CS135 Spring 2015 logic guide, version 0

Some laws of propositional logic

Binding power: \land,\lor bind more tightly than \rightarrow , less tightly than \neg . For example, $P \land \neg Q \rightarrow P$ means $(P \land (\neg Q)) \rightarrow P$.

$\neg(\neg p)$	≡	p	double negation
$p \wedge p$	\equiv	p	idempotent laws
$p \vee p$	\equiv	p	
$p \wedge T$	\equiv	p	identity elements
$p \lor F$	\equiv	p	
$p \wedge F$	\equiv	F	zero elements ('domination laws')
$p \lor T$	\equiv	T	
$p \wedge q$	\equiv	$q \wedge p$	commutativity
$p \vee q$	\equiv	$q \lor p$	
$p \vee \neg p$			negation laws (excluded middle and contradiction)
$p \wedge \neg p$			
$p \wedge (q \wedge z)$		(1 1)	associativity
$p \lor (q \lor z)$	\equiv	$(p \lor q) \lor z$	
$p \vee (p \wedge q)$	\equiv	p	absorption
$p \wedge (p \vee q)$		1	
- (-)		$(p \lor q) \land (p \lor z)$	distributive laws
- (-)		$(p \land q) \lor (p \land z)$	
(* *)		$(\neg p) \lor (\neg q)$	De Morgan's laws
$\neg (p \lor q)$	\equiv	$(\neg p) \land (\neg q)$	
1 1		$\neg p \lor q$	definition of \rightarrow
$p \leftrightarrow q$	≡	$(p \to q) \land (q \to p)$	definition of \leftrightarrow

Connection between laws and tautologies:

 $p \equiv q$ is a valid law if, and only if, $p \leftrightarrow q$ is a tautology.

Rule	Corresponding tautology	Name of rule
$\frac{p \qquad p \to q}{q}$	$(p \land (p \to q)) \to q$	Modus ponens
$\frac{p \qquad p \leftrightarrow q}{q}$	$(p \land (p \leftrightarrow q)) \to q$	Equivalence rule
$\frac{p-q}{p\wedge q}$		Conjunction rule
$\frac{p \to q \qquad q \to r}{p \to r}$	$(p{\rightarrow}q){\wedge}(q{\rightarrow}r){\rightarrow}(p{\rightarrow}r)$	Hypothetical syllogism
$[p] \\ \vdots \\ \frac{q}{p \to q}$		Discharge hypothesis
$\frac{\forall x \ P(x)}{P(c)}$	$(\forall x \ P(x)) \to P(c)$	Universal instantiation $(c \text{ is any expression})$
$\frac{P(x) \qquad (x \text{ is arbitrary})}{\forall x \ P(x)}$		Universal Generalization
$\frac{P(c)}{\exists x \ P(x)}$	$P(c) \to \exists x \ P(x)$	Existential Generalization
$\frac{P(x) \qquad x = e}{P(e)}$		Substitution of equals
$\frac{P(0) \qquad \forall n. \ (n \neq 0 \to (P)) \\ \forall n \in \mathbf{N} \ P(n) \end{cases}$	Induction (on naturals)	
$\frac{P('()) \qquad \forall lst. \ (lst \neq' ())}{\forall lst}$	Induction (on lists)	

Inference rules for propositional logic

For Universal Generalization "x is arbitrary" means the proof of P(x) makes no assumptions about x. By comparison, for Existential Generalization you choose an expression c and prove P(c).

When doing a proof in step-by-step style, these rules justify that one line follows from previous lines. For example, here is a proof of $P \to Q \lor P$.

1.	P	assumption
2.	$P \lor Q$	from 1 by Addition rule
3.	$P \lor Q \equiv Q \lor P$	commutativity law for \lor (and Univ. Instantiation!)
4.	$Q \lor P$	from 2 and 3 by Equivalence rule
5.	$P \to Q \vee P$	from 1 and 4 by Discharge hypothesis

A complete proof shouldn't have any assumptions that were not discharged.

When doing a proof in equational style, we are implicitly using one the following rule:

$$\frac{P \equiv Q \qquad Q \equiv R}{P \equiv R}$$

and similarly for equality (=) for numeric expressions etc.