	being
applied.	The	log	method	uses	JoinPoint	instance	to	retrieve	information	about	the	arguments	passed	to
the	target	method.	In	example	listing	9-1,	JoinPoint’s	getArgs	method	is	invoked	to	retrieve	the	method
arguments	being	passed	to	the	target	method.

You	need	to	register	an	aspect	with	the	Spring	container	so	that	the	Spring	AOP	framework	is	made	aware
of	 the	aspect.	 In	example	 listing	9-1,	 the	LoggingAspect	 class	 is	 annotated	with	Spring’s	@Component
annotation	so	that	it	is	automatically	registered	with	the	Spring	container.

The	 following	 example	 listing	 shows	 the	 BankApp	 class	 that	 invokes	 methods	 of
BankAccountServiceImpl	 (implements	 BankAccountService	 interface)	 and	 FixedDepositServiceImpl
(implements	FixedDepositService	interface)	classes	of	MyBank	application:

Example	listing	9-2	–	BankApp	class
Project	–	ch09-simple-aop
Source	location	-	src/main/java/sample/spring/chapter09/bankapp
	
package	sample.spring.chapter09.bankapp;



.....
public	class	BankApp	{
				public	static	void	main(String	args[])	throws	Exception	{
								ApplicationContext	context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
	
								BankAccountService	bankAccountService	=	context.getBean(BankAccountService.class);
								BankAccountDetails	bankAccountDetails	=	new	BankAccountDetails();
								bankAccountDetails.setBalanceAmount(1000);
								bankAccountDetails.setLastTransactionTimestamp(new	Date());									
							bankAccountService.createBankAccount(bankAccountDetails);
	
								FixedDepositService	FixedDepositService	=	context.getBean(FixedDepositService.class);
							FixedDepositService.createFixedDeposit(new	FixedDepositDetails(1,	1000,
																12,	"someemail@somedomain.com"));
				}
}

In	 the	 above	 example	 listing,	 BankAccountService’s	 createBankAccount	 and	 FixedDepositService’s
createFixedDeposit	methods	 are	 invoked	 by	BankApp’s	main	method.	 If	 you	 execute	 BankApp’s	main
method,	you’ll	see	the	following	output	on	the	console:

INFO		LoggingAspect	-	Entering	BankAccountServiceImpl's	createBankAccount
INFO		LoggingAspect	-	args[0]	-->BankAccountDetails	[accountId=0,	balanceAmount=1000,	lastTransactionTimestamp=Sat
Oct	27	16:48:11	IST	2012]
INFO		BankAccountServiceImpl	-	createBankAccount	method	invoked
INFO		LoggingAspect	-	Entering	FixedDepositServiceImpl's	createFixedDeposit
INFO		LoggingAspect	-	args[0]	-->id	:1,	deposit	amount	:	1000.0,	tenure	:	12,	email	:	someemail@somedomain.com
INFO		FixedDepositServiceImpl	-	createFixedDeposit	method	invoked

	
The	 above	 output	 shows	 that	 LoggingAspect’s	 log	 method	 is	 executed	 before	 the	 execution	 of
BankAccountService’s	createBankAccount	and	FixedDepositService’s	createFixedDeposit	method.

In	the	context	of	LoggingAspect,	let’s	look	at	how	Spring	AOP	framework	works.

NOTE	To	use	AspectJ	annotation-style	aspects,	ch09-simple-aop	project	defines	dependency	on	spring-
aop,	aopalliance,	aspectjrt	and	aspectjweaver	JAR	files.	Please	refer	to	the	pom.xml	file	of	ch09-simple-
aop	project	for	details.



9-3	Spring	AOP	framework
Spring	AOP	framework	is	proxy-based;	a	proxy	object	is	created	for	objects	that	are	target	of	an	advice.
A	proxy	is	an	intermediary	object,	introduced	by	the	AOP	framework,	between	the	calling	object	and	the
target	object.	At	runtime,	calls	to	the	target	object	are	intercepted	by	the	proxy,	and	advices	that	apply	to
the	target	method	are	executed	by	the	proxy.	In	Spring	AOP,	a	target	object	is	a	bean	instance	registered
with	the	Spring	container.

The	following	diagram	shows	how	the	LoggingAspect’s	log	method	(refer	example	listing	9-1)	is	applied
to	the	methods	of	BankAccountService	and	FixedDepositService	objects	(refer	example	listing	9-2):

Figure	9-1	The	proxy	object	is	responsible	for	intercepting	method	calls	to	the	target	object	and	executing
the	advices	that	apply	to	the	target	method.

The	above	diagram	shows	that	a	proxy	is	created	for	both	BankAccountService	and	FixedDepositService
objects.	 The	 proxy	 for	 BankAccountService	 intercepts	 the	 call	 to	 BankAccountService’s
createBankAccount	 method,	 and	 the	 proxy	 for	 FixedDepositService	 intercepts	 the	 call	 to
FixedDepositService’s	 createFixedDeposit	 method.	 The	 proxy	 for	 BankAccountService	 first	 executes
LoggingAspect’s	log	method,	followed	by	BankAccountService’s	createBankAccount	method	invocation.
Similarly,	 the	 proxy	 for	 FixedDepositService	 first	 executes	 LoggingAspect’s	 log	 method,	 followed	 by
FixedDepositService’s	createFixedDeposit	method	invocation.

The	timing	of	 the	execution	of	an	advice	(like	the	log	method	of	LoggingAspect	aspect)	depends	on	 the
type	of	the	advice.	In	AspectJ	annotation-style,	type	of	an	advice	is	specified	by	the	AspectJ	annotation	on
the	advice.	For	instance,	AspectJ’s	@Before	annotation	specifies	 that	 the	advice	 is	executed	before	 the
invocation	 of	 the	 target	 method,	 @After	 annotation	 specifies	 that	 the	 advice	 is	 executed	 after	 the
invocation	of	the	target	method,	@Around	annotation	specifies	that	the	advice	is	executed	both	before	and
after	 the	 execution	 of	 the	 target	method,	 and	 so	 on.	As	LoggingAspect’s	 log	method	 is	 annotated	with
@Before	annotation,	log	method	is	executed	before	the	execution	of	the	target	object’s	method.

Let’s	now	look	at	how	Spring	AOP	framework	creates	a	proxy	object.

Proxy	creation
When	 using	 Spring	 AOP,	 you	 have	 the	 option	 to	 explicitly	 create	 AOP	 proxies	 via	 Spring’s
ProxyFactoryBean	 (refer	 to	 org.springframework.aop.framework	 package)	 or	 you	 can	 let	 Spring
automatically	create	AOP	proxies.	The	automatic	generation	of	AOP	proxies	by	Spring	AOP	is	referred	to
as	autoproxying.



If	 you	want	 to	 use	AspectJ	 annotation-style	 for	 creating	 aspects,	 you	 need	 to	 enable	 support	 for	 using
AspectJ	annotation-style	by	specifying	Spring	aop	schema’s	<aspectj-autoproxy>	element.	The	<aspectj-
autoproxy>	element	also	instructs	Spring	AOP	framework	to	automatically	create	AOP	proxies	for	target
objects.	The	following	example	listing	shows	usage	of	<aspectj-autoproxy>	element	in	ch09-simple-aop
project:

Example	listing	9-3	–	applicationContext.xml	-	<aspectj-autoproxy>	element
Project	–	ch09-simple-aop
Source	location	-	src/main/resources/META-INF/spring
	
<beans	.....
				xmlns:context="http://www.springframework.org/schema/context"
				xmlns:aop="http://www.springframework.org/schema/aop"
				xsi:schemaLocation=".....http://www.springframework.org/schema/aop
												http://www.springframework.org/schema/aop/spring-aop-4.0.xsd">
	
				<context:component-scan	base-package="sample.spring"	/>
				<aop:aspectj-autoproxy	proxy-target-class="false"	expose-proxy="true"/>
	
</beans>

The	 <aspectj-autoproxy>	 element’s	 proxy-target-class	 attribute	 specifies	 whether	 JavaSE-	 or	 CGLIB-
based	proxies	are	created	for	target	objects,	and	expose-proxy	attribute	specifies	whether	the	AOP	proxy
itself	is	available	to	the	target	object.	If	expose-proxy’s	value	is	set	to	true,	the	target	object’s	method	can
access	the	AOP	proxy	by	calling	AopContext’s	currentProxy	static	method.

Spring	AOP	framework	creates	a	CGLIB-	or	JavaSE-based	proxy.	If	the	target	object	doesn’t	implement
any	 interface,	 Spring	AOP	 creates	 a	CGLIB-based	 proxy.	 If	 the	 target	 object	 implements	 one	 or	more
interfaces,	 Spring	 AOP	 creates	 a	 JavaSE-based	 proxy.	 If	 the	 value	 of	 <aspectj-autoproxy>	 element’s
proxy-target-class	attribute	is	set	to	false,	it	instructs	Spring	AOP	to	create	a	JavaSE-based	proxy	if	the
target	object	 implements	one	or	more	 interface.	 If	you	set	proxy-target-class	attribute’s	value	 to	 true,	 it
instructs	 Spring	AOP	 to	 create	 CGLIB-based	 proxies	 even	 if	 a	 target	 object	 implements	 one	 or	more
interfaces.

NOTE	Starting	with	Spring	3.2,	the	CGLIB	classes	are	packaged	within	the	spring-core	JAR	file	itself;
therefore,	you	don’t	need	to	explicitly	include	CGLIB	JAR	file	in	your	application	to	allow	Spring	AOP
framework	to	create	CGLIB-based	proxies	for	target	objects.

Let’s	now	look	at	a	scenario	in	which	you’d	prefer	to	set	expose-proxy	attribute	of	<aspectj-autoproxy>
element	to	true.

IMPORT	 chapter	 9/ch09-aop-proxy	 (The	 ch09-aop-proxy	 project	 shows	 the	MyBank	 application	 in
which	AopProxy’s	 currentProxy	method	 is	 used	 by	 a	 target	 method	 to	 retrieve	 the	 AOP	 proxy	 object
created	by	Spring	AOP	framework.	To	run	the	application,	execute	the	main	method	of	the	BankApp	class
of	this	project)

expose-proxy	attribute



The	 following	 example	 listing	 shows	 a	 modified	 BankAccountServiceImpl	 class	 in	 which	 the
createBankAccount	method	invokes	the	isDuplicateAccount	method	to	check	if	a	bank	account	with	same
details	already	exists	in	the	system:

Example	listing	9-4	–	BankAccountServiceImpl	class
	
@Service(value	=	"bankAccountService")
public	class	BankAccountServiceImpl	implements	BankAccountService	{
				@Autowired
				private	BankAccountDao	bankAccountDao;
	
				@Override
				public	int	createBankAccount(BankAccountDetails	bankAccountDetails)	{
								if(!isDuplicateAccount(bankAccountDetails))	{
												return	bankAccountDao.createBankAccount(bankAccountDetails);
								}	else	{
												throw	new	BankAccountAlreadyExistsException("Bank	account	already	exists");
								}
				}
	
				@Override			
				public	boolean	isDuplicateAccount(BankAccountDetails	bankAccountDetails)	{	.....	}
}

The	 above	 example	 listing	 shows	 that	 the	 createBankAccount	 method	 invokes	 the	 isDuplicateAccount
method	to	check	if	the	bank	account	already	exists	in	the	system.

Now,	the	question	arises	that	whether	the	LoggingAspect’s	log	method	(refer	example	listing	9-1)	will	be
executed	when	the	isDuplicateAccount	method	is	invoked	by	the	createBankAccount	method?	Even	though
the	isDuplicateAccount	method	matches	the	pointcut	expression	specified	by	@Before	annotation	on	the
LoggingAspect’s	log	method	(refer	example	listing	9-1),	the	LoggingAspect’s	log	method	is	not	invoked.
This	is	because	methods	invoked	by	the	target	object	on	itself	are	not	proxied	by	the	AOP	proxy.	As	the
method	invocation	doesn’t	go	through	the	AOP	proxy	object,	any	advice	that	is	associated	with	the	target
method	is	not	executed.

To	 ensure	 that	 the	 call	 to	 isDuplicateAccount	method	goes	 to	 the	 target	 object	 through	 the	AOP	proxy,
retrieve	 the	 AOP	 proxy	 object	 in	 the	 createBankAccount	 method	 and	 invoke	 the	 isDuplicateAccount
method	on	the	AOP	proxy	object.	The	following	example	listing	shows	how	to	retrieve	AOP	proxy	object
inside	the	createBankAccount	method:

Example	listing	9-5	–	BankAccountServiceImpl	class
Project	–	ch09-aop-proxy
Source	location	-	src/main/java/sample/spring/chapter09/bankapp/service
	
package	sample.spring.chapter09.bankapp.service;
	
import	org.springframework.aop.framework.AopContext;



.....
@Service(value	=	"bankAccountService")
public	class	BankAccountServiceImpl	implements	BankAccountService	{
				.....
				@Override
				public	int	createBankAccount(BankAccountDetails	bankAccountDetails)	{
								//--	obtain	the	proxy	and	invoke	the	isDuplicateAccount	method	via	proxy
								boolean	isDuplicateAccount	=
	 	 	 	 	 	 	 	
				((BankAccountService)AopContext.currentProxy()).isDuplicateAccount(bankAccountDetails);
	
								if(!isDuplicateAccount)	{	.....	}
								.....
				}
			
				@Override
				public	boolean	isDuplicateAccount(BankAccountDetails	bankAccountDetails)	{	.....	}
}

In	the	above	example	listing,	call	to	AopContext’s	currentProxy	method	returns	the	AOP	proxy	that	made
the	call	to	the	createBankAccount	method.	If	the	createBankAccount	method	is	not	invoked	through	Spring
AOP	framework	or	the	value	of	expose-proxy	attribute	of	<aspectj-autoproxy>	element	is	false,	call	to	the
currentProxy	 method	 will	 result	 in	 throwing	 java.lang.IllegalStateException.	 As	 the	 AOP	 proxy
implements	the	same	interface	as	the	target	object,	the	above	example	listing	shows	that	the	AOP	proxy
returned	 by	 the	 currentProxy	 method	 is	 cast	 to	 BankAccountService	 type	 and	 BankAccountService’s
isDuplicateAccount	method	is	invoked.

If	 you	 now	 go	 to	 ch09-aop-proxy	 project	 and	 execute	 BankApp’s	 main	 method,	 you’ll	 notice	 that
LoggingAspect’s	 log	 method	 is	 executed	 when	 isDuplicateAccount	 method	 is	 invoked	 by	 the
createBankAccount	method.

Let’s	now	take	at	an	in-depth	look	at	pointcut	expressions.



9-4	Pointcut	expressions
When	using	Spring	AOP,	a	pointcut	expression	identifies	the	join	points	to	which	an	advice	is	applied.	In
Spring	AOP,	join	points	are	always	bean	methods.	If	you	want	to	apply	an	advice	to	fields,	constructors,
non-public	methods,	and	to	objects	 that	are	not	Spring	beans,	you	should	use	AspectJ	 instead	of	Spring
AOP	framework.	 If	you	want	 to	develop	aspects	using	AspectJ	annotation-style,	you	have	 the	option	 to
specify	 a	 pointcut	 expression	 using	 AspectJ’s	 @Pointcut	 annotation	 or	 by	 using	 AspectJ’s	 @Before,
@After,	and	so	on,	annotations	that	specify	the	advice	type.

Pointcut	 expressions	 use	 pointcut	 designators,	 like	 execution,	 args,	 within,	 this,	 and	 so	 on,	 to	 find
matching	methods	to	which	an	advice	is	applied.	For	instance,	in	example	listing	9-1,	@Before	annotation
made	use	of	execution	pointcut	designator	 to	 find	methods	 to	which	 the	LoggingAspect’s	 log	method	 is
applied.

Let’s	now	look	at	how	pointcut	expressions	are	specified	using	@Pointcut	annotation.

IMPORT	chapter	9/ch09-aop-pointcuts	(The	ch09-aop-pointcuts	project	shows	the	MyBank	application
that	uses	AspectJ’s	@Pointcut	annotation	to	specify	a	pointcut	expression.	To	run	the	application,	execute
the	main	method	of	the	BankApp	class	of	this	project)

@Pointcut	annotation
@Pointcut	 annotation’s	 value	 attribute	 specifies	 the	 pointcut	 expression.	 To	 use	@Pointcut	 annotation,
create	an	empty	method	and	annotate	it	with	@Pointcut	annotation.	The	empty	method	must	be	defined	to
return	void.	An	advice	that	refers	to	the	name	of	the	@Pointcut	annotated	method	is	applied	to	the	methods
matched	by	the	pointcut	expression	specified	by	the	@Pointcut	annotation.

NOTE	Using	@Pointcut	annotation	 is	particularly	useful	 if	 a	pointcut	expression	 is	 shared	by	multiple
advices	in	the	same	or	different	aspects.

The	 following	 example	 listing	 shows	 a	modified	version	of	LoggingAspect	 (refer	 example	 listing	9-1)
class	that	uses	@Pointcut	annotation:

Example	listing	9-6	–	LoggingAspect	class
Project	–	ch09-aop-pointcuts
Source	location	-	src/main/java/sample/spring/chapter09/bankapp/aspects
	
package	sample.spring.chapter09.bankapp.aspects;
	
import	org.aspectj.lang.annotation.Before;
import	org.aspectj.lang.annotation.Pointcut;
	
@Aspect
@Component
public	class	LoggingAspect	{
				@Pointcut(value	=	"execution(*	sample.spring.chapter09.bankapp.service.*Service.*(..))")
				private	void	invokeServiceMethods()	{	}
			



				@Before(value	=	"invokeServiceMethods()")
				public	void	log(JoinPoint	joinPoint)	{
								logger.info("Entering	"	+	joinPoint.getTarget().getClass().getSimpleName()	+	"'s	"
																+	joinPoint.getSignature().getName());
								.....
				}
}

In	the	above	example	listing,	the	invokeServiceMethods	method	is	annotated	with	@Pointcut	annotation,
and	@Before	annotation’s	value	attribute	refers	to	the	invokeServiceMethods	method.	This	means	that	the
log	 method	 is	 applied	 to	 the	 methods	 that	 match	 the	 pointcut	 expression	 specified	 by	 the	 @Pointcut
annotation	on	the	invokeServiceMethods	method.

As	the	execution	and	args	pointcut	designators	are	mostly	used	when	specifying	pointcut	expressions,	let’s
look	at	execution	and	args	pointcut	designators	in	detail.

execution	and	args	pointcut	designators
The	execution	pointcut	designator	has	the	following	format:

execution(<access-modifier-pattern>	 <return-type-pattern>	 <declaring-type-pattern>	 <method-
name-pattern>(<method-param-pattern>)	<throws-pattern>)
	
If	 you	 compare	 an	 execution	 expression	 to	 a	 method	 declaration,	 you’ll	 notice	 that	 an	 execution
expression	is	similar	to	a	method	declaration.

Figure	9-2	Different	parts	of	an	execution	expression	map	to	different	parts	of	a	method	declaration.

Figure	9-2	shows	how	the	different	parts	of	an	execution	expression	map	to	a	method	declaration:

Spring	 AOP	 framework	 matches	 different	 parts	 of	 an	 execution	 expression	 with	 different	 parts	 of	 a
method	declaration	(as	shown	above)	to	find	the	methods	to	which	an	advice	is	applied.	The	<declaring-
type-pattern>	is	not	shown	in	the	above	figure	because	<declaring-type-pattern>	is	only	used	when	you
want	to	refer	to	methods	contained	in	a	particular	type	or	package.

The	following	table	describes	different	parts	of	an	execution	expression:
Expression	part Description

access-modifier-pattern
Specifies	the	access	modifier	of	the	target	method.	In	Spring	AOP,	the	only	value	that	can
be	 specified	 for	 this	 expression	 part	 is	 public.	 This	 part	 of	 execution	 expression	 is
optional.

return-type-pattern Specifies	the	fully-qualified	name	of	the	return	type	of	the	target	method.	A	value	of	*
means	that	the	return	type	of	a	method	doesn’t	matter.



declaring-type-pattern
Specifies	the	fully-qualified	name	of	the	type	that	contains	the	target	method.	This	part
of	 execution	 expression	 is	 optional.	 A	 value	 of	 *	 means	 that	 all	 types	 (classes	 and
interfaces)	in	the	application	are	considered	by	the	pointcut	expression.

method-name-pattern Specifies	 the	 method	 name	 pattern.	 For	 instance,	 a	 value	 of	 save*	 means	 that	 the
methods	whose	names	begin	with	save	are	target	of	advice.

method-param-pattern Specifies	 the	method	parameter	pattern.	 If	 the	value	 is	 (..),	 it	means	 target	method	 can
contain	any	number	of	arguments	or	no	arguments	at	all.

throws-pattern Specifies	 the	 exception(s)	 thrown	 by	 the	 target	 method.	 This	 part	 of	 execution
expression	is	optional.

	
The	 args	 pointcut	 designator	 specifies	 the	 arguments	 that	 must	 be	 accepted	 by	 the	 target	 method	 at
runtime.	 For	 instance,	 if	 you	 want	 pointcut	 expression	 to	 locate	 methods	 that	 accept	 an	 instance	 of
java.util.List	 at	 runtime,	 then	 the	 args	 expression	 looks	 like:	 args(java.util.List).	 Later	 in	 this	 section,
we’ll	 see	 how	 args	 pointcut	 designator	 can	 be	 used	 to	 make	 arguments	 passed	 to	 the	 target	 method
available	to	an	advice.

Let’s	now	look	at	some	pointcut	expressions	that	use	execution	and	args	pointcut	designators:

Example	1

Figure	9-3	execution	expression	that	uses	a	method	name	pattern

The	 methods	 matched	 by	 the	 above	 pointcut	 expression	 are	 the	 methods	 whose	 names	 start	 with
createFixed.	The	return	type	is	specified	as	*,	which	means	the	target	method	may	return	any	type.	The	(..)
specifies	that	the	target	method	may	accept	zero	or	more	arguments.

Example	2

Figure	9-4	execution	expression	that	specifies	the	type	(class	or	interface)	containing	the	target	method(s)

The	methods	matched	by	the	above	pointcut	expression	are	the	methods	defined	by	the	MyService	type	in
sample	package.



Example	3

Figure	9-5	execution	expression	that	specifies	an	exception	pattern	for	the	method

The	methods	matched	by	 the	above	pointcut	expression	are	 the	methods	of	sample.MyService	 type	 that
specify	a	throws	clause.

Example	4

Figure	9-6	args	pointcut	designator	specifies	the	object	instance	passed	to	the	target	method

In	the	above	pointcut	expression,	combinations	of	execution	and	args	pointcut	designators	have	been	used.
You	can	combine	pointcut	designators	using	&&	and||	operators	 to	create	complex	pointcut	expressions.
The	methods	matched	by	the	above	pointcut	expression	are	the	methods	defined	in	sample.MyService	type
that	accept	an	instance	of	SomeObject	at	runtime.	The	&&	in	the	above	pointcut	expression	specifies	that
the	target	method	must	match	the	expressions	specified	by	the	execution	and	args	pointcut	designators.

If	 you	 want	 an	 advice	 to	 have	 access	 to	 one	 or	 more	method	 arguments	 passed	 to	 the	 target	 method,
specify	names	of	the	method	arguments	in	the	args	expression,	as	shown	here:



Figure	9-7	args	pointcut	designator	specifies	the	target	method’s	argument(s)	that	must	be	made	available
to	the	advice

In	the	above	pointcut	expression,	args	expression	specifies	that	the	target	method	must	accept	an	argument
of	type	SomeObject,	and	that	argument	is	available	to	advice	via	xyz	parameter.	Let’s	see,	a	real	example
that	makes	use	of	this	feature	to	pass	arguments	to	the	advice.

Passing	target	method’s	arguments	to	an	advice

The	 following	 example	 listing	 shows	 a	 modified	 version	 of	 LoggingAspect	 in	 which	 log	 method	 is
executed	only	if	the	method	argument	passed	to	the	target	method	is	an	instance	of	FixedDepositDetails,
and	that	FixedDepositDetails	instance	is	also	made	available	to	the	log	method:

Example	listing	9-7	–	LoggingAspect	class	–	passing	target	method’s	arguments	to	an	advice
	
import	org.aspectj.lang.annotation.Before;
import	org.aspectj.lang.annotation.Pointcut;
	
@Aspect
@Component
public	class	LoggingAspect	{
				.....
				@Pointcut(value	=
					"execution(*	sample.spring.chapter09.bankapp.service.*Service.*(..))
							&&	args(FixedDepositDetails)	")
				private	void	invokeServiceMethods(FixedDepositDetails	FixedDepositDetails)	{
				}
	
		@Before(value	=	"invokeServiceMethods(FixedDepositDetails)")
				public	void	log(JoinPoint	joinPoint,	FixedDepositDetails	FixedDepositDetails)	{
								.....
				}
}

In	the	above	example	listing,	the	args	expression	specifies	that	the	FixedDepositDetails	instance	passed	to



the	target	method	is	available	to	log	method	(an	advice)	via	FixedDepositDetails	parameter.	As	the	args
expression	provides	log	method	with	an	instance	of	FixedDepositDetails	object,	the	log	method	has	been
modified	to	accept	an	additional	argument	of	type	FixedDepositDetails.

Pointcut	designators,	like	execution,	args,	within,	this,	target,	and	so	on,	are	defined	by	AspectJ.	Spring
AOP	defines	a	bean	pointcut	designator	that	is	specific	to	Spring	AOP	framework.	Let’s	take	a	quick	look
at	bean	pointcut	designator.

bean	pointcut	designator
The	bean	pointcut	designator	is	for	limiting	the	target	methods	to	the	specified	bean	id	(or	name).	You	can
specify	 the	 exact	bean	 id	or	name,	or	you	can	 specify	 a	pattern.	Let’s	 look	at	 a	 few	examples	of	bean
pointcut	designator:

Example	1

Figure	9-8	bean	pointcut	designator	specifies	the	bean	id	or	name	whose	methods	are	target	of	the	advice

The	 methods	 matched	 by	 the	 above	 pointcut	 expression	 are	 the	 methods	 defined	 by	 the	 bean	 named
someBean.

Example	2

Figure	9-9	bean	pointcut	designator	specifies	that	an	advice	is	applied	to	the	methods	of	the
beans	whose	id	or	name	begin	with	someBean.

In	 the	 above	 pointcut	 expression,	 bean	 pointcut	 designator	 specifies	 that	 an	 advice	 is	 applied	 to	 the
methods	of	the	beans	whose	id	or	name	begin	with	someBean.

NOTE	Like	any	other	pointcut	designator,	you	can	combine	bean	pointcut	designator	with	other	pointcut
designators	using	&&	and	||operators	to	form	complex	pointcut	expressions.

Let’s	now	look	at	pointcut	designators	that	perform	matching	based	on	annotations.

Annotations-based	pointcut	designators
AspectJ	also	provides	pointcut	designators,	like	@annotation,	@target,	@within	and	@args	that	you	can
use	with	Spring	AOP	to	find	 target	methods.	Let’s	 look	at	couple	of	examples	 that	show	usage	of	 these



pointcut	designators:

Example	1

Figure	9-10	@annotation	pointcut	designator	specifies	that	an	advice	is	applied	to	the	methods	annotated
with	Spring’s	Cacheable	annotation

The	 methods	 matched	 by	 the	 above	 pointcut	 expression	 are	 the	 methods	 annotated	 with	 Spring’s
@Cacheable	annotation.

Example	2

Figure	 9-11	 @target	 pointcut	 designator	 specifies	 that	 advice	 is	 applied	 to	 the	 methods	 of	 objects
annotated	with	Spring’s	@Component	annotation

The	methods	matched	by	the	above	pointcut	expression	are	the	methods	contained	in	an	object	annotated
with	Spring’s	@Component	annotation.

In	this	section,	we	looked	at	some	of	the	pointcut	designators	defined	by	AspectJ.	It	is	important	to	note
that	not	all	pointcut	designators	defined	by	AspectJ	are	supported	by	Spring	AOP	framework.	If	you	use
an	 unsupported	 pointcut	 designator	 in	 pointcut	 expressions,	 Spring	 AOP	 framework	 throws	 a
java.lang.IllegalArgumentException.	 For	 instance,	 if	 you	 use	 call,	 set	 and	 get	 pointcut	 designators	 in
pointcut	expressions,	Spring	AOP	will	throw	java.lang.IllegalArgumentException.

Let’s	now	look	at	different	advice	types	and	how	to	create	them.



9-5	Advice	types
So	 far	 in	 this	chapter,	we’ve	 seen	examples	of	before	 advice	 type.	A	before	advice	 type	 is	created	by
annotating	 a	method	 of	 an	 aspect	with	@Before	 annotation	 (refer	 listing	 9-1,	 9-6	 and	 9-7).	 The	 other
advice	types	that	you	can	create	are	after,	after	returning,	after	throwing,	after	and	around.

IMPORT	chapter	9/ch09-aop-advices	 (The	 ch09-aop-advices	 project	 shows	 the	MyBank	 application
that	uses	different	advice	types.	To	run	the	application,	execute	the	main	method	of	the	BankApp	class	of
this	project)

Let’s	now	look	at	salient	features	of	various	advice	types,	and	how	to	create	them.

Before	advice
A	before	 advice	 is	 executed	before	 the	 target	method	 is	 executed.	 If	 a	 before	 advice	doesn’t	 throw	an
exception,	 the	 target	 method	 will	 always	 be	 invoked.	 You	 can	 control	 whether	 the	 target	 method	 is
executed	 or	 not,	 by	 using	 an	 around	 advice	 (explained	 later	 in	 this	 section).	 As	 discussed	 earlier,
AspectJ’s	@Before	annotation	is	used	to	indicate	that	an	advice	is	a	before	advice.

@Before	annotated	method	may	define	its	first	argument	to	be	of	type	JoinPoint.	You	can	use	the	JoinPoint
argument	 inside	 the	 advice	 to	 retrieve	 information	 about	 the	 target	 method.	 For	 instance,	 listing	 9-1
showed	 that	 the	 JoinPoint	 instance	 can	 be	 used	 to	 obtain	 the	 class	 name	 of	 the	 target	 object	 and	 the
arguments	passed	to	the	target	method.

After	returning	advice
An	after	 returning	 advice	 is	 executed	 after	 the	 target	 method	 returns.	 You	 should	 note	 that	 an	 after
returning	advice	is	not	executed	if	the	target	method	throws	an	exception.	An	after	returning	advice	 is
annotated	with	AspectJ’s	@AfterReturning	 annotation.	An	after	returning	 advice	 can	 access	 the	 value
returned	by	the	target	method,	and	modify	it	before	it	is	returned	to	the	calling	object.

The	SampleAspect	class	of	ch09-aop-advices	project	represents	an	AOP	aspect.	The	following	example
listing	shows	that	the	SampleAspect	class	defines	an	after	returning	advice	that	prints	the	value	returned
by	BankAccountService’s	createBankAccount	method:

Example	listing	9-8	–	SampleAspect	class	–	after	returning	advice
Project	–	ch09-aop-advices
Source	location	-	src/main/java/sample/spring/chapter09/bankapp/aspects
	
package	sample.spring.chapter09.bankapp.aspects;
	
import	org.aspectj.lang.annotation.AfterReturning;
.....
@Aspect
public	class	SampleAspect	{
				private	Logger	logger	=	Logger.getLogger(SampleAspect.class);
	
				@Pointcut(value	=	"execution(*	sample.spring..BankAccountService.createBankAccount(..))")
				private	void	createBankAccountMethod()	{}



	
				@AfterReturning(value	=	"createBankAccountMethod()",	returning	=	"aValue")
				public	void	afterReturningAdvice(JoinPoint	joinPoint,	int	aValue)	{
								logger.info("Value	returned	by	"	+	joinPoint.getSignature().getName()
																+	"	method	is	"	+	aValue);
				}
				.....
}

In	 the	 above	 example	 listing,	 afterReturningAdvice	method	 represents	 an	 after	 returning	 advice.	 The
pointcut	expression	specified	by	the	@Pointcut	annotation	limits	the	join	point	to	BankAccountService’s
createBankAccount	method.		The	..	in	the	execution	expression	specifies	 that	 the	sample.spring	package
and	its	sub-packages	are	searched	to	find	the	BankAccountService	type.

In	example	 listing	9-8,	SampleAspect’s	afterReturningAdvice	method	 is	 invoked	after	 the	 invocation	of
BankAccountService’s	createBankAccount	method.	The	returning	attribute	of	@AfterReturning	annotation
specifies	the	name	with	which	the	return	value	of	the	target	method	is	available	to	the	advice.	In	the	above
example	 listing,	 the	 value	 returned	 by	 the	 createBankAccount	 method	 is	 made	 available	 to	 the
afterReturningAdvice	method	via	aValue	argument.	The	type	of	the	aValue	argument	has	been	specified	as
int	because	 the	createBankAccount	method	 returns	an	 int	value.	You	 should	note	 that	 if	 you	 specify	 the
returning	 attribute,	 the	 advice	 is	 applied	 only	 to	 methods	 that	 return	 the	 specified	 type.	 If	 an	 after
returning	advice	is	applied	to	methods	that	return	different	value	types	(including	void),	you	can	specify
argument	type	of	the	returned	value	as	Object.

As	shown	in	example	listing	9-8,	a	@AfterReturning	annotated	method	may	define	its	first	argument	to	be
of	type	JoinPoint	to	access	target	method	information.

After	throwing	advice
An	after	 throwing	 advice	 is	 executed	when	 the	 target	method	 throws	 an	 exception.	An	after	 throwing
advice	can	access	the	exception	thrown	by	the	target	method.	An	after	throwing	advice	is	annotated	with
AspectJ’s	@AfterThrowing	annotation.

The	 following	 example	 listing	 shows	 an	after	 throwing	 advice	 that	 is	 executed	when	 an	 exception	 is
thrown	by	target	methods:

Example	listing	9-9	–	SampleAspect	class	–	after	throwing	advice
Project	–	ch09-aop-advices
Source	location	-	src/main/java/sample/spring/chapter09/bankapp/aspects
	
package	sample.spring.chapter09.bankapp.aspects;
	
import	org.aspectj.lang.annotation.AfterThrowing;
.....
@Aspect
public	class	SampleAspect	{
				private	Logger	logger	=	Logger.getLogger(SampleAspect.class);
				.....



				@Pointcut(value	=	"	execution(*	sample.spring..FixedDepositService.*(..))	")
				private	void	exceptionMethods()	{}
				.....
				@AfterThrowing(value	=	"exceptionMethods()",	throwing	=	"exception")
				public	void	afterThrowingAdvice(JoinPoint	joinPoint,	Throwable	exception)	{
								logger.info("Exception	thrown	by	"	+	joinPoint.getSignature().getName()
																+	"	Exception	type	is	:	"	+	exception);
				}
}

In	the	above	example	listing,	SampleAspect’s	afterThrowingAdvice	method	represents	an	after	throwing
advice.	 The	 afterThrowingAdvice	 method	 is	 executed	 when	 an	 exception	 is	 thrown	 by	 any	 of	 the
FixedDepositService	 object’s	 methods.	 In	 the	 above	 example	 listing,	 the	 throwing	 attribute	 of
@AfterThrowing	annotation	specifies	the	name	with	which	the	exception	thrown	by	the	target	method	is
made	available	 to	 the	afterThrowingAdvice	method.	As	 the	 throwing	attribute’s	value	 is	 exception,	 the
exception	 is	passed	 to	 the	afterThrowingAdvice	method	via	argument	named	exception.	Notice	 that	 the
type	 of	 the	 exception	 argument	 is	 java.lang.Throwable,	 which	 means	 that	 the	 afterThrowingAdvice
method	 is	 executed	 for	 all	 exceptions	 thrown	 by	 the	 target	 method.	 If	 you	 want	 afterThrowingAdvice
method	is	executed	only	when	a	specific	exception	type	is	thrown	by	the	target	method,	change	the	type	of
the	exception	argument.	For	instance,	if	you	want	the	afterThrowingAdvice	method	is	executed	only	when
the	 target	method	 throws	 java.lang.IllegalStateException,	 specify	 java.lang.IllegalStateException	 as	 the
type	of	the	exception	argument.

As	shown	in	example	listing	9-9,	@AfterThrowing	annotated	method	may	define	its	first	argument	to	be	of
type	JoinPoint	to	access	target	method	information.

After	advice
An	after	advice	is	executed	after	the	target	method	is	executed,	irrespective	of	whether	the	target	method
completes	 normally	 or	 throws	 an	 exception.	 An	 after	 advice	 is	 annotated	 with	 AspectJ’s	 @After
annotation.

The	 following	 example	 listing	 shows	 an	 after	 advice	 that	 is	 executed	 for	 BankAccountService’s
createBankAccount	method,	and	for	the	methods	defined	by	the	FixedDepositService	interface:

Example	listing	9-10	–	SampleAspect	class	–	after	advice
Project	–	ch09-aop-advices
Source	location	-	src/main/java/sample/spring/chapter09/bankapp/aspects
	
package	sample.spring.chapter09.bankapp.aspects;
	
import	org.aspectj.lang.annotation.After;
.....
@Aspect
public	class	SampleAspect	{
				private	Logger	logger	=	Logger.getLogger(SampleAspect.class);
	
				@Pointcut(value	=	"execution(*	sample.spring..BankAccountService.createBankAccount(..))")



				private	void	createBankAccountMethod()	{}
	
				@Pointcut(value	=	"execution(*	sample.spring..FixedDepositService.*(..))")
				private	void	exceptionMethods()	{}
				.....
				@After(value	=	"exceptionMethods()	||	createBankAccountMethod()")
				public	void	afterAdvice(JoinPoint	joinPoint)	{
								logger.info("After	advice	executed	for	"	+	joinPoint.getSignature().getName());
				}
}

In	 the	 above	 example	 listing,	 SampleAspect’s	 afterAdvice	 method	 represents	 an	 after	 advice.	 The
afterAdvice	method	is	executed	after	 the	 target	method	is	executed.	Notice	 that	 the	@After	annotation’s
value	 attribute	 uses	 ||	 operator	 to	 combine	 pointcut	 expressions	 represented	 by	 the
createBankAccountMethod	and	exceptionMethods	methods	to	form	a	new	pointcut	expression.

As	shown	in	example	listing	9-10,	@After	annotated	method	may	define	its	first	argument	to	be	of	type
JoinPoint,	to	access	target	method	information.

Around	advice
An	around	 advice	 is	 executed	 both	 before	 and	after	 the	 execution	 of	 the	 target	 method.	 Unlike	 other
advices,	an	around	advice	can	control	whether	the	target	method	is	executed	or	not.	An	around	advice	is
annotated	with	AspectJ’s	@Around	annotation.

The	 following	 example	 listing	 shows	 an	 around	 advice	 defined	 by	 SampleAspect	 class	 of	 ch09-aop-
advices	project:

Example	listing	9-11	–	SampleAspect	class	–	around	advice
Project	–	ch09-aop-advices
Source	location	-	src/main/java/sample/spring/chapter09/bankapp/aspects
	
package	sample.spring.chapter09.bankapp.aspects;
	
import	org.aspectj.lang.ProceedingJoinPoint;
import	org.aspectj.lang.annotation.Around;
import	org.springframework.util.StopWatch;
.....
@Aspect
public	class	SampleAspect	{
				.....
				@Around(value	=	"execution(*	sample.spring..*Service.*(..))")
				public	Object	aroundAdvice(ProceedingJoinPoint	pjp)	{
								Object	obj	=	null;
								StopWatch	watch	=	new	StopWatch();
								watch.start();
								try	{
												obj	=	pjp.proceed();



								}	catch	(Throwable	throwable)	{
												//	--	perform	any	action	that	you	want
								}
								watch.stop();
								logger.info(watch.prettyPrint());
								return	obj;
				}
}

In	 the	 above	 example	 listing,	 the	 aroundAdvice	 method	 represents	 an	 around	 advice.	 The
ProceedingJoinPoint	argument	to	the	aroundAdvice	method	is	meant	for	controlling	the	invocation	of	the
target	method.	It	is	important	to	note	that	ProceedingJoinPoint	argument	must	be	the	first	argument	passed
to	 an	 around	 advice.	 When	 you	 invoke	 ProceedingJoinPoint’s	 proceed	 method,	 the	 target	 method	 is
invoked.	This	means	that	if	you	don’t	invoke	the	ProceedingJoinPoint’s	proceed	method,	the	target	method
is	not	 invoked.	If	you	pass	an	Object[]	 to	 the	proceed	method,	 the	values	contained	 in	 the	Object[]	are
passed	as	arguments	to	the	target	method.	If	an	around	advice	chooses	not	to	invoke	the	target	method,	the
around	advice	may	itself	return	a	value.

As	 the	 target	 method	 is	 invoked	 only	 when	 you	 call	 ProceedingJoinPoint’s	 proceed	 method,	 around
advice	allows	you	to	perform	actions	before	and	after	 the	invocation	of	 the	target	method,	and	to	share
information	 between	 these	 action.	 In	 example	 listing	 9-11,	 the	 aroundAdvice	method	 records	 the	 time
taken	 for	 the	 target	method	 to	 execute.	 The	 aroundAdvice	method	 starts	 a	 stop	watch	 (represented	 by
Spring’s	 StopWatch	 object)	 before	 calling	 ProceedingJoinPoint’s	 proceed	 method,	 and	 stops	 the	 stop
watch	after	calling	ProceedingJoinPoint’s	proceed	method.	StopWatch’s	prettyPrint	method	is	then	used	to
print	the	time	taken	by	the	target	method	to	execute.

If	 you	 want	 to	 modify	 the	 value	 returned	 by	 the	 target	 method,	 cast	 the	 returned	 value	 of
ProceedingJoinPoint’s	proceed	method	 to	 the	 return	 type	 of	 the	 target	method	 and	modify	 it.	A	 calling
method	 sees	 the	 value	 returned	 by	 the	 around	 advice;	 therefore,	 you	must	 define	 the	 return	 type	 of	 an
advice	method	as	Object	or	the	type	that	is	returned	by	the	target	method.	An	advice	method	has	the	option
to	 return	 the	value	 returned	by	 the	 target	method,	or	 to	 return	a	different	value	altogether.	For	 instance,
instead	of	invoking	the	target	method,	an	around	advice	may	inspect	the	argument(s)	being	passed	to	the
target	method	and	return	a	value	from	the	cache	if	a	cache	entry	exists	for	the	same	set	of	arguments.

So	far	we	have	 looked	at	examples	 that	showed	how	to	use	AspectJ	annotation-style	 to	create	aspects.
Let’s	now	look	at	how	to	use	a	regular	Spring	bean	as	an	AOP	aspect.



9-6	Spring	AOP	-	XML	schema-style
In	 XML	 schema-style,	 a	 regular	 Spring	 bean	 acts	 as	 an	 aspect.	 A	 method	 defined	 in	 an	 aspect	 is
associated	with	an	advice	type	and	a	pointcut	expression	using	Spring’s	aop	schema.

IMPORT	 chapter	 9/ch09-aop-xml-schema	 (The	 ch09-aop-xml-schema	 project	 is	 same	 as	 ch09-aop-
advices	 project,	 except	 that	 ch09-aop-xml-schema’s	 SampleAspect	 class	 is	 a	 simple	 Java	 class	 that
doesn’t	use	AspectJ’s	annotations)

The	 following	 example	 listing	 shows	 the	 SampleAspect	 class	 of	 ch09-aop-xml-schema	 project	 that
defines	advices:

Example	listing	9-12	–	SampleAspect	class
Project	–	ch09-aop-xml-schema
Source	location	-	src/main/java/sample/spring/chapter09/bankapp/aspects
	
package	sample.spring.chapter09.bankapp.aspects;
.....
public	class	SampleAspect	{
				.....
				public	void	afterReturningAdvice(JoinPoint	joinPoint,	int	aValue)	{
								logger.info("Value	returned	by	"	+	joinPoint.getSignature().getName()+	"	method	is	"	+	aValue);
				}
				public	void	afterThrowingAdvice(JoinPoint	joinPoint,	Throwable	exception)	{
								logger.info("Exception	thrown	by	"	+	joinPoint.getSignature().getName()
																+	"	Exception	type	is	:	"	+	exception);
				}
				.....
}

The	 above	 example	 listing	 shows	 that	 the	 SampleAspect	 class	 defines	 methods	 that	 represent	 AOP
advices.	Notice	that	the	SampleAspect	class	is	not	annotated	with	@Aspect	annotation	and	the	methods
are	not	annotated	with	@After,	@AfterReturning,	and	so	on,	annotations.

Let’s	now	 look	at	how	<config>	element	of	Spring’s	aop	 schema	 is	used	 to	configure	a	 regular	Spring
bean	as	an	AOP	aspect.

Configuring	an	AOP	aspect
In	XML	schema-style,	AOP-specific	configurations	are	enclosed	within	<config>	element	of	Spring’s	aop
schema.	And,	an	AOP	aspect	is	configured	using	<aspect>	sub-element	of	<config>	element.

The	 following	 example	 listing	 shows	 how	 the	 SampleAspect	 class	 is	 configured	 using	 <aspect>	 sub-
element	of	<config>	element:

Example	listing	9-13	–	applicationContext.xml	–	Spring’s	aop	schema	usage
Project	–	ch09-aop-xml-schema
Source	location	-	src/main/resources/META-INF/spring
	



<beans	.....	xmlns:aop="http://www.springframework.org/schema/aop"	.....	>
				.....
				<bean	id="sampleAspect"
							class="sample.spring.chapter09.bankapp.aspects.SampleAspect"	/>
	
				<aop:config	proxy-target-class="false"	expose-proxy="true">
								<aop:aspect	id="sampleAspect"	ref="sampleAspect">
												.....
								</aop:aspect>
				</aop:config>
</beans>

As	 the	 <config>	 element	 relies	 on	 autoproxying,	 the	 <config>	 element	 defines	 proxy-target-class	 and
expose-proxy	 attributes.	 If	 you	 remember,	 the	 same	 attributes	 were	 defined	 by	 <aspectj-autoproxy>
element	of	Spring’s	aop	schema.	Refer	 section	9-3	 to	know	more	about	proxy-target-class	 and	 expose-
proxy	attributes.

In	 example	 listing	 9-13,	 the	 sampleAspect	 bean	 definition	 defines	 SampleAspect	 class	 as	 a	 bean.	 The
<aspect>	 element	 configures	 the	 sampleAspect	 bean	 as	 an	 AOP	 aspect.	 The	 <aspect>	 element’s	 id
attribute	specifies	a	unique	identifier	for	an	aspect,	and	the	ref	attribute	specifies	the	Spring	bean	that	you
want	to	configure	as	an	AOP	aspect.

Now,	that	we	have	configured	an	AOP	aspect,	let’s	look	at	how	to	map	methods	defined	in	an	AOP	aspect
to	different	advice	types	and	pointcut	expressions.

Configuring	an	advice
You	 configure	 an	 advice	 using	 one	 of	 the	 following	 sub-elements	 of	 <aspect>	 element:	 <before>	 (for
configuring	 a	 before	 advice	 type),	 <after-returning>	 (for	 configuring	 an	 after	 returning	 advice	 type),
<after-throwing>	(for	configuring	an	after	throwing	advice	type),	<after>	(for	configuring	an	after	advice
type)	and	<around>	(for	configuring	an	around	advice	type).

Let’s	now	look	at	how	the	advices	defined	in	the	SampleAspect	class	of	ch09-aop-xml-schema	project
are	configured	in	the	application	context	XML	file.

Configuring	an	after	returning	advice

The	 following	 figure	 shows	how	 the	SampleAspect’s	afterReturningAdvice	method	 is	 configured	 as	 an
after	returning	advice	using	<after-returning>	element:

	



Figure	 9-12	 afterReturningAdvice	method	 of	 SampleAspect	 class	 is	 configured	 as	 an	 after	 returning
advice	using	<after-returning>	element	of	Spring’s	aop	schema

The	 <after-returning>	 element’s	method	 attribute	 specifies	 the	 name	 of	 the	method	which	 you	want	 to
configure	 as	 an	 after	 returning	 advice.	 The	 returning	 attribute	 serves	 the	 same	 purpose	 as	 the
@AfterReturning	 annotation’s	 returning	 attribute;	 it	 makes	 the	 returned	 value	 from	 the	 target	 method
available	 to	 the	 advice.	 The	 pointcut	 attribute	 specifies	 the	 pointcut	 expression	 used	 for	 finding	 the
methods	to	which	the	advice	is	applied.

Configuring	an	after	throwing	advice

The	 following	 figure	 shows	how	 the	SampleAspect’s	afterThrowingAdvice	method	 is	 configured	 as	 an
after	throwing	advice	using	<after-throwing>	element:

Figure	 9-13	 afterThrowingAdvice	 method	 of	 SampleAspect	 class	 is	 configured	 as	 an	 after	 throwing
advice	using	<after-throwing>	element	of	Spring’s	aop	schema

The	 <after-throwing>	 element’s	method	 attribute	 specifies	 the	 name	 of	 the	method	which	 you	want	 to
configure	 as	 an	 after	 throwing	 advice.	 The	 throwing	 attribute	 serves	 the	 same	 purpose	 as	 the
@AfterThrowing	 annotation’s	 throwing	 attribute;	 it	 makes	 the	 exception	 thrown	 by	 the	 target	 method
available	 to	 the	 advice.	 The	 pointcut	 attribute	 specifies	 the	 pointcut	 expression	 used	 for	 finding	 the
methods	to	which	the	advice	is	applied.

The	other	advice	types	(before,	after	and	around)	are	configured	the	same	way	as	the	after	returning	and
after	throwing	advices	that	we	just	saw.

Let’s	now	look	at	different	ways	in	which	you	can	associate	a	pointcut	expression	with	an	advice.

Associating	a	pointcut	expression	with	an	advice
The	 <after>,	 <after-returning>,	 <after-throwing>,	 <before>	 and	 <around>	 elements	 of	 Spring’s	 aop
schema	define	a	pointcut	attribute	that	you	can	use	to	specify	the	pointcut	expression	associated	with	the
advice.	If	you	want	to	share	pointcut	expressions	between	different	advices,	you	can	use	the	<pointcut>
sub-element	of	the	<config>	element	to	define	pointcut	expressions.

The	 following	 example	 listing	 shows	 that	 the	 <pointcut>	 element	 is	 used	 for	 defining	 pointcut
expressions:

Example	listing	9-14	–	application	context	XML	-	<pointcut>	element
	
<beans	.....	xmlns:aop="http://www.springframework.org/schema/aop"	.....	>
				.....



				<bean	id="sampleAspect"
							class="sample.spring.chapter09.bankapp.aspects.SampleAspect"	/>
	
				<aop:config	proxy-target-class="false"	expose-proxy="true">
							<aop:pointcut	expression="execution(*	sample.spring..*Service.*(..))"	id="services"	/>
							
								<aop:aspect	id="sampleAspect"	ref="sampleAspect">
												<aop:after	method="afterAdvice"	pointcut-ref="services"	/>
												<aop:around	method="aroundAdvice"	pointcut-ref="services"/>
								</aop:aspect>
				</aop:config>
</beans>

In	 the	 above	 example	 listing,	 the	 <pointcut>	 element	 specifies	 a	 pointcut	 expression.	 The	 expression
attribute	specifies	the	pointcut	expression,	and	the	id	attribute	specifies	a	unique	identifier	for	the	pointcut
expression.	The	 pointcut	 expression	 defined	 by	 a	 <pointcut>	 element	 is	 referenced	 by	 <after>,	 <after-
returning>,	 and	 so	 on,	 advice	 type	 elements	 using	 pointcut-ref	 attribute.	 For	 instance,	 in	 the	 above
example	listing,	<after>	and	<around>	elements	use	pointcut-ref	attribute	to	refer	to	the	services	pointcut
expressions.



9-7	Summary
In	 this	chapter,	we	 looked	at	AOP	concepts	and	how	Spring	AOP	can	be	used	 to	address	cross-cutting
concerns	in	Spring	applications.	We	saw	how	to	create	aspects	using	AspectJ	annotation-style	and	XML
schema-style.	We	also	discussed	how	to	create	and	configure	different	advice	types.	We	touched	upon	the
pointcut	 expressions	 that	 you	 can	 create	 to	 find	 matching	 methods	 in	 the	 application.	 For	 a	 more
comprehensive	 coverage	 of	 Spring	 AOP	 please	 refer	 to	 Spring	 reference	 documentation.	 In	 the	 next
chapter,	 we’ll	 look	 at	 how	 to	 develop	 web	 applications	 using	 Spring	 Web	 MVC	 module	 of	 Spring
Framework.



Chapter	10	–	Spring	Web	MVC	basics



10-1	Introduction
The	 Spring	 Web	 MVC	 module	 of	 Spring	 Framework	 provides	 an	 MVC	 (Model-View-Controller)
framework	that	you	can	use	for	developing	servlet-based	web	applications.	Spring	Web	MVC	is	a	non-
intrusive	framework	that	provides	a	clear	separation	of	concerns	between	application	objects	that	form
the	web	layer.	For	instance,	a	controller	object	is	used	for	processing	the	request,	a	validator	object	is
used	 for	 performing	 validation,	 and	 a	 command	 object	 is	 used	 for	 storing	 form	 data,	 and	 so	 on.	 It	 is
important	 to	 note	 that	 none	 of	 these	 application	 objects	 implement	 or	 extend	 from	 any	 Spring-specific
interface	or	class.

In	 this	 chapter,	we’ll	 first	 look	 at	 the	 directory	 structure	 that	will	 be	 followed	 by	 all	 the	 sample	web
projects	discussed	in	this	chapter.	We’ll	then	look	at	a	simple	‘Hello	World’	web	application	developed
using	Spring	Web	MVC.	In	the	rest	of	this	chapter,	we’ll	look	at	some	of	the	Spring	Web	MVC	annotations
in	the	context	of	our	MyBank	web	application.	This	chapter	sets	the	stage	for	discussing	more	advanced
Spring	Web	MVC	features	in	the	next	chapter.

IMPORT	chapter	10/ch10-helloworld	(This	project	shows	a	simple	‘Hello	World’	web	application	that
uses	Spring	Web	MVC.	Refer	appendix	A	to	learn	how	to	deploy	sample	web	projects	on	Tomcat	server.
Once	 you	 have	 deployed	 the	 application,	 go	 to	 the	 following	 URL:	 http://localhost:8080/ch10-
helloworld/helloworld/sayhello.	 If	 the	 application	 is	 deployed	 successfully,	 it	 will	 show	 you	 ‘Hello
World	!!’	message.)

http://localhost:8080/ch10-helloworld/helloworld/sayhello


10-2	Directory	structure	of	sample	web	projects
Figure	10-1	describes	the	important	directories	of	ch10-helloworld	web	project.	Some	of	the	important
points	that	you	need	to	remember	are:

§	 	The	src/main/resources/META-INF/spring	folder	contains	 the	root	web	application	context	XML
file	that	defines	beans	that	are	shared	by	all	the	servlets	and	filters	of	the	web	application.	The	root
web	 application	 context	 XML	 file	 typically	 defines	 data	 sources,	 services,	 DAOs,	 transaction
managers,	 and	 so	 on.	 The	 root	 web	 application	 context	 XML	 file	 is	 loaded	 by	 Spring’s
ContextLoaderListener	 (a	 javax.servlet.ServletContextListener	 implementation).	Refer	 section	10-
10	to	learn	about	how	ContextLoaderListener	is	configured	in	web.xml	file.

§		The	src/main/webapp/WEB-INF/spring	folder	contains	the	web	application	context	XML	 file	 that
defines	beans	that	form	part	of	the	web	layer	of	the	application.	The	web	application	context	XML
file	typically	defines	controllers	(also	referred	to	as	handlers),	handler	mappings,	view	resolvers,
exception	resolvers,	and	so	on.	We’ll	learn	about	these	objects	later	in	this	chapter.

§		The	beans	defined	in	the	root	web	application	context	XML	file	are	available	to	the	beans	defined
in	the	web	application	context	XML	file.	This	means,	a	bean	defined	in	the	web	application	context
XML	file	can	be	dependent	on	a	bean	defined	in	the	root	web	application	context	XML	file,	but	not
the	other	way	round.

Figure	10-1	Directory	structure	of	ch10-helloworld	project



Let’s	now	look	at	the	configuration	files	and	the	classes	that	form	the	ch10-helloworld	project.



10-3	Understanding	the	‘Hello	World’	web	application
If	you	right-click	on	the	ch10-helloworld	project	in	your	Eclipse	IDE	and	select	Build	Path	à	Configure
Build	 Path	 option,	 you’ll	 notice	 that	 the	 project	 depends	 on	 spring-beans,	 spring-context,	 spring-core,
spring-expression,	spring-web	and	spring-webmvc	JAR	files.	These	JAR	files	are	required	for	building	a
basic	Spring	Web	MVC	application.

The	 following	 table	describes	 the	configuration	 files	and	 the	Java	source	 files	 that	constitute	 the	ch10-
helloworld	project.	Later	in	this	section,	we’ll	take	a	closer	look	at	these	files	and	classes.

Configuration	 file	 or	 Java
source	file Description

HelloWorldController.java
Spring	Web	MVC	controller	that	is	responsible	for	request	handling.

You’ll	 find	 this	 file	 inside	 sample.spring.chapter10.web	 package	 of	 src/main/java
folder.

helloworld.jsp
JSP	file	that	shows	the	‘Hello	World	!!’	message

You’ll	find	this	file	inside	src/main/webapp/WEB-INF/jsp	folder

myapp-config.xml
Web	 application	 context	 XML	 file	 that	 contains	 bean	 definitions	 for	 controllers,
handler	mappings,	and	so	on.

You’ll	find	this	file	inside	src/main/webapp/WEB-INF/spring	folder

web.xml
Web	application	deployment	descriptor

You’ll	find	this	file	inside	src/main/webapp/WEB-INF	folder

	
Apart	from	the	files	shown	in	the	above	table,	the	ch10-helloworld	project	also	contains	log4j.properties
file	 that	 contains	Log4j	 configuration,	 and	 pom.xml	 file	 that	 goes	 as	 input	 to	 the	maven	 build	 tool.	 To
know	 more	 about	 these	 files	 refer	 to	 Log4j	 (http://logging.apache.org/log4j/1.2/)	 and	 Maven
(http://maven.apache.org/index.html)	documentation.

Let’s	now	take	a	closer	look	at	each	of	the	files	described	in	the	above	table.

HelloWorldController.java	–	Hello	World	web	application’s	controller	class
In	 Spring	 Web	 MVC	 applications,	 the	 request	 handling	 logic	 is	 contained	 in	 controller	 classes.	 The
following	example	listing	shows	the	HelloWorldController	controller	class	of	ch10-helloworld	project:

Example	listing	10-1	–	HelloWorldController	class
Project	–	ch10-helloworld
Source	location	-	src/main/java/sample/spring/chapter10/web

package	sample.spring.chapter10.web;
	
import	org.springframework.web.servlet.ModelAndView;
import	org.springframework.web.servlet.mvc.Controller;
.....
public	class	HelloWorldController	implements	Controller	{
	
				@Override
				public	ModelAndView	handleRequest(HttpServletRequest	request,

http://logging.apache.org/log4j/1.2/
http://maven.apache.org/index.html


												HttpServletResponse	response)	throws	Exception	{
							Map<String,	String>	modelData	=	new	HashMap<String,	String>();
					modelData.put("msg",	"Hello	World	!!");
					return	new	ModelAndView("helloworld",	modelData);
				}
}
The	 above	 example	 listing	 shows	 that	 the	 HelloWorldController	 class	 implements	 Spring’s
Controller	 interface.	 The	 Controller	 interface	 defines	 a	 handleRequest	 method,	 which	 you	 need	 to
implement	 to	 provide	 the	 request	 handling	 logic.	 The	 handleRequest	method	 returns	 a	ModelAndView
object	that	contains	the	following	information:

§		the	data	(referred	to	as	model	data)	to	be	shown	to	the	user,	and
§		logical	name	of	the	JSP	page	(referred	to	as	view)	that	shows	the	model	data

The	model	data	is	usually	represented	as	a	java.util.Map	type	object,	and	each	entry	in	the	java.util.Map
object	 represents	 a	model	attribute.	 The	 name	 of	 the	 view	 (the	 JSP	 page)	 to	 be	 shown	 to	 the	 user	 is
specified	as	a	String	value.

Example	 listing	 10-1	 shows	 that	 the	 HelloWorldController’s	 handleRequest	 method	 returns	 a
ModelAndView	 object	 that	 contains	 helloworld	 (a	 String	 value)	 as	 the	 view	 name	 and	modelData	 (a
java.util.Map	type	object)	as	the	model	data.	The	modelData	contains	a	msg	model	attribute	whose	value
is	 the	‘Hello	World	!!’	message.	We’ll	soon	see	 that	 the	msg	model	attribute	 is	used	by	 the	helloworld
view	(a	JSP	page)	to	show	the	‘Hello	World	!!’	message	to	the	users.

	

	

	

	

	

The	 following	 diagram	 summarizes	 how	HelloWorldController’s	 handleRequest	method	 renders	 a	 JSP
page:



Figure	10-2	Spring	Web	MVC	framework	invokes	the	HelloWorldController’s	handleRequest	method	and
uses	the	returned	ModelAndView	object	to	render	the	helloworld.jsp	page

The	above	figure	shows	that	the	Spring	Web	MVC	framework				intercepts	an	incoming	HTTP	request	and
invokes	 the	 HelloWorldController’s	 handleRequest	 method.	 The	 handleRequest	 method	 returns	 a
ModelAndView	 object	 that	 contains	 the	 model	 data	 and	 the	 view	 information.	 After	 receiving	 the
ModelAndView	object	from	the	handleRequest	method,	the	Spring	Web	MVC	framework	dispatches	the
HTTP	request	to	the	helloworld.jsp	page	and	makes	the	model	attributes	available	to	the	helloworld.jsp
page	as	request	attributes.

NOTE	 Spring	Web	MVC	makes	 the	model	 attributes	 available	 to	 the	 view	 technology	 (like	 JSP	 and
Velocity)	 in	a	 format	 that	 is	 suitable	 for	 the	view	 technology.	For	 instance,	 if	you	are	using	 JSP	as	 the
view	technology,	model	attributes	are	made	available	to	the	JSP	pages	as	request	attributes.

helloworld.jsp	–	JSP	page	that	shows	the	‘Hello	World	!!’	message
The	following	example	listing	shows	the	helloworld.jsp	page	of	ch10-helloworld	project:

Example	listing	10-2	–	helloworld.jsp	JSP	page
Project	–	ch10-helloworld
Source	location	-	src/main/webapp/WEB-INF/jsp

<%@taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"	%>
	
<c:out	value="${msg}"/>

In	the	above	example	listing,	<c:out>	prints	the	value	of	msg	request	attribute.	The	msg	request	attribute
refers	 to	 the	 msg	 model	 attribute	 returned	 by	 HelloWorldController’s	 handleRequest	 method	 (refer
example	listing	10-1).	As	the	value	of	msg	model	attribute	is	‘Hello	World	!!’,	helloworld.jsp	JSP	page
shows	‘Hello	World	!!’	message.

myapp-config.xml	–	Web	application	context	XML	file
The	following	example	listing	shows	the	beans	configured	in	myapp-config.xml	file	of	ch10-helloworld
project:



Example	listing	10-3	–	myapp-config.xml
Project	–	ch10-helloworld
Source	location	-	src/main/webapp/WEB-INF/spring

<beans	xmlns="http://www.springframework.org/schema/beans"
				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
				xsi:schemaLocation="http://www.springframework.org/schema/beans
			http://www.springframework.org/schema/beans/spring-beans.xsd">
	
				<bean	name="helloWorldController"
											class="sample.spring.chapter10.web.HelloWorldController"	/>
	
				<bean	id="handlerMapping"
								class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
								<property	name="urlMap">
												<map>
												<entry	key="/sayhello"	value-ref="helloWorldController"	/>
												</map>
								</property>
				</bean>
	
				<bean	id="viewResolver"
								class="org.springframework.web.servlet.view.InternalResourceViewResolver">
								<property	name="prefix"	value="/WEB-INF/jsp/"	/>
								<property	name="suffix"	value=".jsp"	/>
				</bean>
</beans>
The	 above	 example	 listing	 shows	 that	 apart	 from	 the	 HelloWorldController,	 Spring’s
SimpleUrlHandlerMapping	and	InternalResourceViewResolver	beans	are	also	configured	in	the	myapp-
config.xml	file.

SimpleUrlHandlerMapping	 bean	 (an	 implementation	 of	 Spring’s	 HandlerMapping	 interface)	 maps	 an
incoming	HTTP	request	to	the	controller	responsible	for	handling	the	request.	SimpleUrlHandlerMapping
bean	uses	 the	URL	path	 to	map	 a	 request	 to	 a	 controller.	The	urlMap	 property	 (of	 type	 java.util.Map)
specifies	 URL	 path	 to	 controller	 bean	 mapping.	 In	 example	 listing	 10-3,	 the	 "/sayhello"	 URL	 path
(specified	by	the	key	attribute)	is	mapped	to	the	HelloWorldController	bean	(specified	by	the	value-ref
attribute).	You	should	note	that	the	URL	path	specified	by	the	key	attribute	is	relative	to	the	URL	path	to
which	Spring’s	DispatcherServlet	 (a	 servlet)	 is	mapped	 in	 the	web	 application	deployment	 descriptor.
DispatcherServlet	is	discussed	later	in	this	section.

InternalResourceViewResolver	bean	(an	implementation	of	Spring’s	ViewResolver	interface)	locates	the
actual	view	(like,	JSP	or	servlet)	based	on	the	view	name	contained	in	the	ModelAndView	object.	The
actual	 view	 is	 located	 by	 prepending	 the	 value	 of	 prefix	 property	 and	appending	 the	 value	 of	 suffix
property	 to	 the	view	name.	The	example	 listing	10-3	shows	 that	 the	value	of	prefix	property	 is	 /WEB-
INF/jsp,	and	 the	value	of	 suffix	property	 is	 .jsp.	As	 the	HelloWorldController’s	handleRequest	method
returns	a	ModelAndView	object	which	contains	helloworld	as	the	view	name,	the	actual	view	is	/WEB-



INF/jsp/helloworld.jsp	(a	string	that	is	obtained	by	prepending	/WEB-INF/jsp	and	appending	.jsp	to	the
helloworld	view	name).

The	 following	 figure	 shows	 the	 role	 played	 by	 SimpleUrlHandlerMapping	 and
InternalResourceViewResolver	beans	in	the	‘Hello	World’	web	application:

Figure	 10-3	 SimpleUrlHandlerMapping	 locates	 the	 controller	 to	 be	 invoked	 and
InternalResourceViewResolver	resolves	the	actual	view	based	on	the	view	name

SimpleUrlHandlerMapping	 and	 InternalResourceViewResolver	 beans	 are	 automatically	 detected	 by
Spring	 Web	 MVC	 and	 used	 for	 finding	 the	 controller	 for	 request	 handling	 and	 resolving	 views,
respectively.

web.xml	–	Web	application	deployment	descriptor
In	 Spring	 Web	 MVC	 based	 applications,	 requests	 are	 intercepted	 by	 a	 DispatcherServlet	 (a	 servlet
provided	by	Spring	Web	MVC)	that	is	responsible	for	dispatching	requests	to	the	appropriate	controller.

The	 following	 example	 listing	 shows	 the	 configuration	 of	 DispatcherServlet	 in	web.xml	 file	 of	 ch10-
helloworld	project:

Example	listing	10-4	–	web.xml
Project	–	ch10-helloworld
Source	location	-	src/main/webapp/WEB-INF/spring

<web-app	xmlns="java.sun.com/xml/ns/javaee"
				xmlns:xsi="w3.org/2001/XMLSchema-instance"
				xsi:schemaLocation="java.sun.com/xml/ns/javaee	java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
				version="3.0">
	
				<servlet>
								<servlet-name>hello</servlet-name>
					<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
								<init-param>
									<param-name>contextConfigLocation</param-name>
									<param-value>/WEB-INF/spring/myapp-config.xml</param-value>
								</init-param>



								<load-on-startup>1</load-on-startup>
				</servlet>
	
				<servlet-mapping>
						<servlet-name>hello</servlet-name>
						<url-pattern>/helloworld/*</url-pattern>
				</servlet-mapping>
</web-app>
A	DispatcherServlet	 is	 associated	with	 a	web	application	 context	XML	 file	which	 is	 identified	by	 the
contextConfigLocation	 servlet	 initialization	 parameter.	 In	 the	 above	 example	 listing,	 the
contextConfigLocation	initialization	parameter	refers	to	the	myapp-config.xml	file	(refer	example	listing
10-3).

If	 you	 don’t	 specify	 the	 contextConfigLocation	 parameter,	 the	 DispatcherServlet	 looks	 for	 the	 web
application	 context	 XML	 file	 named	 <name-of-DispatcherServlet>-servlet.xml	 file	 in	 the	 	 	 WEB-INF
directory	 of	 the	web	 application.	Here,	 the	 value	 of	 <name-of-DispatcherServlet>	 is	 the	 servlet	 name
specified	 by	 the	 <servlet-name>	 sub-element	 of	 <servlet>	 that	 configures	 the	 DispatcherServlet.	 For
instance,	 if	 we	 had	 not	 specified	 the	 contextConfigLocation	 parameter	 in	 example	 listing	 10-3,	 the
DispatcherServlet	would	have	looked	for	a	file	named	hello-servlet.xml	in	the	WEB-INF	directory.

The	HandlerMapping	and	ViewResolver	beans	defined	in	the	web	application	context	XML	file	are	used
by	 the	 DispatcherServlet	 for	 request	 processing.	 DispatcherServlet	 uses	 the	 HandlerMapping
implementation	 for	 finding	 the	 appropriate	 controller	 for	 the	 request,	 and	 uses	 the	 ViewResolver
implementation	for	resolving	the	actual	view	based	on	the	view	name	returned	by	the	controller.

In	the	context	of	‘Hello	World’	web	application,	the	following	figure	summarizes	the	role	played	by	the
DispatcherServlet	servlet	in	request	processing:

Figure	10-4	DispatcherServlet	uses	HandlerMapping	and	ViewResolver	beans	for	request	processing.

The	 above	 figure	 shows	 that	 the	 following	 sequence	 of	 activities	 are	 performed	 by	 Spring	Web	MVC
during	request	processing:

§		request	is	first	intercepted	by	the	DispatcherServlet	servlet



§		DispatcherServlet	uses	the	HandlerMapping	bean	(which	is	SimpleUrlHandlerMapping	bean	in	case
of	‘Hello	World’	web	application)	to	find	an	appropriate	controller	for	handling	the	request

§	 	 DispatcherServlet	 calls	 the	 request	 handling	 method	 of	 the	 controller	 (which	 is
HelloWorldController’s	handleRequest	method	in	case	of	‘Hello	World’	web	application)

§		DispatcherServlet	sends	the	view	name	returned	by	the	controller	to	the	ViewResolver	bean	(which
is	InternalResourceViewResolver	bean	in	case	of	‘Hello	World’	web	application)	to	find	the	actual
view	(JSP	or	servlet)	to	be	rendered

§	 	 DispatcherServlet	 dispatches	 the	 request	 to	 the	 actual	 view	 (JSP	 or	 servlet).	 The	 model	 data
returned	by	the	controller	are	made	available	to	the	view	as	request	attributes.

The	 DispatcherServlet	 of	 ‘Hello	 World’	 web	 application	 is	 mapped	 to	 /helloworld/*	 pattern	 (refer
example	listing	10-4),	and	SimpleUrlHandlerMapping	maps	/sayhello	URL	path	to	HelloWorldController
bean	 (refer	 example	 listing	 10-3).	 If	 you	 access	 the	 URL	 http://localhost:8080/ch10-
helloworld/helloworld/sayhello,	 it	 results	 in	 invocation	 of	 handleRequest	 method	 of
HelloWorldController	 controller.	 The	 following	 figure	 shows	 how	 Spring	 Web	 MVC	 maps	 the	 URL
http://localhost:8080/ch10-helloworld/helloworld/sayhello	to	the	HelloWorldController	controller:

Figure	10-5	How	the	URL	path	http://localhost:8080/ch10-helloworld/helloworld/sayhello	is	mapped	to
the	HelloWorldController	by	Spring	Web	MVC

In	the	above	figure,	the	/ch10-helloworld	part	of	the	URL	represents	the	context	path	of	the	‘Hello	World’
web	application,	 the	 /helloworld	part	of	 the	URL	maps	 to	 the	DispatcherServlet	servlet	 (refer	example
listing	 10-4),	 and	 the	 /sayhello	 part	 of	 the	 URL	 maps	 to	 the	 HelloWorldController	 controller	 (refer
example	listing	10-3).

In	 this	 section,	we	 saw	 how	 a	 simple	 ‘Hello	World’	web	 application	 is	 developed	 using	 Spring	Web
MVC.	Let’s	now	take	a	closer	look	at	the	DispatcherServlet	servlet	that	acts	a	front	controller	in	a	Spring
Web	MVC	application.

http://localhost:8080/ch10-helloworld/helloworld/sayhello


10-4	DispatcherServlet	–	the	front	controller
In	the	previous	section,	we	saw	that	the	DispatcherServlet	acts	as	a	front	controller	that	interacts	with	the
HandlerMapping	and	ViewResolver	beans	defined	 in	 the	web	application	context	XML	 file	 to	process
requests.	In	this	section,	we’ll	look	at	how	DispatcherServlet	works	behind	the	scenes.

At	the	time	of	initialization,	a	DispatcherServlet	loads	the	corresponding	web	application	context	XML
file	(which	could	be	specified	via	contextConfigLocation	initialization	parameter,	or	is	named	as	<name-
of-DispatcherServlet>-servlet.xml	file	and	placed	in	the	WEB-INF	directory),	and	creates	an	instance	of
Spring’s	WebApplicationContext	object.	WebApplicationContext	is	a	sub-interface	of	ApplicationContext
interface	 that	 provides	 features	 that	 are	 specific	 to	 web	 applications.	 For	 instance,	 beans	 in	 the
WebApplicationContext	 can	 have	 additional	 scopes,	 like	 request	 and	 session.	 You	 can	 think	 of
WebApplicationContext	 object	 as	 an	 object	 that	 represents	 a	 Spring	 container	 instance	 in	 Spring	Web
MVC	applications.

The	following	table	describes	the	additional	scopes	that	you	can	specify	for	beans	configured	in	the	web
application	context	XML	file:

Bean	scope Description

request

Spring	container	creates	a	new	bean	instance	for	every	HTTP	request.	The	bean	instance	is	destroyed
by	the	Spring	container	when	the	HTTP	request	completes.

This	 scope	 is	 valid	 only	 for	 ApplicationContext	 implementations	 that	 are	 applicable	 in	 web
application	 scenarios.	 For	 instance,	 if	 you	 are	 using	 XmlWebApplicationContext	 or
AnnotationConfigWebApplicationContext,	only	then	you	can	specify	the	request	scope	for	a	bean.

session

Spring	container	creates	a	new	bean	instance	when	an	HTTP	Session	is	created.	The	bean	instance	is
destroyed	by	the	Spring	container	when	the	HTTP	Session	is	destroyed.

This	 scope	 is	 valid	 only	 for	 ApplicationContext	 implementations	 that	 are	 applicable	 in	 web
application	 scenarios.	 For	 instance,	 if	 you	 are	 using	 XmlWebApplicationContext	 or
AnnotationConfigWebApplicationContext,	only	then	you	can	specify	the	session	scope	for	a	bean.

globalSession This	scope	is	applicable	only	in	case	of	portlet	applications.

	
If	your	web	application	consists	of	multiple	modules,	you	may	define	a	DispatcherServlet	for	each	of	the
modules	 in	 the	web.xml	 file.	 In	 such	 a	 scenario,	 each	DispatcherServlet	 has	 its	 own	web	 application
context	XML	file	that	contains	beans	(like	controllers,	view	resolvers,	and	so	on)	specific	to	that	module.
You	should	note	that	these	beans	are	not	shared	between	DispatcherServlet	instances.	The	beans	that	are
shared	between	DispatcherServlet	instances	are	defined	in	the	root	web	application	context	XML	file.	As
mentioned	earlier,	the	root	web	application	context	XML	file	defines	data	sources,	services	and	DAOs,
and	so	on,	that	are	typically	shared	by	different	modules	of	a	web	application.	Refer	to	section	10-10	to
learn	about	how	the	root	web	application	context	XML	file	is	loaded.

The	following	figure	shows	relationship	between	beans	defined	by	the	web	application	context	XML	file
associated	with	a	DispatcherServlet	and	the	beans	defined	by	the	root	web	application	context	XML	file:



Figure	 10-6	 Beans	 in	 the	 root	 WebApplicationContext	 are	 inherited	 by	 the	 WebApplicationContext
instance	associated	with	a	DispatcherServlet

In	 the	 above	 figure,	 servlet1,	 servlet2	 and	 servlet3	 are	 the	 names	 of	 DispatcherServlet	 instances
configured	 in	 the	web.xml	 file.	And,	 servlet1-servlet.xml,	servlet2-servlet.xml	 and	 servlet3-servlet.xml
are	web	application	context	XML	files	 that	are	 loaded	by	servlet1,	servlet2	and	servlet3,	 respectively.
When	 DispatcherServlet	 instances	 are	 initialized,	 an	 instance	 of	 WebApplicationContext	 is	 created
corresponding	 to	 each	 servlet1-servlet.xml,	 servlet2-servlet.xml	 and	 servlet3-servlet.xml	 files	 and
associated	 with	 the	 DispatcherServlet	 instance.	 A	 WebApplicationContext	 instance	 is	 also	 created
corresponding	to	the	root	web	application	context	XML	file,	root-servlet.xml.	The	beans	contained	in	the
root	 WebApplicationContext	 instance	 are	 available	 to	 all	 the	 WebApplicationContext	 instances
associated	with	DispatcherServlets.

Let’s	now	look	at	how	a	controller	or	any	other	Spring	bean	defined	in	a	web	application	context	XML
file	can	access	ServletContext	and	ServletConfig	objects.

Accessing	ServletContext	and	ServletConfig	objects
In	 some	 scenarios,	 beans	 defined	 in	 the	 web	 application	 context	 XML	 file	may	 require	 access	 to	 the
ServletContext	or	ServletConfig	object	associated	with	the	web	application.

ServletContext	is	a	Servlet	API	object	that	a	bean	can	use	to	communicate	with	the	servlet	container.	For
instance,	you	can	use	it	to	get	and	set	context	attributes,	obtain	context	initialization	parameters,	and	so	on.
If	 a	 bean	 class	 implements	 Spring’s	 ServletContextAware	 interface	 (a	 callback	 interface),	 the	 Spring
container	provides	the	bean	instance	with	an	instance	of	ServletContext	object.

ServletConfig	 is	a	Servlet	API	object	 that	a	bean	can	use	 to	obtain	configuration	 information	about	 the
DispatcherServlet	 that	 intercepted	 the	 request.	 For	 instance,	 you	 can	 use	 it	 to	 obtain	 initialization
parameters	passed	to	the	DispatcherServlet	and	the	name	with	which	the	DispatcherServlet	is	configured
in	web.xml.	If	a	bean	class	implements	Spring’s	ServletConfigAware	interface	(a	callback	interface),	the
Spring	container	provides	the	bean	instance	with	an	instance	of	ServletConfig	object.

The	 following	 example	 listing	 shows	 a	 bean	 class	 that	 implements	 ServletContextAware	 and	 the
ServletConfigAware	interface:

Example	listing	10-5	–	ServletContextAware	and	ServletConfigAware	usage
	



import	javax.servlet.ServletConfig;
import	javax.servlet.ServletContext;
import	org.springframework.web.context.ServletConfigAware;
import	org.springframework.web.context.ServletContextAware;
	
public	class	ABean	implements	ServletContextAware,	ServletConfigAware	{
			private	ServletContext	servletContext;
			private	ServletConfig	servletConfig;
	
				@Override
			public	void	setServletContext(ServletContext	servletContext)	{
								this.servletContext	=	servletContext;
				}
	
				@Override
			public	void	setServletConfig(ServletConfig	servletConfig)	{
								this.servletConfig	=	servletConfig;
				}
	
				public	void	doSomething()	{
								//--use	ServletContext	and	ServletConfig	objects
				}
}

The	 above	 example	 listing	 shows	 that	 the	 ABean	 class	 implements	 ServletContextAware	 and
ServletConfigAware	 interface.	 The	 ServletContextAware	 interface	 defines	 a	 setServletContext	 method
which	is	invoked	by	the	Spring	container	to	provide	ABean	instance	with	an	instance	of	ServletContext
object.	 The	 ServletConfigAware	 interface	 defines	 a	 setServletConfig	method	 which	 is	 invoked	 by	 the
Spring	container	to	provide	ABean	instance	with	an	instance	of	ServletConfig	object.

We	saw	earlier	that	you	can	create	a	controller	by	implementing	the	Controller	interface.	Let’s	now	look
at	@Controller	and	@RequestMapping	annotations	that	simplify	developing	controllers.



10-5	 Developing	 controllers	 using	 @Controller	 and
@RequestMapping	annotations
Spring	 Web	 MVC	 provides	 classes,	 like	 MultiActionController,	 UrlFilenameViewController,
AbstractController,	and	so	on,	that	you	can	extend	to	create	your	controller	implementation.	If	you	extend
a	Spring-specific	class	or	implement	a	Spring-specific	interface	to	create	a	controller,	the	controller	class
becomes	 tightly	 coupled	 with	 Spring.	 Spring	 2.5	 introduced	 annotations	 like	 @Controller,
@RequestMapping,	 @ModelAttribute,	 and	 so	 on,	 that	 allow	 you	 to	 create	 controllers	 with	 flexible
method	 signatures.	 In	 this	 section,	we’ll	 look	at	different	Spring	Web	MVC	annotations	 for	developing
annotated	controllers.

Let’s	first	look	at	a	‘Hello	World’	web	application	that	uses	an	annotated	controller	to	show	the	‘Hello
World	!!’	message.

IMPORT	 chapter	 10/ch10-annotation-helloworld	 (This	 project	 shows	 a	 simple	 ‘Hello	 World’	 web
application	that	uses	an	annotated	controller	to	show	‘Hello	World	!!’	message.	If	you	deploy	the	project
on	 Tomcat	 server	 and	 access	 the	 URL	 http://localhost:8080/ch10-annotation-
helloworld/helloworld/saySomething/sayhello,	you’ll	see	the	‘Hello	World	!!’	message.)

Developing	a	‘Hello	World’	web	application	using	an	annotated	controller
The	ch10-annotation-helloworld	project	 is	similar	 to	ch10-helloworld,	 except	 that	 the	ch10-annotation-
helloworld	 project	 uses	 an	 annotated	 controller	 to	 show	 ‘Hello	World	 !!’	message.	 The	web.xml	 and
helloworld.jsp	files	in	both	the	projects	are	exactly	the	same,	but	HelloWorldController.java	and	myapp-
config.xml	files	are	different.	For	this	reason,	we’ll	restrict	our	discussion	to	HelloWorldController.java
and	myapp-config.xml	files	in	this	section.

Let’s	first	look	at	how	to	create	a	controller	using	@Controller	and	@RequestMapping	annotations.

	

@Controller	and	@RequestMapping	annotations

You	 designate	 a	 particular	 class	 as	 a	 Spring	Web	MVC	 controller	 by	 annotating	 it	 with	@Controller
annotation.	And,	 you	 use	@RequestMapping	 annotation	 to	map	 an	 incoming	 request	 to	 the	 appropriate
method	of	a	controller.

The	 following	 example	 listing	 shows	 the	 HelloWorldController	 class	 that	 uses	 @Controller	 and
@RequestMapping	annotations:

Example	listing	10-6	–	HelloWorldController	class	-	@Controller	and	@RequestMapping	usage
	
package	sample.spring.chapter10.web;
	
import	org.springframework.stereotype.Controller;
import	org.springframework.web.bind.annotation.RequestMapping;
import	org.springframework.web.servlet.ModelAndView;
.....



@Controller(value="sayHelloController")
@RequestMapping("/saySomething")
public	class	HelloWorldController	{
	
				@RequestMapping("/sayhello")
				public	ModelAndView	sayHello()	{
									Map<String,	String>	modelData	=	new	HashMap<String,	String>();
									modelData.put("msg",	"Hello	World	!!");
									return	new	ModelAndView("helloworld",	modelData);
						}
}
In	 the	 above	 example	 listing,	 the	 HelloWorldController	 class	 is	 annotated	 with	 @Controller	 and
@RequestMapping	annotations,	and	the	sayHello	method	is	annotated	with	@RequestMapping	annotation.
@Controller	annotation	is	a	specialized	form	of	@Component	annotation	(refer	chapter	6)	that	indicates
that	the	HelloWorldController	is	a	controller	component.

Like	 @Service	 (refer	 chapter	 6)	 and	 @Repository	 (refer	 chapter	 7)	 annotated	 classes,	 @Controller
annotated	 classes	 are	 automatically	 registered	 with	 the	 Spring	 container;	 you	 don’t	 need	 to	 explicitly
define	 a	@Controller	 annotated	 class	 in	 the	web	 application	 context	XML	 file.	 The	 value	 attribute	 of
@Controller	annotation	specifies	the	name	with	which	the	class	is	registered	with	the	Spring	container.
The	value	attribute	serves	the	same	purpose	as	the	<bean>	element’s	id	attribute.	If	the	value	attribute	is
not	 specified,	 the	name	 (beginning	with	 lowercase	 first	 letter)	of	 the	class	 is	used	 to	 register	 the	class
with	the	Spring	container.

@RequestMapping	annotation	maps	 incoming	web	requests	 to	appropriate	controllers	and/or	controller
methods.	@RequestMapping	annotation	at	the	type-level	maps	a	request	to	the	appropriate	controller.	For
instance,	@RequestMapping("/saySomething")	on	HelloWorldController	class	indicates	that	all	requests
to	/saySomething	request	path	are	handled	by	the	HelloWorldController	controller.

@RequestMapping	 at	 the	 method-level	 narrows	 down	 the	 @RequestMapping	 at	 the	 type-level	 to	 a
specific	 method	 in	 the	 controller	 class.	 For	 instance,	 @RequestMapping("/sayhello")	 annotation	 on
sayHello	method	in	example	listing	10-6	specifies	that	the	sayHello	method	is	invoked	when	the	request
path	is	/saySomething/sayhello.	Notice	that	 the	HelloWorldController’s	sayHello	method	doesn’t	accept
any	arguments	and	returns	a	ModelAndView	object.	This	 is	possible	because	annotated	controllers	can
have	 flexible	 method	 signatures.	 In	 section	 10-7,	 we’ll	 look	 at	 possible	 arguments	 and	 return	 types
@RequestMapping	annotated	methods	can	define.

@RequestMapping	 annotation	 at	 the	 type-level	 usually	 specifies	 a	 request	 path	or	 a	 path	pattern.	And,
@RequestMapping	 annotation	 at	 the	 method-level	 usually	 specifies	 an	 HTTP	 method	 or	 a	 request
parameter	to	further	narrow	down	the	mapping	specified	by	the	type-level	@RequestMapping	annotation.
The	 following	 figure	 shows	 how	 http://localhost:8080/ch10-annotation-
helloworld/helloworld/saySomething/sayhello	URL	will	 result	 in	 invocation	of	HelloWorldController’s
sayHello	method	by	Spring	Web	MVC:



Figure	10-7	How	a	request	URL	is	mapped	to	an	appropriate	@RequestMapping	annotated	method	of	a
controller

The	above	 figure	shows	how	a	particular	 request	URL	results	 in	 invocation	of	HelloWorldController’s
sayHello	method.

Let’s	now	look	at	how	annotation-driven	development	of	Spring	Web	MVC	controllers	is	enabled	in	an
application.

	

	

Enabling	Spring	Web	MVC	annotations

To	use	annotated	controllers	in	your	Spring	Web	MVC	application,	you	need	to	enable	Spring	Web	MVC
annotations	 using	 <annotation-driven>	 element	 of	 Spring’s	 mvc	 schema,	 as	 shown	 in	 the	 following
example	listing:

Example	listing	10-7	–	myapp-config.xml
Project	–	ch10-annotation-helloworld
Source	location	-	src/main/webapp/WEB-INF/spring

<beans	.....
			xmlns:mvc="http://www.springframework.org/schema/mvc"
				xsi:schemaLocation=".....http://www.springframework.org/schema/mvc
								http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd.....">
	
			<mvc:annotation-driven	/>
			<context:component-scan	base-package="sample.spring.chapter10.web"	/>
	
				<bean	id="viewResolver"
								class="org.springframework.web.servlet.view.InternalResourceViewResolver">
								<property	name="prefix"	value="/WEB-INF/jsp/"	/>
								<property	name="suffix"	value=".jsp"	/>
				</bean>
</beans>



In	 the	above	example	 listing,	<mvc:annotation-driven>	element	of	Spring’s	mvc	schema	enables	use	of
Spring	 Web	 MVC	 annotations	 in	 implementing	 controllers.	 Also,	 <component-scan>	 element	 (refer
section	6-2	for	more	details)	of	context	schema	is	used	to	automatically	register	@Controller	annotated
classes	with	the	Spring	container.

In	this	section,	we	saw	how	to	develop	a	simple	‘Hello	World’	web	application	using	@Controller	and
@RequestMapping	annotations.	Let’s	now	look	at	 the	requirements	of	 the	MyBank	web	application	that
we’ll	develop	in	this	chapter	using	Spring	Web	MVC	annotations.



10-6	MyBank	web	application’s	requirements
The	following	figure	shows	 the	home	page	of	MyBank	web	application	 that	displays	a	 list	of	currently
active	fixed	deposits	in	the	system:

Figure	10-8	MyBank	web	application’s	home	page	shows	fixed	deposit	details.	The	web	page	provides
the	option	to	close,	edit	and	create	a	fixed	deposit.

In	 the	 above	 figure,	 the	 ID	 column	 shows	 the	 unique	 identifier	 for	 a	 fixed	 deposit.	 The	 ID	 value	 is
assigned	to	a	fixed	deposit	when	it	is	created	by	a	user.	Close	and	Edit	hyperlinks	allow	a	user	to	remove
or	edit	details	of	a	fixed	deposit.	The	Create	new	Fixed	Deposit	button	shows	the	‘Open	fixed	deposit’
form	for	entering	details	of	the	fixed	deposit	to	be	opened,	as	shown	in	the	following	figure:

Figure	10-9	‘Open	fixed	deposit’	form	for	opening	fixed	deposits.	Amount,	Tenure	and	Email	fields	are
mandatory.

In	the	above	figure,	clicking	the	Save	button	saves	the	fixed	deposit	details	in	the	data	store,	and	Go	Back
hyperlink	 takes	 the	user	back	 to	 the	web	page	 that	shows	 the	fixed	deposit	 list	 (refer	 figure	10-8).	The
above	 figure	 shows	 that	 appropriate	 error	messages	 are	displayed	 if	 the	 entered	data	doesn’t	meet	 the
constraints	set	on	Amount,	Tenure	and	Email	fields.

When	you	click	the	Edit	hyperlink	 in	figure	10-8,	a	form	similar	 to	figure	10-9	 is	shown	for	modifying



details	 of	 the	 selected	 fixed	 deposit.	 And,	 clicking	 the	 Close	 hyperlink	 in	 figure	 10-8	 removes	 the
selected	fixed	deposit	from	the	list	of	fixed	deposits.

Now,	that	we	know	the	MyBank	web	application	requirements,	let’s	look	at	how	we	implement	it	using
Spring	Web	MVC	annotations.



10-7	 Spring	 Web	 MVC	 annotations	 -	 @RequestMapping	 and
@RequestParam
In	section	10-5,	we	saw	that	we	can	use	@Controller	and	@RequestMapping	annotations	 to	develop	a
simple	controller.	 In	 this	 section,	we’ll	 take	a	closer	 look	at	@RequestMapping	 and	other	Spring	Web
MVC	annotations	that	simplify	developing	annotated	controllers.

IMPORT	chapter	10/ch10-bankapp	 (This	 project	 shows	 the	MyBank	web	 application	 that	 allows	 its
user	 to	 manage	 fixed	 deposits.	 If	 you	 deploy	 the	 project	 on	 Tomcat	 server	 and	 access	 the	 URL
http://localhost:8080/ch10-bankapp,	you’ll	see	the	list	of	fixed	deposits	(as	shown	in	figure	10-8)	in	the
system.)

Let’s	begin	by	looking	at	the	@RequestMapping	annotation.

Mapping	requests	to	controllers	or	controller	methods	using	@RequestMapping
In	section	10-5,	we	saw	that	 the	@RequestMapping	annotation	 is	used	at	 the	 type	and	method-level	 to
map	 requests	 to	 controllers	 and	 its	methods.	 In	 this	 section,	we’ll	 first	 look	 at	 how	Spring	Web	MVC
maps	a	web	request	to	a	particular	controller	method	that	uses	@RequestMapping	annotation.	We’ll	then
look	 at	 the	 attributes	 of	 @RequestMapping	 annotation,	 and	 the	 arguments	 and	 return	 types	 that
@RequestMapping	annotated	methods	can	have.

@RequestMapping	annotation	and	RequestMappingHandlerMapping

The	following	example	 listing	shows	@RequestMapping	annotation	usage	 in	SomeController	 (a	Spring
Web	MVC	controller)	class:

Example	listing	10-8	–	SomeController	class	-	@RequestMapping	usage
	
@Controller
@RequestMapping("/type_Level_Url")
public	class	SomeController	{
	
			@RequestMapping("/methodA_Url")
				public	ModelAndView	methodA()	{	.....	}
	
			@RequestMapping("/methodB_Url")
				public	ModelAndView	methodB()	{	.....	}
}
The	 <annotation-driven>	 element	 of	 Spring’s	 mvc	 schema	 creates	 an	 instance	 of
RequestMappingHandlerMapping	(a	HandlerMapping	implementation)	that	is	responsible	for	mapping	a
web	 request	 to	 an	 appropriate	@RequestMapping	 annotated	method.	 RequestMappingHandlerMapping
considers	 controller	 methods	 as	 endpoints,	 and	 is	 responsible	 for	 uniquely	 mapping	 a	 request	 to	 a
controller	 method	 based	 on	 the	 @RequestMapping	 annotations	 at	 type-	 and	 method-level.	 In	 case	 of
SomeController,	 if	 the	 request	 path	 is	 /type_Level_Url/methodA_Url,	methodA	 is	 invoked,	 and	 if	 the
request	 path	 is	 /type_Level_Url/methodB_Url,	methodB	 is	 invoked.	 You	 should	 note	 that	 if	 a	 request
cannot	be	mapped	uniquely	to	a	controller	method,	then	a	HTTP	404	(which	means,	resource	not	found)



status	code	is	returned.

The	attributes	of	@RequestMapping	annotation	are	used	 to	narrow	down	the	mapping	of	a	 request	 to	a
particular	controller	or	a	controller	method.	You	can	specify	 these	attributes	at	both	 type-	and	method-
level	@RequestMapping	annotations.	Let’s	now	look	at	the	attributes	of	@RequestMapping	annotation.

Mapping	requests	based	on	request	path

@RequestMapping’s	value	attribute	specifies	the	request	path	to	which	a	controller	or	controller	method
is	 mapped.	 You	 can	 specify	 the	 request	 path	 without	 explicitly	 specifying	 the	 value	 attribute	 in	 the
@RequestMapping	 annotation.	 For	 instance,	 you	 can	 specify	 @RequestMapping(value	 =
"/type_Level_Url")	as	@RequestMapping("/type_Level_Url").

You	can	also	specify	Ant-style	path	patterns	as	the	value	of	value	attribute.	For	instance,	you	can	specify
patterns,	like	/myUrl/*,	/myUrl/**	and	/myUrl/*.do,	as	the	value	of	value	attribute.	The	following	example
listing	shows	a	@RequestMapping	annotation	that	specifies	/myUrl/**	as	the	path	pattern:

Example	listing	10-9	–	SomeController	class	–	Ant-style	request	path	pattern	usage
	
@Controller
@RequestMapping("/myUrl/**")
public	class	SomeController	{	.....	}
In	the	above	example	listing,	@RequestMapping("/myUrl/**")	annotation	at	the	type-level	specifies	that
the	SomeController	controller	handles	all	requests	that	begin	with	/myUrl	path.	For	instance,	requests	to
/myUrl/abc,	/myUrl/xyz	and	/myUrl/123/something	paths	are	handled	by	SomeController	controller.

Mapping	requests	based	on	HTTP	methods

@RequestMapping’s	method	 attribute	 specifies	 the	 HTTP	method	 that	 is	 handled	 by	 the	 controller	 or
controller	 method.	 So,	 if	 the	 method	 attribute	 specifies	 an	 HTTP	 GET	 method,	 the	 controller	 or	 the
controller	method	handles	only	HTTP	GET	requests.

The	 following	 example	 listing	 shows	 the	 FixedDepositController’s	 listFixedDeposits	 method	 that	 is
responsible	for	rendering	the	list	of	fixed	deposits	in	the	system:

Example	listing	10-10	–	@RequestMapping’s	method	attribute	usage
Project	–	ch10-bankapp
Source	location	-	src/main/java/sample/spring/chapter10/web

package	sample.spring.chapter10.web;
	
import	org.springframework.web.bind.annotation.RequestMethod;
.....
@Controller
@RequestMapping(value="/fixedDeposit")
public	class	FixedDepositController	{
				.....
		@RequestMapping(value	=	"/list",	method	=	RequestMethod.GET)



				public	ModelAndView	listFixedDeposits()	{	.....	}
				.....
}
In	 the	 above	 example	 listing,	@RequestMapping	 annotation	 on	 the	 listFixedDeposits	method	 specifies
value	 of	method	 attribute	 as	 RequestMethod.GET.	 The	RequestMethod	 is	 an	 enum	 that	 defines	 HTTP
request	methods,	 like	GET,	POST,	PUT,	DELETE,	 and	 so	 on.	As	 the	 value	 of	 the	method	 attribute	 is
RequestMethod.GET,	 the	 listFixedDeposits	method	 is	 invoked	only	 if	 an	HTTP	GET	request	 is	 sent	 to
/fixedDeposit/list	 path.	 For	 instance,	 if	 you	 send	 an	 HTTP	 POST	 request	 to	 /fixedDeposit/list	 path,
application	will	return	an	HTTP	405	(which	means,	the	HTTP	method	is	not	supported)	status	code.

You	 can	 also	 specify	 an	 array	 of	 HTTP	 methods	 as	 the	 value	 of	 method	 attribute,	 as	 shown	 in	 the
following	example	listing:

Example	listing	10-11	–	Specifying	multiple	HTTP	methods	as	the	value	of	method	attribute
	
@Controller
@RequestMapping(value="/sample")
public	class	MyController	{
	
			@RequestMapping(value	=	"/action"	method={	RequestMethod.GET,	RequestMethod.POST	})
				public	ModelAndView	action()	{	.....	}
}
In	 the	above	example	 listing,	 the	action	method	 is	 annotated	with	@RequestMapping	 annotation	whose
method	attribute’s	value	 is	{	RequestMethod.GET,	RequestMethod.POST	}.	This	means	 that	 the	 action
method	is	invoked	if	an	HTTP	GET	or	POST	request	is	sent	to	/sample/action	path.

Mapping	requests	based	on	request	parameters

@RequestMapping’s	params	attribute	typically	specifies	the	name	and	value	of	the	request	parameter	that
must	 be	 present	 in	 the	 request.	 The	 following	 example	 listing	 shows	 the	 FixedDepositController’s
showOpenFixedDepositForm	 method	 that	 is	 responsible	 for	 showing	 the	 form	 for	 creating	 a	 fixed
deposit:

Example	listing	10-12	–	@RequestMapping’s	params	attribute	usage
Project	–	ch10-bankapp
Source	location	-	src/main/java/sample/spring/chapter10/web

package	sample.spring.chapter10.web;
	
import	org.springframework.web.bind.annotation.RequestMethod;
.....
@Controller
@RequestMapping(value="/fixedDeposit")
public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=createFDForm",	method	=	RequestMethod.POST)
				public	ModelAndView	showOpenFixedDepositForm()	{	.....	}



				.....
}
In	the	above	example	listing,	@RequestMapping	annotation	on	the	showOpenFixedDepositForm	method
specifies	 the	 value	 of	 params	 attribute	 as	 fdAction=createFDForm.	 As	 the	 FixedDepositController	 is
mapped	 to	 /fixedDeposit	 path,	 the	 showOpenFixedDepositForm	method	 is	 invoked	 if	 an	HTTP	 POST
request	containing	request	parameter	named	fdAction	with	value	createFDForm	is	sent	 to	 /fixedDeposit
path.

If	you	want	to	map	requests	to	a	controller	or	controller	method	based	on	the	values	of	multiple	request
parameters,	 you	 can	 specify	 an	 array	 of	 request	 parameter	 name-value	 pairs	 as	 the	 value	 of	 params
attribute,	as	shown	in	the	following	example	listing:

Example	listing	10-13	–	Specifying	multiple	request	parameter	name-value	pairs	as	the	value	of	params
attribute
	
				@RequestMapping(params	=	{	"x=a",	"y=b"	})
				public	void	perform()	{	.....	}
In	the	above	example	listing,	the	perform	method	is	invoked	only	if	the	request	contains	parameters	named
x	and	y	with	values	a	and	b,	respectively.

You	 can	 also	 map	 requests	 to	 a	 controller	 or	 controller	 method	 based	 on	 the	 existence	 of	 a	 request
parameter	in	the	request.	All	you	need	to	do	is	to	simply	specify	the	name	of	the	request	parameter	as	the
value	of	 params	 attribute.	 For	 instance,	 the	 perform	method	 shown	here	 is	 invoked	 irrespective	 of	 the
value	of	request	parameter	x:

Example	listing	10-14	–	perform	method	is	invoked	if	request	parameter	x	is	found

				@RequestMapping(params	=	"x")
				public	void	perform()	{	.....	}
To	map	 requests	 to	 a	 controller	 or	 controller	method	 if	 a	 request	 parameter	 does	 not	 exist,	 use	 the	 !
operator.	 For	 example,	 the	 following	 perform	method	 is	 invoked	 if	 request	 parameter	 named	 x	 is	 not
found	in	the	request:

Example	listing	10-15	–	perform	method	is	invoked	if	request	parameter	x	is	not	found

				@RequestMapping(params	=	"!x")
				public	void	perform()	{	.....	}
You	can	use	 !=	operator	 to	map	 requests	 to	 a	 controller	 or	 controller	method	 if	 the	value	of	 a	 request
parameter	is	not	equal	to	the	specified	value,	as	shown	here:

Example	listing	10-16	–	perform	method	is	invoked	if	the	value	of	request	parameter	x	is	not	equal	to	a

				@RequestMapping(params	=	"x	!=	a")
				public	void	perform()	{	.....	}
In	the	above	example	listing,	perform	method	is	invoked	only	if	the	request	contains	a	request	parameter
named	x,	and	the	value	of	x	is	not	equal	to	a.



Mapping	requests	based	on	the	MIME	type	of	the	request

The	Content-Type	request	header	specifies	the	MIME	type	of	the	request.	@RequestMapping’s	consumes
attribute	specifies	the	MIME	type	of	the	request	that	a	controller	or	a	controller	method	handles.	So,	if	the
value	of	consumes	attribute	matches	the	value	of	the	Content-Type	request	header,	the	request	is	mapped
to	that	particular	controller	or	controller	method.

The	 following	 example	 listing	 shows	 that	 the	 perform	method	 is	 invoked	 if	 the	 Content-Type	 request
header’s	value	is	application/json:

Example	 listing	 10-17	 –	 perform	 method	 is	 invoked	 if	 the	 value	 of	 Content-Type	 header	 is
application/json

				@RequestMapping(consumes	=	"application/json")
				public	void	perform()	{	.....	}
As	with	the	params	attribute,	you	can	use	!	operator	to	specify	the	condition	that	a	Content-Type	header
value	is	not	present.	For	instance,	the	following	perform	method	is	invoked	if	the	Content-Type	header’s
value	is	not	application/json:

Example	 listing	 10-18	 –	 perform	 method	 is	 invoked	 if	 the	 value	 of	 Content-Type	 header	 is	 not
application/json

				@RequestMapping(consumes	=	"!application/json")
				public	void	perform()	{	.....	}
You	can	specify	an	array	of	values	in	the	consumes	attribute,	in	which	case	the	request	is	mapped	to	the
controller	or	the	controller	method	if	the	Content-Type	value	matches	one	of	the	values	specified	by	the
consumes	attribute.	In	the	following	example	listing,	the	perform	method	is	invoked	if	the	Content-Type	is
application/json	or	text/plain:

Example	listing	10-19	–	perform	method	is	invoked	if	Content-Type	is	application/json	or	text/plain

				@RequestMapping(consumes	=	{	"application/json",	"text/plain")
				public	void	perform()	{	.....	}

Mapping	requests	based	on	the	acceptable	MIME	type	of	the	response

The	Accept	 request	 header	 specifies	 the	 acceptable	MIME	 type	 of	 the	 response.	@RequestMapping’s
produces	 attribute	 specifies	 the	 acceptable	MIME	 type	 of	 the	 response.	 So,	 if	 the	 value	 of	 produces
attribute	value	matches	the	Accept	request	header,	 the	request	 is	mapped	to	that	particular	controller	or
controller	method.

The	following	example	listing	shows	that	the	perform	method	is	invoked	if	the	Accept	 request	header’s
value	is	application/json:

Example	listing	10-20	–	perform	method	is	invoked	if	the	value	of	Accept	header	is	application/json

				@RequestMapping(produces	=	"application/json")
				public	void	perform()	{	.....	}
As	with	 the	 consumes	 attribute,	 you	 can	 use	 !	 operator	 to	 specify	 the	 condition	 that	 an	Accept	 header



value	is	not	present	in	the	request.	If	you	specify	an	array	of	values	for	the	produces	attribute,	request	is
mapped	to	the	controller	or	the	controller	method	if	 the	Accept	header	value	matches	one	of	 the	values
specified	by	the	produces	attribute.

Mapping	requests	based	on	a	request	header	value

To	 map	 requests	 based	 on	 request	 headers,	 you	 can	 use	 @RequestMapping’s	 headers	 attribute.	 The
following	example	listing	shows	that	the	request	is	mapped	to	the	perform	method	if	the	value	of	Content-
Type	header	is	text/plain:

Example	listing	10-21	–	perform	method	is	invoked	if	the	value	of	Content-Type	header	is	text/plain

				@RequestMapping(headers	=	"Content-Type=text/plain")
				public	void	perform()	{	.....	}
As	with	the	params	attribute,	you	can	use	!	and	!=	operators	while	specifying	value	of	headers	attribute.
For	instance,	the	following	example	listing	shows	that	the	request	is	mapped	to	the	perform	method	if	the
value	of	Content-Type	header	is	not	equal	to	application/json,	the	Cache-Control	header	doesn’t	exist	in
the	request,	and	the	From	header	exists	in	the	request	with	any	value:

Example	listing	10-22	–	Using	!	and	!=	operators	for	specifying	value	of	headers	attribute

				@RequestMapping(headers	=	{	"Content-Type	!=	application/json",	"!Cache-Control",	"From"}	)
				public	void	perform()	{	.....	}
Now,	that	we	have	looked	at	 the	attributes	of	@RequestMapping	annotation,	 let’s	 look	at	 the	arguments
that	you	can	pass	to	@RequestMapping	annotated	methods.

@RequestMapping	annotated	methods	arguments
@RequestMapping	annotated	methods	can	have	flexible	method	signatures.	The	argument	 types	that	can
be	 passed	 to	 @RequestMapping	 annotated	 methods	 include	 HttpServletRequest,	 HttpSession,
java.security.Principal,	 org.springframework.validation.BindingResult,
org.springframework.web.bind.support.SessionStatus,	org.springframework.ui.Model,	and	so	on.	To	view
a	complete	list	of	arguments	that	can	be	passed	to	@RequestMapping	annotated	method,	please	refer	 to
@RequestMapping	Javadoc.

As	 we	 discuss	 different	 Spring	Web	MVC	 features	 in	 this	 book,	 we’ll	 come	 across	 scenarios	 which
require	us	to	pass	different	argument	types	to	@RequestMapping	annotated	methods.	For	now,	we’ll	look
at	a	scenario	in	which	we	need	to	send	HttpServletRequest	object	as	an	argument.

The	following	example	listing	shows	the	FixedDepositController’s	viewFixedDepositDetails	method	that
accepts	an	argument	of	type	HttpServletRequest:

Example	listing	10-23	–	FixedDepositController	class	-	passing	HttpServletRequest	argument
Project	–	ch10-bankapp
Source	location	-	src/main/java/sample/spring/chapter10/web

package	sample.spring.chapter10.web;
	
import	javax.servlet.http.HttpServletRequest;



.....
public	class	FixedDepositController	{
			.....
				@RequestMapping(params	=	"fdAction=view",	method	=	RequestMethod.GET)
				public	ModelAndView	viewFixedDepositDetails(HttpServletRequest	request)	{
								FixedDepositDetails	fixedDepositDetails	=	fixedDepositService
																.getFixedDeposit(Integer.parseInt(request.getParameter("fixedDepositId")));
								.....
				}
			.....
}
The	viewFixedDepositDetails	method	 is	 invoked	when	you	click	 the	Edit	hyperlink	corresponding	 to	a
fixed	deposit	(refer	figure	10-8).	HttpServletRequest	is	used	by	the	viewFixedDepositDetails	method	to
obtain	the	fixedDepositId	request	parameter	that	uniquely	identifies	a	fixed	deposit	in	the	system.

Let’s	now	look	at	the	return	types	that	are	supported	for	@RequestMapping	annotated	methods.

@RequestMapping	annotated	methods	return	types
The	 supported	 return	 types	 for	 @RequestMapping	 annotated	 methods	 include	 ModelAndView,
org.springframework.web.servlet.View,	String,	java.util.concurrent.Callable,	void,	and	so	on.	To	view	a
complete	 list	 of	 return	 types	 supported	 for	 @RequestMapping	 annotated	 methods,	 please	 refer	 to
@RequestMapping	Javadoc.

As	 we	 discuss	 different	 Spring	Web	MVC	 features	 in	 this	 book,	 we’ll	 come	 across	 scenarios	 which
require	@RequestMapping	annotated	methods	 to	have	different	 return	 types.	 In	 this	 section,	we’ll	 only
look	at	examples	that	show	methods	that	have	String	or	ModelAndView	as	return	types.

The	following	example	listing	shows	FixedDepositController’s	showOpenFixedDepositForm	method	that
renders	the	HTML	form	for	opening	a	new	fixed	deposit	(refer	figure	10-9):

Example	listing	10-24	–	FixedDepositController	class	-	ModelAndView	return	type	example
Project	–	ch10-bankapp
Source	location	-	src/main/java/sample/spring/chapter10/web

package	sample.spring.chapter10.web;
	
import	org.springframework.ui.ModelMap;
.....
public	class	FixedDepositController	{
			.....
			@RequestMapping(params	=	"fdAction=createFDForm",	method	=	RequestMethod.POST)
				public	ModelAndView	showOpenFixedDepositForm()	{
								FixedDepositDetails	fixedDepositDetails	=	new	FixedDepositDetails();
					fixedDepositDetails.setEmail("You	must	enter	a	valid	email");
								ModelMap	modelData	=	new	ModelMap();
							modelData.addAttribute(fixedDepositDetails);
								return	new	ModelAndView("createFixedDepositForm",	modelData);



				}
				.....
}
The	showOpenFixedDepositForm	method	 returns	 a	ModelAndView	 object	 that	 contains	 an	 instance	 of
FixedDepositDetails	as	a	model	attribute	and	createFixedDepositForm	string	value	as	the	view	name.

If	 you	 compare	 the	 above	 example	 listing	 with	 10-1	 and	 10-6,	 you’ll	 notice	 that	 the
showOpenFixedDepositForm	method	uses	Spring’s	ModelMap	 object	 instead	 of	 java.util.Map	 to	 store
model	 attributes.	ModelMap	 is	 an	 implementation	 of	 java.util.Map	 interface	 that	 allows	 you	 to	 store
model	attributes	without	explicitly	specifying	their	names.	ModelMap	automatically	generates	the	name	of
the	model	attribute	based	on	a	pre-defined	strategy.	For	 instance,	 if	you	add	a	custom	Java	object	as	a
model	attribute,	the	name	(beginning	with	lowercase	first	letter)	of	the	object’s	class	is	used	as	the	name
of	the	model	attribute.	In	the	above	example	listing,	when	an	instance	of	FixedDepositDetails	is	added	to
the	ModelMap,	it	is	stored	in	the	ModelMap	with	the	name	fixedDepositDetails.

When	a	@RequestMapping	annotated	method	returns	a	string	value,	 it	 is	considered	as	 the	name	of	 the
view	that	is	resolved	to	an	actual	view	(like,	JSP	page	or	servlet)	by	the	ViewResolver	configured	for	the
web	 application.	 The	 following	 example	 listing	 shows	 the	 configuration	 of
InternalResourceViewResolver	in	ch10-bankapp	project:

Example	listing	10-25	–	bankapp-config.xml	–	ViewResolver	configuration
Project	–	ch10-bankapp
Source	location	-	src/main/webapp/WEB-INF/spring

				<bean	id="viewResolver"
								class="org.springframework.web.servlet.view.InternalResourceViewResolver">
								<property	name="prefix"	value="/WEB-INF/jsp/"	/>
								<property	name="suffix"	value=".jsp"	/>
				</bean>
The	 above	 configuration	 suggests	 that	 when	 a	 string	 value	 xyz	 is	 returned,	 it	 is	 resolved	 to	 /WEB-
INF/jsp/xyz.jsp.	Refer	section	10-3	to	learn	more	about	the	InternalResourceViewResolver	configuration
shown	above.

If	 the	 string	 value	 returned	 by	 the	@RequestMapping	 annotated	 method	 has	 the	 prefix	 redirect:,	 it	 is
treated	 as	 a	 redirect	 URL	 and	 not	 as	 a	 view	 name.	 The	 following	 example	 listing	 shows
FixedDepositController’s	closeFixedDeposit	method	that	is	responsible	for	closing	a	fixed	deposit	when
a	user	clicks	the	Close	button	(refer	figure	10-9):

Example	listing	10-26	–	FixedDepositController	class	-	String	return	type	example
Project	–	ch10-bankapp
Source	location	-	src/main/java/sample/spring/chapter10/web

				@RequestMapping(params	=	"fdAction=close",	method	=	RequestMethod.GET)
				public	String	closeFixedDeposit(.....	int	fdId)	{
								fixedDepositService.closeFixedDeposit(fdId);
								return	"redirect:/fixedDeposit/list";
				}



FixedDepositController’s	 closeFixedDeposit	 method	 closes	 the	 fixed	 deposit	 identified	 by	 the	 fdId
argument	and	returns	redirect:/fixedDeposit/list	string	value.	As	the	returned	string	value	is	prefixed	with
redirect:,	the	user	is	redirected	to	the	/fixedDeposit/list	URL	that	shows	the	list	of	fixed	deposits	(refer
figure	10-8).

Let’s	now	look	at	the	@RequestParam	annotation	that	allows	you	to	assign	a	request	parameter	value	to	a
controller	method	argument.

Passing	request	parameters	to	controller	methods	using	@RequestParam
We	saw	in	example	listing	10-23	that	we	can	pass	HttpServletRequest	object	to	a	controller	method	and
use	it	to	retrieve	request	parameters.	Instead	of	passing	HttpServletRequest	object	to	a	controller	method,
you	 can	 annotate	 a	 method	 argument	 with	 @RequestParam	 annotation	 to	 assign	 value	 of	 a	 request
parameter	to	the	method	argument.

NOTE	You	should	note	that	the	@RequestParam	annotation	can	only	be	used	if	the	method	is	annotated
with	@RequestMapping	or	@ModelAttribute	(explained	in	chapter	11)	annotation.

The	following	example	listing	shows	FixedDepositController’s	closeFixedDeposit	method	that	is	invoked
when	a	user	clicks	the	Close	button	(refer	figure	10-8)	to	close	a	fixed	deposit:

Example	listing	10-27	–	FixedDepositController	class	-	@RequestParam	usage
Project	–	ch10-bankapp
Source	location	-	src/main/java/sample/spring/chapter10/web

package	sample.spring.chapter10.web;
	
import	org.springframework.web.bind.annotation.RequestParam;
.....
public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=close",	method	=	RequestMethod.GET)
				public	String	closeFixedDeposit(@RequestParam(value	=	"fixedDepositId")	int	fdId)	{
								fixedDepositService.closeFixedDeposit(fdId);
								return	"redirect:/fixedDeposit/list";
				}
				.....
}
@RequestParam’s	value	attribute	specifies	the	name	of	the	request	parameter	whose	value	is	assigned	to
the	method	argument.	In	the	above	example	listing,	@RequestParam	annotation	is	used	to	assign	the	value
of	 fixedDepositId	 request	 parameter	 to	 fdId	method	 argument.	As	 the	 type	 of	 the	 fdId	 argument	 is	 int,
Spring	is	responsible	for	converting	the	fixedDepositId	request	parameter	to	int	type.	By	default,	Spring
automatically	provides	type	conversion	for	simple	Java	types,	like	int,	long,	java.util.Date,	and	so	on.	To
convert	 request	 parameters	 to	 custom	 Java	 types	 (like	 Address),	 you	 need	 to	 register	 custom
PropertyEditors	with	Spring’s	WebDataBinder	 instance	 or	 org.springframework.format.Formatters	with
Spring’s	FormattingConversionService	 instance.	We’ll	 learn	more	about	WebDataBinder	 in	 chapter	 11,
and	Formatter	and	FormattingConversionService	in	chapter	13.



Let’s	now	look	at	how	you	can	access	all	the	request	parameters	in	a	controller	method.

Passing	all	the	request	parameters	to	a	controller	method

To	pass	all	the	request	parameters	to	a	controller	method,	define	an	argument	of	type	Map<String,	String>
or	MultiValueMap<String,	String>	(an	object	provided	by	Spring	that	implements	java.util.Map	interface)
and	annotate	it	with	@RequestParam	annotation.

The	following	example	listing	shows	FixedDepositController’s	openFixedDeposit	method	that	creates	a
fixed	 deposit	 when	 a	 user	 enters	 fixed	 deposit	 details	 and	 clicks	 the	 Save	 button	 on	 the	 ‘Open	 fixed
deposit’	form	for	opening	fixed	deposits	(refer	figure	10-9):

Example	listing	10-28	–	FixedDepositController	class	–	accessing	all	request	parameters
Project	–	ch10-bankapp
Source	location	-	src/main/java/sample/spring/chapter10/web

package	sample.spring.chapter10.web;
	
import	java.util.Map;
.....
@RequestMapping(value	=	"/fixedDeposit")
public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=create",	method	=	RequestMethod.POST)
				public	ModelAndView	openFixedDeposit(@RequestParam	Map<String,	String>	params)	{
								String	depositAmount	=	params.get("depositAmount");
								String	tenure	=	params.get("tenure");
								.....
				}
}
In	 the	 above	 example	 listing,	 params	 argument	 of	 type	 Map<String,	 String>	 is	 annotated	 with
@RequestParam	annotation.	Notice	that	the	value	attribute	of	@RequestParam	annotation	is	not	specified.
If	@RequestParam’s	value	attribute	is	not	specified	and	the	type	of	the	method	argument	is	Map<String,
String>	 or	MultiValueMap<String,	 String>,	 Spring	 copies	 all	 the	 requests	 parameters	 into	 the	 method
argument.	Each	request	parameter’s	value	is	stored	in	the	Map	(or	MultiValueMap)	with	the	name	of	the
request	parameter	as	the	key.

The	 following	 example	 listing	 shows	 FixedDepositController’s	 editFixedDeposit	 method	 that	 is
responsible	for	making	changes	to	an	existing	fixed	deposit:

Example	listing	10-29	–	FixedDepositController	class	–	accessing	all	request	parameters
Project	–	ch10-bankapp
Source	location	-	src/main/java/sample/spring/chapter10/web

package	sample.spring.chapter10.web;
	
import	org.springframework.util.MultiValueMap;
.....



public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=edit",	method	=	RequestMethod.POST)
				public	ModelAndView	editFixedDeposit(@RequestParam	MultiValueMap<String,	String>	params)
{
								String	depositAmount	=	params.get("depositAmount").get(0);
								String	tenure	=	params.get("tenure").get(0);
												.....
				}
}
In	 the	 above	 example	 listing,	 editFixedDeposit’s	 params	 argument	 is	 of	 type	 MultiValueMap<String,
String>,	and	is	annotated	with	@RequestParam	annotation.	If	an	object	is	of	type	MultiValueMap<K,	V>,
then	it	means	that	K	is	the	type	of	the	key	and	List<V>	is	the	type	of	the	value.	As	the	params	argument	is
of	 type	MultiValueMap<String,	String>,	 it	means	 that	 the	key	 is	 of	 type	String	 and	 the	value	 is	 of	 type
List<String>.	 When	 storing	 request	 parameters	 in	 MultiValueMap<String,	 String>	 type,	 Spring	 uses
request	 parameter’s	 name	 as	 key	 and	 the	 value	 of	 the	 request	 parameter	 is	 added	 to	 the	 List<String>
value.	MultiValueMap	is	particularly	useful	if	you	have	multiple	request	parameters	with	the	same	name.

As	the	value	corresponding	to	a	request	parameter	is	of	type	List<String>,	calling	params.get(String	key)
returns	a	List<String>	type.	For	this	reason,	get(0)	is	called	on	the	returned	List<String>	to	get	the	value
of	 request	parameters	depositAmount,	 tenure,	and	so	on.	Alternatively,	you	can	use	getFirst(String	 key)
method	of	MultiValueMap	to	obtain	the	first	element	from	the	List<String>	value.

Let’s	now	take	a	closer	look	at	the	various	attributes	of	@RequestParam	annotation.

Specifying	request	parameter	name	using	value	attribute

We	saw	earlier	that	@RequestParam’s	value	attribute	specifies	the	name	of	the	request	parameter	whose
value	is	assigned	to	the	method	argument.	If	you	don’t	specify	the	name	of	a	request	parameter,	method
argument	name	is	considered	as	 the	name	of	 the	request	parameter	name.	For	 instance,	 in	 the	following
example	listing,	value	of	request	parameter	named	param	is	assigned	to	the	param	argument:

Example	listing	10-30	–	@RequestParam	usage	-	unspecified	request	parameter	name
	
				@RequestMapping(.....)
				public	String	doSomething(@RequestParam	String	param)	{	.....	}
In	the	above	example	listing,	@RequestParam	doesn’t	specify	the	name	of	the	request	parameter	whose
value	 is	 assigned	 to	 the	 param	 argument;	 therefore,	 param	 is	 considered	 as	 the	 name	 of	 the	 request
parameter.

Specifying	request	parameter	is	optional	or	mandatory	by	using	required	attribute

By	default,	request	parameter	specified	by	the	@RequestParam	annotation	is	mandatory;	if	the	specified
request	 parameter	 is	 not	 found	 in	 the	 request,	 an	 exception	 is	 thrown.	You	 can	 specify	 that	 the	 request
parameter	is	optional	by	setting	the	value	of	required	attribute	to	false,	as	shown	here:

Example	listing	10-31	–	@RequestParam’s	required	attribute



	
				@RequestMapping(.....)
				public	String	perform(@RequestParam(value	=	"myparam",	required	=	false)	String	param)	{	.....	}

In	the	above	example	listing,	@RequestParam’s	required	attribute	value	is	set	to	false,	which	means	that
the	myparam	request	parameter	 is	optional.	Now,	 if	 the	myparam	 request	parameter	 is	not	 found	 in	 the
request,	it’ll	not	result	in	an	exception.	Instead,	a	null	value	is	assigned	to	the	param	method	argument.

Specifying	default	value	for	a	request	parameter	using	defaultValue	attribute

@RequestParam’s	defaultValue	attribute	specifies	the	default	value	for	a	request	parameter.	If	the	request
parameter	specified	by	@RequestParam’s	value	attribute	is	not	found	in	the	request,	the	value	specified
by	 the	defaultValue	 attribute	 is	 assigned	 to	 the	method	 argument.	The	 following	 example	 listing	 shows
usage	of	defaultValue	attribute:

Example	listing	10-32	–	@RequestParam’s	defaultValue	attribute
	
				@RequestMapping(.....)
				public	String	perform(@RequestParam(value	=	"location",	defaultValue	=	"earth")	String	param)	{
					.....
				}
In	 the	above	example	 listing,	 if	 request	parameter	named	 location	 is	not	 found	 in	 the	request,	 the	value
earth	is	assigned	to	the	param	method	argument.

In	 this	 section,	 we	 looked	 at	 @RequestMapping	 and	 @RequestParam	 annotations	 to	 create	 the
FixedDepositController	 of	 MyBank	 application.	 Let’s	 now	 look	 at	 how	 validation	 of	 form	 data	 is
performed	in	the	FixedDepositController	class.



10-8	Validation
We	saw	earlier	that	FixedDepositController’s	showOpenFixedDepositForm	method	(refer	example	listing
10-24)	 renders	 createFixedDepositForm.jsp	 JSP	 page	 that	 shows	 the	 form	 for	 opening	 a	 new	 fixed
deposit.	 When	 the	 form	 is	 submitted,	 the	 data	 entered	 in	 the	 form	 is	 validated	 by
FixedDepositController’s	openFixedDeposit	method	(refer	example	listing	10-28).	If	errors	are	reported
during	 validation,	 the	 createFixedDepositForm.jsp	 JSP	 page	 is	 rendered	 again	 with	 validation	 error
messages	and	the	original	form	data	that	was	entered	by	the	user	(refer	figure	10-9).

The	following	example	listing	shows	the	<form>	element	of	createFixedDepositForm.jsp	JSP	page:

Example	listing	10-33	–	createFixedDepositForm.jsp	–	<form>	element
Project	–	ch10-bankapp
Source	location	-	src/main/webapp/WEB-INF/jsp

<form	name="createFixedDepositForm"	method="POST"
								action="${pageContext.request.contextPath}/fixedDeposit?fdAction=create">
												.....
							<input	type="submit"	value="Save"	/>
</form>
In	the	above	example	listing,	<form>	element’s	method	attribute	specifies	POST	as	the	HTTP	method,	and
action	attribute	specifies	/fixedDeposit?fdAction=create	as	the	URL	to	which	the	form	is	submitted	when
the	 user	 clicks	 the	 Save	 button.	 Submission	 of	 the	 form	 results	 in	 the	 invocation	 of
FixedDepositController’s	openFixedDeposit	method.

The	following	example	listing	shows	how	the	validation	is	performed	by	the	openFixedDeposit	method,
and	how	the	original	form	data	entered	by	the	user	is	shown	again	in	case	of	validation	errors:

Example	listing	10-34	–	FixedDepositController’s	openFixedDeposit	method
Project	–	ch10-bankapp
Source	location	-	src/main/java/sample/spring/chapter10/web

package	sample.spring.chapter10.web;
.....
import	org.apache.commons.lang3.math.NumberUtils;
@RequestMapping(value	=	"/fixedDeposit")
public	class	FixedDepositController	{
					.....
				@RequestMapping(params	=	"fdAction=create",	method	=	RequestMethod.POST)
				public	ModelAndView	openFixedDeposit(@RequestParam	Map<String,	String>	params)	{
								String	depositAmount	=	params.get("depositAmount");
								.....
								Map<String,	Object>	modelData	=	new	HashMap<String,	Object>();
	
								if	(!NumberUtils.isNumber(depositAmount))	{
												modelData.put("error.depositAmount",	"enter	a	valid	number");
								}	else	if	(NumberUtils.toInt(depositAmount)	<	1000)	{



												modelData.put("error.depositAmount",	"must	be	greater	than	or	equal	to	1000");
								}
								.....
								FixedDepositDetails	fixedDepositDetails	=	new	FixedDepositDetails();
								fixedDepositDetails.setDepositAmount(depositAmount);
								.....
								if	(modelData.size()	>	0)	{	//	--this	means	there	are	validation	errors
												modelData.put("fixedDepositDetails",	fixedDepositDetails);
												return	new	ModelAndView("createFixedDepositForm",	modelData);
								}	else	{
												fixedDepositService.saveFixedDeposit(fixedDepositDetails);
												return	new	ModelAndView("redirect:/fixedDeposit/list");
								}
				}
				.....
}
The	openFixedDeposit	method	validates	deposit	amount,	tenure	and	email	information	entered	by	the	user.
Notice	 that	 to	 simplify	 validation	 of	 data,	 NumberUtils	 class	 of	 Apache	 Commons	 Lang
(http://commons.apache.org/proper/commons-lang/)	 library	has	been	used.	The	modelData	variable	 is	a
java.util.Map	object	that	stores	model	attributes	that	we	want	to	pass	to	the	createFixedDepositForm.jsp
JSP	page	in	case	of	validation	errors.

As	 we	 want	 to	 show	 validation	 error	 messages	 and	 the	 original	 form	 data	 if	 validation	 fails,	 the
validation	error	messages	and	the	original	form	data	are	stored	in	modelData.	For	instance,	if	the	deposit
amount	 entered	 by	 the	 user	 fails	 validation,	 an	 appropriate	 validation	 error	 message	 is	 stored	 in	 the
modelData	with	name	error.depositAmount.	The	values	entered	by	the	user	are	set	on	a	new	instance	of
FixedDepositDetails	 object.	 If	 validation	 errors	 are	 reported,	 the	 newly	 created	 FixedDepositDetails
instance	is	added	to	the	modelData	with	name	fixedDepositDetails,	and	the	createFixedDepositForm.jsp
JSP	 page	 is	 rendered.	 Alternatively,	 if	 no	 validation	 errors	 are	 reported,	 the	 newly	 created
FixedDepositDetails	object	is	saved	in	the	data	source,	and	the	page	that	shows	the	complete	list	of	fixed
deposits	is	rendered.

As	we	are	using	FixedDepositDetails	object	 to	 store	 the	original	 form	data	entered	by	 the	user,	all	 the
attributes	of	FixedDepositDetails	have	been	defined	of	type	String,	as	shown	here:

Example	listing	10-35	–	FixedDepositDetails	class
Project	–	ch10-bankapp
Source	location	-	src/main/java/sample/spring/chapter10/domain

package	sample.spring.chapter10.domain;
	
public	class	FixedDepositDetails	{
				private	long	id;	//--	id	value	is	set	by	the	system
				private	String	depositAmount;
				private	String	tenure;
				private	String	email;

http://commons.apache.org/proper/commons-lang/


	
				//--getters	and	setters	for	fields
				.....
}
As	depositAmount	and	tenure	fields	are	defined	of	type	String,	we	had	to	write	extra	logic	to	convert	them
into	numeric	values	for	performing	numerical	comparisons.	In	chapter	11,	we’ll	look	at	how	Spring	Web
MVC	simplifies	binding	form	data	to	form	backing	objects	(like	FixedDepositDetails)	and	re-displaying
the	original	form	data	in	case	of	validation	errors.

The	 following	 fragments	 from	 the	 createFixedDepositForm.jsp	 JSP	 page	 demonstrate	 how	 validation
error	messages	and	the	original	form	data	are	displayed	in	the	MyBank	application:

Example	listing	10-36	–	createFixedDepositForm.jsp
Project	–	ch10-bankapp
Source	location	-	src/main/webapp/WEB-INF/jsp

<%@taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"%>
	
<form	name="createFixedDepositForm"	method="POST"
								action="${pageContext.request.contextPath}/fixedDeposit?fdAction=create">
														.....
												<td	class="td"><b>Amount	(in	USD):</b></td>
												<td	class="td">
																	<input	type="text"	name="depositAmount"
																									value="${requestScope.fixedDepositDetails.depositAmount}"/>
																					<font	style="color:	#C11B17;">
																									<c:out	value="${requestScope['error.depositAmount']}"/></font>
													</td>
													.....
							<input	type="submit"	value="Save"	/>
</form>
In	 the	 above	 example	 listing,	 the	 value	 of	 depositAmount	 form	 field	 is	 specified	 as
${requestScope.fixedDepositDetails.depositAmount}.	 In	 the	 openFixedDeposit	 method	 (refer	 example
listing	10-34),	we	added	a	FixedDepositDetails	instance	as	a	model	attribute	named	fixedDepositDetails;
therefore,	 the	${requestScope.fixedDepositDetails.depositAmount}	expression	shows	 the	original	value
that	the	user	entered	for	the	depositAmount	field.

The	 expression	 ${requestScope['error.depositAmount']}	 refers	 to	 the	 error.depositAmount	 request
attribute.	 In	 the	 openFixedDeposit	 method	 (refer	 example	 listing	 10-34),	 we	 saw	 that	 the
error.depositAmount	contains	validation	error	message	corresponding	to	the	fixed	deposit	amount	entered
by	the	user;	therefore,	the	<c:out	value=	"${requestScope['error.depositAmount']}"/>	element	shows	the
validation	error	message	corresponding	to	the	fixed	deposit	amount	entered	by	the	user.

Let’s	now	look	at	how	to	handle	exceptions	in	Spring	Web	MVC	applications.



10-9	Handling	exceptions	using	@ExceptionHandler	annotation
@ExceptionHandler	annotation	is	used	in	an	annotated	controller	 to	identify	the	method	responsible	for
handling	 exceptions	 thrown	 by	 the	 controller.	 Spring’s	 HandlerExceptionResolver	 is	 responsible	 for
mapping	 an	 exception	 to	 an	 appropriate	 controller	method	 responsible	 for	 handling	 the	 exception.	You
should	 note	 that	 the	 <annotation-driven>	 element	 of	 Spring’s	 mvc	 schema	 configures	 an	 instance	 of
ExceptionHandlerExceptionResolver	 (a	 HandlerExceptionResolver	 implementation)	 that	 maps	 an
exception	to	an	appropriate	@ExceptionHandler	annotated	method.

The	following	example	listing	shows	usage	of	@ExceptionHandler	annotation	in	ch10-bankapp	project:

Example	listing	10-37	–	@ExceptionHandler	annotation	usage
Project	–	ch10-bankapp
Source	location	-	src/main/java/sample/spring/chapter10/web

package	sample.spring.chapter10.web;
	
import	org.springframework.web.bind.annotation.ExceptionHandler;
.....
@Controller
@RequestMapping(value	=	"/fixedDeposit")
public	class	FixedDepositController	{
				.....
				@ExceptionHandler
				public	String	handleException(Exception		ex)	{
								return	"error";
				}
}

The	above	example	listing	shows	that	the	FixedDepositController’s	handleException	method	is	annotated
with	@ExceptionHandler	annotation.	This	means	 that	 the	handleException	method	 is	 invoked	by	Spring
Web	 MVC	 to	 handle	 exceptions	 thrown	 during	 execution	 of	 FixedDepositController	 controller.
@ExceptionHandler	 methods	 typically	 render	 an	 error	 page	 containing	 error	 details.	 An
@ExceptionHandler	 annotation’s	 value	 attribute	 specifies	 the	 list	 of	 exceptions	 that	 the
@ExceptionHandler	annotated	method	handles.	If	the	value	attribute	is	not	specified,	the	exception	types
specified	 as	method	arguments	 are	handled	by	 the	@ExceptionHandler	 annotated	method.	 In	 the	 above
example	listing,	the	handleException	method	handles	exceptions	of	type	java.lang.Exception.

Like	@RequestMapping	methods,	@ExceptionHandler	methods	can	have	flexible	method	signatures.	The
return	 types	 supported	 for	 @ExceptionHandler	 methods	 include	 ModelAndView,	 View,	 String,	 void,
Model,	 and	 so	 on.	 The	 argument	 types	 supported	 for	 @ExceptionHandler	 methods	 include
HttpServletRequest,	HttpServletResponse,	HttpSession,	and	so	on.	Refer	to	@ExceptionHandler	Javadoc
for	the	complete	list	of	supported	arguments	and	return	types.

The	 view	 information	 returned	 by	 an	 @ExceptionHandler	 annotated	 method	 is	 used	 by	 the
DispatcherServlet	to	render	an	appropriate	error	page.	For	instance,	in	example	listing	10-37,	the	error
string	value	returned	by	the	handleException	method	 is	used	by	 the	DispatcherServlet	 to	 render	 /WEB-



INF/jsp/error.jsp	page.	If	the	@ExceptionHandler	method	doesn’t	return	any	view	information	(that	is,	the
return	 type	 is	 void	 or	 Model),	 Spring’s	 RequestToViewNameTranslator	 class	 (refer	 section	 11-2	 of
chapter	11	for	details)	is	used	to	determine	the	view	to	be	rendered.

You	 can	 define	 multiple	 @ExceptionHandler	 annotated	 methods	 in	 your	 controller	 class	 for	 handling
different	exception	types.	The	value	attribute	of	@ExceptionHandler	annotation	allows	you	to	specify	the
exception	 types	 that	 are	 handled	 by	 the	 method.	 The	 following	 example	 listing	 shows	 that	 the
myExceptionHandler	method	 handles	 exceptions	 of	 type	 IOException	 and	 FileNotFoundException,	 and
myOtherExceptionHandler	method	handles	exceptions	of	type	TimeoutException:

Example	listing	10-38	–	Specifying	the	type	of	exceptions	handled	by	an	@ExceptionHandler	method
	
@Controller
.....
public	class	MyController	{
				.....
				@ExceptionHandler(value	=	{IOException.class,	FileNotFoundException.class})
				public	String	myExceptionHandler()	{
								return	"someError";
				}
	
				@ExceptionHandler(value	=	TimeoutException.class)
				public	String	myOtherExceptionHandler()	{
								return	"otherError";
				}
}

If	MyController	throws	an	exception	of	type	IOException	or	FileNotFoundException	(or	an	exception	that
is	a	subtype	of	IOException	or	FileNotFoundException),	 the	myExceptionHandler	method	 is	 invoked	 to
handle	the	exception.	If	MyController	throws	an	exception	of	type	TimeoutException	(or	an	exception	that
is	 a	 subtype	 of	 TimeoutException),	 the	 myOtherExceptionHandler	 method	 is	 invoked	 to	 handle	 the
exception.

Let’s	now	look	at	how	Spring’s	ContextLoaderListener	is	used	to	load	root	web	application	context	XML
file(s).



10-11	Loading	root	web	application	context	XML	file(s)
As	mentioned	at	the	beginning	of	this	chapter,	the	root	web	application	context	file	defines	beans	that	are
shared	 by	 all	 the	 servlets	 and	 filters	 of	 the	web	 application.	The	 following	 example	 listing	 shows	 the
configuration	of	ContextLoaderListener:

Example	listing	10-39	–	ContextLoaderListener	configuration
Project	–	ch10-bankapp
Source	location	-	src/main/webapp/WEB-INF/web.xml

				<context-param>
								<param-name>contextConfigLocation</param-name>
								<param-value>classpath*:/META-INF/spring/applicationContext.xml</param-value>
				</context-param>
	
				<listener>
								<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
				</listener>
In	 the	 above	 example	 listing,	 <listener>	 element	 configures	 the	 ContextLoaderListener	 (a
ServletContextListener)	 that	 is	 responsible	 for	 loading	 the	 root	 web	 application	 context	 XML	 file(s)
specified	 by	 the	 contextConfigLocation	 servlet	 context	 initialization	 parameter.	 The	 <context-param>
element	 is	 used	 to	 specify	 a	 servlet	 context	 initialization	 parameter.	 ContextLoaderListener	 creates	 an
instance	of	the	root	WebApplicationContext	with	which	the	beans	loaded	from	the	root	web	application
context	XML	file(s)	are	registered.

In	 the	 above	 example	 listing,	 contextConfigLocation	 parameter	 specifies	 /META-
INF/spring/applicationContext.xml	 file	 as	 the	 root	web	 application	 context	XML	 file.	You	 can	 specify
multiple	application	context	XML	files	separated	by	comma	or	newline	or	whitespace	or	semicolon.	 If
you	 don’t	 specify	 the	 contextConfigLocation	 parameter,	 the	 ContextLoaderListener	 treats	 /WEB-
INF/applicationContext.xml	file	as	the	root	web	application	context	XML	file.



10-12	Summary
In	this	chapter,	we	looked	at	some	of	the	important	objects	of	a	simple	Spring	Web	MVC	application.	We
also	 looked	 at	 how	 to	 use	@Controller,	@RequestMapping,	@RequestParam	 and	@ExceptionHandler
annotations	 to	 create	 annotated	 controllers.	 In	 the	 next	 chapter,	we’ll	 look	 at	 how	Spring	 transparently
binds	request	parameters	to	form	backing	objects	and	performs	validation.



Chapter	11	–	Validation	and	data	binding	in	Spring	Web	MVC



11-1	Introduction
In	 the	 previous	 chapter,	 we	 looked	 at	 the	 MyBank	 web	 application	 that	 was	 developed	 using
@Controller,	 @RequestMapping	 and	 @RequestParam	 annotations.	 We	 saw	 that	 the	 form	 data	 was
retrieved	from	the	request	(refer	example	listing	10-23,	10-28	and	10-29)	and	explicitly	set	on	the	form
backing	 object	 (which	was	 FixedDepositDetails	 object).	Also,	 the	 validation	 logic	was	written	 in	 the
controller	method	itself	(refer	example	listing	10-34).

In	this	chapter,	we’ll	discuss:

·								@ModelAttribute	and	@SessionAttributes	annotations	that	are	useful	when	dealing	with	model
attributes

·								how	Spring’s	WebDataBinder	simplifies	binding	form	data	to	form	backing	objects

·	 	 	 	 	 	 	 	 validating	 form	 backing	 objects	 using	 Spring	 Validation	 API	 and	 JSR	 303’s	 constraint
annotations

·								Spring’s	form	tag	library	that	simplifies	writing	JSP	pages

Let’s	first	look	at	the	@ModelAttribute	annotation	that	is	used	for	adding	and	retrieving	model	attributes
to	and	from	Spring’s	Model	object.



11-2	 Adding	 and	 retrieving	 model	 attributes	 using
@ModelAttribute	annotation
In	the	previous	chapter,	we	saw	that	a	@RequestMapping	method	stores	model	attributes	in	a	HashMap
(or	 ModelMap)	 instance	 and	 returns	 these	 model	 attributes	 via	 ModelAndView	 object.	 The	 model
attributes	returned	by	a	@RequestMapping	method	are	stored	in	Spring’s	Model	object.

A	model	attribute	may	represent	a	form	backing	object	or	a	reference	data.	FixedDepositDetails	object	in
the	MyBank	web	application	is	an	example	of	a	form	backing	object;	when	the	form	for	opening	a	new
fixed	 deposit	 is	 submitted,	 the	 information	 contained	 in	 the	 form	 is	 stored	 in	 the	 FixedDepositDetails
object.	 Typically,	 domain	 objects	 or	 entities	 in	 an	 application	 are	 used	 as	 form	 backing	 objects.
Reference	data	refers	to	the	additional	information	(other	than	the	form	backing	object)	required	by	the
view.	For	instance,	if	you	add	a	user	category	(like	military	personnel,	senior	citizen,	and	so	on)	to	each
fixed	deposit,	the	form	for	opening	new	fixed	deposits	would	need	to	show	a	combo	box	displaying	the
list	of	categories.	The	list	of	categories	would	be	the	reference	data	needed	for	displaying	the	form	for
opening	new	fixed	deposits.

@ModelAttribute	 annotation	 is	 used	 on	 methods	 and	 method	 arguments	 to	 store	 and	 retrieve	 model
attributes	from	Spring’s	Model	object,	 respectively.	@ModelAttribute	annotation	on	a	method	 indicates
that	the	method	adds	one	or	more	model	attributes	to	the	Model	object.	And,	@ModelAttribute	annotation
on	 a	method	 argument	 is	 used	 to	 retrieve	 a	model	 attribute	 from	 the	Model	 object	 and	 assign	 it	 to	 the
method	argument.

IMPORT	 chapter	 11/ch11-bankapp	 (This	 project	 shows	 the	 MyBank	 web	 application	 that	 uses
@ModelAttribute	 annotation	 and	Spring’s	 form	 tag	 library.	 The	MyBank	web	 application	 functionality
offered	by	 ch11-bankapp	 and	 ch10-bankapp	 projects	 is	 the	 same.	 If	 you	 deploy	 the	 project	 on	Tomcat
server	and	access	the	URL	http://localhost:8080/ch11-bankapp,	you’ll	see	the	list	of	fixed	deposits	in	the
system.)

Let’s	first	look	at	@ModelAttribute	annotated	methods.

Adding	model	attributes	using	method-level	@ModelAttribute	annotation
The	following	example	listing	shows	FixedDepositController’s	getNewFixedDepositDetails	method	 that
is	annotated	with	@ModelAttribute	annotation:

Example	listing	11-1	–	@ModelAttribute	annotation	usage	at	method	level
Project	–	ch11-bankapp
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.web;
	
import	org.springframework.web.bind.annotation.ModelAttribute;
import	sample.spring.chapter11.domain.FixedDepositDetails;
.....
@Controller
@RequestMapping(value	=	"/fixedDeposit")
.....



public	class	FixedDepositController	{
				private	static	Logger	logger	=	Logger.getLogger(FixedDepositController.class);
				.....
				@ModelAttribute(value	=	"newFixedDepositDetails")
				public	FixedDepositDetails	getNewFixedDepositDetails()	{
								FixedDepositDetails	fixedDepositDetails	=	new	FixedDepositDetails();
								fixedDepositDetails.setEmail("You	must	enter	a	valid	email");
								logger.info("getNewFixedDepositDetails()	method:	Returning	a	new	instance	of
											FixedDepositDetails");
								return	fixedDepositDetails;
				}
				.....
}

The	 getNewFixedDepositDetails	 method	 creates	 and	 returns	 a	 new	 instance	 of	 FixedDepositDetails
object.	 As	 the	 getNewFixedDepositDetails	method	 is	 annotated	with	@ModelAttribute	 annotation,	 the
returned	FixedDepositDetails	 instance	is	added	to	 the	Model	object.	@ModelAttribute’s	value	attribute
specifies	that	the	returned	FixedDepositDetails	object	is	stored	with	name	newFixedDepositDetails	in	the
Model	 object.	 Notice	 that	 the	 getNewFixedDepositDetails	 method	 logs	 the	 following	 message	 -
‘getNewFixedDepositDetails()	method:	Returning	a	new	instance	of	FixedDepositDetails’.

NOTE	You	should	note	that	the	scope	of	model	attributes	is	request.	This	means	that	the	model	attributes
are	lost	when	a	request	completes,	or	if	a	request	is	redirected.

Later	 in	 this	 section,	 we’ll	 see	 how	 the	 createFixedDepositForm.jsp	 JSP	 page	 (refer
src/main/webapp/WEB-INF/jsp/createFixedDepositForm.jsp	file)	of	ch11-bankapp	project	uses	Spring’s
form	 tag	 library	 to	 access	 the	 FixedDepositDetails	 object	 named	 newFixedDepositDetails	 from	 the
Model	object.

If	you	don’t	specify	@ModelAttribute’s	value	attribute,	the	returned	object	is	stored	in	the	Model	object
using	the	simple	name	of	the	returned	object’s	type.	In	the	following	example	listing,	the	Sample	object
returned	by	the	getSample	method	is	stored	with	name	sample	in	the	Model	object:

Example	listing	11-2	–	@ModelAttribute	usage	–	value	attribute	is	not	specified
																																																																																																	
import	org.springframework.ui.Model;
.....
public	class	SampleController	{
	
				@ModelAttribute
				public	Sample	getSample()	{
									return	new	Sample();
				}
}

A	@ModelAttribute	annotated	method	accepts	same	types	of	arguments	as	a	@RequestMapping	method.
The	following	example	 listing	shows	a	@ModelAttribute	annotated	method	 that	accepts	an	argument	of
type	HttpServletRequest:



	
	
Example	listing	11-3	–	@ModelAttribute	annotated	method	that	accepts	HttpServletRequest	as	argument
	
				@ModelAttribute(value	=	"myObject")
				public	SomeObject	doSomething(HttpServletRequest	request)	{	.....	}
In	 chapter	 10,	 we	 saw	 that	 the	 @RequestParam	 annotation	 is	 used	 to	 pass	 request	 parameters	 to	 a
@RequestMapping	 annotated	 method.	 @RequestParam	 annotation	 can	 also	 be	 used	 to	 pass	 request
parameters	to	a	@ModelAttribute	annotated	method,	as	shown	in	the	following	example	listing:

Example	listing	11-4	–	Passing	request	parameters	to	a	@ModelAttribute	annotated	method
	
				@ModelAttribute(value	=	"myObject")
				public	SomeObject	doSomething(@RequestParam("someArg")	String	myarg)	{	.....	}

As	@RequestMapping	and	@ModelAttribute	annotated	methods	can	accept	Model	objects	as	argument,
you	can	directly	add	model	attributes	 to	 the	Model	object	 in	a	@ModelAttribute	or	@RequestMapping
annotated	method.	 The	 following	 example	 listing	 shows	 a	@ModelAttribute	method	 that	 directly	 adds
model	attributes	to	the	Model	object:

Example	listing	11-5	–	Adding	model	attributes	directly	to	Model	object
	
import	org.springframework.ui.Model;
.....
public	class	SampleWebController	{
	
				@ModelAttribute
				public	void	doSomething(Model	model)	{
										model.addAttribute("myobject",	new	MyObject());
										model.addAttribute("otherobject",	new	OtherObject());
				}
}

In	the	above	example	listing,	the	Model	object	is	passed	as	an	argument	to	the	doSomething	method	that
directly	 adds	model	 attributes	 to	 the	Model	 object.	As	 the	 doSomething	method	 adds	model	 attributes
directly	 to	 the	 Model	 object,	 the	 doSomething	 method’s	 return	 type	 is	 specified	 as	 void,	 and	 the
@ModelAttribute’s	value	attribute	is	not	specified.

It	 is	 possible	 to	 have	 a	 single	 method	 annotated	 with	 both	 @RequestMapping	 and	 @ModelAttribute
annotations.	 The	 following	 example	 listing	 shows	 FixedDepositController’s	 listFixedDeposits	 method
that	is	annotated	with	both	@RequestMapping	and	@ModelAttribute	annotations:

	

Example	listing	11-6	–	@ModelAttribute	and	@RequestMapping	annotations	on	the	same	method
Project	–	ch11-bankapp
Source	location	-	src/main/java/sample/spring/chapter11/web



package	sample.spring.chapter11.web;
.....
@Controller
@RequestMapping(value	=	"/fixedDeposit")
.....
public	class	FixedDepositController	{
				private	static	Logger	logger	=	Logger.getLogger(FixedDepositController.class);
	
				@RequestMapping(value	=	"/list",	method	=	RequestMethod.GET)
				@ModelAttribute(value	=	"fdList")
				public	List<FixedDepositDetails>	listFixedDeposits()	{
								logger.info("listFixedDeposits()	method:	Getting	list	of	fixed	deposits");
								return	fixedDepositService.getFixedDeposits();
				}
				.....
}

The	 listFixedDeposits	 method	 renders	 the	 list.jsp	 JSP	 page	 (refer	 src/main/webapp/WEB-
INF/jsp/fixedDeposit/list.jsp	 file	 of	 ch11-bankapp	 project)	 that	 shows	 the	 list	 of	 fixed	 deposits	 in	 the
system.	When	a	method	is	annotated	with	both	@RequestMapping	and	@ModelAttribute	annotations,	the
value	 returned	 by	 the	method	 is	 considered	 as	 a	model	 attribute,	 and	 not	 as	 a	 view	 name.	 In	 such	 a
scenario,	view	name	is	determined	by	Spring’s	RequestToViewNameTranslator	class	that	determines	the
view	 to	 render	 based	 on	 the	 request	URI	 of	 the	 incoming	 request.	 Later	 in	 this	 chapter,	we’ll	 discuss
RequestToViewNameTranslator	 in	 detail.	 In	 example	 listing	 11-6,	 notice	 that	 the	 listFixedDeposits
method	logs	the	following	message	–	‘listFixedDeposits()	method:	Getting	list	of	fixed	deposits’.

It	is	important	to	note	that	you	can	define	multiple	methods	annotated	with	@ModelAttribute	annotation	in
a	controller.	When	a	request	is	dispatched	to	a	@RequestMapping	annotated	method	of	a	controller,	all
the	@ModelAttribute	 annotated	 methods	 of	 that	 controller	 are	 invoked	 before	 the	 @RequestMapping
annotated	 method	 is	 invoked.	 The	 following	 example	 listing	 shows	 a	 controller	 that	 defines
@RequestMapping	and	@ModelAttribute	annotated	methods:

Example	listing	11-7	–	@RequestMapping	method	is	invoked	after	all	the	@ModelAttribute	methods	are
invoked
	
@RequestMapping("/mycontroller")
public	class	MyController	{
	
				@RequestMapping("/perform")
				public	String	perform()	{	.....	}
	
				@ModelAttribute(value	=	"a")
				public	A	getA()	{	.....	}
	
				@ModelAttribute(value	=	"b")
				public	B	getB()	{	.....	}



}

In	the	above	example	listing,	if	a	request	is	mapped	to	MyController’s	perform	method,	Spring	Web	MVC
will	first	invoke	getA	and	getB	methods,	followed	by	invoking	the	perform	method.

If	a	method	 is	annotated	with	both	@RequestMapping	and	@ModelAttribute	annotations,	 the	method	 is
invoked	 only	 once	 for	 processing	 the	 request.	 The	 following	 example	 listing	 shows	 a	 controller	 that
defines	a	method	that	is	annotated	with	both	@RequestMapping	and	@ModelAttribute	annotations:

Example	listing	11-8	–	Method	annotated	with	both	@RequestMapping	and	@ModelAttribute	annotations
is	invoked	only	once	for	processing	the	request
	
@RequestMapping("/mycontroller")
public	class	MyController	{
	
				@RequestMapping("/perform")
				@ModelAttribute
				public	String	perform()	{	.....	}
	
				@ModelAttribute(value	=	"a")
				public	A	getA()	{	.....	}
	
				@ModelAttribute(value	=	"b")
				public	B	getB()	{	.....	}
}

In	the	above	example	listing,	if	a	request	is	mapped	to	MyController’s	perform	method,	Spring	Web	MVC
will	 first	 invoke	 getA	 and	 getB	 methods,	 followed	 by	 invoking	 the	 perform	 method.	 As	 the	 perform
method	 is	 annotated	 with	 both	 @RequestMapping	 and	 @ModelAttribute	 annotations,	 Spring’s
RequestToViewNameTranslator	 class	 is	 used	 for	 determining	 the	 name	 of	 the	 view	 to	 render	 after	 the
perform	method	is	executed.

If	 you	 now	 deploy	 the	 ch11-bankapp	 project	 on	 Tomcat	 and	 go	 to	 http://localhost:8080/ch11-
bankapp/fixedDeposit/list	URL,	you’ll	see	a	web	page	showing	the	list	of	fixed	deposits.	Also,	you’ll	see
the	following	sequence	of	messages	on	the	console:
INFO		sample.spring.chapter11.web.FixedDepositController	–	getNewFixedDepositDetails()	method:	Returning	a	new	instance	of
FixedDepositDetails
INFO		sample.spring.chapter11.web.FixedDepositController	–	listFixedDeposits()	method:	Getting	list	of	fixed	deposits

	
The	 above	 output	 shows	 that	 the	 getNewFixedDepositDetails	 method	 (which	 is	 annotated	 with
@ModelAttribute	annotation)	is	invoked	first,	followed	by	the	listFixedDeposits	(which	is	annotated	with
both	@ModelAttribute	and	@RequestMapping	annotation).

Let’s	 now	 look	 at	 how	model	 attributes	 are	 retrieved	 from	 the	Model	 object	 using	@ModelAttribute
annotation	on	a	method	argument.

Retrieving	model	attributes	using	@ModelAttribute	annotation



You	 can	 use	 @ModelAttribute	 annotation	 on	 arguments	 of	 a	 @RequestMapping	 annotated	 method	 to
retrieve	model	attributes	from	the	Model	object.

The	 following	 example	 listing	 shows	 FixedDepositController’s	 openFixedDeposit	 method	 that	 uses
@ModelAttribute	annotation	to	retrieve	newFixedDepositDetails	object	from	the	Model	object:

Example	listing	11-9	–	@ModelAttribute	annotation	on	a	method	argument
Project	–	ch11-bankapp
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.web;
.....
@Controller
@RequestMapping(value	=	"/fixedDeposit")
.....
public	class	FixedDepositController	{
				.....
				@ModelAttribute(value	=	"newFixedDepositDetails")
				public	FixedDepositDetails	getNewFixedDepositDetails()	{
								.....
								logger.info("getNewFixedDepositDetails()	method:	Returning	a	new	instance	of
											FixedDepositDetails");
							.....
				}
				.....
				@RequestMapping(params	=	"fdAction=create",	method	=	RequestMethod.POST)
				public	String	openFixedDeposit(
									@ModelAttribute(value	=	"newFixedDepositDetails")
											FixedDepositDetails	fixedDepositDetails,.....)	{
												.....
												fixedDepositService.saveFixedDeposit(fixedDepositDetails);
								logger.info("openFixedDeposit()	method:	Fixed	deposit	details	successfully	saved.
											Redirecting	to	show	the	list	of	fixed	deposits.");
												.....
								}
				}
				.....
}

In	the	above	example	listing,	@ModelAttribute	annotated	getNewFixedDepositDetails	method	is	invoked
before	@RequestMapping	 annotated	 openFixedDeposit	 method.	When	 the	 getNewFixedDepositDetails
method	 is	 invoked,	 the	 returned	FixedDepositDetails	 instance	 is	 stored	 in	 the	Model	 object	with	 name
newFixedDepositDetails.	 Now,	 the	 openFixedDeposit	 method’s	 fixedDepositDetails	 argument	 is
annotated	 with	 @ModelAttribute(value="newFixedDepositDetails");	 therefore,	 the
newFixedDepositDetails	 object	 is	 obtained	 from	 the	 Model	 object	 and	 assigned	 to	 the
fixedDepositDetails	argument.



If	 you	 look	 at	 the	 FixedDepositController’s	 openFixedDeposit	method,	 you’ll	 notice	 that	we	 have	not
written	any	 logic	 to	obtain	values	of	 tenure,	amount	and	email	 fields	 from	the	 request	and	populate	 the
newFixedDepositDetails	instance.	This	is	because	the	Spring’s	WebDataBinder	object	(explained	later	in
this	 chapter)	 is	 responsible	 for	 transparently	 retrieving	 request	 parameters	 from	 the	 request	 and
populating	 the	 fields	 (with	 matching	 names)	 of	 newFixedDepositDetails	 instance.	 For	 instance,	 if	 a
request	parameter	named	tenure	is	found	in	the	request,	WebDataBinder	sets	the	value	of	tenure	field	of
newFixedDepositDetails	instance	to	the	value	of	tenure	request	parameter.

Figure	 11-1	 summarizes	 the	 sequence	 of	 actions	 that	 are	 performed	 by	 Spring	 when	 a	 request	 is
dispatched	to	FixedDepositController’s	openFixedDeposit	method.

Figure	 11-1	 Order	 in	 which	 @ModelAttribute	 and	 @RequestMapping	 annotated	 methods	 of
FixedDepositController	are	invoked

In	 the	above	figure,	 the	RequestMappingHandlerAdapter	object	of	Spring	Web	MVC	is	 responsible	 for
invoking	 @ModelAttribute	 and	 @RequestMapping	 annotated	 methods	 of	 a	 controller.	 At	 first,	 the
getNewFixedDepositDetails	method	is	invoked	and	the	returned	FixedDepositDetails	instance	is	stored	in
the	 Model	 object	 with	 name	 newFixedDepositDetails.	 Next,	 the	 newFixedDepositDetails	 instance	 is
retrieved	from	the	Model	and	passed	as	an	argument	to	the	openFixedDeposit	method.

Let’s	now	look	at	what	times	during	the	processing	of	a	request	a	@ModelAttribute	annotated	method	is
invoked.

Request	processing	and	@ModelAttribute	annotated	methods
In	 example	 listing	 11-6,	 we	 saw	 that	 the	 execution	 of	 listFixedDeposits	 method	 logs	 the	 following
message:

listFixedDeposits()	method:	Getting	list	of	fixed	deposits

In	 example	 listing	 11-9,	 we	 saw	 that	 the	 execution	 of	 getNewFixedDepositDetails	 method	 logs	 the



following	message:

getNewFixedDepositDetails()	method:	Returning	a	new	instance	of	FixedDepositDetails

And,	the	openFixedDeposit	method	logs	the	following	message:

openFixedDeposit()	method:	 Fixed	 deposit	 details	 successfully	 saved.	 Redirecting	 to	 show	 the	 list	 of
fixed	deposits

To	 see	 the	 order	 in	 which	 the	 listFixedDeposits,	 getNewFixedDepositDetails	 and	 openFixedDeposit
methods	are	invoked,	deploy	the	ch11-bankapp	project	and	follow	these	steps:

1.	 	 	 	 Go	 to	 http://localhost:8080/ch11-bankapp/fixedDeposit/list	 URL.	 You’ll	 see	 the	 list	 of	 fixed
deposits	in	the	system	and	the	‘Create	new	Fixed	Deposit’	button	(refer	figure	10-8	of	chapter	10).

2.				Click	the	‘Create	new	Fixed	Deposit’	button	that	shows	the	HTML	form	for	opening	a	new	fixed
deposit	(refer	figure	10-9	of	chapter	10).

3.	 	 	 	Enter	 fixed	deposit	details	and	click	 the	‘Save’	button.	 If	no	validation	errors	are	 found	 in	 the
entered	data,	 the	 fixed	deposit	details	are	 successfully	 saved	and	 the	 list	of	 fixed	deposits	 in	 the
system	(which	includes	the	newly	created	fixed	deposit)	is	displayed	once	again.

The	 following	 table	 describes	 the	 actions	 performed	 by	 you	 and	 the	 corresponding	messages	 that	 are
printed	by	the	MyBank	application	on	the	console:

Action Messages	printed	on	the	console

Go	to	http://localhost:8080/ch11-
bankapp/fixedDeposit/list	URL

getNewFixedDepositDetails()	 method:	 Returning	 a	 new	 instance	 of
FixedDepositDetails

listFixedDeposits()	method:	Getting	list	of	fixed	deposits

Click	the	‘Create	new	Fixed	Deposit’
button

getNewFixedDepositDetails()	 method:	 Returning	 a	 new	 instance	 of
FixedDepositDetails

showOpenFixedDepositForm()	method:	Showing	form	for	opening	a	new	fixed
deposit

Enter	 fixed	 deposit	 details	 and	 click
the	‘Save’	button

getNewFixedDepositDetails()	 method:	 Returning	 a	 new	 instance	 of
FixedDepositDetails

openFixedDeposit()	 method:	 Fixed	 deposit	 details	 successfully	 saved.
Redirecting	to	show	the	list	of	fixed	deposits.

getNewFixedDepositDetails()	 method:	 Returning	 a	 new	 instance	 of
FixedDepositDetails

listFixedDeposits()	method:	Getting	list	of	fixed	deposits

	
The	above	table	shows	that	the	@ModelAttribute	annotated	getNewFixedDepositDetails	method	is	called
before	each	invocation	of	@RequestMapping	annotated	method	of	the	FixedDepositController	class.	As
the	 getNewFixedDepositDetails	 method	 creates	 a	 new	 instance	 of	 FixedDepositDetails	 object,	 a	 new
instance	 of	 FixedDepositDetails	 object	 is	 created	 each	 time	 a	 request	 is	 handled	 by	 the
FixedDepositController.

If	a	@ModelAttribute	annotated	method	fires	SQL	queries	or	invokes	an	external	web	service	to	populate
the	model	attribute	 returned	by	 the	method,	multiple	 invocations	of	@ModelAttribute	 annotated	method
will	adversely	affect	the	performance	of	the	application.	Later	in	this	chapter,	we’ll	see	that	you	can	use
@SessionAttributes	 annotation	 to	 avoid	multiple	 invocations	 of	 a	@ModelAttribute	 annotated	method.
@SessionAttributes	 annotation	 instructs	 Spring	 to	 cache	 the	 object	 returned	 by	 the	 @ModelAttribute



annotated	method.

Let’s	 now	 look	 at	 a	 scenario	 in	which	 the	model	 attribute	 referred	 by	 the	@ModelAttribute	 annotated
method	argument	is	not	found	in	the	Model	object.

Behavior	of	@ModelAttribute	annotated	method	arguments
We	 saw	 earlier	 that	 the	@ModelAttribute	 annotation	 can	 be	 used	 on	 a	method	 argument	 to	 retrieve	 a
model	attribute	from	the	Model	object.	If	the	model	attribute	specified	by	the	@ModelAttribute	annotation
is	 not	 found	 in	 the	Model,	 Spring	 automatically	 creates	 a	 new	 instance	 of	 the	method	 argument	 type,
assigns	 it	 to	 the	method	argument	and	also	puts	 it	 into	 the	Model	object.	To	 allow	Spring	 to	 create	 an
instance	 of	 the	method	 argument	 type,	 the	 Java	 class	 of	 the	method	 argument	 type	must	 provide	 a	 no-
argument	constructor.

Let’s	consider	the	following	SomeController	controller	that	defines	a	single	@RequestMapping	method,
doSomething:

Example	listing	11-10	–	@ModelAttribute	argument	is	not	available	in	the	Model	object

@Controller
@RequestMapping(value	=	"/some")
public	class	SomeController	{
				.....
				@RequestMapping("/do")
				public	void	doSomething(@ModelAttribute("myObj")	MyObject	myObject)	{
								logger.info(myObject);
								.....
				}
}

The	 above	 example	 listing	 shows	 that	 the	 SomeController	 class	 doesn’t	 define	 any	@ModelAttribute
annotated	method	that	adds	an	object	named	myObj	of	type	MyObject	in	the	Model.	For	this	reason,	when
a	request	for	doSomething	method	is	received,	Spring	creates	an	instance	of	MyObject,	assigns	it	 to	the
myObject	argument	and	also	puts	the	newly	created	MyObject	instance	into	the	Model	object.

Let’s	now	look	at	Spring’s	RequestToViewNameTranslator	object.

RequestToViewNameTranslator
RequestToViewNameTranslator	determines	the	view	to	be	rendered	when	a	@RequestMapping	annotated
method	doesn’t	explicitly	specify	the	view	to	be	rendered.

We	 saw	 earlier	 that	 when	 a	 @RequestMapping	 method	 is	 also	 annotated	 with	 @ModelAttribute
annotation,	 the	value	 returned	by	 the	method	 is	considered	as	a	model	attribute.	 In	such	a	situation,	 the
RequestToViewNameTranslator	object	is	responsible	for	determining	the	view	to	be	rendered	based	on
the	 incoming	 web	 request.	 Similarly,	 if	 a	 @RequestMapping	 annotated	 method	 returns	 void,
org.springframework.ui.Model	 or	 java.util.Map,	 the	 RequestToViewNameTranslator	 object	 determines
the	view	to	be	rendered.

DefaultRequestToViewNameTranslator	 is	 an	 implementation	 of	 RequestToViewNameTranslator	 that	 is



used	by	default	by	DispatcherServlet	 to	determine	 the	view	 to	be	 rendered	when	no	view	 is	explicitly
returned	by	a	@RequestMapping	method.	DefaultRequestToViewNameTranslator	uses	the	request	URI	to
determine	 the	 name	 of	 the	 logical	 view	 to	 render.	DefaultRequestToViewNameTranslator	 removes	 the
leading	and	trailing	slashes	and	the	file	extension	from	the	URI	to	determine	the	view	name.	For	instance,
if	the	URL	is	http://localhost:8080/doSomething.htm,	the	view	name	becomes	doSomething.

In	 case	 of	 MyBank	 web	 application,	 the	 FixedDepositController’s	 listFixedDeposits	 method	 (refer
example	listing	11-6	or	FixedDepositController.java	file	of	ch11-bankapp	project)	is	annotated	with	both
@RequestMapping	 and	 @ModelAttribute;	 therefore,	 RequestToViewNameTranslator	 is	 used	 by	 the
DispatcherServlet	to	determine	the	view	to	render.	As	the	listFixedDeposits	method	is	mapped	to	request
URI	/fixedDeposit/list,	RequestToViewNameTranslator	returns	/fixedDeposit/list	as	the	view	name.	The
ViewResolver	 configured	 in	 the	web	 application	 context	XML	 file	 of	MyBank	web	 application	 (refer
bankapp-config.xml	 file	 of	 ch11-bankapp	 project)	 maps	 /fixedDeposit/list	 view	 name	 to	 /WEB-
INF/jsp/fixedDeposit/list.jsp	JSP	view.

Let’s	now	look	at	@SessionAttributes	annotation.



11-3	Caching	model	attributes	using	@SessionAttributes	annotation
In	 the	 previous	 section,	 we	 saw	 that	 all	 the	@ModelAttribute	 annotated	 methods	 of	 a	 controller	 are
always	invoked	before	the	@RequestMapping	annotated	method.	This	behavior	may	not	be	acceptable	in
situations	 in	which	@ModelAttribute	methods	 obtain	 data	 from	 the	 database	 or	 from	 an	 external	 web
service	 to	 populate	 the	model	 attribute.	 In	 such	 scenarios,	 you	 can	 annotate	 your	 controller	 class	with
@SessionAttributes	annotation	that	specifies	the	model	attributes	that	are	stored	in	HttpSession	between
requests.

If	@SessionAttributes	 annotation	 is	 used,	 a	@ModelAttribute	 annotated	method	 is	 invoked	 only	 if	 the
model	 attribute	 specified	 by	 the	 @ModelAttribute	 annotation	 is	 not	 found	 in	 the	 HttpSession.	 Also,
@ModelAttribute	 annotation	 on	 a	method	 argument	will	 result	 in	 creation	 of	 a	 new	 instance	 of	model
attribute	only	if	the	model	attribute	is	not	found	in	the	HttpSession.

IMPORT	chapter	11/ch11-session-attributes	(This	project	shows	a	modified	version	of	ch11-bankapp
project	that	uses	@SessionAttributes	annotation	to	temporarily	store	model	attributes	in	HttpSession.	The
MyBank	web	application	functionality	offered	by	ch11-session-attributes	and	ch10-bankapp	projects	are
the	 same.	 If	 you	 deploy	 the	 project	 on	 Tomcat	 server	 and	 access	 the	URL	 http://localhost:8080/ch11-
session-attributes,	you’ll	see	the	list	of	fixed	deposits	in	the	system.)

The	following	example	 listing	shows	usage	of	@SessionAttributes	annotation	 in	ch11-session-attributes
project	 to	 temporarily	 store	newFixedDepositDetails	 and	 editableFixedDepositDetails	model	 attributes
in	HttpSession:

Example	listing	11-11	–	@SessionAttributes	annotation	usage
Project	–	ch11-session-attributes
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.web;
	
import	org.springframework.web.bind.annotation.SessionAttributes;
.....
@SessionAttributes(value	=	{	"newFixedDepositDetails",	"editableFixedDepositDetails"	})
public	class	FixedDepositController	{
				.....
				@ModelAttribute(value	=	"newFixedDepositDetails")
				public	FixedDepositDetails	getNewFixedDepositDetails()	{
								FixedDepositDetails	fixedDepositDetails	=	new	FixedDepositDetails();
								fixedDepositDetails.setEmail("You	must	enter	a	valid	email");
								return	fixedDepositDetails;
				}
				.....
				@RequestMapping(params	=	"fdAction=create",	method	=	RequestMethod.POST)
				public	String	openFixedDeposit(
										@ModelAttribute(value	=	"newFixedDepositDetails")	FixedDepositDetails
fixedDepositDetails,
												.....)	{	.....	}



				.....
				@RequestMapping(params	=	"fdAction=view",	method	=	RequestMethod.GET)
				public	ModelAndView	viewFixedDepositDetails(
											@RequestParam(value	=	"fixedDepositId")	int	fixedDepositId)	{
								FixedDepositDetails	fixedDepositDetails	=	fixedDepositService
												.getFixedDeposit(fixedDepositId);
								Map<String,	Object>	modelMap	=	new	HashMap<String,	Object>();
								modelMap.put("editableFixedDepositDetails",	fixedDepositDetails);
								.....
								return	new	ModelAndView("editFixedDepositForm",	modelMap);
				}
}

@SessionAttributes	 annotation’s	 value	 attribute	 specifies	 names	 of	 the	 model	 attributes	 that	 are
temporarily	 stored	 in	 HttpSession.	 In	 the	 above	 example	 listing,	 model	 attributes	 named
newFixedDepositDetails	 and	 editableFixedDepositDetails	 are	 stored	 in	HttpSession	 between	 requests.
The	 newFixedDepositDetails	 model	 attribute	 is	 returned	 by	 @ModelAttribute	 annotated
getNewFixedDepositDetails	method,	and	the	editableFixedDepositDetails	model	attribute	is	returned	by
the	@RequestMapping	annotated	viewFixedDepositDetails	method.

A	 controller	 contributes	model	 attributes	 via	@ModelAttribute	 annotated	methods,	@RequestMapping
methods	 (that	 return	ModelAndView,	Model	 or	Map),	 and	 by	 directly	 adding	 model	 attributes	 to	 the
Model	object.	The	model	attributes	contributed	by	the	controller	through	any	approach	are	candidate	for
storage	in	the	HttpSession	by	@SessionAttributes	annotation.

When	 using	@SessionAttributes	 annotation,	 you	 should	 ensure	 that	 the	 model	 attributes	 stored	 in	 the
HttpSession	 are	 removed	when	 they	 are	 no	 longer	 required.	For	 instance,	 the	newFixedDepositDetails
model	 attribute	 represents	 an	 instance	of	FixedDepositDetails	 that	 is	 used	by	 the	 ‘Open	 fixed	deposit’
form	 to	 show	 the	 default	 value(s)	 of	 Email	 form	 field	 as	 ‘You	 must	 enter	 a	 valid	 email’	 (refer
getNewFixedDepositDetails	 method	 in	 example	 listing	 11-11).	 Also,	 when	 the	 user	 clicks	 the	 ‘Save’
button	 on	 the	 ‘Open	 fixed	 deposit’	 form,	 the	 fixed	 deposit	 details	 entered	 by	 the	 user	 are	 set	 on	 the
newFixedDepositDetails	 instance	 (refer	 openFixedDeposit	method	 in	 example	 listing	 11-11).	After	 the
fixed	 deposit	 is	 successfully	 created,	 the	 newFixedDepositDetails	 instance	 is	 no	 longer	 required;
therefore,	 it	 must	 be	 removed	 from	 the	 HttpSession.	 Similarly,	 editableFixedDepositDetails	 model
attribute	is	not	required	after	you	have	successfully	modified	details	of	a	fixed	deposit.

You	 can	 instruct	 Spring	 to	 remove	 all	 the	 model	 attributes	 stored	 in	 HttpSession	 by	 calling
setComplete	 method	 of	 Spring’s	 SessionStatus	 object.	 The	 following	 example	 listing	 shows
FixedDepositController’s	openFixedDeposit	 and	 editFixedDeposit	methods	 that	 invoke	 SessionStatus’s
setComplete	method	after	a	fixed	deposit	is	successfully	created	or	modified:

Example	listing	11-12	–	Removing	model	attributes	from	HttpSession	using	SessionStatus	object
Project	–	ch11-session-attributes
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.web;
	



import	org.springframework.web.bind.support.SessionStatus;
.....
@SessionAttributes(value	=	{	"newFixedDepositDetails",	"editableFixedDepositDetails"	})
public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=create",	method	=	RequestMethod.POST)
				public	String	openFixedDeposit(
												@ModelAttribute(value	=	"newFixedDepositDetails")	FixedDepositDetails	fixedDepositDetails,
												.....,	SessionStatus	sessionStatus)	{
												fixedDepositService.saveFixedDeposit(fixedDepositDetails);
												sessionStatus.setComplete();
								}
				}
	
				@RequestMapping(params	=	"fdAction=edit",	method	=	RequestMethod.POST)
				public	String	editFixedDeposit(
												@ModelAttribute("editableFixedDepositDetails")	FixedDepositDetails	fixedDepositDetails,
												.....,	SessionStatus	sessionStatus)	{
												fixedDepositService.editFixedDeposit(fixedDepositDetails);
												sessionStatus.setComplete();
												.....
								}
				}
				.....
}

The	above	example	listing	shows	that	both	openFixedDeposit	and	editFixedDeposit	methods	are	defined
to	accept	an	argument	of	 type	SessionStatus.	When	a	@RequestMapping	 annotated	method	 specifies	 an
argument	of	type	SessionStatus,	Spring	supplies	an	 instance	of	SessionStatus	 to	 the	method.	The	call	 to
setComplete	 method	 instructs	 Spring	 to	 remove	 the	 current	 controller’s	 model	 attributes	 from	 the
HttpSession	object.

In	example	 listing	11-11	and	11-12,	we	saw	 that	 the	@SessionAttributes’s	value	 attribute	 specifies	 the
names	of	model	attributes	that	are	temporarily	stored	in	HttpSession.	If	you	want	that	only	certain	types	of
model	attributes	are	stored	in	HttpSession,	you	can	use	@SessionAttributes’s	types	attribute.	For	instance,
the	 following	 @SessionAttributes	 annotation	 specifies	 that	 attributes	 named	 x	 and	 y,	 and	 all	 model
attributes	that	are	of	type	MyObject,	are	temporarily	stored	in	HttpSession:

@SessionAttributes(value	=	{	"x",	"y"	},	types	=	{	MyObject.class	})

You	 can	 see	 the	 order	 in	which	 listFixedDeposits,	 getNewFixedDepositDetails	 and	 openFixedDeposit
methods	are	 invoked	by	deploying	ch11-session-attributes	project	and	perform	 the	actions	described	 in
the	following	table:

Action Messages	printed	on	the	console

Go	to	http://localhost:8080/ch11-
session-attributes/fixedDeposit/list
URL

getNewFixedDepositDetails()	method:	Returning	a	new	instance	of
FixedDepositDetails

listFixedDeposits()	method:	Getting	list	of	fixed	deposits



Click	the	‘Create	new	Fixed	Deposit’
button

showOpenFixedDepositForm()	method:	Showing	form	for	opening	a	new	fixed
deposit

Enter	fixed	deposit	details	and	click
the	‘Save’	button

openFixedDeposit()	method:	Fixed	deposit	details	successfully	saved.
Redirecting	to	show	the	list	of	fixed	deposits.

getNewFixedDepositDetails()	method:	Returning	a	new	instance	of
FixedDepositDetails

listFixedDeposits()	method:	Getting	list	of	fixed	deposits

	
In	 ch11-bankapp	 project,	 we	 saw	 that	 the	 @ModelAttribute	 annotated	 getNewFixedDepositDetails
method	 of	 FixedDepositController	 was	 invoked	 each	 time	 a	 request	 was	 dispatched	 to
FixedDepositController.	The	above	table	shows	that	the	getNewFixedDepositDetails	method	is	invoked
when	 request	 is	 handled	 by	 the	 FixedDepositController	 for	 the	 first	 time.	 As	 the	 openFixedDeposit
method	 removes	 the	 model	 attributes	 stored	 in	 the	 HttpSession,	 request	 to	 listFixedDeposits	 method
results	in	invocation	of	getNewFixedDepositDetails	method	once	again.

Now,	that	we	have	seen	how	to	use	@ModelAttribute	and	@SessionAttributes	annotations,	 let’s	 look	at
how	data	binding	is	performed	in	Spring	Web	MVC	applications.



11-4	Data	binding	support	in	Spring
When	a	form	is	submitted	in	a	Spring	Web	MVC	application,	request	parameters	contained	in	the	request
are	automatically	set	on	the	model	attribute	that	acts	as	the	form	backing	object.	This	process	of	setting
request	parameters	on	the	form	backing	object	is	referred	to	as	data	binding.	In	this	section,	we’ll	look	at
Spring’s	WebDataBinder	instance	that	binds	request	parameters	to	form	backing	objects.

IMPORT	 chapter	 11/ch11-data-binding	 (This	 project	 shows	 a	 modified	 version	 of	 ch11-session-
attributes	project	that	shows	how	to	register	PropertyEditor	implementations	with	Spring	container.	If	you
deploy	the	project	on	Tomcat	server	and	access	the	URL	http://localhost:8080/ch11-data-binding,	you’ll
see	the	list	of	fixed	deposits	in	the	system.)

The	following	example	listing	shows	the	FixedDepositDetails	class	of	ch11-data-binding	project:

Example	listing	11-13	–	FixedDepositDetails	class
Project	–	ch11-data-binding
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.domain;
	
import	java.util.Date;
	
public	class	FixedDepositDetails	{
				.....
				private	long	depositAmount;
				private	Date	maturityDate;
				.....
				public	void	setDepositAmount(long	depositAmount)	{
								this.depositAmount	=	depositAmount;
				}
				public	void	setMaturityDate(Date	maturityDate)	{
								this.maturityDate	=	maturityDate;
				}
				.....
}

The	 above	 example	 listing	 shows	 that	 the	depositAmount	 and	maturityDate	 fields	 are	 of	 type	 long	 and
java.util.Date,	respectively.	The	values	of	depositAmount	and	maturityDate	fields	are	set	when	the	‘Open
fixed	deposit’	form	of	ch11-data-binding	project	is	submitted.	The	following	figure	shows	the	‘Open	fixed
deposit’	form	of	ch11-data-binding	project	that	is	used	for	opening	new	fixed	deposits:



Figure	11-2	‘Open	fixed	deposit’	form	for	opening	new	fixed	deposits

In	the	above	figure,	‘Amount(in	USD)’	and	‘Maturity	date’	form	fields	correspond	to	depositAmount	and
maturityDate	 fields	 of	 FixedDepositDetails	 class	 (refer	 example	 listing	 11-13).	 One	 of	 the	 important
things	to	note	is	that	the	‘Maturity	date’	field	accepts	a	date	in	the	format	‘MM-dd-yyyy’,	like	01-27-2013.
As	depositAmount	field	is	of	type	long,	and	maturityDate	is	of	type	java.util.Date,	Spring’s	data	binding
mechanism	 is	 responsible	 for	 doing	 the	 type	 conversion	 from	 String	 to	 the	 type	 defined	 by	 the
FixedDepositDetails	instance.

The	following	example	listing	shows	FixedDepositController’s	openFixedDeposit	method	that	is	invoked
when	a	user	fills	the	‘Open	fixed	deposit’	form	and	clicks	the	‘Save’	button	(refer	figure	11-2):

Example	listing	11-14	–	FixedDepositController	-	Automatic	data	binding	example
Project	–	ch11-data-binding
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.web;
	
@Controller
.....
public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=create",	method	=	RequestMethod.POST)
				public	String	openFixedDeposit(
	 	 	 	 	 	 	 	 	 @ModelAttribute(value	 =	 "newFixedDepositDetails")	 FixedDepositDetails
fixedDepositDetails,
												BindingResult	bindingResult,	SessionStatus	sessionStatus)	{
								....
				}
				.....
}

In	 the	 above	 example	 listing,	 the	@ModelAttribute	 annotated	FixedDepositDetails	 argument	 represents
the	form	backing	object	on	which	the	request	parameters	are	set	when	the	‘Open	fixed	deposit’	 form	is
submitted.	 Spring’s	 WebDataBinder	 instance	 binds	 request	 parameters	 to	 the	 FixedDepositDetails
instance.



Let’s	now	look	at	how	WebDataBinder	performs	data	binding.

WebDataBinder	–	data	binder	for	web	request	parameters
WebDataBinder	uses	the	request	parameter	name	to	find	the	corresponding	JavaBean-style	setter	method
on	the	form	backing	object.	If	a	JavaBean-style	setter	method	is	found,	WebDataBinder	invokes	the	setter
method	and	passes	the	request	parameter	value	as	an	argument	to	the	setter	method.	If	the	setter	method	is
defined	 to	 accept	 a	 non-String	 type	 argument,	 WebDataBinder	 uses	 an	 appropriate	 PropertyEditor	 to
perform	the	type	conversion.

The	 following	 example	 listing	 shows	 the	 MyObject	 class	 that	 acts	 as	 a	 form	 backing	 object	 in	 an
application:

Example	listing	11-15	–	MyObject	class	–	a	form	backing	object

public	class	MyObject	{
				private	String	x;
				private	N	y;
				.....
				public	void	setX(String	x)	{
								this.x	=	x;
				}
				public	void	setY(N	y)	{
								this.y	=	y;
				}
}

The	above	example	listing	shows	that	the	MyObject	class	defines	properties	named	x	and	y	of	type	String
and	N,	respectively.

The	 following	 figure	 shows	 how	WebDataBinder	 binds	 request	 parameters	 named	 x	 and	 y	 to	 x	 and	 y
properties	of	MyObject	instance:



Figure	11-3	WebDataBinder	performs	data	binding	by	using	registered	PropertyEditors	 to	perform	type
conversion

The	above	figure	shows	that	the	WebDataBinder	uses	a	PropertyEditor	to	convert	String	value	b	to	type
N,	before	calling	the	setY	method	of	MyObject	instance.

Spring	provides	a	couple	of	built-in	PropertyEditor	implementations	that	are	used	by	WebDataBinder	for
converting	 String	 type	 request	 parameter	 value	 to	 the	 type	 defined	 by	 the	 form	 backing	 object.	 For
instance,	CustomNumberEditor,	FileEditor,	CustomDateEditor	 are	 some	 of	 the	 built-in	 PropertyEditors
provided	 by	 Spring.	 For	 a	 complete	 list	 of	 built-in	 PropertyEditors,	 refer	 to
org.springframework.beans.propertyeditors	package.

CustomNumberEditor	is	used	for	converting	a	String	value	to	a	java.lang.Number	type,	like	Integer,	Long,
Double,	and	so	on.	CustomDateEditor	is	used	for	converting	a	String	value	to	a	java.util.Date	type.	You
can	pass	a	java.text.DateFormat	instance	to	CustomDateEditor	 to	specify	 the	date	 format	 to	be	used	for
parsing	 and	 rendering	 dates.	 Both	 these	 PropertyEditors	 are	 required	 in	 ch11-data-binding	 project
because	 we	 need	 to	 convert	 request	 parameter	 values	 to	 depositAmount	 (which	 is	 of	 type	 long)	 and
maturityDate	 (which	 is	 of	 type	 java.util.Date).	 CustomNumberEditor	 is	 pre-registered	 with	 the
WebDataBinder	instance	but	you	need	to	explicitly	register	CustomDateEditor.

Let’s	 now	 look	 at	 how	 you	 can	 configure	 a	 WebDataBinder	 instance	 and	 register	 a	 PropertyEditor
implementation	with	it.

Configuring	a	WebDataBinder	instance
You	can	configure	a	WebDataBinder	instance	by:

·								defining	an	@InitBinder	annotated	method	in	the	controller	class

·								configuring	a	WebBindingInitializer	implementation	in	the	web	application	context	XML	file

·								defining	an	@InitBinder	annotated	method	in	a	@ControllerAdvice	annotated	class

Let’s	 look	 at	 each	 of	 the	 above	 mentioned	 approach	 for	 configuring	 a	 WebDataBinder	 instance	 and
registering	a	PropertyEditor	with	it.

Defining	an	@InitBinder	annotated	method	in	the	controller	class

An	@InitBinder	annotated	method	in	a	controller	class	specifies	that	the	method	initializes	an	instance	of
WebDataBinder	that	will	be	used	by	the	controller	during	data	binding.	The	value	attribute	of	@InitBinder
annotation	specifies	 the	name(s)	of	 the	model	attribute	 to	which	the	initialized	WebDataBinder	 instance
applies.

The	following	example	listing	shows	FixedDepositController’s	initBinder_New	method	that	is	annotated
with	@InitBinder:

Example	listing	11-16	–	FixedDepositController	-	@InitBinder	annotation	usage
Project	–	ch11-data-binding
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.web;



	
import	java.text.SimpleDateFormat;
import	org.springframework.beans.propertyeditors.CustomDateEditor;
import	org.springframework.web.bind.WebDataBinder;
import	org.springframework.web.bind.annotation.InitBinder;
	
@Controller
.....
public	class	FixedDepositController	{
				.....
				@ModelAttribute(value	=	"newFixedDepositDetails")
				public	FixedDepositDetails	getNewFixedDepositDetails()	{	.....	}
				@InitBinder(value	=	"newFixedDepositDetails")
				public	void	initBinder_New(WebDataBinder	webDataBinder)	{
								webDataBinder.registerCustomEditor(Date.class,
													new	CustomDateEditor(new	SimpleDateFormat("MM-dd-yyyy"),	false));
				}
				.....
}

In	 the	 above	 example	 listing,	 the	 @InitBinder	 annotation’s	 value	 attribute	 is	 set	 to
newFixedDepositDetails,	which	means	that	the	WebDataBinder	initialized	by	the	initBinder_New	method
applies	 only	 to	 the	 newFixedDepositDetails	 model	 attribute.	 An	 @InitBinder	 annotated	 method	 can
accept	same	set	of	arguments	(like	HttpServletRequest,	SessionStatus,	and	so	on)	that	can	be	passed	to	a
@RequestMapping	annotated	method.	But,	an	@InitBinder	annotated	method	can’t	be	defined	 to	accept
model	attributes	and	BindingResult	(or	Errors)	objects	as	arguments.	Typically,	WebDataBinder	instance,
along	with	Spring’s	WebRequest	or	 java.util.Locale	 instance,	 is	passed	 to	an	@InitBinder	method.	You
should	note	that	the	return	type	of	an	@InitBinder	method	must	be	void.

WebDataBinder’s	 registerCustomEditor	 method	 is	 used	 for	 registering	 a	 PropertyEditor	 with	 the
WebDataBinder	instance.	In	example	listing	11-16,	initBinder_New	method	registers	CustomDateEditor
(a	PropertyEditor)	with	the	WebDataBinder	instance.

You	 can	 define	 an	@InitBinder	 annotated	method	 for	 each	model	 attribute	 of	 a	 controller,	 or	 you	 can
define	a	single	@InitBinder	annotated	method	that	applies	to	all	the	model	attributes	of	the	controller.	If
you	don’t	specify	the	value	attribute	of	@InitBinder	annotation,	the	WebDataBinder	instance	initialized	by
the	method	is	applicable	to	all	the	model	attributes	of	the	controller.

Configuring	a	WebBindingInitializer	implementation

A	WebDataBinder	 instance	 is	 first	 initialized	 by	RequestMappingHandlerAdapter,	 followed	 by	 further
initialization	by	WebBindingInitializer	and	@InitBinder	methods.

The	 <annotation-driven>	 element	 of	 Spring’s	 mvc	 schema	 creates	 an	 instance	 of	 Spring’s
RequestMappingHandlerAdapter	that	initializes	the	WebDataBinder.	You	can	supply	an	implementation	of
Spring’s	 WebBindingInitializer	 interface	 to	 RequestMappingHandlerAdapter	 to	 further	 initialize



WebDataBinder	instances.	You	can	additionally	use	@InitBinder	methods	in	a	controller	class	to	further
initialize	WebDataBinder	instances.

The	 following	 figure	 shows	 the	 sequence	 in	 which	 RequestMappingHandlerAdapter,
WebBindingInitializer	and	@InitBinder	methods	initialize	a	WebDataBinder	instance:

Figure	 11-4	 The	 sequence	 in	 which	 a	 WebDataBinder	 instance	 is	 initialized	 by
RequestMappingHandlerAdapter,	WebBindingInitializer	and	@InitBinder	methods	of	a	controller	class

WebDataBinder	 initialization	by	an	@InitBinder	method	of	a	controller	class	 is	applicable	only	 to	 that
controller’s	model	attributes.	For	 instance,	 if	you	use	an	@InitBinder	method	 in	controller	X	 to	 set	 the
CustomDateEditor	property	editor	on	 the	WebDataBinder	 instance,	 then	 the	CustomDateEditor	 property
editor	 will	 be	 available	 only	 to	 the	model	 attributes	 of	 controller	 X	 during	 data	 binding.	 In	MyBank
application,	 the	 CustomDateEditor	 was	 required	 only	 by	 the	 model	 attributes	 of	 the
FixedDepositController;	 therefore,	 we	 used	 @InitBinder	 annotated	 methods	 in	 the
FixedDepositController	class	to	register	CustomDateEditor	with	WebDataBinder	instance.

Spring’s	 WebBindingInitializer	 is	 a	 callback	 interface	 whose	 implementation	 is	 responsible	 for
initializing	a	WebDataBinder	with	the	configuration	that	applies	to	all	the	controllers	(and	thereby	to	all
the	model	 attributes)	 in	 the	 application.	Let’s	 look	at	how	 to	 configure	 a	 custom	WebBindingInitializer
when	using	<annotation-driven>	element	of	Spring’s	mvc	schema.

The	 <annotation-driven>	 element	 of	 Spring’s	 mvc	 schema	 creates	 and	 registers
RequestMappingHandlerAdapter	and	RequestMappingHandlerMapping	objects	with	the	Spring	container.
The	 other	 objects	 that	 are	 configured	 by	 <annotation-driven>	 element	 are	 LocalValidatorFactoryBean
(explained	 in	 section	 11-5)	 and	FormattingConversionServiceFactoryBean	 (explained	 in	 section	 13-5).
The	 <annotation-driven>	 element	 provides	 couple	 of	 attributes	 that	 help	 you	 customize
RequestMappingHandlerAdapter	and	RequestMappingHandlerMapping	objects.	If	 the	customization	you
want	 to	 make	 to	 RequestMappingHandlerAdapter	 or	 RequestMappingHandlerMapping	 object	 is	 not
provided	by	the	<annotation-driven>	element,	the	only	option	is	to	remove	<annotation-driven>	element
and	 explicitly	 configure	RequestMappingHandlerAdapter	 and	RequestMappingHandlerMapping	 objects
in	the	web	application	context	XML	file.	As	<annotation-driven>	element	doesn’t	provide	any	option	to
supply	 a	 custom	WebBindingInitializer	 instance	 to	 the	 RequestMappingHandlerAdapter	 object,	 you’ll



have	 to	 explicitly	 configure	 RequestMappingHandlerAdapter	 and	 RequestMappingHandlerMapping
objects	in	the	web	application	context	XML	file.

The	 following	example	 listing	 shows	how	you	can	use	Spring’s	ConfigurableWebBindingInitializer	 (an
implementation	of	WebBindingInitializer)	to	make	CustomDateEditor	property	editor	available	to	all	the
controllers	in	the	MyBank	application:

Example	listing	11-17	–	WebBindingInitializer	configuration

<bean	id="handlerAdapter"
				class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter">
				<property	name="webBindingInitializer"	ref="myInitializer"	/>
</bean>
	
<bean	id="handlerMapping"
	 	 	 	 class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerMapping"
/>
	
<bean	id="myInitializer"
				class="org.springframework.web.bind.support.ConfigurableWebBindingInitializer">
				<property	name="propertyEditorRegistrars">
								<list>
												<bean	class="mypackage.MyPropertyEditorRegistrar"	/>
								</list>
				</property>
</bean>
The	 above	 example	 listing	 shows	 that	 RequestMappingHandlerAdapter	 and
RequestMappingHandlerMapping	beans	are	explicitly	defined	in	the	web	application	context	XML	file.
The	 RequestMappingHandlerAdapter’s	 webBindingInitializer	 property	 refers	 to	 the
ConfigurableWebBindingInitializer	 bean	 that	 implements	 WebBindingInitializer	 interface.
ConfigurableWebBindingInitializer’s	propertyEditorRegistrars	property	specifies	classes	that	register	one
or	 more	 PropertyEditors	 with	 WebDataBinder.	 The	 following	 example	 listing	 shows	 how
MyPropertyEditorRegistrar	class	registers	CustomDateEditor	property	editor	with	WebDataBinder:

Example	listing	11-18	–	MyPropertyEditorRegistrar	class

import	org.springframework.beans.PropertyEditorRegistrar;
import	org.springframework.beans.PropertyEditorRegistry;
import	org.springframework.beans.propertyeditors.CustomDateEditor;
	
public	class	MyPropertyEditorRegistrar	implements	PropertyEditorRegistrar	{
	
				@Override
				public	void	registerCustomEditors(PropertyEditorRegistry	registry)	{
								registry.registerCustomEditor(Date.class,	new	CustomDateEditor(
																new	SimpleDateFormat("MM-dd-yyyy"),	false));
				}



}

The	 above	 example	 listing	 shows	 that	 the	 MyPropertyEditorRegistrar	 class	 implements	 Spring’s
PropertyEditorRegistrar	 interface,	 and	 provides	 implementation	 for	 registerCustomEditors	 method
defined	 in	 the	 PropertyEditorRegistrar	 interface.	 The	 PropertyEditorRegistry	 instance	 passed	 to	 the
registerCustomEditors	 method	 is	 used	 for	 registering	 property	 editors.	 PropertyEditorRegistry’s
registerCustomEditor	 method	 is	 used	 for	 registering	 a	 PropertyEditor	 implementation	 with	 the
WebDataBinder.	In	the	above	example	listing,	PropertyEditorRegistry’s	registerCustomEditor	is	used	for
registering	the	CustomDateEditor	property	editor	with	the	WebDataBinder.

As	 we	 saw,	 using	WebBindingInitializer	 for	 initializing	WebDataBinder	 is	 quite	 an	 involved	 task.	 A
simpler	 alternative	 to	 using	 WebBindingInitializer	 is	 to	 define	 @InitBinder	 annotated	 methods	 in	 a
@ControllerAdvice	annotated	class.

Defining	an	@InitBinder	method	in	a	@ControllerAdvice	annotated	class

Like	 @Service,	 @Controller	 and	 @Repository	 annotations,	 @ControllerAdvice	 annotation	 is	 a
specialized	form	of	@Component	annotation.	The	@ControllerAdvice	annotation	on	a	class	indicates	that
the	 class	 provides	 support	 to	 controllers.	 You	 can	 define	 @InitBinder,	 @ModelAttribute	 and
@ExceptionHandler	 annotated	methods	 in	 the	@ControllerAdvice	 annotated	 class,	 and	 these	 annotated
methods	apply	 to	all	 the	 annotated	 controllers	 in	 the	 application.	As	with	@Service,	@Controller	 and
@Repository	annotations,	<classpath-scanning>	element	of	Spring’s	context	schema	automatically	detects
and	registers	@ControllerAdvice	annotated	classes	with	the	Spring	container.

If	you	notice	that	you	are	duplicating	@InitBinder,	@ModelAttribute	and	@ExceptionHandler	methods	in
multiple	controllers,	 then	consider	defining	such	methods	 in	a	@ControllerAdvice	annotated	class.	For
instance,	 if	 you	 want	 to	 initialize	 the	 WebDataBinder	 with	 the	 configuration	 that	 applies	 to	 multiple
controllers	in	the	application,	then	define	an	@InitBinder	method	in	a	@ControllerAdvice	annotated	class
instead	of	defining	an	@InitBinder	method	in	multiple	controller	classes.

The	following	table	summarizes	the	three	approaches	that	we	discussed	for	initializing	WebDataBinder:
@InitBinder	method	in	controller
class WebBindingInitializer @InitBinder	 method	 in

@ControllerAdvice	class

Requires	 defining	 an	 @InitBinder
method	in	a	controller

Requires	 explicitly	 configuring
RequestMappingHandlerAdapter	in	the	web
application	context	XML	file

Requires	 defining	 an	 @InitBinder
method	 in	 a	 @ControllerAdvice
annotated	class

WebDataBinder	initialization	applies
only	 to	 the	 controller	 that	 contains
the	@InitBinder	method

WebDataBinder	 initialization	 applies	 to	 all
the	annotated	controllers	in	the	application

WebDataBinder	 initialization	 applies
to	all	the	annotated	controllers	in	the
application

	
Let’s	now	look	at	how	you	can	allow	or	disallow	fields	of	a	model	attribute	from	participating	in	the	data
binding	process.

Allowing	or	disallowing	fields	from	data	binding	process
WebDataBinder	 allows	you	 to	 specify	 fields	of	 a	model	 attribute	 that	 are	 allowed	or	disallowed	 from
participating	in	the	data	binding	process.	It	is	strongly	recommended	that	you	specify	the	fields	of	a	model
attribute	 that	 are	 allowed	 or	 disallowed	 from	 the	 data	 binding	 processes,	 as	 failing	 to	 do	 so	 may
compromise	the	security	of	your	application.	Let’s	look	at	a	scenario	in	which	we	would	like	to	allow	or
disallow	fields	from	data	binding.



In	MyBank	application,	when	a	user	selects	a	fixed	deposit	for	editing,	the	details	of	the	selected	fixed
deposit	are	loaded	from	the	data	store	and	temporarily	cached	in	the	HttpSession.	The	user	makes	changes
to	the	fixed	deposit	and	saves	the	changes.	The	following	example	listing	shows	the	@RequestMapping
methods	that	are	responsible	for	loading	the	selected	fixed	deposit	and	saving	the	updated	fixed	deposit
information:

Example	listing	11-19	–	FixedDepositController
Project	–	ch11-data-binding
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.web;
.....
@SessionAttributes(value	=	{	"newFixedDepositDetails",	"editableFixedDepositDetails"	})
public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=view",	method	=	RequestMethod.GET)
				public	ModelAndView	viewFixedDepositDetails(
												@RequestParam(value	=	"fixedDepositId")	int	fixedDepositId)	{
								FixedDepositDetails	fixedDepositDetails	=	fixedDepositService
												.getFixedDeposit(fixedDepositId);
								Map<String,	Object>	modelMap	=	new	HashMap<String,	Object>();
								modelMap.put("editableFixedDepositDetails",	fixedDepositDetails);
								.....
								return	new	ModelAndView("editFixedDepositForm",	modelMap);
				}
				.....
				@RequestMapping(params	=	"fdAction=edit",	method	=	RequestMethod.POST)
				public	String	editFixedDeposit(
							@ModelAttribute("editableFixedDepositDetails")	FixedDepositDetails	fixedDepositDetails,)	{
								.....
				}
}

In	MyBank	 application,	 a	 fixed	 deposit	 is	 uniquely	 identified	 by	 the	 id	 field	 of	 FixedDepositDetails
object	 (refer	 FixedDepositDetails	 class	 of	 ch11-data-binding	 project).	 When	 a	 user	 selects	 a	 fixed
deposit	 for	 editing,	 the	 id	 field	 value	 is	 passed	 to	 the	 viewFixedDepositDetails	 method	 via	 the
fixedDepositId	request	parameter.	The	viewFixedDepositDetails	method	uses	the	value	of	fixedDepositId
request	parameter	to	load	fixed	deposit	details	and	show	them	on	the	‘Edit	fixed	deposit’	form,	as	shown
in	the	following	figure:



Figure	11-5	‘Edit	fixed	deposit’	form	for	editing	an	existing	fixed	deposit

As	the	id	value	(that	corresponds	to	id	attribute	of	FixedDepositDetails	object)	uniquely	identifies	a	fixed
deposit	in	the	system,	the	‘Edit	fixed	deposit’	form	doesn’t	provide	any	mechanism	to	change	it.	When	the
user	 clicks	 the	 ‘Save’	 button,	 the	 FixedDepositController’s	 editFixedDeposit	 method	 is	 invoked.	 The
editFixedDeposit	method	saves	the	changes	to	the	fixed	deposit	detail.

When	FixedDepositController’s	editFixedDeposit	method	is	invoked,	the	WebDataBinder	instance	binds
request	 parameter	 values	 to	 the	 fields	 of	 editableFixedDepositDetails	 model	 attribute	 –	 the
FixedDepositDetails	object	that	was	loaded	by	viewFixedDepositDetails	method	and	temporarily	stored
in	HttpSession	(refer	@SessionAttributes	annotation	in	example	listing	11-19).	If	a	malicious	user	sends	a
request	parameter	named	id	with	value	10,	then	the	WebDataBinder	will	blindly	go	ahead	and	set	the	id
attribute	of	FixedDepositDetails	object	to	10	during	data	binding.	This	is	not	desirable	because	changing
id	attribute	of	a	FixedDepositDetails	object	will	compromise	application	data.

WebDataBinder	provides	setAllowedFields	and	setDisallowedFields	methods	that	you	can	use	to	set	the
names	of	model	attribute	fields	that	can	and	cannot	participate	in	the	data	binding	process.	The	following
example	listing	shows	the	FixedDepositController’s	initBinder_Edit	method	that	specifies	that	the	id	field
of	editableFixedDepositDetails	model	attribute	must	not	participate	in	the	data	binding	process:

Example	listing	11-20	–	FixedDepositController	–	WebDataBinder’s	setDisallowedFields	method
Project	–	ch11-data-binding
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.web;
.....
public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=edit",	method	=	RequestMethod.POST)
				public	String	editFixedDeposit(
						@ModelAttribute("editableFixedDepositDetails")	FixedDepositDetails	fixedDepositDetails,	.....)
{
								.....
				}



				.....
				@InitBinder(value	=	"editableFixedDepositDetails")
				public	void	initBinder_Edit(WebDataBinder	webDataBinder)	{
								webDataBinder.registerCustomEditor(Date.class,	new	CustomDateEditor(
																new	SimpleDateFormat("MM-dd-yyyy"),	false));
								webDataBinder.setDisallowedFields("id");
				}
}

In	 the	 above	 example	 listing,	 the	 initBinder_Edit	 method	 initializes	 WebDataBinder	 instance	 for	 the
editableFixedDepositDetails	 model	 attribute.	 As	 the	 setDisallowedFields	 method	 specifies	 that	 the	 id
field	of	editableFixedDepositDetails	model	attribute	is	disallowed	to	participate	in	the	binding	process,
the	id	field	is	not	set	even	if	a	request	parameter	named	id	is	contained	in	the	request.

Let’s	now	look	at	Spring’s	BindingResult	object	 that	exposes	errors	 that	occur	during	data	binding	and
validation.

Inspecting	data	binding	and	validation	errors	using	BindingResult	object
Spring’s	BindingResult	object	provides	a	controller	method	with	the	results	of	binding	request	parameters
to	the	model	attribute’s	fields.	For	instance,	if	any	type	conversion	error	occurs	during	data	binding,	they
are	reported	by	the	BindingResult	object.

The	following	example	listing	shows	FixedDepositController’s	openFixedDeposit	method	that	creates	a
fixed	deposit	only	if	no	errors	are	reported	by	the	BindingResult	object:

Example	 listing	 11-21	 –	 FixedDepositController	 –	 checking	 for	 binding	 and	 validation	 errors	 using
BindingResult
Project	–	ch11-data-binding																																																																																		
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.web;
	
import	org.springframework.validation.BindingResult;
import	org.springframework.web.bind.annotation.ModelAttribute;
.....
public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=create",	method	=	RequestMethod.POST)
				public	String	openFixedDeposit(
								@ModelAttribute(value	=	"newFixedDepositDetails")	FixedDepositDetails
fixedDepositDetails,
												BindingResult	bindingResult,	SessionStatus	sessionStatus)	{
								.....
								if	(bindingResult.hasErrors())	{
												return	"createFixedDepositForm";
								}	else	{
												fixedDepositService.saveFixedDeposit(fixedDepositDetails);



												sessionStatus.setComplete();
												return	"redirect:/fixedDeposit/list";
								}
				}
				.....
}

In	 the	 above	 example	 listing,	 the	 BindingResult’s	 hasErrors	 method	 returns	 true	 if	 the	 BindingResult
object	 holds	 one	 or	more	 data	 binding	 or	 validation	 errors.	 In	 section	 11-5,	we’ll	 see	 how	validation
errors	 are	 stored	 in	 the	 BindingResult	 object.	 If	 errors	 are	 reported	 by	 the	 BindingResult	 object,	 the
openFixedDeposit	method	renders	the	‘Create	fixed	deposit’	form	with	appropriate	error	messages.	If	no
errors	are	reported,	the	fixed	deposit	details	are	saved	in	the	data	store.

You	should	note	 that	 the	BindingResult	argument	must	 immediately	 follow	 the	model	attribute	argument
whose	BindingResult	object	you	want	to	access	in	the	controller	method.	For	instance,	in	example	listing
11-21,	the	BindingResult	argument	immediately	follows	the	newFixedDepositDetails	model	attribute.	The
following	example	listing	shows	an	incorrect	ordering	of	the	model	attribute	and	the	BindingResult	object
for	the	openFixedDeposit	method:

Example	listing	11-22	–	Incorrect	ordering	of	the	model	attribute	and	the	BindingResult	object
	
.....
public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=create",	method	=	RequestMethod.POST)
				public	String	openFixedDeposit(
	 	 	 	 	 	 	 	 @ModelAttribute(value	 =	 "newFixedDepositDetails")	 FixedDepositDetails
fixedDepositDetails,
												SessionStatus	sessionStatus,	BindingResult	bindingResult)	{
								.....
				}
				.....
}

In	 the	 above	 example	 listing,	 the	 ordering	 of	 the	 newFixedDepositDetails	 model	 attribute	 and	 the
BindingResult	object	is	incorrect	because	the	SessionStatus	argument	is	defined	between	them.

If	a	controller	method	accepts	multiple	model	attributes,	the	BindingResult	object	corresponding	to	each
model	attribute	is	specified	immediately	after	each	model	attribute	argument,	as	shown	in	the	following
example	listing:

Example	listing	11-23	–	Multiple	model	attributes	and	their	BindingResult	objects
	
@RequestMapping
public	String	doSomething(
				@ModelAttribute(value	=	"a")	AObject	aObj,BindingResult	bindingResultA,
			@ModelAttribute(value	=	"b")	BObject	bObj,BindingResult	bindingResultB,)	{
			.....



}

The	above	example	 listing	shows	 that	both	model	attributes	a	and	b	are	 immediately	 followed	by	 their
corresponding	BindingResult	objects.

Now,	that	we	have	seen	the	data	binding	process,	let’s	look	at	how	validation	is	performed	in	Spring	Web
MVC	applications.



11-5	Validation	support	in	Spring
In	the	previous	section,	we	saw	that	the	WebDataBinder	binds	request	parameters	to	model	attributes.	The
next	step	in	request	processing	is	to	validate	model	attributes.	In	Spring	Web	MVC	applications,	you	can
validate	 model	 attributes	 using	 Spring	 Validation	 API	 (discussed	 in	 section	 6-9	 of	 chapter	 6)	 or	 by
specifying	JSR	303	(Bean	Validation	API)	constraints	(discussed	in	section	6-10	of	chapter	6)	on	fields
of	model	attributes.

NOTE	 In	 this	 chapter,	 Spring	Validation	API	 and	 JSR	 303	 (Bean	Validation	API)	 have	 been	 used	 to
validate	form	backing	objects	(which	are	model	attributes)	in	the	web	layer	of	the	application.	You	should
note	that	both	JSR	303	(Bean	Validation	API)	and	Spring	Validation	API	can	be	used	to	validate	objects
in	any	application	layer.

Let’s	first	look	at	how	to	validate	model	attributes	using	Spring	Validation	API’s	Validator	interface.

Validating	model	attributes	using	Spring’s	Validator	interface
The	following	example	listing	shows	the	FixedDepositDetailsValidator	class	of	MyBank	application	that
validates	FixedDepositDetails	object:

Example	listing	11-24	–	FixedDepositDetailsValidator	–Spring’s	Validator	interface	usage
Project	–	ch11-data-binding
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.web;
	
import	org.springframework.validation.*;
import	sample.spring.chapter11.domain.FixedDepositDetails;
	
public	class	FixedDepositDetailsValidator	implements	Validator	{
	
				public	boolean	supports(Class<?>	clazz)	{
								return	FixedDepositDetails.class.isAssignableFrom(clazz);
				}
	
				public	void	validate(Object	target,	Errors	errors)	{
								FixedDepositDetails	fixedDepositDetails	=	(FixedDepositDetails)	target;
								long	depositAmount	=	fixedDepositDetails.getDepositAmount();
								.....
								if	(depositAmount	<	1000)	{
												errors.rejectValue("depositAmount",	"error.depositAmount.less",
																				"must	be	greater	than	or	equal	to	1000");
								}
									if	(email	==	null	||	"".equalsIgnoreCase(email))	{
								ValidationUtils.rejectIfEmptyOrWhitespace(errors,	"email",	"error.email.blank",
									"must	not	be	blank");
								}



								.....
				}
}

Spring’s	Validator	 interface	 defines	 supports	 and	validate	methods.	The	 supports	method	 checks	 if	 the
supplied	 object	 instance	 (represented	 by	 the	 clazz	 attribute)	 can	 be	 validated.	 If	 the	 supports	 method
returns	 true,	 the	 validate	 method	 is	 used	 to	 validate	 the	 object.	 In	 the	 above	 example	 listing,	 the
FixedDepositDetailsValidator’s	 supports	 method	 checks	 if	 the	 supplied	 object	 instance	 is	 of	 type
FixedDepositDetails.	 If	 the	 supports	 method	 returns	 true,	 the	 FixedDepositDetailsValidator’s	 validate
method	 validates	 the	 object.	 The	 validate	 method	 accepts	 the	 object	 instance	 to	 be	 validated,	 and	 an
Errors	 instance.	Errors	 instance	stores	and	exposes	errors	 that	occur	during	validation.	Errors	 instance
provides	 multiple	 reject	 and	 rejectValue	 methods	 to	 register	 errors	 with	 the	 Errors	 instance.	 The
rejectValue	methods	are	used	to	report	field-level	errors,	and	reject	methods	are	used	to	report	errors	that
apply	 to	 the	 object	 being	 validated.	 Spring’s	 ValidationUtils	 class	 is	 a	 utility	 class	 that	 provides
convenience	methods	to	invoke	a	Validator,	and	for	rejecting	empty	fields.

The	 following	 figure	 describes	 the	 parameters	 that	were	 passed	 to	 the	 rejectValue	method	 in	 example
listing	11-24	to	report	a	validation	error	corresponding	to	FixedDepositDetails’s	depositAmount	field:

Figure	11-6	Description	of	parameters	that	are	passed	to	rejectValue	method	of	Errors	instance	to	report
validation	error	corresponding	to	depositAmount	field	of	FixedDepositDetails

The	above	figure	shows	that	field	name,	error	code	(which	is	basically	a	message	key)	and	a	default	error
message	is	passed	to	the	rejectValue	method.	In	chapter	13,	we’ll	see	how	the	message	keys	are	used	by
JSP	pages	to	show	messages	from	resource	bundles.

You	can	validate	model	attributes	by:

§		explicitly	invoking	validate	method	on	Validator	implementation

§		setting	Validator	implementation	on	WebDataBinder,	and	annotating	the	model	attribute	argument	in
the	@RequestMapping	method	with	JSR	303’s	@Valid	annotation

Let’s	look	at	each	of	the	above	mentioned	approaches	in	detail.



Validating	model	attributes	by	explicitly	calling	validate	method

The	 following	example	 listing	 shows	 the	FixedDepositController’s	openFixedDeposit	method	 that	 uses
FixedDepositDetailsValidator	 (refer	 example	 listing	 11-24)	 to	 validate	 FixedDepositDetails	 model
attribute:

Example	 listing	 11-25	 –	 FixedDepositController	 –	 validation	 by	 explicitly	 invoking
FixedDepositDetailsValidator’s	validate	method
Project	–	ch11-data-binding
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.web;
.....
public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=create",	method	=	RequestMethod.POST)
				public	String	openFixedDeposit(
	 	 	 	 	 	 	 @ModelAttribute(value	 =	 "newFixedDepositDetails")	 FixedDepositDetails
fixedDepositDetails,
							BindingResult	bindingResult,	SessionStatus	sessionStatus)	{
	
					new	FixedDepositDetailsValidator().validate(fixedDepositDetails,bindingResult);
								if	(bindingResult.hasErrors())	{
												logger.info("openFixedDeposit()	method:	Validation	errors
																	-	re-displaying	form	for	opening	a	new	fixed	deposit");
												return	"createFixedDepositForm";
								}
								.....
				}
}

The	 above	 example	 listing	 shows	 that	 the	 openFixedDeposit	 method	 creates	 an	 instance	 of
FixedDepositDetailsValidator	 and	 invokes	 its	 validate	method.	As	BindingResult	 is	 a	 sub-interface	 of
Errors,	 you	 can	 pass	 a	 BindingResult	 object	where	 Errors	 object	 is	 expected.	 The	 openFixedDeposit
method	 passes	 the	 fixedDepositDetails	 model	 attribute	 and	 the	 BindingResult	 object	 to	 the	 validate
method.	As	BindingResult	already	contains	data	binding	errors,	passing	BindingResult	object	to	validate
method	adds	validation	errors	also	to	the	BindingResult	object.

Invoking	model	attributes	validation	using	JSR	303’s	@Valid	annotation

You	 can	 instruct	 Spring	 to	 automatically	 validate	 a	 model	 attribute	 argument	 passed	 to	 a
@RequestMapping	method	by	adding	JSR	303’s	@Valid	annotation	to	the	model	attribute	argument,	and
setting	the	validator	for	the	model	attribute	on	the	WebDataBinder	instance.

The	 following	example	 listing	shows	how	FixedDepositController’s	openFixedDeposit	method	can	use
@Valid	annotation	to	validate	FixedDepositDetails	model	attribute:

Example	listing	11-26	–	FixedDepositController	–	invoking	validation	using	@Valid	annotation



	
import	javax.validation.Valid;
.....
public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=create",	method	=	RequestMethod.POST)
				public	String	openFixedDeposit(
												@Valid	@ModelAttribute(value	=	"newFixedDepositDetails")	FixedDepositDetails
												fixedDepositDetails,	BindingResult	bindingResult,	SessionStatus	sessionStatus)	{
	
								if	(bindingResult.hasErrors())	{
												logger.info("openFixedDeposit()	method:
																	Validation	errors	-	re-displaying	form	for	opening	a	new	fixed	deposit");
												return	"createFixedDepositForm";
								}
								.....
				}
				.....
				@InitBinder(value	=	"newFixedDepositDetails")
				public	void	initBinder_New(WebDataBinder	webDataBinder)	{
								webDataBinder.registerCustomEditor(Date.class,	new	CustomDateEditor(
																new	SimpleDateFormat("MM-dd-yyyy"),	false));
								webDataBinder.setValidator(new	FixedDepositDetailsValidator());
				}
				.....
}

In	the	above	example	listing,	the	initBinder_New	method	calls	WebDataBinder’s	setValidator	method	 to
set	FixedDepositDetailsValidator	as	the	validator	for	newFixedDepositDetails	model	attribute,	and	in	the
openFixedDeposit	 method	 the	 newFixedDepositDetails	 model	 attribute	 is	 annotated	 with	 JSR	 303’s
@Valid	annotation.	When	the	openFixedDeposit	method	is	invoked,	both	data	binding	and	validation	are
performed	on	the	newFixedDepositDetails	model	attribute,	and	the	results	of	data	binding	and	validation
are	made	available	via	the	BindingResult	argument.

It	is	important	to	note	that	if	@InitBinder	annotation	specifies	name	of	the	model	attribute,	the	validator
set	on	the	WebDataBinder	applies	only	to	that	particular	model	attribute.	For	instance,	in	example	listing
11-26,	the	FixedDepositDetailsValidator	applies	only	to	the	newFixedDepositDetails	model	attribute.	If	a
validator	 applies	 to	 multiple	 controllers	 in	 the	 application,	 consider	 defining	 an	@InitBinder	 method
inside	 a	@ControllerAdvice	 annotated	 class	 (or	 use	WebBindingInitializer)	 to	 set	 a	 validator	 on	 the
WebDataBinder.

Let’s	now	 look	at	how	constraints	 are	 specified	on	properties	of	 JavaBeans	component	using	 JSR	303
annotations.

Specifying	constraints	using	JSR	303	annotations
JSR	303	(Bean	Validation	API)	defines	annotations	that	you	can	use	to	specify	constraints	on	properties	of



JavaBeans	components.

IMPORT	 chapter	 11/ch11-jsr303-validation	 (This	 project	 shows	 a	 modified	 version	 of	 ch11-data-
binding	project	that	uses	JSR	303	annotations	to	specify	constraints	on	FixedDepositDetails	object.	If	you
deploy	 the	 project	 on	 Tomcat	 server	 and	 access	 the	URL	 http://localhost:8080/ch11-jsr303-validation,
you’ll	see	the	list	of	fixed	deposits	in	the	system.)

The	 following	 example	 listing	 shows	 the	 FixedDepositDetails	 class	 that	 uses	 JSR	 303	 annotations	 to
specify	constraints	on	its	fields:

Example	listing	11-27	–	FixedDepositDetails	–	specifying	JSR	303	constraints
Project	–	ch11-jsr303-validation
Source	location	-	src/main/java/sample/spring/chapter11/domain

package	sample.spring.chapter11.domain;
	
import	javax.validation.constraints.*;
	
public	class	FixedDepositDetails	{
				private	long	id;
	
				@Min(1000)
				@Max(500000)
				private	long	depositAmount;
	
				@Email
				@Size(min=10,	max=25)
				private	String	email;
	
				@NotNull
				private	Date	maturityDate;
				.....
}

@Min,	@Max,	@Email,	@Size,	 and	@NotNull	 are	 some	 of	 the	 annotations	 defined	 by	 JSR	 303.	 The
above	 example	 listing	 shows	 that	 by	 using	 JSR	 303	 annotations	 FixedDepositDetails	 class	 clearly
specifies	 the	constraints	 that	 apply	on	 its	 fields.	On	 the	other	hand,	 if	you	are	using	Spring’s	Validator
implementation	 to	 validate	 an	 object,	 constraints	 are	 contained	 in	 the	 Validator	 implementation	 (refer
example	listing	11-24).

The	 following	 table	 describes	 the	 constraints	 enforced	 by	 JSR	 303	 annotations	 on	 the
FixedDepositDetails	object	shown	in	example	listing	11-27:

JSR	303	annotation Constraint	description

@NotNull The	annotated	field	must	not	be	null.	For	instance,	maturityDate	field	must	not	be	null.

@Min
The	annotated	field’s	value	must	be	greater	than	or	equal	to	the	specified	minimum	value.

For	 instance,	 @Min(1000)	 annotation	 on	 depositAmount	 field	 of	 FixedDepositDetails	 object
means	that	depositAmount’s	value	must	be	greater	than	or	equal	to	1000.

@Max
The	annotated	field’s	value	must	be	less	than	or	equal	to	the	specified	value.



For	instance,	@Max(500000)	annotation	on	depositAmount	 field	of	FixedDepositDetails	 object
means	that	the	depositAmount’s	value	must	be	less	than	or	equal	to	500000.

@Size

The	annotated	field’s	size	must	be	between	the	specified	min	and	max	attributes.

For	 instance,	@Size(min=5,	 max=100)	 annotation	 on	 email	 field	 of	 FixedDepositDetails	 object
means	that	the	size	of	the	email	field	must	be	greater	than	or	equal	to	5	and	less	than	or	equal	to
100.

@Email
The	annotated	field’s	value	must	a	well-formed	email	address.

For	instance,	@Email	annotation	on	the	email	field	of	FixedDepositDetails	object	means	that	the
email	field’s	value	must	be	a	well-formed	email	address.

	
To	use	JSR	303	annotations,	ch11-jsr303-validation	project	specifies	dependency	on	JSR	303	API	JAR
file	(validation-api-1.0.0.GA)	and	Hibernate	Validator	framework	(hibernate-validation-4.3.0.Final).	The
Hibernate	 Validator	 framework	 provides	 the	 reference	 implementation	 for	 JSR	 303.	 The	 Hibernate
Validator	 framework	 provides	 additional	 constraint	 annotations	 that	 you	 can	 use	 along	 with	 JSR	 303
annotations.	 For	 instance,	 you	 can	 use	 Hibernate	 Validator’s	 @NotBlank	 annotation	 to	 specify	 that	 a
field’s	value	must	not	be	null	or	empty.

It	 is	 important	 to	note	 that	 JSR	303	also	allows	you	 to	create	 custom	constraints	 and	use	 them	 in	your
application.	 For	 instance,	 you	 can	 create	 a	 @MyConstraint	 custom	 constraint	 and	 a	 corresponding
validator	to	enforce	that	constraint	on	objects.

Now,	 that	 we	 have	 specified	 JSR	 303	 constraints	 on	 FixedDepositDetails	 class,	 let’s	 look	 at	 how	 to
validate	FixedDepositDetails	object.

Validating	objects	that	use	JSR	303	annotations
If	a	JSR	303	provider	 (like	Hibernate	Validator)	 is	 found	 in	 the	application’s	classpath,	and	 	you	have
specified	<annotation-driven>	element	of	Spring’s	mvc	schema	in	the	web	application	context	XML	file,
then	 Spring	 automatically	 enables	 support	 for	 JSR	 303.	 Behind	 the	 scenes,	 the	 <annotation-driven>
element	 configures	 an	 instance	 of	 Spring’s	 LocalValidatorFactoryBean	 class	 that	 is	 responsible	 for
detecting	the	presence	of	a	JSR	303	provider	(like	Hibernate	Validator)	in	the	application’s	classpath	and
initializing	it.

LocalValidatorFactoryBean	 implements	 JSR	 303’s	 Validator	 and	ValidatorFactory	 interfaces,	 and	 also
Spring’s	Validator	 interface.	 For	 this	 reason,	 you	 can	 choose	 to	 validate	 an	 object	 by	 calling	 validate
method	of	Spring’s	Validator	interface	or	by	calling	validate	method	of	JSR	303’s	Validator.	As	discussed
earlier,	 you	 can	 also	 instruct	 Spring	 to	 automatically	 validate	 a	model	 attribute	 argument	 passed	 to	 a
@RequestMapping	method	by	simply	adding	@Valid	annotation	on	the	model	attribute	argument.

Validating	model	attributes	by	explicitly	calling	validate	method

The	 following	 example	 listing	 shows	 the	 FixedDepositController	 class	 that	 uses	 Spring’s	Validator	 to
validate	the	FixedDepositDetails	object	(refer	example	listing	11-27)	that	uses	JSR	303’s	constraints:

Example	 listing	 11-28	 –	 FixedDepositController	 –	 validating	 FixedDepositDetails	 using	 Spring
Validation	API
Project	–	ch11-jsr303-validation
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.web;



	
import	javax.validation.Valid;
.....
public	class	FixedDepositController	{
				.....
	
				@Autowired
				private	Validator	validator;
				.....
				@RequestMapping(params	=	"fdAction=create",	method	=	RequestMethod.POST)
				public	String	openFixedDeposit(
												@ModelAttribute(value	=	"newFixedDepositDetails")	FixedDepositDetails	fixedDepositDetails,
												BindingResult	bindingResult,	SessionStatus	sessionStatus)	{
								validator.validate(fixedDepositDetails,	bindingResult);
								
								if	(bindingResult.hasErrors())	{	.....	}	.....
				}
				.....
}

In	 the	 above	 example	 listing,	 the	 LocalValidatorFactoryBean	 (that	 implements	 Spring’s	 Validator
interface)	 is	 autowired	 into	 FixedDepositController’s	 validator	 instance	 variable.	 In	 the
openFixedDeposit	 method,	 call	 to	 Validator’s	 validate	 method	 results	 in	 invocation	 of
LocalValidatorFactoryBean’s	 validate(Object,	 Errors)	 method	 to	 validate	 the	 FixedDepositDetails
instance.	 The	BindingResult	 object	 is	 passed	 to	 the	 validate	method	 to	 hold	 the	 validation	 errors.	An
important	point	to	notice	in	the	above	example	listing	is	that	the	FixedDepositController	doesn’t	directly
deal	with	JSR	303-specific	API	to	validate	FixedDepositDetails	object.	Instead,	Spring	Validation	API	is
used	to	validate	FixedDepositDetails	object.

The	following	example	listing	shows	an	alternate	version	of	FixedDepositController	that	uses	JSR	303-
specific	API	to	validate	FixedDepositDetails	object:

Example	 listing	 11-29	 –	 FixedDepositController	 –	 validating	 FixedDepositDetails	 using	 JSR	 303-
specific	API
	
import	javax.validation.ConstraintViolation;
import	javax.validation.Validator;
import	java.util.Set;
.....
public	class	FixedDepositController	{
				.....
				@Autowired
				private	Validator	validator;
				.....
				@RequestMapping(params	=	"fdAction=create",	method	=	RequestMethod.POST)
				public	String	openFixedDeposit(



												@ModelAttribute(value	=	"newFixedDepositDetails")	FixedDepositDetails	fixedDepositDetails,
												BindingResult	bindingResult,	SessionStatus	sessionStatus)	{
	
								Set<ConstraintViolation<FixedDepositDetails>>	violations	=
																validator.validate(fixedDepositDetails);
								Iterator<ConstraintViolation<FixedDepositDetails>>	itr	=	violations.iterator();
							
								if(itr.hasNext())	{	.....	}	.....
				}
				.....
}

In	 the	 above	 example	 listing,	 the	 LocalValidatorFactoryBean	 (that	 implements	 JSR	 303’s	 Validator
interface)	 is	 autowired	 into	 FixedDepositController’s	 validator	 instance	 variable.	 In	 the
openFixedDeposit	 method,	 call	 to	 Validator’s	 validate	 method	 results	 in	 invocation	 of
LocalValidatorFactoryBean’s	 validate(T)	 method	 to	 validate	 the	 FixedDepositDetails	 instance.	 The
validate	method	returns	a	java.util.Set	object	 that	contains	the	constraint	violations	reported	by	the	JSR
303	 provider.	 You	 can	 check	 the	 java.util.Set	 object	 returned	 by	 the	 validate	 method	 to	 find	 if	 any
constraint	violations	were	reported.

Invoking	model	attributes	validation	using	JSR	303’s	@Valid	annotation

You	 can	 instruct	 Spring	 to	 automatically	 validate	 a	 model	 attribute	 argument	 passed	 to	 a
@RequestMapping	method	by	adding	JSR	303’s	@Valid	annotation	to	the	model	attribute	argument.	The
following	 example	 listing	 shows	 FixedDepositController’s	 editFixedDeposit	 method	 that	 uses	@Valid
annotation	to	validate	editableFixedDepositDetails	model	attribute:

Example	listing	11-30	–	FixedDepositController	–	invoking	validation	using	@Valid	annotation
Project	–	ch11-jsr303-validation
Source	location	-	src/main/java/sample/spring/chapter11/web

package	sample.spring.chapter11.web;
	
import	javax.validation.Valid;
.....
public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=edit",	method	=	RequestMethod.POST)
				public	String	editFixedDeposit(
				@Valid	@ModelAttribute("editableFixedDepositDetails")	FixedDepositDetails	fixedDepositDetails,
												BindingResult	bindingResult,	SessionStatus	sessionStatus)	{
	
								if	(bindingResult.hasErrors())	{	.....	}	.....
				}
				.....
}



In	the	above	example	listing,	@Valid	annotation	on	editableFixedDepositDetails	model	attribute	results	in
its	automatic	validation	by	Spring.	The	constraint	violations	reported	during	validation	are	added	to	the
BindingResult	object	along	with	any	data	binding	errors.

Let’s	now	look	at	how	Spring’s	form	tag	library	simplifies	writing	forms	in	JSP	pages.



11-6	Spring’s	form	tag	library
Spring’s	 form	 tag	 library	 provides	 tags	 that	 simplify	 creating	 JSP	 pages	 for	 Spring	 Web	 MVC
applications.	The	Spring’s	form	tag	library	provides	tags	to	render	various	input	form	elements	and	for
binding	form	data	to	form	backing	objects.

The	following	example	listing	shows	the	createFixedDepositForm.jsp	JSP	page	of	ch11-jsr303-validation
project	that	uses	Spring’s	form	tag	library	tags:

Example	listing	11-31	–	createFixedDepositForm.jsp	–	Spring’s	form	tag	library	usage
Project	–	ch11-jsr303-validation
Source	location	-	src/main/webapp/WEB-INF/jsp

<%@taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"%>
<%@taglib	prefix="form"	uri="http://www.springframework.org/tags/form"%>
	
<html>
.....
				<form:form	commandName="newFixedDepositDetails"
								name="createFixedDepositForm"	method="POST"
								action="${pageContext.request.contextPath}/fixedDeposit?fdAction=create">
								.....
								<tr>
												<td	class="td"><b>Amount	(in	USD):</b></td>
												<td	class="td"><form:input	path="depositAmount"	/>
																<font	style="color:	#C11B17;"><form:errors	path="depositAmount"/></font>
												</td>
								</tr>
								<tr>
												<td	class="td"><b>Maturity	date:</b></td>
												<td	class="td"><form:input	path="maturityDate"	/>
												<font	style="color:	#C11B17;"><form:errors	path="maturityDate"/></font></td>
								</tr>
								.....
												<td	class="td"><input	type="submit"	value="Save"	/>
								.....
				</form:form>
</html>

In	 the	 above	 example	 listing,	 the	 following	 taglib	 directive	 makes	 the	 Spring’s	 form	 tag	 library	 tags
accessible	to	the	JSP	page:

<%@taglib	prefix="form"	uri="http://www.springframework.org/tags/form"%>

Spring’s	form	tag	library’s	<form>	tag	renders	an	HTML	form	that	binds	form	fields	to	the	properties	of
model	 attribute	 identified	 by	 the	 commandName	 attribute.	 The	 <form>	 tag	 contains	 <input>	 tags	 that
correspond	 to	 the	properties	of	 the	model	attribute	 specified	by	 the	commandName	attribute.	When	 the



form	is	rendered,	properties	are	read	from	the	model	attribute	and	displayed	by	<input>	tags.	And,	when
the	form	is	submitted,	the	field	values	in	the	form	are	bound	to	the	corresponding	properties	of	the	model
attribute.

In	 example	 listing	 11-31,	 the	 <form>	 tag	 renders	 an	 HTML	 form	 for	 opening	 a	 fixed	 deposit.	 The
commandName	attribute’s	value	is	newFixedDepositDetails,	which	means	that	the	form	fields	are	mapped
to	the	properties	of	the	newFixedDepositDetails	model	attribute.	The	name	attribute	specifies	the	name	of
the	HTML	form	rendered	by	the	<form>	tag.	The	method	attribute	specifies	the	HTTP	method	to	use	for
sending	form	data	when	the	form	is	submitted.	The	action	attribute	specifies	the	URL	to	which	the	form
data	is	sent	when	the	form	is	submitted.	The	URL	specified	by	the	action	attribute	must	map	to	a	unique
@RequestMapping	annotated	method	in	your	Spring	Web	MVC	application.	In	example	listing	11-31,	the
URL	 ${pageContext.request.contextPath}/fixedDeposit?fdAction=create	 maps	 to
FixedDepositController’s	 openFixedDeposit	 method	 (refer	 FixedDepositController.java	 file	 of	 ch11-
jsr303-validation	 project).	 You	 should	 note	 that	 the	 expression	 ${pageContext.request.contextPath}
returns	the	context	path	of	the	web	application.

The	<input>	tag	of	Spring’s	form	tag	library	renders	an	HTML	<input>	element	with	type	attribute	set	to
text.	The	path	attribute	specifies	the	property	of	the	model	attribute	to	which	the	field	is	mapped.	When
the	 form	 is	 rendered,	 the	 value	 of	 the	 property	 is	 displayed	 by	 the	 input	 field.	And,	when	 the	 form	 is
submitted,	the	value	of	the	property	is	set	to	the	value	entered	by	the	user	in	the	input	field.

The	<errors>	tag	of	Spring’s	form	tag	library	shows	data	binding	and	validation	error	messages	that	were
added	 to	 the	BindingResult	 during	 data	 binding	 and	 validation.	 If	 you	want	 to	 display	 error	messages
corresponding	to	a	particular	property,	specify	the	name	of	the	property	as	the	value	of	the	path	attribute.
If	you	want	 to	display	all	 the	error	messages	 stored	 in	 the	BindingResult	 object,	 specify	value	of	path
attribute	as	*.

The	createFixedDepositForm.jsp	page	uses	only	a	subset	of	Spring’s	form	tag	library	tags.	The	following
table	shows	the	other	tags	that	Spring’s	form	tag	library	offers:

Tag Description

<checkbox>

Renders	an	HTML	checkbox	(that	is,	<input	type="checkbox"	/>)

As	the	value	of	an	HTML	checkbox	is	not	sent	to	the	server	if	the	checkbox	is	unchecked,	the
<checkbox>	 tag	 additionally	 renders	 a	 hidden	 field	 corresponding	 to	 each	 checkbox	 to	 allow
sending	the	state	of	the	checkbox	to	the	server.

Example:	<form:checkbox	path="myProperty"	/>

The	path	attribute	specifies	the	name	of	the	property	to	which	the	checkbox	value	is	bound.

	

<checkboxes>

Renders	multiple	HTML	checkboxes.

Example:	<form:checkboxes	path="myPropertyList"	items="${someList}"/>

The	path	attribute	specifies	the	name	of	the	property	to	which	the	selected	checkboxes	values
are	bound.	The	items	attribute	specifies	the	name	of	the	model	attribute	that	contains	the	list	of
options	to	show	as	checkboxes.

<radiobutton>

Renders	an	HTML	radio	button	(that	is,	<input	type="radio"	/>)

Example:	<form:radiobutton	path="myProperty"	value="myValue"/>

The	path	attribute	specifies	the	name	of	the	property	to	which	the	radio	button	is	bound,	and
the	value	attribute	specifies	the	value	assigned	to	the	radio	button.

<radiobuttons>

Renders	multiple	HTML	radio	buttons.

Example:	<form:radiobuttons	path="myProperty"	items="${myValues}"/>

The	items	attribute	specifies	the	list	of	options	to	show	as	radio	buttons,	and	the	path	attribute
specifies	the	property	to	which	the	selected	radio	buttons	values	are	bound.



<password> Renders	an	HTML	password	field	(that	is,	<input	type="password"/>)

<select>

Renders	an	HTML	<select>	element.

Example:	<form:select	path="book"	items="${books}"/>

The	items	attribute	specifies	 the	model	attribute	property	 that	contains	 the	 list	 of	 options	 to
display	in	the	HTML	<select>	element.	The	path	attribute	specifies	the	property	to	which	the
selected	option	is	bound.

<option>

Renders	an	HTML	<option>	element.

Example:

<form:select	path="book">

		<form:option	value="Getting	started	with	Spring	Framework"/>

			<form:option	value="Getting	started	with	Spring	Web	MVC"/>

</form:select>

<options> Renders	multiple	HTML	<option>	elements.

<textarea> Renders	an	HTML	<textarea>	element.

<hidden> Renders	an	HTML	hidden	input	field	(that	is,	<input	type="hidden"	/>)

	
Let’s	now	look	at	HTML5	support	in	Spring’s	form	tag	library.

HTML5	support	in	Spring’s	form	tag	library
Starting	with	Spring	3.0,	the	form	tag	library	allows	you	to	use	HTML5-specific	attributes	in	the	tags.	For
instance,	the	following	<textarea>	tag	uses	HTML5’s	required	attribute:

<form:textarea	path="myProperty"	required="required"/>

The	required="required"	 attribute	 specifies	 that	 it	 is	mandatory	 for	 the	user	 to	 enter	 information	 in	 the
textarea.	The	use	of	required	attribute	saves	the	effort	to	write	the	JavaScript	code	to	perform	client-side
validation	for	mandatory	fields.	 If	 the	user	doesn’t	enter	any	information	in	 the	 textarea	and	attempts	 to
submit	the	form,	the	web	browser	shows	a	message	saying	that	the	textarea	is	required	and	must	not	be
left	blank.

In	HTML5	you	can	specify	type	attribute’s	value	as	email,	datetime,	date,	month,	week,	time,	range,	color,
reset,	and	so	on.	Starting	with	Spring	3.1,	<input>	tag	supports	specifying	type	attribute	value	other	than
text.	For	instance,	the	following	<input>	tag	specifies	type	attribute’s	value	as	email:

<form:input	path="myProperty"	type="email"/>

When	a	user	attempts	to	submit	the	form	containing	a	field	of	type	email,	the	web	browser	checks	that	the
email	 type	 field	 contains	 a	 valid	 email	 address.	 If	 the	 email	 type	 field	 doesn’t	 contain	 a	 valid	 email
address,	the	web	browser	shows	a	message	indicating	that	the	field	doesn’t	contain	a	valid	email	address.
As	the	web	browser	performs	the	validation,	you	don’t	need	to	write	the	JavaScript	code	to	validate	the
email	address.



11-7	Summary
We	looked	at	many	core	features	of	Spring	Web	MVC	in	this	chapter.	We	looked	at	@ModelAttribute	and
@SessionAttributes	annotations	which	are	most	commonly	used	in	developing	annotated	controllers.	We
also	took	an	in-depth	look	at	how	Spring	performs	data	binding	and	validation.	In	the	next	chapter,	we’ll
look	at	how	to	develop	RESTful	web	services	using	Spring	Web	MVC.



Chapter	12	–Developing	RESTful	web	services	using	Spring
Web	MVC



12-1	Introduction
Representational	 State	 Transfer	 (also	 referred	 to	 as	 REST)	 is	 an	 architectural-style	 in	 which	 an
application	defines	resources	 that	are	uniquely	 identified	by	URIs	 (Uniform	Resource	 Identifier).	 The
clients	 of	 a	 REST-style	 application	 interact	 with	 a	 resource	 by	 sending	HTTP	GET,	 POST,	 PUT	 and
DELETE	method	 requests	 to	 the	URI	 to	which	 the	 resource	 is	mapped.	The	 following	 figure	 shows	 a
REST-style	application	that	is	accessed	by	its	clients:

Figure	12-1	REST-style	application	defines	x	and	y	resources	that	are	uniquely	identified	by	/resource2
and	/resource1	URIs,	respectively.

The	above	figure	shows	a	REST-style	application	that	consists	of	two	resources	–	x	and	y.	The	resource	x
is	mapped	to	/resource2	URI	and	the	y	resource	is	mapped	to	/resource1	URI.	A	client	can	interact	with
resource	x	 by	 sending	HTTP	 requests	 to	 /resource2	URI,	 and	 can	 interact	with	 resource	 y	 by	 sending
HTTP	requests	to	/resource1	URI.

If	a	web	service	follows	the	REST	architectural-style,	it	is	referred	to	as	a	RESTful	web	service.	In	the
context	of	RESTful	web	services,	you	can	think	of	a	resource	as	 the	data	exposed	by	 the	web	service.
The	client	can	perform	CRUD	(CREATE,	READ,	UPDATE	and	DELETE)	operations	on	the	exposed	data
by	sending	HTTP	requests	to	the	RESTful	web	service.	The	client	and	the	RESTful	web	service	exchange
representation	 of	 the	 data,	 which	 could	 be	 in	XML,	 JSON	 (JavaScript	Object	 Notation)	 format,	 or	 a
simple	string,	or	any	other	MIME	type	supported	by	the	HTTP	protocol.

RESTful	web	services	are	simpler	 to	 implement	and	are	more	scalable	compared	to	SOAP-based	web
services.	In	SOAP-based	web	services,	requests	and	responses	are	always	in	XML	format.	In	RESTful
web	services,	you	can	use	JSON	(JavaScript	Object	Notation),	XML,	plain	text,	and	so	on,	for	requests
and	responses.	In	this	chapter,	we’ll	look	at	how	Spring	Web	MVC	simplifies	developing	and	accessing
RESTful	web	services.

Let’s	begin	by	looking	at	the	requirements	of	a	RESTful	web	service	that	we’ll	implement	using	Spring
Web	MVC.



12-2	Fixed	deposit	web	service
We	 saw	 earlier	 that	 the	MyBank	web	 application	 provides	 the	 functionality	 to	 display	 a	 list	 of	 fixed
deposits,	and	to	create,	edit	and	close	fixed	deposits.	As	the	fixed	deposit	related	functionality	may	also
be	accessed	by	other	applications,	the	fixed	deposit	related	functionality	needs	to	be	taken	out	from	the
MyBank	web	 application	 and	 deployed	 as	 a	 RESTful	web	 service.	 Let’s	 call	 this	 new	RESTful	web
service	as	FixedDepositWS.

The	following	figure	shows	that	the	FixedDepositWS	web	service	is	accessed	by	MyBank	and	Settlement
applications:

Figure	12-2	MyBank	and	Settlement	applications	access	FixedDepositWS	web	service

The	 above	 figure	 shows	 that	MyBank	 and	 Settlement	web	 applications	 interact	 with	 FixedDepositWS
web	 service	 by	 exchanging	 data	 in	 JSON	 format.	 We’ll	 soon	 see	 that	 JSON	 represents	 a	 simpler
alternative	to	XML	for	exchanging	data	between	applications.

Let’s	 now	 look	 at	 how	 to	 implement	 FixedDepositWS	 web	 service	 as	 a	 RESTful	 web	 service	 using
Spring	Web	MVC.



12-3	Implementing	a	RESTful	web	service	using	Spring	Web	MVC
To	develop	a	RESTful	web	service,	you	need	to	do	the	following:

·								identify	resources	that	are	exposed	by	the	web	service

·								specify	URIs	corresponding	to	the	identified	resources

·								identify	operations	that	can	be	performed	on	the	resources

·								map	HTTP	methods	to	the	identified	operations

In	case	of	FixedDepositWS	web	service,	fixed	deposit	data	represents	the	resource	exposed	by	the	web
service.	If	the	FixedDepositWS	web	service	maps	fixed	deposits	in	the	system	to	/fixedDeposits	URI,	a
FixedDepositWS	web	service	client	can	perform	actions	on	fixed	deposits	by	sending	HTTP	requests	to
/fixedDeposits	URI.

In	RESTful	web	service,	 the	HTTP	method	used	by	clients	for	interacting	with	a	resource	indicates	the
operation	 to	 be	 performed	 on	 the	 resource.	 GET	 retrieves	 the	 resource	 state,	 POST	 creates	 a	 new
resource,	 PUT	 modifies	 the	 resource	 state	 and	 DELETE	 deletes	 the	 resource.	 The	 following	 figures
shows	the	actions	performed	by	the	FixedDepositWS	web	service	when	a	client	sends	GET,	POST,	PUT
and	DELETE	HTTP	requests	to	the	/fixedDeposits	URI:

Figure	12-3	HTTP	 requests	 are	 sent	by	 the	FixedDepositWS’s	client	 to	 /fixedDeposits	URI	 to	 interact
with	fixed	deposit	data

The	 above	 figure	 shows	 that	 the	 client	 of	 FixedDepositWS	web	 service	 sends	GET,	 POST,	 PUT	 and
DELETE	HTTP	requests	to	/fixedDeposits	URI	to	interact	with	the	fixed	deposit	data.	The	id	query	string
parameter	uniquely	 identifies	a	 fixed	deposit	 in	 the	 system.	The	 following	 table	defines	 the	purpose	of
each	request	shown	in	the	above	figure:

HTTP	method URI Purpose

GET /fixedDeposits Retrieve	 details	 of	 all	 the	 fixed	 deposits	 in	 the	 system.	 The	 FixedDepositWS
web	service	sends	the	response	in	JSON	format.

GET /fixedDeposits?id=123 Retrieve	details	of	the	fixed	deposit	whose	id	is	123.	The	FixedDepositWS	web
service	sends	the	response	in	JSON	format.

POST /fixedDeposits Create	 a	 new	 fixed	 deposit	 in	 the	 system.	 The	 web	 service	 client	 sends	 the



details	of	the	fixed	deposit	to	be	created	in	JSON	format.

PUT /fixedDeposits?id=123 Modifies	 the	 fixed	 deposit	whose	 id	 is	 123.	 The	web	 service	 client	 sends	 the
modified	details	of	the	fixed	deposit	in	JSON	format.

DELETE /fixedDeposits?id=123 Removes	the	fixed	deposit	whose	id	is	123.

	
The	above	 table	 shows	 that	 the	FixedDepositWS	and	 its	 clients	 exchange	 information	 in	 JSON	format.
Before	delving	 into	 the	details	of	how	to	 implement	FixedDepositWS,	 let’s	 look	at	how	the	data	 looks
like	in	JSON	format.

JSON	(JavaScript	Object	Notation)
JSON	is	a	text-based	data	format	that	is	used	by	applications	for	exchanging	structured	data.	As	JSON
representation	of	data	is	more	compact	compared	to	XML,	JSON	serves	as	a	simpler	alternative	to	XML.
To	 simplify	 conversion	 of	 Java	 objects	 to	 JSON	 and	 vice	 versa,	 you	 can	 use	 JSON	 libraries	 like
FlexJson	(http://flexjson.sourceforge.net/)	and	Jackson	(https://github.com/FasterXML/jackson).

Let’s	say	a	Person	class	defines	 firstName	and	 lastName	attributes.	 If	you	create	an	 instance	of	Person
object	and	set	 firstName	to	Myfirstname	and	 lastName	to	Mylastname,	 the	 representation	of	 the	Person
object	in	JSON	format	would	look	like	this:

Example	listing	12-1	–	Person	object	representation	in	JSON	format
	
{
				"firstName"	:	Myfirstname,
				"lastName"	:	"Mylastname"
}
	

The	above	example	listing	shows	that	each	attribute	of	Person	object	is	represented	as	<attribute-name>	:
<attribute-value>	in	JSON	format.

You	can	also	represent	a	collection	of	Java	objects	in	JSON	format.	The	following	example	listing	shows
how	you	can	represent	a	collection	of	Person	objects	in	JSON	format:

Example	listing	12-2	–	Collection	of	Person	objects	represented	in	JSON	format
	
[
				{
								"firstName"	:	Myfirstname,
								"lastName"	:	"Mylastname"
				},
				{
								"firstName"	:	Yourfirstname,
								"lastName"	:	"Yourlastname"
				}			
]
You	don’t	need	to	write	code	to	convert	an	object	into	JSON	representation	and	vice	versa.	Instead,	the
RESTful	web	service	and	its	clients	can	make	use	of	FlexJson	or	Jackson	library	to	perform	conversion.

http://flexjson.sourceforge.net/
https://github.com/FasterXML/jackson


As	we’ll	soon	see,	Spring	Web	MVC	uses	Jackson	for	converting	JSON	to	Java	objects	and	vice	versa.

Let’s	now	look	at	the	implementation	of	FixedDepositWS	web	service	using	Spring	Web	MVC.

IMPORT	 chapter	 12/ch12-webservice	 (This	 project	 shows	 the	 implementation	 of	 FixedDepositWS
RESTful	web	service	using	Spring	Web	MVC.	Later	in	this	chapter,	we’ll	see	how	FixedDepositWS	web
service	is	accessed	by	its	clients.)

FixedDepositWS	web	service	implementation
Spring	Web	MVC	 annotations,	 like	@Controller,	@RequestMapping,	@RequestParam,	 @PathVariable
@ResponseBody,	@RequestBody,	 and	 so	 on,	 support	 building	RESTful	web	 services.	 In	 this	 section,
we’ll	look	at	usage	of	some	of	these	annotations	in	developing	the	FixedDepositWS	web	service.

In	 FixedDepositWS	 web	 service,	 the	 FixedDepositController	 (a	 Spring	 Web	 MVC	 controller)	 is
responsible	 for	 handling	 web	 service	 requests.	 FixedDepositController	 is	 like	 any	 other	 Spring	Web
MVC	controller	with	the	exception	that	its	@RequestMapping	methods	don’t	render	views.	The	following
example	listing	shows	that	@Controller	and	@RequestMapping	annotations	are	used	to	map	web	requests
to	appropriate	methods	of	FixedDepositController	class:

Example	listing	12-3	–	FixedDepositController	–	web	service	request	handler
Project	–	ch12-webservice
Source	location	-	src/main/java/sample/spring/chapter12/web

package	sample.spring.chapter12.web;
	
import	org.springframework.http.ResponseEntity;
.....
@Controller
@RequestMapping(value	=	"/fixedDeposits")
public	class	FixedDepositController	{
				.....
				@RequestMapping(method	=	RequestMethod.GET)
				public	ResponseEntity<List<FixedDepositDetails>>	getFixedDepositList()	{	.....	}
	
				@RequestMapping(method	=	RequestMethod.GET,	params	=	"id")
	 	 	 	public	ResponseEntity<FixedDepositDetails>	 getFixedDeposit(@RequestParam("id")	 int	 id)	 {
.....	}
				.....
}

The	getFixedDepositList	method	returns	the	list	of	fixed	deposits	in	the	system,	and	the	getFixedDeposit
method	returns	details	of	the	fixed	deposit	identified	by	the	id	argument.	The	above	example	listing	shows
that	 the	 @RequestMapping	 annotation	 is	 used	 at	 the	 class-	 and	 method-level	 to	 map	 requests	 to
getFixedDepositList	and	getFixedDeposit	methods.	The	getFixedDepositList	method	 is	 invoked	when	a
client	application	sends	an	HTTP	GET	request	to	/fixedDeposits	URI,	and	the	getFixedDeposit	method	is
invoked	 when	 a	 client	 application	 sends	 an	 HTTP	 GET	 request	 containing	 id	 request	 parameter	 to
/fixedDeposits	 URI.	 So,	 if	 the	 request	 URI	 is	 /fixedDeposits?id=123,	 the	 getFixedDeposit	 method	 is



invoked.

The	following	table	summarizes	the	mapping	of	request	URIs	and	HTTP	methods	to	the	methods	defined
in	the	FixedDepositController	class:

HTTP	method URI FixedDepositController	method

GET /fixedDeposits getFixedDepositList

GET /fixedDeposits?id=123 getFixedDeposit

POST /fixedDeposits openFixedDeposit

PUT /fixedDeposits?id=123 editFixedDeposit

DELETE /fixedDeposits?id=123 closeFixedDeposit

	
We	saw	in	chapter	10	and	11	that	@RequestMapping	annotated	methods	return	view	information	that	 is
used	 by	 the	 DispatcherServlet	 to	 render	 a	 view	 (like	 JSP	 or	 servlet).	 In	 RESTful	 web	 services,
@RequestMapping	methods	return	data	(and	not	the	view	information)	to	the	client	applications.	For	this
reason,	the	getFixedDepositList	and	getFixedDeposit	methods	have	been	defined	to	return	objects	of	type
ResponseEntity.	 Let’s	 now	 look	 at	 the	 usage	 of	 ResponseEntity	 object	 in	 the	 FixedDepositController
class.

Specifying	HTTP	response	using	ResponseEntity

ResponseEntity	represents	an	HTTP	response	consisting	of	headers,	body	and	status	code.	The	object	that
you	set	as	body	on	the	ResponseEntity	object	is	written	to	the	HTTP	response	body	by	Spring	Web	MVC.

The	 following	 example	 listing	 shows	 how	 the	 ResponseEntity	 object	 is	 created	 by
FixedDepositController’s	getFixedDepositList	method:

Example	listing	12-4	–	FixedDepositController	–	creating	ResponseEntity	instance
Project	–	ch12-webservice
Source	location	-	src/main/java/sample/spring/chapter12/web

package	sample.spring.chapter12.web;
	
import	org.springframework.http.HttpStatus;
import	org.springframework.http.ResponseEntity;
.....
public	class	FixedDepositController	{
				.....
				@RequestMapping(method	=	RequestMethod.GET)
				public	ResponseEntity<List<FixedDepositDetails>>	getFixedDepositList()	{
								.....
								return	new	ResponseEntity<List<FixedDepositDetails>>(
																fixedDepositService.getFixedDeposits(),	HttpStatus.OK);
				}
				.....
}

In	the	above	example	listing,	the	fixed	deposit	list	passed	to	the	ResponseEntity	constructor	is	written	to



the	HTTP	response	body.	The	HttpStatus	is	an	enum	type	that	defines	HTTP	status	codes.	The	constant	OK
refers	 to	 the	 HTTP	 status	 code	 200.	 Notice	 that	 the	 return	 type	 of	 the	 getFixedDepositList	 method	 is
ResponseEntity<List<FixedDepositDetails>>,	 which	 means	 that	 an	 object	 of	 type
List<FixedDepositDetails>	is	written	to	the	HTTP	response	body.	Spring	Web	MVC	uses	an	appropriate
HttpMessageConverter	(explained	in	section	12-5)	to	convert	the	List<FixedDepositDetails>	object	into
the	format	expected	by	the	client	application.

NOTE	Later	in	this	chapter,	we’ll	see	that	client	applications	can	use	Spring’s	RestTemplate	 to	 invoke
methods	defined	in	the	FixedDepositController	and	to	retrieve	the	objects	written	to	the	HTTP	response
body.

All	the	@RequestMapping	annotated	methods	of	FixedDepositController	class	define	ResponseEntity	as
their	 return	 type.	 If	 you	 don’t	 need	 to	 send	 HTTP	 status	 code	 in	 the	 response,	 you	 can	 use	 Spring’s
HttpEntity	 class	 instead	 of	 ResponseEntity.	 HttpEntity	 represents	 an	 HTTP	 request	 or	 response,	 and
ResponseEntity	is	a	subclass	of	HttpEntity	that	adds	an	HTTP	status	code	to	the	response.

The	following	example	listing	shows	a	modified	version	of	getFixedDepositList	method	that	creates	and
returns	an	instance	of	HttpEntity:

Example	listing	12-5	–	FixedDepositController	–	using	HttpEntity	instead	of	ResponseEntity
	
import	org.springframework.http.HttpStatus;
import	org.springframework.http.HttpEntity;
.....
public	class	FixedDepositController	{
				.....
				@RequestMapping(method	=	RequestMethod.GET)
				public	HttpEntity<List<FixedDepositDetails>>	getFixedDepositList()	{
								.....
								return	new	HttpEntity<List<FixedDepositDetails>>(fixedDepositService.getFixedDeposits());
				}
				.....
}

The	above	example	listing	shows	that	the	fixed	deposits	found	in	the	system	are	passed	to	the	HttpEntity
constructor.	 As	 in	 case	 of	 ResponseEntity	 (refer	 example	 listing	 12-4),	 fixed	 deposits	 passed	 to	 the
HttpEntity	are	written	to	the	HTTP	response	body.

Both	HttpEntity	 and	 ResponseEntity	 objects	 allow	 you	 to	 set	 HTTP	 response	 headers.	 The	 following
example	listing	shows	a	scenario	in	which	some-header	header	is	set	on	the	HTTP	response:

Example	listing	12-6	–	HttpHeaders	usage
	
import	org.springframework.http.HttpHeaders;
.....
				@RequestMapping(method	=	RequestMethod.GET)
				public	HttpEntity<String>	doSomething()	{
								HttpHeaders	responseHeaders	=	new	HttpHeaders();



								responseHeaders.set("some-header",	"some-value");
	
								return	new	HttpEntity<String>("Hello	world	!",	responseHeaders);
				}
.....

Spring’s	HttpHeaders	object	contains	the	headers	that	are	set	on	the	HTTP	response.	In	the	above	example
listing,	HttpHeader’s	set	method	sets	some-header	 response	header	 (with	value	 some-value).	When	 the
doSomething	method	 is	 invoked,	 the	 ‘Hello	world	!’	 string	 is	written	 to	 the	 response	 body,	 and	 some-
header	header	is	written	to	the	HTTP	response.

As	@RequestMapping	methods	can	be	defined	 to	accept	HttpServletResponse	object	as	argument,	 let’s
look	at	how	you	can	directly	set	response	body	and	headers	on	the	HttpServletResponse	object.

Specifying	HTTP	response	using	HttpServletResponse

The	 following	 example	 listing	 shows	 a	 @RequestMapping	 method	 which	 writes	 directly	 to	 the
HttpServletResponse	object:

Example	listing	12-7	–	Setting	response	on	HttpServletResponse
	
import	javax.servlet.http.HttpServletResponse;
.....
				@RequestMapping(method	=	RequestMethod.GET)
				public	void	doSomething(HttpServletResponse	response)	throws	IOException	{
								response.setHeader("some-header",	"some-value");
								response.setStatus(200);
								response.getWriter().write("Hello	world	!");
				}
.....

Instead	 of	 directly	 writing	 response	 to	 HttpServletResponse,	 you	 should	 use	 ResponseEntity	 (or
HttpEntity)	object	to	improve	the	testability	of	the	controllers.

Let’s	now	look	at	Spring’s	@ResponseBody	method-level	annotation	 that	writes	 the	return	value	of	 the
method	to	HTTP	response	body.

NOTE	 As	 of	 Spring	 4.0,	 @ResponseBody	 annotation	 can	 also	 be	 specified	 at	 the	 class	 level.	 If
@ResponseBody	 annotation	 is	 specified	 at	 the	 class	 level,	 it	 is	 inherited	 by	 the	 @RequestMapping
methods	of	the	controller.

	

Binding	returned	value	of	a	method	to	HTTP	response	body	using	@ResponseBody

The	following	example	listing	shows	usage	of	@ResponseBody	annotation:

Example	listing	12-8	–	@ResponseBody	annotation	usage
	
import	org.springframework.web.bind.annotation.ResponseBody;



.....
				@RequestMapping(method	=	RequestMethod.GET)
				@ResponseBody
				public	String	doSomething()	{
								return	"Hello	world	!";
				}
.....

In	 the	 above	 example	 listing,	 the	 ‘Hello	world	 !’	 string	 value	 returned	 by	 the	 doSomething	method	 is
written	to	the	HTTP	response	body.	In	section	10-7	of	chapter	10,	we	discussed	that	if	the	return	type	of	a
@RequestMapping	annotated	method	 is	String,	 the	 returned	value	 is	 treated	as	 the	name	of	 the	view	 to
render.	In	the	above	example	listing,	the	@ResponseBody	annotation	on	the	doSomething	method	instructs
Spring	Web	MVC	to	write	the	string	value	to	the	HTTP	response	body	instead	of	treating	the	string	value
as	the	view	name.	You	should	note	that	Spring	uses	an	appropriate	HttpMessageConverter	(explained	in
section	12-5)	implementation	to	write	the	value	returned	by	the	@ResponseBody	annotated	method	to	the
HTTP	response	body.

Now,	 that	we	 have	 seen	 different	ways	 in	which	 a	@RequestMapping	method	 can	write	 to	 the	HTTP
response,	 let’s	 look	 at	 how	 a	@RequestMapping	method	 can	 read	 information	 from	 the	HTTP	 request
body	using	@RequestBody	annotation.

Binding	HTTP	request	body	to	a	method	parameter	using	@RequestBody

A	@RequestMapping	 annotated	 method	 can	 use	@RequestBody	 method-parameter	 level	 annotation	 to
bind	 HTTP	 request	 body	 to	 the	 method	 parameter.	 Spring	 Web	 MVC	 uses	 an	 appropriate
HttpMessageConverter	(explained	in	section	12-5)	implementation	to	convert	the	HTTP	request	body	to
the	method	parameter	type.	The	following	example	listing	shows	usage	of	@RequestBody	annotation	 in
MyBank	application’s	FixedDepositController:

Example	listing	12-9	–	@RequestBody	annotation	usage
Project	–	ch12-webservice
Source	location	-	src/main/java/sample/spring/chapter12/web

package	sample.spring.chapter12.web;
.....
import	org.springframework.web.bind.annotation.RequestBody;
.....
@Controller
@RequestMapping(value	=	"/fixedDeposits")
public	class	FixedDepositController	{
				.....
				@RequestMapping(method	=	RequestMethod.POST)
				public	ResponseEntity<FixedDepositDetails>	openFixedDeposit(
												@RequestBody	FixedDepositDetails	fixedDepositDetails,
												BindingResult	bindingResult)	{
								new	FixedDepositDetailsValidator().validate(fixedDepositDetails,	bindingResult);
								.....



				}
				.....
}

In	 the	 above	 example	 listing,	 the	 FixedDepositDetails	 type	 method	 argument	 is	 annotated	 with
@RequestBody	 annotation.	 Spring	Web	MVC	 is	 responsible	 for	 converting	 the	HTTP	 request	 body	 to
FixedDepositDetails	type	object.	In	the	above	example	listing,	FixedDepositDetailsValidator	class	is	an
implementation	 of	 Spring’s	 Validator	 interface	 that	 validates	 the	 FixedDepositDetails	 object	 before
attempting	to	create	the	fixed	deposit.

An	 alternative	 to	 using	 @RequestBody	 annotation	 is	 to	 directly	 read	 HTTP	 request	 body	 from	 the
HttpServletRequest	object	and	convert	the	request	body	content	to	the	Java	type	required	by	the	method.
Spring’s	 @RequestBody	 annotation	 simplifies	 the	 conversion	 because	 it	 uses	 an	 appropriate
HttpMessageConverter	implementation	to	convert	HTTP	request	body	to	the	object	type	expected	by	the
@RequestMapping	method.

Let’s	now	look	at	the	@ResponseStatus	annotation	that	allows	you	to	set	HTTP	response	status.

Setting	HTTP	response	status	using	@ResponseStatus

You	 can	 use	 the	 @ResponseStatus	 annotation	 to	 specify	 the	 HTTP	 response	 status	 returned	 by	 a
@RequestMapping	method.	The	following	example	listing	shows	usage	of	@ResponseStatus	annotation:

Example	listing	12-10	–	@ResponseStatus	annotation	usage
	
import	org.springframework.web.bind.annotation.ResponseStatus;
	
public	class	SomeController	{
	
				@RequestMapping(method	=	RequestMethod.GET)
				@ResponseStatus(value	=	HttpStatus.OK)
				@ResponseBody
				public	SomeObject	doSomething()	{
								.....
				}
}

As	the	doSomething	method	is	annotated	with	@ResponseBody	annotation,	 the	SomeObject	 returned	by
the	doSomething	method	is	written	to	the	HTTP	response	body.	And,	the	@ResponseStatus	annotation	sets
the	HTTP	response	status	code	to	200	(represented	by	HttpStatus.OK	constant).

Let’s	 now	 look	 at	 how	 the	@ExceptionHandler	 annotation	 is	 used	 in	 FixedDepositWS	web	 service	 to
handle	exceptions.

Handling	exceptions	using	@ExceptionHandler

In	 section	 10-9	 of	 chapter	 10,	 we	 saw	 that	 the	@ExceptionHandler	 annotation	 identifies	 a	 controller
method	 that	 is	 responsible	 for	 handling	 exceptions.	 Like	 @RequestMapping	 methods,
@ExceptionHandler	methods	in	RESTful	web	services	are	annotated	with	@ResponseBody	annotation	or



the	return	type	is	defined	as	ResponseEntity	(or	HttpEntity).

The	following	example	listing	shows	usage	of	@ExceptionHandler	annotation	in	FixedDepositController
class	of	ch12-webservice	project:

Example	listing	12-11	–	@ExceptionHandler	annotation	usage
Project	–	ch12-webservice
Source	location	-	src/main/java/sample/spring/chapter12/web

package	sample.spring.chapter12.web;
	
import	sample.spring.chapter12.exception.ValidationException;
.....
public	class	FixedDepositController	{
				.....
				@ExceptionHandler(ValidationException.class)
				@ResponseBody
				@ResponseStatus(value	=	HttpStatus.BAD_REQUEST)
				public	String	handleException(Exception	ex)	{
								logger.info("handling	ValidationException	"	+	ex.getMessage());
								return	ex.getMessage();
				}
}

@ExceptionHandler	annotation	on	handleException	method	indicates	that	the	handleException	method	is
invoked	when	ValidationException	 is	 thrown	by	 the	FixedDepositController	 during	 request	 processing.
As	 the	 handleException	 method	 is	 also	 annotated	 with	 @ResponseBody	 annotation,	 the	 exception
message	returned	by	the	handleException	method	is	written	to	the	HTTP	response	body.	@ResponseStatus
on	the	handleException	method	results	 in	setting	the	HTTP	response	status	code	to	400	(represented	by
HttpStatus.BAD_REQUEST	constant).

In	this	section,	we	saw	how	to	implement	FixedDepositWS	web	service	using	Spring	Web	MVC.	Let’s
now	look	at	how	to	access	FixedDepositWS	web	service	using	Spring’s	RestTemplate.



12-4	Accessing	RESTful	web	services	using	RestTemplate
Spring’s	 RestTemplate	 class	 simplifies	 accessing	 RESTful	 web	 services	 by	 taking	 care	 of	 managing
HTTP	connections	and	handling	HTTP	errors.

IMPORT	 chapter	 12/ch12-webservice-client	 (This	 project	 represents	 a	 standalone	 Java	 application
that	 accesses	 FixedDepositWS	RESTful	web	 service	 using	 Spring’s	 RestTemplate	 (for	 synchronously
accessing	 the	 web	 service)	 and	 AsyncRestTemplate	 (for	 asynchronously	 accessing	 the	 web	 service)
class.	 The	 ch12-webservice-client	 project	 assumes	 that	 the	 ch12-webservice	 project	 representing	 the
FixedDepositWS	RESTful	web	service	is	deployed	at	http://localhost:8080/ch12-webservice	URL.)

RestTemplate	configuration

The	following	example	listing	shows	how	RestTemplate	is	configured	in	the	application	context	XML	file
of	ch12-webservice-client	project:

Example	listing	12-12	–	applicationContext.xml	-	RestTemplate	configuration
Project	–	ch12-webservice-client
Source	location	-	src/main/resources/META-INF/spring

<beans	.....>
				<bean	id="restTemplate"	class="org.springframework.web.client.RestTemplate">
								<property	name="errorHandler"	ref="errorHandler"	/>
				</bean>
	
				<bean	id="errorHandler"	class="sample.spring.chapter12.MyErrorHandler"	/>
				.....
</beans>

RestTemplate’s	 errorHandler	 property	 refers	 to	 an	 implementation	 of	 Spring’s	 ResponseErrorHandler
interface	 that	 inspects	 the	 HTTP	 response	 for	 errors	 and	 handles	 the	 response	 in	 case	 of	 errors.
DefaultResponseErrorHandler	 is	 the	 default	 implementation	 of	 ResponseErrorHandler	 interface	 that	 is
provided	 out-of-the-box	 by	 Spring.	 If	 you	 don’t	 specify	 the	 errorHandler	 property,	 Spring	 uses	 the
DefaultResponseErrorHandler	 implementation.	The	 above	 example	 listing	 shows	 that	 the	RestTemplate
uses	a	custom	response	error	handler,	MyErrorHandler.

The	following	example	listing	shows	the	implementation	of	MyErrorHandler	class:

Example	listing	12-13	–	MyErrorHandler	class	–	HTTP	response	error	handler
Project	–	ch12-webservice-client
Source	location	-	src/main/java/sample/spring/chapter12

package	sample.spring.chapter12;
	
import	org.apache.commons.io.IOUtils;
import	org.springframework.http.client.ClientHttpResponse;
import	org.springframework.web.client.DefaultResponseErrorHandler;
	

http://localhost:8080/ch12-webservice


public	class	MyErrorHandler	extends	DefaultResponseErrorHandler	{
				private	static	Logger	logger	=	Logger.getLogger(MyErrorHandler.class);
			
				@Override
				public	void	handleError(ClientHttpResponse	response)	throws	IOException	{
								logger.info("Status	code	received	from	the	web	service	:	"	+	response.getStatusCode());
								String	body	=	IOUtils.toString(response.getBody());
								logger.info("Response	body:	"	+	body);
								super.handleError(response);
				}
}

The	above	example	 listing	shows	that	 the	MyErrorHandler	class	extends	DefaultResponseErrorHandler
class	and	overrides	 the	handleError	method.	 If	 the	HTTP	response’s	 status	code	 indicates	an	error,	 the
handleError	method	 is	 responsible	 for	 handling	 the	 response.	The	ClientHttpResponse	 argument	 to	 the
handleError	method	represents	the	HTTP	response	received	from	calling	the	RESTful	web	service.	The
call	 to	 ClientHttpResponse’s	 getBody	 method	 returns	 the	 body	 of	 HTTP	 response	 as	 an	 InputStream
object.	MyErrorHandler’s	handleError	method	logs	information	about	the	status	code	and	the	body	of	the
HTTP	 response,	 and	 delegates	 handling	 of	 the	 error	 to	 DefaultResponseErrorHandler’s	 handleError
method.	The	 above	 example	 listing	 shows	 that	 the	MyErrorHandler	 class	 uses	Apache	Commons	 IO’s
IOUtils	class	to	get	the	content	of	the	HTTP	response	body	as	a	String.

Now,	that	we	have	seen	how	a	RestTemplate	class	is	configured,	let’s	look	at	how	RestTemplate	is	used
by	client	applications	to	access	RESTful	web	services.

	

	

Accessing	FixedDepositWS	web	service	using	RestTemplate

The	following	example	listing	shows	the	FixedDepositWSClient	class	that	uses	RestTemplate	 to	access
FixedDepositWS	web	service:

Example	listing	12-14	–	FixedDepositWSClient	class	–	RestTemplate	usage
Project	–	ch12-webservice-client
Source	location	-	src/main/java/sample/spring/chapter12

package	sample.spring.chapter12;
.....
import	org.springframework.web.client.RestTemplate;
	
public	class	FixedDepositWSClient	{
				private	static	ApplicationContext	context;
	
				public	static	void	main(String	args[])	{
								context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");



								getFixedDepositList(context.getBean(RestTemplate.class));
								getFixedDeposit(context.getBean(RestTemplate.class));
								.....
				}
	
				private	static	void	getFixedDepositList(RestTemplate	restTemplate)	{	.....	}
				.....
}

The	above	example	listing	shows	that	the	FixedDepositWSClient’s	main	method	performs	the	following
actions:

§		bootstraps	the	Spring	container	(represented	by	the	ApplicationContext	object)

§		calls	getFixedDepositList,	getFixedDeposit,	and	so	on,	methods.	These	methods	accept	an	instance
of	RestTemplate,	and	are	responsible	for	calling	the	FixedDepositWS	web	service.

The	following	example	listing	shows	the	implementation	of	FixedDepositWSClient’s	getFixedDepositList
method	that	calls	the	FixedDepositWS	web	service	deployed	at	http://localhost:8080/ch12-webservice	to
obtain	the	list	of	fixed	deposits	in	the	system:

	
	
	
Example	listing	12-15	–	FixedDepositWSClient’s	getFixedDepositList	method
Project	–	ch12-webservice-client
Source	location	-	src/main/java/sample/spring/chapter12

package	sample.spring.chapter12;
.....
import	org.springframework.core.ParameterizedTypeReference;
import	org.springframework.http.*;
import	org.springframework.web.client.RestTemplate;
	
public	class	FixedDepositWSClient	{
				.....
				private	static	void	getFixedDepositList(RestTemplate	restTemplate)	{
								HttpHeaders	headers	=	new	HttpHeaders();
								headers.add("Accept",	"application/json");
	
								HttpEntity<String>	requestEntity	=	new	HttpEntity<String>(headers);
	
								ParameterizedTypeReference<List<FixedDepositDetails>>	typeRef	=
															new	ParameterizedTypeReference<List<FixedDepositDetails>>()	{
								};
	
								ResponseEntity<List<FixedDepositDetails>>	responseEntity	=	restTemplate

http://localhost:8080/ch12-webservice


																.exchange("http://localhost:8080/ch12-webservice/fixedDeposits",
																								HttpMethod.GET,	requestEntity,	typeRef);
	
								List<FixedDepositDetails>	fixedDepositDetails	=	responseEntity.getBody();
								logger.info("List	of	fixed	deposit	details:	\n"	+	fixedDepositDetails);
				}
				.....
}

In	the	above	example	listing,	RestTemplate’s	exchange	method	has	been	used	to	send	HTTP	GET	request
to	 http://localhost:8080/ch12-webservice/fixedDeposits	 URL.	 As	 the	 FixedDepositWS	 web	 service	 is
deployed	 at	 http://localhost:8080/ch12-webservice	 URL,	 sending	 HTTP	 GET	 request	 to
http://localhost:8080/ch12-webservice/fixedDeposits	 URL	 results	 in	 invocation	 of
FixedDepositController’s	 getFixedDepositList	 method.	 This	 is	 because	 the	 FixedDepositController’s
getFixedDepositList	 method	 is	 mapped	 to	 /fixedDeposits	 URI	 (refer	 example	 listing	 12-3	 or
FixedDepositController	class	of	ch12-webservice	project).

In	 example	 listing	 12-15,	 the	 HttpEntity	 object	 represents	 the	 request	 sent	 to	 the	 web	 service,	 the
HttpHeaders	object	 represents	 the	 request	 headers	 in	 the	 request,	 and	 the	ParameterizedTypeReference
object	 represents	 the	generic	 type	of	 the	 response	 received	 from	 the	web	 service.	The	Accept	 request
header’s	 value	 has	 been	 set	 to	 application/json	 to	 specify	 that	 the	 response	 from	 the	 FixedDepositWS
web	service	is	expected	in	JSON	format.	On	the	web	service-side,	the	value	of	Accept	header	is	used	by
Spring	Web	MVC	to	choose	an	appropriate	HttpMessageConverter	 to	convert	 the	value	returned	by	 the
@ResponseBody	annotated	method	 into	 the	 format	 specified	by	 the	Accept	 header.	 For	 instance,	 if	 the
Accept	 header	 value	 is	 application/json,	 Spring	 Web	 MVC	 uses
MappingJackson2HttpMessageConverter	 (an	 implementation	 of	 HttpMessageConverter)	 to	 convert	 the
value	returned	by	the	@ResponseBody	annotated	method	into	JSON	format.	The	FixedDepositWSClient
specifies	 the	 value	 of	 Accept	 header	 as	 application/json;	 therefore,	 the	 value	 returned	 by
FixedDepositController’s	getFixedDepositList	method	is	converted	to	JSON	format.

The	 RestTemplate’s	 exchange	 method	 returns	 an	 instance	 of	 ResponseEntity	 which	 represents	 the
response	returned	by	 the	web	service.	As	 the	generic	 type	of	 the	response	received	from	invocation	of
FixedDepositController’s	 getFixedDepositList	 is	 List<FixedDepositDetails>,	 an	 instance	 of
ParameterizedTypeReference<List<FixedDepositDetails>>	is	created	and	passed	to	the	exchange	method.
You	can	call	ResponseEntity’s	getBody	method	to	retrieve	the	response	returned	by	the	web	service.	In
example	 listing	 12-15,	 ResponseEntity’s	 getBody	 method	 returns	 an	 object	 of	 type
List<FixedDepositDetails>	that	represents	the	list	of	fixed	deposits	returned	by	the	FixedDepositWS	web
service.

The	 following	 figure	 shows	 the	 role	 played	 by	 MappingJackson2HttpMessageConverter	 when
FixedDepositWSClient	invokes	FixedDepositController’s	getFixedDepositList	method:

http://localhost:8080/ch12-webservice/fixedDeposits
http://localhost:8080/ch12-webservice
http://localhost:8080/ch12-webservice/fixedDeposits


Figure	 12-4	 FixedDepositWSClient’s	 getFixedDepositList	 method	 uses	 RestTemplate	 to	 send	 a	 web
request	to	FixedDepositWS	web	service

The	above	figure	shows	that	MappingJackson2HttpMessageConverter	is	used	to	convert	the	return	value
of	 FixedDepositController’s	 getFixedDepositList	 method	 into	 JSON	 format.	 Also,
MappingJackson2HttpMessageConverter	 is	 used	 by	 the	 RestTemplate	 to	 convert	 the	 JSON	 response
received	from	the	FixedDepositController	to	a	Java	object	of	type	List<FixedDepositDetails>.

In	example	 listing	12-15,	RestTemplate’s	exchange	method	was	used	 to	 send	an	HTTP	GET	 request	 to
FixedDepositWS	web	service.	The	exchange	method	is	typically	used	if	the	HTTP	response	from	the	web
service	needs	to	be	converted	to	a	Java	generic	type,	and	to	send	HTTP	request	headers.	RestTemplate
also	defines	HTTP	method-specific	methods	that	simplify	writing	RESTful	clients.	For	instance,	you	can
use	getForEntity	method	to	send	HTTP	GET	request,	postForEntity	to	send	HTTP	POST	request,	delete	to
send	HTTP	DELETE	request,	and	so	on.

The	 following	example	 listing	 shows	FixedDepositWSClient’s	openFixedDeposit	method	 that	 sends	 an
HTTP	POST	request	to	FixedDepositWS	web	service	to	create	a	new	fixed	deposit:

Example	listing	12-16	–	FixedDepositWSClient’s	openFixedDeposit	method
Project	–	ch12-webservice-client
Source	location	-	src/main/java/sample/spring/chapter12

package	sample.spring.chapter12;
	
import	org.springframework.http.ResponseEntity;
import	org.springframework.web.client.RestTemplate;
.....
public	class	FixedDepositWSClient	{
				.....
				private	static	void	openFixedDeposit(RestTemplate	restTemplate)	{
								FixedDepositDetails	fdd	=	new	FixedDepositDetails();
								fdd.setDepositAmount("9999");
								.....



								ResponseEntity<FixedDepositDetails>	responseEntity	=	restTemplate
																.postForEntity("http://localhost:8080/ch12-webservice/fixedDeposits",
																								fdd,	FixedDepositDetails.class);
	
								FixedDepositDetails	fixedDepositDetails	=	responseEntity.getBody();
								.....
				}
}
	

FixedDepositWSClient’s	openFixedDeposit	method	sends	details	of	the	fixed	deposit	to	be	created	to	the
FixedDepositWS	web	service.	 If	 the	 fixed	deposit	 is	created	successfully,	FixedDepositWS	returns	 the
newly	 created	 FixedDepositDetails	 object	 containing	 the	 unique	 identifier	 assigned	 to	 it.	 The	 above
example	listing	shows	that	RestTemplate’s	postForEntity	method	accepts	web	service	URL,	object	to	be
POSTed	 (which	 is	 FixedDepositDetails	 object),	 and	 the	 HTTP	 response	 type	 (which	 is
FixedDepositDetails.class).	 Sending	 HTTP	 POST	 request	 to	 http://localhost:8080/ch12-
webservice/fixedDeposits	 URL	 results	 in	 invocation	 of	 FixedDepositController’s	 openFixedDeposit
method	(refer	example	listing	12-9	or	FixedDepositController	class	of	ch12-webservice	project).

FixedDepositController’s	 openFixedDeposit	 method	 validates	 details	 of	 the	 fixed	 deposit	 before
attempting	 to	 create	 the	 fixed	 deposit.	 FixedDepositDetailsValidator	 is	 responsible	 for	 validating	 the
fixed	deposit	details.	If	the	fixed	deposit	amount	is	less	than	1000	or	tenure	is	less	than	12	months	or	if	the
email	 id	 specified	 is	 not	 well-formed,	 an	 exception	 is	 thrown	 by	 the	 openFixedDeposit	 method.	 The
following	 example	 listing	 shows	 openFixedDeposit	 and	 handleException	 methods	 of
FixedDepositController:

Example	listing	12-17	–	openFixedDeposit	and	handleException	methods	of	FixedDepositController
Project	–	ch12-webservice
Source	location	-	src/main/java/sample/spring/chapter12/web

package	sample.spring.chapter12.web;
	
import	org.springframework.validation.BindingResult;
import	org.springframework.web.bind.annotation.ExceptionHandler;
import	sample.spring.chapter12.exception.ValidationException;
.....
@Controller
@RequestMapping(value	=	"/fixedDeposits")
public	class	FixedDepositController	{
				.....
				@RequestMapping(method	=	RequestMethod.POST)
				public	ResponseEntity<FixedDepositDetails>	openFixedDeposit(
												@RequestBody	FixedDepositDetails	fixedDepositDetails,	BindingResult	bindingResult)	{
	
								new	FixedDepositDetailsValidator().validate(fixedDepositDetails,	bindingResult);
	



								if	(bindingResult.hasErrors())	{
												throw	new	ValidationException("Validation	errors	occurred");
								}	else	{
												fixedDepositService.saveFixedDeposit(fixedDepositDetails);
												.....
								}
	
	
								@ExceptionHandler(ValidationException.class)
								@ResponseBody
								@ResponseStatus(value	=	HttpStatus.BAD_REQUEST)
								public	String	handleException(Exception	ex)	{
												return	ex.getMessage();
								}
				}
				.....
}
The	above	example	listing	shows	that	the	openFixedDeposit	method	throws	ValidationException	if	fixed
deposit	 fails	 validation.	 As	 the	 handleException	 method	 is	 annotated	 with
@ExceptionHandler(ValidationException.class),	 the	 ValidationException	 thrown	 by	 the
openFixedDeposit	 method	 is	 handled	 by	 the	 handleException	 method.	 @ResponseBody	 and
@ResponseStatus(value=HttpStatus.BAD_REQUEST)	 annotations	 specify	 that	 the	 exception	 message
returned	 by	 the	 handleException	method	 is	 written	 to	 the	 response	 body	 and	 the	 status	 code	 is	 set	 to
HttpStatus.BAD_REQUEST	constant	(which	corresponds	to	HTTP	status	code	400).

FixedDepositWSClient’s	openInvalidFixedDeposit	method	attempts	to	create	a	fixed	deposit	with	deposit
amount	100,	as	shown	here:

Example	listing	12-18	–	FixedDepositWSClient	-	openInvalidFixedDeposit	method
Project	–	ch12-webservice-client
Source	location	-	src/main/java/sample/spring/chapter12

				private	static	void	openInvalidFixedDeposit(RestTemplate	restTemplate)	{
								FixedDepositDetails	fdd	=	new	FixedDepositDetails();
								fdd.setDepositAmount("100");
								fdd.setEmail("99@somedomain.com");
								fdd.setTenure("12");
	
								ResponseEntity<FixedDepositDetails>	responseEntity	=	restTemplate
																.postForEntity(	"http://localhost:8080/ch12-webservice/fixedDeposits",
																								fdd,	FixedDepositDetails.class);
	
								FixedDepositDetails	fixedDepositDetails	=	responseEntity.getBody();
								logger.info("Details	of	the	newly	created	fixed	deposit:	"
																+	fixedDepositDetails);
				}



The	 openInvalidFixedDeposit	 method	 uses	 RestTemplate	 to	 send	 request	 to	 FixedDepositController’s
openFixedDeposit	method.	As	 the	 fixed	 deposit	 amount	 is	 specified	 as	 100,	 FixedDepositController’s
openFixedDeposit	 method	 throws	 ValidationException	 (refer	 example	 listing	 12-17).
FixedDepositController’s	 handleException	 method	 (refer	 example	 listing	 12-17)	 handles	 the
ValidationException	and	sets	the	HTTP	response	status	to	400.	As	the	response	status	code	received	by
RestTemplate	is	400,	the	handling	of	response	is	delegated	to	the	MyErrorHandler	implementation	(refer
example	listing	12-12	and	12-13)	that	we	configured	for	the	RestTemplate.

RestTemplate	allows	clients	 to	synchronously	access	RESTful	web	services.	Let’s	now	look	at	how	to
asynchronously	access	RESTful	web	services	using	Spring’s	AsyncRestTemplate.

Asynchronously	accessing	RESTful	web	services	using	AsyncRestTemplate

To	allow	clients	to	asynchronously	access	RESTful	web	services,	Spring	provides	AsyncRestTemplate.
The	 following	 example	 listing	 shows	 how	AsyncRestTemplate	 is	 configured	 in	 the	 application	 context
XML	file	of	ch12-webservice-client	project:

Example	listing	12-19	–	applicationContext.xml	-	AsyncRestTemplate	configuration
Project	–	ch12-webservice-client
Source	location	-	src/main/resources/META-INF/spring

<beans	.....>
				.....
				<bean	id="errorHandler"	class="sample.spring.chapter12.MyErrorHandler"	/>
	
				<bean	id="asyncRestTemplate"	class="org.springframework.web.client.AsyncRestTemplate">
								<property	name="errorHandler"	ref="errorHandler"	/>
				</bean>
</beans>

If	 you	 compare	 the	 above	 example	 listing	 with	 the	 example	 listing	 12-12,	 you’ll	 notice	 that	 both
AsyncRestTemplate	 and	 RestTemplate	 classes	 are	 configured	 in	 the	 same	 way;	 they	 use	 the	 same
MyErrorHandler	instance	for	handling	HTTP	errors.

AsyncRestTemplate	 class	defines	methods	 that	 are	 similar	 to	 the	methods	defined	by	 the	RestTemplate
class.	 The	 following	 example	 listing	 shows	 the	 FixedDepositWSAsyncClient	 class	 that	 uses
AsyncRestTemplate	to	access	FixedDepositWS	web	service:

Example	listing	12-20	–	FixedDepositWSAsyncClient	-	openFixedDeposit	method
Project	–	ch12-webservice-client
Source	location	-	src/main/java/sample/spring/chapter12

package	sample.spring.chapter12;
	
import	org.springframework.http.HttpEntity;
import	org.springframework.util.concurrent.ListenableFuture;
import	org.springframework.util.concurrent.ListenableFutureCallback;
import	org.springframework.web.client.AsyncRestTemplate;
	



public	class	FixedDepositWSAsyncClient	{
				private	static	ApplicationContext	context;
	
				public	static	void	main(String	args[])	{
								context	=	new	ClassPathXmlApplicationContext(
																"classpath:META-INF/spring/applicationContext.xml");
								.....
								openFixedDeposit(context.getBean(AsyncRestTemplate.class));
				}
	
				private	static	void	openFixedDeposit(AsyncRestTemplate	restTemplate)	{
								FixedDepositDetails	fdd	=	new	FixedDepositDetails();
								fdd.setDepositAmount("9999");
								.....
								HttpEntity<FixedDepositDetails>	requestEntity	=	new	HttpEntity<FixedDepositDetails>(fdd);
	
								ListenableFuture<ResponseEntity<FixedDepositDetails>>	futureResponseEntity	=
																		restTemplate.postForEntity("http://localhost:8080/ch12-webservice/fixedDeposits",
																								requestEntity,	FixedDepositDetails.class);
	
								futureResponseEntity
																.addCallback(new	ListenableFutureCallback<ResponseEntity<FixedDepositDetails>>()	{
																				@Override
																				public	void	onSuccess(ResponseEntity<FixedDepositDetails>	entity)	{
																								FixedDepositDetails	fixedDepositDetails	=	entity.getBody();
																				}
	
																				@Override
																				public	void	onFailure(Throwable	t)	{	}
																});
				}
}
The	above	example	listing	shows	that	the	openFixedDeposit	method	uses	AsyncRestTemplate	 to	send	a
request	 to	 FixedDepositWS	web	 service.	 AsyncRestTemplate’s	 postForEntity	 method	 sends	 an	 HTTP
POST	request	to	FixedDepositWS	web	service	that	invokes	FixedDepositController’s	openFixedDeposit
method.	 If	 you	 compare	 the	 AsyncRestTemplate’s	 postForEntity	 method	 shown	 above	 with	 that	 of
RestTemplate’s	 postForEntity	 method	 (refer	 example	 listing	 12-16),	 you’ll	 notice	 that	 the
AsyncRestTemplate’s	 postForEntity	 returns	 an	 object	 of	 type	 ListenableFuture	 (that	 extends
java.util.concurrent.Future	 interface).	 ListenableFuture’s	 addCallback	 method	 is	 used	 to	 register	 a
callback	 that	 is	 triggered	 when	 the	 ListenableFuture	 task	 completes.	 ListenableFuture’s	 addCallback
method	 accepts	 an	 argument	 of	 type	 ListenableFutureCallback	 that	 defines	 onSuccess	 and	 onFailure
methods.	The	onSuccess	method	is	called	when	the	ListenableFuture	task	completes	successfully,	and	the
onFailure	method	is	called	when	the	ListenableFuture	task	fails	to	complete.

You	should	note	that	by	default	AsyncRestTemplate	uses	a	SimpleAsyncTaskExecutor	 to	asynchronously



execute	each	request	in	a	new	thread.	You	can	pass	a	ThreadPoolTaskExecutor	to	AsyncRestTemplate’s
constructor	 to	asynchronously	 execute	 tasks	using	a	 thread	 from	a	 thread	pool.	Refer	 to	 section	 8-6	 of
chapter	8	to	learn	more	about	SimpleAsyncTaskExecutor	and	ThreadPoolTaskExecutor.

Let’s	now	look	at	the	purpose	served	by	HttpMessageConverters	in	Spring	Web	MVC.



12-5	 Converting	 Java	 objects	 to	 HTTP	 requests	 and	 responses	 and
vice	versa	using	HttpMessageConverter
HttpMessageConverters	are	used	by	Spring	in	the	following	scenarios	to	perform	conversion:

§		if	a	method	argument	 is	annotated	with	@RequestBody	annotation,	Spring	converts	HTTP	request
body	to	the	Java	type	of	the	method	argument

§		if	a	method	is	annotated	with	@ResponseBody	annotation,	Spring	converts	the	returned	Java	object
from	the	method	to	HTTP	response	body

§		if	the	return	type	of	a	method	is	HttpEntity	or	ResponseEntity,	Spring	converts	the	object	returned	by
the	method	to	the	HTTP	response	body

§		objects	passed	to	and	returned	from	the	methods	of	RestTemplate	and	AsyncRestTemplate	classes
like	getForEntity,	postForEntity,	exchange,	 and	 so	 on,	 are	 converted	 to	HTTP	 requests	 and	 from
HTTP	responses	by	Spring

The	following	table	describes	some	of	the	HttpMessageConverter	implementations	that	are	provided	out-
of-the-box	by	Spring	Web	MVC:

HttpMessageConverter	implementation Description

StringHttpMessageConverter

	
converts	to/from	strings

FormHttpMessageConverter
converts	form	data	to/from	MultiValueMap<String,	String>	 type.
This	HttpMessageConverter	is	used	by	Spring	when	dealing	with
form	data	and	file	uploads.

MappingJackson2HttpMessageConverter converts	to/from	JSON

MarshallingHttpMessageConverter converts	to/from	XML

	
HttpMessageConverters	 mentioned	 in	 the	 above	 table	 are	 automatically	 registered	 with	 the	 Spring
container	 by	 the	 <annotation-driven>	 element	 of	 Spring’s	 mvc	 schema.	 To	 view	 the	 complete	 list	 of
HttpMessageConverters	that	are	registered	by	default	by	<annotation-driven>	element,	refer	to	the	Spring
Framework	reference	documentation.

Let’s	 now	 look	 at	 @PathVariable	 and	 @MatrixVariable	 annotations	 that	 further	 simplify	 developing
RESTful	web	services	using	Spring	Web	MVC.



12-6	@PathVariable	and	@MatrixVariable	annotations
Instead	 of	 specifying	 the	 actual	 URI,	 a	@RequestMapping	 annotation	 may	 specify	 a	URI	 template	 to
access	 specific	 parts	 of	 the	 request	 URI.	 A	 URI	 template	 contains	 variable	 names	 (specified	 within
braces)	 whose	 values	 are	 derived	 from	 the	 actual	 request	 URI.	 For	 example,	 the	 URI	 template
http://www.somebank.com/fd/{fixeddeposit}	 contains	 the	 variable	 name	 fixeddeposit.	 If	 the	 request
actual	 request	 URI	 is	 http://www.somebank.com/fd/123,	 the	 value	 of	 {fixeddeposit}	 URI	 template
variable	becomes	123.

@PathVariable	 is	 a	 method	 argument	 level	 annotation	 that	 is	 used	 by	 @RequestMapping	 methods	 to
assign	value	of	a	URI	template	variable	to	the	method	argument.

IMPORT	 chapter	 12/ch12-webservice-uritemplates	 and	 chapter	 12/ch12-webservice-client-
uritemplates	(ch12-webservice-uritemplates	project	is	a	variant	of	ch12-webservice	project	that	shows
the	 implementation	 of	 FixedDepositWS	 RESTful	 web	 service	 using	@PathVariable	 annotation.	 ch12-
webservice-client-uritemplates	is	a	variant	of	ch12-webservice-client	that	accesses	the	FixedDepositWS
web	service	represented	by	ch12-webservice-uritemplates	project.)

The	 following	 example	 listing	 shows	usage	 of	@PathVariable	 annotation	 in	 FixedDepositController	 of
ch12-webservice-uritemplates	project:

Example	listing	12-21	–	FixedDepositController	-	@PathVariable	usage
Project	–	ch12-webservice-uritemplates
Source	location	-	src/main/java/sample/spring/chapter12/web

package	sample.spring.chapter12.web;
	
import	org.springframework.web.bind.annotation.PathVariable;
.....
@Controller
public	class	FixedDepositController	{
				.....
				@RequestMapping(value="/fixedDeposits/{fixedDepositId}",	method	=	RequestMethod.GET)
				public	ResponseEntity<FixedDepositDetails>	getFixedDeposit(
												@PathVariable("fixedDepositId")	int	id)	{
								return	new	ResponseEntity<FixedDepositDetails>(
																fixedDepositService.getFixedDeposit(id),	HttpStatus.OK);
				}
				.....
}
Instead	of	specifying	the	actual	URI,	@RequestMapping	annotation	in	the	above	example	listing	specifies
/fixedDeposits/{fixedDepositId}	URI	template.	Now,	if	the	incoming	request	URI	is	/fixedDeposits/1,	the
value	 of	 fixedDepositId	URI	 template	 variable	 is	 set	 to	 1.	As	 the	@PathVariable	 annotation	 specifies
fixedDepositId	as	 the	name	of	 the	URI	 template	variable,	value	1	 is	assigned	 to	 the	 id	 argument	of	 the
getFixedDeposit	method.

If	 a	 URI	 template	 defines	 multiple	 variables,	 the	 @RequestMapping	 method	 can	 define	 multiple



@PathVariable	annotated	arguments,	as	shown	in	the	following	example	listing:

Example	listing	12-22	–	Multiple	URI	template	variables
	
@Controller
public	class	SomeController	{
				.....
				@RequestMapping(value="/users/{userId}/bankstatements/{statementId}",	.....)
				public	void	getBankStatementForUser(
												@PathVariable("userId")	String	user,
								@PathVariable("statementId")	String	statement)	{
								.....
				}
}
In	the	above	example	listing,	the	URI	template	defines	userId	and	statementId	variables.	If	 the	incoming
request	URI	is	/users/me/bankstatements/123,	value	me	is	assigned	to	the	user	argument	and	value	123	is
assigned	to	the	statement	argument.

If	you	want	to	assign	all	the	URI	template	variables	and	their	values	to	a	method	argument,	you	can	use
@PathVariable	annotation	on	a	Map<String,	String>	argument	 type,	 as	 shown	 in	 the	 following	example
listing:

Example	listing	12-23	–	Accessing	all	URI	template	variables	and	their	values
	
@Controller
public	class	SomeController	{
				.....
				@RequestMapping(value="/users/{userId}/bankstatements/{statementId}",	.....)
				public	void	getBankStatementForUser(
												@PathVariable	Map<String,	String>	allVariables)	{
								.....
				}
}
In	 the	above	example	 listing,	URI	template	variables	(userId	and	statementId)	and	 their	values	 (me	and
123)	are	assigned	to	the	allVariables	method	argument.

You	should	note	that	URI	template	can	also	be	specified	by	class	level	@RequestMapping	annotation,	as
shown	here:

Example	 listing	 12-24	 –	 URI	 template	 specified	 at	 both	 class	 and	 method	 level	 @RequestMapping
annotations
	
@Controller
@RequestMapping(value="/service/{serviceId}",	.....)
public	class	SomeController	{
				.....



				@RequestMapping(value="/users/{userId}/bankstatements/{statementId}",	.....)
				public	void	getBankStatementForUser(@PathVariable	Map<String,	String>	allVariables)	{
								.....
				}
}
In	 the	 above	 example	 listing,	 URI	 template	 /service/{serviceId}	 is	 specified	 by	 the	 class	 level
@RequestMapping	 annotation,	 and	 /users/{userId}/bankstatements/{statementId}	 is	 specified	 by	 the
method	 level	 @RequestMapping	 annotation.	 If	 the	 request	 URI	 is
/service/bankingService/users/me/bankstatements/123,	 the	 allVariables	 argument	 contains	 details	 of
serviceId,	userId	and	statementId	URI	template	variables.

The	scenarios	in	which	you	may	want	to	have	fine-grained	control	over	what	to	extract	from	the	request
URI,	you	can	use	 regular	 expressions	 in	URI	 templates.	The	 following	example	 listing	 shows	usage	of
regular	expressions	to	extract	123.json	value	from	/statements/123.json	request	URI:

	
	
	
Example	listing	12-25	–	URI	templates	–	regular	expressions	usage
	
@Controller
public	class	SomeController	{
				.....
				@RequestMapping(value="/bankestatement/{statementId:[\\d\\d\\d]}.{responseType:[a-z]}",	..)
				public	void	getBankStatementForUser(@PathVariable	("statementId")	String	statement,
									@PathVariable("responseType")	String	responseTypeExtension)	{
								.....
				}
}
Regular	 expressions	 in	 URI	 templates	 are	 specified	 in	 the	 following	 format:	 {variable-name:regular-
expression}.	If	the	request	URI	is	/statements/123.json,	statementId	variable	is	assigned	the	value	123	and
responseType	is	assigned	the	value	json.

NOTE	You	can	also	use	Ant-style	patterns	in	URI	templates.	For	instance,	you	can	specify	patterns,	like
/myUrl/*/{myId}	and	/myUrl/**/{myId}	as	URI	templates.

So	 far	 in	 this	 section	 we	 have	 seen	 examples	 of	 how	 to	 use	 @PathVariable	 to	 selectively	 extract
information	 from	 the	 request	 URI	 path.	 Let’s	 now	 look	 at	@MatrixVariable	 annotation	 that	 is	 used	 to
extract	name-value	pairs	from	path	segments.

Matrix	 variables	 appear	 as	 name-value	 pairs	 in	 the	 request	 URI,	 and	 you	 can	 assign	 value	 of	 these
variables	to	method	arguments.	For	instance,	in	the	request	URI	/bankstatement/123;responseType=json,
the	responseType	variable	represents	a	matrix	variable	whose	value	is	json.

NOTE	You	 should	note	 that	by	default	Spring	 removes	matrix	 variables	 from	 the	URL.	To	 ensure	 that
matrix	 variables	 are	 not	 removed,	 set	 the	 enable-matrix-variables	 attribute	 of	 <annotation-driven>
element	of	Spring	mvc	schema	to	true.	When	using	matrix	variables,	the	path	segments	that	contain	matrix



variables	must	be	represented	by	URI	template	variables.

The	following	example	listing	shows	usage	of	@MatrixVariable	annotation:

Example	listing	12-26	–	@MatrixVariable	annotation
	
@Controller
public	class	SomeController	{
				.....
				@RequestMapping(value="/bankestatement/{statementId}",	..)
				public	void	getBankStatementForUser(@PathVariable("statementId")	String	statement,
									@MatrixVariable("responseType")	String	responseTypeExtension)	{
								.....
				}
}
In	the	above	example	listing,	if	the	request	URI	is	/bankstatement/123;responseType=json,	the	value	json
is	 assigned	 to	 responseTypeExtension	 argument.	 The	 above	 example	 listing	 also	 shows	 a	 scenario	 in
which	both	@PathVariable	 and	@MatrixVariable	 annotations	 are	 used	 to	 retrieve	 information	 from	 the
request	URI.

As	 matrix	 variables	 can	 appear	 in	 any	 path	 segment	 of	 the	 request	 URI,	 you	 should	 specify	 the	 path
segment	 from	 which	 the	 matrix	 variable	 should	 be	 retrieved.	 The	 following	 example	 listing	 shows	 a
scenario	in	which	two	matrix	variables	with	the	same	name	are	present	in	different	path	segments:

Example	listing	12-27	–	@MatrixVariable	annotation	–	multiple	matrix	variables	with	the	same	name
	
@Controller
public	class	SomeController	{
				.....
				@RequestMapping(value="/bankestatement/{statementId}/user/{userId}",	..)
				public	void	getBankStatementForUser(
					@MatrixVariable(value	=	"id",	pathVar	=	"statementId")	int	someId,
					@MatrixVariable(value	=	"id",	pathVar	=	"userId")	int	someOtherId)	{
								.....
				}
}
The	pathVar	attribute	of	@MatrixVariable	annotation	specifies	the	name	of	the	URI	template	variable	that
contains	 the	 matrix	 variable.	 So,	 if	 the	 request	 URI	 is	 /bankstatement/123;id=555/user/me;id=777,	 the
value	555	is	assigned	to	someId,	and	the	value	777	is	assigned	to	someOtherId	argument.

As	in	case	of	@PathVariable	annotation,	you	can	annotate	a	method	argument	type	of	Map<String,	String>
with	@MatrixVariable	 to	assign	all	 the	matrix	variables	 to	 the	method	argument.	Unlike	@PathVariable
annotation,	@MatrixVariable	 annotation	 allows	 you	 to	 specify	 a	 default	 value	 for	 the	 matrix	 variable
using	defaultValue	attribute.	Also,	you	can	set	required	attribute	of	@MatrixVariable	annotation	to	false	to
indicate	that	the	matrix	variable	is	optional.	By	default,	the	value	of	required	attribute	is	set	to	true.	If	the
required	attribute	is	set	to	true,	and	the	matrix	variable	 is	not	found	in	 the	request,	 then	an	exception	is



thrown.



12-7	Summary
In	this	chapter,	we	looked	at	how	to	develop	RESTful	web	services	and	access	them.	We	looked	at	how
to	use	URI	templates	along	with	@PathVariable	and	@MatrixVariable	annotations	to	access	information
from	 the	 request	 URI.	 We	 also	 looked	 at	 how	 to	 access	 RESTful	 web	 services	 synchronously	 using
RestTemplate	and	asynchronously	using	AsyncRestTemplate.



Chapter	13	–	More	Spring	Web	MVC	–	internationalization,
file	upload	and	asynchronous	request	processing



13-1	Introduction
In	earlier	chapters,	we	saw	that	Spring	Web	MVC	simplifies	creating	web	applications	and	RESTful	web
services.	In	this	chapter,	we’ll	look	at	some	more	features	offered	by	Spring	Web	MVC	framework	that
you	may	require	in	your	web	applications.	We’ll	particularly	look	at:

§		pre-	and	post-processing	requests	using	handler	interceptors

§		internationalizing	Spring	Web	MVC	applications

§		asynchronously	processing	requests

§		performing	type	conversion	and	formatting,	and

§		uploading	files

IMPORT	chapter	13/ch13-bankapp	(This	project	is	a	variant	of	ch10-bankapp	project	that	demonstrates
how	to	incorporate	internationalization	in	MyBank	web	application,	and	how	to	use	handler	interceptors.)

Let’s	begin	by	looking	at	how	to	pre-	and	post-process	requests	using	handler	interceptors.



13-2	Pre-	and	post-processing	requests	using	handler	interceptors
Handler	interceptors	allow	you	to	pre-	and	post-process	requests.	The	concept	of	handler	interceptors	is
similar	to	that	of	servlet	filters.	Handler	interceptors	implement	Spring’s	HandlerInterceptor	interface.	A
handler	 interceptor	contains	 the	pre-	and	post-processing	 logic	 that	 is	 required	by	multiple	controllers.
For	instance,	you	can	use	handler	interceptors	for	logging,	security	checks,	changing	locale,	and	so	on.

Let’s	now	look	at	how	to	implement	and	configure	handler	interceptors.

Implementing	and	configuring	a	handler	interceptor
You	 can	 create	 handler	 interceptors	 by	 implementing	 HandlerInterceptor	 interface.	 HandlerInterceptor
interface	defines	the	following	methods:

§		preHandle	–	this	method	is	executed	before	 the	controller	processes	 the	request.	 If	 the	preHandle
method	 returns	 true,	 the	 controller	 is	 invoked	 by	Spring	 to	 process	 the	 request.	 If	 the	 preHandle
method	returns	false,	the	controller	is	not	invoked.

§		postHandle	–	this	method	is	executed	after	the	controller	processes	the	request,	but	before	the	view
is	rendered	by	the	DispatcherServlet.

§		afterCompletion	–	this	method	is	invoked	after	the	completion	of	request	processing	(that	is,	after
the	view	is	rendered	by	the	DispatcherServlet)	to	do	any	cleanup,	if	required.

The	 following	 example	 listing	 shows	 MyRequestHandlerInterceptor	 class	 of	 ch13-bankapp	 that
implements	HandlerInterceptor	interface:

Example	listing	13-1	–	MyRequestHandlerInterceptor
Project	–	ch13-bankapp
Source	location	-	src/main/java/sample/spring/chapter13/web

package	sample.spring.chapter13.web;
	
import	org.springframework.web.servlet.HandlerInterceptor;
.....
public	class	MyRequestHandlerInterceptor	implements	HandlerInterceptor	{
				.....
				public	boolean	preHandle(HttpServletRequest	request,	HttpServletResponse	response,
										Object	handler)	throws	Exception	{
								logger.info("HTTP	method	-->	"	+	request.getMethod());
								Enumeration<String>	requestNames	=	request.getParameterNames();
								.....
								return	true;
				}
	
			public	void	postHandle(HttpServletRequest	request,	HttpServletResponse	response,
									Object	handler,	ModelAndView	modelAndView)	throws	Exception	{
								logger.info("Status	code	-->	"	+	response.getStatus());
				}



	
				public	void	afterCompletion(HttpServletRequest	request,	HttpServletResponse	response,
									Object	handler,	Exception	ex)	throws	Exception	{
								logger.info("Request	processing	complete");
				}
}
	

In	 the	above	example	 listing,	 the	preHandle	method	 inspects	each	 incoming	request	and	 logs	 the	HTTP
method	associated	with	 the	request	and	 the	request	parameters	contained	 in	 the	request.	The	preHandle
method	returns	 true,	which	means	 that	 the	 request	will	be	processed	by	 the	controller.	The	postHandle
method	 logs	 the	 HTTP	 response	 status	 code.	 The	 afterCompletion	 method	 logs	 the	 message	 that	 the
request	was	successfully	processed.

NOTE	 Instead	 of	 directly	 implementing	 the	HandlerInterceptor	 interface,	 you	 can	 extend	 the	 abstract
HandlerInterceptorAdapter	 class	 that	 provides	 empty	 implementations	 for	 postHandle	 and
afterCompletion	methods,	and	the	preHandle	method	is	defined	to	simply	return	true.

The	 following	 example	 listing	 shows	 how	 handler	 interceptors	 are	 configured	 in	 the	 web	 application
context	XML	file:

Example	listing	13-2	–	MyRequestHandlerInterceptor
Project	–	ch13-bankapp
Source	location	-	src/main/webapp/WEB-INF/spring/bankapp-config.xml

<beans	.....xmlns:mvc="http://www.springframework.org/schema/mvc".....>
	
				<mvc:annotation-driven	/>
				<mvc:interceptors>
									.....
								<bean	class="sample.spring.chapter13.web.MyRequestHandlerInterceptor"	/>
				</mvc:interceptors>
</beans>
The	 above	 example	 listing	 shows	 that	 the	 <interceptors>	 element	 of	 Spring’s	mvc	 schema	 is	 used	 for
configuring	handler	interceptors.	The	<interceptors>	element	can	have	the	following	sub-elements:

§	 	 <bean>	 element	 of	 Spring’s	 beans	 schema	 -	 specifies	 a	 Spring	 bean	 that	 implements	 the
HandlerInterceptor	 interface.	 A	 handler	 interceptor	 defined	 using	 <bean>	 element	 applies	 to	 all
requests.

§	 	 <ref>	 element	 of	 Spring’s	 beans	 schema	 -	 refers	 to	 a	 Spring	 bean	 that	 implements	 the
HandlerInterceptor	 interface.	 A	 handler	 interceptor	 defined	 using	 <ref>	 element	 applies	 to	 all
requests.

§	 	 <interceptor>	 element	 of	 Spring’s	 mvc	 schema	 –	 specifies	 a	 Spring	 bean	 that	 implements	 the
HandlerInterceptor	interface,	and	the	request	URIs	to	which	the	HandlerInterceptor	applies.

The	 following	 example	 listing	 shows	 a	 scenario	 in	which	MyRequestHandlerInterceptor	 is	mapped	 to



/audit/**	request	URI:

Example	listing	13-3	–	<mvc:interceptor>	usage
	
<beans	.....xmlns:mvc="http://www.springframework.org/schema/mvc".....>
	
				<mvc:annotation-driven	/>
				<mvc:interceptors>
								<mvc:interceptor>
												<mvc:mapping	path="/audit/**"/>
												<bean	class="sample.spring.chapter13.web.MyRequestHandlerInterceptor"	/>
								</mvc:interceptor>
				</mvc:interceptors>
</beans>
In	 the	 above	 example	 listing,	 <interceptor>	 element	 of	 Spring’s	 mvc	 schema	 is	 used	 for	 mapping
MyRequestHandlerInterceptor	to	/audit/**	URI	pattern.	The	<mapping>	element	of	Spring’s	mvc	schema
specifies	 the	 request	 URI	 pattern	 to	 which	 the	 handler	 interceptor	 specified	 by	 the	 <bean>	 element
applies.

Let’s	now	look	at	how	to	internationalize	a	Spring	Web	MVC	application.



13-3	Internationalizing	using	resource	bundles
Before	delving	into	the	details	of	how	to	internationalize	Spring	Web	MVC	applications,	let’s	look	at	the
internationalization	and	localization	requirements	of	the	MyBank	web	application.

MyBank	web	application’s	requirements
It	 is	 required	 that	 the	MyBank	web	 application	 supports	 English	 (en_US	 locale)	 and	German	 (de_DE
locale)	 languages.	 The	 following	 figure	 shows	 one	 of	 the	 web	 pages	 of	MyBank	 web	 application	 in
de_DE	locale:

	
Figure	13-1	Web	page	that	shows	the	list	of	fixed	deposits	in	de_DE	locale.	A	user	can	select	a	locale
from	the	given	options.
	
The	above	figure	shows	that	a	user	can	choose	one	of	the	following	languages:	English(US),	German,	or
English(Canada).	 If	 a	 user	 chooses	 German	 language	 option,	 the	 web	 pages	 are	 displayed	 in	 de_DE
locale.	If	a	user	chooses	English(US)	language	option,	the	web	pages	are	displayed	in	en_US	locale.	If	a
user	chooses	English(Canada)	language	option,	the	web	pages	are	displayed	in	en_CA	locale.

Let’s	 now	 look	 at	 how	 to	 address	 internationalization	 and	 localization	 requirements	 of	 MyBank	 web
application.

Internationalizing	and	localizing	MyBank	web	application
In	Spring	Web	MVC,	the	DispatcherServlet	uses	a	LocaleResolver	for	automatically	resolving	messages
based	on	the	user’s	locale.	To	support	internationalization,	you	need	to	configure	the	following	beans	in
your	web	application	context	XML	file:

·								LocaleResolver	–	resolves	the	current	locale	of	the	user



·								MessageSource	–	resolves	messages	from	resource	bundles	based	on	the	current	locale	of	the
user

·	 	 	 	 	 	 	 	 LocaleChangeInterceptor	 –	 allows	 changing	 current	 locale	 on	 every	 request	 based	 on	 a
configurable	request	parameter

The	 following	 example	 listing	 shows	 configuration	 of	 LocaleResolver,	 LocaleChangeInterceptor	 and
MessageSource	beans	in	the	web	application	context	XML	file	of	ch13-bankapp	project:

Example	listing	13-4	–	bankapp-config.xml
Project	–	ch13-bankapp
Source	location	-	src/main/webapp/WEB-INF/spring

<beans	.....>
				<bean	class="org.springframework.web.servlet.i18n.CookieLocaleResolver"	id="localeResolver">
								<property	name="cookieName"	value="mylocale"	/>
				</bean>
	
				<bean
								class="org.springframework.context.support.ReloadableResourceBundleMessageSource"
								id="messageSource">
								<property	name="basenames"	value="WEB-INF/i18n/messages"	/>
				</bean>
	
				<mvc:interceptors>
								.....
								<bean	class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor">
												<property	name="paramName"	value="lang"	/>
								</bean>
				</mvc:interceptors>
				.....
</beans>
In	the	above	example	listing,	CookieLocaleResolver	(an	implementation	of	LocaleResolver	interface)	has
been	 configured	 for	 locale	 resolution.	 If	 the	 locale	 information	 is	 stored	 in	 a	 cookie	 by	 the	 web
application,	CookieLocaleResolver	 is	used	for	 locale	 resolution.	CookieLocaleResolver’s	 cookieName
property	specifies	the	name	of	the	cookie	that	contains	the	locale	information.	If	the	cookie	is	not	found	in
the	 request,	 CookieLocaleResolver	 determines	 the	 locale	 either	 by	 looking	 at	 the	 default	 locale
(configured	 using	 defaultLocale	 property	 of	 CookieLocaleResolver)	 or	 by	 inspecting	 the	 Accept-
Language	 request	 header.	 Spring	 additionally	 provides	 the	 following	 built-in	 LocaleResolver
implementations	 that	 you	 can	 use:	 AcceptHeaderLocaleResolver	 (returns	 the	 locale	 specified	 by	 the
Accept-Language	 request	 header),	 SessionLocaleResolver	 (returns	 the	 locale	 information	 stored	 in	 the
HttpSession	of	the	user)	and	FixedLocaleResolver	(always	returns	a	fixed	default	locale).

In	addition	to	knowing	user’s	locale,	you	may	also	want	to	know	user’s	time	zone	to	convert	date	and	time
in	 user’s	 time	 zone.	 LocaleContextResolver	 (introduced	 in	 Spring	 4.0)	 not	 only	 provides	 the	 locale
information	 but	 also	 the	 time	 zone	 information	 of	 the	 user.	 CookieLocaleResolver,
SessionLocaleResolver	 and	 FixedLocaleResolver	 implement	 the	 LocaleContextResolver	 interface;



therefore,	if	you	are	using	any	of	these	resolvers	you	can	obtain	user’s	time	zone	in	your	controllers	using
getTimeZone	method	of	LocaleContextHolder	(or	RequestContextUtils)	class.	If	you	only	want	to	obtain
the	 locale	 information	 in	 your	 controllers,	 you	 can	 use	 getLocale	method	 of	 LocaleContextHolder	 (or
RequestContextUtils)	class.

Spring	 provides	 a	 LocaleChangeInterceptor	 (a	 HandlerInterceptor)	 that	 uses	 a	 configurable	 request
parameter	(specified	by	paramName	property)	to	change	the	current	locale	on	every	request.	In	example
listing	13-4,	the	paramName	property	 is	set	 to	 lang.	LocaleResolver	defines	a	setLocale	method	 that	 is
used	 by	 the	 LocaleChangeInterceptor	 to	 change	 the	 current	 locale.	 If	 you	 don’t	 want	 to	 use
LocaleChangeInterceptor,	 then	you	can	change	 the	user’s	 locale	 in	your	controller	by	calling	 setLocale
method	of	LocaleContextHolder	(or	RequestContextUtils)	class.

Once	the	user’s	locale	is	resolved,	Spring	uses	the	configured	MessageSource	implementation	to	resolve
messages.	Spring	provides	the	following	built-in	implementations	of	MessageSource	interface:

§		ResourceBundleMessageSource	–	a	MessageSource	implementation	that	accesses	resource	bundles
using	the	specified	basenames

§	 	 ReloadableResourceBundleMessageSource	 –	 similar	 to	 ResourceBundleMessageSource
implementation.	This	implementation	supports	reloading	of	resource	bundles.

Example	 listing	 13-4	 shows	 that	 the	 MyBank	 web	 application	 uses
ReloadableResourceBundleMessageSource.	The	basenames	property	is	set	to	WEB-INF/i18n/messages,
which	 means	 that	 the	 ReloadableResourceBundleMessageSource	 looks	 for	 resource	 bundles	 named
messages	 inside	 WEB-INF/i18n	 folder.	 So,	 if	 the	 user’s	 locale	 is	 resolved	 to	 en_US,	 the
ReloadableResourceBundleMessageSource	will	 resolve	messages	 from	 the	messages_en_US.properties
file.

If	you	look	at	/src/main/webapp/WEB-INF/i18n	folder	of	ch13-bankapp	project,	you’ll	find	the	following
properties	files:	messages.properties,	messages_en_US.properties	and	messages_de_DE.properties.	The
messages_de_DE.properties	 file	 contains	 messages	 and	 labels	 for	 de_DE	 locale,
messages_en_US.properties	 contains	 messages	 and	 labels	 for	 en_US	 locale,	 and	 messages.properties
contains	messages	 and	 labels	 that	 are	 shown	when	no	 locale-specific	 resource	 bundles	 are	 found.	As
there	 is	 no	 messages_en_CA.properties	 file	 corresponding	 to	 en_CA	 locale,	 selecting	 the
English(Canada)	option	(refer	figure	13-1)	shows	messages	from	the	messages.properties	file.

In	 figure	 13-1,	we	 saw	 that	we	 can	 change	 the	 language	 of	 the	MyBank	web	 application	 by	 selecting
English(US),	 English(Canada)	 and	 German	 language	 options.	 We	 saw	 earlier	 that	 the
LocaleChangeInterceptor	can	change	the	locale	of	the	MyBank	web	application	if	the	locale	information
is	contained	in	a	request	parameter	named	lang.	To	simplify	changing	the	locale,	lang	request	parameter	is
appended	 to	 the	 hyperlinks	 shown	 by	 English(US),	 English(Canada)	 and	German	 language	 options,	 as
shown	here:

Example	listing	13-5	–	fixedDepositList.jsp
Project	–	ch13-bankapp
Source	location	-	src/main/webapp/WEB-INF/jsp

				<b>Language:</b>
				<a	href="${pageContext.request.contextPath}/fixedDeposit/list?lang=en_US">English(US)</a>	|



				<a	href="${pageContext.request.contextPath}/fixedDeposit/list?lang=de_DE">German</a>	|
				<a	href="${pageContext.request.contextPath}/fixedDeposit/list?lang=en_CA">English(Canada)</a>
Let’s	now	look	at	how	you	can	asynchronously	process	requests	in	Spring	Web	MVC	applications.



13-4	Asynchronously	processing	requests
A	 @RequestMapping	 annotated	 method	 that	 returns	 a	 java.util.concurrent.Callable	 or	 Spring’s
DeferredResult	 object	 processes	web	 requests	asynchronously.	 If	 a	@RequestMapping	method	 returns
Callable,	Spring	Web	MVC	takes	care	of	processing	 the	Callable	 in	an	application	 thread	(and	not	 the
Servlet	container	thread)	to	produce	the	result.	If	a	@RequestMapping	method	returns	DeferredResult,	 it
is	application’s	responsibility	to	process	the	DeferredResult	in	an	application	thread	(and	not	the	Servlet
container	thread)	to	produce	the	result.	Before	delving	into	the	detail	of	how	Callable	and	DeferredResult
return	 values	 are	 processed,	 let’s	 look	 at	 how	 to	 configure	 a	Spring	Web	MVC	application	 to	 support
asynchronous	request	processing.

IMPORT	 chapter	 13/ch13-async-bankapp	 (This	 project	 is	 a	 variant	 of	 ch10-bankapp	 project	 that
asynchronously	processes	requests.	@RequestMapping	methods	defined	in	the	FixedDepositController	of
this	 project	 return	 Callable.	 You	 should	 deploy	 and	 run	 the	 ch13-async-bankapp	 project	 to	 see
asynchronous	request	processing	in	action.)

Asynchronous	request	processing	configuration
As	asynchronous	request	processing	 in	Spring	Web	MVC	is	based	on	Servlet	3,	web.xml	must	 refer	 to
Servlet	 3	 XML	 schema.	 Also,	 <async-supported>	 element	 must	 be	 added	 to	 the	 DispatcherServlet
definition	 in	web.xml	 file	 to	 indicate	 that	 it	 supports	 asynchronous	 request	 processing.	 The	 following
example	listing	shows	the	web.xml	file	of	ch13-async-bankapp	project:

Example	listing	13-6	–	web.xml	–	asynchronous	request	processing	configuration
Project	–	ch13-async-bankapp
Source	location	-	src/main/webapp/WEB-INF

<web-app	.....
				xsi:schemaLocation="java.sun.com/xml/ns/javaee	java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
				version="3.0">
				.....
				<servlet>
								<servlet-name>bankapp</servlet-name>
								<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
								.....
								<async-supported>true</async-supported>
				</servlet>
				.....
</web-app>
The	above	example	listing	shows	that	the	bankapp	servlet	is	configured	to	support	asynchronous	request
processing.	Now,	the	bankapp	servlet	can	asynchronously	process	web	requests.

Returning	Callable	from	@RequestMapping	methods
The	 following	 example	 listing	 shows	 the	 FixedDepositController	 whose	 @RequestMapping	 methods
return	Callable:

Example	listing	13-7	–	FixedDepositController	–	returning	Callable	from	@RequestMapping	methods



Project	–	ch13-async-bankapp
Source	location	-	src/main/java/sample/spring/chapter13/web

package	sample.spring.chapter13.web;
	
import	java.util.concurrent.Callable;
.....
public	class	FixedDepositController	{
				.....
				@RequestMapping(value	=	"/list",	method	=	RequestMethod.GET)
				public	Callable<ModelAndView>	listFixedDeposits()	{
								return	new	Callable<ModelAndView>()	{
	
												@Override
												public	ModelAndView	call()	throws	Exception	{
																Thread.sleep(5000);
																Map<String,	List<FixedDepositDetails>>	modelData	=
																						new	HashMap<String,	List<FixedDepositDetails>>();
																modelData.put("fdList",	fixedDepositService.getFixedDeposits());
																return	new	ModelAndView("fixedDepositList",	modelData);
												}
								};
				}
				.....
}
The	above	example	listing	shows	that	the	listFixedDeposits	method	returns	a	Callable<T>	object,	where
T	is	the	type	of	the	result	that	is	asynchronously	computed.	The	Callable’s	call	method	contains	the	logic
that	 needs	 to	 be	 executed	 asynchronously	 to	 produce	 the	 result.	 The	 call	 method	 shown	 in	 the	 above
example	listing	invokes	FixedDepositService’s	getFixedDeposits	method,	and	returns	a	ModelAndView
object	containing	the	model	and	view	information.	The	Thread.sleep	method	is	invoked	in	the	beginning
of	call	method	to	simulate	a	scenario	in	which	the	request	processing	takes	time.

If	 an	 exception	 is	 thrown	 during	 the	 execution	 of	 the	 Callable	 returned	 from	 the	 controller,	 the
@ExceptionHandler	 method	 (or	 the	 configured	 HandlerExceptionResolver	 bean)	 of	 the	 controller	 is
responsible	for	handling	the	exception.	For	more	information	on	@ExceptionHandler	annotation,	refer	to
section	10-9	of	chapter	10.

Example	listing	13-7	shows	that	if	you	want	to	switch	from	synchronous	request	processing	approach	to
asynchronous	request	processing,	you	need	to	move	the	logic	from	the	@RequestMapping	method	to	the
call	method	of	Callable,	and	change	the	return	type	of	the	@RequestMapping	method	to	Callable<T>.

Let’s	now	look	at	how	requests	are	asynchronously	processed	when	a	@RequestMapping	method	returns
a	DeferredResult	object.

IMPORT	 chapter	 13/ch13-async-webservice	 and	 ch13-async-webservice-client	 (The	 ch13-async-
webservice	 project	 is	 a	 variant	 of	 FixedDepositWS	 web	 service	 (refer	 ch12-webservice	 project	 of
chapter	12)	that	asynchronously	processes	web	service	requests.	@RequestMapping	methods	defined	in



the	FixedDepositController	of	this	project	return	an	instance	of	DeferredResult	object.	The	ch13-async-
webservice-client	 project	 is	 same	as	 the	FixedDepositWS	web	 service	 client	 (refer	 ch12-webservice-
client	project	of	chapter	12)	that	assumes	that	the	web	service	is	deployed	at	http://localhost:8080/ch13-
async-webservice.)

Returning	DeferredResult	from	@RequestMapping	methods
A	DeferredResult	instance	represents	a	result	that	is	asynchronously	computed.	You	set	the	result	on	the
DeferredResult	instance	by	calling	its	setResult	method.	Typically,	a	@RequestMapping	method	stores	a
DeferredResult	 instance	 in	 a	 Queue	 or	 a	 Map	 or	 any	 other	 data	 structure,	 and	 a	 separate	 thread	 is
responsible	for	computing	the	result	and	setting	the	result	on	the	DeferredResult	instance.

Let’s	first	look	at	@RequestMapping	methods	that	return	DeferredResult	type.

@RequestMapping	method	implementation

The	 following	 example	 listing	 shows	 the	 FixedDepositController	 whose	 @RequestMapping	 methods
return	DeferredResult	objects:

Example	 listing	 13-8	 –	 FixedDepositController	 –	 returning	 DeferredResult	 from	 @RequestMapping
methods
Project	–	ch13-async-webservice
Source	location	-	src/main/java/sample/spring/chapter13/web

package	sample.spring.chapter13.web;
	
import	java.util.Queue;
import	java.util.concurrent.ConcurrentLinkedQueue;
import	org.springframework.web.context.request.async.DeferredResult;
.....
@Controller
@RequestMapping(value	=	"/fixedDeposits")
public	class	FixedDepositController	{
				private	static	final	String	LIST_METHOD	=	"getFixedDepositList";
			private	static	final	String	GET_FD_METHOD	=	"getFixedDeposit";
				.....
				private	final	Queue<ResultContext>	deferredResultQueue	=
										new	ConcurrentLinkedQueue<ResultContext>();
				.....
				@RequestMapping(method	=	RequestMethod.GET)
				public	DeferredResult<ResponseEntity<List<FixedDepositDetails>>>	getFixedDepositList()	{
								DeferredResult<ResponseEntity<List<FixedDepositDetails>>>	dr	=
																			new	DeferredResult<ResponseEntity<List<FixedDepositDetails>>>();
	
								ResultContext<ResponseEntity<List<FixedDepositDetails>>>	resultContext	=
											new	ResultContext<ResponseEntity<List<FixedDepositDetails>>>();
								resultContext.setDeferredResult(dr);
								resultContext.setMethodToInvoke(LIST_METHOD);



								resultContext.setArgs(new	HashMap<String,	Object>());
	
								deferredResultQueue.add(resultContext);
								return	dr;
				}
				.....
}
Each	@RequestMapping	method	of	FixedDepositController	performs	these	steps:

Step	1	-	creates	an	instance	of	DeferredResult<T>	object,	where	T	represents	the	type	of	the	result	that	is
asynchronously	 computed.	 As	 the	 type	 of	 the	 result	 computed	 for	 the	 getFixedDepositList	 method	 is
ResponseEntity<List<FixedDepositDetails>>,	 an	 instance	 of
DeferredResult<ResponseEntity<List<FixedDepositDetails>>>	is	created.

Step	2	-	creates	an	instance	of	ResultContext	object.	ResultContext	object	holds	DeferredResult	instance
that	we	created	in	Step	1,	and	other	details	that	are	required	to	asynchronously	compute	the	result	for	the
DeferredResult	 object.	 In	 case	 of	 FixedDepositController’s	 getFixedDepositList	 method,	 result	 is
represented	by	 the	 list	of	 fixed	deposits	obtained	by	 invoking	FixedDepositService’s	 getFixedDeposits
method.

The	following	example	listing	shows	the	ResultContext	class:

Example	listing	13-9	–	ResultContext	class	for	storing	DeferredResult	and	other	information
Project	–	ch13-async-webservice
Source	location	-	src/main/java/sample/spring/chapter13/web

package	sample.spring.chapter13.web;
	
import	java.util.Map;
import	org.springframework.web.context.request.async.DeferredResult;
	
public	class	ResultContext<T>	{
				private	String	methodToInvoke;
				private	DeferredResult<T>	deferredResult;
				private	Map<String,	Object>	args;
			
				public	void	setDeferredResult(DeferredResult<T>	deferredResult)	{
								this.	deferredResult	=	deferredResult;
				}
				.....
}
The	 deferredResult	 property	 refers	 to	 an	 instance	 of	 DeferredResult,	 the	 methodToInvoke	 property
specifies	 the	 name	 of	 the	 FixedDepositService	 method	 that	 is	 invoked	 to	 compute	 the	 result	 for	 the
DeferredResult	object,	and	args	property	(of	type	java.util.Map)	specifies	the	arguments	to	be	passed	to
the	 FixedDepositService	 method.	 A	 separate	 thread	 (as	 explained	 later	 in	 this	 section)	 uses	 the
methodToInvoke	and	args	properties	 to	 invoke	 the	 specified	FixedDepositService	method,	 and	 sets	 the



returned	result	on	the	DeferredResult	instance.

As	the	LIST_METHOD,	GET_FD_METHOD,	and	so	on,	constants	in	the	FixedDepositController	class
refer	to	the	names	of	the	FixedDepositService	methods	(refer	example	listing	13-8),	the	methodToInvoke
property	 is	 set	 to	 the	 one	 of	 these	 constants.	 In	 example	 listing	 13-8,	 FixedDepositController’s
getFixedDepositList	method	sets	the	methodToInvoke	property	to	LIST_METHOD	constant	(whose	value
is	 getFixedDeposits)	 because	 FixedDepositService’s	 getFixedDeposits	method	 needs	 to	 be	 invoked	 to
obtain	the	result	for	the	DeferredResult	object	returned	by	FixedDepositController’s	getFixedDepositList
method.

Step	3	-	stores	the	ResultContext	instance	created	in	Step	2	into	a	Queue	(refer	to	deferredResultQueue
instance	variable	in	example	listing	13-8)

Step	4	-	returns	the	DeferredResult	object	created	in	Step	1

The	above	sequence	of	steps	suggests	that	for	each	web	request	an	instance	of	ResultContext	is	stored	in
the	 deferredResultQueue.	 The	 following	 figure	 summarizes	 the	 actions	 that	 are	 performed	 by
FixedDepositController’s	getFixedDepositList	method.

	
Figure	 13-2	 FixedDepositController’s	 getFixedDepositList	 method	 adds	 a	 ResultContext	 object	 to	 the
queue	and	returns	a	DeferredResult	object

Let’s	 now	 look	 at	 how	 the	 result	 is	 computed	 for	 the	 DeferredResult	 instance	 contained	 inside	 the
ResultContext	object.

Computing	result	for	a	DeferredResult	instance

FixedDepositController’s	 processResults	 method	 is	 responsible	 for	 iterating	 over	 the	 ResultContext
objects	 stored	 in	 the	 deferredResultQueue	 (refer	 example	 listing	 13-8),	 computing	 the	 result	 for	 each



DeferredResult	object,	and	setting	the	result	on	the	DeferredResult	object.	The	following	example	listing
shows	the	processResults	method:

Example	 listing	 13-10	 –	 processResults	 method	 –	 computing	 and	 setting	 results	 on	 DeferredResult
objects
Project	–	ch13-async-webservice
Source	location	-	src/main/java/sample/spring/chapter13/web

package	sample.spring.chapter13.web;
	
import	org.springframework.scheduling.annotation.Scheduled;
import	org.springframework.web.context.request.async.DeferredResult;
	
@Controller
@RequestMapping(value	=	"/fixedDeposits")
public	class	FixedDepositController	{
				private	static	final	String	LIST_METHOD	=	"getFixedDepositList";
				.....
				private	final	Queue<ResultContext>	deferredResultQueue	=
									new	ConcurrentLinkedQueue<ResultContext>();
			@Autowired
				private	FixedDepositService	fixedDepositService;
				.....
				@Scheduled(fixedRate	=	10000)
				public	void	processResults()	{
								for	(ResultContext	resultContext	:	deferredResultQueue)	{
												if	(resultContext.getMethodToInvoke()	==	LIST_METHOD)	{
																resultContext.getDeferredResult().setResult(
																								new	ResponseEntity<List<FixedDepositDetails>>(
																																fixedDepositService.getFixedDeposits(),	HttpStatus.OK));
												}
												.....
												deferredResultQueue.remove(resultContext);
								}
				}
}
@Scheduled	 annotation	 (refer	 section	 8-6	 of	 chapter	 8	 for	 more	 details)	 on	 processResults	 method
specifies	 that	 every	 10	 seconds	 an	 application	 thread	 is	 responsible	 for	 executing	 the	 processResults
method.	 The	 processResults	 method	 uses	 the	 method	 name	 and	 argument	 information	 stored	 in	 the
ResultContext	 instance	 to	 invoke	 the	 appropriate	 FixedDepositService’s	 method.	 The	 processResults
method	then	sets	the	result	on	the	DeferredResult	instance	by	calling	its	setResult	method.	In	the	end,	the
processResults	 method	 removes	 the	 ResultContext	 instance	 from	 the	 Queue.	 After	 processing	 a
ResultContext	instance,	the	processResults	method	removes	the	ResultContext	instance	from	the	Queue	so
that	it	is	not	re-processed	by	the	processResults	method	when	it	executes	again	after	10	seconds.

Figure	 13-3	 summarizes	 the	 actions	 performed	 by	 FixedDepositController’s	 processResults	 method	 to



compute	the	result	and	set	it	on	the	DeferredResult	instance.

	
Figure	 13-3	 The	 processResults	 method	 reads	 method	 name	 and	 argument	 information	 from	 the
ResultContext	object	to	compute	the	result	for	the	DeferredResult	instance

Let’s	 now	 look	 at	 how	 exceptions	 are	 handled	 when	 a	 @RequestMapping	 method	 returns	 a
DeferredResult	instance.

Exception	Handling

If	you	set	an	object	of	type	java.lang.Exception	using	DeferredResult’s	setErrorResult	method,	the	result
is	 handled	 by	 @ExceptionHandler	 annotated	 method	 of	 the	 controller	 (or	 by	 the	 configured
HandlerExceptionResolver	 bean).	 For	 more	 information	 on	 @ExceptionHandler	 annotation,	 refer	 to
section	10-9	of	chapter	10.

The	 following	 example	 listing	 shows	FixedDepositController’s	openFixedDeposit	method	 that	 opens	 a
new	fixed	deposit:

Example	listing	13-11	–	FixedDepositController’s	openFixedDeposit	method
Project	–	ch13-async-webservice
Source	location	-	src/main/java/sample/spring/chapter13/web



package	sample.spring.chapter13.web;
	
@Controller
@RequestMapping(value	=	"/fixedDeposits")
public	class	FixedDepositController	{
				private	static	final	String	OPEN_FD_METHOD	=	"openFixedDeposit";
				.....
				private	final	Queue<ResultContext>	deferredResultQueue	=
								new	ConcurrentLinkedQueue<ResultContext>();
	
				@RequestMapping(method	=	RequestMethod.POST)
				public	DeferredResult<ResponseEntity<FixedDepositDetails>>	openFixedDeposit(
												@RequestBody	FixedDepositDetails	fixedDepositDetails,	BindingResult	bindingResult)	{
	
								DeferredResult<ResponseEntity<FixedDepositDetails>>	dr	=
													new	DeferredResult<ResponseEntity<FixedDepositDetails>>();
	
								ResultContext<ResponseEntity<FixedDepositDetails>>	resultContext	=
														new	ResultContext<ResponseEntity<FixedDepositDetails>>();
								resultContext.setDeferredResult(dr);
								resultContext.setMethodToInvoke(OPEN_FD_METHOD);
	
								Map<String,	Object>	args	=	new	HashMap<String,	Object>();
								args.put("fixedDepositDetails",	fixedDepositDetails);
								args.put("bindingResult",	bindingResult);
								resultContext.setArgs(args);
	
								deferredResultQueue.add(resultContext);
								return	dr;
				}
				.....
}
The	above	example	 listing	shows	 that	 the	arguments	 (fixedDepositDetails	and	bindingResult)	passed	 to
the	openFixedDeposit	method	are	set	on	the	ResultContext	instance	so	that	these	arguments	are	available
when	 the	 processResults	 method	 executes	 the	 logic	 for	 opening	 a	 new	 fixed	 deposit.	 The
fixedDepositDetails	argument	contains	the	details	of	the	fixed	deposit	to	be	opened	and	the	bindingResult
argument	contains	the	results	of	data	binding.

The	 following	 example	 listing	 shows	how	 the	 processResults	method	 executes	 the	 logic	 for	 opening	 a
new	fixed	deposit:

Example	listing	13-12	–	FixedDepositController’s	processResults	method
Project	–	ch13-async-webservice
Source	location	-	src/main/java/sample/spring/chapter13/web

package	sample.spring.chapter13.web;



	
@Controller
@RequestMapping(value	=	"/fixedDeposits")
public	class	FixedDepositController	{
				private	static	final	String	OPEN_FD_METHOD	=	"openFixedDeposit";
				.....
				private	final	Queue<ResultContext>	deferredResultQueue	=
											new	ConcurrentLinkedQueue<ResultContext>();
	
				@Autowired
				private	FixedDepositService	fixedDepositService;
				.....
				@ExceptionHandler(ValidationException.class)
				@ResponseBody
				@ResponseStatus(value	=	HttpStatus.BAD_REQUEST)
				public	String	handleException(Exception	ex)	{
								logger.info("handling	ValidationException	"	+	ex.getMessage());
								return	ex.getMessage();
				}
	
				@Scheduled(fixedRate	=	10000)
				public	void	processResults()	{
								for	(ResultContext	resultContext	:	deferredResultQueue)	{
												.....
												if	(resultContext.getMethodToInvoke()	==	OPEN_FD_METHOD)	{
																FixedDepositDetails	fixedDepositDetails	=	(FixedDepositDetails)	resultContext
																								.getArgs().get("fixedDepositDetails");
																BindingResult	bindingResult	=	(BindingResult)	resultContext.getArgs().get("bindingResult");
	
																new	FixedDepositDetailsValidator().validate(fixedDepositDetails,	bindingResult);
	
																if	(bindingResult.hasErrors())	{
																				logger.info("openFixedDeposit()	method:	Validation	errors	occurred");
																				resultContext.getDeferredResult().setErrorResult(new	ValidationException(
																							"Validation	errors	occurred"));
																}	else	{
																				fixedDepositService.saveFixedDeposit(fixedDepositDetails);
																				resultContext.getDeferredResult().setResult(new	ResponseEntity<FixedDepositDetails>(
																																				fixedDepositDetails,	HttpStatus.CREATED));
																}
												}
												.....
								}
				}
}



The	above	example	listing	shows	the	@ExceptionHandler	annotated	handleException	method	that	handles
exceptions	of	type	ValidationException.	The	handleException	method	logs	that	a	validation	exception	has
occurred	and	returns	the	exception	message.

To	 open	 a	 new	 fixed	 deposit,	 the	 processResults	 method	 retrieves	 the	 fixedDepositDetails	 (of	 type
FixedDepositDetails)	 and	bindingResult	 (of	 type	BindingResult)	 arguments	 from	 the	ResultContext	 and
validates	 the	 fixedDepositDetails	 object	 by	 calling	 FixedDepositValidator’s	 validate	 method.	 If
validation	 errors	 are	 reported,	 the	 processResults	 method	 invokes	 DeferredResult’s	 setErrorResult
method	 to	 set	 ValidationException	 (of	 type	 java.lang.Exception)	 as	 the	 result.	 Setting	 the
ValidationException	using	DeferredResult’s	setErrorResult	method	will	 cause	 handling	 of	 the	 result	 by
FixedDepositController’s	handleException	method.

It	 is	 recommended	 that	 you	 deploy	 the	 ch13-async-webservice	 project	 (which	 represents	 the
FixedDepositWS	 RESTful	 web	 service)	 and	 access	 it	 by	 running	 the	 main	 method	 of
FixedDepositWSClient	 of	 ch13-async-webservice-client	 project	 (which	 represents	 a	 client	 of
FixedDepositWS	RESTful	web	service).	The	FixedDepositWSClient’s	openInvalidFixedDeposit	method
invokes	 FixedDepositController’s	 openFixedDeposit	 web	 service	 method	 such	 that	 it	 results	 in
ValidationException.	You	can	check	the	logs	to	verify	that	the	FixedDepositController’s	handleException
method	handles	 the	 result	when	processResults	method	 sets	ValidationException	 on	 the	DeferredResult
object	by	calling	DeferredResult’s	setErrorResult	method.

Let’s	now	look	at	how	to	set	default	timeout	value	for	asynchronous	requests.

Setting	default	timeout	value
You	 can	 set	 the	 default	 timeout	 value	 of	 asynchronous	 requests	 by	 using	 default-timeout	 attribute	 of
<async-support>	element,	as	shown	here:

Example	listing	13-13	–	Setting	default	timeout	for	asynchronous	requests
Project	–	ch13-async-webservice
Source	location	–	src/main/webapp/WEB-INF/spring/webservice-config.xml

<mvc:annotation-driven>
				<mvc:async-support	default-timeout="10000"	>
					.....
			</mvc:async-support>
</mvc:annotation-driven>
In	the	above	example	listing,	default	timeout	for	asynchronous	requests	is	set	to	10	seconds.	If	you	don’t
specify	 the	 default	 timeout,	 the	 timeout	 for	 asynchronous	 requests	 depends	 on	 the	Servlet	 container	 on
which	you	deployed	your	web	application.

Let’s	now	look	at	how	you	can	intercept	asynchronous	requests	using	CallableProcessingInterceptor	and
DeferredResultProcessingInterceptor.

Intercepting	asynchronous	requests
If	you	are	using	Callable	to	asynchronously	process	requests,	you	can	use	CallableProcessingInterceptor
callback	 interface	 to	 intercept	 requests	before	and	after	 the	Callable	 task	 is	executed.	For	 instance,	 the
postProcess	method	is	executed	after	the	Callable	has	produced	the	result,	and	the	preProcess	method	is



called	 before	 the	 Callable	 task	 is	 executed.	 Similarly,	 if	 you	 are	 using	 DeferredResult,	 you	 can	 use
DeferredResultProcessingInterceptor	callback	interface	to	intercept	processing	of	asynchronous	requests.

You	can	configure	a	CallableProcessingInterceptor	using	<callable-interceptors>	element	of	Spring’s	mvc
schema.	 And,	 you	 can	 configure	 a	 DeferredResultProcessingInterceptor	 using	 <deferred-result-
interceptors>	 element	 of	 Spring’s	mvc	 schema.	 The	 following	 example	 listing	 shows	 configuration	 of
MyDeferredResultInterceptor	(a	DeferredResultProcessingInterceptor	implementation):

Example	listing	13-14	–	Configuring	a	DeferredResultProcessingInterceptor	implementation
Project	–	ch13-async-webservice
Source	location	–	src/main/webapp/WEB-INF/spring/webservice-config.xml

				<mvc:annotation-driven>
								<mvc:async-support	default-timeout="30000">
												<mvc:deferred-result-interceptors>
																<bean	class="sample.spring.chapter13.web.MyDeferredResultInterceptor"/>
												</mvc:deferred-result-interceptors>
								</mvc:async-support>
				</mvc:annotation-driven>
Let’s	now	look	at	Spring’s	support	for	type	conversion	and	formatting.



13-5	Type	conversion	and	formatting	support	in	Spring
Spring’s	Converter	 interface	 simplifies	 converting	 an	object	 type	 to	 another	object	 type.	And,	Spring’s
Formatter	 interface	 is	 useful	when	converting	 an	object	 type	 to	 its	 localized	String	 representation,	 and
vice	 versa.	 You	 can	 find	 a	 number	 of	 built-in	 Converter	 implementations	 in	 the
org.springframework.core.convert.support	package	of	spring-core	JAR	file.	Spring	also	provides	built-in
Formatters	 for	 java.lang.Number	 and	 java.util.Date	 types	 that	 you	 can	 find	 in
org.springframework.format.number	and	org.springframework.format.datetime	packages,	respectively.

IMPORT	chapter	 13/ch13-converter-formatter-bankapp	 (This	 project	 is	 a	 variant	 of	 ch13-bankapp
project	that	shows	how	to	create	custom	Converters	and	Formatters)

Let’s	first	look	at	how	to	create	a	custom	Converter.

Creating	a	custom	Converter
A	converter	implements	Spring’s	Converter<S,	T>	interface,	where	S	(referred	to	as	the	source	type)	is
the	type	of	the	object	given	to	the	converter,	and	T	(referred	to	as	the	target	type)	is	the	type	of	the	object
to	which	S	is	converted	by	the	converter.	Converter	interface	defines	a	convert	method	that	provides	the
conversion	logic.

The	 following	 example	 listing	 shows	 the	 IdToFixedDepositDetailsConverter	 that	 converts	 an	 object	 of
type	String	(representing	the	fixed	deposit	ID)	to	an	object	of	type	FixedDepositDetails	(representing	the
fixed	deposit	corresponding	to	the	fixed	deposit	ID):

Example	listing	13-15	–	Converter	implementation
Project	–	ch13-converter-formatter-bankapp
Source	location	–	src/main/java/sample/spring/chapter13/converter

package	sample.spring.chapter13.converter;
	
import	org.springframework.core.convert.converter.Converter;
.....
public	class	IdToFixedDepositDetailsConverter	implements	Converter<String,	FixedDepositDetails>	{
	
				@Autowired
				private	FixedDepositService	fixedDepositService;
	
				@Override
				public	FixedDepositDetails	convert(String	source)	{
								return	fixedDepositService.getFixedDeposit(Integer.parseInt(source));
				}
}
IdToFixedDepositDetailsConverter	implements	Converter<String,	FixedDepositDetails>	interface,	where
String	is	the	source	type	and	FixedDepositDetails	is	the	target	type.	IdToFixedDepositDetailsConverter’s
convert	method	uses	FixedDepositService’s	getFixedDeposit	method	to	retrieve	the	FixedDepositDetails
object	corresponding	to	the	fixed	deposit	ID.



Let’s	now	look	at	how	to	configure	and	use	a	custom	converter.

Configuring	and	using	a	custom	Converter
To	use	a	custom	converter,	you	need	to	register	the	custom	converter	with	Spring’s	ConversionService.	A
ConversionService	acts	as	a	registry	of	Converters	and	Formatters,	and	Spring	delegates	type	conversion
responsibility	 to	 the	 registered	 ConversionService.	 By	 default,	 the	 <annotation-driven>	 element	 of
Spring’s	mvc	schema	automatically	 registers	Spring’s	FormattingConversionService	(an	 implementation
of	ConversionService)	with	the	Spring	container.	Spring	comes	with	a	couple	of	built-in	converters	and
formatters	 that	 are	 automatically	 registered	 with	 the	 FormattingConversionService.	 If	 you	 want	 to
substitute	a	different	 implementation	of	ConversionService,	you	can	do	 so	by	using	conversion-service
attribute	of	<annotation-driven>	element.

To	 register	 custom	 converters	 with	 the	 FormattingConversionService	 instance,	 configure	 Spring’s
FormattingConversionServiceFactoryBean	(a	FactoryBean	 implementation	 that	 creates	 and	 configures	 a
FormattingConversionService	 instance)	 and	 specify	 custom	 converters	 as	 part	 of	 the	 configuration,	 as
shown	in	the	following	example	listing:

Example	listing	13-16	–	Registering	a	custom	Converter	with	FormattingConversionService
Project	–	ch13-converter-formatter-bankapp
Source	location	–	src/main/webapp/WEB-INF/spring

<mvc:annotation-driven	conversion-service="myConversionService"	/>
	
<bean	id="myConversionService"
				class="org.springframework.format.support.FormattingConversionServiceFactoryBean">
				<property	name="converters">
								<set>
												<bean	class="sample.spring.chapter13.converter.IdToFixedDepositDetailsConverter"	/>
								</set>
				</property>
				.....
</bean>
By	 default,	 FormattingConversionServiceFactoryBean	 registers	 only	 the	 built-in	 converters	 and
formatters	with	the	FormattingConversionService	instance.	You	register	custom	converters	and	formatters
using	FormattingConversionServiceFactoryBean’s	converters	and	formatters	properties.	As	we	want	our
Spring	 application	 to	 use	 FormattingConversionService	 instance	 created	 by	 the
FormattingConversionServiceFactoryBean,	 the	 conversion-service	 attribute	 of	 <annotation-driven>
element	refers	to	the	FormattingConversionServiceFactoryBean.

The	converters	and	 formatters	 registered	with	 the	FormattingConversionService	are	used	by	 the	Spring
container	 to	 perform	 type	 conversion	 during	 data	 binding.	 In	 the	 following	 example	 listing,
FixedDepositController’s	 viewFixedDepositDetails	 method	 shows	 a	 scenario	 in	 which	 the	 Spring
container	uses	IdToFixedDepositDetailsConverter<String,	FixedDepositDetails>	to	convert	fixed	deposit
ID	(of	type	String)	to	FixedDepositDetails	instance:

Example	listing	13-17	–	FixedDepositController’s	viewFixedDepositDetails	method
Project	–	ch13-converter-formatter-bankapp



Source	location	–	src/main/java/sample/spring/chapter13/web

package	sample.spring.chapter13.web;
.....
public	class	FixedDepositController	{
				.....
				@RequestMapping(params	=	"fdAction=view",	method	=	RequestMethod.GET)
				public	ModelAndView	viewFixedDepositDetails(
												@RequestParam(value	=	"fixedDepositId")	FixedDepositDetails	fixedDepositDetails)	{
								.....
				}
}
@RequestParam	annotation	specifies	that	the	value	of	fixedDepositId	request	parameter	is	assigned	to	the
fixedDepositDetails	method	argument.	The	fixedDepositId	 request	parameter	uniquely	 identifies	a	 fixed
deposit.	 As	 the	 fixedDepositId	 request	 parameter	 is	 of	 type	 String	 and	 method	 argument	 type	 is
FixedDepositDetails,	 Spring	 uses	 IdToFixedDepositDetailsConverter<String,	 FixedDepositDetails>	 to
perform	the	type	conversion.

The	 use	 of	 ConversionService	 is	 not	 limited	 to	 the	 web	 layer.	 You	 can	 use	 ConversionService	 to
programmatically	perform	type	conversion	in	any	layer	of	your	application.	The	following	example	listing
shows	 a	 variant	 of	 FixedDepositController’s	 viewFixedDepositDetails	 method	 that	 uses
ConversionService	directly	for	performing	type	conversion:

	
Example	listing	13-18	–	Performing	type	conversion	programmatically
	
import	org.springframework.core.convert.ConversionService;
.....
public	class	FixedDepositController	{
				@Autowired
				private	ConversionService	conversionService;
				.....
				@RequestMapping(params	=	"fdAction=view",	method	=	RequestMethod.GET)
				public	ModelAndView	viewFixedDepositDetails(HttpServletRequest	request)	{
								String	fixedDepositId	=	request.getParameter("fixedDepositId");
								FixedDepositDetails	fixedDepositDetails	=
													conversionService.convert(fixedDepositId,	FixedDepositDetails.class);
								.....
				}
}
In	the	above	example	listing,	ConversionService	 instance	 that	 is	 registered	with	 the	Spring	container	 is
autowired	 into	 the	 FixedDepositController.	 The	 viewFixedDepositDetails	 method	 uses
ConversionService’s	convert	method	to	convert	fixedDepositId	 (of	 type	String)	 to	FixedDepositDetails.
Behind	 the	 scenes,	 ConversionService	 makes	 use	 of	 the	 IdToFixedDepositDetailsConverter<String,
FixedDepositDetails>	converter	registered	with	it	to	perform	the	type	conversion.



Now	that	we	have	seen	how	to	create	and	use	a	custom	Converter,	let’s	now	look	at	how	to	create	and	use
a	custom	Formatter.

Creating	a	custom	Formatter
A	formatter	converts	an	object	of	type	T	to	a	String	value	for	display	purposes,	and	parses	a	String	value
to	the	object	type	T.	A	formatter	implements	Spring’s	Formatter<T	>	interface,	where	T	is	the	type	of	the
object	that	the	formatter	formats.	This	may	sound	similar	to	what	PropertyEditors	do	in	web	applications.
As	we’ll	see	in	this	chapter,	Formatters	offer	a	more	robust	alternative	to	PropertyEditors.

NOTE	Spring’s	tag	library	tags	use	the	formatters	registered	with	the	FormattingConversionService	to
perform	type	conversion	during	data	binding	and	rendering.

The	 following	 example	 listing	 shows	 the	AmountFormatter	 that	 is	 used	 by	 the	MyBank	 application	 to
display	 fixed	 deposit	 amount	 in	 the	 currency	 that	 applies	 to	 the	 user’s	 locale,	 and	 to	 parse	 the	 fixed
deposit	amount	entered	by	the	user.	For	simplicity,	currency	conversion	is	not	applied	on	the	fixed	deposit
amount;	 the	 currency	 symbol	 that	 applies	 to	 the	 user’s	 locale	 is	 simply	 appended	 to	 the	 fixed	 deposit
amount.

	
Example	listing	13-19	–	AmountFormatter	-	a	Formatter	implementation
Project	–	ch13-converter-formatter-bankapp
Source	location	–	src/main/java/sample/spring/chapter13/formatter

package	sample.spring.chapter13.formatter;
	
import	java.text.ParseException;
import	java.util.Locale;
import	org.springframework.format.Formatter;
	
public	class	AmountFormatter	implements	Formatter<Long>{
	
				@Override
				public	String	print(Long	object,	Locale	locale)	{
								String	returnStr	=	object.toString()	+	"	USD";
								if(locale.getLanguage().equals(new	Locale("de").getLanguage()))	{
												returnStr	=	object.toString()	+	"	EURO";
								}
								return	returnStr;
				}
	
				@Override
				public	Long	parse(String	text,	Locale	locale)	throws	ParseException	{
								String	str[]	=	text.split("	");
								return	Long.parseLong(str[0]);
				}
}



AmountFormatter	implements	Formatter<Long>	interface,	which	means	that	the	AmountFormatter	applies
to	 Long	 type	 objects.	 The	 print	 method	 converts	 the	 Long	 type	 object	 (representing	 the	 fixed	 deposit
amount)	 to	 a	 String	 value	 that	 is	 displayed	 to	 the	 user.	Based	 on	 the	 language	 code	 obtained	 from	 the
locale,	the	print	method	simply	appends	USD	(for	en	language	code)	or	EURO	(for	de	language	code)	to
the	fixed	deposit	amount.	For	instance,	if	the	fixed	deposit	amount	is	1000	and	the	language	code	is	de,	the
print	method	returns	‘1000	EURO’.	The	parse	method	takes	the	fixed	deposit	amount	entered	by	the	user
(like,	‘1000	EURO’)	and	converts	it	into	a	Long	type	object	by	simply	extracting	the	fixed	deposit	amount
from	the	user	entered	value.

Let’s	now	look	at	how	to	configure	a	custom	formatter.

Configuring	a	custom	Formatter
You	can	register	custom	formatters	with	the	FormattingConversionService	using	the	formatters	property	of
FormattingConversionServiceFactoryBean,	as	shown	here:

Example	listing	13-20	–	Registering	a	custom	Formatter	with	FormattingConversionService
	
<beans	.....>
				.....
				<mvc:annotation-driven	conversion-service="myConversionService"	/>
				.....
				<bean	id="myConversionService"
								class="org.springframework.format.support.FormattingConversionServiceFactoryBean">
								<property	name="formatters">
												<set>
																<bean	class="sample.spring.chapter13.formatter.AmountFormatter"	/>
												</set>
								</property>
				</bean>
</beans>
AmountFormatter	registered	with	the	FormattingConversionService	is	applied	to	all	the	Long	type	fields
during	data	binding	and	rendering.

You	can	control	 the	fields	on	which	a	Formatter	applies	by	using	Spring’s	AnnotationFormatterFactory.
An	AnnotationFormatterFactory	 implementation	 creates	 formatters	 for	 fields	 that	 are	 annotated	 with	 a
particular	annotation.	Let’s	see	how	we	can	use	AnnotationFormatterFactory	to	format	only	the	Long	type
fields	annotated	with	@AmountFormat	annotation.

Creating	AnnotationFormatterFactory	to	format	only	@AmountFormat	annotated
fields
The	following	example	listing	shows	the	definition	of	@AmountFormat	annotation:

Example	listing	13-21	–	AmountFormat	annotation
Project	–	ch13-converter-formatter-bankapp
Source	location	–	src/main/java/sample/spring/chapter13/formatter

package	sample.spring.chapter13.formatter;



.....
@Target(value={ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public	@interface	AmountFormat	{	}
In	 the	above	example	 listing,	 the	@Target	annotation	specifies	 that	 the	@AmountFormat	 annotation	 can
only	appear	on	fields.

The	 following	 example	 listing	 shows	 the	 implementation	 of	 AnnotationFormatterFactory	 that	 creates
formatters	for	fields	annotated	with	@AmountFormat	annotation:

Example	listing	13-22	–	AmountFormatAnnotationFormatterFactory	class
Project	–	ch13-converter-formatter-bankapp
Source	location	–	src/main/java/sample/spring/chapter13/formatter

package	sample.spring.chapter13.formatter;
	
import	org.springframework.format.AnnotationFormatterFactory;
import	org.springframework.format.Parser;
import	org.springframework.format.Printer;
	
public	class	AmountFormatAnnotationFormatterFactory	implements
									AnnotationFormatterFactory<AmountFormat>	{
	
				public	Set<Class<?>>	getFieldTypes()	{
								Set<Class<?>>	fieldTypes	=	new	HashSet<Class<?>>(1,	1);
								fieldTypes.add(Long.class);
								return	fieldTypes;
				}
	
				public	Parser<?>	getParser(AmountFormat	annotation,	Class<?>	fieldType)	{
								return	new	AmountFormatter();
				}
	
				public	Printer<?>	getPrinter(AmountFormat	annotation,	Class<?>	fieldType)	{
								return	new	AmountFormatter();
				}
}
In	 the	 above	 example	 listing,	 AmountFormatAnnotationFormatterFactory	 implements
AnnotationFormatterFactory<AmountFormat>	 interface,	 which	 means	 that	 the
AmountFormatAnnotationFormatterFactory	creates	formatters	for	fields	annotated	with	@AmountFormat
annotation.

The	getFieldTypes	method	returns	the	field	types	that	may	be	annotated	with	@AmountFormat	annotation.
The	getFieldTypes	method	in	the	above	example	listing	returns	a	single	type,	Long	type,	which	means	that
only	a	Long	type	field	that	is	annotated	with	@AmountFormat	annotation	is	considered	for	formatting	by



the	 formatters	 created	 by	 the	 AmountFormatAnnotationFormatterFactory.	 The	 getParser	 and	 getPrinter
methods	return	formatters	for	fields	that	are	annotated	with	@AmountFormat	annotation.	You	should	note
that	the	Formatter	interface	is	a	sub-interface	of	Parser	and	Printer	interfaces.

Configuring	AnnotationFormatterFactory	implementation
As	in	case	of	Formatters	configuration,	an	AnnotationFormatterFactory	implementation	is	registered	with
FormattingConversionService	via	formatters	property	of	FormattingConversionServiceFactoryBean:

Example	listing	13-23	–	AmountFormatAnnotationFormatterFactory	configuration
Project	–	ch13-converter-formatter-bankapp
Source	location	–	src/main/webapp/WEB-INF/spring
	
<beans	.....>
				.....
				<mvc:annotation-driven	conversion-service="myConversionService"	/>
				.....
				<bean	id="myConversionService"
								class="org.springframework.format.support.FormattingConversionServiceFactoryBean">
								<property	name="formatters">
												<set>
															<bean
																				class="sample.spring.chapter13.formatter.AmountFormatAnnotationFormatterFactory"	/>
												</set>
								</property>
				</bean>
</beans>
Now	 that	we	have	 seen	how	 to	use	AnnotationFormatterFactory	 to	 enable	 formatting	 of	 fields	 that	 are
annotated	with	 a	 specific	 annotation,	 let’s	 look	 at	 how	 it	 is	 used	 in	 ch13-converter-formatter-bankapp
project.

The	 following	 figure	 shows	 the	web	 page	 of	 ch13-converter-formatter-bankapp	 project	 that	 shows	 the
lists	of	fixed	deposits:



	
Figure	13-4	 -	The	 ‘Deposit	 amount’	 column	 shows	USD	or	EURO	depending	 upon	 the	 language	 code
obtained	from	the	user’s	current	locale

The	above	figure	shows	that	USD	is	appended	to	the	fixed	deposit	amount	if	the	language	chosen	by	the
user	is	English.	If	you	switch	the	language	to	German,	the	USD	will	be	replaced	by	EURO.	In	example
listing	13-19,	we	saw	that	 the	AmountFormatter	contained	 the	 logic	 to	show	USD	or	EURO	depending
upon	the	language	code	obtained	from	the	user’s	current	locale.

To	ensure	that	the	formatters	configured	with	the	FormattingConversionService	are	invoked	during	page
rendering	and	form	submission,	Spring’s	tag	library	tags	(like,	<eval>	and	<input>)	have	been	used	in	the
JSP	pages	of	ch13-converter-formatter-bankapp	project.

Let’s	now	look	at	how	Spring	Web	MVC	simplifies	uploading	files.



13-6	File	upload	support	in	Spring	Web	MVC
You	 can	 handle	 multipart	 requests	 in	 your	 Spring	 Web	 MVC	 applications	 by	 configuring	 a
MultipartResolver.	Spring	provides	 the	 following	out-of-the-box	 implementations	of	MultipartResolver
interface	that	you	can	use	in	your	web	applications:

§		CommonsMultipartResolver	–	based	on	Apache	Commons	FileUpload	library

§		StandardServletMultipartResolver	–	based	on	Servlet	3.0	Part	API

When	a	multipart	request	is	received,	DispatcherServlet	uses	the	configured	MultipartResolver	 to	wrap
the	HttpServletRequest	 into	a	MultipartHttpServletRequest	 instance.	 In	Spring	Web	MVC,	 an	 uploaded
file	 is	 represented	 by	 the	 MultipartFile	 object.	 The	 controller	 responsible	 for	 handling	 file	 uploads
accesses	 the	 uploaded	 file	 using	 methods	 defined	 by	 the	 MultipartHttpServletRequest	 or	 by	 directly
accessing	the	MultipartFile	object.

Let’s	first	look	at	a	sample	web	application	that	uses	CommonsMultipartResolver	for	uploading	files.

IMPORT	 chapter	 13/ch13-commons-file-upload	 (This	 project	 shows	 how	 to	 use
CommonsMultipartResolver	 to	 upload	 files.	 As	 CommonsMultipartResolver	 uses	 Apache	 Commons
FileUpload	library,	the	project	is	dependent	on	commons-fileupload	JAR	file.)

Uploading	files	using	CommonsMultipartResolver
The	following	example	listing	shows	the	file	upload	form	that	is	displayed	by	ch13-commons-file-upload
project:

Example	listing	13-24	–	uploadForm.jsp	–	shows	the	upload	form
Project	–	ch13-commons-file-upload
Source	location	–	src/main/webapp/WEB-INF/jsp

.....
				<form	method="post"	action="/ch13-commons-file-upload/uploadFile"
												enctype="multipart/form-data">
								<table	style="padding-left:	200px;">
												<tr>
																<td	colspan="2"><c:out	value="${uploadMessage}"	/></td>
												</tr>
												<tr>
																<td><b>Select	the	file	to	be	uploaded:	&nbsp;</b></td>
																<td><input	type="file"	name="myFileField"	/></td>
												</tr>
												<tr>
																<td	colspan="2"	align="center"><input	type="button"
																				value="Upload	file"	onclick="document.forms[0].submit();"	/></td>
												</tr>
								</table>
				</form>
.....

http://commons.apache.org/proper/commons-fileupload/


The	above	example	 listing	shows	 that	 the	enctype	attribute	of	<form>	element	 is	 set	 to	multipart/form-
data,	 which	 means	 that	 the	 form	 submission	 results	 in	 sending	 multipart	 request	 to	 the	 server.	 The
uploadMessage	 request	 attribute	 shows	 the	 success	 or	 failure	message	 after	 the	 user	 selects	 a	 file	 and
clicks	the	‘Upload	file’	button.

The	 following	 example	 listing	 shows	 the	 configuration	 of	 CommonsMultipartResolver	 that	 resolves
multipart	requests:

Example	listing	13-25	–	fileupload-config.xml	–	CommonsMultipartResolver	configuration
Project	–	ch13-commons-file-upload
Source	location	–	src/main/webapp/WEB-INF/spring

				<bean	id="multipartResolver"
								class="org.springframework.web.multipart.commons.CommonsMultipartResolver">
								<property	name="maxUploadSize"	value="100000"	/>
								<property	name="resolveLazily"	value="true"	/>
				</bean>
It	 is	 important	 to	 note	 that	 the	 MultipartResolver	 implementation	 must	 be	 configured	 with	 id	 as
multipartResolver	 in	 the	web	application	context	XML	file.	The	maxUploadSize	property	 specifies	 the
maximum	size	 (in	bytes)	of	 the	 file	 that	can	be	uploaded.	 If	you	attempt	 to	upload	a	 file	whose	size	 is
greater	than	100	KB,	the	CommonsMultipartResolver	shown	in	the	above	example	listing	will	throw	an
exception.	 If	 an	 exception	 is	 thrown	 by	 the	 CommonsMultipartResolver	 instance,	 the	 controller
responsible	 for	 handling	 the	 file	 upload	 doesn’t	 get	 the	 opportunity	 to	 handle	 the	 exception.	 For	 this
reason,	the	resolveLazily	property	is	set	to	true.	If	the	resolveLazily	property	is	set	to	true,	the	multipart
request	is	resolved	only	when	the	uploaded	file	is	accessed	by	the	controller.	This	gives	the	opportunity
to	the	controller	to	handle	exceptions	that	occur	during	multipart	request	resolution.

The	following	example	listing	shows	the	FileUploadController	that	handles	file	uploads:

Example	listing	13-26	–	FileUploadController
Project	–	ch13-commons-file-upload
Source	location	–	src/main/java/sample/spring/chapter13/web

package	sample.spring.chapter13.web;
	
import	org.springframework.web.multipart.MultipartFile;
.....
public	class	FileUploadController	{
				.....
				@RequestMapping(value	=	"/uploadFile",	method	=	RequestMethod.POST)
				public	ModelAndView	handleFileUpload(
												@RequestParam("myFileField")	MultipartFile	file)	throws	IOException	{
								ModelMap	modelData	=	new	ModelMap();
	
								if	(!file.isEmpty())	{
												//	--	save	the	uploaded	file	on	the	filesystem
												String	successMessage	=	"File	successfully	uploaded";



												modelData.put("uploadMessage",	successMessage);
												return	new	ModelAndView("uploadForm",	modelData);
								}
								.....
				}
	
				@ExceptionHandler(value	=	Exception.class)
				public	ModelAndView	handleException()	{
								.....
				}
}
FileUploadController’s	 handleFileUpload	 method	 accepts	 an	 argument	 of	 type	 MultipartFile	 which
identifies	 the	 uploaded	 file.	 Notice	 that	 the	 @RequestParam	 annotation	 specifies	 name	 of	 the	 <input
type=”file”	.....>	field	in	the	uploadForm.jsp	page	(refer	example	listing	13-24).	If	the	file	is	successfully
uploaded,	 the	 handleFileUpload	 method	 sets	 a	 success	 message	 which	 is	 shown	 to	 the	 user.
@ExceptionHandler	 method	 shows	 an	 error	 message	 in	 case	 an	 exception	 occurs	 during	 file	 upload
process.	For	instance,	if	the	file	size	is	greater	than	100	KB,	an	error	message	is	shown	to	the	user.

Now	 that	 we	 have	 seen	 how	 to	 use	 CommonsMultipartResolver	 to	 upload	 files,	 let’s	 look	 at	 how	 to
upload	files	using	StandardServletMultipartResolver.

IMPORT	 chapter	 13/ch13-servlet3-file-upload	 (This	 project	 shows	 how	 to	 use
StandardServletMultipartResolver	to	upload	files.)

Uploading	files	using	StandardServletMultipartResolver
The	support	for	handling	multipart	request	is	provided	out-of-the-box	in	Servlet	3.	If	you	want	to	use	the
multipart	 support	 provided	 by	 Servlet	 3,	 enable	 multipart	 request	 handling	 by	 specifying	 <multipart-
config>	element	in	the	DispatcherServlet	configuration,	and	configure	StandardServletMultipartResolver
in	 the	 web	 application	 context	 XML	 file.	 Unlike,	 CommonsMultipartResolver,
StandardMultipartResolver	doesn’t	define	any	properties.

The	following	example	listing	shows	the	DispatcherServlet	configuration	in	web.xml	file:

Example	listing	13-27	–	web.xml
Project	–	ch13-servlet3-file-upload
Source	location	–	src/main/webapp

				<servlet>
								<servlet-name>fileupload</servlet-name>
								<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
								.....
								<multipart-config>
												<max-file-size>10000</max-file-size>
								</multipart-config>
				</servlet>							
As	the	<multipart-config>	element	is	specified,	the	fileupload	servlet	can	handle	multipart	requests.	The



<max-file-size>	element	specifies	the	maximum	file	size	that	can	be	uploaded.	Notice	that	the	maximum
file	size	is	now	specified	as	part	of	<multipart-config>	element.



13-7	Summary
In	this	chapter,	we	looked	at	some	of	the	important	features	of	Spring	Web	MVC	framework	that	simplify
developing	web	applications.	In	the	next	chapter,	we’ll	look	at	how	to	secure	Spring	applications	using
Spring	Security	framework.



Chapter	14	–	Securing	applications	using	Spring	Security



14-1	Introduction
Security	is	an	important	aspect	of	any	application.	Spring	Security	is	built	on	top	of	Spring	Framework,
and	provides	a	comprehensive	framework	for	securing	Spring-based	applications.	In	this	chapter,	we’ll
look	at	how	to	use	Spring	Security	framework	to:

§		authenticate	users

§		implement	web	request	security,

§		implement	method-level	security

§		secure	domain	objects	using	ACL	(Access	Control	List)	based	security

Let’s	begin	by	 looking	at	 the	MyBank	web	application’s	security	 requirements	 that	we’ll	address	using
Spring	Security.



14-2	Security	requirements	of	the	MyBank	web	application
The	users	of	the	MyBank	web	application	are	customers	and	administrators	that	manage	fixed	deposits
in	the	system.	A	customer	can	open	and	edit	fixed	deposits	but	can’t	close	them.	An	administrator	can’t
create	or	edit	fixed	deposits	but	can	close	fixed	deposits	of	customers.

As	 only	 authenticated	 users	 can	 access	 the	 MyBank	 web	 application,	 a	 login	 form	 is	 displayed	 to
unauthenticated	users:

Figure	14-1	-	Login	form	that	is	displayed	to	unauthenticated	users

The	above	figure	shows	the	login	form	that	 is	displayed	to	unauthenticated	users.	If	 the	user	selects	 the
‘Remember	 me	 on	 this	 computer’	 checkbox,	 the	 MyBank	 web	 application	 remembers	 the	 credentials
entered	by	the	user	and	uses	it	for	automatic	authentication	of	the	user	in	future	visits.

When	 a	customer	 logs	 in,	details	of	 the	 fixed	 deposits	 associated	with	 the	 customer	 are	 displayed,	 as
shown	here:

Figure	14-2	-	Fixed	deposits	of	the	customer	are	displayed	after	authentication

The	above	figure	shows	a	Logout	hyperlink	that	the	customer	can	click	to	logout	from	the	MyBank	web
application.	A	customer	can	edit	details	of	a	fixed	deposit	by	clicking	the	Edit	hyperlink	corresponding	to
that	fixed	deposit.	A	customer	can	view	the	form	for	opening	a	new	fixed	deposit	by	clicking	the	Create
new	 Fixed	Deposit	 button.	 Notice	 that	 the	 username	 of	 the	 authenticated	 user	 is	 displayed	 below	 the
Logout	hyperlink.

When	an	administrator	logs	in,	details	of	all	the	fixed	deposits	in	the	system	are	displayed	by	the	MyBank
web	application,	as	shown	here:



Figure	14-3	-	Fixed	deposits	of	all	the	customer	are	displayed	to	an	administrator

In	the	above	figure,	an	administrator	can	choose	to	close	a	fixed	deposit	by	clicking	the	Close	hyperlink
corresponding	 to	 that	 fixed	 deposit.	 As	 in	 case	 of	 customers,	 the	Create	 new	 Fixed	Deposit	 button	 is
visible	 to	an	administrator	also,	but	an	attempt	 to	save	details	of	 the	new	fixed	deposit	will	 result	 in	a
security	exception	thrown	by	the	application.

Let’s	 now	 look	 at	 how	 to	 address	 the	 security	 requirements	 of	MyBank	web	 application	 using	 Spring
Security.

IMPORT	 chapter	 14/ch14-bankapp-simple-security	 (This	 project	 represents	 the	 MyBank	 web
application	that	uses	Spring	Security	framework	for	addressing	security	requirements	described	in	section
14-2.)



14-3	Securing	MyBank	web	application	using	Spring	Security
Spring	 Security	 framework	 consists	 of	 multiple	 modules	 that	 address	 various	 security	 aspects	 of
applications.	The	following	table	describes	some	of	the	important	modules	of	Spring	Security:

Module Description

spring-security-core Defines	the	core	classes	and	interfaces	of	Spring	Security	framework.	This	module	is
required	by	any	application	that	uses	Spring	Security.

spring-security-web Provides	support	for	securing	web	applications

spring-security-config
Like	 Spring’s	 tx	 and	 mvc	 schemas,	 Spring	 Security	 defines	 a	 security	 schema	 that
simplifies	configuring	Spring	Security	 features.	The	 spring-security-config	module	 is
responsible	for	parsing	the	elements	of	the	security	namespace.

spring-security-taglibs Defines	tags	that	you	can	use	to	access	security	information	and	to	secure	the	content
displayed	by	JSP	pages

spring-security-acl Enables	use	of	ACLs	(Access	Control	List)	 to	secure	 instances	of	domain	objects	 in
applications

	
In	 this	 section,	we’ll	 look	 at	 usage	 of	 spring-security-core,	 spring-security-web,	 spring-security-config
and	spring-security-taglibs	modules	 to	secure	 the	MyBank	web	application.	Later	 in	 this	chapter,	we’ll
look	at	how	to	use	spring-security-acl	module	to	secure	domain	object	instances.

Let’s	begin	by	looking	at	how	web	request	security	is	configured.

Web	request	security	configuration
You	can	add	web	request	security	to	an	application	by:

§		configuring	Spring’s	DelegatingFilterProxy	filter	in	the	web.xml	file,	and

§		enabling	web	request	security	provided	by	the	Spring	Security	framework

Let’s	first	look	at	how	to	configure	DelegatingFilterProxy	filter.

DelegatingFilterProxy	filter	configuration

Spring	 Framework’s	 web	 module	 (represented	 by	 spring-web-4.0.0.RELEASE.jar	 file)	 defines	 the
DelegatingFilterProxy	class	that	implements	Servlet	API’s	Filter	interface.	The	following	example	listing
shows	the	configuration	of	DelegatingFilterProxy	filter	in	the	web.xml	file:

Example	listing	14-1	–	web.xml	-	DelegatingFilterProxy	filter	configuration
Project	–	ch14-bankapp-simple-security
Source	location	-	src/main/webapp/WEB-INF

				<filter>
								<filter-name>springSecurityFilterChain</filter-name>
								<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>
				</filter>
	
				<filter-mapping>
								<filter-name>springSecurityFilterChain</filter-name>
								<url-pattern>/*</url-pattern>
				</filter-mapping>



The	<filter-mapping>	element	 specifies	 that	 the	DelegatingFilterProxy	 filter	 is	mapped	 to	 all	 incoming
web	requests.	The	filter	name	specified	by	the	<filter-name>	element	carries	a	special	significance	in	the
context	 of	DelegatingFilterProxy	 filter.	DelegatingFilterProxy	 filter	 delegates	 request	 processing	 to	 the
Spring	bean	whose	name	matches	the	value	of	<filter-name>	element.	In	the	above	example	listing,	web
requests	 received	 by	 the	 DelegatingFilterProxy	 filter	 are	 delegated	 to	 the	 Spring	 bean	 named
springSecurityFilterChain	 in	 the	 root	 application	 context.	 We’ll	 soon	 see	 that	 the
springSecurityFilterChain	bean	is	created	by	the	Spring	Security	framework.

Now,	that	we	have	configured	the	DelegatingFilterProxy	filter,	let’s	look	at	how	to	configure	web	request
security.

	

	

Configuring	web	request	security

The	 following	 example	 listing	 shows	 the	 application	 context	 file	 that	 uses	 <http>	 element	 of	 security
schema	to	configure	web	request	security:

Example	listing	14-2	–	applicationContext-security.xml	–	web	security	configuration
Project	–	ch14-bankapp-simple-security
Source	location	-	src/main/resources/META-INF/spring

<beans:beans	xmlns="http://www.springframework.org/schema/security"
				xmlns:beans="http://www.springframework.org/schema/beans"
				xsi:schemaLocation=".....
							http://www.springframework.org/schema/security
											http://www.springframework.org/schema/security/spring-security-3.2.xsd">
			
				<http	use-expressions="true">
								<intercept-url		pattern="/**"	access="hasAnyRole('ROLE_CUSTOMER',	'ROLE_ADMIN')"	/>
								<form-login	/>
								<logout	/>
								<remember-me	/>
								<headers>
												<cache-control/>
												<xss-protection/>
								</headers>
				</http>
				.....
</beans:beans>
The	above	example	listing	shows	that	the	spring-security-3.2.xsd	schema	is	referenced	by	the	application
context	 XML	 file.	 The	 spring-security-3.2.xsd	 schema	 is	 contained	 in	 the
org.springframework.security.config	package	of	spring-security-config-3.2.0.RELEASE.jar	file.

The	<http>	element	contains	 the	web	request	 security	configuration	 for	 the	application.	Spring	Security
framework	 parses	 the	 <http>	 element	 and	 registers	 a	 bean	 named	 springSecurityFilterChain	 with	 the



Spring	container.	The	 springSecurityFilterChain	 bean	 is	 responsible	 for	 handling	web	 request	 security.
The	DelegatingFilterProxy	 filter	 that	we	 configured	 earlier	 (refer	 example	 listing	 14-1)	 delegates	web
request	handling	to	the	springSecurityFilterChain	bean.	The	springSecurityFilterChain	bean	represents	an
instance	of	FilterChainProxy	bean	(refer	Spring	Security	docs	for	more	information)	that	contains	a	chain
of	Servlet	filters	that	are	added	to	the	chain	by	the	sub-elements	of	<http>	element.

The	 <intercept-url>	 element’s	 access	 attribute	 specifies	 a	 Spring	 EL	 expression	 that	 evaluates	 to	 a
boolean	 value.	 If	 the	Spring	EL	 expression	 returns	 true,	 the	URLs	matched	 by	 the	 pattern	 attribute	 are
accessible	to	the	user.	If	the	Spring	EL	expression	returns	false,	access	is	denied	to	the	URLs	matched	by
the	pattern	attribute.	Spring	Security	framework	provides	a	couple	of	built-in	expressions,	like	hasRole,
hasAnyRole,	isAnonymous,	and	so	on.

In	example	listing	14-2,	the	hasAnyRole('ROLE_CUSTOMER',	'ROLE_ADMIN')	expression	returns	true
if	 the	authenticated	user	has	ROLE_CUSTOMER	or	ROLE_ADMIN	 role.	 In	MyBank	web	application,
the	ROLE_CUSTOMER	 role	 is	 assigned	 to	 a	 customer	 and	 the	ROLE_ADMIN	 role	 is	 assigned	 to	 an
administrator.	As	 the	pattern	 /*	matches	 all	URLs,	 the	 <intercept-url>	 element	 in	 example	 listing	 14-2
specifies	that	only	a	user	with	role	ROLE_CUSTOMER	or	ROLE_ADMIN	can	access	the	MyBank	web
application.	You	should	note	that	the	use	of	Spring	EL	expression	in	the	access	attribute	is	allowed	only	if
you	set	the	value	of	use-expressions	attribute	of	<http>	element	to	true.

The	<form-login>	element	configures	a	login	page	that	is	used	to	authenticate	users.	You	can	use	various
attributes	of	<form-login>	element,	 like	 login-page,	default-target-url,	and	so	on,	 to	customize	 the	 login
page.	The	login-page	attribute	specifies	 the	URL	that	 is	used	 to	render	 the	 login	page.	 If	 the	 login-page
attribute	is	not	specified,	a	login	page	is	automatically	rendered	at	the	/spring_security_login	URL.

The	<logout>	element	configures	the	logout	processing	feature	of	Spring	Security	framework.	You	can	use
various	attributes	of	<logout>	element,	 like	 logout-url,	delete-cookies,	 invalidate-session,	and	so	on,	 to
configure	the	logout	functionality.	For	instance,	you	can	use	the	delete-cookies	attribute	to	specify	comma-
separated	names	of	cookies	that	should	be	deleted	when	the	user	logs	out	of	the	application.	The	logout-
url	attribute	allows	you	to	configure	the	URL	that	performs	the	logout	processing.	If	you	don’t	specify	the
logout-url	attribute,	the	logout-url	attribute	value	is	set	to	/j_spring_security_logout	by	default.

The	<remember-me>	element	configures	the	‘remember-me’	authentication	in	which	the	web	application
remembers	 the	 identity	 of	 the	 authenticated	 user	 between	 sessions.	 When	 a	 user	 is	 successfully
authenticated,	Spring	Security	framework	generates	a	unique	token	that	can	either	be	stored	in	a	persistent
store	 or	 sent	 to	 the	 user	 in	 a	 cookie.	 In	 example	 listing	 14-2,	 <remember-me>	 element	 configures	 a
cookie-based	remember-me	authentication	service.	When	the	user	revisits	the	web	application,	the	token
is	retrieved	from	the	cookie	and	is	automatically	authenticated.

The	<headers>	element	specifies	the	security	headers	that	are	added	to	the	HTTP	response	by	the	Spring
Security	 framework.	 For	 instance,	 in	 example	 listing	 14-2,	 the	 <cache-control>	 element	 adds	 Cache-
Control,	Pragma	and	Expires	response	headers,	and	the	<xss-protection>	element	adds	X-XSS-Protection
header.

When	an	unauthenticated	user	accesses	the	MyBank	web	application,	Spring	Security	displays	the	login
page	 (refer	 figure	 14-1)	 configured	 by	 the	 <form-login>	 element	 to	 the	 user.	 Let’s	 now	 look	 at	 how
authentication	is	performed	when	the	user	enters	his	credentials	and	clicks	the	Login	button.



Authentication	configuration
When	a	user	enters	his	credentials	and	submits	the	login	page,	Spring	Security’s	AuthenticationManager	is
responsible	for	processing	the	authentication	request.	An	AuthenticationManager	 is	configured	with	one
or	more	AuthenticationProviders	against	which	the	AuthenticationManager	attempts	to	authenticate	users.
For	 instance,	 if	 you	 want	 to	 authenticate	 users	 against	 an	 LDAP	 server,	 you	 can	 configure	 an
LdapAuthenticationProvider	 (an	 implementation	 of	 AuthenticationProvider)	 that	 authenticates	 users
against	an	LDAP	server.

The	 security	 schema	 simplifies	 configuration	 of	 AuthenticationManager	 and	 AuthenticationProvider
objects,	as	shown	in	the	following	example	listing:

Example	listing	14-3	–	applicationContext-security.xml
Project	–	ch14-bankapp-simple-security
Source	location	-	src/main/resources/META-INF/spring

				<authentication-manager>
								<authentication-provider>
												<user-service>
																<user	name="admin"	password="admin"	authorities="ROLE_ADMIN"	/>
																<user	name="cust1"	password="cust1"	authorities="ROLE_CUSTOMER"	/>
																<user	name="cust2"	password="cust2"	authorities="ROLE_CUSTOMER"	/>
												</user-service>
								</authentication-provider>
				</authentication-manager>
The	 <authentication-manager>	 element	 configures	 an	 AuthenticationManager	 instance.	 The
<authentication-provider>	 element	 configures	 an	 AuthenticationProvider	 instance.	 By	 default,	 the
<authentication-provider>	 element	 configures	 a	 DaoAuthenticationProvider	 (an	 implementation	 of
AuthenticationProvider)	that	uses	Spring’s	UserDetailsService	as	a	DAO	to	load	user	details.

DaoAuthenticationProvider	 uses	 the	 configured	 UserDetailsService	 to	 load	 user	 details	 from	 the	 user
repository	 based	 on	 the	 supplied	 username.	 DaoAuthenticationProvider	 performs	 authentication	 by
comparing	 the	 login	 credentials	 supplied	 by	 the	 user	 with	 the	 user	 details	 loaded	 by	 the	 configured
UserDetailsService.	You	should	note	that	a	UserDetailsService	may	load	user	details	from	a	data	source,
a	flat	file	or	any	other	user	repository.

The	 <user-service>	 sub-element	 of	 <authentication-provider>	 configures	 an	 in-memory
UserDetailsService	that	loads	users	defined	by	the	<user>	elements.	In	example	listing	14-3,	the	<user-
service>	 element	 defines	 that	 the	 application	 has	 three	 users:	 admin	 (ROLE_ADMIN	 role),	 cust1
(ROLE_CUSTOMER	 role)	 and	 cust2	 (ROLE_CUSTOMER	 role).	 The	 name	 attribute	 specifies	 the
username	assigned	 to	 the	user,	 the	password	 attribute	 specifies	 the	 password	 assigned	 to	 the	 user,	 and
authorities	attribute	specifies	the	role(s)	assigned	to	the	user.

Now,	 if	 you	 deploy	 the	 ch14-bankapp-simple-security	 project	 and	 access	 it	 by	 going	 to	 the
http://localhost:8080/ch14-bankapp-simple-security	URL,	 the	 login	page	 (refer	 figure	14-1)	 of	 the	web
application	 is	 displayed.	 If	 you	 authenticate	 by	 entering	username	 as	 cust1	 and	password	 as	 cust1,	 the
web	application	will	display	fixed	deposits	associated	with	cust1	(refer	figure	14-2)	user.	Similarly,	 if
you	login	with	username	as	cust2	and	password	as	cust2,	the	web	application	will	display	fixed	deposits



associated	 with	 cust2	 user.	 If	 you	 login	 with	 username	 as	 admin	 and	 password	 as	 admin,	 the	 web
application	will	display	fixed	deposits	of	both	cust1	and	cust2	users.

Let’s	now	look	at	how	to	use	Spring	Security’s	JSP	tag	library	to	access	security	information	and	to	apply
security	constraints	on	the	content	displayed	by	JSP	pages.

Securing	JSP	content	using	Spring	Security’s	JSP	tab	library
One	of	the	requirements	of	MyBank	web	application	is	that	the	option	to	edit	a	fixed	deposit	(refer	figure
14-2)	is	available	only	to	users	with	role	ROLE_CUSTOMER.	And,	the	option	to	close	a	fixed	deposit
(refer	 figure	14-3)	 is	available	only	 to	user	with	 role	ROLE_ADMIN.	As	we	need	 to	 secure	Edit	 and
Close	 hyperlinks	 based	 on	 the	 authenticated	 user’s	 role,	 the	 MyBank	 web	 application	 uses	 Spring
Security’s	JSP	tag	library	to	secure	JSP	content.

The	following	example	 listing	shows	usage	of	Spring	Security’s	JSP	tag	 library	 to	access	authenticated
user’s	username,	and	to	secure	JSP	content	based	on	the	role	of	the	logged	in	user:

Example	listing	14-4	–	fixedDepositList.jsp
Project	–	ch14-bankapp-simple-security
Source	location	-	src/main/webapp/WEB-INF/jsp

<%@	taglib	uri="http://www.springframework.org/security/tags"	prefix="security"%>
.....
<body>
				.....
				<td	style="font-family:	'arial';	font-size:	12px;	font-weight:	bold"	align="right">
								<a	href="${pageContext.request.contextPath}/j_spring_security_logout">Logout</a>
								<p>
												Username:	<security:authentication	property="principal.username"	/>
								</p>
				</td>
				.....
				<td	class="td">
								<security:authorize	access="hasRole('ROLE_CUSTOMER')">
											<a	href="${pageContext.request.contextPath}/fixedDeposit?....."	>Edit</a>
								</security:authorize>
								<security:authorize	access="hasRole('ROLE_ADMIN')">
												<a	href="${pageContext.request.contextPath}/fixedDeposit.....">Close</a>
								</security:authorize>
				</td>
</body>
</html>
The	 above	 example	 listing	 shows	 that	 the	 Logout	 hyperlink	 refers	 to
${pageContext.request.contextPath}/j_spring_security_logout	 URL.	As	mentioned	 earlier,	 if	 you	 don’t
specify	 the	 logout-url	 attribute	 of	 <logout>	 element,	 the	 logout-url	 value	 is	 set	 to
/j_spring_security_logout.	 So,	 when	 a	 user	 clicks	 the	 Logout	 hyperlink,	 the	 user	 is	 logged	 out	 of	 the
MyBank	web	application.



The	above	example	listing	also	shows	that	the	JSP	page	includes	Spring	Security’s	JSP	tag	library	using
the	taglib	directive.	Spring	Security’s	Authentication	object	contains	 information	about	 the	authenticated
user.	For	 instance,	 it	 contains	 information	about	authenticated	user’s	 role(s)	and	username	 that	 the	user
used	for	authentication.	The	<authentication>	element	prints	the	specified	property	of	the	Authentication
object.	 In	 the	 above	 example,	 the	 principal.username	 property	 refers	 to	 the	 username	 property	 of	 the
authenticated	user.

The	<authorize>	element	secures	the	enclosed	JSP	content	based	on	the	result	of	evaluation	of	the	security
expression	 specified	 by	 the	 access	 attribute.	 If	 the	 security	 expression	 evaluates	 to	 true,	 the	 enclosed
content	 is	 rendered,	 otherwise	 the	 enclosed	 content	 is	 not	 rendered.	 In	 the	 above	 example	 listing,	 the
hasRole(‘ROLE_CUSTOMER’)	expression	returns	true	if	the	authenticated	user	has	ROLE_CUSTOMER
role,	 and	 the	 hasRole(‘ROLE_ADMIN’)	 expression	 returns	 true	 if	 the	 authenticated	 user	 has
ROLE_ADMIN	 role.	 In	 the	 above	example	 listing,	 the	hasRole	 expression	has	been	used	 such	 that	 the
Edit	option	is	displayed	only	to	a	user	with	ROLE_CUSTOMER	role	and	the	Close	option	is	displayed
only	to	a	user	with	ROLE_ADMIN	role.

Let’s	now	look	at	how	to	incorporate	method-level	security	using	Spring	Security.

Securing	methods
One	 of	 the	 requirements	 of	MyBank	 application	 is	 that	 a	 user	with	ROLE_ADMIN	 role	 can	 view	 the
‘Create	 new	Fixed	Deposit’	 button	 (refer	 figure	 14-3)	 but	 an	 attempt	 to	 save	 details	 of	 the	 new	 fixed
deposit	 will	 result	 in	 a	 security	 exception.	 This	 is	 an	 example	 in	 which	 we	 want	 to	 secure	 the
FixedDepositService’s	saveFixedDeposit	method	such	that	only	a	user	with	ROLE_CUSTOMER	role	can
invoke	it.

We	also	want	to	secure	other	methods	of	the	FixedDepositService	so	that	it	is	not	invoked	by	unauthorized
users.	For	instance,	cust1	user	logged	in	with	ROLE_CUSTOMER	can	invoke	the	FixedDepositService’s
closeFixedDeposit	 method	 to	 close	 an	 existing	 fixed	 deposit	 by	 entering	 the	 following	 URL	 in	 the
browser:

http://localhost:8080/ch14-bankapp-simple-security/fixedDeposit?fdAction=close&fixedDepositId=
<fixed-fixed-id>
The	<fixed-deposit-id>	in	the	above	URL	is	the	fixed	deposit	id	that	you	want	to	remove,	as	highlighted	in
the	following	figure:



Figure	14-4	–	Fixed	deposit	ID	of	a	fixed	deposit	is	displayed	in	the	ID	column

To	add	method-level	security	to	your	application,	you	need	to	do	the	following:

§		configure	method-level	security	for	your	application	by	using	<global-method-security>	element	of
security	schema

§		add	@Secured	annotations	to	the	methods	that	you	want	to	secure	against	unauthorized	access

Let’s	first	look	at	the	<global-method-security>	element.

Configuring	method-level	security	using	<global-method-security>	element

The	following	example	listing	shows	usage	of	<global-method-security>	element:

Example	listing	14-5	–	applicationContext-security.xml
Project	–	ch14-bankapp-simple-security
Source	location	-	src/main/resources/META-INF/spring

<beans:beans	xmlns="http://www.springframework.org/schema/security"
				.....>
				<global-method-security	secured-annotations="enabled"	/>
</beans:beans>
	

The	<global-method-security>	 element	 configures	method-level	 security.	The	<global-method-security>
element	is	applicable	only	to	the	application	context	in	which	it	is	defined.	For	instance,	if	the	<global-
method-security>	element	is	defined	in	the	root	web	application	context	XML	file,	 then	it	 is	applicable
only	 to	 the	 beans	 registered	 with	 the	 root	 WebApplicationContext	 instance.	 In	 ch14-bankapp-simple-
security	 project,	 the	 applicationContext-security.xml	 (shown	 in	 the	 above	 example	 listing)	 and	 the
applicationContext.xml	(that	defines	services	and	DAOs)	files	constitute	the	root	web	application	context
XML	files	(refer	web.xml	file	of	ch14-bankapp-simple-security	project);	 therefore,	 the	<global-method-
security>	element	applies	only	to	the	beans	defined	in	these	application	context	XML	files.

The	 <global-method-security>	 element’s	 secured-annotations	 attribute	 specifies	 whether	 the	 use	 of
Spring’s	@Secured	 annotation	 should	 be	 enabled	 or	 disabled	 for	 the	 beans	 registered	with	 the	 Spring



container.	As	the	value	is	set	to	enabled,	you	can	use	Spring’s	@Secured	annotation	to	specify	the	bean
methods	that	are	secured.

NOTE	If	you	want	to	secure	controller	methods,	then	define	the	<global-method-security>	element	in	the
web	application	context	XML	file	instead	of	the	root	web	application	context	XML	file.

Let’s	now	look	at	how	to	secure	methods	using	Spring’s	@Secured	annotation.

Specifying	security	constraints	on	bean	methods	using	@Secured	annotation

The	 following	 example	 listing	 shows	 usage	 of	 Spring’s	 @Secured	 annotation	 to	 define	 security
constraints	on	methods:

Example	listing	14-6	–	FixedDepositService	interface
Project	–	ch14-bankapp-simple-security
Source	location	-	src/main/java/sample/spring/chapter14/service

package	sample.spring.chapter14.service;
	
import	org.springframework.security.access.annotation.Secured;
.....
public	interface	FixedDepositService	{
				.....
				@Secured("ROLE_CUSTOMER")
				void	saveFixedDeposit(FixedDepositDetails	fixedDepositDetails);
				.....
				@Secured("ROLE_ADMIN")
				void	closeFixedDeposit(int	fixedDepositId);
	
				@Secured("ROLE_CUSTOMER")
				void	editFixedDeposit(FixedDepositDetails	fixedDepositDetails);
}
The	above	example	listing	shows	the	FixedDepositService	interface	that	defines	methods	that	operate	on
fixed	 deposits.	 @Secured("ROLE_CUSTOMER")	 annotation	 on	 the	 saveFixedDeposit	 and
editFixedDeposit	 methods	 specifies	 that	 these	 methods	 can	 only	 be	 invoked	 by	 a	 user	 whose	 role	 is
ROLE_CUSTOMER.	 @Secured("ROLE_ADMIN")	 annotation	 on	 the	 closeFixedDeposit	 method
specifies	that	the	method	can	only	be	invoked	by	a	user	whose	role	is	ROLE_ADMIN.

NOTE	By	default,	method-level	security	is	based	on	Spring	AOP.	If	you	want	to	use	AspectJ	instead	of
Spring	 AOP,	 set	 mode	 attribute	 of	 <global-method-security>	 element	 to	 aspectj.	 Also,	 add	 spring-
security-aspects	module	 to	 your	 project,	 and	 specify	@Secured	 annotations	 on	 the	 class	 instead	 of	 the
interface.

Instead	of	using	@Secured	annotation,	you	can	use	Spring’s	@PreAuthorize	annotation	to	apply	security
constraints	 on	 methods.	 Unlike	 @Secured	 annotation,	 @PreAuthorize	 annotation	 accepts	 security
expressions,	like	hasRole,	hasAnyRole,	and	so	on.	To	enable	use	of	@PreAuthorize	annotation,	set	pre-
post-annotations	attribute	of	<global-method-security>	element	to	enabled.	The	following	example	listing
shows	usage	of	@PreAuthorize	annotation:



Example	listing	14-6	–	@PreAuthorize	annotation
	
import	org.springframework.security.access.prepost.PreAuthorize;
.....
public	interface	SomeService	{
				.....
			@PreAuthorize("hasRole('ROLE_XYZ')")
				void	doSomething(.....);
				.....
}
In	 the	 above	 example	 listing,	 @PreAuthorize	 annotation	 specifies	 that	 the	 doSomething	 method	 is
accessible	only	to	users	with	role	ROLE_XYZ.

Spring	Security	also	supports	security	annotations,	like	@RolesAllowed,	@DenyAll,	@PermitAll,	and	so
on,	 defined	 by	 JSR-250	 –	 Common	 Annotations.	 To	 enable	 use	 of	 JSR-250	 security	 annotations,	 set
jsr250-annotations	 attribute	 of	 <global-method-security>	 to	 enabled.	 The	 following	 example	 listing
shows	usage	of	@RolesAllowed	annotation:

Example	listing	14-7	–	@RolesAllowed	annotation
	
import	javax.annotation.security.RolesAllowed;
.....
public	interface	SomeService	{
				.....
			@RolesAllowed("ROLE_XYZ")
				void	doSomething(.....);
				.....
}
In	 the	 above	 example	 listing,	 @RolesAllowed	 annotation	 specifies	 that	 the	 doSomething	 method	 is
accessible	only	to	users	with	role	ROLE_XYZ.

NOTE	We	saw	earlier	in	this	book	that	JSR	250	annotations,	like	@PreDestroy,	@PostConstruct,	and	so
on,	are	part	of	Java	SE	6	or	later.	As	security	related	annotations	of	JSR	250	are	not	part	of	Java	SE,	you
need	 to	 add	 jsr250-api	 JAR	 file	 to	 your	 project	 to	 use	 @RolesAllowed,	 @PermitAll,	 and	 so	 on,
annotations.

In	this	section,	we	looked	at	how	to	use	Spring	Security	to	authenticate	users,	secure	web	requests	and
implement	method-level	security.	Let’s	now	look	at	Spring	Security’s	ACL	module	for	securing	domain
object	instances.

IMPORT	chapter	14/ch14-bankapp-db-security	(This	project	represents	the	MyBank	web	application
that	uses	Spring	Security’s	ACL	module	for	securing	FixedDepositDetails	instances.)



14-4	MyBank	web	 application	 -	 securing	 FixedDepositDetails	 instances
using	Spring	Security’s	ACL	module
The	ch14-bankapp-db-security	project	represents	a	variant	of	MyBank	web	application	that	uses	Spring
Security’s	ACL	module	to	secure	FixedDepositDetails	instances.

Let’s	look	at	how	to	deploy	and	use	ch14-bankapp-db-security	project.

Deploying	and	using	ch14-bankapp-db-security	project
The	 ch14-bankapp-db-security	 project	 uses	MySQL	 database	 to	 store	 application	 users,	 fixed	 deposit
details	and	ACL	information.	Before	deploying	the	ch14-bankapp-db-security	project,	create	a	database
named	 securitydb	 in	 MySQL	 and	 execute	 the	 bankapp.sql	 script	 located	 in	 scripts	 folder	 of	 ch14-
bankapp-db-security	project.

The	 execution	 of	 bankapp.sql	 script	 creates	 the	 following	 tables:	 ACL_CLASS,	 ACL_ENTRY,
ACL_OBJECT_IDENTITY,	 ACL_SID,	 FIXED_DEPOSIT_DETAILS,	 AUTHORITIES,	 and	 USERS.
Tables	whose	names	begin	with	ACL_	store	ACL	related	information	(more	on	these	tables	later	in	this
chapter).	FIXED_DEPOSIT_DETAILS	table	contains	fixed	deposit	details.	USERS	and	AUTHORITIES
tables	contain	user	and	role	information,	respectively.	The	bankapp.sql	script	also	inserts	setup	data	into
USERS,	AUTHORITIES,	ACL_CLASS	and	ACL_SID	tables.

Now,	 that	 you	 have	 setup	 the	 database	 for	 ch14-bankapp-db-security	 project,	 deploy	 the	 project	 on
embedded	Tomcat	7	server	by	executing	the	tomcat7:run	goal	from	the	project’s	directory	(refer	appendix
A	for	more	information	on	how	to	deploy	web	projects	on	embedded	Tomcat	7	server).	Once	the	project
is	successfully	deployed,	go	to	http://localhost:8080/ch14-bankapp-db-security	URL.	You	should	see	the
login	page,	as	shown	below:

Figure	14-5	–	Login	page	of	MyBank	web	application

By	 default,	 the	 following	 three	 users	 are	 configured	 for	 the	 MyBank	 web	 application:	 cust1
(ROLE_CUSTOMER	role),	cust2	(ROLE_CUSTOMER	role),	 and	admin	(ROLE_ADMIN	 role).	When
you	login	with	username	cust1	and	password	as	cust1,	you’ll	see	the	fixed	deposits	associated	with	cust1
customer,	as	shown	in	the	following	figure:



Figure	14-6	–	List	of	fixed	deposits	associated	with	customer	cust1

As	no	fixed	deposits	are	currently	associated	with	cust1,	 the	above	figure	shows	an	empty	list	of	fixed
deposits.	Clicking	the	‘Create	new	Fixed	Deposit’	button	opens	the	form	for	creating	a	new	fixed	deposit.
If	you	create	a	new	fixed	deposit,	it’ll	appear	in	the	list	of	fixed	deposits,	as	shown	here:

Figure	14-7	–	A	customer	can	edit	fixed	deposits	or	make	them	accessible	to	the	admin	user.

In	the	above	figure,	the	‘Edit’	option	allows	the	customer	to	edit	fixed	deposit	details,	and	the	‘Provide
access	to	admin’	option	makes	 the	fixed	deposit	accessible	 to	 the	admin	user.	The	admin	user	can	only
view	fixed	deposits	that	are	made	accessible	by	customers.	Click	the	‘Provide	access	to	admin’	hyperlink
to	make	the	fixed	deposit	accessible	to	the	admin	user.

Now,	logout	from	the	MyBank	web	application,	and	login	using	admin	username	and	admin	as	password.
The	admin	user	can	view	all	the	fixed	deposits	that	were	made	accessible	by	customers,	as	shown	here:

Figure	14-8	–	The	admin	user	can	close	a	fixed	deposit	by	selecting	the	‘Close’	option

The	 above	 figure	 shows	 that	 the	 admin	 user	 can	 choose	 the	 ‘Close’	 option	 to	 close	 the	 fixed	 deposit.
Closing	a	fixed	deposit	deletes	the	fixed	deposit	from	the	FIXED_DEPOSIT_DETAILS	table.



To	 summarize,	 you	 can	 login	 using	 cust1/cust1,	 cust2/cust2	 and	 admin/admin	 credentials	 to	 see	 the
following	features	of	the	MyBank	web	application:

§		only	cust1	(ROLE_CUSTOMER	role)	and	cust2	(ROLE_CUSTOMER	role)	users	can	create	fixed
deposits

§	 	cust1	and	cust2	 can	only	 edit	 fixed	deposits	 that	 they	own.	For	 instance,	 cust1	 can’t	 edit	 a	 fixed
deposit	created	by	cust2.

§	 	cust1	and	cust2	can	only	make	 the	fixed	deposits	 that	 they	own	accessible	 to	 the	admin	user.	For
instance,	cust1	can’t	make	a	fixed	deposit	created	by	cust2	accessible	to	the	admin	user.

§		admin	user	(ROLE_ADMIN	role)	can	only	view	fixed	deposits	that	are	made	accessible	by	cust1
and	cust2	users

§		only	the	admin	user	can	close	fixed	deposits

Before	 delving	 into	 the	 implementation	 details	 of	MyBank	web	 application,	 let’s	 look	 at	 the	 standard
database	tables	required	by	Spring	Security	to	store	ACL	and	user	information.

Database	tables	to	store	ACL	and	user	information
Spring	Security’s	ACL	module	provides	domain	object	instance	security.	MyBank	web	application	uses
Spring	 Security’s	 ACL	 module	 to	 secure	 instances	 of	 FixedDepositDetails.	 Spring	 Security	 tables
(ACL_CLASS,	ACL_ENTRY,	ACL_OBJECT_IDENTITY	and	ACL_SID)	contain	permissions	that	apply
to	fixed	deposits	stored	in	the	FIXED_DEPOSIT_DETAILS	table.	When	a	FixedDepositDetails	 instance
is	 accessed,	 Spring	 Security’s	 ACL	 module	 verifies	 that	 the	 authenticated	 user	 has	 the	 necessary
permissions	to	operate	on	the	FixedDepositDetails	instance.

Let’s	look	at	each	of	the	Spring	Security	tables	that	are	used	to	store	ACL	information.

ACL_CLASS	table

ACL_CLASS	 table	 contains	 the	 fully-qualified	 name	 of	 domain	 classes	 whose	 instances	 we	 want	 to
secure	in	our	application.	In	case	of	MyBank	web	application,	the	ACL_CLASS	table	contains	the	fully-
qualified	name	of	the	FixedDepositDetails	class,	as	shown	here:

	
Figure	14-9	ACL_CLASS	table
	
Table	column	description

id	–	contains	the	primary	key

class	–	fully-qualified	name	of	the	domain	class	whose	instances	we	want	to	secure

ACL_SID	table

ACL_SID	table	(SID	means	‘security	identity’)	contains	the	principals	(that	is,	usernames)	or	authorities



(that	is,	roles)	in	the	system.	In	case	of	MyBank	web	application,	ACL_SID	table	contains	admin,	cust1
and	cust2	usernames,	as	shown	here:

	
Table	column	description

id	–	contains	the	primary	key

principal	–	specifies	whether	the	sid	column	stores	role	or	username.	The	value	true	specifies	that	the	sid
column	stores	username.	The	value	false	specifies	that	the	sid	column	stores	role.

sid	–	contains	username	or	role

ACL_OBJECT_IDENTITY	table

ACL_OBJECT_IDENTITY	table	contains	identities	of	domain	objects	that	we	want	to	secure.	In	case	of
MyBank	 web	 application,	 the	 ACL_OBJECT_IDENTITY	 table	 contains	 identities	 of	 fixed	 deposits
stored	in	FIXED_DEPOSIT_DETAILS	table,	as	shown	here:

	
Figure	14-11	ACL_OBJECT_IDENTITY	table
	

In	 the	 above	 figure,	 the	 object_id_identity	 column	 contains	 identities	 of	 fixed	 deposits	 stored	 in	 the
FIXED_DEPOSIT_DETAILS	table.

Table	column	description

id	–	contains	the	primary	key

object_id_class	–	refers	to	the	domain	class	defined	in	the	ACL_CLASS	table

object_id_identity	–	refers	to	the	domain	object	instance	in	the	FIXED_DEPOSIT_DETAILS	table

parent_object	 –	 if	 a	 parent	 object	 exists	 for	 the	 domain	 object	 referenced	 by	 the	 object_id_identity
column,	this	column	refers	to	the	identity	of	the	parent	object

owner_sid	–	refers	to	the	user	or	role	that	owns	the	domain	object	instance

entries_inheriting	–	flag	that	indicates	whether	the	object	inherits	ACL	entries	from	any	parent	ACL	entry
or	not



ACL_ENTRY	table

ACL_ENTRY	 table	 contains	 permissions	 (read,	write,	 create,	 and	 so	on)	 assigned	 to	 users	 on	domain
objects.	 In	 case	of	MyBank	web	application,	 the	ACL_ENTRY	table	contains	 permissions	 assigned	 to
users	on	fixed	deposits	stored	in	FIXED_DEPOSIT_DETAILS	table,	as	shown	here:

	
Figure	14-12	ACL_ENTRY	table
	

In	the	above	figure,	the	acl_object_identity,	mask	and	sid	columns	determine	the	permissions	assigned	to
a	user	(or	role)	on	a	domain	object	instance.	You	should	note	that	an	entry	in	the	ACL_ENTRY	table	is
commonly	referred	to	as	ACE	(Access	Control	Entry).

Table	column	description

id	–	contains	the	primary	key

acl_object_identity	 –	 refers	 to	 the	 id	 column	 of	 the	 ACL_OBJECT_IDENTITY	 table,	 which	 in	 turn
identifies	the	domain	object	instance

ace_order	–	specifies	the	ordering	of	the	access	control	entries

sid	–	refers	to	the	id	column	of	ACL_SID	table,	which	in	turn	identifies	the	user	(or	role)

mask	–	specifies	the	permissions	(read,	write,	create,	and	so	on)	assigned	to	the	user	(or	role).	1	means
read,	2	means	write,	8	means	delete	and	16	means	administration	permission.

granting	 –	 flag	 that	 indicates	 whether	 the	 entry	 in	 the	 mask	 column	 identifies	 as	 granting	 access	 or
denying	access.	For	instance,	if	the	value	in	the	mask	column	is	1	and	granting	column	is	true,	 it	means
that	the	corresponding	SID	has	read	access.	But,	if	the	value	in	the	mask	column	is	1	and	granting	column
is	false,	it	means	that	the	corresponding	SID	doesn’t	have	read	access.

audit_success	–	flag	that	indicates	whether	to	audit	successful	permissions	or	not.	Later	in	this	chapter,
we’ll	see	that	Spring	Security’s	ConsoleAuditLogger	can	be	used	to	log	successful	permissions.

audit_failure	-	flag	that	indicates	whether	to	audit	failed	permissions	or	not.	Later	in	this	chapter,	we’ll
see	that	Spring	Security’s	ConsoleAuditLogger	can	be	used	to	log	failed	permissions.

As	explained	so	far,	the	diagram	14-13	depicts	relationship	between	ACL	tables.	The	arrows	in	the	figure
represent	foreign	key	references	from	a	table.	For	instance,	the	ACL_OBJECT_IDENTITY	table	contains



foreign	keys	that	refer	to	ACL_CLASS,	ACL_SID	and	FIXED_DEPOSIT_DETAILS	tables.

Figure	14-13	 ACL	 tables	 and	 their	 relationships.	 The	 arrows	 represent	 foreign	 key	 references	 from	 a
table.

Now,	that	we	have	seen	the	ACL	tables	required	to	store	ACL	information,	let’s	now	look	at	the	Spring
Security	tables	that	store	users	and	their	roles	information.

USERS	table

USERS	table	stores	credentials	of	users,	as	shown	here:

	
Figure	14-14	USERS	table
	
Table	column	description

username	–	username	of	the	user

password	–	password	of	the	user

enabled	–	flag	that	indicates	whether	the	user	is	enabled	or	disabled

AUTHORITIES	table

AUTHORITIES	table	contains	the	role	assigned	to	each	user	defined	in	the	USERS	table



Table	column	description

username	–	username	of	the	user

authority	–	role	assigned	to	the	user

	

Figure	14-15	AUTHORITIES	table

Let’s	now	look	at	how	the	users	are	authenticated	in	MyBank	web	application.

User	authentication
MyBank	 web	 application	 explicitly	 configures	 the	 UserDetailsService	 to	 load	 user	 details	 from	 the
USERS	and	AUTHORITIES	database	tables,	as	shown	in	the	following	example	listing:

Example	listing	14-8	–	applicationContext-security.xml
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/resources/META-INF/spring

<authentication-manager>
				<authentication-provider	user-service-ref="userDetailsService"	/>
</authentication-manager>
	
<beans:bean	id="userDetailsService"
				class="org.springframework.security.core.userdetails.jdbc.JdbcDaoImpl">
				<beans:property	name="dataSource"	ref="dataSource"	/>
</beans:bean>
In	the	above	example	listing,	the	user-service-ref	attribute	of	<authentication-provider>	element	refers	to
an	 implementation	 of	 UserDetailsService	 that	 is	 responsible	 for	 loading	 user	 (and	 their	 authorities)
details	 based	on	 the	 supplied	username.	 JdbcDaoImpl	 is	 an	 implementation	of	UserDetailsService	 that
loads	user	(and	their	authorities)	details	from	the	data	source	(specified	by	the	dataSource	property)	using
JDBC	queries.	Refer	to	the	applicationContext.xml	file	of	ch14-bankapp-db-security	project	to	view	the
dataSource	bean	definition.	By	default,	JdbcDaoImpl	loads	user	details	from	the	USERS	(refer	figure	14-
14)	table	and	authorities	information	from	the	AUTHORITIES	(refer	figure	14-15)	table.	If	you	already
have	custom	database	tables	that	contain	user	and	authorities	details,	then	set	the	usersByUsernameQuery
and	authoritiesByUsernameQuery	properties	of	JdbcDaoImpl	to	retrieve	user	details	and	their	authorities
from	these	custom	tables.

The	usersByUsernameQuery	property	specifies	the	SQL	query	to	retrieve	user	details	based	on	the	given
username.	 If	 user	 details	 are	 stored	 in	 a	 table	 named	 MY_USERS	 that	 contains	 USERNAME	 and
PASSWORD	 columns,	 you	 can	 set	 the	 following	 SQL	 query	 as	 the	 value	 of	 usersByUsernameQuery
property	to	retrieve	user	details:



select	USERNAME,	PASSWORD,	‘true’	as	ENABLED	from	MY_USERS	where	USERNAME	=	?
You	 should	 note	 that	 the	 columns	 returned	 by	 the	 SQL	 query	must	 be	USERNAME,	 PASSWORD	 and
ENABLED.	If	a	particular	column	(like,	ENABLED)	doesn’t	exist	 in	your	database	 table,	 then	return	a
default	value	(like,	‘true’)	for	that	column.

The	authoritiesByUsernameQuery	property	 specifies	 the	SQL	query	 to	 retrieve	authorities	based	on	 the
given	username.	If	authority	details	are	stored	in	a	table	named	MY_	AUTHORITIES	that	contains	USER
and	ROLE	columns,	you	can	 set	 the	 following	SQL	query	as	 the	value	of	 authoritiesByUsernameQuery
property	to	retrieve	authorities:

select	USER	AS	USERNAME,	ROLE	AS	AUTHORITY	from	MY_AUTHORITIES	where	USER	=	?
You	should	note	that	the	columns	returned	by	the	SQL	query	must	be	USERNAME	and	AUTHORITY.

If	your	application	stores	encoded	passwords	in	the	database,	you	can	use	the	<password-encoder>	sub-
element	 of	 <authentication-provider>	 element	 to	 specify	 the	 password	 encoder	 (an	 implementation	 of
Spring’s	PasswordEncoder	 interface)	 to	be	used	 to	convert	 the	submitted	passwords	 into	 their	encoded
form.	 BCryptPasswordEncoder	 is	 a	 concrete	 implementation	 of	 PasswordEncoder	 that	 uses	 BCrypt
hashing	 algorithm	 (http://en.wikipedia.org/wiki/Bcrypt).	 The	 DaoAuthenticationProvider	 uses	 the
configured	 password	 encoder	 to	 encode	 the	 submitted	 password	 and	 compare	 it	 with	 the	 password
loaded	by	the	UserDetailsService.

Let’s	now	look	at	the	web	request	security	configuration	in	the	MyBank	web	application.

Web	request	security
The	 following	 example	 listing	 shows	 how	 web	 request	 security	 is	 configured	 for	 the	 MyBank	 web
application:

Example	listing	14-9	–	applicationContext-security.xml	–	web	security	configuration
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/resources/META-INF/spring

<http	use-expressions="true">
				<access-denied-handler	error-page="/access-denied"	/>
				<intercept-url	pattern="/fixedDeposit/*"
								access="hasAnyRole('ROLE_CUSTOMER',	'ROLE_ADMIN')"	/>
				<form-login	login-page="/login"	authentication-failure-handler-ref="authFailureHandler"	/>
				<logout	/>
				....
</http>
	
<beans:bean	id="authFailureHandler"
				class="sample.spring.chapter14.security.MyAuthFailureHandler"	/>
If	 you	 compare	 the	 web	 request	 security	 configuration	 shown	 above	 with	 the	 one	 we	 saw	 in	 ch14-
bankapp-simple-security	 project	 (refer	 example	 listing	 14-2),	 you’ll	 notice	 that	 we	 have	 added	 some
additional	configuration	information.

The	 <access-denied-handler>	 element’s	 error-page	 attribute	 specifies	 the	 error	 page	 (refer	 to

http://en.wikipedia.org/wiki/Bcrypt


scr/main/webapp/WEB-INF/jsp/access-denied.jsp	page)	 to	which	an	authenticated	user	 is	 redirected	 in
case	 the	 user	 attempts	 to	 access	 an	 unauthorized	 web	 page.	 The	 <form-login>	 element’s	 login-page
attribute	 specifies	 the	 URL	 that	 renders	 the	 login	 page.	 The	 value	 /login	 URL	 is	 mapped	 to
LoginController	 (refer	 to	 LoginController	 class	 of	 ch14-bankapp-db-security	 project)	 that	 renders	 the
login	page	(refer	 to	scr/main/webapp/WEB-INF/jsp/login.jsp	page).	The	 authentication-failure-handler-
ref	 attribute	 refers	 to	 an	AuthenticationFailureHandler	 bean	 that	 handles	 authentication	 failures.	As	 the
above	 example	 listing	 shows,	 MyAuthFailureHandler	 (an	 implementation	 of
AuthenticationFailureHandler)	 is	 responsible	 for	 handling	 authentication	 failures	 in	 MyBank	 web
application.	The	following	example	listing	shows	the	implementation	of	MyAuthFailureHandler	class:

Example	listing	14-10	–	MyAuthFailureHandler	class
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/java/sample/spring/chatper14/security

package	sample.spring.chapter14.security;
.....
import	org.springframework.security.core.AuthenticationException;
import	org.springframework.security.web.authentication.AuthenticationFailureHandler;
	
public	class	MyAuthFailureHandler	implements	AuthenticationFailureHandler	{
	
				@Override
				public	void	onAuthenticationFailure(HttpServletRequest	request,
												HttpServletResponse	response,	AuthenticationException	exception)
												throws	IOException,	ServletException	{
								request.setAttribute("exceptionMsg",	exception.getMessage());
								response.sendRedirect(request.getContextPath()	+	"/login?exceptionMsg="	+
												exception.getMessage());
				}
}
AuthenticationFailureHandler	 interface	 defines	 an	 onAuthenticationFailure	 method	 which	 is	 invoked
when	 authentication	 fails.	 The	 onAuthenticationFailure	 method	 accepts	 an	 instance	 of
AuthenticationException	 that	 represents	 an	 authentication	 failure.	 In	 the	 above	 example	 listing,	 the
onAuthenticationFailure	method	redirects	the	user	to	the	login	page	and	passes	the	exception	message	as	a
query	string	parameter.	If	you	enter	wrong	credentials	(or	enter	credentials	of	a	user	who	is	disabled	in
the	system)	on	the	login	page	of	MyBank	web	application,	you’ll	notice	that	the	MyAuthFailureHandler’s
onAuthenticationFailure	method	 is	 invoked.	For	 instance,	 if	you	enter	wrong	credentials,	you’ll	 see	 the
message	‘Bad	credentials’.

Let’s	now	look	at	ACL-specific	configuration	in	MyBank	web	application.

JdbcMutableAclService	configuration
As	 ACL	 permissions	 are	 stored	 in	 database	 tables,	 the	 MyBank	 web	 application	 uses	 Spring’s
JdbcMutableAclService	 to	 perform	 CRUD	 (Create	Read	Update	Delete)	 operations	 on	 ACLs	 in	 the
tables.	The	following	example	listing	shows	the	configuration	of	JdbcMutableAclService:



Example	listing	14-11	–	applicationContext-security.xml	–	JdbcMutableAclService	configuration
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/resources/META-INF/spring

<beans:bean	id="aclService"	class="org.springframework.security.acls.jdbc.JdbcMutableAclService">
				<beans:constructor-arg	ref="dataSource"	/>
				<beans:constructor-arg	ref="lookupStrategy"	/>
				<beans:constructor-arg	ref="aclCache"	/>
</beans:bean>
The	 above	 example	 listing	 shows	 references	 to	 dataSource,	 lookupStrategy	 and	 aclCache	 beans	 are
passed	 to	 the	 JdbcMutableAclService’s	 constructor.	Let’s	 now	 look	 at	 how	dependencies	 (dataSource,
lookupStrategy	and	aclCache)	of	JdbcMutableAclService	are	configured.

The	 dataSource	 bean	 identifies	 the	 javax.sql.DataSource	 that	 holds	 the	 ACL	 tables	 (refer	 to	 the
dataSource	bean	definition	in	the	applicationContext.xml	file	for	more	details).

The	 lookupStrategy	 bean	 represents	 an	 implementation	 of	 Spring’s	 LookupStrategy	 interface	 that	 is
responsible	 for	 looking	 up	ACL	 information.	 The	 following	 example	 listing	 shows	 the	 lookupStrategy
bean	definition:

Example	listing	14-12	–	applicationContext-security.xml	–	LookupStrategy	configuration
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/resources/META-INF/spring

<beans:bean	id="lookupStrategy"
				class="org.springframework.security.acls.jdbc.BasicLookupStrategy">
	
				<beans:constructor-arg	ref="dataSource"	/>
				<beans:constructor-arg	ref="aclCache"	/>
	
				<beans:constructor-arg>
								<beans:bean	class="org.springframework.security.acls.domain.AclAuthorizationStrategyImpl">
												<beans:constructor-arg>
																<beans:bean
																				class="org.springframework.security.core.authority.SimpleGrantedAuthority">
																				<beans:constructor-arg	value="ROLE_ADMIN"	/>
																</beans:bean>
												</beans:constructor-arg>
								</beans:bean>
				</beans:constructor-arg>
	
				<beans:constructor-arg>
								<beans:bean
												class="org.springframework.security.acls.domain.DefaultPermissionGrantingStrategy">
												<beans:constructor-arg>
																<beans:bean	class="org.springframework.security.acls.domain.ConsoleAuditLogger"	/>
												</beans:constructor-arg>



								</beans:bean>
				</beans:constructor-arg>
</beans:bean>
In	 the	 above	 example	 listing,	 Spring’s	 BasicLookupStrategy	 (an	 implementation	 of
LookupStrategy	 interface)	 uses	 JDBC	 queries	 to	 fetch	 ACL	 details	 from	 standard	 ACL	 tables
(ACL_CLASS,	 ACL_ENTRY,	 ACL_SID	 and	 ACL_OBJECT_IDENTITY).	 If	 the	 ACL	 information	 is
stored	 in	 custom	 database	 tables,	 then	 you	 can	 customize	 the	 JDBC	 queries	 by	 setting	 selectClause,
lookupPrimaryKeysWhereClause,	 lookupObjectIdentitiesWhereClause	 and	orderByClause	 properties	 of
BasicLookupStrategy.	 For	 more	 details	 on	 these	 properties,	 please	 refer	 to	 the	 API	 documentation	 of
Spring	Security.

BasicLookupStrategy’s	 constructor	 accepts	 arguments	 of	 type	DataSource	 (represents	 the	 database	 that
contains	 the	 ACL	 tables),	 AclCache	 (represents	 the	 ACL	 caching	 layer),
AclAuthorizationStrategy	 (represents	 the	 strategy	 to	determine	 if	 a	SID	has	 the	permissions	 to	perform
administrative	 actions	 on	 the	 ACL	 entries	 of	 a	 domain	 object	 instance),	 and
PermissionGrantingStrategy	 (strategy	 to	 grant	 or	 deny	 access	 to	 secured	 objects	 depending	 on	 the
permissions	assigned	to	SIDs).

In	 the	 above	 example	 listing,	 the	 AclAuthorizationStrategyImpl	 class	 implements
AclAuthorizationStrategy.	 The	 AclAuthorizationStrategyImpl’s	 constructor	 accepts	 an	 instance	 of
GrantedAuthority	that	specifies	the	role	that	can	perform	administrative	actions	(like,	changing	ownership
of	an	ACL	entry)	on	the	ACL	entries	(represented	by	an	object	of	type	MutableAcl)	of	a	domain	object
instance.	 In	 the	 above	 example	 listing,	 ROLE_ADMIN	 role	 is	 passed	 to	 the
AclAuthorizationStrategyImpl,	 which	 means	 that	 a	 user	 with	 ROLE_ADMIN	 role	 can	 perform
administrative	actions	on	ACL	entries.	Later	in	this	chapter,	we’ll	see	that	the	AclAuthorizationStrategy
secures	the	MutableAcl	instance	from	unauthorized	modification.

In	 the	 above	 example	 listing,	 the	 DefaultPermissionGrantingStrategy	 implements
PermissionGrantingStrategy.	The	DefaultPermissionGrantingStrategy’s	constructor	accepts	an	instance	of
AuditLogger	 that	 logs	 success	 and/or	 failure	 in	 granting	 permissions	 for	 an	 ACL	 entry	 in	 the
ACL_ENTRY	 table.	 In	 the	 above	 example	 listing,	 the	 ConsoleAuditLogger	 (an	 implementation	 of
AuditLogger	 that	writes	on	 the	console)	 logs	successful	permissions	 if	audit_success	column’s	value	 is
set	to	true	(that	is,	1),	and	logs	failed	permissions	if	audit_failure	column’s	value	is	set	to	true	(that	is,	1).
For	instance,	the	following	message	shows	output	from	the	ConsoleAuditLogger	on	successful	permission
to	an	ACL	entry:
GRANTED	due	to	ACE:	AccessControlEntryImpl[id:	1037;	granting:	true;	sid:	PrincipalSid[cust1];	permission:
BasePermission[...............................R=1];	auditSuccess:	true;	auditFailure:	true]

BasicLookupStrategy	 accepts	 an	 instance	 of	 AclCache	 object	 (represented	 by	 the	 aclCache	 bean	 in
example	 listing	 14-12)	 that	 represents	 a	 cache	 for	 ACLs.	 The	 following	 example	 listing	 shows	 the
aclCache	bean	definition	that	is	used	by	BasicLookupStrategy	to	cache	ACLs:

Example	listing	14-13	–	applicationContext-security.xml	–	Cache	configuration
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/resources/META-INF/spring

<beans:bean	 id="aclCache"



class="org.springframework.security.acls.domain.EhCacheBasedAclCache">
				<beans:constructor-arg>
								<beans:bean	class="org.springframework.cache.ehcache.EhCacheFactoryBean">
												<beans:property	name="cacheManager">
																		<beans:bean	class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean"	/>
												</beans:property>
												<beans:property	name="cacheName"	value="aclCache"	/>
								</beans:bean>
				</beans:constructor-arg>
</beans:bean>
EhCacheBasedAclCache	 is	 an	 implementation	 of	AclCache	 that	 uses	EhCache	 (http://ehcache.org/)	 for
caching	 ACLs.	 EhCacheFactoryBean	 is	 Spring	 FactoryBean	 that	 creates	 an	 instance	 of
net.sf.ehcache.EhCache.	 The	 cacheManager	 property	 of	 EhCacheFactoryBean	 specifies	 the
net.sf.ehcache.CacheManager	 instance	 that	 is	 responsible	for	managing	the	cache.	 In	 the	above	example
listing,	 EhCacheManagerFactoryBean	 is	 a	 Spring	 FactoryBean	 that	 creates	 an	 instance	 of
net.sf.ehcache.CacheManager.	The	EhCacheFactoryBean’s	cacheName	property	refers	to	the	cache	region
to	be	created	in	EhCache	for	storing	ACLs.

Now,	that	we	have	configured	JdbcMutableAclService	to	perform	CRUD	operations	on	ACLs,	let’s	look
at	 the	 method-level	 security	 configuration	 that	 uses	 ACLs	 loaded	 by	 JdbcMutableAclService	 for
authorization	purposes.

Method-level	security	configuration
The	following	example	listing	shows	method-level	security	configuration	in	the	MyBank	web	application:

Example	listing	14-14	–	applicationContext-security.xml	–	Method-level	security	configuration
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/resources/META-INF/spring

<global-method-security	pre-post-annotations="enabled">
				<expression-handler	ref="expressionHandler"	/>
</global-method-security>
The	 <global-method-security>	 element’s	 pre-post-annotations	 attribute	 value	 is	 set	 to	 enabled,	 which
enables	 use	 of	 @PreAuthorize	 (explained	 earlier	 in	 this	 chapter),	 @PostAuthorize,	 @PostFilter	 and
@PostAuthorize	annotations.	In	the	above	example	listing,	the	<expression-handler>	element	refers	to	the
expressionHandler	bean	that	configures	a	SecurityExpressionHandler	instance.

A	SecurityExpressionHandler	is	used	by	Spring	Security	to	evaluate	security	expressions,	 like	hasRole,
hasAnyRole,	hasPermission,	and	so	on.	The	following	example	listing	shows	the	expressionHandler	bean
definition	 that	 configures	 a	 DefaultMethodSecurityExpressionHandler	 (a	 SecurityExpressionHandler
implementation)	instance:

Example	listing	14-15	–	applicationContext-security.xml	–	SecurityExpressionHandler	configuration
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/resources/META-INF/spring

<beans:bean	id="expressionHandler"	class="org.springframework.security.access.expression.method.

http://ehcache.org/


																DefaultMethodSecurityExpressionHandler">
				<beans:property	name="permissionEvaluator"	ref="permissionEvaluator"	/>
				<beans:property	name="permissionCacheOptimizer">
								<beans:bean	class="org.springframework.security.acls.AclPermissionCacheOptimizer">
												<beans:constructor-arg	ref="aclService"	/>
								</beans:bean>
				</beans:property>
</beans:bean>
	
<beans:bean	id="permissionEvaluator"
												class="org.springframework.security.acls.AclPermissionEvaluator">
				<beans:constructor-arg	ref="aclService"	/>
</beans:bean>
In	 the	 above	 example	 listing,	 the	 permissionEvaluator	 property	 refers	 to	 an	 instance	 of
AclPermissionEvaluator	 instance	 that	 uses	 ACLs	 to	 evaluate	 security	 expressions.	 The
permissionCacheOptimzer	 property	 refers	 to	 an	 instance	 of	 AclPermissionCacheOptimizer	 that	 loads
ACLs	in	batches	to	optimize	performance.

Let’s	now	look	at	how	domain	object	instance	security	is	achieved	in	the	MyBank	web	application.

Domain	object	instance	security
We	 saw	 earlier	 that	 the	 @PreAuthorize	 annotation	 specifies	 role-based	 security	 constraints	 on	 the
methods.	 If	 a	@PreAuthorize	 annotated	 method	 accepts	 a	 domain	 object	 instance	 as	 an	 argument,	 the
@PreAuthorize	annotation	can	specify	the	ACL	permissions	that	the	authenticated	user	must	have	on	the
domain	object	 instance	 to	 invoke	 the	method.	The	 following	example	 listing	 shows	 the	@PreAuthorize
annotation	that	specifies	ACL	permissions:

Example	 listing	 14-16	 –	 FixedDepositService	 interface	 –	 @PreAuthorize	 annotation	 with	 ACL
permissions
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/java/sample/spring/chatper14/service

package	sample.spring.chapter14.service;
	
import	org.springframework.security.access.prepost.PreAuthorize;
import	sample.spring.chapter14.domain.FixedDepositDetails;
.....
public	interface	FixedDepositService	{
				.....
				@PreAuthorize("hasPermission(#fixedDepositDetails,	write)")
				void	editFixedDeposit(FixedDepositDetails	fixedDepositDetails);
}
In	the	above	example	listing,	the	FixedDepositService’s	editFixedDeposit	method	accepts	an	instance	of
FixedDepositDetails.	 In	 the	 hasPermission	 expression,	 #fixedDepositDetails	 represents	 an	 expression
variable	 that	 refers	 to	 the	 FixedDepositDetails	 instance	 passed	 to	 the	 editFixedDeposit	 method.	 The



hasPermission	 expression	 evaluates	 to	 true	 if	 the	 authenticated	 user	 has	 write	 permission	 on	 the
FixedDepositDetails	 instance	 passed	 to	 the	 editFixedDeposit	 method.	 At	 runtime,	 the	 hasPermission
expression	 is	evaluated	by	 the	configured	AclPermissionEvaluator	 (refer	 example	 listing	14-15).	 If	 the
hasPermission	evaluates	to	true,	the	editFixedDeposit	method	is	invoked.

If	 a	 method	 accepts	 a	 domain	 object	 identifier	 (instead	 of	 the	 actual	 domain	 object	 instance)	 as	 an
argument,	you	can	still	specify	ACL	permissions	that	apply	to	the	domain	object	instance	referred	by	the
identifier.	 The	 following	 example	 listing	 shows	 the	 provideAccessToAdmin	 method	 that	 accepts
fixedDepositId	(which	uniquely	identifies	a	FixedDepositDetails	instance)	as	argument:

Example	listing	14-17	–	FixedDepositService	interface	–	@PreAuthorize	annotation	usage
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/java/sample/spring/chatper14/service

package	sample.spring.chapter14.service;
	
import	org.springframework.security.access.prepost.PreAuthorize;
.....
public	interface	FixedDepositService	{
				.....
				@PreAuthorize("hasPermission(#fixedDepositId,
																	'sample.spring.chapter14.domain.FixedDepositDetails',	write)")
				void	provideAccessToAdmin(int	fixedDepositId);
}
In	the	above	example	listing,	#fixedDepositId	expression	variable	refers	to	the	fixedDepositId	argument
passed	to	the	provideAccessToAdmin	method.	As	 the	fixedDepositId	argument	 identifies	an	 instance	of
FixedDepositDetails	object,	the	fully-qualified	name	of	the	FixedDepositDetails	class	is	specified	as	the
second	 argument	 of	 hasPermission	 expression.	 The	 hasPermission(#fixedDepositId,
‘sample.spring.chapter14.domain.FixedDepositDetails’,	write)	evaluates	to	true	if	 the	authenticated	user
has	 write	 permission	 on	 the	 FixedDepositDetails	 instance	 identified	 by	 the	 fixedDepositId	 argument
passed	to	the	provideAccessToAdmin	method.

It	is	also	possible	to	combine	multiple	security	expressions	to	form	a	more	complex	security	expression,
as	shown	in	the	following	example	listing:

Example	listing	14-18	–	FixedDepositService	interface	–	@PreAuthorize	annotation	usage
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/java/sample/spring/chatper14/service

package	sample.spring.chapter14.service;
	
import	org.springframework.security.access.prepost.PreAuthorize;
.....
public	interface	FixedDepositService	{
				.....
				@PreAuthorize("hasPermission(#fixedDepositId,
											'sample.spring.chapter14.domain.FixedDepositDetails',	read)	or	"



												+	"hasPermission(#fixedDepositId,
											'sample.spring.chapter14.domain.FixedDepositDetails',	admin)")
				FixedDepositDetails	getFixedDeposit(int	fixedDepositId);
				.....
}
In	the	above	example	listing,	the	two	hasPermission	expressions	have	been	combined	using	or	operator	to
form	a	more	sophisticated	security	expression.	The	getFixedDeposit	method	will	be	invoked	only	if	 the
authenticated	user	has	 read	or	 admin	 permission	 on	 the	 FixedDepositDetails	 instance	 identified	 by	 the
fixedDepositId	argument.

If	 a	 method	 returns	 a	 list	 of	 domain	 object	 instances,	 you	 can	 filter	 the	 results	 by	 using	@PostFilter
annotation.	The	following	example	listing	shows	usage	of	@PostFilter	annotation:

Example	listing	14-19	–	FixedDepositService	interface	–	@PostFilter	annotation	usage
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/java/sample/spring/chatper14/service

package	sample.spring.chapter14.service;
	
import	org.springframework.security.access.prepost.PostFilter;
.....
public	interface	FixedDepositService	{
				.....
				@PreAuthorize("hasRole('ROLE_ADMIN')")
				@PostFilter("hasPermission(filterObject,	read)	or	hasPermission(filterObject,	admin)")
				List<FixedDepositDetails>	getAllFixedDeposits();
				.....
}
Like	@PreAuthorize	 annotation,	@PostFilter	 specifies	 a	 security	 expression.	 If	 a	method	 is	 annotated
with	@PostFilter	 annotation,	 Spring	 Security	 iterates	 over	 the	 collection	 returned	 by	 the	 method	 and
removes	 the	 elements	 for	which	 the	 specified	 security	 expression	 returns	 false.	 In	 the	 above	 example
listing,	 Spring	 Security	 iterates	 over	 the	 collection	 of	 FixedDepositDetails	 instances	 returned	 by	 the
getAllFixedDeposits	method	and	removes	the	instances	for	which	the	authenticated	user	doesn’t	have	read
or	admin	permission.	The	 term	 filterObject	 in	 the	 hasPermission	 expression	 of	@PostFilter	 annotation
refers	to	the	current	object	in	the	collection.	Notice	that	the	getAllFixedDeposits	method	is	also	annotated
with	@PreAuthorize	annotation,	which	indicates	that	the	getAllFixedDeposits	method	is	only	invoked	if
the	authenticated	user	has	ROLE_ADMIN	role.

We	saw	earlier	that	a	customer	(ROLE_CUSTOMER	role)	makes	a	fixed	deposit	available	to	the	admin
user	(ROLE_ADMIN	role)	by	clicking	the	‘Provide	access	to	admin’	hyperlink	(refer	figure	14-7).	When
the	customer	clicks	the	‘Provide	access	to	admin’,	application	grants	read,	admin	and	delete	permissions
on	the	fixed	deposit	to	the	admin	user.	We’ll	see	later	in	this	chapter	how	this	is	done	programmatically.
The	 FixedDepositService’s	 getAllFixedDeposits	 method	 is	 invoked	when	 a	 user	 with	 ROLE_ADMIN
role	visits	the	web	page	that	shows	lists	of	fixed	deposits	(refer	figure	14-8).	As	the	admin	user	should
only	be	able	to	see	fixed	deposits	for	which	customers	have	granted	permissions,	the	getAllFixedDeposits
method	 is	 annotated	 with	 @PostFilter	 annotation	 to	 remove	 fixed	 deposits	 on	 which	 the	 admin	 user



doesn’t	have	read	or	admin	permission.

Let’s	now	look	at	how	to	programmatically	manage	ACL	entries.

Managing	ACL	entries	programmatically
You	can	manage	ACL	entries	programmatically	by	using	the	JdbcMutableAclService	that	was	configured
in	the	application	context	XML	file	(refer	example	listing	14-11).

When	 a	 customer	 creates	 a	 new	 fixed	 deposit,	 read	 and	write	 permissions	 on	 the	 newly	 created	 fixed
deposit	 are	 granted	 to	 the	 customer.	When	 a	 customer	 clicks	 the	 ‘Provide	 access	 to	 admin’	 hyperlink
corresponding	to	a	fixed	deposit,	the	MyBank	web	application	grants	read,	admin	and	delete	permissions
on	the	fixed	deposit	to	the	admin	user.

The	following	example	listing	shows	the	FixedDepositServiceImpl’s	provideAccessToAdmin	method	that
is	invoked	when	the	‘Provide	access	to	admin’	hyperlink	is	clicked:

Example	listing	14-20	–	FixedDepositServiceImpl	class	–	adding	ACL	permissions
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/java/sample/spring/chatper14/service

package	sample.spring.chapter14.service;
	
import	org.springframework.security.acls.domain.*;
import	org.springframework.security.acls.model.*;
.....
@Service
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				.....
				@Autowired
				private	MutableAclService	mutableAclService;
	
				@Override
				public	void	provideAccessToAdmin(int	fixedDepositId)	{
								addPermission(fixedDepositId,	new	PrincipalSid("admin"),	BasePermission.READ);
								addPermission(fixedDepositId,	new	PrincipalSid("admin"),	BasePermission.ADMINISTRATION);
								addPermission(fixedDepositId,	new	PrincipalSid("admin"),	BasePermission.DELETE);
				}
	
				private	void	addPermission(long	fixedDepositId,	Sid	recipient,	Permission	permission)	{	.....	}
}
In	the	above	example	listing,	the	provideAccessToAdmin	method	uses	the	addPermission	method	to	grant
read,	 admin	 and	 delete	 permissions	 to	 the	 admin	 user.	 The	 following	 arguments	 are	 passed	 to	 the
addPermission	method:

§	 	 fixedDepositId	–	uniquely	 identifies	 the	FixedDepositDetails	 instance	on	whom	we	want	 to	grant
permissions

§	 	 PrincipalSid	 object	 -	 represents	 the	 SID	 (that	 is,	 the	 user	 or	 role)	 whom	 we	 want	 to	 grant



permissions.	The	PrincipalSid	class	implements	Spring	Security’s	Sid	interface.

§	 	 permission	 to	 grant	 –	 The	 BasePermission	 class	 defines	 constants,	 like	 READ,
ADMINISTRATION,	DELETE,	and	so	on,	representing	standard	permissions	that	we	can	grant	to
PrincipalSid.	The	BasePermission	class	implements	Spring	Security’s	Permission	interface.

The	following	example	listing	shows	the	implementation	of	addPermission	method:

Example	listing	14-21	–	FixedDepositServiceImpl	class	–	adding	ACL	permissions
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/java/sample/spring/chatper14/service

package	sample.spring.chapter14.service;
	
import	org.springframework.security.acls.domain.*;
import	org.springframework.security.acls.model.*;
.....
@Service
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				.....
				@Autowired
				private	MutableAclService	mutableAclService;
				.....
				private	void	addPermission(long	fixedDepositId,	Sid	recipient,	Permission	permission)	{
								MutableAcl	acl;
								ObjectIdentity	oid	=	new	ObjectIdentityImpl(FixedDepositDetails.class,	fixedDepositId);
	
								try	{
												acl	=	(MutableAcl)	mutableAclService.readAclById(oid);
								}	catch	(NotFoundException	nfe)	{
												acl	=	mutableAclService.createAcl(oid);
								}
								acl.insertAce(acl.getEntries().size(),	permission,	recipient,	true);
								mutableAclService.updateAcl(acl);
				}
				.....
}
As	 JdbcMutableAclService	 class	 implements	 MutableAclService	 interface,	 JdbcMutableAclService
instance	is	autowired	into	the	FixedDepositServiceImpl	class.

To	grant	permissions,	the	addPermission	method	follows	these	steps:

1)	 	 	 	declares	an	object	of	 type	MutableAcl.	A	MutableAcl	object	 represents	ACL	entries	of	a	domain
object	instance.	MutableAcl	defines	methods	that	you	can	use	to	modify	ACL	entries.

2)	 	 	 	 creates	 an	 instance	 of	 ObjectIdentityImpl	 by	 passing	 domain	 object	 type	 (which	 is
FixedDepositDetails.class)	and	identity	(which	is	fixedDepositId)	as	arguments	to	the	constructor



3)	 	 	 	 retrieves	 the	 ACL	 entries	 for	 the	 domain	 object	 instance	 by	 calling	 MutableAclService’s
readAclById	 method.	 If	 no	 ACL	 entries	 are	 found,	 the	 readAclById	 method	 throws
NotFoundException.

o	 	 	 If	NotFoundException	 is	 thrown,	MutableAclService’s	createAcl	method	 is	 used	 to	 create	 an
empty	 instance	 of	 MutableAcl	 that	 doesn’t	 contain	 any	 ACL	 entries.	 This	 is	 equivalent	 to
creating	an	entry	in	the	ACL_OBJECT_IDENTITY	table	(refer	figure	14-11).

4)	 	 	 	 adds	ACL	entries	 to	 the	MutableAcl	 instance	using	 insertAce	method.	The	ACL	 entries	 added	 to
MutableAcl	are	eventually	persisted	into	the	ACL_ENTRY	table	(refer	figure	14-12).	The	arguments
passed	 to	 the	 insertAce	 method	 are	 -	 the	 index	 location	 where	 the	 ACL	 entry	 is	 to	 be	 added
(corresponds	 to	 the	ACE_ORDER	column),	 the	permission	 to	be	 added	 (corresponds	 to	 the	MASK
column),	 the	SID	for	whom	the	permission	 is	 to	be	added	(corresponds	 to	 the	SID	column),	and	 the
flag	 indicating	 that	 the	 ACL	 entry	 is	 for	 granting	 or	 denying	 permission	 (corresponds	 to	 the
GRANTING	column).

5)				persists	changes	made	to	the	MutableAcl	instance	using	MutableAclService’s	updateAcl	method.

The	 following	 example	 listing	 shows	 FixedDepositServiceImpl’s	 closeFixedDeposit	 method	 that	 is
invoked	when	the	admin	user	clicks	the	‘Close’	hyperlink	to	close	a	fixed	deposit	(refer	figure	14-8):

Example	listing	14-22	–	FixedDepositServiceImpl	class	–	removing	ACLs
Project	–	ch14-bankapp-db-security
Source	location	-	src/main/java/sample/spring/chatper14/service

package	sample.spring.chapter14.service;
	
import	org.springframework.security.acls.domain.ObjectIdentityImpl;
import	org.springframework.security.acls.model.MutableAclService;
import	org.springframework.security.acls.model.ObjectIdentity;
.....
@Service
public	class	FixedDepositServiceImpl	implements	FixedDepositService	{
				.....
				@Autowired
				private	MutableAclService	mutableAclService;
				.....
				@Override
				public	void	closeFixedDeposit(int	fixedDepositId)	{
								fixedDepositDao.closeFixedDeposit(fixedDepositId);
								ObjectIdentity	oid	=	new	ObjectIdentityImpl(FixedDepositDetails.class,	fixedDepositId);
								mutableAclService.deleteAcl(oid,	false);
				}
				.....
}
In	the	above	example	listing,	MutableAclService’s	deleteAcl	method	is	used	to	delete	ACL	entries	of	the
fixed	 deposit	 identified	 by	 the	 ObjectIdentity	 instance.	 For	 instance,	 if	 the	 fixedDepositId	 is	 101,



deleteAcl	method	deletes	all	ACL	entries	of	fixed	deposit	101	from	ACL_ENTRY	(refer	 figure	14-12)
and	ACL_OBJECT_IDENTITY	(refer	figure	14-11)	tables.

Let’s	now	look	at	how	MutableAcl	instance	is	secured	from	unauthorized	modifications.

MutableAcl	and	security
Spring	Security’s	MutableAcl	 interface	defines	methods	 for	modifying	ACL	entries	 of	 a	 domain	object
instance.	We	saw	that	the	MyBank	web	application	uses	MutableAcl’s	insertAce	method	to	add	an	ACL
entry	 for	 a	 domain	 object	 instance	 (refer	 example	 listing	 14-21).	 The
AclAuthorizationStrategyImpl	instance	that	we	supplied	to	the	BasicLookupStrategy	(refer	example	listing
14-12)	 is	 used	 behind	 the	 scenes	 to	 ensure	 that	 the	 authenticated	 user	 has	 appropriate	 permissions	 to
modify	ACL	entries.

An	authenticated	user	can	modify	ACL	entries	of	a	domain	object	instance	if	at	least	one	of	the	following
conditions	is	true:

§		if	the	authenticated	user	owns	the	domain	object	instance,	the	user	can	modify	the	ACL	entries	of	that
domain	object	instance

§	 	 if	 the	 authenticated	 user	 holds	 the	 authority	 that	 was	 passed	 to	 AclAuthorizationStrategyImpl’s
constructor.	 In	 example	 listing	 14-12,	 the	 ROLE_ADMIN	 role	 was	 passed	 to
AclAuthorizationStrategyImpl’s	 constructor;	 therefore,	 a	user	with	ROLE_ADMIN	 role	 can	make
changes	to	ACL	entries	of	any	domain	object	instance.

§	 	 if	 the	 authenticated	 user	 has	 BasePermission’s	 ADMINISTRATION	 permission	 on	 the	 domain
object	instance.



14-5	Summary
In	 this	chapter,	we	 looked	at	how	 to	use	Spring	Security	 framework	 to	 secure	Spring	applications.	We
looked	 at	 how	 to	 incorporate	web	 request	 security,	method-level	 security,	 and	 domain	 object	 instance
security.



Appendix	 A	 –	 Importing	 and	 deploying	 sample	 projects	 in
Eclipse	IDE	(or	IntelliJ	IDEA)
In	this	appendix,	we’ll	look	at	how	to	setup	the	development	environment,	import	a	sample	project	into
Eclipse	IDE	(or	IntelliJ	IDEA),	and	run	it	as	a	standalone	application	(if	the	sample	project	represents	a
standalone	 Java	 application)	 or	 deploy	 it	 on	Tomcat	 7	 server	 (if	 the	 sample	 project	 represents	 a	web
application).



A-1	Setting	up	the	development	environment
Before	setting	up	the	development	environment,	you	need	to	do	the	following:

·								Download	and	install	Eclipse	IDE	(or	IntelliJ	IDEA)	–	You	can	download	the	Eclipse	IDE	for
Java	EE	Developers	from	http://www.eclipse.org/downloads.	To	install	Eclipse	IDE,	all	you	need	to
do	is	to	unzip	the	downloaded	ZIP	file	into	a	directory.

·	 	 	 	 	 	 	 	 Download	 and	 install	 Tomcat	 7	 server	 –	 You	 can	 download	 the	 Tomcat	 7	 server	 from
http://tomcat.apache.org/download-70.cgi.	It	is	recommended	that	you	download	the	Tomcat	7	bundled
as	ZIP	file,	and	unzip	the	bundle	into	your	local	file	system.

·	 	 	 	 	 	 	 	 Download	 and	 install	 Maven	 3	 build	 tool	 –	 You	 can	 download	 Maven	 3	 from
http://maven.apache.org/download.cgi.	 To	 install	 Maven,	 all	 you	 need	 to	 do	 is	 to	 unzip	 the
downloaded	 ZIP	 file	 into	 a	 directory.	 Maven	 is	 used	 for	 converting	 the	 sample	 web	 projects	 that
accompany	this	book	into	Eclipse	IDE	or	IntelliJ	IDEA	projects.

Let’s	look	at	how	to	import	a	sample	project	into	Eclipse	IDE.

http://www.eclipse.org/downloads
http://tomcat.apache.org/download-70.cgi
http://maven.apache.org/download.cgi


A-2	Importing	a	sample	project	into	Eclipse	IDE	(or	IntelliJ	IDEA)
It	 is	recommended	that	you	download	the	sample	projects	 that	accompany	this	book	from	the	following
Google	code	project:

https://code.google.com/p/getting-started-with-spring-framework-2edition/

The	rest	of	this	section	assumes	that	you	have	created	a	spring-samples	directory	in	your	local	file	system
that	contains	all	the	sample	projects	that	accompany	this	book.

To	successfully	import	a	sample	project,	you	need	to	do	the	following:

§		Convert	the	project	into	an	Eclipse	IDE	or	IntelliJ	IDEA	project
§	 	 Configure	 an	 M2_REPO	 classpath	 variable	 in	 the	 Eclipse	 IDE	 (or	 IntelliJ	 IDEA).	 M2_REPO

variable	 points	 to	 the	 local	maven	 repository	 that	 contains	 the	 JAR	 files	 on	 which	 the	 project
depends.

Let’s	now	look	at	the	above	mentioned	steps	in	detail.

Importing	a	sample	project
Each	 sample	 project	 contains	 a	 pom.xml	 file	 that	 contains	 configuration	 of	 Eclipse,	 IntelliJ	 IDEA	 and
Tomcat	maven	plugins.	These	plugins	are	used	by	maven	for	converting	a	sample	project	into	Eclipse	IDE
or	IntelliJ	 IDEA	project,	and	for	deploying	 the	project	on	an	embedded	Tomcat	7	 instance.	You	should
note	 that	 the	 Tomcat	Maven	 plugin	 (http://tomcat.apache.org/maven-plugin.html)	 is	 configured	 only	 for
sample	 projects	 that	 represent	web	 applications.	 The	 pom.xml	 file	 also	 specifies	 the	 JAR	 files	 (like
spring-core,	spring-beans,	and	so	on)	on	which	the	project	depends.

To	create	Eclipse	IDE	or	IntelliJ	IDEA	specific	configuration	files	for	the	sample	project,	follow	these
steps:

§	 	 Open	 the	 command	 prompt	 and	 set	 JAVA_HOME	 environment	 variable	 to	 point	 to	 Java	 SDK
installation	directory:

C:\>	set	JAVA_HOME=C:\Program	Files\Java\jdk1.7.0_25

§		Go	to	the	directory	containing	the	sample	project:

C:\>	cd	spring-samples
C:\spring-samples>	cd	ch01-bankapp-xml
C:\spring-samples\ch01-bankapp-xml>

§		Add	path	of	the	bin	directory	of	your	maven	installation	to	the	PATH	environment	variable:

C:\spring-samples\ch01-bankapp-xml>	set	path=%path%;	C:\apache-maven-3.0.4\bin
§		If	you	want	to	import	the	sample	project	into	Eclipse	IDE,	execute	the	eclipse:eclipse	goal	of	Maven

Eclipse	Plugin	(http://maven.apache.org/plugins/maven-eclipse-plugin/):

C:\spring-samples\ch01-bankapp-xml>mvn	eclipse:eclipse

Executing	 the	 eclipse:eclipse	 goal	 downloads	 dependencies	 of	 the	 sample	 project	 and	 creates

https://code.google.com/p/getting-started-with-spring-framework-2edition/
http://tomcat.apache.org/maven-plugin.html
http://maven.apache.org/plugins/maven-eclipse-plugin/


configuration	files	(like	.classpath	and	.project)	for	Eclipse	IDE.

OR

§	 	 If	you	want	 to	 import	 the	sample	project	 into	IntelliJ	 IDEA,	execute	 the	 idea:idea	goal	of	Maven
IDEA	Plugin	(http://maven.apache.org/plugins/maven-idea-plugin/):

C:\spring-web-mvc-samples\ch01-xml-config>mvn	idea:idea

Executing	 the	 idea:idea	 goal	 downloads	 dependencies	 of	 the	 sample	 project	 and	 creates
configuration	files	(like	.ipr,	.iml	and	.iws)	for	IntelliJ	IDEA.

NOTE	A	pom.xml	file	is	also	provided	at	the	root	of	the	source	code	distribution,	which	builds	all	the
projects.	You	can	go	to	spring-samples	directory	and	execute	the	mvn	eclipse:eclipse	(or	mvn	idea:idea)
command	to	convert	all	the	projects	into	Eclipse	IDE	(or	IntelliJ	IDEA)	projects.

Now,	import	the	sample	project	into	Eclipse	IDE	by	following	these	steps:

§		Go	to	File	à	Import	option.
§		Select	the	General	à	Existing	Projects	into	Workspace	option	from	the	dialog	box,	and	click	Next.
§		Select	the	sample	project	(ex.	ch01-bankapp-xml)	directory	from	the	file	system,	and	click	Finish.

Configuring	the	M2_REPO	classpath	variable	in	the	Eclipse	IDE
When	you	execute	the	eclipse:eclipse	or	idea:idea	goal,	dependencies	of	the	project	are	downloaded	into
the	<home-directory>/.m2/repository	directory.	Here,	<home-directory>	is	the	home	directory	of	the	user.
On	Windows,	this	refers	to	C:\Documents	and	Settings\myusername\.m2\repository	directory.	By	default,
.classpath	file	created	by	execution	of	eclipse:eclipse	goal	refers	to	the	JAR	dependencies	of	the	project
using	M2_REPO	classpath	variable.	For	 this	reason,	you	need	to	configure	a	new	M2_REPO	classpath
variable	in	Eclipse	IDE	that	refers	to	<home-directory>/.m2/repository	directory.

To	configure	a	new	M2_REPO	variable,	follow	these	steps:

§		Go	to	Windows	à	Preferences	option.	This	will	show	the	Preferences	dialog	box.
§		Select	the	Java	à	Build	Path	à	Classpath	Variables	option	in	the	dialog	box	to	view	the	configured

classpath	variables.
§		Now,	click	New	button	to	configure	a	new	M2_REPO	classpath	variable.	It	is	important	to	note	that

you	set	the	M2_REPO	classpath	variable	to	<home-directory>/.m2/repository	directory.
We	 have	 now	 successfully	 imported	 the	 sample	 project	 into	 the	 Eclipse	 IDE	 and	 set	 the	 M2_REPO
classpath	 variable.	 If	 the	 project	 represents	 a	 standalone	 application,	 you	 can	 run	 the	 application	 by
following	these	steps:

§		In	Eclipse	IDE’s	Project	Explorer	tab,	right-click	on	the	Java	class	that	contains	the	main	method	of
the	application.	You’ll	now	see	the	list	of	actions	that	can	be	performed	on	the	selected	Java	class.

§		Select	Run	As	à	Java	Application	option.	This	will	execute	the	main	method	of	the	Java	class.
Let’s	now	look	at	how	Eclipse	IDE	is	configured	to	work	with	Tomcat	7	server.

http://maven.apache.org/plugins/maven-idea-plugin/


A-3	Configuring	Eclipse	IDE	with	Tomcat	7	server
You	need	to	open	Eclipse	IDE’s	Servers	view	to	configure	Eclipse	IDE	with	Tomat	7	server.	To	open	the
Servers	 view,	 select	 Window	 à	 Show	 View	 à	 Servers	 option	 from	 the	 Eclipse	 IDE’s	 menu	 bar.	 To
configure	a	server	with	Eclipse	IDE,	first	go	to	the	Servers	view,	right-click	in	the	Servers	views,	and
select	New	à	Server	option.	You’ll	now	see	a	New	Server	wizard	which	allows	you	to	configure	a	server
with	Eclipse	IDE	in	a	step-by-step	fashion.	The	first	step	is	‘Define	a	New	Server’,	wherein	you	need	to
choose	 the	 type	 and	 version	 of	 the	 server	 with	 which	 you	 want	 to	 configure	 your	 Eclipse	 IDE.	 The
following	figure	shows	the	‘Define	a	New	Server’	step:

	
Figure	A-1	Select	the	Tomcat	server	version	that	you	want	to	use	with	Eclipse	IDE

Select	Apache	à	Tomcat	v7.0	Server	as	 the	server,	and	set	‘Tomcat	v7.0’	as	 the	server	name.	Click	the
Next	button	to	go	to	 the	next	step	of	configuring	Tomcat	7	server	with	Eclipse	IDE.	The	next	step	is	 to
specify	installation	directory	of	Tomcat	7	server,	as	shown	in	figure	A-2.



	
Figure	A-2	Specify	Tomcat	server	installation	directory	and	set	the	Java	SDK	to	be	used	by	the	server.

To	 set	 the	 Tomcat	 installation	 directory,	 click	 the	 Browse	 button	 (refer	 figure	 A-2)	 and	 select	 the
directory	in	which	you	unzipped	the	Tomcat	ZIP	file.	Also,	click	the	Installed	JREs	button	and	configure
the	 Java	 SDK	 to	 be	 used	 by	 Eclipse	 IDE	 for	 running	 the	 Tomcat	 server.	 Click	 the	 Finish	 button	 to
complete	 configuration	 of	 Tomcat	 7	 server	 with	 Eclipse	 IDE.	 You’ll	 now	 be	 able	 to	 see	 the	 newly
configured	Tomcat	7	server	in	the	Servers	view,	as	shown	in	the	following	figure:

	
Figure	A-3	The	Servers	view	shows	the	newly	configured	Tomcat	7	server

Now,	that	we	have	configured	Tomcat	7	server,	let’s	look	at	how	to	deploy	a	sample	web	project	to	the
configured	Tomcat	7	server.



A-4	Deploying	a	web	project	on	Tomcat	7	server
To	deploy	a	web	project	(ex.	ch10-helloworld)	on	Tomcat	7	server,	follow	these	steps:

§		Right-click	on	the	sample	web	project	in	Eclipse	IDE’s	Project	Explorer	tab.	You’ll	now	see	the	list
of	actions	that	can	be	performed	on	the	selected	web	project.

§	 	 If	 you	want	 to	 simply	deploy	 the	web	project,	 select	Run	As	à	Run	on	Server	 option.	 This	will
deploy	the	web	project	on	the	Tomcat	7	server	that	we	configured	in	section	A-3.
OR

§		If	you	want	to	deploy	and	debug	the	web	project,	then	select	Debug	As	à	Debug	on	Server	option.
This	will	deploy	the	web	project	on	the	Tomcat	7	that	we	configured	in	section	A-3,	and	allow	you
to	debug	the	web	project	by	setting	breakpoints	in	the	Eclipse	IDE.

If	Tomcat	7	server	is	configured	correctly	with	Eclipse	IDE,	you’ll	notice	that	Tomcat	7	server	is	started
and	 the	 web	 project	 is	 deployed	 on	 it.	 If	 you	 now	 open	 a	 web	 browser	 and	 go	 to
http://localhost:8080/<sample-project-folder-name>,	you’ll	see	the	home	page	of	the	web	project.	Here,
<sample-project-folder-name>	refers	to	the	name	of	the	folder	of	the	sample	project.

Running	the	Tomcat	7	server	in	embedded	mode
A	simpler	way	to	deploy	and	run	a	sample	web	project	is	to	use	an	embedded	Tomcat	7	server.	In	all	the
sample	web	projects,	Maven	Tomcat	plugin	(http://tomcat.apache.org/maven-plugin-2.0/)	is	configured	in
the	pom.xml	file.	If	you	execute	tomcat7:run	goal	of	Maven	Tomcat	plugin	by	going	 to	sample	project’s
directory,	 the	 plugin	 takes	 care	 of	 downloading	 and	 starting	 Tomcat	 7	 in	 embedded	 mode	 and
automatically	deploying	the	sample	web	project	on	the	embedded	Tomcat	7	instance.	To	stop	the	server,
all	you	need	to	do	is	to	press	Ctrl-C.

http://tomcat.apache.org/maven-plugin-2.0/

	Preface
	Chapter 1 – Introduction to Spring Framework
	Chapter 2 – Spring Framework basics
	Chapter 3 - Configuring beans
	Chapter 4 - Dependency injection
	Chapter 5 - Customizing beans and bean definitions
	Chapter 6- Annotation-driven development with Spring
	Chapter 7 - Database interaction using Spring
	Chapter 8 - Messaging, emailing, asynchronous method execution, and caching using Spring
	Chapter 9 - Aspect-oriented programming
	Chapter 10 – Spring Web MVC basics
	Chapter 11 – Validation and data binding in Spring Web MVC
	Chapter 12 –Developing RESTful web services using Spring Web MVC
	Chapter 13 – More Spring Web MVC – internationalization, file upload and asynchronous request processing
	Chapter 14 – Securing applications using Spring Security
	Appendix A – Importing and deploying sample projects in Eclipse IDE (or IntelliJ IDEA)

