
Listed Volatility
and Variance

Derivatives

Amar.Singh
Typewritten Text

Founded in 1807, John Wiley & Sons is the oldest independent publishing company in the
United States. With offices in North America, Europe, Australia and Asia, Wiley is glob-
ally committed to developing and marketing print and electronic products and services for
our customers’ professional and personal knowledge and understanding.

The Wiley Finance series contains books written specifically for finance and invest-
ment professionals as well as sophisticated individual investors and their financial advi-
sors. Book topics range from portfolio management to e-commerce, risk management,
financial engineering, valuation and financial instrument analysis, as well as much more.

For a list of available titles, visit our Web site at www.WileyFinance.com.

let &hbox {char '046}www.WileyFinance.com.
http://www.WileyFinance.com.

Listed Volatility
and Variance

Derivatives
A Python-based Guide

DR. YVES J. HILPISCH

This edition first published 2017
© 2017 Yves Hilpisch

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United
Kingdom

For details of our global editorial offices, for customer services and for information about how to apply
for permission to reuse the copyright material in this book please visit our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with
the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior
permission of the publisher.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in
print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version
you purchased, you may download this material at http://booksupport.wiley.com. For more information
about Wiley products, visit www.wiley.com.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The publisher is not associated with any product or
vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is
not engaged in rendering professional services and neither the publisher nor the author shall be liable
for damages arising herefrom. If professional advice or other expert assistance is required, the services
of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data is available

A catalogue record for this book is available from the British Library.

ISBN 978-1-119-16791-4 (hbk) ISBN 978-1-119-16792-1 (ebk)
ISBN 978-1-119-16793-8 (ebk) ISBN 978-1-119-16794-5 (ebk)

Cover Design: Wiley
Top Image: © grapestock/Shutterstock
Bottom Image: © stocksnapper/iStock

Set in 10/12pt Times by Aptara Inc., New Delhi, India
Printed in Great Britain by TJ International Ltd, Padstow, Cornwall, UK

let &hbox {char '046}www.wiley.com.
http://www.wiley.com.
http://booksupport.wiley.com
http://www.wiley.com

Contents

Preface xi

PART ONE
Introduction to Volatility and Variance

CHAPTER 1
Derivatives, Volatility and Variance 3
1.1 Option Pricing and Hedging 3
1.2 Notions of Volatility and Variance 6
1.3 Listed Volatility and Variance Derivatives 7

1.3.1 The US History 7
1.3.2 The European History 8
1.3.3 Volatility of Volatility Indexes 9
1.3.4 Products Covered in this Book 10

1.4 Volatility and Variance Trading 11
1.4.1 Volatility Trading 11
1.4.2 Variance Trading 13

1.5 Python as Our Tool of Choice 14
1.6 Quick Guide Through the Rest of the Book 14

CHAPTER 2
Introduction to Python 17
2.1 Python Basics 17

2.1.1 Data Types 17
2.1.2 Data Structures 20
2.1.3 Control Structures 22
2.1.4 Special Python Idioms 23

2.2 NumPy 28
2.3 matplotlib 34
2.4 pandas 38

2.4.1 pandas DataFrame class 39
2.4.2 Input-Output Operations 45
2.4.3 Financial Analytics Examples 47

2.5 Conclusions 53

v

vi CONTENTS

CHAPTER 3
Model-Free Replication of Variance 55
3.1 Introduction 55
3.2 Spanning with Options 56
3.3 Log Contracts 57
3.4 Static Replication of Realized Variance and Variance Swaps 57
3.5 Constant Dollar Gamma Derivatives and Portfolios 58
3.6 Practical Replication of Realized Variance 59
3.7 VSTOXX as Volatility Index 65
3.8 Conclusions 67

PART TWO
Listed Volatility Derivatives

CHAPTER 4
Data Analysis and Strategies 71
4.1 Introduction 71
4.2 Retrieving Base Data 71

4.2.1 EURO STOXX 50 Data 71
4.2.2 VSTOXX Data 74
4.2.3 Combining the Data Sets 76
4.2.4 Saving the Data 78

4.3 Basic Data Analysis 78
4.4 Correlation Analysis 83
4.5 Constant Proportion Investment Strategies 87
4.6 Conclusions 93

CHAPTER 5
VSTOXX Index 95
5.1 Introduction 95
5.2 Collecting Option Data 95
5.3 Calculating the Sub-Indexes 105

5.3.1 The Algorithm 106
5.4 Calculating the VSTOXX Index 114
5.5 Conclusions 118
5.6 Python Scripts 118

5.6.1 index collect option_data.py 118
5.6.2 index_subindex_calculation.py 123
5.6.3 index_vstoxx_calculation.py 127

CHAPTER 6
Valuing Volatility Derivatives 129
6.1 Introduction 129
6.2 The Valuation Framework 129
6.3 The Futures Pricing Formula 130

Contents vii

6.4 The Option Pricing Formula 132
6.5 Monte Carlo Simulation 135
6.6 Automated Monte Carlo Tests 141

6.6.1 The Automated Testing 141
6.6.2 The Storage Functions 145
6.6.3 The Results 146

6.7 Model Calibration 153
6.7.1 The Option Quotes 154
6.7.2 The Calibration Procedure 155
6.7.3 The Calibration Results 160

6.8 Conclusions 163
6.9 Python Scripts 163

6.9.1 srd_functions.py 163
6.9.2 srd simulation analysis.py 167
6.9.3 srd simulation results.py 171
6.9.4 srd model calibration.py 174

CHAPTER 7
Advanced Modeling of the VSTOXX Index 179
7.1 Introduction 179
7.2 Market Quotes for Call Options 179
7.3 The SRJD Model 182
7.4 Term Structure Calibration 183

7.4.1 Futures Term Structure 184
7.4.2 Shifted Volatility Process 190

7.5 Option Valuation by Monte Carlo Simulation 191
7.5.1 Monte Carlo Valuation 191
7.5.2 Technical Implementation 192

7.6 Model Calibration 195
7.6.1 The Python Code 196
7.6.2 Short Maturity 199
7.6.3 Two Maturities 201
7.6.4 Four Maturities 203
7.6.5 All Maturities 205

7.7 Conclusions 209
7.8 Python Scripts 210

7.8.1 srjd fwd calibration.py 210
7.8.2 srjd_simulation.py 212
7.8.3 srjd_model_calibration.py 215

CHAPTER 8
Terms of the VSTOXX and its Derivatives 221
8.1 The EURO STOXX 50 Index 221
8.2 The VSTOXX Index 221
8.3 VSTOXX Futures Contracts 223
8.4 VSTOXX Options Contracts 224
8.5 Conclusions 225

viii CONTENTS

PART THREE
Listed Variance Derivatives

CHAPTER 9
Realized Variance and Variance Swaps 229

9.1 Introduction 229
9.2 Realized Variance 229
9.3 Variance Swaps 235

9.3.1 Definition of a Variance Swap 235
9.3.2 Numerical Example 235
9.3.3 Mark-to-Market 239
9.3.4 Vega Sensitivity 241
9.3.5 Variance Swap on the EURO STOXX 50 242

9.4 Variance vs. Volatility 247
9.4.1 Squared Variations 247
9.4.2 Additivity in Time 247
9.4.3 Static Hedges 250
9.4.4 Broad Measure of Risk 250

9.5 Conclusions 250

CHAPTER 10
Variance Futures at Eurex 251
10.1 Introduction 251
10.2 Variance Futures Concepts 252

10.2.1 Realized Variance 252
10.2.2 Net Present Value Concepts 252
10.2.3 Traded Variance Strike 257
10.2.4 Traded Futures Price 257
10.2.5 Number of Futures 258
10.2.6 Par Variance Strike 258
10.2.7 Futures Settlement Price 258

10.3 Example Calculation for a Variance Future 258
10.4 Comparison of Variance Swap and Future 265
10.5 Conclusions 268

CHAPTER 11
Trading and Settlement 269
11.1 Introduction 269
11.2 Overview of Variance Futures Terms 269
11.3 Intraday Trading 270
11.4 Trade Matching 274
11.5 Different Traded Volatilities 275
11.6 After the Trade Matching 277
11.7 Further Details 279

11.7.1 Interest Rate Calculation 279
11.7.2 Market Disruption Events 280

11.8 Conclusions 280

Contents ix

PART FOUR
DX Analytics

CHAPTER 12
DX Analytics – An Overview 283
12.1 Introduction 283
12.2 Modeling Risk Factors 284
12.3 Modeling Derivatives 287
12.4 Derivatives Portfolios 290

12.4.1 Modeling Portfolios 292
12.4.2 Simulation and Valuation 293
12.4.3 Risk Reports 294

12.5 Conclusions 296

CHAPTER 13
DX Analytics – Square-Root Diffusion 297
13.1 Introduction 297
13.2 Data Import and Selection 297
13.3 Modeling the VSTOXX Options 301
13.4 Calibration of the VSTOXX Model 303
13.5 Conclusions 308
13.6 Python Scripts 308

13.6.1 dx srd calibration.py 308

CHAPTER 14
DX Analytics – Square-Root Jump Diffusion 315
14.1 Introduction 315
14.2 Modeling the VSTOXX Options 315
14.3 Calibration of the VSTOXX Model 320
14.4 Calibration Results 325

14.4.1 Calibration to One Maturity 325
14.4.2 Calibration to Two Maturities 325
14.4.3 Calibration to Five Maturities 325
14.4.4 Calibration without Penalties 331

14.5 Conclusions 332
14.6 Python Scripts 334

14.6.1 dx srjd calibration.py 334

Bibliography 345

Index 347

Preface

V olatility and variance trading has evolved from something opaque to a standard tool in
today’s financial markets. The motives for trading volatility and variance as an asset class

of its own are numerous. Among others, it allows for effective option and equity portfolio hedg-
ing and risk management as well as straight out speculation on future volatility (index) move-
ments. The potential benefits of volatility- and variance-based strategies are widely accepted
by researchers and practitioners alike.

With regard to products it mainly started out around 1993 with over-the-counter (OTC)
variance swaps. At about the same time, the Chicago Board Options Exchange introduced the
VIX volatility index. This index still serves today – after a significant change in its method-
ology – as the underlying risk factor for some of the most liquidly traded listed derivatives
in this area. The listing of such derivatives allows for a more standardized, cost efficient and
transparent approach to volatility and variance trading.

This book covers some of the most important listed volatility and variance derivatives
with a focus on products provided by Eurex. Larger parts of the content are based on the
Eurex Advanced Services tutorial series which use Python to illustrate the main concepts of
volatility and variance products. I am grateful that Eurex allowed me to use the contents of the
tutorial series freely for this book.

Python has become not only one of the most widely used programming languages but also
one of the major technology platforms in the financial industry. It is more like a platform since
the Python ecosystem provides a wealth of powerful libraries and packages useful for financial
analytics and application building. It also integrates well with many other technologies, like
the statistical programming language R, used in the financial industry. You can find links to
all Python resources under http://lvvd.tpq.io.

I thank Michael Schwed for providing parts of the Python code. I also thank my family
for all their love and support over the years, especially my wife Sandra and our children Lilli
and Henry. I dedicate this book to my beloved dog Jil. I miss you.

Yves
Voelklingen, Saarland, April 2016

xi

let &hbox {char '046}http://lvvd.tpq.io
http://lvvd.tpq.io

PART

One
Introduction to Volatility

and Variance

CHAPTER 1
Derivatives, Volatility and Variance

T he first chapter provides some background information for the rest of the book. It mainly
covers concepts and notions of importance for later chapters. In particular, it shows how the

delta hedging of options is connected with variance swaps and futures. It also discusses differ-
ent notions of volatility and variance, the history of traded volatility and variance derivatives
as well as why Python is a good choice for the analysis of such instruments.

1.1 OPTION PRIC ING AND HEDGING

In the Black-Scholes-Merton (1973) benchmark model for option pricing, uncertainty with
regard to the single underlying risk factor S (stock price, index level, etc.) is driven by a geo-
metric Brownian motion with stochastic differential equation (SDE)

dSt = 𝜇Stdt + 𝜎StdZt

Throughout we may think of the risk factor as being a stock index paying no dividends. St is
then the level of the index at time t, 𝜇 the constant drift, 𝜎 the instantaneous volatility and Zt is
a standard Brownian motion. In a risk-neutral setting, the drift 𝜇 is replaced by the (constant)
risk-less short rate r

dSt = rStdt + 𝜎StdZt

In addition to the index which is assumed to be directly tradable, there is also a risk-less bond
B available for trading. It satisfies the differential equation

dBt = rBtdt

In this model, it is possible to derive a closed pricing formula for a vanilla European call option
C maturing at some future date T with payoff max[ST − K, 0], K being the fixed strike price.
It is

C(S, K, t, T , r, 𝜎) = St ⋅ N(d1) − e−r(T−t) ⋅ K ⋅ N(d2)

3

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

4 LISTED VOLATILITY AND VARIANCE DERIVATIVES

where

N(d) = 1√
2𝜋 ∫

d

−∞
e−

1
2

x2
dx

d1 =
log St

K
+
(

r + 𝜎2

2

)
(T − t)

𝜎
√

T − t

d2 =
log St

K
+
(

r − 𝜎2

2

)
(T − t)

𝜎
√

T − t

The price of a vanilla European put option P with payoff max[K − ST , 0] is determined by
put-call parity as

Pt = Ct − St + e−r(T−t)K

There are multiple ways to derive this famous Black-Scholes-Merton formula. One way relies
on the construction of a portfolio comprised of the index and the risk-less bond that perfectly
replicates the option payoff at maturity. To avoid risk-less arbitrage, the value of the option
must equal the payoff of the replicating portfolio. Another method relies on calculating the
risk-neutral expectation of the option payoff at maturity and discounting it back to the present
by the risk-neutral short rate. For detailed explanations of these approaches refer, for example,
to Björk (2009).

Yet another way, which we want to look at in a bit more detail, is to perfectly hedge
the risk resulting from an option (e.g. from the point of view of a seller of the option) by
dynamically trading the index and the risk-less bond. This approach is usually called delta
hedging (see Sinclair (2008), ch. 1). The delta of a European call option is given by the first
partial derivative of the pricing formula with respect to the value of the risk factor, i.e. 𝛿t =

𝛿Ct

𝛿St
.

More specifically, we get

𝛿t =
𝛿Ct

𝛿St
= N(d1)

When trading takes place continuously, the European call option position hedged by 𝛿t index
units short is risk-less:

dΠt ≡ dCt − 𝛿tSt = 0

This is due to the fact that the only (instantaneous) risk results from changes in the index level
and all such (marginal) changes are compensated for by the delta short index position.

Continuous models and trading are a mathematically convenient description of the real
world. However, in practice trading and therefore hedging can only take place at discrete points
in time. This does not lead to a complete breakdown of the delta hedging approach, but it

Derivatives, Volatility and Variance 5

introduces hedge errors. If hedging takes place at every discrete time interval of length Δt, the
Profit-Loss (PL) for such a time interval is roughly (see Bossu (2014), p. 59)

PLΔt ≈
1
2
Γ ⋅ ΔS2 + Θ ⋅ Δt

Γ is the gamma of the option and measures how the delta (marginally) changes with the chang-
ing index level. ΔS is the change in the index level over the time interval Δt. It is given by

Γ = 𝜕2C
𝜕S2

=
N′(d1)

S𝜎
√

T − t

Θ is the theta of the option and measures how the option value changes with the passage of
time. It is given approximately by (see Bossu (2014), p. 60)

Θ ≈ −1
2
ΓS2𝜎2

With this we get

PLΔt ≈
1
2
Γ ⋅ ΔS2 − 1

2
ΓS2𝜎2 ⋅ Δt

= 1
2
Γ ⋅ S2

[(ΔS
S

)2
−
(
𝜎 ⋅

√
Δt

)2
]

The quantity 1
2
Γ ⋅ S2 is called the dollar gamma of the option and gives the second order change

in the option price induced by a (marginal) change in the index level. (ΔS
S

)2 is the squared
realized return over the time interval Δt – it might be interpreted as the (instantaneously)
realized variance if the time interval is short enough and the drift is close to zero. Finally,

(𝜎 ⋅
√
Δt)2 is the fixed, “theoretical” variance in the model for the time interval.

The above reasoning illustrates that the PL of a discretely delta hedged option position is
determined by the difference between the realized variance during the discrete hedge interval
and the theoretically expected variance given the model parameter for the volatility. The total
hedge error over N = T

Δt
intervals is given by

Cumulative PLΔt ≈
1
2

N∑
t=1

Γt−1 ⋅ S2
t−1

[(
ΔSt

St−1

)2

−
(
𝜎 ⋅

√
Δt

)2
]

(1.1)

This little exercise in option hedging leads us to a result which is already quite close to a
product intensively discussed in this book: listed variance futures. Variance futures, and their
Over-the-Counter (OTC) relatives variance swaps, pay to the holder the difference between
realized variance over a certain period of time and a fixed variance strike.

6 LISTED VOLATILITY AND VARIANCE DERIVATIVES

1.2 NOTIONS OF VOLATIL ITY AND VARIANCE

The previous section already touches on different notions of volatility and variance. This
section provides formal definitions for these and other quantities of importance. For a more
detailed exposition refer to Sinclair (2008). In what follows we assume that a time series is
given with quotes Sn, n ∈ {0,… , N} (see Hilpisch (2015, ch. 3)). We do not assume any spe-
cific model that might generate the time series data. The log return for n > 0 is defined by

Rn ≡ log Sn − log Sn−1 = log
Sn

Sn−1

� realized or historical volatility: this refers to the standard deviation of the log returns of
a financial time series; suppose we observe N (past) log returns Rn, n ∈ {1,… , N}, with
mean return �̂� = 1

N

∑N
n=1 Rn; the realized or historical volatility �̂� is then given by

�̂� =

√√√√ 1
N − 1

N∑
n=1

(Rn − �̂�)2

� instantaneous volatility: this refers to the volatility factor of a diffusion process; for
example, in the Black-Scholes-Merton model the instantaneous volatility 𝜎 is found in
the respective (risk-neutral) stochastic differential equation (SDE)

dSt = rStdt + 𝜎StdZt

� implied volatility: this is the volatility that, if put into the Black-Scholes-Merton option
pricing formula, gives the market-observed price of an option; suppose we observe today
a price of C∗

0 for a European call option; the implied volatility 𝜎imp is the quantity that
solves ceteris paribus the implicit equation

C∗
0 = CBSM(S0, K, t = 0, T , r, 𝜎imp)

These volatilities all have squared counterparts which are then named variance, such as real-
ized variance, instantenous variance or implied variance. We have already encountered realized
variance in the previous section. Let us revisit this quantity for a moment. Simply applying the
above definition of realized volatility and squaring it we get

�̂�2 = 1
N − 1

N∑
n=1

(Rn − �̂�)2

In practice, however, this definition usually gets adjusted to

�̂�2 = 1
N

N∑
n=1

R2
n

Derivatives, Volatility and Variance 7

The drift of the process is assumed to be zero and only the log return terms get squared. It
is also common practice to use the definition for the uncorrected (biased) standard deviation
with factor 1

N
instead of the definition for the corrected (unbiased) standard deviation with

factor 1
N−1

. This explains why we call the term (ΔSt

St−1
)2 from the delta hedge PL in the previous

section realized variance over the time interval Δt. In that case, however, the return is the
simple return instead of the log return.

Other adjustments in practice are to scale the value to an annual quantity by multiplying
it by 252 (trading days) and to introduce an additional scaling term (to get percent values
instead of decimal ones). One then usually ends up with (see chapter 9, Realized Variance and
Variance Swaps)

�̂�2 ≡ 10000 ⋅
252
N

⋅
N∑

n=1

R2
n

Later on we will also drop the hat notation when there is no ambiguity.

1.3 L ISTED VOLATIL ITY AND VARIANCE DERIVATIVES

Volatility is one of the most important notions and concepts in derivatives pricing and analytics.
Early research and financial practice considered volatility as a major input for pricing and
hedging. It is not that long ago that the market started thinking of volatility as an asset class
of its own and designed products to make it directly tradable.

The idea for a volatility index was conceived by Brenner and Galai in 1987 and pub-
lished in the note Brenner and Galai (1989) in the Financial Analysts Journal. They write in
their note:

“While there are efficient tools for hedging against general changes in overall market
directions, so far there are no effective tools available for hedging against changes
in volatility. … We therefore propose the construction of three volatility indexes on
which cash-settled options and futures can be traded.”

In what follows, we focus on the US and European markets.

1.3.1 The US History

The Chicago Board Options Exchange (CBOE) introduced an equity volatility index, called
VIX, in 1993. It was based on a methodology developed by Fleming, Ostdiek and Whaley
(1995) – a working paper version of which was circulated in 1993 – and data from S&P 100
index options. The methodology was changed in 2003 to the now standard practice which uses
the robust, model free replication results for variance (see chapter 3 Model-Free Replication
of Variance) and data from S&P 500 index options (see CBOE (2003)). While the first version
represented a proxy for the 30 day at-the-money implied volatility, the current version is a
proxy for the 30 day variance swap rate, i.e. the fixed variance strike which gives a zero value
for a respective swap at inception.

8 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 1.1 Historical volume of traded VIX derivatives on a log scale. Data source:
http://cfe.cboe.com/data/historicaldata.aspx

Carr and Lee (2009) provide a brief history of both OTC and listed volatility and variance
products. They claim that the first OTC variance swap has been engineered and offered by
Union Bank of Switzerland (UBS) in 1993, at about the same time the CBOE announced the
VIX. These were also the first traded contracts to attract some liquidity in contrast to volatility
swaps which were also introduced shortly afterwards. One reason for this is that variance swaps
can be robustly hedged – as we will see in later chapters – while volatility swaps, in general,
cannot. It is more or less the same reasoning behind the change of methodology for the VIX
in 2003.

Trading in futures on the VIX started in 2004 while the first options on the index were
introduced in 2006. These instruments are already described in Whaley (1993), although their
market launch took more than 10 years after the introduction of the VIX. These were not the
first listed volatility derivatives but the first to attract significant liquidity and they are more
actively traded at the time of writing than ever. Those listed instruments introduced earlier,
such as volatility futures launched in 1998 by Deutsche Terminbörse (now Eurex), could not
attract enough liquidity and are now only a footnote in the financial history books.

The volume of traded contracts on the VIX has risen sharply on average over recent years
as Figure 1.1 illustrates. The volume varies rather erratically and is influenced inter alia by
seasonal effects and the general market environment (bullish or bearish sentiment).

In December 2012, the CBOE launched the S&P 500 variance futures contract – almost
20 years after their OTC counterparts started trading. After some early successes in building
liquidity in 2013, liquidity has dried up almost completely in 2014 and 2015.

1.3.2 The European History

Eurex – back then Deutsche Terminbörse – introduced in 1994 the VDAX volatility index, an
index representing the 45 day implied volatility of DAX index options. As mentioned before,

http://cfe.cboe.com/data/historicaldata.aspx

Derivatives, Volatility and Variance 9

FIGURE 1.2 Historical daily closing levels for the VIX and the VSTOXX volatility indexes. Data
source: Yahoo! Finance and http://stoxx.com

in 1998 Eurex introduced futures on the VDAX which could, however, not attract enough
liquidity and were later delisted. In 2005, the methodolgy for calculating the index was also
changed to the more robust, model-free replication approach for variance swaps. The index
was renamed VDAX-NEW and a new futures contract on this index was introduced.

In 2005, Eurex also launched futures on the VSTOXX volatility index which is based on
options on the EURO STOXX 50 index and uses the by now standard methodology for volatil-
ity index calculation as laid out in CBOE (2003). In 2009 they were re-launched as “Mini
VSTOXX Futures” with the symbol FVS. At the same time, Eurex stopped the trading of
other volatility futures, such as those on the VDAX-NEW and the VSMI.

Since the launch of the new VSTOXX futures, they have attracted significant liquidity and
are now actively traded. A major reason for this can be seen in the financial crisis of 2007–2009
when volatility indexes saw their highest levels ever. This is illustrated in Figure 1.2 where the
maximum values for the VIX and VSTOXX are observed towards the end of 2008. This led
to a higher sensitivity of market participants to the risks that spikes in volatility can bring and
thus increased the demand for products to hedge against such adverse market environments.
Observe also in Figure 1.2 that the two indexes are positively correlated in general, over the
period shown with about +0.55.

In March 2010, Eurex introduced options on the VSTOXX index. These instruments also
attracted some liquidity and are at the time of writing actively traded. In September 2014,
Eurex then launched a variance futures contract on the EURO STOXX 50 index.

1.3.3 Volat i l i ty of Volat i l i ty Indexes

Nowadays, we are already one step further on. There are now indexes available that measure
the volatility of volatility (vol-vol). The so-called VVIX of the CBOE was introduced in March

http://stoxx.com

10 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 1.3 Historical daily closing levels for the VIX and the VVIX volatility (of volatility)
indexes. Data source: Thomson Reuters Eikon

2012. In October 2015 the index provider STOXX Limited introduced the V-VSTOXX indexes
which are described on www.stoxx.com as follows:

“The V-VSTOXX Indices are based on VSTOXX realtime options prices and are
designed to reflect the market expectations of near-term up to long-term volatility-
of-volatility by measuring the square root of the implied variance across all options
of a given time to expiration.”

These new indexes and potential products written on them seem to be a beneficial addition to
the volatility asset class. Such products might be used, for example, to hedge options written
on the volatility index itself since the vol-vol is stochastic in nature rather than constant or
deterministic.

The VVIX index is generally on a much higher level than the VIX index as Figure 1.3
illustrates. This indicates a much higher volatility for the VIX index itself compared to the
S&P 500 volatility.

Over the period shown, the VVIX is highly positively correlated with the VIX at a level
of about +0.66. Figure 1.4 plots the time series data for the two indexes on two different scales
to show this stylized fact graphically.

1.3.4 Products Covered in th is Book

There is quite a diverse spectrum of volatility and variance futures available. Out of all possible
products, the focus of this book is on the European market and these instruments:

� VSTOXX as a volatility index
� VSTOXX futures
� VSTOXX options
� Eurex Variance Futures.

let &hbox {char '046}www.stoxx.com
www.stoxx.com

Derivatives, Volatility and Variance 11

FIGURE 1.4 Different scalings for the VVIX and VIX indexes to illustrate the positive correlation.
Data Source: Thomson Reuters Eikon

The majority of the material has originally been developed as part of the Eurex Advanced
Services. Although the focus is on Europe, the methods and approaches presented can usu-
ally be tranferred easily to the American landscape, for instance. This results from the fact
that some methodological unification has taken place over the past few years with regard to
volatility and variance related indexes and products.

1.4 VOLATIL ITY AND VARIANCE TRADING

This section discusses motives and rationales for trading listed volatility and variance deriva-
tives. It does not cover volatility (variance) trading strategies that can be implemented with,
for example, regular equity options (see Cohen (2005), ch. 4).

1.4.1 Volat i l i ty Trading

It is instructive to first list characteristics of volatility indexes. We focus on the VSTOXX
and distinguish between facts (which follow from construction) and stylized facts (which are
supported by empirical evidence):

� market expection (fact): the VSTOXX represents a 30 day implied volatility average
from out-of-the money options, i.e. the market consensus with regard to the “to be real-
ized” volatility over the next 30 days

� non-tradable asset (fact): the VSTOXX itself is not directly tradable, only derivatives on
the VSTOXX can be traded

� mean-reverting nature (fact): the VSTOXX index is mean-reverting, it does not show a
positive or negative drift over longer periods of time

12 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 1.5 Different scalings for the S&P 500 and VIX indexes to illustrate the negative
correlation. Data source: Yahoo! Finance

� negative correlation (stylized fact): the VSTOXX is (on average) negatively correlated
with the respective equity index, the EURO STOXX 50

� positive jumps (stylized fact): during times of stock market crisis, the VSTOXX can jump
to rather high levels; the mean reversion generally happens much more slowly

� higher than realized volatility (stylized fact): on average, the VSTOXX index is higher
than the realized volatility over the next 30 days.

Figure 1.5 illustrates the negative correlation between the S&P 500 index and the VIX index
graphically. Over the period shown, the correlation is about −0.75.

The value of a VSTOXX future represents the (market) expectation with regard to the
future value of the VSTOXX at the maturity date of the future. Given this background, typical
volatility trading strategies involving futures include the following:

� long VSTOXX future: such a position can be used to hedge equity positions (due to the
negative correlation with the EURO STOXX 50) or to increase returns of an equity port-
folio (e.g. through a constant-proportion investment strategy, see chapter 4, Data Analysis
and Strategies); it can also be used to hedge a short realized volatility strategy

� short VSTOXX future: such a trade can be entered, for example, when the VSTOXX
spikes and the expectation is that it will revert (fast enough) to its mean; it might also
serve to reduce vega exposure in long vega option portfolios

� term structure arbitrage: for example, shorting the front month futures contract and
going long the nearby futures contract represents a typical term structure arbitrage strategy
when the term structure is in contango; this is due to different carries associated with
different futures contracts and maturities, respectively

Derivatives, Volatility and Variance 13

� relative value arbitrage: VSTOXX futures can also be traded against other volatility/-
variance sensitive instruments and positions, like OTC variance swaps, equity options
portfolios, etc.

Similar and other strategies can be implemented involving VSTOXX options. With regard to
exercise they are European in nature and can be delta hedged by using VSTOXX futures which
is yet another motive for trading in futures. Typical trading strategies involving VSTOXX
options are:

� long OTM calls: such a position might protect an equity portfolio from losses due to a
market crash (again due to the negative correlation between VSTOXX and EURO STOXX
50)

� short ATM calls: writing ATM calls, and pocketing the option premium, might be attrac-
tive when the current implied volatility levels are relatively high

� long ATM straddle: buying put and call options on the VSTOXX with same (ATM) strike
and maturity yields a profit when the VSTOXX moves fast enough in one direction; this
is typically to be expected when the volatility of volatility (vol-vol) is high.

For both VSTOXX futures and options many other strategies can be implemented that exploit
some special situation (e.g. contango or backwardation in the futures prices) or reflect a certain
expectation of the trader (e.g. that realized volatility will be lower/higher than the implied/
expected volatility).

1.4.2 Variance Trading

The motives and rationales for trading in EURO STOXX 50 variance futures are not too dif-
ferent from those involving VSTOXX derivatives (see Bossu et al. (2005)). Typical strategies
include:

� long variance future: this position benefits when the realized variance is higher than
the variance strike (implied variance at inception); it might also be used to hedge equity
portfolio risks or short vega options positions

� short variance future: this position benefits when the realized variance is below the vari-
ance strike which tends to be the case on average; it can also hedge a long vega options
position

� forward volatility/variance trading: since variance is additive over time (which volatil-
ity is not), one can get a perfect exposure to forward implied volatility by, for exam-
ple, shorting the September variance future and going long the October contract; this
gives an exposure to the forward implied volatility from September maturity to October
maturity

� correlation trading: variance futures can be traded to exploit (statistical) arbitrage oppor-
tunities between, for example, the (implied) variance of an equity index and its compo-
nents or the (implied) variance of one equity index versus another one; in both cases, the
rationale is generally based on the correlation of the different assets and their variance,
respectively.

14 LISTED VOLATILITY AND VARIANCE DERIVATIVES

1.5 PYTHON AS OUR TOOL OF CHOICE

There are some general reasons why Python is a good choice for computational finance and
financial data science these days. Among others, these are:

� open source: Python is open source and can be used by students and big financial insti-
tutions alike for free

� syntax: Python’s readable and concise syntax make it a good choice for presenting formal
concepts, like those in finance

� ecosystem: compared to other languages Python has an excellent ecosystem of libraries
and packages that are useful for data analytics and scientific computing in general and
financial analytics in particular

� performance: in recent years, the ecosystem of Python has grown especially in the
area of performance libraries, making it much easier to get to computing speeds more
than sufficient for the most computationally demanding algorithms, such as Monte Carlo
simulation

� adoption: at the time of writing, Python has established itself as a core technology at
major financial institutions, be it leading investment banks, big hedge funds or more tra-
ditional asset management firms

� career: given the widespread adoption of Python, learning and mastering the language
seems like a good career move for everybody working in the industry or planning to
do so.

In view of the scope and style of the book, one special feature is noteworthy:

� interactivity: the majority of the code examples presented in this book can be executed
in interactive fashion within the Jupyter Notebook environment (see http://jupyter.org);
in this regard, Python has a major advantage as an interpreted language compared to a
compiled one with its typical edit-compile-run cycle.

Chapter 1 of Hilpisch (2014) provides a more detailed overview of aspects related to
Python for Finance. All the code presented in this book is available via resources listed
under http://lvvd.tpq.io, especially on the Quant Platform for which you can register under
http://lvvd.quant-platform.com.

1.6 QUICK GUIDE THROUGH THE REST OF THE BOOK

The remainder of this introductory part of the book is organized as follows:

� chapter 2: this chapter introduces Python as a technology platform for (interactive) finan-
cial analytics; a more detailed account of Python for Finance is provided in Hilpisch
(2014)

� chapter 3: this chapter presents the model-free replication approach for variance; it is
important for both volatility indexes and derivatives written on them as well as for variance
futures.

let &hbox {char '046}http://lvvd.quant-platform.com
http://lvvd.quant-platform.com
http://jupyter.org
http://lvvd.tpq.io

Derivatives, Volatility and Variance 15

The second part of the book is about the VSTOXX and listed volatility derivatives. It comprises
the following chapters:

� chapter 4: as a starting point, chapter 4 uses Python to analyze historical data for the
VSTOXX and EURO STOXX 50 indexes; a focal point is the analysis of some simple
trading strategies involving the VSTOXX

� chapter 5: using the model-free replication approach for variance, this chapter shows in
detail how the VSTOXX index is calculated and how to use Python to (re-)calculate it
using raw option data as input

� chapter 6: Grünbichler and Longstaff (1996) were among the first to propose a parame-
terized model to value futures and options on volatility indexes; chapter 6 presents their
model which is based on a square-root diffusion process and shows how to simulate and
calibrate it to volatility option market quotes

� chapter 7: building on chapter 6, chapter 7 presents a more sophisticated framework – a
deterministic shift square-root jump diffusion (SRJD) process – to model the VSTOXX
index and to better capture the implied volatility smiles and volatility term structure
observed in the market; the exposition is slightly more formal compared to the rest of
the book

� chapter 8: this brief chapter discusses terms of the VSTOXX volatility index as well as
the futures and options traded on the VSTOXX.

Part three of the book is about the Eurex Variance Futures contract as listed in September 2014.
This part comprises three chapters:

� chapter 9: listed variance futures are mainly based on the popular OTC variance swap
contracts with some differences introduced by intraday trading; chapter 9 therefore cov-
ers variance swaps in some detail and also discusses differences between variance and
volatility as an underlying asset

� chapter 10: this chapter provides a detailed discussion of all concepts related to the listed
Eurex Variance Futures contract and shows how to (re-)calculate its value given historical
data; it also features a comparison between the futures contract and a respective OTC
variance swap contract

� chapter 11: this chapter discusses all those special characteristics of the Eurex Variance
Futures when it comes to (intraday) trading and settlement.

Part four of the book focuses on the DX Analytics financial library (see http://dx-
analytics.com) to model the VSTOXX index and to calibrate different models to VSTOXX
options quotes. It consists of three chapters:

� chapter 12: this chapter introduces basic concepts and API elements of the DX Analytics
library

� chapter 13: using the square-root diffusion model as introduced in chapter 6, this chapter
implements a calibration study to a single maturity of VSTOXX options over the first
quarter of 2014

� chapter 14: chapter 14 replicates the same calibration study but in a more sophisticated
fashion; it calibrates the deterministic shift square-root jump diffusion process not only
to a single maturity of options but to as many as five simultaneously.

http://dx-analytics.com
http://dx-analytics.com
http://dx-analytics.com

CHAPTER 2
Introduction to Python

P ython has become a powerful programming language and has developed a huge ecosystem
of helpful libraries over the last couple of years. This chapter provides a concise overview

of Python and two of the major pillars of the the so-called scientific stack:

� NumPy (see http://numpy.scipy.org)
� pandas (see http://pandas.pydata.org)

NumPy provides performant array operations on numerical data while pandas is specif-
ically designed to handle more complex data analytics operations, e.g. on (financial) times
series data.

Such an introductory chapter – only addressing selected topics relevant to the contents
of this book – can of course not replace a thorough introduction to Python and the libraries
covered. However, if you are rather new to Python or programming in general you might get
a first overview and a feeling of what Python is all about. If you are already experienced in
another language typically used in quantitative finance (e.g. Matlab, R, C++, VBA), you see
what typical data structures, programming paradigms and idioms in Python look like.

For a comprehensive overview of Python applied to finance see Hilpisch (2014). Other,
more general introductions to the language with a scientific and data analysis focus are Haenel
et al. (2013), Langtangen (2009) and McKinney (2012).

This chapter and the rest of the book is based on Python 2.7 although the majority of the
code should be easily transformed to Python 3.5 after some minor modifications.

2.1 PYTHON BASICS

This section introduces basic Python data types and structures, control structures and some
Python idioms.

2.1.1 Data Types

It is noteworthy that Python is a dynamically typed system which means that types of objects
are inferred from their contexts. Let us start with numbers.

17

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

let &hbox {char '046}http://numpy.scipy.org
http://numpy.scipy.org
let &hbox {char '046}http://pandas.pydata.org
http://pandas.pydata.org

18 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [1]: a = 3 # defining an integer object

In [2]: type(a)

Out[2]: int

In [3]: a.bit_length() # number of bits used

Out[3]: 2

In [4]: b = 5. # defining a float object

In [5]: type(b)

Out[5]: float

Python can handle arbitrarily large integers which is quite beneficial for number of theoretical
applications, for instance:

In [6]: c = 10 ** 100 # googol number

In [7]: type(c)

Out[7]: long

In [8]: c # long integer object

Out[8]: 1000

0000000000000000000000000000000000000L

In [9]: c.bit_length() # number of bits used

Out[9]: 333

Arithmetic operations on these objects work as expected.

In [10]: 3 / 5. # division

Out[10]: 0.6

In [11]: a * b # multiplication

Out[11]: 15.0

In [12]: a - b # difference

Out[12]: -2.0

In [13]: b + a # addition

Out[13]: 8.0

In [14]: a ** b # power

Out[14]: 243.0

Introduction to Python 19

However, be aware of the floor division which is standard in Python 2.7.

In [15]: 3 / 5 # int type inferred => floor division

Out[15]: 0

Many often used mathematical functions are found in the math module which is part of
Python’s standard library.

In [16]: import math # importing the library into the namespace

In [17]: math.log(a) # natural logarithm

Out[17]: 1.0986122886681098

In [18]: math.exp(a) # exponential function

Out[18]: 20.085536923187668

In [19]: math.sin(b) # sine function

Out[19]: -0.9589242746631385

Another important basic data type is string objects.

In [20]: s = 'Listed Volatility and Variance Derivatives.'

In [21]: type(s)

Out[21]: str

This object type has multiple methods attached.

In [22]: s.lower() # converting to lower case characters

Out[22]: 'listed volatility and variance derivatives.'

In [23]: s.upper() # converting to upper case characters

Out[23]: 'LISTED VOLATILITY AND VARIANCE DERIVATIVES.'

String objects can be easily sliced. Note that Python has in general zero-based numbering and
indexing.

In [24]: s[0:6]

Out[24]: 'Listed'

20 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Such objects can also be combined using the + operator. The index value -1 represents the last
character of a string (or last element of a sequence in general).

In [25]: st = s[0:6] + s[-13:-1]

In [26]: print st

Listed Derivatives

String replacements are often used to parametrize text output.

In [27]: repl = "My name is %s, I am %d years old and %4.2f m tall."

replace %s by a string, %d by an integer and

%4.2f by a float showing 2 decimal values

In [28]: print repl % ('Peter', 35, 1.88)

My name is Peter, I am 35 years old and 1.88 m tall.

A different way to reach the same goal is the following:

In [29]: repl = "My name is {:s}, I am {:d} years old and {:4.2f} m tall."

In [30]: print repl.format('Peter', 35, 1.88)

My name is Peter, I am 35 years old and 1.88 m tall.

2.1.2 Data Structures

A lightweight data structure is tuples. These are immutable collections of other objects and
are constucted by objects separated by commas – with or without parentheses.

In [31]: t1 = (a, b, st)

In [32]: t1

Out[32]: (3, 5.0, 'Listed Derivatives')

In [33]: type(t1)

Out[33]: tuple

In [34]: t2 = st, b, a

In [35]: t2

Out[35]: ('Listed Derivatives', 5.0, 3)

In [36]: type(t2)

Out[36]: tuple

Introduction to Python 21

Nested structures are also possible.

In [37]: t = (t1, t2)

In [38]: t

Out[38]: ((3, 5.0, 'Listed Derivatives'), ('Listed Derivatives', 5.0, 3))

In [39]: t[0][2] # take 3rd element of 1st element

Out[39]: 'Listed Derivatives'

List objects are mutable collections of other objects and are generally constructed by providing
a comma separated collection of objects in brackets.

In [40]: l = [a, b, st]

In [41]: l

Out[41]: [3, 5.0, 'Listed Derivatives']

In [42]: type(l)

Out[42]: list

In [43]: l.append(s.split()[3]) # append 4th word of string

In [44]: l

Out[44]: [3, 5.0, 'Listed Derivatives', 'Variance']

Sorting is a typical operation on list objects which can also be constructed using the list
constructor (here applied to a tuple object).

In [45]: l = list(('Z', 'Q', 'D', 'J', 'E', 'H', 5., a))

In [46]: l

Out[46]: ['Z', 'Q', 'D', 'J', 'E', 'H', 5.0, 3]

In [47]: l.sort() # in-place sorting

In [48]: l

Out[48]: [3, 5.0, 'D', 'E', 'H', 'J', 'Q', 'Z']

Dictionary objects are so-called key-value stores and are generally constructed with curly
brackets.

22 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [49]: d = {'int_obj': a,

....: 'float_obj': b,

....: 'string_obj': st}

....:

In [50]: type(d)

Out[50]: dict

In [51]: d

Out[51]: {'float_obj': 5.0, 'int_obj': 3, 'string_obj': 'Listed Derivatives'}

In [52]: d['float_obj'] # look-up of value given key

Out[52]: 5.0

In [53]: d['long_obj'] = c / 10 ** 90 # adding new key value pair

In [54]: d

Out[54]:

{'float_obj': 5.0,

'int_obj': 3,

'long_obj': 10000000000L,

'string_obj': 'Listed Derivatives'}

Keys and values of a dictionary object can be retrieved as list objects.

In [55]: d.keys()

Out[55]: ['long_obj', 'int_obj', 'float_obj', 'string_obj']

In [56]: d.values()

Out[56]: [10000000000L, 3, 5.0, 'Listed Derivatives']

2.1.3 Control Structures

Iterations are very important operations in programming in general and financial analytics in
particular. Many Python objects are iterable which proves rather convenient in many circum-
stances. Consider the special list object constructor range.

In [57]: range(5) # all integers from zero to 5 excluded

Out[57]: [0, 1, 2, 3, 4]

In [58]: range(3, 15, 2) # start at 3, step with 2 until 15 excluded

Out[58]: [3, 5, 7, 9, 11, 13]

Introduction to Python 23

Such a list object constructor is often used in the context of a for loop.

In [59]: for i in range(5):

....: print i ** 2,

....:

0 1 4 9 16

However, you can iterate over any sequence.

iteration over list object

In [60]: for _ in l:

....: print _,

....:

3 5.0 D E H J Q Z

iteration over string object

In [61]: for c in st:

....: print c + '|',

....:

L| i| s| t| e| d| | D| e| r| i| v| a| t| i| v| e| s|

while loops are similar to their counterparts in other languages.

In [62]: i = 0 # initialize counter

In [63]: while i < 5:

....: print i ** 0.5, # output

....: i += 1 # increase counter by 1

....:

0.0 1.0 1.41421356237 1.73205080757 2.0

The if-elif-else control structure is introduced below in the context of Python function
definitions.

2.1.4 Specia l Python Id ioms

Python relies in many places on a number of special idioms. Let us start with a rather popular
one, the list comprehension.

In [64]: lc = [i ** 2 for i in range(10)]

In [65]: lc

Out[65]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

24 LISTED VOLATILITY AND VARIANCE DERIVATIVES

As the name suggests, the result is a list object.

In [66]: type(lc)

Out[66]: list

So-called lambda or anonymous functions are useful helpers in many places.

In [67]: f = lambda x: math.cos(x) # returns cos of x

In [68]: f(5)

Out[68]: 0.28366218546322625

List comprehensions can be combined with lambda functions to achieve concise constructions
of list objects.

In [69]: lc = [f(x) for x in range(10)]

In [70]: lc

Out[70]:

[1.0,

0.5403023058681398,

-0.4161468365471424,

-0.9899924966004454,

-0.6536436208636119,

0.28366218546322625,

0.960170286650366,

0.7539022543433046,

-0.14550003380861354,

-0.9111302618846769]

However, there is an even more concise way of constructing the same list object – using func-
tional programming approaches, in the following case with map.

In [71]: map(lambda x: math.cos(x), range(10))

Out[71]:

[1.0,

0.5403023058681398,

-0.4161468365471424,

-0.9899924966004454,

-0.6536436208636119,

0.28366218546322625,

0.960170286650366,

0.7539022543433046,

-0.14550003380861354,

-0.9111302618846769]

Introduction to Python 25

In general, one works with regular Python functions (as opposed to lambda functions) which
are constructed as follows:

In [72]: def f(x):

....: return math.exp(x)

....:

The general construction looks like this:

In [73]: def f(*args): # multiple arguments

....: for arg in args:

....: print arg

....: return None # return result(s) (not necessary)

....:

In [74]: f(l)

[3, 5.0, 'D', 'E', 'H', 'J', 'Q', 'Z']

Consider the following function definition which returns different values/strings based on an
if-elif-else control structure:

In [75]: import random # import random number library

In [76]: a = random.randint(0, 999) # draw random number between 0 and 999

In [77]: print "Random number is %d" % a

Random number is 627

In [78]: def number_decide(number):

....: if a < 10:

....: return "Number is single digit."

....: elif 10 <= a < 100:

....: return "Number is double digit."

....: else:

....: return "Number is triple digit."

....: number_decide(a)

....:

Out[78]: 'Number is triple digit.'

A specialty of Python is generator objects. One constructor for such objects that is commonly
used is xrange.

26 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [79]: g = xrange(10)

In [80]: type(g) # object type

Out[80]: xrange

In [81]: g # object instance

Out[81]: xrange(10)

In [82]: for _ in g:

....: print _, # integers are "generated" when needed

....:

0 1 2 3 4 5 6 7 8 9

Generator objects can in many scenarios replace (typical) list objects and have the major advan-
tage that they are in general much more memory efficient. Consider a financial algorithm that
requires 10 mn loops. Iterating over a list of integers from 0 to 9,999,999 is not efficient since
the algorithm (in general) does not need to have all these numbers available at the same time.
But this is what happens when using range for such a loop.

Consider the following construction of the respective list object containing all integers:

In [83]: %time r = range(10000000)

CPU times: user 87.4 ms, sys: 211 ms, total: 299 ms

Wall time: 299 ms

This object consumes 80 MB (!) of RAM (10 mn times 8 bytes).

In [84]: import sys

In [85]: sys.getsizeof(r) # size in bytes of object

Out[85]: 80000072

On the other hand, consider the analogous construction based on a generator (xrange) object.
It is much, much faster since no memory has to be allocated, no list object has to be generated
up-front, etc.

In [86]: %time xr = xrange(10000000)

CPU times: user 3 us, sys: 1e+03 ns, total: 4 us

Wall time: 5.96 us

Memory consumption is also much, much more efficient – 40 bytes compared to 80 MB.

Introduction to Python 27

In [87]: sys.getsizeof(xr)

Out[87]: 40

However, in practical applications the two can be used often interchangeably such that one
should always resort to the more efficient alternative when possible. The following examples
calculate – using the functional programming operation reduce – the sum of all integers
from 0 to 9,999,999. Although in this case there is hardly a performance difference, the first
operation requires 80 MB of memory while the second might only require less than 100 bytes.

In [88]: %time reduce(lambda x, y: x + y, range(1000000))

CPU times: user 131 ms, sys: 15.9 ms, total: 147 ms

Wall time: 147 ms

Out[88]: 499999500000

In [89]: %time reduce(lambda x, y: x + y, xrange(1000000))

CPU times: user 118 ms, sys: 0 ns, total: 118 ms

Wall time: 117 ms

Out[89]: 499999500000

More Pythonic (and faster in general) is to calculate the sum using the built-in sum function
– in this case a significant performance advantage for the generator approach emerges.

In [90]: %timeit sum(range(1000000))

10 loops, best of 3: 26.6 ms per loop

In [91]: %timeit sum(xrange(1000000))

100 loops, best of 3: 12.9 ms per loop

There is also a way of indirectly constructing a generator object, i.e. by the use of parentheses.
The following code results in a generator object for the sine values of the numbers from 0 to
99:

In [92]: g = (math.sin(x) for x in xrange(100))

In [93]: g

Out[93]: <generator object <genexpr> at 0x2ab247901f50>

Such an object stores its internal state and yields the next value when the method next() is
called.

28 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [94]: g.next()

Out[94]: 0.0

In [95]: g.next()

Out[95]: 0.8414709848078965

Yet another way of constructing a generator object is by a definition style that resembles the
standard function definition closely. The difference is that instead of the return statement,
the yield statement is used.

In [96]: def g(start, end):

....: while start <= end:

....: yield start # yield "next" value

....: start += 1 # increase by one

....:

Usage then might be as follows:

In [97]: go = g(15, 20)

In [98]: for _ in go:

....: print _,

....:

15 16 17 18 19 20

2.2 NumPy

Many operations in computational finance take place over (large) arrays of numerical data.
NumPy is a Python library that allows the efficient handling of and operation on such data
structures. Although quite a mighty library with a wealth of functionality, it suffices for the
purposes of this book to cover the basics of NumPy.

In [99]: import numpy as np

The workhorse is the NumPy ndarray class which provides the data structure for n-
dimensional, immutable array objects. You can generate an ndarray object e.g. out of a
list object.

Introduction to Python 29

In [100]: a = np.array(range(24))

In [101]: a

Out[101]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23])

The power of these objects lies in the management of n-dimensional data structures (e.g. matri-
ces or cubes of data).

In [102]: b = a.reshape((4, 6))

In [103]: b

Out[103]:

array([[0, 1, 2, 3, 4, 5],

[6, 7, 8, 9, 10, 11],

[12, 13, 14, 15, 16, 17],

[18, 19, 20, 21, 22, 23]])

In [104]: c = a.reshape((2, 3, 4))

In [105]: c

Out[105]:

array([[[0, 1, 2, 3],

[4, 5, 6, 7],

[8, 9, 10, 11]],

[[12, 13, 14, 15],

[16, 17, 18, 19],

[20, 21, 22, 23]]])

So-called standard arrays (in contrast to e.g. structured arrays) have a single dtype (i.e.
NumPy data type). Consider the following operation which changes the dtype parameter of
the b object to float:

In [106]: b = np.array(b, dtype=np.float)

In [107]: b

Out[107]:

array([[0., 1., 2., 3., 4., 5.],

[6., 7., 8., 9., 10., 11.],

[12., 13., 14., 15., 16., 17.],

[18., 19., 20., 21., 22., 23.]])

30 LISTED VOLATILITY AND VARIANCE DERIVATIVES

A major strength of NumPy is vectorized operations.

In [108]: 2 * b

Out[108]:

array([[0., 2., 4., 6., 8., 10.],

[12., 14., 16., 18., 20., 22.],

[24., 26., 28., 30., 32., 34.],

[36., 38., 40., 42., 44., 46.]])

In [109]: b ** 2

Out[109]:

array([[0., 1., 4., 9., 16., 25.],

[36., 49., 64., 81., 100., 121.],

[144., 169., 196., 225., 256., 289.],

[324., 361., 400., 441., 484., 529.]])

You can also pass ndarray objects to lambda or standard Python functions.

In [110]: f = lambda x: x ** 2 - 2 * x + 0.5

In [111]: f(a)

Out[111]:

array([0.5, -0.5, 0.5, 3.5, 8.5, 15.5, 24.5, 35.5,

48.5, 63.5, 80.5, 99.5, 120.5, 143.5, 168.5, 195.5,

224.5, 255.5, 288.5, 323.5, 360.5, 399.5, 440.5, 483.5])

In many scenarios, only a (small) part of the data stored in an ndarray object is of interest.
NumPy supports basic and advanced slicing and other selection features.

In [112]: a[2:6] # 3rd to 6th element

Out[112]: array([2, 3, 4, 5])

In [113]: b[2, 4] # 3rd row, final (5th)

Out[113]: 16.0

In [114]: b[1:3, 2:4] # middle square of numbers

Out[114]:

array([[8., 9.],

[14., 15.]])

Boolean operations are also supported in many places.

Introduction to Python 31

which numbers are larger than 10?

In [115]: b > 10

Out[115]:

array([[False, False, False, False, False, False],

[False, False, False, False, False, True],

[True, True, True, True, True, True],

[True, True, True, True, True, True]], dtype=bool)

only those numbers (flat) that are larger than 10

In [116]: b[b > 10]

Out[116]:

array([11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21.,

22., 23.])

Furthermore, ndarray objects have multiple (convenience) methods already built in.

In [117]: a.sum() # sum of all elements

Out[117]: 276

In [118]: b.mean() # mean of all elements

Out[118]: 11.5

In [119]: b.mean(axis=0) # mean along 1st axis

Out[119]: array([9., 10., 11., 12., 13., 14.])

In [120]: b.mean(axis=1) # mean along 2nd axis

Out[120]: array([2.5, 8.5, 14.5, 20.5])

In [121]: c.std() # standard deviation for all elements

Out[121]: 6.9221865524317288

Similarly, there is a wealth of so-called universal functions that the NumPy library provides.
Universal in the sense that they can be applied in general to NumPy ndarray objects and to
standard numerical Python data types.

In [122]: np.sum(a) # sum of all elements

Out[122]: 276

In [123]: np.mean(b, axis=0) # mean along 1st axis

Out[123]: array([9., 10., 11., 12., 13., 14.])

In [124]: np.sin(b).round(2) # sine of all elements (rounded)

Out[124]:

array([[0. , 0.84, 0.91, 0.14, -0.76, -0.96],

[-0.28, 0.66, 0.99, 0.41, -0.54, -1.],

32 LISTED VOLATILITY AND VARIANCE DERIVATIVES

[-0.54, 0.42, 0.99, 0.65, -0.29, -0.96],

[-0.75, 0.15, 0.91, 0.84, -0.01, -0.85]])

In [125]: np.sin(4.5) # sine of Python float object

Out[125]: -0.97753011766509701

However, you should be aware that applying NumPy universal functions to standard Python
data types generally comes with a significant performance burden.

In [126]: %time l = [np.sin(x) for x in xrange(100000)]

CPU times: user 188 ms, sys: 3.89 ms, total: 192 ms

Wall time: 192 ms

In [127]: import math

In [128]: %time l = [math.sin(x) for x in xrange(100000)]

CPU times: user 27.7 ms, sys: 0 ns, total: 27.7 ms

Wall time: 27.7 ms

Using the vectorized operations from NumPy is faster than both of the above alternatives which
result in list objects.

In [129]: %time np.sin(np.arange(100000))

CPU times: user 5.23 ms, sys: 0 ns, total: 5.23 ms

Wall time: 5.24 ms

Out[129]:

array([0. , 0.84147098, 0.90929743, ..., 0.10563876,

0.89383946, 0.86024828])

Here, we use the ndarray object constructor arange which yields an ndarray object of
integers – below is a simple example:

In [130]: ai = np.arange(10)

In [131]: ai

Out[131]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [132]: ai.dtype

Out[132]: dtype('int64')

Using this constructor, you can also generate ndarray objects with different dtype
attributes:

Introduction to Python 33

In [133]: af = np.arange(0.5, 9.5, 0.5) # start, end, step size

In [134]: af

Out[134]:

array([0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5,

6. , 6.5, 7. , 7.5, 8. , 8.5, 9.])

In [135]: af.dtype

Out[135]: dtype('float64')

In this context the linspace operator is also useful, providing an ndarray object with
evenly spaced numbers.

In [136]: np.linspace(0, 10, 12) # start, end, number of elements

Out[136]:

array([0. , 0.90909091, 1.81818182, 2.72727273,

3.63636364, 4.54545455, 5.45454545, 6.36363636,

7.27272727, 8.18181818, 9.09090909, 10.])

In financial analytics one often needs (pseudo-)random numbers. NumPy provides many func-
tions to sample from different distributions. Those needed in this book are the standard normal
distribution and the Poisson distribution. The respective functions are found in the sub-library
numpy.random.

In [137]: np.random.standard_normal(10)

Out[137]:

array([1.70352821, -1.30223997, -0.16846238, -0.33605234, 0.84842565,

-0.7012202 , 1.31232816, 1.34394536, -0.08358828, 1.53690444])

In [138]: np.random.poisson(0.5, 10)

Out[138]: array([0, 1, 0, 1, 0, 0, 1, 2, 2, 0])

Let us generate an ndarray object which is a bit more “realistic” and which we work with
in what follows:

In [139]: np.random.seed(1000) # fix the rng seed value

In [140]: data = np.random.standard_normal((5, 100))

Although this is a slightly larger array one cannot expect that the 500 numbers are indeed
standard normally distributed in the sense that the first moment is 0 and the second moment is
1. However, at least this can be easily corrected.

34 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [141]: data.mean() # should be 0.0

Out[141]: -0.02714981205311327

In [142]: data.std() # should be 1.0

Out[142]: 1.0016799134894265

The correction is called moment matching and can be implemented with NumPy by vectorized
operations.

In [143]: data = data - data.mean() # correction for the 1st moment

In [144]: data = data / data.std() # correction for the 2nd moment

In [145]: data.mean() # now really close to 0.0

Out[145]: 7.105427357601002e-18

In [146]: data.std() # now really close to 1.0

Out[146]: 1.0

2.3 matplot l ib

At this stage, it makes sense to introduce plotting with matplotlib, the plotting work horse in the
Python ecosystem. We use matplotlib (see http://matplotlib.org) with the settings of another
library throughout, namely seaborn (see http://stanford.edu/∼mwaskom/software/seaborn/) –
this results in a more modern plotting style.

In [147]: import matplotlib.pyplot as plt # import main plotting library

In [148]: import seaborn as sns; sns.set() # set seaborn standards

In [149]: import matplotlib

set font to serif

In [150]: matplotlib.rcParams['font.family'] = 'serif'

A standard plot is the line plot. The result of the code below is shown as Figure 2.1.

In [151]: plt.figure(figsize=(10, 6)); # size of figure

In [152]: plt.plot(data.cumsum()); # cumulative sum over all elements

http://matplotlib.org
http://stanford.edu/%E2%88%BCmwaskom/software/seaborn/

Introduction to Python 35

FIGURE 2.1 Standard line plot with matplotlib.

Multiple lines plots are also easy to generate (see Figure 2.2). The operator T stands for
the transpose of the ndarray object (“matrix”).

In [153]: plt.figure(figsize=(10, 6)); # size of figure

plotting five cumulative sums as lines

In [154]: plt.plot(data.T.cumsum(axis=0), label='line');

In [155]: plt.legend(loc=0); # legend in best location

In [156]: plt.xlabel('data point'); # x axis label

In [157]: plt.ylabel('value'); # y axis label

In [158]: plt.title('random series'); # figure title

Other important plotting types are histograms and bar charts. A histogram for all 500 values
of the data object is shown as Figure 2.3. In the code, the flatten() method is used to
generate a one-dimensional array from the two-dimensional one.

In [159]: plt.figure(figsize=(10, 6)); # size of figure

In [160]: plt.hist(data.flatten(), bins=30);

36 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 2.2 Multiple lines plot with matplotlib.

F IGURE 2.3 Histrogram with matplotlib.

Introduction to Python 37

FIGURE 2.4 Bar chart with matplotlib.

Finally, consider the bar chart presented in Figure 2.4.

In [161]: plt.figure(figsize=(10, 6)); # size of figure

In [162]: plt.bar(np.arange(1, 12) - 0.25, data[0, :11], width=0.5);

To conclude the introduction to matplotlib consider the ordinary least squares (OLS) regres-
sion of the sample data displayed in Figure 2.1. NumPy provides with the two functions
polyfit() and polyval() convenience functions to implement OLS based on sim-
ple monomials i.e. x, x2, x3, ..., xn. For illustration purposes consider linear, quadratic and
cubic OLS.

In [163]: x = np.arange(len(data.cumsum()))

In [164]: y = data.cumsum()

In [165]: rg1 = np.polyfit(x, y, 1) # linear OLS

In [166]: rg2 = np.polyfit(x, y, 2) # quadratic OLS

In [167]: rg3 = np.polyfit(x, y, 3) # cubic OLS

Figure 2.5 illustrates the regression results graphically.

38 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 2.5 Linear, quadratic and cubic regression.

In [168]: plt.figure(figsize=(10, 6));

In [169]: plt.plot(x, y, 'r', label='data');

In [170]: plt.plot(x, np.polyval(rg1, x), 'b--', label='linear');

In [171]: plt.plot(x, np.polyval(rg2, x), 'b-.', label='quadratic');

In [172]: plt.plot(x, np.polyval(rg3, x), 'b:', label='cubic');

In [173]: plt.legend(loc=0);

2.4 pandas

pandas is a library with which you can manage and operate on time series data and other
tabular data structures. It allows implementation of even sophisticated data analytics tasks on
larger data sets. While the focus lies on in-memory operations, there are also multiple options
for out-of-memory (on-disk) operations. Although pandas provides a number of different data
structures, embodied by powerful classes, the structure most often used is the DataFrame
class which resembles a typical table of a relational (SQL) database and is used to manage,
for instance, financial time series data. This is what we focus on in this section.

Introduction to Python 39

2.4.1 pandas DataFrame class

In its most basic form, a DataFrame object is characterized by an index, column names and
tabular data. To make this more specific, consider the following sample data set:

In [174]: np.random.seed(1000)

In [175]: a = np.random.standard_normal((10, 3)).cumsum(axis=0)

Also, consider the following dates which shall be our index:

In [176]: index = ['2016-1-31', '2016-2-28', '2016-3-31',

.....: '2016-4-30', '2016-5-31', '2016-6-30',

.....: '2016-7-31', '2016-8-31', '2016-9-30',

.....: '2016-10-31']

.....:

Finally, the column names:

In [177]: columns = ['no1', 'no2', 'no3']

The instantiation of a DataFrame object then looks as follows:

In [178]: import pandas as pd

In [179]: df = pd.DataFrame(a, index=index, columns=columns)

A look at the new object reveals its resemblance with a typical table from a relational database
(or e.g. an Excel spreadsheet).

In [180]: df

Out[180]:

no1 no2 no3

2016-1-31 -0.804458 0.320932 -0.025483

2016-2-28 -0.160134 0.020135 0.363992

2016-3-31 -0.267572 -0.459848 0.959027

2016-4-30 -0.732239 0.207433 0.152912

2016-5-31 -1.928309 -0.198527 -0.029466

2016-6-30 -1.825116 -0.336949 0.676227

2016-7-31 -0.553321 -1.323696 0.341391

2016-8-31 -0.652803 -0.916504 1.260779

2016-9-30 -0.340685 0.616657 0.710605

2016-10-31 -0.723832 -0.206284 2.310688

40 LISTED VOLATILITY AND VARIANCE DERIVATIVES

DataFrame objects have built in a multitude of basic, advanced and convenience methods, a
few of which are illustrated without much commentary below.

In [181]: df.head() # first five rows

Out[181]:

no1 no2 no3

2016-1-31 -0.804458 0.320932 -0.025483

2016-2-28 -0.160134 0.020135 0.363992

2016-3-31 -0.267572 -0.459848 0.959027

2016-4-30 -0.732239 0.207433 0.152912

2016-5-31 -1.928309 -0.198527 -0.029466

In [182]: df.tail() # last five rows

Out[182]:

no1 no2 no3

2016-6-30 -1.825116 -0.336949 0.676227

2016-7-31 -0.553321 -1.323696 0.341391

2016-8-31 -0.652803 -0.916504 1.260779

2016-9-30 -0.340685 0.616657 0.710605

2016-10-31 -0.723832 -0.206284 2.310688

In [183]: df.index # index object

Out[183]:

Index([u'2016-1-31', u'2016-2-28', u'2016-3-31', u'2016-4-30', u'2016-5-31',

u'2016-6-30', u'2016-7-31', u'2016-8-31', u'2016-9-30', u'2016-10-31'],

dtype='object')

In [184]: df.columns # column names

Out[184]: Index([u'no1', u'no2', u'no3'], dtype='object')

In [185]: df.info() # meta information

<class 'pandas.core.frame.DataFrame'>

Index: 10 entries, 2016-1-31 to 2016-10-31

Data columns (total 3 columns):

no1 10 non-null float64

no2 10 non-null float64

no3 10 non-null float64

dtypes: float64(3)

memory usage: 320.0+ bytes

In [186]: df.describe() # typical statistics

Out[186]:

no1 no2 no3

count 10.000000 10.000000 10.000000

mean -0.798847 -0.227665 0.672067

std 0.607430 0.578071 0.712430

min -1.928309 -1.323696 -0.029466

Introduction to Python 41

25% -0.786404 -0.429123 0.200031

50% -0.688317 -0.202406 0.520109

75% -0.393844 0.160609 0.896922

max -0.160134 0.616657 2.310688

Numerical operations are in general as easy with DataFrame objects as with NumPy ndar-
ray objects. They are also quite close in terms of syntax.

In [187]: df * 2 # vectorized multiplication

Out[187]:

no1 no2 no3

2016-1-31 -1.608917 0.641863 -0.050966

2016-2-28 -0.320269 0.040270 0.727983

2016-3-31 -0.535144 -0.919696 1.918054

2016-4-30 -1.464479 0.414866 0.305823

2016-5-31 -3.856618 -0.397054 -0.058932

2016-6-30 -3.650232 -0.673898 1.352453

2016-7-31 -1.106642 -2.647393 0.682782

2016-8-31 -1.305605 -1.833009 2.521557

2016-9-30 -0.681369 1.233314 1.421210

2016-10-31 -1.447664 -0.412568 4.621376

In [188]: df.std() # standard deviation by column

Out[188]:

no1 0.607430

no2 0.578071

no3 0.712430

dtype: float64

In [189]: df.mean(axis=1) # mean by index value

Out[189]:

2016-1-31 -0.169670

2016-2-28 0.074664

2016-3-31 0.077202

2016-4-30 -0.123965

2016-5-31 -0.718767

2016-6-30 -0.495280

2016-7-31 -0.511875

2016-8-31 -0.102843

2016-9-30 0.328859

2016-10-31 0.460191

dtype: float64

In [190]: np.mean(df) # mean via universal function

Out[190]:

42 LISTED VOLATILITY AND VARIANCE DERIVATIVES

no1 -0.798847

no2 -0.227665

no3 0.672067

dtype: float64

Pieces of data can be looked up via different mechanisms.

In [191]: df['no2'] # 2nd column

Out[191]:

2016-1-31 0.320932

2016-2-28 0.020135

2016-3-31 -0.459848

2016-4-30 0.207433

2016-5-31 -0.198527

2016-6-30 -0.336949

2016-7-31 -1.323696

2016-8-31 -0.916504

2016-9-30 0.616657

2016-10-31 -0.206284

Name: no2, dtype: float64

In [192]: df.iloc[0] # 1st row

Out[192]:

no1 -0.804458

no2 0.320932

no3 -0.025483

Name: 2016-1-31, dtype: float64

In [193]: df.iloc[2:4] # 3rd & 4th row

Out[193]:

no1 no2 no3

2016-3-31 -0.267572 -0.459848 0.959027

2016-4-30 -0.732239 0.207433 0.152912

In [194]: df.iloc[2:4, 1] # 3rd & 4th row, 2nd column

Out[194]:

2016-3-31 -0.459848

2016-4-30 0.207433

Name: no2, dtype: float64

In [195]: df.no3.iloc[3:7] # dot look-up for column name

Out[195]:

2016-4-30 0.152912

2016-5-31 -0.029466

2016-6-30 0.676227

2016-7-31 0.341391

Name: no3, dtype: float64

Introduction to Python 43

In [196]: df.loc['2016-3-31'] # row given index value

Out[196]:

no1 -0.267572

no2 -0.459848

no3 0.959027

Name: 2016-3-31, dtype: float64

In [197]: df.loc['2016-5-31', 'no3'] # single data point

Out[197]: -0.02946577492329111

In [198]: df['no1'] + 3 * df['no3'] # vectorized arithmetic operations

Out[198]:

2016-1-31 -0.880907

2016-2-28 0.931841

2016-3-31 2.609510

2016-4-30 -0.273505

2016-5-31 -2.016706

2016-6-30 0.203564

2016-7-31 0.470852

2016-8-31 3.129533

2016-9-30 1.791130

2016-10-31 6.208233

dtype: float64

Data selections based on Boolean operations are also a strength of pandas.

In [199]: df['no3'] > 0.5

Out[199]:

2016-1-31 False

2016-2-28 False

2016-3-31 True

2016-4-30 False

2016-5-31 False

2016-6-30 True

2016-7-31 False

2016-8-31 True

2016-9-30 True

2016-10-31 True

Name: no3, dtype: bool

In [200]: df[df['no3'] > 0.5]

Out[200]:

no1 no2 no3

2016-3-31 -0.267572 -0.459848 0.959027

2016-6-30 -1.825116 -0.336949 0.676227

44 LISTED VOLATILITY AND VARIANCE DERIVATIVES

2016-8-31 -0.652803 -0.916504 1.260779

2016-9-30 -0.340685 0.616657 0.710605

2016-10-31 -0.723832 -0.206284 2.310688

In [201]: df[(df.no3 > 0.5) & (df.no2 > 0.25)]

Out[201]:

no1 no2 no3

2016-9-30 -0.340685 0.616657 0.710605

2016-10-31 -0.723832 -0.206284 2.310688

In [202]: df[df.index > '2016-4-30']

Out[202]:

no1 no2 no3

2016-5-31 -1.928309 -0.198527 -0.029466

2016-6-30 -1.825116 -0.336949 0.676227

2016-7-31 -0.553321 -1.323696 0.341391

2016-8-31 -0.652803 -0.916504 1.260779

2016-9-30 -0.340685 0.616657 0.710605

pandas is well integrated with the matplotlib library which makes it really convenient to
plot data stored in DataFrame objects. In general, a single method call does the trick (see
Figure 2.6).

In [203]: df.plot(figsize=(10, 6));

F IGURE 2.6 Line plot from pandas DataFrame.

Introduction to Python 45

FIGURE 2.7 Histograms from pandas DataFrame.

Histograms are also generated this way (see Figure 2.7). In both cases, pandas takes care of
the handling of the single columns and automatically generates single lines (with respective
legend entries) and generates respective sub-plots with three different histograms.

In [204]: df.hist(figsize=(10, 6));

2.4.2 Input-Output Operat ions

Another strength of pandas is the exporting and importing of data to and from diverse data
storage formats. Consider the case of comma separated value (CSV) files.

In [205]: df.to_csv('data.csv') # exports to CSV file

Let us have a look at the file just saved with basic Python functionality.

In [206]: with open('data.csv') as f: # open file

.....: for l in f.readlines(): # iterate over all lines

.....: print l, # print line

.....:

,no1,no2,no3

46 LISTED VOLATILITY AND VARIANCE DERIVATIVES

2016-1-31,-0.804458303525,0.32093154709,-0.0254828804721

2016-2-28,-0.160134475098,0.0201348743028,0.363991673815

2016-3-31,-0.267571776789,-0.459848201058,0.959027175892

2016-4-30,-0.732239302984,0.20743310593,0.152911565449

2016-5-31,-1.92830913682,-0.19852705543,-0.0294657749233

2016-6-30,-1.82511624278,-0.336949044016,0.676226600036

2016-7-31,-0.553320966375,-1.32369637281,0.341391146824

2016-8-31,-0.652802664384,-0.916504272472,1.26077868603

2016-9-30,-0.340684654318,0.616656792886,0.710604821

2016-10-31,-0.723832065202,-0.206284170553,2.31068818906

Reading data from such files is also straightforward.

In [207]: from_csv = pd.read_csv('data.csv', # filename

.....: index_col=0, # index column

.....: parse_dates=True) # date index

.....:

In [208]: from_csv.head()

Out[208]:

no1 no2 no3

2016-01-31 -0.804458 0.320932 -0.025483

2016-02-28 -0.160134 0.020135 0.363992

2016-03-31 -0.267572 -0.459848 0.959027

2016-04-30 -0.732239 0.207433 0.152912

2016-05-31 -1.928309 -0.198527 -0.029466

However, in general you would store DataFrame objects on disk in more efficient binary
formats like HDF5 (see http://hdfgroup.org). pandas in this case wraps the functionality of
the PyTables library (see http://pytables.org). The constructor function to be used is HDFS-
tore().

In [209]: h5 = pd.HDFStore('data.h5', 'w') # open for writing

In [210]: h5['df'] = df # write object to database

In [211]: h5

Out[211]:

<class 'pandas.io.pytables.HDFStore'>

File path: data.h5

/df frame (shape->[10,3])

Data retrieval is as simple as writing.

http://hdfgroup.org
http://pytables.org

Introduction to Python 47

In [212]: from_h5 = h5['df'] # reading from database

In [213]: h5.close() # closing the database

In [214]: from_h5.tail()

Out[214]:

no1 no2 no3

2016-6-30 -1.825116 -0.336949 0.676227

2016-7-31 -0.553321 -1.323696 0.341391

2016-8-31 -0.652803 -0.916504 1.260779

2016-9-30 -0.340685 0.616657 0.710605

2016-10-31 -0.723832 -0.206284 2.310688

In [215]: !rm data.csv data.h5 # remove the objects from disk

2.4.3 F inancia l Analyt ics Examples

When it comes to financial data, there are useful data retrieval functions available that wrap
both the Yahoo! Finance and Google Finance financial data APIs. The following code reads
historical daily data for the S&P 500 index and the VIX volatility index:

In [216]: from pandas_datareader import data as web

In [217]: spx = web.DataReader('ˆGSPC', data_source='yahoo',

end='2015-12-31')

In [218]: vix = web.DataReader('ˆVIX', data_source='yahoo',

end='2015-12-31')

In [219]: spx.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 1510 entries, 2010-01-04 to 2015-12-31

Data columns (total 6 columns):

Open 1510 non-null float64

High 1510 non-null float64

Low 1510 non-null float64

Close 1510 non-null float64

Volume 1510 non-null int64

Adj Close 1510 non-null float64

dtypes: float64(5), int64(1)

memory usage: 82.6 KB

In [220]: vix.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 1510 entries, 2010-01-04 to 2015-12-31

48 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Data columns (total 6 columns):

Open 1510 non-null float64

High 1510 non-null float64

Low 1510 non-null float64

Close 1510 non-null float64

Volume 1510 non-null int64

Adj Close 1510 non-null float64

dtypes: float64(5), int64(1)

memory usage: 82.6 KB

Let us combine the respective Close columns into a single DataFrame object. There are
multiple ways to accomplish this goal.

construction via join

In [221]: spxvix = pd.DataFrame(spx['Close']).join(vix['Close'] ,

.....: lsuffix='SPX', rsuffix='VIX')

.....:

In [222]: spxvix.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 1510 entries, 2010-01-04 to 2015-12-31

Data columns (total 2 columns):

CloseSPX 1510 non-null float64

CloseVIX 1510 non-null float64

dtypes: float64(2)

memory usage: 35.4 KB

construction via merge

In [223]: spxvix = pd.merge(pd.DataFrame(spx['Close']),

.....: pd.DataFrame(vix['Close']),

.....: left_index=True, # merge on left index

.....: right_index=True, # merge on right index

.....: suffixes=['SPX', 'VIX'])

.....:

In [224]: spxvix.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 1510 entries, 2010-01-04 to 2015-12-31

Data columns (total 2 columns):

CloseSPX 1510 non-null float64

CloseVIX 1510 non-null float64

dtypes: float64(2)

memory usage: 35.4 KB

Introduction to Python 49

In a case like this, the approach via dictionary objects might be the best and most intuitive
way.

construction via dictionary object

In [225]: spxvix = pd.DataFrame({'SPX': spx['Close'] ,

.....: 'VIX': vix['Close'] } ,

.....: index=spx.index)

.....:

In [226]: spxvix.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 1510 entries, 2010-01-04 to 2015-12-31

Data columns (total 2 columns):

SPX 1510 non-null float64

VIX 1510 non-null float64

dtypes: float64(2)

memory usage: 35.4 KB

Having available the merged data in a single object makes visual analysis straightforward (see
Figure 2.8).

In [227]: spxvix.plot(figsize=(10, 6), subplots=True, color='b');

F IGURE 2.8 Historical closing data for S&P 500 stock index and VIX volatility index.

50 LISTED VOLATILITY AND VARIANCE DERIVATIVES

pandas also allows vectorized operations on whole DataFrame objects. The following code
calculates the log returns over the two columns of the spxvix object simultaneously in vec-
torized fashion. The shift() method shifts the data set by the number of index values as
provided (in this particular case by one trading day).

In [228]: rets = np.log(spxvix / spxvix.shift(1))

In [229]: rets.head()

Out[229]:

SPX VIX

Date

2010-01-04 NaN NaN

2010-01-05 0.003111 -0.035038

2010-01-06 0.000545 -0.009868

2010-01-07 0.003993 -0.005233

2010-01-08 0.002878 -0.050024

There is one row of log returns missing at the very beginning. This row can be deleted via the
dropna() method.

In [230]: rets = rets.dropna()

In [231]: rets.head()

Out[231]:

SPX VIX

Date

2010-01-05 0.003111 -0.035038

2010-01-06 0.000545 -0.009868

2010-01-07 0.003993 -0.005233

2010-01-08 0.002878 -0.050024

2010-01-11 0.001745 -0.032514

Consider the plot in Figure 2.9 showing the VIX log returns against the SPX log returns in a
scatter plot with a linear regression. It illustrates a strong negative correlation between the two
indexes. This is a central result that is replicated in chapter 4, Data Analysis and Strategies for
the EURO STOXX 50 stock index and the VSTOXX volatility index, respectively.

In [232]: rets.plot(kind='scatter', x='SPX', y='VIX',

.....: style='.', figsize=(10, 6));

.....:

In [233]: rg = np.polyfit(rets['SPX'], rets['VIX'], 1)

In [234]: plt.plot(rets['SPX'], np.polyval(rg, rets['SPX']), 'r.-');

Introduction to Python 51

FIGURE 2.9 Daily log returns for S&P 500 stock index and VIX volatility index and regression line.

Having financial time series data stored in a pandas DataFrame object makes the calculation
of typical statistics straightforward.

In [235]: ret = rets.mean() * 252 # annualized return

In [236]: ret

Out[236]:

SPX 0.098532

VIX -0.015992

dtype: float64

In [237]: vol = rets.std() * math.sqrt(252) # annualized volatility

In [238]: vol

Out[238]:

SPX 0.159335

VIX 1.185408

dtype: float64

In [239]: (ret - 0.01) / vol # Sharpe ratio with rf = 0.01

Out[239]:

SPX 0.555635

VIX -0.021926

dtype: float64

52 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 2.10 S&P 500 stock index and running maximum value.

The maximum drawdown, which we only calculate for the S&P 500 index, is a bit more
involved. For its calculation, we use the cummax() method which records the running, his-
torical maximum of the time series up to a certain date. Consider the plot in Figure 2.10 which
shows the S&P 500 index and the running maximum.

In [240]: plt.figure(figsize=(10, 6));

In [241]: spxvix['SPX'].plot(label='S&P 500');

In [242]: spxvix['SPX'].cummax().plot(label='running maximum');

In [243]: plt.legend(loc=0);

The maximum drawdown is the largest difference between the running maximum and the
current index level – in our particular case it is 264.

In [244]: adrawdown = spxvix['SPX'].cummax() - spxvix['SPX']

In [245]: adrawdown.max()

Out[245]: 264.38000499999998

The relative maximum drawdown might sometimes be slightly more meaningful. Here it is a
drawdown of about 20%.

Introduction to Python 53

In [246]: rdrawdown = (spxvix['SPX'].cummax() - spxvix['SPX']) /

spxvix['SPX'].cummax()

In [247]: rdrawdown.max()

Out[247]: 0.19388242085950988

The longest drawdown period is calculated as follows. The code below selects all those data
points where the drawdown is zero. It then calculates the difference between two consecutive
index values (i.e. trading dates) for which the drawdown is zero and takes the maximum value.
Given the data set we are analyzing, the longest drawdown period is 301 days.

In [248]: temp = adrawdown[adrawdown == 0]

In [249]: periods_spx = (temp.index[1:].to_pydatetime()

.....: - temp.index[:-1].to_pydatetime())

.....:

In [250]: periods_spx[50:60] # some selected data points

Out[250]:

array([datetime.timedelta(67), datetime.timedelta(1),

datetime.timedelta(1), datetime.timedelta(1),

datetime.timedelta(301), datetime.timedelta(3),

datetime.timedelta(1), datetime.timedelta(2),

datetime.timedelta(12), datetime.timedelta(2)], dtype=object)

In [251]: max(periods_spx)

Out[251]: datetime.timedelta(301)

See Appendix C of Hilpisch (2014) for the handling of date-time information with Python,
NumPy and pandas.

2.5 CONCLUSIONS

This chapter introduces basic data types and structures as well as certain Python idioms needed
for analyses in later chapters of the book. In addition, NumPy and thendarray class are intro-
duced which allow the efficient handling of and operating on (numerical) data stored as arrays.
Some basic visualization techniques using the matplotlib library are also introduced. However,
working with pandas and its powerfulDataFrame class for tabular and time series data makes
plotting a bit more convenient – in general only a single method call is needed. Using pandas
and the capabilities of the DataFrame class, the chapter also illustrates by means of some
basic financial examples how to implement typical interactive financial analytics tasks.

CHAPTER 3
Model-Free Replication of Variance

3.1 INTRODUCTION

Although volatility derivatives, variance swaps and futures are considered second generation
derivatives (since they are defined on volatility and variance directly), some of the most elegant
and robust results of quantitative finance apply to these kinds of derivatives. In particular, it is
possible to statically replicate realized variance without using any kind of specific model. This,
for example, does not apply to most other important concepts in option pricing and trading,
such as implied volatility or delta hedging of options.

This chapter mainly covers the following topics:

� spanning with options: Breeden and Litzenberger (1978) showed in the 1970s how to
replicate state-contingent payoffs (satisfying certain conditions) by using positions in
options

� log contracts: an important piece in the replication of (realized) variance and the valuation
of variance swaps is the so-called log contract

� static replication of variance: this relates to the central result of replicating realized
variance by a log contract as well as static positions in options

� derivatives with constant dollar gamma: in the replication and valuation of variance
swaps, constant dollar gamma positions play a central role

� practical replication of variance swaps: using the theoretical insights and results, the
chapter also illustrates the generation of constant dollar gamma positions and thus the
practical replication of variance swaps based on numerical examples

� VSTOXX as volatility index: using the central result, the final section in this chapter
explains and justifies the definition of the VSTOXX volatility index (and the VIX index
to this end).

The theoretical parts of this chapter roughly follow the lines of chapter 11 of Gatheral (2006).
Since they are of importance for both volatility and variance derivatives we have placed them
up front and present them in a connected fashion.

55

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

56 LISTED VOLATILITY AND VARIANCE DERIVATIVES

3.2 SPANNING WITH OPTIONS

Breeden and Litzenberger (1978) use option prices to derive prices for elementary securities,
i.e. securities that pay exactly 1 unit of currency at a certain future date given a certain state
of the economy. In economics, Arrow-Debreu security is also a common term. The prices of
elementary securities are generally called state prices. Having state prices available, every
other contingent claim can be priced by multiplying the contingent claim’s state-dependent
payoff by the respective state prices.

Let t ≥ 0 denote the current date and T > t the future date of interest (e.g. maturity of a
derivative instrument). For simplicity, states of the economy should be distinguished by the
level of a stock index S only. Let p(ST , T; St, t) denote the state price given a stock index level
of St at t for a stock index level ST at T , then:

p(ST , T; St, t) =
𝜕2P(St, K, T)

𝜕K2

|||||ST=K

=
𝜕2C(St, K, T)

𝜕K2

|||||ST=K

Here, P and C represent prices (given by some pricing formula) of European put and call
options, respectively. Therefore, a state price can be derived by taking the second partial deriva-
tive of option pricing formula with respect to the strike of the option. Equipped with these state
prices, the value of a state-contingent claim with payoff function g(ST) is

Et(g(ST)|St) = ∫
∞

0
g(K)p(K, T; St, t)dK

= ∫
F

0
g(K)

𝜕2P(St, K, T)

𝜕K2
dK + ∫

∞

F
g(K)

𝜕2C(St, K, T)

𝜕K2
dK

with F being the T-forward price of the index at t (see Breeden and Litzenberger (1978)).
We now apply integration by parts. With u = u(x), v = v(x), du = u′(x)dx, dv = v′(x)dx,

integration by parts states that

∫ u(x)v′(x)dx = u(x)v(x) − ∫ u′(x)v(x)dx

Therefore, we get

Et(g(ST)|St) = g(K)
𝜕P(St, K, T)

𝜕K

||||
F

0
− ∫

F

0
g′(K)

𝜕P(St, K, T)

𝜕K
dK

+ g(K)
𝜕C(St, K, T)

𝜕K

||||
∞

F
− ∫

∞

F
g′(K)

𝜕C(St, K, T)

𝜕K
dK

= g(F) − ∫
F

0
g′(K)

𝜕P(St, K, T)

𝜕K
dK − ∫

∞

F
g′(K)

𝜕C(St, K, T)

𝜕K
dK

Model-Free Replication of Variance 57

Applying integration by parts once again yields

Et(g(ST)|St) = g(F) − g′(K)P(St, K, T)||F0 + ∫
F

0
g′′(K)P(St, K, T)dK

− g′(K)C(St, K, T)||∞F + ∫
∞

F
g′′(K)C(St, K, T)dK

= g(F) + ∫
F

0
g′′(K)P(St, K, T)dK + ∫

∞

F
g′′(K)C(St, K, T)dK

As is evident from this last equation, in this setting any twice continuously differentiable payoff
g due at T can be replicated by infinite strips of European put and call options maturing at T .
In other words, these options span the space of twice continuously differentiable payoffs.

3.3 LOG CONTRACTS

So-called log contracts are a kind of derivative instrument that plays an important role in the
valuation of variance swaps. Recall that a long position in a variance contract pays at maturity
the difference between the realized variance over the life time of the swap and an up-front
fixed variance strike.

Consider the payoff g(ST) = log ST

F
= log ST − logF. Then

g′(ST) = 1
ST

g′′(ST) = − 1

S2
T

Valuing this contract by making use of the option spanning approach yields

E
(
log

ST

F

|||| St

)
= log F

F
+ ∫

F

0
− 1

K2
P(St, K, T)dK + ∫

∞

F
− 1

K2
C(St, K, T)dK

= −∫
F

0
P(St, K, T)

dK
K2

− ∫
∞

F
C(St, K, T)

dK
K2

As a consequence, the log contract can be replicated by (infinite strips of) European put and
call options on the underlying. Every option is weighted by the square of the strike.

3.4 STATIC REPLICATION OF REALIZED VARIANCE AND
VARIANCE SWAPS

Assume for simplicity zero short rates such that F = St. For t = 0, one has

log
ST

F
= log

ST

S0

= ∫
T

0
d log(St)

= ∫
T

0

dSt

St
− ∫

T

0

𝜎2(St)

2
dt

58 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Compare this result with equation 1.1. Such a comparison further illustrates the connection
between the (discrete) delta hedging of an option and (the valuation of) variance swaps. Above,
we use the fact that the total return over the interval [0, T] equals the integral over the marginal
returns of S for the same time interval. The second term in the last equation results from the
application of Itô’s lemma. This term is equal to half of the total variance of S over the time
interval [0, T]. Taking the risk-neutral expectation of that expression gives

E
(
∫

T

0
𝜎2(St)dt

)
= −2E

(
log

ST

F

)

Combining the results with regard to the log contract replication and valuation with this last
insight shows that realized variance is given in a model-free manner through the prices of
European put and call options. This is due to the fact that realized variance can be replicated
by the use of a log contract.

3.5 CONSTANT DOLLAR GAMMA DERIVATIVES
AND PORTFOLIOS

Above, we establish the replication of realized variance by the log contract. The log contract
has, as a defining characteristic, a constant dollar gamma. The gamma of a derivative defined
on some underlying S with value ft(St) is defined as

Γt =
𝜕2ft
𝜕S2

t

i.e. the second partial derivative of the pricing function with respect to the value of the under-
lying (assuming that the pricing function is indeed twice continuously differentiable).

Its dollar gamma is then defined by the product of the gamma and the square of the value
of the underlying (sometimes the factor 0.5 is added):

Γ$
t ≡ Γt ⋅ S2

t

Omitting the time index, a constant dollar gamma implies, for some fixed value a, a gamma
of

Γ$ = Γ ⋅ S2 ≡ a

⇔ Γ = a
S2

We therefore have

𝜕2f

𝜕S2
= a

S2

This partial differential equation has a solution of the form

f (S) = a log(S) + bS + c

Model-Free Replication of Variance 59

Indeed, the log contract fits trivially into the general solution by setting a = 1, b = 0, c = 0,
i.e.

f (S) = log(S)

illustrating its importance.
With �̂�2 being the realized variance and 𝜎2

K being the fixed variance strike, a long position
in a variance swap (with notional of 1 currency unit), pays at expiry

�̂�2 − 𝜎2
K

With this payoff, we get a replicating portfolio of

ft(St) = 2 log(St) + e−r(T−t)𝜎2
K

i.e. a = 2, b = 0, c = e−r(T−t)𝜎2
K . A variance swap therefore also has a constant dollar gamma.

This insight is used in the next section.

3.6 PRACTICAL REPLICATION OF REALIZED VARIANCE

Consider the Black-Scholes-Merton (1973) model economy (no dividends) with the present
value of a European call option given by

C(S, K, t, T , r, 𝜎) = St ⋅ N(d1) − e−r(T−t) ⋅ K ⋅ N(d2)

N(d) = 1√
2𝜋 ∫

d

−∞
e−

1
2

x2
dx

d1 =
log

St

K
+
(

r + 𝜎2

2

)
(T − t)

𝜎
√

T − t

d2 =
log

St

K
+
(

r − 𝜎2

2

)
(T − t)

𝜎
√

T − t

Here, St is the index level at date t, K is the option strike, T date of maturity (in year fractions),
r the constant, risk-less short rate and 𝜎 the instantaneous volatility.

The gamma of an option in this model is given as follows

Γt =
𝜕2Ct

𝜕S2
t

=
N′(d1)

St𝜎
√

T − t

with

N′(d) = 1√
2𝜋

e−
1
2

x2

60 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Our aim in this section is to build a portfolio of European call options with a constant dollar
gamma, i.e. ΓPortfolio ⋅ S2

t ≡ a for some fixed value a.
The Python function dollar_gamma implements the dollar gamma formula for the

European call option.

In [1]: import math

In [2]: import numpy as np

In [3]: import scipy.stats as scs

In [4]: def dollar_gamma(St, K, t, T, r, sigma):

...: ''' Returns European call option dollar gamma. '''

...: d1 = ((np.log(St / K) + (r + 0.5 * sigma ** 2) * (T - t))

...: / sigma * math.sqrt(T- t))

...: gamma = scs.norm.pdf(d1) / (St * sigma * math.sqrt(T - t))

...: return gamma * St ** 2

...:

Let us parametrize the financial model for t = 0, leaving the values for the initial index level
S0 and for the option strike K undefined for the moment.

In [5]: t = 0.0 # current date in year fractions

In [6]: T = 1.0 # maturity in year fractions

In [7]: r = 0.01 # constant risk-less short rate

In [8]: sigma = 0.2 # instantanous volatility

Next, we can calculate the dollar gamma values for different strikes of the European call
options over a range, respectively, of initial values for the index level.

In [9]: import pandas as pd

In [10]: import matplotlib.pyplot as plt

In [11]: import seaborn as sns; sns.set()

In [12]: import matplotlib

In [13]: matplotlib.rcParams['font.family'] = 'serif'

Model-Free Replication of Variance 61

In [14]: gammas = pd.DataFrame()

300 data points over the range form 0 to 300

In [15]: s_range = np.linspace(0.0001, 300, 300)

In [16]: strike_range = range(25, 226, 25)

In [17]: for K in strike_range:

....: gammas['K=%d' % K] = dollar_gamma(s_range, K, t, T, r, sigma)

....:

For every strike level gamma values for 300 different initial values of the stock index have
been calculated and collected.

In [18]: gammas.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 300 entries, 0 to 299

Data columns (total 9 columns):

K=25 300 non-null float64

K=50 300 non-null float64

K=75 300 non-null float64

K=100 300 non-null float64

K=125 300 non-null float64

K=150 300 non-null float64

K=175 300 non-null float64

K=200 300 non-null float64

K=225 300 non-null float64

dtypes: float64(9)

memory usage: 21.2 KB

Having the data stored in a pandas DataFrame object, the results are easily visualized. From
Figure 3.1, you can see that dollar gamma is more pronounced the higher the strike of the
option. A doubling of the strike leads to a doubling of the maximum dollar gamma value
which is always achieved at the ATM level (see strikes 25, 50, 100, 200).

In [19]: gammas.plot(figsize=(10, 5));

In [20]: plt.xlabel('index level');

In [21]: plt.ylabel('dollar gamma');

Let us check what happens when we add all dollar gamma values up by simply composing a
portfolio in which every option has weight 1 or equal weight.

62 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 3.1 Dollar gamma values different strikes and 300 different initial stock index values.

In [22]: gammas['sum'] = gammas.sum(axis=1)

In [23]: gammas.plot(figsize=(10, 5));

In [24]: plt.xlabel('index level');

In [25]: plt.ylabel('dollar gamma');

Obviously, given Figure 3.2 the dollar gamma of the portfolio of equally weighted options is
all but constant. Let us try a different weighting scheme that attaches a higher weight to smaller
strikes and a lower weight to higher strikes. To this end, we divide all dollar gamma values by
the strike K. This brings all maximum dollar gamma values in line (to two in this case).

In [26]: gammas_k = pd.DataFrame()

In [27]: for K in strike_range:

....: gammas_k['K=%d' % K] = dollar_gamma(s_range, K, t, T, r, sigma) / K

....:

In [28]: gammas_k['sum'] = gammas_k.sum(axis=1)

In [29]: gammas_k.plot(figsize=(10, 5));

In [30]: plt.xlabel('index level');

In [31]: plt.ylabel('K weighted dollar gamma');

Model-Free Replication of Variance 63

FIGURE 3.2 Dollar gamma values added over the range of 300 different initial index levels.

According to Figure 3.3 this seems to be slightly better in the sense that although we still do
not have a constant dollar gamma we do at least have a range where dollar gamma is linear
(mainly between strikes of 75 and 150). Therefore, let us weight the dollar gammas by the
square of the strike (something we have already seen in the replication result for log con-
tract). In this case the highest dollar gamma values are observed for the lowest strikes and
vice versa.

F IGURE 3.3 Strike-weighted, added dollar gamma values.

64 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [32]: gammas_k2 = pd.DataFrame()

In [33]: for K in strike_range:

....: gammas_k2['K=%d' % K] = dollar_gamma(s_range, K, t, T, r,

sigma) / K ** 2

....:

In [34]: gammas_k2['sum'] = gammas_k2.sum(axis=1)

In [35]: gammas_k2.plot(figsize=(10, 5));

In [36]: plt.xlabel('index level');

In [37]: plt.ylabel('$Kˆ2$ weighted dollar gamma');

As Figure 3.4 shows, this approach finally yields a constant dollar gamma value between
strikes of 75 and 150 at least. Let us have a final look at a more dense grid of option strikes
since the theoretical result is based on infinite strips of options. The graphical output is shown
in Figure 3.5.

more dense strike range

In [38]: strike_range = range(10, 350, 5)

In [39]: gammas_k2 = pd.DataFrame()

In [40]: for K in strike_range:

....: gammas_k2['K=%d' % K] = dollar_gamma(s_range, K, t, T, r,

sigma) / K ** 2

....:

In [41]: gammas_k2 ['sum'] = gammas_k2.sum(axis=1)

In [42]: gammas_k2.plot(figsize=(10, 5), legend=False);

In [43]: plt.xlabel('index level');

In [44]: plt.ylabel('$Kˆ2$ weighted dollar gamma');

This numerical example shows a constant dollar gamma over a much wider range from
about 25 to beyond 200. This further supports the theoretical result and the replication
approach.

Model-Free Replication of Variance 65

FIGURE 3.4 Squared strike-weighted, added dollar gamma values.

F IGURE 3.5 Strike-weighted, added dollar gamma values.

3.7 VSTOXX AS VOLATIL ITY INDEX

The VSTOXX volatility index measures the implied total variance across all options written
on the EURO STOXX 50 stock index for a given time-to-maturity. Another interpretation is
that the VSTOXX gives the fair variance swap rate for a variance swap with the respective
maturity. The major index with symbol V2TX has a fixed time-to-maturity of 30 days and is
calculated by the interpolation of two sub-indexes. Sub-indexes are calculated for a number of
fixed maturity dates.

66 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Assume now the following setting. The discounted, i.e. time t, prices Ci, i = 0, ..., n, of a
series of European call options on the EURO STOXX 50 stock index are given, with fixed time-
to-maturity T and strike prices Ki, i = 0, ..., n, as well as the discounted prices Pi, i = 0, ..., n,
of a series of European put options with the same time-to-maturity and strike prices. Let us
further hold Ki < Ki+1 for all i ∈ {0,, n − 1}.

The value of the VSTOXX (sub-)index V at t = 0 is defined by

V ≡ 100 ⋅
√
�̂�2

where

�̂�2 ≡ 2
T

n∑
i=0

ΔKi

Ki
2

erTMi −
1
T

(
F
K∗

− 1

)2

with

ΔKi =
⎧⎪⎨⎪⎩

K1 − K0, for i = 0
Ki+1−Ki−1

2
, for i = 1, ..., n − 1

Kn − Kn−1, for i = n

F = Kj + erT |Cj − Pj|, where j = min
i∈{0,...,n}

{|Ci − Pi|}
K∗ = max

Ki,i∈{0,...,n}
{Ki < F}

Mi =
⎧⎪⎨⎪⎩

Pi, for Ki < K∗
Pi−Ci

2
, for Ki = K∗

Ci, for Ki > K∗

and r the constant risk-free short rate appropriate for time-to-maturity T .
We are aiming to show that the defining equation for �̂�2 is indeed a valid approximation

for total variance. To this end, we combine the above equations for the log contract and the
total variance to obtain

�̂�2 = −2 ⋅
(
−∫

F

0
P(St, K, T)

dK
K2

− ∫
∞

F
C(St, K, T)

dK
K2

)
⋅ erT

⇔
�̂�2T
2erT

= ∫
F

0
P(St, K, T)

dK
K2

+ ∫
∞

F
C(St, K, T)

dK
K2

= ∫
K∗

0
P(St, K, T)

dK
K2

+ ∫
∞

K∗

C(St, K, T)
dK
K2

+∫
F

K∗

[
P(St, K, T) − C(St, K, T)

] dK
K2

= ∫
∞

0
M(St, K, T)

dK
K2

+ ∫
F

K∗

e−rT [K − F]
dK
K2

Model-Free Replication of Variance 67

The last term follows from the observation that only the call option is in-the-money, i.e.
e−rT [F − K] > 0, given the integration boundaries. Then

�̂�2 = 2
T ∫

∞

0
erTM(St, K, T)

dK
K2

+ 2
T

1
K2
∗ ∫

F

K∗

[K − F] dK

= 2
T ∫

∞

0
erTM(St, K, T)

dK
K2

− 1
T

(K∗ − F)2

K2
∗

Note that

(K∗ − F)2

K2
∗

=
K2
∗ − 2K∗F + F2

K2
∗

= F2

K2
∗
− 2F

K∗
+ 1

=
(

F
K∗

− 1

)2

A possible discretization for the integral then is

�̂�2 ≈ 2
T

n∑
i=0

ΔKi

K2
i

erTMi −
1
T

(
F
K∗

− 1

)2

giving the defining equation for �̂�2.
The calculation of implied volatilities, or variances, naturally relies on some option pricing

model, like that one of Black-Scholes-Merton (1973). By contrast, the VSTOXX and VIX
volatility index calculation only takes as input market-observed options prices. This is possible
since realized variance at a given future date can be replicated by strips of European call and
put prices maturing at the same date. The realized volatility can then be extracted by taking
the square root of the realized variance. The calculation of the VSTOXX and VIX avoids a
“model-bias” and uses standard market practice for the valuation of important variance related
instruments, like variance swaps.

3.8 CONCLUSIONS

This chapter introduces the elegant theory of the model-free replication of realized variance
and variance swaps which dates back at least to Breeden and Litzenberger (1978). The role of
log contracts and constant dollar gamma positions is discussed. Numerical examples also illus-
trate how to construct constant dollar gamma options positions in practice. Finally, based on
this theory the definition of the VSTOXX and VIX volatility indexes is presented and justified.
Subsequent chapters draw in different ways on these cornerstones in the theory of volatility
and variance modeling, measuring and trading.

PART

Two
Listed Volatility Derivatives

CHAPTER 4
Data Analysis and Strategies

4.1 INTRODUCTION

This chapter is about the analysis of data and investment strategies related to the EURO
STOXX 50 and VSTOXX indexes. It uses public data sources (“open data”) and draws heavily
on the capabilities of the Python library pandas for data analytics.

The chapter has two major goals. First, it reproduces the stylized fact that stock indexes
and volatility indexes in general are negatively correlated. This suggests that (products based
on) volatility indexes are a means to hedge market risk resulting from stock indexes. The ques-
tion, however, is how to best exploit the negative correlation in asset allocation terms. There-
fore, the second goal is to illustrate the benefits for equity investors resulting from constant
proportion investment strategies involving a volatility index like the VSTOXX. For simplic-
ity, the respective analysis assumes that a direct investment in the VSTOXX is possible. This
replicates results as found, for example, in the study by Guobuzaite and Martellini (2012).

4.2 RETRIEVING BASE DATA

This section shows how to retrieve and store historical daily closing data for the EURO STOXX
50 index and the VSTOXX volatility index. We mainly work with pandas in the following:

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: path = './source/data/' # path to data folder

4.2.1 EURO STOXX 50 Data

On the website http://stoxx.com of the index provider STOXX Limited, you find text files
containing historical closing data for the EURO STOXX 50 index and others. Such data files
are found in this folder:

In [4]: source = 'https://www.stoxx.com/document/Indices/Current/HistoricalData/'

71

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

http://stoxx.com
https://www.stoxx.com/document/Indices/Current/HistoricalData/

72 LISTED VOLATILITY AND VARIANCE DERIVATIVES

The respective file for the EURO STOXX 50 index has the following name and is updated
daily after closing.

In [5]: es_url = source + 'hbrbcpe.txt'

Let us inspect the first few rows of the data file directly, i.e. without pandas. We use the requests
library to read the file from the web source and to print the first 1,000 characters of the string
object returned.

In [6]: import requests

In [7]: print requests.get(es_url).text[:1000].replace(' ', ' ')

PriceIndices–EUROCurrency

Date;Blue–Chip;Blue–Chip;Broad;Broad;ExUK;ExEuroZone;Blue–Chip;Broad

;Europe;Euro–Zone;Europe;Euro–Zone;;;Nordic;Nordic

;SX5P;SX5E;SXXP;SXXE;SXXF;SXXA;DK5F;DKXF

31.12.1986;775.00;900.82;82.76;98.58;98.06;69.06;645.26;65.56

01.01.1987;775.00;900.82;82.76;98.58;98.06;69.06;645.26;65.56

02.01.1987;770.89;891.78;82.57;97.80;97.43;69.37;647.62;65.81

05.01.1987;771.89;898.33;82.82;98.60;98.19;69.16;649.94;65.82

06.01.1987;775.92;902.32;83.28;99.19;98.83;69.50;652.49;66.06

07.01.1987;781.21;899.15;83.78;98.96;98.62;70.59;651.97;66.20

08.01.1987;777.62;887.37;83.52;97.87;97.68;71.01;645.57;65.62

09.01.1987;769.80;868.31;83.03;96.31;96.22;71.40;638.03;65.14

The file changes the format in which data rows are presented (at least at the time of writing)
such that we need to use a little trick to import the data correctly with pandas. Namely, we
have to add an additional column which we call DEL.

new column names (without white space)

adding column 'DEL' -- to be deleted after parsing

In [8]: columns = ['Date', 'SX5P', 'SX5E', 'SXXP', 'SXXE',

...: 'SXXF', 'SXXA', 'DK5F', 'DKXF', 'DEL']

...:

We also skip the first four rows which we do not need and set a few other parameters for the
importing procedure with pandas.

In [9]: es = pd.read_csv(es_url, # url/filename

...: index_col=0, # index column (dates)

...: parse_dates=True, # parse date information

...: dayfirst=True, # day before month

...: header=None, # ignore header information

Data Analysis and Strategies 73

...: skiprows=4, # ignore first 4 rows

...: names=columns, # use custom column names

...: sep=';') # separator character

...:

The additional helper column can be deleted after the import because it is no longer needed
(and empty in any case).

In [10]: del es['DEL'] # deletes helper column

Let us inspect the first few rows of the DataFrame object. Given the raw data from above,
we seem to have done everything right.

In [11]: es = es[es.index <= '2015-12-31'] # data until the end of 2015

In [12]: es.tail()

Out[12]:

SX5P SX5E SXXP SXXE SXXF SXXA DK5F DKXF

Date

2015-12-24 3108.11 3284.47 366.28 346.05 433.43 375.39 9931.72 614.38

2015-12-28 3093.61 3256.49 364.49 343.54 431.26 374.32 9873.94 611.58

2015-12-29 3139.28 3314.28 369.68 349.29 438.43 378.86 10023.66 620.66

2015-12-30 3118.07 3287.98 367.70 347.02 435.82 377.20 9956.22 617.48

2015-12-31 3100.26 3267.52 365.81 345.16 433.81 375.34 9978.59 618.73

The single time series starts at the end of 1986 and goes to the last available trading day or in
our case the final trading day of 2015.

In [13]: es.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 7476 entries, 1986-12-31 to 2015-12-31

Data columns (total 8 columns):

SX5P 7476 non–null float64

SX5E 7476 non–null float64

SXXP 7476 non–null float64

SXXE 7476 non–null float64

SXXF 7476 non–null float64

SXXA 7476 non–null float64

DK5F 7476 non–null float64

DKXF 7476 non–null float64

dtypes: float64(8)

memory usage: 525.7 KB

74 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 4.1 Historical EURO STOXX 50 index levels.

Before going on to the corresponding procedure for the VSTOXX data, the following visual-
izes the historical closing values for the EURO STOXX 50 index, i.e. for symbol SX5E (see
Figure 4.1):

In [14]: import seaborn as sns; sns.set()

In [15]: import matplotlib

In [16]: matplotlib.rcParams['font.family'] = 'serif' # set serif font

In [17]: es['SX5E'].plot(grid=True, figsize=(10, 6));

4.2.2 VSTOXX Data

Reading the data from the same source for the VSTOXX index is slightly more straightforward
since the respective data file does not change its format.

In [18]: vs_url = source + 'h_vstoxx.txt'

In [19]: print(requests.get(vs_url).text[160:1040])

Date,V2TX,V6I1,V6I2,V6I3,V6I4,V6I5,V6I6,V6I7,V6I8

04.01.1999,18.2033,21.2458,17.5555,31.2179,33.3124,33.7327,33.2232,31.8535,23.8209

05.01.1999,29.6912,36.6400,28.4274,32.6922,33.7326,33.1724,32.8457,32.2904,25.0532

06.01.1999,25.1670,25.4107,25.1351,32.2186,32.6459,31.9673,32.9260,33.2871,26.0107

Data Analysis and Strategies 75

07.01.1999,32.5205,35.4410,32.2004,36.1265,34.5150,33.1095,33.2843,33.7269,26.2205

08.01.1999,33.2296,35.8846,33.0020,36.0813,36.3964,33.4658,33.4837,33.9227,26.3672

11.01.1999,36.8411,46.9742,36.4643,39.9139,38.0755,34.6165,34.4576,34.6615,26.6732

12.01.1999,37.5664,48.6277,37.2998,40.5525,38.7981,35.0575,37.5290,36.5965,28.0273

13.01.1999,39.7373,55.2934,39.5218,43.0083,40.1301,36.0443,38.3889,37.2219,28.1443

14.01.1999,39.1373,NA,39.9544,41.7597,40.5913,36.3330,38.6781,37.4249,28.1515

15.01.1999,38.6741,NA,39.0602,40.1232,39.2451,35.9745,37.7796,36.7660,28.0793

The parametrization for pandas to import the data to a DataFrame object is as follows:

In [20]: vs = pd.read_csv(vs_url, # url/filename

....: index_col=0, # index column (dates)

....: parse_dates=True, # parse date information

....: dayfirst=True, # day before month

....: header=2) # header/column names

....:

In this case, data is available from the beginning of 1999 until the last available trading day.
However, we again select only data until the last trading day of 2015.

In [21]: vs = vs[vs.index <= '2015-12-31']

In [22]: vs.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 4327 entries, 1999-01-04 to 2015-12-30

Data columns (total 9 columns):

V2TX 4327 non–null float64

V6I1 3878 non–null float64

V6I2 4327 non–null float64

V6I3 4267 non–null float64

V6I4 4327 non–null float64

V6I5 4327 non–null float64

V6I6 4310 non–null float64

V6I7 4327 non–null float64

V6I8 4313 non–null float64

dtypes: float64(9)

memory usage: 338.0 KB

Figure 4.2 visualizes the times series data for the main volatility index with symbol V2TX.
Inspection of the figure reveals that the volatility index increases and even spikes when there
are crises in the markets – which is best seen towards the end of 2008.

In [23]: vs['V2TX'].plot(grid=True, figsize=(10, 6));

76 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 4.2 Historical VSTOXX index levels.

4.2.3 Combin ing the Data Sets

For what follows, we only need the time series data for the major indexes with symbols SX5E
and V2TX and only for those dates where data is available for both time series. To this end,
the following code generates a new DataFrame object out of the two original ones:

In [24]: import datetime as dt

In [25]: data = pd.DataFrame({'EUROSTOXX':

....: es['SX5E'][es.index > dt.datetime(1999, 1, 1)],

....: 'VSTOXX':

....: vs['V2TX'][vs.index > dt.datetime(1999, 1, 1)]})

....:

In [26]: data = data.dropna() # deletes those rows with NaN values

The code below provides an overview of the new data set and excerpts from all three
DataFrame objects:

In [27]: data.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 4326 entries, 1999-01-04 to 2015-12-30

Data columns (total 2 columns):

EUROSTOXX 4326 non–null float64

VSTOXX 4326 non–null float64

Data Analysis and Strategies 77

dtypes: float64(2)

memory usage: 101.4 KB

In [28]: es.iloc[–10:]

Out[28]:

SX5P SX5E SXXP SXXE SXXF SXXA DK5F DKXF

Date

2015-12-17 3095.83 3306.47 364.90 347.46 433.96 371.43 9857.04 610.15

2015-12-18 3065.07 3260.72 361.23 343.23 429.32 368.38 9722.97 602.49

2015-12-21 3022.51 3213.01 357.15 338.55 424.21 364.99 9707.52 601.18

2015-12-22 3019.26 3214.32 356.87 338.77 423.95 364.23 9691.72 599.53

2015-12-23 3109.23 3286.68 366.39 346.14 433.58 375.53 9927.33 614.12

2015-12-24 3108.11 3284.47 366.28 346.05 433.43 375.39 9931.72 614.38

2015-12-28 3093.61 3256.49 364.49 343.54 431.26 374.32 9873.94 611.58

2015-12-29 3139.28 3314.28 369.68 349.29 438.43 378.86 10023.66 620.66

2015-12-30 3118.07 3287.98 367.70 347.02 435.82 377.20 9956.22 617.48

2015-12-31 3100.26 3267.52 365.81 345.16 433.81 375.34 9978.59 618.73

In [29]: np.round(vs, 2).iloc[-10:]

Out[29]:

V2TX V6I1 V6I2 V6I3 V6I4 V6I5 V6I6 V6I7 V6I8

Date

2015-12-15 27.46 41.71 27.41 26.63 26.72 26.66 26.41 26.36 27.44

2015-12-16 25.44 49.12 25.44 25.21 25.34 25.57 25.54 25.77 26.65

2015-12-17 22.58 NaN 22.50 23.47 23.94 24.80 25.01 25.34 26.24

2015-12-18 23.90 NaN 23.76 24.78 25.06 25.80 25.75 25.91 26.54

2015-12-21 23.88 23.56 24.62 24.99 25.80 25.87 26.04 26.64 NaN

2015-12-22 22.54 21.92 23.64 24.14 25.25 25.31 25.64 26.04 26.05

2015-12-23 20.25 19.42 21.45 22.24 24.01 24.46 24.84 25.65 25.44

2015-12-28 22.45 21.43 23.08 23.65 24.70 24.91 25.25 25.46 25.34

2015-12-29 21.61 20.56 22.14 22.87 24.31 24.59 25.06 25.65 25.26

2015-12-30 22.17 21.13 22.64 23.33 24.64 24.72 25.15 25.48 25.16

In [30]: data.iloc[-10:]

Out[30]:

EUROSTOXX VSTOXX

Date

2015-12-15 3241.51 27.4591

2015-12-16 3246.78 25.4362

2015-12-17 3306.47 22.5761

2015-12-18 3260.72 23.8989

2015-12-21 3213.01 23.8836

2015-12-22 3214.32 22.5361

2015-12-23 3286.68 20.2504

2015-12-28 3256.49 22.4544

2015-12-29 3314.28 21.6067

2015-12-30 3287.98 22.1745

78 LISTED VOLATILITY AND VARIANCE DERIVATIVES

4.2.4 Saving the Data

Finally, the DataFrame objects are saved to a HDFStore object on disk for later use. Some-
thing not really needed when an internet connection is available, but helpful when it is not.

In [31]: h5 = pd.HDFStore(path + 'es_vs_data.h5', 'w')

In [32]: h5['es'] = es

In [33]: h5['vs'] = vs

In [34]: h5['data'] = data

In [35]: h5

Out[35]:

<class 'pandas.io.pytables.HDFStore'>

File path: ./source/data/es_vs_data.h5

/data frame (shape->[4326,2])

/es frame (shape->[7476,8])

/vs frame (shape->[4327,9])

In [36]: h5.close()

4.3 BASIC DATA ANALYSIS

To illustrate how to read the data from the HDFStore object, consider the following code
which is almost “symmetric” to the code that writes the data to disk:

In [37]: h5 = pd. HDFStore(path + 'es_vs_data.h5', 'r')

In [38]: h5

Out[38]:

<class 'pandas.io.pytables.HDFStore'>

File path: ./source/data/es_vs_data.h5

/data frame (shape->[4326,2])

/es frame (shape->[7476,8])

/vs frame (shape->[4327,9])

In [39]: es = h5['es']

In [40]: vs = h5['vs']

In [41]: data = h5['data']

In [42]: h5.close()

Data Analysis and Strategies 79

As seen in chapter 2, Introduction to Python, pandas provides a wealth of options to analyze
data stored in DataFrame objects. A method which is sometimes helpful is describe()
which provides selected meta statistics for the single data sub-sets stored in DataFrame
columns.

In [43]: data.describe()

Out[43]:

EUROSTOXX VSTOXX

count 4326.000000 4326.000000

mean 3265.935767 25.209891

std 770.513845 9.670981

min 1809.980000 11.596600

25% 2692.385000 18.670200

50% 3089.965000 23.162700

75% 3725.357500 28.310725

max 5464.430000 87.512700

Sub-plots of multiple data sub-sets are easily generated with pandas. The result of the following
plotting code is found as Figure 4.3:

In [44]: data.plot(subplots=True, # generate sub-plots per column

....: figsize=(10, 6), # sizing of the figure

....: color='blue'); # color to plot the data

....:

F IGURE 4.3 Historical EURO STOXX 50 and VSTOXX index levels.

80 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 4.4 Histograms of historical absolute daily differences of EURO STOXX 50 and
VSTOXX.

Similarly, you can visualize the absolute differences (over time) by using the diff method
and plotting them as a histogram (see Figure 4.4).

In [45]: data.diff().hist(figsize=(10, 6), # figure sizing

....: color='blue', # color for the plotted data

....: bins=100); # number of bins to be used

....:

In a similar spirit, we can calculate the relative or percentage changes for the time series data.

In [46]: data.pct_change().ix[-10:]

Out[46]:

EUROSTOXX VSTOXX

Date

2015-12-15 0.032578 -0.097067

2015-12-16 0.001626 -0.073670

2015-12-17 0.018384 -0.112442

2015-12-18 -0.013837 0.058593

2015-12-21 -0.014632 -0.000640

2015-12-22 0.000408 -0.056419

Data Analysis and Strategies 81

FIGURE 4.5 Histograms of historical percentage changes of EURO STOXX 50 and VSTOXX.

2015-12-23 0.022512 -0.101424

2015-12-28 -0.009186 0.108837

2015-12-29 0.017746 -0.037752

2015-12-30 -0.007935 0.026279

The code to visualize this kind of result is the same as before (see Figure 4.5).

In [47]: data.pct_change().hist(figsize=(10, 6),

....: color='blue',

....: bins=100);

....:

The majority of statistical analysis approaches rely on (log) returns and not on absolute time
series data. The next few lines of code calculate the log returns for the two time series and
store them in yet another DataFrame object, called log_rets.

In [48]: import numpy as np

fully vectorized calculation of log returns

In [49]: log_rets = np.log(data / data.shift(1))

82 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [50]: log_rets.ix[:10]

Out[50]:

EUROSTOXX VSTOXX

Date

1999-01-04 NaN NaN

1999-01-05 0.017228 0.489248

1999-01-06 0.022138 -0.165317

1999-01-07 -0.015723 0.256337

1999-01-08 -0.003120 0.021570

1999-01-11 -0.019593 0.103173

1999-01-12 -0.012490 0.019496

1999-01-13 -0.048535 0.056180

1999-01-14 0.008648 -0.015214

1999-01-15 0.017855 -0.011906

Figure 4.6 visualizes the log returns times series for both the EURO STOXX 50 and VSTOXX
indexes.

In [51]: log_rets.plot(subplots=True,

....: figsize=(10, 6),

....: color='blue',

....: grid=True);

....:

F IGURE 4.6 Log returns of EURO STOXX 50 and VSTOXX over time.

Data Analysis and Strategies 83

4.4 CORRELATION ANALYSIS

Equipped with the log returns, a thorough investigation of the correlation between the
EURO STOXX 50 and VSTOXX indexes is straightforward. For example, pandas provides
the corr() method to calculate correlations between time series data stored in different
DataFrame columns.

In [52]: log_rets.corr()

Out[52]:

EUROSTOXX VSTOXX

EUROSTOXX 1.000000 -0.735032

VSTOXX -0.735032 1.000000

Similar results are obtained by calculating the correlation of the data stored in one pandas
Series object with another data set in another Series object.

In [53]: log_rets['EUROSTOXX'].corr(log_rets['VSTOXX'])

Out[53]: 0.73503163966378138

The plot method of pandas DataFrame objects allows for different types of plots. For
example, scatter plots are helpful to visualize return data of two different time series (see
Figure 4.7).

F IGURE 4.7 Scatter plot of log returns of EURO STOXX 50 and VSTOXX.

84 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 4.8 Scatter plot of log returns of EURO STOXX 50 and VSTOXX with dates.

plot log returns as scatter plot

In [54]: log_rets.plot(x=' EUROSTOXX', y=' VSTOXX',

....: kind=' scatter', figsize=(10, 6));

....:

Figure 4.8 adds the time dimension to the data through shades of gray to illustrate the relation
between the two time series over time (during different “regimes”).

In [55]: log_rets = log_rets.dropna() # delete NaN values

In [56]: import matplotlib as mpl

In [57]: import matplotlib.pyplot as plt

In [58]: plt.ioff() # turn off interactive mode

In [59]: plt.set_cmap(mpl.cm.gray); # set color map

In [60]: mpl_dates = mpl.dates.date2num(log_rets.index.to_pydatetime())

conversion

In [61]: plt.figure(figsize=(10, 6));

Data Analysis and Strategies 85

In [62]: plt.scatter(log_rets['EUROSTOXX'], log_rets['VSTOXX'],

....: c=mpl_dates, marker='o'); # the actual plot

....:

In [63]: plt.xlabel('EUROSTOXX');

In [64]: plt.ylabel('VSTOXX');

In [65]: plt.colorbar(ticks=mpl.dates.DayLocator(interval=250),

....: format=mpl.dates.DateFormatter('%d %b %y')); # adding bar

....:

Although the negative correlation between the two indexes is almost evident from Figures 4.7
and 4.8, let us formally calculate and represent the negative correlation by a linear regression
line. Figure 4.9 adds such a regression line to the raw log returns in the scatter plot. Negative
correlation translates into a negative slope of the regression line.

conduct linear regression

In [66]: p = np.polyfit(log_rets['EUROSTOXX'].values,

....: log_rets['VSTOXX'].values,

....: deg=1) # the regression

....:

F IGURE 4.9 Scatter plot of log returns of EURO STOXX 50 and VSTOXX with regression line.

86 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [67]: log_rets.plot(x='EUROSTOXX', y='VSTOXX',

....: kind='scatter', figsize=(10, 6)); # the actual plotting

....:

plot the regression line

In [68]: plt.plot(log_rets['EUROSTOXX'], np.polyval(p, log_rets['EUROSTOXX']),

....: 'r'); # adding the regression line

....:

The seaborn plotting library is specifically developed with statistical applications in mind.
It therefore provides multiple useful, high level plotting capabilities. One of these is the
jointplot() function. The result of applying this function to the log return data is dis-
played as Figure 4.10. This is definitely the richest and most insightful presentation so far for
our purposes.

In [69]: sns.jointplot(x=log_rets['EUROSTOXX'], y=log_rets['VSTOXX'],

....: kind='reg', size=7);

....:

F IGURE 4.10 Scatter plot of log returns of EURO STOXX 50 and VSTOXX with
regression line and histograms.

Data Analysis and Strategies 87

FIGURE 4.11 Rolling yearly correlation of EURO STOXX 50 and VSTOXX.

The final analysis in this section considers correlation over time. To this end, pandas provides
therolling()method which allows, among others, the vectorized calculation of correlation
for moving time windows via corr(). We chose a window size of 252 trading days which
represents roughly one year.

In [70]: data['CORR'] = log_rets['EUROSTOXX'].rolling(

....: window=252).corr(log_rets['VSTOXX'])

....:

Figure 4.11 plots the rolling correlation data and illustrates well that correlation fluctuates for
different yearly windows but that it is negative for any chosen yearly window.

In [71]: to_plot = data.dropna() # drop NaN values

In [72]: plt.figure(figsize=(10, 6));

In [73]: plt.plot(data.index, data.CORR);

In [74]: plt.ylabel('rolling yearly correlation');

4.5 CONSTANT PROPORTION INVESTMENT STRATEGIES

One way to make use of the fact that the VSTOXX index is negatively correlated with the
EURO STOXX 50 index is to implement a constant proportion investment strategy. Respective

88 LISTED VOLATILITY AND VARIANCE DERIVATIVES

results are found, for example, in the study by Guobuzaite and Martellini (2012). Basically,
a constant (dollar) proportion investment strategy keeps the proportion of money invested in
securities of a portfolio over time constant by dynamic re-balancings given the movements in
the prices of the single securities.

In the example in this section, we assume that direct investments both in the EURO
STOXX 50 and the VSTOXX indexes are possible and that no transaction costs apply.
Although this might not be realistic, it simplifies the anaylsis and illustrates the basic idea
pretty well. This application allows the use of, for example, VSTOXX futures with different
roll-over strategies and the inclusion of transaction costs.

To begin with, let us adjust the original data sets for the EURO STOXX 50 and VSTOXX
indexes by mainly normalizing both time series to starting values of 100.

In [75]: del data['CORR'] # delete correlation data

In [76]: data = data.dropna() # drop NaN values

In [77]: data = data / data.iloc[0] * 100 # normalization

In [78]: data.head()

Out[78]:

EUROSTOXX VSTOXX

Date

1999-01-04 100.000000 100.000000

1999-01-05 101.737744 163.108887

1999-01-06 104.015128 138.255152

1999-01-07 102.392538 178.651673

1999-01-08 102.073608 182.547121

First, we analyze a typical passive investment strategy allocating 30% of a portfolio to the
VSTOXX index and the remaining 70% to the EURO STOXX 50.

In [79]: invest = 100 # initial investment

In [80]: cratio = 0.3 # VSTOXX ratio in the beginning

number of EURO STOXX (fictional) securities

In [81]: data['Equity'] = (1 - cratio) * invest / data['EUROSTOXX'][0]

number of VSTOXX (fictional) securities

In [82]: data['Volatility'] = cratio * invest / data['VSTOXX'][0]

In vectorized fashion, we calculate next the absolute values of such a portfolio over time, i.e.
as a time series.

Data Analysis and Strategies 89

FIGURE 4.12 Passive investment strategy (hypothetical) with EURO STOXX 50 and VSTOXX.

In [83]: data['Passive'] = (data['Equity'] * data['EUROSTOXX']

....: + data['Volatility'] * data['VSTOXX'])

....:

Figure 4.12 illustrates the performance of this particular passive investment strategy in com-
parison to a passive strategy purely investing in the EURO STOXX 50 index. In times of crisis,
for example at the end of 2008, the strategy peforms better. However, over the whole period
there is hardly any difference in the end result.

In [84]: data[['EUROSTOXX', 'Passive']].plot(figsize=(10, 6), style=['—-', '–']);

Second, the active constant proportion investment strategy, which keeps the dollar proportion
invested in the VSTOXX index constant at 30% over time through daily re-balancings of the
portfolio. In this case, the single calculations are done step-by-step through looping over the
single historical trading dates.

In [85]: for i in range(1, len(data)): # daily re-balancing

....: evalue = data['Equity'][i - 1] * data['EUROSTOXX'][i]

....: vvalue = data['Volatility'][i - 1] * data['VSTOXX'][i]

....: tvalue = evalue + vvalue # total wealth

....: data['Equity'][i] = (1 - cratio) * tvalue / data['EUROSTOXX'][i]

....: data['Volatility'][i] = cratio * tvalue / data['VSTOXX'][i]

....:

90 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Based on the results, calculate the absolute performance of this active strategy as before. Over
the first few trading days no major performance differences arise.

In [86]: data['Active'] = (data['Equity'] * data['EUROSTOXX']

....: + data['Volatility'] * data['VSTOXX'])

....:

In [87]: np.round(data.head(), 2)

Out[87]:

EUROSTOXX VSTOXX Equity Volatility Passive Active

Date

1999-01-04 100.00 100.00 0.70 0.30 100.00 100.00

1999-01-05 101.74 163.11 0.83 0.22 120.15 120.15

1999-01-06 104.02 138.26 0.78 0.25 114.29 116.54

1999-01-07 102.39 178.65 0.86 0.21 125.27 125.48

1999-01-08 102.07 182.55 0.86 0.21 126.22 126.03

Over the whole time period, however, the active strategy – showing a 800+% gain – signifi-
cantly outperforms the passive one.

In [88]: np.round(data.tail(), 2)

Out[88]:

EUROSTOXX VSTOXX Equity Volatility Passive Active

Date

2015-12-22 90.72 123.80 7.22 2.27 100.65 936.01

2015-12-23 92.76 111.25 6.96 2.49 98.31 922.28

2015-12-28 91.91 123.35 7.21 2.30 101.34 946.46

2015-12-29 93.54 118.70 7.09 2.39 101.09 947.50

2015-12-30 92.80 121.82 7.16 2.34 101.50 949.71

Let us briefly verify whether the above implementation indeed yields constant proportions for
the two (fictional) securities in the portfolio.

In [89]: (data['Volatility'] * data['VSTOXX'] / data['Active'])[:5]

Out[89]:

Date

1999-01-04 0.3

1999-01-05 0.3

1999-01-06 0.3

1999-01-07 0.3

1999-01-08 0.3

dtype: float64

Data Analysis and Strategies 91

FIGURE 4.13 Active, constant proportion investment strategy (hypothetical) with EURO STOXX
50 and VSTOXX.

In [90]: (data['Equity'] * data['EUROSTOXX'] / data['Active'])[:5]

Out[90]:

Date

1999-01-04 0.7

1999-01-05 0.7

1999-01-06 0.7

1999-01-07 0.7

1999-01-08 0.7

dtype: float64

Being assured that we have indeed implemented a constant proportion trading strategy, have a
look at Figure 4.13 which impressively illustrates the outperformance of the active approach
over a passive investment in the stock index itself. However, bear in mind that all this rests on
a number of simplifying assumptions.

In [91]: data[['EUROSTOXX', 'Active']].plot(figsize=(10, 6), style=['—-', '–']);

The assumption of 30% invested in the VSTOXX index might seem a bit ad hoc. Therefore,
the following derives the optimal allocation for the given time period and data sets by a brute
force approach. First, we clean up the DataFrame object to reduce it again to the original
time series data for the two indexes.

92 LISTED VOLATILITY AND VARIANCE DERIVATIVES

re-initialize DataFrame

In [92]: data = data[['EUROSTOXX', 'VSTOXX']]

The function below calculates the performance of a constant proportion investment strategy for
different VSTOXX dollar proportions and different starting and ending dates (both defaulting
to the data sets’ start and end dates).

In [93]: from copy import deepcopy

In [94]: def vstoxx_strategy(cratio, start=data.index[0], end=data.index[-1]):

....: base = deepcopy(data[(data.index >= start) & (data.index <= end)])

....: invest = 100 # initial invest

....: base['Equity'] = (1 - cratio) * invest / base['EUROSTOXX'][0]

....: base['Volatility'] = cratio * invest / base['VSTOXX'][0]

....: for i in range(1, len(base)): # daily re–balancing

....: evalue = base['Equity'][i - 1] * base['EUROSTOXX'][i]

....: vvalue = base['Volatility'][i - 1] * base['VSTOXX'][i]

....: tvalue = evalue + vvalue

....: base['Equity'][i] = (1 - cratio) * tvalue / base['EUROSTOXX'][i]

....: base['Volatility'][i] = cratio * tvalue / base['VSTOXX'][i]

....: base['Active'] = (base['Equity'] * base['EUROSTOXX']

....: + base['Volatility'] * base['VSTOXX']) # wealth position

....: print("A con. VSTOXX ratio of %.2f yields a net perform. of %6.1f %%.") \

....: % (cratio, (base['Active'][-1] / base['Active'][0] - 1) * 100)

....:

Equipped with this function, let us calculate the net perfomance for a VSTOXX dollar ratio of
30% as before.

In [95]: vstoxx_strategy(0.3)

A con. VSTOXX ratio of 0.30 yields a net perform.of 849.7%.

We do the same for 40% which obviously yields an even better result.

In [96]: vstoxx_strategy(0.4)

A con. VSTOXX ratio of 0.40 yields a net perform.of 1231.9%.

Applying an approach which is slightly more systematic, we get the following results for differ-
ent constant dollar proportion assumptions. Over the whole period for which data is available
a 50:50 investment strategy seems to be optimal with a net performance of more than 1,400%.

Data Analysis and Strategies 93

In [97]: for cratio in np.arange(0, 1.01, 0.1):

....: vstoxx_strategy(cratio)

....:

A con. VSTOXX ratio of 0.00 yields a net perform.of -7.2%.

A con. VSTOXX ratio of 0.10 yields a net perform.of 151.5%.

A con. VSTOXX ratio of 0.20 yields a net perform.of 445.4%.

A con. VSTOXX ratio of 0.30 yields a net perform.of 849.7%.

A con. VSTOXX ratio of 0.40 yields a net perform.of 1231.9%.

A con. VSTOXX ratio of 0.50 yields a net perform.of 1408.7%.

A con. VSTOXX ratio of 0.60 yields a net perform.of 1283.2%.

A con. VSTOXX ratio of 0.70 yields a net perform.of 928.4%.

A con. VSTOXX ratio of 0.80 yields a net perform.of 521.0%.

A con. VSTOXX ratio of 0.90 yields a net perform.of 204.9%.

A con. VSTOXX ratio of 1.00 yields a net perform.of 21.8%.

Let us implement the same analysis for the time period beginning in January 2013 and ending
with the last quarter of 2015. In this case, a constant dollar proportion invested in the VSTOXX
of again about 50% seems optimal and yields a net performance of close to 110%.

In [98]: for cratio in np.arange(0, 1.01, 0.1):

....: vstoxx_strategy(cratio, start='2013-1-1', end=' 2015-12-31')

....:

A con. VSTOXX ratio of 0.00 yields a net perform.of 21.3%.

A con. VSTOXX ratio of 0.10 yields a net perform.of 47.9%.

A con. VSTOXX ratio of 0.20 yields a net perform.of 72.4%.

A con. VSTOXX ratio of 0.30 yields a net perform.of 92.2%.

A con. VSTOXX ratio of 0.40 yields a net perform.of 105.0%.

A con. VSTOXX ratio of 0.50 yields a net perform.of 109.2%.

A con. VSTOXX ratio of 0.60 yields a net perform.of 104.3%.

A con. VSTOXX ratio of 0.70 yields a net perform.of 91.1%.

A con. VSTOXX ratio of 0.80 yields a net perform.of 71.2%.

A con. VSTOXX ratio of 0.90 yields a net perform.of 46.9%.

A con. VSTOXX ratio of 1.00 yields a net perform.of 20.8%.

4.6 CONCLUSIONS

This chapter is about the retrieval and analysis of EURO STOXX 50 and VSTOXX histori-
cal data. It shows how to use Python and pandas to retrieve and clean up historical data sets
from the index provider’s website http://stoxx.com with pandas. It also shows how to imple-
ment Python code to replicate central stylized facts about stock and volatility indexes, namely
their highly negative correlation and the benefits of constant (dollar) proportion investment
strategies involving (products based on) equity and volatility indexes.

http://stoxx.com

CHAPTER 5
VSTOXX Index

5.1 INTRODUCTION

This chapter is about the (re-)calculation of the VSTOXX index, the volatility index based on
EURO STOXX 50 index options. The goal is to achieve a good understanding of the processes
and underlying mechanics of calculating the VSTOXX index. You will find all the background
information as well as Python code that will enable you to recalculate both historical VSTOXX
index values and current ones in (almost) real-time. Chapter 3, Model-Free Replication of
Variance provides the theoretical background for the concepts presented in this chapter.

The (main) VSTOXX index itself is based on two sub-indexes, which themselves are
derived from Eurex option series for both European puts and calls on the EURO STOXX 50
index. The algorithm, and therefore this chapter as well, are comprised of three main parts:

� collect and clean-up the data of the necessary option series
� compute the sub-indexes from the option data
� compute the VSTOXX index from the relevant sub-indexes.

A few remarks about the option series and sub-indexes used and their expiry dates and time
horizons, respectively, seem in order. There are eight sub-indexes of the VSTOXX which each
measure the implied volatility of an option series with fixed expiry. For example, the VSTOXX
1M sub-index starts with the option series that has one month expiry and is calculated up to
two days prior to the fixed maturity date of the relevant option series. The VSTOXX index
measures the implied volatility of an “imaginary” options series with a fixed time to expiry of
30 days. This is achieved through linear interpolation of the two nearest sub-indexes, generally
VSTOXX 1M and VSTOXX 2M. On the two days before VSTOXX 1M expiry, the VSTOXX
2M and VSTOXX 3M are used instead and an extrapolation takes place.

Table 5.1 lists all the sub-indexes and provides additional information.

5.2 COLLECTING OPTION DATA

As already pointed out, the VSTOXX is based on two sub-indexes, generally the VSTOXX
1M and VSTOXX 2M, sometimes the VSTOXX 2M and VSTOXX 3M. The sub-indexes

95

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

96 LISTED VOLATILITY AND VARIANCE DERIVATIVES

TABLE 5.1 The VSTOXX sub-indexes.

Sub-index Code ISIN Settlement date of the option series used

VSTOXX 1M V6I1 DE000A0G87B2 The last available within 1 month
VSTOXX 2M V6I2 DE000A0G87C0 The last available within 2 months
VSTOXX 3M V6I3 DE000A0G87D8 The last available within 3 months
VSTOXX 6M V6I4 DE000A0G87E6 The last available within 6 months
VSTOXX 9M V6I5 DE000A0G87F3 The last available within 9 months
VSTOXX 12M V6I6 DE000A0G87G1 The last available within 12 months
VSTOXX 18M V6I7 DE000A0G87H9 The last available within 18 months
VSTOXX 24M V6I8 DE000A0G87J5 The last available within 24 months

themselves are based on the option series on the EURO STOXX 50 index with respective
time to expiry. We therefore need the prices of all options with maturities up to 3 months.
We use historical data as provided by Eurex itself as the data source. See the website
http://bit.ly/1GY5KCI.

The code to collect the data can be found in the module index_collect_option_
data.py (see sub-section 5.6.1, index_collect_option_data.py for the complete script). As
usual, the module starts with some imports and parameter definitions.

import requests

import datetime as dt

import pandas as pd

import numpy as np

from StringIO import *

from index_date_functions import *

#

The URL template

#

url1 = 'http://www.eurexchange.com/action/exchange-en/'

url2 = '180106-180102/180102/onlineStats.do?productGroupId=846'

url3 = '&productId=19068&viewType=3&cp=%s&month=%s&year=%s&busDate=%s'

URL = url1 + url2 + url3

In addition, the module contains six functions. The first is collect_option_series():

def collect_option_series(month, year, start):

''' Collects daily option data from web source.

Parameters

==========

month: int

maturity month

year: int

maturity year

http://bit.ly/1GY5KCI
http://www.eurexchange.com/action/exchange-en/

VSTOXX Index 97

start: datetime object

starting date

Returns

=======

dataset: pandas DataFrame object

object containing the collected data

'''

end = dt.datetime.today()

delta = (end - start).days

dataset = pd.DataFrame()

for t in range(0, delta): # runs from start to today

date = start + dt.timedelta(t)

dummy = get_data(month, year, date) # get data for one day

if len(dummy) != 0:

if len(dataset) == 0:

dataset = dummy

else:

dataset = pd.concat((dataset, dummy)) # add data

return dataset

This function collects the data of the option series with maturity in the month month and year
year. It is called by the function start_collecting() and calls the function
get_data() for every single day from the date start to today. It returns a complete set of
prices (both puts and calls) for that series.
The second function is get_data().

def get_data(month, year, date):

''' Get the data for an option series.

Parameters

==========

month: int

maturity month

year: int

maturity year

date: datetime object

the date for which the data is collected

Returns

=======

dataset: pandas DataFrame object

object containing call & put option data

'''

98 LISTED VOLATILITY AND VARIANCE DERIVATIVES

date_string = date.strftime('%Y%m%d')

loads the call data from the web

data = get_data_from_www('Call', month, year, date_string)

calls = parse_data(data, date) # parse the raw data

calls = calls.rename(columns={'Daily settlem.price': 'Call_Price'})

calls = pd.DataFrame(calls.pop('Call_Price').astype(float))

the same for puts

data = get_data_from_www('Put', month, year, date_string)

puts = parse_data(data, date)

puts = puts.rename(columns={'Daily settlem.price': 'Put_Price'})

puts = pd.DataFrame(puts.pop('Put_Price').astype(float))

dataset = merge_and_filter(puts, calls) # merges the two time series

return dataset

This one is called by the function collect_option_series() and calls itself the
functions get_data_from_www(), parse_data(data, date) and merge_and_
filter(). It returns the prices of the option series with expiry date in month month and year
year for the day date.

The third function is get_data_from_www().

def get_data_from_www(oType, matMonth, matYear, date):

''' Retrieves the raw data of an option series from the web.

Parameters

==========

oType: string

either 'Put' or 'Call'

matMonth: int

maturity month

matYear: int

maturity year

date: string

expiry in the format 'YYYYMMDD'

Returns

=======

a: string

raw text with option data

'''

url = URL % (oType, matMonth, matYear, date) # parametrizes the URL

a = requests.get(url).text

return a

VSTOXX Index 99

The function collects the prices of an option series for a single day (defined by date) from the
web. The option series is defined by the date of its expiry, given by matMonth and matYear;
the type of the options is given by oType which can be either Put or Call. It returns a
complete HTML file.

merge_and_filter() is the fourth function.

def merge_and_filter(puts, calls):

''' Gets two pandas time series for the puts and calls

(from the same option series), merges them, filters out

all options with prices smaller than 0.5 and

returns the resulting DataFrame object.

Parameters

==========

puts: pandas DataFrame object

put option data

calls: pandas DataFrame object

call option data

Returns

=======

df: pandas DataFrame object

merged & filtered options data

'''

df = calls.join(puts, how='inner') # merges the two time series

filters all prices which are too small

df = df[(df.Put_Price >= 0.5) & (df.Call_Price >= 0.5)]

return df

This one gets two time series puts and calls (typically of the same option series), merges
them, filters out all options with prices below 0.5 and returns the resulting pandas DataFrame
object.

parse_data() is the fifth function.

def parse_data(data, date):

''' Parses the HTML table and transforms it into a CSV compatible

format. The result can be directly imported into a pandas DataFrame.

Parameters

==========

data: string

document containing the Web content

date: datetime object

date for which the data is parsed

100 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Returns

=======

dataset: pandas DataFrame object

transformed option raw data

'''

parts = data.split('<table')

parts2 = parts[1].split('</table')

dummy = parts2[0].replace(' class="odd"','')

dummy = dummy.replace(' class="even"','')

parts3 = dummy.split('<tr><td>Total')

table = parts3[0] # the html table containing the data

table = table.replace('class="dataTable"><thead>', 'Pricing day')

replace tags by commas and newlines

table = table.replace('</tr>', '\n')
table = table.replace(',', '')

table = table.replace('<td>', ',')

table = table.replace('</td>', '')

table = table.replace('<th>', ',')

table = table.replace('</th>', '')

table = table.replace('</thead><tbody>', '\n')

the resulting string looks like a CSV file

date_string = date.strftime('%d.%m.%Y')

table = table.replace('<tr>', date_string)

string = StringIO(table) # mask the string as file

dataset = pd.read_csv(string, parse_dates=[0], index_col=(0, 1),

dayfirst=True) # read the 'file' as pandas DataFrame object

return dataset

It gets the string data which contains the HTML text delivered by function
get_data_from_www(), parses that string to a pandas DataFrame object with
double index date and strike price and returns that object.

The sixth and final function is data_collection().

def data_collection(path):

''' Main function which saves data into the HDF5 file

'index_option_series.h5' for later use.

Parameters

==========

path: string

path to store the data

VSTOXX Index 101

'''

file to store data

store = pd.HDFStore(path + 'index_option_series.h5', 'a')

today = dt.datetime.today()

start = today – dt.timedelta(31) # the last 31 days

day = start.day

month = start.month

year = start.year

for i in range(4): # iterates over the next 4 months

dummy_month = month + i

dummy_year = year

if dummy_month > 12:

dummy_month -= 12

dummy_year += 1

collect daily data beginning 31 days ago (start) for

option series with expiry dummy_month, dummy_year

dataset = collect_option_series(dummy_month, dummy_year, start)

dummy_date = dt.datetime(dummy_year, dummy_month, day)

abbreviation for expiry date (for example Oct14)

series_name = dummy_date.strftime('%b%y')

if series_name in store.keys(): # if data for that series exists

index_old = store[series_name].index

index_new = dataset.index

if len(index_new – index_old) > 0:

dummy = pd.concat((store[series_name],

dataset.ix[index_new - index_old])) # add the new data

store[series_name] = dummy

else:

if len(dataset) > 0:

if series is new, write whole data set into data store

store[series_name] = dataset

store.close()

This function is to initiate and finalize the collection of all relevant option series data sets. It
saves the resulting data in a file named index_option_series.h5.

In [1]: path = './source/data/'

102 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Let us collect option data since all other steps depend on this data. We import the module as
icod.

In [2]: import numpy as np

In [3]: import pandas as pd

In [4]: import datetime as dt

In [5]: import index_collect_option_data as icod

Next, fix a target day relative to today such that you hit a business day for which closing data
is available.

In [6]: today = dt.datetime.now()

make sure to hit a business day

In [7]: target_day = today - dt.timedelta(days=1)

In [8]: ds = target_day.strftime('%Y%m%d')

In [9]: ds

Out[9]: '20160201'

Then, for example, collect option data for puts and calls with a maturity defined by the param-
eters as follows:

adjust maturity parameters if necessary

In [10]: call_data = icod.get_data_from_www(oType='Call', matMonth=3,

....: matYear=2016, date=ds)

....:

In [11]: put_data = icod.get_data_from_www(oType='Put', matMonth=3,

....: matYear=2016, date=ds)

....:

The return objects need to be parsed.

parse the raw data

In [12]: calls = icod.parse_data(call_data, target_day)

In [13]: puts = icod.parse_data(put_data, target_day)

VSTOXX Index 103

Let us have a look at some meta information about the call options data.

In [14]: calls.info()

<class 'pandas.core.frame.DataFrame'>

MultiIndex: 114 entries, (2016-02-01 00:00:00, 600.0) to

(2016-02-01 00:00:00, 6000.0)

Data columns (total 8 columns):

Version number 114 non-null float64

Opening price 114 non-null float64

Daily high 114 non-null float64

Daily low 114 non-null float64

Underlying closing price 114 non-null float64

Daily settlem. price 114 non-null float64

Traded contracts 114 non-null int64

Open interest (adj.)* 114 non-null int64

dtypes: float64(6), int64(2)

memory usage: 8.0+ KB

And about the put options data.

In [15]: puts.info()

<class 'pandas.core.frame.DataFrame'>

MultiIndex: 114 entries, (2016-02-01 00:00:00, 600.0) to

(2016-02-01 00:00:00, 6000.0)

Data columns (total 8 columns):

Version number 114 non-null float64

Opening price 114 non-null float64

Daily high 114 non-null float64

Daily low 114 non-null float64

Underlying closing price 114 non-null float64

Daily settlem. price 114 non-null float64

Traded contracts 114 non-null int64

Open interest (adj.)* 114 non-null int64

dtypes: float64(6), int64(2)

memory usage: 8.0+ KB

In a next step, we take out the daily settlement prices for both the puts and calls and define two
new DataFrame objects.

In [16]: calls = pd.DataFrame(calls.rename(

....: columns={'Daily settlem. price': 'Call_Price'}

....:).pop('Call_Price').astype(float))

....:

104 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [17]: puts = pd.DataFrame(puts.rename(

....: columns={'Daily settlem. price': 'Put_Price'}

....:).pop('Put_Price').astype(float))

....:

These two are then merged via the function merge_and_filter() into another new
DataFrame object.

In [18]: dataset = icod.merge_and_filter(puts, calls)

In [19]: dataset.info()

<class 'pandas.core.frame.DataFrame'>

MultiIndex: 67 entries, (2016-02-01 00:00:00, 1900.0) to

(2016-02-01 00:00:00, 3625.0)

Data columns (total 2 columns):

Call_Price 67 non-null float64

Put_Price 67 non-null float64

dtypes: float64(2)

memory usage: 1.6+ KB

This whole procedure is implemented in the functioncollect_option_series()which
yields the same result.

In [20]: os = icod.collect_option_series(3, 2016, target_day)

In [21]: os.info()

<class 'pandas.core.frame.DataFrame'>

MultiIndex: 67 entries, (2016-02-01 00:00:00, 1900.0) to

(2016-02-01 00:00:00, 3625.0)

Data columns (total 2 columns):

Call_Price 67 non-null float64

Put_Price 67 non-null float64

dtypes: float64(2)

memory usage: 1.6+ KB

The function data_collection() repeats this procedure for all those dates for which
option data is available and writes (appends) the results in a HDF5 database file.

uncomment to initiate the process (takes a while)

%time icod.data_collection(path)

For the further analyses, we open this HDF5 database file.

In [22]: store = pd.HDFStore(path + 'index_option_series.h5', 'r')

In [23]: store

VSTOXX Index 105

Out[23]:

<class 'pandas.io.pytables.HDFStore'>

File path: ./source/data/index_option_series.h5

/Feb16 frame (shape->[1398,2])

/Jan16 frame (shape->[638,2])

/Mar16 frame (shape->[1385,2])

The collected option series data is easily read from the HDF5 database file in monthly chunks.

In [24]: Mar16 = store['Mar16']

In [25]: Mar16.info()

<class 'pandas.core.frame.DataFrame'>

MultiIndex: 1385 entries, (2015-12-18 00:00:00, 1500.0) to (2016-01-15

00:00:00, 3650.0)

Data columns (total 2 columns):

Call_Price 1385 non-null float64

Put_Price 1385 non-null float64

dtypes: float64(2)

memory usage: 32.5+ KB

In [26]: store.close()

Some selected option prices from the large data set:

In [27]: Mar16.ix[25:35]

Out[27]:

Call_Price Put_Price

Pricing day Strike price

2015-12-18 2675.0 600.4 21.9

2700.0 577.3 23.8

2725.0 554.3 25.9

2750.0 531.6 28.1

2775.0 509.0 30.6

2800.0 486.6 33.2

2825.0 464.5 36.1

2850.0 442.6 39.3

2875.0 421.0 42.6

2900.0 399.6 46.3

5.3 CALCULATING THE SUB- INDEXES

In this section, we use the data file created in the previous one. For all dates
of the data file, the Python module index_subindex_calculation.py (see

106 LISTED VOLATILITY AND VARIANCE DERIVATIVES

index_subindex_calculation.py for the complete script) used in this section decides whether
the VSTOXX 1M sub-index is defined or not (remember that the sub-index is not defined at the
final settlement day and one day before). If it is defined, the script computes the value of the
sub-indexes VSTOXX 1M and VSTOXX 2M; if not, it computes the values of the sub-indexes
VSTOXX 2M and VSTOXX 3M, respectively. Finally, it returns a pandas DataFrame object
with the three time series.

5.3.1 The Algorithm

First, we focus on the computation of the value of a single sub-index for a given date. The
prices Ci, i ∈ {0, ..., n}, of a series of European call options on the EURO STOXX 50 with
fixed maturity date T and exercise prices Ki, i ∈ {0, ..., n} are given, as well as the prices Pi, i ∈
{0, ..., n}, of a series of European put options on EURO STOXX 50 with the same maturity
date T and exercise prices Ki. Let us further hold that Ki < Ki+1 for all i ∈ {0,, n − 1}.

Then, the value of the relevant sub-index V is as follows (see chapter 3, Model-Free Repli-
cation of Variance):

V = 100 ⋅
√
�̂�2

with

�̂�2 = 2
T

n∑
i=0

ΔKi

Ki
2

erTMi −
1
T

(
F
K∗

− 1

)2

where

ΔKi =

⎧⎪⎪⎨⎪⎪⎩

K1 − K0 for i = 0

Ki+1 − Ki−1

2
for i = 1, ..., n − 1

Kn − Kn−1 for i = n

r = constant risk-free short rate appropriate for maturity T

F = Kj + erT |Cj − Pj|, where j = min
i∈{0,...,n}

{|Ci − Pi|}
K∗ = max

Ki|i∈{0,...,n}

{Ki < F},

Mi =

⎧⎪⎪⎨⎪⎪⎩

Pi for Ki < K∗

Pi − Ci

2
for Ki = K∗

Ci for Ki > K∗

We implement a function to compute one value of a single sub-index. Thereafter, we extend
that function to compute time series for both VSTOXX 1M and VSTOXX 2M indexes as well
as parts of the VSTOXX 3M index. Imports again make up the beginning of the script.

VSTOXX Index 107

import math

import numpy as np

import pandas as pd

import datetime as dt

import index_date_functions as idf

A core function of the script is compute_subindex().

def compute_subindex(data, delta_T, R):

''' Computes a sub-index for given option series data.

Parameters

==========

data: pandas.DataFrame object

contains the option data

delta_T: float

time interval

R: float

discount factor

Returns

=======

subVSTOXX: float

sub-index value

'''

difference between put and call option with same strike

data['Diff_Put_Call'] = np.abs(data.Put_Price – data.Call_Price)

converts the strike price which serves as index so far

to a regular data column

data = data.reset_index()

data['delta_K'] = None

differences between the different strikes of the series

data['delta_K'].iloc[1:–1] = [(data['Strike price'][i + 1]

– data['Strike price'][i – 1]) / 2 for i in data.index[1:–1]]

where possible, for the i-th entry it is

half of the difference between the (i-1)-th

and (i+1)-th price

for i=0 it is just the difference to the next strike

data['delta_K'].iloc[0] = data['Strike price'][1] – data['Strike price'][0]

data['delta_K'].iloc[data.index[–1:]] = float(data['Strike price'][–1:]) \
– float(data['Strike price'][-2:-1])

for the last entry, it is just the difference

between the second but last strike and the last strike price

find the smallest difference between put and call price

min_index = data. Diff_Put_Call.argmin()

108 LISTED VOLATILITY AND VARIANCE DERIVATIVES

the forward price of that option

forward_price = data['Strike price'][min_index] \
+ R * data.Diff_Put_Call[min_index]

K_0 = data['Strike price'][forward_price -

data['Strike price'] > 0].max()

the index of the ATM strike

K_0_index = data.index[data['Strike price'] == K_0][0]

selects the OTM options

data['M'] = pd.concat((data.Put_Price[0:K_0_index],

data.Call_Price[K_0_index:]))

ATM we take the average of put and call price

data['M'].iloc[K_0_index] = (data['Call_Price'][K_0_index]

+ data['Put_Price'][K_0_index]) / 2

the single OTM values

data['MFactor'] = (R * (data['delta_K'] * data['M'])

/ (data['Strike price']) ** 2)

the forward term

fterm = 1. / delta_T *(forward_price / K_0 - 1) ** 2

summing up

sigma = 2 / delta_T * np.sum(data.MFactor) – fterm

subVSTOXX = 100 * math.sqrt(sigma)

return subVSTOXX

This script calculates a single index value. It implements mainly the following steps:

� the calculation of ΔKi
� the computation of the forward price and the index of K∗
� the selection of the at-the-money option and the out-of-the-money options
� the combination of the results of the other three steps.

The next step is the derivation of time series data for the VSTOXX 1M and VSTOXX 2M as
well as parts of the VSTOXX 3M indexes and storage of the results in a pandas DataFrame
object. As data source we use the file created in the last section. Remember that this file con-
tains a dictionary-like HDFStore object with one entry for every options series. The keys for
the entries are three letter abbreviations of the respective month’s name plus the actual year
represented by two numbers, for example Mar16, Jun16 and so on. The value of an entry is
a pandas DataFrame object with a pandas MultiIndex (date, strike price) and prices for
the put and call options for the dates and strike prices.

All this is implemented as function make_subindex().

def make_subindex(path):

''' Depending on the content of the file 'index_option_series.h5',

the function computes the sub-indexes V6I1, V6I2 and parts

of V6I3 and returns a pandas DataFrame object with the results.

VSTOXX Index 109

Parameters

==========

path: string

string with path of data file

Returns

=======

df: pandas DataFrame object

sub-index data as computed by the function

'''

the data source, created with index_collect_option_data.py

datastore = pd.HDFStore(path + 'index_option_series.h5', 'r')

max_date = dt.datetime.today() # find the latest date in the source

for series in datastore.keys():

dummy_date = datastore[series].index.get_level_values(0)[0]

dummy_date = dummy_date.to_pydatetime()

if dummy_date > max_date:

max_date = dummy_date

start_date = dt.datetime.today() # find the earliest date in the source

for series in datastore.keys():

dummy_date = datastore[series].index.get_level_values(0)[0]

dummy_data = dummy_date.to_pydatetime()

if dummy_date < start_date:

start_date = dummy_date

V1 = dict() # dicts to store the values, V stands for the sub-indices,

T for their expiry

V2 = dict()

V3 = dict()

T1 = dict()

T2 = dict()

T3 = dict()

from start_date to max_date, but only weekdays

for day in pd.bdate_range(start=start_date.date(), end=max_date.date()):

is V6I1 defined?

is_V1_defined = idf.not_a_day_before_expiry(day)

the settlement date

settlement_date = idf.first_settlement_day(day)

abbreviation for the expiry date, like Oct14

key = settlement_date.strftime('%b%y')

days until maturity

delta_T = idf.compute_delta(day, settlement_date)

try:

data of the option series for that date

data = datastore[key].ix[day]

except:

continue

110 LISTED VOLATILITY AND VARIANCE DERIVATIVES

if is_V1_defined: # if V6I1 is defined

compute its value

V1[day] = compute_subindex(data, delta_T,

math.exp(0.0015 * delta_T))

T1[day] = settlement_date

else:

compute the value of V6I2 instead

V2[day] = compute_subindex(data, delta_T,

math.exp(0.0015 * delta_T))

T2[day] = settlement_date

settlement_date_2 = idf.second_settlement_day(day)

the same for the next index

key_2 = settlement_date_2.strftime('%b%y')

delta_T_2 = idf.compute_delta(day, settlement_date_2)

data_2 = datastore[key_2].ix[day]

if is_V1_defined:

V2[day] = compute_subindex(data_2, delta_T_2,

math.exp(0.001 * delta_T_2))

T2[day] = settlement_date_2

else:

V3[day] = compute_subindex(data_2, delta_T_2,

math.exp(0.001 * delta_T_2))

T3[day] = settlement_date_2

datastore.close()

create the pandas DataFrame object and return it

df = pd.DataFrame(data={'V6I1': V1, 'Expiry V6I1': T1, 'V6I2': V2,

'Expiry V6I2': T2, 'V6I3': V3, 'Expiry V6I3': T3})

return df

This function uses the collected option series data and selects those data sub-sets needed for
the calculation at hand. It generates sub-index values for all those days for which option data
is available. The result is a pandas DataFrame object.

Let us see how it works. To this end, we first import the module as isc.

In [28]: import index_subindex_calculation as isc

In [29]: si = isc.make_subindex(path)

In [30]: si

Out[30]:

Expiry V6I1 Expiry V6I2 Expiry V6I3 V6I1 V6I2 \
2015-12-18 NaT 2016-01-15 2016-02-19 NaN 23.757165

2015-12-21 2016-01-15 2016-02-19 NaT 23.616427 24.665801

2015-12-22 2016-01-15 2016-02-19 NaT 21.908727 23.629867

2015-12-23 2016-01-15 2016-02-19 NaT 19.398907 21.488879

VSTOXX Index 111

2015-12-24 2016-01-15 2016-02-19 NaT 19.839390 21.677283

2015-12-28 2016-01-15 2016-02-19 NaT 21.493148 23.080926

2015-12-29 2016-01-15 2016-02-19 NaT 20.611811 22.199482

2015-12-30 2016-01-15 2016-02-19 NaT 21.522201 22.788559

2015-12-31 2016-01-15 2016-02-19 NaT 22.238762 23.016324

2016-01-04 2016-01-15 2016-02-19 NaT 28.926899 26.646698

2016-01-05 2016-01-15 2016-02-19 NaT 27.510874 25.983436

2016-01-06 2016-01-15 2016-02-19 NaT 27.451164 26.101145

2016-01-07 2016-01-15 2016-02-19 NaT 33.536380 29.502767

2016-01-08 2016-01-15 2016-02-19 NaT 33.400592 30.060601

2016-01-11 2016-01-15 2016-02-19 NaT 35.084411 30.005212

2016-01-12 2016-01-15 2016-02-19 NaT 33.266282 28.420558

2016-01-13 2016-01-15 2016-02-19 NaT 34.566710 28.058019

2016-01-14 NaT 2016-02-19 2016-03-18 NaN 29.864680

2016-01-15 NaT 2016-02-19 2016-03-18 NaN 34.195075

V6I3

2015-12-18 24.740060

2015-12-21 NaN

2015-12-22 NaN

2015-12-23 NaN

2015-12-24 NaN

2015-12-28 NaN

2015-12-29 NaN

2015-12-30 NaN

2015-12-31 NaN

2016-01-04 NaN

2016-01-05 NaN

2016-01-06 NaN

2016-01-07 NaN

2016-01-08 NaN

2016-01-11 NaN

2016-01-12 NaN

2016-01-13 NaN

2016-01-14 29.495976

2016-01-15 32.797564

For comparison, we retrieve the “real” historical VSTOXX (sub-)index values from the official
website.

In [31]: vs_url = 'https://www.stoxx.com/document/'

In [32]: vs_url += 'Indices/Current/HistoricalData/h_vstoxx.txt'

In [33]: vs = pd.read_csv(vs_url, # filename

....: index_col=0, # index column (dates)

....: parse_dates=True, # parse date information

https://www.stoxx.com/document/

112 LISTED VOLATILITY AND VARIANCE DERIVATIVES

....: dayfirst=True, # day before month

....: header=2) # header/column names

....:

In [34]: vs.to_csv(path + 'vs.csv') # write as CSV file

In [35]: vs = vs[vs.index <= '2015-12-31']

In [36]: vs.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 4327 entries, 1999-01-04 to 2015-12-30

Data columns (total 9 columns):

V2TX 4327 non-null float64

V6I1 3878 non-null float64

V6I2 4327 non-null float64

V6I3 4267 non-null float64

V6I4 4327 non-null float64

V6I5 4327 non-null float64

V6I6 4310 non-null float64

V6I7 4327 non-null float64

V6I8 4313 non-null float64

dtypes: float64(9)

memory usage: 338.0 KB

Next, combine the re-calculated VSTOXX 2M values with the historical ones into a new
DataFrame object and add a new column with the absolute differences.

In [37]: comp = pd.concat((si['V6I2'], vs['V6I2']),

....: axis=1, join='inner')

....:

In [38]: comp.index = comp.index.normalize()

In [39]: comp.columns = ['CALC', 'REAL']

In [40]: comp['DIFF'] = comp['CALC'] - comp['REAL']

In [41]: comp

Out[41]:

CALC REAL DIFF

2015-12-18 23.757165 23.7604 -0.003235

2015-12-21 24.665801 24.6237 0.042101

2015-12-22 23.629867 23.6439 -0.014033

2015-12-23 21.488879 21.4523 0.036579

2015-12-28 23.080926 23.0757 0.005226

2015-12-29 22.199482 22.1429 0.056582

2015-12-30 22.788559 22.6419 0.146659

VSTOXX Index 113

FIGURE 5.1 Calculated VSTOXX 2M sub-index values vs. real ones.

Figure 5.1 shows the two time series in direct comparison.

In [42]: import seaborn as sns; sns.set()

In [43]: import matplotlib

In [44]: matplotlib.rcParams['font.family'] = 'serif' # set serif font

In [45]: comp[['CALC', 'REAL']].plot(style=['ro', 'b'], figsize=(10, 6));

Figure 5.2 shows the point-wise differences between the two time series.

In [46]: import matplotlib.pyplot as plt

In [47]: plt.figure(figsize=(10, 6));

In [48]: plt.bar(comp.index, comp['DIFF']);

In [49]: plt.gcf().autofmt_xdate();

114 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 5.2 Differences of calculated VSTOXX 2M index values and real ones.

5.4 CALCULATING THE VSTOXX INDEX

If the values for the sub-indexes VSTOXX 1M and VSTOXX 2M, V1 and V2 say, are given,
then the value for the VSTOXX index itself, V say, is calculated by the linear interpolation of
V1 and V2:

V =

√√√√(
T1 ⋅ V2

1 ⋅

(
NT2

− N30

NT2
− NT1

)
+ T2 ⋅ V2

2 ⋅

(
N30 − NT1

NT2
− NT1

))
⋅

N365

N30

where

� NT1
= time to expiry of V1’s options series in seconds

� NT2
= time to expiry of V2’s options series in seconds

� N30 = 30 days in seconds
� N365 = time for a standard year in seconds
� T1 = NT1

∕N365
� T2 = NT2

∕N365.

Recall that the sub-index VSTOXX 1M is not defined on the final settlement day of the under-
lying option series and the day before. For these dates, we use VSTOXX 2M and VSTOXX
3M as V1 and V2, respectively.

The Python module index_vstoxx_calculation.py (see sub-section 5.6.3,
index_vstoxx_calculation.py for the module in its entirety) implements the VSTOXX index
calculation routine – given the respective sub-index time series data sets. The module starts as
usual with some imports.

VSTOXX Index 115

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from index_date_functions import *

The function calculate_vstoxx() is the core of the module.

def calculate_vstoxx(path):

''' Function to calculate the VSTOXX volatility index given time series

of the relevant sub-indexes.

Parameters

==========

path: string

string with path of data files

Returns

=======

data: pandas DataFrame object

results of index calculation

'''

constant parameters

seconds_year = 365 * 24 * 3600.

seconds_30_days = 30 * 24 * 3600.

import historical VSTOXX data

data = pd.read_csv(path + 'vs.csv', index_col=0, parse_dates=True)

determine the settlement dates for the two underlying option series

data['Settlement date 1'] = [first_settlement_day(a) for a in data.index]

data['Settlement date 2'] = [second_settlement_day(a) for a in data.index]

deduce the life time (in seconds) from current date to

final settlement Date

data['Life time 1'] = [(data['Settlement date 1'][i] - i).days

* 24 * 60 * 60 for i in data.index]

data['Life time 2'] = [(data['Settlement date 2'][i] - i).days

* 24 * 60 * 60 for i in data.index]

data['Use V6I2'] = data['V6I1'].notnull() # where V6I1 is not defined

data['Subindex to use 1'] = [data['V6I1'][i] if data['Use V6I2'][i]

else data['V6I2'][i] for i in data.index]

if V6I1 is defined, use V6I1 and V6I2 as data set

data['Subindex to use 2'] = [data['V6I2'][i] if data['Use V6I2'][i]

else data['V6I3'][i] for i in data.index]

else use V6I2 and V6I3

the linear interpolation of the VSTOXX value

from the two relevant sub-indexes

116 LISTED VOLATILITY AND VARIANCE DERIVATIVES

data['Part 1'] = data['Life time 1'] / seconds_year \
* data['Subindex to use 1'] ** 2 \
* ((data['Life time 2'] - seconds_30_days)

/ (data['Life time 2'] - data['Life time 1']))

data['Part 2'] = data['Life time 2'] / seconds_year \
* data['Subindex to use 2'] ** 2 \
* ((seconds_30_days - data['Life time 1'])

/ (data['Life time 2'] - data['Life time 1']))

data['VSTOXX'] = np.sqrt((data['Part 1'] + data['Part 2']) *

seconds_year / seconds_30_days)

difference between original VSTOXX data and re-calculated values

data['Difference'] = data['V2TX'] – data['VSTOXX']

return data

As its single argument, the function takes the path to a CSV file containing historical VSTOXX
data for the index itself and the sub-indexes. The re-calculation of it then is as straightforward
as follows:

In [50]: import index_vstoxx_calculation as ivc

In [51]: %time data = ivc.calculate_vstoxx(path)

CPU times: user 1.19 s, sys: 38 us, total: 1.19 s

Wall time: 1.2 s

Let us inspect the pandas DataFrame which now contains the results of the previous code
execution:

In [52]: data.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 4357 entries, 1999-01-04 to 2016-02-12

Data columns (total 20 columns):

V2TX 4357 non-null float64

V6I1 3906 non-null float64

V6I2 4357 non-null float64

V6I3 4296 non-null float64

V6I4 4357 non-null float64

V6I5 4357 non-null float64

V6I6 4340 non-null float64

V6I7 4357 non-null float64

V6I8 4343 non-null float64

Settlement date 1 4357 non-null datetime64[ns]

Settlement date 2 4357 non-null datetime64[ns]

Life time 1 4357 non-null int64

VSTOXX Index 117

Life time 2 4357 non-null int64

Use V6I2 4357 non-null bool

Subindex to use 1 4357 non-null float64

Subindex to use 2 4357 non-null float64

Part 1 4357 non-null float64

Part 2 4357 non-null float64

VSTOXX 4357 non-null float64

Difference 4357 non-null float64

dtypes: bool(1), datetime64[ns](2), float64(15), int64(2)

memory usage: 685.0 KB

A brief look at the absolute average error of the re-calculation reveals that the implementation
yields quite accurate results.

output: average error of re-calculation

In [53]: data['Difference'].mean()

Out[53]: 0.0012799470095575995

Figure 5.3 compares the original V2TX time series with the re-calculated values.

original vs. re-calculated VSTOXX index

In [54]: data[['V2TX', 'VSTOXX']].plot(subplots=True, figsize=(10, 6),

....: style="blue", grid=True);

....:

F IGURE 5.3 Historical VSTOXX index values re-calculated vs. real ones.

118 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 5.4 Differences of historical VSTOXX index values re-calculated vs. real ones.

Finally, Figure 5.4 presents the absolute differences. The figure shows that the differences are
in general marginal with a few outliers observed here and there.

differences between single values

In [55]: data['Difference'].plot(figsize=(10, 6), style="r", grid=True,

....: ylim=(-1, 1));

....:

5.5 CONCLUSIONS

This chapter (re-)calculates the VSTOXX volatility index based on historical sub-index values
and based on the volatility index definition as derived in chapter 3, Model-Free Replication of
Variance. The chapter also shows how to calculate the sub-index values themselves based on
EURO STOXX 50 options data. Python code is provided to automatically collect such data
from the Eurex website.

5.6 PYTHON SCRIPTS

5.6.1 index col lect opt ion data.py

#

Module to collect option series data

from the web

VSTOXX Index 119

Source: www.eurexchange.com

Data is needed to calculate the VSTOXX

and its sub-indexes

#

(c) Dr. Yves J. Hilpisch

Listed Volatility and Variance Derivatives

#

import requests

import datetime as dt

import pandas as pd

import numpy as np

from StringIO import *

from index_date_functions import *

#

The URL template

#

url1 = 'http://www.eurexchange.com/action/exchange-en/'

url2 = '180106-180102/180102/onlineStats.do?productGroupId=846'

url3 = '&productId=19068&viewType=3&cp=%s &month=%s &year=%s &busDate=%s'

URL = url1 + url2 + url3

def collect_option_series(month, year, start):

''' Collects daily option data from web source.

Parameters

==========

month: int

maturity month

year: int

maturity year

start: datetime object

starting date

Returns

=======

dataset: pandas DataFrame object

object containing the collected data

'''

end = dt.datetime.today()

delta = (end – start).days

dataset = pd.DataFrame()

for t in range(0, delta): # runs from start to today

date = start + dt.timedelta(t)

dummy = get_data(month, year, date) # get data for one day

if len(dummy) != 0:

http://www.eurexchange.com
http://www.eurexchange.com/action/exchange-en/

120 LISTED VOLATILITY AND VARIANCE DERIVATIVES

if len(dataset) == 0:

dataset = dummy

else:

dataset = pd.concat((dataset, dummy)) # add data

return dataset

def get_data(month, year, date):

''' Get the data for an option series.

Parameters

==========

month: int

maturity month

year: int

maturity year

date: datetime object

the date for which the data is collected

Returns

=======

dataset: pandas DataFrame object

object containing call & put option data

'''

date_string = date.strftime('%Y%m%d')

loads the call data from the web

data = get_data_from_www('Call', month, year, date_string)

calls = parse_data(data, date) # parse the raw data

calls = calls.rename(columns={'Daily settlem.price': 'Call_Price'})

calls = pd.DataFrame(calls.pop('Call_Price').astype(float))

the same for puts

data = get_data_from_www('Put', month, year, date_string)

puts = parse_data(data, date)

puts = puts.rename(columns={'Daily settlem.price': 'Put_Price'})

puts = pd.DataFrame(puts.pop('Put_Price').astype(float))

dataset = merge_and_filter(puts, calls) # merges the two time series

return dataset

def get_data_from_www(oType, matMonth, matYear, date):

''' Retrieves the raw data of an option series from the web.

Parameters

==========

oType: string

either 'Put' or 'Call'

VSTOXX Index 121

matMonth: int

maturity month

matYear: int

maturity year

date: string

expiry in the format 'YYYYMMDD'

Returns

=======

a: string

raw text with option data

'''

url = URL % (oType, matMonth, matYear, date) # parametrizes the URL

a = requests.get(url).text

return a

def merge_and_filter(puts, calls):

''' Gets two pandas time series for the puts and calls

(from the same option series), merges them, filters out

all options with prices smaller than 0.5 and

returns the resulting DataFrame object.

Parameters

==========

puts: pandas DataFrame object

put option data

calls: pandas DataFrame object

call option data

Returns

=======

df: pandas DataFrame object

merged & filtered options data

'''

df = calls.join(puts, how=' inner') # merges the two time series

filters all prices which are too small

df = df[(df. Put_Price >= 0.5) & (df.Call_Price >= 0.5)]

return df

def parse_data(data, date):

''' Parses the HTML table and transforms it into a CSV compatible

format. The result can be directly imported into a pandas DataFrame.

Parameters

==========

122 LISTED VOLATILITY AND VARIANCE DERIVATIVES

data: string

document containing the Web content

date: datetime object

date for which the data is parsed

Returns

=======

dataset: pandas DataFrame object

transformed option raw data

'''

parts = data.split('<table')

parts2 = parts[1].split('</table')

dummy = parts2[0].replace('class="odd"','')

dummy = dummy.replace('class="even"','')

parts3 = dummy.split('<tr><td>Total')

table = parts3[0] # the html table containing the data

table = table.replace('class="dataTable"><thead>', 'Pricing day')

replace tags by commas and newlines

table = table.replace('</tr>', '\n')
table = table.replace(',', '')

table = table.replace('<td>', ',')

table = table.replace('</td>', '')

table = table.replace('<th>', ',')

table = table.replace('</th>', '')

table = table.replace('</thead><tbody>', '\n')

the resulting string looks like a CSV file

date_string = date.strftime('%d .%m.%Y')

table = table.replace('<tr>', date_string)

string = StringIO(table) # mask the string as file

dataset = pd.read_csv(string, parse_dates=[0], index_col=(0, 1),

dayfirst=True) # read the 'file' as pandas DataFrame object

return dataset

def data_collection(path):

''' Main function which saves data into the HDF5 file

'index_option_series.h5' for later use.

Parameters

==========

path: string

path to store the data

'''

file to store data

store = pd.HDFStore(path + 'index_option_series.h5', 'a')

VSTOXX Index 123

today = dt.datetime.today()

start = today - dt.timedelta(31) # the last 31 days

day = start.day

month = start.month

year = start.year

for i in range(4): # iterates over the next 4 months

dummy_month = month + i

dummy_year = year

if dummy_month > 12:

dummy_month -= 12

dummy_year += 1

collect daily data beginning 31 days ago (start) for

option series with expiry dummy_month, dummy_year

dataset = collect_option_series(dummy_month, dummy_year, start)

dummy_date = dt.datetime(dummy_year, dummy_month, day)

abbreviation for expiry date (for example Oct14)

series_name = dummy_date.strftime('%b%y')

if series_name in store.keys(): # if data for that series exists

index_old = store[series_name].index

index_new = dataset.index

if len(index_new - index_old) > 0:

dummy = pd.concat((store[series_name],

dataset.ix[index_new - index_old])) # add the new data

store[series_name] = dummy

else:

if len(dataset) > 0:

if series is new, write whole data set into data store

store[series_name] = dataset

store.close()

5.6.2 index subindex calcu lat ion.py

#

Module with functions to compute VSTOXX sub-indexes

#

Data as generated by the script index_collect_option_data.py

is needed for the calculations in this module

#

(c) Dr. Yves J. Hilpisch

124 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Listed Volatility and Variance Derivatives

#

import math

import numpy as np

import pandas as pd

import datetime as dt

import index_date_functions as idf

def compute_subindex(data, delta_T, R):

''' Computes a sub-index for given option series data.

Parameters

==========

data: pandas.DataFrame object

contains the option data

delta_T: float

time interval

R: float

discount factor

Returns

=======

subVSTOXX: float

sub-index value

'''

difference between put and call option with same strike

data['Diff_Put_Call'] = np.abs(data. Put_Price - data.Call_Price)

converts the strike price which serves as index so far

to a regular data column

data = data.reset_index()

data['delta_K'] = None

differences between the different strikes of the series

data['delta_K'].iloc[1:-1] = [(data['Strike price'][i + 1]

- data['Strike price'][i - 1]) / 2 for i in data.index[1:-1]]

where possible, for the i-th entry it is

half of the difference between the (i-1)-th

and (i+1)-th price

for i=0 it is just the difference to the next strike

data['delta_K'].iloc[0] = data['Strike price'][1] – data['Strike price'][0]

data['delta_K'].iloc[data.index[-1:]] = float(data['Strike price'][-1:]) \
- float(data['Strike price'][-2: -1])

for the last entry, it is just the difference

between the second but last strike and the last strike price

find the smallest difference between put and call price

min_index = data. Diff_Put_Call.argmin()

the forward price of that option

forward_price = data['Strike price'][min_index] \
+ R * data.Diff_Put_Call[min_index]

VSTOXX Index 125

K_0 = data['Strike price'][forward_price -

data['Strike price'] > 0].max()

the index of the ATM strike

K_0_index = data.index[data['Strike price'] == K_0][0]

selects the OTM options

data['M'] = pd.concat((data.Put_Price[0:K_0_index],

data.Call_Price[K_0_index:]))

ATM we take the average of put and call price

data['M'].iloc[K_0_index] = (data['Call_Price'][K_0_index]

+ data['Put_Price'][K_0_index]) / 2

the single OTM values

data['MFactor'] = (R * (data['delta_K'] * data['M'])

/ (data['Strike price']) ** 2)

the forward term

fterm = 1. / delta_T * (forward_price / K_0 - 1) ** 2

summing up

sigma = 2 / delta_T * np.sum(data.MFactor) - fterm

subVSTOXX = 100 * math.sqrt(sigma)

return subVSTOXX

def make_subindex(path):

''' Depending on the content of the file 'index_option_series.h5',

the function computes the sub-indexes V6I1, V6I2 and parts

of V6I3 and returns a pandas DataFrame object with the results.

Parameters

==========

path: string

string with path of data file

Returns

=======

df: pandas DataFrame object

sub-index data as computed by the function

'''

the data source, created with index_collect_option_data.py

datastore = pd.HDFStore(path + 'index_option_series.h5', 'r')

max_date = dt.datetime.today() # find the latest date in the source

for series in datastore.keys():

dummy_date = datastore[series].index.get_level_values(0)[0]

dummy_date = dummy_date.to_pydatetime()

if dummy_date > max_date:

max_date = dummy_date

start_date = dt.datetime.today() # find the earliest date in the source

for series in datastore.keys():

126 LISTED VOLATILITY AND VARIANCE DERIVATIVES

dummy_date = datastore[series].index.get_level_values(0)[0]

dummy_data = dummy_date.to_pydatetime()

if dummy_date < start_date:

start_date = dummy_date

V1 = dict() # dicts to store the values, V stands for the sub-indices,

T for their expiry

V2 = dict()

V3 = dict()

T1 = dict()

T2 = dict()

T3 = dict()

from start_date to max_date, but only weekdays

for day in pd.bdate_range(start=start_date.date(), end=max_date.date()):

is V6I1 defined?

is_V1_defined = idf.not_a_day_before_expiry(day)

the settlement date

settlement_date = idf.first_settlement_day(day)

abbreviation for the expiry date, like Oct14

key = settlement_date.strftime('%b%y')

days until maturity

delta_T = idf.compute_delta(day, settlement_date)

try:

data of the option series for that date

data = datastore[key].ix[day]

except:

continue

if is_V1_defined: # if V6I1 is defined

compute its value

V1[day] = compute_subindex(data, delta_T,

math.exp(0.0015 * delta_T))

T1[day] = settlement_date

else:

compute the value of V6I2 instead

V2[day] = compute_subindex(data, delta_T,

math.exp(0.0015 * delta_T))

T2[day] = settlement_date

settlement_date_2 = idf.second_settlement_day(day)

the same for the next index

key_2 = settlement_date_2.strftime('%b%y')

delta_T_2 = idf.compute_delta(day, settlement_date_2)

data_2 = datastore[key_2].ix[day]

if is_V1_defined:

V2[day] = compute_subindex(data_2, delta_T_2,

math.exp(0.001 * delta_T_2))

T2[day] = settlement_date_2

VSTOXX Index 127

else:

V3[day] = compute_subindex(data_2, delta_T_2,

math.exp(0.001 * delta_T_2))

T3[day] = settlement_date_2

datastore.close()

create the pandas DataFrame object and return it

df = pd.DataFrame(data={'V6I1': V1, 'Expiry V6I1': T1, 'V6I2': V2,

'Expiry V6I2': T2, 'V6I3': V3, 'Expiry V6I3': T3})

return df

5.6.3 index vstoxx calcu lat ion.py

#

Module to compute VSTOXX index values

given the values for the relevant sub-indexes

as generated by the module index_subindex_calculation.py

#

(c) Dr. Yves J. Hilpisch

Listed Volatility and Variance Derivatives

#

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from index_date_functions import *

def calculate_vstoxx(path):

''' Function to calculate the VSTOXX volatility index given time series

of the relevant sub-indexes.

Parameters

==========

path: string

string with path of data files

Returns

=======

data: pandas DataFrame object

results of index calculation

'''

constant parameters

seconds_year = 365 * 24 * 3600.

seconds_30_days = 30 * 24 * 3600.

import historical VSTOXX data

data = pd.read_csv(path + 'vs.csv', index_col=0, parse_dates=True)

128 LISTED VOLATILITY AND VARIANCE DERIVATIVES

determine the settlement dates for the two underlying option series

data['Settlement date 1'] = [first_settlement_day(a) for a in data.index]

data['Settlement date 2'] = [second_settlement_day(a) for a in data.index]

deduce the life time (in seconds) from current date to

final settlement Date

data['Life time 1'] = [(data['Settlement date 1'][i] - i).days

* 24 * 60 * 60 for i in data.index]

data['Life time 2'] = [(data['Settlement date 2'][i] - i).days

* 24 * 60 * 60 for i in data.index]

data['Use V6I2'] = data['V6I1'].notnull() # where V6I1 is not defined

data['Subindex to use 1'] = [data['V6I1'][i] if data['Use V6I2'][i]

else data['V6I2'][i] for i in data.index]

if V6I1 is defined, use V6I1 and V6I2 as data set

data['Subindex to use 2'] = [data['V6I2'][i] if data['Use V6I2'][i]

else data['V6I3'][i] for i in data.index]

else use V6I2 and V6I3

the linear interpolation of the VSTOXX value

from the two relevant sub-indexes

data['Part 1'] = data['Life time 1'] / seconds_year \
* data['Subindex to use 1'] ** 2 \
* ((data['Life time 2'] - seconds_30_days)

/ (data['Life time 2'] - data['Life time 1']))

data['Part 2'] = data['Life time 2'] / seconds_year \
* data['Subindex to use 2'] ** 2 \
* ((seconds_30_days - data['Life time 1'])

/ (data['Life time 2'] - data['Life time 1'])) \

data['VSTOXX'] = np.sqrt((data['Part 1'] + data['Part 2']) *

seconds_year / seconds_30_days)

difference between original VSTOXX data and re-calculated values

data['Difference'] = data['V2TX'] - data['VSTOXX']

return data

CHAPTER 6
Valuing Volatility Derivatives

6.1 INTRODUCTION

This chapter illustrates the valuation of volatility futures and options according to Grünbichler
and Longstaff (1996), abbreviated in the following by GL96. They derive a semi-analytical
(“closed”) pricing formula for European volatility call options which is as easy to use as
the famous Black-Scholes-Merton formula for equity options pricing. They model volatil-
ity directly and make the assumption that volatility follows a square-root diffusion process.
The model is quite simple and parsimonious, such that it lends itself pretty well to serve as a
starting point.

This chapter introduces the financial model, the futures and option pricing formulas of
Grünbichler and Longstaff as well as a discretization of the model for Monte Carlo simulation
purposes. For both the formulas and the Monte Carlo simulation approach, Python implemen-
tations are presented. Finally, the chapter shows in detail how to calibrate the GL96 model to
market quotes for European call options on the VSTOXX volatility index.

6.2 THE VALUATION FRAMEWORK

Grünbichler and Longstaff (1996) model the volatility process (e.g. the process of a volatility
index) in direct fashion by a square-root diffusion or CIR process – named after the authors
John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross, who first introduced this type of
stochastic process to finance; see Cox et al. (1985). The stochastic differential equation describ-
ing the evolution of the volatility over time takes the form

dvt = 𝜅(𝜃 − vt)dt + 𝜎
√

vdZt

where

� vt is the time t value of the volatility index, for example the VSTOXX
� 𝜃 is the long-run mean of the volatility index
� 𝜅 is the rate at which vt reverts to 𝜃
� 𝜎 is the volatility of the volatility (“vol-vol”)
� 𝜃, 𝜅, 𝜎 are assumed to be constant and positive
� Zt is a standard Brownian motion.

129

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

130 LISTED VOLATILITY AND VARIANCE DERIVATIVES

This process is known to exhibit convenient and realistic features for volatility modeling, such
as positivity and mean-reversion.

For the numerical examples in this chapter we use a parametrization as follows:

In [1]: import math

model parameters

In [2]: v0 = 17.5 # initial level of volatility index

In [3]: kappa = 0.1 # speed of mean reversion

In [4]: theta = 20.0 # long-term index level

In [5]: sigma = 2.0 # volatility of volatility

In [6]: zeta = 0.0 # factor of the expected volatility risk premium

In [7]: r = 0.01 # risk-free short rate

option parameters

In [8]: K = 20.0 # strike

In [9]: T = 1.0 # time horizon in year fractions

6.3 THE FUTURES PRIC ING FORMULA

Denote by F(v, T) the futures price of a futures contract on the volatility index v with maturity
T . The pricing of such a contract is done by taking expectations of the index’s value at maturity
F(v, T) = E(vT). One obtains the following formula for the futures price:

F(v0, T) = (1 − e−𝜅T) ⋅ 𝜃 + e−𝜅T ⋅ v0

It is an exponentially weighted average of the long-run mean and the current value of the
volatility index. The function futures_price implements this formula in Python, in this
instance for a general volatility risk premium 𝜁 ≥ 0.

def futures_price(v0, kappa, theta, zeta, T):

''' Futures pricing formula in GL96 model.

Parameters

==========

v0: float (positive)

current volatility level

Valuing Volatility Derivatives 131

kappa: float (positive)

mean-reversion factor

theta: float (positive)

long-run mean of volatility

zeta: float (positive)

volatility risk premium

T: float (positive)

time-to-maturity

Returns

=======

future: float

price of a future

'''

alpha = kappa * theta

beta = kappa + zeta

future =(alpha / beta * (1 - math.exp(-beta * T))

+ math.exp(-beta * T) * v0)

return future

Application of the formula and function is straightforward. However, we have to first import
the function from the module in which it is stored.

In [10]: from srd_functions import *

In [11]: futures_price(v0, kappa, theta, zeta, T)

Out[11]: 17.7379064549101

We obtain a futures term structure by calculating the futures prices for different maturities (see
Figure 6.1).

In [12]: import numpy as np

In [13]: import seaborn as sns; sns.set()

In [14]: import matplotlib

In [15]: matplotlib.rcParams['font.family'] = 'serif'

In [16]: import matplotlib.pyplot as plt

In [17]: maturities = np.linspace(0, 2, 24)

132 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 6.1 Futures prices from today to a maturity of 24 months.

In [18]: futures_prices = [futures_price(v0, kappa, theta, zeta, T)

....: for T in maturities]

....:

In [19]: plt.figure(figsize=(10, 6));

In [20]: plt.plot(maturities, futures_prices);

In [21]: plt.xlabel('maturity');

In [22]: plt.ylabel('futures price');

6.4 THE OPTION PRIC ING FORMULA

A European call option on the underlying V has a payoff functionmax(VT − K, 0) at maturity T
where K is the strike price of the option. Grünbichler and Longstaff (1996) derive the following
pricing formula for such a call option:

C(v0, K, T) = e−rT ⋅ e−𝛽T ⋅ V0 ⋅ Q (𝛾 ⋅ K; 𝜈 + 4, 𝜆)

+ e−rT ⋅ (
𝛼

𝛽
) ⋅

(
1 − e−𝛽T) ⋅ Q (𝛾 ⋅ K; 𝜈 + 2, 𝜆)

− e−rT ⋅ K ⋅ Q (𝛾 ⋅ K; 𝜈, 𝜆)

Valuing Volatility Derivatives 133

where

𝛼 = 𝜅𝜃

𝛽 = 𝜅 + 𝜁

𝛾 = 4𝛽

𝜎2(1 − e−𝛽T)

𝜈 = 4𝛼
𝜎2

𝜆 = 𝛾 ⋅ e−𝛽T ⋅ v0

and e−rT as the discount factor for a fixed short rate r. The parameter 𝜁 denotes as before the
expected premium for volatility risk. In the following, we assume 𝜁 = 0.

Q(⋅; 𝜈, 𝜆) is the complementary non-central 𝜒2 distribution with 𝜈 degrees of freedom and
non-centrality parameter 𝜆.

In our Python implementation srd_functions.py (see sub-section 6.9.1,
srd_functions.py for the complete module), we use the function ncx2.cdf() from
the scipy.stats sub-library for the non-central 𝜒2 distribution. We implement two
different functions, a helper function and the pricing function itself:

� cx(): this function returns values for the complementary distribution of the non-central
chi-squared density

� call_price(): the implementation of the valuation formula for European calls on the
volatility index.

The function cx() is as follows:

def cx(K, gamma, nu, lamb):

''' Complementary distribution function of non-central chi-squared density.

Parameters

==========

K: float (positive)

strike price

gamma: float (positive)

as defined in the GL96 model

nu: float (positive)

degrees of freedom

lamb: float (positive)

non-centrality parameter

Returns

=======

complementary distribution of nc cs density

'''

return 1 - scs.ncx2.cdf(gamma * K, nu, lamb)

134 LISTED VOLATILITY AND VARIANCE DERIVATIVES

The function cx() is used in the valuation function call_price().

def call_price(v0, kappa, theta, sigma, zeta, T, r, K):

''' Call option pricing formula in GL96 Model

Parameters

==========

v0: float (positive)

current volatility level

kappa: float (positive)

mean-reversion factor

theta: float (positive)

long-run mean of volatility

sigma: float (positive)

volatility of volatility

zeta: float (positive)

volatility risk premium

T: float (positive)

time-to-maturity

r: float (positive)

risk-free short rate

K: float(positive)

strike price of the option

Returns

=======

call: float

present value of European call option

'''

D = math.exp(-r * T) # discount factor

alpha = kappa * theta

beta = kappa + zeta

gamma = 4 * beta / (sigma ** 2 * (1 - math.exp(-beta * T)))

nu = 4 * alpha / sigma ** 2

lamb = gamma * math.exp(-beta * T) * v0

the pricing formula

call = (D * math.exp(-beta * T) * v0 * cx(K, gamma, nu + 4, lamb)

+ D * (alpha / beta) * (1 - math.exp(-beta * T))

* cx(K, gamma, nu + 2, lamb)

- D * K * cx(K, gamma, nu, lamb))

return call

As before, being equipped with such a Python function makes applying the pricing formula
straightforward.

Valuing Volatility Derivatives 135

In [23]: call_price(v0, kappa, theta, sigma, zeta, T, r, K)

Out[23]: 3.3682878822902369

Let us calculate European call option prices over a wider range of strikes.

In [24]: import numpy as np

In [25]: import pandas as pd

In [26]: option_values = []

In [27]: strikes = np.linspace(15, 25)

In [28]: option_values = [call_price(v0, kappa, theta, sigma, zeta, T, r, k)

....: for k in strikes]

....:

In [29]: data = pd.DataFrame(option_values, index=strikes,

....: columns=['call values',])

....:

In [30]: data.index.name = 'strike'

As Figure 6.2 shows, the European call option prices behave comparably to equity options:
the higher the strike price the lower the option present value ceteris paribus.

In [31]: data.plot(figsize=(10, 6));

6.5 MONTE CARLO SIMULATION

In this section, we solve the pricing problem for a European call option via Monte Carlo sim-
ulation, i.e. based on a large number of simulated volatility index paths. To this end, we have
to discretize the stochastic differential equation to obtain a difference equation which we can
evaluate numerically.

We use the same numerical parameters as before, but we have to define some additional
parameters which will determine the discretization interval and the number of simulated paths:

simulation parameters

In [32]: M = 50 # time steps

In [33]: I = 20000 # number of MCS paths

136 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 6.2 European call option prices for different volatility strikes in the GL96 model.

There is a large literature available about the discretization of the square-root diffusion (see
Hilpisch (2015), ch. 10). In the following, we will implement an exact discretization scheme.

First, we divide the time interval [0, T] into M time intervals with M + 1 discrete points
in time: t ∈ {0,Δt, 2Δt,… , T}. We have:

vt =
𝜎2(1 − e−𝜅Δt)

4𝜅
𝜒2
𝜈,𝜆

4−𝜅Δt

𝜎2(1 − e−𝜅Δt)
⋅ vs

with s = t − Δt.
𝜒2
𝜈,𝜆 denotes a non-central chi-squared distributed random variable with

𝜈 = 4𝜃𝜅
𝜎2

degrees of freedom and non-centrality parameter

𝜆 = 4𝜅e−𝜅Δt

𝜎2(1 − e−𝜅Δt)
⋅ vs

As it may be more convenient to sample a chi-squared random variable instead of non-central
chi-squared one, we use the following equations:

𝜈 > 1 : 𝜒2
𝜈,𝜆 = (z +

√
𝜆)2 + 𝜒2

𝜈−1

𝜈 ≤ 1 : 𝜒2
𝜈,𝜆 = 𝜒2

𝜈+2P

Valuing Volatility Derivatives 137

where z is an independent standard normally distributed random variable and P is a Poisson
distributed random variable with intensity 𝜆

2
.

We again divide the implementation in Python into two functions:

� generate_paths() generates simulated volatility level paths
� call_estimator() simulates the volatility process and calculates the Monte Carlo

estimator for the European call option value.

The function to generate simulated volatility paths takes on a form as follows:

def generate_paths(x0, kappa, theta, sigma, T, M, I):

''' Simulation of square-root diffusion with exact discretization

Parameters

==========

x0: float (positive)

starting value

kappa: float (positive)

mean-reversion factor

theta: float (positive)

long-run mean

sigma: float (positive)

volatility (of volatility)

T: float (positive)

time-to-maturity

M: int

number of time intervals

I: int

number of simulation paths

Returns

=======

x: NumPy ndarray object

simulated paths

'''

dt = float(T) / M

x = np.zeros((M + 1, I), dtype=np.float)

x[0, :] = x0

matrix filled with standard normal distributed rv

ran = np.random.standard_normal((M + 1, I))

d = 4 * kappa * theta / sigma ** 2

constant factor in the integrated process of x

c = (sigma ** 2 * (1 - math.exp(-kappa * dt))) / (4 * kappa)

if d > 1:

for t in range(1, M + 1):

non-centrality parameter

l = x[t - 1, :] * math.exp(-kappa * dt) / c

138 LISTED VOLATILITY AND VARIANCE DERIVATIVES

matrix with chi-squared distributed rv

chi = np.random.chisquare(d - 1, I)

x[t, :] = c * ((ran[t] + np.sqrt(l)) ** 2 + chi)

else:

for t in range(1, M + 1):

l = x[t - 1, :] * math.exp(-kappa * dt) / c

N = np.random.poisson(l / 2, I)

chi = np.random.chisquare(d + 2 * N, I)

x[t, :] = c * chi

return x

An application of this function might look as follows:

In [34]: paths = generate_paths(v0, kappa, theta, sigma, T, M, I)

Figure 6.3 shows the first 10 simulated volatility paths.

In [35]: pd.DataFrame(paths[:, :10]).plot(legend=False, figsize=(10, 6));

F IGURE 6.3 10 simulated volatility paths for GL96 model.

Valuing Volatility Derivatives 139

The Monte Carlo estimator for a European call option is defined by

C(v0, K, T) = e−rT 1
I

I∑
i=1

max(vi
T − K, 0)

with max(vT − K, 0) being the payoff function of the European call option. Here, vi
T is the i-th

simulated value for the volatility index at maturity. The function to calculate the Monte Carlo
estimator for the value of the European call option is presented below.

def call_estimator(v0, kappa, theta, sigma, T, r, K, M, I):

''' Estimation of European call option price in GL96 Model

via Monte Carlo simulation

Parameters

==========

v0: float (positive)

current volatility level

kappa: float (positive)

mean-reversion factor

theta: float (positive)

long-run mean of volatility

sigma: float (positive)

volatility of volatility

T: float (positive)

time-to-maturity

r: float (positive)

risk-free short rate

K: float (positive)

strike price of the option

M: int

number of time intervals

I: int

number of simulation paths

Returns

=======

callvalue: float

MCS estimator for European call option

'''

V = generate_paths(v0, kappa, theta, sigma, T, M, I)

callvalue = math.exp(-r * T) * np.sum(np.maximum(V[-1] - K, 0)) / I

return callvalue

140 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [36]: call_estimator(v0, kappa, theta, sigma, T, r, K, M, I)

Out[36]: 3.3751776084056191

Again, let us calculate option prices over a wider range of strikes.

In [37]: %%time

....: estimates = []

....: for k in strikes:

....: estimates.append(call_estimator(v0, kappa, theta, sigma,

....: T, r, k, M, I))

....: data['estimates'] = estimates

....:

CPU times: user 11.4 s, sys: 38 us, total: 11.4 s

Wall time: 11.4 s

Figure 6.4 compares the Monte Carlo estimator values given the above parametrization with
the European call option values obtained from the formula by Grünbichler and Longstaff
(1996).

In [38]: data.plot(style=['b', 'r.'], figsize=(10, 6));

F IGURE 6.4 Monte Carlo estimates vs. European call values from formula in the GL96 model.

Valuing Volatility Derivatives 141

6.6 AUTOMATED MONTE CARLO TESTS

This section illustrates how to automate Monte Carlo-based valuation tests. Even if semi-
analytical option pricing formulas are available – as in the Grünbichler and Longstaff (1996)
model – in general one needs numerical methods as well. One of the most flexible and pow-
erful methods when it comes to the valuation of more complex, exotic instruments is Monte
Carlo simulation (MCS).

When implementing MCS algorithms it is generally advised to benchmark the results from
these algorithms against results from other valuation methods which are known to deliver exact
values. Therefore, this section implements MCS for the Grünbichler and Longstaff (1996)
model and benchmarks the results against the semi-analytical formula for European volatility
call options as presented earlier in this chapter.

In the previous section, MCS was introduced and some benchmark results presented.
However, this section enhances the analysis and adds functionalities for the structured stor-
age and systematic analysis of valuation results. In this regard, the Python library pandas is
used in combination with the storage capabilities of PyTables, the Python wrapper for the
HDF5 database file format.

6.6.1 The Automated Test ing

The following test procedures are based on the Python script srd_ simula-
tion_analysis.py (see sub-section 6.9.2, srd simulation analysis.py for the complete
code). To automate the valuation for a significant number of options, a set of parameter values
and lists has to be specified. First, some imports and the parametrization of the financial model.

import time

import math

import numpy as np

from datetime import datetime

from srd_functions import generate_paths, call_price

from srd_simulation_results import *

Model Parameters

v0 = 20.0 # initial volatility

kappa = 3.0 # speed of mean reversion

theta = 20.0 # long-term volatility

sigma = 3.2 # standard deviation coefficient

zeta = 0.0 # factor of the expected volatility risk premium

r = 0.01 # risk-free short rate

The parameter values chosen are not too unrealistic, for example, for the VSTOXX volatility
index. Second, the following simulation parameters are assumed:

General Simulation Parameters

write = True

var_red = [(False, False), (False, True), (True, False), (True, True)]

142 LISTED VOLATILITY AND VARIANCE DERIVATIVES

1st = mo_match -- random number correction (std + mean + drift)

2nd = anti_paths -- antithetic paths for variance reduction

number of time steps

steps_list = [25, 50, 75, 100]

number of paths per valuation

paths_list = [2500, 50000, 75000, 100000, 125000, 150000]

SEED = 100000 # seed value

runs = 3 # number of simulation runs

PY1 = 0.010 # performance yardstick 1: abs. error in currency units

PY2 = 0.010 # performance yardstick 2: rel. error in decimals

maturity_list = [1.0 / 12, 1.0 / 4, 1.0 / 2, 1.0] # maturity list

The single parameters and list objects have the following meanings:

� write is just a flag to indicate that the results should be stored on disk
� var_red contains the configuration for the variance reduction techniques, i.e. moment

matching of pseudo-random numbers and antithetic variates
� steps_list is the list with the different numbers for the time steps to be used for the

discretization
� paths_list contains the different numbers for the MCS paths for the volatility process
� runs is a parameter which says how often the same option is valued for a single parameter

combination
� SEED is a seed value for NumPy’s pseudo-random number generator; it is fixed to make

it easier to compare results
� PY1 is the performance yardstick for absolute differences
� PY2 is the performance yardstick for relative differences
� maturity_list is the list with times-to-maturity
� strike_list finally is the list with the different strike prices.

For details on such Monte Carlo simulation analyses and the respective MCS background
information refer to Hilpisch (2015, ch. 10). For a detailed exposition of Monte Carlo methods
implemented in Python see also Hilpisch (2014, ch. 10).

The script srd_simulation_analysis.py used in this section relies on the MCS
function from the previous section. In addition, it uses the following function which imple-
ments two variance reduction techniques, moment matching and antithetic variates:

def randoms(M, I):

''' Function to generate pseudo-random numbers with variance reduction.

Parameters

==========

M: int

number of discrete time intervals

I: int

number of simulated paths

Valuing Volatility Derivatives 143

Returns

=======

rand: Numpy ndarray object

object with pseudo-random numbers

'''

if anti_paths is True:

rand_ = np.random.standard_normal((M + 1, I / 2))

rand = np.concatenate((rand_, -rand_), 1)

else:

rand = np.random.standard_normal((M + 1, I))

if mo_match is True:

rand = rand / np.std(rand)

rand = rand - np.mean(rand)

return rand

The main valuation and testing loop is implemented through the following code. Important
passages are commented inline.

t0 = time.time()

sim_results = pd.DataFrame()

for vr in var_red: # variance reduction techniques

mo_match, anti_paths = vr

for M in steps_list: # number of time steps

for I in paths_list: # number of paths

t1 = time.time()

d1 = datetime.now()

abs_errors = []

rel_errors = []

l = 0.0

errors = 0

name of the simulation setup

name = ('Call_' + str(runs) + '_'

+ str(M) + '_' + str(I / 1000)

+ '_' + str(mo_match)[0] + str(anti_paths)[0] +

'_' + str(PY1 * 100) + '_' + str(PY2 * 100))

np.random.seed(SEED) # RNG seed value

for run in range(runs): # simulation runs

print "\nSimulation Run %d of %d" % (run + 1, runs)

print "---"

print ("Elapsed Time in Minutes %8.2f"

% ((time.time() - t0) / 60))

print " ---"

z = 0

for T in maturity_list: # time-to-maturity

dt = T / M # time interval in year fractions

V = generate_paths(v0, kappa, theta, sigma, T, M, I)

volatility process paths

print "\n Results for Time-to-Maturity %6.3f" % T

144 LISTED VOLATILITY AND VARIANCE DERIVATIVES

print " --"

for K in strike_list: # Strikes

h = np.maximum(V[-1] - K, 0) # inner value matrix

MCS estimator

call_estimate = math.exp(-r * T) * np.sum(h) / I * 100

BSM analytical value

callalue = call_price(v0, kappa, theta, sigma,

zeta, T, r, K) * 100

errors

diff = call_estimate - callalue

rdiff = diff / callalue

abs_errors.append(diff)

rel_errors.append(rdiff * 100)

output

br = " ---"

print "\n Results for Strike %4.2f\n" % K

print (" European Op. Value MCS %8.4f" %

call_estimate)

print (" European Op. Value Closed %8.4f" %

callalue)

print " Valuation Error (abs) %8.4f" % diff

print " Valuation Error (rel) %8.4f" % rdiff

if abs(diff) < PY1 or abs(diff) / callalue < PY2:

print " Accuracy ok!\n" + br

CORR = True

else:

print " Accuracy NOT ok!\n" + br

CORR = False

errors = errors + 1

print " %d Errors, %d Values, %.1f Min." \
% (errors, len(abs_errors),

float((time.time() - t1) / 60))

print(" %d Time Intervals, %d Paths"

% (M, I))

z += 1

l += 1

t2 = time.time()

d2 = datetime.now()

if write is True: # append simulation results

sim_results = write_results(sim_results, name, SEED,

runs, M, I, mo_match, anti_paths,

l, PY1, PY2, errors,

float(errors) / l, np.array(abs_errors),

np.array(rel_errors), t2 - t1, (t2 - t1) / 60, d1, d2)

if write is True:

write/append DataFrame to HDFStore object

write_to_database(sim_results)

Valuing Volatility Derivatives 145

6.6.2 The Storage Funct ions

The script srd_simulation_analysis.py from the previous sub-section generates a
number of results and a lot of printed output during execution. However, one generally wants
to store such results in a structured manner and maybe analyze it later on. To this end, we use
the pandas library which provides convenient data storage and analysis features. In combina-
tion with the PyTables library, simulation results are easily stored on disk and read from disk
later on.

Consider now the Python modulesrd_simulation_results.pywith several func-
tions to store and analyze the data generated through the other script (see sub-section 6.9.3,
srd_simulation_results.py for the complete script). We will go through this script part by part.
Of course, there are some necessary imports and a filename for the database is also specified:

import numpy as np

import pandas as pd

import datetime as dt

import matplotlib.pyplot as plt

filname for HDFStore to save results

filename = "../data/simulation_results.h5"

Having a DataFrame object instantiated (with results already stored or not), the following func-
tion allows us to add a set of valuation results to the DataFrame as an additional row:

def write_results(sim_results, name, SEED, runs, steps, paths, mo_match,

anti_paths, l, PY1, PY2, errors, error_ratio,

abs_errors, rel_errors, t1, t2, d1, d2):

''' Appends simulation results to pandas DataFrame df and returns it.

Parameters

==========

see srd_simulation_analysis.py

Returns

=======

df: pandas DataFrame object

updated results object

'''

results = {

'sim_name': name,

'seed': SEED,

'runs': runs,

'time_steps': steps,

'paths': paths,

'mo_match': mo_match,

146 LISTED VOLATILITY AND VARIANCE DERIVATIVES

'anti_paths': anti_paths,

'opt_prices': l,

'abs_tol': PY1,

'rel_tol': PY2,

'errors': errors,

'error_ratio': error_ratio,

'aval_err': sum(abs_errors) / l,

'abal_err': sum(abs(rel_errors)) / l,

'time_sec': t1,

'time_min': t2,

'time_opt': t1 / l,

'start_date': d1,

'end_date': d2

}

df = pd.concat([sim_results,

pd.DataFrame([results])],

ignore_index=True)

return df

Once all the single simulation results have been added to the DataFrame sim_results,
this should be stored on disk in a HDFStore file object. This is what the following function
accomplishes:

def write_to_database(sim_results, filename=filename):

''' Write pandas DataFrame sim_results to HDFStore object.

Parameters

==========

sim_results: pandas DataFrame object

object with simulation results

filename: string

name of the file for storage

'''

h5 = pd. HDFStore(filename, 'a')

h5.append('sim_results', sim_results, min_itemsize={'values': 30},

ignore_index=True)

h5.close()

6.6.3 The Results

Let us now turn to the analysis of valuation results. To this end, we work with the Python mod-
ule srd_simulation_results.py (see sub-section 6.9.3, srd_simulation_results.py for

Valuing Volatility Derivatives 147

the code). The function print_results() prints simulation results stored in the HDFS-
tore file object with name filename. If not otherwise parametrized, the function prints the
first 50 results stored in the database (if that many exist).

def print_results(filename=filename, idl=0, idh=50):

''' Prints valuation results in detailed form.

Parameters

==========

filename: string

HDFStore with pandas.DataFrame with results

idl: int

start index value

idh: int

stop index value

'''

h5 = pd. HDFStore(filename, 'r')

sim_results = h5['sim_results']

br = "---"

for i in range(idl, min(len(sim_results), idh + 1)):

row = sim_results.iloc[i]

print br

print "Start Calculations %32s" % row['start_date'] + "\n" + br

print "ID Number %32d" % i

print "Name of Simulation %32s" % row['sim_name']

print "Seed Value for RNG %32d" % row['seed']

print "Number of Runs %32d" % row['runs']

print "Time Steps %32d" % row['time_steps']

print "Paths %32d" % row['paths']

print "Moment Matching %32s" % row['mo_match']

print "Antithetic Paths %32s" % row['anti_paths'] + "\n"
print "Option Prices %32d" % row['opt_prices']

print "Absolute Tolerance %32.4f" % row['abs_tol']

print "Relative Tolerance %32.4f" % row['rel_tol']

print "Errors %32d" % row['errors']

print "Error Ratio %32.4f" % row['error_ratio'] + "\n"
print "Aver Val Error %32.4f" % row['aval_err']

print "Aver Abs Val Error %32.4f" % row['abal_err']

print "Time in Seconds %32.4f" % row['time_sec']

print "Time in Minutes %32.4f" % row['time_min']

print "Time per Option %32.4f" % row['time_opt'] + "\n" + br

print "End Calculations %32s" % row['end_date']\
+ "\n" + br + "\n"

print "Total number of rows in table %d" % len(sim_results)

h5.close()

148 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Let us inspect selected valuation results from running the respective Python script
srd_simulation_analysis.py:

--

Start Calculations 2016-01-11 11:02:11.159464

--

ID Number 2

Name of Simulation Call_3_25_75_FF_1.0_1.0

Seed Value for RNG 100000

Number of Runs 3

Time Steps 25

Paths 75000

Moment Matching False

Antithetic Paths False

Option Prices 60

Absolute Tolerance 0.0100

Relative Tolerance 0.0100

Errors 9

Error Ratio 0.1500

Aver Val Error -0.1963

Aver Abs Val Error 0.4773

Time in Seconds 4.1964

Time in Minutes 0.0699

Time per Option 0.0699

--

End Calculations 2016-01-11 11:02:15.355906

--

--

Start Calculations 2016-01-11 11:02:15.362043

--

ID Number 3

Name of Simulation Call_3_25_100_FF_1.0_1.0

Seed Value for RNG 100000

Number of Runs 3

Time Steps 25

Paths 100000

Moment Matching False

Antithetic Paths False

Option Prices 60

Absolute Tolerance 0.0100

Relative Tolerance 0.0100

Errors 5

Valuing Volatility Derivatives 149

Error Ratio 0.0833

Aver Val Error -0.1645

Aver Abs Val Error 0.3589

Time in Seconds 5.7146

Time in Minutes 0.0952

Time per Option 0.0952

--

End Calculations 2016-01-11 11:02:21.076603

--

--

Start Calculations 2016-01-11 11:02:21.082678

--

ID Number 4

Name of Simulation Call_3_25_125_FF_1.0_1.0

Seed Value for RNG 100000

Number of Runs 3

Time Steps 25

Paths 125000

Moment Matching False

Antithetic Paths False

Option Prices 60

Absolute Tolerance 0.0100

Relative Tolerance 0.0100

Errors 2

Error Ratio 0.0333

Aver Val Error 0.0043

Aver Abs Val Error 0.2666

Time in Seconds 6.9533

Time in Minutes 0.1159

Time per Option 0.1159

--

End Calculations 2016-01-11 11:02:28.035962

--

“Time in Minutes” and “Time per Option” values coincide since 60 options are valued per run.
In principle, the results from these three different parametrizations already illustrate

that valuation accuracy is, in general, higher the higher the computational effort (in this
case the number of paths). The number of errors drops from 9 for 75,000 paths to 2 for
125,000 paths.

Finally, the second major function contained in the Python module is
plot_error_ratio() and plots the error ratios against the computational effort,
i.e. (number of simulation paths) x (number of time steps).

150 LISTED VOLATILITY AND VARIANCE DERIVATIVES

def plot_error_ratio(filename=filename):

''' Show error ratio vs. paths * time_steps (i.e.granularity).

Parameters

==========

filename: string

name of file with data to be plotted

'''

h5 = pd. HDFStore(filename, mode='r')

sim_results = h5['sim_results']

x = np.array(sim_results['paths'] * sim_results['time_steps'], dtype='d')

x = x / max(x)

y = sim_results['error_ratio']

plt.plot(x, y, 'bo', label=' error ratio')

rg = np.polyfit(x, y, deg=1)

plt.plot(np.sort(x), np.polyval(rg, np.sort(x)), 'r', label='regression',

linewidth=2)

plt.xlabel('time steps * paths (normalized)')

plt.ylabel('errors / option valuations')

plt.legend()

plt.grid(True)

h5.close()

Let us generate an overview plot with the above function. The graphical output is shown as
Figure 6.5.

In [39]: from srd_simulation_results import plot_error_ratio

In [40]: plot_error_ratio(filename)

<matplotlib.figure.Figure at 0x2ab25e711950>

The linear regression illustrates graphically the statement that the higher the computational
effort the higher in general the accuracy of the MCS valuations. The high variability of the
error ratios stems from the fact that it is not only the computational effort which influences
valuation accuracy. For example, the use of variance reduction techniques also has a significant
influence.

This being said, one might be interested in analyzing the impact of the variance reduction
techniques on valuation accuracy. To this end, pandas provides powerful grouping methods
for the DataFrame object. First, we open the database in which the simulation results are
stored and read them into an in memory object:

Valuing Volatility Derivatives 151

FIGURE 6.5 Error ratios of Monte Carlo valuation vs. computational effort.

In [41]: import pandas as pd

In [42]: h5 = pd.HDFStore(filename, 'r')

In [43]: data = h5['sim_results']

In [44]: h5.close()

In [45]: data.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 96 entries, 0 to 95

Data columns (total 19 columns):

ab_val_err 96 non–null float64

abs_tol 96 non–null float64

anti_paths 96 non–null bool

av_val_err 96 non–null float64

end_date 96 non–null datetime64[ns]

error_ratio 96 non–null float64

errors 96 non–null int64

mo_match 96 non–null bool

opt_prices 96 non–null float64

paths 96 non–null int64

rel_tol 96 non–null float64

152 LISTED VOLATILITY AND VARIANCE DERIVATIVES

runs 96 non–null int64

seed 96 non–null int64

sim_name 96 non–null object

start_date 96 non–null datetime64[ns]

time_min 96 non–null float64

time_opt 96 non–null float64

time_sec 96 non–null float64

time_steps 96 non–null int64

dtypes: bool(2), datetime64[ns](2), float64(9), int64(5), object(1)

memory usage: 13.7+ KB

The simulation results are stored in 96 rows of the pandas DataFrame object. The method
groupby allows analyses of such data sets in “all directions and dimensions.” For example,
one gets the average error ratio depending on the use of moment matching with the following
code:

In [46]: data.groupby(['mo_match']).mean()[['error_ratio']]

Out[46]:

error_ratio

mo_match

False 0.193750

True 0.169097

In the simulations, moment matching obviously reduces the error ratio by slightly more than
2 percentage points from above 19% to less than 17%.

The same analysis can be done with more data columns, both for the grouping and the
output.

In [47]: data.groupby(['mo_match', 'anti_paths']).mean()[['error_ratio', 'errors']]

Out[47]:

error_ratio errors

mo_match anti_paths

False False 0.206944 12.416667

True 0.180556 10.833333

True False 0.159028 9.541667

True 0.179167 10.750000

Here, the results indicate that moment matching alone should be used. Adding antithetic paths
increases the error ratio ceteris paribus.

In similar fashion, the data can be grouped by time steps and paths – by analogy with the
analysis above. Figure 6.6 presents the results.

Valuing Volatility Derivatives 153

FIGURE 6.6 Error ratios of Monte Carlo valuation vs. time per option.

In [48]: df = data.groupby(['time_steps', 'paths']).mean()[['error_ratio',

'time_opt']]

In [49]: df.plot(x='time_opt', y='error_ratio', style='bo');

In [50]: plt.xlabel('time per option valuation');

In [51]: plt.ylabel('error ratio');

As expected, the general rule that accuracy increases with increasing computational effort is
again supported by this specific analysis. Of course, other analyses can be done with the data
generated and stored on disk.

6.7 MODEL CALIBRATION

Previous sections implement a theoretical valuation approach in that a parametric model is
given and parameter values are simply assumed. However, any realistic valuation of volatility
options has to incorporate at least some information from the market itself. This is generally
done by taking the quotes of liquidly traded vanilla options as input for a so-called model

154 LISTED VOLATILITY AND VARIANCE DERIVATIVES

calibration. During the calibration of a financial model, parameters are determined for that
model which best replicate the observed option quotes. These parameters are in turn used to
value other, maybe more exotic, derivatives by means of numerical methods such as Monte
Carlo simulation. Such a procedure is often termed a market-based valuation approach.

This section illustrates how to calibrate the financial model of Grünbichler and Longstaff
(1996) to option quotes for European volatility calls traded at Eurex. In the following, the
semi-analytical formula as introduced in section 6.4, The Option Pricing Formula is used to
accomplish the model calibration.

6.7.1 The Opt ion Quotes

The remainder of this section will work with option quotes of VSTOXX call options traded at
Eurex which are all of European type. The data is as of March 31, 2014 and contains quotes
for the options with maturities for each month from April 2014 to November 2014. Let us have
a look at the data.

In [52]: import pandas as pd

In [53]: path = './source/data/'

In [54]: h5 = pd.HDFStore(path + 'vstoxx_option_quotes.h5', 'r')

In [55]: option_quotes = h5['option_quotes']

In [56]: option_quotes.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 98 entries, 46219 to 46365

Data columns (total 8 columns):

DATE 98 non–null datetime64[ns]

EXP_YEAR 98 non–null int64

EXP_MONTH 98 non–null int64

TYPE 98 non–null object

STRIKE 98 non–null float64

PRICE 98 non–null float64

MATURITY 98 non–null datetime64[ns]

TTM 98 non–null float64

dtypes: datetime64[ns](2), float64(3), int64(2), object(1)

memory usage: 6.9+ KB

In [57]: option_quotes.iloc[25: 35]

Out[57]:

DATE EXP_YEAR EXP_MONTH TYPE STRIKE PRICE MATURITY TTM

46244 2014-03-31 2014 5 C 26.0 0.60 2014-05-16 0.126

46245 2014-03-31 2014 5 C 27.0 0.50 2014-05-16 0.126

46246 2014-03-31 2014 5 C 28.0 0.45 2014-05-16 0.126

46247 2014-03-31 2014 5 C 29.0 0.40 2014-05-16 0.126

Valuing Volatility Derivatives 155

46248 2014-03-31 2014 5 C 30.0 0.35 2014-05-16 0.126

46249 2014-03-31 2014 5 C 32.5 0.25 2014-05-16 0.126

46250 2014-03-31 2014 5 C 35.0 0.20 2014-05-16 0.126

46251 2014-03-31 2014 5 C 37.5 0.15 2014-05-16 0.126

46252 2014-03-31 2014 5 C 40.0 0.10 2014-05-16 0.126

46253 2014-03-31 2014 5 C 42.5 0.10 2014-05-16 0.126

As you can see, the data set comprises a total of 98 option quotes. Note that option quotes for
Eurex volatility options have tick sizes of 5 cents, i.e. 0.05 EUR. A detailed overview of the
terms of these options can be found in chapter 8, Terms of the VSTOXX and its Derivatives. In
what follows, we assume that each option is written on a single unit of the underlying, i.e. 1
point of the VSTOXX index translates into 1 EUR.

6.7.2 The Cal ibrat ion Procedure

In simple terms, the problem of calibration is to find parameters for an option model such
that observed market quotes of liquidly traded plain vanilla options are replicated as closely
as possible. To this end, one defines an error function that is to be minimized. Such a function
could be the Mean Squared Absolute Error (MSAE). The task is then to solve the problem

min
𝜅,𝜃,𝜎

1
N

N∑
n=1

(
C∗

n − CGL96
n (𝜅, 𝜃, 𝜎)

)2

with the C∗
n being the market or input prices and the CGL96

n being the model or output prices
for the options n = 1,… , N.

For some constellations, it might be more appropriate to minimize the Mean Squared
Relative Error (MSRE):

min
𝜅,𝜃,𝜎

1
N

N∑
n=1

(
C∗

n − CGL96
n (𝜅, 𝜃, 𝜎)

C∗
n

)2

The Python script (see sub-section 6.9.4, srd_model_calibration.py) that implements a proce-
dure to calibrate the Grünbichler-Longstaff option pricing model is explained in the following
step-by-step procedure.

First, some imports and parameter specifications.

import numpy as np

import pandas as pd

from srd_functions import call_price

import scipy.optimize as sco

import matplotlib.pyplot as plt

path = './source/data/'

Fixed Parameters

156 LISTED VOLATILITY AND VARIANCE DERIVATIVES

v0 = 17.6639 # VSTOXX index on 31. March 2014

r = 0.01 # risk-less short rate

zeta = 0. # volatility risk premium factor

The function read_select_quotes() reads and selects option quotes for the calibration.

def read_select_quotes(path=path, tol=0.2):

''' Selects and read options quotes.

Parameters

==========

path: string

path to file with option quotes

Returns

=======

option_data: pandas DataFrame object

option data

'''

h5 = pd.HDFStore(path + 'vstoxx_march_2014.h5', 'r')

read option data from file and close it

option_data = h5['vstoxx_options']

h5.close()

select relevant date for call option quotes

option_data = option_data[(option_data.DATE == '2014-3-31')

& (option_data.TYPE == 'C')]

calculate time-to-maturity in year fractions

option_data['TTM'] = (option_data.MATURITY - option_data.DATE).apply (

lambda x: x / np.timedelta64(1, 'D') / 365.)

only those options close enough to the ATM level

option_data = option_data[(option_data.STRIKE > (1 - tol) * v0)

& (option_data.STRIKE < (1 + tol) * v0)]

return option_data

However, the core functions of the calibration script are the following. On the one hand,
valuation_function().

def valuation_function(p0):

''' Valuation function for set of strike prices

Parameters

==========

p0: list

set of model parameters

Valuing Volatility Derivatives 157

Returns

=======

call_prices: NumPy ndarray object

array of call prices

'''

kappa, theta, sigma = p0

call_prices = []

for strike in strikes:

call_prices.append(call_price(v0, kappa, theta,

sigma, zeta, ttm, r, strike))

call_prices = np.array(call_prices)

return call_prices

On the other hand, error_function().

def error_function(p0):

''' Error function for model calibration.

Parameters

==========

p0: tuple

set of model parameters

Returns

=======

MSE: float

mean squared (relative/absolute) error

'''

global i

call_prices = valuation_function(p0)

kappa, theta, sigma = p0

pen = 0.

if 2 * kappa * theta < sigma ** 2:

pen = 1000.0

if kappa < 0 or theta < 0 or sigma < 0:

pen = 1000.0

if relative is True:

MSE = (np.sum(((call_prices - call_quotes) / call_quotes) ** 2)

/ len(call_quotes) + pen)

else:

MSE = np.sum((call_prices - call_quotes) ** 2) / len(call_quotes) + pen

if i == 0:

print ("{:>6s}{:>6s}{:>6s}".format('kappa', 'theta', 'sigma')

+ "{:>12s}".format('MSE'))

print intermediate results: every 100th iteration

if i % 100 == 0:

158 LISTED VOLATILITY AND VARIANCE DERIVATIVES

print "{:6.3f}{:6.3f}{:6.3f}".format(*p0) + "{:>12.5f}". format(MSE)

i += 1

return MSE

Function valuation_function() implements a valuation for the array of strikes under
consideration and the parameter values provided. Function error_function() calculates
either the MSAE or the MSRE – given the array of strikes and the parameter vector p0. Some
penalties are also added depending on the single parameter values or their constellation. For
details and a number of similar examples, refer to the book Hilpisch (2015, ch. 11).

Then standard functions from the scipy.optimize library (see Hilpisch (2014),
ch. 9) are used to implement both a global (i.e. via the brute() function) and a
local optimization (i.e. via the fmin() function). This is all wrapped into the function
model_calibration().

def model_calibration(option_data, rel=False, mat='2014-07-18'):

''' Function for global and local model calibration.

Parameters

==========

option_data: pandas DataFrame object

option quotes to be used

relative: boolean

relative or absolute MSE

maturity: string

maturity of option quotes to calibrate to

Returns

=======

opt: tuple

optimal parameter values

'''

global relative # if True: MSRE is used, if False: MSAE

global strikes

global call_quotes

global ttm

global i

relative = rel

only option quotes for a single maturity

option_quotes = option_data[option_data.MATURITY == mat]

time-to-maturity from the data set

ttm = option_quotes.iloc[0, -1]

transform strike column and price column in ndarray object

strikes = option_quotes['STRIKE'].values

Valuing Volatility Derivatives 159

call_quotes = option_quotes['PRICE'].values

global optimization

i = 0 # counter for calibration iterations

p0 = sco.brute(error_function, ((5.0, 20.1, 1.0), (10., 30.1, 1.25),

(1.0, 9.1, 2.0)), finish=None)

local optimization

i = 0

opt = sco.fmin(error_function, p0, xtol=0.0000001, ftol=0.0000001,

maxiter=1000, maxfun=1500)

return opt

Finally, the results are visualized by plotting the model values against the market values
and providing the absolute differences separately. This is accomplished by the function
plot_calibration_results().

def plot_calibration_results(opt):

''' Function to plot market quotes vs. model prices.

Parameters

==========

opt: list

optimal parameters from calibration

'''

callalues = valuation_function(opt)

diffs = callalues - call_quotes

plt.figure()

plt.subplot(211)

plt.plot(strikes, call_quotes, label='market quotes')

plt.plot(strikes, callalues, 'ro', label='model prices')

plt.ylabel('option values')

plt.grid(True)

plt.legend()

plt.axis([min(strikes) - 0.5, max(strikes) + 0.5,

0.0, max(call_quotes) * 1.1])

plt.subplot(212)

wi = 0.3

plt.bar(strikes - wi / 2, diffs, width=wi)

plt.grid(True)

plt.xlabel('strike price')

plt.ylabel('difference')

plt.axis([min(strikes) - 0.5, max(strikes) + 0.5,

min(diffs) * 1.1, max(diffs) * 1.1])

plt.tight_layout()

160 LISTED VOLATILITY AND VARIANCE DERIVATIVES

6.7.3 The Cal ibrat ion Results

We start with a calibration run for the option quotes with shorter maturity and using the MSAE
as a yardstick.

In [58]: from srd_model_calibration import *

In [59]: option_data = read_select_quotes()

In [60]: %time opt = model_calibration(option_data, rel=False, mat=

'2014-05-16')

kappa theta sigma MSE

5.000 10.000 1.000 7.78606

6.000 12.500 9.000 0.23173

7.000 16.250 9.000 0.40860

8.000 20.000 9.000 2.54160

9.000 23.750 9.000 9.70521

10.000 27.500 9.000 26.90758

12.000 10.000 9.000 3.75104

13.000 13.750 9.000 1.50070

14.000 17.500 9.000 0.06953

15.000 21.250 9.000 3.39340

16.000 25.000 9.000 18.12298

17.000 28.750 9.000 51.74883

19.000 11.250 9.000 5.14886

20.000 15.000 9.000 1.96050

kappa theta sigma MSE

15.000 18.750 7.000 0.01356

16.381 19.112 6.613 0.00834

27.671 18.969 8.513 0.00831

33.461 18.950 9.343 0.00831

33.457 18.950 9.342 0.00831

Optimization terminated successfully.

Current function value: 0.008311

Iterations: 247

Function evaluations: 450

CPU times: user 5.53 s, sys: 0 ns, total: 5.53 s

Wall time: 5.54 s

Figure 6.7 shows the calibration results.

In [61]: plot_calibration_results(opt)

<matplotlib.figure.Figure at 0x2ab247cec750>

Valuing Volatility Derivatives 161

FIGURE 6.7 Calibration of option pricing model to option quotes for May 2014 maturity with
MSAE.

Now the calibration to the option quotes with a longer time-to-maturity and using the MSRE
as a yardstick.

In [62]: %time opt = model_calibration(option_data, rel=True, mat='2014-07-18')

kappa theta sigma MSE

5.000 10.000 1.000 1.00000

6.000 12.500 9.000 0.12866

7.000 16.250 9.000 0.01167

8.000 20.000 9.000 0.18546

9.000 23.750 9.000 1.20473

10.000 27.500 9.000 3.86826

12.000 10.000 9.000 0.73475

13.000 13.750 9.000 0.41208

14.000 17.500 9.000 0.05791

15.000 21.250 9.000 0.15684

16.000 25.000 9.000 1.57671

17.000 28.750 9.000 5.26237

19.000 11.250 9.000 0.81013

20.000 15.000 9.000 0.45062

kappa theta sigma MSE

5.000 20.000 5.000 0.00051

5.848 19.927 5.295 0.00050

162 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 6.8 Calibration of option pricing model to option quotes for July 2014 maturity with
MSRE.

11.500 19.608 7.260 0.00049

12.731 19.585 7.638 0.00049

12.732 19.585 7.638 0.00049

Optimization terminated successfully.

Current function value: 0.000495

Iterations: 252

Function evaluations: 450

CPU times: user 5.6 s, sys: 0 ns, total: 5.6 s

Wall time: 5.61 s

The results of this calibration run are shown in Figure 6.8.

In [63]: plot_calibration_results(opt)

<matplotlib.figure.Figure at 0x2ab271446550>

Neither of the two fits is satisfactory for such small sets of option prices. The differences are
often higher than the tick size of 5 cents. Therefore, this model obviously does not paint too
realistic a picture of the real world. This may be due to the underlying, i.e. the VSTOXX
volatility index, exhibiting more and/or other properties than the ones captured in the model

Valuing Volatility Derivatives 163

of Grünbichler and Longstaff (1996). For example, a well documented stylized fact is that time
series of volatility indexes, like the VSTOXX, exhibit (positive) jumps of significant size and
with significant probability. Something that is, for example, not captured in the pricing model
used in this chapter.

6.8 CONCLUSIONS

Volatility derivatives, like futures and options on a volatility index, and their arbitrage-free
valuation are the focus of this chapter. The model of Grünbichler and Longstaff (1996) is
introduced since it serves pretty well as a benchmark case – due to its simplicity – for volatil-
ity modeling and volatility derivatives valuation. The model uses a square-root diffusion or
CIR process to describe the evolution of volatility (indexes) over time. Futures and European
call option pricing formulas are presented. Based on an exact discretization scheme, Monte
Carlo simulation is described as an alternative numerical pricing method. In addition, Python
code to implement automated Monte Carlo simulation studies is provided and used for such
a study. Finally, the GL96 model is calibrated to market quotes for European call options on
the VSTOXX volatility index. The results illustrate that the model might not be rich enough
to account for market realities.

6.9 PYTHON SCRIPTS

6.9.1 srd funct ions.py

#

Module with functions for

Grünbichler and Longstaff (1996) model

#

(c) Dr. Yves J. Hilpisch

Listed Volatility and Variance Derivatives

#

import math

import numpy as np

import scipy.stats as scs

def futures_price(v0, kappa, theta, zeta, T):

''' Futures pricing formula in GL96 model.

Parameters

==========

v0: float (positive)

current volatility level

kappa: float (positive)

mean-reversion factor

theta: float (positive)

long-run mean of volatility

164 LISTED VOLATILITY AND VARIANCE DERIVATIVES

zeta: float (positive)

volatility risk premium

T: float (positive)

time-to-maturity

Returns

=======

future: float

price of a future

'''

alpha = kappa * theta

beta = kappa + zeta

future = (alpha / beta * (1 - math.exp(-beta * T))

+ math.exp(-beta * T) * v0)

return future

def cx(K, gamma, nu, lamb):

''' Complementary distribution function of non-central chi-squared density.

Parameters

==========

K: float (positive)

strike price

gamma: float (positive)

as defined in the GL96 model

nu: float (positive)

degrees of freedom

lamb: float (positive)

non-centrality parameter

Returns

=======

complementary distribution of nc cs density

'''

return 1 - scs.ncx2.cdf(gamma * K, nu, lamb)

def call_price(v0, kappa, theta, sigma, zeta, T, r, K):

''' Call option pricing formula in GL96 Model

Parameters

==========

v0: float (positive)

current volatility level

kappa: float (positive)

mean-reversion factor

theta: float (positive)

long-run mean of volatility

sigma: float (positive)

volatility of volatility

Valuing Volatility Derivatives 165

zeta: float (positive)

volatility risk premium

T: float (positive)

time-to-maturity

r: float (positive)

risk-free short rate

K: float(positive)

strike price of the option

Returns

=======

call: float

present value of European call option

'''

D = math.exp(-r * T) # discount factor

alpha = kappa * theta

beta = kappa + zeta

gamma = 4 * beta / (sigma ** 2 * (1 - math.exp(-beta * T)))

nu = 4 * alpha / sigma ** 2

lamb = gamma * math.exp(-beta * T) * v0

the pricing formula

call = (D * math.exp(-beta * T) * v0 * cx(K, gamma, nu + 4, lamb)

+ D * (alpha / beta) * (1 - math.exp(-beta * T))

* cx(K, gamma, nu + 2, lamb)

- D * K * cx(K, gamma, nu, lamb))

return call

def generate_paths(x0, kappa, theta, sigma, T, M, I):

''' Simulation of square-root diffusion with exact discretization

Parameters

==========

x0: float (positive)

starting value

kappa: float (positive)

mean-reversion factor

theta: float (positive)

long-run mean

sigma: float (positive)

volatility (of volatility)

T: float (positive)

time-to-maturity

M: int

number of time intervals

I: int

number of simulation paths

166 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Returns

=======

x: NumPy ndarray object

simulated paths

'''

dt = float(T) / M

x = np.zeros((M + 1, I), dtype=np.float)

x[0, :] = x0

matrix filled with standard normal distributed rv

ran = np.random.standard_normal((M + 1, I))

d = 4 * kappa * theta / sigma ** 2

constant factor in the integrated process of x

c = (sigma ** 2 * (1 - math.exp(-kappa * dt))) / (4 * kappa)

if d > 1:

for t in range(1, M + 1):

non-centrality parameter

l = x[t - 1, :] * math.exp(-kappa * dt) / c

matrix with chi-squared distributed rv

chi = np.random.chisquare(d - 1, I)

x[t, :] = c * ((ran[t] + np.sqrt(l)) ** 2 + chi)

else:

for t in range(1, M + 1):

l = x[t - 1, :] * math.exp(-kappa * dt) / c

N = np.random.poisson(l / 2, I)

chi = np.random.chisquare(d + 2 * N, I)

x[t, :] = c * chi

return x

def call_estimator(v0, kappa, theta, sigma, T, r, K, M, I):

''' Estimation of European call option price in GL96 Model

via Monte Carlo simulation

Parameters

==========

v0: float (positive)

current volatility level

kappa: float (positive)

mean-reversion factor

theta: float (positive)

long-run mean of volatility

sigma: float (positive)

volatility of volatility

T: float (positive)

time-to-maturity

r: float (positive)

risk-free short rate

K: float (positive)

strike price of the option

Valuing Volatility Derivatives 167

M: int

number of time intervals

I: int

number of simulation paths

Returns

=======

callvalue: float

MCS estimator for European call option

'''

V = generate_paths(v0, kappa, theta, sigma, T, M, I)

callvalue = math.exp(-r * T) * np.sum(np.maximum(V[-1] - K, 0)) / I

return callvalue

6.9.2 srd simulat ion analys is .py

#

Valuation of European volatility options

by Monte Carlo simulation in

Grünbichler and Longstaff (1996) model

-- analysis of valuation results

#

(c) Dr. Yves J. Hilpisch

Listed Volatility and Variance Derivatives

#

import time

import math

import numpy as np

from datetime import datetime

from srd_functions import generate_paths, call_price

from srd_simulation_results import *

Model Parameters

v0 = 20.0 # initial volatility

kappa = 3.0 # speed of mean reversion

theta = 20.0 # long-term volatility

sigma = 3.2 # standard deviation coefficient

zeta = 0.0 # factor of the expected volatility risk premium

r = 0.01 # risk-free short rate

General Simulation Parameters

write = True

var_red = [(False, False), (False, True), (True, False), (True, True)]

1st = mo_match -- random number correction (std + mean + drift)

2nd = anti_paths -- antithetic paths for variance reduction

number of time steps

steps_list = [25, 50, 75, 100]

168 LISTED VOLATILITY AND VARIANCE DERIVATIVES

number of paths per valuation

paths_list = [2500, 50000, 75000, 100000, 125000, 150000]

SEED = 100000 # seed value

runs = 3 # number of simulation runs

PY1 = 0.010 # performance yardstick 1: abs. error in currency units

PY2 = 0.010 # performance yardstick 2: rel. error in decimals

maturity_list = [1.0 / 12 , 1.0 / 4, 1.0 / 2, 1.0] # maturity list

strike_list = [15.0, 17.5, 20.0, 22.5, 25.0] # strike list

def generate_paths(x0, kappa, theta, sigma, T, M, I):

''' Simulation of square-root diffusion with exact discretization

Parameters

==========

x0: float (positive)

starting value

kappa: float (positive)

mean-reversion factor

theta: float (positive)

long-run mean

sigma: float (positive)

volatility (of volatility)

T: float (positive)

time-to-maturity

M: int

number of time intervals

I: int

number of simulation paths

Returns

=======

x: NumPy ndarray object

simulated paths

'''

dt = float(T) / M

x = np.zeros((M + 1, I), dtype=np.float)

x[0, :] = x0

matrix filled with standard normally distributed rv

ran = randoms(M, I)

d = 4 * kappa * theta / sigma ** 2

constant factor in the integrated process of x

c = (sigma ** 2 * (1 - math.exp(-kappa * dt))) / (4 * kappa)

if d > 1:

for t in range(1, M + 1):

non-centrality parameter

l = x[t - 1, :] * math.exp(-kappa * dt) / c

matrix with chi-squared distributed rv

chi = np.random.chisquare(d - 1, I)

x[t, :] = c * ((ran[t] + np.sqrt(l)) ** 2 + chi)

Valuing Volatility Derivatives 169

else:

for t in range(1, M + 1):

l = x[t - 1, :] * math.exp(-kappa * dt) / c

N = np.random.poisson(l / 2, I)

chi = np.random.chisquare(d + 2 * N, I)

x[t, :] = c * chi

return x

def randoms(M, I):

''' Function to generate pseudo-random numbers with variance reduction.

Parameters

==========

M: int

number of discrete time intervals

I: int

number of simulated paths

Returns

=======

rand: Numpy ndarray object

object with pseudo-random numbers

'''

if anti_paths is True:

rand_ = np.random.standard_normal((M + 1, I / 2))

rand = np.concatenate((rand_, -rand_), 1)

else:

rand = np.random.standard_normal((M + 1, I))

if mo_match is True:

rand = rand / np.std(rand)

rand = rand - np.mean(rand)

return rand

t0 = time.time()

sim_results = pd.DataFrame()

for vr in var_red: # variance reduction techniques

mo_match, anti_paths = vr

for M in steps_list: # number of time steps

for I in paths_list: # number of paths

t1 = time.time()

d1 = datetime.now()

abs_errors = []

rel_errors = []

l = 0.0

errors = 0

name of the simulation setup

name = ('Call_' + str(runs) + '_'

+ str(M) + '_' + str(I / 1000)

170 LISTED VOLATILITY AND VARIANCE DERIVATIVES

+ '_' + str(mo_match)[0] + str(anti_paths)[0] +

'_' + str(PY1 * 100) + '-' + str(PY2 * 100))

np.random.seed(SEED) # RNG seed value

for run in range(runs): # simulation runs

print "\nSimulation Run %d of %d" % (run + 1, runs)

print "---"

print ("Elapsed Time in Minutes %8.2f"

% ((time.time() - t0) / 60))

print "---"

z = 0

for T in maturity_list: # time-to-maturity

dt = T / M # time interval in year fractions

V = generate_paths(v0, kappa, theta, sigma, T, M, I)

volatility process paths

print "\n Results for Time-to-Maturity %6.3f" % T

print "---"

for K in strike_list: # Strikes

h = np.maximum(V[-1] - K, 0) # inner value matrix

MCS estimator

call_estimate = math.exp(-r * T) * np.sum(h) / I * 100

BSM analytical value

callalue = call_price(v0, kappa, theta, sigma,

zeta, T, r, K) * 100

errors

diff = call_estimate - callalue

rdiff = diff / callalue

abs_errors.append(diff)

rel_errors.append(rdiff * 100)

output

br = " --"

print "\n Results for Strike %4.2f\n" % K

print (" European Op. Value MCS %8.4f" %

call_estimate)

print (" European Op. Value Closed %8.4f" %

callalue)

print " Valuation Error (abs) %8.4f" % diff

print " Valuation Error (rel) %8.4f" % rdiff

if abs(diff) < PY1 or abs(diff) / callalue < PY2:

print " Accuracy ok!\n" + br

CORR = True

else:

print " Accuracy NOT ok!\n" + br

CORR = False

errors = errors + 1

print " %d Errors, %d Values, %.1f Min. " \
% (errors, len(abs_errors),

float((time.time() - t1) / 60))

print (" %d Time Intervals, %d Paths"

% (M, I))

Valuing Volatility Derivatives 171

z = z + 1

l = l + 1

t2 = time.time()

d2 = datetime.now()

if write is True: # append simulation results

sim_results = write_results(sim_results, name, SEED,

runs, M, I, mo_match, anti_paths,

l, PY1, PY2, errors,

float(errors) / l, np.array(abs_errors),

np.array(rel_errors), t2 - t1, (t2 - t1) / 60, d1, d2)

if write is True:

write/append DataFrame to HDFStore object

write_to_database(sim_results)

6.9.3 srd simulat ion results .py

#

Valuation of European volatility options

by Monte Carlo simulation in

Grünbichler and Longstaff (1996) model

-- Creating a database for simulation results

with pandas and PyTables

#

(c) Dr. Yves J. Hilpisch

Listed Volatility and Variance Derivatives

#

import numpy as np

import pandas as pd

import datetime as dt

import matplotlib.pyplot as plt

filname for HDFStore to save results

filename = "../data/simulation_results.h5"

def write_results(sim_results, name, SEED, runs, steps, paths, mo_match,

anti_paths, l, PY1, PY2, errors, error_ratio,

abs_errors, rel_errors, t1, t2, d1, d2):

''' Appends simulation results to pandas DataFrame df and returns it.

Parameters

==========

see srd_simulation_analysis.py

Returns

=======

172 LISTED VOLATILITY AND VARIANCE DERIVATIVES

df: pandas DataFrame object

updated results object

'''

results = {

'sim_name': name,

'seed': SEED,

'runs': runs,

'time_steps': steps,

'paths': paths,

'mo_match': mo_match,

'anti_paths': anti_paths,

'opt_prices': l,

'abs_tol': PY1,

'rel_tol': PY2,

'errors': errors,

'error_ratio': error_ratio,

'aval_err': sum(abs_errors) / l,

'abal_err': sum(abs(rel_errors)) / l,

'time_sec': t1,

'time_min': t2,

'time_opt': t1 / l,

'start_date': d1,

'end_date': d2

}

df = pd.concat([sim_results,

pd.DataFrame([results])],

ignore_index=True)

return df

def write_to_database(sim_results, filename=filename):

''' Write pandas DataFrame sim_results to HDFStore object.

Parameters

==========

sim_results: pandas DataFrame object

object with simulation results

filename: string

name of the file for storage

'''

h5 = pd. HDFStore(filename, 'a')

h5.append('sim_results', sim_results, min_itemsize={'values': 30},

ignore_index=True)

h5.close()

def print_results(filename=filename, idl=0, idh=50):

''' Prints valuation results in detailed form.

Parameters

==========

Valuing Volatility Derivatives 173

filename: string

HDFStore with pandas.DataFrame with results

idl: int

start index value

idh: int

stop index value

'''

h5 = pd. HDFStore(filename, 'r')

sim_results = h5['sim_results']

br = "---"

for i in range(idl, min(len(sim_results), idh + 1)):

row = sim_results.iloc[i]

print br

print "Start Calculations %32s" % row['start_date'] + "\n" + br

print "ID Number %32d" % i

print "Name of Simulation %32s" % row['sim_name']

print "Seed Value for RNG %32d" % row['seed']

print "Number of Runs %32d" % row['runs']

print "Time Steps %32d" % row['time_steps']

print "Paths %32d" % row['paths']

print "Moment Matching %32s" % row['mo_match']

print "Antithetic Paths %32s" % row['anti_paths'] + "\n"
print "Option Prices %32d" % row['opt_prices']

print "Absolute Tolerance %32.4f" % row['abs_tol']

print "Relative Tolerance %32.4f" % row['rel_tol']

print "Errors %32d" % row['errors']

print "Error Ratio %32.4f" % row['error_ratio'] + "\n"
print "Aver Val Error %32.4f" % row['aval_err']

print "Aver Abs Val Error %32.4f" % row['abal_err']

print "Time in Seconds %32.4f" % row['time_sec']

print "Time in Minutes %32.4f" % row['time_min']

print "Time per Option %32.4f" % row['time_opt'] + "\n" + br

print "End Calculations %32s" % row['end_date'] \
+ "\n" + br + "\n"

print "Total number of rows in table %d" % len(sim_results)

h5.close()

def plot_error_ratio(filename=filename):

''' Show error ratio vs. paths * time_steps (i.e. granularity).

Parameters

==========

filename: string

name of file with data to be plotted

'''

h5 = pd. HDFStore(filename, mode='r')

sim_results = h5['sim_results']

x = np.array(sim_results['paths'] * sim_results['time_steps'], dtype='d')

x = x / max(x)

174 LISTED VOLATILITY AND VARIANCE DERIVATIVES

y = sim_results['error_ratio']

plt.plot(x, y, 'bo', label='error ratio')

rg = np.polyfit(x, y, deg=1)

plt.plot(np.sort (x), np.polyval(rg, np.sort(x)), 'r', label='regression',

linewidth=2)

plt.xlabel('time steps * paths (normalized)')

plt.ylabel('errors / option valuations')

plt.legend()

plt.grid(True)

h5.close()

6.9.4 srd model ca l ibrat ion.py

#

Calibration of Grünbichler and Longstaff (1996)

square-root diffusion model to

VSTOXX call options traded at Eurex

Data as of 31. March 2014

All data from www.eurexchange.com

#

(c) Dr. Yves J. Hilpisch

Listed Volatility and Variance Derivatives

#

import numpy as np

import pandas as pd

from srd_functions import call_price

import scipy.optimize as sco

import matplotlib.pyplot as plt

path = './source/data/'

Fixed Parameters

v0 = 17.6639 # VSTOXX index on 31. March 2014

r = 0.01 # risk-less short rate

zeta = 0. # volatility risk premium factor

def read_select_quotes(path=path, tol=0.2):

''' Selects and read options quotes.

Parameters

==========

path: string

path to file with option quotes

Returns

=======

option_data: pandas DataFrame object

let &hbox {char '046}www.eurexchange.com
www.eurexchange.com

Valuing Volatility Derivatives 175

option data

'''

h5 = pd.HDFStore(path + 'vstoxx_march_2014.h5', 'r')

read option data from file and close it

option_data = h5['vstoxx_options']

h5.close()

select relevant date for call option quotes

option_data = option_data[(option_data.DATE == '2014-3-31')

& (option_data.TYPE == 'C')]

calculate time-to-maturity in year fractions

option_data['TTM'] = (option_data.MATURITY - option_data.DATE).apply(

lambda x: x / np.timedelta64(1, 'D') / 365.)

only those options close enough to the ATM level

option_data = option_data[(option_data.STRIKE > (1 - tol) * v0)

& (option_data.STRIKE < (1 + tol) * v0)]

return option_data

def valuation_function(p0):

''' Valuation function for set of strike prices

Parameters

==========

p0: list

set of model parameters

Returns

=======

call_prices: NumPy ndarray object

array of call prices

'''

kappa, theta, sigma = p0

call_prices = []

for strike in strikes:

call_prices.append(call_price(v0, kappa, theta,

sigma, zeta, ttm, r, strike))

call_prices = np.array(call_prices)

return call_prices

def error_function(p0):

''' Error function for model calibration.

Parameters

==========

p0: tuple

set of model parameters

Returns

=======

176 LISTED VOLATILITY AND VARIANCE DERIVATIVES

MSE: float

mean squared (relative/absolute) error

'''

global i

call_prices = valuation_function(p0)

kappa, theta, sigma = p0

pen = 0.

if 2 * kappa * theta < sigma ** 2:

pen = 1000.0

if kappa < 0 or theta < 0 or sigma < 0:

pen = 1000.0

if relative is True:

MSE = (np.sum(((call_prices - call_quotes) / call_quotes) ** 2)

/ len(call_quotes) + pen)

else:

MSE = np.sum((call_prices - call_quotes) ** 2) / len(call_quotes) + pen

if i == 0:

print ("{:>6s}{:>6s}{:>6s}".format('kappa', 'theta', 'sigma')

+ "{:>12s}".format('MSE'))

print intermediate results: every 100th iteration

if i % 100 == 0:

print "{:6.3f} {:6.3f} {:6.3f}".format(*p0) + "{:>12.5f}".format(MSE)

i += 1

return MSE

def model_calibration(option_data, rel=False, mat=' 2014-07-18'):

''' Function for global and local model calibration.

Parameters

==========

option_data: pandas DataFrame object

option quotes to be used

relative: boolean

relative or absolute MSE

maturity: string

maturity of option quotes to calibrate to

Returns

=======

opt: tuple

optimal parameter values

'''

global relative # if True: MSRE is used, if False: MSAE

global strikes

global call_quotes

global ttm

Valuing Volatility Derivatives 177

global i

relative = rel

only option quotes for a single maturity

option_quotes = option_data[option_data.MATURITY == mat]

time-to-maturity from the data set

ttm = option_quotes.iloc[0, -1]

transform strike column and price column in ndarray object

strikes = option_quotes['STRIKE'].values

call_quotes = option_quotes['PRICE'].values

global optimization

i = 0 # counter for calibration iterations

p0 = sco.brute(error_function, ((5.0, 20.1, 1.0), (10., 30.1, 1.25),

(1.0, 9.1, 2.0)), finish=None)

local optimization

i = 0

opt = sco.fmin(error_function, p0, xtol=0.0000001, ftol=0.0000001,

maxiter=1000, maxfun=1500)

return opt

def plot_calibration_results(opt):

''' Function to plot market quotes vs. model prices.

Parameters

==========

opt: list

optimal parameters from calibration

'''

callalues = valuation_function(opt)

diffs = callalues - call_quotes

plt.figure()

plt.subplot(211)

plt.plot(strikes, call_quotes, label='market quotes')

plt.plot(strikes, callalues, 'ro', labe='model prices')

plt.ylabel('option values')

plt.grid(True)

plt.legend()

plt.axis([min(strikes) - 0.5, max(strikes) + 0.5,

0.0, max(call_quotes) * 1.1])

plt.subplot(212)

wi = 0.3

plt.bar(strikes - wi / 2, diffs, width=wi)

plt.grid(True)

plt.xlabel('strike price')

178 LISTED VOLATILITY AND VARIANCE DERIVATIVES

plt.ylabel('difference')

plt.axis([min(strikes) - 0.5, max(strikes) + 0.5,

min(diffs) * 1.1, max(diffs) * 1.1])

plt.tight_layout()

if __name__ == '__main__':

option_data = read_select_quotes()

opt = model_calibration(option_data=option_data)

CHAPTER 7
Advanced Modeling of the

VSTOXX Index

7.1 INTRODUCTION

This chapter is somewhat different in style compared to the other chapters about the VSTOXX
volatility index and related derivatives. It introduces another parsimonious model, which is
called square-root jump diffusion (SRJD) to model the VSTOXX volatility index. This model,
which is essentially an extension of the Grünbichler and Longstaff (1996) model as analyzed
in the previous chapter, is capable of reproducing prices of European options written on the
VSTOXX reasonably well.

Two major enhancements characterize the SRJD model:

� term structure: it allows us to capture the term structure as observed in the prices of
futures on the VSTOXX index

� jump component: including a jump component allows better replication of option prices
in the short term

Adding these two components makes a market-consistent calibration of the model to a com-
prehensive set of European options on the VSTOXX index possible. For similar analyses and
modeling approaches including jumps for the volatility index refer, for example, to Psychoyios
(2005), Sepp (2008) or Psychoyios et al. (2010). For empirical evidence with regard to jumps
in volatility see Todorov and Tauchen (2011).

7.2 MARKET QUOTES FOR CALL OPTIONS

Before we introduce the model, let us set the stage by revisiting market quotes for European
call options written on the VSTOXX volatility index. First, we import the data:

In [1]: import pandas as pd

In [2]: path = './source/data/'

In [3]: h5 = pd. HDFStore(path + 'vstoxx_data_31032014.h5', 'r')

179

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

180 LISTED VOLATILITY AND VARIANCE DERIVATIVES

We have both options data and futures data stored in this file with quotes from March 31, 2014.

In [4]: h5

Out[4]:

<class 'pandas.io.pytables.HDFStore'>

File path: ./source/data/vstoxx_data_31032014.h5

/futures_data frame (shape->[8,6])

/options_data frame (shape->[395,8])

Option market quotes are what we are concerned with for the moment.

In [5]: option_quotes = h5['options_data']

In [6]: option_quotes.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 395 entries, 46170 to 46564

Data columns (total 8 columns):

DATE 395 non-null datetime64[ns]

EXP_YEAR 395 non-null int64

EXP_MONTH 395 non-null int64

TYPE 395 non-null object

STRIKE 395 non–null float64

PRICE 395 non–null float64

MATURITY 395 non-null datetime64[ns]

TTM 395 non–null float64

dtypes: datetime64[ns](2), float64(3), int64(2), object(1)

memory usage: 27.8+ KB

In [7]: option_quotes.head()

Out[7]:

DATE EXP_YEAR EXP_MONTH TYPE STRIKE PRICE MATURITY TTM

46170 2014-03-31 2014 4 C 1.0 16.85 2014-04-18 0.049

46171 2014-03-31 2014 4 C 2.0 15.85 2014-04-18 0.049

46172 2014-03-31 2014 4 C 3.0 14.85 2014-04-18 0.049

46173 2014-03-31 2014 4 C 4.0 13.85 2014-04-18 0.049

46174 2014-03-31 2014 4 C 5.0 12.85 2014-04-18 0.049

At any given point in time, there are options on the VSTOXX available for eight maturities.

In [8]: mats = sorted(set(option_quotes['MATURITY']))

In [9]: mats

Out[9]:

Advanced Modeling of the VSTOXX Index 181

[Timestamp('2014-04-18 00:00:00'),

Timestamp('2014-05-16 00:00:00'),

Timestamp('2014-06-20 00:00:00'),

Timestamp('2014-07-18 00:00:00'),

Timestamp('2014-08-15 00:00:00'),

Timestamp('2014-09-19 00:00:00'),

Timestamp('2014-10-17 00:00:00'),

Timestamp('2014-11-21 00:00:00')]

The spot level of the VSTOXX index on March 31, 2014 was 17.6639.

In [10]: v0 = 17.6639

In what follows, we only want to plot call option market quotes which are not too far in-the-
money nor out-of-the-money.

In [11]: tol = 0.4

In [12]: to_plot = option_quotes[(option_quotes['STRIKE'] > (1 - tol) * v0)

....: & (option_quotes['STRIKE'] < (1 + tol) * v0)]

....:

Figure 7.1 shows the VSTOXX European call option quotes which fulfill the requirements.
The goal of this chapter is to replicate “all these option quotes” as closely as possible.

In [13]: import matplotlib.pyplot as plt

In [14]: import seaborn as sns; sns.set()

In [15]: import matplotlib

In [16]: matplotlib.rcParams['font.family'] = 'serif'

In [17]: markers = ['.', 'o', 'ˆ', 'v', 'x', 'D', 'd', '>', '<']

In [18]: plt.figure(figsize=(10, 6));

In [19]: for i, mat in enumerate(mats):

....: strikes = to_plot[(to_plot['MATURITY'] == mat)]['STRIKE']

....: prices = to_plot[(to_plot['MATURITY'] == mat)]['PRICE']

....: plt.plot(strikes, prices, 'b%s' % markers[i],

label=str(mat)[:10])

....:

182 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 7.1 VSTOXX European call option quotes on March 31, 2014.

<matplotlib.figure.Figure at 0x2ab247d90d50>

In [20]: plt.legend();

In [21]: plt.xlabel('strike');

In [22]: plt.ylabel('option quote');

7.3 THE SRJD MODEL

A filtered probability space {Ω, , 𝔽 , P} representing uncertainty in the model economy is
given with final date T where 0 < T < ∞.Ω denotes the continuous state space, a 𝜎−algebra,
𝔽 a filtration – i.e. a family of non-decreasing 𝜎−algebras 𝔽 ≡ {t∈[0,T]} with0 ≡ {∅,Ω} and
T ≡ – and P the real or objective probability measure.

In the SRJD model, which is an affine jump diffusion (see Duffie et al. (2000)), the risk-
neutral dynamics of the VSTOXX volatility index are given by the following stochastic dif-
ferential equation (SDE):

dvt = 𝜅(𝜃 − vt)dt + 𝜎
√

vtdZt + JtvtdNt − rJdt

The meaning of the variables and parameters is:

Advanced Modeling of the VSTOXX Index 183

� vt volatility index level at date t
� 𝜅 speed of adjustment of vt to…
� … 𝜃, the long-term mean of the index
� 𝜎 volatility coefficient of the index level
� Zt standard Brownian motion
� Jt jump at date t with distribution…
� … log(1 + Jt) ≈ N(log(1 + 𝜇) − 𝛿2

2
, 𝛿2)

� N cumulative distribution function of a standard normal random variable
� Nt Poisson process with intensity 𝜆

� rJ ≡ 𝜆 ⋅ (e𝜇+𝛿
2∕2 − 1) drift correction for jump.

The stochastic process for v is adapted to the filtration 𝔽 . Moreover, Z and N are not correlated.
The time t value of a zero-coupon bond paying one unit of currency at T , 0 ≤ t < T , is Bt(T) =
e−r(T−t) with r ≥ 0 the constant risk-less short rate.

By the Fundamental Theorem of Asset Pricing, the time t value of an attainable, T -
measurable contingent claim VT ≡ hT (XT) ≥ 0 (satisfying suitable integrability conditions) is
given by arbitrage as

Vt = EQ
t

(
Bt(T)VT

)

with V0 = EQ
0 (B0(T)VT) as the important special case for valuation purposes. Q is a P-

equivalent martingale measure. The contingent claim could be a European call option maturing
at T with payoff VT = hT (vT) ≡ max[vT − K, 0]. It could also be a European put with payoff
VT = hT (vT) ≡ max[K − vT , 0]. In both cases, K is the fixed strike price of the option.

To simulate the financial model, i.e. to generate numerical values for vt, it has to be dis-
cretized. To this end, divide the given time interval [0, T] in equidistant sub-intervals Δt such
that now t ∈ {0,Δt, 2Δt,… , T}, i.e. there are M + 1 points in time with M ≡ T∕Δt. With
s = t − Δt, a discretization of the continuous time market model is given by

ṽt = ṽs + 𝜅(𝜃 − ṽ+s)Δt + 𝜎

√
ṽ+s

√
Δtz1

t

+
(
e𝜇J+𝛿2z2

t − 1
)
ṽ+s yt − rJΔt

vt = ṽ+t

for t ∈ {Δt,… , T} with x+ ≡ max[x, 0] and the zn
t being standard normally distributed and yt

Poisson distributed. z1
t , z2

t and yt are uncorrelated. This discretization scheme is an Euler dis-
cretization and is generally called full trunction scheme. See Lord et al. (2008) for an analysis
of this and other biased discretization schemes for the square-root diffusion process.

7.4 TERM STRUCTURE CALIBRATION

The first step in the calibration of the SRJD model is with regard to the futures term structure.

184 LISTED VOLATILITY AND VARIANCE DERIVATIVES

7.4.1 Futures Term Structure

It is difficult for parsimonious short rate models like that of Cox et al. (1985) to account for
different term structures of the interest rate. A possible solution is the introduction of time-
dependent parameters which, however, enlarges the number of parameters significantly, sacri-
ficing at the same time the convenience of a limited number of economic parameters. Another
solution is a deterministic shift approach according to Brigo and Mercurio (2001) which pre-
serves the basic structure of the model with all its advantages and which nevertheless allows
us to better account for different term structures of the short rate.

In this section, we transfer the deterministic shift approach for the short rate models of
Brigo and Mercurio (2001) to the SRJD model. Since the square-root diffusion and the jumps
are not correlated, we can first apply the approach to the diffusion part and use this enhanced
component later on in conjunction with the jump component.

Before we present the theory, a look at the VSTOXX futures data first.

In [23]: futures_quotes = h5['futures_data']

In [24]: futures_quotes.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8 entries, 496 to 503

Data columns (total 6 columns):

DATE 8 non-null datetime64[ns]

EXP_YEAR 8 non-null int64

EXP_MONTH 8 non-null int64

PRICE 8 non-null float64

MATURITY 8 non-null datetime64[ns]

TTM 8 non-null float64

dtypes: datetime64[ns](2), float64(2), int64(2)

memory usage: 448.0 bytes

Figure 7.2 presents the futures quotes for all eight maturities.

In [25]: ax = futures_quotes.plot(x='MATURITY', y='PRICE',

....: figsize=(10, 6), legend=False)

....:

<matplotlib.figure.Figure at 0x2ab25d177c50>

In [26]: futures_quotes.plot(x='MATURITY', y='PRICE', style='ro', ax=ax);

Consider for now the square-root diffusion volatility model of Grünbichler and Longstaff
(1996) as presented in the previous chapter, which is formally the same as the short rate model
of Cox et al. (1985) and which is a special case of the SRJD model:

dvt = 𝜅(𝜃 − vt)dt + 𝜎
√

vtdZt

Advanced Modeling of the VSTOXX Index 185

FIGURE 7.2 VSTOXX futures quotes on March 31, 2014.

We want to calibrate this model to the observed volatility term structure, given by the above
presented set of prices for futures on the VSTOXX index with different maturities. We have
to minimize for all considered times t and a parameter set 𝛼 = (𝜅, 𝜃, 𝜎, v0) simultaneously the
single differences

Δf (0, t) ≡ f (0, t) − f GL96(0, t; 𝛼)

where f (0, t) is the time 0 market (instantaneous) forward volatility for time t and the quantity
f GL96(0, t; 𝛼) is the model (instantaneous) forward volatility for time t given parameter set 𝛼.

Assume that there is a continuously differentiable volatility term structure function F(0, t)
available (i.e. there are infinitely many volatility futures prices). The forward volatility then is

f (0, t) = 𝜕F(0, t)
𝜕t

On the other hand, the model implied forward volatility is given as (see Brigo and Mercurio
(2001))

f GL96(0, t; 𝛼) = 𝜅𝜃(e𝛾t − 1)
2𝛾 + (𝜅 + 𝛾)(e𝛾t − 1)

+ v0
4𝛾2e𝛾t

(2𝛾 + (𝜅 + 𝛾)(e𝛾t − 1))2

186 LISTED VOLATILITY AND VARIANCE DERIVATIVES

with

𝛾 ≡ √
𝜅2 + 2𝜎2

The Python script srjd_fwd_calibration.py contains the Python code to cal-
ibrate the forward volatilities to the VSTOXX futures prices (see sub-section 7.8.1,
srjd_fwd_calibration.py for the complete script). The beginning of the script is about library
imports, importing the data sets and making some selections.

import math

import numpy as np

import pandas as pd

import scipy.optimize as sco

v0 = 17.6639 # initial VSTOXX index level

i = 0 # counter for calibration runs

reading the VSTOXX futures quotes

path = 'source/data/'

h5 = pd.HDFStore(path + 'vstoxx_data_31032014.h5', 'r')

futures_quotes = h5['futures_data']

h5.close()

selecting needed data columns and adding spot value

forwards = list(futures_quotes['PRICE'].values)

forwards.insert(0, v0)

forwards = np.array(forwards)

ttms = list(futures_quotes['TTM'].values)

ttms.insert(0, 0)

ttms = np.array(ttms)

The function srd_forwards() implements the forward formula from above for a given
parameter set.

def srd_forwards(p0):

''' Function for forward volatilities in GL96 Model.

Parameters

==========

p0: list

set of model parameters, where

kappa: float

mean-reversion factor

Advanced Modeling of the VSTOXX Index 187

theta: float

long-run mean

sigma: float

volatility factor

Returns

=======

forwards: NumPy ndarray object

forward volatilities

'''

t = ttms

kappa, theta, sigma = p0

g = math.sqrt(kappa ** 2 + 2 * sigma ** 2)

sum1 = ((kappa * theta * (np.exp(g * t) - 1)) /

(2 * g + (kappa + g) * (np.exp(g * t) - 1)))

sum2 = v0 * ((4 * g ** 2 * np.exp(g * t)) /

(2 * g + (kappa + g) * (np.exp(g * t) - 1)) ** 2)

forwards = sum1 + sum2

return forwards

To operationalize the calibration, we use the mean squared error (MSE) as our yardstick

min
𝛼

1
N

N∑
n=1

(
fn − f GL96

n (𝛼)
)2

which is to be minimized. Here, we assume that we have N observations for the forward volatil-
ity. In Python this takes on the form of function srd_fwd_error().

def srd_fwd_error(p0):

''' Error function for GL96 forward volatilities calibration.

Parameters

==========

p0: tuple

parameter vector

Returns

=======

MSE: float

mean-squared error for p0

'''

global i

kappa, theta, sigma = p0

srd_fwds = srd_forwards(p0)

MSE = np.sum((forwards – srd_fwds) ** 2) / len(forwards)

if 2 * kappa * theta < sigma ** 2:

MSE = MSE + 100 # penalty

188 LISTED VOLATILITY AND VARIANCE DERIVATIVES

elif sigma < 0:

MSE = MSE + 100

print intermediate results: every 50th iteration

if i % 50 == 0:

print "{:6.3f} {:6.3f} {:6.3f}".format(* p0) + "{:>12.5f}".format(MSE)

i += 1

return MSE

Executing the script yields optimal parameters for the Grünbichler and Longstaff (1996) model
given the VSTOXX futures prices.

In [27]: %run source/scripts/srjd_fwd_calibration.py

1.000 17.500 1.000 35.99817

0.258 40.585 0.057 5.61895

1.575 46.996 0.392 0.22958

2.525 46.207 0.710 0.06348

3.447 44.752 0.972 0.04264

3.538 44.458 0.903 0.04261

3.947 43.495 0.610 0.04243

4.113 43.102 0.275 0.04219

4.187 42.969 0.019 0.04213

4.169 42.984 0.002 0.04213

4.170 42.984 0.000 0.04213

Optimization terminated successfully.

Current function value: 0.042129

Iterations: 292

Function evaluations: 526

In [28]: opt.round(3)

Out[28]: array([4.17 , 42.984, 0.])

These optimal values can be used to calculate the model forward volatilities using function
srd_forwards().

In [29]: from srjd_fwd_calibration import *

In [30]: srd_fwds = srd_forwards(opt)

In [31]: srd_fwds

Out[31]:

array([17.6639 , 18.37130183, 19.22831373, 19.97504105,

20.3916346, 20.69048824, 20.95488999, 21.10239774, 21.23092346])

Advanced Modeling of the VSTOXX Index 189

FIGURE 7.3 VSTOXX futures market quotes vs. model prices.

The numerical differences to the market futures prices are:

In [32]: srd_fwds - forwards

Out[32]:

array([0. , 0.52130183, –0.32168627, 0.02504105, –0.0083654,

–0.00951176, 0.00488999, 0.05239774, –0.01907654])

Figure 7.3 compares the model futures prices (forward volatilities) with the VSTOXX futures
market quotes. For longer maturities the fit is quite good.

In [33]: plt.figure(figsize=(10, 6));

In [34]: plt.plot(ttms, forwards, 'b', label='market prices');

In [35]: plt.plot(ttms, srd_fwds, 'ro', label='model prices');

In [36]: plt.legend(loc=0);

In [37]: plt.xlabel('time-to-maturity (year fractions)');

In [38]: plt.ylabel('forward volatilities');

190 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Finally, we save the results from the term structure calibration for later use during the simula-
tion of the model.

In [39]: import pickle

In [40]: f = open('varphi', 'w') # open file on disk

write ttms object and differences (varphi values) as dictionary

In [41]: pickle.dump({'ttms': ttms, 'varphi': srd_fwds – forwards}, f)

In [42]: f.close() # close file

7.4.2 Shi f ted Volat i l i ty Process

Assume that we are given a continuously differentiable futures price function (i.e. through
splines interpolation of discrete futures prices for different maturities). We consider now the
deterministically shifted volatility process (see Brigo and Mercurio (2001))

v̂t ≡ vt + 𝜑(t, 𝛼∗)

with 𝜑(t, 𝛼∗) ≡ f (0, t) − f GL96(0, t; 𝛼∗), the difference at time t between the market implied
forward volatility and the model implied forward volatility after calibration, i.e.for the optimal
parameter set 𝛼∗. 𝜑(t, 𝛼∗) corresponds to the differences (bars) in Figure 7.4.

F IGURE 7.4 Deterministic shift values to account for VSTOXX futures term structure.

Advanced Modeling of the VSTOXX Index 191

In [43]: plt.figure(figsize=(10, 6));

In [44]: plt.bar(ttms, srd_fwds – forwards,

....: width=0.05, label='$\\varphi(t,\\alphaˆ*)$');

....:

In [45]: plt.legend(loc=0);

In [46]: plt.xlabel('time-to-maturity (year fractions)');

In [47]: plt.ylabel('deterministic shift');

The SRJD model discretization can now be adjusted as follows:

ṽt = ṽs + 𝜅(𝜃 − ṽ+s)Δt + 𝜎

√
ṽ+s

√
Δtz1

t

+
(
e𝜇J+𝛿2z2

t − 1
)
ṽ+s yt − rJΔt (7.1)

v̂t = ṽ+t + 𝜑(t, 𝛼∗) (7.2)

This is consistent since the diffusion and jump parts are not correlated and since the jump
part is added in such a way that the first moment of the stochastic volatility process does not
change.

7.5 OPTION VALUATION BY MONTE CARLO SIMULATION

This section implements Monte Carlo simulation procedures for the SRJD model.

7.5.1 Monte Carlo Valuat ion

In what follows, the model option values are computed by Monte Carlo simulation (MCS).
Given the discrete version of the financial model, the value of a European call option on the
volatility index is estimated by MCS as follows:

Algorithm 1: Simulation algorithm

for i = 1, 2,… , I do
for t = Δt,… , T do

draw pseudo-random numbers z1
t (i), z2

t (i), yt(i)1

apply these to equations (7.1) and (7.2) to calculate vt(i)2

calculate VT (i) = hT (i) ≡ max[vT (i) − K, 0]3

sum up all payoffs at T , take the average and discount back to t = 0:4

V0(K, T) ≈ e−rT ⋅
1
I

∑
I

max[vT (i) − K, 0]

V0 is the MCS estimator for the European call option value.

192 LISTED VOLATILITY AND VARIANCE DERIVATIVES

7.5.2 Technica l Implementat ion

Because we are using a numerical method like MCS for all valuation and calibration tasks,
the parametrization and implementation of the MCS algorithm play an important role. Some
major features of our implementation are:

� discretization: the algorithm uses the Euler discretization scheme which is an approxi-
mation only but which might bring performance benefits

� random numbers: for every single option valuation the seed can be held constant such
that every option is valued with the same set of (pseudo-)random numbers

� variance reduction: both antithetic variates and moment matching (for the first two
moments of the pseudo-random numbers) are used as generic variance reduction tech-
niques

� deterministic shift: the deterministic shift values 𝜑 are determined only once through a
separate calibration and are held constant afterwards (even if model parameters change).

𝜑 only has to be deterministic and integrable on closed intervals (see Brigo and Mercurio
(2001)), which is of course the case. For the approach to be valid, it is not important how we
originally came up with the 𝜑.

The Python code for simulating the SRJD model is found in the script
srjd_simulation.py (see sub-section 7.8.2, srjd_simulation.py for the complete
script). The beginning of the script shows several imports, the definition of example parame-
ters and also the cubic splines interpolation to be used for the estimation of the deterministic
shift parameters.

import math

import pickle

import numpy as np

import scipy.interpolate as scint

v0 = 17.6639 # initial VSTOXX index level

parameters of square-root diffusion

kappa = 2.0 # speed of mean reversion

theta = 15.0 # long-term volatility

sigma = 1.0 # standard deviation coefficient

parameters of log-normal jump

lamb = 0.4 # intensity (jumps per year)

mu = 0.4 # average jump size

delta = 0.1 # volatility of jump size

general parameters

r = 0.01 # risk-free interest rate

K = 17.5 # strike

T = 0.5 # time horizon

M = 150 # time steps

Advanced Modeling of the VSTOXX Index 193

I = 10000 # number of MCS paths

anti_paths = True # antithetic variates

mo_match = True # moment matching

deterministic shift parameters

varphi = pickle.load(open('varphi'))

tck = scint.splrep(varphi['ttms'], varphi['varphi'], k=1)

linear splines interpolation of

term structure calibration differences

The Python function random_number_gen() generates arrays of standard normally dis-
tributed pseudo-random numbers using both antithetic variates and moment matching as
generic variance reduction techniques.

def random_number_gen(M, I, fixed_seed=False):

''' Generate standard normally distributed pseudo-random numbers

Parameters

==========

M: int

number of time intervals

I: int

number of paths

Returns

=======

ran: NumPy ndarrayo object

random number array

'''

if fixed_seed is True:

np.random.seed(10000)

if anti_paths is True:

ran = np.random.standard_normal((M + 1, I / 2))

ran = np.concatenate((ran, -ran), axis=1)

else:

ran = np.standard_normal((M + 1, I))

if mo_match is True:

ran = ran / np.std(ran)

ran -= np.mean(ran)

return ran

The major function of this script is srjd_simulation() which implements the Monte
Carlo simulation for the SRJD model based on an Euler discretization scheme. The scheme
used here is usually called a full truncation scheme.

194 LISTED VOLATILITY AND VARIANCE DERIVATIVES

def srjd_simulation(x0, kappa, theta, sigma,

lamb, mu, delta, T, M, I, fixed_seed=False):

''' Function to simulate square-root jump Difusion.

Parameters

==========

x0: float

initial value

kappa: float

mean-reversion factor

theta: float

long-run mean

sigma: float

volatility factor

lamb: float

jump intensity

mu: float

expected jump size

delta: float

standard deviation of jump

T: float

time horizon/maturity

M: int

time steps

I: int

number of simulation paths

Returns

=======

x: NumPy ndarray object

array with simulated SRJD paths

'''

dt = float(T) / M # time interval

shift = scint.splev(np.arange(M + 1) * dt, tck, der=0)

deterministic shift values

xh = np.zeros((M + 1, I), dtype=np.float)

x = np.zeros((M + 1, I), dtype=np.float)

xh[0, :] = x0

x[0, :] = x0

drift contribution of jump p.a.

rj = lamb * (math.exp(mu + 0.5 * delta ** 2) - 1)

1st matrix with standard normal rv

ran1 = random_number_gen(M + 1, I, fixed_seed)

2nd matrix with standard normal rv

ran2 = random_number_gen(M + 1, I, fixed_seed)

matrix with Poisson distributed rv

Advanced Modeling of the VSTOXX Index 195

ran3 = np.random.poisson(lamb * dt, (M + 1, I))

for t in range(1, M + 1):

xh[t, :] = (xh[t - 1, :] +

kappa * (theta - np.maximum(0, xh[t - 1, :])) * dt

+ np.sqrt(np.maximum(0, xh[t - 1, :])) * sigma

* ran1[t] * np.sqrt(dt)

+ (np.exp(mu + delta * ran2[t]) - 1) * ran3[t]

* np.maximum(0, xh[t - 1, :]) - rj * dt)

x[t, :] = np.maximum(0, xh[t, :]) + shift[t]

return x

Finally, the function srjd_call_valuation() estimates the value of a European call
option given the simulated volatility paths from srjd_simulation().

def srjd_call_valuation(v0, kappa, theta, sigma,

lamb, mu, delta, T, r, K, M=M, I=I,

fixed_seed=False):

''' Function to value European volatility call option in SRDJ model.

Parameters see function srjd_simulation.

Returns

=======

call_value: float

estimator for European call present value for strike K

'''

v = srjd_simulation(v0, kappa, theta, sigma,

lamb, mu, delta, T, M, I, fixed_seed)

call_value = np.exp(- r * T) * sum(np.maximum(v[-1] - K, 0)) / I

return call_value

Executing the script yields a MCS estimator for the European call option with the parameters
as assumed in the script of about 1 currency unit.

In [48]: %run source/scripts/srjd_simulation.py

Value of European call by MCS: 0.9959

7.6 MODEL CALIBRATION

This section now calibrates the SRJD model to market quotes for European call options on
VSTOXX futures. It considers calibrations to a single maturity as well as to multiple maturities.

196 LISTED VOLATILITY AND VARIANCE DERIVATIVES

7.6.1 The Python Code

The calibration of the SRJD model is similar to the procedure for the Grünbichler and Lonstaff
(1996) square-root diffusion model as presented in the previous chapter. The major difference
now is that we have to take into account more parameter values for the optimization. The
Python code is contained in scriptsrjd_model_calibration.py (see sub-section 7.8.3,
srjd_model_calibration.py for the complete script). As usual a few imports and parameter
definitions first.

import numpy as np

import pandas as pd

import scipy.optimize as sco

import matplotlib.pyplot as plt

from srd_model_calibration import path, read_select_quotes

from srjd_simulation import srjd_call_valuation

fixed parameters

r = 0.01 # risk-less short rate

v0 = 17.6639 # VSTOXX index at 31.03.2014

M = 15 # number of time intervals

I = 100 # number of simulated paths

In what follows, we want to calibrate the model simultaneously to multiple maturities for
the VSTOXX European call options. The valuation function srjd_valuation_function()

therefore now calculates the differences between model and market values directly and returns
an array with all differences (relative or absolute).

def srjd_valuation_function(p0):

''' Valuation ('difference') function for all options

of a given DataFrame object.

Parameters

==========

p0: list

set of model parameters

Returns

=======

diffs: NumPy ndarray object

array with valuation differences

'''

global relative, option_data

kappa, theta, sigma, lamb, mu, delta = p0

diffs = []

for i, option in option_data.iterrows():

Advanced Modeling of the VSTOXX Index 197

value = srjd_call_valuation(v0, kappa, theta, sigma,

lamb, mu, delta,

option['TTM'], r, option['STRIKE'],

M=M, I=I, fixed_seed=True)

if relative is True:

diffs.append((value - option['PRICE']) / option['PRICE'])

else:

diffs.append(value - option['PRICE'])

diffs = np.array(diffs)

return diffs

The error function srjd_error_function() for the SRJD model has to be enhanced
compared to the SRD case to account for the additional parameters of the model.

def srjd_error_function(p0):

''' Error function for model calibration.

Parameters

==========

p0: tuple

set of model parameters

Returns

=======

MSE: float

mean squared (relative/absolute) error

'''

global i, min_MSE, option_data

OD = len(option_data)

diffs = srjd_valuation_function(p0)

kappa, theta, sigma, lamb, mu, delta = p0

penalties

pen = 0.

if 2 * kappa * theta < sigma ** 2:

pen = 1000.0

if kappa < 0 or theta < 0 or sigma < 0 or lamb < 0 or delta < 0:

pen = 1000.0

MSE = np.sum(diffs ** 2) / OD + pen # mean squared error

min_MSE = min(min_MSE, MSE) # running minimum value

if i == 0:

print \'n' + ('{:>5s}'.format('its')

+ '{:>7s} {:>6s} {:>6s} {:>6s} {:>6s} {:>6s}'.format(

198 LISTED VOLATILITY AND VARIANCE DERIVATIVES

'kappa', 'theta', 'sigma', 'lamb', 'mu', 'delta')

+ '{:>12s}'.format('MSE') + '{:>12s}'.format('min_MSE'))

print intermediate results: every 100th iteration

if i % 100 == 0:

print ('{:>5d}'.format(i)

+ '{:7.3f} {:6.3f} {:6.3f} {:6.3f} {:6.3f} {:6.3f}'.format(*p0)

+ '{:>12.5f}'.format(MSE) + '{:>12.5f}'.format(min_MSE))

i += 1

return MSE

The same holds true for the calibration function srjd_model_calibration() itself.
This function allows us to select certain maturities for the calibration.

def srjd_model_calibration(data, p0=None, rel=False, mats=None):

''' Function for global and local model calibration.

Parameters

==========

option_data: pandas DataFrame object

option quotes to be used

relative: bool

relative or absolute MSE

mats: list

list of maturities of option quotes to calibrate to

Returns

=======

opt: tuple

optimal parameter values

'''

global i, min_MSE, option_data

global relative # if True: MSRE is used, if False: MSAE

min_MSE = 5000. # dummy value

relative = rel # relative or absolute

option_data = data

if mats is not None:

select the option data for the given maturities

option_data = option_data[option_data['MATURITY'].isin(mats)]

global optimization

if p0 is None:

i = 0 # counter for calibration iterations

p0 = sco.brute(srjd_error_function, (

(1.0, 9.1, 4.0), # kappa

Advanced Modeling of the VSTOXX Index 199

(10., 20.1, 10.0), # theta

(1.0, 3.1, 2.0), # sigma

(0.0, 0.81, 0.4), # lambda

(-0.2, 0.41, 0.3), # mu

(0.0, 0.31, 0.15)), # delta

finish=None)

local optimization

i = 0

opt = sco.fmin(srjd_error_function, p0,

xtol=0.0000001, ftol=0.0000001,

maxiter=550, maxfun=700)

return opt

7.6.2 Short Maturity

The addition of a jump component shall allow a better fit to short-term call option market
quotes. Therefore, consider the following calibration to the shortest option maturity available:

In [49]: from srjd_model_calibration import *

read option data, allow for 30% moneyness tolerance

In [50]: option_data = read_select_quotes(tol=0.3)

In [51]: %%time

....: opt_1 = srjd_model_calibration(option_data, p0=None,

....: rel=False, mats=['2014-4-18'])

....:

its kappa theta sigma lamb mu delta MSE min_MSE

0 1.000 10.000 1.000 0.000 -0.200 0.000 0.15785 0.15785

100 1.000 20.000 3.000 0.800 -0.200 0.000 0.10867 0.01976

200 5.000 20.000 3.000 0.400 -0.200 0.150 0.27793 0.01976

300 9.000 20.000 3.000 0.000 -0.200 0.300 0.70669 0.01976

its kappa theta sigma lamb mu delta MSE min_MSE

0 1.000 10.000 3.000 0.400 -0.200 0.000 0.01976 0.01976

100 1.016 9.216 2.996 0.476 -0.124 0.001 0.01956 0.01955

200 1.020 9.213 3.006 0.494 -0.128 0.001 0.01955 0.01955

300 0.976 8.895 3.000 0.392 -0.128 0.001 0.02214 0.01955

400 0.977 8.869 3.002 0.394 -0.128 0.001 0.01955 0.01955

500 0.976 8.866 3.002 0.394 -0.128 0.001 0.01955 0.01955

200 LISTED VOLATILITY AND VARIANCE DERIVATIVES

600 0.976 8.867 3.002 0.394 -0.128 0.001 0.01955 0.01955

Warning: Maximum number of function evaluations has been exceeded.

CPU times: user 14.7 s, sys: 7.97 ms, total: 14.7 s

Wall time: 14.7 s

The optimal parameter values are:

In [52]: opt_1

Out[52]:

array([9.75770825e-01, 8.86539094e+00, 3.00188833e+00,

3.93539089e-01, -1.28094441e-01, 1.26180667e-03])

Using these optimal parameter values, add the model prices to the DataFrame object con-
taining the option data.

In [53]: values = []

In [54]: kappa, theta, sigma, lamb, mu, delta = opt_1

In [55]: for i, option in option_data.iterrows():

....: value = srjd_call_valuation(v0, kappa, theta, sigma,

....: lamb, mu, delta,

....: option['TTM'], r, option['STRIKE'],

....: M=M, I=I, fixed_seed=True)

....: values.append(value)

....:

In [56]: option_data['MODEL'] = values

Figure 7.5 shows the calibration results graphically. Indeed, the fit seems to be quite good,
reflecting a MSAE of about 0.0015 only.

selecting the data for the shortest maturity

In [57]: os = option_data[option_data.MATURITY == '2014-4-18']

selecting corresponding strike prices

In [58]: strikes = os.STRIKE.values

comparing the model prices with the market quotes

In [59]: fig, ax = plt.subplots(2, 1, sharex=True, figsize=(10, 6));

In [60]: ax[0].plot(strikes, os.PRICE.values, label='market quotes');

In [61]: ax[0].plot(strikes, os.MODEL.values, 'ro', label='model prices');

Advanced Modeling of the VSTOXX Index 201

FIGURE 7.5 Calibration of SRJD model to European call options on the VSTOXX for shortest
option maturity (April 2014).

In [62]: ax[1].bar(strikes - 0.15, os.MODEL.values - os.PRICE.values,

....: width=0.3);

....:

In [63]: ax[1].set_xlim(12.5, 23);

7.6.3 Two Maturit ies

Let us proceed with the simultaneous calibration of the model to the May and July maturities.
The MSE is also pretty low in this case (i.e. below 0.01).

read option data, allow for 17.5% moneyness tolerance

In [64]: option_data = read_select_quotes(tol=0.175)

In [65]: %%time

....: opt_2 = srjd_model_calibration(option_data, rel=False,

....: mats=['2014-5-16', '2014-7-18'])

....:

202 LISTED VOLATILITY AND VARIANCE DERIVATIVES

its kappa theta sigma lamb mu delta MSE min_MSE

0 1.000 10.000 1.000 0.000 -0.200 0.000 8.71137 8.71137

100 1.000 20.000 3.000 0.800 -0.200 0.000 0.85126 0.10351

200 5.000 20.000 3.000 0.400 -0.200 0.150 0.59218 0.09015

300 9.000 20.000 3.000 0.000 -0.200 0.300 0.45081 0.01539

its kappa theta sigma lamb mu delta MSE min_MSE

0 5.000 20.000 3.000 0.800 0.400 0.000 0.01539 0.01539

100 4.471 19.655 3.256 0.762 0.424 0.000 0.00892 0.00892

200 4.010 19.231 2.730 0.761 0.575 0.002 0.00792 0.00792

300 4.023 18.987 2.321 0.721 0.668 0.003 0.01182 0.00688

400 3.803 18.830 2.115 0.722 0.701 0.003 0.00660 0.00660

500 3.823 18.799 2.106 0.723 0.706 0.003 0.00644 0.00644

600 3.998 18.681 1.916 0.728 0.749 0.003 0.00598 0.00598

Warning: Maximum number of function evaluations has been exceeded.

CPU times: user 17.1 s, sys: 10 us, total: 17.1 s

Wall time: 17.1 s

The optimal parameter values are:

In [66]: opt_2

Out[66]:

array([3.99997568e+00, 1.86836808e+01, 1.91679210e+00,

7.28298815e-01, 7.48260996e-01, 3.26197421e-03])

In what follows, we use the Python function plot_calibration_results() to gen-
erate the plots for the different valuation runs. This function allows for different numbers of
sub-plots, i.e. when the number of option maturities is changed. It is mainly a generalization
of the plotting code used above.

def plot_calibration_results(option_data, opt, mats):

''' Function to plot market quotes vs. model prices.

Parameters

==========

option_data: pandas DataFrame object

option data to plot

opt: list

optimal results from calibration

mats: list

maturities to be plotted

'''

kappa, theta, sigma, lamb, mu, delta = opt

adding model values for optimal parameter set

Advanced Modeling of the VSTOXX Index 203

to the DataFrame object

values = []

for i, option in option_data.iterrows():

value = srjd_call_valuation(v0, kappa, theta, sigma,

lamb, mu, delta,

option['TTM'], r, option['STRIKE'],

M=M, I=I, fixed_seed=True)

values.append(value)

option_data['MODEL'] = values

plotting the market and model values

height = min(len(mats) * 3, 12)

fig, axarr = plt.subplots(len(mats), 2, sharex=True, figsize=(10, height))

for z, mat in enumerate(mats):

if z == 0:

axarr[z, 0].set_title('values')

axarr[z, 1].set_title('differences')

os = option_data[option_data.MATURITY == mat]

strikes = os. STRIKE.values

axarr[z, 0].set_ylabel('%s' % str(mat)[: 10])

axarr[z, 0].plot(strikes, os.PRICE.values, label='market quotes')

axarr[z, 0].plot(strikes, os.MODEL.values, 'ro', label='model prices')

axarr[z, 0].legend(loc=0)

wi = 0.3

axarr[z, 1].bar(strikes - wi / 2, os.MODEL.values - os.PRICE.values,

width=wi)

if mat == mats[- 1]:

axarr[z, 0].set_xlabel('strike')

axarr[z, 1].set_xlabel('strike')

Figure 7.6 shows the results of the calibration graphically. It is obvious that the SRJD model
is able to account for multiple maturities at the same time which is mainly due to the term
structure component introduced by the deterministic shift approach.

In [67]: plot_calibration_results(option_data, opt_2, ['2014-5-16',

'2014-7-18'])

<matplotlib.figure.Figure at 0x2ab25d1b0190>

7.6.4 Four Maturit ies

In a next step, we consider four maturities – before we try to calibrate the model to all eight
maturities.

204 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 7.6 Calibration of SRJD model to European call options on the VSTOXX for May and
July 2014 maturities.

In [68]: mats = sorted(set(option_data['MATURITY']))

In [69]: mats

Out[69]:

[Timestamp('2014-04-18 00:00:00'),

Timestamp('2014-05-16 00:00:00'),

Timestamp('2014-06-20 00:00:00'),

Timestamp('2014-07-18 00:00:00'),

Timestamp('2014-08-15 00:00:00'),

Timestamp('2014-09-19 00:00:00'),

Timestamp('2014-10-17 00:00:00'),

Timestamp('2014-11-21 00:00:00')]

The four maturities for this particular calibration run are:

In [70]: mats[::2]

Out[70]:

[Timestamp('2014-04-18 00:00:00'),

Timestamp('2014-06-20 00:00:00'),

Timestamp('2014-08-15 00:00:00'),

Timestamp('2014-10-17 00:00:00')]

Advanced Modeling of the VSTOXX Index 205

For this calibration run, we use the optimal parameters from the previous calibration to two
maturities. Obviously, the more options to calibrate the model to, the longer the procedure
takes.

In [71]: %%time

....: opt_4 = srjd_model_calibration(option_data, p0=opt_2,

....: rel=False, mats=mats[::2])

....:

its kappa theta sigma lamb mu delta MSE min_MSE

0 4.000 18.684 1.917 0.728 0.748 0.003 0.52345 0.52345

100 4.202 18.938 1.980 0.727 0.623 0.003 0.27887 0.27681

200 3.650 21.465 3.293 0.744 -0.075 0.002 0.18617 0.18617

300 3.195 22.481 2.867 0.743 -0.223 0.000 0.14915 0.14915

400 3.107 22.191 2.990 0.745 -0.141 0.000 0.14609 0.14608

500 3.081 22.162 3.028 0.743 -0.138 0.000 0.14572 0.14570

600 3.057 22.100 3.041 0.738 -0.124 0.000 0.14521 0.14521

700 3.061 22.110 3.034 0.738 -0.126 0.000 0.14517 0.14517

Warning: Maximum number of function evaluations has been exceeded.

CPU times: user 22.9 s, sys: 16 ms, total: 22.9 s

Wall time: 22.9 s

In [72]: opt_4

Out[72]:

array([3.06082557e+00, 2.21100415e+01, 3.03422643e+00,

7.38054016e-01, -1.25823900e-01, 1.19890649e-06])

Even calibrating the model to four maturities yields quite a good fit over these maturities as
Figure 7.7 illustrates.

In [73]: plot_calibration_results(option_data, opt_4, mats[::2])

<matplotlib.figure.Figure at 0x2ab247bec510>

7.6.5 Al l Maturit ies

Finally, let us attack the hardest calibration problem – the one involving all eight option
maturities.

In [74]: %%time

....: opt_8_MSAE = srjd_model_calibration(option_data,

....: rel=False, mats=mats)

....:

206 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 7.7 Calibration of SRJD model to European call options on the VSTOXX for four
maturities.

its kappa theta sigma lamb mu delta MSE min_MSE

0 1.000 10.000 1.000 0.000 -0.200 0.000 12.79035 12.79035

100 1.000 20.000 3.000 0.800 -0.200 0.000 1.13623 0.13849

200 5.000 20.000 3.000 0.400 -0.200 0.150 1.08765 0.13849

300 9.000 20.000 3.000 0.000 -0.200 0.300 1.27175 0.13849

Advanced Modeling of the VSTOXX Index 207

its kappa theta sigma lamb mu delta MSE min_MSE

0 1.000 20.000 3.000 0.400 0.400 0.150 0.13849 0.13849

100 1.007 20.567 2.921 0.396 0.326 0.155 0.12039 0.11935

200 1.018 21.609 3.266 0.404 0.032 0.163 0.10182 0.10096

300 1.033 22.713 3.222 0.407 -0.123 0.155 0.09869 0.09863

400 1.542 23.755 3.235 0.409 -0.985 0.067 0.08329 0.08120

500 1.860 23.848 2.967 0.410 -1.297 0.002 0.07686 0.07686

600 1.868 23.863 2.956 0.410 -1.303 -0.000 1000.07683 0.07683

Warning: Maximum number of function evaluations has been exceeded.

CPU times: user 1min 7s, sys: 16 ms, total: 1min 7s

Wall time: 1min 7s

In [75]: opt_8_MSAE

Out[75]:

array([1.86781293e+00, 2.38625952e+01, 2.95539873e+00,

4.10158642e-01, -1.30281337e+00, 8.30841775e-08])

Figure 7.8 shows that the fit is still reasonable for eight maturities and that many options.

In [76]: plot_calibration_results(option_data, opt_8_MSAE, mats)

<matplotlib.figure.Figure at 0x2ab247b94250>

To check whether there is a (larger) difference when we calibrate the model using relative
differences (i.e. the MSRE) as a yardstick, consider the following calibration run:

In [77]: %%time

....: opt_8_MSRE = srjd_model_calibration(option_data, p0=opt_8_MSAE,

....: rel=True, mats=mats)

....:

its kappa theta sigma lamb mu delta MSE min_MSE

0 1.868 23.863 2.955 0.410 -1.303 0.000 0.02551 0.02551

100 1.599 24.888 2.619 0.392 -1.381 0.000 0.02099 0.02099

200 1.015 26.443 2.737 0.388 -1.676 0.000 0.02017 0.02017

300 0.915 27.147 2.723 0.388 -1.947 0.000 0.02046 0.02011

400 0.920 27.175 2.719 0.388 -2.142 0.000 0.02010 0.02010

500 0.927 27.082 2.724 0.389 -2.373 0.000 0.02009 0.02009

600 0.925 27.083 2.722 0.389 -2.409 0.000 0.02009 0.02009

700 0.925 27.086 2.722 0.389 -2.409 0.000 0.02009 0.02009

Warning: Maximum number of function evaluations has been exceeded.

CPU times: user 46.9 s, sys: 16 ms, total: 46.9 s

Wall time: 46.9 s

208 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 7.8 Calibration of SRJD model to European call options on the VSTOXX for all eight
maturities (MSAE used).

Figure 7.9 presents the results. They are not too dissimilar to the ones obtained using the MSAE
as a yardstick. The major difference is the weighting of the options in that now those options
with lower market quotes (higher strikes) get more weight.

In [78]: plot_calibration_results(option_data, opt_8_MSRE, mats)

<matplotlib.figure.Figure at 0x2ab25d453250>

Advanced Modeling of the VSTOXX Index 209

FIGURE 7.9 Calibration of SRJD model to European call options on the VSTOXX for all eight
maturities (MSRE used).

7.7 CONCLUSIONS

This chapter introduces a more sophisticated model, the so-called square-root jump diffu-
sion model (SRJD), for the evolution of the VSTOXX volatility index over time. It enhances
the Grünbichler and Longstaff (1996) square-root diffusion model by two components: a log
normally distributed jump component and a deterministic shift component. While the first

210 LISTED VOLATILITY AND VARIANCE DERIVATIVES

allows us to better calibrate the model to short term option quotes, the latter makes it pos-
sible to take the volatility term structure – as embodied by the eight futures on the VSTOXX
index – into account. All in all, the model yields good calibration results even in cases where
all eight option maturities are accounted for.

7.8 PYTHON SCRIPTS

7.8.1 srjd fwd cal ibrat ion.py

#

Script for term structure calibration of

Square-Root Jump Diffusion (SRJD) model

#

(c) Dr. Yves J. Hilpisch

Listed Volatility and Variance Derivatives

#

import math

import numpy as np

import pandas as pd

import scipy.optimize as sco

v0 = 17.6639 # initial VSTOXX index level

i = 0 # counter for calibration runs

reading the VSTOXX futures quotes

path = 'source/data/'

h5 = pd.HDFStore(path + 'vstoxx_data_31032014.h5', 'r')

futures_quotes = h5['futures_data']

h5.close()

selecting needed data columns and adding spot value

forwards = list(futures_quotes['PRICE'].values)

forwards.insert(0, v0)

forwards = np.array(forwards)

ttms = list(futures_quotes['TTM'].values)

ttms.insert(0, 0)

ttms = np.array(ttms)

def srd_forwards(p0):

''' Function for forward volatilities in GL96 Model.

Parameters

==========

p0: list

Advanced Modeling of the VSTOXX Index 211

set of model parameters, where

kappa: float

mean-reversion factor

theta: float

long-run mean

sigma: float

volatility factor

Returns

=======

forwards: NumPy ndarray object

forward volatilities

'''

t = ttms

kappa, theta, sigma = p0

g = math.sqrt(kappa ** 2 + 2 * sigma ** 2)

sum1 = ((kappa * theta * (np.exp(g * t) - 1)) /

(2 * g + (kappa + g) * (np.exp(g * t) - 1)))

sum2 = v0 * ((4 * g ** 2 * np.exp(g * t)) /

(2 * g + (kappa + g) * (np.exp(g * t) - 1)) ** 2)

forwards = sum1 + sum2

return forwards

def srd_fwd_error(p0):

''' Error function for GL96 forward volatilities calibration.

Parameters

==========

p0: tuple

parameter vector

Returns

=======

MSE: float

mean-squared error for p0

'''

global i

kappa, theta, sigma = p0

srd_fwds = srd_forwards(p0)

MSE = np.sum((forwards - srd_fwds) ** 2) / len(forwards)

if 2 * kappa * theta < sigma ** 2:

MSE = MSE + 100 # penalty

elif sigma < 0:

MSE = MSE + 100

print intermediate results: every 50th iteration

212 LISTED VOLATILITY AND VARIANCE DERIVATIVES

if i % 50 == 0:

print "{:6.3f} {:6.3f} {:6.3f}".format(*p0) + "{:>12.5f}".format(MSE)

i += 1

return MSE

if __name__ is '__main__':

p0 = 1.0, 17.5, 1.0

opt = sco.fmin(srd_fwd_error, p0,

xtol=0.00001, ftol=0.00001,

maxiter=1500, maxfun=2000)

7.8.2 srjd s imulat ion.py

#

Module with simulation functions for

Square-Root Jump Diffusion (SRJD) model

#

(c) Dr. Yves J. Hilpisch

Listed Volatility and Variance Derivatives

#

import math

import pickle

import numpy as np

import scipy.interpolate as scint

v0 = 17.6639 # initial VSTOXX index level

parameters of square-root diffusion

kappa = 2.0 # speed of mean reversion

theta = 15.0 # long-term volatility

sigma = 1.0 # standard deviation coefficient

parameters of log-normal jump

lamb = 0.4 # intensity (jumps per year)

mu = 0.4 # average jump size

delta = 0.1 # volatility of jump size

general parameters

r = 0.01 # risk-free interest rate

K = 17.5 # strike

T = 0.5 # time horizon

M = 150 # time steps

I = 10000 # number of MCS paths

anti_paths = True # antithetic variates

mo_match = True # moment matching

Advanced Modeling of the VSTOXX Index 213

deterministic shift parameters

varphi = pickle.load(open('varphi'))

tck = scint.splrep(varphi['ttms'], varphi['varphi'], k=1)

linear splines interpolation of

term structure calibration differences

def random_number_gen(M, I, fixed_seed=False):

''' Generate standard normally distributed pseudo-random numbers

Parameters

==========

M: int

number of time intervals

I: int

number of paths

Returns

=======

ran: NumPy ndarrayo object

random number array

'''

if fixed_seed is True:

np.random.seed(10000)

if anti_paths is True:

ran = np.random.standard_normal((M + 1, I / 2))

ran = np.concatenate((ran, -ran), axis=1)

else:

ran = np.standard_normal((M + 1, I))

if mo_match is True:

ran = ran / np.std(ran)

ran -= np.mean(ran)

return ran

def srjd_simulation(x0, kappa, theta, sigma,

lamb, mu, delta, T, M, I, fixed_seed=False):

''' Function to simulate square-root jump Difusion.

Parameters

==========

x0: float

initial value

kappa: float

mean-reversion factor

214 LISTED VOLATILITY AND VARIANCE DERIVATIVES

theta: float

long-run mean

sigma: float

volatility factor

lamb: float

jump intensity

mu: float

expected jump size

delta: float

standard deviation of jump

T: float

time horizon/maturity

M: int

time steps

I: int

number of simulation paths

Returns

=======

x: NumPy ndarray object

array with simulated SRJD paths

'''

dt = float(T) / M # time interval

shift = scint.splev(np.arange (M + 1) * dt, tck, der=0)

deterministic shift values

xh = np.zeros((M + 1, I), dtype=np.float)

x = np.zeros((M + 1, I), dtype=np.float)

xh[0, :] = x0

x[0, :] = x0

drift contribution of jump p.a.

rj = lamb * (math.exp(mu + 0.5 * delta ** 2) - 1)

1st matrix with standard normal rv

ran1 = random_number_gen(M + 1, I, fixed_seed)

2nd matrix with standard normal rv

ran2 = random_number_gen(M + 1, I, fixed_seed)

matrix with Poisson distributed rv

ran3 = np.random.poisson(lamb * dt, (M + 1, I))

for t in range(1, M + 1):

xh[t, :] = (xh[t - 1, :] +

kappa * (theta - np.maximum(0, xh[t - 1, :])) * dt

+ np.sqrt(np.maximum(0, xh[t - 1, :])) * sigma

* ran1[t] * np.sqrt(dt)

+ (np.exp(mu + delta * ran2[t]) - 1) * ran3[t]

* np.maximum(0, xh[t - 1, :]) - rj * dt)

x[t, :] = np.maximum(0, xh[t, :]) + shift[t]

return x

Advanced Modeling of the VSTOXX Index 215

def srjd_call_valuation(v0, kappa, theta, sigma,

lamb, mu, delta, T, r, K, M=M, I=I,

fixed_seed=False):

''' Function to value European volatility call option in SRDJ model.

Parameters see function srjd_simulation.

Returns

=======

call_value: float

estimator for European call present value for strike K

'''

v = srjd_simulation(v0, kappa, theta, sigma,

lamb, mu, delta, T, M, I, fixed_seed)

call_value = np.exp(-r * T) * sum(np.maximum(v[-1] - K, 0)) / I

return call_value

if __name__ is '__main__':

call_value = srjd_call_valuation(v0, kappa, theta, sigma,

lamb, mu, delta, T, r, K, M, I)

print "Value of European call by MCS: %10.4f" % call_value

7.8.3 srjd model ca l ibrat ion.py

#

Calibration of square-root jump diffusion (SRJD) model

to VSTOXX European call options traded at Eurex

Data as of 31. March 2014

All data from www.eurexchange.com

#

(c) Dr. Yves J. Hilpisch

Listed Volatility and Variance Derivatives

#

import numpy as np

import pandas as pd

import scipy.optimize as sco

import matplotlib.pyplot as plt

from srd_model_calibration import path, read_select_quotes

from srjd_simulation import srjd_call_valuation

fixed parameters

r = 0.01 # risk-less short rate

v0 = 17.6639 # VSTOXX index at 31.03.2014

M = 15 # number of time intervals

I = 100 # number of simulated paths

http://www.eurexchange.com

216 LISTED VOLATILITY AND VARIANCE DERIVATIVES

def srjd_valuation_function(p0):

''' Valuation ('difference') function for all options

of a given DataFrame object.

Parameters

==========

p0: list

set of model parameters

Returns

=======

diffs: NumPy ndarray object

array with valuation differences

'''

global relative, option_data

kappa, theta, sigma, lamb, mu, delta = p0

diffs = []

for i, option in option_data.iterrows():

value = srjd_call_valuation(v0, kappa, theta, sigma,

lamb, mu, delta,

option['TTM'], r, option['STRIKE'],

M=M, I=I, fixed_seed=True)

if relative is True:

diffs.append((value - option['PRICE']) / option['PRICE'])

else:

diffs.append(value - option['PRICE'])

diffs = np.array(diffs)

return diffs

def srjd_error_function(p0):

''' Error function for model calibration.

Parameters

==========

p0: tuple

set of model parameters

Returns

=======

MSE: float

mean squared (relative/absolute) error

'''

global i, min_MSE, option_data

OD = len(option_data)

diffs = srjd_valuation_function(p0)

kappa, theta, sigma, lamb, mu, delta = p0

Advanced Modeling of the VSTOXX Index 217

penalties

pen = 0.

if 2 * kappa * theta < sigma ** 2:

pen = 1000.0

if kappa < 0 or theta < 0 or sigma < 0 or lamb < 0 or delta < 0:

pen = 1000.0

MSE = np.sum(diffs ** 2) / OD + pen # mean squared error

min_MSE = min(min_MSE, MSE) # running minimum value

if i == 0:

print '\n' + ('{:>5s}'.format('its')

+ '{:>7s} {:>6s} {:>6s} {:>6s} {:>6s} {:>6s}'.format(

'kappa', 'theta', 'sigma', 'lamb', 'mu', 'delta')

+ '{:>12s}'.format('MSE') + '{:>12s}'.format('min_MSE'))

print intermediate results: every 100th iteration

if i % 100 == 0:

print ('{:>5d}'.format(i)

+ '{:7.3f} {:6.3f} {:6.3f} {:6.3f} {:6.3f} {:6.3f}'.format(*p0)

+ '{:>12.5f}'.format(MSE) + '{:>12.5f}'.format(min_MSE))

i += 1

return MSE

def srjd_model_calibration(data, p0= None, rel=False, mats=None):

''' Function for global and local model calibration.

Parameters

==========

option_data: pandas DataFrame object

option quotes to be used

relative: bool

relative or absolute MSE

mats: list

list of maturities of option quotes to calibrate to

Returns

=======

opt: tuple

optimal parameter values

'''

global i, min_MSE, option_data

global relative # if True: MSRE is used, if False: MSAE

min_MSE = 5000. # dummy value

relative = rel # relative or absolute

option_data = data

218 LISTED VOLATILITY AND VARIANCE DERIVATIVES

if mats is not None:

select the option data for the given maturities

option_data = option_data[option_data['MATURITY'].isin(mats)]

global optimization

if p0 is None:

i = 0 # counter for calibration iterations

p0 = sco.brute(srjd_error_function, (

(1.0, 9.1, 4.0), # kappa

(10., 20.1, 10.0), # theta

(1.0, 3.1, 2.0), # sigma

(0.0, 0.81, 0.4), # lambda

(-0.2, 0.41, 0.3), # mu

(0.0, 0.31, 0.15)), # delta

finish=None)

local optimization

i = 0

opt = sco.fmin(srjd_error_function, p0,

xtol=0.0000001, ftol=0.0000001,

maxiter=550, maxfun=700)

return opt

def plot_calibration_results(option_data, opt, mats):

''' Function to plot market quotes vs. model prices.

Parameters

==========

option_data: pandas DataFrame object

option data to plot

opt: list

optimal results from calibration

mats: list

maturities to be plotted

'''

kappa, theta, sigma, lamb, mu, delta = opt

adding model values for optimal parameter set

to the DataFrame object

values = []

for i, option in option_data.iterrows():

value = srjd_call_valuation(v0, kappa, theta, sigma,

lamb, mu, delta,

option['TTM'], r, option['STRIKE'],

M=M, I=I, fixed_seed=True)

values.append(value)

option_data['MODEL'] = values

Advanced Modeling of the VSTOXX Index 219

plotting the market and model values

height = min(len(mats) * 3, 12)

fig, axarr = plt.subplots(len(mats), 2, sharex=True,

figsize=(10, height))

for z, mat in enumerate(mats):

if z == 0:

axarr[z, 0].set_title('values')

axarr[z, 1].set_title('differences')

os = option_data[option_data. MATURITY == mat]

strikes = os. STRIKE.values

axarr[z, 0].set_ylabel('%s' % str(mat)[:10])

axarr[z, 0].plot(strikes, os.PRICE.values, label='market quotes')

axarr[z, 0].plot(strikes, os.MODEL.values, 'ro', label='model prices')

axarr[z, 0].legend(loc=0)

wi = 0.3

axarr[z, 1].bar(strikes - wi / 2, os. MODEL.values - os.PRICE.values,

width=wi)

if mat == mats[-1]:

axarr[z, 0].set_xlabel('strike')

axarr[z, 1].set_xlabel('strike')

if __name__ == '__main__':

option_data = read_select_quotes('./source/data/', tol=0.1)

option_data['VALUE'] = 0.0

opt = srjd_model_calibration()

CHAPTER 8
Terms of the VSTOXX and

its Derivatives

T his brief chapter is about the terms of the VSTOXX volatility index as well as futures and
options traded on it. The chapter starts, however, with a brief review of some facts about

the EURO STOXX 50 index whose options build the basis for the VSTOXX.

8.1 THE EURO STOXX 50 INDEX

The EURO STOXX 50 index is a European blue chip index introduced in February 1998 by
STOXX Limited, a company of Deutsche Boerse Group. It comprises the stocks of the 50
largest companies by market capitalization in the euro zone given their free float. The weight-
ing of the single components is also according to the market capitalization with a 10% cap for
any given stock. The composition and single memberships are reviewed on an annual basis
in September. The index level itself is calculated during trading days between 9 am and 6 pm
CET. Although it was only introduced in 1998, it has been recalculated on a daily basis dating
back to December 31, 1986.

Table 8.1 shows the composition of the index by sector.
Table 8.2 shows the composition of the index by country. Note that countries like the

United Kingdom or Switzerland are not represented due to the euro zone criterion.
While the VSTOXX is based on an equity index with 50 stocks only, the VIX index is on

a broader index, namely the S&P 500 which comprises 500 companies. This and the fact that
the EURO STOXX 50 index is heavy on the financial sector gives a generally higher level for
the VSTOXX index compared to the VIX index. In other words, 30 day implied volatility for
the EURO STOXX 50 index is on average higher than for the S&P 500 index.

8.2 THE VSTOXX INDEX

The calculation of the VSTOXX index is explained in detail in Chapter 5, VSTOXX Index. Its
calculation is based on out-of-the-money put and call options on the EURO STOXX 50 index.

221

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

222 LISTED VOLATILITY AND VARIANCE DERIVATIVES

TABLE 8.1 Industry sector weighting in the
EURO STOXX 50 index.

Sector Weight

Banks 16.9%
Industrial Goods & Services 9.9%
Chemicals 9.5%
Insurance 8.0%
Health Care 6.8%
Oil & Gas 6.8%
Personal & Household Goods 6.5%
Automobiles & Parts 6.2%
Telecommunications 6.1%
Food & Beverage 5.9%

Data source: STOXX Limited, data as of 30
November 2015.

The methodology for its calculation makes use of the model-free replication approach for
variance swaps (see Chapter 3, Model-Free Replication of Variance). It yields an estimate for
the 30 day implied volatility by interpolating in general the implied volatilities from the two
nearby maturity months.

In addition to the main VSTOXX 30-day index with ticker symbol V2TX, eight sub-
indexes are calculated with maturities of 1, 2, 3, 6, 9, 12, 18 and 24 months reflecting the
option series available for the EURO STOXX 50 index (see also Chapter 5, VSTOXX Index for
more details). There are other main VSTOXX indexes available with time ranges from 60 to
360 days (in intervals of 30 days).

Figure 8.1 shows the starting screen for the VSTOXX index at the Thomson Reuters Eikon
terminal. As you can see in the figure, the index mainly varied between 15% and 40% over the
period shown.

TABLE 8.2 Country weighting in the EURO
STOXX 50 index.

Country Weight

France 36.6%
Germany 32.1%
Spain 10.9%
Italy 7.7%
Netherlands 7.6%
Belgium 4.1%
Finland 1.1%

Data source: STOXX Limited, data as of 30
November 2015

Terms of the VSTOXX and its Derivatives 223

FIGURE 8.1 Thomson Reuters Eikon starting screen for the VSTOXX volatility index (vendor
code: .V2TX).

8.3 VSTOXX FUTURES CONTRACTS

VSTOXX (mini) futures contracts, in the form they are traded today, were introduced in 2009.
Their product ID is FVS. Their main contract terms are described in the following list:

� contract value: 100 EUR per index point of the underlying
� settlement: cash settlement, on the first day after final settlement day
� price quotation: the price quotation is in (volatility) points to two decimal places
� minimum price change: the minimum price change is 0.05 (volatility) points, i.e. 5 EUR
� contract months: the eight nearest successive calendar months
� last trading day: last trading day is the final settlement day
� final settlement day: 30 calendar days before the expiration day of the underlying options,

i.e. 30 calendar days before the third Friday of the expiration month of the underlying
options

� daily settlement price: determinded for the current maturity month during the closing
auction of the respective futures contract; for the other maturity months it is determined
by the average bid/ask spread of the combination order book

� final settlement price: determined by Eurex Exchange on the last trading day based on
the values of the underlying VSTOXX index between 11:30 am and 12:00 pm CET

� trading hours: 9 am to 10 pm CET (order book and Eurex Trade Entry Services)
� block trade size: 1,000 contracts
� vendor codes: FVSA Index (Bloomberg) and 0#FVS (Thomson Reuters).

Figure 8.2 shows a screen from the Thomson Reuters Eikon terminal with data about the
VSTOXX futures contracts.

224 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 8.2 Thomson Reuters Eikon screen with VSTOXX futures contract information
(vendor code: 0#FVS).

8.4 VSTOXX OPTIONS CONTRACTS

The VSTOXX options contracts, with product ID OVS, were introduced in 2010. Their main
contract terms are described in the following list. They are mainly the same as for the futures
contracts:

� contract value: 100 EUR per index point of the underlying
� settlement: cash settlement, on the first day after final settlement day
� price quotation: the price quotation is in (volatility) points with two decimal places
� minimum price change: the minimum price change is 0.05 (volatility) points, i.e. 5 EUR
� contract months: the eight nearest successive calendar months
� last trading day: last trading day is the final settlement day
� final settlement day: 30 calendar days before the expiration day of the underlying options,

i.e. 30 calendar days before the third Friday of the expiration month of the underlying
options

� daily settlement price: determined by Eurex Exchange on the basis of the Black (1976)
model

� final settlement price: determined by Eurex Exchange on the last trading day based on
the values of the underlying VSTOXX index between 11:30 am and 12:00 pm CET

� exercise: European style; exercise only on the final settlement day of the option series
until 9 pm CET

� exercise prices: minimum exercise price difference of 1 volatility point
� number of exercise prices: at least 11 different exercise prices for both calls and puts

such that 5 are in-the-money, 1 at-the-money, 5 out-of-the-money
� trading hours: 9 am to 10 pm CET (order book and Eurex Trade Entry Services)
� block trade size: 1,000 contracts
� vendor codes: V2X Index OMON (Bloomberg) and <0#FVS+> (Thomson Reuters).

Terms of the VSTOXX and its Derivatives 225

FIGURE 8.3 Thomson Reuters Eikon screen with VSTOXX options contract information (vendor
code: FVS270A6.EX).

Figure 8.3 shows a screen from the Thomson Reuters Eikon terminal with VSTOXX call and
put options data for an exercise price of 27.

8.5 CONCLUSIONS

The previous three chapters cover the VSTOXX volatility index and derivatives written on
it from a conceptual and valuation point of view. This chapter adds information about the
concrete terms of the contracts to the mix. While perhaps not as important from an academic
point of view, they are of paramount importance for practitioners.

PART

Three
Listed Variance Derivatives

CHAPTER 9
Realized Variance and Variance Swaps

9.1 INTRODUCTION

This chapter discusses basic notions and concepts needed in the context of variance swaps and
futures. It covers among others the following topics:

� realized variance: the basic measure on which variance swaps and variance futures are
defined

� variance swap: the definition of a variance swap and some numerical examples
� mark-to-market: the mark-to-market valuation approach for a variance swap
� variance swap on EURO STOXX 50: simple re-calculation of a variance swap given

historical data
� variance vs. volatility: major differences between the two measures.

9.2 REALIZED VARIANCE

Historical or realized variance 𝜎2 generally is defined as

𝜎2 ≡ 252
N

⋅
N∑

n=1

R2
n

where, for a time series Sn, n = 0, 1, ..., N, the log returns are given by

Rn ≡ log
Sn

Sn−1

Here, it is assumed that there are 252 trading days per year and that the average daily return is
zero. The simple application of these definitions yields values as decimals. Scaling by a factor
of 1002 = 10,000 gives values in percent.

𝜎2 ≡ 10000 ⋅
252
N

⋅
N∑

n=1

R2
n

229

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

230 LISTED VOLATILITY AND VARIANCE DERIVATIVES

To simplify notation, we use the notation 𝜎2 instead of �̂�2 for the realized variance from
here on.

The concept of realized variance is easily illustrated by the use of historical data for the
EURO STOXX 50 stock index. To this end, we read data from the index provider’s web-
site http://www.stoxx.com with Python and the pandas library. For details on using the pan-
das library for interactive financial analytics see chapter 2, Introduction to Python or refer to
Hilpisch (2014). As usual, we start with some Python library imports.

In [1]: import math

In [2]: import numpy as np

In [3]: import pandas as pd

First, we need the complete URL of the data set.

text/csv file containing daily closing levels of EURO STOXX 50 index

In [4]: path = 'https://www.stoxx.com/document/Indices/Current/HistoricalData/'

In [5]: es_url = path + 'hbrbcpe.txt'

Second, we read the data with the pandas library from that source. The row structure of that
file changes at the end of 2001 such that we need to define a helper column which is to be
deleted after importing the data (see also chapter 4, Data Analysis and Strategies).

column names for the data set

In [6]: cols = ['Date', 'SX5P', 'SX5E', 'SXXP', 'SXXE',

...: 'SXXF', 'SXXA', 'DK5F', 'DKXF', 'DEL']

...:

In [7]: try: # reading the data with pandas

...: es = pd.read_csv(es_url, # filename

...: header=None, # ignore column names

...: index_col=0, # index column (dates)

...: parse_dates=True, # parse these dates

...: dayfirst=True, # format of dates

...: skiprows=4, # ignore these rows

...: sep=';', # data separator

...: names=cols) # use these column names

...: del es['DEL']

...: except: # read stored data if there is no Internet connection

...: es = pd.HDFStore('./source/data/SX5E.h5', 'r')['SX5E']

...:

In [8]: es = es[es.index < '2015-12-31']

let &hbox {char '046}http://www.stoxx.com
http://www.stoxx.com
let &hbox {char '046}https://www.stoxx.com/document/Indices/Current/HistoricalData/'
https://www.stoxx.com/document/Indices/Current/HistoricalData/

Realized Variance and Variance Swaps 231

Let us inspect the final five data rows.

In [9]: es.tail()

Out[9]:

SX5P SX5E SXXP SXXE SXXF SXXA DK5F DKXF

Date

2015-12-23 3109.23 3286.68 366.39 346.14 433.58 375.53 9927.33 614.12

2015-12-24 3108.11 3284.47 366.28 346.05 433.43 375.39 9931.72 614.38

2015-12-28 3093.61 3256.49 364.49 343.54 431.26 374.32 9873.94 611.58

2015-12-29 3139.28 3314.28 369.68 349.29 438.43 378.86 10023.66 620.66

2015-12-30 3118.07 3287.98 367.70 347.02 435.82 377.20 9956.22 617.48

Third, we select the EURO STOXX 50 index data from the data set just downloaded and
imported, i.e. the data sub-set for the symbol SX5E. Using this sub-set, we generate a new
pandas DataFrame object to store the data. The historical time series of daily closing levels
of the EURO STOXX 50 can then easily be inspected by a call of the plotmethod. Figure 9.1
shows the graphical output.

In [10]: import seaborn as sns; sns.set()

In [11]: import matplotlib

In [12]: matplotlib.rcParams['font.family'] = 'serif'

In [13]: data = pd.DataFrame({'SX5E': es['SX5E']})

In [14]: data.plot(figsize=(10, 6));

F IGURE 9.1 Historical index levels of EURO STOXX 50 index.

232 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Fourth, the log returns are calculated (in vectorized fashion, i.e. simultaneously over the whole
time series) and stored as a new column in the pandas DataFrame object.

In [15]: data['R_n'] = np.log(data['SX5E'] / data['SX5E'].shift(1))

Let us inspect the last five data rows of this new DataFrame object.

In [16]: data.tail()

Out[16]:

SX5E R_n

Date

2015-12-23 3286.68 0.022262

2015-12-24 3284.47 -0.000673

2015-12-28 3256.49 -0.008555

2015-12-29 3314.28 0.017590

2015-12-30 3287.98 -0.007967

In the fifth step, we calculate the realized variance, again in vectorized fashion. With
the following code we calculate the realized variance for every single date of the time
series.

np.cumsum calculates the element-wise cumulative sum of an array/time series

np.arange(N) gives an array of the form [0, 1, ..., N-1]

In [17]: data['sigma**2'] = 10000 * 252 * (np.cumsum(data['R_n'] ** 2)

....: / np.arange(len(data)))

....:

The third column of the DataFrame object now contains the realized variance.

In [18]: data.tail()

Out[18]:

SX5E R_n sigma**2

Date

2015-12-23 3286.68 0.022262 446.280005

2015-12-24 3284.47 -0.000673 446.220423

2015-12-28 3256.49 -0.008555 446.185389

2015-12-29 3314.28 0.017590 446.230025

2015-12-30 3287.98 -0.007967 446.191722

In the sixth and final step, one can now compare the index level time series with the realized
variance over time graphically – see Figure 9.2.

Realized Variance and Variance Swaps 233

FIGURE 9.2 Historical index levels of EURO STOXX 50 index and realized variance (long
term).

In [19]: data[['SX5E', 'sigma**2']].plot(subplots=True,

....: figsize=(10, 8),

....: color='blue',

....: grid=True);

....:

Now let us implement the same approach for a shorter, recent period of time, i.e. the second
half of the year 2015. The realized variance has to be re-calculated since there is now a new
starting date.

select time series data with date later/earlier than given dates

In [20]: short = data[['SX5E', 'R_n']][(data.index > '2015-7-1')

....: & (data.index <= '2015-12-31')]

....:

calculate the realized variance in percent values

In [21]: short['sigma**2'] = 10000 * 252 * (np.cumsum(short['R_n'] ** 2)

....: / np.arange(len(short)))

....:

234 LISTED VOLATILITY AND VARIANCE DERIVATIVES

The first five rows of the new DataFrame object are as follows:

In [22]: short.head()

Out[22]:

SX5E R_n sigma**2

Date

2015-07-02 3463.25 -0.009492 inf

2015-07-03 3441.76 -0.006224 324.686954

2015-07-06 3365.20 -0.022496 799.967421

2015-07-07 3294.19 -0.021327 915.381074

2015-07-08 3327.50 0.010061 750.306250

A graphical comparison of the EUROS STOXX 50 time series data with its realized variance
for the shorter time frame is displayed in Figure 9.3.

In [23]: short[['SX5E', 'sigma**2']].plot(subplots=True,

....: figsize=(10, 8),

....: color='blue',

....: grid=True);

....:

F IGURE 9.3 Historical index levels of EURO STOXX 50 index and realized variance (short
term).

Realized Variance and Variance Swaps 235

9.3 VARIANCE SWAPS

Nowadays, variance swaps are popular financial instruments for volatility/variance trading and
hedging purposes. See, for instance, the paper of Bossu et al. (2005) for an overview of the
features and characteristics of variance swaps.

9.3.1 Def in i t ion of a Variance Swap

A variance swap is a financial instrument that allows investors to trade future realized variance
against current implied volatility (the “strike”). The characteristics and payoff of a variance
swap are more like those of a forward contract than those of a typical swap on interest rates,
currencies, equities, etc.

The payoff hT of a variance swap maturing at some future date T is

hT = 𝜎2
0,T − 𝜎2

K

with 𝜎2
K being the variance strike and 𝜎K the volatility strike.

At inception, i.e. at t = 0, the volatility strike is set such that the value of the variance
swap is zero. This implies that the volatility strike is set equal to the implied volatility 𝜎i(0, T)
for the maturity T .

9.3.2 Numerical Example

Consider a Black-Scholes-Merton (1973) world with a geometric Brownian motion driving
uncertainty for the index level of relevance (see Black and Scholes (1973) and Merton (1973)).
The risk-neutral stochastic differential equation (SDE) in this model (without dividends) is
given by:

dSt = rStdt + 𝜎StdZt

St is the index level at time t, r the constant risk-less short rate, 𝜎 the instantaneous volatility and
Zt a standard Brownian motion. For a comprehensive treatment of this and other continuous
time financial models refer, for example, to Björk (2009).

Instantaneous volatility (and variance) in this model world is constant which makes
implied volatility also constant, say 𝜎t = 𝜎i = 𝜎 = 0.2. Given, for example, a Monte Carlo sim-
ulation of this model, realized variance might deviate from 𝜎2 = 0.22 = 0.04. Let us implement
such a Monte Carlo simulation for the model. An Euler discretization scheme for the above
SDE is given for t ≥ Δt by

St = St−Δt exp
((

r − 𝜎2

2

)
Δt + 𝜎

√
Δtzt

)

with Δt being the fixed time interval used for the discretization and zt a standard normally
distributed random variable.

A Python implementation might look as follows (refer to Hilpisch (2014) for details on
Monte Carlo simulation with Python):

236 LISTED VOLATILITY AND VARIANCE DERIVATIVES

def generate_path(S0, r, sigma, T, M):

''' Function to simulate a geometric Brownian motion.

Parameters

==========

S0: float

initial index level

r: float

constant risk-less short rate

sigma: float

instantaneous volatility

T: float

date of maturity (in year fractions)

M: int

number of time intervals

Returns

=======

path: pandas DataFrame object

simulated path

'''

length of time interval

dt = float(T) / M

random numbers

np.random.seed(100000)

rn = np.random.standard_normal(M + 1)

rn[0] = 0 # to keep the initial value

simulation of path

path = S0 * np.exp(np.cumsum((r - 0.5 * sigma ** 2) * dt

+ sigma * math.sqrt(dt) * rn))

setting initial value

path = pd.DataFrame(path, columns=['index'])

return path

Using this function and providing numerical parameters returns a pandas DataFrame with a
single simulated path for the model. A sample path is shown in Figure 9.4.

In [24]: S0 = 100 # initial index level

In [25]: r = 0.005 # risk-less short rate

In [26]: sigma = 0.2 # instantaneous volatility

In [27]: T = 1.0 # maturity date

Realized Variance and Variance Swaps 237

In [28]: M = 50 # number of time intervals

In [29]: data = generate_path(S0, r, sigma, T, M)

In [30]: data.plot(figsize=(10, 5));

Given such a simulated path, one can calculate realized variance over time in the same fashion
as above for the EURO STOXX 50 index.

In [31]: data['R_t'] = np.log(data['index'] / data['index'].shift(1))

scaling now by M / T since returns are not necessarily daily returns

In [32]: data['sigma**2'] = 10000 * M / T * (np.cumsum(data['R_t'] ** 2)

....: / np.arange(len(data)))

....:

In [33]: data.tail()

Out[33]:

index R_t sigma**2

46 86.914274 –0.020492 462.916655

47 86.263467 –0.007516 453.668339

48 87.101314 0.009666 445.190118

49 87.020414 –0.000929 436.113416

50 83.157399 –0.045408 448.009603

Figure 9.5 shows the results graphically.

F IGURE 9.4 Sample path based on geometric Brownian motion.

238 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 9.5 Geometric Brownian motion sample path with realized variance.

In [34]: data[['index', 'sigma**2']].plot(subplots=True,

....: figsize=(10, 8),

....: color='blue',

....: grid=True);

....:

In this case, the payoff hT of the variance swap at maturity is:

In [35]: data['sigma**2'].iloc[–1] – 20 ** 2

Out[35]: 48.009603247833468

In general, variance swaps have a notional that differs from a value of 1, i.e. the above value
would have to be multiplied by a notional not equal to 1. It is market practice to define the
variance swap notional in volatility terms:

Notional =
VegaNotional

2 ⋅ Strike

Realized Variance and Variance Swaps 239

This can be done consistently due to the following relationship for a derivative instrument f
depending on some underlying S with volatility 𝜎 (and satisfying further technical assump-
tions):

𝜕f

𝜕𝜎
=

𝜕f

𝜕(𝜎2)
⋅ 2𝜎

⇔
𝜕f

𝜕(𝜎2)
=

𝜕f
𝜕𝜎

2𝜎

Say we want a vega notional of 100,000 currency units, i.e.we want a payoff of 100,000 cur-
rency units per volatility point difference (e.g.when realized volatility is 1 percentage point
above the volatility strike). The variance notional then is

Notional = 100000
2 ⋅ 20

= 2500

In [36]: Notional = 100000. / (2 * 20)

In [37]: Notional

Out[37]: 2500.0

Given this value for the variance notional, the payoff of the variance swap in the above numer-
ical example would be:

In [38]: Notional * (data['sigma**2'].iloc[–1] – 20 ** 2)

Out[38]: 120024.00811958367

9.3.3 Mark-to-Market

What about the value of a variance swap over time? A major advantage of working with vari-
ance (instead of volatility) is that variance is additive over time (when a mean of about zero
is assumed). This gives rise to the following present value of a variance swap at time t, for a
constant short rate r:

Vt = Notional ⋅ e−r(T−t) ⋅

(
t ⋅ 𝜎2

0,t + (T − t) ⋅ 𝜎2
i (t, T)

T
− 𝜎2

K

)

The major component of the mark-to-market value of the variance swap is the time weighted
average of realized variance 𝜎2

0,t up until time t and implied variance 𝜎2
i (t, T) for the remaining

life time from t onwards.

240 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In the model economy, 𝜎2
i (t, T) = 𝜎2

K = 𝜎2 = 400. Therefore:

Vt = Notional ⋅ e−r(T−t) ⋅

(
t ⋅ 𝜎2

0,t + (T − t) ⋅ 400

T
− 400

)

For t = 0, this obviously gives Vt = 0 as desired.
This is readily implemented in Python given that we already have realized variance in a

pandas DataFrame object. We calculate it again in vectorized fashion for t = 0,Δt, 2Δt..., T .

In [39]: dt = T / M

In [40]: t = np.arange(M + 1) * dt

In [41]: t

Out[41]:

array([0. , 0.02, 0.04, 0.06, 0.08, 0.1 , 0.12, 0.14, 0.16,

0.18, 0.2 , 0.22, 0.24, 0.26, 0.28, 0.3 , 0.32, 0.34,

0.36, 0.38, 0.4 , 0.42, 0.44, 0.46, 0.48, 0.5 , 0.52,

0.54, 0.56, 0.58, 0.6 , 0.62, 0.64, 0.66, 0.68, 0.7 ,

0.72, 0.74, 0.76, 0.78, 0.8 , 0.82, 0.84, 0.86, 0.88,

0.9 , 0.92, 0.94, 0.96, 0.98, 1.])

In [42]: sigma_K = 20

In [43]: data['V_t'] = Notional * np.exp(–r * (T – t)) * ((t * data['sigma**2']

....: + (T – t) * sigma_K ** 2) / T – sigma_K ** 2)

....:

In [44]: data.tail()

Out[44]:

index R_t sigma**2 V_t

46 86.914274 –0.020492 462.916655 144650.434548

47 86.263467 –0.007516 453.668339 126082.766551

48 87.101314 0.009666 445.190118 108434.594165

49 87.020414 –0.000929 436.113416 88469.022898

50 83.157399 –0.045408 448.009603 120024.008120

Graphically, we get the result as presented in Figure 9.6.

In [45]: data[['index', 'sigma**2', 'V_t']].plot(subplots=True,

....: figsize=(10, 8),

....: color='blue',

....: grid=True);

....:

Realized Variance and Variance Swaps 241

FIGURE 9.6 Geometric Brownian motion sample path with realized variance and variance swap
mark-to-market values.

9.3.4 Vega Sensit iv i ty

What is the sensitivity of the mark-to-market value of a variance swap with regard to implied
volatility? Recall that the value itself is given by

Vt = Notional ⋅ e−r(T−t) ⋅

(
t ⋅ 𝜎2

0,t + (T − t) ⋅ 𝜎2
i (t, T)

T
− 𝜎2

K

)

Differentiation with respect to 𝜎i gives a vega of

Vegat =
𝜕Vt

𝜕𝜎i
= Notional ⋅ e−r(T−t) ⋅

T − t
T

⋅ 2𝜎i(t, T)

At inception of the variance swap, we have a vega of

Vega0 =
𝜕V0

𝜕𝜎i

=
VegaNotional

2 ⋅ 𝜎i(0, T)
⋅ e−r(T−t) ⋅

T − t
T

⋅ 2𝜎i(0, T)

= e−rT ⋅ VegaNotional

242 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In this case, vega equals the discounted vega notional. For general t, we get

Vegat =
𝜕Vt

𝜕𝜎i

=
VegaNotional

2 ⋅ 𝜎i(t, T)
⋅ e−r(T−t) ⋅

T − t
T

⋅ 2𝜎i(t, T)

= e−r(T−t) ⋅ VegaNotional ⋅
T − t

T

This illustrates that vega sensitivity diminishes over time and that it is proportional to the
time-to-maturity.

9.3.5 Variance Swap on the EURO STOXX 50

We are now ready to do a historical re-calculation of a variance swap on the EURO STOXX
50. We will re-calculate a variance swap during June 2015. To this end we also use VSTOXX
sub-index data for the shortest maturity available which provides us with a time series for the
correct implied volatilities.

EURO STOXX 50 data is already available.

In [46]: es.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 7475 entries, 1986-12-31 to 2015-12-30

Data columns (total 8 columns):

SX5P 7475 non–null float64

SX5E 7475 non–null float64

SXXP 7475 non–null float64

SXXE 7475 non–null float64

SXXF 7475 non–null float64

SXXA 7475 non–null float64

DK5F 7475 non–null float64

DKXF 7475 non–null float64

dtypes: float64(8)

memory usage: 525.6 KB

The VSTOXX data can be read from the same source (see chapter 4, Data Analysis and Strate-
gies).

In [47]: vs_url = path + 'h_vstoxx.txt'

In [48]: try: # reading the data with pandas

....: vs = pd.read_csv(vs_url, # filename

....: index_col=0, # index column (dates)

....: parse_dates=True, # parse date information

Realized Variance and Variance Swaps 243

....: dayfirst=True, # day before month

....: header=2, # header/column names

....: sep=',') # separator character

....: except: # read stored data if there is no Internet connection

....: vs = pd. HDFStore('./source/data/V2TX.h5', 'r')

....:

In [49]: vs.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 4357 entries, 1999-01-04 to 2016-02-12

Data columns (total 9 columns):

V2TX 4357 non–null float64

V6I1 3906 non–null float64

V6I2 4357 non–null float64

V6I3 4296 non–null float64

V6I4 4357 non–null float64

V6I5 4357 non–null float64

V6I6 4340 non–null float64

V6I7 4357 non–null float64

V6I8 4343 non–null float64

dtypes: float64(9)

memory usage: 340.4 KB

The data column V6I2 contains the index values (= implied volatility) for the nearest option
series maturity available (i.e within a maximum of one month). For example, on June 1, 2015,
the index values represent implied volatilities for the maturity on the third Friday in June 2015,
i.e. June 19. Maturity T then is:

15 trading days

In [50]: T = 15.

The variance swap we want to re-calculate should start on June 1, 2015 and will have a maturity
until June 19. It will have a vega notional of 100,000 EUR.

First, let us select and collect the data needed from the available data sets.

In [51]: data = pd.DataFrame(es['SX5E'][(es.index > '2015-5-31')

....: & (es.index < '2015-6-20')])

....:

In [52]: data['V6I1'] = vs['V6I1'][(vs.index > '2015-5-31')

....: & (vs.index < '2015-6-20')]

....:

244 LISTED VOLATILITY AND VARIANCE DERIVATIVES

The new data set looks as follows. Note that the VSTOXX sub-index is only available up until
two days before the maturity date.

In [53]: data

Out[53]:

SX5E V6I1

Date

2015-06-01 3575.04 25.8710

2015-06-02 3561.89 25.9232

2015-06-03 3583.82 25.7958

2015-06-04 3556.38 26.2418

2015-06-05 3510.01 27.4496

2015-06-08 3468.31 27.2996

2015-06-09 3456.79 26.8020

2015-06-10 3526.48 25.8610

2015-06-11 3551.91 26.3897

2015-06-12 3502.77 29.7725

2015-06-15 3438.07 34.5593

2015-06-16 3454.09 36.2222

2015-06-17 3428.76 34.7235

2015-06-18 3450.45 NaN

2015-06-19 3455.80 NaN

We forward fill the NA values since for the vectorized calculations to follow we want to use
these data points but they will have a negligible or zero influence anyway.

In [54]: data = data.fillna(method='ffill')

We save the data set for later re-use.

In [55]: h5 = pd.HDFStore('./source/data/SX5E_V6I1.h5')

In [56]: h5['SX5E_V6I1'] = data

In [57]: h5.close()

The implied volatility on June 1 was 25.871%. This gives rise to a variance swap
strike of 𝜎2

K = 25.8712 = 669.31. For a vega notional of 100,000, the variance notional
therefore is

Notional = 100000
2 ⋅ 25.871

= 1932.67

Realized Variance and Variance Swaps 245

In [58]: data['V6I1'][0]

Out[58]: 25.870999999999999

In [59]: sigma_K = data['V6I1'][0]

In [60]: Notional = 100000 / (2. * sigma_K)

In [61]: Notional

Out[61]: 1932.665919369178

Three time series now have to be calculated:

� log returns of the EURO STOXX 50 index
� realized variance of the EURO STOXX 50 index
� mark-to-market values of the variance swap.

First, the log returns.

In [62]: data['R_t'] = np.log(data['SX5E'] / data['SX5E'].shift (1))

Second, the realized variance which we scale by a factor of 10,000 to end up with percentage
values and not decimal values.

In [63]: data['sigma**2'] = 10000 * 252 * (np.cumsum(data['R_t'] ** 2)

....: / np.arange(len(data)))

....:

Third, the mark-to-market values. We start with the array of elapsed days.

In [64]: t = np.arange(1, 16)

In [65]: t

Out[65]: array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])

We assume a fixed short rate of 0.1%.

In [66]: r = 0.001

In [67]: data['V_t'] = np.exp(–r * (T – t) / 365.) * ((t * data['sigma**2']

....: + (T – t) * data['V6I1'] ** 2) / T – sigma_K ** 2)

....:

The initial value of the variance swap is zero.

246 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [68]: data['V_t'].loc['2015-06-01'] = 0.0

The complete results data set is given below.

In [69]: data

Out[69]:

SX5E V6I1 R_t sigma**2 V_t

Date

2015-06-01 3575.04 25.8710 NaN NaN 0.000000

2015-06-02 3561.89 25.9232 -0.003685 34.220799 -82.332277

2015-06-03 3583.82 25.7958 0.006138 64.580457 -124.049833

2015-06-04 3556.38 26.2418 -0.007686 92.677552 -139.593571

2015-06-05 3510.01 27.4496 -0.013124 178.023718 -107.644092

2015-06-08 3468.31 27.2996 -0.011951 214.408816 -136.380856

2015-06-09 3456.79 26.8020 -0.003327 183.323049 -200.634978

2015-06-10 3526.48 25.8610 0.019960 300.555651 -196.905901

2015-06-11 3551.91 26.3897 0.007185 279.249096 -223.189008

2015-06-12 3502.77 29.7725 -0.013931 302.564935 -172.129074

2015-06-15 3438.07 34.5593 -0.018644 359.901600 -86.887791

2015-06-16 3454.09 36.2222 0.004649 332.134168 -141.190592

2015-06-17 3428.76 34.7235 -0.007360 315.833038 -234.822528

2015-06-18 3450.45 34.7235 0.006306 299.246550 -309.629583

2015-06-19 3455.80 34.7235 0.001549 278.303868 -391.004773

The payoff of the variance swap at maturity given the variance notional then is:

In [70]: Notional * data['V_t'][-1]

Out[70]: -755681.59959400445

Finally, a plot of the major results is presented as Figure 9.7.

In [71]: data[['SX5E', 'sigma**2', 'V_t']].plot(subplots=True,

....: color='blue',

....: figsize=(10, 8));

....:

We save the data for use in the next chapter.

In [72]: h5 = pd.HDFStore('./source/data/var_data.h5', 'a')

In [73]: h5['var_swap'] = data

In [74]: h5.close()

Realized Variance and Variance Swaps 247

FIGURE 9.7 EURO STOXX 50 historical index levels with realized variance and futures prices.

9.4 VARIANCE VS. VOLATIL ITY

Both variance and volatility are tradable asset classes. The following sub-sections discuss some
differences between the two measures of variability and the two asset classes, respectively. See
also Bennett and Gil (2012) on this topic.

9.4.1 Squared Variat ions

Squared variations are in many application scenarios the better measure for variability com-
pared to simple variations. By squaring variations, one makes sure that variations do not cancel
each other out. Since volatility is generally defined as the square root of variance, both mea-
sures avoid the cancelling of positive and negative variations.

9.4.2 Addit iv i ty in Time

Although both volatility and variance avoid the cancelling out of variations, there is a major
difference between both when it comes to additivity. While variance is additive (linear) in time,
volatility is convex (nonlinear) in time.

248 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Assume we have N return observations and assume 0 < M < N. We then have:

𝜎2 ≡ 252
N

⋅
N∑

n=1

R2
n

= 252
N

⋅

(
M∑

n=1

R2
n +

N∑
n=M+1

R2
n

)

= 252
N

⋅
M∑

n=1

R2
n +

252
N

⋅
N∑

n=M+1

R2
n

≡ 𝜎2
1 + 𝜎2

2

Here, 𝜎2
1 is the variance for the first part and 𝜎2

2 for the second part of the return observations.

Note that one needs to keep the weighting factor constant at 252
N

in order to retain additivity.
This aspect can be illustrated by a simple numerical example. Consider first a function to

calculate realized variance that we can re-use.

function to calculate the realized variance

In [75]: rv = lambda ret_dat: 10000 * 252. / N * np.sum(ret_dat ** 2)

Second, a simple example data set...

In [76]: data = np.array([0.01, 0.02, 0.03, 0.04, 0.05])

… of length N = 5.

In [77]: N = len(data)

In [78]: N

Out[78]: 5

Then, we can easily see additivity.

In [79]: rv(data[:2]) + rv(data[2:])

Out[79]: 2772.0000000000005

In [80]: rv(data)

Out[80]: 2772.0000000000005

Realized Variance and Variance Swaps 249

Next, we use the EURO STOXX 50 index data from before. Let us have a look at the year
2013 and the two halves of the year.

In [81]: data = pd.DataFrame(es['SX5E'][(es.index > '31-12-2012')

....: & (es.index < '01-01-2014')])

....:

we need log returns

In [82]: data['R_t'] = np.log(data['SX5E'] / data['SX5E'].shift(1))

We have 256 index level observations and 255 return observations.

In [83]: N = len(data) – 1

In [84]: N

Out[84]: 255

In [85]: var_1st = rv(data['R_t'][data.index < '2013-07-01'])

In [86]: var_1st

Out[86]: 159.1490165508348

In [87]: var_2nd = rv(data['R_t'][data.index > '2013-06-30'])

In [88]: var_2nd

Out[88]: 98.3424775210876

Again, additivity is given for the realized variance.

In [89]: var_1st + var_2nd

Out[89]: 257.4914940719224

In [90]: var_full = rv(data['R_t'])

In [91]: var_full

Out[91]: 257.4914940719223

Obviously, this is different when considering realized volatility instead of variance.

In [92]: vol_1st = math.sqrt(rv(data['R_t'][data.index < '2013-07-01']))

In [93]: vol_1st

Out[93]: 12.615427719694438

250 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [94]: vol_2nd = math.sqrt(rv(data['R_t'][data.index > '2013-06-30']))

In [95]: vol_2nd

Out[95]: 9.916777577473823

In [96]: vol_1st + vol_2nd

Out[96]: 22.53220529716826

In [97]: vol_full = math.sqrt(rv(data['R_t']))

In [98]: vol_full

Out[98]: 16.04654149877544

This is something to be expected due to the sub-additivity
√

a + b ≤ √
a +

√
b of the square-

root function.

9.4.3 Stat ic Hedges

Realized variance can be statically replicated (hedged) by positions in out-of-the money put
and call options. This is a well-known result which is presented in detail in chapter 3, Model-
Free Replication of Variance. It is the basic idea and approach underlying volatility indexes
like the VSTOXX and the VIX. This also makes it possible to statically replicate and hedge
variance swaps by the use of options – something not true for volatility swaps, for example.

9.4.4 Broad Measure of Risk

Implied volatility generally is only defined for a certain maturity and a certain strike. When the
spot moves, at-the-money implied volatility changes as well. By contrast, (implied) variance
is a measure taking into account all strikes for a given maturity. This can be seen from the fact
that the traded variance level of a variance swap is applicable independently of the spot of the
underlying (index).

9.5 CONCLUSIONS

This chapter introduces variance swaps both theoretically as well as based on concrete numer-
ical examples. Central notions are realized variance, variance/volatility strike and variance
notional. Mark-to-market valuations of such instruments are easily accomplished due to their
very nature. As a consequence, sensitivities of variance swaps, for example, with regard to vega
are also easily derived. The major numerical example is based on EURO STOXX 50 index and
log return data. A hypothetical variance swap with inception on June 1, 2015 and maturity on
June 19, 2015 is valued by the mark-to-market approach using VSTOXX sub-index data with
the very same maturity as a proxy for the implied volatility during the life time of the variance
swap.

CHAPTER 10
Variance Futures at Eurex

10.1 INTRODUCTION

Based on the previous chapter, this chapter introduces the Eurex variance futures contracts and
their major characteristics. It covers mainly the following topics:

� introduction to and motivation for Eurex variance futures
� variance futures concepts needed to understand and trade in Eurex variance futures
� example calculation for a variance future illustrating the concepts by numerical results
� comparison between variance swaps and futures based on the numerical example.

By introducing variance futures on the EURO STOXX 50 stock index, Eurex standardizes one
of the most popular types of volatility/variance derivatives, namely variance swaps. Such a
standardization brings a number of benefits to the markets:

� unified terms: standardization leads to unified, well-documented terms
� transparency: centralized trading at Eurex increases transparency for all market partici-

pants
� liquidity: standardization and centralization increase liquidity (market depth) in the vari-

ance futures
� fungibility: variance futures are fully fungible and can be traded in and out at any point

over their life time
� increased market integrity: clearing by Eurex ensures, among other things, low coun-

terparty risk and high risk management standards.

Variance futures replicate the payoff of Over-the-Counter (OTC) variance swaps and are traded
based on OTC conventions in vega notional and at volatility strikes. Daily margin payments
based on settlement prices add up to the final settlement payoff of the OTC variance swap. The
start of trading for the variance futures of Eurex was September 22, 2014.

Net present value (NPV) effects are accounted for by two different pricing components:

� discount factor as for the mark-to-market for variance swaps
� accumulated return on modified variation margin (ARMVM) for the daily margin

payments.

251

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

252 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In order to perfectly mimic the cash flow of a variance swap with the same terms, variance
futures trading makes certain conversions necessary. This is mainly due to the variance swaps
being based on end-of-day returns of the respective index (which cannot be exactly known
during the day). Therefore, there are two conversions:

� intraday: intraday trades are booked with the desired quantity and at preliminary futures
prices

� end-of-day: at the end of the day, intraday trades are cancelled and re-booked with the
same quantity at the futures settlement prices (taking into account the realized variance
for the rest of the day, i.e. since the time the trade was initially booked).

All trades are booked and conversions are made by the Eurex T7 trading system. While vari-
ance futures are quoted in vega notional and volatility strikes, bookings and clearings are made
only in futures and futures prices.

10.2 VARIANCE FUTURES CONCEPTS

Standardized trading and settlement in variance futures is based on a number of financial con-
cepts. This section introduces all necessary concepts and provides formal definitions.

10.2.1 Real i zed Variance

Realized variance 𝜎2 for the Eurex variance futures is defined as

𝜎2 ≡ 10000 ⋅
252
N

⋅
N∑

n=1

R2
n

where, for a time series Sn, n = 0, 1,… , N, of daily EURO STOXX 50 closing values, the log
returns are given by

Rn ≡ log
Sn

Sn−1

Here, it is assumed that there are 252 trading days per year and that the average daily return is
zero. Note the scaling factor of 10,000 to get to the market convention of quoting variance in
percent and not in decimal values.

10.2.2 Net Present Value Concepts

There are two concepts that take into account that the daily margin cash flows of trading futures
leads, time-wise, to a different cash flow profile than the single payoff of a variance future at
maturity.

Variance Futures at Eurex 253

Discount Factor The first is the discount factor DFt which is defined for a maturity date
T and a current date t by

DFt = e−
r(T−t)

365

Here, r is the relevant interest rate to be applied to the remaining time-to-maturity (T − t),
calculated in days. Eurex uses Euribor rates to calculate the discount factor.

Let us have a look at the development of the Euribor rates in 2014 from January to the
beginning of September. Euribor rates are available on the website www.euribor-rates.eu or
in a slightly more convenient form as Excel spreadsheet files for download on the website
www.emmi-benchmarks.eu/euribor-org/euribor-rates.html. From this last website, we have
downloaded Euribor rates data for 2014 which we use in the following. For details on the
Python usage that follows, see chapter 2, Introduction to Python or refer to Hilpisch (2014).
pandas is once again the library we are working with.

In [1]: import pandas as pd

With pandas, you can read data from a spreadsheet file as follows:

read data from CSV file

In [2]: eb = pd.read_csv('./source/data/hist_EURIBOR_2015.csv', # filename

...: index_col=0, # index column

...: parse_dates=True, # parsing date information

...: dayfirst=True) # European date convention

...:

In [3]: eb. info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 135 entries, 2015-01-02 to 2015-07-14

Data columns (total 8 columns):

1w 135 non-null float64

2w 135 non-null float64

1m 135 non-null float64

2m 135 non-null float64

3m 135 non-null float64

6m 135 non-null float64

9m 135 non-null float64

12m 135 non-null float64

dtypes: float64(8)

memory usage: 9.5 KB

http://www.euribor-rates.eu
http://www.emmi-benchmarks.eu/euribor-org/euribor-rates.html

254 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 10.1 Historical Euribor rates.

Figure 10.1 shows the evolution of the eight different rates over time (values in percent).

In [4]: import seaborn as sns; sns. set()

In [5]: import matplotlib

In [6]: matplotlib.rcParams['font.family'] = 'serif'

In [7]: eb.plot(figsize=(10, 6));

Short term interest rates are pretty low, leading to a rather low impact of the discount factor in
such an environment. Let us calculate the discount factor for the longest maturity with the last
available rate for the 12 month horizon.

In [8]: eb.tail()

Out[8]:

1w 2w 1m 2m 3m 6m 9m 12m

2015-07-08 -0.131 -0.118 -0.071 -0.038 -0.018 0.049 0.101 0.164

2015-07-09 -0.131 -0.118 -0.071 -0.039 -0.018 0.049 0.100 0.163

2015-07-10 -0.133 -0.118 -0.071 -0.039 -0.018 0.049 0.101 0.164

2015-07-13 -0.131 -0.118 -0.071 -0.038 -0.019 0.049 0.102 0.166

2015-07-14 -0.131 -0.118 -0.071 -0.039 -0.019 0.049 0.101 0.168

For a 12 month period the discount effect is less than half a percent.

Variance Futures at Eurex 255

In [9]: import math

In [10]: math.exp(-0.00168 * 365. / 365)

Out[10]: 0.9983214104100598

ARMVM The accumulated return on modified variation margin (ARMVM) takes into account
that variance futures trading leads to daily margin payments that have an impact on the present
value of the variance future. For given dates t and t − 1, ARMVM is given by

ARMV Mt = ARMV Mt−1 ⋅ e
rΔt
365 +

(
FS

t−1 − C
) (

e
rΔt
365 − 1

)
Here, r is the relevant interest rate to be used, Δt is the difference between dates t and t − 1 in
days, FS

t−1 is the variance futures settlement price at t − 1 and C is a constant fixed at a level
of 3,000. If t = 1, i.e. on the first settlement day (say Monday), ARMVM1 ≡ 0 and FS

1 ≡ C.
The relevant rate for the ARMVM calculation is the Eonia rate. On the web-

site www.emmi-benchmarks.eu/euribor-eonia-org/about-eonia.html you find the following
explanation:

“Eonia® (Euro OverNight Index Average) is the effective overnight reference
rate for the euro. It is computed as a weighted average of all overnight
unsecured lending transactions in the interbank market, undertaken in the
European Union and European Free Trade Association (EFTA) countries.”

This website also provides historical Eonia data for download. Let us have a look at the his-
torical development of the Eonia rates for a couple of weeks in 2015.

read data from Excel spreadsheet file

In [11]: eo = pd.read_csv('./source/data/hist_EONIA_2015.csv', # filename

....: index_col=0, # index column

....: parse_dates=True, # parsing date information

....: dayfirst=True) # European date convention

....:

In [12]: eo. info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 60 entries, 2015-04-21 to 2015-07-14

Data columns (total 1 columns):

EONIA 60 non-null float64

dtypes: float64(1)

memory usage: 960.0 bytes

Again, we can easily visualize the data set (see Figure 10.2).

http://www.emmi-benchmarks.eu/euribor-eonia-org/about-eonia.html

256 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 10.2 Historical Eonia rates.

In [13]: eo.plot(figsize=(10, 5))

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x2ab2484c2d50>

<matplotlib.figure.Figure at 0x2ab247dd0050>

The last available values in the data set for Eonia are:

In [14]: eo.tail()

Out[14]:

EONIA

2015-07-08 -0.118

2015-07-09 -0.121

2015-07-10 -0.120

2015-07-13 -0.118

2015-07-14 -0.112

Let us work with a value (in decimals) of reo = −0.001.

In [15]: r_eo = -0.001

Now consider the second settlement day t = 2 (say Tuesday), assume that a rate of reo applies
and remember that FS

1 = 3000. We then have

ARMV M2 = 0 ⋅ e
reo⋅1
365 + (3000 − 3000)

(
e

reo⋅1
365 − 1

)
= 0

Variance Futures at Eurex 257

Consider now the third settlement day t = 3 (say Wednesday). Assume that the futures settle-
ment price has risen the day before to FS

2 = 3100. Now

ARMV M3 = 0 ⋅ e
reo⋅1
365 + (3100 − 3000)

(
e

reo⋅1
365 − 1

)

The effect is rather small.

In [16]: ARMVM3 = 0 * math.exp(r_eo / 365) + (3100 - 3000)

* (math.exp(r_eo / 365) - 1)

In [17]: ARMVM3

Out[17]: -0.0002739722274380796

One day later, on the fourth settlement day t = 4, and assuming that the variance futures set-
tlement price has fallen the day before to F3 = 3050, we get

ARMV M4 = ARMV M3 ⋅ e
reo⋅1
365 + (3050 − 3000)

(
e

reo⋅1
365 − 1

)

In [18]: ARMVM4 = (ARMVM3 * math.exp(r_eo / 365)

....: + (3050 - 3000) * (math.exp(r_eo / 365) - 1))

....:

In [19]: ARMVM4

Out[19]: -0.0004109575905493053

10.2.3 Traded Variance Str ike

The traded variance strike 𝜎2
t at date t is the time weighted average of the realized variance 𝜎2

0,t

weighted by the number of elapsed days t and the traded implied variance 𝜎2
i (t, T) weighted

by the remaining life time of the variance future in days:

𝜎2
t =

t ⋅ 𝜎2
0,t + (T − t) ⋅ 𝜎2

i (t, T)

T

10.2.4 Traded Futures Price

The traded futures price Ft given the other quantities from before is then defined as

Ft = DFt ⋅
(
𝜎2

t − 𝜎2
i (t, T)

)
− ARMV Mt + 3000

The scaling constant C = 3000 is chosen to ensure that the futures price cannot become
negative.

258 LISTED VOLATILITY AND VARIANCE DERIVATIVES

10.2.5 Number of Futures

Variance futures are traded in vega notional and volatility strikes. However, settlement takes
place in futures (or variance notional) and variance strikes. The number of futures is calculated
according to the formula

futures =
VegaNotional

2 ⋅ 𝜎i(t, T)
⋅

T
T − t

with 𝜎i(t, T) as the traded implied volatility strike.

10.2.6 Par Variance Str ike

At daily settlement, i.e. when the log return for the EURO STOXX 50 for that day is
known, the par variance strike 𝜎2

p is calculated using the then current settled implied
volatility 𝜎i.

𝜎2
p =

t ⋅ 𝜎2
0,t + (T − t) ⋅ 𝜎2

i

T

10.2.7 Futures Sett lement Price

Finally, the daily futures settlement price FS
t is calculated according to the following formula

where all components are as defined as before:

FS
t = DFt ⋅

(
𝜎2

p − 𝜎2
K

)
− ARMV Mt + 3000

The futures settlement price is the mark-to-market value of the corresponding variance swap
minus the ARMVM plus the scaling factor of 3,000.

10.3 EXAMPLE CALCULATION FOR A VARIANCE FUTURE

In this section, we conduct an example calculation for the Eurex variance futures contract given
historical data as used in sub-section 9.3.5, Variance Swap on the EURO STOXX 50.

In [20]: import pandas as pd

In [21]: h5 = pd.HDFStore('./source/data/SX5E_V6I1.h5', 'r')

In [22]: data = h5['SX5E_V6I1']

In [23]: h5.close()

In [24]: data

Variance Futures at Eurex 259

Out[24]:

SX5E V6I1

Date

2015-06-01 3575.04 25.8710

2015-06-02 3561.89 25.9232

2015-06-03 3583.82 25.7958

2015-06-04 3556.38 26.2418

2015-06-05 3510.01 27.4496

2015-06-08 3468.31 27.2996

2015-06-09 3456.79 26.8020

2015-06-10 3526.48 25.8610

2015-06-11 3551.91 26.3897

2015-06-12 3502.77 29.7725

2015-06-15 3438.07 34.5593

2015-06-16 3454.09 36.2222

2015-06-17 3428.76 34.7235

2015-06-18 3450.45 34.7235

2015-06-19 3455.80 34.7235

We add Euribor and Eonia data to the pandas DataFrame object. For simplicity, we use the
2 week Euribor values throughout.

In [25]: data = data.join(eb['2w'], how='left')

In [26]: data = data.join(eo, how='left')

In [27]: data

Out[27]:

SX5E V6I1 2w EONIA

Date

2015-06-01 3575.04 25.8710 -0.108 -0.106

2015-06-02 3561.89 25.9232 -0.109 -0.122

2015-06-03 3583.82 25.7958 -0.109 -0.143

2015-06-04 3556.38 26.2418 -0.109 -0.138

2015-06-05 3510.01 27.4496 -0.109 -0.115

2015-06-08 3468.31 27.2996 -0.110 -0.127

2015-06-09 3456.79 26.8020 -0.110 -0.126

2015-06-10 3526.48 25.8610 -0.111 -0.117

2015-06-11 3551.91 26.3897 -0.111 -0.120

2015-06-12 3502.77 29.7725 -0.113 -0.125

2015-06-15 3438.07 34.5593 -0.108 -0.119

2015-06-16 3454.09 36.2222 -0.109 -0.125

2015-06-17 3428.76 34.7235 -0.109 -0.110

2015-06-18 3450.45 34.7235 -0.109 -0.118

2015-06-19 3455.80 34.7235 -0.108 -0.120

260 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Let us add the log returns to the data set as well as the realized variance.

In [28]: import numpy as np

In [29]: data['R_t'] = np.log(data['SX5E'] / data['SX5E'].shift(1))

In [30]: data['sigma**2'] = 10000 * 252 * (np.cumsum(data['R_t'] ** 2)

....: / np.arange(len(data)))

....:

In [31]: data

Out[31]:

SX5E V6I1 2w EONIA R_t sigma**2

Date

2015-06-01 3575.04 25.8710 -0.108 -0.106 NaN NaN

2015-06-02 3561.89 25.9232 -0.109 -0.122 -0.003685 34.220799

2015-06-03 3583.82 25.7958 -0.109 -0.143 0.006138 64.580457

2015-06-04 3556.38 26.2418 -0.109 -0.138 -0.007686 92.677552

2015-06-05 3510.01 27.4496 -0.109 -0.115 -0.013124 178.023718

2015-06-08 3468.31 27.2996 -0.110 -0.127 -0.011951 214.408816

2015-06-09 3456.79 26.8020 -0.110 -0.126 -0.003327 183.323049

2015-06-10 3526.48 25.8610 -0.111 -0.117 0.019960 300.555651

2015-06-11 3551.91 26.3897 -0.111 -0.120 0.007185 279.249096

2015-06-12 3502.77 29.7725 -0.113 -0.125 -0.013931 302.564935

2015-06-15 3438.07 34.5593 -0.108 -0.119 -0.018644 359.901600

2015-06-16 3454.09 36.2222 -0.109 -0.125 0.004649 332.134168

2015-06-17 3428.76 34.7235 -0.109 -0.110 -0.007360 315.833038

2015-06-18 3450.45 34.7235 -0.109 -0.118 0.006306 299.246550

2015-06-19 3455.80 34.7235 -0.108 -0.120 0.001549 278.303868

Assume that the variance future comes to life on June 1, 2015 and that it matures on June 19,
2015. This is a maturity of T = 15 trading days. Let us generate in addition an array with all
(elapsed) trading days over time.

In [32]: T = 15.

In [33]: data['t'] = np. arange(1, 16)

In [34]: data['t']

Out[34]:

Date

2015-06-01 1

2015-06-02 2

2015-06-03 3

Variance Futures at Eurex 261

2015-06-04 4

2015-06-05 5

2015-06-08 6

2015-06-09 7

2015-06-10 8

2015-06-11 9

2015-06-12 10

2015-06-15 11

2015-06-16 12

2015-06-17 13

2015-06-18 14

2015-06-19 15

Name: t, dtype: int64

Assuming a constant Euribor rate of −0.1%, we can add a new column to the DataFrame
object with the discount factors in vectorized fashion (see chapter 11, Trading and Settlement
for further details on the discount factor calculation).

In [35]: r_eb = -0.001

In [36]: data['DF_t'] = np.exp(-r_eb * (T - data['t']) / 365.)

In [37]: data

Out[37]:

SX5E V6I1 2w EONIA R_t sigma**2 t DF_t

Date

2015-06-01 3575.04 25.8710 -0.108 -0.106 NaN NaN 1 1.000038

2015-06-02 3561.89 25.9232 -0.109 -0.122 -0.003685 34.220799 2 1.000036

2015-06-03 3583.82 25.7958 -0.109 -0.143 0.006138 64.580457 3 1.000033

2015-06-04 3556.38 26.2418 -0.109 -0.138 -0.007686 92.677552 4 1.000030

2015-06-05 3510.01 27.4496 -0.109 -0.115 -0.013124 178.023718 5 1.000027

2015-06-08 3468.31 27.2996 -0.110 -0.127 -0.011951 214.408816 6 1.000025

2015-06-09 3456.79 26.8020 -0.110 -0.126 -0.003327 183.323049 7 1.000022

2015-06-10 3526.48 25.8610 -0.111 -0.117 0.019960 300.555651 8 1.000019

2015-06-11 3551.91 26.3897 -0.111 -0.120 0.007185 279.249096 9 1.000016

2015-06-12 3502.77 29.7725 -0.113 -0.125 -0.013931 302.564935 10 1.000014

2015-06-15 3438.07 34.5593 -0.108 -0.119 -0.018644 359.901600 11 1.000011

2015-06-16 3454.09 36.2222 -0.109 -0.125 0.004649 332.134168 12 1.000008

2015-06-17 3428.76 34.7235 -0.109 -0.110 -0.007360 315.833038 13 1.000005

2015-06-18 3450.45 34.7235 -0.109 -0.118 0.006306 299.246550 14 1.000003

2015-06-19 3455.80 34.7235 -0.108 -0.120 0.001549 278.303868 15 1.000000

The standard volatility strike is 𝜎K = 25.871 and the standard variance strike is 𝜎2
K =

25.8712 = 669.31.

262 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [38]: sigma_K = data['V6I1'][0]

In [39]: sigma_K

Out[39]: 25.870999999999999

Assume a vega notional of 100,000. This translates into a variance notional of:

In [40]: Notional = 100000 / (2 * sigma_K)

In [41]: Notional

Out[41]: 1932.665919369178

The settlement price on the first trading day is standardized to 3,000. We generate a new column
in the pandas DataFrame object and initialize the first value (and all the others) accordingly.

In [42]: data['F_tS'] = 3000

In [43]: data

Out[43]:

SX5E V6I1 2w EONIA R_t sigma**2 t \
Date

2015-06-01 3575.04 25.8710 -0.108 -0.106 NaN NaN 1

2015-06-02 3561.89 25.9232 -0.109 -0.122 -0.003685 34.220799 2

2015-06-03 3583.82 25.7958 -0.109 -0.143 0.006138 64.580457 3

2015-06-04 3556.38 26.2418 -0.109 -0.138 -0.007686 92.677552 4

2015-06-05 3510.01 27.4496 -0.109 -0.115 -0.013124 178.023718 5

2015-06-08 3468.31 27.2996 -0.110 -0.127 -0.011951 214.408816 6

2015-06-09 3456.79 26.8020 -0.110 -0.126 -0.003327 183.323049 7

2015-06-10 3526.48 25.8610 -0.111 -0.117 0.019960 300.555651 8

2015-06-11 3551.91 26.3897 -0.111 -0.120 0.007185 279.249096 9

2015-06-12 3502.77 29.7725 -0.113 -0.125 -0.013931 302.564935 10

2015-06-15 3438.07 34.5593 -0.108 -0.119 -0.018644 359.901600 11

2015-06-16 3454.09 36.2222 -0.109 -0.125 0.004649 332.134168 12

2015-06-17 3428.76 34.7235 -0.109 -0.110 -0.007360 315.833038 13

2015-06-18 3450.45 34.7235 -0.109 -0.118 0.006306 299.246550 14

2015-06-19 3455.80 34.7235 -0.108 -0.120 0.001549 278.303868 15

DF_t F_tS

Date

2015-06-01 1.000038 3000

2015-06-02 1.000036 3000

2015-06-03 1.000033 3000

2015-06-04 1.000030 3000

2015-06-05 1.000027 3000

Variance Futures at Eurex 263

2015-06-08 1.000025 3000

2015-06-09 1.000022 3000

2015-06-10 1.000019 3000

2015-06-11 1.000016 3000

2015-06-12 1.000014 3000

2015-06-15 1.000011 3000

2015-06-16 1.000008 3000

2015-06-17 1.000005 3000

2015-06-18 1.000003 3000

2015-06-19 1.000000 3000

The ARMVM on the first settlement day is zero. We again generate a new column and initialize
all values with zero.

In [44]: data['ARMVM_t'] = 0.0

The futures price on the second settlement day is given as:

In [45]: data['F_tS'][1] = data['DF_t'][1] * ((data['t'][1] * data['sigma**2'][1]

....: + (T - data['t'][1]) * data['V6I1'][1] ** 2) / T

....: - sigma_K ** 2) + 3000

....:

In [46]: data['F_tS'][1]

Out[46]: 2917

Analogously, we can calculate the settlement prices for all other settlement days. Note that
we take the index level of the EURO STOXX 50 at close and not the average of its level
between 11:50 and 12:00 CET at the final settlement day (see chapter 11, Trading and
Settlement).

In [47]: for t in data.index[1:]:

....: data['ARMVM_t'][t] = (data['ARMVM_t'].shift(1)[t]

....: * math.exp(data['EONIA'].shift(1)[t] / 252)

....: + (data['F_tS'].shift(1)[t] - 3000)

....: * (math.exp(data['EONIA'].shift(1)[t] / 252) - 1))

....: data['F_tS'][t] = data['DF_t'][t] * ((data['t'][t] * data['sigma**2'][t]

....: + (T - data['t'][t]) * data['V6I1'][t] ** 2) / T

....: -sigma_K ** 2)- data['ARMVM_t'][t] + 3000

....:

We end up with a complete data set, and in particular the simulated variance futures settlement
values.

264 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [48]: data

Out[48]:

SX5E V6I1 2w EONIA R_t sigma**2 t \
Date

2015-06-01 3575.04 25.8710 -0.108 -0.106 NaN NaN 1

2015-06-02 3561.89 25.9232 -0.109 -0.122 -0.003685 34.220799 2

2015-06-03 3583.82 25.7958 -0.109 -0.143 0.006138 64.580457 3

2015-06-04 3556.38 26.2418 -0.109 -0.138 -0.007686 92.677552 4

2015-06-05 3510.01 27.4496 -0.109 -0.115 -0.013124 178.023718 5

2015-06-08 3468.31 27.2996 -0.110 -0.127 -0.011951 214.408816 6

2015-06-09 3456.79 26.8020 -0.110 -0.126 -0.003327 183.323049 7

2015-06-10 3526.48 25.8610 -0.111 -0.117 0.019960 300.555651 8

2015-06-11 3551.91 26.3897 -0.111 -0.120 0.007185 279.249096 9

2015-06-12 3502.77 29.7725 -0.113 -0.125 -0.013931 302.564935 10

2015-06-15 3438.07 34.5593 -0.108 -0.119 -0.018644 359.901600 11

2015-06-16 3454.09 36.2222 -0.109 -0.125 0.004649 332.134168 12

2015-06-17 3428.76 34.7235 -0.109 -0.110 -0.007360 315.833038 13

2015-06-18 3450.45 34.7235 -0.109 -0.118 0.006306 299.246550 14

2015-06-19 3455.80 34.7235 -0.108 -0.120 0.001549 278.303868 15

DF_t F_tS ARMVM_t

Date

2015-06-01 1.000038 3000 0.000000

2015-06-02 1.000036 2917 0.000000

2015-06-03 1.000033 2875 0.040173

2015-06-04 1.000030 2860 0.111062

2015-06-05 1.000027 2892 0.187647

2015-06-08 1.000025 2863 0.236836

2015-06-09 1.000022 2799 0.305743

2015-06-10 1.000019 2802 0.406065

2015-06-11 1.000016 2776 0.497784

2015-06-12 1.000014 2827 0.604188

2015-06-15 1.000011 2912 0.689681

2015-06-16 1.000008 2858 0.730901

2015-06-17 1.000005 2764 0.800957

2015-06-18 1.000003 2689 0.903601

2015-06-19 1.000000 2607 1.048771

Figure 10.3 shows the results graphically.

In [49]: data[['SX5E', 'sigma**2', 'F_tS']]. plot(subplots=True,

....: color='blue',

....: figsize=(10, 9));

....:

Variance Futures at Eurex 265

FIGURE 10.3 Calculated variance futures settlement values for the EURO STOXX 50.

We save the generated data set for re-use in the next section.

In [50]: h5 = pd.HDFStore('./source/data/var_data.h5', 'a')

In [51]: h5['var_future'] = data

In [52]: h5.close()

10.4 COMPARISON OF VARIANCE SWAP AND FUTURE

Eurex variance futures are a means to replicate the payoff of OTC-traded variance swaps with
a listed, standardized product. Let us compare the mark-to-market values of the variance swap
from sub-section 9.3.5, Variance Swap on the EURO STOXX 50 with the settlement values
calculated in the previous section.

266 LISTED VOLATILITY AND VARIANCE DERIVATIVES

To this end, we import the data for the variance swap first.

In [53]: h5 = pd.HDFStore('./source/data/var_data.h5', 'r')

In [54]: var_swap = h5['var_swap']

In [55]: h5. close()

Next, we combine and plot the two time series for the variance swap and the variance future,
respectively, against each other. Note that we subtract the constant C for the comparison.

In [56]: comp = pd.DataFrame({'F_tS': data['F_tS'] - 3000,

....: 'V_t': var_swap['V_t']}, index=data.index)

....:

In [57]: comp

Out[57]:

F_tS V_t

Date

2015-06-01 0 0.000000

2015-06-02 -83 -82.332277

2015-06-03 -125 -124.049833

2015-06-04 -140 -139.593571

2015-06-05 -108 -107.644092

2015-06-08 -137 -136.380856

2015-06-09 -201 -200.634978

2015-06-10 -198 -196.905901

2015-06-11 -224 -223.189008

2015-06-12 -173 -172.129074

2015-06-15 -88 -86.887791

2015-06-16 -142 -141.190592

2015-06-17 -236 -234.822528

2015-06-18 -311 -309.629583

2015-06-19 -393 -391.004773

Figure 10.4 compares the two time series.

In [58]: comp.plot(style=['b', 'ro'], figsize=(9, 5));

Finally, Figure 10.5 presents the absolute differences which are quite small.

In [59]: (comp['F_tS'] - comp['V_t']).plot(style='rˆ', figsize=(9, 5));

Variance Futures at Eurex 267

FIGURE 10.4 Variance swap and futures prices for EURO STOXX 50 compared.

F IGURE 10.5 Differences between variance swap and futures prices.

268 LISTED VOLATILITY AND VARIANCE DERIVATIVES

10.5 CONCLUSIONS

This chapter deals with the basic notions and concepts that need to be understood to trade
Eurex variance futures based on the EURO STOXX 50 stock index. It introduces all concepts
in a formal fashion and illustrates their calculation based on a concrete numerical example
which is based on the same data as the variance swap example calculation in the previous
chapter. This makes it possible to numerically show that the construction of the Eurex vari-
ance futures contract does indeed replicate the payoff of typical OTC variance contracts while
adding intraday liquidity and tradability. The next chapter covers special aspects that relate to
the intraday trading and end-of-day settlement of these derivatives products.

CHAPTER 11
Trading and Settlement

11.1 INTRODUCTION

This chapter covers practical aspects of trading Eurex variance futures. Among others, topics
are:

� overview of major variance futures contract terms
� intraday trading and trade conventions
� trade matching at the end of the trading day
� different traded volatilities with their impact on margining
� after the trade matching until maturity
� further details about interest rate calculation and market disruption events.

11.2 OVERVIEW OF VARIANCE FUTURES TERMS

The following list provides an overview of the major terms of the Eurex variance futures con-
tract. All technical terms are explained in chapter 10 Variance Futures at Eurex.

� underlying: realized variance of EURO STOXX 50 stock index
� interest rates: Euribor for present value factor DFt and Eonia for ARMVMt
� standard strike: determined on first trading day and equal to settled implied volatility for

the relevant maturity
� 1st settlement price: equal to 3,000 (i.e. for setting standard strike = settled implied

variance)
� contract value: 1 EUR per variance futures point
� minimum price change/tick value: 0.0001 variance futures points and 0.0001 EUR
� settlement: in cash
� terms: next three month ends and the next three quarter end months thereafter as well as

June and December thereafter
� last trading day: one day before final settlement day
� final settlement day/expiration: third Friday of maturity month

269

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

270 LISTED VOLATILITY AND VARIANCE DERIVATIVES

� final settlement price: based on the average index level of EURO STOXX 50 between
11:50 am and 12:00 CET on final settlement day

� trade matching: variance futures trade in notional vega at volatility; upon matching
notional vega and volatility are converted into variance futures and variance futures prices,
respectively

� continuous trading: from 9:00 am until 5:30 pm CET on each trading day of Eurex
� Eurex trade entry services: from 6:30 pm until 9:00 pm CET on each trading day of

Eurex
� order maintenance: notional vega at volatility, minimum order size 1 vega, minimum

price change 0.05 volatility points.

11.3 INTRADAY TRADING

Variance futures are traded on-exchange in terms of notional vega at volatility. However,
intraday there are no live futures prices quoted; they have to be calculated using live volatil-
ity quotes and the conversion parameters provided by Eurex. The conversion parameters are
those used for the calculation of the settlement price from the previous day, except that the
time-to-maturity (T − t) is reduced by 1 day and the number of elapsed days t is increased
by 1 day.

Let us get back to the numerical example from section 10.3 Example Calculation for a
Variance Future. The example simulates the calculation of daily settlement prices for a vari-
ance futures contract with inception on June 1, 2015 and a maturity on June 19, 2015 (i.e.
15 trading days). Since we have saved the data, we can continue from where we ended.

In [1]: import numpy as np

In [2]: a = np.random.standard_normal((10))

In [3]: np.round(a)

Out[3]: array([1., -0., -1., 1., 1., -0., 0., 0., 1., 1.])

In [4]: import pandas as pd

In [5]: h5 = pd.HDFStore('./source/data/var_data.h5', 'r')

In [6]: data = h5['var_future']

In [7]: h5.close()

In [8]: data.head()

Trading and Settlement 271

Out[8]:

SX5E V6I1 2w EONIA R_t sigma**2 t DF_t \
Date

2015-06-01 3575.04 25.8710 -0.108 -0.106 NaN NaN 1 1.000038

2015-06-02 3561.89 25.9232 -0.109 -0.122 -0.003685 34.220799 2 1.000036

2015-06-03 3583.82 25.7958 -0.109 -0.143 0.006138 64.580457 3 1.000033

2015-06-04 3556.38 26.2418 -0.109 -0.138 -0.007686 92.677552 4 1.000030

2015-06-05 3510.01 27.4496 -0.109 -0.115 -0.013124 178.023718 5 1.000027

F_tS ARMVM_t

Date

2015-06-01 3000 0.000000

2015-06-02 2917 0.000000

2015-06-03 2875 0.040173

2015-06-04 2860 0.111062

2015-06-05 2892 0.187647

We need to read out two central terms of the variance, namely the time-to-maturity in year
fractions and the standard volatility strike.

In [9]: T = data['t'][-1]

In [10]: T

Out[10]: 15

In [11]: sigma_K = data['V6I1'][0]

In [12]: sigma_K

Out[12]: 25.870999999999999

Similarly to the calculation in section 10.3, Example Calculation for a Variance Future, we
can now do the following calculation where we use the previous day’s input parameters but
today’s remaining time-to-maturity and today’s elapsed time (in days).

In [13]: data['F_ti'] = 3000.0

In [14]: for t in data.index[2:]:

....: data.loc[t, 'F_ti'] = data['DF_t'].shift(1)[t] * (

....: (data['t'][t] * data['sigma**2'].shift(1)[t]

....: +(T - data['t'][t]) * data['V6I1'].shift(1)[t]

** 2) / T

....: -sigma_K ** 2) - data['ARMVM_t'].shift(1)[t] + 3000

....:

The results are shown in the following table in the column F_ti for interim futures prices.

272 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [15]: data

Out[15]:

SX5E V6I1 2w EONIA R_t sigma**2 t \
Date

2015-06-01 3575.04 25.8710 -0.108 -0.106 NaN NaN 1

2015-06-02 3561.89 25.9232 -0.109 -0.122 -0.003685 34.220799 2

2015-06-03 3583.82 25.7958 -0.109 -0.143 0.006138 64.580457 3

2015-06-04 3556.38 26.2418 -0.109 -0.138 -0.007686 92.677552 4

2015-06-05 3510.01 27.4496 -0.109 -0.115 -0.013124 178.023718 5

2015-06-08 3468.31 27.2996 -0.110 -0.127 -0.011951 214.408816 6

2015-06-09 3456.79 26.8020 -0.110 -0.126 -0.003327 183.323049 7

2015-06-10 3526.48 25.8610 -0.111 -0.117 0.019960 300.555651 8

2015-06-11 3551.91 26.3897 -0.111 -0.120 0.007185 279.249096 9

2015-06-12 3502.77 29.7725 -0.113 -0.125 -0.013931 302.564935 10

2015-06-15 3438.07 34.5593 -0.108 -0.119 -0.018644 359.901600 11

2015-06-16 3454.09 36.2222 -0.109 -0.125 0.004649 332.134168 12

2015-06-17 3428.76 34.7235 -0.109 -0.110 -0.007360 315.833038 13

2015-06-18 3450.45 34.7235 -0.109 -0.118 0.006306 299.246550 14

2015-06-19 3455.80 34.7235 -0.108 -0.120 0.001549 278.303868 15

DF_t F_tS ARMVM_t F_ti

Date

2015-06-01 1.000038 3000 0.000000 3000.000000

2015-06-02 1.000036 2917 0.000000 3000.000000

2015-06-03 1.000033 2875 0.040173 2875.140910

2015-06-04 1.000030 2860 0.111062 2835.844331

2015-06-05 1.000027 2892 0.187647 2820.555454

2015-06-08 1.000025 2863 0.236836 2853.797523

2015-06-09 1.000022 2799 0.305743 2827.984087

2015-06-10 1.000019 2802 0.406065 2763.381425

2015-06-11 1.000016 2776 0.497784 2778.130966

2015-06-12 1.000014 2827 0.604188 2748.494268

2015-06-15 1.000011 2912 0.689681 2788.339034

2015-06-16 1.000008 2858 0.730901 2856.790440

2015-06-17 1.000005 2764 0.800957 2792.748076

2015-06-18 1.000003 2689 0.903601 2705.047722

2015-06-19 1.000000 2607 1.048771 2629.033294

As an example, assume that a trader buys on June 9, intraday 100,000 notional vega at a traded
implied volatility level of 26. The number of futures she has bought then is

futures =
VegaNotional

2 ⋅ 𝜎ti
⋅

T
T − t

= 100000
2 ⋅ 26

⋅
15

15 − 7
= 3605.77

Trading and Settlement 273

In [16]: futures = 100000. /(2 * 26) * T / (T - data['t']['2015-06-09'])

In [17]: futures

Out[17]: 3605.769230769231

The intraday futures price for the variance futures contract is:

In [18]: F_ti = data['F_ti']['2015-06-09']

In [19]: F_ti

Out[19]: 2827.9840866529353

The traded variance strike is

𝜎2
t =

t ⋅ 𝜎2
0,t + (T − t) ⋅ 𝜎2

i (t, T)

T

= 7 ⋅ 13.542 + (15 − 7) ⋅ 262

15
= 446.08

In [20]: sigma_t2 = (data['t']['2015-06-09'] * data['sigma**2']['2015-06-09']

....: + (T - data['t']['2015-06-09']) * 26 ** 2) / T

....:

In [21]: sigma_t2

Out[21]: 446.0840897506356

The traded futures price then is

Ft = DFt ⋅
(
𝜎2

t − 𝜎2
i (t, T)

)
− ARMV Mt + 3000 = 2776.47

In [22]: F_t = (data['DF_t']['2015-06-09'] *

....: (sigma_t2 - data['V6I1']['2015-06-01'] ** 2)

....: - data['ARMVM_t']['2015-06-09'] + 3000)

....:

In [23]: F_t

Out[23]: 2776.4648130015858

274 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Consequently, the trade has a value of:

In [24]: P_ti = futures * F_t

In [25]: P_ti

Out[25]: 10011291.393034564

11.4 TRADE MATCHING

At the end of the day, the trade in notional vega and volatility is confirmed. Notional vega and
volatility are, however, converted into variance futures at the variance futures settlement price.
To this end, the intraday transaction gets cancelled and replaced by a confirmed transaction
with the same number of futures but with the variance futures settlement price of the day.

In the example, we have:

In [26]: F_tS = data['F_tS']['2015-06-09']

In [27]: F_tS

Out[27]: 2799

Consequently, the transaction booked has a value of:

In [28]: P_t = futures * F_tS

In [29]: P_t

Out[29]: 10092548.076923078

The first margin payment given these numbers then is:

In [30]: P_t - P_ti

Out[30]: 81256.683888513595

This is roughly the same as vega notional times the difference in settlement and traded
volatility:

margin = VegaNotional ⋅ (𝜎i − 𝜎i(t, T))

In [31]: 100000 * (data['V6I1']['2015-06-09'] - 26)

Out[31]: 80199.999999999956

Trading and Settlement 275

11.5 DIFFERENT TRADED VOLATIL IT IES

Let us now see what impact different traded volatilities have on the first day margining of the
same trade as before. The necessary parameters and values can be calculated in vectorized
fashion. First, the array with the traded volatilities.

In [32]: import numpy as np

In [33]: trad_vols = np.arange(15, 25.01, 1)

In [34]: trad_vols

Out[34]: array([15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.])

Second, the traded variance strikes.

In [35]: sigma_t2 = (data['t']['2015-06-09'] * data['sigma**2']['2015-06-09']

....: + (T - data['t']['2015-06-09']) * trad_vols ** 2) / T

....:

In [36]: sigma_t2

Out[36]:

array([205.55075642, 222.08408975, 239.68408975, 258.35075642,

278.08408975, 298.88408975, 320.75075642, 343.68408975,

367.68408975, 392.75075642, 418.88408975])

Third, the traded futures prices.

In [37]: F_t = (data['DF_t']['2015-06-09']

....: *(sigma_t2 - data['V6I1']['2015-06-01'] ** 2)

....: - data['ARMVM_t']['2015-06-09'] + 3000)

....:

In [38]: F_t

Out[38]:

array([2535.92620765, 2552.45990336, 2570.06028912, 2588.72736492,

2608.46113077, 2629.26158666, 2651.12873261, 2674.06256859,

2698.06309463, 2723.13031071, 2749.26421683])

Fourth, the first day margins (P&L).

276 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [39]: margins = futures * (F_tS - F_t)

In [40]: margins

Out[40]:

array([948583.3858882 , 888966.69461993, 825503.76520532,

758194.59764436, 687039.19193707, 612037.54808344,

533189.66608347, 450495.54593716, 363955.18764451,

273568.59120552, 179335.75662019])

Let us visualize the results. The margins (P&L) are linear in traded volatility with the slope in
Figure 11.1 being equal to the vega notional of 100,000.

In [41]: import seaborn as sns; sns.set()

In [42]: import matplotlib

In [43]: matplotlib.rcParams['font.family'] = 'serif'

In [44]: results = pd.DataFrame({'margins' : margins}, index=trad_vols)

In [45]: results.plot(figsize=(10, 6));

F IGURE 11.1 Variance futures margins.

Trading and Settlement 277

11.6 AFTER THE TRADE MATCHING

What happens after the trade matching until maturity? To find out, we can calculate the sub-
sequent margins as follows. We start with the differences between settlement prices.

In [46]: F_diffs = (data['F_tS'] - data['F_tS'].shift(1))

In [47]: F_diffs

Out[47]:

Date

2015-06-01 NaN

2015-06-02 -83.0

2015-06-03 -42.0

2015-06-04 -15.0

2015-06-05 32.0

2015-06-08 -29.0

2015-06-09 -64.0

2015-06-10 3.0

2015-06-11 -26.0

2015-06-12 51.0

2015-06-15 85.0

2015-06-16 -54.0

2015-06-17 -94.0

2015-06-18 -75.0

2015-06-19 -82.0

Name: F_tS, dtype: float64

With these differences, we can calculate the daily margins until maturity.

In [48]: margin_t = futures * F_diffs[F_diffs.index >= '2015-06-09']

In [49]: margin_t

Out[49]:

Date

2015-06-09 -230769.230769

2015-06-10 10817.307692

2015-06-11 -93750.000000

2015-06-12 183894.230769

2015-06-15 306490.384615

2015-06-16 -194711.538462

2015-06-17 -338942.307692

2015-06-18 -270432.692308

2015-06-19 -295673.076923

Name: F_tS, dtype: float64

278 LISTED VOLATILITY AND VARIANCE DERIVATIVES

The following code generates a pandas DataFrame object with the initial margins given the
traded volatility strike and the subsequent margins until maturity.

In [50]: results = pd.DataFrame(np.tile(margin_t, (len(trad_vols), 1)).T,

....: index=margin_t.index,

....: columns=trad_vols)

....:

In [51]: results.loc['2015-06-09', :] = margins # setting the first

day margins

In [52]: np.round(results)

Out[52]:

15.0 16.0 17.0 18.0 19.0 20.0 \
Date

2015-06-09 948583.0 888967.0 825504.0 758195.0 687039.0 612038.0

2015-06-10 10817.0 10817.0 10817.0 10817.0 10817.0 10817.0

2015-06-11 -93750.0 -93750.0 -93750.0 -93750.0 -93750.0 -93750.0

2015-06-12 183894.0 183894.0 183894.0 183894.0 183894.0 183894.0

2015-06-15 306490.0 306490.0 306490.0 306490.0 306490.0 306490.0

2015-06-16 -194712.0 -194712.0 -194712.0 -194712.0 -194712.0 -194712.0

2015-06-17 -338942.0 -338942.0 -338942.0 -338942.0 -338942.0 -338942.0

2015-06-18 -270433.0 -270433.0 -270433.0 -270433.0 -270433.0 -270433.0

2015-06-19 -295673.0 -295673.0 -295673.0 -295673.0 -295673.0 -295673.0

21.0 22.0 23.0 24.0 25.0

Date

2015-06-09 533190.0 450496.0 363955.0 273569.0 179336.0

2015-06-10 10817.0 10817.0 10817.0 10817.0 10817.0

2015-06-11 -93750.0 -93750.0 -93750.0 -93750.0 -93750.0

2015-06-12 183894.0 183894.0 183894.0 183894.0 183894.0

2015-06-15 306490.0 306490.0 306490.0 306490.0 306490.0

2015-06-16 -194712.0 -194712.0 -194712.0 -194712.0 -194712.0

2015-06-17 -338942.0 -338942.0 -338942.0 -338942.0 -338942.0

2015-06-18 -270433.0 -270433.0 -270433.0 -270433.0 -270433.0

2015-06-19 -295673.0 -295673.0 -295673.0 -295673.0 -295673.0

Figure 11.2 visualizes the cumulative P&L (assuming zero interest rates) for the different
traded volatility strikes.

In [53]: results.cumsum().plot(figsize=(10, 6), title='cumulative P&L');

Trading and Settlement 279

FIGURE 11.2 Cumulative P&L for variance future.

11.7 FURTHER DETAILS

This section briefly discusses some further details of importance for trading in Eurex variance
futures.

11.7.1 Interest Rate Calcu lat ion

ARMVM is calculated based on the Eonia rate as settled at 7 pm CET on the previous day. The
discount factors are calculated using the Euribor rates fixed at 11:00 am CET and interpolated
to the respective maturities of the variance futures. The interpolation is done in linear fashion
using the following formula:

ri = r(Ti) =
TK+1 − Ti

TK+1 − TK
r(TK) +

Ti − TK

TK+1 − TK
r(TK+1)

where TK+1 is the maturity of the Euribor rate later than the futures maturity Ti and TK is the
maturity of the Euribor rate before the futures maturity Ti.

280 LISTED VOLATILITY AND VARIANCE DERIVATIVES

11.7.2 Market Disrupt ion Events

There are three major market disruption events:

� STOXX fails to provide a market closing level for the EURO STOXX 50
� Eurex Exchange fails to open for trading during scheduled trading hours
� Other market disruption events according to the European OTC standard.

11.8 CONCLUSIONS

The major difference between listed variance futures and OTC variance swaps is that the former
can be traded intraday. This chapter illustrates the major aspects of importance when it comes
to the trading and settlement of these instruments which are even liquid intraday (during the
trading day). Major concepts are the traded variance strike and the traded futures price. At
the end of the day, the original intraday trade gets cancelled and the traded futures price gets
replaced by the settlement price – however, the number of futures remains the same.

PART

Four
DX Analytics

CHAPTER 12
DX Analytics – An Overview

12.1 INTRODUCTION

Although Python is arguably a good programming language and ecosystem for financial ana-
lytics (see chapter 1, Derivatives, Volatility and Variance or chapter 1 of Hilpisch (2014)),
dedicated libraries for finance are not that common. This is even more true when it comes to
derivatives analytics as a sub-discipline. One exception in this regard is DX Analytics (the “dx
library”), written by the author of this book, which has a major focus on advanced deriva-
tives and risk analytics. The central resource to get started with the library is the website
http://dx-analytics.com.

This chapter provides an overview of the relevant parts of the library for the purposes of the
case studies which follow. The development of the library is guided by two central principles:

� global valuation approach: in practice, this approach translates into the non-redundant
modeling of all risk factors (e.g. option underlyings like equity indexes) and the valuation
of all derivative instruments by a unique, consistent numerical method – which is Monte
Carlo simulation in the case of DX Analytics

� unlimited computing resources: Monte Carlo simulation is computationally and mem-
ory intensive and has therefore often been dismissed as an adequate numerical method to
implement, for example, front-office analytics libraries; in 2016, the technical infrastruc-
tures available to even smaller players in the financial industry have reached performance
levels that 10 years ago seemed impossible or at least not financially feasible; in that sense
“unlimited resources” is not to be understood literally but rather as the guiding principle
that hardware and computing resources generally are no longer a bottleneck

Among others, DX Analytics provides the following features:

� models: models for risk factors include simple ones like geometric Brownian motion as
well as more sophisticated ones like stochastic volatility jump diffusion models

� derivatives: derivatives models include single risk factor as well as multi risk factor mod-
els, both with European and American (Bermudan) exercise

283

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

http://dx-analytics.com

284 LISTED VOLATILITY AND VARIANCE DERIVATIVES

� portfolios: derivatives portfolios can be arbitrarily complex with multiple, correlated
risk factors and multiple, diverse derivative instruments (single risk and multi risk);
simulations and valuations are implemented in such a way that both value and risk aggre-
gations are consistent for each Monte Carlo path.

The following sections illustrate the use of the library by means of a simple, yet still realistic,
example with two correlated risk factors and two different options.

12.2 MODEL ING RISK FACTORS

First, some necessary imports and in particular the import of the dx library.

In [1]: import dx

In [2]: import numpy as np

In [3]: np.random.seed(1000)

In [4]: import pandas as pd

In [5]: import datetime as dt

In [6]: import seaborn as sns; sns.set()

In [7]: import matplotlib as mpl;

Usually, the first step is to define a model for the risk-neutral discounting since all valuations
are based on the risk-neutral (or martingale) pricing approach (see Björk (2009)). Throughout,
we will work with a constant short rate model although DX Analytics also provides determin-
istic yield curve and stochastic short rate models.

In [8]: r = dx.constant_short_rate('r', 0.01)

The next step is to define a market environment containing the parameter specifications needed.
Several objects might have different market environments but they might also share market
environments. The first risk factor to be modeled is a geometric Brownian motion (Black-
Scholes-Merton (1973) model). The following market environment object contains all param-
eters needed for this model. Comments in the code explain the single elements.

instantiation of market environment object

In [9]: me_1 = dx.market_environment('me', dt.datetime(2016, 1, 1))

DX Analytics – An Overview 285

starting value of simulated processes

In [10]: me_1.add_constant('initial_value', 100.)

volatility factor

In [11]: me_1.add_constant('volatility', 0.2)

horizon for simulation

In [12]: me_1.add_constant('final_date', dt.datetime(2016, 6, 30))

currency of instrument

In [13]: me_1.add_constant('currency', 'EUR')

frequency for discretization (here: weekly)

In [14]: me_1.add_constant('frequency', 'W')

number of paths

In [15]: me_1.add_constant('paths', 25000)

short rate model for discount curve

In [16]: me_1.add_curve('discount_curve', r)

Equipped with this object, the model object for the risk factor can be instantiated.

In [17]: gbm_1 = dx.geometric_brownian_motion('gbm_1', me_1)

In [18]: gbm_1

Out[18]: <dx.dx_models.geometric_brownian_motion at 0x2b20c39c5510>

Theget_instrument_values()method initiates a Monte Carlo simulation and delivers
back the simulated paths – given the parametrizations from the market environment object –
as a NumPy ndarray object.

In [19]: gbm_1.get_instrument_values()

Out [19]:

array([[100. , 100. , 100. , ..., 100. ,

100. , 100.],

[103.99970675, 100.94138063, 101.87289049, ..., 101.57080458,

100.82390334, 98.15531921],

[101.93603717, 94.66240389, 91.81649108, ..., 101.20745936,

99.98530091, 102.49930045],

...,

[94.34847745, 111.87828236, 105.88943893, ..., 89.84492969,

109.03063645, 107.8625328],

286 LISTED VOLATILITY AND VARIANCE DERIVATIVES

[91.01721535, 113.83465258, 102.59432299, ..., 92.09515398,

104.17599152, 101.67756176],

[90.56511589, 113.20730366, 100.79160449, ..., 90.91965416,

100.6385713 , 101.76583508]])

Via the time_grid attribute one can access the date-time information for the time series
data.

In [20]: gbm_1.time_grid[:10]

Out[20]:

array([datetime.datetime(2016, 1, 1, 0, 0),

datetime.datetime(2016, 1, 3, 0, 0),

datetime.datetime(2016, 1, 10, 0, 0),

datetime.datetime(2016, 1, 17, 0, 0),

datetime.datetime(2016, 1, 24, 0, 0),

datetime.datetime(2016, 1, 31, 0, 0),

datetime.datetime(2016, 2, 7, 0, 0),

datetime.datetime(2016, 2, 14, 0, 0),

datetime.datetime(2016, 2, 21, 0, 0),

datetime.datetime(2016, 2, 28, 0, 0)], dtype=object)

Combining both arrays to a single pandas DataFrame object makes plotting straightforward
(see Figure 12.1).

F IGURE 12.1 Simulated paths for the risk factor based on geometric Brownian motion.

DX Analytics – An Overview 287

In [21]: pdf_1 = pd.DataFrame(gbm_1.get_instrument_values(),

index=gbm_1.time_grid)

In [22]: pdf_1.ix[:, :10].plot(legend=False, figsize=(10, 6));

Next, we define a second risk factor, again based on geometric Brownian motion. We use the
market environment information from the first risk factor and only overwrite the volatility
value.

instantiate new market environment object

In [23]: me_2 = dx.market_environment('me_2', me_1.pricing_date)

add complete environment

In [24]: me_2.add_environment(me_1)

overwrite volatility value

In [25]: me_2.add_constant('volatility', 0.5)

Using the updated market environment, define the second risk factor as follows.

In [26]: gbm_2 = dx.geometric_brownian_motion('gbm_2', me_2)

The plot in Figure 12.2 illustrates the higher volatility of the second risk factor graphically.

In [27]: pdf_2 = pd.DataFrame(gbm_2.get_instrument_values(),

index=gbm_2.time_grid)

In [28]: ax = pdf_1.ix[:, :10].plot(legend=False, figsize=(10, 6),

style=11 * ['b']);

In [29]: pdf_2.ix [:, :10].plot(legend=False, style=11 * ['r'], ax=ax);

12.3 MODEL ING DERIVATIVES

Based on the risk factors, we can define derivatives models for valuation. To this end, we need
to add at least one (the maturity), in general two (maturity and strike), parameters to
the market environment(s).

288 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 12.2 Simulated paths for the two risk factors; solid lines = low volatility, dashed lines =
high volatility.

instantiation of market environment object for option

In [30]: me_opt = dx.market_environment('me_opt', me_1.pricing_date)

add complete market environment

In [31]: me_opt.add_environment(me_1)

add maturity date for option

In [32]: me_opt.add_constant('maturity', dt.datetime(2016, 6, 30))

add strike for option

In [33]: me_opt.add_constant('strike', 110.)

The first derivative is an American put option on the first risk factor gbm_1.

In [34]: am_put = dx.valuation_mcs_american_single(

....: name='am_put', # name of the option as string

....: underlying=gbm_1, # the risk factor object

....: mar_env=me_opt, # the market environment

....: payoff_func='np.maximum(strike - instrument_values, 0)')

....:

Let us calculate a Monte Carlo present value estimate and estimates for the Greeks of the
American put.

DX Analytics – An Overview 289

In [35]: am_put.present_value() # Monte Carlo estimator

Out[35]: 11.799

In [36]: am_put.delta() # delta of the option

Out[36]: -0.6809

In [37]: am_put.gamma() # gamma of the option

Out[37]: 0.0149

In [38]: 0.5 * am_put.gamma() * am_put.underlying.initial_value ** 2

dollar gamma

Out[38]: 74.5

In [39]: am_put.vega() # vega of the option

Out[39]: 23.8208

In [40]: am_put.theta() # theta of the option

Out[40]: -3.81

In [41]: am_put.rho() # rho of the option

Out[41]: -30.113

The second derivative is a European call option on the second risk factor gbm_2. It has the
same strike and maturity as the American put option.

In [42]: eur_call = dx.valuation_mcs_european_single(

....: name='eur_call',

....: underlying=gbm_2,

....: mar_env=me_opt,

....: payoff_func='np.maximum(maturity_value - strike, 0)')

....:

The major statistics for this option are:

In [43]: eur_call.present_value()

Out[43]: 10.364663

In [44]: eur_call.delta()

Out[44]: 0.4174

In [45]: eur_call.gamma()

Out[45]: 0.0121

290 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [46]: 0.5 * eur_call.gamma() * eur_call.underlying.initial_value ** 2

Out[46]: 60.5

In [47]: eur_call.vega()

Out[47]: 27.6147

In [48]: eur_call.theta()

Out[48]: -14.1996

In [49]: eur_call.rho()

Out[49]: 18.0684

Note that all these values might vary to a greater or lesser extent with the parameters chosen
for the Monte Carlo simulation.

To conclude this section, let us analyze the European call option in a bit more detail. We
want to estimate and collect the Greeks for different strikes. The following code implements
the necessary steps:

In [50]: k_list = np.arange(80., 120.5, 2.5)

In [51]: pv = []; de = []; ve = []; th = []; rh = []; ga = []

In [52]: for k in k_list:

....: eur_call.update(strike=k)

....: pv.append(eur_call.present_value())

....: de.append(eur_call.delta())

....: ve.append(eur_call.vega())

....: th.append(eur_call.theta())

....: rh.append(eur_call.rho())

....: ga.append(eur_call.gamma())

....:

Figure 12.3 shows the results graphically.

In [53]: dx.plot_option_stats_full(k_list, pv, de, ga, ve, th, rh)

12.4 DERIVATIVES PORTFOLIOS

The previous sections show how convenient and flexible it is to model single derivatives with
DX Analytics. The numerical methods used and the API of the library mimic working with the
Black-Scholes-Merton closed option pricing formula when it comes to Greeks although the
derivative itself might be much more complex than a plain vanilla European call or put option

DX Analytics – An Overview 291

FIGURE 12.3 Greeks of the European call option for different strikes.

292 LISTED VOLATILITY AND VARIANCE DERIVATIVES

(e.g. it might have American exercise and an exotic payoff). However, the area which differ-
entiates DX Analytics most from other derivatives analytics libraries is the global valuation
approach for derivatives portfolios. How it works is explained in this section.

12.4.1 Model ing Portfo l ios

In a portfolio context, we need to add information about the model class(es) to be used by the
market environments of the risk factors.

In [54]: me_1.add_constant('model', 'gbm')

In [55]: me_2.add_constant('model', 'gbm')

To compose a portfolio consisting of the two options, we need to define derivatives positions.
Note that this step is independent from the risk factor model and option model definitions. We
only use the market environment data and some additional information needed (e.g. payoff
functions).

In [56]: put = dx.derivatives_position(

....: name='put', # name as string

....: quantity=2, # number of options in the portfolio

....: underlyings=['gbm_1'], # the underlying(s) as list object

....: mar_env=me_opt, # the market environment object

....: otype='American single', # the option type

....: payoff_func='np.maximum(strike - instrument_values, 0)')

the payoff

....:

In [57]: call = dx.derivatives_position(

....: name='call',

....: quantity=3,

....: underlyings=['gbm_2'],

....: mar_env=me_opt,

....: otype='European single',

....: payoff_func='np.maximum(maturity_value - strike, 0)')

....:

In a portfolio context, we also need to define the market. It consists of the risk factors, the
correlation between them, the derivatives positions as well as the valuation environment.

In [58]: risk_factors = {'gbm_1': me_1, 'gbm_2': me_2} # as dictionary

In [59]: correlations = [['gbm_1', 'gbm_2', 0.4]] # as list

In [60]: positions = {'put' : put, 'call' : call} # as dictionary

DX Analytics – An Overview 293

The valuation environment (technically another market environment) contains all those param-
eters shared by all derivatives positions. This might imply that certain parameters from
the market environments of the derivatives get replaced for the portfolio simulations and
valuations.

In [61]: val_env = dx.market_environment('general', dt.datetime(2016, 1, 1))

In [62]: val_env.add_constant('frequency', 'W')

In [63]: val_env.add_constant('paths', 25000)

In [64]: val_env.add_constant('starting_date', val_env.pricing_date)

In [65]: val_env.add_constant('final_date', val_env.pricing_date)

In [66]: val_env.add_curve('discount_curve', r)

These new objects are needed to instantiate a portfolio object.

In [67]: port = dx.derivatives_portfolio(

....: name='portfolio', # name as string

....: positions=positions, # derivatives positions

....: val_env=val_env, # valuation environment

....: risk_factors=risk_factors, # relevant risk factors

....: correlations=correlations, # correlation between risk factors

....: parallel=False) # parallel valuation True/False

....:

12.4.2 Simulat ion and Valuat ion

Simulation and valuation are now as straightforward as in the single option case.

In [68]: port.get_values() # get all present values

Total

pos_value 54.103966

dtype: float64

Out[68]:

position name quantity otype risk_facts value currency \
0 put put 2 American single [gbm_1] 11.804000 EUR

1 call call 3 European single [gbm_2] 10.165322 EUR

pos_value

0 23.608000

1 30.495966

294 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [69]: port.get_statistics() # get major statistics

Totals

pos_value 54.1030

pos_delta 0.0082

pos_vega 130.9992

dtype: float64

Out[69]:

position name quantity otype risk_facts value currency \
0 put put 2 American single [gbm_1] 11.804 EUR

1 call call 3 European single [gbm_2] 10.165 EUR

pos_value pos_delta pos_vega

0 23.608 -1.4192 48.7344

1 30.495 1.4274 82.2648

12.4.3 Risk Reports

A strength of DX Analytics and the global valuation approach is that one can easily generate
consistent risk reports. By this we mean that single parameters are shocked and the effect on
the portfolio value is estimated. Think of a larger portfolio containing multiple options on the
S&P 500 equity index. By changing the spot value of the index, DX Analytics can estimate in
a single step what the impact is on the overall portfolio value (and not only on a single option
as in the case of a delta calculation).

When calling the get_port_risk() method you need to define which parameter will
be shocked. You get back all hypothetical portfolio values and the benchmark value without
shock. The following estimates show the “portfolio deltas.”

In [70]: deltas, benchvalue = port.get_port_risk(Greek='Delta')

gbm_1

0.8 0.9 1.0 1.1 1.2

gbm_2

0.8 0.9 1.0 1.1 1.2

In [71]: benchvalue

Out[71]: 54.103966

In [72]: deltas

Out[72]:

<class 'pandas.core.panel.Panel'>

Dimensions: 2 (items) x 5 (major_axis) x 2 (minor_axis)

Items axis: gbm_1_Delta to gbm_2_Delta

Major_axis axis: 0.8 to 1.2

Minor_axis axis: factor to value

DX Analytics – An Overview 295

There is a convenience function called risk_report() in DX Analytics to nicely print the
results.

In [73]: dx.risk_report (deltas) # gives the resulting values ...

gbm_1_Delta

0.8 0.9 1.0 1.1 1.2

factor 80.00 90.00 100.0 110.00 120.00

value 90.51 70.89 54.1 42.19 35.37

gbm_2_Delta

0.8 0.9 1.0 1.1 1.2

factor 80.00 90.00 100.0 110.00 120.00

value 33.28 41.94 54.1 69.74 88.39

In [74]: dx.risk_report(deltas.ix[:, :, 'value'] - benchvalue,

....: gross=False) # ... as net changes

....:

gbm_1_Delta gbm_2_Delta

0.8 36.41 -20.83

0.9 16.79 -12.16

1.0 0.00 0.00

1.1 -11.92 15.63

1.2 -18.74 34.28

“Portfolio vegas” are calculated in the same way.

In [75]: vegas, benchvalue = port.get_port_risk(Greek='Vega', step=0.05)

gbm_1

0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15 1.2

gbm_2

0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15 1.2

In [76]: dx.risk_report(vegas)

gbm_1_Vega

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

factor 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

value 52.40 52.85 53.20 53.64 54.1 54.59 55.05 55.52 56.01

gbm_2_Vega

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

factor 0.40 0.43 0.45 0.48 0.5 0.53 0.55 0.58 0.60

value 45.92 47.95 50.00 52.05 54.1 56.16 58.22 60.28 62.34

296 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [77]: dx.risk_report(vegas.ix[:, :, 'value'] - benchvalue, gross=False)

gbm_1_Vega gbm_2_Vega

0.80 -1.70 -8.19

0.85 -1.26 -6.15

0.90 -0.91 -4.11

0.95 -0.47 -2.05

1.00 0.00 0.00

1.05 0.49 2.06

1.10 0.95 4.12

1.15 1.41 6.18

1.20 1.90 8.24

12.5 CONCLUSIONS

This chapter provides a quick start with DX Analytics, a Python-based financial analytics
library with a focus on derivatives and risk analytics. The library offers many more features
than are covered in this brief chapter. It is recommended to check out the main page http://dx-
analytics.com and to work through the different parts of the documentation which are all based
on executable Jupyter Notebooks.

The focus of this chapter is on the basic tool set and a basic understanding of the API to
have a good foundation for the case studies in the two subsquent chapters. The case studies
use DX Analytics to model the VSTOXX volatility index by the square-root diffusion model
from chapter 6, Valuing Volatility Derivatives as well as the square-root jump diffusion model
from chapter 7, Advanced Modeling of the VSTOXX Index. The major goal of the case studies
is to analyze how well the two models perform over time in replicating the market quotes of
traded VSTOXX options.

http://dx-analytics.com
http://dx-analytics.com
http://dx-analytics.com

CHAPTER 13
DX Analytics – Square-Root Diffusion

13.1 INTRODUCTION

This chapter uses DX Analytics to model the VSTOXX volatility index by a square-root dif-
fusion process as proposed in Grünbichler and Longstaff (1996) and discussed in chapter 6
Valuing Volatility Derivatives. It implements a study over a time period of three months to
analyze how well the model performs in replicating market quotes for VSTOXX options.

13.2 DATA IMPORT AND SELECTION

The data we are working with is for the first quarter of 2014. The complete data set is contained
in the online resources accompanying this book. As usual, some imports first.

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: import datetime as dt

Next, we read the data from the source into pandas DataFrame objects.

In [4]: h5 = pd.HDFStore('./source/data/vstoxx_march_2014.h5', 'r')

In [5]: vstoxx_index = h5['vstoxx_index'] # data for the index itself

In [6]: vstoxx_futures = h5['vstoxx_futures'] # data for the futures

In [7]: vstoxx_options = h5['vstoxx_options'] # data for the options

In [8]: h5.close()

297

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

298 LISTED VOLATILITY AND VARIANCE DERIVATIVES

Inspecting the data sub-set for the VSTOXX index itself, we see that we are dealing with 63
trading days.

In [9]: vstoxx_index.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 63 entries, 2014-01-02 to 2014-03-31

Data columns (total 9 columns):

V2TX 63 non-null float64

V6I1 57 non-null float64

V6I2 63 non-null float64

V6I3 61 non-null float64

V6I4 63 non-null float64

V6I5 63 non-null float64

V6I6 62 non-null float64

V6I7 63 non-null float64

V6I8 63 non-null float64

dtypes: float64(9)

memory usage: 4.9 KB

In [10]: vstoxx_index.tail()

Out[10]:

V2TX V6I1 V6I2 V6I3 V6I4 V6I5 V6I6 \
Date

2014-03-25 18.2637 18.2303 18.3078 19.0371 19.8378 20.3065 18.1063

2014-03-26 17.5869 17.4810 17.7009 18.4499 19.4150 19.9961 20.2562

2014-03-27 17.6397 17.5032 17.7608 18.6249 19.4860 20.0477 20.1078

2014-03-28 17.0324 16.6849 17.2864 18.3281 19.3032 19.8332 20.1371

2014-03-31 17.6639 17.6087 17.6879 18.5689 19.4285 20.0430 19.9823

V6I7 V6I8

Date

2014-03-25 20.8292 21.2046

2014-03-26 20.4541 20.8563

2014-03-27 20.4865 20.9449

2014-03-28 20.3808 20.8210

2014-03-31 20.4448 20.8994

Per trading day, there are eight futures quotes for the eight different maturities of the VSTOXX
futures contract. This makes for a total of 504 futures quotes.

In [11]: vstoxx_futures.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 504 entries, 0 to 503

Data columns (total 5 columns):

DATE 504 non-null datetime64[ns]

DX Analytics – Square-Root Diffusion 299

EXP_YEAR 504 non-null int64

EXP_MONTH 504 non-null int64

PRICE 504 non-null float64

MATURITY 504 non-null datetime64[ns]

dtypes: datetime64[ns](2), float64(1), int64(2)

memory usage: 23.6 KB

In [12]: vstoxx_futures. tail()

Out[12]:

DATE EXP_YEAR EXP_MONTH PRICE MATURITY

499 2014-03-31 2014 7 20.40 2014-07-18

500 2014-03-31 2014 8 20.70 2014-08-15

501 2014-03-31 2014 9 20.95 2014-09-19

502 2014-03-31 2014 10 21.05 2014-10-17

503 2014-03-31 2014 11 21.25 2014-11-21

By far the biggest data sub-set is the one for the VSTOXX options. For each trading day there
are market quotes for puts and calls for eight different maturities and a multitude of different
strike prices. This makes for a total of 46,960 option quotes for the first quarter of 2014.

In [13]: vstoxx_options.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 46960 entries, 0 to 46959

Data columns (total 7 columns):

DATE 46960 non-null datetime64[ns]

EXP_YEAR 46960 non-null int64

EXP_MONTH 46960 non-null int64

TYPE 46960 non-null object

STRIKE 46960 non-null float64

PRICE 46960 non-null float64

MATURITY 46960 non-null datetime64[ns]

dtypes: datetime64[ns](2), float64(2), int64(2), object(1)

memory usage: 2.9+ MB

In [14]: vstoxx_options.tail()

Out[14]:

DATE EXP_YEAR EXP_MONTH TYPE STRIKE PRICE MATURITY

46955 2014-03-31 2014 11 P 85.0 63.65 2014-11-21

46956 2014-03-31 2014 11 P 90.0 68.65 2014-11-21

46957 2014-03-31 2014 11 P 95.0 73.65 2014-11-21

46958 2014-03-31 2014 11 P 100.0 78.65 2014-11-21

46959 2014-03-31 2014 11 P 105.0 83.65 2014-11-21

Maturity-wise we are dealing with a total of eleven dates. This is due to the fact that at any
given time eight maturities for the VSTOXX futures and options contracts are available and
we are looking at data for three months.

300 LISTED VOLATILITY AND VARIANCE DERIVATIVES

In [15]: third_fridays = sorted(set(vstoxx_futures['MATURITY']))

In [16]: third_fridays

Out[16]:

[Timestamp('2014-01-17 00:00:00'),

Timestamp('2014-02-21 00:00:00'),

Timestamp('2014-03-21 00:00:00'),

Timestamp('2014-04-18 00:00:00'),

Timestamp('2014-05-16 00:00:00'),

Timestamp('2014-06-20 00:00:00'),

Timestamp('2014-07-18 00:00:00'),

Timestamp('2014-08-15 00:00:00'),

Timestamp('2014-09-19 00:00:00'),

Timestamp('2014-10-17 00:00:00'),

Timestamp('2014-11-21 00:00:00')]

When it comes to the calibration of the square-root diffusion model for the VSTOXX,
it is necessary to work with a selection from the large set of option quotes. The follow-
ing function implements such a selection procedure, using different conditions to gener-
ate a sensible set of option quotes around the forward at-the-money level. The function
srd_get_option_selection() is used in what follows to select the right sub-set of
option quotes for each day during the calibration.

def srd_get_option_selection(pricing_date, maturity, tol=tol):

''' Function to select option quotes from data set.

Parameters

==========

pricing_date: datetime object

date for which the calibration shall be implemented

maturity: datetime object

maturity date for the options to be selected

tol: float

moneyness tolerance for OTM and ITM options to be selected

Returns

=======

option_selection: DataFrame object

selected options quotes

forward: float

futures price for maturity at pricing_date

'''

forward = vstoxx_futures[(vstoxx_futures. DATE == pricing_date)

& (vstoxx_futures.MATURITY == maturity)]['PRICE'].values[0]

DX Analytics – Square-Root Diffusion 301

option_selection = \
vstoxx_options[(vstoxx_options.DATE == pricing_date)

& (vstoxx_options.MATURITY == maturity)

& (vstoxx_options.TYPE == 'C') # only calls

& (vstoxx_options.STRIKE > (1 - tol) * forward)

& (vstoxx_options.STRIKE < (1 + tol) * forward)]

return option_selection, forward

13.3 MODEL ING THE VSTOXX OPTIONS

The previous chapter illustrates how European options are modeled with DX Analytics based
on a geometric Brownian motion model (dx.geometric_brownian_motion()). To
model the VSTOXX options for the calibration, we just need to replace that model with the
square-root diffusion model dx.square_root_diffusion(). The respective market
environment then needs some additional parameters.

All the code used for the calibration is found in the Python script dx_srd_
calibration.py (see sub-section 14.6.1 dx_srd_calibration.py). After some imports, the
script starts by defining some general parameters and curves for the market environment. Dur-
ing the calibration process, some of these get updated to reflect the current status of the opti-
mization procedure.

import dx

import time

import numpy as np

import pandas as pd

import datetime as dt

import scipy.optimize as spo

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

import matplotlib

matplotlib.rcParams['font.family'] = 'serif'

importing the data

h5 = pd.HDFStore('../data/vstoxx_march_2014.h5', 'r')

vstoxx_index = h5['vstoxx_index']

vstoxx_futures = h5['vstoxx_futures']

vstoxx_options = h5['vstoxx_options']

h5.close()

collecting the maturity dates

third_fridays = sorted(set(vstoxx_futures['MATURITY']))

instantiation of market environment object with dummy pricing date

me_vstoxx = dx.market_environment('me_vstoxx', dt.datetime(2014, 1, 1))

me_vstoxx.add_constant('currency', 'EUR')

me_vstoxx.add_constant('frequency', 'W')

302 LISTED VOLATILITY AND VARIANCE DERIVATIVES

me_vstoxx.add_constant('paths', 5000)

constant short rate model with somewhat arbitrary rate

csr = dx.constant_short_rate('csr', 0.01)

me_vstoxx.add_curve('discount_curve', csr)

parameters to be calibrated later, dummies only

me_vstoxx.add_constant('kappa', 1.0)

me_vstoxx.add_constant('theta', 20)

me_vstoxx.add_constant('volatility', 1.0)

payoff function for all European call options

payoff_func = 'np.maximum(maturity_value - strike, 0)'

tol = 0.2 # otm & itm moneyness tolerance

The function srd_get_option_models() creates valuation models for all options in a
given selection of option quotes.

def srd_get_option_models(pricing_date, maturity, option_selection):

''' Function to instantiate option pricing models.

Parameters

==========

pricing_date: datetime object

date for which the calibration shall be implemented

maturity: datetime object

maturity date for the options to be selected

option_selection: DataFrame object

selected options quotes

Returns

=======

vstoxx_model: dx.square_root_diffusion

model object for VSTOXX

option_models: dict

dictionary of dx.valuation_mcs_european_single objects

'''

updating the pricing date

me_vstoxx.pricing_date = pricing_date

setting the initial value for the pricing date

initial_value = vstoxx_index['V2TX'][pricing_date]

me_vstoxx.add_constant('initial_value', initial_value)

setting the final date given the maturity date

me_vstoxx.add_constant('final_date', maturity)

instantiating the risk factor (VSTOXX) model

DX Analytics – Square-Root Diffusion 303

vstoxx_model = dx.square_root_diffusion('vstoxx_model', me_vstoxx)

setting the maturity date for the valuation model(s)

me_vstoxx.add_constant('maturity', maturity)

option_models = {} # dictionary collecting all models

for option in option_selection.index:

setting the strike for the option to be modeled

strike = option_selection['STRIKE'].ix[option]

me_vstoxx.add_constant('strike', strike)

instantiating the option model

option_models[option] = \
dx.valuation_mcs_european_single(

'eur_call_%d' % strike,

vstoxx_model,

me_vstoxx,

payoff_func)

return vstoxx_model, option_models

13.4 CALIBRATION OF THE VSTOXX MODEL

Calibration of a parametrized model usually boils down to using global and local optimization
algorithms to find parameters that minimize a given target function. This process is discussed
in detail in Hilpisch (2015, ch. 11). For the calibration process to follow, we use the helper
function srd_calculate_model_values() to calculate “at once” the model values
for the VSTOXX options at hand. The function parameter p0 is a tuple since this is what the
optimization functions provide as input.

def srd_calculate_model_values(p0):

''' Returns all relevant option values.

Parameters

===========

p0: tuple/list

tuple of kappa, theta, volatility

Returns

=======

model_values: dict

dictionary with model values

'''

read the model parameters from input tuple

kappa, theta, volatility = p0

update the option market environment

vstoxx_model.update(kappa=kappa,

theta=theta,

volatility=volatility)

304 LISTED VOLATILITY AND VARIANCE DERIVATIVES

estimate and collect all option model present values

results = [option_models[option].present_value(fixed_seed=True)

for option in option_models]

combine the results with the option models in a dictionary

model_values = dict(zip(option_models, results))

return model_values

The target function to be minimized during the calibration is the mean-squared
error of the model values given the market quotes of the VSTOXX options. Again,
refer to Hilpisch (2015, ch. 11) for details and alternative formulations. The func-
tion srd_mean_squared_error() implements this concept and uses the function
srd_calculate_model_values() for the option model value calculations.

def srd_mean_squared_error(p0, penalty=True):

''' Returns the mean-squared error given

the model and market values.

Parameters

===========

p0: tuple/list

tuple of kappa, theta, volatility

Returns

=======

MSE: float

mean-squared error

'''

escape with high value for non-sensible parameter values

if p0[0] < 0 or p0[1] < 5. or p0[2] < 0 or p0[2] > 10.:

return 1000

define/access global variables/objects

global option_selection, vstoxx_model, option_models, first, last

calculate the model values for the option selection

model_values = srd_calculate_model_values(p0)

option_diffs = {} # dictionary to collect differences

for option in model_values:

differences between model value and market quote

option_diffs[option] = (model_values[option]

- option_selection['PRICE'].loc[option])

calculation of mean-squared error

MSE = np.sum(np.array(option_diffs.values()) ** 2) / len(option_diffs)

if first is True:

if in global optimization, no penalty

penalty = 0.0

else:

if in local optimization, penalize deviation from previous

DX Analytics – Square-Root Diffusion 305

optimal parameter combination

penalty = (np.sum((p0 - last) ** 2)) / 100

if penalty is False:

return MSE

return MSE + penalty

Equipped with the target function to be minimized, we can define the function for
the global and local calibration routine itself. The calibration takes place for one
or multiple maturities over the pricing date range defined. For example, the function
srd_get_parameter_series() can calibrate the model (separately) for the two matu-
rities May and June 2014 over the complete first quarter 2014.

def srd_get_parameter_series(pricing_date_list, maturity_list):

''' Returns parameter series for the calibrated model over time.

Parameters

==========

pricing_date_list: pd.DatetimeIndex

object with relevant pricing dates

maturity_list: list

list with maturities to be calibrated

Returns

=======

parameters: pd.DataFrame

DataFrame object with parameter series

'''

define/access global variables/objects

global option_selection, vstoxx_model, option_models, first, last

parameters = pd.DataFrame() # object to collect parameter series

for maturity in maturity_list:

first = True

for pricing_date in pricing_date_list:

select relevant option quotes

option_selection, forward = srd_get_option_selection

(pricing_date, maturity)

instantiate all model given option selection

vstoxx_model, option_models = srd_get_option_models

(pricing_date, maturity, option_selection)

if first is True:

global optimization to start with

opt = spo.brute(srd_mean_squared_error,

((1.25, 6.51, 0.75), # range for kappa

(10., 20.1, 2.5), # range for theta

(0.5, 10.51, 2.5)), # range for volatility

finish=None)

306 LISTED VOLATILITY AND VARIANCE DERIVATIVES

local optimization

opt = spo.fmin(srd_mean_squared_error, opt,

maxiter=550, maxfun=650,

xtol=0.0000001, ftol=0.0000001);

calculate MSE for storage

MSE = srd_mean_squared_error(opt, penalty=False)

store main parameters and results

parameters = parameters.append(

pd.DataFrame(

{'date' : pricing_date,

'maturity' : maturity,

'initial_value' :vstoxx_model.initial_value,

'kappa' : opt [0],

'theta' : opt [1],

'sigma' : opt [2],

'MSE' : MSE},

index = [0]), ignore_index=True)

first = False # set to False after first iteration

last = opt # store optimal parameters for reference

print ("Maturity %s" % str(maturity)[:10]

+ " | Pricing Date %s" % str(pricing_date)[:10]

+ " | MSE %6.5f " % MSE)

return parameters

The final step is to start the calibration and collect the calibration results. The calibration we
implement is for the April 18, 2014 maturity.

if __name__ is '__main__ ':

t0 = time.time()

define the dates for the calibration

pricing_date_list = pd.date_range('2014/1/2', '2014/3/31', freq='B')

select the maturities

maturity_list = [third_fridays[3]] # only 18. April 2014 maturity

start the calibration

parameters = srd_get_parameter_series(pricing_date_list, maturity_list)

plot the results

for mat in maturity_list:

fig1, ax1 = plt. subplots()

to_plot = parameters [parameters.maturity ==

maturity_list[0]].set_index('date')[

['kappa', 'theta', 'sigma', 'MSE']]

to_plot.plot(subplots=True, color='b', figsize=(10, 12),

title='SRD | ' + str(mat)[:10], ax=ax1)

plt.savefig('../images/dx_srd_cali_1_ %s.pdf' % str(mat)[:10])

plotting the histogram of the MSE values

DX Analytics – Square-Root Diffusion 307

fig2, ax2 = plt. subplots()

dat = parameters.MSE

dat.hist(bins=30, ax=ax2)

plt.axvline(dat.mean(), color='r', ls='dashed',

lw=1.5, label='mean = %5.4f' % dat.mean())

plt.legend()

plt.savefig('../images/dx_srd_cali_1_hist_%s.pdf' % str(mat)[:10])

measuring and printing the time needed for the script execution

print "Time in minutes %.2f" % ((time.time() - t0) / 60)

A visualization of the calibration results tells the whole story. Figure 13.1 shows the three
square-root diffusion parameters over time and the resulting MSE values.

As we can see throughout, the results are quite good given the low MSE values. The mean
MSE value is below 0.01 as seen in Figure 13.2.

F IGURE 13.1 Square-root diffusion parameters and MSE values from the calibration to a single
maturity (April 18, 2015).

308 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 13.2 Histogram of the mean-squared errors for the calibration of the
square-root diffusion model to a single maturity (April 18, 2015).

13.5 CONCLUSIONS

This chapter uses DX Analytics to model the VSTOXX volatility index by a square-root dif-
fusion process. In similar vein, it is used to model traded European call options on the index
to implement a calibration of the VSTOXX model over time. The results show that when cal-
ibrating the model to a single options maturity only, the model performs quite well yielding
rather low MSE values throughout. The parameter values also seem to be in sensible regions
throughout (e.g. theta between 15 and 18) and they evolve rather smoothly.

There exist closed form solutions for the price of a European call option in the square-root
diffusion model of Grünbichler and Longstaff (1996) as shown in chapter 6, Valuing Volatility
Derivatives. For our analysis in this chapter we have nevertheless used the Monte Carlo valu-
ation model of DX Analytics since this approach is more general in that we can easily replace
one model by another, maybe more sophisticated, one. This is done in the next chapter where
the same study is implemented based on the square-root jump diffusion model presented in
chapter 7, Advanced Modeling of the VSTOXX Index. The only difference is that a few more
parameters need to be taken care of.

13.6 PYTHON SCRIPTS

13.6.1 dx srd cal ibrat ion.py

#

Calibration of Grünbichler and Longstaff (1996)

Square-Root Diffusion (SRD) model to

DX Analytics – Square-Root Diffusion 309

VSTOXX call options with DX Analytics

#

All data from www.eurexchange.com

#

(c) Dr. Yves J. Hilpisch

Listed Volatility and Variance Derivatives

#

import dx

import time

import numpy as np

import pandas as pd

import datetime as dt

import scipy.optimize as spo

import matplotlib.pyplot as plt

import seaborn as sns; sns. set()

import matplotlib

matplotlib.rcParams['font.family'] = 'serif'

importing the data

h5 = pd.HDFStore('../data/vstoxx_march_2014.h5', 'r')

vstoxx_index = h5['vstoxx_index']

vstoxx_futures = h5['vstoxx_futures']

vstoxx_options = h5['vstoxx_options']

h5.close()

collecting the maturity dates

third_fridays = sorted(set(vstoxx_futures['MATURITY']))

instantiation of market environment object with dummy pricing date

me_vstoxx = dx.market_environment('me_vstoxx', dt.datetime(2014, 1, 1))

me_vstoxx.add_constant('currency', 'EUR')

me_vstoxx.add_constant('frequency', 'W')

me_vstoxx.add_constant('paths', 5000)

constant short rate model with somewhat arbitrary rate

csr = dx.constant_short_rate('csr', 0.01)

me_vstoxx.add_curve ('discount_curve', csr)

parameters to be calibrated later, dummies only

me_vstoxx.add_constant('kappa', 1.0)

me_vstoxx.add_constant('theta', 20)

me_vstoxx.add_constant('volatility', 1.0)

payoff function for all European call options

payoff_func = 'np.maximum(maturity_value - strike, 0)'

tol = 0.2 # otm & itm moneyness tolerance

let &hbox {char '046}www.eurexchange.com
www.eurexchange.com

310 LISTED VOLATILITY AND VARIANCE DERIVATIVES

def srd_get_option_selection (pricing_date, maturity, tol=tol):

''' Function to select option quotes from data set.

Parameters

==========

pricing_date: datetime object

date for which the calibration shall be implemented

maturity: datetime object

maturity date for the options to be selected

tol: float

moneyness tolerace for OTM and ITM options to be selected

Returns

=======

option_selection: DataFrame object

selected options quotes

forward: float

futures price for maturity at pricing_date

'''

forward = vstoxx_futures[(vstoxx_futures.DATE == pricing_date)

& (vstoxx_futures.MATURITY == maturity)]

['PRICE'].values[0]

option_selection = \
vstoxx_options[(vstoxx_options.DATE == pricing_date)

&(vstoxx_options.MATURITY == maturity)

&(vstoxx_options.TYPE == 'C') # only calls

&(vstoxx_options.STRIKE > (1 - tol) * forward)

&(vstoxx_options.STRIKE <(1 + tol) * forward)]

return option_selection, forward

def srd_get_option_models (pricing_date, maturity, option_selection):

''' Function to instantiate option pricing models.

Parameters

==========

pricing_date: datetime object

date for which the calibration shall be implemented

maturity: datetime object

maturity date for the options to be selected

option_selection: DataFrame object

selected options quotes

Returns

=======

vstoxx_model: dx.square_root_diffusion

model object for VSTOXX

option_models: dict

DX Analytics – Square-Root Diffusion 311

dictionary of dx.valuation_mcs_european_single objects

'''

updating the pricing date

me_vstoxx.pricing_date = pricing_date

setting the initial value for the pricing date

initial_value = vstoxx_index['V2TX'][pricing_date]

me_vstoxx.add_constant('initial_value', initial_value)

setting the final date given the maturity date

me_vstoxx.add_constant('final_date', maturity)

instantiating the risk factor (VSTOXX) model

vstoxx_model = dx.square_root_diffusion('vstoxx_model', me_vstoxx)

setting the maturity date for the valuation model(s)

me_vstoxx.add_constant('maturity', maturity)

option_models = {} # dictionary collecting all models

for option in option_selection.index:

setting the strike for the option to be modeled

strike = option_selection['STRIKE'].ix[option]

me_vstoxx.add_constant('strike', strike)

instantiating the option model

option_models[option] = \
dx.valuation_mcs_european_single(

'eur_call_%d' % strike,

vstoxx_model,

me_vstoxx,

payoff_func)

return vstoxx_model, option_models

def srd_calculate_model_values(p0):

''' Returns all relevant option values.

Parameters

===========

p0: tuple/list

tuple of kappa, theta, volatility

Returns

=======

model_values: dict

dictionary with model values

'''

read the model parameters from input tuple

kappa, theta, volatility = p0

update the option market environment

vstoxx_model. update(kappa=kappa,

theta=theta,

volatility=volatility)

312 LISTED VOLATILITY AND VARIANCE DERIVATIVES

estimate and collect all option model present values

results = [option_models[option].present_value(fixed_seed=True)

for option in option_models]

combine the results with the option models in a dictionary

model_values = dict(zip(option_models, results))

return model_values

def srd_mean_squared_error(p0, penalty=True):

''' Returns the mean-squared error given

the model and market values.

Parameters

===========

p0: tuple/list

tuple of kappa, theta, volatility

Returns

=======

MSE: float

mean-squared error

'''

escape with high value for non-sensible parameter values

if p0[0] < 0 or p0[1] < 5. or p0[2] < 0 or p0[2] > 10.:

return 1000

define/access global variables/objects

global option_selection, vstoxx_model, option_models, first, last

calculate the model values for the option selection

model_values = srd_calculate_model_values(p0)

option_diffs = {} # dictionary to collect differences

for option in model_values:

differences between model value and market quote

option_diffs[option] = (model_values[option]

- option_selection['PRICE'].loc[option])

calculation of mean-squared error

MSE = np.sum(np.array(option_diffs.values()) ** 2) / len(option_diffs)

if first is True:

if in global optimization, no penalty

penalty = 0.0

else:

if in local optimization, penalize deviation from previous

optimal parameter combination

penalty = (np.sum((p0 - last) ** 2)) / 100

if penalty is False:

return MSE

return MSE + penalty

DX Analytics – Square-Root Diffusion 313

def srd_get_parameter_series(pricing_date_list, maturity_list):

'''Returns parameter series for the calibrated model over time.

Parameters

==========

pricing_date_list: pd.DatetimeIndex

object with relevant pricing dates

maturity_list: list

list with maturities to be calibrated

Returns

=======

parameters: pd.DataFrame

DataFrame object with parameter series

'''

define/access global variables/objects

global option_selection, vstoxx_model, option_models, first, last

parameters = pd.DataFrame() # object to collect parameter series

for maturity in maturity_list:

first = True

for pricing_date in pricing_date_list:

select relevant option quotes

option_selection, forward = srd_get_option_selection

(pricing_date, maturity)

instantiate all model given option selection

vstoxx_model, option_models = srd_get_option_models

(pricing_date, maturity, option_selection)

if first is True:

global optimization to start with

opt = spo.brute(srd_mean_squared_error,

((1.25, 6.51, 0.75), # range for kappa

(10., 20.1, 2.5), # range for theta

(0.5, 10.51, 2.5)), # range for volatility

finish=None)

local optimization

opt = spo.fmin(srd_mean_squared_error, opt,

maxiter=550, maxfun=650,

xtol=0.0000001, ftol=0.0000001);

calculate MSE for storage

MSE = srd_mean_squared_error(opt, penalty=False)

store main parameters and results

parameters = parameters.append(

pd.DataFrame(

{'date' : pricing_date,

'maturity' : maturity,

'initial_value' : vstoxx_model.initial_value,

'kappa' : opt[0],

314 LISTED VOLATILITY AND VARIANCE DERIVATIVES

'theta' : opt[1],

'sigma' : opt[2],

'MSE' : MSE},

index=[0]), ignore_index=True)

first = False # set to False after first iteration

last = opt # store optimal parameters for reference

print ("Maturity %s" %str(maturity)[:10]

+ " | Pricing Date %s" % str(pricing_date)[:10]

+ " | MSE %6.5f " % MSE)

return parameters

if __name__ is '__main__':

t0 = time.time()

define the dates for the calibration

pricing_date_list = pd.date_range('2014/1/2', '2014/3/31', freq='B')

select the maturities

maturity_list = [third_fridays[3]] # only 18. April 2014 maturity

start the calibration

parameters = srd_get_parameter_series(pricing_date_list,

maturity_list)

plot the results

for mat in maturity_list:

fig1, ax1 = plt.subplots()

to_plot = parameters[parameters.maturity ==

maturity_list[0]].set_index('date')[

['kappa', 'theta', 'sigma', 'MSE']]

to_plot.plot(subplots=True, color='b', figsize=(10, 12),

title='SRD | ' + str(mat)[:10], ax=ax1)

plt.savefig('../images/dx_srd_cali_1_%s.pdf' % str(mat)[:10])

plotting the histogram of the MSE values

fig2, ax2 = plt. subplots()

dat = parameters.MSE

dat.hist(bins=30, ax=ax2)

plt.axvline(dat.mean(), color='r', ls='dashed',

lw=1.5, label='mean = %5.4f' %dat.mean())

plt.legend()

plt.savefig('../images/dx_srd_cali_1_hist_%s.pdf' % str(mat)[:10])

measuring and printing the time needed for the script execution

print "Time in minutes %.2f" % ((time.time()- t0)/ 60)

CHAPTER 14
DX Analytics – Square-Root

Jump Diffusion

14.1 INTRODUCTION

Similarly to the previous chapter, this chapter again uses DX Analytics to model the VSTOXX
index, but this time by the square-root jump diffusion (SRJD) process as introduced in chap-
ter 7, Advanced Modeling of the VSTOXX Index. The study this chapter implements is actu-
ally the same as in the previous one using the very same data set. However, the challenge is
increased in that we require multiple VSTOXX option maturities to be calibrated simultane-
ously and over time.

14.2 MODEL ING THE VSTOXX OPTIONS

DX Analytics provides a class for the deterministic shift square-root jump diffusion model. It is
called dx.square_root_jump_diffusion(). Although the calibration we are imple-
menting in this chapter is more or less the same as in the previous one, we need nevertheless
to adjust the code significantly in many places. Therefore, we are stepping through the single
elements again in what follows. All the code used in this chapter is found in the Python script
dx_srjd_calibration.py (see sub-section 14.6.1, dx_srjd_calibration.py).

The beginning of the script is rather similar to the one implementing the calibration of the
square-root diffusion model. A major difference is that we need three additional parameters
lambda, mu and delta.

import dx

import time

import numpy as np

import pandas as pd

import datetime as dt

import scipy.optimize as spo

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

315

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

316 LISTED VOLATILITY AND VARIANCE DERIVATIVES

import matplotlib

matplotlib.rcParams['font.family'] = 'serif'

from copy import deepcopy

importing the data

h5 = pd.HDFStore('../data/vstoxx_march_2014.h5', 'r')

vstoxx_index = h5['vstoxx_index']

vstoxx_futures = h5['vstoxx_futures']

vstoxx_options = h5['vstoxx_options']

h5.close()

collecting the maturity dates

third_fridays = sorted(set(vstoxx_futures['MATURITY']))

instantiation of market environment object with dummy pricing date

me_vstoxx = dx.market_environment('me_vstoxx', dt.datetime(2014, 1, 1))

me_vstoxx.add_constant('currency', 'EUR')

me_vstoxx.add_constant('frequency', 'W')

me_vstoxx.add_constant('paths', 5000)

constant short rate model with somewhat arbitrary rate

csr = dx.constant_short_rate('csr', 0.01)

me_vstoxx.add_curve('discount_curve', csr)

parameters to be calibrated later, dummies only

SRD part

me_vstoxx.add_constant('kappa', 1.0)

me_vstoxx.add_constant('theta', 20)

me_vstoxx.add_constant('volatility', 1.0)

jump part

me_vstoxx.add_constant('lambda', 0.5)

me_vstoxx.add_constant('mu', -0.2)

me_vstoxx.add_constant('delta', 0.1)

payoff function for all European call options

payoff_func = 'np.maximum(maturity_value - strike, 0)'

tol = 0.2 # otm & itm moneyness tolerance

first = True # flag for first calibration

The function srjd_get_option_selection() selects the options used for the calibra-
tion. In the current case, we can choose multiple option maturities to be included.

def srjd_get_option_selection(pricing_date, tol=tol):

''' Function to select option quotes from data set.

DX Analytics – Square-Root Jump Diffusion 317

Parameters

==========

pricing_date: datetime object

date for which the calibration shall be implemented

tol: float

moneyness tolerance for OTM and ITM options to be selected

Returns

=======

option_selection: DataFrame object

selected options quotes

futures: DataFrame object

futures prices at pricing_date

'''

option_selection = pd.DataFrame()

mats = [third_fridays[3],] # list of maturity dates

select the relevant futures prices

futures = vstoxx_futures[(vstoxx_futures.DATE == pricing_date)

& (vstoxx_futures.MATURITY.apply(lambda x: x in mats))]

collect option data for the given option maturities

for mat in mats:

forward = futures[futures.MATURITY == mat]['PRICE'].values[0]

option_selection = option_selection.append(

vstoxx_options[(vstoxx_options.DATE == pricing_date)

& (vstoxx_options.MATURITY == mat)

& (vstoxx_options.TYPE == 'C') # only calls

& (vstoxx_options.STRIKE > (1 - tol) * forward)

& (vstoxx_options.STRIKE < (1 + tol) * forward)])

return option_selection, futures

The calibration of the SRJD model consists of two steps:

� term structure calibration: using the futures prices at a given pricing date, this step
calibrates the forward rates of the model

� option quote calibration: using market quotes of traded options, this step calibrates the
model parameters to optimally reflect the market quotes.

Two functions are used to implement the first step. The function srd_forward_error()
calculates the mean-squared error (MSE) for the futures term structure given a set of model
parameters.

def srd_forward_error(p0):

''' Calculates the mean-squared error for the

term structure calibration for the SRD model part.

Parameters

===========

318 LISTED VOLATILITY AND VARIANCE DERIVATIVES

p0: tuple/list

tuple of kappa, theta, volatility

Returns

=======

MSE: float

mean-squared error

'''

global initial_value, f, t

if p0[0] < 0 or p0[1] < 0 or p0[2] < 0:

return 100

f_model = dx.srd_forwards(initial_value, p0, t)

MSE = np.sum((f - f_model) ** 2) / len(f)

return MSE

The second function is called generate_shift_base() and calculates the single deter-
ministic shift values to match the futures term structure perfectly – after the minimization
of the term structure MSE. Note that the perfect shift gets lost again later on when the SRD
parameters are updated during the calibration to the option quotes.

def generate_shift_base(pricing_date, futures):

''' Generates the values for the deterministic shift for the

SRD model part.

Parameters

==========

pricing_date: datetime object

date for which the calibration shall be implemented

futures: DataFrame object

futures prices at pricing_date

Returns

=======

shift_base: ndarray object

shift values for the SRD model part

'''

global initial_value, f, t

futures price array

f = list(futures['PRICE'].values)

f.insert(0, initial_value)

f = np.array(f)

date array

t = [_.to_pydatetime() for _ in futures['MATURITY']]

t.insert(0, pricing_date)

t = np.array(t)

calibration to the futures values

opt = spo.fmin(srd_forward_error, (2., 15., 2.))

DX Analytics – Square-Root Jump Diffusion 319

calculation of shift values

f_model = dx.srd_forwards(initial_value, opt, t)

shifts = f - f_model

shift_base = np.array((t, shifts)).T

return shift_base

As in the SRD calibration case, the function srjd_get_option_models() creates the
valuation models for all selected options.

def srjd_get_option_models(pricing_date, option_selection, futures):

''' Function to instantiate option pricing models.

Parameters

==========

pricing_date: datetime object

date for which the calibration shall be implemented

maturity: datetime object

maturity date for the options to be selected

option_selection: DataFrame object

selected options quotes

Returns

=======

vstoxx_model: dx.square_root_diffusion

model object for VSTOXX

option_models: dict

dictionary of dx.valuation_mcs_european_single objects

'''

global initial_value

updating the pricing date

me_vstoxx.pricing_date = pricing_date

setting the initial value for the pricing date

initial_value = vstoxx_index['V2TX'][pricing_date]

me_vstoxx.add_constant('initial_value', initial_value)

setting the final date given the maturity dates

final_date = max(futures.MATURITY).to_pydatetime()

me_vstoxx.add_constant('final_date', final_date)

adding the futures term structure

me_vstoxx.add_curve('term_structure', futures)

instantiating the risk factor (VSTOXX) model

vstoxx_model = dx.square_root_jump_diffusion_plus('vstoxx_model',

me_vstoxx)

generating the shift values and updating the model

vstoxx_model.shift_base = generate_shift_base(pricing_date, futures)

vstoxx_model.update_shift_values()

320 LISTED VOLATILITY AND VARIANCE DERIVATIVES

option_models = {} # dictionary collecting all models

for option in option_selection.index:

setting the maturity date for the given option

maturity = option_selection['MATURITY'].ix[option]

me_vstoxx.add_constant('maturity', maturity)

setting the strike for the option to be modeled

strike = option_selection['STRIKE'].ix[option]

me_vstoxx.add_constant('strike', strike)

instantiating the option model

option_models[option] = \
dx.valuation_mcs_european_single(

'eur_call_%d' % strike,

vstoxx_model,

me_vstoxx,

payoff_func)

return vstoxx_model, option_models

14.3 CALIBRATION OF THE VSTOXX MODEL

The function srjd_calculate_model_values() only differs from the SRD case in
that three more parameters need to be taken care of.

def srjd_calculate_model_values(p0):

''' Returns all relevant option values.

Parameters

===========

p0: tuple/list

tuple of kappa, theta, volatility, lamb, mu, delt

Returns

=======

model_values: dict

dictionary with model values

'''

read the model parameters from input tuple

kappa, theta, volatility, lamb, mu, delt = p0

update the option market environment

vstoxx_model.update(kappa=kappa,

theta=theta,

volatility=volatility,

lamb=lamb,

mu=mu,

delt=delt)

estimate and collect all option model present values

DX Analytics – Square-Root Jump Diffusion 321

results = [option_models[option].present_value(fixed_seed=True)

for option in option_models]

combine the results with the option models in a dictionary

model_values = dict(zip(option_models, results))

return model_values

The same holds true for the function srjd_mean_squared_error() which now also
penalizes certain parameter ranges for the additional parameters of the SRJD model.

def srjd_mean_squared_error(p0, penalty=True):

''' Returns the mean-squared error given

the model and market values.

Parameters

===========

p0: tuple/list

tuple of kappa, theta, volatility

Returns

=======

MSE: float

mean-squared error

'''

escape with high value for non-sensible parameter values

if (p0[0] < 0 or p0[1] < 5. or p0[2] < 0 or p0[2] > 10.

or p0[3] < 0 or p0[4] < 0 or p0[5] < 0):

return 1000

define/access global variables/objects

global option_selection, vstoxx_model, option_models, first, last

calculate the model values for the option selection

model_values = srjd_calculate_model_values(p0)

option_diffs = {} # dictionary to collect differences

for option in model_values:

differences between model value and market quote

option_diffs[option] = (model_values[option]

- option_selection['PRICE'].loc[option])

calculation of mean-squared error

MSE = np.sum(np.array(option_diffs.values()) ** 2) / len(option_diffs)

if first is True:

if in first optimization, no penalty

penalty = 0.0

else:

if 2, 3, ... optimization, penalize deviation from previous

optimal parameter combination

penalty = (np.sum((p0 - last) ** 2))

if penalty is False:

return MSE

return MSE + penalty

322 LISTED VOLATILITY AND VARIANCE DERIVATIVES

The function srjd_get_parameter_series() implementing the calibration routines
then takes on the form:

def srjd_get_parameter_series(pricing_date_list):

''' Returns parameter series for the calibrated model over time.

Parameters

==========

pricing_date_list: pd.DatetimeIndex

object with relevant pricing dates

Returns

=======

parameters: pd.DataFrame

DataFrame object with parameter series

'''

define/access global variables/objects

global initial_value, futures, option_selection, vstoxx_model, \
option_models, first, last

parameters = pd.DataFrame() # DataFrame object to collect parameter series

for pricing_date in pricing_date_list:

setting the initial value for the VSTOXX

initial_value = vstoxx_index['V2TX'][pricing_date]

select relevant option quotes

option_selection, futures = srjd_get_option_selection(pricing_date)

instantiate all model given option selection

vstoxx_model, option_models = srjd_get_option_models(pricing_date,

option_selection,

futures)

global optimization to start with

opt = spo.brute(srjd_mean_squared_error,

((1.25, 6.51, 0.75), # range for kappa

(10., 20.1, 2.5), # range for theta

(0.5, 10.51, 2.5), # range for volatility

(0.1, 0.71, 0.3), # range for lambda

(0.1, 0.71, 0.3), # range for mu

(0.1, 0.21, 0.1)), # range for delta

finish=None)

local optimization

opt = spo.fmin(srjd_mean_squared_error, opt,

maxiter=550, maxfun=650,

xtol=0.0000001, ftol=0.0000001);

calculate MSE for storage

MSE = srjd_mean_squared_error(opt, penalty=False)

store main parameters and results

parameters = parameters.append(

pd.DataFrame(

{'date' : pricing_date,

DX Analytics – Square-Root Jump Diffusion 323

'initial_value' : vstoxx_model.initial_value,

'kappa' : opt[0],

'theta' : opt[1],

'sigma' : opt[2],

'lambda' : opt[3],

'mu' : opt[4],

'delta' : opt[5],

'MSE' : MSE},

index=[0]), ignore_index=True)

first = False # set to False after first iteration

last = opt # store optimal parameters for reference

print ("Pricing Date %s" % str(pricing_date)[:10]

+ " | MSE %6.5f" % MSE)

return parameters

Finally, the function srjd_plot_model_fit() plots the results for the last pricing date of
the calibration procedure and compares the model values to the market quotes.

def srjd_plot_model_fit(parameters):

last pricing date

pdate = max(parameters.date)

optimal parameters for that date and the maturity

opt = np.array(parameters[parameters.date == pdate][[

'kappa', 'theta', 'sigma', 'lambda', 'mu', 'delta']])[0]

option_selection, futures = srjd_get_option_selection(pdate, tol=tol)

vstoxx_model, option_models = srjd_get_option_models(pdate,

option_selection,

futures)

model_values = srjd_calculate_model_values(opt)

model_values = pd.DataFrame(model_values.values(),

index=model_values.keys(),

columns=['MODEL'])

option_selection = option_selection.join(model_values)

mats = set(option_selection.MATURITY.values)

mats = sorted(mats)

arranging the canvas for the subplots

height = max(8, 2 * len(mats))

if len(mats) == 1:

mat = mats[0]

fig, axarr = plt.subplots(2, figsize=(10, height))

os = option_selection[option_selection.MATURITY == mat]

strikes = os.STRIKE.values

axarr[0].set_ylabel('%s' % str(mat)[:10])

axarr[0].plot(strikes, os.PRICE.values, label='Market Quotes')

axarr[0].plot(strikes, os.MODEL.values, 'ro', label='Model Prices')

axarr[0].legend(loc=0)

324 LISTED VOLATILITY AND VARIANCE DERIVATIVES

wi = 0.3

axarr[1].bar(strikes - wi / 2, os.MODEL.values - os.PRICE.values,

width=wi)

axarr[0].set_xlabel('strike')

axarr[1].set_xlabel('strike')

else:

fig, axarr = plt.subplots(len(mats), 2, sharex=True,

figsize=(10, height))

for z, mat in enumerate(mats):

os = option_selection[option_selection.MATURITY == mat]

strikes = os.STRIKE.values

axarr[z, 0].set_ylabel('%s' % str(mat)[:10])

axarr[z, 0].plot(strikes, os.PRICE.values, label='Market Quotes')

axarr[z, 0].plot(strikes, os.MODEL.values, 'ro', label='Model

Prices')

axarr[z, 0].legend(loc=0)

wi = 0.3

axarr[z, 1].bar(strikes - wi / 2,

os.MODEL.values - os.PRICE.values, width=wi)

axarr[z, 0].set_xlabel('strike')

axarr[z, 1].set_xlabel('strike')

plt.savefig('../images/dx_srjd_cali_1_fit.pdf')

The final step is to start the calibration, collect the calibration results and to
plot them. Remember that the maturities in this case are selected in the function
srjd_get_option_selection().

if __name__ is '__main__':

t0 = time.time()

selecting the dates for the calibration

pricing_date_list = pd.date_range('2014/3/1', '2014/3/31', freq='B')

conducting the calibration

parameters = srjd_get_parameter_series(pricing_date_list)

storing the calibation results

date = str(dt.datetime.now())[:10]

h5 = pd.HDFStore('../data/srjd_calibration_%s_%s_%s' %

(me_vstoxx.get_constant('paths'),

me_vstoxx.get_constant('frequency'),

date.replace('-', '_')), 'w')

h5['parameters'] = parameters

h5.close()

plotting the parameter time series data

fig1, ax1 = plt.subplots(1, figsize=(10, 12))

to_plot = parameters.set_index('date')[

['kappa', 'theta', 'sigma',

'lambda', 'mu', 'delta', 'MSE']]

DX Analytics – Square-Root Jump Diffusion 325

to_plot.plot(subplots=True, color='b', title='SRJD', ax=ax1)

plt.savefig('../images/dx_srjd_cali_1.pdf')

plotting the histogram of the MSE values

fig2, ax2 = plt.subplots()

dat = parameters.MSE

dat.hist(bins=30, ax=ax2)

plt.axvline(dat.mean(), color='r', ls='dashed',

lw=1.5, label='mean = %5.4f' % dat.mean())

plt.legend()

plt.savefig('../images/dx_srjd_cali_1_hist.pdf')

plotting the model fit at last pricing date

srjd_plot_model_fit(parameters)

measuring and printing the time needed for the script execution

print "Time in minutes %.2f" % ((time.time() - t0) / 60)

14.4 CALIBRATION RESULTS

This section presents calibration results for three different calibration runs. The first run imple-
ments a calibration to a single maturity, the second to two maturities simultaneously while the
third run does the same for five maturities of the VSTOXX options. The final run shows the
effects of not using penalties for deviations from previous optimal parameters which in general
would be used to get smoother parameter time series.

14.4.1 Cal ibrat ion to One Maturity

First, we calibrate the SRJD model to a single maturity, April 18, 2014. The calibration takes
place for all trading days in the first quarter of 2014. Figure 14.1 shows the time series data
for the parameters of the square-root jump diffusion over time and the resulting MSE values.

The MSE values are all quite low in general with a mean of about 0.1 and one outlier as
Figure 14.2 illustrates.

Figure 14.3 shows the calibration results for the last pricing date, i.e. on March 31, 2014.

14.4.2 Cal ibrat ion to Two Maturit ies

Let us have a look at the results for the calibration to two maturities where the VSTOXX
futures term structure comes into play. Figure 14.4 shows the parameter time series data for
this case.

In this case, the resulting MSE values are even slightly lower on average with a mean of
about 0.05 as seen in Figure 14.5.

Figure 14.6 shows the calibration results for the last pricing date, i.e. on March 31, 2014.

14.4.3 Cal ibrat ion to F ive Maturit ies

Finally, let us have a look at the calibration to five maturities simultaneously. This is the largest
number of maturities for which there is data over the whole time range from January to March
2014. Figure 14.7 shows the results for the model parameters and the MSE values.

326 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 14.1 Square-root jump diffusion parameters and MSE values from the calibration to two
maturities.

DX Analytics – Square-Root Jump Diffusion 327

FIGURE 14.2 Histogram of MSE values for SRJD calibration to two
maturities.

F IGURE 14.3 Model values from the SRJD calibration vs. market quotes as well as pricing errors
(bars) on March 31, 2014 (one maturity).

328 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 14.4 Square-root jump diffusion parameters and MSE values from the calibration to five
maturities.

DX Analytics – Square-Root Jump Diffusion 329

FIGURE 14.5 Histogram of MSE values for SRJD calibration to five
maturities.

F IGURE 14.6 Model values from the SRJD calibration vs. market quotes as well as pricing errors
(bars) on March 31, 2014 (two maturities).

330 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 14.7 Square-root jump diffusion parameters and MSE values from the calibration to five
maturities.

DX Analytics – Square-Root Jump Diffusion 331

FIGURE 14.8 Histogram of MSE values for SRJD calibration to five maturities.

The resulting MSE values are again slightly lower on average. The mean MSE value is
about 0.035 (see Figure 14.8).

The final plot (see Figure 14.9) again shows the calibration results at the last pricing date,
March 31, 2014. Given that the calibration includes options with different moneyness levels
over five different maturity months, the performance of the SRJD model is satisfactory.

14.4.4 Cal ibrat ion without Penalt ies

It might be surprising that the highest average MSE value is observed for the calibration case
with one maturity only. This is mainly due to the fact that we penalize deviations from previous
optimal parameter values quite heavily and also to the existence of one outlier. The advantage
of this is rather smooth time series for the single parameters, i.e. without too much variation.
This is usually desirable, for example, when such a model is used for hedging purposes and
hedge positions (indirectly) depend on the parameter values.

In this sub-section we therefore want to illustrate what changes when we do not penalize
deviations from the previous optimal parameter values. Figure 14.10 shows the results for the
model parameters and the MSE values from a calibration to one maturity (April 18, 2014)
without penalization. Inspection of the figure reveals how erratically the parameter time series
can behave in this case.

However, the advantage here is that there are excellent model fits to the market data with
a mean MSE value of 0.0007 only (see Figure 14.11).

332 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 14.9 Model values from the SRJD calibration vs. market quotes as well as pricing errors
(bars) on March 31, 2014 (five maturities).

14.5 CONCLUSIONS

This chapter calibrates the square-root jump diffusion (SRJD) model to both the VSTOXX
futures term structure and for multiple maturities for the VSTOXX options. It uses DX Ana-
lytics as in the previous chapter which provides flexible modeling capabilities for volatility-
based derivatives based, among other things, on square-root diffusions and square-root jump
diffusions.

The results we achieve are quite good in that the typical mean-squared error values are
relatively low for all cases covered – and this over the complete three month period for which
we are updating the calibration with only a few outliers.

DX Analytics – Square-Root Jump Diffusion 333

FIGURE 14.10 Square-root jump diffusion parameters and MSE values from the calibration to one
maturity without penalization.

334 LISTED VOLATILITY AND VARIANCE DERIVATIVES

F IGURE 14.11 Histogram of MSE values for SRJD calibration to one maturity without
penalization.

14.6 PYTHON SCRIPTS

14.6.1 dx srjd cal ibrat ion.py

#

Calibration of Square–Root Jump Diffusion (SRJD)

model to VSTOXX call options with DX Analytics

#

All data from www.eurexchange.com

#

(c) Dr. Yves J. Hilpisch

Listed Volatility and Variance Derivatives

#

import dx

import time

import numpy as np

import pandas as pd

import datetime as dt

import scipy.optimize as spo

import matplotlib.pyplot as plt

import seaborn as sns ; sns.set()

import matplotlib

let &hbox {char '046}www.eurexchange.com
www.eurexchange.com

DX Analytics – Square-Root Jump Diffusion 335

matplotlib.rcParams['font.family'] = 'serif '

from copy import deepcopy

importing the data

h5 = pd.HDFStore('../data/vstoxx_march_2014.h5', 'r')

vstoxx_index = h5['vstoxx_index']

vstoxx_futures = h5['vstoxx_futures']

vstoxx_options = h5['vstoxx_options']

h5.close()

collecting the maturity dates

third_fridays = sorted(set(vstoxx_futures['MATURITY']))

instantiation of market environment object with dummy pricing date

me_vstoxx = dx.market_environment('me_vstoxx', dt.datetime(2014, 1, 1))

me_vstoxx.add_constant('currency', 'EUR')

me_vstoxx.add_constant('frequency', 'W')

me_vstoxx.add_constant('paths', 5000)

constant short rate model with somewhat arbitrary rate

csr = dx.constant_short_rate('csr', 0.01)

me_vstoxx.add_curve('discount_curve', csr)

parameters to be calibrated later, dummies only

SRD part

me_vstoxx.add_constant('kappa', 1.0)

me_vstoxx.add_constant('theta', 20)

me_vstoxx.add_constant('volatility', 1.0)

jump part

me_vstoxx.add_constant('lambda', 0.5)

me_vstoxx.add_constant('mu', -0.2)

me_vstoxx.add_constant('delta', 0.1)

payoff function for all European call options

payoff_func = 'np.maximum(maturity_value – strike, 0)'

tol = 0.2 # otm & itm moneyness tolerance

first = True # flag for first calibration

def srjd_get_option_selection(pricing_date, tol=tol):

''' Function to select option quotes from data set.

Parameters

==========

pricing_date: datetime object

date for which the calibration shall be implemented

tol: float

moneyness tolerace for OTM and ITM options to be selected

Returns

336 LISTED VOLATILITY AND VARIANCE DERIVATIVES

=======

option_selection: DataFrame object

selected options quotes

futures: DataFrame object

futures prices at pricing_date

'''

option_selection = pd.DataFrame()

mats = [third_fridays[3],] # list of maturity dates

select the relevant futures prices

futures = vstoxx_futures[(vstoxx_futures.DATE == pricing_date)

& (vstoxx_futures.MATURITY.apply(lambda x: x in mats))]

collect option data for the given option maturities

for mat in mats:

forward = futures[futures.MATURITY == mat]['PRICE'].values[0]

option_selection = option_selection.append(

vstoxx_options[(vstoxx_options.DATE == pricing_date)

& (vstoxx_options.MATURITY == mat)

& (vstoxx_options.TYPE == 'C') # only calls

& (vstoxx_options.STRIKE > (1 - tol) * forward)

& (vstoxx_options.STRIKE < (1 + tol) * forward)])

return option_selection, futures

def srd_forward_error(p0):

''' Calculates the mean-squared error for the

term structure calibration for the SRD model part.

Parameters

===========

p0: tuple/list

tuple of kappa, theta, volatility

Returns

=======

MSE: float

mean-squared error

'''

global initial_value, f, t

if p0[0] < 0 or p0[1] < 0 or p0[2] < 0:

return 100

f_model = dx.srd_forwards(initial_value, p0, t)

MSE = np.sum((f - f_model) ** 2) / len(f)

return MSE

def generate_shift_base(pricing_date, futures):

''' Generates the values for the deterministic shift for the

SRD model part.

DX Analytics – Square-Root Jump Diffusion 337

Parameters

==========

pricing_date: datetime object

date for which the calibration shall be implemented

futures: DataFrame object

futures prices at pricing_date

Returns

=======

shift_base: ndarray object

shift values for the SRD model part

'''

global initial_value, f, t

futures price array

f = list(futures['PRICE'].values)

f.insert(0, initial_value)

f = np.array(f)

date array

t = [_.to_pydatetime() for _ in futures['MATURITY']]

t.insert(0, pricing_date)

t = np.array(t)

calibration to the futures values

opt = spo.fmin(srd_forward_error, (2., 15., 2.))

calculation of shift values

f_model = dx.srd_forwards(initial_value, opt, t)

shifts = f - f_model

shift_base = np.array((t, shifts)).T

return shift_base

def srjd_get_option_models(pricing_date, option_selection, futures):

''' Function to instantiate option pricing models.

Parameters

==========

pricing_date: datetime object

date for which the calibration shall be implemented

maturity: datetime object

maturity date for the options to be selected

option_selection: DataFrame object

selected options quotes

Returns

=======

vstoxx_model: dx.square_root_diffusion

model object for VSTOXX

338 LISTED VOLATILITY AND VARIANCE DERIVATIVES

option_models: dict

dictionary of dx.valuation_mcs_european_single objects

'''

global initial_value

updating the pricing date

me_vstoxx.pricing_date = pricing_date

setting the initial value for the pricing date

initial_value = vstoxx_index['V2TX'][pricing_date]

me_vstoxx.add_constant('initial_value', initial_value)

setting the final date given the maturity dates

final_date = max(futures.MATURITY).to_pydatetime()

me_vstoxx.add_constant('final_date', final_date)

adding the futures term structure

me_vstoxx.add_curve('term_structure', futures)

instantiating the risk factor (VSTOXX) model

vstoxx_model = dx.square_root_jump_diffusion_plus('vstoxx_model',

me_vstoxx)

generating the shift values and updating the model

vstoxx_model.shift_base = generate_shift_base(pricing_date, futures)

vstoxx_model.update_shift_values()

option_models = {} # dictionary collecting all models

for option in option_selection.index:

setting the maturity date for the given option

maturity = option_selection['MATURITY'].ix[option]

me_vstoxx.add_constant('maturity', maturity)

setting the strike for the option to be modeled

strike = option_selection['STRIKE'].ix[option]

me_vstoxx.add_constant('strike', strike)

instantiating the option model

option_models[option] = \
dx.valuation_mcs_european_single(

'eur_call_ %d' % strike,

vstoxx_model,

me_vstoxx,

payoff_func)

return vstoxx_model, option_models

def srjd_calculate_model_values(p0):

''' Returns all relevant option values.

Parameters

===========

p0: tuple/list

tuple of kappa, theta, volatility, lamb, mu, delt

DX Analytics – Square-Root Jump Diffusion 339

Returns

=======

model_values: dict

dictionary with model values

'''

read the model parameters from input tuple

kappa, theta, volatility, lamb, mu, delt = p0

update the option market environment

vstoxx_model.update(kappa=kappa,

theta=theta,

volatility=volatility,

lamb=lamb,

mu=mu,

delt=delt)

estimate and collect all option model present values

results = [option_models[option].present_value(fixed_seed=True)

for option in option_models]

combine the results with the option models in a dictionary

model_values = dict(zip(option_models, results))

return model_values

def srjd_mean_squared_error(p0, penalty=True):

''' Returns the mean-squared error given

the model and market values.

Parameters

===========

p0: tuple/list

tuple of kappa, theta, volatility

Returns

=======

MSE: float

mean-squared error

'''

escape with high value for non-sensible parameter values

if (p0[0] < 0 or p0[1] < 5. or p0[2] < 0 or p0[2] > 10.

or p0[3] < 0 or p0[4] < 0 or p0[5] < 0):

return 1000

define/access global variables/objects

global option_selection, vstoxx_model, option_models, first, last

calculate the model values for the option selection

model_values = srjd_calculate_model_values(p0)

option_diffs = {} # dictionary to collect differences

for option in model_values:

differences between model value and market quote

340 LISTED VOLATILITY AND VARIANCE DERIVATIVES

option_diffs[option] = (model_values[option]

- option_selection['PRICE'].loc[option])

calculation of mean-squared error

MSE = np.sum(np.array(option_diffs.values()) ** 2) / len(option_diffs)

if first is True:

if in first optimization, no penalty

penalty = 0.0

else:

if 2, 3, ... optimization, penalize deviation from previous

optimal parameter combination

penalty =(np.sum((p0 - last) ** 2))

if penalty is False:

return MSE

return MSE + penalty

def srjd_get_parameter_series(pricing_date_list):

''' Returns parameter series for the calibrated model over time.

Parameters

==========

pricing_date_list: pd.DatetimeIndex

object with relevant pricing dates

Returns

=======

parameters: pd.DataFrame

DataFrame object with parameter series

'''

define/access global variables/objects

global initial_value, futures, option_selection, vstoxx_model, \
option_models, first, last

parameters = pd.DataFrame() # DataFrame object to collect

parameter series

for pricing_date in pricing_date_list:

setting the initial value for the VSTOXX

initial_value = vstoxx_index['V2TX'][pricing_date]

select relevant option quotes

option_selection, futures = srjd_get_option_selection

(pricing_date)

instantiate all model given option selection

vstoxx_model, option_models = srjd_get_option_models(pricing_date,

option_selection,

futures)

global optimization to start with

opt = spo.brute(srjd_mean_squared_error,

((1.25, 6.51, 0.75), # range for kappa

DX Analytics – Square-Root Jump Diffusion 341

(10., 20.1, 2.5), # range for theta

(0.5, 10.51, 2.5), # range for volatility

(0.1, 0.71, 0.3), # range for lambda

(0.1, 0.71, 0.3), # range for mu

(0.1, 0.21, 0.1)), # range for delta

finish=None)

local optimization

opt = spo.fmin(srjd_mean_squared_error, opt,

maxiter=550, maxfun=650,

xtol=0.0000001, ftol=0.0000001);

calculate MSE for storage

MSE = srjd_mean_squared_error(opt, penalty=False)

store main parameters and results

parameters = parameters.append(

pd.DataFrame(

{'date' : pricing_date,

'initial_value' : vstoxx_model.initial_value,

'kappa' : opt[0],

'theta' : opt[1],

'sigma' : opt[2],

'lambda' : opt[3],

'mu' : opt[4],

'delta' : opt[5],

'MSE' : MSE},

index=[0]), ignore_index=True)

first = False # set to False after first iteration

last = opt # store optimal parameters for reference

print ("Pricing Date %s" % str(pricing_date)[:10]

+ " | MSE %6.5f" % MSE)

return parameters

def srjd_plot_model_fit(parameters):

last pricing date

pdate = max(parameters.date)

optimal parameters for that date and the maturity

opt = np.array(parameters[parameters.date == pdate][[

'kappa', 'theta', 'sigma', 'lambda', 'mu', 'delta']])[0]

option_selection, futures = srjd_get_option_selection(pdate, tol=tol)

vstoxx_model, option_models = srjd_get_option_models(pdate,

option_selection,

futures)

model_values = srjd_calculate_model_values(opt)

model_values = pd.DataFrame(model_values.values(),

index=model_values.keys(),

columns=['MODEL'])

option_selection = option_selection.join(model_values)

342 LISTED VOLATILITY AND VARIANCE DERIVATIVES

mats = set(option_selection.MATURITY.values)

mats = sorted(mats)

arranging the canvas for the subplots

height = max(8, 2 * len(mats))

if len(mats) == 1:

mat = mats[0]

fig, axarr = plt.subplots(2, figsize=(10, height))

os = option_selection[option_selection.MATURITY == mat]

strikes = os.STRIKE.values

axarr[0].set_ylabel('%s' % str(mat)[:10])

axarr[0].plot(strikes, os.PRICE.values, label='Market Quotes')

axarr[0].plot(strikes, os.MODEL.values, 'ro', label='Model Prices')

axarr[0].legend(loc=0)

wi = 0.3

axarr[1].bar(strikes - wi / 2, os.MODEL.values os.PRICE.values,

width=wi)

axarr[0].set_xlabel('strike')

axarr[1].set_xlabel('strike')

else:

fig, axarr = plt.subplots(len(mats), 2, sharex=True,

figsize=(10, height))

for z, mat in enumerate(mats):

os = option_selection[option_selection.MATURITY == mat]

strikes = os.STRIKE.values

axarr[z, 0].set_ylabel('%s' % str(mat)[:10])

axarr[z, 0].plot(strikes, os.PRICE.values, label='Market Quotes')

axarr[z, 0].plot(strikes, os.MODEL.values, 'ro', label='Model

Prices')

axarr[z, 0].legend(loc=0)

wi = 0.3

axarr[z, 1].bar(strikes - wi / 2,

os.MODEL.values - os.PRICE.values, width=wi)

axarr[z, 0].set_xlabel('strike')

axarr[z, 1].set_xlabel('strike')

plt.savefig('../images/dx_srjd_cali_1_fit.pdf')

if __name__ is '__main__ ':

t0 = time.time()

selecting the dates for the calibration

pricing_date_list = pd.date_range('2014/3/1', '2014/3/31', freq='B')

conducting the calibration

parameters = srjd_get_parameter_series(pricing_date_list)

storing the calibation results

date = str(dt.datetime.now())[:10]

h5 = pd.HDFStore('../data/srjd_calibration_%s_%s_%s' %

(me_vstoxx.get_constant('paths'),

DX Analytics – Square-Root Jump Diffusion 343

me_vstoxx.get_constant('frequency'),

date.replace('–', '_')), 'w')

h5['parameters'] = parameters

h5.close()

plotting the parameter time series data

fig1, ax1 = plt.subplots(1, figsize =(10, 12))

to_plot = parameters.set_index('date')[

['kappa', 'theta', 'sigma',

'lambda', 'mu', 'delta', 'MSE']]

to_plot.plot(subplots=True, color='b', title='SRJD', ax=ax1)

plt.savefig('../images/dx_srjd_cali_1.pdf')

plotting the histogram of the MSE values

fig2, ax2 = plt.subplots()

dat = parameters.MSE

dat.hist(bins=30, ax=ax2)

plt.axvline(dat.mean(), color='r', ls='dashed',

lw=1.5, label='mean = %5.4f' % dat.mean())

plt.legend()

plt.savefig('../images/dx_srjd_cali_1_hist.pdf')

plotting the model fit at last pricing date

srjd_plot_model_fit(parameters)

measuring and printing the time needed for the script execution

print "Time in minutes %.2f" % ((time.time() - t0) / 60)

Bibliography

Bennett, Collin and Miguel Gil (2012) Volatility Trading – Trading Volatility, Correlation, Term Structure
and Skew. Banco Santander.

Björk, Tomas (2009) Arbitrage Theory in Continuous Time. 3rd ed., Oxford University Press, Oxford.
Black, Fischer (1976) “The Pricing of Commodity Contracts.” Journal of Financial Economics, Vol. 3,

167–179.
Black, Fischer and Myron Scholes (1973) “The Pricing of Options and Corporate Liabilities.” Journal

of Political Economy, Vol. 81, No. 3, 637–654.
Bossu, Sebastian (2014) Advanced Equity Derivatives: Volatility and Correlation. Wiley Finance.
Bossu, Sebastien, Eva Strasser, Regis Guichard (2005) “Just What You Need To Know About Variance

Swaps.” JPMorgan.
Breeden, Douglas and Robert Litzenberger (1978) “Prices of State-Contingent Claims Implicit in Option

Prices.” Journal of Business, Vol. 51, No. 4, 621–651.
Brenner, Menachem and Dan Galai (1989) “New Financial Instruments for Hedging Changes in Volatil-

ity.” Financial Analysts Journal, Jul/Aug, Vol. 45, No. 4.
Brigo, Damiano and Fabio Mercurio (2001) “On Deterministic-Shift Extensions of Short-Rate Models.”

Working Paper, Banca IMI, Milano, www.damianobrigo.it.
Carr, Peter and Roger Lee (2009) “Volatility Derivatives.” Annual Review of Financial Economics,

Vol. 1, 1–21.
Chicago Board Options Exchange (2003) “The CBOE Volatility Index – VIX.” White Paper.
Cohen, Guy (2005) The Bible of Options Strategies. Pearson Education, Upper Saddle River.
Cox, John, Jonathan Ingersoll and Stephen Ross (1985) “A Theory of the Term Structure of Interest

Rates.” Econometrica, Vol. 53, No. 2, 385–407.
Duffie, Darrell, Jun Pan and Kenneth Singleton (2000) “Transform Analysis and Asset Pricing for Affine

Jump-Diffusions.” Econometrica, Vol. 68, No. 6, 1343–1376.
Fleming, Jeff, Barbara Ostdiek and Rober Whaley (1995) “Predicting Stock Market Volatility: A New

Measure.” The Journal of Futures Markets, Vol. 15, No. 3, 265–302.
Gatheral, Jim (2006) The Volatility Surface – A Practitioner”s Guide. John Wiley & Sons, Hoboken,

New Jersey.
Grünbichler, Andreas and Francis Longstaff (1996) “Valuing Futures and Options on Volatility.” Journal

of Banking and Finance, Vol. 20, 985–1001.
Guobuzaite, Renata and Lionel Martellini (2012) “The Benefits of Volatility Derivatives in

Equity Portfolio Management.” EDHEC Risk Institute, http://www.eurexchange.com/exchange-en/
about-us/news/60036/.

Haenel, Valentin, Emmanuelle Gouillart and Gaël Varoquaux (2013) “Python Scientific Lecture Notes.”
http://scipy-lectures.github.com.

Hilpisch, Yves (2015) Derivatives Analytics with Python – Data Analysis, Models, Simulation, Calibra-
tion and Hedging. Wiley Finance, http://derivatives-analytics-with-python.com.

Hilpisch, Yves (2014) Python for Finance — Analyze Big Financial Data. O’Reilly, http://python-for
-finance.com.

345

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

let &hbox {char '046}www.damianobrigo.it
www.damianobrigo.it
http://www.eurexchange.com/exchange-en/about-us/news/60036/
http://www.eurexchange.com/exchange-en/about-us/news/60036/
let &hbox {char '046}http://scipy-lectures.github.com
http://scipy-lectures.github.com
let &hbox {char '046}http://derivatives-analytics-with-python.com
http://derivatives-analytics-with-python.com
http://python-for-finance.com
http://python-for-finance.com

346 BIBLIOGRAPHY

Langtangen, Hans Petter (2009) A Primer on Scientific Programming with Python. Springer Verlag,
Berlin.

Lord, Roger, Remmert Koekkoek and Dick van Dijk (2008) “A Comparison of Biased Simula-
tion Schemes for Stochastic Volatility Models.” Working Paper, Tinbergen Institute, Amsterdam,
www.ssrn.com.

McKinney, Wes (2012) Python for Data Analysis – Data Wrangling with Pandas, NumPy, and IPython.
O”Reilly, Beijing.

Merton, Robert (1973) “Theory of Rational Option Pricing.” Bell Journal of Economics and Management
Science, Vol. 4, No. 1, 141–183.

Psychoyios, Dimitris (2005) “Pricing Volatility Options in the Presence of Jumps.” Working Paper,
Athens University of Economics and Business, Athens.

Psychoyios, Dimitris, George Dotsis and Raphael Markellos (2010) “A Jump Diffusion Model for VIX
Volatility Options and Futures.” Review of Quantitative Finance and Accounting, Vol. 35, No. 3,
245–269.

Sepp, Artur (2008) “VIX Option Pricing in a Jump-Diffusion Model.” Risk Magazine, April, 84–89.
Sinclair, Euan (2008) Volatility Trading. John Wiley & Sons, Hoboken.
Todorov, Viktor and George Tauchen (2011): “Volatility Jumps.” Journal of Business & Economic Statis-

tics, Vol. 29, No. 3, 356–371.
Whaley, Robert (1993) “Derivatives on Market Volatility: Hedging Tools Long Overdue.” The Journal

of Derivatives, Vol. 1, No. 1, 71–84.

let &hbox {char '046}www.ssrn.com
www.ssrn.com

Index

accumulated return on modified variation
margin, 251, 256–57, 279

additivity in time, 247–50
ARMVM, 251, 256–57, 279
Arrow-Debreu security, 56
asset pricing theory, 183

bar grams, 35, 37
base data retrieval, 71–78

data set combining, 76–77
data set saving, 78
EURO STOXX 50 data, 71–74
VSTOXX data, 74–76

Bjork, T., 4, 284
Black-Scholes-Merton model, 3–5, 59–60,

235, 284
Bossu, S., 5, 235
Breeden, D., 58, 67
Brenner, M., 7
Brigo, D., 184–85, 190

calculation
interest rates, 279
intraday trading, 252, 270–74
longest drawdown, 53
maximum drawdown, 52–53
options data, 95–106
processes, 114–18, 221–22
python scripts, 118–28
realized variance, 230–34
sub-indexes, 105–14
variance futures, 258–65
VSTOXX sub-indexes, 105–14

calibration…See model calibration; term
structure calibration

call_estimator function, 137, 139–40

call options
dollar gamma formula, 60–61
estimation, 137, 139–40
implied volatility, 6
market quotes, 179–82
Monte Carlo estimation, 135–40
pricing formula, 132–35
quote calibration, 156, 317

call_price function, 132–35
Carr, P., 8
collect_option_series function,

96–97, 98, 104
compute_subindex function, 107–8
constant proportion investment strategies,

87–93
active investment strategies, 89–90
passive investment strategies, 88–89

control structures, 22–23, 25
correlation analysis, 83–87

correlation over time, 83–87
negative correlation, 85–86
rolling correlation, 87

correlation trading, 13
Cox, J., 129, 184
cx function, 132–33

daily margins
accumulated return on modified variation

margin, 255–57
after trade matching, 277–79
discount factors, 253–54
futures trading, 252–57

data analysis
base data retrieval, 71–78
base data set combining, 76–77
basic analysis procedures, 78–82

347

Listed Volatility and Variance Derivatives: A
Python-based Guide
By Dr. Yves J. Hilpisch
© 2017 Yves Hilpisch

348 INDEX

data analysis (Continued)
constant proportion investment strategies,

87–93
correlation analysis, 83–87

data_collection function, 100–101,
104

delta hedging, 4–5
derivatives modeling, 283, 287–90
derivatives portfolios, 283, 290–92

modeling, 292–93
simulation and valuation, 293–94

derivatives positions, 292
deterministic shift approach, 184, 190, 192,

209–10
discount factors, 253–54
discretization, 183, 192–93
dollar gamma derivatives, 58–65
dollar_gamma function, 60
Duffie, D., 182
DX Analytics, 283, 296

computing resources, 283
derivatives modeling, 283, 287–90
derivatives portfolios, 283, 290–92

modeling, 292–93
simulation and valuation, 293–94

development influences, 283
global valuation approach, 283
risk factor modeling, 283–87
risk reports, 294–96
square root diffusion, 297

data import and selection, 297–301
VSTOXX model calibration, 303–8
VSTOXX options modeling, 301–3

square root jump diffusion
calibration results, 325–32
calibration without penalties, 331–32
option quote calibration, 317
term structure calibration, 317
VSTOXX option modeling, 315–20

dx_square_root_diffusion, 301
dx_srd_calibration.py, 301,

308–14
dx_srjd_calibration.py, 315–20,

334–43

elementary securities, 58
Eonia rates, 255–57
error_function, 157–58

errors
error ratios, 149–53
mean squared errors, 304
mean squared relative errors (MSRE), 155,

158–59, 161–62
plotting, 149–50
volatility derivatives, 149–53

Eurex, 8–9, 251
Eurex T7 trading system, 252
EURO STOXX 50 data

base data retrieval, 71–74
basic data analysis, 79–82
constant proportion strategies, 87–93
correlation analysis, 83–87

EURO STOXX 50 index
composition, 221
development, 9
variance futures calculation, 258–65
variance swaps, 242–47, 251
variance trading strategies, 13

first day margins, 275–76
Fleming, J., 7
forward volatility/ variance trading, 12–13

futures term structures, 184–90
shifted volatility processes, 190–91

full truncation scheme, 193–95
fungibility, 251
futures_price function, 130–32

Galai, D., 7
generate_paths function, 137–38
generate_shift_base function, 318
generator objects, 25–28
geometric Brownian motions, 284–87
get_data_from_www function, 98–100
get_data function, 97–98
get_instrument_values function,

285
get_port_risk function, 294
Goubuzaite, R., 88
Grünbichler, A., 129, 132–33, 140–41,

154–55, 163, 184, 188

HDFStore, 46, 78
hedging

delta hedging, 4–5
static hedges, 250

Index 349

histograms, 35–36, 45
historical volatility formula, 6

if-elif-else control structure, 23, 26
implied volatility formula, 6
index_collect_option_data.py,

118–23
index_option_series function, 101
index_subindex_calculation.py,

105, 123–27
index_vstoxx_calculation

function, 114–16
index_vstoxx_calculation.py,

114–16, 127–28
instantaneous volatility formula, 6
interest rates, 279
intraday trading, 252, 270–74
investment strategies

active investment strategies, 89–90
constant proportion strategies, 87–93
passive investment strategies, 88–89

jointplot function, 86
jump modeling…See SRJD modeling

lambda functions, 24
Lee, R., 8
linspace operators, 33
liquidity, 251
listed volatility, 7
Litzenberger, R., 58, 67
log contracts, 57
log_rets function, 81–82
log returns, 81–87
Longstaff, F., 129, 132–33, 140–41, 154–55,

163, 184, 188
Lord, R., 183

make_subindex function, 108–10
margin payments, 251
market, 292
market disruption events, 280
market environment, 284–85
market expectation, 11
market integrity, 251
Martellini, L., 88
matplotlib, 34–38

matrix, 35
maturity_list function, 142
mean-reverting, 11
mean squared errors, 304
mean squared relative errors, 155, 158–59,

161–62
Mercurio, F., 184–85, 190
merge_and_filter function, 98–99, 104
model calibration, 153–54

DX Analytics
calibration results, 326–32
calibration without penalties, 331–32
option quote calibration, 317
square root diffusion, 303–8
square root jump diffusion, 317–34
term structure calibration, 317

option quotes, 154–55, 161–62
procedures, 155–59
results, 159–63
results plotting, 202–3
SRJD modeling, 196–209
VSTOXX square root diffusion, 303–8
VSTOXX square root jump diffusion,

317–34
model_calibration function, 158–59
Monte Carlo simulation, 135–40, 283

automated testing, 141–44
option valuation, 191–95
storage functions, 145–46
technical implementation, 192–95
test results, 146–53

MSRE, 155, 158–59, 161–62
MultiIndex, 108–9

ndarray objects, 28–34
negative correlations, 12, 84–86
net present value (NPV)

effects, 251
variance futures, 252–57

non-tradeable assets, 11
NumPy, 17, 28–34

benefits of, 29–31, 33
linspace operators, 33
ndarray objects, 28–34
standard arrays, 29
universal functions, 31–32
vectorized operations, 30, 32

350 INDEX

open source, 14
option pricing, 58

delta hedging, 4
forumula, 132–35
hedging, 3–5
implied volatilities, 67
market quotes, 179–82
risk-neutral expectations, 4
spanning with options, 56–57

option quotes
market pricing, 179–82
model calibration, 154–55, 161–62

option valuation
Monte Carlo simulation, 191–95

pandas, 17, 38
DataFrame objects, 39–45, 61
data retrieval functions, 47–53
Input-Output operations, 45–47
longest drawdown calculation, 53
maximum drawdown calculation,

52–53

parameterization, 130
parse_data function, 98–100
par variance strikes, 258
passive investment strategies, 88–89
paths_list function, 142
plot_calibration_results, 159
plot_calibration_results

function, 202–3
plot_error_ratio function, 149
plotting

bar charts, 35, 37
calibration results, 159, 202–3
different time series, 83–85
errors, 149–50
histograms, 35–36, 45
with matplotlib, 34–38
plot lines, 34–35
seaborn plotting library, 86

polyfit, 37
polyval, 37
portfolio deltas, 294
portfolio objects, 293
portfolios…See also derivatives portfolios

contents, 292
portfolio vegas, 295
positive jumps, 12

pricing
asset pricing theory, 183
futures pricing

formula, 130–32
futures settlement prices, 258
traded futures prices, 257, 273, 275

Monte Carlo simulation, 135–40
automoted tests, 141–44
storage functions, 145–46
test results, 146–53

option pricing
delta hedging, 4
elementary securities, 58
formula, 132–35
hedging, 3–5
implied volatilities, 67
market quotes, 179–82
risk-neutral expectations, 4
spanning with options, 56–57

traded futures, 257, 273, 276
print_results function, 147
PY1, 142
PY2, 142
Python

benefits of, 14, 26–27, 30
control structures, 22–23, 25
data structures, 20–22
data types, 17–20
generator objects, 25–28
interactivity of, 14
lambda functions, 24
matplotlib, 34–38
ndarray objects, 28–34
NumPy, 17, 28–34
special idioms, 23–28
standard arrays, 29

Python scripts
dx_square_root_diffusion, 301
dx_srd_calibration.py, 301,

308–14
dx_srjd_calibration.py, 315–20,

334–43
index_collect_option_data.py,

118–23
index_subindex_calculation.py,

105, 123–27
index_vstoxx_calculation.py,

114–16, 127–28

Index 351

srd_functions.py, 163–67
srd_model_calibration.py, 155,

174–78
srd_simulation_analysis.py,

141–43, 145, 148, 167–71
srd_simulation_results.py,

145–47, 171–74
srjd_fwd_calibration.py, 186,

210–12
srjd_model_calibration.py,

196–98, 215–19
srjd_simulation.py, 192–95,

212–15

random_number_gen function, 193
random numbers, 192–93
read_select_quotes function, 156
realized variance

calculation, 230–34
formula, 6–7, 229
principles, 229–34
traded variance strikes, 257, 273
variance futures, 252
vs. volatility, 249–50

realized volatility
formula, 6
volatility trading, 12
vs. variance, 249–50

recalculation…See calculation
replication of variance

constant dollar gamma derivatives, 58–65
examples, 59–65
log contracts, 57
spanning with options, 56–57
static replication, 57–58
VSTOXX volatility index, 66–67

risk, broad measures, 250
risk factor modeling, 283–87
risk neutral discounting, 284
risk_report function, 295
rolling correlation, 87
runs function, 142

seed function, 142
shifted volatility processes, 190–91
shift values, 317–18
sim_results function, 146

Sinclair, E., 4, 6
S&P 500 variance futures contract, 8
square-root jump diffusion modeling…See

SRJD
srd_calculate_model_values, 303,

304–5
srd_error_function, 197–98
srd_forward_error, 317–18
srd_forwards function, 186–89
srd_functions.py, 163–67
srd_fwd_error function, 187–88
srd_get_option_selection

function, 300–301
srd_get_parameter_series

function, 305–6
srd_mean_squared error function, 304
srd_model_calibration function,

198–99
srd_model_calibration.py, 155,

174–78
srd_simulation_analysis.py,

141–43, 145, 148, 167–71
srd_simulation_results.py,

145–47, 171–74
srjd_calculate_model_values

function, 320–21
srjd_call_valuation function, 196
srjd_fwd_calibration.py, 186,

210–12
srjd_get_option_models function,

319–20
srjd_get_option_selection

function, 316–17, 324–25
srjd_get_parameter_series

function, 322–23
srjd_mean_squared_error function,

321
srjd_model_calibration.py,

196–98, 215–19
SRJD modeling, 179, 182–83

all maturities models, 206–9
DX Analytics

calibration results, 325–32
calibration without penalties, 331–32
option quote calibration, 317
term structure calibration, 317
VSTOXX option modeling, 315–20

352 INDEX

SRJD modeling (Continued)
four maturities models, 203–6
futures term structure, 184–91
model calibration, 196–209
Monte Carlo valuation, 191–96
risk-neutral dynamics, 182
shifted volatility process, 190–91
short maturity, 189–201
technical implementation, 192–95
term structure calibration, 183–91
two maturities models, 201–3

srjd_plot_model_fit function, 323–24
srjd_simulation function, 193–96
srjd_simulation.py, 192–95, 212–15
srjd_valuation function, 198–99
standardization, 251
start_collecting function, 97
state prices, 58
static hedges, 250
static replication, 57–58
steps_list function, 142
strike_list function, 142
sub-indexes

algorithms, 106–14
calculation/recalculation, 105–14
functions, 105, 108–10, 123–27

syntax, 14

term structure calibration, 183–91, 317
time_grid attribute, 286
traded variance strikes, 257, 273, 275
trade matching, 274, 277–79
trading

intraday trading, 252, 270–74
trade matching, 274, 277–79
volatilities comparisons, 275–76

transparency, 251
tuples, 20

V2TX, 222
valuation, of volatility derivatives

error ratios, 149–53
framework for, 129–30
model calibration, 153–54, 174–78

option quotes, 154–55, 161–62
procedures, 155–59
results, 159–63

Monte Carlo simulation, 135–40
automated testing, 141–44
storage functions, 145–46
test results, 146–53

pricing formulae
futures pricing, 130–32
option pricing, 132–35

valuation environments, 293
valuation_function, 156–58
variance

additivity in time, 247–50
realized, 6–7
replication

constant dollar gamma derivatives,
58–65

examples, 59–65
log contracts, 57
spanning with options, 56–57
static replication, 57–58
VSTOXX, 66–67

squared variations, 247
types, 6–7
vs. volatility, 247–50

variance futures, 5
calculation examples, 258–65
end-of-day trade conversions, 252
Eurex, 251
futures settlement prices, 258
intraday trading, 252, 270–74
key terms, 269–70
net present value, 252–57
net present value (NPV) effects, 251
par variance strikes, 258
realized variance, 252
standardization benefits, 251
traded futures prices, 257, 273, 276
traded variance strikes, 257, 273, 275
trade matching, 274
variance swaps, compared, 265–67

variance reduction, 192
variance swaps, 5

constant dollar gamma, 58–59
definition, 235
EURO STOXX, 242–47, 251
examples, 235–39
market-to-market valuation, 239–41
payoff, 235

Index 353

variance futures, compared, 265–67
vega sensitivity, 241–42
VSTOXX, 66–67

variance trading
par variance strikes, 258
strategies, 13
traded variance strikes, 257, 273, 275

var_red function, 142
VDAX volatility index, 8–9
vega notional times

trade matching, compared, 274
vega sensitivity

variance swaps, 241–42
VIX, 7–8
volatility

EU development, 8–9
importance, 7
listed volatility, generally, 7
over time, formula, 129–30
realized, 6, 12, 249–50
types, 6
US development, 7–8
vs. variance, 247–50

volatility derivatives
valuation

error ratios, 149–53
framework for, 129–30
model calibration, 153–54, 174–78

option quotes, 154–55, 161–62
procedures, 155–59
results, 159–63

Monte Carlo simulation, 135–40
automated testing, 141–44
storage functions, 145–46
test results, 146–53

pricing formulae
futures pricing, 130–32
option pricing, 132–35

volatility indexes…See also
EURO STOXX; VDAX;
VSTOXX

historical development, 7–9
volatility of volatility indexes,

9–10
volatility strikes, 235
volatility trading

characteristics, 11–13

futures
long futures, 12–13
relative value arbitrage, 13
short futures, 12–13
term structure arbitrage, 12

higher than realized volatility, 12
market expectation, 11
mean-reverting nature, 11
negative correlation, 12
non-tradable assets, 11
options

long ATM straddle, 13
long OTM calls, 13
short ATM calls, 13

positive jumps, 12
strategies, 12–13

correlation trading, 13
forward variance trading, 13
long futures, 12–13
relative value arbitrage, 13
short futures, 12–13
term structure arbitrage, 12

VSTOXX 30-day Index, 221–22
VSTOXX data

base data retrieval, 74–76
basic data analysis, 79–82
constant proportion strategies, 87–93
correlation analysis, 83–87

VSTOXX volatility index
background, 95, 221
block trade size, 224
calculation/ recalculation

options data, 95–106
processes, 114–18, 221–22
python scripts, 118–28
sub-indexes, 105–14

characteristics, 11–12, 221–22
data collection

options, 95–106
development, 9
exercise prices, 224
futures

contract terms, 223–24
options, 9, 13, 95–96

contract terms, 224–25
data collection, 95–106
market quotes, 179–82

354 INDEX

VSTOXX volatility index (Continued)
options modeling

DX Analytics square root diffusion,
301–3

DX Analytics SRJD, 315–20
model calibration, 303–8

settlement dates, 224
settlement prices, 224
sub-indexes, 66, 95–96

algorithms, 106–14
calculation, 105–14

trading days, 224

trading hours, 224
variance

replication of, 66–67
trading strategies, 12–13

vendor codes, 224
VVIX, 9–10
V-VSTOXX, 10

Whaley, R., 8
write function, 142

yield statements, 28

	10.1002@9781119167945.ch0.pdf (p.1-10)
	10.1002@9781119167945.ch1.pdf (p.11-25)
	10.1002@9781119167945.ch2.pdf (p.26-62)
	10.1002@9781119167945.ch3.pdf (p.63-75)
	10.1002@9781119167945.ch4.pdf (p.76-100)
	10.1002@9781119167945.ch5.pdf (p.101-134)
	10.1002@9781119167945.ch6.pdf (p.135-184)
	10.1002@9781119167945.ch7.pdf (p.185-225)
	10.1002@9781119167945.ch8.pdf (p.226-230)
	10.1002@9781119167945.ch9.pdf (p.231-254)
	10.1002@9781119167945.ch10.pdf (p.255-272)
	10.1002@9781119167945.ch11.pdf (p.273-284)
	10.1002@9781119167945.ch12.pdf (p.285-300)
	10.1002@9781119167945.ch13.pdf (p.301-318)
	10.1002@9781119167945.ch14.pdf (p.319-347)
	10.1002@9781119167945.ch15.pdf (p.348-349)
	10.1002@9781119167945.ch16.pdf (p.350-357)

