ECEN474: (Analog) VLSI Circuit Design Fall 2012

Lecture 17: Fully Differential Amplifiers & CMFB

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements & Agenda

- Preliminary report due 11/19
- Fully differential circuits
- Common-mode feedback circuits

Basic Operational Transconductance Amplifier Topologies

vin1

vin2

+

Fully-Differential Circuits

In general:

$$v_{o1} = \frac{v_{o1} - v_{o2}}{2} + \frac{v_{o1} + v_{o2}}{2} = \frac{v_{od}}{2} + v_{oc}$$

$$v_{o2} = \frac{v_{o2} - v_{o1}}{2} + \frac{v_{o1} + v_{o2}}{2} = -\frac{v_{od}}{2} + v_{oc}$$

➢ Hence

$$\begin{bmatrix} v_{od} \\ v_{oc} \end{bmatrix} = \begin{bmatrix} A_{dd} & A_{dc} \\ A_{cd} & A_{cc} \end{bmatrix} \begin{bmatrix} v_{id} \\ v_{ic} \end{bmatrix}$$

Differential-mode output

vo1

vo2

$$A_{dd} = \frac{v_{od}}{v_{id}} \bigg|_{Vic=0} \qquad A_{dc} = \frac{v_{od}}{v_{ic}} \bigg|_{Vid=0}$$

Common-mode output

Fully-Differential Filters: Effects of current source inpedance and mismatches

Y_s is the admittance associated with the current source 2IB

IB

 v_1^-

M1

 v_{01}

 Z_1

Fully-Differential Filters: Non-idealities

Voltage gain: Note the effects of the mismatches, especially in A_{dc} and A_{cd}

$$A_{dd} = \frac{v_{o1} - v_{o2}}{v_{i2} - v_{i1}} \bigg|_{v_{ic}=0} = \frac{g_{m1}g_{m2}}{g_{m1} + g_{m2} + Y_s} \bigg[Z_1 + Z_2 + \frac{Y_s}{2} \bigg(\frac{Z_1}{g_{m2}} + \frac{Z_2}{g_{m1}} \bigg) \bigg]$$

$$A_{dc} = \frac{v_{o1} - v_{o2}}{(v_{i2} + v_{i1})/2} \bigg|_{v_{id} = 0} = \frac{g_{m1}g_{m2}}{g_{m1} + g_{m2} + Y_s} \left[Y_s \left(\frac{Z_2}{g_{m1}} - \frac{Z_1}{g_{m2}} \right) \right]$$

$$A_{cd} = \frac{(v_{o2} + v_{o1})/2}{v_{i2} - v_{i1}} \bigg|_{v_{ic}=0} = \frac{g_{m1}g_{m2}}{g_{m1} + g_{m2} + Y_s} \bigg(\frac{1}{2}\bigg) \bigg[Z_1 - Z_2 + \frac{Y_s}{2} \bigg(\frac{Z_1}{g_{m2}} - \frac{Z_2}{g_{m1}}\bigg) \bigg]$$

IB

M2

2IB

V₀₂

- Z_2

$$A_{cc} = \frac{(v_{o2} + v_{o1})/2}{(v_{i2} + v_{i1})/2} \bigg|_{v_{id} = 0} = -\frac{g_{m1}g_{m2}}{g_{m1} + g_{m2} + Y_s} \bigg(\frac{1}{2}\bigg) \bigg[Y_s\bigg(\frac{Z_2}{g_{m1}} + \frac{Z_1}{g_{m2}}\bigg)\bigg]$$

Fully-Differential Circuits

➢Ideal voltage gain

$$\mathbf{A}_{dd} = \frac{v_{01} - v_{02}}{v_{in2} - v_{in1}} = \frac{Z_f}{Z_1}$$

>Ideally even-order distortions are cancelled

>Ideally common-mode signals are rejected

What sets the output common-mode of these circuits?
 Function of the amplifier output resistance

Common-mode offsets can impact the performance of the following stages

- Can exceed the common-mode input range of preceeding stages
- With finite A_{cc} can accumulate in a multi-stage amplifier circuit

Fully-Differential Amplifiers: COMMON-MODE DC offset

 \checkmark If \triangle IB is positive transistors M3 eventually will be biased in triode region (small resistance)

 $M3 \rightarrow W3$ $IB + \Delta IB \rightarrow Vb$ $IB + \Delta IB \rightarrow V02$ $V_{02} \rightarrow V_{02}$ $V_{1} \rightarrow V_{1} \rightarrow V_{2}$ $M_{1} \rightarrow V_{2}$ $M_{1} \rightarrow V_{2}$ $M_{1} \rightarrow V_{2}$ $M_{1} \rightarrow V_{2}$

✓ dc gain reduces drastically

✓ Linear range is further minimized

✓THD increases

✓ The common-mode output impedance is the parallel of the equivalent output resistance (M1 and M3) and the parasitic capacitors.

✓ For large dc gain, the output impedance at nodes v01 and v02 are further increased and ΔIB produces a dc offset = $R_{out}\Delta IB$. Large common-mode offsets!

✓ How can this issue be fixed?

Fully-Differential Amplifiers: Characterization

✓ Common-mode current offset of 0.01 mA per side is added on purpose

Tail current is 0.5 mA while the current sources on top are 0.26 mA!

✓ Differential input voltage is set at 0

Fully-Differential Amplifiers: Common-mode Feedback

Fully-Differential Amplifiers: Common-mode Feedback

What is a common-mode feed-back correction circuit ?

111

A common mode feed-back circuit is a circuit <u>sensing the common-mode voltage</u>, <u>comparing it with a proper reference</u>, and feeding back the correcting common-mode signal (both nodes of the fully-differential circuit) with the purpose <u>to cancel the</u> <u>output common-mode current component</u>, and to fix the dc outputs to the desired level.

Fully-Differential Filters: CMFB Principle

≻A common-mode feedback loop must be used: Circuit must operate on the common-mode signals only!

➢BASIC IDEA: CMFB is a circuit with very small impedance for the common-mode signals but transparent for the differential signals.

➤Use a common-mode detector (eliminates the effect of differential signals and detect common-mode signals)

≻Analyze the common-mode feedback loop:
 Large transconductance gain and enough phase margin

≻Minimum power consumption

CMFB Principles: Analysis of the loop for common-mode signals only

↓Effect of common-mode noise:

Analysis for common-mode noise; for instance noise due to power supplies:
io1=io2=icm_noise

> The two outputs can be connected together for the analysis of the CMFB loop!

>BASIC CONCEPTS:

➤The common-mode input noise is converted into a common-mode voltage (common-mode voltage noise) by the common-mode transconductance of the CMFB =1/Gm_fb.

➤ common-mode voltage variations v_{cm_noise}=i_{cm_noise}/G_{m_fb} !!

> The larger Gm_fb the smaller the effects of the common-mode noise!

Fully-Differential Filters: CMFB

CMFB Characteristics:

Transconductance gain= $g_{m2}/2$ (no PMOS mirror in CMFB OTA)

≻dominant pole at the output

≻At least 2 additional poles in the loop

>Zcm reduces the OTA dc gain, affecting the differential gain

≻NOTE THAT Vcm IS FORCED TO BE AROUND THE GROUND LEVEL.

>DC OFFSET VOLTAGE IS AROUND 2*Ioff/gm2

Fully-Differential Filters: CMFB

Fully-Differential Filters: CMFB Principles

OPAMP

Fig. 3 Common-mode feedback basic circuit concept. (a) Basic common-mode detector, (b) A CMOS CMFB Implementation.

Notice that the resistors R reduce the differential gain!

Fully-Differential Amplifiers: Common-mode pulse

Fully-Differential Amplifiers with CMFB Differential input signals only

Seems to be that the system is working fine, isn't it?

Fully-Differential Amplifiers with CMFB Differential input signals + common-mode pulses

- 22 -

Fully-Differential Amplifiers with CMFB Differential input signals + common-mode pulses

Fully-Differential Filters: Adding buffers to handle the resistive CM-detector

> The stability conditions are exactly the same for OTA's and OPAMP's:

>1 pole at vcm (1/RC) >1 pole at gate of M3 (g_{m3}/C_{P3}) >1 pole at the output (g_{01}/C_1) >In OPAMP's you can use resistors as common-mode detector due to the presence of the output buffers >dc gain = $0.5g_{m2}R_{01}$ Dominant pole GBW

Isolated Common-Mode Sensing

- Source-Followers isolate the loading of the common-mode sensor resistors
- Need to have a replica source
 follower to set the appropriate reference
 level for the CMFB amplifier

Two Differential Pair CM Sensor

 $I_{cms} = I_{20} + g_{m22} (V_{oc} - V_{CM})$ $G_{cmf} = g_{m22}$

CMFB w/ Triode Devices in Tail Current Source

27

Next Time

OTA CMFB Examples

• Output Stages