
The Kronos IRC Bot Manual And Guide
An IRC Bot Development Tool, Powered by Perl, POE, and Google’s V8 Javascript Engine

10/04/18

Version 0.07337

https://github.com/danhetrick/kronos

Usage..3
Requirements..4
Installation...5
Configuration...6

Command Line Options..6
Configuration Files...6

Summary..7
Kronic Development Environment..9

Events.. 9
Delay.. 10
Available Events..11

action.. 11
begin... 11
connect... 12
dcc-chat-request... 12
dcc-done.. 13
dcc-error... 13
dcc-incoming.. 14
dcc-send-request.. 15
dcc-start... 16
exit.. 16
invite... 17
join.. 17
kick... 18
mode.. 18
nick-changed.. 19
notice.. 19
part... 19
private.. 20
public.. 20
raw... 20
raw-out... 21
topic.. 21

Variables.. 22
Functions...23

Miscellaneous Functions.. 23
IRC Functions... 29
Event Functions.. 34
File and Directory Functions... 36
Zip Archive Functions... 42

Objects... 45
File... 45
Zip.. 46

Examples... 48
DCC Partyline... 48
Kronic Shell.. 52

Gnu General Public License..55
Index...67

2

Usage

X
perl kronos.pl [OPTIONS] SCRIPT

/-(h)elp Display usage information
/-(s)erver ADDRESS:PORT IRC server to connect to
/-(p)assword PASSWORD IRC server password
/-(n)ick NICK IRC nick to use
/-(a)lternate-nick NICK Nick to use if first choice is taken
/-(u)sername USERNAME IRC username
/-(i)rcname IRCNAME IRCname
/-(c)hannel CHANNEL[:PASSWORD] Channel to join
/-(C)onfig FILENAME Load settings from a config file
/-(B)lank-config [FILENAME] Print a blank config file to STDOUT, or
 write one to a file
/-(v)erbose Turns on verbose mode
/-(W)arn Turns on warnings mode
/-(N)ocolor Disable console text colors
/-(d)cc-ports PORTS What ports to use with DCC
 PORTS can be a comma delimited list or
 a range of numbers (example: 10000-10100)
/-file-(D)irectory PATH Directory where uploaded files will be
 placed. Also, the first place the bot will
 look for files to send. By default, set to
 "/where/kronos/is/installed/files"
/-(P)roxy SERVER:PORT Use a proxy server to connect to IRC
/-(I)pv6 Use IPv6 for connections
/-(S)sl Connect to IRC using SSL

If not entered, the default server port of '6667' is used for regular
IRC connections, and the default port of '6697' is used for SSL connections.

/-channel can be used multiple times to join multiple channels
Single character options can be bundled together

3

Requirements

X
Requirement URL Description

Perl https://www.perl.org/ Perl programming
language

POE http://poe.perl.org/ Perl Object Environment

POE::Component::IRC https://metacpan.org/pod/POE::Component::IRC POE IRC library

Javascript::V8 https://metacpan.org/pod/JavaScript::V8 V8 library interface for Perl

libv8 https://developers.google.com/v8/ Google’s V8 library

libv8-dev https://developers.google.com/v8/ V8 development files

For Kronos to connect to an IRC server via SSL, an additional module is required:

Requirement URL Description

POE::Component::SSLify https://metacpan.org/pod/POE::Component::SSLify POE SSL library

Several Perl CPAN modules are bundled with Kronos, and don’t require installation:

• XML::TreePP
• Term::ANSIColor
• Archive::Zip
• Text::Parsewords

4

Installation

X
A complete Kronos installation looks like this:

core

functions.js

objects.js

variables.js

The files in this directory are objects,
functions, and variables necessary for
the Kronic environment. They are written
in Javascript, and loaded automatically
into the namespace of all scripts.

docs

examples Example bot scripts from the
documentation.

kronos-manual.pdf Documentation for Kronos and the Kronic
development environment.

files The default directory Kronos will place
uploaded files.

lib Perl modules necessary for
functionality.

kronos.pl The Kronos IRC bot.

5

Configuration

X
Kronos can be configured two ways: with command line options, or with a configuration file.

Command Line Options

This one is pretty self explanitory. Kronos can accept a number or options on the command
line to apply various settings. Call Kronos with the /-help option to see a list of available
options (or look at the Usage section of this document, on page 3).

Configuration Files

Kronos can load setting from a configuration file. Kronos uses XML for its configuration file
format; a valid configuration file has two root elements, kronos (which contains Kronos
specific settings) and irc (which contains IRC specific settings). To generate a blank
configuration file for you to edit, use the command line option /-blank-config. You can
pass this option a file name to write your blank configuration to a file, or omit it to cause
Kronos to print your blank configuration file to STDOUT. The blank configuration file is
extensively commented, explaining what each setting is and how to set it.

6

Summary
Kronos is an open-source IRC bot development tool

X
Kronos is an Internet Relay Chat1 bot2 which, on its own, does nothing; it’s a tool that makes
writing an IRC bot quick and easy. All the hard work of writing the code to connect to an IRC
server, maintain a connection, and support lots of features (like SSL and proxy server
support) is already done for you, so you can focus on your bot, and what you want your bot to
do. These are some of the features built-in to Kronos:

• Support for IPv6 connections
• Support of Secure Sockets Layer (SSL) connections
• Support for proxy server connections
• Optional XML configuration files
• Support for DCC3 file transfers and chat

Kronos is written in Perl, and can run on any platform that can run Perl. In fact, Kronos was
developed and tested in Windows 10 and Debian Linux, and should be able to run on OSX
without alteration. It uses the Perl Object Environment, a "framework for reactive systems,
cooperative multitasking, and network operations", and the POE module
POE::Component::IRC to handle IRC functionality.

The star of the show, however, is Google’s V8 ECMAScript engine, the same Javascript
engine built into the Chrome web browser and the Node.js development environment. Bot
scripts are written in a customized Javascript environment named Kronic (which stands for
Kronos IRC Code), and these scripts are what powers the Kronos IRC bot! Here’s an
example bot, written in Kronic, that greets everyone who enters a channel the bot is in:

1
2
3
4
5

function on_join(joiner){
 say(joiner.Channel,"Hello, "+joiner.Nick+"! Welcome to "+joiner.Channel+"!");
}

hook("join","join_event",on_join);

This is a complete IRC bot written in 5 lines of code! Every time someone enters a channel
the bot is in, the bot will greet them with a public message. So, for example, if your Kronos
bot is in a channel named "#foo", when a user named "bob" joins the channel, Kronos would
send a public message to #foo that said "Hello, bob! Welcome to #foo!".

• Kronic uses Google’s V8 ECMAScript engine.

1 https://en.wikipedia.org/wiki/Internet_Relay_Chat
2 https://en.wikipedia.org/wiki/IRC_bot
3 https://en.wikipedia.org/wiki/Direct_Client-to-Client

7

• Kronic is a Javascript/ECMAScript development environment. If you know how to
write code in Javascript, you know how to code on Kronic.

• Kronic is event-driven. Write Kronic functions that get triggered whenever
something happens in IRC; events can have an unlimited number of functions bound to
them.

• Kronic can read and write files. Read, write, copy, and edit files.
◦ Built-in SHA256 and SHA512 hashing.
◦ Built-in Base64 encoding and decoding.
◦ View and edit file permissions.

• Kronic can create, edit, and delete directories. Create, delete, and list the contents
of directories.

• Kronic can create, edit, and extract zip archives. Zip archive support is built into
the environment, no external libraries needed.

• Kronic is cross-platform. Kronos (and Kronic) can run on any platform Perl can run
on that has the V8 library installed, and the Kronic functions are written that way.
Functions are included for platform-safe file and directory concatenation, temporary
directory handling, and file and directory permissions.

Kronos is an all-purpose solution for all your IRC bot needs. If you need the functionality, just
write a script for it. This document, The Kronos IRC Bot Manual And Guide contains
everything you need: usage information, function documentation, examples, and more.

8

Kronic
Kronos IRC Code Environment

X
The core of the Kronic Development Environment (called Kronic in the rest of this section)
is Google’s V8 ECMAScript engine. This is the same engine used by the Chrome web
browser and the Node.js development tool. Kronic scripts, then, are ECMAScripts, more
commonly known as Javascript. If you know how to write Javascript code, you can code with
Kronic.

Kronic is event-driven. You write functions that you can "hook" to events; when the event
occurs, the function is executed. You can hook as many functions as you want to an event,
and you can hook any (or all!) of the events. This allows Kronic scripts to be somewhat
modular; since Kronos allows you to load multiple scripts at a time, you can write Kronic
scripts for a specific functionality, and then load the scripts that implement the functionality
you want.

Events

The basic ideas behind Kronic scripting are events4 and hooks5.

• Events. Every time the bot receives some sort of message from the IRC server,
Kronos executes an event.

• Hooks. A hook is a function that is called whenever a specific event is executed.

Hooks are created with the hook() function, which takes three arguments: the name of the
event to hook, a "tag" for that event hook, and a reference to the function to be called. The
called function is passed a single argument: an object containing information about the event.
Once a hook is in place, it will get executed every time the hook’s event occurs.

Deleting hooks is easy, too. The second argument to hook(), the "tag", is for this purpose.
To remove all hooks with a given tag, call unhook() with desired the tag as the only
argument. Since hook tags don’t have to be unique, this allows your scripts to remove
multiple tags (or "classes" of tags) at once.

4 https://en.wikipedia.org/wiki/Event_(computing)
5 https://en.wikipedia.org/wiki/Hooking

9

Delay

Kronic scripts can cause functions to be executed after an arbitrary amount of time by using
the delay() function, which takes two arguments: the number of seconds to delay, and a
function reference. Functions called in this manner can also use the delay() function,
allowing developers to develop their own time-based events for their scripts.

10

Available Events

action

begin

connect

dcc-chat-request

dcc-done

dcc-error

dcc-incoming

dcc-send-request

dcc-start

exit

invite

join

kick

mode

nick-changed

notice

part

private

public

raw

raw-out

topic

action
function on_action_event(action){
 print(action.Nick + " " + action.Action);
}

hook("action","action event",on_action_event);

Argument Object Properties Action The text of the action message.

Channel The channel where the action message was sent.

Nick The nick of the user sending the action.

Hostmask The hostmask of the user sending the action.

Description Triggers whenever a user in the bot’s presence send a CTCP action
message.

begin
function on_begin_event(){
 print("The begin event was triggered!");
}

hook("begin","begin event",on_begin_event);

Argument Object Properties None

Description Triggers when the script begins, right before the bot attempts to connect to
the IRC server.

11

connect
function on_connect_event(){
 print("Connected to IRC server!");
}

hook("connect","connect event",on_connect_event);

Argument Object Properties None

Description Triggers whenever the bot connects to IRC.

dcc-chat-request
function on_dcc_chat_request_event(request){
 // Only users with a nick of "bob"
 // can connect to DCC
 if(request.Nick /= "bob"){
 // Approve the DCC chat request
 return true;
 } else {
 // Reject the DCC chat request
 return false;
 }
}

hook("dcc-chat-request","dcc event",on_dcc_chat_request_event);

Argument Object Properties Nick The nick of the requesting user.

Hostmask The hostmask of the requesting user.

IP The IP address of the requesting user.

Port The port the requesting user is connected to.

Type The type of the request: SEND, GET, or CHAT.

Description Triggers whenever a user requests a DCC chat connection from the bot. If
you want the bot to approve the request and let the user connect, the function
should return true; to reject the request, return false.

12

dcc-done
function on_done_event(done){
 print(done.Nick + " disconnected!");
}

hook("dcc-done","dcc event",on_done_event);

Argument Object Properties IP The IP address of the disconnecting user.

Port The port of the disconnecting user.

Nick The nick of the user disconnecting

Type The type of DCC connection (GET, SEND, CHAT, etc).

Cookie The cookie of the disconnecting user.

Description Triggers whenever a user disconnects from DCC.

dcc-error
function on_dcc_error_event(err){
 print(err.Nick + " had an error! (" + err.Error + ")");
}

hook("dcc-error","dcc event",on_dcc_error_event);

Argument Object Properties IP The IP address of the user who had an error.

Port The port of the user who had an error.

Nick The nick of the user who had an error.

Error Description of the error.

Cookie The cookie of the user who had an error.

Description Triggers whenever a user disconnects due to error.

13

dcc-incoming
function on_dcc_incoming_event(chat){
 print(chat.Nick + " says " + chat.Message);
}

hook("dcc-incoming","dcc event",on_dcc_incoming_event);

Argument Object Properties IP The IP address of the user who sent the chat message.

Port The port of the user who sent the chat message.

Nick The nick of the user who sent the chat message.

Message The sent chat message.

Cookie The cookie of the user who sent the chat message.

Description Triggers whenever a user sends a DCC chat message.

14

dcc-send-request
function on_dcc_send_request_event(request){

 // Only users with the nick "joe"
 // can send the bot files
 if(request.Nick /= "joe"){

 // Approve the request
 return true;
 } else {
 // Everyone else will have their send
 // request rejected

 // Reject the request
 return false;
 }
}

hook("dcc-send-request","dcc event",on_dcc_send_request_event);

Argument Object Properties IP The IP address of the requesting user.

Port The port of the requesting user.

Nick The nick of the requesting user.

Hostmask The hostmask of the requesting user.

Type The type of DCC connection requested.

Filename The name of the file the user is requesting to send.

Size The size of the file, in bytes.

Description Triggers whenever a user requests permission to send a file to the bot. If you
want the bot to approve the request and let the user send the file, the function
should return true; to reject the request, return false.

15

dcc-start
function on_dcc_start_event(start){
 switch(start.Type) {
 case "SEND":
 print(start.Nick + " started sending a file!");
 break;
 case "CHAT":
 print(start.Nick + " started chatting!");
 break;
 case "GET":
 print(start.Nick + " started downloading a file!");
 break;
 }
}

hook("dcc-start","dcc event",on_dcc_start_event);

Argument Object Properties IP The IP address of the user who is starting the session.

Port The port of the user who is starting the session.

Nick The nick of the user who is starting the session.

Type The type of DCC session (SEND, GET, CHAT, etc)

Cookie The cookie of the user who is starting the session.

Description Triggers whenever a user starts a DCC session with the bot.

exit
function on_exit_event(ex){
 print("Exited with code " + ex.Code);
}

hook("exit","exit event",on_exit_event);

Argument Object Properties Code The exit code, either 1 (exit for error) or 0 (no error)

Description Triggers whenever a script uses the exit() function; the event is executed
immediately before the actual exit.

16

invite
function on_invite_event(invitation){
 print(invitation.Nick + " invited the bot to " + invitation.Channel);
}

hook("invite","invite event",on_invite_event);

Argument Object Properties Channel The channel the bot is invited to.

Hostmask The hostmask of the user inviting the bot.

Nick The nick of the user inviting the bot.

Description Triggers whenever a user sends a channel invite.

join
function on_join_event(joiner){
 print(joiner.Nick + " joined " + joiner.Channel);
}

hook("join","join event",on_join_event);

Argument Object Properties Channel The channel the user joined.

Hostmask The hostmask of the joining user.

Nick The nick of the joining user.

Description Triggers whenever a user joins a channel in the bot’s presence

17

kick
function on_kick_event(kicker){
 if(kicker.Reason == ""){
 print(kicker.Nick + " kicked " + kicker.Target + \
 " from " + kicker.Channel);
 } else {
 print(kicker.Nick + " kicked " + kicker.Target + \
 " from " + kicker.Channel + " (" + kicker.Reason + ")");
 }
}

hook("kick","kick event",on_kick_event);

Argument Object Properties Channel The channel the the target was kicked from.

Hostmask The hostmask of the kicking user.

Nick The nick of the kicking user.

Target The user being kicked.

Reason The reason the user was kicked.

Description Triggers whenever a user is kicked from a channel in the bot’s presence.

mode
function on_mode_event(event){
 print(event.Nick + " set mode " + event.Mode + " " + \
 event.Arguments + " on " + event.Target);
}

hook("mode","mode event",on_mode_event);

Argument Object Properties Nick The nick of the user setting the mode.

Hostmask The hostmask of the user settings the mode.

Mode The mode set.

Arguments The arguments used for the mode set.

Target The user the mode was set on.

Description Triggers whenever a mode is set in the bot’s presence.

18

nick-changed
function on_newnick_event(newnick){
 print(newnick.Nick + " is now known as " + newnick.New);
}

hook("nick-changed","nick changed event",on_newnick_event);

Argument Object Properties New The user’s new nick.

Hostmask The hostmask of the nick changing user.

Nick The old nick of the user.

Description Triggers whenever a user changes their nick in the bot’s presence

notice
function on_notice_event(msg){
 print(msg.Nick + " sent a notice to " + msg.Targets + ": " + msg.Message);
}

hook("notice","notice event",on_notice_event);

Argument Object Properties Nick The nick of the notice sender.

Hostmask The hostmask of the notice sender.

Targets The targets of the notice.

Message The notice message.

Description Triggers whenever the bot receives a notice.

part
function on_part_event(parter){
 print(parter.Nick + " left " + parter.Channel);
}

hook("part","part event",on_part_event);

Argument Object Properties Nick The nick of the user parting.

Hostmask The hostmask of the user parting.

Channel The channel the user left.

Description Triggers whenever a user parts a channel in the bot’s presence.

19

private
function on_private_event(msg){
 print(msg.Nick + " sent a private message: " + msg.Message);
}

hook("private","private event",on_private_event);

Argument Object Properties Nick The nick of the user sending the message.

Hostmask The hostmask of the user sending the message.

Message The message sent.

Description Triggers whenever the bot receives a private message.

public
function on_public_event(msg){
 print(msg.Channel + " " + msg.Nick + ": " + msg.Message);
}

hook("public","public event",on_public_event);

Argument Object Properties Nick The nick of the user sending the message.

Hostmask The hostmask of the user sending the message.

Channel The channel the message was sent to.

Message The message sent.

Description Triggers whenever the bot receives a public message.

raw
function on_raw_event(text){
 print("Message received from server: " + text);
}

hook("raw","raw event",on_raw_event);

Argument String (the "raw" contents of the server message received)

Description Triggers whenever the bot receives a message from the server; this event
will receive all messages, even ones handled by other events. It is not
parsed or changed in any way.

20

raw-out
function on_raw_out_event(text){
 print("Message sent to server: " + text);
}

hook("raw-out","raw out event",on_raw_out_event);

Argument String (the "raw" contents of the message sent to the server)

Description Triggers whenever the bot sends a message to the IRC server; this event will
receive all outbound messages.

topic
function on_topic_event(event){
 print(event.Nick + " set the topic in " + event.Channel +\
 ": " + event.Topic);
}

hook("topic","topic event",on_topic_event);

Argument Object Properties Nick The nick of the user setting the topic.

Hostmask The hostmask of the user setting the topic

Channel The channel where the topic was set.

Topic The channel’s topic.

Description Triggers whenever a channel’s topic is changed in the bot’s presence.

21

Variables

Variable Name Read Only? Updated During Runtime Value

NICKNAME No Yes The bot’s current nick.

IRCNAME Yes No The bot’s IRCname.

USERNAME Yes No The bot’s username.

IRC_SERVER Yes No The IRC server connected to.

IRC_PORT Yes No The IRC server port connected to.

VERBOSE Yes No True if verbosity is turned on, false if not.

WARN Yes No True if warning messages are turned on, false if
not.

SSL Yes No True if the bot is connected to the IRC server via
SSL, false if not.

IPV6 Yes No True is the bot is using IPv6 to connect, false if
not.

WHITE Yes No "00". For use with the color() function.

BLACK Yes No "01". For use with the color() function.

BLUE Yes No "02". For use with the color() function.

GREEN Yes No "03". For use with the color() function.

RED Yes No "04". For use with the color() function.

BROWN Yes No "05". For use with the color() function.

PURPLE Yes No "06". For use with the color() function.

ORANGE Yes No "07". For use with the color() function.

YELLOW Yes No "08". For use with the color() function.

LIGHT_GREEN Yes No "09". For use with the color() function.

TEAL Yes No "10". For use with the color() function.

CYAN Yes No "11". For use with the color() function.

LIGHT_BLUE Yes No "12". For use with the color() function.

PINK Yes No "13". For use with the color() function.

GREY Yes No "14". For use with the color() function.

LIGHT_GREY Yes No "15". For use with the color() function.

22

Functions

Miscellaneous Functions

base64 termcolor

exec timestamp

exit tokens

load trim

prettyuptime unbase64

print uptime

sha256 warn

sha512 verbose

shuffle

base64
var encoded = base64(data);

Arguments 1 (data)

Returns String

Description Encodes data with Base64, and returns the encoded data.

exec
// Execute a program on the host OS, and returns the result
var message = exec("fortune -s");

Arguments 1 (command line to execute)

Returns Array

Description Executes a command on the host operating system, and returns any command line output
in an array. This is a blocking command (your script will not continue until the issued
command returns output).

23

exit
exit();

Arguments 0 or 1 (exit code, "1" or "0")

Returns Nothing

Description Causes Kronos to exit, issuing an exit code of the user’s choice (0 or 1), or just exiting
without specifying one (which will exit with an exit code of 0).

load
if(load("myscript.js")){
 print("myscrips.js loaded successfully!");
} else {
 print("Error loading myscript.js!");
}

Arguments 1 (filename)

Returns True if the file was loaded successfully, false if not.

Description Loads a Javascript file from disk and executes it in the global namespace.

prettyuptime
var uptime = prettyuptime();

Arguments 0

Returns String

Description Returns the bot’s uptime in a human readable format. If the bot’s uptime, for example, is
120 seconds, prettyuptime() will return "2 minute".

print
// Prints "Hello, world!"
print("Hello, world!");

// Each string passed to verbose
// is printed with a newline
print("Multiple","Strings");

Arguments 1+ (string)

Returns Nothing

Description Prints a string to the console, followed by a newline.

24

sha256
var hash = sha256(data);

Arguments 1 (data)

Returns String

Description Calculates a SHA256 hash from data, and returns the hash.

sha512
var hash = sha512(data);

Arguments 1 (data)

Returns String

Description Calculates a SHA512 hash from data, and returns the hash.

shuffle
var scrambled = shuffle(myArray);

Arguments 1 (array)

Returns Array

Description Randomly re-orders an array, and returns the shuffled array.

tokens
var parsed = tokens(data);

Arguments 1 (string)

Returns Array

Description Tokenizes a string; strings are split using whitespace as a delimiter. Whitespace can be
contained in quotes; quoted text is treated like a single token.

timestamp
var ts = timestamp();

Arguments 0

Returns String

Description Returns a time stamp (containing the time and data of the host), just like the timestamp
used with verbose and warn modes.

25

termcolor
var text = termcolor("bold red","This is red!");
print(text);
text = termcolor("bold black on_white", "Bold, and black on white!");

Arguments 2 (color and formatting, text)

Returns String

Description Uses ANSI color codes to color text send to the console. Any combination of attributes, text
colors, or background colors can be passed as the first argument. If the color or formatting
passed is not valid, a warning is printed and the original, non-colored text is returned.

Attributes clear italic

bold underline

dark underscore

faint reverse

Text Color black bright_black

red bright_red

green bright_green

yellow bright_yellow

blue bright_blue

magenta bright_magenta

cyan bright_cyan

white bright_white

Background Color on_black on_bright_black

on_red on_bright_red

on_green on_bright_green

on_yellow on_bright_yellow

on_blue on_bright_blue

on_magenta on_bright_magenta

on_cyan on_bright_cyan

on_white on_bright_white

26

trim
// Returns "hello"
var text = trim(" hello ");

Arguments 1 (string)

Returns String

Description Trims all leading and trailing whitespace from a string.

unbase64
var decoded = unbase64(data);

Arguments 1 (data)

Returns String

Description Decodes Base64 encoded data, and returns the decoded data.

uptime
var bot_uptime = uptime();

Arguments 0

Returns Number

Description Returns the bot’s uptime, in seconds.

verbose
// Prints "Hello, world!" if verbose mode is turned on
verbose("Hello, world!");

// Each string passed to verbose
// is printed with a newline
verbose("Multiple","Strings");

Arguments 1+ (string)

Returns Nothing

Description If the verbose flag is set, prints a string to the console, followed by a newline.

27

warn
// Prints "Hello, world!" if warning mode is turned on
warn("Hello, world!");

// Each string passed to warn
// is printed with a newline
warn("Multiple","Strings");

Arguments 1+ (string)

Returns Nothing

Description If the warnings flag is set, prints a string to the console, followed by a newline.

28

IRC Functions

bold oper

color part

dcc quit

invite raw

italic say

join send

mode topic

nick underline

notice who

bold
// Create a string, and make it bold
var example = bold("Hello, world!");

// Send our string to IRC!
say("#foo",example);

Arguments 1 (text)

Returns String

Description Formats text with the mIRC control code for "bold" text.

color
// This will display in red and yellow
var stuff = "This will be printed in " +\
color(RED,YELLOW,"red") + " and " + color(YELLOW,RED,"yellow");

Arguments 3 (foreground color, background color, text)

Returns String

Description Formats text with mIRC color tags. A list of available color-related built-in variables is
follows.

Text Colors

WHITE
BLACK
BLUE
GREEN
RED
BROWN
PURPLE
ORANGE

YELLOW
LIGHT_GREEN
TEAL
CYAN
LIGHT_BLUE
PINK
GREY
LIGHT_GREY

29

dcc
// Send a message to someone connected to the bot’s DCC chat
dcc(cookie,"Hello!");

Arguments 2 (DCC "cookie", string)

Returns Nothing

Description Sends a DCC chat message. The "cookie" is a bit of information gained from all DCC
events (other than "dcc-request"), and represents an ID for an individual DCC connection.

invite
// Invite our friend bob to #foo
invite("bob","#foo");

Arguments 2 (nick, channel)

Returns String

Description Sends a channel invite to a user.

italic
// Create a string, and make it italicized
var example = italic("Hello, world!");

// Send our string to IRC!
say("#foo",example);

Arguments 1 (text)

Returns String

Description Formats text with the mIRC control code for "italic" text.

mode
// Op user Bob
mode("+o #foo");

Arguments 1 (mode to execute)

Returns Nothing

Description Causes the bot to set a mode on a channel6 or a user7.

6 https://www.unrealircd.org/docs/Channel_modes
7 https://www.unrealircd.org/docs/User_Modes

30

nick
// Create a string, and make it bold
nick("joe");

Arguments 1 (new nick)

Returns Nothing

Description Changes the bot’s nick.

notice
notice("#foo","Hello world!");

Arguments 2 (nick or channel, message)

Returns Nothing

Description Sends a notice.

oper
oper("my_username","my_password");

Arguments 2 (username, password)

Returns Nothing

Description Logs the bot into an operator account.

part
part("#foo");

// Leave a channel, displaying the reason why the bot is parting
part("#foo","I need to reboot!");

Arguments 1 (channel name) or 2 (channel name, reason)

Returns Nothing

Description Causes the bot to leave a channel.

31

quit
// Disconnect from the IRC server
quit();

// Quit, and let the server know why
quit("I’m going to bed");

Arguments 0 or 1 (text)

Returns Nothing

Description Disconnects from the IRC server, displaying an optional reason for the quit. Duster will exit
after the quit command is issued.

raw
// Send a notice to everyone in #foo
raw("NOTICE #foo: Hello, everybody!");

// Change the bot’s nick to "MyNewNick"
raw("NICK MyNewNick");

Arguments 1+ (string)

Returns Nothing

Description Sends a "raw" command to the IRC server.

say
// Send a public message
say("#foo","Hello, everyone!");

Arguments 2 (user nick or channel name,message)

Returns Nothing

Description Sends a chat message to the IRC server.

send
// Send a file to a user
send("bob_the_user","/home/user/file.txt");

Arguments 2 (user nick, filename)

Returns Nothing

Description Sends a file to a user via DCC.

32

topic
topic("#foo","The topic is the Kronos IRC bot");

Arguments 2 (channel name, new topic)

Returns Nothing

Description Sets a channel’s topic.

underline
// Create a string, and underline it
var example = underline("Hello, world!");

// Send our string to IRC!
say("#foo",example);

Arguments 1 (text)

Returns String

Description Formats text with the mIRC control code for "underlined" text.

who
var userlist = new Array();

// Get a list of all users the bot can "see"
userlist = who();

// Get a list of all users in a specific channel
userlist = who("#foo");

Arguments 0 or 1 (channel name)

Returns Array

Description Gets a list of users in all channels the bot is present in (if no argument is passed) or all
users in a specific channel the bot is present in (if passed the channel name as an
argument). What’s in the array depends on how the command is called:

• With no arguments. Each entry in the array has a channel name, a space, and a
user name, for each user in all channels.

• With a channel name as an argument. Each entry in the array is a user name
present in that channel.

33

Event Functions

delay unhook

hook

delay
// Create a function to run in one minute
function one_minute_later(){
 print("It’s one minute later!");
}

// Tell the bot to run our function in one minute
delay(60,one_minute_later);

Arguments 2 (seconds to delay, function reference)

Returns Nothing

Description Executes a function after a set number of seconds.

hook
// Create a function that will be called whenever
// the bot receives a public message
function my_public_handler(ARGS){
 print(ARGS.Nick + " spoke in " + ARGS.Channel + ": " + ARGS.Message);
}

// Now, hook the public message event to our function
hook("public","my_hook",my_public_handler);

Arguments 3 (event name, hook ID, function reference)

Returns Nothing

Description Creates a hook for an IRC event. A hook ID is a string that can be attached to an event
hook; this allows for unhook() to remove multiple hooks at once. Hook IDs do not have to
be unique. There are 22 events that can be hooked:

Event Name Description

begin Occurs when the script takes full control of the bot.

public Occurs whenever the bot receives a public message.

private Occurs whenever the bot receives a private message.

part Occurs whenever someone leaves a channel the bot is in.

join Occurs whenever someone joins a channel the bot is in.

34

Event Name Description

connect Occurs when the bot first connects to IRC.

dcc-chat-request
Occurs when a DCC chat session is requested. The hook’s
function must return true to accept the DCC chat request, or
false to reject the chat request.

dcc-send-request
Occurs when a DCC send session is requested (a user is trying
to upload a file). The hook’s function must return true to accept
the DCC send request, or false to reject the DCC send request.

dcc-start Occurs when a DCC chat session begins.

dcc-incoming Occurs when DCC chat is received.

dcc-done Occurs when a DCC chat session is closed.

dcc-error Occurs when a DCC chat session has an error.

topic Occurs when a channel’s topic is set or sent by the server.

action Occurs when a CTCP action message is received.

mode Occurs when a mode is set in the bot’s presence.

kick Occurs when a user is kicked from a channel the bot is present
in.

invite Occurs when a user invites the bot to a channel.

nick-changed Occurs when a user changes their nick in the bot’s presence.

notice Occurs when the bot receives a notice.

raw Occurs whenever the bot receives any message from the IRC
server.

raw-out Occurs when the bot sends any message to the IRC server.

exit Occurs when Kronos exits.

Functions hooked to an IRC event are passed an object when triggered; the contents of the
object depends on the event being hooked. (See Events, on page 9).

unhook
// Remove a hook
unhook("my_hook_ID");

Arguments 1 (hook ID)

Returns Nothing

Description Removes one or more event hooks.

35

File and Directory Functions

basename fsize

catdir fwrite

catfile isdir

cd isfile

chmod mkdir

cwd mkpath

dirlist rmdir

flocation rmfile

fmode rmpath

fpermissions temp

fread

basename
// Returns "myfile.txt"
var f = basename("/home/user/myfile.txt");

Arguments 1 (filename)

Returns String

Description Extracts and returns the filename from a full file path.

catdir
// Returns "/home/user/dir" on *NIX
var d = catdir("home","user","dir");

Arguments 1+ (strings or arrays)

Returns String

Description Concatenates directory names (as strings or arrays of strings) into a valid path for the
platform it’s called on.

catfile
// Returns "/home/user/dir/program.exe" on *NIX
var f = catfile("home","user","dir","program.exe");

Arguments 1+ (strings or arrays)

Returns String

Description Concatenates one or more directory names (as strings or arrays of strings) and a file name
into a valid file path for the platform it’s called on.

36

cd
cd("/var///w");

Arguments 1 (directory name)

Returns 1 if successful, 0 if not.

Description Moves the script’s working directory to a new directory.

chmod
chmod("777");

Arguments 1 (directory or file name)

Returns 1 if successful, 0 if not.

Description Changes a file or directory’s permissions.

cwd
var mydirectory = cwd();

Arguments 0

Returns String

Description Returns the script’s current working directory.

dirlist
var files = dirlist("/home/user");

// List only Javascript files
var files = dirlist("/home/user","*.js");

Arguments 1 (directory name) or 2 (directory name and filter)

Returns Array

Description Returns a list of files in a directory. If using a filter, * is a wildcard.

37

flocation
var where = flocation("kronos.pl");

Arguments 1 (file name)

Returns String

Description Returns the location (directory) a file is in.

fmode
var kronos_mode = fmode("kronos.pl");

Arguments 1 (directory or file name)

Returns String

Description Returns a file or directory’s mode (permissions).

fpermissions
var kronos_permissions = fpermissions("kronos.pl");
if(kronos_permissions.indexOf("r") !== -1){ print("File isn’t readable!"); }

Arguments 1 (directory or file name)

Returns String

Description Returns a short string describing a file or directory’s permissions. If a file is readable, the
string will contain "r"; if the file is writable, the string will contain "w"; if the file is
executable, the string will contain "x".

fread
var contents = fread("file.txt");

Arguments 1 (file name)

Returns String

Description Reads the contents of a file, and returns them.

fsize
var kronos_size = fsize("kronos.pl");

Arguments 1 (file name)

Returns String

Description Returns the file’s size in bytes.

38

fwrite
fwrite("file.txt","This is the contents of my file!");

Arguments 2 (file name, contents)

Returns 1 if successful, 0 if not.

Description Writes to a file.

isdir
if(isdir("/home/user")){
 print("/home/user is a directory!");
}

Arguments 1 (file or directory)

Returns 1 if the passed argument exists and is a directory, 0 if not.

Description Determines if a string is an existing directory name.

isfile
if(isfile("/home/user/file.txt")){
 print("/home/user/file.txt is a file!");
}

Arguments 1 (file or directory)

Returns 1 if the passed argument exists and is a file, 0 if not.

Description Determines if a string is an existing file name.

mkdir
mkdir("mydir");

Arguments 1 (directory name)

Returns 1 if successful, 0 if not.

Description Creates a directory.

39

mkpath
mkpath("/home/user/x/y/mydir");

Arguments 1 (directory path)

Returns 1 if successful, 0 if not.

Description Creates a directory path; this may involve the creation of multiple directories. For example,
if mkpath("/home/user/x/y/mydir") is issued, this will create three directories:
"/home/user/x", "/home/user/x/y", and "/home/user/x/y/mydir".

rmdir
// Deletes a directory named "unwanted" in the current directory
rmdir("unwanted");

Arguments 1 (directory)

Returns 1 if the passed argument exists and is a file, 0 if not.

Description Deletes a directory. If the directory is not empty, the operation will fail.

rmfile
rmfile("/home/user/myfile.txt");

Arguments 1 (directory)

Returns 1 if the passed argument exists and is a file, 0 if not.

Description Deletes a file.

rmpath
rmpath("/home/user/x/y/mydir");

Arguments 1 (directory)

Returns 1 if the passed argument exists and is a file, 0 if not.

Description Deletes a path, which may involve deleting multiple directories. If any of the directories are
not empty, the operation will fail.

40

temp
var tempdir = temp();

Arguments 0

Returns String or undefined

Description Returns the first writable temporary directory, depending on the platform, or the current
working directory. If the current working directory is not readable and writable, the function
will return undefined.

41

Zip Archive Functions

zadd zmember

zclose zopen

zextract zremove

zlist zwrite

The functions for creating and manipulating zip files work a little differently than the rest of the
Kronic functions. The function to create or edit a zip archive, zopen(), returns a string; this
string is called the "zip identification" (or "zip ID"). The zip ID is required for all zip-related
functions, with the exception of zopen(); think of the zip ID as a file descriptor8.

zadd
// Adds a file to a zip
zadd(zid,"file.txt");

// Adds a directory to a zip
zadd(zid,"/home/user");

Arguments 2 (zip ID, file or directory name)

Returns 1 if successful, 0 if not.

Description Adds a file or a directory to a zip archive. If a directory is added, the basename of the
directory is retained and used in the zip file.

zclose
zclose(zid);

Arguments 1 (zip ID)

Returns 1 if successful, 0 if not.

Description Closes a zip archive. Note that you still have to save the archive with zwrite() if you want
any changes to the zip written to disk.

zextract
zextract(zid,"/home/user");

Arguments 2 (zip ID, directory)

Returns 1 if successful, 0 if not.

Description Extracts a zip archive into a directory.

8 https://en.wikipedia.org/wiki/File_descriptor

42

zlist
var ziplist = new Array();
ziplist = zlist(zid);

Arguments 1 (zip ID)

Returns Array

Description Lists the contents of a zip archive.

zmember
var contents = zmember(zid,"file.txt");

Arguments 1 (zip ID, file name)

Returns String

Description Extracts the contents of a file inside a zip archive, and returns the contents as a string.

zopen
var zid = zopen("myfile.zip")

Arguments 1 (file name)

Returns String (zip ID)

Description Opens a zip file for creation or editing. This function returns a string, the "zip ID"; this string
should be saved, as it is needed to manipulate the zip archive opened here. The zip ID is
randomly generated, and is unique for each zip file opened. If the file exists, and is a zip
archive, it will be opened for editing or extraction. If the file does not exist, an in-memory zip
archive is created; it will only be written to disk if the zwrite() function is called.

zremove
zremove(zid,"file.txt");

Arguments 2 (zip ID, file name)

Returns 1 if successful, 0 if not.

Description Removes a file from a zip archive.

43

zwrite
zwrite(zid);

Arguments 1 (zip ID)

Returns 1 if successful, 0 if not.

Description Writes an open zip archive to disk.

44

Objects

File

File is a class you can use to read, write, analyze, create, and delete files. It has 11
properties, and 3 methods.

File
var myfile = new File("file.txt");
if(myfile.Exists){
 print(myfile.Contents);
 print(myfile.Location);
 if(myfile.Read){
 print("file.txt is readable!");
 } else {
 print("file.txt is not readable!");
 }
} else {
 myfile.Contents ="Hello, world!";
 myfile.Save();
}

Arguments 1 (filename)

Properties Contents Contains the file’s contents. This property can be edited to alter the file’s
contents.

Exists True if the file exists, false if not. Read only.

Mode The file’s permissions. To change the file’s permissions, set Mode to the new
permissions.

Read True if the file is readable, false if not. Read only.

Write True if the file is writable, false if not. Read only.

Execute True if the file is exeutable, false if not. Read only.

Size The file’s size, in bytes. Read only.

SHA256 The SHA256 hash of the file’s contents. Read only.

SHA512 The SHA512 hash of the file’s contents. Read only.

Base64 The file’s contents, Base64 encoded. Read only.

Basename The file’s basename (that is, the name of the file without the directory it is located
in). Read only.

Location The directory the file is located in. Read only.

Methods

Append

Arguments 1 (data)

Returns Nothing

Description Appends data to the file’s content.

45

Methods

Delete

Arguments None

Returns True if the file was deleted successfully, false if the deletion
failed.

Description Deletes the file the object is attached to. This will only
delete the file; in-memory content is still retained.

Save

Arguments None

Returns True if the save was successful, false if the save failed.

Description Saves the file the object is attached to to disk.

Description The File object can be used to create and edit existing files. Any changes to the file
object’s properties will not be saved to disk until the Save() method is executed. File’s
functionality is written in Javascript and is contained in objects.js in the "core" directory.

Zip
var archive = new Zip("files.zip");
if(archive.Exists){
 print(archive.Files);
 archive.Extract("/home/user");
} else {
 archive.Add("kronos.pl");
 archive.Write();
}
archive.Close();

Arguments 1 (filename)

Properties Files An array containing a list of files in the zip archive.

Exists True if the zip archive exists, false if not. Read only.

Methods

Add

Arguments 1 (file or directory name)

Returns True if successful, false if not.

Description Adds a file or a directory to a zip archive.

Close

Arguments None

Returns True if successful, false if not.

Description Closes a zip archive; the zip ID will be discarded so no
further action on the zip archive is possible.

Extract

Arguments 1 (directory)

Returns True if the save was successful, false if the save failed.

Description Extracts the contents of a zip to the given directory.

46

Methods

Member

Arguments 1 (filename)

Returns String

Description Extracts the contents of a file inside a zip archive, and
returns its contents.

Remove

Arguments 1 (filename)

Returns True if the save was successful, false if the save failed.

Description Removes a file from a zip archive.

Write

Arguments None

Returns True if the save was successful, false if the save failed.

Description Write the zip archive to disk.

Description The Zip object can be used to create and edit zip archives. Any changes to the zip object’s
properties will not be saved to disk until the Write() method is executed. Zip’s
functionality is written in Javascript and is contained in objects.js in the "core" directory.

Kronic also features a function named open(), written to make using the File object a bit
more intuitive.

open
var settings_file = open("kronos.xml");
if(settings_file) {
 print("File opened successfully!");
 print(settings_file.Content);
} else {
 print("kronos.xml doesn’t exist!");
}

Arguments 1 (filename)

Returns If the file exists, and is not a zip archive, open() will return a File object loaded with the
file’s contents. If the file exists, and is a zip archive, open() will return a Zip object for that
file. If the file passed is a directory, open() will return a Directory object. Otherwise, the
function returns "undefined".

Description Opens a file for editing or analysis. open()’s functionality is written in Javascript and is
contained in functions.js in the "core" directory.

47

Examples
Source code for all examples can be found in kronos/docs/examples

DCC Partyline

The source code for this example can be found in docs/examples/partyline.js

In this example, we’re going to implement a basic DCC chat partyline. This will be a simple
partyline: no channels, and only one command that returns a list of users on the partyline. A
partyline is a sort of chatroom inside the bot; all of the users connect directly to the bot,
bypassing the IRC server. The bot hosts the chat for all the other users.

We’re going to use 5 hooks ("dcc-chat-request", "dcc-start", "dcc-incoming", "dcc-done", and
"dcc-error"), 5 functions for the hooks, and a few functions that will send chat messages to
everyone in the partyline and track users.

Let’s start with something simple. First, we need to create a variable to track users; we’ll also
create an object to represent each user:

// This array will contain all connected users
var ChatUsers = new Array();

var User = function(cookie,nick) {
 this.Cookie = cookie;
 this.Nick = nick;
}

A "cookie" is an identifier sent to the user when they connect; it’s how the bot remembers who
is who. Without a user’s "cookie", the bot has no way to interact with that user. These
"cookies" will be stored in our array, ChatUsers. There’s no need to generate this value; it’ll
be automatically generated by the bot on connection.

48

Now, let’s create a function to add users to the user list (add_chat_user()) and another
function to remove users from the user list (remove_chat_user()):

function add_chat_user(cookie,nick) {
 var newuser = new User(cookie,nick);
 ChatUsers.push(newuser);
}

function remove_chat_user(cookie) {
 for(var i=0, len=ChatUsers.length; i < len; i/+){
 if(ChatUsers[i].Cookie == cookie){
 ChatUsers.splice(i,1);
 break;
 }
 }
}

Our user management now works like this: when a user first connects to the partyline, we
add the user to our user list by calling add_chat_user(). This saves each user’s cookie
and nick. When a user disconnects from chat, we call remove_chat_user() to remove
them from the user list. With that out of the way, let’s write a function to broadcast chat to
everyone on the partyline!

function chat(sender,msg){
 for(var i=0, len=ChatUsers.length; i < len; i/+){

 // Send chat messages to everyone on the partyline
 // except for the user that sent the chat
 if(ChatUsers[i].Nick != sender){
 dcc(ChatUsers[i].Cookie,msg);
 }

 }
}

This function steps through the user list and sends a chat message to every person on the list
except the user that sent the chat message. With our support functions and variables all set
up, it’s time to start writing our hook functions. The first one we’re going to write is the
easiest:

function dcc_chat_request(){
 return true;
}

49

dcc_chat_request() is the hook function for the "dcc-chat-request" event. It’s called
every time a user tries to initiate DCC chat with the bot; if this function returns true, the bot
will accept the chat request, and if the function returns false it will reject the request. If we
wanted to get fancy, we could implement some kind of user management functionality, like
only allowing users with certain nicks to join, but we’re not worried about that for this example.
We’ll just return true by default and accept chat requests from anyone who asks.

When a user first enters the chat, we should announce that to the other users. We also need
to add the new user to our user list:

function dcc_start(args){

 // Check the type of DCC session starting, so that we can ignore users
 // uploading or downloading files from or to the bot
 if(args.Type=="GET"){ return; }
 if(args.Type=="SEND"){ return; }

 // Add the user to the user list
 add_chat_user(args.Cookie,args.Nick);

 // Let everyone know who joined!
 chat(args.Nick,args.Nick + " has joined the partyline!");
}

Since we’ve handled connecting to the partyline, let’s handle disconnecting from the partyline.
When a user disconnects, we need to remove that user from the user list, and let the other
users know they disconnected. We’ll use two hook events for this: one for when a user
disconnects willingly, and one for if they are disconnected due to an error:

function dcc_done(args){

 // Ignore DCC events from non-chat users
 if(args.Type/="GET"){ return; }
 if(args.Type/="SEND"){ return; }

 // Remove the user from the user list
 remove_chat_user(args.Cookie);

 // Let the other chatters know
 chat(args.Nick,args.Nick + " has left the partyline!");
}

function dcc_error(args){

 // Ignore DCC events from non-chat users
 if(args.Type/="GET"){ return; }
 if(args.Type/="SEND"){ return; }

 // Remove the user from the user list
 remove_chat_user(args.Cookie);

50

 // Let the other chatters know
 // We’re setting the chat’s nick to ‘0’ so
 // that this error gets sent to EVERYONE, as
 // no user will have ‘0’ as a nick (and thus,
 // no user will be skipped when we send this chat)
 chat('0',args.Nick + " has left the partyline! (" + args.Error + ")");
}

The last step is to handle user chat! We’re going to hook "dcc-incoming", so that any chat
sent to the bot gets sent to all the users. We’re also going to look for any user sending a
command; more specifically, we’re going to check to see if any user has sent the bot "!who"
as a command, and if they have, we’re going to send that user a list of users on the partyline.
All that’s left to do, after all that, is set up our hooks:

function dcc_incoming(args){

 // If the user sends us "!who" as a message//.
 if(args.Message/="!who"){

 // Compile a user list
 var ulist = "Users on the partyline: ";
 for(var i=0, len=ChatUsers.length; i < len; i/+){
 ulist = ulist + ChatUsers[i].Nick + " ";
 }

 // Send the user list to the requesting user
 dcc(args.Cookie,ulist);

 // There’s nothing more to do (we don’t want to send "!who" as a chat
 // message to the other users), so exit the function
 return;
 }

 // Send chat to the user list
 chat(args.Nick,args.Nick + ": " + args.Message);
}

hook("dcc-chat-request","partyline",dcc_chat_request);
hook("dcc-start","partyline",dcc_start);
hook("dcc-incoming","partyline",dcc_incoming);
hook("dcc-done","partyline",dcc_done);
hook("dcc-error","partyline",dcc_error);

Our partyline is complete! Users just need to initiate a DCC chat session with the bot to join
the partyline. Save your code to a file named "partyline.js" (or copy the file in the
docs/examples/ directory) and load your bot with Kronos:

user@host:/home/user$ perl kronos.pl -C settings.xml partyline.js

51

Kronic Shell

The source code for this example can be found in docs/examples/kshell.js

In this example, we’re going to create a ruidimentary Kronic shell for a bot. To use it, connect
with the bot via DCC chat, send it the password, and then send Kronic commands/functions
to the bot, which it will execute. Please note: the security in this example is really, really
weak. This is an example to show Kronic use only.

First, we need to create two variables. One to store our password, and one to track if
someone is logged in or not:

// This variable will contain our password.
// You should probably change this :-)
var PASSWORD = "changeme";

// This variable will track if someone is logged in or not.
// When they log in, we set this to the user’s cookie.
// When they log out (or disconnect) we reset it to undefined.
var LOGGED_IN = undefined;

Now, we’re going to make it so that only one user can be logged in at a time. When someone
is logged it, the bot will reject all incoming DCC chat requests. We’ll handle this with a hook
to "dcc-chat-request":

// dcc-chat-request event
function dcc_chat_request(){
 if(LOGGED_IN){
 return false;
 } else {
 return true;
 }
}

// Now, hook the event
hook("dcc-chat-request","kshell",dcc_chat_request);

52

We’ll hook "dcc-incoming" to handle logging in and command execution. Since our shell will
only reject users once someone is logged in, it’s a realistic possibility that more than one user
might try to connect to the bot and unsuccessfully log in before an authorized user does.
We’ll mitigate that by allowing multiple users to send chat to the bot, but once someone is
logged in, no one else can, even if they have the password.

// dcc-incoming event
function dcc_incoming(args){

 // Scan input for the password
 if(args.Message == PASSWORD){

 // Someone might have already connected to the
 // bot, but not logged in. This is to make sure
 // only one user is logged in at a time.
 if(LOGGED_IN){
 dcc(args.Cookie,"Sorry, someone is already logged in");
 } else {

 // Log the user in
 LOGGED_IN = args.Cookie;
 dcc(args.Cookie,"Logged in!");
 }
 return;
 }

 // If you’re not logged in, you can go no further :-)
 if(LOGGED_IN != args.Cookie){
 return;
 }

 // Use the "eval()" function to execute code
 eval(args.Message);
}

// Hook the event
hook("dcc-incoming","kshell",dcc_incoming);

53

Now, we’re going to use a bit of a hack: we’re going to hook the same function to two different
events. We’re going to hook "dcc-done" and "dcc-error" to log out any logged in user:

// dcc-done and dcc-error events
function dcc_logout(args){
 if(args.Type=="GET"){ return; }
 if(args.Type=="SEND"){ return; }

 // If the disconnecting user is the one logged in//.
 if(args.Cookie == LOGGED_IN){
 // //.log them out.
 LOGGED_IN = undefined;
 }
}

hook("dcc-done","kshell",dcc_logout);
hook("dcc-error","kshell",dcc_logout);

Load your script into Kronos, and your shell is ready to use! Just send the bot the same
commands you would in your Kronic scripts, and watch Kronos do your bidding!

54

Gnu General
Public License 30.

"In real open source, you have the right to control your own destiny." - Linus Torvalds

Gnu General Public License
Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program--to make
sure it remains free software for all its users. We, the Free Software Foundation, use the GNU
General Public License for most of our software; it applies also to any other work released
this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs, and that
you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you
to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of
the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they know
their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on
the software, and (2) offer you this License giving you legal permission to copy, distribute and/
or modify it.

55

For the developers' and authors' protection, the GPL clearly explains that there is no warranty
for this free software. For both users' and authors' sake, the GPL requires that modified
versions be marked as changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally
incompatible with the aim of protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is precisely
where it is most unacceptable. Therefore, we have designed this version of the GPL to
prohibit the practice for those products. If such problems arise substantially in other domains,
we stand ready to extend this provision to those domains in future versions of the GPL, as
needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in
those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be
used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.
“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is
addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring
copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you
directly or secondarily liable for infringement under applicable copyright law, except executing
it on a computer or modifying a private copy. Propagation includes copying, distribution (with
or without modification), making available to the public, and in some countries other activities
as well.

To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer of a
copy, is not conveying.

56

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes
a convenient and prominently visible feature that (1) displays an appropriate copyright notice,
and (2) tells the user that there is no warranty for the work (except to the extent that
warranties are provided), that licensees may convey the work under this License, and how to
view a copy of this License. If the interface presents a list of user commands or options, such
as a menu, a prominent item in the list meets this criterion.

1. Source Code.
The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which is
not part of that Major Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means a
major essential component (kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a compiler used to produce the work, or
an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to modify
the work, including scripts to control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free programs which are
used unmodified in performing those activities but which are not part of the work. For
example, Corresponding Source includes interface definition files associated with source files
for the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication or
control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically
from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and
are irrevocable provided the stated conditions are met. This License explicitly affirms your
unlimited permission to run the unmodified Program. The output from running a covered work
is covered by this License only if the output, given its content, constitutes a covered work.
This License acknowledges your rights of fair use or other equivalent, as provided by
copyright law.

57

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others
for the sole purpose of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with the terms of this License
in conveying all material for which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your copyrighted material
outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on
20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against the work's users, your
or third parties' legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code; keep intact all notices of
the absence of any warranty; and give all recipients a copy of this License along with the
Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also meet
all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant
date.
b) The work must carry prominent notices stating that it is released under this License and
any conditions added under section 7. This requirement modifies the requirement in section 4
to “keep intact all notices”.
c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7

58

additional terms, to the whole of the work, and all its parts, regardless of how they are
packaged. This License gives no permission to license the work in any other way, but it does
not invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.
A compilation of a covered work with other separate and independent works, which are not by
their nature extensions of the covered work, and which are not combined with it such as to
form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation's users beyond what the individual works permit. Inclusion of a
covered work in an aggregate does not cause this License to apply to the other parts of the
aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms
of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable physical
medium customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and valid
for as long as you offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the Corresponding Source for all
the software in the product that is covered by this License, on a durable physical medium
customarily used for software interchange, for a price no more than your reasonable cost of
physically performing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially,
and only if you received the object code with such an offer, in accord with subsection 6b.
d) Convey the object code by offering access from a designated place (gratis or for a charge),
and offer equivalent access to the Corresponding Source in the same way through the same
place at no further charge. You need not require recipients to copy the Corresponding Source
along with the object code. If the place to copy the object code is a network server, the
Corresponding Source may be on a different server (operated by you or a third party) that
supports equivalent copying facilities, provided you maintain clear directions next to the object
code saying where to find the Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is available for as long as
needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

59

A separable portion of the object code, whose source code is excluded from the
Corresponding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything
designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a
consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the
product.

“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work
in that User Product from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified object code is in no case
prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a
User Product, and the conveying occurs as part of a transaction in which the right of
possession and use of the User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the Corresponding Source
conveyed under this section must be accompanied by the Installation Information. But this
requirement does not apply if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue
to provide support service, warranty, or updates for a work that has been modified or installed
by the recipient, or for the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and adversely affects the
operation of the network or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation available
to the public in source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.
“Additional permissions” are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable to
the entire Program shall be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions apply only to part of the

60

Program, that part may be used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written to
require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of
this License; or
b) Requiring preservation of specified reasonable legal notices or author attributions in that
material or in the Appropriate Legal Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original version;
or
d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
e) Declining to grant rights under trademark law for use of some trade names, trademarks, or
service marks; or
f) Requiring indemnification of licensors and authors of that material by anyone who conveys
the material (or modified versions of it) with contractual assumptions of liability to the
recipient, for any liability that these contractual assumptions directly impose on those
licensors and authors.
All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction, you
may remove that term. If a license document contains a further restriction but permits
relicensing or conveying under this License, you may add to a covered work material
governed by the terms of that license document, provided that the further restriction does not
survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant
source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the third
paragraph of section 11).

61

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to notify
you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, you do not qualify to receive new licenses for the
same material under section 10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify any covered work.
These actions infringe copyright if you do not accept this License. Therefore, by modifying or
propagating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the
original licensors, to run, modify and propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially
all assets of one, or subdividing an organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that transaction who receives a
copy of the work also receives whatever licenses to the work the party's predecessor in
interest had or could give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if the predecessor has it
or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge
for exercise of rights granted under this License, and you may not initiate litigation (including a
cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.
A “contributor” is a copyright holder who authorizes use under this License of the Program or
a work on which the Program is based. The work thus licensed is called the contributor's
“contributor version”.

62

A contributor's “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but do
not include claims that would be infringed only as a consequence of further modification of the
contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or
commitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent
license to a party means to make such an agreement or commitment not to enforce a patent
against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a
manner consistent with the requirements of this License, to extend the patent license to
downstream recipients. “Knowingly relying” means you have actual knowledge that, but for
the patent license, your conveying the covered work in a country, or your recipient's use of the
covered work in a country, would infringe one or more identifiable patents in that country that
you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some of
the parties receiving the covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant is automatically extended
to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights
that are specifically granted under this License. You may not convey a covered work if you are
a party to an arrangement with a third party that is in the business of distributing software,
under which you make payment to the third party based on the extent of your activity of
conveying the work, and under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license (a) in connection with
copies of the covered work conveyed by you (or copies made from those copies), or (b)
primarily for and in connection with specific products or compilations that contain the covered
work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.

63

Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you may not
convey it at all. For example, if you agree to terms that obligate you to collect a royalty for
further conveying from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely from conveying the
Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU Affero General Public
License into a single combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work, but the special
requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU General Public License “or any later version” applies to it, you
have the option of following the terms and conditions either of that numbered version or of
any later version published by the Free Software Foundation. If the Program does not specify
a version number of the GNU General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General
Public License can be used, that proxy's public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

64

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively state the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <https://www.gnu.org/licenses/>.

65

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in
an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate parts of the
General Public License. Of course, your program's commands might be different; for a GUI
interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU GPL, see <https://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Lesser General Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

66

Kronic Index
Functions and objects and variables, oh my!

base64.......................22
basename.....................35
bold.........................28
catdir.......................35
catfile......................35
cd...........................36
chmod........................36
color........................28
cwd..........................36
dcc..........................29
delay........................33
dirlist......................36
exec.........................22
exit.........................23
File object..................44
flocation....................37
fmode........................37
fpermissions.................37
fread........................37
fsize........................37
fwrite.......................38
hook.........................33
invite.......................29
isdir........................38
isfile.......................38
italic.......................29
load.........................23
mkdir........................38
mkpath.......................39
mode.........................29
nick.........................30
notice.......................30
open.........................46
oper.........................30
part.........................30

prettyuptime.................23
print........................23
quit.........................31
raw..........................31
rmdir........................39
rmfile.......................39
rmpath.......................39
say..........................31
send.........................31
sha256.......................24
sha512.......................24
shuffle......................24
temp.........................40
termcolor....................25
timestamp....................24
tokens.......................24
topic........................32
trim.........................26
unbase64.....................26
underline....................32
unhook.......................34
uptime.......................26
verbose......................26
warn.........................27
who..........................32
zadd.........................41
zclose.......................41
zextract.....................41
Zip object...................45
zlist........................42
zmember......................42
zopen........................42
zremove......................42
zwrite.......................43

67

68

