
 Previous Page Next Page

log4j - Quick Guidelog4j - Quick Guidelog4j - Quick Guide
Advertisements

log4j - Overviewlog4j - Overviewlog4j - Overview
log4j is a reliable, fast and flexible logging framework (APIs) written in Java, which is
distributed under the Apache Software License.

log4j has been ported to the C, C++, C#, Perl, Python, Ruby, and Eiffel languages.

log4j is highly configurable through external configuration files at runtime. It views the
logging process in terms of levels of priorities and offers mechanisms to direct logging
information to a great variety of destinations, such as a database, file, console, UNIX
Syslog, etc.

log4j has three main components:

loggers: Responsible for capturing logging information.

appenders: Responsible for publishing logging information to various preferred
destinations.

layouts: Responsible for formatting logging information in different styles.

Started in early 1996 as tracing API for the E.U. SEMPER (Secure Electronic
Marketplace for Europe) project.

After countless enhancements and several incarnations, the initial API has evolved
to become log4j, a popular logging package for Java.

The package is distributed under the Apache Software License, a full-fledged open
source license certified by the open source initiative.

 

History of log4jHistory of log4jHistory of log4j



https://www.tutorialspoint.com/log4j/log4j_logging_database.htm
https://www.tutorialspoint.com/log4j/log4j_useful_resources.htm
https://www.googleadservices.com/pagead/aclk?sa=L&ai=C6ml1KZYsXLqPOIOfyAOtmqFw-bij1lTbtuDx6AeR_ILjCRABIIW12wVg5YKAgJgOoAGh8eLLA8gBAqkC7kRnevrUTj6oAwHIA8kEqgTDAU_QutYqypfFoVywMkZF5i7rrNa6XF2XDynTpljoBW3_xg5CoTjBf5SDD4T3rjH9ScMqgJVTp-r-EkIHZoTCW8wVCbngM6AL5Ccvte3hY87_uik5fdq8wbfJJ4Bfk4IyKHSxB4nl99xS3JkOaPsmtHazbd8TBHsLfU3Cvzs3XgQ8wqoQYIfV3nykFOFwCeKq_Kgj8N1uBIaZJ88Em0cbMKnPa9WRLGkNE4YivuxKJx5P8hcgct2ycGP9wC_IP7w55g9oq6AGAoAHx46dNKgHjs4bqAfVyRuoB6gGqAe50huoB9nLG6gHz8wbqAemvhvYBwHSCAcIgGEQARgCsQkosjZwQkmeDIAKAdgTDA&ae=1&num=1&cid=CAASEuRoYOTP5xXnWTEVMMRh3vc2Vw&sig=AOD64_1VlmZIjqQ-JST62vSlAGuU6nwNxA&client=ca-pub-7133395778201029&adurl=http://clickserve.dartsearch.net/link/click%3F%26%26ds_e_adid%3D297074910715%26ds_e_matchtype%3Dcontent%26ds_e_device%3Dc%26ds_e_network%3Dd%26%26ds_url_v%3D2%26ds_dest_url%3Dhttps://www.iciciprulife.com/term-insurance-plans/buy-icici-term-insurance-online.html%3FUID%3D972%26cid%3DDisplay:Google:DM-GDN-Placement:Banner::iPS:Best-Term-1-Crore:490pm::Eng::972:cpc:::%26gclsrc%3Daw.ds%26%26keyword%3Dwww.tutorialspoint.com%26matchtype%3D%26gclid%3DEAIaIQobChMI-sfEsvXO3wIVgw9yCh0tTQgOEAEYASAAEgJ9u_D_BwE

The latest log4j version, including its full-source code, class files, and
documentation can be found at http://logging.apache.org/log4j/ .

It is thread-safe.

It is optimized for speed.

It is based on a named logger hierarchy.

It supports multiple output appenders per logger.

It supports internationalization.

It is not restricted to a predefined set of facilities.

Logging behavior can be set at runtime using a configuration file.

It is designed to handle Java Exceptions from the start.

It uses multiple levels, namely ALL, TRACE, DEBUG, INFO, WARN, ERROR and
FATAL.

The format of the log output can be easily changed by extending the Layout class.

The target of the log output as well as the writing strategy can be altered by
implementations of the Appender interface.

It is fail-stop. However, although it certainly strives to ensure delivery, log4j does
not guarantee that each log statement will be delivered to its destination.

Logging is an important component of the software development. A well-written logging
code offers quick debugging, easy maintenance, and structured storage of an application's
runtime information.

Logging does have its drawbacks also. It can slow down an application. If too verbose, it
can cause scrolling blindness. To alleviate these concerns, log4j is designed to be reliable,
fast and extensible.

Since logging is rarely the main focus of an application, the log4j API strives to be simple
to understand and to use.

log4j - Installationlog4j - Installationlog4j - Installation
log4j API package is distributed under the Apache Software License, a full-fledged open
source license certified by the open source initiative.

log4j Featureslog4j Featureslog4j Features

Pros and Cons of LoggingPros and Cons of LoggingPros and Cons of Logging

http://logging.apache.org/log4j/

The latest log4j version, including full-source code, class files and documentation can be
found at http://logging.apache.org/log4j/ .

To install log4j on your system, download apache-log4j-x.x.x.tar.gz from the specified URL
and follow the steps give below.

Unzip and untar the downloaded file in /usr/local/ directory as follows:

$ gunzip apache-log4j-1.2.15.tar.gz
$ tar -xvf apache-log4j-1.2.15.tar
apache-log4j-1.2.15/tests/input/
apache-log4j-1.2.15/tests/input/xml/
apache-log4j-1.2.15/tests/src/
apache-log4j-1.2.15/tests/src/java/
apache-log4j-1.2.15/tests/src/java/org/
.......................................

While untarring, it would create a directory hierarchy with a name apache-log4j-x.x.x as
follows:

-rw-r--r-- 1 root root 3565 2007-08-25 00:09 BUILD-INFO.txt
-rw-r--r-- 1 root root 2607 2007-08-25 00:09 build.properties.sample
-rw-r--r-- 1 root root 32619 2007-08-25 00:09 build.xml
drwxr-xr-x 14 root root 4096 2010-02-04 14:09 contribs
drwxr-xr-x 5 root root 4096 2010-02-04 14:09 examples
-rw-r--r-- 1 root root 2752 2007-08-25 00:09 INSTALL
-rw-r--r-- 1 root root 4787 2007-08-25 00:09 KEYS
-rw-r--r-- 1 root root 11366 2007-08-25 00:09 LICENSE
-rw-r--r-- 1 root root 391834 2007-08-25 00:29 log4j-1.2.15.jar
-rw-r--r-- 1 root root 160 2007-08-25 00:09 NOTICE
-rwxr-xr-x 1 root root 10240 2007-08-25 00:27 NTEventLogAppender.dll
-rw-r--r-- 1 root root 17780 2007-08-25 00:09 pom.xml
drwxr-xr-x 7 root root 4096 2007-08-25 00:13 site
drwxr-xr-x 8 root root 4096 2010-02-04 14:08 src
drwxr-xr-x 6 root root 4096 2010-02-04 14:09 tests

This step is optional and depends on what features you are going to use from log4j
framework. If you already have following packages installed on your machine then it is
fine, otherwise you need to install them to make log4j work.

JavaMail API: The e-mail based logging feature in log4j requires the Java Mail API
(mail.jar) to be installed on your machine from glassfish.dev .

JavaBeans Activation Framework: The Java Mail API will also require that the
JavaBeans Activation Framework (activation.jar) be installed on your machine from
http://java.sun.com/products/javabeans/jaf/index.jsp .

Step 1Step 1Step 1

Step 2Step 2Step 2

http://logging.apache.org/log4j/
https://glassfish.dev.java.net/javaee5/mail/
http://java.sun.com/products/javabeans/jaf/index.jsp

Java Message Service: The JMS-compatible features of log4j will require that
both JMS and Java Naming and Directory Interface JNDI be installed on your
machine from http://java.sun.com/products/jms .

XML Parser: You need a JAXP-compatible XML parser to use log4j. Make sure you
have Xerces.jar installed on your machine from http://xerces.apache.org/xerces-
j/install.html .

Now you need to set up the CLASSPATH and PATH variables appropriately. Here we are
going to set it just for the log4j.x.x.x.jar file.

$ pwd
/usr/local/apache-log4j-1.2.15
$ export CLASSPATH= \
 $CLASSPATH:/usr/local/apache-log4j-1.2.15/log4j-1.2.15.jar
$ export PATH=$PATH:/usr/local/apache-log4j-1.2.15/

log4j - Architecturelog4j - Architecturelog4j - Architecture
log4j API follows a layered architecture where each layer provides different objects to
perform different tasks. This layered architecture makes the design flexible and easy to
extend in future.

There are two types of objects available with log4j framework.

Core Objects: These are mandatory objects of the framework. They are required
to use the framework.

Support Objects: These are optional objects of the framework. They support core
objects to perform additional but important tasks.

Core objects include the following types of objects:

The top-level layer is the Logger which provides the Logger object. The Logger object is
responsible for capturing logging information and they are stored in a namespace
hierarchy.

The layout layer provides objects which are used to format logging information in different
styles. It provides support to appender objects before publishing logging information.

Step 3Step 3Step 3

Core ObjectsCore ObjectsCore Objects

Logger ObjectLogger ObjectLogger Object

Layout ObjectLayout ObjectLayout Object

http://java.sun.com/products/jms
http://xerces.apache.org/xerces-j/install.html

Layout objects play an important role in publishing logging information in a way that is
human-readable and reusable.

This is a lower-level layer which provides Appender objects. The Appender object is
responsible for publishing logging information to various preferred destinations such as a
database, file, console, UNIX Syslog, etc.

The following virtual diagram shows the components of a log4J framework:

There are other important objects in the log4j framework that play a vital role in the
logging framework:

The Level object defines the granularity and priority of any logging information. There are
seven levels of logging defined within the API: OFF, DEBUG, INFO, ERROR, WARN, FATAL,
and ALL.

The Filter object is used to analyze logging information and make further decisions on
whether that information should be logged or not.

Appender ObjectAppender ObjectAppender Object

Support ObjectsSupport ObjectsSupport Objects

Level ObjectLevel ObjectLevel Object

Filter ObjectFilter ObjectFilter Object

An Appender objects can have several Filter objects associated with them. If logging
information is passed to a particular Appender object, all the Filter objects associated with
that Appender need to approve the logging information before it can be published to the
attached destination.

The ObjectRenderer object is specialized in providing a String representation of different
objects passed to the logging framework. This object is used by Layout objects to prepare
the final logging information.

The LogManager object manages the logging framework. It is responsible for reading the
initial configuration parameters from a system-wide configuration file or a configuration
class.

log4j - Configurationlog4j - Configurationlog4j - Configuration
The previous chapter explained the core components of log4j. This chapter explains how
you can configure the core components using a configuration file. Configuring log4j
involves assigning the Level, defining Appender, and specifying Layout objects in a
configuration file.

The log4j.properties file is a log4j configuration file which keeps properties in key-value
pairs. By default, the LogManager looks for a file named log4j.properties in the
CLASSPATH.

The level of the root logger is defined as DEBUG. The DEBUG attaches the
appender named X to it.

Set the appender named X to be a valid appender.

Set the layout for the appender X.

Following is the syntax of log4j.properties file for an appender X:

Define the root logger with appender X
log4j.rootLogger = DEBUG, X

Set the appender named X to be a File appender
log4j.appender.X=org.apache.log4j.FileAppender

Define the layout for X appender
log4j.appender.X.layout=org.apache.log4j.PatternLayout
log4j.appender.X.layout.conversionPattern=%m%n

ObjectRendererObjectRendererObjectRenderer

LogManagerLogManagerLogManager

log4j.properties Syntax:log4j.properties Syntax:log4j.properties Syntax:

Using the above syntax, we define the following in log4j.properties file:

The level of the root logger is defined as DEBUG, The DEBUG appender named FILE
to it.

The appender FILE is defined as org.apache.log4j.FileAppender. It writes to a file
named "log.out" located in the log directory.

The layout pattern defined is %m%n, which means the printed logging message
will be followed by a newline character.

Define the root logger with appender file
log4j.rootLogger = DEBUG, FILE

Define the file appender
log4j.appender.FILE=org.apache.log4j.FileAppender
log4j.appender.FILE.File=${log}/log.out

Define the layout for file appender
log4j.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.conversionPattern=%m%n

It is important to note that log4j supports UNIX-style variable substitution such as
${variableName}.

We have used DEBUG with both the appenders. All the possible options are:

TRACE

DEBUG

INFO

WARN

ERROR

FATAL

ALL

These levels would be explained in log4j Logging Levels .

Apache log4j provides Appender objects which are primarily responsible for printing
logging messages to different destinations such as consoles, files, sockets, NT event logs,
etc.

log4j.properties Examplelog4j.properties Examplelog4j.properties Example

Debug LevelDebug LevelDebug Level

AppendersAppendersAppenders

https://www.tutorialspoint.com/log4j/log4j_logging_levels.htm

Each Appender object has different properties associated with it, and these properties
indicate the behavior of that object.

Property Description

layout Appender uses the Layout objects and the conversion pattern
associated with them to format the logging information.

target The target may be a console, a file, or another item depending on the
appender.

level The level is required to control the filtration of the log messages.

threshold Appender can have a threshold level associated with it independent of
the logger level. The Appender ignores any logging messages that
have a level lower than the threshold level.

filter The Filter objects can analyze logging information beyond level
matching and decide whether logging requests should be handled by a
particular Appender or ignored.

We can add an Appender object to a Logger by including the following setting in the
configuration file with the following method:

log4j.logger.[logger-name]=level, appender1,appender..n

You can write same configuration in XML format as follows:

<logger name="com.apress.logging.log4j" additivity="false">
 <appender-ref ref="appender1"/>
 <appender-ref ref="appender2"/>
</logger>

If you are willing to add Appender object inside your program then you can use following
method:

public void addAppender(Appender appender);

The addAppender() method adds an Appender to the Logger object. As the example
configuration demonstrates, it is possible to add many Appender objects to a logger in a
comma-separated list, each printing logging information to separate destinations.

We have used only one appender FileAppender in our example above. All the possible
appender options are:

AppenderSkeleton

AsyncAppender

ConsoleAppender

DailyRollingFileAppender

ExternallyRolledFileAppender

FileAppender

JDBCAppender

JMSAppender

LF5Appender

NTEventLogAppender

NullAppender

RollingFileAppender

SMTPAppender

SocketAppender

SocketHubAppender

SyslogAppender

TelnetAppender

WriterAppender

We would cover FileAppender in Logging in Files and JDBC Appender would be covered
in Logging in Database .

We have used PatternLayout with our appender. All the possible options are:

DateLayout

HTMLLayout

PatternLayout

SimpleLayout

XMLLayout

Using HTMLLayout and XMLLayout, you can generate log in HTML and in XML format as
well.

You would learn how to format a log message in chapter:Log Formatting .

log4j - Sample Programlog4j - Sample Programlog4j - Sample Program
We have seen how to create a configuration file. This chapter describe how to generate
debug messages and log them in a simple text file.

LayoutLayoutLayout

Layout FormattingLayout FormattingLayout Formatting

https://www.tutorialspoint.com/log4j/log4j_logging_files.htm
https://www.tutorialspoint.com/log4j/log4j_logging_database.htm
https://www.tutorialspoint.com/log4j/log4j_log_formatting.htm

Following is a simple configuration file created for our example. Let us revise it once again:

The level of the root logger is defined as DEBUG and attaches appender named
FILE to it.

The appender FILE is defined as org.apache.log4j.FileAppender and writes to a file
named "log.out" located in the log directory.

The layout pattern defined is %m%n, which means the printed logging message
will be followed by a newline character.

The contents of log4j.properties file are as follows:

Define the root logger with appender file
log = /usr/home/log4j
log4j.rootLogger = DEBUG, FILE

Define the file appender
log4j.appender.FILE=org.apache.log4j.FileAppender
log4j.appender.FILE.File=${log}/log.out

Define the layout for file appender
log4j.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.conversionPattern=%m%n

The following Java class is a very simple example that initializes, and then uses, the Log4J
logging library for Java applications.

import org.apache.log4j.Logger;

import java.io.*;
import java.sql.SQLException;
import java.util.*;

public class log4jExample{
 /* Get actual class name to be printed on */
 static Logger log = Logger.getLogger(log4jExample.class.getName());

 public static void main(String[] args)throws IOException,SQLException{
 log.debug("Hello this is a debug message");
 log.info("Hello this is an info message");
 }
}

Here are the steps to compile and run the above-mentioned program. Make sure you have
set PATH and CLASSPATH appropriately before proceeding for the compilation and
execution.

Using log4j in Java ProgramUsing log4j in Java ProgramUsing log4j in Java Program

Compile and ExecuteCompile and ExecuteCompile and Execute

All the libraries should be available in CLASSPATH and your log4j.properties file should be
available in PATH. Follow the steps give below:

Create log4j.properties as shown above.

Create log4jExample.java as shown above and compile it.

Execute log4jExample binary to run the program.

You would get the following result inside /usr/home/log4j/log.out file:

Hello this is a debug message

Hello this is an info message

log4j - Logging Methodslog4j - Logging Methodslog4j - Logging Methods
Logger class provides a variety of methods to handle logging activities. The Logger class
does not allow us to instantiate a new Logger instance but it provides two static methods
for obtaining a Logger object:

public static Logger getRootLogger();

public static Logger getLogger(String name);

The first of the two methods returns the application instance's root logger and it does not
have a name.

Any other named Logger object instance is obtained through the second method by
passing the name of the logger. The name of the logger can be any string you can pass,
usually a class or a package name as we have used in the last chapter and it is mentioned
below:

static Logger log = Logger.getLogger(log4jExample.class.getName());

Once we obtain an instance of a named logger, we can use several methods of the logger
to log messages. The Logger class has the following methods for printing the logging
information.

Sr.No Methods and Description

1 public void debug(Object message)
It prints messages with the level Level.DEBUG.

2 public void error(Object message)
It prints messages with the level Level.ERROR.

Logging MethodsLogging MethodsLogging Methods

3 public void fatal(Object message);
It prints messages with the level Level.FATAL.

4 public void info(Object message);
It prints messages with the level Level.INFO.

5 public void warn(Object message);
It prints messages with the level Level.WARN.

6 public void trace(Object message);
It prints messages with the level Level.TRACE.

All the levels are defined in the org.apache.log4j.Level class and any of the above-
mentioned methods can be called as follows:

import org.apache.log4j.Logger;

public class LogClass {
 private static org.apache.log4j.Logger log = Logger.getLogger(LogClass.class);

 public static void main(String[] args) {
 log.trace("Trace Message!");
 log.debug("Debug Message!");
 log.info("Info Message!");
 log.warn("Warn Message!");
 log.error("Error Message!");
 log.fatal("Fatal Message!");
 }
}

When you compile and run LogClass program, it would generate the following result:

Debug Message!

Info Message!

Warn Message!

Error Message!

Fatal Message!

All the debug messages make more sense when they are used in combination with levels.
We will cover levels in the next chapter and then, you would have a good understanding of
how to use these methods in combination with different levels of debugging.

log4j - Logging Levelslog4j - Logging Levelslog4j - Logging Levels
The org.apache.log4j.Level class provides the following levels. You can also define your
custom levels by sub-classing the Level class.

Level Description

ALL All levels including custom levels.

DEBUG Designates fine-grained informational events that are most useful to
debug an application.

INFO Designates informational messages that highlight the progress of the
application at coarse-grained level.

WARN Designates potentially harmful situations.

ERROR Designates error events that might still allow the application to
continue running.

FATAL Designates very severe error events that will presumably lead the
application to abort.

OFF The highest possible rank and is intended to turn off logging.

TRACE Designates finer-grained informational events than the DEBUG.

A log request of level p in a logger with level q is enabled if p >= q. This rule is at the
heart of log4j. It assumes that levels are ordered. For the standard levels, we have ALL <
DEBUG < INFO < WARN < ERROR < FATAL < OFF.

The Following example shows how we can filter all our DEBUG and INFO messages. This
program uses of logger method setLevel(Level.X) to set a desired logging level:

This example would print all the messages except Debug and Info:

import org.apache.log4j.*;

public class LogClass {
 private static org.apache.log4j.Logger log = Logger.getLogger(LogClass.class);

 public static void main(String[] args) {
 log.setLevel(Level.WARN);

 log.trace("Trace Message!");
 log.debug("Debug Message!");
 log.info("Info Message!");
 log.warn("Warn Message!");
 log.error("Error Message!");
 log.fatal("Fatal Message!");
 }
}

When you compile and run the LogClass program, it would generate the following result:

How do Levels Works?How do Levels Works?How do Levels Works?

Warn Message!

Error Message!

Fatal Message!

log4j provides you configuration file based level setting which sets you free from changing
the source code when you want to change the debugging level.

Following is an example configuration file which would perform the same task as we did
using the log.setLevel(Level.WARN) method in the above example.

Define the root logger with appender file
log = /usr/home/log4j
log4j.rootLogger = WARN, FILE

Define the file appender
log4j.appender.FILE=org.apache.log4j.FileAppender
log4j.appender.FILE.File=${log}/log.out

Define the layout for file appender
log4j.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.conversionPattern=%m%n

Let us now use our following program:

import org.apache.log4j.*;

public class LogClass {
 private static org.apache.log4j.Logger log = Logger.getLogger(LogClass.class);
 public static void main(String[] args) {
 log.trace("Trace Message!");
 log.debug("Debug Message!");
 log.info("Info Message!");
 log.warn("Warn Message!");
 log.error("Error Message!");
 log.fatal("Fatal Message!");
 }
}

Now compile and run the above program and you would get following result in
/usr/home/log4j/log.out file:

Warn Message!

Error Message!

Fatal Message!

log4j - Log Formattinglog4j - Log Formattinglog4j - Log Formatting
Apache log4j provides various Layout objects, each of which can format logging data
according to various layouts. It is also possible to create a Layout object that formats

Setting Levels using Configuration FileSetting Levels using Configuration FileSetting Levels using Configuration File

logging data in an application-specific way.

All Layout objects receive a LoggingEvent object from the Appender objects. The Layout
objects then retrieve the message argument from the LoggingEvent and apply the
appropriate ObjectRenderer to obtain the String representation of the message.

The top-level class in the hierarchy is the abstract class org.apache.log4j.Layout. This is
the base class for all other Layout classes in the log4j API.

The Layout class is defined as abstract within an application, we never use this class
directly; instead, we work with its subclasses which are as follows:

DateLayout

HTMLLayout

PatternLayout.

SimpleLayout

XMLLayout

This class provides a skeleton implementation of all the common operations across all
other Layout objects and declares two abstract methods.

Sr.No. Methods & Description

1 public abstract boolean ignoresThrowable()
It indicates whether the logging information handles any java.lang.Throwable
object passed to it as a part of the logging event. If the Layout object handles
the Throwable object, then the Layout object does not ignore it, and returns
false.

2 public abstract String format(LoggingEvent event)
Individual layout subclasses implement this method for layout specific
formatting.

Apart from these abstract methods, the Layout class provides concrete implementation for
the methods listed below:

Sr.No. Methods & Description

The Layout TypesThe Layout TypesThe Layout Types

The Layout MethodsThe Layout MethodsThe Layout Methods

https://www.tutorialspoint.com/log4j/log4j_htmllayout.htm
https://www.tutorialspoint.com/log4j/log4j_patternlayout.htm

1 public String getContentType()
It returns the content type used by the Layout objects. The base class returns
text/plain as the default content type.

2 public String getFooter()
It specifies the footer information of the logging message.

3 public String getHeader()
It specifies the header information of the logging message.

Each subclass can return class-specific information by overriding the concrete
implementation of these methods.

log4j - Logging in Fileslog4j - Logging in Fileslog4j - Logging in Files
To write your logging information into a file, you would have to use
org.apache.log4j.FileAppender.

FileAppender has the following configurable parameters:

Property Description

immediateFlush This flag is by default set to true, which means the output stream to
the file being flushed with each append operation.

encoding It is possible to use any character-encoding. By default, it is the
platform-specific encoding scheme.

threshold The threshold level for this appender.

Filename The name of the log file.

fileAppend This is by default set to true, which means the logging information
being appended to the end of the same file.

bufferedIO This flag indicates whether we need buffered writing enabled. By
default, it is set to false.

bufferSize If buffered I/O is enabled, it indicates the buffer size. By default, it is
set to 8kb.

Following is a sample configuration file log4j.properties for FileAppender.

FileAppender ConfigurationFileAppender ConfigurationFileAppender Configuration

Define the root logger with appender file
log4j.rootLogger = DEBUG, FILE

Define the file appender
log4j.appender.FILE=org.apache.log4j.FileAppender

Set the name of the file
log4j.appender.FILE.File=${log}/log.out

Set the immediate flush to true (default)
log4j.appender.FILE.ImmediateFlush=true

Set the threshold to debug mode
log4j.appender.FILE.Threshold=debug

Set the append to false, overwrite
log4j.appender.FILE.Append=false

Define the layout for file appender
log4j.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.conversionPattern=%m%n

If you wish to have an XML configuration file equivalent to the above log4j.properties file,
then here is the content:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<log4j:configuration>

<appender name="FILE" class="org.apache.log4j.FileAppender">
 <param name="file" value="${log}/log.out"/>
 <param name="immediateFlush" value="true"/>
 <param name="threshold" value="debug"/>
 <param name="append" value="false"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="conversionPattern" value="%m%n"/>
 </layout>
</appender>

<logger name="log4j.rootLogger" additivity="false">
 <level value="DEBUG"/>
 <appender-ref ref="FILE"/>
</logger>

</log4j:configuration>

You can try log4j - Sample Program with the above configuration.

You may want to write your log messages into multiple files for certain reasons, for
example, if the file size reached to a certain threshold.

To write your logging information into multiple files, you would have to use
org.apache.log4j.RollingFileAppender class which extends the FileAppender class and
inherits all its properties.

Logging in Multiple FilesLogging in Multiple FilesLogging in Multiple Files

http://www.tutorialspoint.com/log4j/log4j_sample_program.htm

We have the following configurable parameters in addition to the ones mentioned above for
FileAppender:

Property Description

maxFileSize This is the critical size of the file above which the file will be rolled.
Default value is 10 MB.

maxBackupIndex This property denotes the number of backup files to be created.
Default value is 1.

Following is a sample configuration file log4j.properties for RollingFileAppender.

Define the root logger with appender file
log4j.rootLogger = DEBUG, FILE

Define the file appender
log4j.appender.FILE=org.apache.log4j.RollingFileAppender

Set the name of the file
log4j.appender.FILE.File=${log}/log.out

Set the immediate flush to true (default)
log4j.appender.FILE.ImmediateFlush=true

Set the threshold to debug mode
log4j.appender.FILE.Threshold=debug

Set the append to false, should not overwrite
log4j.appender.FILE.Append=true

Set the maximum file size before rollover
log4j.appender.FILE.MaxFileSize=5KB

Set the the backup index
log4j.appender.FILE.MaxBackupIndex=2

Define the layout for file appender
log4j.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.conversionPattern=%m%n

If you wish to have an XML configuration file, you can generate the same as mentioned in
the initial section and add only additional parameters related to RollingFileAppender.

This example configuration demonstrates that the maximum permissible size of each log
file is 5 MB. Upon exceeding the maximum size, a new log file will be created. Since
maxBackupIndex is defined as 2, once the second log file reaches the maximum size, the
first log file will be erased and thereafter, all the logging information will be rolled back to
the first log file.

You can try log4j - Sample Program with the above configuration.

Daily Log File GenerationDaily Log File GenerationDaily Log File Generation

http://www.tutorialspoint.com/log4j/log4j_sample_program.htm

There may be a requirement to generate your log files on a daily basis to keep a clean
record of your logging information.

To write your logging information into files on a daily basis, you would have to use
org.apache.log4j.DailyRollingFileAppender class which extends the FileAppender class and
inherits all its properties.

There is only one important configurable parameter in addition to the ones mentioned
above for FileAppender:

Property Description

DatePattern This indicates when to roll over the file and the naming convention to
be followed. By default, roll over is performed at midnight each day.

DatePattern controls the rollover schedule using one of the following patterns:

DatePattern Description

'.' yyyy-MM Roll over at the end of each month and at the beginning of
the next month.

'.' yyyy-MM-dd Roll over at midnight each day. This is the default value.

'.' yyyy-MM-dd-a Roll over at midday and midnight of each day.

'.' yyyy-MM-dd-HH Roll over at the top of every hour.

'.' yyyy-MM-dd-HH-mm Roll over every minute.

'.' yyyy-ww Roll over on the first day of each week depending upon the
locale.

Following is a sample configuration file log4j.properties to generate log files rolling over at
midday and midnight of each day.

Define the root logger with appender file
log4j.rootLogger = DEBUG, FILE

Define the file appender
log4j.appender.FILE=org.apache.log4j.DailyRollingFileAppender

Set the name of the file
log4j.appender.FILE.File=${log}/log.out

Set the immediate flush to true (default)
log4j.appender.FILE.ImmediateFlush=true

Set the threshold to debug mode
log4j.appender.FILE.Threshold=debug

Set the append to false, should not overwrite
log4j.appender.FILE.Append=true

Set the DatePattern
log4j.appender.FILE.DatePattern='.' yyyy-MM-dd-a

Define the layout for file appender
log4j.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.conversionPattern=%m%n

If you wish to have an XML configuration file, you can generate the same as mentioned in
the initial section and add only additional parameters related to DailyRollingFileAppender.

You can try log4j - Sample Program with the above configuration.

log4j - Logging in Databaselog4j - Logging in Databaselog4j - Logging in Database
The log4j API provides the org.apache.log4j.jdbc.JDBCAppender object, which can put
logging information in a specified database.

Property Description

bufferSize Sets the buffer size. Default size is 1.

driver Sets the driver class to the specified string. If no driver class is
specified, it defaults to sun.jdbc.odbc.JdbcOdbcDriver.

layout Sets the layout to be used. Default layout is
org.apache.log4j.PatternLayout.

password Sets the database password.

sql Specifies the SQL statement to be executed every time a logging event
occurs. This could be INSERT, UPDATE, or DELETE.

URL Sets the JDBC URL.

user Sets the database user name.

Before you start using JDBC based logging, you should create a table to maintain all the
log information. Following is the SQL Statement for creating the LOGS table:

CREATE TABLE LOGS
 (USER_ID VARCHAR(20) NOT NULL,
 DATED DATE NOT NULL,
 LOGGER VARCHAR(50) NOT NULL,

JDBCAppender ConfigurationJDBCAppender ConfigurationJDBCAppender Configuration

Log Table ConfigurationLog Table ConfigurationLog Table Configuration

http://www.tutorialspoint.com/log4j/log4j_sample_program.htm

 LEVEL VARCHAR(10) NOT NULL,
 MESSAGE VARCHAR(1000) NOT NULL
);

Following is a sample configuration file log4j.properties for JDBCAppender which will is be
used to log messages to a LOGS table.

Define the root logger with appender file
log4j.rootLogger = DEBUG, DB

Define the DB appender
log4j.appender.DB=org.apache.log4j.jdbc.JDBCAppender

Set JDBC URL
log4j.appender.DB.URL=jdbc:mysql://localhost/DBNAME

Set Database Driver
log4j.appender.DB.driver=com.mysql.jdbc.Driver

Set database user name and password
log4j.appender.DB.user=user_name
log4j.appender.DB.password=password

Set the SQL statement to be executed.
log4j.appender.DB.sql=INSERT INTO LOGS VALUES('%x','%d','%C','%p','%m')

Define the layout for file appender
log4j.appender.DB.layout=org.apache.log4j.PatternLayout

For MySQL database, you would have to use the actual DBNAME, user ID and password,
where you have created LOGS table. The SQL statement is to execute an INSERT
statement with the table name LOGS and the values to be entered into the table.

JDBCAppender does not need a layout to be defined explicitly. Instead, the SQL statement
passed to it uses a PatternLayout.

If you wish to have an XML configuration file equivalent to the above log4j.properties file,
then here is the content:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<log4j:configuration>

<appender name="DB" class="org.apache.log4j.jdbc.JDBCAppender">
 <param name="url" value="jdbc:mysql://localhost/DBNAME"/>
 <param name="driver" value="com.mysql.jdbc.Driver"/>
 <param name="user" value="user_id"/>
 <param name="password" value="password"/>
 <param name="sql" value="INSERT INTO LOGS VALUES('%x','%d','%C','%p','%m')"/>
 <layout class="org.apache.log4j.PatternLayout">
 </layout>
</appender>

Sample Configuration FileSample Configuration FileSample Configuration File

<logger name="log4j.rootLogger" additivity="false">
 <level value="DEBUG"/>
 <appender-ref ref="DB"/>
</logger>

</log4j:configuration>

The following Java class is a very simple example that initializes and then uses the Log4J
logging library for Java applications.

import org.apache.log4j.Logger;
import java.sql.*;
import java.io.*;
import java.util.*;

public class log4jExample{
 /* Get actual class name to be printed on */
 static Logger log = Logger.getLogger(log4jExample.class.getName());

 public static void main(String[] args)throws IOException,SQLException{
 log.debug("Debug");
 log.info("Info");
 }
}

Here are the steps to compile and run the above-mentioned program. Make sure you have
set PATH and CLASSPATH appropriately before proceeding for compilation and execution.

All the libraries should be available in CLASSPATH and your log4j.properties file should be
available in PATH. Follow the given steps:

Create log4j.properties as shown above.

Create log4jExample.java as shown above and compile it.

Execute log4jExample binary to run the program.

Now check your LOGS table inside DBNAME database and you would find the following
entries:

mysql > select * from LOGS;

+---------+------------+--------------+-------+---------+

| USER_ID | DATED | LOGGER | LEVEL | MESSAGE |

+---------+------------+--------------+-------+---------+

| | 2010-05-13 | log4jExample | DEBUG | Debug |

| | 2010-05-13 | log4jExample | INFO | Info |

+---------+------------+--------------+-------+---------+

2 rows in set (0.00 sec)

Sample ProgramSample ProgramSample Program

Compile and ExecuteCompile and ExecuteCompile and Execute

 Previous Page Next Page

Note: Here x is used to output the Nested diagnostic Context (NDC) associated with the
thread that generated the logging event. We use NDC to distinguish clients in server-side
components handling multiple clients. Check Log4J Manual for more information on this.

 

Advertisements

FAQ's Cookies Policy Contact
© Copyright 2018. All Rights Reserved.

Enter email for newsletter go

https://www.tutorialspoint.com/log4j/log4j_logging_database.htm
https://www.tutorialspoint.com/log4j/log4j_useful_resources.htm
https://www.tutorialspoint.com/index.htm
https://www.tutorialspoint.com/about/faq.htm
https://www.tutorialspoint.com/about/about_privacy.htm#cookies
https://www.tutorialspoint.com/about/contact_us.htm

