
Instructions for EES 3310/5310 Lab #3
Exercises with the MODTRAN Model

Jonathan Gilligan

Lab: Mon. Sept. 10. Due: Mon. Sept. 17.

Instructions

It would be good to print these instructions and bring them to lab on Monday, or else to have the
PDF with the instructions handy during lab.

For these exercises, I recommend that you work on them with the interactive web-based MODTRAN
models to get a feel for how the models apply to the exercise.

Once you are clear what you are doing, you can use the R scripts and RMarkdown to turn those
insights into reproducible research.

Using MODTRAN with RMarkdown.

This RMarkdown document includes the line source("scripts/modtran.R"), which loads a
script with the following functions:

• run_modtran() allows you to automatically download a file with the data from a MODTRAN
run. You call it with the following arguments:

– filename is the name of the file to save the data to. I recommend giving it a meaningful
name: for instance, a run with 550 ppm CO2 and 3.4 ppm methane might be called
“modtran_440_34.txt”. Make up your own file names, but think about how you will
tell which is which.

– co2_ppm is the amount of CO2 in parts per million. The default is 400.

– ch4_ppm is the amount of methane in parts per million. The default is 1.7.

– trop_o3_ppb is the amount of ozone in the troposphere, in parts per billion. The default
is 28. You probably won’t change this unless you’re setting all greenhouse gases to zero.

– strat_o3_scale is the amount of stratospheric ozone, relative to the naturally occur-
ring levels in the ozone layer. You probably won’t change this unless you’re setting all
greenhouse gases to zero.

– h2o_scale is the amount of water vapor, relative to the naturally occurring levels in the
atmosphere. You probably won’t change this unless you’re setting all greenhouse gases
to zero.

1

– freon_scale is the amount of freon chemicals (used for refrigerators and air condi-
tioners), relative to the current amounts. You probably won’t change this unless you’re
setting all greenhouse gases to zero.

– delta_t is the temperature offset, in degrees C. You adjust this to restore radiative
equilibrium after you change the amount of CO2 or other greenhouse gases.

– h2o_fixed is what quantity to hold fixed for water vapor. Possible values are “vapor
pressure” (the default), and “relative humidity”

– atmosphere is the locality in the MODTRAN model. Possible values are: “tropi-
cal” (the default), “midlatitude summer”, “midlatitude winter”, “subarctic summer”,
“subarctic winter”, and “standard” for the 1976 U.S. standard atmosphere.

– clouds is the specification of clouds and rain. Possible values are “none” (the default),
“cumulus”, “altostratus”, “stratus”, “stratocumulus”, “nimbostratus”, “drizzle”, “light
rain”, “medium rain”, “heavy rain”, “extreme rain”, “standard cirrus”, “subvisual cirrus”,
and “NOAA cirrus”.

Stratus clouds are flat, opaque, and low-altitude. Altostratus clouds are flat and
medium altitude. Cirrus clouds are thin and high-altitude. They are hard to model,
so there are three different varieties. Cumulus clouds are thick and stretch from low
altitudes to medium altitudes. Stratocumulus clouds are like thunder clouds. They
are very tall and reach from low altitudes to the top of the troposphere. Nimbostratus
clouds are low and thick, like stratus, but produce rain.

– altitude_km is the altitude, in kilometers above sea level, that you put your virtual
sensor in the model. The default is 70 km, which is above almost all of the atmosphere.

For some exercises, you may experiment with putting the sensor somewhere around 8 to
12 km, which is the top of the troposphere, below the stratospheric ozone layer.

For other exercises, you might want to put it at 0 km (ground level), and set it to look up
instead of down, so you can see the IR radiation coming down to the ground from the
atmosphere instead of looking at the IR radiation going out to space.

– looking is the direction the sensor is looking. The options are “down” (the default) or
“up”.

Any arguments you don’t specify explicitly take on their default value. Thus,
run_modtran(file.path(data_dir, "modtran_experiment_1.txt"), co2_ppm

= 800, delta_t = 1.0, h2o_fixed = "relative humidity") would run with all the
default values, except for 800 ppm CO2, a temperature offset of 1°C, and holding relative
humidity fixed.

• plot_modtran reads a MODTRAN output file and generates a plot. There are many argu-
ments, and I won’t explain them all here, but the important ones are:

– filename is the MODTRAN output file with the data to use for the plot.

2

– descr is an optional string to use for the title of the plot. If you don’t specify anything,
the function will make a title that indicates the CO2 concentration and the altitude of
the virtual sensor.

– i_out_ref is a reference value for the outgoing infrared. If you don’t specify it, it’s
ignored, but if you specify it, then the plotting function adds an annotation to indicate
the difference in outgoing IR between the current run being plotted and the reference
value. Typically, you’d run a baseline run of MODTRAN with default parameters and
then use the upward IR flux from that run as i_out_ref when you change the CO2
concentration or other model parameters.

– delta_t is the temperature offset for this model run. If you specify it, the plotting
function adds an annotation to indicate it.

– text_size allows you to adjust the size of the text used for axis labels and the plot title.

• read_modtran(filename) allows you to read in a MODTRAN output file and examine the
data. This function returns a list with 7 elements:

– spectrum is a data tibble with the spectral information (wavelength lambda, wavenum-
ber k, outgoing IR intensity tk, and a number of other variables.)

– profile is the profile of the atmosphere: a tibble with three columns: Z is the altitude
in km, P is the atmospheric pressure, in millibars, and T is the temperature in Kelvin.

– co2 is the atmospheric CO2 concentration

– ch4 is the atmospheric methane concentration

– i_out is the intensity of the outgoing IR radiation flux.

– t_ground is the ground temperature (in Kelvin) used in the model run. (Remember that
this is something you set when you run the model. MODTRAN cannot calculate the
way ground temperature changes when you change greenhouse gases, clouds, or other
characteristics of the atmosphere.)

– t_tropo is the temperature at the tropopause (in Kelvin).

– h_tropo is the height of the tropopause (in km).

– alt is the altitude of the virtual sensor.

– sensor_direction is the direction of the virtual sensor (“up” or “down”).

Converting temperature units

• Some handy functions for converting temperature measurements from one unit of measure-
ment to another are:

– ktof(T) converts T from Kelvin to Fahrenheit.

– ktoc(T) converts T from Kelvin to Celsius.

3

– ftok(T) converts T from Fahrenheit to Kelvin.

– ctok(T) converts T from Celsius to Kelvin.

– ctof(T) converts T from Celsius to Fahrenheit.

– ftoc(T) converts T from Fahrenheit to Celsius.

But be aware that if you want to convert the difference between two temperatures, you need
to convert the temperatures and then take the difference:

t1_k = 254 # Kelvin temperature

t2_k = 288 # Kelvin temperature

delta_t_k = t2_k - t1_k # Difference in temeprature, in Kelvin

delta_t_k

[1] 34

t1_f = ktof(t1_k) # Fahrenheit temperatures

t2_f = ktof(t2_k)

t1_f

[1] -2.47

t2_f

[1] 58.73

delta_t_f = t2_f - t1_f # Difference in temperature, in Fahrenheit

delta_t_f

[1] 61.2

This will give the wrong answer for the

temperature difference in Fahrenheit!

ktof(delta_t_k)

[1] -398.47

You see that 58.73−−2.47 6=−398.47.

• Some variables that I have defined for you are:

– sigma_sb is the Stefan-Boltzmann constant.

– solar_constant is the Solar Constant (the intensity of sunlight at the top of the
atmosphere).

4

Examples:

run_modtran(filename = file.path(data_dir, "modtran_baseline.txt"))

modtran_baseline = read_modtran(file.path(data_dir, "modtran_baseline.txt"))

Here is how you extract the various values from modtran_baseline:

baseline_i_out <- modtran_baseline$i_out

baseline_t_trop <- modtran_baseline$t_trop

The baseline MODTRAN run has Iout = 298.67 and Ttropopause = 194.8.

plot_modtran(file.path(data_dir, "modtran_baseline.txt"))

Iout = 298.67

78910121417202530354050100

0.0

0.1

0.2

0.3

0.4

0.5

400 800 1200

Wavelength (µm)

Wavenumber (cm−1)

In
te

ns
ity

 (
W

m
2 cm

−1
)

MODTRAN
300 K
280 K
260 K
240 K
220 K

MODTRAN: 400 ppm CO2, 70 km altitude

run_modtran(filename = file.path(data_dir, "modtran_double_co2.txt"), co2_ppm = 800)

plot_modtran(file.path(data_dir, "modtran_double_co2.txt"), i_out_ref = baseline_i_out, delta_t = 0)

5

Iout = 295.34 ∆Iout = − 3.33

∆Tground = 0K

78910121417202530354050100

0.0

0.1

0.2

0.3

0.4

0.5

400 800 1200

Wavelength (µm)

Wavenumber (cm−1)

In
te

ns
ity

 (
W

m
2 cm

−1
)

MODTRAN
300 K
280 K
260 K
240 K
220 K

MODTRAN: 800 ppm CO2, 70 km altitude

run_modtran(filename = file.path(data_dir, "modtran_double_co2_warming.txt"), co2_ppm = 800, delta_t = 0.76)

plot_modtran(file.path(data_dir, "modtran_double_co2_warming.txt"), i_out_ref = baseline_i_out, delta_t = 0.76)

6

Iout = 298.67 ∆Iout = 0

∆Tground = 0.76K

78910121417202530354050100

0.0

0.1

0.2

0.3

0.4

0.5

400 800 1200

Wavelength (µm)

Wavenumber (cm−1)

In
te

ns
ity

 (
W

m
2 cm

−1
)

MODTRAN
300 K
280 K
260 K
240 K
220 K

MODTRAN: 800 ppm CO2, 70 km altitude

A few new R functions that we will use in this lab:

Iterating over a series

Sometimes you want to repeat something in R, executing the same commands for many different
values of a variable. We can do this with the for command:

df = tibble(x = 1:10)

for (i in 1:4) {

p = ggplot(df, aes(x = x, y = x^i)) +

geom_point() + geom_line() +

labs(x = "x", y = str_c("x to the power ", i))

plot(p)

}

7

2.5

5.0

7.5

10.0

2.5 5.0 7.5 10.0
x

x
to

 th
e

po
w

er
 1

0

25

50

75

100

2.5 5.0 7.5 10.0
x

x
to

 th
e

po
w

er
 2

0

250

500

750

1000

2.5 5.0 7.5 10.0
x

x
to

 th
e

po
w

er
 3

0

2500

5000

7500

10000

2.5 5.0 7.5 10.0
x

x
to

 th
e

po
w

er
 4

Combining character variables

R has many functions for manipulating text. When R stores text, it stores it in character variables
(these are also sometimes called “strings” because text is like a string of characters). For instance,
we might want to make a label or a filename by combining several variables. Three functions that
we can use are str_c, from the stringr package and paste and paste0, from basic R. All of
these work pretty much the same way:

print(paste("mail", "box"))

[1] "mail box"

print(paste("mail", "box", sep = ""))

8

[1] "mailbox"

print(paste0("infra", "red"))

[1] "infrared"

print(str_c("infra", "red"))

[1] "infrared"

print(str_c("infra", "red", sep = "-"))

[1] "infra-red"

print(str_c("one", "two", "three", "four", sep = ", "))

[1] "one, two, three, four"

print(str_c(10, " km"))

[1] "10 km"

x = 50

print(str_c(x, " Watts"))

[1] "50 Watts"

print(str_c(x, "Watts", sep = " "))

[1] "50 Watts"

Notice how paste puts spaces between the strings when it combines them unless you specify
that sep (the separator) should be something different. paste0 works just like paste, except that
it doesn’t have a separator, so the variables are combined without an extra space. str_c is like
paste0, except that you can specify a separator if you do want something in between the different
variables.

Calculating with leads and lags

Sometimes, when we are using mutate with a data tibble, we might want to look at differences
between a row and the row before or after it in the tibble. We can do this with the lead and lag

functions:

In the examnple below, the column u gets the value of the current row of y minus the previous row
of y, and the column v gets the value of the next row of y minus the current row of y. Note that
where there isn’t a previous row, lag returns NA (missing value), and similarly for lead when there
isn’t a next row.

9

tbl = tibble(x = 0:5, y = x^2)

tbl = tbl %>% mutate(u = y - lag(y), v = lead(y) - y)

tbl

A tibble: 6 x 4

x y u v

<int> <dbl> <dbl> <dbl>

1 0 0 NA 1

2 1 1 1 3

3 2 4 3 5

4 3 9 5 7

5 4 16 7 9

6 5 25 9 NA

If you want to lead or lag by more than one row, you can just say, lag(y, 5) to get the value of y
5 rows before the current one.

tbl = tibble(x = 1:10)

tbl = tbl %>% mutate(before = lag(x), after = lead(x),

before.2 = lag(x, 2), after.3 = lead(x, 3))

tbl

A tibble: 10 x 5

x before after before.2 after.3

<int> <int> <int> <int> <int>

1 1 NA 2 NA 4

2 2 1 3 NA 5

3 3 2 4 1 6

4 4 3 5 2 7

5 5 4 6 3 8

6 6 5 7 4 9

7 7 6 8 5 10

8 8 7 9 6 NA

9 9 8 10 7 NA

10 10 9 NA 8 NA

Modifying x and y axes in ggplot

It is easy to modify the x or y axis in ggplot. For instance, if you want to put specific limits on the
axis, or change where the labels go, you can use scale_x_continuous or scale_y_continuous:

10

tbl = tibble(x = 1:200, y = (x / 100)^5)

ggplot(tbl, aes(x = x, y = y)) + geom_line()

0

10

20

30

0 50 100 150 200
x

y

ggplot(tbl, aes(x = x, y = y)) + geom_line() +

scale_x_continuous(limits = c(0,150), breaks = seq(0, 150, 25)) +

scale_y_continuous(limits = c(0,10))

0.0

2.5

5.0

7.5

10.0

0 25 50 75 100 125 150
x

y

tbl = tibble(x = 1:200, y = 5 - 2 * x + 3 * x^2)

Note that in R when we are typing numbers, we can express scientific notation

as 1E6 for 1,000,000 2.67E-3 for 0.00267

11

ggplot(tbl, aes(x = x, y = y)) + geom_line() +

scale_x_log10(limits = c(1,1000)) +

scale_y_log10(limits = c(1,1E6))

1e+01

1e+03

1e+05

1 10 100 1000
x

y

Exercises for Lab #3

Chapter 4 Exercises

Exercise 4.1: Methane

Methane has a current concentration of 1.7 ppm in the atmosphere and is doubling at a faster rate
than CO2.

a) Would an additional 10 ppm of methane in the atmosphere have a larger or smaller impact on
the outgoing IR flux than an additional 10 ppm of CO2 at current concentrations?

b) Where in the spectrum does methane absorb? What concentration does it take to begin to
saturate the absorption in this band? Explain what you are looking at to judge when the gas is
saturated.

Suggestion:

• Run MODTRAN with no greenhouse gases, except 0.4 ppm of methane.

• Run MODTRAN several times, successively doubling the amount of methane: 0.4 ppm,
0.8 ppm, 1.6 ppm, . . . 102.4 ppm.

Hint: You can use the following R commands to do this: “‘ methane_data = tibble() #
create a blank data tibble

12

for (x in 0:11) { # Repeat everything between the braces “{}” for x taking on # each
value in 0, 1, 2, . . . , 11.

p_methane = 0.4 * (2^x) # methane concentration is 0.4 times 2 to the

power of x.

Create a character variable that will be a file name of the form

file.path(data_dir, "methane_xx_x.txt"), where xx_x is the methane

concentration, with an underscore for the decimal point.

file_name = formatC(p_methane, digits = 1, decimal.mark = "_",

format = "f") %>%

str_c('methane_', ., ".txt") %>%

file.path(data_dir, .)

Now run MODTRAN

run_modtran(file_name, co2_ppm = 0, ch4_ppm = p_methane,

trop_o3_ppb = 0, strat_o3_scale = 0, h2o_scale = 0,

freon_scale = 0,

delta_t = 0, h2o_fixed = "vapor pressure",

atmosphere = "tropical", clouds = "none",

altitude_km = 70, looking = "down")

Read the MODTRAN results into R

results = read_modtran(file_name)

Create a data tibble with columns for the methane concentration

and I out, and append it to the end of the tibble methane_data

df = tibble(methane = results$ch4, i_out = results$i_out)

methane_data = bind_rows(methane_data, df)

} “This will run MODTRAN for the different values of methane concentration

and save them in the "_data" folder as "methane_0_4.txt", "methane_0_8.txt",

"methane_1_6.txt", and so forth, up to "methane_819_2.txt", and

also create a data tibblemethane_data‘ with a list of methane concentrations
and the corresponding Iout.

• Use mutate to add a new column change, which contains the change in Iout between the
previous row and this one. You can use the lag command to calculate this, as described
above in the “new R functions” section.

methane_data = methane_data %>% mutate(change = i_out - lag(i_out))

Now plot i_out versus the methane concentration several ways:

– First, just plot i_out versus methane:

ggplot(methane_data, aes(x = methane, y = i_out)) +

geom_point(size = 2) +

13

geom_line(size = 1) +

labs() # add parameters to labs to label your axes.

– Next, plot the same data, but with a logarithmic x-axis (use scale_x_log10, as
described above in the “New R Functions” section)

– Next, plot methane_concentration, but assign the column change to the y axis,
instead of the column i_out.

– Think back to the slides I showed in class #6 about identifying band saturation. Do
you see a place where the successive changes in i_out flatten out? Estimate the
concentration of methane where absorption saturates.

c) Would a doubling of methane have as great an impact on the heat balance as a doubling of
CO2?

Suggestion:

• Run MODTRAN in its default configuration (400 ppm CO2 and 1.7 ppm methane)
• Run it again with 10 ppm of extra methane
• Run it again with the default methane (1.7 ppm) but 10 ppm extra CO2.
• Compare Iout for the three runs.

d) What is the “equivalent CO2” of doubling atmospheric methane? That is to say, how many
ppm of CO2 would lead to the same change in outgoing IR radiation energy flux as doubling
methane? What is the ratio of ppm CO2 change to ppm methane change?

Suggestion: This is easier to do interactively with the web-based interface to MODTRAN
than by running it in R.

• Run MODTRAN in its default configuration (400 ppm CO2 and 1.7 ppm methane)
• Run MODTRAN again with the methane doubled. Note Iout.
• Return methane to the default value (1.7 ppm), and adjust CO2 until Iout is the same as

it was for the doubled methane. Note what concentration of CO2 does this.
• Now you can use R to run MODTRAN with doubled methane and with the equivalent

concentration of CO2, and save these runs to the disk.

Exercise 4.2: CO2 (Graduate students only)

a) Is the direct effect of increasing CO2 on the energy output at the top of the atmosphere larger
in high latitudes or in the tropics? Compare the change in Iout from doubling CO2 with the
atmosphere set to tropical, midlatitude summer, and subartcic summer.

For each atmosphere, first record Iout with CO2 at 400 ppm and then record the change when
you increase CO2 to 800 ppm.

b) Set pCO2 to an absurdly high value of 10,000 ppm. You will see a spike in the CO2 absorption
band. What temperature is this light coming from? Where in the atmosphere do you think
this comes from?

14

Now turn on clouds and run the model again. Explain what you see. Why are night-time
temperatures warmer when there are clouds?

Exercise 4.3: Water vapor

Our theory of climate presumes that an increase in the temperature at ground level will lead to an
increase in the outgoing IR energy flux at the top of the atmosphere.

a) How much extra outgoing IR would you get by raising the temperature of the ground by 5°C?
What effect does the ground temperature have on the shape of the outgoing IR spectrum and
why?

• Note the Iout for the default conditions. Then set delta_t to 5 and run MODTRAN
again, and note the new value of Iout.

• Plot the spectrum for both runs and compare.

b) More water can evaporate into warm air than into cool air. Change the model settings to hold
the water vapor at constant relative humidity rather than constant vapor pressure (the default),
calculate the change in outgoing IR energy flux for a 5°C temperature increase. Is it higher or
lower? Does water vapor make the Earth more sensitive to CO2 increases or less sensitive?

c) Now see this effect in another way.

• Starting from the default base case, record the total outgoing IR flux.

• Now double pCO2. The temperature in the model stays the same (that’s how the model
is written), but the outgoing IR flux goes down.

• Using constant water vapor pressure, adjust the temperature offset until you get the
original IR flux back again. Record the change in temperature

• Now repeat the exercise, but holding the relative humidity fixed instead of the water
vapor pressure.

• The ratio of the warming when you hold relative humidity fixed to the warming when
you hold water vapor pressure fixed is the feedback factor for water vapor. What is it?

Chapter 5 Exercise

Exercise 5.2: Skin Height

a) Run the MODTRAN model in using the “Tropical” atmosphere, without clouds, and with
present-day pCO2 (400 ppm). Use the ground temperature reported by the model to calculate
εσT 4

ground, the heat flux emitted by the ground. Assume ε = 1, and I have already provided
the value of the Stefan-Boltzmann constant σ , as the R variable sigma_sb, which equals
5.67 × 10-8. (I defined it in the script “utils.R”, which I loaded in the “setup” chunk in the
RMarkdown document).

15

Next, look at the outgoing heat flux at the top of the atmosphere (70 km) reported by the
MODTRAN model. Is it greater or less than the heat flux that you calculated was emitted by
the ground?

b) Use the outgoing heat flux at the top of the atmosphere to calcuate the skin temperature (use
the equation Iout = εσT 4

skin)). What is the skin temperature, and how does it compare to the
ground temperature and the temperature at the tropopause, as reported by the MODTRAN
model?

Assuming an environmental lapse rate of 6K/km, and using the skin temperature that you
calculated above, and the ground temperature from the model, what altitude would you expect
the skin height to be?

c) Double the CO2 concentration and run MODTRAN again. Do not adjust the ground tem-
perature. Repeat the calculations from (b) of the skin temperature and the estimated skin
height.

What is the new skin temperature? What is the new skin height?

d) Put the CO2 back to today’s value, but add cirrus clouds, using the “standard cirrus” value for
the clouds. Repeat the calculations from (b) of the skin temperature and the skin height.

What is the new skin temperature? What is the new skin height? Did the clouds or the doubled
CO2 have a greater effect on the skin height?

16

	Instructions
	Using MODTRAN with RMarkdown.
	Converting temperature units

	Examples:

	A few new R functions that we will use in this lab:
	Iterating over a series
	Combining character variables
	Calculating with leads and lags
	Modifying x and y axes in ggplot

	Exercises for Lab #3
	Chapter 4 Exercises
	Exercise 4.1: Methane
	Exercise 4.2: CO2 (Graduate students only)
	Exercise 4.3: Water vapor

	Chapter 5 Exercise
	Exercise 5.2: Skin Height

