
User Guide

Peter Mills
peteymills@hotmail.com

October 5, 2018

1

CONTENTS

1 INSTALLATION 3

2 FILE FORMATS 4

3 COMMAND PARAMETERS 8

4 COMMAND LINE EXECUTABLES 12
4.1 Direct routines . 12
4.2 Binary classification . 12
4.3 Multi-class classification . 13
4.4 Testing/validation . 13
4.5 Clustering . 13
4.6 Experimental . 14
4.7 Pre-/post-processing . 14
4.8 File conversion . 15
4.9 Commands used by other commands 15
4.10 Deprecated . 15

5 ERROR CODES AND DIAGNOSTICS 16

6 MULTI-BORDERS CLASSIFICATION 18
6.1 Multi-borders classification the easy way 18
6.2 Multi-borders classification the hard way 19
6.3 Multi-borders with external binary classifiers 21

7 EXAMPLES 26
7.1 examples/class borders . 26
7.2 examples/humidity data . 26
7.3 examples/Landsat . 27

BIBLIOGRAPHY 27

2

1 INSTALLATION

First, make sure you have the required dependencies. You will need the
GNU Scientific Library (GSL). If it is not already installed on your system,
download and install it. Take note of the location of the compiled libraries
and include files. You will also need to install libpetey, another, much smaller
numerical library–this now comes bundled with libAGF.

Download the source from Github (https://github/peteysoft/libmsci)
or your favourite mirror. Unzip and unpack the tarball to the desired direc-
tory. Modify the makefile with the appropriate directories, compiler names
and compiler flags. Type make from inside the libagf directory to perform
the build and make install to copy the executables, libraries and include
files to the appropriate directories.

A configure script is not supplied: please refer to the Peteysoft coding
standards coding_standards.txt in the base of the installation directory
(https://github.com/peteysoft/libmsci/blob/master/doc/coding_standards.
txt).

Make sure the following macros have been set properly in the make file:
LIB_PATH = location of your compiled libraries
BIN_PATH = location of binary executables
INCLUDE_PATH = location of your include files

GSL_LIB = location of the GSL libraries (if different from above)
GSL_INCLUDE = location of the GSL include files (if different from above)

CC = name of your C++ compiler
There are two ways to change the optimisation of the binaries. If you

would like multiple versions with different levels of optimisation, be sure to
change the OPT VER macro. This will append the optimisation flag to all
the object files, libraries and executables. If you only want one version, then
modify the CFLAGS macro in the usual manner.

To test the resulting executables, type, make test. To see the resulting
comparison summary, it may be necessary to type it twice. Overall accuracies
of all the classification algorithms should be around 90 % and the uncertainty
coefficients should be over 0.5, while the confidence ratings should roughly
match the accuracies. When comparing one algorithm to another, accuracies
should be around 99% and uncertainty coefficients around 0.92, while the
confidence ratings should be 1. or close to it, regardless of accuracy. Prob-

3

ability density comparisons should be around r = {0.98, 0.99, 0.97, 0.99} for
KNN and AGF for the first class and KNN and AGF for the second class,
respectively.

2 FILE FORMATS

The programs accept three types of files with very simple, binary formats.
Although portability is sometimes an issue, the binary formats are easy to
generate and allow for rapid access and compact storage. For vector data,
use the extension, .vec. Vector files have a four byte header (by default, see
next paragraph) that indicates the dimensionality of the data. After that,
each vector is stored one after the other as arrays of four byte floats. To
write such a file in C++, you can use the following commands:

#include <stdio.h>

#include <stdint.h>

int main() {

FILE *fs;

float ** data; //array of vectors

int32_t n; //number of vectors

int32_t D; //number of dimensions

n=100; //(e.g.)

D=2;

data=new float * [n];

for (int32_t i=0; i<n; i++) data[i]=new float[D];

//... commands to fill the matrix ...

fs=fopen("data.vec", "w");

fwrite(&D, sizeof(D), 1, fs);

for (int32_t i=0; i<n; i++) fwrite(data[i], sizeof(float), D, fs);

fclose(fs);

4

for (int32_t i=0; i<n; i++) delete [] data[i];

delete [] data;

}

In IDL (Interactive Data Language):

n=100 ;(e.g.)

d=2 ;(e.g.)

data=fltarr(d, n)

;... commands to fill the matrix ...

openw, 1, "data.vec"

writeu, 1, d, data

close, 1

In Fortran:

parameter(n=100)

parameter(d=2)

real data(d, n)

...

open(10, file="data.vec", form="binary")

write(10) d

do j=0, n

write(10) (data(i, j), i=1,d)

enddo

close(10)

For scalar data, the programs use a straight binary dump of the data.
By default, four byte (32 bit) integers are used for class data and four byte
(32 bit) floating point variables are used for continuous data. (To change the
types used by the command-line programs, edit the header agf_defs.h.)
For class data, use the extension .cls and for floating point data, use the

5

extension, .dat. Scalar data always corresponds to vector data and is ordered
accordingly.

To write such data in C++, you can use the following commands:

#include <stdio.h>

#include <stdint.h>

int main() {

FILE *fs;

int32_t *data;

int32_t n;

n=100; //(e.g)

data=new long[n];

//... commands to fill array ...

fs=fopen("data.cls", "w");

fwrite(data, sizeof(int32_t), n, fs);

fclose(fs);

delete [] data;

}

In IDL:

data=lonarr(100)

;...

openw, 1, "data.cls"

writue, 1, data

close, 1

In Fortran:

parameter(n=100)

integer data(n)

...

open(10, file="data.cls", form="binary")

write(10) (data(i), i=1,n)

6

close(10)

Note that the class indices must go from 0 to Nc − 1, where Nc is the
number of classes. The classification routines will output two binary files con-
taining scalar data: one with the extension, .cls containing class estimates,
and one with the extension .con containing “confidence ratings” which are
simply conditional probabilities re-scaled in the following manner:

c =
NcP (c|~x)− 1

Nc− 1
(1)

where P (c|~x) is the conditional probability of the “winning” class. A
confidence rating of one indicates theoretically perfect knowledge of the true
class, while a value of zero indicates that the result is little better than
chance. If conditional or joint probabilities are needed for all the classes,
they are written to standard out.

To read the output files, examine the routines read_clsfile for read-
ing class data, read_vecfile for reading vector data and read_datfile for
reading scalar floating point data, contained in the source file, agf_util.cc,
or you can use them directly. Note that vector data is allocated in one con-
tiguous block, meaning that it can also be read and written in one contiguous
block. It can also be deleted very simply using two commands:

float ** data;

nel_ta n;

dim_ta D;

data=read_vecfile(data, n, D);

delete [] data[0];

delete [] data;

In addition, the sparse satellite library contains a utility called sparse_calc
that can operate on both types of binary files containing floating point data
(but not class data). To read in and print a file of vector data called, foo.vec
type the following commands:

$>sparse_calc

%s%c>print full(foo.vec)

7

To read in and print a file of scalar data called, bar.dat, type the follow-
ing:

%s%c>print vector(bar.dat)

Some users may prefer to use ASCII file formats to store their data.
If this is the case, there are a number of file conversion utilities included
for comparison with other algorithms. See Section 4, COMMAND LINE
EXECUTABLES.

Sometimes it’s desireable to normalize the data before performing classifi-
cations. Normalization in libagf has now been generalized to linear transfor-
mation and includes singular value decomposition as well as feature selection.
The command, agf_precondition, is used to perform linear transformations
on test and training (features) data and store the resulting transformation
matrix in the same binary format for vector data as described above. The
default name is the same as before with the extension .std appended to the
output base file name. Features data can still be transformed directly within
the machine learning routines using the command options -n, -S and -a: see
Section 3, COMMAND PARAMETERS. By default, pre-trained model data
is stored in the normalized coordinates; to store it in the non-normalized
coordinates, use the command switch, -u.

3 COMMAND PARAMETERS

Most of the commands have the following syntax:

command [options] model [test_data] output

where model is the base name of the files containing either a set of training
data or a pre-trained model, test_data is the file containing test data and
output is the base name of the files in which to store the final estimates.

To get a summary of the syntax and parameters, simply type the com-
mand name with no arguments, e.g.:

> classify_b

Syntax: classify_b [-n] [-u] [-a normfile] border test output

where:

8

border files containing class borders:

.brd for vectors

.bgd for gradients

.std for variable normalisations (unless -a specified)

test file containing vector data to be classified

output files containing the results of the classification:

.cls for classes, .con for confidence ratings

options:

-n option to normalise the data

-u normalize borders data (stored in un-normalized coords)

-a normfile file containing normalization data

Here is a list of all the options, although not all commands support all
options:

9

Option Function
– External command to train a binary classifier.
-+ Extra options to pass to binary training command.
-ˆ External command to convert data formats for above.
-0 Read from stdin.
-1 Write to stdout.
-a Name of file containing normalization data.
-A Use ASCII files instead of binary.
-b Short output (cls_comp_stats)
-B Sort by class/ordinate.
-c Algorithm selection:

nfold cross-validation:
0=AGF borders (default) classification

1=AGF classification
2=KNN classification
3=AGF interpolation
4=KNN interpolation
5=AGF borders multi-class

PDF validation:
6=AGF PDF estimation
7=KNN PDF estimation

-C No class data.
-d Number of divisions in cross-validation scheme.
-D Generate ROC curve by varying the discrimination border.
-e Return error estimates.
-E Value for missing data.
-f For validation schemes: fraction of training data to use for

testing.
-F Select features.
-g Use lograthmic progression.
-h Relative difference for calculating numerical derivatives.

10

-H Omit header data.
-i Class borders: maximum number of iterations in supernewton.
-I Weights calculation: maximum number of iterations in supernewton.
-j Print joint instead of conditional probabilities to stdout.
-k Number of k-nearest-neighbours to use in the estimate
-K Keep temporary files (do not delete on exit).
-l Tolerance of W.
-L Floating point ordinates.
-m Type of metric to use. Only works for knn classification.
-M Get min. and max./LIBSVM format.
-n Takes averages and standard deviations of the training data and

normalizes both the training and test data.
-N Maximum number of iterations in supernewton.
-o Name of log file.
-O External command for binary classification prediction.
-p Threshold density in clustering algorithm.
-P Calculate correlation/covariance matrix.
-q Number of trials/divisions.
-Q Algorithm selection:

optimal AGF: how to calculate the filter variances
0=halving max filter variance (default);
1=filter variance min and max;
2=total weight min and max

non-hierarchical multi-class classification:
0=constrained inverse (not always optimal)
1=linear least squares, no constraints or re-normalization
2=voting from pdf, no re-normalization
3=voting from class label, no re-normalization
4=voting from pdf overrides least squares, conditional

probabilities are adjusted and re-normalized
5=voting from class overrides least squares, conditional

probabilities are adjusted and re-normalized
6=experimental
7=constrained inverse (may be extremely inefficient)

11

-r Class borders: value of conditional prob. at discrimination border.
-R For random sampling.
-s Number of times to sample the class border.
-S Singular value decomposition: number of singular values to keep.
-t Desired tolerance when searching for class borders.
-T Class threshold for class-borders calculation.
-u Store borders data in non-normalized coordinates.
-U Re-label classes to go from [0, nc).
-v First filter variance bracket.
-V Second filter variance bracket/initial filter variance.
-w Lower bound for W in AGF optimal/constraint weight
-W Parameter Wc–equivalent to k in a k-nearest-neighbours scheme.

See paper describing the theory.
-x Run in background.
-X Ratio between sizes of sample classes (P (2)/P (1)).
-z Randomize data.
-Z In-house LIBSVM codes.

4 COMMAND LINE EXECUTABLES

This is a list of commands and their function:

4.1 Direct routines

Direct, non-parametric classification, interpolation/regression, pdf estima-
tion using variable-bandwidth kernel estimation:

agf Uses adaptive Gaussian filtering
knn Uses k-nearest neighbours
All the direct kernel estimation operations have been collected into two ex-

ecutables: one for AGF called, agf, and one for k-nearest-neighbours called,
knn. Both of them take an extra argument which specifies which operation
to perform: classify, interpol or pdf.

4.2 Binary classification

Two-class classification by training a model:
class_borders Searches for the class borders using AGF.
classify_b Performs classifications using a set of border samples.

12

4.3 Multi-class classification

Multi-class classification using a series of class-borders:
multi_borders Trains a multi-class model based on a control file.
classify_m: Performs classifications using model output from multi_borders.
svm_accelerate: Trains a multi-borders model from a native LIBSVM model.
Multi-borders classification represents a significant step forward with this

library. The operation of these programs, called from the command line using
multi_borders and classify_m is quite involved and is described in detail
in Section, 6, MULTI-BORDERS CLASSIFICATION.

4.4 Testing/validation

cls_comp_stats Calculates the accuracy of classification results.
nfold Performs n-fold cross-validation for the three different

classification algorithms or for the interpolation routines.
agf_preprocess: Splits a dataset for validation schemes.
pdf_sim Generates a synthetic dataset with the same approximate

PDF as the training data.
validate_pdf.sh Validates probability density function (PDF) estimates.
agf_correlate Correlates two binary files containing scalar

floating point data.
roc_curve Computes the receiver operatoring characteristic

(ROC) using three different methods.

4.5 Clustering

cluster_knn Uses k-nearest neighbours and a threshold density
to perform a clustering analysis. See description,
below.

browse_cluster_tree Create a dendrogram and manually browse through
it and assign classes.

The first clustering algorithm works by calculating the density of each
training samples. If the density is larger than a certain threshold, a class
number is assigned and the program recursively calculates the densities of all
the samples in the vicinity, based on its k neighbours, and assigns the same
class number to each if they also exceed the threshold. Samples lower than
the threshold are assigned the class label of 0, while clusters are assigned
consecutive values starting at 1. This is far simpler than a dendrogram, but

13

somewhat less general although the final result should be similar. But, we’ve
added a dendrogram anyway.

4.6 Experimental

Continuum extension : Programs that extend the classification algo-
rithms to work with continuous data:

c_borders.sh Trains a continuum classification model.
classify_c Returns coninuum extension estimates.

Discrete Bayesian modelling : programs that model the probability
distributions through binning.

sort_discrete_vectors Sorts a set of discrete vectors.
search_discrete_vectors Searches within a set of discrete vectors and

estimates the probability density.

4.7 Pre-/post-processing

agf_procondition Performs linear transformations on coordinate (feature)
data and outputs the transformation matrix. Normalization,
singular-value-decomposition (SVD) and feature selection
are supported.

agf_preprocess Processes both coordinate data and class data.
Supports class selection, re-labelling and partitioning,
file splitting for validation and cross-correlation calculation.

14

4.8 File conversion

lvq2agf Converts the LVQPAK (ASCII) file format to the binary format
accepted by libagf. Many users may find these ASCII formats
easier to work with.

svm2agf LIBSVM format to libAGF.
svmout2agf Converts (ASCII) output from LIBSVM to binary libAGF format.
agf2ascii Converts binary libAGF format to ASCII (LVQPAK or LIBSVM)

format.
C2R Converts a two-class classification to a difference in conditional

probabilites. The equation is:
R = (2c− 1)C

where c is the class and C is the confidence rating.
mbh2mbm: Collates a multi-file multi-borders model into a single

ASCII file.
float_to_class: Converts floating point data into class data by

binning it into discrete ranges.
class_to_float: Converts class data into floating point.
The LVQPAK file format is probably the easiest to work with. There is

one header with the number of dimensions, followed by a listing of the vectors,
one vector per line, each column is a dimension except for the last one which
is the class. The sample_class program prints its results to standard out in
an LVQPAK-compatible format–see Section 7, EXAMPLES.

4.9 Commands used by other commands

Note that some commands call other commands, therefore these latter com-
mands must be in your path.

agf_precondition Called by all the machine learning programs if one or
more of the -a, -n or -S switches are used

pdf_agf, pdf_knn still used by validate_pdf.sh

4.10 Deprecated

classify_a, classify_knn, int_agf, int_knn, test_classify, test_classify_b,
test_classify_knn

To compile and install older routines, type, make old.

15

5 ERROR CODES AND DIAGNOSTICS

All commands will return “0” upon successful completion or one of the fol-
lowing error codes:

Code Meaning
1 Wrong or unsufficient number of arguments.
101 Unable to open file for reading.
111 File read error.
256 File read warning.
303 Allocation failure.
201 Unable to open file for writing.
211 File write error.
512 File write warning.
401 Dimension mismatch.
411 Sample count mismatch.
501 Numerical error.
511 Syntax error.
503 Maximum number of iterations exceeded.
768 Parameter out of range.
1024 Command option parse error.
21 Fatal command option parse error.
901 Internal error.
911 Other error.
1280 Other warning.
Note that warnings are always divisible by 256 so that when passed back

to the command line return a 0 exit status so as not to interupt running
scripts. Error codes are also listed in the include file, error_codes.h in the
libpetey distribution. Note that non-fatal errors reduce to ’0’ if passed to
the command line.

AGF routines also return a set of diagnostics, for example:

diagnostic parameter min max average

iterations in supernewton:** 4 52 11.8

tolerance of samples: 0 3.53e-05 2.59e-06

** total number of iterations: 1178

number of bisection steps: 276

16

number of convergence failures: 0

diagnostic parameter min max average

iterations in agf_calc_w: 2 6 3.73

value of f: 2.6e-13 0.284 0.00146

value of W: 20.00 20.00 20.00

total number of calls: 1430

The first parameter indicates the number of iterations required to reach
the correct value for the total of the weights, W . For efficiency reasons, this
should be as small as possible, however the super-linear convergence of the
root-finding algorithm (“supernewton”) means that the brackets can be quite
far away without much effect on efficiency. To change the values of the filter
variance used to bracket the root, use -v for the lower bracket and -V for the
upper bracket. Normally the defaults should work just fine but to decrease
the number of iterations, they should be narrowed. If they fail to bracket the
root, the offending bracket is pushed outward. These changes are “sticky”,
so the brackets can, in fact, be set arbritrarily narrow and even quite far
from the root.

To change the tolerance ofW , use the -l switch. To change the maximum
number of iterations, use the -i or -I switch.

The second parameter is the number of iterations required to converge
to the class border, excluding convergence failures. This is only applicable
when searching for the class borders. To change the maximum number of
iterations (default is 100) in the root-finding algorithm, use the -i or -N

parameter.
The third parameter is the value of the minimum filter weight divided

by the maximum and is only applicable when the -k option (selecting a
number of nearest neighbours) has been set. Ideally, it should be as small
as possible, although values as large as 0.2 often produce reasonable results.
Be sure to experiment with your own particular problem. To decrease it,
increase the number of nearest neighbours used in the calculations which
has the undesirable side effect of increasing computation time. In general, k
should be a fair bit larger than W .

17

The tolerance of the samples only applies when searching for class borders.
It shows how close the value of R = P (2|~x)−P (1|~x) (difference in conditional
probabilities) is to zero at each border sample. This is set using the -t option
and the diagnostic should be close to the set value. It is sometimes larger
because the convergence test of the root-finding routine looks at tolerance
along the independent variable as well as the dependent variable–whichever
is better.

To best understand how to interpret the diagnostics and use these to set
the operational parameters, be sure to read the paper entitled, “Adaptive
Guassian Filters: a powerful new method for supervised learning”, in the
doc/ sub-directory of this installation or Mills (2011) which is a more fleshed-
out version of it.

6 MULTI-BORDERS CLASSIFICATION

Multi-borders is an algorithm that generalizes the AGF-borders binary clas-
sification algorithm to multiple classes. It is a means of specifying the
configuration of the class borders using a recursive control language. The
multi_borders command is used for training a multi-borders model and has
the following syntax:

multi_borders [options] control-in train model control-out

where:

• control-in is the input or training control file;

• train is the base-name of the binary files containing the training data

• model is the base-name for the files that will contain each of the binary
classification models and

• control-out is the output or classification control file which is passed
to the classification program, classify_m.

6.1 Multi-borders classification the easy way

To train a four-class one-versus-one multi-class class borders classification
model, use the print_control command to generate one of several standard
multi-class models and pass it directly to the multi_borders command:

18

$>print_control -Q 6 4 | multi_borders foo bar foobar.txt

The training data is contained in foo; the trained binary classification
models are output in a series of files (six in this case) starting with bar. The
output control file, foobar.txt, tells the prediction program, classify_m
how the binary classifiers are configured:

$>classify_m foobar.txt test.vec results

Where test.vec contains the test points while the results are stored in
result.cls and result.con. The -Q options determines the multi-class
model used: type print_control with no arguments to get a list of sup-
ported models.

6.2 Multi-borders classification the hard way

Consider the following control file (test_multi5.txt):

"-s 100" {

"." {0 1}

"" 0 1 / 2;

"-s 75" 0 / 1 2;

{

"-s 50" {2 3}

4 5

}

}

When passed to multi_borders as follows:

$>multi_borders -n -s 125 test_multi5.txt foo bar foobar.txt

runs the following set of statements:

agf_precondition -a bar.std -n foo.vec bar.139397543805655.vec

cp foo.cls bar.139397543805655.cls

class_borders -s 100 bar.139397543805655 bar.00 0 / 1

class_borders -s 50 bar.139397543805655 bar.01.00 2 / 3

class_borders -s 125 bar.139397543805655 bar.01-00 2 3 4 / 5

class_borders -s 75 bar.139397543805655 bar.01-01 2 3 / 4 5

class_borders -s 100 bar.139397543805655 bar 0 1 / 2 3 4 5

rm bar.139397543805655.vec

rm bar.139397543805655.cls

19

Initial versions printed these commands to standard out with running
them the job of the user. Now they are executed directly with the option of
running them in the background using the -x switch. It is still possible to
print out the commands only using the -0 or -K switch.

The contents of foobar.txt are as follows:

bar {

bar.00 {

0

1

}

bar.01-00 0 1 / 2;

bar.01-01 0 / 1 2;

{

bar.01.00 {

2

3

}

4

5

}

}

Note that each of the names in this file correspond to pairs of files gen-
erated by the commands in the previous script. To classify the data in a file
named test.vec use the following command:

$>classify_m -n foobar.txt test.vec result

There are two types of multi-borders classification: hierarchical and non-
hierarchical. In non-hieararchical multi-borders classification, all the classes
are partitioned in multiple ways using a binary classifier and the equations
relating the conditional probabilities of each class to those of the binary
classifiers are solved returning all of the conditional probabilities. In the
hierarchical method (also called a decision tree), the classes are partitioned
using either a binary classifier or a non-hierarchical multi-classifier, then
each of those partions are partitioned again and so on until there is only
one class left in each of the partions. Hierarchical classification returns only
the conditional probability of the winning class. The classify_m method

20

automatical detects whether a control file uses the hierarchical method or
only the non-hierarchical method(that is it has only one level) and prints out
conditional probabilities as appropriate.

The parameters for training each binary classifier are contained in double
quotes in the training control file. To take parameters from the command
line, use the null string ("") while a period (".") tells the program to use the
last set of parameters at the same level or below. A series of statements for
training each of the binary classifiers are generated and executed using the
“system” command. Once the commands are run, these binary classifiers will
be stored in a pair of uniquely named files, the base-names of which replace,
in the final control file, the quoted parameter lists from the training control
file.

In the control language, going up a level in the hierarchical scheme is
denoted by a left curly brace ({) while going down is denoted by a right
curly brace (}). In a non-hierarchical model, we specify the parameters (file
name) of each of the binary partitions followed by the partitions themselves:
two lists of classes separated by a forward slash (/). Class labels for non-
hierarchical partitions are relative, that is they go from 0 to the number of
classes in the non-hierarchical model less one. Class labels in the top level
partitions are absolute, therefore must be unique. These should also go from
0 to one less than the total number of classes in the over-all model, but need
not.

In this example, there are six classes. They are first partioned into a
group of two and a group of four. The group of four is partitioned into three
parts, the first of which is partitioned into two classes and the second and
third of which are single classes. The print_control command can be used
to generate common control files.

A good way to understand the “multi-borders” paradigm is to look at
the example cases in the examples/humidity data directory. There is also
a draft paper contained in the docs/ sub-directory.

6.3 Multi-borders with external binary classifiers

The multi-borders routines can now interface with external binary classifica-
tion software, specifically, either LIBSVM, or a pair of programs that have
the same calling conventions. For training, use the -- switch to pass the
command name to multi_borders. Consider the above control file as an
example, but without any of the control switches:

21

"" {

"" {0 1}

"" 0 1 / 2;

"" 0 / 1 2;

{

"" {2 3}

4 5

}

}

We pass the LIBSVM command, svm-train, to multi_borders, as fol-
lows:

$>multi_borders -M -- "svm-train -b 1" -+ "-h 0 -c 25" \

test_multi.txt foo.svm bar foobar.txt

which will execute the following statements:

agf_preprocess -A -M foo.svm bar.00.2367545368.tmp 0 / 1

svm-train -b 1 -h 0 -c 25 bar.00.2367545368.tmp bar.00

rm -f bar.00.2367545368.tmp

agf_preprocess -A -M foo.svm bar.01.00.2367545368.tmp 2 / 3

svm-train -b 1 -h 0 -c 25 bar.01.00.2367545368.tmp bar.01.00

rm -f bar.01.00.2367545368.tmp

agf_preprocess -A -M foo.svm bar.01-00.2367545368.tmp 2 3 4 / 5

svm-train -b 1 -h 0 -c 25 bar.01-00.2367545368.tmp bar.01-00

rm -f bar.01-00.2367545368.tmp

agf_preprocess -A -M foo.svm bar.01-01.2367545368.tmp 2 3 / 4 5

svm-train -b 1 -h 0 -c 25 bar.01-01.2367545368.tmp bar.01-01

rm -f bar.01-01.2367545368.tmp

agf_preprocess -A -M foo.svm bar.2367545368.tmp 0 1 / 2 3 4 5

svm-train -b 1 -h 0 -c 25 bar.2367545368.tmp bar

rm -f bar.2367545368.tmp

Several things should be noted:

• the -b switch is required and tells svm-train to generate probability
estimates

• the -+ option passes any other switches to use as “defaults”

22

• when used in this way, training data must be in ASCII format: -M

switch for the same format as LIBSVM, otherwise it uses the same
format as LVQPAC (see File Conversion, above)

• the output control file is the same as before

The training command, passed through --, should have the following
syntax:

train [options] data model/

where:

• train is the training command

• options are a set of options passed through the control file, through
the -+ option, or directly from the end of the command line or through
the command name

• data is the training data in LVQ or SVM ASCII format

• model is the output model reconizable to the prediction command, see
below.

Once the training has completed, classifications are performed by passing
the prediction command, svm-predict, from LIBSVM to classify_m using
the -O option:

$>classify_m -M -O "svm-predict -b 1" foobar.txt test.svm output.svmout

Once again, when paired with an external command, classify_m oper-
ates on ASCII files as opposed to the native AGF binary format. Output file
format is the same as LIBSVM: a header consisting of the word, “labels”,
followed by a list of labels, then one class label per line, followed by the condi-
tional probabilities in the same order as the class labels in the header. Since
“hierarchical” classification generates only one probability per estimate, in
this case only one is written per line. While this is not LIBSVM conformant,
the file conversion utility, svmout2agf, nonetheless recognizes it.

The prediction command, passed by -O, should have the following syntax:

predict test model output

23

where:

• predict is the command name–if there are options they must be passed
directly as part of this name;

• test is the test data in LVQ or SVM ASCII format;

• model is the binary classification model;

• output are the predicted classes plus both conditional probabilities in
the format described above.

Note that the order of the first two arguments are reversed as compared to
the libAGF convention in classify_b and classify_m.

LIBSVM tends to be slow, especially if you have a lot of training data.
There are currently three ways of converting LIBSVM models into bor-
ders models: the first two use the multi_borders command and work on
LIBSVM/multi-borders hybrid models. First, you can used the -O switch to
pass the prediction command (svm-predict -b 1 for LIBSVM models) to
multi_borders so that it can train a faster multi-borders model. This solu-
tion has the advantage that it can work with any external binary classifier,
not just LIBSVM. It has the disadvantage, however, that gradient vectors
are calculated numerically, so is not very accurate.

A better solution is the -Z switch which tells multi_borders to use the
“in-house” SVM codes. To accelerate the previous model, pass the output
classification control file from the previous pass:

$>multi_borders -Z foobar.txt foo bar2 foobar2.txt

which executes the following statements:

class_borders -Z bar.00 foo bar2.00

class_borders -Z bar.01.00 foo bar2.01.00

class_borders -Z bar.01-00 foo bar2.01-00

class_borders -Z bar.01-01 foo bar2.01-01

class_borders -Z bar foo bar2

Note how we’re using class_borders to perform the training: it uses
SVM as a source of conditional probabilities and finds a series of roots (ze-
roes) to sample the border between the two classes, just as it would with
AGF estimates. To facilitate this, an extra parameter is included in the

24

class_borders command: in addition to the output file name in the last
parameter, the first parameter is the name of the model used to predict the
probabilities, while the second parameter is a file containing training data
which is used to sample the space while searching for roots.

Output is in the normal, AGF binary format and classify_m can be
used as normal for classification:

$>classify_m foobar2.txt test.vec output

Another way of accelerating LIBSVM models, which only works with
“native” LIBSVM models, is with the svm_accelerate command. Suppose
we’ve trained a LIBSVM model, model.svmmod, as follows:

$>svm-train foo.svm model.svmmod

We can convert it to a multi-borders model as follows:

$>svm2agf foo.svm foo

$>svm_accelerate model.svmmod foo model.mod

where foo.svm contains the training data in LIBSVM format and foo is
the training data in libAGF format. Note that the multi-borders model in
this case is stored in ASCII format all in one file but is still accepted by
classify_m:

$>classify_m model.mod test.vec output

If a multi-file, multi-borders model is in one of the following configura-
tions: one-vs-one, one-vs-the-rest, or partitioning of adjacent classes, then
you can convert it to a single ASCII file using the mbh2mbm command. The
file format fairly simple. There is a four line header with the following infor-
mation: type of configuration (“1v1”, “1vR”, ”ADJ”), number of classes, list
of class labels, and “polarities” of each of the binary classifiers. Next, all the
binary classifiers are listed as pairs of matrices: first the border vectors, then
the gradient vectors. Each matrix has a one line header with the number of
vectors plus the size of each vector.

Running the commands, print_control, multi_borders, classify_m,
class_borders, svm_accelerate, or mbh2mbm without arguments prints a
generous help screen including a description of most of the features explained
in this section. There is also an example contained in the second half of
the makefile under the examples/humidity_data directory (see, Section 7,
EXAMPLES, above).

25

7 EXAMPLES

The examples sub-directory collects together a number of test suites for
comparison, validation and application of AGF. The makefiles in these test
cases can give you a good idea of how to use the various components of the
library.

7.1 examples/class borders

The directory examples/class_borders includes a number of routines for
testing the algorithms and comparing them with other, popular classifica-
tion algorithms. The validation exercise is performed on a pair of two-
dimensional, synthetic test classes and is described in Mills (2011). To test
the classification algorithms, type, make test. To test the pdf estimation
routines, type, make test_pdf. To test both from the bottom level direc-
tory, type make test. All tests are done on a pair of synthetic test classes,
described in the paper. To generate samples and analytical estimates for
these classes, use the following commands

sample_class Generates random samples of the synthetic test classes.
classify_sc Returns class estimates using analytic/semi-analytic

estimates of the class pdfs; classifications should
therefore be close to the best possible for any supervised
algorithm.

pdf_sc1 Generates analytic pdf estimates for the first class.
pdf_sc2 Generates semi-anaylitic (using quadrature) pdf estimates for

the second class.
sc_borders Find the border between the sample classes using the same

algorithm as that employed for the class_borders command.
To compare the algorithms with LIBSVM (Chang and Lin, 2011) and

Kohonen’s LVQ algorithm (Kohonen, 2000), type, make compare. You must
have both modules installed and the executables in your path.

7.2 examples/humidity data

The test suite in examples/humidity_data tests the multi-borders paradigm
on a discretized sub-set of the satellite humidity data described in Mills
(2009). Use this directory for examples on how to use the multi-borders
multi-class classification method.

26

7.3 examples/Landsat

In the Landsat directory there are a number of scripts for performing surface
classifications using Landsat data. In particular, there is a simple app that
allows the user to classify pixels by hand. It opens a window with a Landsat
scene in it; clicking one of the three mouse buttons allows you to classify
pixels in the scene. There are three files that already contain hand-classified
forest clearcut data.

BIBLIOGRAPHY

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vec-
tor machines. ACM Transactions on Intelligent Systems and Technology,
2(3):27:1–27:27.

Kohonen, T. (2000). Self-Organizing Maps. Springer-Verlag, 3rd edition.

Michie, D., Spiegelhalter, D. J., and Tayler, C. C., editors (1994). Machine
Learning, Neural and Statistical Classification. Ellis Horwood Series in
Artificial Intelligence. Prentice Hall, Upper Saddle River, NJ. Available
online at: http://www.amsta.leeds.ac.uk/~charles/statlog/.

Mills, P. (2009). Isoline retrieval: An optimal method for validation of ad-
vected contours. Computers & Geosciences, 35(11):2020–2031.

Mills, P. (2011). Efficient statistical classification of satellite measurements.
International Journal of Remote Sensing, 32(21):6109–6132.

Mills, P. (2014). Multi-borders classification. Technical Report
arxiv:1404.4095.

Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B. (2001).
An introduction to kernel-based learning algorithms. IEEE Transactions
on Neural Networks, 12(2):181–201.

Terrell, D. G. and Scott, D. W. (1992). Variable kernel density estimation.
Annals of Statistics, 20:1236–1265.

27

