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User Manual - Overview
● The User Manual is what explains to the user (i.e. ME) how to 

use your software.

● The user manual shall be submitted as a .pdf.
– Other file formats will not be accepted or read.

● The user manual shall be as detailed as possible and will be 
as long as possible.  
– There is no minimum / maximum number of pages, but if your user 

manual is too sparse, and does help me to run your software, I will 
deduct from your grade.



  

User Manual - Content
● The user manual should include very detailed explanations of the 

following:
– How to install and run your software.
– How to use the software once it is running.

● What are the exact steps to use all features of your software?
● If I have to spend more than a minute figuring out what to do, then your instructions 

are not good enough and points will be deducted.

● Document any bugs that still exist.
– If there are still issues with your software, they need to be documented.
– If you fail to mention any bugs and I find them, it will have a more significant 

impact on your grade than if you document them yourself.
– Of course you should not have any bugs!.



  

User Manual - Other Comments
● Never make assumptions about the level of knowledge of your 

user.
– Unless your software is for a very specific subset of the population, 

never assume any user will know how to use your software.

– This includes myself.  When I grade your programs, I will be playing 
the role of your average user.  I will click buttons and run commands 
in any order unless specified otherwise in your User Manual.

– Again, the Manual must be easy to understand and the instructions 
very clear.  I should not have to guess as to how I should operate 
your software.
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What are Javadoc Comments?
● Java has a third type of comment called javadoc comments.

● These comments start and end with /**  */ and can appear on one line 
or across multiple lines.
– NOTE: If you do not open with the double asterisk **, your comment will not be 

considered a Javadoc type comment.

● Javadoc comments use basic html and special annotations to 
document the source code.

● Once documented, your javadoc comments can be exported to a set of 
HTML pages that look just like the Java API.



  

What do you document?
● A javadoc comment is written in HTML and must come before a class, 

interface, datafield, constructor, or method declaration.

● All javadoc comments have two parts:
– A description of the item you are documenting.
– One or more block tags (annotations) describing specific features of the item your 

are documenting.

● Javadoc comments can contain any valid HTML.
– i.e. large paragraphs should be denoted using the <p> tag.

● The following slide gives and example of how a method can be documented.



  

Example Javadoc Comment
/**
 * Returns an Image object that can then be painted on the screen. The url   
 * argument must specify an absolute {@link URL}. The name
 * argument is a specifier that is relative to the url argument. 
 * 
 * This method always returns immediately, whether or not the image exists. When 
 * this applet attempts to draw the image on the screen, the data will be 
 * loaded. The graphics primitives that draw the image 
 * will incrementally paint on the screen. 
 *
 * @param  url  an absolute URL giving the base location of the image
 * @param  name the location of the image, relative to the url argument
 * @return      the image at the specified URL
 * @see         Image
 */
 public Image getImage(URL url, String name) {
        try {
            return getImage(new URL(url, name));
        } catch (MalformedURLException e) {
            return null;
        }
 }



  

Javadoc Comments - Item Description
● You should use a concise, clearly defined description for each item you are 

documenting.

● Use simple, clear English with correct spelling, grammar, and punctuation.

● The first sentence is the most important, and should succinctly summarize the item 
you are documenting.

● Use the <code> html tag for all Java keywords, names, and code samples.

● Omit parenthesis when referring to a method that has no parameters or a method 
this is overloaded.
– Example: The <code>add</code> method inserts items into the vector.



  

Javadoc Comments - Descriptions
● Method descriptions should begin with a verb since 

methods define a certain behavior or operation.
– Example:

● Determine whether this container is empty or not.

is better than
● This method is used to determine whether this 
container is empty or not.

● Avoid abbreviations if you can (this even includes 
common abbreviations such as a.k.a., etc.)



  

Javadoc Comments - Tags
● Javadoc tags identify important meta information 

about the code.
– Example the @author tag easily identifies the author of 

the particular code.

● Each tag has a specific format.



  

Javadoc Comments - @author Tag
● Form: @author name

● Used Where: Interface and Class comments.

● Used For: 
– lists the names of all authors of the code
– use the full name of the author or "unascribed" if the author is unknown
– list authors in chronological order one tag per author.
– creator of the class is listed first
– any other people who worked on the class are listed next in the order in 

which they started to work on it.



  

Javadoc Comments - @since Tag
● Form: @since version

● Used Where: Interface and Class comments.

● Used For: 
– Indicates the version of the source code when this class 

or interface was introduced.
– usually just a version number, but could also contain a 

specific date.



  

Javadoc Comments - @version Tag
● Form: @version description

● Used Where: Interface and Class comments.

● Used For: 
– indicates the current version number of the source code.
– usually just a version number which includes the major and minor 

number
– does not usually include the build number.
– could also include a date.



  

Javadoc Comments - @deprecated Tag
● Form: @deprecated

● Used Where: Interface, class and method comments.

● Used For: 
– indicates that an item is deprecated.
– something which is deprecated is no longer maintained or 

updated and should not be used in newly written code.
– deprecated items are only included for backwards compatibility 

with old versions of programs which use your code.



  

Javadoc Comments - @param Tag
● Form: @param name description

● Used Where: Method comments.
●

● Used For: 
– Describes a method parameter. 
– name should be the formal parameter name. 
– description should be a brief one line description of the 

parameter.



  

Javadoc Comments - @return Tag
● Form: @return description

● Used Where: Method comments.

● Used For: 
– Describe the return value from a method 
– Does not apply to void methods or constructors.



  

Javadoc Comments - @throws Tag
● Form: @throws exception description

● Used Where: Method comments.

● Used For: 
– Indicates any exceptions that the method might throw
– also gives the possible reasons for the exception 

occurring.



  

Javadoc Comments - @see Tag
● Form: @see classname

● Used Where: Any item being commented.

● Used For: 
– provides a link to another class if that class helps to 

clarify the item being commented.



  

Javadoc Comments - @see class#member Tag
● Form: @see classname#member

● Used Where: Any item being commented.

● Used For: 
– provides a link to another class's member if it provides 

additional clarity for the item being commented.



  

General Order of Tags
● If multiple tags are used in the same comment they 

should be listed in the following order:
– @author

– @version

– @param

– @return

– @throws

– @see

– @since

– @deprecated



  

Ordering Multiple Tags
● @author, @param, and @throws can be used more 

than once in the same comment.
– multiple @author tags should be listed in chronological 

order (the order in which authors worked on the class).
– multiple @param tags should be listed in the same order 

that they appear in the method header.
– multiple @throws should be listed in alphabetical order 

according to the type of the exception (remember 
methods can throw multiple exceptions.)



  

Exporting the API for your Project
● Eclipse provides a built in tool for exporting your Javadoc 

comments as an API for your program.

● Project  Generate Javadoc...➜

● On the next window you can choose which project and any 
of that projects packages, classes, etc that you want to be 
exported.

● Click finish when you are done.



  

Javadoc Examples
● The best examples of how to use Javadoc comments is to just look at the 

Java source code.

● Choose a class that you are familiar with (I like the String class).

● In any source code file in Eclipse, just look for the String class data type, or 
just type the word String.

● ctrl-left-click the word String in Eclipse and it should bring up the source code 
for the String class.
– NOTE: If this does not work, you most likely do not have your project set to use the 

JDK instead of the JRE (which is the default option for most projects).
– Google how to set your Eclipse project to reference the JDK instead of the JRE.



  

Project Deliverables



  

Project Deliverables
● The following deliverables are required for every project you turn in for 

this class:
– A detailed User Manual (.pdf).

– All of the source code (with the required Javadoc comments).
● Upload the .java files individually, DO NOT zip the files.

– The API files generated from the Javadoc comments.
● Zip the entire folder that is generated.

– An executable .jar file so that I can run your project as a standalone 
application.

● Google how to do this.



  

References
● How to write Doc Comments for the Javadoc Tool , 

Oracle Website

● Javadoc Comments, Sourceforge.net Java 
Workshop Website

● Java String Class Source Code
– You can view this in Eclipse.

http://www.oracle.com/technetwork/articles/java/index-137868.html
http://javaworkshop.sourceforge.net/chapter4.html
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