
Li
nu

x

Pr
ofessional Institute

A
pproved Training M

at
er

ia
l

Concise Linux

An Introduction to Linux Use and
Administration

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

tuxcademy – Linux and Open Source learning materials for everyone
www.tuxcademy.org ⋅ info@tuxcademy.org

Li
nu

x

Pr
ofessional Institute

A
pproved Training M

at
er

ia
l

These training materials have been certified by the Linux Professional Institute (LPI) under the
auspices of the LPI ATM programme. They are suitable for preparation for the LPIC-1 certification.

The Linux Professional Institute does not endorse specific exam preparation materials or
techniques—refer to info@lpi.org for details.

The tuxcademy project aims to supply freely available high-quality training materials on
Linux and Open Source topics – for self-study, school, higher and continuing education
and professional training.
Please visit http://www.tuxcademy.org/! Do contact us with questions or suggestions.

Concise Linux An Introduction to Linux Use and Administration
Revision: lxk1:807d647231c25323:2015-08-21

adm1:33e55eeadba676a3:2015-08-08 10–18, 26–27
adm2:0cd20ee1646f650c:2015-08-21 20–25
grd1:be27bba8095b329b:2015-08-04 1–9, B
grd2:6eb247d0aa1863fd:2015-08-05 19
lxk1:qPeeTb2oHiy6EUuPrr0DT

© 2015 Linup Front GmbH Darmstadt, Germany
© 2016 tuxcademy (Anselm Lingnau) Darmstadt, Germany
http://www.tuxcademy.org ⋅ info@tuxcademy.org
Linux penguin “Tux” © Larry Ewing (CC-BY licence)

All representations and information contained in this document have been com-
piled to the best of our knowledge and carefully tested. However, mistakes cannot
be ruled out completely. To the extent of applicable law, the authors and the tux-
cademy project assume no responsibility or liability resulting in any way from the
use of this material or parts of it or from any violation of the rights of third parties.
Reproduction of trade marks, service marks and similar monikers in this docu-
ment, even if not specially marked, does not imply the stipulation that these may
be freely usable according to trade mark protection laws. All trade marks are used
without a warranty of free usability and may be registered trade marks of third
parties.

This document is published under the “Creative Commons-BY-SA 4.0 Interna-
tional” licence. You may copy and distribute it and make it publically available as
long as the following conditions are met:

Attribution You must make clear that this document is a product of the tux-
cademy project.

Share-Alike You may alter, remix, extend, or translate this document or modify
or build on it in other ways, as long as you make your contributions available
under the same licence as the original.

Further information and the full legal license grant may be found at
http://creativecommons.org/licenses/by-sa/4.0/

Authors: Tobias Elsner, Thomas Erker, Anselm Lingnau
Technical Editor: Anselm Lingnau ⟨anselm.lingnau@linupfront.de⟩
Typeset in Palatino, Optima and DejaVu Sans Mono

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

Contents

1 Introduction 15
1.1 What is Linux? . 16
1.2 Linux History . 16
1.3 Free Software, “Open Source” and the GPL 18
1.4 Linux—The Kernel 21
1.5 Linux Properties . 23
1.6 Linux Distributions 26

2 Using the Linux System 31
2.1 Logging In and Out 32
2.2 Switching On and Off 34
2.3 The System Administrator. 34

3 Who’s Afraid Of The Big Bad Shell? 37
3.1 Why? . 38

3.1.1 What Is The Shell? 38
3.2 Commands . 40

3.2.1 Why Commands?. 40
3.2.2 Command Structure. 40
3.2.3 Command Types 41
3.2.4 Even More Rules 42

4 Getting Help 45
4.1 Self-Help . 46
4.2 The help Command and the --help Option 46
4.3 The On-Line Manual 46

4.3.1 Overview . 46
4.3.2 Structure . 47
4.3.3 Chapters . 48
4.3.4 Displaying Manual Pages 48

4.4 Info Pages . 49
4.5 HOWTOs. 50
4.6 Further Information Sources 50

5 The vi Editor 53
5.1 Editors. 54
5.2 The Standard—vi . 54

5.2.1 Overview . 54
5.2.2 Basic Functions 55
5.2.3 Extended Commands 58

5.3 Other Editors . 60

4 Contents

6 Files: Care and Feeding 63
6.1 File and Path Names 64

6.1.1 File Names . 64
6.1.2 Directories . 65
6.1.3 Absolute and Relative Path Names 66

6.2 Directory Commands 67
6.2.1 The Current Directory: cd & Co. 67
6.2.2 Listing Files and Directories—ls 68
6.2.3 Creating and Deleting Directories: mkdir and rmdir 69

6.3 File Search Patterns 70
6.3.1 Simple Search Patterns 70
6.3.2 Character Classes 72
6.3.3 Braces . 73

6.4 Handling Files . 74
6.4.1 Copying, Moving and Deleting—cp and Friends. 74
6.4.2 Linking Files—ln and ln -s 76
6.4.3 Displaying File Content—more and less 80
6.4.4 Searching Files—find 81
6.4.5 Finding Files Quickly—locate and slocate 84

7 Standard I/O and Filter Commands 87
7.1 I/O Redirection and Command Pipelines 88

7.1.1 Standard Channels 88
7.1.2 Redirecting Standard Channels 89
7.1.3 Command Pipelines 92

7.2 Filter Commands . 94
7.3 Reading and Writing Files 94

7.3.1 Outputting and Concatenating Text Files—cat and tac 94
7.3.2 Beginning and End—head and tail 96
7.3.3 Just the Facts, Ma’am—od and hexdump 97

7.4 Text Processing. 100
7.4.1 Character by Character—tr, expand and unexpand 100
7.4.2 Line by Line—fmt, pr and so on 103

7.5 Data Management 108
7.5.1 Sorted Files—sort and uniq 108
7.5.2 Columns and Fields—cut, paste etc. 113

8 More About The Shell 119
8.1 Simple Commands: sleep, echo, and date 120
8.2 Shell Variables and The Environment. 121
8.3 Command Types—Reloaded 123
8.4 The Shell As A Convenient Tool. 124
8.5 Commands From A File 128
8.6 The Shell As A Programming Language. 129

8.6.1 Foreground and Background Processes 132

9 The File System 137
9.1 Terms . 138
9.2 File Types. 138
9.3 The Linux Directory Tree 139
9.4 Directory Tree and File Systems. 147
9.5 Removable Media. 148

10 System Administration 151
10.1 Introductory Remarks 152
10.2 The Privileged root Account 152
10.3 Obtaining Administrator Privileges 154
10.4 Distribution-specific Administrative Tools 156

5

11 User Administration 159
11.1 Basics . 160

11.1.1 Why Users? . 160
11.1.2 Users and Groups 161
11.1.3 People and Pseudo-Users 163

11.2 User and Group Information. 163
11.2.1 The /etc/passwd File 163
11.2.2 The /etc/shadow File 166
11.2.3 The /etc/group File 168
11.2.4 The /etc/gshadow File 169
11.2.5 The getent Command 170

11.3 Managing User Accounts and Group Information 170
11.3.1 Creating User Accounts 171
11.3.2 The passwd Command 172
11.3.3 Deleting User Accounts 174
11.3.4 Changing User Accounts and Group Assignment 174
11.3.5 Changing User Information Directly—vipw 175
11.3.6 Creating, Changing and Deleting Groups 175

12 Access Control 179
12.1 The Linux Access Control System 180
12.2 Access Control For Files And Directories 180

12.2.1 The Basics . 180
12.2.2 Inspecting and Changing Access Permissions. 181
12.2.3 Specifying File Owners and Groups—chown and chgrp 182
12.2.4 The umask . 183

12.3 Access Control Lists (ACLs) 185
12.4 Process Ownership 185
12.5 Special Permissions for Executable Files 185
12.6 Special Permissions for Directories 186
12.7 File Attributes . 188

13 Process Management 191
13.1 What Is A Process? 192
13.2 Process States . 193
13.3 Process Information—ps 194
13.4 Processes in a Tree—pstree 195
13.5 Controlling Processes—kill and killall 196
13.6 pgrep and pkill . 197
13.7 Process Priorities—nice and renice 199
13.8 Further Process Management Commands—nohup and top 199

14 Hard Disks (and Other Secondary Storage) 201
14.1 Fundamentals . 202
14.2 Bus Systems for Mass Storage 202
14.3 Partitioning . 205

14.3.1 Fundamentals 205
14.3.2 The Traditional Method (MBR) 206
14.3.3 The Modern Method (GPT) 207

14.4 Linux and Mass Storage 208
14.5 Partitioning Disks. 210

14.5.1 Fundamentals 210
14.5.2 Partitioning Disks Using fdisk 212
14.5.3 Formatting Disks using GNU parted 215
14.5.4 gdisk . 216
14.5.5 More Partitioning Tools 217

14.6 Loop Devices and kpartx 217
14.7 The Logical Volume Manager (LVM) 219

6 Contents

15 File Systems: Care and Feeding 223
15.1 Creating a Linux File System. 224

15.1.1 Overview . 224
15.1.2 The ext File Systems 226
15.1.3 ReiserFS . 234
15.1.4 XFS . 235
15.1.5 Btrfs . 237
15.1.6 Even More File Systems 238
15.1.7 Swap space . 239

15.2 Mounting File Systems 240
15.2.1 Basics . 240
15.2.2 The mount Command 240
15.2.3 Labels and UUIDs 242

15.3 The dd Command . 244

16 Booting Linux 247
16.1 Fundamentals . 248
16.2 GRUB Legacy . 251

16.2.1 GRUB Basics 251
16.2.2 GRUB Legacy Configuration 252
16.2.3 GRUB Legacy Installation 253
16.2.4 GRUB 2 . 254
16.2.5 Security Advice 255

16.3 Kernel Parameters 255
16.4 System Startup Problems 257

16.4.1 Troubleshooting 257
16.4.2 Typical Problems 257
16.4.3 Rescue systems and Live Distributions 259

17 System-V Init and the Init Process 261
17.1 The Init Process . 262
17.2 System-V Init . 262
17.3 Upstart . 268
17.4 Shutting Down the System 270

18 Systemd 275
18.1 Overview. 276
18.2 Unit Files . 277
18.3 Unit Types . 281
18.4 Dependencies . 282
18.5 Targets. 284
18.6 The systemctl Command 286
18.7 Installing Units. 289

19 Time-controlled Actions—cron and at 291
19.1 Introduction. 292
19.2 One-Time Execution of Commands 292

19.2.1 at and batch . 292
19.2.2 at Utilities . 294
19.2.3 Access Control 294

19.3 Repeated Execution of Commands 295
19.3.1 User Task Lists 295
19.3.2 System-Wide Task Lists 296
19.3.3 Access Control 297
19.3.4 The crontab Command 297
19.3.5 Anacron . 298

20 System Logging 301

7

20.1 The Problem . 302
20.2 The Syslog Daemon 302
20.3 Log Files . 305
20.4 Kernel Logging . 306
20.5 Extended Possibilities: Rsyslog 306
20.6 The “next generation”: Syslog-NG. 310
20.7 The logrotate Program 314

21 System Logging with Systemd and “The Journal” 319
21.1 Fundamentals . 320
21.2 Systemd and journald 321
21.3 Log Inspection . 323

22 TCP/IP Fundamentals 329
22.1 History and Introduction 330

22.1.1 The History of the Internet 330
22.1.2 Internet Administration 330

22.2 Technology . 332
22.2.1 Overview . 332
22.2.2 Protocols . 333

22.3 TCP/IP . 335
22.3.1 Overview . 335
22.3.2 End-to-End Communication: IP and ICMP 336
22.3.3 The Base for Services: TCP and UDP 339
22.3.4 The Most Important Application Protocols. 342

22.4 Addressing, Routing and Subnetting 344
22.4.1 Basics . 344
22.4.2 Routing . 345
22.4.3 IP Network Classes 346
22.4.4 Subnetting . 346
22.4.5 Private IP Addresses 347
22.4.6 Masquerading and Port Forwarding 348

22.5 IPv6. 349
22.5.1 IPv6 Addressing 350

23 Linux Network Configuration 355
23.1 Network Interfaces 356

23.1.1 Hardware and Drivers 356
23.1.2 Configuring Network Adapters Using ifconfig 357
23.1.3 Configuring Routing Using route 358
23.1.4 Configuring Network Settings Using ip 360

23.2 Persistent Network Configuration 361
23.3 DHCP . 364
23.4 IPv6 Configuration 365
23.5 Name Resolution and DNS 366

24 Network Troubleshooting 371
24.1 Introduction. 372
24.2 Local Problems. 372
24.3 Checking Connectivity With ping 372
24.4 Checking Routing Using traceroute And tracepath 375
24.5 Checking Services With netstat And nmap 378
24.6 Testing DNS With host And dig 381
24.7 Other Useful Tools For Diagnosis 383

24.7.1 telnet and netcat 383
24.7.2 tcpdump . 385
24.7.3 wireshark . 385

25 The Secure Shell 387

8 Contents

25.1 Introduction. 388
25.2 Logging Into Remote Hosts Using ssh 388
25.3 Other Useful Applications: scp and sftp 391
25.4 Public-Key Client Authentication 392
25.5 Port Forwarding Using SSH 394

25.5.1 X11 Forwarding 394
25.5.2 Forwarding Arbitrary TCP Ports 395

26 Software Package Management Using Debian Tools 399
26.1 Overview. 400
26.2 The Basis: dpkg . 400

26.2.1 Debian Packages 400
26.2.2 Package Installation 401
26.2.3 Deleting Packages 402
26.2.4 Debian Packages and Source Code 403
26.2.5 Package Information. 403
26.2.6 Package Verification 406

26.3 Debian Package Management: The Next Generation 407
26.3.1 APT . 407
26.3.2 Package Installation Using apt-get 407
26.3.3 Information About Packages 409
26.3.4 aptitude . 410

26.4 Debian Package Integrity 412
26.5 The debconf Infrastructure 413
26.6 alien: Software From Different Worlds 414

27 Package Management with RPM and YUM 417
27.1 Introduction. 418
27.2 Package Management Using rpm 419

27.2.1 Installation and Update 419
27.2.2 Deinstalling Packages 419
27.2.3 Database and Package Queries 420
27.2.4 Package Verification 422
27.2.5 The rpm2cpio Program 422

27.3 YUM . 423
27.3.1 Overview . 423
27.3.2 Package Repositories 423
27.3.3 Installing and Removing Packages Using YUM 424
27.3.4 Information About Packages 426
27.3.5 Downloading Packages. 428

A Sample Solutions 429

B Example Files 449

C LPIC-1 Certification 453
C.1 Overview. 453
C.2 Exam LPI-101 . 453
C.3 Exam LPI-102 . 454
C.4 LPI Objectives In This Manual 455

D Command Index 469

Index 475

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

List of Tables

4.1 Manual page sections . 47
4.2 Manual Page Topics . 48

5.1 Insert-mode commands for vi . 56
5.2 Cursor positioning commands in vi 57
5.3 Editing commands in vi . 58
5.4 Replacement commands in vi . 58
5.5 ex commands in vi . 60

6.1 Some file type designations in ls . 68
6.2 Some ls options . 68
6.3 Options for cp . 74
6.4 Keyboard commands for more . 80
6.5 Keyboard commands for less . 81
6.6 Test conditions for find . 82
6.7 Logical operators for find . 83

7.1 Standard channels on Linux . 89
7.2 Options for cat (selection) . 94
7.3 Options for tac (selection) . 95
7.4 Options for od (excerpt) . 97
7.5 Options for tr . 100
7.6 Characters and character classes for tr 101
7.7 Options for pr (selection) . 104
7.8 Options for nl (selection) . 105
7.9 Options for wc (selection) . 107
7.10 Options for sort (selection) . 110
7.11 Options for join (selection) . 115

8.1 Important Shell Variables . 122
8.2 Key Strokes within bash . 127
8.3 Options for jobs . 134

9.1 Linux file types . 138
9.2 Directory division according to the FHS 146

12.1 The most important file attributes . 188

14.1 Different SCSI variants . 204
14.2 Partition types for Linux (hexadecimal) 206
14.3 Partition type GUIDs for GPT (excerpt) 208

18.1 Common targets for systemd (selection) 284
18.2 Compatibility targets for System-V init 285

20.1 syslogd facilities . 303
20.2 syslogd priorities (with ascending urgency) 303

10 List of Tables

20.3 Filtering functions for Syslog-NG . 312

22.1 Common application protocols based on TCP/IP 343
22.2 Addressing example . 345
22.3 Traditional IP Network Classes . 346
22.4 Subnetting Example . 347
22.5 Private IP address ranges according to RFC 1918 347

23.1 Options within /etc/resolv.conf . 367

24.1 Important ping options . 374

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

List of Figures

1.1 Ken Thompson and Dennis Ritchie with a PDP-11 17
1.2 Linux development . 18
1.3 Organizational structure of the Debian project 27

2.1 The login screens of some common Linux distributions 32
2.2 Running programs as a different user in KDE 35

4.1 A manual page . 48

5.1 vi’s modes . 56

7.1 Standard channels on Linux . 88
7.2 The tee command . 93

8.1 Synchronous command execution in the shell 133
8.2 Asynchronous command execution in the shell 133

9.1 Content of the root directory (SUSE) 140

13.1 The relationship between various process states 193

15.1 The /etc/fstab file (example) . 241

17.1 A typical /etc/inittab file (excerpt) 263
17.2 Upstart configuration file for job rsyslog 269

18.1 A systemd unit file: console-getty.service 279

20.1 Example configuration for logrotate (Debian GNU/Linux 8.0) . . . 315

21.1 Complete log output of journalctl . 326

22.1 Protocols and service interfaces . 334
22.2 ISO/OSI reference model . 334
22.3 Structure of an IP datagram . 337
22.4 Structure of an ICMP packet . 338
22.5 Structure of a TCP Segment . 339
22.6 Starting a TCP connection: The Three-Way Handshake 340
22.7 Structure of a UDP datagram . 341
22.8 The /etc/services file (excerpt) . 342

23.1 /etc/resolv.conf example . 367
23.2 The /etc/hosts file (SUSE) . 368

26.1 The aptitude program . 411

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

Preface

This manual offers a concise introduction to the use and administration of Linux.
It is aimed at students who have had some experience using other operating sys-
tems and want to transition to Linux, but is also suitable for use at schools and
universities.

Topics include a thorough introduction to the Linux shell, the vi editor, and the
most important file management tools as well as a primer on basic administration
tasks like user, permission, and process management. We present the organisation
of the file system and the administration of hard disk storage, describe the system
boot procedure, the configuration of services, the time-based automation of tasks
and the operation of the system logging service. The course is rounded out by
an introduction to TCP/IP and the configuration and operation of Linux hosts as
network clients, with particular attention to troubleshooting, and chapters on the
Secure Shell and printing to local and network printers.

Together with the subsequent volume, Concise Linux—Advanced Topics, this
manual covers all of the objectives of the Linux Professional Institute’s LPIC-1 cer-
tificate exams and is therefore suitable for exam preparation.

This courseware package is designed to support the training course as effi-
ciently as possible, by presenting the material in a dense, extensive format for
reading along, revision or preparation. The material is divided in self-contained
chapters detailing a part of the curriculum; a chapter’s goals and prerequisites chapters

goals

prerequisites

are summarized clearly at its beginning, while at the end there is a summary and
(where appropriate) pointers to additional literature or web pages with further
information.

B Additional material or background information is marked by the “light-
bulb” icon at the beginning of a paragraph. Occasionally these paragraphs
make use of concepts that are really explained only later in the courseware,
in order to establish a broader context of the material just introduced; these
“lightbulb” paragraphs may be fully understandable only when the course-
ware package is perused for a second time after the actual course.

A Paragraphs with the “caution sign” direct your attention to possible prob-
lems or issues requiring particular care. Watch out for the dangerous bends!

C Most chapters also contain exercises, which are marked with a “pencil” icon exercises

at the beginning of each paragraph. The exercises are numbered, and sam-
ple solutions for the most important ones are given at the end of the course-
ware package. Each exercise features a level of difficulty in brackets. Exer-
cises marked with an exclamation point (“!”) are especially recommended.

Excerpts from configuration files, command examples and examples of com-
puter output appear in typewriter type. In multiline dialogs between the user and
the computer, user input is given in bold typewriter type in order to avoid misun-
derstandings. The “�����” symbol appears where part of a command’s output
had to be omitted. Occasionally, additional line breaks had to be added to make
things fit; these appear as “�
�”. When command syntax is discussed, words enclosed in angle brack-

ets (“⟨Word⟩”) denote “variables” that can assume different values; material in

14 Preface

brackets (“[-f ⟨file⟩]”) is optional. Alternatives are separated using a vertical bar
(“-a |-b”).

Important concepts are emphasized using “marginal notes” so they can be eas-Important concepts

ily located; definitions of important terms appear in bold type in the text as welldefinitions
as in the margin.

References to the literature and to interesting web pages appear as “[GPL91]”
in the text and are cross-referenced in detail at the end of each chapter.

We endeavour to provide courseware that is as up-to-date, complete and error-
free as possible. In spite of this, problems or inaccuracies may creep in. If you
notice something that you think could be improved, please do let us know, e.g.,
by sending e-mail to

info@tuxcademy.org

(For simplicity, please quote the title of the courseware package, the revision ID
on the back of the title page and the page number(s) in question.) Thank you very
much!

LPIC-1 Certification

These training materials are part of a recommended curriculum for LPIC-1 prepa-
ration. Refer to Appendix C for further information.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

1
Introduction

Contents

1.1 What is Linux? . 16
1.2 Linux History . 16
1.3 Free Software, “Open Source” and the GPL 18
1.4 Linux—The Kernel 21
1.5 Linux Properties . 23
1.6 Linux Distributions 26

Goals

• Knowing about Linux, its properties and its history
• Differentiating between the Linux kernel and Linux distributions
• Understanding the terms “GPL”, “free software”, and “open-source soft-

ware”

Prerequisites

• Knowledge of other operating systems is useful to appreciate similarities
and differences

grd1-einfuehrung.tex (be27bba8095b329b)

16 1 Introduction

1.1 What is Linux?

Linux is an operating system. As such, it manages a computer’s basic function-
ality. Application programs build on the operating system. It forms the interface
between the hardware and application programs as well as the interface between
the hardware and people (users). Without an operating system, the computer is
unable to “understand” or process our input.

Various operating systems differ in the way they go about these tasks. The
functions and operation of Linux are inspired by the Unix operating system.

1.2 Linux History

The history of Linux is something special in the computer world. While most other
operating systems are commercial products produced by companies, Linux was
started by a university student as a hobby project. In the meantime, hundreds of
professionals and enthusiasts all over the world collaborate on it—from hobbyists
and computer science students to operating systems experts funded by major IT
corporations to do Linux development. The basis for the existence of such a project
is the Internet: Linux developers make extensive use of services like electronic
mail, distributed version control, and the World Wide Web and, through these,
have made Linux what it is today. Hence, Linux is the result of an international
collaboration across national and corporate boundaries, now as then led by Linus
Torvalds, its original author.

To explain about the background of Linux, we need to digress for a bit: Unix,
the operating system that inspired Linux, was begun in 1969. It was developed by
Ken Thompson and his colleagues at Bell Laboratories (the US telecommunicationBell Laboratories

giant AT&T’s research institute)1. Unix caught on rapidly especially at universi-
ties, because Bell Labs furnished source code and documentation at cost (due to
an anti-trust decree, AT&T was barred from selling software). Unix was, at first,
an operating system for Digital Equipment’s PDP-11 line of minicomputers, but
was ported to other platforms during the 1970s—a reasonably feasible endeavour,
since the Unix software, including the operating system kernel, was mostly writ-
ten in Dennis Ritchie’s purpose-built C programming language. Possibly mostC

important of all Unix ports was the one to the PDP-11’s successor platform, the
VAX, at the University of California in Berkeley, which came to be distributed asVAX

“BSD” (short for Berkeley Software Distribution). By and by, various computer man-
ufacturers developed different Unix derivatives based either on AT&T code or on
BSD (e. g., Sinix by Siemens, Xenix by Microsoft (!), SunOS by Sun Microsystems,
HP/UX by Hewlett-Packard or AIX by IBM). Even AT&T was finally allowed to
market Unix—the commercial versions System III and (later) System V. This led toSystem V

a fairly incomprehensible multitude of different Unix products. A real standardi-
sation never happened, but it is possible to distinguish roughly between BSD-like
and System-V-like Unix variants. The BSD and System V lines of development
were mostly unified by “System V Release 4”, which exhibited the characteristicsSVR4

of both factions.
The very first parts of Linux were developed in 1991 by Linus Torvalds, then

a 21-year-old student in Helsinki, Finland, when he tried to fathom the capabil-
ities of his new PC’s Intel 386 processor. After a few months, the assembly lan-
guage experiments had matured into a small but workable operating system ker-
nel that could be used in a Minix system—Minix was a small Unix-like operatingMinix

system that computer science professor Andrew S. Tanenbaum of the Free Uni-
versity of Amsterdam, the Netherlands, had written for his students. Early Linux
had properties similar to a Unix system, but did not contain Unix source code.
Linus Torvalds made the program’s source code available on the Internet, and the

1The name “Unix” is a pun on “Multics”, the operating system that Ken Thompson and his col-
leagues worked on previously. Early Unix was a lot simpler than Multics. How the name came to be
spelled with an “x” is no longer known.

1.2 Linux History 17

Figure 1.1: Ken Thompson (sitting) and Dennis Ritchie (standing) with a
PDP-11, approx. 1972. (Photograph courtesy of Lucent Technologies.)

idea was eagerly taken up and developed further by many programmers. Version
0.12, issued in January, 1992, was already a stable operating system kernel. There
was—thanks to Minix—the GNU C compiler (gcc), the bash shell, the emacs editor
and many other GNU tools. The operating system was distributed world-wide by
anonymous FTP. The number of programmers, testers and supporters grew very
rapidly. This catalysed a rate of development only dreamed of by powerful soft-
ware companies. Within months, the tiny kernel grew into a full-blown operating
system with fairly complete (if simple) Unix functionality.

The “Linux” project is not finished even today. Linux is constantly updated
and added to by hundreds of programmers throughout the world, catering to
millions of satisfied private and commercial users. In fact it is inappropriate to
say that the system is developed “only” by students and other amateurs—many
contributors to the Linux kernel hold important posts in the computer industry
and are among the most professionally reputable system developers anywhere.
By now it is fair to claim that Linux is the operating system with the widest sup-
ported range of hardware ever, not just with respect to the platforms it is running
on (from PDAs to mainframes) but also with respect to driver support on, e. g., the
Intel PC platform. Linux also serves as a research and development platform for
new operating systems ideas in academia and industry; it is without doubt one of
the most innovative operating systems available today.

Exercises

C 1.1 [4] Use the Internet to locate the famous (notorious?) discussion between
Andrew S. Tanenbaum and Linus Torvalds, in which Tanenbaum says that,
with something like Linux, Linus Torvalds would have failed his (Tanen-
baum’s) operating systems course. What do you think of the controversy?

C 1.2 [2] Give the version number of the oldest version of the Linux source
code that you can locate.

18 1 Introduction

5MiB

10MiB

15MiB

20MiB

25MiB

30MiB

35MiB

40MiB

45MiB

50MiB

55MiB

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Linux 2.0
Linux 2.1
Linux 2.2
Linux 2.3
Linux 2.4
Linux 2.5
Linux 2.6

Figure 1.2: Linux development, measured by the size of linux-*.tar.gz. Each marker corresponds to a Linux
version. During the 10 years between Linux 2.0 and Linux 2.6.18, the size of the compressed Linux
source code has roughly increased tenfold.

1.3 Free Software, “Open Source” and the GPL

From the very beginning of its development, Linux was placed under the GNU
General Public License (GPL) promulgated by the Free Software Foundation (FSF).GPL

Free Software Foundation The FSF was founded by Richard M. Stallman, the author of the Emacs editor
and other important programs, with the goal of making high-quality software
“freely” available—in the sense that users are “free” to inspect it, to change itFree Software

and to redistribute it with or without changes, not necessarily in the sense that
it does not cost anything2. In particular, he was after a freely available Unix-like
operating system, hence “GNU” as a (recursive) acronym for “GNU’s Not Unix”.
The main tenet of the GPL is that software distributed under it may be changed
as well as sold at any time, but that the (possibly modified) source code must
always be passed along—thus Open Source—and that the recipient must receiveOpen Source

the same rights of modification and redistribution. Thus there is little point in
selling GPL software “per seat”, since the recipient must be allowed to copy and
install the software as often as wanted. (It is of course permissible to sell support
for the GPL software “per seat”.) New software resulting from the extension or
modification of GPL software must, as a “derived work”, also be placed under the
GPL.

Therefore, the GPL governs the distribution of software, not its use, and al-
lows the recipient to do things that he would not be allowed to do otherwise—for
example, the right to copy and distribute the software, which according to copy-
right law is the a priori prerogative of the copyright owner. Consequently, it differs
markedly from the “end user license agreements” (EULAs) of “proprietary” soft-
ware, whose owners try to take away a recipient’s rights to do various things. (For
example, some EULAs try to forbid a software recipient from talking critically—or

2The FSF says “free as in speech, not as in beer”

1.3 Free Software, “Open Source” and the GPL 19

at all—about the product in public.)

B The GPL is a license, not a contract, since it is a one-sided grant of rights
to the recipient (albeit with certain conditions attached). The recipient of
the software does not need to “accept” the GPL explicitly. The common
EULAs, on the other hand, are contracts, since the recipient of the software
is supposed to waive certain rights in exchange for being allowed to use the
software. For this reason, EULAs must be explicitly accepted. The legal
barriers for this may be quite high—in many jurisdictions (e. g., Germany),
any EULA restrictions must be known to the buyer before the actual sale in
order to become part of the sales contract. Since the GPL does not in any
way restrict a buyer’s rights (in particular as far as use of the software is
concerned) compared to what they would have to expect when buying any
other sort of goods, these barriers do not apply to the GPL; the additional
rights that the buyer is conferred by the GPL are a kind of extra bonus.

B Currently two versions of the GPL are in widespread use. The newer ver-
sion 3 (also called “GPLv3”) was published in July, 2007, and differs from the GPLv3

older version 2 (also “GPLv2”) by more precise language dealing with ar-
eas such as software patents, the compatibility with other free licenses, and
the introduction of restrictions on making changes to theoretically “free”
devices impossible by excluding them through special hardware (“Tivoisa-
tion”, after a Linux-based personal video recorder whose kernel is impossi-
ble to alter or exchange). In addition, GPLv3 allows its users to add further
clauses. – Within the community, the GPLv3 was not embraced with unan-
imous enthusiasm, and many projects, in particular the Linux kernel, have
intentionally stayed with the simpler GPLv2. Many other projects are made
available under the GPLv2 “or any newer version”, so you get to decide
which version of the GPL you want to follow when distributing or modify-
ing such software.

Neither should you confuse GPL software with “public-domain” software. Public Domain
The latter belongs to nobody, everybody can do with it what he wants. A GPL
program’s copyright still rests with its developer or developers, and the GPL
states very clearly what one may do with the software and what one may not.

B It is considered good form among free software developers to place contri-
butions to a project under the same license that the project is already using,
and in fact most projects insist on this, at least for code that is supposed to
become part of the “official” version. Indeed, some projects insist on “copy-
right assignments”, where the code author signs the copyright over to the
project (or a suitable organisation). The advantage of this is that, legally,
only the project is responsible for the code and that licensing violations—
where only the copyright owner has legal standing—are easier to prose-
cute. A side effect that is either desired or else explicitly unwanted is that
copyright assignment makes it easier to change the license for the complete
project, as this is an act that only the copyright owner may perform.

B In case of the Linux operating system kernel, which explicitly does not re-
quire copyright assignment, a licensing change is very difficult to impossible
in practice, since the code is a patchwork of contributions from more than
a thousand authors. The issue was discussed during the GPLv3 process,
and there was general agreement that it would be a giant project to ascer-
tain the copyright provenance of every single line of the Linux source code,
and to get the authors to agree to a license change. In any case, some Linux
developers would be violently opposed, while others are impossible to find
or even deceased, and the code in question would have to be replaced by
something similar with a clear copyright. At least Linus Torvalds is still in
the GPLv2 camp, so the problem does not (yet) arise in practice.

20 1 Introduction

The GPL does not stipulate anything about the price of the product. It is utterlyGPL and Money

legal to give away copies of GPL programs, or to sell them for money, as long
as you provide source code or make it available upon request, and the software
recipient gets the GPL rights as well. Therefore, GPL software is not necessarily
“freeware”.

You can find out more by reading the GPL [GPL91], which incidentally must
accompany every GPLlicensed product (including Linux).

There are other “free” software licenses which give similar rights to the soft-Other “free” licenses

ware recipient, for example the “BSD license” which lets appropriately licensed
software be included in non-free products. The GPL is considered the most thor-
ough of the free licenses in the sense that it tries to ensure that code, once pub-
lished under the GPL, remains free. Every so often, companies have tried to include
GPL code in their own non-free products. However, after being admonished by
(usually) the FSF as the copyright holder, these companies have always complied
with the GPL’s requirements. In various jurisdictions the GPL has been validated
in courts of law—for example, in the Frankfurt (Germany) Landgericht (state court),
a Linux kernel developer obtained a judgement against D-Link (a manufacturer of
network components, in this case a Linux-based NAS device) in which the latter
was sued for damages because they did not adhere to the GPL conditions when
distributing the device [GPL-Urteil06].

B Why does the GPL work? Some companies that thought the GPL condi-
tions onerous have tried to declare or have it declared it invalid. For exam-
ple, it was called “un-American” or “unconstitutional” in the United States;
in Germany, anti-trust law was used in an attempt to prove that the GPL
amounts to price fixing. The general idea seems to be that GPL-ed soft-
ware can be used by anybody if something is demonstrably wrong with the
GPL. All these attacks ignore one fact: Without the GPL, nobody except the
original author has the right to do anything with the code, since actions like
sharing (let alone selling) the code are the author’s prerogative. So if the
GPL goes away, all other interested parties are worse off than they were.

B A lawsuit where a software author sues a company that distributes his GPL
code without complying with the GPL would approximately look like this:

Judge What seems to be the problem?
Software Author Your Lordship, the defendant has distributed my soft-

ware without a license.
Judge (to the defendant’s counsel) Is that so?

At this point the defendant can say “yes”, and the lawsuit is essentially over
(except for the verdict). They can also say “no” but then it is up to them
to justify why copyright law does not apply to them. This is an uncom-
fortable dilemma and the reason why few companies actually do this to
themselves—most GPL disagreements are settled out of court.

B If a manufacturer of proprietary software violates the GPL (e. g., by includ-
ing a few hundreds of lines of source code from a GPL project in their prod-
uct), this does not imply that all of that product’s code must now be released
under the terms of the GPL. It only implies that they have distributed GPL
code without a license. The manufacturer can solve this problem in various
ways:

• They can remove the GPL code and replace it by their own code. The
GPL then becomes irrelevant for their software.

• They can negotiate with the GPL code’s copyright holder (if he is avail-
able and willing to go along) and, for instance, agree to pay a license
fee. See also the section on multiple licenses below.

• They can release their entire program under the GPL voluntarily and
thereby comply with the GPL’s conditions (the most unlikely method).

1.4 Linux—The Kernel 21

Independently of this there may be damages payable for the prior violations.
The copyright status of the proprietary software, however, is not affected in
any way.

When is a software package considered “free” or “open source”? There are Freedom criteria

no definite criteria, but a widely-accepted set of rules are the Debian Free Software Debian Free Software Guidelines

Guidelines [DFSG]. The FSF summarizes its criteria as the Four Freedoms which
must hold for a free software package:

• The freedom to use the software for any purpose (freedom 0)

• The freedom to study how the software works, and to adapt it to one’s re-
quirements (freedom 1)

• The freedom to pass the software on to others, in order to help one’s neigh-
bours (freedom 2)

• The freedom to improve the software and publish the improvements, in or-
der to benefit the general public (freedom 3)

Access to the source code is a prerequisite for freedoms 1 and 3. Of course, com-
mon free-software licenses such as the GPL or the BSD license conform to these
freedoms.

In addition, the owner of a software package is free to distribute it under dif- Multiple licenses

ferent licenses at the same time, e.g., the GPL and, alternatively, a “commercial”
license that frees the recipient from the GPL restrictions such as the duty to make
available the source code for modifications. This way, private users and free soft-
ware authors can enjoy the use of a powerful programming library such as the
“Qt” graphics package (published by Qt Software—formerly Troll Tech—, a Nokia
subsidiary), while companies that do not want to make their own source code
available may “buy themselves freedom” from the GPL.

Exercises

C 1.3 [!2] Which of the following statements concerning the GPL are true and
which are false?

1. GPL software may not be sold.
2. GPL software may not be modified by companies in order to base their

own products on it.
3. The owner of a GPL software package may distribute the program un-

der a different license as well.
4. The GPL is invalid, because one sees the license only after having ob-

tained the software package in question. For a license to be valid, one
must be able to inspect it and accept it before acquiring the software.

C 1.4 [4] Some software licenses require that when a file from a software distri-
bution is changed, it must be renamed. Is software distributed under such a
license considered “free” according to the DFSG? Do you think this practice
makes sense?

1.4 Linux—The Kernel

Strictly speaking, the name “Linux” only applies to the operating system “kernel”,
which performs the actual operating system tasks. It takes care of elementary
functions like memory and process management and hardware control. Applica-
tion programs must call upon the kernel to, e.g., access files on disk. The kernel
validates such requests and in doing so can enforce that nobody gets to access

22 1 Introduction

other users’ private files. In addition, the kernel ensures that all processes in the
system (and hence all users) get the appropriate fraction of the available CPU time.

Of course there is not just one Linux kernel, but there are many different ver-Versions

sions. Until kernel version 2.6, we distinguished stable “end-user versions” and
unstable “developer versions” as follows:

• In version numbers such as 1.𝑥.𝑦 or 2.𝑥.𝑦, 𝑥 denotes a stable version if it isstable version

even. There should be no radical changes in stable versions; mistakes should
be corrected, and every so often drivers for new hardware components or
other very important improvements are added or “back-ported” from the
development kernels.

• Versions with odd 𝑥 are development versions which are unsuitable for pro-development version

ductive use. They may contain inadequately tested code and are mostly
meant for people wanting to take active part in Linux development. Since
Linux is constantly being improved, there is a constant stream of new ker-
nel versions. Changes concern mostly adaptations to new hardware or the
optimization of various subsystems, sometimes even completely new exten-
sions.

The procedure has changed in kernel 2.6: Instead of starting version 2.7 for newkernel 2.6

development after a brief stabilisation phase, Linus Torvalds and the other kernel
developers decided to keep Linux development closer to the stable versions. This
is supposed to avoid the divergence of developer and stable versions that grew to
be an enormous problem in the run-up to Linux 2.6—most notably because corpo-
rations like SUSE and Red Hat took great pains to backport interesting properties
of the developer version 2.5 to their versions of the 2.4 kernel, to an extent where,
for example, a SUSE 2.4.19 kernel contained many hundreds of differences to the
“vanilla” 2.4.19 kernel.

The current procedure consists of “test-driving” proposed changes and en-
hancements in a new kernel version which is then declared “stable” in a shorter
timeframe. For example, after version 2.6.37 there is a development phase during
which Linus Torvalds accepts enhancements and changes for the 2.6.38 version.
Other kernel developers (or whoever else fancies it) have access to Linus’ internal
development version, which, once it looks reasonable enough, is made available
as the “release candidate” 2.6.38-rc1. This starts the stabilisation phase, whererelease candidate

this release candidate is tested by more people until it looks stable enough to be
declared the new version 2.6.38 by Linus Torvalds. Then follows the 2.6.39 devel-
opment phase and so on.

B In parallel to Linus Torvalds’ “official” version, Andrew Morton maintains
a more experimental version, the so-called “-mm tree”. This is used to test-mm tree

larger and more sweeping changes until they are mature enough to be taken
into the official kernel by Linus.

B Some other developers maintain the “stable” kernels. As such, there might
be kernels numbered 2.6.38.1, 2.6.38.2, …, which each contain only small
and straightforward changes such as fixes for grave bugs and security is-
sues. This gives Linux distributors the opportunity to rely on kernel ver-
sions maintained for longer periods of time.

On 21 July 2011, Linus Torvalds officially released version 3.0 of the Linux ker-version 3.0

nel. This was really supposed to be version 2.6.40, but he wanted to simplify the
version numbering scheme. “Stable” kernels based on 3.0 are accordingly num-
bered 3.0.1, 3.0.2, …, and the next kernels in Linus’ development series are 3.1-rc1,
etc. leading up to 3.1 and so forth.

B Linus Torvalds insists that there was no big difference in functionality be-
tween the 2.6.39 and 3.0 kernels—at least not more so than between any
two other consecutive kernels in the 2.6 series—, but that there was just a
renumbering. The idea of Linux’s 20th anniversary was put forward.

1.5 Linux Properties 23

You can obtain source code for “official” kernels on the Internet from ftp.

kernel.org. However, only very few Linux distributors use the original kernel
sources. Distribution kernels are usually modified more or less extensively, e. g.,
by integrating additional drivers or features that are desired by the distribution
but not part of the standard kernel. The Linux kernel used in SUSE’s Linux Enter-
prise Server 8, for example, reputedly contained approximately 800 modifications
to the “vanilla” kernel source. (The changes to the Linux development process
have succeeded to an extent where the difference is not as great today.)

Today most kernels are modular. This was not always the case; former kernels Kernel structure

consisted of a single piece of code fulfilling all necessary functions such as the
support of particular devices. If you wanted to add new hardware or make use
of a different feature like a new type of file system, you had to compile a new
kernel from sources—a very time-consuming process. To avoid this, the kernel
was endowed with the ability to integrate additional features by way of modules.

Modules are pieces of code that can be added to the kernel dynamically (at run- Modules

time) as well as removed. Today, if you want to use a new network adapter, you do
not have to compile a new kernel but merely need to load a new kernel module.
Modern Linux distributions support automatic hardware recognition, which can hardware recognition

analyze a system’s properties and locate and configure the correct driver modules.

Exercises

C 1.5 [1] What is the version number of the current stable Linux kernel? The
current developer kernel? Which Linux kernel versions are still being sup-
ported?

1.5 Linux Properties

As a modern operating system kernel, Linux has a number of properties, some
of which are part of the “state of the art” (i. e., exhibited by similar systems in an
equivalent form) and some of which are unique to Linux.

• Linux supports a large selection of processors and computer architectures, processors
ranging from mobile phones (the very successful “Android” operating sys-
tem by Google, like some other similar systems, is based on Linux) through
PDAs and tablets, all sorts of new and old PC-like computers and server
systems of various kinds up to the largest mainframe computers (the vast
majority of the machines on the list of the fastest computers in the world is
running Linux).

B A huge advantage of Linux in the mobile arena is that, unlike Mi-
crosoft Windows, it supports the energy-efficient and powerful ARM
processors that most mobile devices are based upon. In 2012, Microsoft
released an ARM-based, partially Intel-compatible, version of Win-
dows 8 under the name of “Windows RT”, but that did not exactly
prove popular in the market.

• Of all currently available operating systems, Linux supports the broadest
selection of hardware. For the very newest components there may not be hardware

drivers available immediately, but on the other hand Linux still works with
devices that systems like Windows have long since left behind. Thus, your
investments in printers, scanners, graphic boards, etc. are protected opti-
mally.

• Linux supports “preemptive multitasking”, that is, several processes are multitasking

running—virtually or, on systems with more than one CPU, even actually—
in parallel. These processes cannot obstruct or damage one another; the ker-
nel ensures that every process is allotted CPU time according to its priority.

24 1 Introduction

B This is nothing special today; when Linux was new, this was much
more remarkable.

On carefully configured systems this may approach real-time behaviour,
and in fact there are Linux variants that are being used to control industrial
plants requiring “hard” real-time ability, as in guaranteed (quick) response
times to external events.

• Linux supports several users on the same system, even at the same timeseveral users

(via the network or serially connected terminals, or even several screens,
keyboards, and mice connected to the same computer). Different access per-
missions may be assigned to each user.

• Linux can effortlessly be installed alongside other operating systems on the
same computer, so you can alternately start Linux or another system. By
means of “virtualisation”, a Linux system can be split into independentvirtualisation

parts that look like separate computers from the outside and can run Linux
or other operating systems. Various free or proprietary solutions are avail-
able that enable this.

• Linux uses the available hardware efficiently. The dual-core CPUs commonefficiency

today are as fully utilised as the 4096 CPU cores of a SGI Altix server. Linux
does not leave working memory (RAM) unused, but uses it to cache data
from disk; conversely, available working memory is used reasonably in or-
der to cope with workloads that are much larger than the amount of RAM
inside the computer.

• Linux is source-code compatible with POSIX, System V and BSD and hencePOSIX, System V and BSD

allows the use of nearly all Unix software available in source form.

• Linux not only offers powerful “native” file systems with properties suchfile systems

as journaling, encryption, and logical volume management, but also allows
access to the file systems of various other operating systems (such as the
Microsoft Windows FAT, VFAT, and NTFS file systems), either on local disks
or across the network on remote servers. Linux itself can be used as a file
server in Linux, Unix, or Windows networks.

• The Linux TCP/IP stack is arguably among the most powerful in the indus-TCP/IP

try (which is due to the fact that a large fraction of R&D in this area is done
based on Linux). It supports IPv4 and IPv6 and all important options and
protocols.

• Linux offers powerful and elegant graphical environments for daily workgraphical environments

and, in X11, a very popular network-transparent base graphics system. Ac-
celerated 3D graphics is supported on most popular graphics cards.

• All important productivity applications are available—office-type pro-productivity applications

grams, web browsers, programs to access electronic mail and other com-
munication media, multimedia tools, development environments for a di-
verse selection of programming languages, and so on. Most of this software
comes with the system at no cost or can be obtained effortlessly and cheaply
over the Internet. The same applies to servers for all important Internet pro-
tocols as well as entertaining games.

The flexibility of Linux not only makes it possible to deploy the system on all
sorts of PC-class computers (even “old chestnuts” that do not support current
Windows can serve well in the kids’ room, as a file server, router, or mail server),
but also helps it make inroads in the “embedded systems” market, meaning com-embedded systems

plete appliances for network infrastructure or entertainment electronics. You will,
for example, find Linux in the popular AVM FRITZ!Box and similar WLAN, DSL
or telephony devices, in various set-top boxes for digital television, in PVRs, digi-
tal cameras, copiers, and many other devices. Your author has seen the bottle bank

1.5 Linux Properties 25

in the neighbourhood supermarket boot Linux. This is very often not trumpeted
all over the place, but, in addition to the power and convenience of Linux itself
the manufacturers appreciate the fact that, unlike comparable operating systems,
Linux does not require licensing fees “per unit sold”.

Another advantage of Linux and free software is the way the community deals
with security issues. In practice, security issues are as unavoidable in free software security issues

as they are in proprietary code—at least nobody so far has written and published
a software system of interesting size that proved completely free of them in the
long run. In particular, it would be improper to claim that free software has no
security issues. The differences are more likely to be found on a philosophical
level:

• As a rule, a vendor of proprietary software has no interest in fixing security
issues in their code—they will try to cover up problems and to talk down
possible dangers for as long as they possibly can, since constantly publish-
ing “patches” means, in the best case, terrible PR (“where there is smoke,
there must be a fire”; the competition, which just happens not to be in the
spotlight of scrutiny at the moment, is having a secret laugh), and, in the
worst case, great expense and lots of hassle if exploits are around that make
active use of the security holes. Besides, there is the usual danger of intro-
ducing three new errors while fixing one known one, which is why fixing
bugs in released software is normally not an econonomically viable propo-
sition.

• A free-software publisher does not gain anything by sitting on information
about security issues, since the source code is generally available, and ev-
erybody can find the problems. It is, in fact, a matter of pride to fix known
security issues as quickly as possible. The fact that the source code is pub-
lically available also implies that third parties find it easy to audit code for
problems that can be repaired proactively. (A common claim is that the
availability of source code exerts a very strong attraction on crackers and
other unsavoury vermin. In fact, these low-lifes do not appear to have major
difficulties identifying large numbers of security issues in proprietary sys-
tems such as Windows, whose source code is not generally available. Thus
any difference, if it exists, must be minute indeed.)

• Especially as far as software dealing with cryptography (the encryption and
decryption of confidential information) is concerned, there is a strong argu-
ment that availability of source code is an indispensable prerequisite for
trust that a program really does what it is supposed to do, i. e., that the
claimed encryption algorithm has been implemented completely and cor-
rectly. Linux does have an obvious advantage here.

Linux is used throughout the world by private and professional users— Linux in companies

companies, research establishments, universities. It plays an important role par-
ticularly as a system for web servers (Apache), mail servers (Sendmail, Postfix),
file servers (NFS, Samba), print servers (LPD, CUPS), ISDN routers, X terminals,
scientific/engineering workstations etc. Linux is an essential part of industrial IT
departments. Widespread adoption of Linux in public administration, such as the Public administration

city of Munich, also serves as a signal. In addition, many reputable IT companies Support by IT companies

such as IBM, Hewlett-Packard, Dell, Oracle, Sybase, Informix, SAP, Lotus etc. are
adapting their products to Linux or selling Linux versions already. Furthermore,
ever more computers (“netbooks”)— come with Linux or are at least tested for
Linux compability by their vendors.

Exercises

C 1.6 [4] Imagine you are responsible for IT in a small company (20–30 employ-
ees). In the office there are approximately 20 desktop PCs and two servers (a
file and printer server and a mail and Web proxy server). So far everything
runs on Windows. Consider the following scenarios:

26 1 Introduction

• The file and printer server is replaced by a Linux server using Samba
(a Linux/Unix-based server for Windows clients).

• The mail and proxy server is replaced by a Linux server.
• The twenty office desktop PCs are replaced by Linux machines.

Comment on the different scenarios and draw up short lists of their advan-
tages and disadvantages.

1.6 Linux Distributions

Linux in the proper sense of the word only consists of the operating system ker-
nel. To accomplish useful work, a multitude of system and application programs,
libraries, documentation etc. is necessary. “Distributions” are nothing but up-to-Distributions

date selections of these together with special programs (usually tools for instal-
lation and maintenance) provided by companies or other organisations, possibly
together with other services such as support, documentation, or updates. Distri-
butions differ mostly in the selection of software they offer, their administration
tools, extra services, and price.

“Fedora” is a freely available Linux distribution developed under the guid-Red Hat and Fedora

ance of the US-based company, Red Hat. It is the successor of the “Red Hat
Linux” distribution; Red Hat has withdrawn from the private end-user mar-
ket and aims their “Red Hat” branded distributions at corporate customers.
Red Hat was founded in 1993 and became a publically-traded corporation
in August, 1999; the first Red Hat Linux was issued in 1994, the last (ver-
sion 9) in late April, 2004. “Red Hat Enterprise Linux” (RHEL), the current
product, appeared for the first time in March, 2002. Fedora, as mentioned, is
a freely available offering and serves as a development platform for RHEL;
it is, in effect, the successor of Red Hat Linux. Red Hat only makes Fedora
available for download; while Red Hat Linux was sold as a “boxed set” with
CDs and manuals, Red Hat now leaves this to third-party vendors.

The SUSE company was founded 1992 under the name “Gesellschaft fürSUSE

Software und Systementwicklung” as a Unix consultancy and accordingly
abbreviated itself as “S.u.S.E.” One of its products was a version of Patrick
Volkerding’s Linux distribution, Slackware, that was adapted to the Ger-
man market. (Slackware, in turn, derived from the first complete Linux
distribution, “Softlanding Linux System” or SLS.) S.u.S.E. Linux 1.0 came
out in 1994 and slowly differentiated from Slackware, for example by taking
on Red Hat features such as the RPM package manager or the /etc/ sysconfig

file. The first version of S.u.S.E. Linux that no longer looked like Slackware
was version 4.2 of 1996. SuSE (the dots were dropped at some point) soon
gained market leadership in German-speaking Europe and published SuSE
Linux in a “box” in two flavours, “Personal” and “Professional”; the latter
was markedly more expensive and contained more server software. Like
Red Hat, SuSE offered an enterprise-grade Linux distribution called “SuSE
Linux Enterprise Server” (SLES), with some derivatives like a specialised
server for mail and groupware (“SuSE Linux OpenExchange Server” or
SLOX). In addition, SuSE endeavoured to make their distribution available
on IBM’s mid-range and mainframe computers.
In November 2003, the US software company Novell announced their in-Novell takeover

tention of taking over SuSE for 210 million dollars; the deal was concluded
in January 2004. (The “U” went uppercase on that occasion). Like Red Hat,
SUSE has by now taken the step to open the “private customer” distribution
and make it freely available as “openSUSE” (earlier versions appeared for
public download only after a delay of several months). Unlike Red Hat,

1.6 Linux Distributions 27

elect

Vol
unt

eer
s

Project leader

Technical committee Project secretary

Officers

appoints appoints

Release team

FTP masters

Security team

Press contacts

Administrators

etc.

Delegates

Developers

appoints/approves

Users

approve

Maintainers / porters

etc.

etc.CD team

Web/list/...masters

Policy group

Quality assurance

Documentation / i18n teams

Software in the

Public Interest

(SPI)

DAM NM team / advocates applicants
apply

Figure 1.3: Organizational structure of the Debian project. (Graphic by Martin F. Krafft.)

Novell/SUSE still offers a “boxed” version containing additional propri-
etary software. Among others, SUSE still sells SLES and a corporate desktop
platform called “SUSE Linux Enterprise Desktop” (SLED).
In early 2011, Novell was acquired by Attachmate, which in turn was taken Attachmate

over by Micro Focus in 2014. Both are companies whose main field of busi- Micro Focus

ness is traditional mainframe computers and which so far haven not distin-
guished themselves in the Linux and open-source arena. These maneuver-
ings, however, have had fairly little influence on SUSE and its products.
A particular property of SUSE distributions is “YaST”, a comprehensive YaST

graphical administration tool.

Unlike the two big Linux distribution companies Red Hat and Novell/SUSE,
the Debian project is a collaboration of volunteers whose goal is to make Debian project

available a high-quality Linux distribution called “Debian GNU/Linux”.
The Debian project was announced on 16 August 1993 by Ian Murdock; the
name is a contraction of his first name with that of his then-girlfriend (now
ex-wife) Debra (and is hence pronounced “debb-ian”). By now the project
includes more than 1000 volunteers.
Debian is based on three documents:

• The Debian Free Software Guidelines (DFSG) define which software the
project considers “free”. This is important, since only DFSG-free soft-
ware can be part of the Debian GNU/Linux distribution proper. The
project also distributes non-free software, which is strictly separated
from the DFSG-free software on the distribution’s servers: The latter
is in subdirectory called main, the former in non-free. (There is an inter-
mediate area called contrib; this contains software that by itself would
be DFSG-free but does not work without other, non-free, components.)

28 1 Introduction

• The Social Contract describes the project’s goals.
• The Debian Constitution describes the project’s organisation.

At any given time there are at least three versions of Debian GNU/Linux:versions

New or corrected versions of packages are put into the unstable branch.
If, for a certain period of time, no grave errors have appeared in a pack-
age, it is copied to the testing branch. Every so often the content of test-

ing is “frozen”, tested very thoroughly, and finally released as stable. A
frequently-voiced criticism of Debian GNU/Linux is the long timespan be-
tween stable releases; many, however, consider this an advantage. The De-
bian project makes Debian GNU/Linux available for download only; media
are available from third-party vendors.
By virtue of its organisation, its freedom from commercial interests, and its
clean separation between free and non-free software, Debian GNU/Linux is
a sound basis for derivative projects. Some of the more popular ones includederivative projects

Knoppix (a “live CD” which makes it possible to test Linux on a PC without
having to install it first), SkoleLinux (a version of Linux especially adapted to
the requirements of schools), or commercial distributions such as Xandros.
Limux, the desktop Linux variant used in the Munich city administration,
is also based on Debian GNU/Linux.

One of the most popular Debian derivatives is Ubuntu, which is offeredUbuntu

by the British company, Canonical Ltd., founded by the South African
entrepreneur Mark Shuttleworth. (“Ubuntu” is a word from the Zulu lan-
guage and roughly means “humanity towards others”.) The goal of Ubuntugoal

is to offer, based on Debian GNU/Linux, a current, capable, and easy-to-
understand Linux which is updated at regular intervals. This is facilitated,
for example, by Ubuntu being offered on only three computer architec-
tures as opposed to Debian’s ten, and by restricting itself to a subset of the
software offered by Debian GNU/Linux. Ubuntu is based on the unstable

branch of Debian GNU/Linux and uses, for the most part, the same tools
for software distribution, but Debian and Ubuntu software packages are
not necessarily mutually compatible.
Some Ubuntu developers are also active participants in the Debian project,Ubuntu vs. Debian

which ensures a certain degree of exchange. On the other hand, not all De-
bian developers are enthusiastic about the shortcuts Ubuntu takes every so
often in the interest of pragmatism, where Debian might look for more com-
prehensive solutions even if these require more effort. In addition, Ubuntu
does not appear to feel as indebted to the idea of free software as does De-
bian; while all of Debian’s infrastructure tools (such as the bug management
system) are available as free software, this is not always the case for those
of Ubuntu.
Ubuntu not only wants to offer an attractive desktop system, but also takeUbuntu vs. SUSE/Red Hat

on the more established systems like RHEL or SLES in the server space, by
offering stable distributions with a long life cycle and good support. It is
unclear how Canonical Ltd. intends to make money in the long run; for the
time being the project is mostly supported out of Mark Shuttleworth’s pri-
vate coffers, which are fairly well-filled since he sold his Internet certificate
authority, Thawte, to Verisign …

In addition to these distributions there are many more, such as Mageia or LinuxMore distributions

Mint as smaller “generally useful” distributions, various “live systems” for dif-
ferent uses from firewalls to gaming or multimedia platforms, or very compact
systems usable as routers, firewalls, or rescue systems.

Even though there is a vast number of distributions, most look fairly similar inCommonalities

daily life. This is due, on the one hand, to the fact that they use the same basic
programs—for example, the command line interpreter is nearly always bash. On

1.6 Bibliography 29

the other hand, there are standards that try to counter rank growth. The “Filesys-
tem Hierarchy Standard” (FHS) or “Linux Standard Base” (LSB) must be men-
tioned.

Exercises

C 1.7 [2] Some Linux hardware platforms have been enumerated above. For
which of those platforms are there actual Linux distributions available?
(Hint: http://www.distrowatch.org/)

Summary

• Linux is a Unix-like operating system.
• The first version of Linux was developed by Linus Torvalds and made avail-

able on the Internet as “free software”. Today, hundreds of developers all
over the world contribute to updating and extending the system.

• The GPL is the best-known “free software” license. It tries to ensure that
the recipients of software can modify and redistribute the package, and that
these “freedoms” are passed on to future recipients. GPL software may also
be sold.

• To the user, “open source” means approximately the same as “free soft-
ware”.

• There are other free licenses besides the GPL. Software may also be dis-
tributed by the copyright owner under several licenses at the same time.

• Linux is actually just the operating system kernel. We distinguish “stable”
and “development kernels”; with the former, the second part of the version
number is even and with the latter, odd. Stable kernels are meant for end
users, while development kernels are not necessarily functional, represent-
ing interim versions of Linux development.

• There are numerous Linux distributions bringing together a Linux kernel
and additional software, documentation and installation and administra-
tion tools.

Bibliography

DFSG “Debian Free Software Guidelines”. http://www.debian.org/social_contract

GPL-Urteil06 Landgericht Frankfurt am Main. “Urteil 2-6 0 224/06”, July 2006.
http://www.jbb.de/urteil_lg_frankfurt_gpl.pdf

GPL91 Free Software Foundation, Inc. “GNU General Public License, Version 2”,
June 1991. http://www.gnu.org/licenses/gpl.html

LR89 Don Libes, Sandy Ressler. Life with UNIX: A Guide for Everyone. Prentice-
Hall, 1989. ISBN 0-13-536657-7.

Rit84 Dennis M. Ritchie. “The Evolution of the Unix Time-sharing System”.
AT&T Bell Laboratories Technical Journal, October 1984. 63(6p2):1577–93.

http://cm.bell-labs.com/cm/cs/who/dmr/hist.html

RT74 Dennis M. Ritchie, Ken Thompson. “The Unix Time-sharing System”. Com-
munications of the ACM, July 1974. 17(7):365–73. The classical paper on Unix.

TD02 Linus Torvalds, David Diamond. Just For Fun: The Story of an Accidental
Revolutionary. HarperBusiness, 2002. ISBN 0-066-62073-2.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

2
Using the Linux System

Contents

2.1 Logging In and Out 32
2.2 Switching On and Off 34
2.3 The System Administrator. 34

Goals

• Logging on and off the system
• Understanding the difference between normal user accounts and the system

administrator’s account

Prerequisites

• Basic knowledge of using computers is helpful

grd1-bedienung.tex (be27bba8095b329b)

32 2 Using the Linux System

Figure 2.1: The login screens of some common Linux distributions

2.1 Logging In and Out

The Linux system distinguishes between different users. Consequently, it may
be impossible to start working right after the computer has been switched on.
First you have to tell the computer who you are—you need to “log in” (or “on”).
Based on the information you provide, the system can decide what you may do
(or may not do). Of course you need access rights to the system (an “account”) –access rights

the system administrator must have entered you as a valid user and assigned you
a user name (e. g., joe) and a password (e. g., secret). The password is supposed to
ensure that only you can use your account; you must keep it secret and should not
make it known to anybody else. Whoever knows your user name and password
can pretend to be you on the system, read (or delete) all your files, send electronic
mail in your name and generally get up to all kinds of shenanigans.

B Modern Linux distributions want to make it easy on you and allow you to
skip the login process on a computer that only you will be using anyway. If
you use such a system, you will not have to log in explicitly, but the computer
boots straight into your session. You should of course take advantage of this
only if you do not foresee that third parties have access to your computer;
refrain from this in particular on laptop computers or other mobile systems
that tend to get lost or stolen.

Logging in in a graphical enviroment These days it is common for Linux worksta-
tions to present a graphical environment (as they should), and the login process
takes place in a graphical environment as well. Your computer shows a dialog

2.1 Logging In and Out 33

that lets you enter your user name and password (Figure 2.1 shows some repre-
sentative examples.)

B Don’t wonder if you only see asterisks when you’re entering your password.
This does not mean that your computer misunderstands your input, but that
it wants to make life more difficult for people who are watching you over
your shoulder in order to find out your password.

After you have logged in, the computer starts a graphical session for you, in
which you have convenient access to your application programs by means of
menus and icons (small pictures on the “desktop” background). Most graphical
environments for Linux support “session management” in order to restore your
session the way it was when you finished it the time before (as far as possible,
anyway). That way you do not need to remember which programs you were
running, where their windows were placed on the screen, and which files you
had been using.

Logging out in a graphical environment If you are done with your work or want
to free the computer for another user, you need to log out. This is also important
because the session manager needs to save your current session for the next time.
How logging out works in detail depends on your graphical environment, but as
a rule there is a menu item somewhere that does everything for you. If in doubt,
consult the documentation or ask your system administrator (or knowledgeable
buddy).

Logging in on a text console Unlike workstations, server systems often support
only a text console or are installed in draughty, noisy machine halls, where you
don’t want to spend more time than absolutely necessary. So you will prefer to log
into such a computer via the network. In both cases you will not see a graphical
login screen, but the computer asks you for your user name and password directly.
For example, you might simply see something like

computer login: _

(if we stipulate that the computer in question is called “computer”). Here you must
enter your user name and finish it off with the ↩ key. The computer will con-
tinue by asking you for your password:

Password: _

Enter your password here. (This time you won’t even see asterisks—simply noth-
ing at all.) If both the user name and password were correct, the system will ac-
cept your login. It starts the command line interpreter (the shell), and you can
enter commands and invoke programs. After logging in you will be placed in
your “home directory”, where you will be able to find your files.

B If you use the “secure shell”, for example, to log in to another machine over
the network, the user name question is usually skipped, since unless you
specify otherwise the system will assume that your user name on the re-
mote computer will be the same as on the computer you are initiating the
session from. The details are beyond the scope of this manual; the secure
shell is discussed in detail in the Linup Front training manual Linux Admin-
istration II.

Logging out on a text console On the text console, you can log out using, for
example, the logout command:

$ logout

34 2 Using the Linux System

Once you have logged out, on a text console the system once more displays the
start message and a login prompt for the next user. With a secure shell session,
you simply get another command prompt from your local computer.

Exercises

C 2.1 [!1] Try logging in to the system. After that, log out again. (You will find
a user name and password in your system documentation, or—in a training
centre—your instructor will tell you what to use.)

C 2.2 [!2] What happens if you give (a) a non-existing user name, (b) a wrong
password? Do you notice anything unusual? What reasons could there be
for the system to behave as it does?

2.2 Switching On and Off

A Linux computer can usually be switched on by whoever is able to reach the
switch (local policy may vary). On the other hand, you should not switch off a
Linux machine on a whim—there might be data left in main memory that really
belong on disk and will be lost, or—which would be worse—the data on the hard
disk could get completely addled. Besides, other users might be logged in to the
machine via the network, be surprised by the sudden shutdown, and lose valu-
able work. For this reason, important computers are usually only “shut down”
by the system administrator. Single-user workstations, though, can usually be
shut down cleanly via the graphical desktop; depending on the system’s settings
normal user privileges may suffice, or you may have to enter the administrator’s
password.

Exercises

C 2.3 [2] Check whether you can shut down your system cleanly as a normal
(non-administrator) user, and if so, try it.

2.3 The System Administrator

As a normal user, your privileges on the system are limited. For example, you may
not write to certain files (most files, actually—mostly those that do not belong to
you) and not even read some files (e. g., the file containing the encrypted pass-
words of all users). However, there is a user account for system administration
which is not subject to these restrictions—the user “root” may read and write all
files, and do various other things normal users aren’t entitled to. Having admin-
istrator (or “root”) rights is a privilege as well as a danger—therefore you should
only log on to the system as root if you actually want to exercise these rights, not
just to read your mail or surf the Internet.

A Simply pretend you are Spider-Man: “With great power comes great re-
sponsibility”. Even Spider-Man wears his Spandex suit only if he must …

In particular, you should avoid logging in as root via the graphical user inter-
face, since all of the GUI will run with root’s privileges. This is a possible security
risk—GUIs like KDE contain lots of code which is not vetted as thoroughly forGUI as root: risky

security holes as the textual shell (which is, by comparison, relatively compact).
Normally you can use the command “/bin/su -” to assume root’s identity (and thusAssuming root’s identity

root’s privileges). su asks for root’s password and then starts a new shell, which
lets you work as if you had logged in as root directly. You can leave the shell again
using the exit command.

2.3 The System Administrator 35

Figure 2.2: Running programs as a different user in KDE

E You should get used to invoking su via its full path name—“/bin/su -”. Oth-
erwise, a user could trick you by calling you to her computer, getting you to
enter “su” in one of her windows and to input the root password. What you
don’t realize at that moment is that the clever user wrote her own “Trojan”
su command—which doesn’t do anything except write the password to a
file, output the “wrong password” error message and remove itself. When
you try again (gritting your teeth) you get the correct su—and your user
possesses the coveted administrator’s privileges …

You can usually tell that you actually have administrator privileges by look-
ing at the shell prompt—for root, it customarily ends with the “#” character. (For root’s shell prompt

normal users, the shell prompt usually ends in “$” or “>”).

In Ubuntu you can’t even log in as root by default. Instead, the system al-
lows the first user created during installation to execute commands with
administrator privileges by prefixing them with the sudo command. With

$ sudo chown joe file.txt

for example, he could sign over the file.txt file to user joe – an operation
that is restricted to the system administrator.

Recent versions of Debian GNU/Linux offer a similar arrangement to
Ubuntu.

B Incidentally, with the KDE GUI, it is very easy to start arbitrary programs root and KDE

as root: Select “Run command” from the “KDE” menu (usually the entry
at the very left of the command panel—the “Start” menu on Windows sys-
tems), and enter a command in the dialog window. Before executing the
command, click on the “Settings” button; an area with additional settings
appears, where you can check “As different user” (root is helpfully set up as
the default value). You just have to enter the root password at the bottom
(Figure 2.2).

36 2 Using the Linux System

B Alternatively, you can put “kdesu” in front of the actual command in the dia-kdesu

log window (or indeed any shell command line in a KDE session). This will
ask you for root’s password before starting the command with administrator
privileges.

Exercises

C 2.4 [!1] Use the su command to gain administrator privileges, and change
back to your normal account.

C 2.5 [5] (For programmers.) Write a convincing “Trojan” su program. Use it
to try and fool your system administrator.

C 2.6 [2] Try to run the id program as root in a terminal session under KDE, us-
ing “Run command …”. Check the appropriate box in the extended settings
to do so.

Commands in this Chapter

exit Quits a shell bash(1) 34
kdesu Starts a program as a different user on KDE KDE: help:/kdesu 35
logout Terminates a shell session bash(1) 33
su Starts a shell using a different user’s identity su(1) 34
sudo Allows normal users to execute certain commands with administrator

privileges sudo(8) 35

Summary

• Before using a Linux system, you have to log in giving your user name and
password. After using the system, you have to log out again.

• Normal access rights do not apply to user root, who may do (essentially)
everything. These privileges should be used as sparingly as possible.

• You should not log in to the GUI as root but use (e. g.) su to assume admin-
istrator privileges if necessary.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

3
Who’s Afraid Of The Big Bad
Shell?

Contents

3.1 Why? . 38
3.1.1 What Is The Shell? 38

3.2 Commands . 40
3.2.1 Why Commands?. 40
3.2.2 Command Structure. 40
3.2.3 Command Types 41
3.2.4 Even More Rules 42

Goals

• Appreciating the advantages of a command-line user interface
• Knowing about common Linux shells
• Working with Bourne-Again Shell (Bash) commands
• Understanding the structure of Linux commands

Prerequisites

• Basic knowledge of using computers is helpful

grd1-shell1.tex (be27bba8095b329b)

38 3 Who’s Afraid Of The Big Bad Shell?

3.1 Why?

More so than other modern operating systems, Linux (like Unix) is based on the
idea of entering textual commands via the keyboard. This may sound antediluvial
to some, especially if one is used to systems like Windows, who have been trying
for 15 years or so to brainwash their audience into thinking that graphical user
interfaces are the be-all and end-all. For many people who come to Linux from
Windows, the comparative prominence of the command line interface is at first
a “culture shock” like that suffered by a 21-century person if they suddenly got
transported to King Arthur’s court – no cellular coverage, bad table manners, and
dreadful dentists!

However, things aren’t as bad as all that. On the one hand, nowadays there
are graphical interfaces even for Linux, which are equal to what Windows or Ma-
cOS X have to offer, or in some respects even surpass these as far as convenience
and power are concerned. On the other hand, graphical interfaces and the text-
oriented command line are not mutually exclusive, but in fact complementary
(according to the philosophy “the right tool for every job”).

At the end of the day this only means that you as a budding Linux user will
do well to also get used to the text-oriented user interface, known as the “shell”.
Of course nobody wants to prevent you from using a graphical desktop for every-
thing you care to do. The shell, however, is a convenient way to perform many
extremely powerful operations that are rather difficult to express graphically. To
reject the shell is like rejecting all gears except first in your car1. Sure, you’ll get
there eventually even in first gear, but only comparatively slowly and with a hor-
rible amount of noise. So why not learn how to really floor it with Linux? And if
you watch closely, we’ll be able to show you another trick or two.

3.1.1 What Is The Shell?

Users cannot communicate directly with the operating system kernel. This is only
possible through programs accessing it via “system calls”. However, you must be
able to start such programs in some way. This is the task of the shell, a special user
program that (usually) reads commands from the keyboard and interprets them
(for example) as commands to be executed. Accordingly, the shell serves as an
“interface” to the computer that encloses the actual operating system like a shell
(as in “nutshell”—hence the name) and hides it from view. Of course the shell is
only one program among many that access the operating system.

B Even today’s graphical “desktops” like KDE can be considered “shells”. In-
stead of reading text commands via the keyboard, they read graphical com-
mands via the mouse—but as the text commands follow a certain “gram-
mar”, the mouse commands do just the same. For example, you select ob-
jects by clicking on them and then determine what to do with them: open-
ing, copying, deleting, …

Even the very first Unix—end-1960s vintage—had a shell. The oldest shell to
be found outside museums today was developed in the mid-1970s for “Unix ver-
sion 7” by Stephen L. Bourne. This so-called “Bourne shell” contains most basicBourne shell

functions and was in very wide-spread use, but is very rarely seen in its original
form today. Other classic Unix shells include the C shell, created at the UniversityC shell

of California in Berkeley and (very vaguely) based on the C programming lan-
guage, and the largely Bourne-shell compatible, but functionally enhanced, KornKorn shell

shell (by David Korn, also at AT&T).
Standard on Linux systems is the Bourne-again shell, bash for short. It wasBourne-again shell

developed under the auspices of the Free Software Foundation’s GNU project by
Brian Fox and Chet Ramey and unifies many functions of the Korn and C shells.

1This metaphor is for Europeans and other people who can manage a stick shift; our American
readers of course all use those wimpy automatic transmissions. It’s like they were all running Win-
dows.

3.1 Why? 39

B Besides the mentioned shells, there are many more. On Unix, a shell is sim- shells: normal programs

ply an application program like all others, and you need no special privi-
leges to write one—you simply need to adhere to the “rules of the game”
that govern how a shell communicates with other programs.

Shells may be invoked interactively to read user commands (normally on a “ter-
minal” of some sort). Most shells can also read commands from files containing
pre-cooked command sequences. Such files are called “shell scripts”. shell scripts

A shell performs the following steps:

1. Read a command from the terminal (or the file)

2. Validate the command

3. Run the command directly or start the corresponding program

4. Output the result to the screen (or elsewhere)

5. Continue at step 1.

In addition to this standard command loop, a shell generally contains further fea-
tures such as a programming language. This includes complex command struc- programming language

tures involving loops, conditions, and variables (usually in shell scripts, less fre-
quently in interactive use). A sophisticated method for recycling recently used
commands also makes a user’s life easier.

Shell sessions can generally be terminated using the exit command. This also Terminating shell sessions

applies to the shell that you obtained immediately after logging in.
Although, as we mentioned, there are several different shells, we shall concen-

trate here on bash as the standard shell on most Linux distributions. The LPI exams
also refer to bash exclusively.

B If there are several shells available on the system (the usual case), you can Changing shell

use the following commands to switch between them:

sh for the classic Bourne shell (if available—on most Linux systems, sh refers
to the Bourne-again shell).

bash for the Bourne-again shell (bash).
ksh for the Korn shell.
csh for the C shell.
tcsh for the “Tenex C shell”, an extended and improved version of the nor-

mal C shell. On many Linux systems, the csh command really refers to
tcsh.

B In case you cannot remember which shell you are currently running, the
“echo $0” command should work in any shell and output the current shell’s
name.

Exercises

C 3.1 [2] How many different shells are installed on your system? Which ones?
(Hint: Check the file /etc/shells.)

C 3.2 [2] Log off and on again and check the output of the “echo $0” command
in the login shell. Start a new shell using the “bash” command and enter
“echo $0” again. Compare the output of the two commands. Do you notice
anything unusual?

40 3 Who’s Afraid Of The Big Bad Shell?

3.2 Commands

3.2.1 Why Commands?

A computer’s operation, no matter which operating system it is running, can be
loosely described in three steps:

1. The computer waits for user input

2. The user selects a command and enters it via the keyboard or mouse

3. The computer executes the command

In a Linux system, the shell displays a “prompt”, meaning that commands can be
entered. This prompt usually consists of a user and host (computer) name, the
current directory, and a final character:

joe@red:/home > _

In this example, user joe works on computer red in the /home directory.

3.2.2 Command Structure

A command is essentially a sequence of characters which is ends with a press
of the ↩ key and is subsequently evaluated by the shell. Many commands are
vaguely inspired by the English language and form part of a dedicated “command
language”. Commands in this language must follow certain rules, a “syntax”, forsyntax

the shell to be able to interpret them.
To interpret a command line, the shell first tries to divide the line into words.words

Just like in real life, words are separated by spaces. The first word on a line is usu-First word: command

ally the actual command. All other words on the line are parameters that explainparameters

what is wanted in more detail.

A DOS and Windows users may be tripped up here by the fact that the shell
distinguishes between uppercase and lowercase letters. Linux commands
are usually spelled in lowercase letters only (exceptions prove the rule) and
not understood otherwise. See also Section 3.2.4.

B When dividing a command into words, one space character is as good as
many – the difference does not matter to the shell. In fact, the shell does
not even insist on spaces; tabulator characters are also allowed, which is
however mostly of importance when reading commands from files, since
the shell will not let you enter tab character directly (not without jumping
through hoops, anyway).

B You may even use the line terminator (↩) to distribute a long command
across several input lines, but you must put a “Token\” immediately in front
of it so the shell will not consider your command finished already.

A command’s parameters can be roughly divided into two types:

• Parameters starting with a dash (“-”) are called options. These are usually,options

er, optional—the details depend on the command in question. Figuratively
spoken they are “switches” that allow certain aspects of the command to
be switched on or off. If you want to pass several options to a command,
they can (often) be accumulated behind a single dash, i. e., the options se-
quence “-a -l -F” corresponds to “-alF”. Many programs have more options
than can be conveniently mapped to single characters, or support “long op-
tions” for readability (frequently in addition to equivalent single-character
options). Long options most often start with two dashes and cannot be ac-
cumulated: “foo --bar --baz”.

3.2 Commands 41

• Parameters with no leading dash are called arguments. These are often the arguments

names of files that the command should process.

The general command structure can be displayed as follows: command structure

• Command—“What to do?”

• Options—“How to do it?”

• Arguments—“What to do it with?”

Usually the options follow the command and precede the arguments. However,
not all commands insist on this—with some, arguments and options can be mixed
arbitrarily, and they behave as if all options came immediately after the command.
With others, options are taken into account only when they are encountered while
the command line is processed in sequence.

A The command structure of current Unix systems (including Linux) has
grown organically over a period of almost 40 years and thus exhibits vari-
ous inconsistencies and small surprises. We too believe that there ought to
be a thorough clean-up, but 30 years’ worth of shell scripts are difficult to
ignore completely … Therefore be prepared to get used to little weirdnesses
every so often.

3.2.3 Command Types

In shells, there are essentially two kinds of commands:

Internal commands These commands are made available by the shell itself. The
Bourne-again shell contains approximately 30 such commands, which can
be executed very quickly. Some commands (such as exit or cd) alter the state
of the shell itself and thus cannot be provided externally.

External commands The shell does not execute these commands by itself but
launches executable files, which within the file system are usually found
in directories like /bin or /usr/bin. As a user, you can provide your own pro-
grams, which the shell will execute like all other external commands.

You can use the type command to find out the type of a command. If you pass External or internal?

a command name as the argument, it outputs the type of command or the corre-
sponding file name, such as

$ type echo

echo is a shell builtin

$ type date

date is /bin/date

(echo is an interesting command which simply outputs its parameters:

$ echo Thou hast it now, king, Cawdor, Glamis, all

Thou hast it now, king, Cawdor, Glamis, all

date displays the current date and time, possibly adjusted to the current time zone
and language setup:

$ date

Mon May 7 15:32:03 CEST 2012

You will find out more about echo and date in Chapter 8.)
You can obtain help for internal Bash commands via the help command: help

42 3 Who’s Afraid Of The Big Bad Shell?

$ help type

type: type [-afptP] name [name ...]

For each NAME, indicate how it would be interpreted if used as a

command name.

If the -t option is used, `type' outputs a single word which is one of

`alias', `keyword', `function', `builtin', `file' or `', if NAME is an

�����

Exercises

C 3.3 [2] With bash, which of the following programs are provided externally
and which are implemented within the shell itself: alias, echo, rm, test?

3.2.4 Even More Rules

As mentioned above, the shell distinguishes between uppercase and lowercase
letters when commands are input. This does not apply to commands only, but
consequentially to options and parameters (usually file names) as well.

Furthermore, you should be aware that the shell treats certain characters in the
input specially. Most importantly, the already-mentioned space character is usedspace character

to separate words on teh command line. Other characters with a special meaning
include

$&;(){}[]*?!<>"'

If you want to use any of these characters without the shell interpreting according
to its the special meaning, you need to “escape” it. You can use the backslash “\”“Escaping” characters

to escape a single special character or else single or double quotes ('…', "…") to
excape several special characters. For example:

$ touch 'New File'

Due to the quotes this command applies to a single file called New File. Without
quotes, two files called New and File would have been involved.

B We can’t explain all the other special characters here. Most of them will
show up elsewhere in this manual – or else check the Bash documentation.

Commands in this Chapter

bash The “Bourne-Again-Shell”, an interactive command interpreter
bash(1) 38, 39

csh The “C-Shell”, an interactive command interpreter csh(1) 39
date Displays the date and time date(1) 41
echo Writes all its parameters to standard output, separated by spaces

bash(1), echo(1) 41
help Displays on-line help for bash commands bash(1) 41
ksh The ”‘Korn shell”’, an interactive command interpreter ksh(1) 39
sh The “Bourne shell”, an interactive command interpreter sh(1) 39
tcsh The “Tenex C shell”, an interactive command interpreter tcsh(1) 39
type Determines the type of command (internal, external, alias) bash(1) 41

3.2 Commands 43

Summary

• The shell reads user commands and executes them.
• Most shells have programming language features and support shell scripts

containing pre-cooked command sequences.
• Commands may have options and arguments. Options determine how the

command operates, and arguments determine what it operates on.
• Shells differentiate between internal commands, which are implemented in

the shell itself, and external commands, which correspond to executable files
that are started in separate processes.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

4
Getting Help

Contents

4.1 Self-Help . 46
4.2 The help Command and the --help Option 46
4.3 The On-Line Manual 46

4.3.1 Overview . 46
4.3.2 Structure . 47
4.3.3 Chapters . 48
4.3.4 Displaying Manual Pages 48

4.4 Info Pages . 49
4.5 HOWTOs. 50
4.6 Further Information Sources 50

Goals

• Being able to handle manual and info pages
• Knowing about and finding HOWTOs
• Being familiar with the most important other information sources

Prerequisites

• Linux Overview
• Basic command-line Linux usage (e. g., from the previous chapters)

grd1-hilfe.tex (be27bba8095b329b)

46 4 Getting Help

4.1 Self-Help

Linux is a powerful and intricate system, and powerful and intricate systems are,
as a rule, complex. Documentation is an important tool to manage this complex-
ity, and many (unfortunately not all) aspects of Linux are documented very exten-
sively. This chapter describes some methods to access this documentation.

B “Help” on Linux in many cases means “self-help”. The culture of free soft-
ware implies not unnecessarily imposing on the time and goodwill of other
people who are spending their free time in the community by asking things
that are obviously explained in the first few paragraphs of the manual. As
a Linux user, you do well to have at least an overview of the available doc-
umentation and the ways of obtaining help in cases of emergency. If you
do your homework, you will usually experience that people will help you
out of your predicament, but any tolerance towards lazy individuals who
expect others to tie themselves in knots on their behalf, on their own time,
is not necessarily very pronounced.

B If you would like to have somebody listen around the clock, seven days a
week, to your not-so-well-researched questions and problems, you will have
to take advantage of one of the numerous “commercial” support offerings.
These are available for all common distributions and are offered either by
the distribution vendor themselves or else by third parties. Compare the
different service vendors and pick one whose service level agreements and
pricing suit you.

4.2 The help Command and the --help Option

In bash, internal commands are described in more detail by the help command,Internal bash commands

giving the command name in question as an argument:

$ help exit

exit: exit [n]

Exit the shell with a status of N.

If N is omitted, the exit status

is that of the last command executed.

$ _

B More detailed explanations are available from the shell’s manual page and
info documentation. These information sources will be covered later in this
chapter.

Many external commands (programs) support a --help option instead. Most
commands display a brief listing of their parameters and syntax.

B Not every command reacts to --help; frequently the option is called -h or -?,
or help will be output if you specify any invalid option or otherwise illegal
command line. Unfortunately there is no universal convention.

4.3 The On-Line Manual

4.3.1 Overview

Nearly every command-line program comes with a “manual page” (or “man
page”), as do many configuration files, system calls etc. These texts are generally
installed with the software, and can be perused with the “man ⟨name⟩” command.Command man

4.3 The On-Line Manual 47

Table 4.1: Manual page sections

Section Content
NAME Command name and brief description

SYNOPSIS Description of the command syntax
DESCRIPTION Verbose description of the command’s effects

OPTIONS Available options
ARGUMENTS Available Arguments

FILES Auxiliary files
EXAMPLES Sample command lines
SEE ALSO Cross-references to related topics

DIAGNOSTICS Error and warning messages
COPYRIGHT Authors of the command

BUGS Known limitations of the command

Here, ⟨name⟩ is the command or file name that you would like explained. “man
bash”, for example, produces a list of the aforementioned internal shell commands.

However, the manual pages have some disadvantages: Many of them are only
available in English; there are sets of translations for different languages which are
often incomplete. Besides, the explanations are frequently very complex. Every
single word can be important, which does not make the documentation accessi-
ble to beginners. In addition, especially with longer documents the structure can
be obscure. Even so, the value of this documentation cannot be underestimated.
Instead of deluging the user with a large amount of paper, the on-line manual is
always available with the system.

B Many Linux distributions pursue the philosophy that there should be a
manual page for every command that can be invoked on the command line.
This does not apply to the same extent to programs belonging to the graph-
ical desktop environments KDE and GNOME, many of which not only do
not come with a manual page at all, but which are also very badly docu-
mented even inside the graphical environment itself. The fact that many of
these programs have been contributed by volunteers is only a weak excuse.

4.3.2 Structure

The structure of the man pages loosely follows the outline given in Table 4.1, even Man page outline

though not every manual page contains every section mentioned there. In partic-
ular, the EXAMPLES are frequently given short shrift.

B The BUGS heading is often misunderstood: Read bugs within the imple-
mentation get fixed, of course; what is documented here are usually restric-
tions which follow from the approach the command takes, which are not able
to be lifted with reasonable effort, and which you as a user ought to know
about. For example, the documentation for the grep command points out
that various constructs in the regular expression to be located may lead to
the grep process using very much memory. This is a consequence of the way
grep implements searching and not a trivial, easily fixed error.

Man pages are written in a special input format which can be processed for text
display or printing by a program called groff. Source code for the manual pages is
stored in the /usr/share/man directory in subdirectories called man𝑛, where 𝑛 is one
of the chapter numbers from Table 4.2.

B You can integrate man pages from additional directories by setting the MAN-

PATH environment variable, which contains the directories which will be
searched by man, in order. The manpath command gives hints for setting up
MANPATH.

48 4 Getting Help

Table 4.2: Manual Page Topics

No. Topic
1 User commands
2 System calls
3 C language library functions
4 Device files and drivers
5 Configuration files and file formats
6 Games
7 Miscellaneous (e. g. groff macros, ASCII tables, …)
8 Administrator commands
9 Kernel functions
n »New« commands

4.3.3 Chapters

Every manual page belongs to a “chapter” of the conceptual “manual” (Table 4.2).Chapters

Chapters 1, 5 and 8 are most important. You can give a chapter number on the man

command line to narrow the search. For example, “man 1 crontab” displays the
man page for the crontab command, while “man 5 crontab” explains the format of
crontab files. When referring to man pages, it is customary to append the chap-
ter number in parentheses; we differentiate accordingly between crontab(1), the
crontab command manual, and crontab(5), the description of the file format.

With the -a option, man displays all man pages matching the given name; with-man -a

out this option, only the first page found (generally from chapter 1) will be dis-
played.

4.3.4 Displaying Manual Pages

The program actually used to display man pages on a text terminal is usually
less, which will be discussed in more detail later on. At this stage it is important
to know that you can use the cursor keys ↑ and ↓ to navigate within a man
page. You can search for keywords inside the text by pressing / —after entering
the word and pressing the return key, the cursor jumps to the next occurrence of
the word (if it does occur at all). Once you are happy, you can quit the display
using q to return to the shell.

B Using the KDE web browser, Konqueror, it is convenient to obtain nicely for-
matted man pages. Simply enter the URL “man:/⟨name⟩” (or even “#⟨name⟩”)

Figure 4.1: A manual page in a text terminal (left) and in Konqueror (right)

4.4 Info Pages 49

in the browser’s address line. This also works on the KDE command line
(Figure 2.2).

Before rummaging aimlessly through innumerable man pages, it is often sen-
sible to try to access general information about a topic via apropos. This command Keyword search

works just like “man -k”; both search the “NAME” sections of all man pages for
a keyword given on the command line. The output is a list of all manual pages
containing the keyword in their name or description.

A related command is whatis. This also searches all manual pages, but for a whatis

command (file, …) name rather than a keyword—in other words, the part of the
“NAME” section to the left of the dash. This displays a brief description of the
desired command, system call, etc.; in particular the second part of the “NAME”
section of the manual page(s) in question. whatis is equivalent to “man -f”.

Exercises

C 4.1 [!1] View the manual page for the ls command. Use the text-based man

command and—if available—the Konqueror browser.

C 4.2 [2] Which manual pages on your system deal (at least according to their
“NAME” sections) with processes?

C 4.3 [5] (Advanced.) Use a text editor to write a manual page for a hypotheti-
cal command. Read the man(7) man page beforehand. Check the appearance
of the man page on the screen (using “groff -Tascii -man ⟨file⟩ | less”) and
as printed output (using something like “groff -Tps -man ⟨file⟩ | gv -”).

4.4 Info Pages

For some commands—often more complicated ones—there are so-called “info
pages” instead of (or in addition to) the more usual man pages. These are usu-
ally more extensive and based on the principles of hypertext, similar to the World hypertext

Wide Web.

B The idea of info pages originated with the GNU project; they are therefore
most frequently found with software published by the FSF or otherwise be-
longing to the GNU project. Originally there was supposed to be only info
documentation for the “GNU system”; however, since GNU also takes on
board lots of software not created under the auspices of the FSF, and GNU
tools are being used on systems pursuing a more conservative approach,
the FSF has relented in many cases.

Analogously to man pages, info pages are displayed using the “info ⟨command⟩”
command (the package containing the info program may have to be installed
explicitly). Furthermore, info pages can be viewed using the emacs editor or dis-
played in the KDE web browser, Konqueror, via URLs like “info:/⟨command⟩”.

B One advantage of info pages is that, like man pages, they are written in
a source format which can conveniently be processed either for on-screen
display or for printing manuals using PostScript or PDF. Instead of groff,
the TEX typesetting program is used to prepare output for printing.

Exercises

C 4.4 [!1] Look at the info page for the ls program. Try the text-based info

browser and, if available, the Konqueror browser.

C 4.5 [2] Info files use a crude (?) form of hypertext, similar to HTML files on
the World Wide Web. Why aren’t info files written in HTML to begin with?

50 4 Getting Help

4.5 HOWTOs

Both manual and info pages share the problem that the user must basically know
the name of the program to use. Even searching with apropos is frequently nothing
but a game of chance. Besides, not every problem can be solved using one sin-
gle command. Accordingly, there is “problem-oriented” rather than “command-Problem-oriented

documentation oriented” documentation is often called for. The HOWTOs are designed to help
with this.

HOWTOs are more extensive documents that do not restrict themselves to sin-
gle commands in isolation, but try to explain complete approaches to solving
problems. For example, there is a “DSL HOWTO” detailing ways to connect a
Linux system to the Internet via DSL, or an “Astronomy HOWTO” discussing as-
tronomy software for Linux. Many HOWTOs are available in languages other
than English, even though the translations often lag behind the English-language
originals.

Most Linux distributions furnish the HOWTOs (or significant subsets) as pack-HOWTO packages

ages to be installed locally. They end up in a distribution-specific directory—/usr/

share/doc/howto for SUSE distributions, /usr/share/doc/HOWTO for Debian GNU/Linux—
, typically either als plain text or else HTML files. Current versions of all HOWTOsHOWTOs on the Web

and other formats such as PostScript or PDF can be found on the Web on the site
of the “Linux Documentation Project” (http://www.tldp.org) which also offers other
Linux documentation.

4.6 Further Information Sources

You will find additional documentation and example files for (nearly) every in-Additional information

stalled software package under /usr/share/doc or /usr/share/doc/packages (depend-
ing on your distribution). Many GUI applications (such as those from the KDE or
GNOME packages) offer “help” menus. Besides, many distributions offer special-
ized “help centers” that make it convenient to access much of the documentation
on the system.

Independently of the local system, there is a lot of documentation available on
the Internet, among other places on the WWW and in USENET archives.WWW

USENET Some of the more interesting web sites for Linux include:

http://www.tldp.org/ The “Linux Documentation Project”, which is in charge of
man pages and HOWTOs (among other things).

http://www.linux.org/ A general “portal” for Linux enthusiasts.

http://www.linuxwiki.de/ A “free-form text information database for everything
pertaining to Linux” (in German).

http://lwn.net/ Linux Weekly News—probably the best web site for Linux news of
all sorts. Besides a daily overview of the newest developments, products,
security holes, Linux advocacy in the press, etc., on Thursdays there is an
extensive on-line magazine with well-researched background reports about
the preceding week’s events. The daily news are freely available, while the
weekly issues must be paid for (various pricing levels starting at US-$ 5 per
month). One week after their first appearance, the weekly issues are made
available for free as well.

http://freecode.com/ This site publishes announcements of new (predominantly
free) software packages, which are often available for Linux. In addition to
this there is a database allowing queries for interesting projects or software
packages.

http://www.linux-knowledge-portal.de/ A site collecting “headlines” from other in-
teresting Linux sites, including LWN and Freshmeat.

4.6 Further Information Sources 51

If there is nothing to be found on the Web or in Usenet archives, it is possible to
ask questions in mailing lists or Usenet groups. In this case you should note that
many users of these forums consider it very bad form to ask questions answered
already in the documentation or in a “FAQ” (frequently answered questions) re-
source. Try to prepare a detailed description of your problem, giving relevant
excerpts of log files, since a complex problem like yours is difficult to diagnose at
a distance (and you will surely be able to solve non-complex problems by your-
self).

B A news archive is accessible on http://groups.google.com/ (formerly De-
jaNews)

B Interesting news groups for Linux can be found in the English-language
comp.os.linux.* or the German-language de.comp.os.unix.linux.* hierarchies.
Many Unix groups are appropriate for Linux topics; a question about the
shell should be asked in a group dedicated to shell programming rather
than a Linux group, since shells are usually not specific to Linux.

B Linux-oriented mailing lists can be found, for example, at majordomo@vger.

kernel.org. You should send an e-mail message including “subscribe LIST” to
this address in order to subscribe to a list called LIST. A commented list of
all available mailing lists on the system may be found at http://vger.kernel.
org/vger-lists.html.

B An established strategy for dealing with seemingly inexplicable problems is
to search for the error message in question using Google (or another search search engine

engine you trust). If you do not obtain a helpful result outright, leave out
those parts of your query that depend on your specific situation (such as
domain names that only exist on your system). The advantage is that Google
indexes not just the common web pages, but also many mailing list archives,
and chances are that you will encounter a dialogue where somebody else
had a problem very like yours.

Incidentally, the great advantage of open-source software is not only the large
amount of documentation, but also the fact that most documentation is restricted Free documentation

as little as the software itself. This facilitates collaboration between software
developers and documentation authors, and the translation of documentation
into different languages is easier. In fact, there is ample opportunity for non-
programmers to help with free software projects, e. g., by writing good documen-
tation. The free-software scene should try to give the same respect to documen-
tation authors that it does to programmers—a paradigm shift that has begun but
is by no means finished yet.

Commands in this Chapter

apropos Shows all manual pages whose NAME sections contain a given keyword
apropos(1) 49

groff Sophisticated typesetting program groff(1) 47, 49
help Displays on-line help for bash commands bash(1) 46
info Displays GNU Info pages on a character-based terminal info(1) 49
less Displays texts (such as manual pages) by page less(1) 48
man Displays system manual pages man(1) 46
manpath Determines the search path for system manual pages manpath(1) 47
whatis Locates manual pages with a given keyword in its description

whatis(1) 49

52 4 Getting Help

Summary

• “help ⟨command⟩” explains internal bash commands. Many external com-
mands support a --help option.

• Most programs come with manual pages that can be perused using man.
apropos searches all manual pages for keywords, whatis looks for manual
page names.

• For some programs, info pages are an alternative to manual pages.
• HOWTOs form a problem-oriented kind of documentation.
• There is a multitude of interesting Linux resources on the World Wide Web

and USENET.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

5
The vi Editor

Contents

5.1 Editors. 54
5.2 The Standard—vi . 54

5.2.1 Overview . 54
5.2.2 Basic Functions 55
5.2.3 Extended Commands 58

5.3 Other Editors . 60

Goals

• Becoming familiar with the vi editor
• Being able to create and change text files

Prerequisites

• Basic shell operation (qv. Chapter 2)

grd1-editoren-opt.tex[!emacs] (be27bba8095b329b)

54 5 The vi Editor

5.1 Editors

Most operating systems offer tools to create and change text documents. Such
programs are commonly called “editors” (from the Latin “edire”, “to work on”).

Generally, text editors offer functions considerably exceeding simple text input
and character-based editing. Good editors allow users to remove, copy or insert
whole words or lines. For long files, it is helpful to be able to search for partic-
ular sequences of characters. By extension, “search and replace” commands can
make tedious tasks like “replace every x by a u” considerably easier. Many editors
contain even more powerful features for text processing.

In contrast to widespread “word processors” such as OpenOffice.org Writer orDifference to word processors

Microsoft Word, text editors usually do not offer markup elements such as various
fonts (Times, Helvetica, Courier, …), type attributes (boldface, italic, underlined,
…), typographical features (justified type, …) and so on—they are predominantly
intended for the creation and editing of pure text files, where these things would
really be a nuisance.

B Of course there is nothing wrong with using a text editor to prepare input
files for typesetting systems such as groff or LATEX that offer all these typo-
graphic features. However, chances are you won’t see much of these in your
original input—which can really be an advantage: After all, much of the ty-
pography serves as a distraction when writing, and authors are tempted to
fiddle with a document’s appearance while inputting text, rather than con-
centrating on its content.

B Most text editors today support syntax highlighting, that is, identifying cer-Syntax highlighting

tain elements of a program text (comments, variable names, reserved words,
strings) by colours or special fonts. This does look spiffy, even though the
question of whether it really helps with programming has not yet been an-
swered through suitable psychological studies.

In the rest of the chapter we shall introduce the possibly most important Linux
editor, vi. However, we shall restrict ourselves to the most basic functionality; it
would be easy to conduct multi-day training courses for each of the two. As with
the shells, the choice of text editor is up to a user’s own personal preference.

Exercises

C 5.1 [2] Which text editors are installed on your system? How can you find
out?

5.2 The Standard—vi

5.2.1 Overview

The only text editor that is probably part of every Linux system is called vi (from
“visual”, not Roman 6—usually pronounced “vee-i”). For practical reasons, this
usually doesn’t mean the original vi (which was part of BSD and is decidedly longvi: today a clone

in the tooth today), but more modern derivatives such as vim (from “vi improved”)
or elvis; these editors are, however, sufficiently close to the original vi, to be all
lumped together.

vi, originally developed by Bill Joy for BSD, was one of the first “screen-
oriented” editors in widespread use for Unix. This means that it allowed users to
use the whole screen for editing rather than let them edit just one line at a time.
This is today considered a triviality, but used to be an innovation—which is not to
say that earlier programmers were too stupid to figure it out, but that text termi-
nals allowing free access to arbitrary points on the screen (a mandatory feature for
programs like vi) had only just become affordable. Out of consideration for older

5.2 The Standard—vi 55

systems using teletypes or “glass ttys” (terminals that could only add material at
the bottom of the screen), vi also supports a line-oriented editor under the name
of ex.

Even with the advanced terminals of that time, one could not rely on the
availability of keyboards with special keys for cursor positioning or advanced Keyboard restrictions

functions—today’s standard PC keyboards would have been considered luxuri-
ous, if not overloaded. This justifies vi’s unusual concepts of operation, which
today could rightly be considered antediluvian. It cannot be taken amiss if peo-
ple reject vi because of this. In spite of this, having rudimentary knowledge of
vi cannot possibly hurt, even if you select a different text editor for your daily
work—which you should by all means do if vi does not agree with you. It is not
as if there was no choice of alternatives, and we shall not get into childish games
such as “Whoever does not use vi is not a proper Linux user”. Today’s graphical
desktops such as KDE do contain very nice and powerful text editors.

B There is, in fact, an editor which is even cruder than vi—the ed program.
The title “the only editor that is guaranteed to be available on any Unix sys-
tem” rightfully belongs to ed instead of vi, but ed as a pure line editor with
a teletype-style user interface is too basic for even hardcore Unix advocates.
(ed can be roughly compared with the DOS program, EDLIN; ed, however, is
vastly more powerful than the Redmond offering.) The reason why ed is still
available in spite of the existence of dozens of more convenient text editors
is unobvious, but very Unix-like: ed accepts commands on its standard input
and can therefore be used in shell scripts to change files programmatically.
ed allows editing operations that apply to the whole file at once and is, thus,
more powerful than its colleague, the “stream editor” sed, which copies its
standard input to its standard output with certain modifications; normally
one would use sed and revert to ed for exceptional cases, but ed is still useful
every so often.

5.2.2 Basic Functions

The Buffer Concept vi works in terms of so-called buffers. If you invoke vi with buffers

a file name as an argument, the content of that file will be read into a buffer. If no
file exists by that name, an empty buffer is created.

All the modifications made with the editor are only applied inside the buffer.
To make these modifications permanent, the buffer content must be explicitly
written back to the file. If you really want to discard the modifications, simply
leave vi without storing the buffer content—the file on the storage medium will
remain unchanged.

In addition to a file name as an argument, you can pass options to vi as usual.
Refer to the documentation for the details.

Modes As mentioned earlier, one of the characteristics of vi is its unusual man-
ner of operation. vi supports three different working “modes”:

Command mode All keyboard input consists of commands that do not appear
on screen and mostly do not need to be finalized using the return key. Af-
ter invoking vi, you end up in this mode. Be careful: Any key press could
invoke a command.

Insert mode All keyboard input is considered text and displayed on the screen.
vi behaves like a “modern” editor, albeit with restricted navigation and cor-
rection facilities.

Command-line mode This is used to enter long commands. These usually start
with a colon (“:”) and are finished using the return key.

In insert mode, nearly all navigation or correction commands are disabled, which
requires frequent alternation between insert and command modes. The fact that

56 5 The vi Editor

Insert Mode

Command Mode

Command-Line Mode

[Esc] a, i, o, ...

: [Return]

vi command

ZZ, ...

Figure 5.1: vi’s modes

Table 5.1: Insert-mode commands for vi

Command Result

a Appends new text after the cursor
A Appends new text at the end of the line
i Inserts new text at the cursor position
I Inserts new text at the beginning of the line
o Inserts a new line below the line containing the cursor
O Inserts a new line above the line containing the cursor

it may be difficult to find out which mode the editor is currently in (depending on
the vi implementation used and its configuration) does not help to make things
easier for beginners. An overview of vi modes may be found in Figure 5.1.

B Consider: vi started when keyboards consisting only of the “letter block” of
modern keyboards were common (127 ASCII characters). There was really
no way around the scheme used in the program.

After invoking vi without a file name you end up in command mode. In con-command mode

trast to most other editors, direct text input is not possible. There is a cursor at the
top left corner of the screen above a column filled with tildes. The last line, also
called the “status line”, displays the current mode (maybe), the name of the file
currently being edited (if available) and the current cursor position.

B If your version of vi does not display status information, try your luck with
Esc :set showmode ↩ .

Shortened by a few lines, this looks similar to Das sieht (um einige Zeilen
verkürzt) etwa so aus:

_

~

~

5.2 The Standard—vi 57

Table 5.2: Cursor positioning commands in vi

Command Cursor moves …

h or ← one character to the left
l or → one character to the right
k or ↑ one character up
j or ↓ one character down
0 to the beginning of the line
$ to the end of the line
w to the next word
b to the previous word

f ⟨character⟩ to the next ⟨character⟩ on the line
Strg + F to the next page (screenful)
Strg + B to the previous page
G to the last line of the file

⟨n⟩ G to line no. ⟨n⟩

~

Empty Buffer 0,0-1

Only after a command such as a (“append”), i (“insert”), or o (“open”)
will vi change into “insert mode”. The status line displays something like “-- insert mode

INSERT --”, and keyboard input will be accepted as text.
The possible commands to enter insert mode are listed in Table 5.1; note that

lower-case and upper-case commands are different. To leave insert mode and go
back to command mode, press the Esc key. In command mode, enter Z Z to
write the buffer contents to disk and quit vi.

If you would rather discard the modifications you made, you need to quit the
editor without saving the buffer contents first. Use the command : q! ↩ . The
leading colon emphasises that this is a command-line mode command.

When : is entered in command mode, vi changes to command-line mode. command-line mode
You can recognize this by the colon appearing in front of the cursor on the bottom
line of the screen. All further keyboard input is appended to that colon, until the
command is finished with the return key (↩); vi executes the command and
reverts to command mode. In command-line mode, vi processes the line-oriented
commands of its alter ego, the ex line editor.

There is an ex command to save an intermediate version of the buffer called :

w (“write”). Commands : x and : wq save the buffer contents and quit the editor;
both commands are therefore identical to the Z Z command.

Movement Through the Text In insert mode, newly entered characters will be put
into the current line. The return key starts a new line. You can move about the text
using cursor keys, but you can remove characters only on the current line using
⇐ —an inheritance of vi’s line-oriented predecessors. More extensive navigation

is only possible in command mode (Table 5.2).
Once you have directed the cursor to the proper location, you can begin cor-

recting text in command mode.

Deleting characters The d command is used to delete characters; it is always
followed by another character that specifies exactly what to delete (Table 5.3). To
make editing easier, you can prefix a repeat count to each of the listed commands. repeat count
For example; the 3 x command will delete the next three characters.

If you have been too eager and deleted too much material, you can revert the
last change (or even all changes one after the other) using the u (“undo”) com- undo

58 5 The vi Editor

Table 5.3: Editing commands in vi

Command Result

x Deletes the character below the cursor
X Deletes the character to the left of the cursor

r ⟨char⟩ Replaces the character below the cursor by ⟨char⟩
d w Deletes from cursor to end of current word
d $ Deletes from cursor to end of current line
d 0 Deletes from cursor to start of current line

d f ⟨char⟩ Deletes from cursor to next occurrence of ⟨char⟩ on the
current line

d d Deletes current line
d G Deletes from current line to end of text
d 1 G Deletes from current line to beginning of text

Table 5.4: Replacement commands in vi

Command Result

c w Replace from cursor to end of current word
c $ Replace from cursor to end of current line
c 0 Replace from cursor to start of current line

c f ⟨char⟩ Replace from cursor to next occurrence of ⟨char⟩ on the
current line

c / abc Replace from cursor to next occurrence of character se-
quence abc

mand. This is subject to appropriate configuration settings.

Replacing characters The c command (“change”) serves to overwrite a selectedOverwriting

part of the text. c is a “combination command” similar to d , requiring an addi-
tional specification of what to overwrite. vi will remove that part of the text before
changing to insert mode automatically. You can enter new material and return to
command mode using Esc . (Table 5.4).

5.2.3 Extended Commands

Cutting, Copying, and Pasting Text A frequent operation in text editing is to move
or copy existing material elsewhere in the document. vi offers handy combination
commands to do this, which take specifications similar to those for the c com-
mand. y (“yank”) copies material to an interim buffer without changing the
original text, whereas d moves it to the interim buffer, i. e., it is removed from
its original place and only available in the interim buffer afterwards. (We have
introduced this as “deletion” above.)

Of course there is a command to re-insert (or “paste”) material from an interim
buffer. This is done using p (to insert after the current cursor position) or P (to
insert at the current cursor position).

A peculiarity of vi is that there is not just one interim buffer but 26. This makes26 buffers

it easy to paste different texts (phrases, …) to different places in the file. The in-
terim buffers are called “a” through “z” and can be invoked using a combination
of double quotes and buffer names. The command sequence ” c y 4 w , for
instance, copies the next four words to the interim buffer called c; the command
sequence ” g p inserts the contents of interim buffer g after the current cursor
position.

5.2 The Standard—vi 59

Regular-Expression Text Search Like every good editor, vi offers well-thought-
out search commands. “Regular expressions” make it possible to locate character
sequences that fit elaborate search patterns. To start a search, enter a slash / in
command mode. This will appear on the bottom line of the terminal followed by
the cursor. Enter the search pattern and start the search using the return key. vi

will start at the current cursor position and work towards the end of the docu-
ment. To search towards the top, the search must be started using ? instead of /

. Once vi has found a matching character sequence, it stops the search and places
the cursor on the first character of the sequence. You can repeat the same search
towards the end using n (“next”) or towards the beginning using N .

Searching and Replacing Since locating character sequences is often not all that is
desired. Therefore, vi also allows replacing found character sequences by others.
The following ex command can be used:

: [⟨start line⟩,⟨end line⟩]s/⟨regexp⟩/⟨replacement⟩[/q]

The parts of the command within square brackets are optional. What do the dif-
ferent components of the command mean?

⟨Start line⟩ and ⟨end line⟩ determine the range of lines to be searched. Without range of lines

these, only the current line will be looked at! Instead of line numbers, you can
use a dot to specify the current line or a dollar sign to specify the last line—but do
not confuse the meanings of these characters with their meanings within regular
expressions:

:5,$s/red/blue/

replaces the first occurrence of red on each line by blue, where the first four lines
are not considered.

:5,$s/red/blue/g

replaces every occurrence of red in those lines by blue. (Watch out: Even Fred Flint-

stone will become Fblue Flintstone.)

B Instead of line numbers, “.”, and “$”, vi also allows regular expressions
within slashes as start and end markers:

:/^BEGIN/,/^END/s/red/blue/g

replaces red by blue only in lines located between a line starting with BEGIN

After the command name s and a slash, you must enter the desired regular
expression. After another slash, ⟨replacement⟩ gives a character sequence by which
the original text is to be replaced.

There is a special function for this argument: With a & character you can “ref- Back reference

erence back” to the text matched by the ⟨regexp⟩ in every actual case. That is, “
: s/bull/& frog” changes every bull within the search range to a bull frog—a task

which will probably give genetic engineers trouble for some time to come.

Command-line Mode Commands So far we have described some command-line
mode (or “ex mode”) commands. There are several more, all of which can be
accessed from command mode by prefixing them with a colon and finishing them
with the return key (Table 5.5).

Exercises

C 5.2 [5] (For systems with vim, e. g., the SUSE distributions.) Find out how to
access the interactive vim tutorial and work through it.

60 5 The vi Editor

Table 5.5: ex commands in vi

Command Result

: w ⟨file name⟩ Writes the complete buffer content to the
designated file

: w! ⟨file name⟩ Writes to the file even if it is write-
protected (if possible)

: e ⟨file name⟩ Reads the designated file into the buffer
: e # Reads the last-read file again
: r ⟨file name⟩ Inserts the content of the designated file

after the line containing the cursor
: ! ⟨shell command⟩ Executes the given shell command and re-

turns to vi afterwards
: r! ⟨shell command⟩ Inserts the output of ⟨shell command⟩ after

the line containing the cursor
: s/⟨regexp⟩/⟨replacement⟩ Searches for ⟨regexp⟩ and replaces by

⟨replacement⟩
: q Quits vi

: q! Quits vi even if the buffer contents is un-
saved

: x oder :e wq Saves the buffer contents and quits vi

5.3 Other Editors

We have already alluded to the fact that your choice of editor is just as much down
to your personal preferences and probably says as much about you as a user as
your choice of car: Do you drive a polished BMW or are you happy with a dented
Astra? Or would you rather prefer a Land Rover? As far as choice is concerned,
the editor market offers no less than the vehicle market. We have presented the
possibly most important Linux editor, but of course there are many others. kate

on KDE and gedit on GNOME, for example, are straightforward and easy-to-learn
editors with a graphical user interface that are perfectly adequate for the require-
ments of a normal user. GNU Emacs, however, is an extremely powerful and cus-
tomisable editor for programmers and authors, and its extensive “ecosystem” of
extensions leaves few desires uncatered for. Do browse through the package lists
of your distribution and check whether you will find the editor of your dreams
there.

Commands in this Chapter

ed Primitive (but useful) line-oriented text editor ed(1) 55
elvis Popular “clone” of the vi editor elvis(1) 54
ex Powerful line-oriented text editor (really vi) vi(1) 54
sed Stream-oriented editor, copies its input to its output making changes in

the process sed(1) 55
vi Screen-oriented text editor vi(1) 54
vim Popular “clone” of the vi editor vim(1) 54

5.3 Other Editors 61

Summary

• Text editors are important for changing configuration files and program-
ming. They often offer special features to make these tasks easier.

• vi is a traditional, very widespread and powerful text editor with an id-
iosyncratic user interface.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

6
Files: Care and Feeding

Contents

6.1 File and Path Names 64
6.1.1 File Names . 64
6.1.2 Directories . 65
6.1.3 Absolute and Relative Path Names 66

6.2 Directory Commands 67
6.2.1 The Current Directory: cd & Co. 67
6.2.2 Listing Files and Directories—ls 68
6.2.3 Creating and Deleting Directories: mkdir and rmdir 69

6.3 File Search Patterns 70
6.3.1 Simple Search Patterns 70
6.3.2 Character Classes 72
6.3.3 Braces . 73

6.4 Handling Files . 74
6.4.1 Copying, Moving and Deleting—cp and Friends. 74
6.4.2 Linking Files—ln and ln -s 76
6.4.3 Displaying File Content—more and less 80
6.4.4 Searching Files—find 81
6.4.5 Finding Files Quickly—locate and slocate 84

Goals

• Being familiar with Linux conventions concerning file and directory names
• Knowing the most important commands to work with files and directories
• Being able to use shell filename search patterns

Prerequisites

• Using a shell (qv. Chapter 2)
• Use of a text editor (qv. Chapter 5)

grd1-dateien.tex (be27bba8095b329b)

64 6 Files: Care and Feeding

6.1 File and Path Names

6.1.1 File Names

One of the most important services of an operating system like Linux consists
of storing data on permanent storage media like hard disks or USB keys and re-
trieving them later. To make this bearable for humans, similar data are usually
collected into “files” that are stored on the medium under a name.files

B Even if this seems trivial to you, it is by no means a given. In former times,
some operating systems made it necessary to know abominations like track
numbers on a disk in order to retrieve one’s data.

Thus, before we can explain to you how to handle files, we need to explain to
you how Linux names files.

In Linux file names, you are essentially allowed to use any character that yourAllowed characters

computer can display (and then some). However, since some of the characters
have a special meaning, we would recommend against their use in file names.
Only two characters are completely disallowed, the slash and the zero byte (the
character with ASCII value 0). Other characters like spaces, umlauts, or dollar
signs may be used freely, but must usually be escaped on the command line by
means of a backslash or quotes in order to avoid misinterpretations by the shell.

A An easy trap for beginners to fall into is the fact that Linux distinguishes
uppercase and lowercase letters in file names. Unlike Windows, where up-Letter case

percase and lowercase letters in file names are displayed but treated the
same, Linux considers x-files and X-Files two different file names.

Under Linux, file names may be “quite long”—there is no definite upper
bound, since the maximum depends on the “file system”, which is to say the
specific way bytes are arranged on the medium (there are several methods on
Linux). A typical upper limit is 255 characters—but since such a name would
take somewhat more than three lines on a standard text terminal this shouldn’t
really cramp your style.

A further difference from DOS and Windows computers is that Linux does not
use suffixes to characterise a file’s “type”. Hence, the dot is a completely ordi-suffixes

nary character within a file name. You are free to store a text as mumble.txt, but
mumble would be just as acceptable in principle. This should of course not turn you
off using suffixes completely—you do after all make it easier to identify the file
content.

B Some programs insist on their input files having specific suffixes. The C
compiler, gcc, for example, considers files with names ending in “.c” C
source code, those ending in “.s” assembly language source code, and
those ending in “.o” precompiled object files.

You may freely use umlauts and other special characters in file names. How-special characters

ever, if files are to be used on other systems it is best to stay away from special
characters in file names, as it is not guaranteed that they will show up as the same
characters elsewhere.

A What happens to special characters also depends on your locale settings,locale settings

since there is no general standard for representing characters exceeding the
ASCII character set (128 characters covering mostly the English language,
digits and the most common special characters). Widely used encodings
are, for example, ISO 8859-1 and ISO 8859-15 (popularly know as ISO-Latin-
1 and ISO-Latin-9, respectively … don’t ask) as well as ISO 10646, casually
and not quite correctly called “Unicod” and usually encoded as “UTF-8”.
File names you created while encoding 𝑋 was active may look completely
different when you look at the directory while encoding 𝑌 is in force. The
whole topic is nothing you want to think about during meals.

6.1 File and Path Names 65

A Should you ever find yourself facing a pile of files whose names are encoded
according to the wrong character set, the convmv program, which can con- convmv

vert file names between various character encodings, may be able to help
you. (You will probably have to install it yourself since it is not part of
the standard installation of most distributions.) However, you should re-
ally get down to this only after working through the rest of this chapter, as
we haven’t even explained the regular mv yet …

All characters from the following set may be used freely in file names: Portable file names

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

0123456789+-._

However, you should pay attention to the following hints:

• To allow moving files between Linux and older Unix systems, the length of
a file name should be at most 14 characters. (Make that “ancient”, really.)

• File names should always start with one of the letters or a digit; the other
four characters can be used without problems only inside a file name.

These conventions are easiest to understand by looking at some examples. Allow-
able file names would be, for instance:

X-files

foo.txt.bak

50.something

7_of_9

On the contrary, problems would be possible (if not likely or even assured) with:

-10°F Starts with ‘‘- ’’, includes special character
.profile Will be hidden
3/4-metre Contains illegal character
Smörrebröd Contains umlauts

As another peculiarity, file names starting with a dot (“.”) will be skipped in Hidden files

some places, for example when the files within a directory are listed—files with
such names are considered “hidden”. This feature is often used for files contain-
ing settings for programs and which should not distract users from more impor-
tant files in directory listings.

B For DOS and Windows experts: These systems allow “hiding” files by
means of a “file attribute” which can be set independently of the file’s
name. Linux and Unix do not support such a thing.

6.1.2 Directories

Since potentially many users may work on the same Linux system, it would be
problematic if each file name could occur just once. It would be difficult to make
clear to user Joe that he cannot create a file called letter.txt since user Sue already
has a file by that name. In addition, there must be a (convenient) way of ensuring
that Joe cannot read all of Sue’s files and the other way round.

For this reason, Linux supports the idea of hierarchical “directories” which are
used to group files. File names do not need to be unique within the whole system,
but only within the same directory. This means in particular that the system can
assign different directories to Joe and Sue, and that within those they may call
their files whatever they please without having to worry about each other’s files.

66 6 Files: Care and Feeding

In addition, we can forbid Joe from accessing Sue’s directory (and vice versa) and
no longer need to worry about the individual files within them.

On Linux, directories are simply files, even though you cannot access them
using the same methods you would use for “plain” files. However, this implies
that the rules we discussed for file names (see the previous section) also apply to
the names of directories. You merely need to learn that the slash (“/”) serves toslash

separate file names from directory names and directory names from one another.
joe/letter.txt would be the file letter.txt in the directory joe.

Directories may contain other directories (this is the term “hierarchical” we
mentioned earlier), which results in a tree-like structure (inventively called a “di-directory tree

rectory tree”). A Linux system has a special directory which forms the root of the
tree and is therefore called the “root directory”. Its name is “/” (slash).

B In spite of its name, the root directory has nothing to do with the system
administrator, root. It’s just that their names are similar.

B The slash does double duty here—it serves both as the name of the root
directory and as the separator between other directory names. We’ll come
back to this presently.

The basic installation of common Linux distributions usually contains tens of
thousands of files in a directory hierarchy that is mostly structured according to
certain conventions. We shall tell you more about this directory hierarchy in Chap-
ter 9.

6.1.3 Absolute and Relative Path Names

Every file in a Linux system is described by a name which is constructed by start-
ing at the root directory and mentioning every directory down along the path to
the one containing the file, followed by the name of the file itself. For example,
/home/joe/letter.txt names the file letter.txt, which is located within the joe direc-
tory, which in turn is located within the home directory, which in turn is a direct
descendant of the root directory. A name that starts with the root directory is
called an “absolute path name”—we talk about “path names” since the name de-absolute path name

scribes a “path” through the directory tree, which may contain directory and file
names (i. e., it is a collective term).

Each process within a Linux system has a “current directory” (often also called
“working directory”). File names are searched within this directory; letter.txt

is thus a convenient abbreviation for “the file called letter.txt in the current di-
rectory”, and sue/letter.txt stands for “the file letter.txt within the sue directory
within the current directory”. Such names, which start from the current directory,
are called “relative path names”.relative path names

B It is trivial to tell absolute from relative path names: A path name starting
with a “/” is absolute; all others are relative.

B The current directory is “inherited” between parent and child processes. So
if you start a new shell (or any program) from a shell, that new shell uses
the same current directory as the shell you used to start it. In your new
shell, you can change into another directory using the cd command, but the
current directory of the old shell does not change—if you leave the new
shell, you are back to the (unchanged) current directory of the old shell.

There are two convenient shortcuts in relative path names (and even absoluteshortcuts

ones): The name “..” always refers to the directory above the directory in question
in the directory tree—for example, in the case of /home/joe, /home. This frequently
allows you to refer conveniently to files in a “side branch” of the directory tree
as viewed from the current directory, without having to resort to absolute path
names. Assume /home/joe has the subdirectories letters and novels. With letters

as the current directory, you could refer to the ivanhoe.txt file within the novels

6.2 Directory Commands 67

directory by means of the relative path name ../novels/ivanhoe.txt, without having
to use the unwieldy absolute path name /home/joe/novels/ivanhoe.txt.

The second shortcut does not make quite as obvious sense: the “.” name within
a directory always stands for the directory itself. It is not immediately clear why
one would need a method to refer to a directory which one has already reached,
but there are situations where this comes in quite handy. For example, you may
know (or could look up in Chapter 8) that the shell searches program files for
external commands in the directories listed in the environment variable PATH. If
you, as a software developer, want to invoke a program, let’s call it prog, which (a)
resides in a file within the current directory, and (b) this directory is not listed in
PATH (always a good idea for security reasons), you can still get the shell to start
your file as a program by saying

$./prog

without having to enter an absolute path name.

B As a Linux user you have a “home directory” which you enter immediately
after logging in to the system. The system administrator determines that
directory’s name when they create your user account, but it is usually called
the same as your user name and located below /home—something like /home/

joe for the user joe.

6.2 Directory Commands

6.2.1 The Current Directory: cd & Co.

You can use the cd shell command to change the current directory: Simply give Changing directory

the desired directory as a parameter:

$ cd letters Change to the letters directory
$ cd .. Change to the directory above

If you do not give a parameter you will end up in your home directory:

$ cd

$ pwd

/home/joe

You can output the absolute path name of the current directory using the pwd current directory

(“print working directory”) command.
Possibly you can also see the current directory as part of your prompt: Depend- prompt

ing on your system settings there might be something like

joe@red:~/letters> _

where ~/letters is short for /home/joe/letters; the tilde (“~”) stands for the current
user’s home directory.

B The “cd -” command changes to the directory that used to be current before
the most recent cd command. This makes it convenient to alternate between
two directories.

Exercises

C 6.1 [2] In the shell, is cd an internal or an external command? Why?

C 6.2 [3] Read about the pushd, popd, and dirs commands in the bash man page.
Convince yourself that these commands work as described there.

68 6 Files: Care and Feeding

Table 6.1: Some file type designations in ls

File type Colour Suffix (ls -F) Type letter (ls -l)
plain file black none -

executable file green * -

directory blue / d

link cyan @ l

Table 6.2: Some ls options

Option Result
-a or --all Displays hidden files as well
-i or --inode Displays the unique file number (inode number)
-l or --format=long Displays extra information
-o or --no-color Omits colour-coding the output
-p or -F Marks file type by adding a special character
-r or --reverse Reverses sort order
-R or --recursive Recurses into subdirectories (DOS: DIR/S)
-S or --sort=size Sorts files by size (longest first)
-t or --sort=time Sorts file by modification time (newest first)
-X or --sort=extension Sorts file by extension (“file type”)

6.2.2 Listing Files and Directories—ls

To find one’s way around the directory tree, it is important to be able to find out
which files and directories are located within a directory. The ls (“list”) command
does this.

Without options, this information is output as a multi-column table sorted byTabular format

file name. With colour screens being the norm rather than the exception today, it
has become customary to display the names of files of different types in various
colours. (We have not talked about file types yet; this topic will be mentioned in
Chapter 9.)

B Thankfully, by now most distributions have agreed about the colours to use.
Table 6.1 shows the most common assignment.

B On monochrome monitors—which can still be found—, the options -F or -p

recommend themselves. These will cause special characters to be appended
to the file names according to the file’s type. A subset of these characters is
given in Table 6.1.

You can display hidden files (whose names begin with a dot) by giving the -aHidden files

(“all”) option. Another very useful option is -l (a lowercase “L”, for “long”, rather
than the digit “1”). This displays not only the file names, but also some additionalAdditional information

information about each file.

B Some Linux distributions pre-set abbreviations for some combinations of
helpful options; the SUSE distributions, for example, use a simple l as an
abbreviation of “ls -alF”. “ll” and “la” are also abbreviations for ls variants.

Here is an example of ls without and with -l:

$ ls

file.txt

file2.dat

$ ls -l

6.2 Directory Commands 69

-rw-r--r-- 1 joe users 4711 Oct 4 11:11 file.txt

-rw-r--r-- 1 joe users 333 Oct 2 13:21 file2.dat

In the first case, all visible (non-hidden) files in the directory are listed; the second
case adds the extra information.

The different parts of the long format have the following meanings: The first Long format

character gives the file type (see Chapter 9); plain files have “-”, directories “d”
and so on (“type character” in Table 6.1).

The next nine characters show the access permissions. Next there are a refer-
ence counter, the owner of the file (joe here), and the file’s group (users). After the
size of file in bytes, you can see the date and time of the last modification of the
file’s content. On the very right there is the file’s name.

A Depending on the language you are using, the date and time columns in par-
ticular may look completely different than the ones in our example (which
we generated using the minimal language environment “C”). This is usu-
ally not a problem in interactive use, but may prove a major nuisance if you
try to take the output of “ls -l” apart in a shell script. (Without wanting to
anticipate the training manual Advanced Linux, we recommend setting the
language environment to a defined value in shell scripts.)

B If you want to see the extra information for a directory (such as /tmp), “ls -l

/tmp” doesn’t really help, because ls will list the data for all the files within
/tmp. Use the -d option to suppress this and obtain the information about
/tmp itself.

ls supports many more options than the ones mentioned here; a few of the
more important ones are shown in Table 6.2.

In the LPI exams, Linux Essentials and LPI-101, nobody expects you to know
all 57 varieties of ls options by heart. However, you may wish to commit the
most import half dozen or so—the content of Table 6.2, approximately—to
memory.

Exercises

C 6.3 [1] Which files does the /boot directory contain? Does the directory have
subdirectories and, if so, which ones?

C 6.4 [2] Explain the difference between ls with a file name argument and ls

with a directory name argument.

C 6.5 [2] How do you tell ls to display information about a directory rather
than the files in that directory, if a directory name is passed to the program?
(Hint: Documentation.)

6.2.3 Creating and Deleting Directories: mkdir and rmdir

To keep your own files in good order, it makes sense to create new directories. You
can keep files in these “folders” according to their subject matter (for example).
Of course, for further structuring, you can create further directories within such
directories—your ambition will not be curbed by arbitrary limits.

To create new directories, the mkdir command is available. It requires one or Creating directories

more directory names as arguments, otherwise you will only obtain an error mes-
sage instead of a new directory. To create nested directories in a single step, you
can use the -p option, otherwise the command assumes that all directories in a
path name except the last one already exist. For example:

70 6 Files: Care and Feeding

$ mkdir pictures/holiday

mkdir: cannot create directory `pictures/holiday': No such file�

� or directory

$ mkdir -p pictures/holiday

$ cd pictures

$ ls -F

holiday/

Sometimes a directory is no longer required. To reduce clutter, you can removeRemoving directories

it using the rmdir (“remove directory”) command.
As with mkdir, at least one path name of a directory to be deleted must be given.

In addition, the directories in question must be empty, i. e., they may not contain
entries for files, subdirectories, etc. Again, only the last directory in every name
will be removed:

$ rmdir pictures/holiday

$ ls -F

�����

pictures/

�����

With the -p option, all empty subdirectories mentioned in a name can be removed
in one step, beginning with the one on the very right.

$ mkdir -p pictures/holiday/summer

$ rmdir pictures/holiday/summer

$ ls -F pictures

pictures/holiday/

$ rmdir -p pictures/holiday

$ ls -F pictures

ls: pictures: No such file or directory

Exercises

C 6.6 [!2] In your home directory, create a directory grd1-test with subdirecto-
ries dir1, dir2, and dir3. Change into directory grd1-test/dir1 and create (e. g.,
using a text editor) a file called hello containing “hello”. In grd1-test/dir2,
create a file howdy containing “howdy”. Check that these files do exist. Delete
the subdirectory dir3 using rmdir. Next, attempt to remove the subdirectory
dir2 using rmdir. What happens, and why?

6.3 File Search Patterns

6.3.1 Simple Search Patterns

You will often want to apply a command to several files at the same time. For
example, if you want to copy all files whose names start with “p” and end with
“.c” from the prog1 directory to the prog2 directory, it would be quite tedious to
have to name every single file explictly—at least if you need to deal with more
than a couple of files! It is much more convenient to use the shell’s search patterns.search patterns

If you specify a parameter containing an asterisk on the shell command line—asterisk
like

prog1/p*.c

6.3 File Search Patterns 71

—the shell replaces this parameter in the actual program invocation by a sorted list
of all file names that “match” the parameter. “Match” means that in the actual file
name there may be an arbitrary-length sequence of arbitrary characters in place
of the asterisk. For example, names like

prog1/p1.c

prog1/polly.c

prog1/pop-rock.c

prog1/p.c

are eligible (note in particular the last name in the example—“arbitrary length”
does include “length zero”!). The only character the asterisk will not match is—
can you guess it?—the slash; it is usually better to restrict a search pattern like the
asterisk to the current directory.

B You can test these search patterns conveniently using echo. The

$ echo prog1/p*.c

command will output the matching file names without any obligation or
consequence of any kind.

B If you really want to apply a command to all files in the directory tree starting
with a particular directory, there are ways to do that, too. We will discuss
this in Section 6.4.4.

The search pattern “*” describes “all files in the current directory”—excepting All files

hidden files whose name starts with a dot. To avert possibly inconvenient sur-
prises, search patterns diligently ignore hidden files unless you explicitly ask for
them to be included by means of something like “.*”.

A You may have encountered the asterisk at the command line of operating
systems like DOS or Windows1 and may be used to specifying the “*.*”
pattern to refer to all files in a directory. On Linux, this is not correct—the
“*.*” pattern matches “all files whose name contains a dot”, but the dot isn’t
mandatory. The Linux equivalent, as we said, is “*”.

A question mark as a search pattern stands for exactly one arbitrary character question mark

(again excluding the slash). A pattern like

p?.c

thus matches the names

p1.c

pa.c

p-.c

p..c

(among others). Note that there must be one character—the “nothing” option
does not exist here.

You should take particular care to remember a very important fact: The expan-
sion of search pattern is the responsibility of the shell! The commands that you ex-
ecute usually know nothing about search patterns and don’t care about them,
either. All they get to see are lists of path names, but not where they come
from—i. e., whether they have been typed in directly or resulted from the ex-
pansion of search patterns.

1You’re probably too young for CP/M.

72 6 Files: Care and Feeding

B Incidentally, nobody says that the results of search patterns always need to
be interpreted as path names. For example, if a directory contains a file
called “-l”, a “ls *” in that directory will yield an interesting and perhaps
surprising result (see Exercise 6.9).

B What happens if the shell cannot find a file whose name matches the search
pattern? In this case the command in question is passed the search pattern
as such; what it makes of that is its own affair. Typically such search patterns
are interpreted as file names, but the “file” in question is not found and an
error message is issued. However, there are commands that can do useful
things with search patterns that you pass them—with them, the challenge
is really to ensure that the shell invoking the command does not try to cut
in with its own expansion. (Cue: quotes)

6.3.2 Character Classes

A somewhat more precise specification of the matching characters in a search pat-
tern is offered by “character classes”: In a search pattern of the form

prog[123].c

the square brackets match exactly those characters that are enumerated within
them (no others). The pattern in the example therefore matches

prog1.c

prog2.c

prog3.c

but not

prog.c There needs to be exactly one character
prog4.c 4 was not enumerated
proga.c a neither
prog12.c Exactly one character, please

As a more convenient notation, you may specify ranges as inranges

prog[1-9].c

[A-Z]bracadabra.txt

The square brackets in the first line match all digits, the ones in the second all
uppercase letters.

A Note that in the common character encodings the letters are not contiguous:
A pattern like

prog[A-z].c

not only matches progQ.c and progx.c, but also prog_.c. (Check an ASCII table,
e. g. using “man ascii”.) If you want to match “uppercase and lowercase
letters only”, you need to use

prog[A-Za-z].c

A A construct like

prog[A-Za-z].c

does not catch umlauts, even if they look suspiciously like letters.

6.3 File Search Patterns 73

As a further convenience, you can specify negated character classes, which are negated classes

interpreted as “all characters except these”: Something like

prog[!A-Za-z].c

matches all names where the character between “g” and “.” is not a letter. As
usual, the slash is excepted.

6.3.3 Braces

The expansion of braces in expressions like

{red,yellow,blue}.txt

is often mentioned in conjunction with shell search patterns, even though it is
really just a distant relative. The shell replaces this by

red.txt yellow.txt blue.txt

In general, a word on the command line that contains several comma-separated
pieces of text within braces is replaced by as many words as there are pieces of
text between the braces, where in each of these words the whole brace expression
is replaced by one of the pieces. This replacement is purely based on the command
line text and is completely independent of the existence or non-existence of any files or
directories—unlike search patterns, which always produce only those names that
actually exist as path names on the system.

You can have more than one brace expression in a word, which will result in
the cartesian product, in other words all possible combinations: cartesian product

{a,b,c}{1,2,3}.dat

produces

a1.dat a2.dat a3.dat b1.dat b2.dat b3.dat c1.dat c2.dat c3.dat

This is useful, for example, to create new directories systematically; the usual
search patterns cannot help there, since they can only find things that already
exist:

$ mkdir -p revenue/200{8,9}/q{1,2,3,4}

Exercises

C 6.7 [!1] The current directory contains the files

prog.c prog1.c prog2.c progabc.c prog

p.txt p1.txt p21.txt p22.txt p22.dat

Which of these names match the search patterns (a) prog*.c, (b) prog?.c, (c)
p?*.txt, (d) p[12]*, (e) p*, (f) *.*?

C 6.8 [!2] What is the difference between “ls” and “ls *”? (Hint: Try both in a
directory containing subdirectories.)

C 6.9 [2] Explain why the following command leads to the output shown:

74 6 Files: Care and Feeding

Table 6.3: Options for cp

Option Result
-b (backup) Makes backup copies of existing target files by appending a tilde to their

names
-f (force) Overwrites existing target files without prompting
-i (engl. interactive) Asks (once per file) whether existing target files should be overwritten
-p (engl. preserve) Tries to preserve all attributes of the source file for the copy
-R (engl. recursive) Copies directories with all their content
-u (engl. update) Copies only if the source file is newer than the target file (or the target file

doesn’t exist)
-v (engl. verbose) Displays all activity on screen

$ ls

-l file1 file2 file3

$ ls *

-rw-r--r-- 1 joe users 0 Dec 19 11:24 file1

-rw-r--r-- 1 joe users 0 Dec 19 11:24 file2

-rw-r--r-- 1 joe users 0 Dec 19 11:24 file3

C 6.10 [2] Why does it make sense for “*” not to match file names starting with
a dot?

6.4 Handling Files

6.4.1 Copying, Moving and Deleting—cp and Friends

You can copy arbitrary files using the cp (“copy”) command. There are two basicCopying files

approaches:
If you tell cp the source and target file names (two arguments), then a 1 ∶ 1 copy1 ∶ 1 copy

of the content of the source file will be placed in the target file. Normally cp does
not ask whether it should overwrite the target file if it already exists, but just does
it—caution (or the -i option) is called for here.

You can also give a target directory name instead of a target file name. The
source file will then be copied to that directory, keeping its old name.

$ cp list list2

$ cp /etc/passwd .

$ ls -l

-rw-r--r-- 1 joe users 2500 Oct 4 11:11 list

-rw-r--r-- 1 joe users 2500 Oct 4 11:25 list2

-rw-r--r-- 1 joe users 8765 Oct 4 11:26 passwd

In this example, we first created an exact copy of file list under the name list2.
After that, we copied the /etc/passwd file to the current directory (represented by
the dot as a target directory name). The most important cp options are listed in
Table 6.3.

Instead of a single source file, a longer list of source files (or a shell wildcardList of source files

pattern) is allowed. However, this way it is not possible to copy a file to a different
name, but only to a different directory. While in DOS it is possible to use “COPY
*.TXT *.BAK” to make a backup copy of every TXT file to a file with the same name
and a BAK suffix, the Linux command “cp *.txt *.bak” usually fails with an error
message.

6.4 Handling Files 75

B To understand this, you have to visualise how the shell executes this com-
mand. It tries first to replace all wildcard patterns with the corresponding
file names, for example *.txt by letter1.txt and letter2.txt. What happens
to *.bak depends on the expansion of *.txt and on whether there are match-
ing file names for *.bak in the current directory—but the outcome will al-
most never be what a DOS user would expect! Usually the shell will pass
the cp command the unexpanded *.bak wildcard pattern as the final argu-
ment, which fails from the point of view of cp since this is (unlikely to be)
an existing directory name.

While the cp command makes an exact copy of a file, physically duplicating the
file on the storage medium or creating a new, identical copy on a different storage
medium, the mv (“move”) command serves to move a file to a different place or Move/rename files

change its name. This is strictly an operation on directory contents, unless the file
is moved to a different file system—for example from a hard disk partition to a
USB key. In this case it is necessary to move the file around physically, by copying
it to the new place and removing it from the old.

The syntax and rules of mv are identical to those of cp—you can again specify
a list of source files instead of merely one, and in this case the command expects
a directory name as the final argument. The main difference is that mv lets you
rename directories as well as files.

The -b, -f, -i, -u, and -v options of mv correspond to the eponymous ones de-
scribed with cp.

$ mv passwd list2

$ ls -l

-rw-r--r-- 1 joe users 2500 Oct 4 11:11 list

-rw-r--r-- 1 joe users 8765 Oct 4 11:26 list2

In this example, the original file list2 is replaced by the renamed file passwd. Like
cp, mv does not ask for confirmation if the target file name exists, but overwrites
the file mercilessly.

The command to delete files is called rm (“remove”). To delete a file, you must Deleting files

have write permission in the corresponding directory. Therefore you are “lord of
the manor” in your own home directory, where you can remove even files that do
not properly belong to you.

A Write permission on a file, on the other hand, is completely irrelevant as far
as deleting that file is concerned, as is the question to which user or group
the file belongs.

rm goes about its work just as ruthlessly as cp or mv—the files in question are Deleting is forever!

obliterated from the file system without confirmation. You should be especially
careful, in particular when shell wildcard patterns are used. Unlike in DOS, the
dot in a Linux file name is a character without special significance. For this rea-
son, the “rm *” command deletes all non-hidden files from the current directory.
Subdirectories will remain unscathed; with “rm -r *” they can also be removed.

A As the system administrator, you can trash the whole system with a com-
mand such as “rm -rf /”; utmost care is required! It is easy to type “rm -rf

foo *” instead of “rm -rf foo*”.

Where rm removes all files whose names are passed to it, “rm -i” proceeds a little
more carefully:

$ rm -i lis*

rm: remove 'list'? n

rm: remove 'list2'? y

$ ls -l

-rw-r--r-- 1 joe users 2500 Oct 4 11:11 list

76 6 Files: Care and Feeding

The example illustrates that, for each file, rm asks whether it should be removed
(“y” for “yes”) or not (“n” for “no”).

B Desktop environments such as KDE usually support the notion of a “dust-
bin” which receives files deleted from within the file manager, and which
makes it possible to retrieve files that have been removed inadvertently.
There are similar software packages for the command line.

In addition to the -i and -r options, rm allows cp’s -v and -f options, with similar
results.

Exercises

C 6.11 [!2] Create, within your home directory, a copy of the file /etc/services

called myservices. Rename this file to srv.dat and copy it to the /tmp directory
(keeping the new name intact). Remove both copies of the file.

C 6.12 [1] Why doesn’t mv have an -R option (like cp has)?

C 6.13 [!2] Assume that one of your directories contains a file called “-file”
(with a dash at the start of the name). How would you go about removing
this file?

C 6.14 [2] If you have a directory where you do not want to inadvertently fall
victim to a “rm *”, you can create a file called “-i” there, as in

$ > -i

(will be explained in more detail in Chapter 7). What happens if you now
execute the “rm *” command, and why?

6.4.2 Linking Files—ln and ln -s

Linux allows you to create references to files, so-called “links”, and thus to assign
several names to the same file. But what purpose does this serve? The applica-
tions range from shortcuts for file and directory names to a “safety net” against
unwanted file deletions, to convenience for programmers, to space savings for
large directory trees that should be available in several versions with only small
differences.

The ln (“link”) command assigns a new name (second argument) to a file in
addition to its existing one (first argument):

$ ln list list2

$ ls -l

-rw-r--r-- 2 joe users 2500 Oct 4 11:11 list

-rw-r--r-- 2 joe users 2500 Oct 4 11:11 list2

The directory now appears to contain a new file called list2. Actually, there areA file with multiple names

just two references to the same file. This is hinted at by the reference counter inreference counter
the second column of the “ls -l” output. Its value is 2, denoting that the file really
has two names. Whether the two file names really refer to the same file can only be
decided using the “ls -i” command. If this is the case, the file number in the first
column must be identical for both files. File numbers, also called inode numbers,inode numbers

identify files uniquely within their file system:

$ ls -i

876543 list 876543 list2

6.4 Handling Files 77

B “Inode” is short for “indirection node”. Inodes store all the information that
the system has about a file, except for the name. There is exactly one inode
per file.

If you change the content of one of the files, the other’s content changes as well,
since in fact there is only one file (with the unique inode number 876543). We only
gave that file another name.

B Directories are simply tables mapping file names to inode numbers. Obvi-
ously there can be several entries in a table that contain different names but
the same inode number. A directory entry with a name and inode number
is called a “link”.

You should realise that, for a file with two links, it is quite impossible to find
out which name is “the original”, i. e., the first parameter within the ln command.
From the system’s point of view both names are completely equivalent and indis-
tinguishable.

A Incidentally, links to directories are not allowed on Linux. The only excep-
tions are “.” and “..”, which the system maintains for each directory. Since
directories are also files and have their own inode numbers, you can keep
track of how the file system fits together internally. (See also Exercise 6.19).

Deleting one of the two files decrements the number of names for file no.
876543 (the reference counter is adjusted accordingly). Not until the reference
counter reachers the value of 0 will the file’s content actually be removed.

$ rm list

$ ls -li

876543 -rw-r--r-- 1 joe users 2500 Oct 4 11:11 list2

B Since inode numbers are only unique within the same physical file system
(disk partition, USB key, …), such links are only possible within the same
file system where the file resides.

B The explanation about deleting a file’s content was not exactly correct: If the
last file name is removed, a file can no longer be opened, but if a process is
still using the file it can go on to do so until it explicitly closes the file or ter-
minates. In Unix software this is a common idiom for handling temporary
files that are supposed to disappear when the program exits: You create
them for reading and writing and “delete” them immediately afterwards
without closing them within your program. You can then write data to the
file and later jump back to the beginning to reread them.

B You can invoke ln not just with two file name arguments but also with one
or with many. In the first case, a link with the same name as the original
will be created in the current directory (which should really be different
from the one where the file is located), in the second case all named files
will be “linked” under their original names into the diréctory given as the
last argument (think mv).

You can use the “cp -l” command to create a “link farm”. This means that link farm

instead of copying the files to the destination (as would otherwise be usual), links
to the originals will be created:

$ mkdir prog-1.0.1 New directory
$ cp -l prog-1.0/* prog-1.0.1

78 6 Files: Care and Feeding

The advantage of this approach is that the files still exist only once on the disk, and
thus take up space only once. With today’s prices for disk storage this may not be
compellingly necessary—but a common application of this idea, for example, con-
sists of making periodic backup copies of large file hierarchies which should ap-
pear on the backup medium (disk or remote computer) as separate, date-stamped
file hierarchies. Experience teaches that most files only change very rarely, and
if these files then need to be stored just once instead of over and over again, this
tends to add up over time. In addition, the files do not need to be written to the
backup medium time and again, and that can save considerable time.

B Backup packages that adopt this idea include, for example, Rsnapshot (http:
//www.rsnapshot.org/) or Dirvish (http://www.dirvish.org/).

A This approach should be taken with a certain amount of caution. Using
links may let you “deduplicate” identical files, but not identical directo-
ries. This means that for every date-stamped file hierarchy on the backup
medium, all directories must be created anew, even if the directories only
contain links to existing files. This can lead to very complicated directory
structures and, in the extreme case, to consistency checks on the backup
medium failing because the computer does not have enough virtual mem-
ory to check the directory hierarchy.

A You will also need to watch out if – as alluded to in the example – you make
a “copy” of a program’s source code as a link farm (which in the case of,
e. g., the Linux source code could really pay off): Before you can modify a
file in your newly-created version, you will need to ensure that it is really a
separate file and not just a link to the original (which you will very probably
not want to change). This means that you either need to manually replace
the link to the file by an actual copy of the file, or else use an editor which
writes modified versions as separate files automatically2.

This is not all, however: There are two different kinds of link in Linux systems.
The type explained above is the default case for the ln command and is called a
“hard link”. It always uses a file’s inode number for identification. In addition,
there are symbolic links (also called “soft links” in contrast to “hard links”). Sym-symbolic links

bolic links are really files containing the name of the link’s “target file”, together
with a flag signifying that the file is a symbolic link and that accesses should be
redirected to the target file. Unlike with hard links, the target file does not “know”
about the symbolic link. Creating or deleting a symbolic link does not impact the
target file in any way; when the target file is removed, however, the symbolic link
“dangles”, i.e., points nowhere (accesses elicit an error message).

In contrast to hard links, symbolic links allow links to directories as well as filesLinks to directories

on different physical file systems. In practice, symbolic links are often preferred,
since it is easier to keep track of the linkage by means of the path name.

B Symbolic links are popular if file or directory names change but a certain
backwards compatibility is desired. For example, it was agreed that user
mailboxes (that store unread e-mail) should be stored in the /var/mail di-
rectory. Traditionally, this directory was called /var/spool/mail, and many
programs hard-code this value internally. To ease a transition to /var/mail,
a distribution can set up a symbolic link under the name of /var/spool/mail

which points to /var/mail. (This would be impossible using hard links, since
hard links to directories are not allowed.)

To create a symbolic link, you must pass the -s option to ln:

$ ln -s /var/log short

$ ls -l

2If you use Vim (a. k. a vi, you can add the “set backupcopy=auto,breakhardlink” command to the .vimrc

file in your home directory.

6.4 Handling Files 79

-rw-r--r-- 1 joe users 2500 Oct 4 11:11 liste2

lrwxrwxrwx 1 joe users 14 Oct 4 11:40 short -> /var/log

$ cd short

$ pwd -P

/var/log

Besides the -s option to create “soft links”, the ln command supports (among oth-
ers) the -b, -f, -i, and -v options discussed earlier on.

To remove symbolic links that are no longer required, delete them using rm just
like plain files. This operation applies to the link rather than the link’s target.

$ cd

$ rm short

$ ls

liste2

As you have seen above, “ls -l” will, for symbolic links, also display the file
that the link is pointing to. With the -L and -H options, you can get ls to resolve
symbolic links directly:

$ mkdir dir

$ echo XXXXXXXXXX >dir/file

$ ln -s file dir/symlink

$ ls -l dir

total 4

-rw-r--r-- 1 hugo users 11 Jan 21 12:29 file

lrwxrwxrwx 1 hugo users 5 Jan 21 12:29 symlink -> file

$ ls -lL dir

-rw-r--r-- 1 hugo users 11 Jan 21 12:29 file

-rw-r--r-- 1 hugo users 11 Jan 21 12:29 symlink

$ ls -lH dir

-rw-r--r-- 1 hugo users 11 Jan 21 12:29 file

lrwxrwxrwx 1 hugo users 5 Jan 21 12:29 symlink -> file

$ ls -l dir/symlink

lrwxrwxrwx 1 hugo users 5 Jan 21 12:29 dir/symlink -> file

$ ls -lH dir/symlink

-rw-r--r-- 1 hugo users 11 Jan 21 12:29 dir/symlink

The difference between -L and -H is that the -L option always resolves symbolic links
and displays information about the actual file (the name shown is still always the
one of the link, though). The -H, as illustrated by the last three commands in the
example, does that only for links that have been directly given on the command
line.

By analogy to “cp -l”, the “cp -s” command creates link farms based on sym- cp and symbolic links

bolic links. These, however, are not quite as useful as the hard-link-based ones
shown above. “cp -a” copies directory hierarchies as they are, keeping symbolic
links as they are; “cp -L” arranges to replace symbolic links by their targets in the
copy, and “cp -P” precludes that.

Exercises

C 6.15 [!2] In your home directory, create a file with arbitrary content (e. g.,
using “echo Hello >~/hello” or a text editor). Create a hard link to that file
called link. Make sure that the file now has two names. Try changing the
file with a text editor. What happens?

C 6.16 [!2] Create a symbolic link called ~/symlink to the file in the previous ex-
ercise. Check whether accessing the file via the symbolic link works. What
happens if you delete the file (name) the symbolic link is pointing to?

80 6 Files: Care and Feeding

Table 6.4: Keyboard commands for more

Key Result

↩ Scrolls up a line
Scrolls up a screenful

b Scrolls back a screenful
h Displays help
q Quits more

/ ⟨word⟩ ↩ Searches for ⟨word⟩
! ⟨command⟩ ↩ Executes ⟨command⟩ in a subshell

v Invokes editor (vi)
Ctrl + l Redraws the screen

C 6.17 [!2] What directory does the .. link in the “/” directory point to?

C 6.18 [3] Consider the following command and its output:

$ ls -ai /

2 . 330211 etc 1 proc 4303 var

2 .. 2 home 65153 root

4833 bin 244322 lib 313777 sbin

228033 boot 460935 mnt 244321 tmp

330625 dev 460940 opt 390938 usr

Obviously, the / and /home directories have the same inode number. Since
the two evidently cannot be the same directory—can you explain this phe-
nomenon?

C 6.19 [3] We mentioned that hard links to directories are not allowed. What
could be a reason for this?

C 6.20 [3] How can you tell from the output of “ls -l ~” that a subdirectory of
~ contains no further subdirectories?

C 6.21 [2] How do “ls -lH” and “ls -lL” behave if a symbolic link points to a
different symbolic link?

C 6.22 [3] What is the maximum length of a “chain” of symbolic links? (In
other words, if you start with a symbolic link to a file, how often can you
create a symbolic link that points to the previous symbolic link?)

C 6.23 [4] (Brainteaser/research exercise:) What requires more space on disk,
a hard link or a symbolic link? Why?

6.4.3 Displaying File Content—more and less

A convenient display of text files on screen is possible using the more command,display of text files

which lets you view long documents page by page. The output is stopped after
one screenful, and “--More--” appears in the final line (possibly followed by the
percentage of the file already displayed). The output is continued after a key press.
The meanings of various keys are explained in Table 6.4.

more also understands some options. With -s (“squeeze”), runs of empty linesOptions

are compressed to just one, the -l option ignores page ejects (usually represented
by “^L”) which would otherwise stop the output. The -n ⟨number⟩ option sets the
number of screen lines to ⟨number⟩, otherwise more takes the number from the
terminal definition pointed to by TERM.

more’s output is still subject to vexing limitations such as the general impossibil-
ity of moving back towards the beginning of the output. Therefore, the improved

6.4 Handling Files 81

Table 6.5: Keyboard commands for less

Key Result

↓ or e or j or ↩ Scrolls up one line
f or Scrolls up one screenful

↑ or y or k Scrolls back one line
b Scrolls back one screenful

Home or g Jumps to the beginning of the text
End or Shift ⇑ + g Jumps to the end of the text
p ⟨percent⟩ ↩ Jumps to position ⟨percent⟩ (in %) of the text

h Displays help
q Quits less

/ ⟨word⟩ ↩ Searches for ⟨word⟩ towards the end
n Continues search towards the end

? ⟨word⟩ ↩ Searches for ⟨word⟩ towards the beginning
Shift ⇑ + n Continues search towards the beginning

! ⟨command⟩ ↩ Executes ⟨command⟩ in subshell
v Invokes editor (vi)

r or Ctrl + l Redraws screen

version less (a weak pun—think “less is more”) is more [sic!] commonly seen to- less

day. less lets you use the cursor keys to move around the text as usual, the search
routines have been extended and allow searching both towards the end as well
as towards the beginning of the text. The most common keyboard commands are
summarised in Table 6.5.

As mentioned in Chapter 4, less usually serves as the display program for man-
ual pages via man. All the commands are therefore available when perusing man-
ual pages.

6.4.4 Searching Files—find

Who does not know the following feeling: “There used to be a file foobar … but
where did I put it?” Of course you can tediously sift through all your directories
by hand. But Linux would not be Linux if it did not have something handy to help
you.

The find command searches the directory tree recursively for files matching a
set of criteria. “Recursively” means that it considers subdirectories, their subdirec-
tories and so on. find’s result consists of the path names of matching files, which
can then be passed on to other programs. The following example introduces the
command structure:

$ find . -user joe -print

./list

This searches the current directory including all subdirectories for files belonging
to the user joe. The -print command displays the result (a single file in our case)
on the terminal. For convenience, if you do not specify what to do with matching
files, -print will be assumed.

Note that find needs some arguments to go about its task.

Starting Directory The starting directory should be selected with care. If you
pick the root directory, the required file(s)—if they exist—will surely be found,
but the search may take a long time. Of course you only get to search those files
where you have appropriate privileges.

82 6 Files: Care and Feeding

B An absolute path name for the start directory causes the file names in theAbsolute or relative path names?

output to be absolute, a relative path name for the start directory accord-
ingly produces relative path names.

Instead of a single start directory, you can specify a list of directories that willDirectory list

be searched in turn.

Test Conditions These options describe the requirements on the files in detail.
Table 6.6 shows the most important tests. The find documentation explains many
more.

Table 6.6: Test conditions for find

Test Description
-name Specifies a file name pattern. All shell search pattern characters

are allowed. The -iname option ignores case differences.
-type Specifies a file type (see Section 9.2). This includes:

b block device file
c character device file
d directory
f plain file
l symbolic link
p FIFO (named pipe)
s Unix domain socket

-user Specifies a user that the file must belong to. User names as well
as numeric UIDs can be given.

-group Specifies a group that the file must belong to. As with -user, a
numeric GID can be specified as well as a group name.

-size Specifies a particular file size. Plain numbers signify 512-byte
blocks; bytes or kibibytes can be given by appending c or k, re-
spectively. A preceding plus or minus sign stands for a lower or
upper limit; -size +10k, for example, matches all files bigger than
10 KiB.

-atime (engl. access) allows searching for files based on the time of last
access (reading or writing). This and the next two tests take their
argument in days; …min instead of …time produces 1-minute ac-
curacy.

-mtime (engl. modification) selects according to the time of modification.
-ctime (engl. change) selects according to the time of the last inode

change (including access to content, permission change, renam-
ing, etc.)

-perm Specifies a set of permissions that a file must match. The per-
missions are given as an octal number (see the chmod command.
To search for a permission in particular, the octal number must
be preceded by a minus sign, e.g., -perm -20 matches all files with
group write permission, regardless of their other permissions.

-links Specifies a reference count value that eligible files must match.
-inum Finds links to a file with a given inode number.

If multiple tests are given at the same time, they are implicitly ANDed together—Multiple tests

all of them must match. find does support additional logical operators (see Ta-
ble 6.7).

In order to avoid mistakes when evaluating logical operators, the tests are best
enclosed in parentheses. The parentheses must of course be escaped from the
shell:

$ find . \(-type d -o -name "A*" \) -print

./.

6.4 Handling Files 83

Table 6.7: Logical operators for find

Option Operator Meaning
! Not The following test must not match
-a And Both tests to the left and right of -a must match
-o Or At least one of the tests to the left and right of -o must match

./..

./bilder

./Attic

$ _

This example lists all names that either refer to directories or that begin with “A”
or both.

Actions As mentioned before, the search results can be displayed on the screen
using the -print option. In addition to this, there are two options, -exec and -

ok, which execute commands incorporating the file names. The single difference Executing commands

between -ok and -exec is that -ok asks the user for confirmation before actually exe-
cuting the command; with -exec, this is tacitly assumed. We will restrict ourselves
to discussing -exec.

There are some general rules governing the -exec option:

• The command following -exec must be terminated with a semicolon (“;”).
Since the semicolon is a special character in most shells, it must be escaped
(e.g., as “\\;” or using quotes) in order to make it visible to find.

• Two braces (“{}”) within the command are replaced by the file name that
was found. It is best to enclose the braces in quotes to avoid problems with
spaces in file names.

For example:

$ find . -user joe -exec ls -l '{}' \;

-rw-r--r-- 1 joe users 4711 Oct 4 11:11 file.txt

$ _

This example searches for all files within the current directory (and below) be-
longing to user test, and executes the “ls -l” command for each of them. The
following makes more sense:

$ find . -atime +13 -exec rm -i '{}' \;

This interactively deletes all files within the current directory (and below) that
have not been accessed for two weeks.

B Sometimes—say, in the last example above—it is very inefficient to use -

exec to start a new process for every single file name found. In this case,
the xargs command, which collects as many file names as possible before
actually executing a command, can come in useful:

$ find . -atime +13 | xargs -r rm -i

xargs reads its standard input up to a (configurable) maximum of characters
or lines and uses this material as arguments for the specified command (here
rm). On input, arguments are separated by space characters (which can be
escaped using quotes or “\”) or newlines. The command is invoked as often

84 6 Files: Care and Feeding

as necessary to exhaust the input.—The -r option ensures that rm is executed
only if find actually sends a file name; otherwise it would be executed at least
once.

B Weird filenames can get the find/xargs combination in trouble, for example
ones that contain spaces or, indeed, newlines which may be mistaken as
separators. The silver bullet consists of using the “-print0” option to find,
which outputs the file names just as “-print” does, but uses null bytes to
separate them instead of newlines. Since the null byte is not a valid character
in path names, confusion is no longer possible. xargs must be invoked using
the “-0” option to understand this kind of input:

$ find . -atime +13 -print0 | xargs -0r rm -i

Exercises

C 6.24 [!2] Find all files on your system which are longer than 1 MiB, and
output their names.

C 6.25 [2] How could you use find to delete a file with an unusual name (e. g.,
containing invisible control characters or umlauts that older shells cannot
deal with)?

C 6.26 [3] (Second time through the book.) How would you ensure that files
in /tmp which belong to you are deleted once you log out?

6.4.5 Finding Files Quickly—locate and slocate

The find command searches files according to many different criteria but needs to
walk the complete directory tree below the starting directory. Depending on the
tree size, this may take considerable time. For the typical application—searching
files with particular names—there is an accelerated method.

The locate command lists all files whose names match a given shell wildcard
pattern. In the most trivial case, this is a simple string of characters:

$ locate letter.txt

/home/joe/Letters/letter.txt

/home/joe/Letters/grannyletter.txt

/home/joe/Letters/grannyletter.txt~

�����

A Although locate is a fairly important service (as emphasised by the fact that
it is part of the LPIC1 curriculum), not all Linux distributions include it as
part of the default installation.

For example, if you are using a SUSE distribution, you must explicitly install
the findutils-locate package before being able to use locate.

The “*”, “?”, and “[…]” characters mean the same thing to locate as they do to
the shell. But while a query without wildcard characters locates all file names that
contain the pattern anywhere, a query with wildcard characters returns only those
names which the pattern describes completely—from beginning to end. Therefore
pattern queries to locate usually start with “*”:

$ locate "*/letter.t*"

/home/joe/Letters/letter.txt

/home/joe/Letters/letter.tab

�����

6.4 Handling Files 85

B Be sure to put quotes around locate queries including shell wildcard char-
acters, to keep the shell from trying to expand them.

The slash (“/”) is not handled specially:

$ locate Letters/granny

/home/joe/Letters/grannyletter.txt

/home/joe/Letters/grannyletter.txt~

locate is so fast because it does not walk the file system tree, but checks a
“database” of file names that must have been previously created using the updat-

edb program. This means that locate does not catch files that have been added to
the system since the last database update, and conversely may output the names
of files that have been deleted in the meantime.

B You can get locate to return existing files only by using the “-e” option, but
this negates locate’s speed advantage.

The updatedb program constructs the database for locate. Since this may take
considerable time, your system administrator usually sets this up to run when the
system does not have a lot to do, anyway, presumably late at night.

B The cron service which is necessary for this will be explained in detail in
Advanced Linux. For now, remember that most Linux distributions come
with a mechanism which causes updatedb to be run every so often.

As the system administrator, you can tell updatedb which files to consider when
setting up the database. How that happens in detail depends on your distribution:
updatedb itself does not read a configuration file, but takes its settings from the
command line and (partly) environment variables. Even so, most distributions
call updatedb from a shell script which usually reads a file like /etc/updatedb.conf or
/etc/sysconfig/locate, where appropriate environment variables can be set up.

B You may find such a file, e.g., in /etc/cron.daily (details may vary according
to your distribution).

You can, for instance, cause updatedb to search certain directories and omit oth-
ers; the program also lets you specify “network file systems” that are used by sev-
eral computers and that should have their own database in their root directories,
such that only one computer needs to construct the database.

B An important configuration setting is the identity of the user that runs up-

datedb. There are essentially two possibilities:

• updatedb runs as root and can thus enter every file in its database. This
also means that users can ferret out file names in directories that they
would not otherwise be able to look into, for example, other users’
home directories.

• updatedb runs with restricted privileges, such as those of user nobody. In
this case, only names within directories readable by nobody end up in
the database.

B The slocate program—an alternative to the usual locate—circumvents this
problem by storing a file’s owner, group and permissions in the database in
addition to the file’s name. It outputs a file name only if the user who runs
slocate can, in fact, access the file in question. slocate comes with an updatedb

program, too, but this is merely another name for slocate itself.

B In many cases, slocate is installed such that it can also be invoked using the
locate command.

86 6 Files: Care and Feeding

Exercises

C 6.27 [!1] README is a very popular file name. Give the absolute path names of
all files on your system called README.

C 6.28 [2] Create a new file in your home directory and convince yourself by
calling locate that this file is not listed (use an appropriately outlandish file
name to make sure). Call updatedb (possibly with administrator privileges).
Does locate find your file afterwards? Delete the file and repeat these steps.

C 6.29 [1] Convince yourself that the slocate program works, by searching for
files like /etc/shadow as normal user.

Commands in this Chapter

cd Changes a shell’s current working directory bash(1) 67
convmv Converts file names between character encodings convmv(1) 64
cp Copies files cp(1) 74
find Searches files matching certain given criteria find(1), Info: find 81
less Displays texts (such as manual pages) by page less(1) 80
ln Creates (“hard” or symbolic) links ln(1) 76
locate Finds files by name in a file name database locate(1) 84
ls Lists file information or directory contents ls(1) 67
mkdir Creates new directories mkdir(1) 69
more Displays text data by page more(1) 80
mv Moves files to different directories or renames them mv(1) 75
pwd Displays the name of the current working directory pwd(1), bash(1) 67
rm Removes files or directories rm(1) 75
rmdir Removes (empty) directories rmdir(1) 70
slocate Searches file by name in a file name database, taking file permissions into

account slocate(1) 85
updatedb Creates the file name database for locate updatedb(1) 85
xargs Constructs command lines from its standard input

xargs(1), Info: find 83

Summary

• Nearly all possible characters may occur in file names. For portability’s sake,
however, you should restrict yourself to letters, digits, and some special
characters.

• Linux distinguishes between uppercase and lowercase letters in file names.
• Absolute path names always start with a slash and mention all directories

from the root of the directory tree to the directory or file in question. Relative
path names start from the “current directory”.

• You can change the current directory of the shell using the cd command.
You can display its name using pwd.

• ls displays information about files and directories.
• You can create or remove directories using mkdir and rmdir.
• The cp, mv and rm commands copy, move, and delete files and directories.
• The ln command allows you to create “hard” and “symbolic” links.
• more and less display files (and command output) by pages on the terminal.
• find searches for files or directories matching certain criteria.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

7
Standard I/O and Filter
Commands

Contents

7.1 I/O Redirection and Command Pipelines 88
7.1.1 Standard Channels 88
7.1.2 Redirecting Standard Channels 89
7.1.3 Command Pipelines 92

7.2 Filter Commands . 94
7.3 Reading and Writing Files 94

7.3.1 Outputting and Concatenating Text Files—cat and tac 94
7.3.2 Beginning and End—head and tail 96
7.3.3 Just the Facts, Ma’am—od and hexdump 97

7.4 Text Processing. 100
7.4.1 Character by Character—tr, expand and unexpand 100
7.4.2 Line by Line—fmt, pr and so on 103

7.5 Data Management 108
7.5.1 Sorted Files—sort and uniq 108
7.5.2 Columns and Fields—cut, paste etc. 113

Goals

• Mastering shell I/O redirection
• Knowing the most important filter commands

Prerequisites

• Shell operation (see Chapter 2)
• Use of a text editor (see Chapter 5)
• File and directory handling (see Chapter 6)

grd1-filter-opt.tex[!complex] (be27bba8095b329b)

88 7 Standard I/O and Filter Commands

Keyboard Process Screen

Keyboard Process Screen

File

stdin stdout

stdin stdout

Figure 7.1: Standard channels on Linux

7.1 I/O Redirection and Command Pipelines

7.1.1 Standard Channels

Many Linux commands—like grep and friends—are designed to read input data,
manipulate it in some way, and output the result of these manipulations. For
example, if you enter

$ grep xyz

you can type lines of text on the keyboard, and grep will only let those pass that
contain the character sequence, “xyz”:

$ grep xyz

abc def

xyz 123

xyz 123

aaa bbb

YYYxyzZZZ

YYYxyzZZZ

Ctrl + d

(The key combination at the end lets grep know that the input is at an end.)
We say that grep reads data from “standard input”—in this case, the keyboard—standard input

and writes to “standard output”—in this case, the console screen or, more likely,standard output
a terminal program in a graphical desktop environment. The third of these
“standard channels” is “standard error output”; while the “payload data” grepstandard error output

produces are written to standard output, standard error output takes any error
messages (e. g., about a non-existent input file or a syntax error in the regular
expression).

In this chapter you will learn how to redirect a program’s standard output to
a file or take a program’s standard input from a file. Even more importantly, you
will learn how to feed one program’s output directly (without the detour via a
file) into another program as that program’s input. This opens the door to using
the Linux commands, which taken on their own are all fairly simple, as building
blocks to construct very complex applications. (Think of a Lego set.)

B We will not be able to exhaust this topic in this chapter. Do look forward
to the manual, Advanced Linux, where constructing shell scripts with the
commands from the Unix “toolchest” plays a very important rôle! Here is
where you learn the very important fundamentals of cleverly combining
Linux commands even on the command line.

7.1 I/O Redirection and Command Pipelines 89

Table 7.1: Standard channels on Linux

Channel Name Abbreviation Device Use
0 standard input stdin keyboard Input for programs
1 standard output stdout screen Output of programs
2 standard error output stderr screen Programs’ error messages

The standard channels are summarised once more in Table 7.1. In the pa- standard channels

tois, they are normally referred to using their abbreviated names—stdin, stdout

and stderr for standard input, standard output, and standard error output. These
channels are respectively assigned the numbers 0, 1, and 2, which we are going to
use later on.

The shell can redirect these standard channels for individual commands, with- Redirection

out the programs in question noticing anything. These always use the standard
channels, even though the output might no longer be written to the screen or ter-
minal window but some arbitrary other file. That file could be a different device,
like a printer—but it is also possible to specify a text file which will receive the
output. That file does not even have to exist but will be created if required.

The standard input channel can be redirected in the same way. A program no
longer receives its input from the keyboard, but takes it from the specified file,
which can refer to another device or a file in the proper sense.

B The keyboard and screen of the “terminal” you are working on (no matter
whether this is a Linux text console, a “genuine” terminal on a serial port,
a terminal window in a graphical environment, or a network session using,
say, the secure shell) can be accessed by means of the /dev/tty file—if you
want to read data this means the keyboard, for output the screen (the other
way round would be quite silly). The

$ grep xyz /dev/tty

would be equivalent to our example earlier on in this section. You can find
out more about such “special files” from Chapter 9.)

7.1.2 Redirecting Standard Channels

You can redirect the standard output channel using the shell operator “>” (the Redirecting standard output

“greater-than” sign). In the following example, the output of “ls -laF” is redi-
rected to a file called filelist; the screen output consists merely of

$ ls -laF >filelist

$ __

If the filelist file does not exist it is created. Should a file by that name exist,
however, its content will be overwritten. The shell arranges for this even before
the program in question is invoked—the output file will thus be created even if
the actual command invocation contained typos, or if the program did not indeed
write any output at all (in which case the filelist file will remain empty).

B If you want to avoid overwriting existing files using shell output redirection, Protecting existing files
you can give the bash command “set -o noclobber”. In this case, if output is
redirected to an existing file, an error occurs.

You can look at the filelist file in the usual way, e. g., using less:

$ less inhalt

total 7

90 7 Standard I/O and Filter Commands

drwxr-xr-x 12 joe users 1024 Aug 26 18:55 ./

drwxr-xr-x 5 root root 1024 Aug 13 12:52 ../

drwxr-xr-x 3 joe users 1024 Aug 20 12:30 photos/

-rw-r--r-- 1 joe users 0 Sep 6 13:50 filelist

-rw-r--r-- 1 joe users 15811 Aug 13 12:33 pingu.gif

-rw-r--r-- 1 joe users 14373 Aug 13 12:33 hobby.txt

-rw-r--r-- 2 joe users 3316 Aug 20 15:14 chemistry.txt

If you look closely at the content of filelist, you can see a directory entry for
filelist with size 0. This is due to the shell’s way of doing things: When parsing
the command line, it notices the output redirection first and creates a new filelist

file (or removes its content). After that, the shell executes the command, in this
case ls, while connecting ls’s standard output to the filelist file instead of the
terminal.

B The file’s length in the ls output is 0 because the ls command looked at the
file information for filelist before anything was written to that file – even
though there are three other entries above that of filelist. This is because
ls first reads all directory entries, then sorts them by file name, and only
then starts writing to the file. Thus ls sees the newly created (or emptied)
file filelist, with no content so far.

If you want to append a command’s output to an existing file without replacingAppending stan-
dard output to a file its previous content, use the >> operator. If that file does not exist, it will be created

in this case, too.

$ date >> filelist

$ less filelist

total 7

drwxr-xr-x 12 joe users 1024 Aug 26 18:55 ./

drwxr-xr-x 5 root root 1024 Aug 13 12:52 ../

drwxr-xr-x 3 joe users 1024 Aug 20 12:30 photos/

-rw-r--r-- 1 joe users 0 Sep 6 13:50 filelist

-rw-r--r-- 1 joe users 15811 Aug 13 12:33 pingu.gif

-rw-r--r-- 1 joe users 14373 Aug 13 12:33 hobby.txt

-rw-r--r-- 2 joe users 3316 Aug 20 15:14 chemistry.txt

Wed Oct 22 12:31:29 CEST 2003

In this example, the current date and time was appended to the filelist file.
Another way to redirect the standard output of a command is by using “back-

ticks” (`…`). This is also called command substitution: The standard output of acommand substitution

command in backticks will be inserted into the command line instead of the com-
mand (and backticks); whatever results from the replacement will be executed.
For example:

$ cat dates Our little diary
22/12 Get presents

23/12 Get Christmas tree

24/12 Christmas Eve

$ date +%d/%m What’s the date?
23/12

$ grep `̂date +%d/%m.` dates What’s up?
23/12 Get Christmas tree

B A possibly more convenient syntax for “`date`” is “$(date)”. This makes it
easier to nest such calls. However, this syntax is only supported by modern
shells such as bash.

You can use <, the “less-than” sign, to redirect the standard input channel. ThisRedirecting standard input

will read the content of the specified file instead of keyboard input:

7.1 I/O Redirection and Command Pipelines 91

$ wc -w <frog.txt

1397

In this example, the wc filter command counts the words in file frog.txt.

B There is no << redirection operator to concatenate multiple input files; to
pass the content of several files as a command’s input you need to use cat:

$ cat file1 file2 file3 | wc -w

(We shall find out more about the “|” operator in the next section.) Most
programs, however, do accept one or more file names as command line ar-
guments.

B You can, however, use the << operator to take input data for a command
from the lines following the command invocation in the shell. This is less
interesting for interactive use than it is for shell scripts, but must be men-
tioned here for completeness. The feature is called a “here document”. For
example, in

$ grep Linux <<END

Roses are red,

Violets are blue,

Linux is lovely,

I know this is true.

END

the input to grep consists of the lines following the grep call up to the line
containing only “END”. The output of the command is

Linux is lovely,

B If you specify the “end string” of a here document without quotes, shell
variables will be evaluated and command substitution (using `…` or $(…))
will be performed on the lines of the here document. However, if the end
string is quoted (single or double quotes), the here document will be pro-
cessed verbatim. Compare the output of

$ cat <<EOF

Today's date: `date`

EOF

to that of

$ cat <<"EOF"

Today's date: `date`

EOF

Finally: If the here document is introduced by “<<-” instead of “<<”, all tab
characters will be removed from the beginning of the here document’s lines.
This lets you indent here documents properly in shell scripts.

Of course, standard input and standard output may be redirected at the same Simultaneous redirection

time. The output of the word-count example is written to a file called wordcount

here:

$ wc -w <frog.txt >wordcount

$ cat wordcount

1397

92 7 Standard I/O and Filter Commands

Besides the standard input and standard output channels, there is also the stan-standard error output

dard error output channel. If errors occur during a program’s operation, the cor-
responding messages will be written to that channel. That way you will see them
even if standard output has been redirected to a file. If you want to redirect stan-
dard error output to a file as well, you must state the channel number for the
redirection operator—this is optional for stdin (0<) and stdout (1>) but mandatory
for stderr (2>).

You can use the >& operator to redirect a channel to a different one:

make >make.log 2>&1

redirects standard output and standard error output of the make command to make.

log.

B Watch out: Order is important here! The two commands

make >make.log 2>&1

make 2>&1 >make.log

lead to completely different results. In the second case, standard error out-
put will be redirected to wherever standard output goes (/dev/tty, where
standard error output would go anyway), and then standard output will
be sent to make.log, which, however, does not change the target for standard
error output.

Exercises

C 7.1 [2] You can use the -U option to get ls to output a directory’s entries with-
out sorting them. Even so, after “ls -laU >filelist”, the entry for filelist in
the output file gives length zero. What could be the reason?

C 7.2 [!2] Compare the output of the commands “ls /tmp” and “ls /tmp >ls-

tmp.txt” (where, in the second case, we consider the content of the ls-tmp.txt

to be the output). Do you notice something? If so, how could you explain
the phenomenon?

C 7.3 [!2] Why isn’t it possible to replace a file by a new version in one step,
for example using “grep xyz file >file”?

C 7.4 [!1] And what is wrong with “cat foo >>foo”, assuming a non-empty file
foo?

C 7.5 [2] In the shell, how would you output an error message such that it goes
to standard error output?

7.1.3 Command Pipelines

Output redirection is frequently used to store the result of a program in order to
continue processing it with a different command. However, this type of interme-
diate storage is not only quite tedious, but you must also remember to get rid of
the intermediate files once they are no longer required. Therefore, Linux offers a
way of linking commands directly via pipes: A program’s output automaticallypipes

becomes another program’s input.
This direct connection of several commands into a pipeline is done using thedirect connection of

several commands

pipeline
| operator. Instead of first redirecting the output of “ls -laF” to a file and then
looking at that file using less, you can do the same thing in one step without an
intermediate file:

7.1 I/O Redirection and Command Pipelines 93

Command tee Command

File

stdin stdout

Figure 7.2: The tee command

$ ls -laF | less

total 7

drwxr-xr-x 12 joe users 1024 Aug 26 18:55 ./

drwxr-xr-x 5 root root 1024 Aug 13 12:52 ../

drwxr-xr-x 3 joe users 1024 Aug 20 12:30 photos/

-rw-r--r-- 1 joe users 449 Sep 6 13:50 filelist

-rw-r--r-- 1 joe users 15811 Aug 13 12:33 pingu.gif

-rw-r--r-- 1 joe users 14373 Aug 13 12:33 hobby.txt

-rw-r--r-- 2 joe users 3316 Aug 20 15:14 chemistry.txt

These command pipelines can be almost any length. Besides, the final result can
be redirected to a file:

$ cut -d: -f1 /etc/passwd | sort | pr -2 >userlst

This command pipeline takes all user names from the first comma-separated col-
umn of /etc/passwd file, sorts them alphabetically and writes them to the userlst

file in two columns. The commands used here will be described in the remainder
of this chapter.

Sometimes it is helpful to store the data stream inside a command pipeline at
a certain point, for example because the intermediate result at that stage is useful intermediate result
for different tasks. The tee command copies the data stream and sends one copy
to standard output and another copy to a file. The command name should be
obvious if you know anything about plumbing (see Figure 7.2).

The tee command with no options creates the specified file or overwrites it if it
exists; with -a (“append”), the output can be appended to an existing file.

$ ls -laF | tee list | less

total 7

drwxr-xr-x 12 joe users 1024 Aug 26 18:55 ./

drwxr-xr-x 5 root root 1024 Aug 13 12:52 ../

drwxr-xr-x 3 joe users 1024 Aug 20 12:30 photos/

-rw-r--r-- 1 joe users 449 Sep 6 13:50 content

-rw-r--r-- 1 joe users 15811 Aug 13 12:33 pingu.gif

-rw-r--r-- 1 joe users 14373 Aug 13 12:33 hobby.txt

-rw-r--r-- 2 joe users 3316 Aug 20 15:14 chemistry.txt

In this example the content of the current directory is written both to the list file
and the screen. (The list file does not show up in the ls output because it is only
created afterwards by tee.)

Exercises

C 7.6 [!2] How would you write the same intermediate result to several files
at the same time?

94 7 Standard I/O and Filter Commands

Table 7.2: Options for cat (selection)

Option Result
-b (engl. number non-blank lines) Numbers all non-blank lines in

the output, starting at 1.
-E (engl. end-of-line) Displays a $ at the end of each line (useful

to detect otherwise invisible space characters).
-n (engl. number) Numbers all lines in the output, starting at 1.
-s (engl. squeeze) Replaces sequences of empty lines by a single

empty line.
-T (engl. tabs) Displays tab characters as “^I”.
-v (engl. visible) Makes control characters 𝑐 visible as “^𝑐”, char-

acters 𝛼 with character codes greater than 127 as “M-𝛼”.
-A (engl. show all) Same as -vET.

7.2 Filter Commands

One of the basic ideas of Unix—and, consequently, Linux—is the “toolkit princi-toolkit principle

ple”. The system comes with a great number of system programs, each of which
performs a (conceptually) simple task. These programs can be used as “building
blocks” to construct other programs, to save the authors of those programs from
having to develop the requisite functions themselves. For example, not every pro-
gram contains its own sorting routines, but many programs avail themselves of
the sort command provided by Linux. This modular structure has several advan-
tages:

• It makes life easier for programmers, who do not need to develop (or incor-
porate) new sorting routines all the time.

• If sort receives a bug fix or performance improvement, all programs using
sort benefit from it, too—and in most cases do not even need to be changed.

Tools that take their input from standard input and write their output to standard
output are called “filter commands” or “filters” for short. Without input redirec-
tion, a filter will read its input from the keyboard. To finish off keyboard input for
such a program, you must enter the key sequence Ctrl + d , which is interpreted
as “end of file” by the terminal driver.

B Note that the last applies to keyboard input only. Files on the disk may of
course contain the Ctrl + d character (ASCII 4), without the system believ-
ing that the file ended at that point. This as opposed to a certain very pop-
ular operating system, which traditionally has a somewhat quaint notion of
the meaning of the Control-Z (ASCII 26) character even in text files …

Many “normal” commands, such as the aforementioned grep, operate like fil-
ters if you do not specify input file names for them to work on.

In the remainder of the chapter you will become familiar with a selection of the
most important such commands. Some commands have crept in that are not tech-
nically genuine filter commands, but all of them form important building blocks
for pipelines.

7.3 Reading and Writing Files

7.3.1 Outputting and Concatenating Text Files—cat and tac

The cat (“concatenate”) command is really intended to join several files named onconcatenating files

the command line into one. If you pass just a single file name, the content of that

7.3 Reading and Writing Files 95

Table 7.3: Options for tac (selection)

Option Result
-b (engl. before) The separator is considered to occur (and be

output) in front of a part, not behind it.
-r (engl. regular expression) The separator is interpreted as a reg-

ular expression.
-s 𝑠 (engl. separator) Defines a different separator 𝑠 (in place of \n)

an. The separator may be several characters long.

file will be written to standard output. If you do not pass a file name at all, cat
reads its standard input—this may seem useless, but cat offers options to number
lines, make line ends and special characters visible or compress runs of blank lines
into one (Table 7.2).

B It goes without saying that only text files lead to sensible screen output with text files

cat. If you apply the command to other types of files (such as the binary file
/bin/cat), it is more than probable—on a text terminal at least—that the shell
prompt will consist of unreadable characters once the output is done. In this
case you can restore the normal character set by (blindly) typing reset. If you
redirect cat output to a file this is of course not a problem.

B The “Useless Use of cat Award” goes to people using cat where it is extra-
neous. In most cases, commands do accept filenames and don’t just read
their standard input, so cat is not required to pass a single file to them on
standard input. A command like “cat data.txt | grep foo” is unnecessary if
you can just as well write “grep foo data.txt”. Even if grep could only read its
standard input, “grep foo <data.txt” would be shorter and would not involve
an additional cat process.However, the whole issue is a bit more subtle; see
Exercise 7.21.

The tac command’s name is “cat backwards”, and it works like that, too: It Output a file’s lines in reverse
orderreads a number of named files or its standard input and outputs the lines it has

read in reverse order:

$ tac <<END

Alpha

Beta

Gamma

END

Gamma

Beta

Alpha

However, this is where the similarity ends already: tac does not support the same
options as cat but features its own (Table 7.3). For example, you can use the -s op-
tion to set up an alternative separator which the program will use when reversing separator

the input—normally the separator is a newline character, so the input is reversed
line by line. Consider, for example

$ echo A:B:C:D | tac -s :

D

C:B:A:$ _

(where the new shell prompt is appended directly to the last output line). This
output, which at first glance looks totally weird, can be explained as follows: The
input consists of the four parts “A:”, “B:”, “C:”, and “D\n” (the separator, here “:”
is considered to belong to the immediately preceding part, and the final newline

96 7 Standard I/O and Filter Commands

character is contributed by echo). These parts are output in reverse order, i. e.,
“D\n” comes first and then the other three, with no other intervening separators
(since every part contains a perfectly workable separator already); the next shell
prompt is appended immediately (without a new line) to the output. The -b option
considers the separator to belong to the following part rather than the preceding
one; with “tac -s : -b”, our example would produce the following output:

:D

:C:BA$ _

(think it through!).

Exercises

C 7.7 [2] How can you check whether a directory contains files with “weird”
names (e. g., ones with spaces at the end or invisible control characters in
the middle)?

7.3.2 Beginning and End—head and tail

Sometimes you are only interested in part of a file: The first few lines to check
whether it is the right file, or, in particular with log files, the last few entries. The
head and tail commands deliver exactly that—by default, the first ten and the last
ten lines of every file passed as an argument, respectively (or else as usual the first
or last ten lines of their standard input). The -n option lets you specify a different
number of lines: “head -n 20” returns the first 20 lines of its standard input, “tail
-n 5 data.txt” the last 5 lines of file data.txt.

B Tradition dictates that you can specify the number 𝑛 of desired lines directly
as “-𝑛”. Officially this is no longer allowed, but the Linux versions of head

and tail still support it.

You can use the -c option to specify that the count should be in bytes, not lines:
“head -c 20” displays the first 20 bytes of standard input, no matter how many
lines they occupy. If you append a “b”, “k”, or “m” (for “blocks”, “kibibytes”, and
“mebibytes”, respectively) to the count, the count will be multiplied by 512, 1024,
or 1048576, respectively.

B head also lets you use a minus sign: “head -c -20” displays all of its standard
input but the last 20 bytes.

B By way of revenge, tail can do something that head does not support: If the
number of lines starts with “+”, it displays everything starting with the given
line:

$ tail -n +3 file Everything from line 3

The tail command also supports the important -f option. This makes tail wait
after outputting the current end of file, to also output data that is appended later
on. This is very useful if you want to keep an eye on some log files. If you pass
several file names to tail -f, it puts a header line in front of each block of output
lines telling what file the new data was written to.

Exercises

C 7.8 [!2] How would you output just the 13th line of the standard input?

C 7.9 [3] Check out “tail -f”: Create a file and invoke “tail -f” on it. Then,
from another window or virtual console, append something to the file us-
ing, e. g., “echo >>…”, and observe the output of tail. What does it look like
when tail is watching several files simultaneously?

7.3 Reading and Writing Files 97

Table 7.4: Options for od (excerpt)

Option Result
-A 𝑟 Base of the offset at the beginning of the line. Valid values are: d (decimal), o (octal), x

(hexadecimal), n (no offset at all).
-j 𝑜 Skip 𝑜 bytes at the beginning of the input, then start writing output.
-N 𝑛 Output at most 𝑛 bytes.
-t 𝑡 Use type specification 𝑡. Several -t options may occur, and one line will be output for

each of them in the requisite format.
Possible values for 𝑡: a (named character), c (ASCII character), d (signed decimal number),
f (floating-point number), o (octal number), u (unsigned decimal number), x (hexadeci-
mal number).
You can append a digit to all options except a and c. This specifies how many bytes
of the input should be interpreted as a unit. Details for this and for letter-based width
specifiers can be found in od(1).
If you append a z to an option, the printable characters of that line will be displayed to
the right.

-v Outputs all duplicate lines as well.
-w 𝑤 Writes 𝑤 bytes per line; default value is 16.

C 7.10 [3] What happens to “tail -f” if the file being observed shrinks?

C 7.11 [3] Explain the output of the following commands:

$ echo Hello >/tmp/hello

$ echo "Hiya World" >/tmp/hello

when you have started the command

$ tail -f /tmp/hello

in a different window after the first echo above.

7.3.3 Just the Facts, Ma’am—od and hexdump

cat, tac, head, and tail work best with text files: Arbitrary binary files can in prin-
ciple be processed, but the last three programs in particular prefer dealing with
files that consist of noticeable lines. Even so, it is often useful to be able to check
exactly what is in a file. A suitable tool is the od (“octal dump”) command, which od

can display arbitrary data in different formats. Binary data can be displayed byte
by byte or word by word in octal, hexadecimal, decimal or ASCII coding. The
standard display style of od is as follows:

$ od /etc/passwd | head -3

0000000 067562 072157 074072 030072 030072 071072 067557 035164

0000020 071057 067557 035164 061057 067151 061057 071541 005150

0000040 060563 064163 067562 072157 074072 030072 030072 071072

At the very left there is the (octal) offset in the file where the output line starts. Line format
The eight following numbers each correspond to two bytes from the file, printed
in octal. This is only useful in very specific circumstances.

Fortunately od supports options that let you change the output format in very
many ways (Table 7.4). Most important is the -t option, which describes the for- -t

mat of the data lines. For byte-by-byte hexadecimal output, you could use, for
example,

98 7 Standard I/O and Filter Commands

$ od -txC /etc/passwd

0000000 72 6f 6f 74 3a 78 3a 30 3a 30 3a 72 6f 6f 74 3a

0000020 2f 72 6f 6f 74 3a 2f 62 69 6e 2f 62 61 73 68 0a

0000040 73 61 73 68 72 6f 6f 74 3a 78 3a 30 3a 30 3a 72

�����

(the offset remains octal). Here, x specifies “hexadecimal”, and C specifies “byte-
wise”. If you want to see the characters themselves in addition to the hexadecimal
numbers, you can append a z:

$ od -txCz /etc/passwd

0000000 72 6f 6f 74 3a 78 3a 30 3a 30 3a 72 6f 6f 74 3a >root:x:0:0:root:<

0000020 2f 72 6f 6f 74 3a 2f 62 69 6e 2f 62 61 73 68 0a >/root:/bin/bash.<

0000040 73 61 73 68 72 6f 6f 74 3a 78 3a 30 3a 30 3a 72 >sashroot:x:0:0:r<

�����

Non-printable characters (here the 0a—a newline character—at the end of the sec-
ond line) are replaced by “.”.

You can also concatenate several type specifiers or put them into separate -tseveral type specifiers

options. This gives you one line per type specifier:

$ od -txCc /etc/passwd

0000000 72 6f 6f 74 3a 78 3a 30 3a 30 3a 72 6f 6f 74 3a

r o o t : x : 0 : 0 : r o o t :

0000020 2f 72 6f 6f 74 3a 2f 62 69 6e 2f 62 61 73 68 0a

/ r o o t : / b i n / b a s h \n

0000040 73 61 73 68 72 6f 6f 74 3a 78 3a 30 3a 30 3a 72

s a s h r o o t : x : 0 : 0 : r

�����

(which is identical to »od -txC -tc /etc/passwd«).
A sequence of lines that would be equal to the last previously-output line isidentical output lines

replaced by an asterisk (“*”) at the left margin:

$ od -tx -N 64 /dev/zero

0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

0000100

(/dev/zero produces an unlimited supply of null bytes, and the -N option to od limits
the output to 64 of them.) The -v option suppresses the abbreviation:

$ od -tx -N 64 -v /dev/zero

0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000100

The hexdump (or hd) program does a very similar job. It supports output formatshexdump

that are very like those of od, even though the corresponding options are com-
pletely different. For example, the

$ hexdump -o -s 446 -n 64 /etc/passwd

is mostly equivalent to the first od example above. Most od options have fairly
similar counterparts in hexdump

7.3 Reading and Writing Files 99

A major difference between hexdump and od is hexdump’s support for output for- output formats

mats. These let you specify in much more detail than is possible with od what the
output should look like. Consider the following example:

$ cat hexdump.txt

0123456789ABC����� XYZabc����� xyz

$ hexdump -e '"%x-"' hexdump.txt

33323130-37363534-�����-a7a79-$

The following points are notable:

• The “"%x"” output format writes 4 bytes’ worth of the input in a hexadeci-
mal representation—“30” is the hexadecimal equivalent of 48, the numerical
value of the “0” character according to the ASCII. The “-” suffix is output
as-is.

• The 4 bytes are output in reverse order. This is an artefact of the Intel pro-
cessor architecture.

• The double quotes are part of the syntax of hexdump and need to be protected
using single quotes (or equivalent) lest the shell remove them.

• The $ at the end is the next command prompt; hexdump does not output new-
line characters of its own.

Conveniently for programmers, the possible output formats derive from those
used by the printf(3) function found in programming languages like C, Perl, awk,
and so on (even bash supports a printf command). Check the documentation for
details!

hexdump output formats are much more sophisticated than the simple example
shown above. As usual with printf, you get to specify a “field width” for the
output:

$ hexdump -e '"%10x-"' hexdump.txt

33323130- 37363534- ����� a7a79-$

(In this case every sequence of hexadecimal digits—eight characters in length—
appears flush-right in a ten-character field.)

You can also specify how often a format will be “executed”: repeat count

$ hexdump -e '4 "%x-" "\n"' hexdump.txt

33323130-37363534-42413938-46454443-

4a494847-4e4d4c4b-5251504f-56555453-

5a595857-64636261-68676665-6c6b6a69-

706f6e6d-74737271-78777675-a7a79-

The 4 preceding the commands in this section says that the “"%x"” format is to be
applied four times. After that, we continue with the next format—“"\n"”—, which
produces a newline character. After that, hexdump starts again from the front. newline character

In addition, you can determine how many bytes a format should process (with byte count

the numerical formats you usually have a choice of 1, 2, and 4):

$ hexdump -e '/2 "%x-" "\n"' hexdump.txt

3130-

3332-

�����

7a79-

a-

(“/2” is an abbreviation for “1/2”, which is why every %x format appears just once
per line.) Repeat count and byte count may be combined:

100 7 Standard I/O and Filter Commands

Table 7.5: Options for tr

Option Result
-c (complement) Replaces all characters not in ⟨s1⟩ by characters from ⟨s2⟩
-d (delete) Removes all characters in ⟨s1⟩ without substitution
-s (squeeze) Runs of identical characters from ⟨s2⟩ are replaced by a single character

$ hexdump -e '4/2 "%x-" "\n"' hexdump.txt

3130-3332-3534-3736-

3938-4241-4443-4645-

�����

7675-7877-7a79-a-

And you may also mix different output formats:

$ hexdump -e '"%2_ad" "%2.2s" 3/2 " %x" " %1.1s" "\n"'�

� hexdump.txt

0 01 3332 3534 3736 8

9 9A 4342 4544 4746 H

�����

In this case we output the first two characters from the file as characters (rather
than numerical codes) (“"%2.2s"”), then three times the codes of two characters
in hexadecimal form (“3/2 " %x"”) followed by another character as a character
(“"%1.1s"”) and a newline character. Then we start again from the front. The
“"%2_ad"” at the beginning of the line outputs the current offset in the file (counted
in bytes from the start of the file) in decimal form in a 2-character field.

Exercises

C 7.12 [2] What is the difference between the “a” and “c” type specifiers of od?

C 7.13 [3] The /dev/random “device” returns random bytes (see Section 9.3). Use
od with /dev/random to assign a decimal random number from 0 to 65535 to
the shell variable r.

7.4 Text Processing

7.4.1 Character by Character—tr, expand and unexpand

The tr command is used to replace single characters by different ones inside a text,
or to delete them outright. tr is strictly a filter command, it does not take filename
arguments but works with the standard channels only.

For substitutions, the command syntax is “tr ⟨s1⟩ ⟨s2⟩”. The two parameterssubstitutions

are character strings describing the substitution: In the simplest case the first char-
acter in ⟨s1⟩ will be substituted by the first character in ⟨s2⟩, the second character
in ⟨s1⟩ by the second in ⟨s2⟩, and so on. If ⟨s1⟩ is longer than ⟨s2⟩, the “excess”
characters in ⟨s1⟩ are replaced by the final character in ⟨s2⟩; if ⟨s2⟩ is longer than
⟨s1⟩, the extra characters in ⟨s2⟩ are ignored.

A little example by way of illustration:

$ tr AEiu aey <example.txt >new1.txt

7.4 Text Processing 101

Table 7.6: Characters and character classes for tr

Class Meaning
\a Control-G (ASCII 7), audible alert
\b Control-H (ASCII 8), backspace
\f Control-L (ASCII 12), form feed
\n Control-J (ASCII 10), line feed
\r Control-M (ASCII 13), carriage return
\t Control-I (ASCII 9), tabulator character
\v Control-K (ASCII 11), vertical tabulator
\𝑘𝑘𝑘 the character with octal code 𝑘𝑘𝑘
\\ a backslash
[𝑐*𝑛] in ⟨s2⟩: 𝑛 times character 𝑐
[𝑐*] in ⟨s2⟩: character 𝑐 as often as needed to make ⟨s2⟩ as long as ⟨s1⟩
[:alnum:] all letters and digits
[:alpha:] all letters
[:blank:] all horizontal whitespace characters
[:cntrl:] all control characters
[:digit:] all digits
[:graph:] all printable characters (excluding space)
[:lower:] all lowercase letters
[:print:] all printable characters (including space)
[:punct:] all punctuation characters
[:space:] all horizontal or vertical whitespace characters
[:upper:] all capital letters
[:xdigit:] alle hexadecimal letters (0–9, A–F, a–f)
[:𝑐:] alle characters equivalent to 𝑐 (at this point only 𝑐 itself)

This command reads file example.txt and replaces all “A” characters by “a”, all “E”
characters by “e”, and all “i” and “u” characters by “y”. The result is stored in file
new1.txt.

It is permissible to express sequences of characters by ranges of the form “𝑚-𝑛”, ranges
where 𝑚 must precede 𝑛 in the character collating order. With the -c option, tr
does not replace the content of ⟨s1⟩ but its “complement”, all characters not con-
tained in ⟨s1⟩. The command

$ tr -c A-Za-z ' ' <example.txt >new1.txt

replaces all non-letters in example.txt by spaces.

B It is also possible to use character classes of the form [:𝑘:] (the valid class character classes

names are shown in Table 7.6); in many cases this makes sense in order
to construct commands that work in different language environments. In
a German-language environment, the character class “[:alpha:]”, for exam-
ple, contains the umlauts, a “home-cooked” class like “A-Za-z”, which works
for English, doesn’t. There are some other restrictions on character classes
which you can look up in the tr documentation (see “info tr”).

To delete characters, you need only specify ⟨s1⟩: The Deleting characters

$ tr -d a-z <example.txt >new2.txt

command removes all lowercase letters from example.txt. Furthermore, you can
replace runs of equivalent input characters by a single output character: The

$ tr -s '\n' <example.txt >new3.txt

102 7 Standard I/O and Filter Commands

command removes empty lines by replacing sequences of newline characters by
a single one.

The -s option (“squeeze”) also makes it possible to substitute two different in-
put characters by two identical ones, and to replace them by a single one (as with
-s with a single argument). The following turns all “A” and “E” characters (and
sequences of those) into a single “X” in new3.txt:

$ tr -s AE X <example.txt >new3.txt

The “tabulator”—a good old typewriter feature—is a convenient way of pro-tabulator

ducing indentation when programming (or entering text in general). By conven-
tion, “tabulator stops” are set in certain columns (usually every 8 columns, i. e.,
at positions 8, 16, 24, …), and common editors move to the next tabulator stop
to the right when the Tab key is pressed—if you press Tab when the cursor is
at column 11 on the screen, the cursor goes to column 16. In spite of this, the
resulting “tabulator characters” (or “tabs”) will be written to the file verbatim,
and many programs cannot interpret them correctly. The expand command helpsExpanding tabs

here: It reads the files named as its parameters (or else—you knew it—its stan-
dard input) and writes them to its standard output with all tabs removed by the
appropriate number of spaces to keep the tabulator stops every 8 columns. With
the -t you can define a different “scale factor” for the tabulator stops; a common
value is, e. g., “-t 4”, which sets up tabulator stops at columns 4, 8, 12, 16, etc.

B If you give several comma-separated numbers with -t, tabulator stops will
be set at the named columns exactly: “expand -t 4,12,32” sets tabulator stops
at columns 4, 12 and 32. Additional tabs in an input line will be replaced by
spaces.

B The -i (“initial”) option causes only tabs at the beginning of the line to be
expanded to spaces.

The unexpand more or less reverses the effect of expand: All runs of tabs and spacesIntroducing tabs

at the beginning of the input lines (as usual taken from named files or standard in-
put) are replaced by the shortest sequence of tabs and spaces resulting in the same
indentation. A line starting with a tab, two spaces, another tab and nine spaces
will, for example—assuming standard tabulator stops every eight columns—be
replaced by a line starting with three tabs and a space. The -a (“all”) option causes
all sequences of two or more tabs and spaces to be “optimized”, not just those at
the beginning of a line.

Exercises

C 7.14 [!2] The famous Roman general Julius Caesar supposedly used the fol-
lowing cipher to transmit secret messages: The letter “A” was replaced by
“D”, “B” by “E” and so on; “X” was replaced by “A”, “Y” by “B” and “Z”
by “C” (if we start from today’s 26-letter alphabet, disregarding the fact that
the ancient Romans did not use J, K, W, or Y). Imagine you are are program-
mer in Caesar’s legion. Which tr commands would you use to encrypt the
general’s messages and to decrypt them again?

C 7.15 [3] What tr command would you use to replace all vowels in a text by
a single one? Consider the (German) children’s game:

DREI CHINESEN MIT DEM KONTRABASS

DRAA CHANASAN MAT DAM KANTRABASS

C 7.16 [3] How would you transform a text file such that all punctuation is
removed and every word appears on a line on its own?

7.4 Text Processing 103

C 7.17 [2] Give a tr command to remove the characters “a”, “z”, and “-” from
the standard input.

C 7.18 [1] How would you convince yourself that unexpand really replaces
spaces and tabulator characters by an “optimal” sequence?

7.4.2 Line by Line—fmt, pr and so on

While the commands from the previous section considered their input characters
singly or in small groups, Linux also contains many commands that deal with
whole input lines. Some of them are introduced in this and the subsequent sec-
tions.

The fmt program wraps the input lines (as usual taken from the files mentioned Line wrapping

on the command line, or the standard input) such that they have a given maximal
line—75 characters, unless otherwise specified using the -w option. It is quite con-
cerned with producing pleasant-looking output.

Let us consider some examples of fmt (the frog0.txt file is equivalent to frog.txt,
except that the first line of each paragraph is indented by two spaces):

$ head frog0.txt

The Frog King, or Iron Henry

In olden times when wishing still helped one, there lived a king

whose daughters were all beautiful, but the youngest was so beautiful

that the sun itself, which has seen so much, was astonished whenever

it shone in her face.

Close by the king's castle lay a great dark forest, and under an old

lime-tree in the forest was a well, and when the day was very warm,

the king's child went out into the forest and sat down by the side of

In the first example we reduce the line length to 40 characters:

$ fmt -w 40 frog0.txt

The Frog King, or Iron Henry

In olden times when wishing still

helped one, there lived a king

whose daughters were all beautiful,

but the youngest was so beautiful that

the sun itself, which has seen so much,

was astonished whenever it shone in

�����

Note that the second line of the first paragraph is indented by spaces for no ap-
parent reason. This is due to the fact that fmt usually only considers those ranges
of lines for wrapping that are indented the same. The indented first line of the
first paragraph of the example file is therefore considered its own paragraph, and
all resulting lines are indented like the input paragraph’s first (and only) line.
The second and subsequent input lines are considered an independent, additional
“paragraph”, and wrapped accordingly (using the indentation of the second line).

B fmt tries to keep empty lines, the word spacing, and the indentation from
the input. It prefers line breaks at the end of a sentence and tries to avoid
them after the first and before the last word of a sentence. The “end of a
sentence” according to fmt is either the end of a paragraph or a word ending
with “.”, “?”, or “!”, followed by two (!) spaces.

B There is more information about the way fmt works in the info page of the
program (Hint to find it: fmt is part of the GNU “coreutils” collection.)

104 7 Standard I/O and Filter Commands

Table 7.7: Options for pr (selection)

Option Result
-𝑛 Creates 𝑛-column output (any positive integer value is permissible, but only 2 to 5 usu-

ally make sense)
-h 𝑡 (engl. header) Outputs 𝑡 instead of the source file name at the top of each page
-l 𝑛 (engl. length) Sets the number of lines per page, default value is 66
-n (engl. number) Labels each line with a five-digit line number separated from the rest of

the line by a tab character
-o 𝑛 (engl. offset) Indents the text 𝑛 characters from the left margin
-t (engl. omit) Suppresses the header and footer lines (5 each)
-w 𝑛 (engl. width) Sets the number of characters per line, default value is 72

In the next example we use the -c (“crown-margin mode”) option to avoid the
phenomenon we just explained:

$ fmt -c -w 40 frog0.txt

The Frog King, or Iron Henry

In olden times when wishing still

helped one, there lived a king whose

daughters were all beautiful, but the

youngest was so beautiful that the

sun itself, which has seen so much,

was astonished whenever it shone in

�����

Here the indentation of the (complete) paragraph is taken from the first two lines
of the input; their indentation is kept, and the subsequent input lines follow the
indentation of the second.

Finally, an example featuring long lines:

$ fmt -w 100 frog0.txt

The Frog King, or Iron Henry

In olden times when wishing still helped one, there lived a king

whose daughters were all beautiful, but the youngest was so beautiful that the sun itself,

which has seen so much, was astonished whenever it shone in her face.

Close by the king's castle lay a great dark forest, and under an old

lime-tree in the forest was a well, and when the day was very warm, the king's child went out

into the forest and sat down by the side of the cool fountain, and when she was bored she took

a golden ball, and threw it up on high and caught it, and this ball was her favourite plaything.

�����

We could have used -c here as well to avoid the “short” first lines of the para-
graphs. Without this option, the first line is once more considered a paragraph of
its own, and not amalgamated with the subsequent lines.

The name of the pr (“print”) command may be misleading at first. It does not,
as might be surmised, output files to the printer—this is the domain of the lpr

command. Instead, pr manages formatting a text for printed output, including
page breaks, indentation and header and footer lines. You can either specify input
files on the command line or have pr process its standard input (Table 7.7).

Here is a somewhat more complex example to illustrate pr’s workings:

$ fmt -w 34 frog.txt | pr -h "Grimm Fairy-Tales" -2

7.4 Text Processing 105

Table 7.8: Options for nl (selection)

Option Result
-b 𝑠 (body style) Numbers the body lines according to 𝑠. Possible values for 𝑠 are a (num-

ber all lines), t (number only non-blank lines), n (number no lines at
all), and p⟨regex⟩ (number only the lines matching regular expression
⟨regex⟩). The default value is t.

-d 𝑝[𝑞] (delimiter) Use the two characters 𝑝𝑞 instead of “\:” in delimiter lines. If only 𝑝 is
given, 𝑞 remains set to “:”.

-f 𝑠 (footer style) Formats the footer lines according to 𝑠. The possible values of 𝑠 corre-
spond to those of -b. The default value is n.

-h 𝑠 (header style) Similar to -f, for header lines.
-i 𝑛 (increment) Increments the line number by 𝑛 for every line.
-n 𝑓 (number format) Determines the line number format. Possible values for 𝑓 : ln (flush-

left with no leading zeroes), rn (flush-right with no leading zeroes), rz
(flush-right with leading zeroes).

-p (page) Does not reset the line number to its original value between logical
pages.

-v 𝑛 Starts numbering at line number 𝑛.
-w 𝑛 (width) Output a 𝑛-character line number (according to -n).

2004-09-13 08:42 Grimm Fairy-Tales Page 1

The Frog King, or Iron Henry >>Whatever you will have, dear

frog,« said she, >>My clothes, my

In olden times when wishing pearls and jewels, and even the

still helped one, there lived a golden crown which I am wearing.«

king whose daughters were all

beautiful, but the youngest The frog answered, >>I do not care

was so beautiful that the sun for your clothes, your pearls

itself, which has seen so much, and jewels, nor for your golden

was astonished whenever it shone crown, but if you will love me

in her face. and let me be your companion and

�����

Here we use fmt to format the text of the Frog King in a long narrow column, and
pr to display the text in two columns.

The nl command specialises in line numbering. If nothing else is specified, it line numbering

numbers the non-blank lines of its input (which as usual will be taken from named
files or else standard input) in sequence:

$ nl frog.txt

1 The Frog King, or Iron Henry

2 In olden times when wishing still helped one, there lived a king whose

3 daughters were all beautiful, but the youngest was so beautiful that

4 the sun itself, which has seen so much, was astonished whenever it

5 shone in her face.

6 Close by the king's castle lay a great dark forest, and under an old

�����

This by itself is nothing you would not manage using “cat -b”. For one, though,
nl allows for much closer control of the line numbering process:

106 7 Standard I/O and Filter Commands

$ nl -b a -n rz -w 5 -v 1000 -i 10 frog.txt

01000 The Frog King, or Iron Henry

01010

01020 In olden times when wishing still helped one, there lived a king whose

01030 daughters were all beautiful, but the youngest was so beautiful that

01040 the sun itself, which has seen so much, was astonished whenever it

01050 shone in her face.

01060

01070 Close by the king's castle lay a great dark forest, and under an old

01080 lime-tree in the forest was a well, and when the day was very warm,

01090 the king's child went out into the forest and sat down by the side of

�����

Taken one by one, the options imply the following (see also Table 7.8): “-b a” causes
all lines to be numbered, not just—as in the previous example—the non-blank
ones. “-n rz” formats line numbers flush-right with leading zeroes, “-w 5” caters
for a five-column line number, and “-i 10” increments the line number by 10 per
line (not, as usual, 1).

In addition, nl can also handle per-page line numbers. This is organized usingPer-page line numbers

the “magical” strings “\:\:\:”, “\:\:” und “\:”, as shown in the previous example:

$ cat nl-test

\:\:\:

Header of first page

\:\:

First line of first page

Second line of first page

Last line of first page

\:

Footer of first page

\:\:\:

Footer of second page

(Two lines high)

\:\:

First line of second page

Second line of second page

Second-to-last line of second page

Last line of second page

\:

Header of second page

(Two lines high)

Each (logical) page has a header and footer as well as a “body” containing the textheader and footer

proper. The header is introduced using “\:\:\:”, and separated from the body
using “\:\:”. The body, in turn, ends at a “\:” line. Header and footer may also
be omitted.

By default, nl numbers the lines on each page starting at 1; header and footer
lines are not numbered:

$ nl nl-test

Header of first page

1 First line of first page

2 Second line of first page

3 Last line of first page

Footer of first page

7.4 Text Processing 107

Table 7.9: Options for wc (selection)

Option Wirkung
-l (lines) outputs line count
-w (words) outputs word count
-c (characters) outputs character count

Footer of second page

(Two lines high)

1 First line of second page

2 Second line of second page

3 Second-to-last line of second page

4 Last line of second page

Header of second page

(Two lines high)

The “\:…” separator lines are replaced by blank lines in the output.
The name of the wc command is an abbreviation of “word count”. In spite of

this moniker, not just a word count can be determined, but also a count of total Count lines, words, characters
characters and lines in the input (files, standard input). This is done using the
options in Table 7.9. A “word”, from wc’s point of view, is a sequence of one or
more letters. Without an option, all three values are output in the order given in
Table 7.9:

$ wc frog.txt

144 1397 7210 frog.txt

With the options in Table 7.9, you can limit wc’s output to only some of the values:

$ ls | wc -l

13

The example shows how to use wc to determine the number of entries in the current
directory by counting the lines in the output of the ls command.

Exercises

C 7.19 [1] Number the lines of file frog.txt with an increment of 2 per line
starting at 100.

C 7.20 [3] How can you number the lines of a file in reverse order, similar to

144 The Frog King, or Iron Henry

143

142 In olden times when wishing still helped one, there lived a king whose

141 daughters were all beautiful, but the youngest was so beautiful that

(Hint: Two reversals give the original)?

C 7.21 [!2] How does the output of the “wc a.txt b.txt c.txt” command differ
from that of the “cat a.txt b.txt c.txt | wc” command?

108 7 Standard I/O and Filter Commands

7.5 Data Management

7.5.1 Sorted Files—sort and uniq

The sort command lets you sort the lines of text files according to predetermined
criteria. The default setting is ascending (from A to Z) according to the ASCIIdefault setting

values1 of the first few characters of each line. This is why special characters such
as German umlauts are frequently sorted incorrectly. For example, the character
code of “Ä” is 143, so that character ends up far beyond “Z” with its character code
of 91. Even the lowercase latter “a” is considered “greater than” the uppercase
letter “Z”.

B Of course, sort can adjust itself to different languages and cultures. To sort
according to German conventions, set one of the environment variables LANG,
LC_ALL, or LC_COLLATE to a value such as “de”, “de_DE”, or “de_DE@UTF-8” (the
actual value depends on your distribution). If you want to set this up for
a single sort invocation only, do

$ … | LC_COLLATE=de_DE.UTF-8 sort

The value of LC_ALL has precedence over the value of LC_COLLATE and that,
again, has precedence over the value of LANG. As a side effect, German sort
order causes the case of letters to be ignored when sorting.

Unless you specify otherwise, the sort proceeds “lexicographically” considering
all of the input line. That is, if the initial characters of two lines compare equal,
the first differing character within the line governs their relative positioning. Of
course sort can sort not just according to the whole line, but more specifically ac-
cording to the values of certain “columns” or fields of a (conceptual) table. FieldsSorting by fields

are numbered starting at 1; with the “-k 2” option, the first field would be ignored
and the second field of each line considered for sorting. If the values of two lines
are equal in the second field, the rest of the line will be looked at, unless you spec-
ify the last field to be considered using something like “-k 2,3”. Incidentally, it is
permissible to specify several -k options with the same sort command.

B In addition, sort supports an obsolete form of position specification: Here
fields are numbered starting at 0, the initial field is specified as “+𝑚” and
the final field as “-𝑛”. To complete the differences to the modern form, the
final field is specified “exclusively”—you give the first field that should not
be taken into account for sorting. The examples above would, respectively,
be “+1”, “+1 -3”, and “+1 -2”.

The space character serves as the separator between fields. If several spaces occurseparator

in sequence, only the first is considered a separator; the others are considered
part of the value of the following field. Here is a little example, namely the list
of participants for the annual marathon run of the Lameborough Track & Field
Club. To start, we ensure that we use the system’s standard language environment
(“POSIX”) by resetting the corresponding environment variables. (Incidentally, the
fourth column gives a runner’s bib number.)

$ unset LANG LC_ALL LC_COLLATE

$ cat participants.dat

Smith Herbert Pantington AC 123 Men

Prowler Desmond Lameborough TFC 13 Men

Fleetman Fred Rundale Sportsters 217 Men

Jumpabout Mike Fairing Track Society 154 Men

1Of course ASCII only goes up to 127. What is really meant here is ASCII together with whatever
extension for the characters with codes from 128 up is currently used, for example ISO-8859-1, also
known as ISO-Latin-1.

7.5 Data Management 109

de Leaping Gwen Fairing Track Society 26 Ladies

Runnington Vivian Lameborough TFC 117 Ladies

Sweat Susan Rundale Sportsters 93 Ladies

Runnington Kathleen Lameborough TFC 119 Ladies

Longshanks Loretta Pantington AC 55 Ladies

O'Finnan Jack Fairing Track Society 45 Men

Oblomovsky Katie Rundale Sportsters 57 Ladies

Let’s try a list sorted by last name first. This is easy in principle, since the last
names are at the front of each line:

$ sort participants.dat

Fleetman Fred Rundale Sportsters 217 Men

Jumpabout Mike Fairing Track Society 154 Men

Longshanks Loretta Pantington AC 55 Ladies

O'Finnan Jack Fairing Track Society 45 Men

Oblomovsky Katie Rundale Sportsters 57 Ladies

Prowler Desmond Lameborough TFC 13 Men

Runnington Kathleen Lameborough TFC 119 Ladies

Runnington Vivian Lameborough TFC 117 Ladies

Smith Herbert Pantington AC 123 Men

Sweat Susan Rundale Sportsters 93 Ladies

de Leaping Gwen Fairing Track Society 26 Ladies

You will surely notice the two small problems with this list: “Oblomovsky” should
really be in front of “O’Finnan”, and “de Leaping” should end up at the front of
the list, not the end. These will disappear if we specify “English” sorting rules:

$ LC_COLLATE=en_GB sort participants.dat

de Leaping Gwen Fairing Track Society 26 Ladies

Fleetman Fred Rundale Sportsters 217 Men

Jumpabout Mike Fairing Track Society 154 Men

Longshanks Loretta Pantington AC 55 Ladies

Oblomovsky Katie Rundale Sportsters 57 Ladies

O'Finnan Jack Fairing Track Society 45 Men

Prowler Desmond Lameborough TFC 13 Men

Runnington Kathleen Lameborough TFC 119 Ladies

Runnington Vivian Lameborough TFC 117 Ladies

Smith Herbert Pantington AC 123 Men

Sweat Susan Rundale Sportsters 93 Ladies

(en_GB is short for “British English”; en_US, for “American English”, would also work
here.) Let’s sort according to the first name next:

$ sort -k 2,2 participants.dat

Smith Herbert Pantington AC 123 Men

Sweat Susan Rundale Sportsters 93 Ladies

Prowler Desmond Lameborough TFC 13 Men

Fleetman Fred Rundale Sportsters 217 Men

O'Finnan Jack Fairing Track Society 45 Men

Jumpabout Mike Fairing Track Society 154 Men

Runnington Kathleen Lameborough TFC 119 Ladies

Oblomovsky Katie Rundale Sportsters 57 Ladies

de Leaping Gwen Fairing Track Society 26 Ladies

Longshanks Loretta Pantington AC 55 Ladies

Runnington Vivian Lameborough TFC 117 Ladies

This illustrates the property of sort mentioned above: The first of a sequence of
spaces is considered the separator, the others are made part of the following field’s

110 7 Standard I/O and Filter Commands

Table 7.10: Options for sort (selection)

Option Result
-b (blank) Ignores leading blanks in field contents
-d (dictionary) Sorts in “dictionary order”, i. e., only letters, digits and spaces are taken

into account
-f (fold) Makes uppercase and lowercase letters equivalent
-i (ignore) Ignores non-printing characters
-k ⟨field⟩[,⟨field’⟩] (key) Sort according to ⟨field⟩ (up to and including ⟨field’⟩)
-n (numeric) Considers field value as a number and sorts according to its numeric

value; leading blanks will be ignored
-o datei (output) Writes results to a file, whose name may match the original input file
-r (reverse) Sorts in descending order, i. e., Z to A
-t⟨char⟩ (terminate) The ⟨char⟩ character is used as the field separator
-u (unique) Writes only the first of a sequence of equal output lines

value. As you can see, the first names are listed alphabetically but only within the
same length of last name. This can be fixed using the -b option, which treats runs
of space characters like a single space:

$ sort -b -k 2,2 participants.dat

Prowler Desmond Lameborough TFC 13 Men

Fleetman Fred Rundale Sportsters 217 Men

Smith Herbert Pantington AC 123 Men

O'Finnan Jack Fairing Track Society 45 Men

Runnington Kathleen Lameborough TFC 119 Ladies

Oblomovsky Katie Rundale Sportsters 57 Ladies

de Leaping Gwen Fairing Track Society 26 Ladies

Longshanks Loretta Pantington AC 55 Ladies

Jumpabout Mike Fairing Track Society 154 Men

Sweat Susan Rundale Sportsters 93 Ladies

Runnington Vivian Lameborough TFC 117 Ladies

This sorted list still has a little blemish; see Exercise 7.24.
The sort field can be specified in even more detail, as the following exampleMore detailed field specification

shows:

$ sort -br -k 2.2 participants.dat

Sweat Susan Rundale Sportsters 93 Ladies

Fleetman Fred Rundale Sportsters 217 Men

Longshanks Loretta Pantington AC 55 Ladies

Runnington Vivian Lameborough TFC 117 Ladies

Jumpabout Mike Fairing Track Society 154 Men

Prowler Desmond Lameborough TFC 13 Men

Smith Herbert Pantington AC 123 Men

de Leaping Gwen Fairing Track Society 26 Ladies

Oblomovsky Katie Rundale Sportsters 57 Ladies

Runnington Kathleen Lameborough TFC 119 Ladies

O'Finnan Jack Fairing Track Society 45 Men

Here, the participants.dat file is sorted in descending order (-r) according to the
second character of the second table field, i. e., the second character of the first
name (very meaningful!). In this case as well it is necessary to ignore leading
spaces using the -b option. (The blemish from Exercise 7.24 still manifests itself
here.)

With the -t (“terminate”) option you can select an arbitrary character in place
of the field separator. This is a good idea in principle, since the fields then mayfield separator

7.5 Data Management 111

contain spaces. Here is a more usable (if less readable) version of our example file:

Smith:Herbert:Pantington AC:123:Men

Prowler:Desmond:Lameborough TFC:13:Men

Fleetman:Fred:Rundale Sportsters:217:Men

Jumpabout:Mike:Fairing Track Society:154:Men

de Leaping:Gwen:Fairing Track Society:26:Ladies

Runnington:Vivian:Lameborough TFC:117:Ladies

Sweat:Susan:Rundale Sportsters:93:Ladies

Runnington:Kathleen:Lameborough TFC:119:Ladies

Longshanks:Loretta: Pantington AC:55:Ladies

O'Finnan:Jack:Fairing Track Society:45:Men

Oblomovsky:Katie:Rundale Sportsters:57:Ladies

Sorting by first name now leads to correct results using “LC_COLLATE=en_GB sort -t:

-k2,2”. It is also a lot easier to sort, e. g., by a participant’s number (now field 4, no
matter how many spaces occur in their club’s name:

$ sort -t: -k4 participants0.dat

Runnington:Vivian:Lameborough TFC:117:Ladies

Runnington:Kathleen:Lameborough TFC:119:Ladies

Smith:Herbert:Pantington AC:123:Men

Prowler:Desmond:Lameborough TFC:13:Men

Jumpabout:Mike:Fairing Track Society:154:Men

Fleetman:Fred:Rundale Sportsters:217:Men

de Leaping:Gwen:Fairing Track Society:26:Ladies

O'Finnan:Jack:Fairing Track Society:45:Men

Longshanks:Loretta: Pantington AC:55:Ladies

Oblomovsky:Katie:Rundale Sportsters:57:Ladies

Sweat:Susan:Rundale Sportsters:93:Ladies

Of course the “number” sort is done lexicographically, unless otherwise specified—“117”
and “123” are put before “13”, and that in turn before “154”. This can be fixed by
giving the -n option to force a numeric comparison: numeric comparison

$ sort -t: -k4 -n participants0.dat

Prowler:Desmond:Lameborough TFC:13:Men

de Leaping:Gwen:Fairing Track Society:26:Ladies

O'Finnan:Jack:Fairing Track Society:45:Men

Longshanks:Loretta: Pantington AC:55:Ladies

Oblomovsky:Katie:Rundale Sportsters:57:Ladies

Sweat:Susan:Rundale Sportsters:93:Ladies

Runnington:Vivian:Lameborough TFC:117:Ladies

Runnington:Kathleen:Lameborough TFC:119:Ladies

Smith:Herbert:Pantington AC:123:Men

Jumpabout:Mike:Fairing Track Society:154:Men

Fleetman:Fred:Rundale Sportsters:217:Men

These and some more important options for sort are shown in Table 7.10; studying
the program’s documentation is well worthwhile. sort is a versatile and powerful
command which will save you a lot of work.

The uniq command does the important job of letting through only the first of a uniq command

sequence of equal lines in the input (or the last, just as you prefer). What is con-
sidered “equal” can, as usual, be specified using options. uniq differs from most
of the programs we have seen so far in that it does not accept an arbitrary number
of named input files but just one; a second file name, if it is given, is considered
the name of the desired output file (if not, standard output is assumed). If no file
is named in the uniq call, uniq reads standard input (as it ought).

112 7 Standard I/O and Filter Commands

uniq works best if the input lines are sorted such that all equal lines occur one
after another. If that is not the case, it is not guaranteed that each line occurs only
once in the output:

$ cat uniq-test

Hipp

Hopp

Hopp

Hipp

Hipp

Hopp

$ uniq uniq-test

Hipp

Hopp

Hipp

Hopp

Compare this to the output of “sort -u”:

$ sort -u uniq-test

Hipp

Hopp

Exercises

C 7.22 [!2] Sort the list of participants in participants0.dat (the file with colon
separators) according to the club’s name and, within clubs, the last and first
names of the runners (in that order).

C 7.23 [3] How can you sort the list of participants by club name in ascending
order and, within clubs, by number in descending order? (Hint: Read the
documentation!)

C 7.24 [!2] What is the “blemish” alluded to in the examples and why does it
occur?

C 7.25 [2] A directory contains files with the following names:

01-2002.txt 01-2003.txt 02-2002.txt 02-2003.txt

03-2002.txt 03-2003.txt 04-2002.txt 04-2003.txt

�����

11-2002.txt 11-2003.txt 12-2002.txt 12-2003.txt

Give a sort command to sort the output of ls into “chronologically correct”
order:

01-2002.txt

02-2002.txt

�����

12-2002.txt

01-2003.txt

�����

12-2003.txt

C 7.26 [3] How can you produce a sorted list of all words in a text file? Each
word should occur only once in the list. (Hint: Exercise 7.16)

7.5 Data Management 113

7.5.2 Columns and Fields—cut, paste etc.

While you can locate and “cut out” lines of a text file using grep, the cut command Cutting columns

works through a text file “by column”. This works in one of two ways:
One possibility is the absolute treatment of columns. These columns corre- Absolute columns

spond to single characters in a line. To cut out such columns, the column number
must be given after the -c option (“column”). To cut several columns in one step,
these can be specified as a comma-separated list. Even column ranges may be
specified.

$ cut -c 12,1-5 participants.dat

SmithH

ProwlD

FleetF

JumpaM

de LeG

�����

In this example, the first letter of the first name and the first five letters of the
last name are extracted. It also illustrates the notable fact that the output always
contains the columns in the same order as in input. Even if the selected column
ranges overlap, every input character is output at most once:

$ cut -c 1-5,2-6,3-7 participants.dat

Smith

Prowler

Fleetma

Jumpabo

de Leap

�����

The second method is to cut relative fields, which are delimited by separator Relative fields

characters. If you want to cut delimited fields, cut needs the -f (“field”) option
and the desired field number. The same rules as for columns apply. The -c and -f

options are mutually exclusive.
The default separator is the tab character; other separators may be specified separators

with the -d option (“delimiter”):

$ cut -d: -f 1,4 participants0.dat

Smith:123

Prowler:13

Fleetman:217

Jumpabout:154

de Leaping:26

�����

In this way, the participants’ last names (column 1) and numbers (column 4) are
taken from the list. For readability, only the first few lines are displayed.

B Incidentally, using the --output-delimiter option you can specify a different
separator character for the output fields than is used for the input fields:

$ cut -d: --output-delimiter=': ' -f 1,4 participants0.dat

Smith: 123

Prowler: 13

Fleetman: 217

Jumpabout: 154

de Leaping: 26

114 7 Standard I/O and Filter Commands

B If you really want to change the order of columns and fields, you have to
bring in the big guns, such as awk or perl; you could do it using the paste

command, which will be introduced presently, but that is rather tedious.

When files are treated by fields (rather than columns), the -s option (“sepa-Suppressing no-field lines

rator”) is helpful. If “cut -f” encounters lines that do not contain the separator
character, these are normally output in their entirety; -s suppresses these lines.

The paste command joins the lines of the specified files. It is thus frequentlyJoining lines of files

used together with cut. As you will have noticed immediately, paste is not a filter
command. You may however give a minus sign in place of one of the input file-
names for paste to read its standard input at that point. Its output always goes to
standard output.

As we said, paste works by lines. If two file names are specified, the first lineJoin files “in parallel”

of the first file and the first of the second are joined (using a tab character as the
separator) to form the first line of the output. The same is done with all other lines
in the files. To specify a different separator, use the -d option.separator

By way of an example, we can construct a version of the list of marathon run-
ners with the participants’ numbers in front:

$ cut -d: -f4 participants0.dat >number.dat

$ cut -d: -f1-3,5 participants0.dat \

> | paste -d: number.dat - >p-number.dat

$ cat p-number.dat

123:Smith:Herbert:Pantington AC:Men

13:Prowler:Desmond:Lameborough TFC:Men

217:Fleetman:Fred:Rundale Sportsters:Men

154:Jumpabout:Mike:Fairing Track Society:Men

26:de Leaping:Gwen:Fairing Track Society:Ladies

117:Runnington:Vivian:Lameborough TFC:Ladies

93:Sweat:Susan:Rundale Sportsters:Ladies

119:Runnington:Kathleen:Lameborough TFC:Ladies

55:Longshanks:Loretta: Pantington AC:Ladies

45:O'Finnan:Jack:Fairing Track Society:Men

57:Oblomovsky:Katie:Rundale Sportsters:Ladies

This file may now conveniently be sorted by number using “sort -n p-number.dat”.
With -s (“serial”), the given files are processed in sequence. First, all the linesJoin files serially

of the first file are joined into one single line (using the separator character), then
all lines from the second file make up the second line of the output etc.

$ cat list1

Wood

Bell

Potter

$ cat list2

Keeper

Chaser

Seeker

$ paste -s list*

Wood Bell Potter

Keeper Chaser Seeker

All files matching the list* wildcard pattern—in this case, list1 and list2—are
joined using paste. The -s option causes every line of these files to make up one
column of the output.

The join command joins the lines of files, too, but in a much more sophisticated“Relational” joining of files

manner. Instead of just joining the first lines, second lines, …, it considers one
designated field per line and joins two lines only if the values in these fields are
equal. Hence, join implements the eponymous operator from relational algebra,

7.5 Data Management 115

Table 7.11: Options for join (selection)

Option Result
-j1 𝑛 Uses field 𝑛 of the first file as the “join field” (𝑛 ≥ 1). Synonym: -1 𝑛.
-j2 𝑛 Uses field 𝑛 of the second file as the “join field” (𝑛 ≥ 1). Synonym: -2 𝑛.
-j 𝑛 (join) Abbreviation for “-j1 𝑛 -j2 𝑛”
-o 𝑓 (output) Output line specification. 𝑓 is a comma-separated sequence of field specifica-

tions, where each field specification is either the digit “0” or a field number 𝑚.𝑛.
“0” is the “join field”, 𝑚 is 1 or 2, and 𝑛 is a field number in the first or second
file.

-t 𝑐 The 𝑐 character will be used as the field separator for input and output.

as seen in SQL databases—even though the actual operation is a lot cruder and
more inefficient than with a “real” database.

Even so, Examplethe join command does come in useful. Imagine that the Example

big day has arrived and the Lameborough TFC’s marathon has been run. The
umpires have been diligent and not only have timed how long everybody took, but
also entered them into a file times.dat. The first columns is always a participant’s
number, the second the time achieved (in whole seconds, for simplicity):

$ cat times.dat

45:8445

123:8517

217:8533

93:8641

154:8772

119:8830

13:8832

117:8954

57:9111

26:9129

Now we want to join this file with the list of participants, in order to assign each
time to the corresponding participant. To do so, we must first sort the result file
by participant number:

$ sort -n times.dat >times-s.dat

Next we can use join to join the lines of file times-s.dat to the corresponding lines of
the modified list of participants from the paste example—join presumes by default
that the input files are sorted by the value of the “join field”, and that the “join
field” is the first field of each line.

$ cat p-number.dat

123:Smith:Herbert:Pantington AC:Men

13:Prowler:Desmond:Lameborough TFC:Men

217:Fleetman:Fred:Rundale Sportsters:Men

154:Jumpabout:Mike:Fairing Track Society:Men

26:de Leaping:Gwen:Fairing Track Society:Ladies

117:Runnington:Vivian:Lameborough TFC:Ladies

93:Sweat:Susan:Rundale Sportsters:Ladies

119:Runnington:Kathleen:Lameborough TFC:Ladies

55:Longshanks:Loretta: Pantington AC:Ladies

45:O'Finnan:Jack:Fairing Track Society:Men

57:Oblomovsky:Katie:Rundale Sportsters:Ladies

$ sort -n p-number.dat \

> | join -t: times-s.dat - >p-times.dat

116 7 Standard I/O and Filter Commands

$ cat p-times.dat

13:8832:Prowler:Desmond:Lameborough TFC:Men

26:9129:de Leaping:Gwen:Fairing Track Society:Ladies

45:8445:O'Finnan:Jack:Fairing Track Society:Men

57:9111:Oblomovsky:Katie:Rundale Sportsters:Ladies

93:8641:Sweat:Susan:Rundale Sportsters:Ladies

117:8954:Runnington:Vivian:Lameborough TFC:Ladies

119:8830:Runnington:Kathleen:Lameborough TFC:Ladies

123:8517:Smith:Herbert:Pantington AC:Men

154:8772:Jumpabout:Mike:Fairing Track Society:Men

217:8533:Fleetman:Fred:Rundale Sportsters:Men

The resulting file p-times.dat now just needs to be sorted by time:

$ sort -t: -k2,2 p-times.dat

45:8445:O'Finnan:Jack:Fairing Track Society:Men

123:8517:Smith:Herbert:Pantington AC:Men

217:8533:Fleetman:Fred:Rundale Sportsters:Men

93:8641:Sweat:Susan:Rundale Sportsters:Ladies

154:8772:Jumpabout:Mike:Fairing Track Society:Men

119:8830:Runnington:Kathleen:Lameborough TFC:Ladies

13:8832:Prowler:Desmond:Lameborough TFC:Men

117:8954:Runnington:Vivian:Lameborough TFC:Ladies

57:9111:Oblomovsky:Katie:Rundale Sportsters:Ladies

26:9129:de Leaping:Gwen:Fairing Track Society:Ladies

This is a nice example of how Linux’s standard tools make even fairly complicated
text and data processing possible. In “real life”, one would use shell scripts to
prepare these processing steps and automate them as far as possible.

Exercises

C 7.27 [!2] Generate a new version of the participants.dat file (the one with
fixed-width columns) in which the participant numbers and club affiliations
do not occur.

C 7.28 [!2] Generate a new version of the participants0.dat file (the one with
fields separated using colons) in which the participant numbers and club
affiliations do not occur.

C 7.29 [3] Generate a version of participants0.dat in which the fields are not
separated by colons but by the string “,␣” (a comma followed by a space
character).

C 7.30 [3] How many groups are used as primary groups by users on your
system? (The primary group of a user is the fourth field in /etc/passwd.)

7.5 Data Management 117

Commands in this Chapter

cat Concatenates files (among other things) cat(1) 94
cut Extracts fields or columns from its input cut(1) 112
expand Replaces tab characters in its input by an equivalent number of spaces

expand(1) 102
fmt Wraps the lines of its input to a given width fmt(1) 103
hd Abbreviation for hexdump hexdump(1) 98
head Displays the beginning of a file head(1) 96
hexdump Displays file contents in hexadecimal (octal, …) form hexdump(1) 98
join Joins the lines of two files according to relational algebra join(1) 114
od Displays binary data in decimal, octal, hexadecimal, … formats

od(1) 97
paste Joins lines from different input files paste(1) 114
pr Prepares its input for printing—with headers, footers, etc. pr(1) 104
reset Resets a terminal’s character set to a “reasonable” value tset(1) 95
sort Sorts its input by line sort(1) 107
tac Displays a file back to front tac(1) 95
tail Displays a file’s end tail(1) 96
tr Substitutes or deletes characters on its standard input tr(1) 100
unexpand “Optimises” tabs and spaces in its input lines unexpand(1) 102
uniq Replaces sequences of identical lines in its input by single specimens

uniq(1) 111
wc Counts the characters, words and lines of its input wc(1) 107

Summary

• Every Linux program supports the standard I/O channels stdin, stdout, and
stderr.

• Standard output and standard error output can be redirected using opera-
tors > and >>, standard input using operator <.

• Pipelines can be used to connect the standard output and input of programs
directly (without intermediate files).

• Using the tee command, intermediate results of a pipeline can be stored to
files.

• Filter commands (or “filters”) read their standard input, manipulate it, and
write the results to standard output.

• The tr command substitutes or deletes single characters. expand and unexpand

convert tabs to spaces and vice-versa.
• With pr, you can prepare data for printing—not actually print it.
• wc can be used to count the lines, words and characters of the standard input

(or a number of named files).
• sort is a versatile program for sorting.
• The cut command cuts specified ranges of columns or fields from every line

of its input.
• With paste, the lines of files can be joined.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

8
More About The Shell

Contents

8.1 Simple Commands: sleep, echo, and date 120
8.2 Shell Variables and The Environment. 121
8.3 Command Types—Reloaded 123
8.4 The Shell As A Convenient Tool. 124
8.5 Commands From A File 128
8.6 The Shell As A Programming Language. 129

8.6.1 Foreground and Background Processes 132

Goals

• Knowing about shell variables and evironment variables
• Handling foreground and background processes

Prerequisites

• Basic shell knowledge (Chapter 3)
• File management and simple filter commands (Chapter 6, Chapter 7)
• Use of a text editor (Chapter 5)

grd1-shell2.tex (be27bba8095b329b)

120 8 More About The Shell

8.1 Simple Commands: sleep, echo, and date

To give you some tools for experiments, we shall now explain some very simple
commands:

sleep This command does nothing for the number of seconds specified as the
argument. You can use it if you want your shell to take a little break:

$ sleep 10

Nothing happens for approximately 10 seconds
$ _

echo The command echo outputs its arguments (and nothing else), separated byOutput arguments

spaces. It is still interesting and useful, since the shell replaces variable references
(see Section 8.2) and similar things first:

$ p=Planet

$ echo Hello $p

Hello Planet

$ echo Hello ${p}oid

Hello Planetoid

(The second echo illustrates what to do if you want to append something directly
to the value of a variable.)

B If echo is called with the -n option, it does not write a line terminator at the
end of its output:

$ echo -n Hello

Hello_

date The date command displays the current date and time. You have consider-date and time

able leeway in determining the format of the output—call “date --help”, or read
the online documentation using “man date”.

B (When reading through this manual for the second time:) In particular, date
serves as a world clock, if you first set the TZ environment variable to the
name of a time zone or important city (usually capital):

$ date

Thu Oct 5 14:26:07 CEST 2006

$ export TZ=Asia/Tokyo

$ date

Tue Oct 5 21:26:19 JST 2006

$ unset TZ

You can find out about valid time zone and city names by rooting around
in /usr/share/zoneinfo.

While every user is allowed to read the system time, only the system administra-Set the system time

tor root may change the system time using the date command and an argument of
the form MMDDhhmm, where MM is the calendar month, DD the calendar day, hh the hour,
and mm the minute. You can optionally add two digits the year (plus possibly an-
other two for the century) and the seconds (separated with a dot), which should,
however, prove necessary only in very rare cases.

8.2 Shell Variables and The Environment 121

$ date

Thu Oct 5 14:28:13 CEST 2006

$ date 08181715

date: cannot set date: Operation not permitted

Fri Aug 18 17:15:00 CEST 2006

B The date command only changes the internal time of the Linux system. This
time will not necessarily be transferred to the CMOS clock on the computer’s
mainboard, so a special command may be required to do so. Many distri-
butions will do this automatically when the system is shut down.

Exercises

C 8.1 [!3] Assume now is 22 October 2003, 12:34 hours and 56 seconds. Study
the date documentation and state formatting instructions to achieve the fol-
lowing output:

1. 22-10-2003

2. 03-294 (WK43) (Two-digit year, number of day within year, calendar
week)

3. 12h34m56s

C 8.2 [!2] What time is it now in Los Angeles?

8.2 Shell Variables and The Environment

Like most common shells, bash has features otherwise found in programming lan-
guages. For example, it is possible to store pieces of text or numbers in variables
and retrieve them later. Variables also control various aspects of the operation of
the shell itself.

Within the shell, a variable is set by means of a command like “foo=bar” (this Setting variables

command sets the foo variable to the textual value bar). Take care not to insert
spaces in front of or behind the equals sign! You can retrieve the value of the
variable by using the variable name with a dollar sign in front:

$ foo=bar

$ echo foo

foo

$ echo $foo

bar

(note the difference).
We distinguish environment variables from shell variables. Shell variables environment variables

shell variablesare only visible in the shell in which they have been defined. On the other hand,
environment variables are passed to the child process when an external command
is started and can be used there. (The child process does not have to be a shell;
every Linux process has environment variables). All the environment variables of
a shell are also shell variables but not vice versa.

Using the export command, you can declare an existing shell variable an envi- export

ronment variable:

$ foo=bar foo is now a shell variable
$ export foo foo is now an environment variable

Or you define a new variable as a shell and environment variable at the same time:

122 8 More About The Shell

Table 8.1: Important Shell Variables

Variable Meaning
PWD Name of the current directory

EDITOR Name of the user’s favourite editor
PS1 Shell command prompt template
UID Current user’s user name
HOME Current user’s home directory
PATH List of directories containing executable programs that are

eligible as external commands
LOGNAME Current user’s user name (again)

$ export foo=bar

The same works for several variables simultaneously:

$ export foo baz

$ export foo=bar baz=quux

You can display all environment variables using the export command (with no
parameters). The env command (also with no parameters) also displays the cur-
rent environment. All shell variables (including those which are also environment
variables) can be displayed using the set command. The most common variables
and their meanings are shown in Table 8.1.

B The set command also does many other strange and wonderful things. You
will encounter it again in the Linup Front training manual Advanced Linux,
which covers shell programming.

B env, too, is actually intended to manipulate the process environment rather
than just display it. Consider the following example:

$ env foo=bar bash Launch child shell with foo

$ echo $foo

bar

$ exit Back to the parent shell
$ echo $foo

Not defined
$ _

B At least with bash (and relations) you don’t really need env to execute com-
mands with an extended environment – a simple

$ foo=bar bash

does the same thing. However, env also allows you to remove variables from
the environment temporarily (how?).

If you have had enough of a shell variable, you can delete it using the unsetDelete a variable

command. This also removes it from the environment. If you want to remove a
variable from the environment but keep it on as a shell variable, use “export -n”:

$ export foo=bar foo is an environment variable
$ export -n foo foo is a shell variable (only)
$ unset foo foo is gone and lost forever

8.3 Command Types—Reloaded 123

8.3 Command Types—Reloaded

One application of shell variables is controlling the shell itself. Here’s another ex- Controlling the shell

ample: As we discussed in Chapter 3, the shell distinguishes internal and external
commands. External commands correspond to executable programs, which the
shell looks for in the directories that make up the value of the PATH environment
variable. Here is a typical value for PATH:

$ echo $PATH

/home/joe/bin:/usr/local/bin:/usr/bin:/bin:/usr/games

Individual directories are separated in the list by colons, therefore the list in the
example consists of five directories. If you enter a command like

$ ls

the shell knows that this isn’t an internal command (it knows its internal com-
mands) and thus begins to search the directories in PATH, starting with the leftmost
directory. In particular, it checks whether the following files exist:

/home/joe/bin/ls Nope …
/usr/local/bin/ls Still no luck …
/usr/bin/ls Again no luck …
/bin/ls Gotcha!

The directory /usr/games is not checked.

This implies that the /bin/ls file will be used to execute the ls command.

B Of course this search is a fairly involved process, which is why the shell
prepares for the future: If it has once identified the /bin/ls file as the im-
plementation of the ls command, it remembers this correspondence for the
time being. This process is called “hashing”, and you can see that it did take
place by applying type to the ls command.

$ type ls

ls is hashed (/bin/ls)

B The hash command tells you which commands your bash has “hashed” and
how often they have been invoked in the meantime. With “hash -r” you can
delete the shell’s complete hashing memory. There are a few other options
which you can look up in the bash manual or find out about using “help hash”.

B Strictly speaking, the PATH variable does not even need to be an environment
variable—for the current shell a shell variable would do just fine (see Exer-
cise 8.5). However it is convenient to define it as an environment variable so
the shell’s child processes (often also shells) use the desired value.

If you want to find out exactly which program the shell uses for a given external
command, you can use the which command:

$ which grep

/bin/grep

which uses the same method as the shell—it starts at the first directory in PATH and
checks whether the directory in question contains an executable file with the same
name as the desired command.

124 8 More About The Shell

B which knows nothing about the shell’s internal commands; even though
something like “which test” returns “/usr/bin/test”, this does not imply
that this program will, in fact, be executed, since internal commands have
precedence. If you want to know for sure, you need to use the “type” shell
command.

The whereis command not only returns the names of executable programs, but
also documentation (man pages), source code and other interesting files pertain-
ing to the command(s) in question. For example:

$ whereis passwd

passwd: /usr/bin/passwd /etc/passwd /etc/passwd.org /usr/share/passwd�

� /usr/share/man/man1/passwd.1.gz /usr/share/man/man1/passwd.1ssl.gz�

� /usr/share/man/man5/passwd.5.gz

This uses a hard-coded method which is explained (sketchily) in whereis(1).

Exercises

C 8.3 [!2] Convince yourself that passing (or not passing) environment and
shell variables to child processes works as advertised, by working through
the following command sequence:

$ foo=bar foo is a shell variable
$ bash New shell (child process)
$ echo $foo

foo is not defined
$ exit Back to the parent shell
$ export foo foo is an environment variable
$ bash New shell (child process)
$ echo $foo

bar Environment variable was passed along
$ exit Back to the parent shell

C 8.4 [!2] What happens if you change an environment variable in the child
process? Consider the following command sequence:

$ foo=bar foo is a shell variable
$ bash New shell (child process)
$ echo $foo

bar Environment variable was passed along
$ foo=baz New value
$ exit Back to the parent shell
$ echo $foo What do we get??

C 8.5 [2] Make sure that the shell’s command line search works even if PATH is
a “only” simple shell variable rather than an environment variable. What
happens if you remove PATH completely?

C 8.6 [!1] Which executable programs are used to handle the following com-
mands: fgrep, sort, mount, xterm

C 8.7 [!1] Which files on your system contain the documentation for the
“crontab” command?

8.4 The Shell As A Convenient Tool

Since the shell is the tool many Linux users use most often, its developers have
spared no trouble to make its use convenient. Here are some more useful trifles:

8.4 The Shell As A Convenient Tool 125

Command Editor You can edit command lines like in a simple text editor. Hence,
you can move the cursor around in the input line and delete or add characters
arbitrarily before finishing the input using the return key. The behaviour of this
editor can be adapted to that of the most popular editors on Linux (Chapter 5)
using the “set -o vi” and “set -o emacs” commands.

Aborting Commands With so many Linux commands around, it is easy to con-
fuse a name or pass a wrong parameter. Therefore you can abort a command
while it is being executed. You simply need to press the Ctrl + c keys at the same
time.

TheHistory The shell remembers ever so many of your most recent commands as
part of the “history”, and you can move through this list using the ↑ and ↓ cur-
sor keys. If you find a previous command that you like you can either re-execute
it unchanged using ↩ , or else edit it as described above. You can search the list
“incrementally” using Ctrl + r —simply type a sequence of characters, and the
shell shows you the most recently executed command containing this sequence.
The longer your sequence, the more precise the search.

B When you log out of the system, the shell stores the history in the hidden
file ~/.bash_history and makes it available again after your next login. (You
may use a different file name by setting the HISTFILE variable to the name in
question.)

B A consequence of the fact that the history is stored in a “plain” file is that you
can edit it using a text editor (Chapter 5 tells you how). So in case you acci-
dentally enter your password on the command line, you can (and should!)
remove it from the history manually—in particular, if your system is one of
the more freewheeling ones where home directories are visible to anybody.

B By default, the shell remembers the last 500 commands; you can change this
by putting the desired number into the HISTSIZE variable. The HISTFILESIZE

command specifies how many commands to write to the HISTFILE file – usu-
ally 500 as well.

Besides the arrow keys you can access the history also via “magical” character
sequences in new commands. The shell replaces these character sequences first,
immediately after the command line has been read. Replacement proceeds in two
stages:

• At first the shell determines which command from the history to use for
the replacement. The !! sequence stands for the immediately preceding
command, !-𝑛 refers to the 𝑛th command before the current one (!-2, for
example, to the penultimate one), and !𝑛 to the command with number 𝑛
in the history. (The history command outputs the whole history including
numbers for the commands.) !xyz selects the most recent command starting
with xyz, and !?xyz the most recent command containing xyz.

• After that, the shell decides which part of the selected command will be
“recycled” and how. If you do not specify anything else, the complete com-
mand will be inserted; otherwise there are various selection methods. All
these selection methods are separated from the command selection charac-
ter sequence by a colon (“:”).

𝑛 Selects the 𝑛-th word. Word 0 is the command itself.
^ Selects the first word (immediately after the command).
$ Selects the final word.
𝑚-𝑛 Selects words 𝑚 through 𝑛.

126 8 More About The Shell

𝑛* Selects all words starting at word 𝑛.
𝑛- Selects all words starting at word 𝑛 except for the final one.

Some examples for clarity:

!-2:$ Picks the final word of the penultimate command.
!!:0- Picks the complete immediately preceding command except for the

final word.
!333^ Picks the first word from command 333.

The final example, incidentally, is not a typo; if the first character from
the intra-command selection is from the list ^$*-% you may leave out the
colon.—If you like, look at the bash documentation (section HISTORY) to
find out what else the shell has in store. As far as we (and the LPI) are con-
cerned you do not need to learn all of this off by heart.

B The history is one of the things that bash took over from the C shell, and
whoever did not use Unix during the 1980s may have some trouble imag-
ining what the world looked like before interactive command line editing
was invented. (For Windows users, this time doesn’t even go that far back.)
During that time, the history with all its ! selectors and transformations was
widely considered the best idea since sliced bread; today its documentation
exudes the sort of morbid fascination one would otherwise associate with
the user manual for a Victorian steam engine.

B Some more remarks concerning the history command: An invocation like

$ history 33

(with a number as the parameter) only outputs that many history lines.
“history -c” empties the history completely. There are some more options;
check the bash documentation or try “help history”.

Autocompletion A massive convenience is bash’s ability to automatically com-Completing com-
mand and file names plete command and file names. If you hit the Tab key, the shell completes an

incomplete input if the continuation can be identified uniquely. For the first word
of a command, bash considers all executable programs, within the rest of the com-
mand line all the files in the current or specified directory. If several commands
or files exist whose names start out equal, the shell completes the name as far as
possible and then signals acoustically that the command or file name may still be
incomplete. Another Tab press then lists the remaining possibilities.

B It is possible to adapt the shell’s completion mechanism to specific pro-
grams. For example, on the command line of a FTP client it might offer
the names of recently visited FTP servers in place of file names. Check the
bash documentation for details.

Table 8.2 gives an overview of the most important key strokes within bash.

Multiple Commands On One Line You are perfectly free to enter several com-
mands on the same input line. You merely need to separate them using a semi-
colon:

$ echo Today is; date

Today is

Fri 5 Dec 12:12:47 CET 2008

In this instance the second command will be executed once the first is done.

8.4 The Shell As A Convenient Tool 127

Table 8.2: Key Strokes within bash

Key Stroke Function

↑ or ↓ Scroll through most recent commands
Ctrl + r Search command history
← bzw. → Move cursor within current command line
Home oder Ctrl + a Jump to the beginning of the command line
End oder Ctrl + e Jump to the end of the command line
⇐ bzw. Del Delete character in front of/under the cursor,

respectively
Ctrl + t Swap the two characters in front of and under

the cursor
Ctrl + l Clear the screen
Ctrl + c Interrupt a command
Ctrl + d End the input (for login shells: log off)

Conditional Execution Sometimes it is useful to make the execution of the second
command depend on whether the first was executed correctly or not. Every Unix
process yields a return value which states whether it was executed correctly or return value

whether errors of whatever kind have occurred. In the former case, the return
value is 0; in the latter, it is different from 0.

B You can find the return value of a child process of your shell by looking at
the $? variable:

$ bash Start a child shell …
$ exit 33 … and exit again immediately
exit

$ echo $?

33 The value from our exit above
$ _

But this really has no bearing on the following.

With && as the “separator” between two commands (where there would other-
wise be the semicolon), the second command is only executed when the first has
exited successfully. To demonstrate this, we use the shell’s -c option, with which
you can pass a command to the child shell on the command line (impressive, isn’t
it?):

$ bash -c "exit 0" && echo "Successful"

Successful

$ bash -c "exit 33" && echo "Successful"

Nothing -- 33 isn’t success!

Conversely, with || as the “separator”, the second command is only executed
if the first did not finish successfully:

$ bash -c "exit 0" || echo "Unsuccessful"

$ bash -c "exit 33" || echo "Unsuccessful"

Unsuccessful

Exercises

C 8.8 [3] What is wrong about the command “echo "Hello!"”? (Hint: Experi-
ment with commands of the form “!-2” or “!ls”.)

128 8 More About The Shell

8.5 Commands From A File

You can store shell commands in a file and execute them en bloc. (Chapter 5 ex-
plains how to conveniently create files.) You just need to invoke the shell and pass
the file name as a parameter:

$ bash my-commands

Such a file is also called a shell script, and the shell has extensive programmingshell script

features that we can only outline very briefly here. (The Linup Front training
manual Advanced Linux explains shell programming in great detail.)

B You can avoid having to prepend the bash command by inserting the magical
incantation

#!/bin/bash

as the first line of your file and making the file “executable”:

$ chmod +x my-commands

(You will find out more about chmod and access rights in Chapter 12.) After
this, the

$./my-commands

command will suffice.

If you invoke a shell script as above, whether with a prepended bash or as an
executable file, it is executed in a subshell, a shell that is a child process of thesubshell

current shell. This means that changes to, e. g., shell or environment variables
do not influence the current shell. For example, assume that the file assignment

contains the line

foo=bar

Consider the following command sequence:

$ foo=quux

$ bash assignment Contains foo=bar

$ echo $foo

quux No change; assignment was only in subshell

This is generally considered a feature, but every now and then it would be quite
desirable to have commands from a file affect the current shell. That works, too:
The source command reads the lines in a file exactly as if you would type them
directly into the current shell—all changes to variables (among other things) hence
take effect in your current shell:

$ foo=quux

$ source assignment Contains foo=bar

$ echo $foo

bar Variable was changed!

A different name for the source command, by the way, is “.”. (You read correctly
– dot!) Hence

$ source assignment

8.6 The Shell As A Programming Language 129

is equivalent to

$. assignment

B Like program files for external commands, the files to be read using source

or . are searched in the directories given by the PATH variable.

8.6 The Shell As A Programming Language

Being able to execute shell commands from a file is a good thing, to be sure.
However, it is even better to be able to structure these shell commands such that
they do not have to do the same thing every time, but—for example—can ob-
tain command-line parameters. The advantages are obvious: In often-used pro-
cedures you save a lot of tedious typing, and in seldom-used procedures you can
avoid mistakes that might creep in because you accidentally leave out some im-
portant step. We do not have space here for a full explanation of the shell als a
programming language, but fortunately there is enough room for a few brief ex-
amples.

Command-line parameters When you pass command-line parameters to a shell
script, the shell makes them available in the variables $1, $2, …. Consider the Single parameters

following example:

$ cat hello

#!/bin/bash

echo Hello $1, are you free $2?

$./hello Joe today

Hello Joe, are you free today?

$./hello Sue tomorrow

Hello Sue, are you free tomorrow?

The $* contains all parameters at once, and the number of parameters is in $#: All parameters

$ cat parameter

#!/bin/bash

echo $# parameters: $*

$./parameter

0 parameters:

$./parameter dog

1 parameters: dog

$./parameter dog cat mouse tree

4 parameters: dog cat mouse tree

Loops The for command lets you construct loops that iterate over a list of words
(separated by white space):

$ for i in 1 2 3

> do

> echo And $i!

> done

And 1!

And 2!

And 3!

Here, the i variable assumes each of the listed values in turn as the commands
between do and done are executed.

This is even more fun if the words are taken from a variable:

130 8 More About The Shell

$ list='4 5 6'

$ for i in $list

> do

> echo And $i!

> done

And 4!

And 5!

And 6!

If you omit the “in …”, the loop iterates over the command line parameters:Loop over parameters

$ cat sort-wc

#!/bin/bash

Sort files according to their line count

for f

do

echo `wc -l <"$f» lines in $f

done | sort -n

$./sort-wc /etc/passwd /etc/fstab /etc/motd

(The “wc -l” command counts the lines of its standard input or the file(s) passed
on the command line.) Do note that you can redirect the standard output of a loop
to sort using a pipe line!

Alternatives You can use the aforementioned && and || operators to execute cer-
tain commands only under specific circumstances. The

#!/bin/bash

grepcp REGEX

rm -rf backup; mkdir backup

for f in *.txt

do

grep $1 "$f" && cp "$f" backup

done

script, for example, copies a file to the backup directory only if its name ends with
.txt (the for loop ensures this) and which contain at least one line matching the
regular expression that is passed as a parameter.

A useful tool for alternatives is the test command, which can check a largetest

variety of conditions. It returns an exit code of 0 (success), if the condition holds,
else a non-zero exit code (failure). For example, consider

#!/bin/bash

filetest NAME1 NAME2 ...

for name

do

test -d "$name" && echo $name: directory

test -f "$name" && echo $name: file

test -L "$name" && echo $name: symbolic link

done

This script looks at a number of file names passed as parameters and outputs for
each one whether it refers to a directory, a (plain) file, or a symbolic link.

A The test command exists both as a free-standing program in /bin/test and
as a built-in command in bash and other shells. These variants can differ
subtly especially as far as more outlandish tests are concerned. If in doubt,
read the documentation.

8.6 The Shell As A Programming Language 131

You can use the if command to make more than one command depend on a if

condition (in a convenient and readable fashion). You may write “[…]” instead
of “test …”:

#!/bin/bash

filetest2 NAME1 NAME2 ...

for name

do

if [-L "$name"]

then

echo $name: symbolic link

elif [-d "$name"]

echo $name: directory

elif [-f "$name"]

echo $name: file

else

echo $name: no idea

fi

done

If the command after the if signals “success” (exit code 0), the commands after
then will be executed, up to the next elif, else, or fi. If on the other hand it sig-
nals “failure”, the command after the next elif will be evaluated next and its exit
code will be considered. The shell continues the pattern until the matching fi is
reached. Commands after the else are executed if none of the if or elif commands
resulted in “success”. The elif and else branches may be omitted if they are not
required.

More loops With the for loop, the number of trips through the loop is fixed at
the beginning (the number of words in the list). However, we often need to deal
with situations where it is not clear at the beginning how often a loop should be
executed. To handle this, the shell offers the while loop, which (like if) executes while

a command whose success or failure determines what to do about the loop: On
success, the “dependent” commands will be executed, on failure execution will
continue after the loop.

The following script reads a file like

Aunt Maggie:maggie@example.net:the delightful tea cosy

Uncle Bob:bob@example.com:the great football

(whose name is passed on the command line) and constructs a thank-you e-mail
message from each line (Linux is very useful in daily life):

#!/bin/bash

birthday FILE

IFS=:

while read name email present

do

(echo $name

echo ""

echo "Thank you very much for $present!"

echo "I enjoyed it very much."

echo ""

echo "Best wishes"

echo "Tim") | mail -s "Many thanks!" $email

done <$1

The read command reads the input file line by line and splits each line at the colons read

132 8 More About The Shell

(variable IFS) into the three fields name, email, and present which are then made avail-
able as variables inside the loop. Somewhat counterintuitively, the input redirec-
tion for the loop can be found at the very end.

A Please test this script with innocuous e-mail addresses only, lest your rela-
tions become confused!

Exercises

C 8.9 [1] What is the difference (as far as loop execution is concerned) between

for f; do …; done

and

for f in $*; do …; done

? (Try it, if necessary)

C 8.10 [2] In the sort-wc script, why do we use the

wc -l <$f

instead of

wc -l $f

C 8.11 [2] Alter the grepcp such that the list of files to be considered is also
taken from the command line. (Hint: The shift shell command removes the
first command line parameter from $ and pulls all others up to close the gap.
After a shift, the previous $2 is now $1, $3 is $2 and so on.)

C 8.12 [2] Why does the filetest script output

$./filetest foo

foo: file

foo: symbolic link

for symbolic links (instead of just »foo: symbolic link«)?

8.6.1 Foreground and Background Processes

After a command has been entered, it is processed by the shell. The shell exe-
cutes internal commands directly; for external commands, the shell generates a
child process, which is used to execute the command and terminates itself af-child process

terwards. In Unix, a process is a running programm; the same program can be
executed several times simultaneously (e. g., by different users) and corresponds
with several processes. Every process can generate child processes (even if most
of them—unlike shells—don’t).

Usually, the shell waits until the child process has done its work and termi-
nates. You can tell by the fact that no new shell prompt is displayed while the
child process is running. After the child process has exited, the shell reads and
processes its return value, and only after that it displays a new shell prompt. The
execution of the shell and the child process is, so to speak, synchronised. This
“synchronous” manner of processing commands is displayed in Figure 8.1; from
the user’s point of view it looks like the following:

$ sleep 10

Nothing happens for approximately 10 seconds
$ _

8.6 The Shell As A Programming Language 133

Time
Shell

Shell

Child
Process

Start

End

waits

Figure 8.1: Synchronous command execution in the shell

Time

Shell Child
Process

Start

End

Figure 8.2: Asynchronous command execution in the shell

134 8 More About The Shell

Table 8.3: Options for jobs

Option Meaning
-l (long) Adds PIDs to the output
-n (notify) Displays only processes that have been terminated since

the last invocation of jobs
-p (process) Displays only PIDs

If you do not want the shell to wait until the child process has finished, you
have to append an ampersand (&) to the command line. Then, while the child
process is executed in the background, a short message appears on the terminal,
immediately followed by the shell’s command prompt:

$ sleep 10 &

[2] 6210

And then immediately:
$ _

This mode of operation is called “asynchronous”, since the shell does not wait
idly for the child process to finish (qv. Figure 8.2).

B The “[2] 6210” means that the system has created the process with the num-
ber (or “process ID”) 6210 as “job” number 2. These numbers will probably
differ on your system.

B Syntactically, the & really acts like a semicolon, and can therefore serve as a
separator between commands. See Exercise 8.14.

Here are some hints for successful background process operation:

• The background process should not expect keyboard input, since the shell
cannot determine to which process—foreground or background—any key-
board input should be assigned. If necessary, input can be taken from a file.
This is covered more extensively in Chapter 7.

• The background process should not direct output to the terminal, since
these may be mixed up with the output of foreground processes or dis-
carded altogether. Again, there is more about this in Chapter 7.

• If the parent process (the shell) is aborted, all its children (and consequently
their children etc.) will in many cases be terminated as well. Only processes
that completely disawov their parents are exempted from this; this applies,
e. g., to processes that perform system services in the background.

When several processes are executed in the background from the same shell,Job control

it is easy to lose track. Therefore the shell makes available an (internal) command
that you can use to find out about the state of background processes—jobs. If jobs
is invoked without options, its output consists of a list of job numbers, process
states and command lines. This looks approximately like the following:

$ jobs

[1] Done sleep

$ _

In this case, job number 1 has already finished (“Done”), otherwise the message
“Running” would have appeared. The jobs command supports various options, the
most important of which are shown in Table 8.3.

The shell makes it possible to stop a foreground process using Ctrl + z . This
process is displayed by jobs with a “Stopped” status and can be continued as a back-
ground process using the bg command. (Otherwise, processes stay stopped until

8.6 The Shell As A Programming Language 135

hell freezes over, or the next system restart, whichever occurs earlier.) For exam-
ple, “bg %5” will send job 5 to the background, where it will continue to run.

Conversely, you can select one of a number of background processes and fetch
it back to the foreground using the fg command. The syntax of the fg command
is equivalent to that of the bg command.

You can terminate a foreground process from the shell with the Ctrl + c key
sequence. A background process can be terminated directly using the kill com-
mand followed by a job number with a leading percent character (similar to bg).

Exercises

C 8.13 [2] Use a suitably spectacular program (such as the OpenGL demo gears

under X11 in the SUSE distributions, alternatively, for example, “xclock -

update 1”) to experiment with background processes and job control. Make
sure that you are able to start background processes, to stop foreground
processes using Ctrl + z and send them to the background using bg, to list
background processes using jobs and so on.

C 8.14 [3] Describe (and explain) the differences between the following three
command lines:

$ sleep 5 ; sleep 5

$ sleep 5 ; sleep 5 &

$ sleep 5 & sleep 5 &

Commands in this Chapter

. Reads a file containing shell commands as if they had been entered on
the command line bash(1) 128

bg Continues a (stopped) process in the background bash(1) 134
date Displays the date and time date(1) 120
env Outputs the process environment, or starts programs with an adjusted

environment env(1) 122
export Defines and manages environment variables bash(1) 121
fg Fetches a background process back to the foreground bash(1) 134
gears Displays turning gears on X11 gears(1) 135
hash Shows and manages ”‘seen”’ commands in bash bash(1) 123
history Displays recently used bash command lines bash(1) 125
jobs Reports on background jobs bash(1) 134
kill Terminates a background process bash(1), kill(1) 135
set Manages shell variables and options bash(1) 122
source Reads a file containing shell commands as if they had been entered on

the command line bash(1) 128
test Evaluates logical expressions on the command line

test(1), bash(1) 130
unset Deletes shell or environment variables bash(1) 122
whereis Searches executable programs, manual pages, and source code for given

programs whereis(1) 123
which Searches programs along PATH which(1) 123
xclock Displays a graphical clock xclock(1x) 135

136 8 More About The Shell

Summary

• The sleep command waits for the number of seconds specified as the argu-
ment.

• The echo command outputs its arguments.
• The date and time may be determined using date

• Various bash features support interactive use, such as command and file
name autocompletion, command line editing, alias names and variables.

• External programs can be started asynchronously in the background. The
shell then immediately prints another command prompt.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

9
The File System

Contents

9.1 Terms . 138
9.2 File Types. 138
9.3 The Linux Directory Tree 139
9.4 Directory Tree and File Systems. 147
9.5 Removable Media. 148

Goals

• Understanding the terms “file” and “file system”
• Recognising the different file types
• Knowing your way around the directory tree of a Linux system
• Knowing how external file systems are integrated into the directory tree

Prerequisites

• Basic Linux knowledge (from the previous chapters)
• Handling files and directories (Chapter 6)

grd1-dateisystem.tex (be27bba8095b329b)

138 9 The File System

Table 9.1: Linux file types

Type ls -l ls -F Create using …
plain file - name diverse programs
directory d name/

mkdir

symbolic link l name@ ln -s

device file b or c name mknod

FIFO (named pipe) p name| mkfifo

Unix-domain socket s name= no command

9.1 Terms

Generally speaking, a file is a self-contained collection of data. There is no re-file

striction on the type of the data within the file; a file can be a text of a few letters
or a multi-megabyte archive containing a user’s complete life works. Files do not
need to contain plain text. Images, sounds, executable programs and lots of other
things can be placed on a storage medium as files. To guess at the type of data
contained in a file you can use the file command:file

$ file /bin/ls /usr/bin/groups /etc/passwd

/bin/ls: ELF 32-bit LSB executable, Intel 80386,�

� version 1 (SYSV), for GNU/Linux 2.4.1,�

� dynamically linked (uses shared libs), for GNU/Linux 2.4.1, stripped

/usr/bin/groups: Bourne shell script text executable

/etc/passwd: ASCII text

B file guesses the type of a file based on rules in the /usr/share/file directory.
/usr/share/file/magic contains a clear-text version of the rules. You can define
your own rules by putting them into the /etc/magic file. Check magic(5) for
details.

To function properly, a Linux system normally requires several thousand different
files. Added to that are the many files created and owned by the system’s various
users.

A file system determines the method of arranging and managing data on afile system

storage medium. A hard disk basically stores bytes that the system must be able
to find again somehow—and as efficiently and flexibly as possible at that, even
for very huge files. The details of file system operation may differ (Linux knows
lots of different file systems, such as ext2, ext3, ext4, ReiserFS, XFS, JFS, btrfs, …)
but what is presented to the user is largely the same: a tree-structured hierarchy
of file and directory names with files of different types. (See also Chapter 6.)

B In the Linux community, the term “file system” carries several meanings. In
addition to the meaning presented here—“method of arranging bytes on a
medium”—, a file system is often considered what we have been calling a
“directory tree”. In addition, a specific medium (hard disk partition, USB
key, …) together with the data on it is often called a “file system”—in the
sense that we say, for example, that hard links (Section 6.4.2) do not work
“across file system boundaries”, that is, between two different partitions on
hard disk or between the hard disk and a USB key.

9.2 File Types

Linux systems subscribe to the basic premise “Everything is a file”. This may seem
confusing at first, but is a very useful concept. Six file types may be distinguished
in principle:

9.3 The Linux Directory Tree 139

Plain files This group includes texts, graphics, sound files, etc., but also exe-
cutable programs. Plain files can be generated using the usual tools like
editors, cat, shell output redirection, and so on.

Directories Also called “folders”; their function, as we have mentioned, is to help
structure storage. A directory is basically a table giving file names and as-
sociated inode numbers. Directories are created using the mkdir command.

Symbolic links Contain a path specification redirecting accesses to the link to
a different file (similar to “shortcuts” in Windows). See also Section 6.4.2.
Symbolic links are created using ln -s.

Device files These files serve as interfaces to arbitrary devices such as disk drives.
For example, the file /dev/fd0 represents the first floppy drive. Every write
or read access to such a file is redirected to the corresponding device. De-
vice files are created using the mknod command; this is usually the system
administrator’s prerogative and is thus not explained in more detail in this
manual.

FIFOs Often called “named pipes”. Like the shell’s pipes, they allow the direct
communication between processes without using intermediate files. A pro-
cess opens the FIFO for writing and another one for reading. Unlike the
pipes that the shell uses for its pipelines, which behave like files from a pro-
gram’s point of view but are “anonymous”—they do not exist within the file
system but only between related processes—, FIFOs have file names and can
thus be opened like files by arbitrary programs. Besides, FIFOs may have
access rights (pipes may not). FIFOs are created using the mkfifo command.

Unix-domain sockets Like FIFOs, Unix-domain sockets are a method of inter-
process communication. They use essentially the same programming in-
terface as “real” network communications across TCP/IP, but only work
for communication peers on the same computer. On the other hand, Unix-
domain sockets are considerably more efficient than TCP/IP. Unlike FIFOs,
Unix-domain sockets allow bi-directional communications—both partici-
pating processes can send as well as receive data. Unix-domain sockets are
used, e. g., by the X11 graphic system, if the X server and clients run on the
same computer. There is no special program to create Unix-domain sockets.

Exercises

C 9.1 [3] Check your system for examples of the various file types. (Table 9.1
shows you how to recognise the files in question.)

9.3 The Linux Directory Tree

A Linux system consists of hundreds of thousands of files. In order to keep track,
there are certain conventions for the directory structure and the files comprising a
Linux system, the Filesystem Hierarchy Standard (FHS). Most distributions adhere FHS

to this standard (possibly with small deviations). The FHS describes all directories
immediately below the file system’s root as well as a second level below /usr.

The file system tree starts at the root directory, “/” (not to be confused with root directory

/root, the home directory of user root). The root directory contains either just sub-
directories or else additionally, if no /boot directory exists, the operating system
kernel.

You can use the “ls -la /” command to list the root directory’s subdirectories.
The result should look similar to Figure 9.1. The individual subdirectories follow
FHS and therefore contain approximately the same files on every distribution. We
shall now take a closer look at some of the directories:

140 9 The File System

$ cd /

$ ls -l

insgesamt 125

drwxr-xr-x 2 root root 4096 Dez 20 12:37 bin

drwxr-xr-x 2 root root 4096 Jan 27 13:19 boot

lrwxrwxrwx 1 root root 17 Dez 20 12:51 cdrecorder�

� -> /media/cdrecorder

lrwxrwxrwx 1 root root 12 Dez 20 12:51 cdrom -> /media/cdrom

drwxr-xr-x 27 root root 49152 Mär 4 07:49 dev

drwxr-xr-x 40 root root 4096 Mär 4 09:16 etc

lrwxrwxrwx 1 root root 13 Dez 20 12:51 floppy -> /media/floppy

drwxr-xr-x 6 root root 4096 Dez 20 16:28 home

drwxr-xr-x 6 root root 4096 Dez 20 12:36 lib

drwxr-xr-x 6 root root 4096 Feb 2 12:43 media

drwxr-xr-x 2 root root 4096 Mär 21 2002 mnt

drwxr-xr-x 14 root root 4096 Mär 3 12:54 opt

dr-xr-xr-x 95 root root 0 Mär 4 08:49 proc

drwx------ 11 root root 4096 Mär 3 16:09 root

drwxr-xr-x 4 root root 4096 Dez 20 13:09 sbin

drwxr-xr-x 6 root root 4096 Dez 20 12:36 srv

drwxrwxrwt 23 root root 4096 Mär 4 10:45 tmp

drwxr-xr-x 13 root root 4096 Dez 20 12:55 usr

drwxr-xr-x 17 root root 4096 Dez 20 13:02 var

Figure 9.1: Content of the root directory (SUSE)

B There is considerable consensus about the FHS, but it is just as “binding”
as anything on Linux, i. e., not that much. On the one hand, there certainly
are Linux systems (for example the one on your broadband router or PVR)
that are mostly touched only by the manufacturer and where conforming
to every nook and cranny of the FHS does not gain anything. On the other
hand, you may do whatever you like on your own system, but must be pre-
pared to bear the consequences—your distributor assures you to keep to his
side of the FHS bargain, but also expects you not to complain if you are not
playing completely by the rules and problems do occur. For example, if you
install a program in /usr/bin and the file in question gets overwritten during
the next system upgrade, this is your own fault since, according to the FHS,
you are not supposed to put your own programs into /usr/bin (/usr/local/bin
would have been correct).

The Operating System Kernel—/boot The /boot directory contains the actual op-
erating system: vmlinuz is the Linux kernel. In the /boot directory there are also
other files required for the boot loader (usually GRUB).

On some systems, /boot is placed on its own separate partition. This can be
necessary if the actual file system is encrypted or otherwise difficult to reach for
the boot loader, possibly because special drivers are required to access a hardware
RAID system.

General Utilities—/bin In /bin there are the most important executable programs
(mostly system programs) which are necessary for the system to boot. This in-
cludes, for example, mount and mkdir. Many of these programs are so essential
that they are needed not just during system startup, but also when the system
is running—like ls and grep. /bin also contains programs that are necessary to get
a damaged system running again if only the file system containing the root direc-
tory is available. Additional programs that are not required on boot or for system

9.3 The Linux Directory Tree 141

repair can be found in /usr/bin.

Special System Programs—/sbin Like /bin, /sbin contains programs that are nec-
essary to boot or repair the system. However, for the most part these are system
configuration tools that can really be used only by root. “Normal” users can use
some of these programs to query the system, but can’t change anything. As with
/bin, there is a directory called /usr/sbin containing more system programs.

System Libraries—/lib This is where the “shared libraries” used by programs
in /bin and /sbin reside, as files and (symbolic) links. Shared libraries are pieces
of code that are used by various programs. Such libraries save a lot of resources,
since many processes use the same basic parts, and these basic parts must then be
loaded into memory only once; in addition, it is easier to fix bugs in such libraries
when they are in the system just once and all programs fetch the code in question
from one central file. Incidentally, below /lib/modules there are kernel modules, kernel modules
i. e., kernel code which is not necessarily in use—device drivers, file systems, or
network protocols. These modules can be loaded by the kernel when they are
needed, and in many cases also be removed after use.

Device Files—/dev This directory and its subdirectories contain a plethora of en-
tries for device files. Device files form the interface between the shell (or, gener- Device files

ally, the part of the system that is accessible to command-line users or program-
mers) to the device drivers inside the kernel. They have no “content” like other
files, but refer to a driver within the kernel via “device numbers”.

B In former times it was common for Linux distributors to include an entry in
/dev for every conceivable device. So even a laptop Linux system included
the device files required for ten hard disks with 63 partitions each, eight
ISDN adapters, sixteen serial and four parallel interfaces, and so on. Today
the trend is away from overfull /dev directories with one entry for every
imaginable device and towards systems more closely tied to the running
kernel, which only contain entries for devices that actually exist. The magic
word in this context is udev (short for userspace /dev) and will be discussed in
more detail in Linux Administration I.

Linux distinguishes between character devices and block devices. A character character devices

block devicesdevice is, for instance, a terminal, a mouse or a modem—a device that provides
or processes single characters. A block device treats data in blocks—this includes
hard disks or floppy disks, where bytes cannot be read singly but only in groups
of 512 (or some such). Depending on their flavour, device files are labelled in “ls
-l” output with a “c” or “b”:

crw-rw-rw- 1 root root 10, 4 Oct 16 11:11 amigamouse

brw-rw---- 1 root disk 8, 1 Oct 16 11:11 sda1

brw-rw---- 1 root disk 8, 2 Oct 16 11:11 sda2

crw-rw-rw- 1 root root 1, 3 Oct 16 11:11 null

Instead of the file length, the list contains two numbers. The first is the “major
device number” specifying the device’s type and governing which kernel driver
is in charge of this device. For example, all SCSI hard disks have major device
number 8. The second number is the “minor device number”. This is used by the
driver to distinguish between different similar or related devices or to denote the
various partitions of a disk.

There are several notable pseudo devices. The null device, /dev/null, is like a pseudo devices

“dust bin” for program output that is not actually required, but must be directed
somewhere. With a command like

$ program >/dev/null

142 9 The File System

the program’s standard output, which would otherwise be displayed on the ter-
minal, is discarded. If /dev/null is read, it pretends to be an empty file and returns
end-of-file at once. /dev/null must be accessible to all users for reading and writ-
ing.

The “devices” /dev/random and /dev/urandom return random bytes of “crypto-
graphic quality” that are created from “noise” in the system—such as the in-
tervals between unpredictable events like key presses. Data from /dev/random is
suitable for creating keys for common cryptographic algorithms. The /dev/zero

file returns an unlimited supply of null bytes; you can use these, for example, to
create or overwrite files with the dd command.

Configuration Files—/etc The /etc directory is very important; it contains the
configuration files for most programs. Files /etc/inittab and /etc/init.d/*, for ex-
ample, contain most of the system-specific data required to start system services.
Here is a more detailed descriptionof the most important files—except for a few
of them, only user root has write permission but everyone may read them.

/etc/fstab This describes all mountable file systems and their properties (type,
access method, “mount point”).

/etc/hosts This file is one of the configuration files of the TCP/IP network. It maps
the names of network hosts to their IP addresses. In small networks and on
freestanding hosts this can replace a name server.

/etc/inittab The /etc/inittab file is the configuration file for the init program and
thus for the system start.

/etc/init.d/* This directory contains the “init scripts” for various system services.
These are used to start up or shut down system services when the system is
booted or switched off.

On Red Hat distributions, this directory is called /etc/rc.d/init.d.

/etc/issue This file contains the greeting that is output before a user is asked to
log in. After the installation of a new system this frequently contains the
name of the vendor.

/etc/motd This file contains the “message of the day” that appears after a user has
successfully logged in. The system administrator can use this file to notify
users of important facts and events1.

/etc/mtab This is a list of all mounted file systems including their mount points.
/etc/mtab differs from /etc/fstab in that it contains all currently mounted file
systems, while /etc/fstab contains only settings and options for file systems
that might be mounted—typically on system boot but also later. Even that
list is not exhaustive, since you can mount file systems via the command
line where and how you like.

B We’re really not supposed to put that kind of information in a file
within /etc, where files ought to be static. Apparently, tradition has
carried the day here.

/etc/passwd In /etc/passwd there is a list of all users that are known to the system, to-
gether with various items of user-specific information. In spite of the name
of the file, on modern systems the passwords are not stored in this file but
in another one called /etc/shadow. Unlike /etc/passwd, that file is not readable
by normal users.

1There is a well-known claim that the only thing all Unix systems in the world have in common is
the “message of the day” asking users to remove unwanted files since all the disks are 98% full.

9.3 The Linux Directory Tree 143

Accessories—/opt This directory is really intended for third-party software—
complete packages prepared by vendors that are supposed to be installable with-
out conflicting with distribution files or locally-installed files. Such software pack-
ages occupy a subdirectory /opt/⟨package⟩. By rights, the /opt directory should be
completely empty after a distribution has been installed on an empty disk.

“Unchanging Files”—/usr In /usr there are various subdirectories containing
programs and data files that are not essential for booting or repairing the system
or otherwise indispensable. The most important directories include:

/usr/bin System programs that are not essential for booting or otherwise impor-
tant

/usr/sbin More system programs for root

/usr/lib Further libraries (not used for programs in /bin or /sbin

/usr/local Directory for files installed by the local system administrator. Corre-
sponds to the /opt directory—the distribution may not put anything here

/usr/share Architecture-independent data. In principle, a Linux network consist-
ing, e. g., of Intel, SPARC and PowerPC hosts could share a single copy of
/usr/share on a central server. However, today disk space is so cheap that no
distribution takes the trouble of actually implementing this.

/usr/share/doc Documentation, e. g., HOWTOs

/usr/share/info Info pages

/usr/share/man Manual pages (in subdirectories)

/usr/src Source code for the kernel and other programs (if available)

B The name /usr is often erroneously considered an acronym of “Unix system
resources”. Originally this directory derives from the time when computers
often had a small, fast hard disk and another one that was bigger but slower.
All the frequently-used programs and files went to the small disk, while the
big disk (mounted as /usr) served as a repository for files and programs
that were either less frequently used or too big. Today this separation can
be exploited in another way: With care, you can put /usr on its own partition
and mount that partition “read-only”. It is even possible to import /usr from Read-only /usr

a remote server, even though the falling prices for disk storage no longer
make this necessary (the common Linux distributions do not support this,
anyway).

A Window into the Kernel—/proc This is one of the most interesting and impor-
tant directories. /proc is really a “pseudo file system”: It does not occupy space on pseudo file system

disk, but its subdirectories and files are created by the kernel if and when someone
is interested in their content. You will find lots of data about running processes
as well as other information the kernel possesses about the computer’s hardware.
For instance, in some files you will find a complete hardware analysis. The most
important files include:

/proc/cpuinfo This contains information about the CPU’s type and clock frequency.

/proc/devices This is a complete list of devices supported by the kernel including
their major device numbers. This list is consulted when device files are cre-
ated.

/proc/dma A list of DMA channels in use. On today’s PCI-based systems this is
neither very interesting nor important.

144 9 The File System

/proc/interrupts A list of all hardware interrupts in use. This contains the inter-
rupt number, number of interrupts triggered and the drivers handling that
particular interrupt. (An interrupt occurs in this list only if there is a driver
in the kernel claiming it.)

/proc/ioports Like /proc/interrupts, but for I/O ports.

/proc/kcore This file is conspicuous for its size. It makes available the computer’s
complete RAM and is required for debugging the kernel. This file requires
root privileges for reading. You do well to stay away from it!

/proc/loadavg This file contains three numbers measuring the CPU load during
the last 1, 5 and 15 minutes. These values are usually output by the uptime

program

/proc/meminfo Displays the memory and swap usage. This file is used by the free

program

/proc/mounts Another list of all currently mounted file systems, mostly identical to
/etc/mtab

/proc/scsi In this directory there is a file called scsi listing the available SCSI de-
vices. There is another subdirectory for every type of SCSI host adapter in
the system containing a file 0 (1, 2, …, for multiple adapters of the same type)
giving information about the SCSI adapter.

/proc/version Contains the version number and compilation date of the current
kernel.

B Back when /proc had not been invented, programs like the process status
display tool, ps, which had to access kernel information, needed to include
considerable knowledge about internal kernel data structures as well as the
appropriate access rights to read the data in question from the running ker-
nel. Since these data structures used to change fairly rapidly, it was often
necessary to install a new version of these programs along with a new ver-
sion of the kernel. The /proc file system serves as an abstraction layer be-
tween these internal data structures and the utilities: Today you just need
to ensure that after an internal change the data formats in /proc remain the
same—and ps and friends continue working as usual.

Hardware Control—/sys The Linux kernel has featured this directory since ver-
sion 2.6. Like /proc, it is made available on demand by the kernel itself and al-
lows, in an extensive hierarchy of subdirectories, a consistent view on the available
hardware. It also supports management operations on the hardware via various
special files.

B Theoretically, all entries in /proc that have nothing to do with individual
processes should slowly migrate to /sys. When this strategic goal is going
to be achieved, however, is anybody’s guess.

Dynamically Changing Files—/var This directory contains dynamically changing
files, distributed across different directories. When executing various programs,
the user often creates data (frequently without being aware of the fact). For ex-
ample, the man command causes compressed manual page sources to be uncom-
pressed, while formatted man pages may be kept around for a while in case they
are required again soon. Similarly, when a document is printed, the print data
must be stored before being sent to the printer, e. g., in /var/spool/cups. Files in
/var/log record login and logout times and other system events (the “log files”),log files

/var/spool/cron contains information about regular automatic command invoca-
tions, and users’ unread electronic mail is kept in /var/mail.

9.3 The Linux Directory Tree 145

B Just so you heard about it once (it might be on the exam): On Linux, the
system log files are generally handled by the “syslog” service. A program
called syslogd accepts messages from other programs and sorts these ac-
cording to their origin and priority (from “debugging help” to “error” and
“emergency, system is crashing right now”) into files below /var/log, where
you can find them later on. Other than to files, the syslog service can also
write its messages elsewhere, such as to the console or via the network to
another computer serving as a central “management station” that consoli-
dates all log messages from your data center.

B Besides the syslogd, some Linux distributions also contain a klogd service.
Its job is to accept messages from the operating system kernel and to pass
them on to syslogd. Other distributions do not need a separate klogd since
their syslogd can do that job itself.

B The Linux kernel emits all sorts of messages even before the system is booted
far enough to run syslogd (and possibly klogd) to accept them. Since the mes-
sages might still be important, the Linux kernel stores them internally, and
you can access them using the dmesg command.

Transient Files—/tmp Many utilities require temporary file space, for example
some editors or sort. In /tmp, all programs can deposit temporary data. Many
distributions can be set up to clean out /tmp when the system is booted; thus you
should not put anything of lasting importance there.

B According to tradition, /tmp is emptied during system startup but /var/tmp

isn’t. You should check what your distribution does.

Server Files—/srv Here you will find files offered by various server programs,
such as

drwxr-xr-x 2 root root 4096 Sep 13 01:14 ftp

drwxr-xr-x 5 root root 4096 Sep 9 23:00 www

This directory is a relatively new invention, and it is quite possible that it does
not yet exist on your system. Unfortunately there is no other obvious place for
web pages, an FTP server’s documents, etc., that the FHS authors could agree on
(the actual reason for the introduction of /srv), so that on a system without /srv,
these files could end up somewhere completely different, e. g., in subdirectories
of /usr/local or /var.

Access to CD-ROM or Floppies—/media This directory is often generated auto-
matically; it contains additional empty directories, like /media/cdrom and /media/

floppy, that can serve as mount points for CD-ROMs and floppies. Depending
on your hardware setup you should feel free to add further directories such as
/media/dvd, if these make sense as mount points and have not been preinstalled by
your distribution vendor.

Access to Other Storage Media—/mnt This directory (also empty) serves as a
mount point for short-term mounting of additional storage media. With some
distributions, such as those by Red Hat, media mountpoints for CD-ROM, floppy,
… might show up here instead of below /media.

User Home Directories—/home This directory contains the home directories of
all users except root (whose home directory is located elsewhere).

B If you have more than a few hundred users, it is sensible, for privacy protec-
tion and efficiency, not to keep all home directories as immediate children
of /home. You could, for example, use the users’ primary group as a criterion
for further subdivision:

146 9 The File System

Table 9.2: Directory division according to the FHS

static dynamic
local /etc, /bin, /sbin, /lib /dev, /var/log

remote /usr, /opt /home, /var/mail

/home/support/jim

/home/develop/bob

�����

Administrator’s Home Directory—/root The system administrator’s home direc-
tory is located in /root. This is a completely normal home directory similar to that
of the other users, with the marked difference that it is not located below /home but
immediately below the root directory (/).

The reason for this is that /home is often located on a file system on a separate
partition or hard disk. However, root must be able to access their own user envi-
ronment even if the separate /home file system is not accessible for some reason.

Lost property—lost+found (ext file systems only; not mandated by FHS.) This di-
rectory is used for files that look reasonable but do not seem to belong to any
directory. The file system consistency checker creates liks to such files in the
lost+found directory on the same file system, so the system administrator can fig-
ure out where the file really belongs; lost+found is created “on the off-chance” for
the file system consistency checker to find in a fixed place (by convention, on the
ext file systems, it always uses inode number 11).

B Another motivation for the directory arrangement is as follows: The FHS di-
vides files and directories roughly according to two criteria—do they need
to be available locally or can they reside on another computer and be ac-
cessed via the network, and are their contents static (do files only change
by explicit administrator action) or do they change while the system is run-
ning? (Table 9.2)
The idea behind this division is to simplify system administration: Direc-
tories can be moved to file servers and maintained centrally. Directories
that do not contain dynamic data can be mounted read-only and are more
resilient to crashes.

Exercises

C 9.2 [1] How many programs does your system contain in the “usual”
places?

C 9.3 [I]f grep is called with more than one file name on the command line,
it outputs the name of the file in question in front of every matching line.
This is possibly a problem if you invoke grep with a shell wildcard pattern
(such as “*.txt”), since the exact format of the grep output cannot be fore-
seen, which may mess up programs further down the pipeline. How can
you enforce output of the file name, even if the search pattern expands to a
single file name only? (Hint: There is a very useful “file” in /dev.)

C 9.4 [T]he “cp foo.txt /dev/null” command does basically nothing, but the
“mv foo.txt /dev/null”—assuming suitable access permissions—replaces
/dev/null by foo.txt. Why?

9.4 Directory Tree and File Systems 147

C 9.5 [2] On your system, which (if any) software packages are installed below
/opt? Which ones are supplied by the distribution and which ones are third-
party products? Should a distribution install a “teaser version” of a third-
party product below /opt or elsewhere? What do you think?

C 9.6 [1] Why is it inadvisable to make backup copies of the directory tree
rooted at /proc?

9.4 Directory Tree and File Systems

A Linux system’s directory tree usually extends over more than one partition on
disk, and removable media like CD-ROM disks, USB keys as well as portable MP3
players, digital cameras and so on must be taken into account. If you know your
way around Microsoft Windows, you are probably aware that this problem is
solved there by means of identifying different “drives” by means of letters—on
Linux, all available disk partitions and media are integrated in the directory tree
starting at “/”.

In general, nothing prevents you from installing a complete Linux system
on a single hard disk partition. However, it is common to put at least the /home partitioning

directory—where users’ home directories reside—on its own partition. The ad-
vantage of this approach is that you can re-install the actual operating system,
your Linux distribution, completely from scratch without having to worry about
the safety of your own data (you simply need to pay attention at the correct mo-
ment, namely when you pick the target partition(s) for the installation in your
distribution’s installer.) This also simplifies the creation of backup copies.

On larger server systems it is also quite usual to assign other directories, typi- server systems

cally /tmp, /var/tmp, or /var/spool, their own partitions. The goal is to prevent users
from disturbing system operations by filling important partitions completely. For
example, if /var is full, no protocol messages can be written to disk, so we want to
keep users from filling up the file system with large amounts of unread mail, un-
printed print jobs, or giant files in /var/tmp. On the other hand, all these partitions
tend to clutter up the system.

B More information and strategies for partitioning are presented in the Linup
Front training manual, Linux Administration I.

The /etc/fstab file describes how the system is assembled from various disk /etc/fstab

partitions. During startup, the system arranges for the various file systems to be
made available—the Linux insider says “mounted”—in the correct places, which
you as a normal user do not need to worry about. What you may in fact be inter-
ested in, though, is how to access your CD-ROM disks and USB keys, and these
need to be mounted, too. Hence we do well to cover this topic briefly even though
it is really administrator country.

To mount a medium, you require both the name of the device file for the
medium (usually a block device such as /dev/sda1) and a directory somewhere in
the directory tree where the content of the medium should appear—the so-called
mount point. This can be any directory.

B The directory doesn’t even have to be empty, although you cannot access the
original content once you have mounted another medium “over” it. (The
content reappears after you unmount the medium.)

A In principile, somebody could mount a removable medium over an impor-
tant system directory such as /etc (ideally with a file called passwd containing
a root entry without a password). This is why mounting of file systems in
arbitrary places within the directory tree is restricted to the system adminis-
trator, who will have no need for shenanigans like these, as they are already
root.

148 9 The File System

B Earlier on, we called the “device file for the medium” /dev/sda1. This is really
the first partition on the first SCSI disk drive in the system—the real name
may be completely different depending on the type of medium you are us-
ing. Still it is an obvious name for USB keys, which for technical reasons are
treated by the system as if they were SCSI devices.

With this information—device name and mount point—a system administra-
tor can mount the medium as follows:

mount /dev/sda1 /media/usb

This means that a file called file on the medium would appear as /media/usb/file

in the directory tree. With a command such as

umount /media/usb Note: no ‘‘n’’

the administrator can also unmount the medium again.

9.5 Removable Media

The explict mounting of removable media is a tedious business, and the explicit
unmounting before removing a medium even more so—but especially the latter
can lead to problems if you remove the medium physically before Linux is com-
pletely finished with it. Linux does try to speed up the system by not executing
slow operations like writing to media immediately but later, when the “right mo-
ment” has arrived, and if you pull out your USB key before the data have actually
been written there, you have in the best case gained nothing, and in the worst case
the data on there have descended into chaos.

As a user of a graphical desktop interface on a modern Linux system, you have
it easy: If you insert or plug in a medium—no matter whether it is an audio CD,
USB key, or digital camera—, a dialog appears suggesting various interesting ac-
tions that you can perform on the medium. “Mounting” is usually one of those,
and the system also figures out a nice mount point for you. It is just as easy to
remove the medium later by means of an icon on the desktop background or the
desktop environment’s control panel. We don’t need to cover this in detail here.

Things look different on the command line, though, where you must mount
and unmount removable media explicitly as discussed in the previous section.
As we said, as a normal user you are not allowed to do this for arbitrary media in
arbitrary places, but only for media that your system administrator has prepared
for this and then only at “pre-cooked” mount points. You can recognise these
because they have been marked with the user or users options:

$ grep user /etc/fstab

/dev/hdb /media/cdrom0 udf,iso9660 ro,user,noauto 0 0

/dev/sda1 /media/usb auto user,noauto 0 0

/dev/mmcblk0p1 /media/sd auto user,noauto 0 0

For the details of /etc/fstab entries we need to refer you to the Linup Front training
manual, Linux Administration I (O. K., fstab(5) also works, but our manual is nicer);
here and now we shall restrict ourselves to pointing out that in our example three
types of removable media are available, namely CD-ROM disks (the first entry),
USB-based media such as USB keys, digital cameras or MP3 players (the second
entry), and SD cards (the third entry). As a “normal user”, you have to stick to the
given mount points and can (after inserting the medium in question) say things
like

$ mount /dev/hdb for the CD-ROM
$ mount /media/cdrom0 ditto

9.5 Removable Media 149

$ mount /dev/sda1 for the USB key
$ mount /media/sd for the SD card

That is, Linux expects either the device name or the mount point; the matching
counterpart always derives from the /etc/fstab entry. Unmounting using umount

works similarly.

B The user option in /etc/fstab makes this work (it also produces some other ef-
fects that we shall not be treating in detail here). The users option is roughly
the same; the difference between the two—and you may want to remem-
ber this, as it may occur on the exam—is that, with user, only the user who
mounted the file system originally may unmount it again. With users, any
user may do so (!). (And root can do it all the time, anyway.)

Exercises

C 9.7 [1] Insert a floppy in the drive, mount it, copy a file (like /etc/passwd) to
the floppy, and unmount the floppy again. (If your system is “legacy-free”
and no longer sports a floppy disk drive, then do the same with a USB key
or a similar suitable removable medium.)

Commands in this Chapter

dmesg Outputs the content of the kernel message buffer dmesg(8) 145
file Guesses the type of a file’s content, according to rules file(1) 138
free Displays main memory and swap space usage free(1) 144
klogd Accepts kernel log messages klogd(8) 145
mkfifo Creates FIFOs (named pipes) mkfifo(1) 139
mknod Creates device files mknod(1) 139
syslogd Handles system log messages syslogd(8) 145
uptime Outputs the time since the last system boot as well as the system load

averages uptime(1) 144

Summary

• Files are self-contained collections of data stored under a name. Linux uses
the “file” abstraction also for devices and other objects.

• The method of arranging data and administrative information on a disk is
called a file system. The same term covers the complete tree-structured hi-
erarchy of directories and files in the system or a specific storage medium
together with the data on it.

• Linux file systems contain plain files, directories, symbolic links, device files
(two kinds), FIFOs, and Unix-domain sockets.

• The Filesystem Hierarchy Standard (FHS) describes the meaning of the most
important directories in a Linux system and is adhered to by most Linux
distributions.

• Removable media must be mounted into the Linux directory tree to be ac-
cessible, and be unmounted after use. The mount and umount commands are
used to do this. Graphical desktop enviroments usually offer more conve-
nient methods.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

10
System Administration

Contents

10.1 Introductory Remarks 152
10.2 The Privileged root Account 152
10.3 Obtaining Administrator Privileges 154
10.4 Distribution-specific Administrative Tools 156

Goals

• Reviewing a system administrator’s tasks
• Being able to log on as the system administrator
• Being able to assess the advantages and disadvantage of (graphical) admin-

istration tools

Prerequisites

• Basic Linux skills
• Administration skills for other operating systems are helpful

adm1-grundlagen.tex (33e55eeadba676a3)

152 10 System Administration

10.1 Introductory Remarks

As a mere user of a Linux system, you are well off: You sit down in front of your
computer, everything is configured correctly, all the hardware is supported and
works. You have no care in the world since you can call upon a system adminis-
trator who will handle all administrative tasks for you promptly and thoroughly
(that’s what we wish your environment is like, anyway).

Should you be (or strive to be) the system administrator yourself—within your
company or the privacy of your home—then you have your work cut out for you:
You must install and configure the system and connect any peripherals. Having
done that, you need to keep the system running, for example by checking the sys-
tem logs for unusual events, regularly getting rid of old log files, making backup
copies, installing new software and updating existing programs, and so on.

Today, in the age of Linux distributions with luxurious installation tools, sys-
tem installation is no longer rocket science. However, an ambitious administrator
can spend lots of time mobilising every last resource on their system. In general,
system administration mostly takes place when a noticeable change occurs, forchanges

example when new hardware or software is to be integrated, new users arrive or
existing ones disappear, or hardware problems arise.

B Many Linux distributions these days contain specialised tools to facilitateTools

system administration. These tools perform different tasks ranging from
user management and creating file systems to complete system updates.
Utilities like these can make these tasks a lot easier but sometimes a lot more
difficult. Standard procedures are simplified but for specialised settings you
should know the exact relationships between system components. Further-
more, most of these tools are only available for certain distributions.

The administration of a Linux system, as of any other computer system, re-
quires a considerable amount of responsibility and care. You should not see your-responsibility

self as a demigod (at least) but as a service provider. No matter whether you are
the only system administrator—say, on your own computer—or working in a team
of colleagues to support a company network: communication is paramount. Youcommunication

should get used to documenting configuration changes and other administrative
decisions in order to be able to retrace them later. The Linux way of directly edit-
ing text files makes this convenient, since you can comment configuration settings
right where they are made (a luxury not usually enjoyed with graphical adminis-
tration tools). Do so.

10.2 The Privileged root Account

For many tasks, the system administrator needs special privileges. Accordingly,
he can make use of a special user account called root. As root, a user is the so-called
super user. In brief: He may do anything.super user

The normal file permissions and security precautions do not apply to root. He
has allowing him nearly unbounded access to all data, devices and system compo-unlimited privileges

nents. He can institute system changes that all other users are prohibited from by
the Linux kernel’s security mechanisms. This means that, as root, you can change
every file on the system no matter who it belongs to. While normal users cannot
wreak damage (e. g., by destroying file systems or manipulating other users’ files),
root is not thus constrained.

B In many cases, these extensive system administrator privileges are really
a liability. For example, when making backup copies it is necessary to be
able to read all files on the system. However, this by no means implies that
the person making the backup (possibly an intern) should be empowered to
open all files on the system with a text editor, to read them or change them—
or start a network service which might be accessible from anywhere in the

10.2 The Privileged root Account 153

world. There are various ways of giving out administrator privileges only in
controlled circumstances (such as sudo, a system which lets normal users ex- sudo

ecute certain commands using administrator privileges), of selectively giv-
ing particular privileges to individual process rather than operating on an
“all or nothing” principle (cue POSIX capabilities), or of doing away with POSIX capabilities

the idea of an “omnipotent” system administrator completely (for instance,
SELinux—“security-enhanced Linux”—a freely available software package SELinux

by the American intelligence agency, NSA, contains a “role-based” access
control system that can get by without an omnipotent system administra-
tor).

Why does Linux contain security precautions in the first place? The most im- Why Security?

portant reason is for users to be able to determine the access privileges that apply
to their own files. By setting permission bits (using the chmod command), users
can ascertain that certain files may be read, written to or executed by certain oth-
ers (or no) users. This helps safeguard the privacy and integrity of their data. You
would certainly not approve of other users being able to read your private e-mail
or change the source code of an important program behind your back.

The security mechanisms are also supposed to keep users from damaging the
system. Access to many of the device files in /dev corresponding to hardware com- Access control for devices

ponents such as hard disks is constrained by the system. If normal users could ac-
cess disk storage directly, all sorts of mayhem might occur (a user might overwrite
the complete content of a disk or, having obtained information about the layout
of the filesystem on the disk, access files that are none of his business). Instead,
the system forces normal users to access the disks via the file system and protects
their data in that way.

It is important to stress that damage is seldom caused on purpose. The system’s
security mechanisms serve mostly to save users from unintentional mistakes and
misunderstandings; only in the second instance are they meant to protect the pri-
vacy of users and data.

On the system, users can be pooled into groups to which you may assign their groups

own access privileges. For example, a team of software developers could have
read and write permission to a number of files, while other users are not allowed
to change these files. Every user can determine for their own files how permissive
or restrictive access to them should be.

The security mechanisms also prevent normal users from performing certain
actions such as the invocation of specific system calls from a program. For exam- Privileged system calls

ple, there is a system call that will halt the system, which is executed by programs
such as shutdown when the system is to be powered down or rebooted. If normal
users were allowed to invoke this routine from their own programs, they could
inadvertently (or intentionally) stop the system at any time.

The administrator frequently needs to circumvent these security mechanisms
in order to maintain the system or install updated software versions. The root

account is meant to allow exactly this. A good administrator can do his work
without regard for the usual access permissions and other constraints, since these
do not apply to root. The root account is not better than a normal user account
because it has more privileges; the restriction of these privileges to root is a secu-
rity measure. Since the operating system’s reasonable and helpful protection and
security mechanisms do not apply to the system administrator, working as root

is very risky. You should therefore use root to execute only those commands that
really require the privileges.

B Many of the security problems of other popular operating systems can be
traced back to the fact that normal users generally enjoy administrator priv-
ileges. Thus, programs such as “worms” or “Trojan horses”, which users
often execute by accident, find it easy to establish themselves on the sys-
tem. With a Linux system that is correctly installed and operated, this is
hardly possible since users read their e-mail without administrator privi-

154 10 System Administration

leges, but administrator privileges are required for all system-wide config-
uration changes.

B Of course, Linux is not magically immune against malicious pests like
“mail worms”; somebody could write and make popular a mail program
that would execute “active content” such as scripts or binary programs
within messages like some such programs do on other operating systems.
On Linux, such a “malicious” program from elsewhere could remove all
the caller’s files or try to introduce “Trojan” code to his environment, but
it could not harm other users nor the system itself—unless it exploited a
security vulnerability in Linux that would let a local user gain administrator
privileges “through the back door” (such vulnerabilities are detected now
and again, and patches are promptly published which you should install in
a timely manner).

Exercises

C 10.1 [2] What is the difference between a user and an administrator? Name
examples for tasks and actions (and suitable commands) that are typically
performed from a user account and the root account, respectively.

C 10.2 [!1] Why should you, as a normal user, not use the root account for your
daily work?

C 10.3 [W]hat about access control on your computer at home? Do you work
from an administrator account?

10.3 Obtaining Administrator Privileges

There are two ways of obtaining administrator privileges:

1. You can log in as user root directly. After entering the correct root password
you will obtain a shell with administrator privileges. However, you should
avoid logging in to the GUI as root, since then all graphical applications in-
cluding the X server would run with root privileges, which is not necessary
and can lead to security problems. Nor should direct root logins be allowed
across the network.

B You can determine which terminals are eligible for direct root login
by listing them in the /etc/securetty file. The default setting is usually
“all virtual consoles and /dev/ttyS0” (the latter for users of the “serial
console”).

2. You can, from a normal shell, use the su command to obtain a new shell with
administrator privileges. su, like login, asks for a password and opens the
root shell only after the correct root password has been input. In GUIs like
KDE there are similar methods.

(See also Introduction to Linux for Users and Administrators.)
Even if a Linux system is used by a single person only, it makes sense to createSingle-user systems, too!

a normal account for this user. During everyday work on the system as root, most
of the kernel’s normal security precautions are circumvented. That way errors can
occur that impact on the whole system. You can avoid this danger by logging into
your normal account and starting a root shell via “/bin/su -” if and when required.

B Using su, you can also assume the identity of arbitrary other users (here hugo)
by invoking it like

$ /bin/su - hugo

10.3 Obtaining Administrator Privileges 155

You need to know the target user’s password unless you are calling su as
user root.

The second method is preferable to the first for another reason, too: If you use
the su command to become root after logging in to your own account, su creates a
message like

Apr 1 08:18:21 HOST su: (to root) user1 on /dev/tty2

in the system log (such as /var/log/messages). This entry means that user user1 suc- system log

cessfully executed su to become root on terminal 2. If you log in as root directly,
no such message is logged; there is no way of figuring out which user has fooled
around with the root account. On a system with several administrators it is often
important to retrace who entered the su command when.

Ubuntu is one of the “newfangled” distributions that deprecate–and, in the
default setup, even disable—logging in as root. Instead, particular users
may use the sudo mechanism to execute individual commands with admin-
istrator privileges. Upon installation, you are asked to create a “normal”
user account, and that user account is automatically endowed with “indi-
rect” administrator privileges.

When installing Debian GNU/Linux, you can choose between assigning a
password to the root account and thereby enabling direct administrator lo-
gins, and declining this and, as on Ubuntu, giving sudo-based administrator
privileges to the first unprivileged user account created as part of the instal-
lation process.

On many systems, the shell prompt differs between root and the other users. shell prompt
The classic root prompt contains a hash mark (#), while other users see a prompt
containing a dollar sign ($) or greater-than sign (>). The # prompt is supposed
to remind you that you are root with all ensuing privileges. However, the shell
prompt is easily changed, and it is your call whether to follow this convention or
not.

B Of course, if you are using sudo, you never get to see a prompt for root.

Like all powerful tools, the root account can be abused. Therefore it is impor- Misuse of root

tant for you as the system administrator too keep the root password secret. It
should only be passed on to users who are trusted both professionally and per-
sonally (or who can be held responsible for their actions). If you are the sole user
of the system this problem does not apply to you.

Too many cooks spoil the broth! This principle also applies to system admin- Administration: alone or by
manyistration. The main benefit of “private” use of the root account is not that the

possibility of misuse is minimised (even though this is surely a consequence).
More importantly, root as the sole user of the root account knows the complete
system configuration. If somebody besides the administrator can, for example,
change important system files, then the system configuration could be changed
without the administrator’s knowledge. In a commercial environment, it is nec-
essary to have several suitably privileged employees for various reasons—for ex-
ample, safeguarding system operation during holidays or sudden severe illness
of the administrator—; this requires close cooperation and communication.

If there is only one system administrator who is responsible for system con-
figuration, you can be sure that one person really knows what is going on on the
system (at least in theory), and the question of accountability also has an obvi- accountability

ous asnwer. The more users have access to root, the greater is the probability that
somebody will commit an error as root at some stage. Even if all users with root

access possess suitable administration skills, mistakes can happen to anybody.
Prudence and thorough training are the only precautions against accidents.

156 10 System Administration

There are a few other useful tools for team-based system administration.
For example, Debian GNU/Linux and Ubuntu support a package called
etckeeper, which allows storing the complete content of the /etc directory in
a revision control system such as Git or Mercurial. Revision control systems
(which we cannot cover in detail here) make it possible to track changes to
files in a directory hierarchy in a very detailed manner, to comment them
and, if necessary, to undo them. With Git or Mercurial it is even possible to
store a copy of the /etc directory on a completely different computer and to
keep it in sync automatically—great protection from accidents.

Exercises

C 10.4 [2] What methods exist to obtain administrator rights? Which method
is better? Why?

C 10.5 [!2] On a conventionally configured system, how can you recognise
whether you are working as root?

C 10.6 [2] Log in as a normal user (e. g., test). Change over to root and back to
test. How do you work best if you frequently need to change between both
these accounts (for example, to check on the results of a new configuration)?

C 10.7 [!2] Log in as a normal user and change to root using su. Where do you
find a log entry documenting this change? Look at that message.

10.4 Distribution-specific Administrative Tools

Many Linux distributions try to stand out in the crowd by providing more or less
ingenious tools that are supposed to simplify system administration. These tools
are usually tailored to the distributions in question. Here are a few comments
about typical specimens:

A familiar sight to SUSE administrators is “YaST”, the graphical adminis-
tration interface of the SUSE distributions (it also runs on a text screen). It
allows the extensive configuration of many aspects of the system either by
directly changing the configuration files concerned or by manipulating ab-
stract configuration files below /etc/sysconfig which are then used to adapt
the real configuration files by means of the SuSEconfig tool. For some tasks
such as network configuration, the files below /etc/sysconfig are the actual
configuration files.

Unfortunately, YaST is not a silver bullet for all problems of system admin-
istration. Even though many aspects of the system are amenable to YaST-
based administration, important settings may not be accessible via YaST, or
the YaST modules in question simply do not work correctly. The danger
zone starts where you try to administer the computer partly through YaST
and partly through changing configuration files manually: Yast does exer-
cise some care not to overwrite your changes (which wasn’t the case in the
past—up till SuSe 6 or so, YaST and SuSEconfig used to be quite reckless),
but will then not perform its own changes such that they really take effect in
the system. In other places, manual changes to the configuration files will
actually show up in YaST. Hence you have to have some “insider knowl-
edge” and experience in order to assess which configuration files you may
change directly and which your grubby fingers had better not touch.

Some time ago, Novell released the YaST source code under the GPL (in
SUSE’s time it used to be available but not under a “free” licence). However,
so far no other distribution of consequence has adapted YaST to its purposes,
let alone made it a standard tool (SUSE fashion).

10.4 Distribution-specific Administrative Tools 157

B The Webmin package by Jamie Cameron (http://www.webmin.com/) allows the
convenient administration of various Linux distributions (or Unix versions)
via a web-based interface. Webmin is very extensive and offers special fa-
cilities for administering “virtual” servers (for web hosters and their cus-
tomers). However you may have to install it yourself, since most distribu-
tions do not provide it. Webmin manages its own users, which means that
you can extend administrator privileges to users who do not have interac-
tive system access. (Whether that is a smart idea is a completely different
question.)

Most administration tools like YaST and Webmin share the same disadvan-
tages:

• They are not extensive enough to take over all aspects of system administra-
tions, and as an administrator you have to have detailed knowledge of their
limits in order to be able to decide where to intervene manually.

• They make system administration possible for people whose expertise is
not adequate to assess the possible consequences of their actions or to find
and correct mistakes. Creating a user account using an administration tool
is certainly not a critical job and surely more convenient than editing four
different system files using vi, but other tasks such as configuring a fire-
wall or mail server are not suitable for laypeople even using a convenient
administration tool. The danger is that inexperienced administrators will
use an administration tool to attempt tasks which do not look more com-
plicated than others but which, without adequate background knowledge,
may endanger the safety and/or reliability of the system.

• They usually do not offer a facility to version control or document any
changes made, and thus complicate teamwork and auditing by requiring
logs to be kept externally.

• They are often intransparent, i. e., they do not provide documentation about
the actual steps they take on the system to perform administrative tasks.
This keeps the knowledge about the necessary procedures buried in the pro-
grams; as the administrator you have no direct way of “learning” from the
programs like you could by observing an experienced administrator. Thus
the adminstration tools keep you artificially stupid.

• As an extension of the previous point: If you need to administer several
computers, common administration tools force you to execute the same
steps repeatedly on every single machine. Many times it would be more
convenient to write a shell script automating the required procedure, and to
execute it automatically on every computer using, e. g., the “secure shell”,
but the administration tool does not tell you what to put into this shell
script. Therefore, viewed in a larger context, their use is inefficient.

From various practical considerations like these we would like to recommend
against relying too much on the “convenient” administration tools provided by
the distributions. They are very much like training wheels on a bicycle: They
work effectively against falling over too early and provide a very large sense of
achievement very quickly, but the longer the little ones zoom about with them, the
more difficult it becomes to get them used to “proper” bike-riding (here: doing
administration in the actual configuration files, including all advantages such as
documentation, transparency, auditing, team capability, transportability, …).

Excessive dependence on an administration tool also leads to excessive depen-
dence on the distribution featuring that tool. This may not seem like a real liabil-
ity, but on the other hand one of the more important advantages of Linux is the fact
that there are multiple independent vendors. So, if one day you should be fed up
with the SUSE distributions (for whatever reason) and want to move over to Red
Hat or Debian GNU/Linux, it would be very inconvenient if your administrators

158 10 System Administration

knew only YaST and had to relearn Linux administration from scratch. (Third-
party administration tools like Webmin do not exhibit this problem to the same
degree.)

Exercises

C 10.8 [!2] Does your distribution provide an administration tool (such as
YaST)? What can you do with it?

C 10.9 [3] (Continuation of the previous exercise—when working through the
manual for the second time.) Find out how your administration tool works.
Can you change the system configuration manually so the administration
tool will notice your changes? Only under some circumstances?

C 10.10 [!1] Administration tools like Webmin are potentially accessible to ev-
erybody with a browser. Which advantages and disadvantages result from
this?

Commands in this Chapter

su Starts a shell using a different user’s identity su(1) 154
sudo Allows normal users to execute certain commands with administrator

privileges sudo(8) 152

Summary

• Every computer installation needs a certain amount of system administra-
tion. In big companies, universities and similar institutions these services
are provided by (teams of) full-time administrators; in smaller companies
or private households, (some) users usually serve as administrators.

• Linux systems are, on the whole, straightforward to administer. Work arises
mostly during the initial installation and, during normal operation, when
the configuration changes noticeably.

• On Linux systems, there usually is a privileged user account called root, to
which the normal security mechanisms do not apply.

• As an administrator, one should not work as root exclusively, but use a nor-
mal user account and assume root privileges only if necessary.

• Administration tools such as YaST or Webmin can help perform some ad-
ministrative duties, but are no substitute for administrator expertise and
may have other disadvantages as well.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

11
User Administration

Contents

11.1 Basics . 160
11.1.1 Why Users? . 160
11.1.2 Users and Groups 161
11.1.3 People and Pseudo-Users 163

11.2 User and Group Information. 163
11.2.1 The /etc/passwd File 163
11.2.2 The /etc/shadow File 166
11.2.3 The /etc/group File 168
11.2.4 The /etc/gshadow File 169
11.2.5 The getent Command 170

11.3 Managing User Accounts and Group Information 170
11.3.1 Creating User Accounts 171
11.3.2 The passwd Command 172
11.3.3 Deleting User Accounts 174
11.3.4 Changing User Accounts and Group Assignment 174
11.3.5 Changing User Information Directly—vipw 175
11.3.6 Creating, Changing and Deleting Groups 175

Goals

• Understanding the user and group concepts of Linux
• Knowing how user and group information is stored on Linux
• Being able to use the user and group administration commands

Prerequisites

• Knowledge about handling configuration files

adm1-benutzer.tex (33e55eeadba676a3)

160 11 User Administration

11.1 Basics

11.1.1 Why Users?

Computers used to be large and expensive, but today an office workplace without
its own PC (“personal computer”) is nearly inconceivable, and a computer is likely
to be encountered in most domestic “dens” as well. And while it may be sufficient
for a family to agree that Dad, Mom and the kids will put their files into different
directories, this will no longer do in companies or universities—once shared disk
space or other facilities are provided by central servers accessible to many users,
the computer system must be able to distinguish between different users and to
assign different access rights to them. After all, Ms Jones from the Development
Division has as little business looking at the company’s payroll data as Mr Smith
from Human Resources has accessing the detailed plans for next year’s products.
And a measure of privacy may be desired even at home—the Christmas present
list or teenage daughter’s diary (erstwhile fitted with a lock) should not be open
to prying eyes as a matter of course.

B We shall be discounting the fact that teenage daughter’s diary may be visible
to the entire world on Facebook (or some such); and even if that is the case,
the entire world should surely not be allowed to write to teenage daughter’s
dairy. (Which is why even Facebook supports the notion of different users.)

The second reason for distinguishing between different users follows from the
fact that various aspects of the system should not be visible, much less change-
able, without special privileges. Therefore Linux manages a separate user iden-
tity (root) for the system administrator, which makes it possible to keep informa-
tion such as users’ passwords hidden from “common” users. The bane of older
Windows systems—programs obtained by e-mail or indiscriminate web surfing
that then wreak havoc on the entire system—will not plague you on Linux, since
anything you can execute as a common user will not be in a position to wreak
system-wide havoc.

A Unfortunately this is not entirely correct: Every now and then a bug comes
to light that enables a “normal user” to do things otherwise restricted to
administrators. This sort of error is extremely nasty and usually corrected
very quickly after having been found, but there is a considerable chance that
such a bug has remained undetected in the system for an extended period
of time. Therefore, on Linux (as on all other operating systems) you should
strive to run the most current version of critical system parts like the kernel
that your distributor supports.

A Even the fact that Linux safeguards the system configuration from unau-
thorised access by normal users should not entice you to shut down your
brain. We do give you some advice (such as not to log in to the graphical
user interface as root), but you should keep thinking along. E-mail messages
asking you to view web site 𝑋 and enter your credit card number and PIN
there can reach you even on Linux, and you should disregard them in the
same way as everywhere else.

Linux distinguishes between different users by means of different user ac-user accounts

counts. The common distributions typically create two user accounts during
installation, namely root for administrative tasks and another account for a “nor-
mal” user. You (as the administrator) may add more accounts later, or, on a client
PC in a larger network, they may show up automatically from a user account
database stored elsewhere.

B Linux distinguishes between user accounts, not users. For example, no one
keeps you from using a separate user account for reading e-mail and surf-
ing the web, if you want to be 100% sure that things you download from the

11.1 Basics 161

Net have no access to your important data (which might otherwise happen
in spite of the user/administrator divide). With a little cunning you can
even display a browser and e-mail program running under your “surfing
account” among your “normal” programs1.

Under Linux, every user account is assigned a unique number, the so-called
user ID (or UID, for short). Every user account also features a textual user name UID

user name(such as root or joe) which is easier to remember for humans. In most places where
it counts—e. g., when logging in, or in a list of files and their owners—Linux will
use the textual name whenever possible.

B The Linux kernel does not know anything about textual user names; process
data and the ownership data in the filesystem use the UID exclusively. This
may lead to difficulties if a user is deleted while he still owns files on the
system, and the UID is reassigned to a different user. That user “inherits”
the previous UID owner’s files.

B There is no technical problem with assigning the same (numerical) UID to
different user names. These users have equal access to all files owned by that
UID, but every user can have his own password. You should not actually
use this (or if you do, use it only with great circumspection).

11.1.2 Users and Groups

To work with a Linux computer you need to log in first. This allows the system
to recognise you and to assign you the correct access rights (of which more later).
Everything you do during your session (from logging in to logging out) happens
under your user account. In addition, every user has a home directory, where home directory

only they can store and manage their own files, and where other users often have
no read permission and very emphatically no write permission. (Only the system
administrator—root—may read and write all files.)

A Depending on which Linux distribution you use (cue: Ubuntu) it may be
possible that you do not have to log into the system explicitly. This is be-
cause the computer “knows” that it will usually be you and simply assumes
that this is going to be the case. You are trading security for convenience; this
particular deal probably makes sense only where you can stipulate with rea-
sonable certainty that nobody except you will switch on your computer—
and hence should be restricted by rights to the computer in your single-
person household without a cleaner. We told you so.

Several users who want to share access to certain system resources or files can
form a group. Linux identifies group members either fixedly by name or tran- group

siently by a login procedure similar to that for users. Groups have no “home di-
rectories” like users do, but as the administrator you can of course create arbitrary
directories meant for certain groups and having appropriate access rights.

Groups, too, are identified internally using numerical identifiers (“group IDs”
or GIDs).

B Group names relate to GIDs as user names to UIDs: The Linux kernel only
knows about the former and stores only the former in process data or the
file system.

Every user belongs to a primary group and possibly several secondary or addi-
tional groups. In a corporate setting it would, for example, be possible to introduce
project-specific groups and to assign the people collaborating on those projects
to the appropriate group in order to allow them to manage common data in a
directory only accessible to group members.

1Which of course is slightly more dangerous again, since programs runninig on the same screen
can communicate with one another

162 11 User Administration

For the purposes of access control, all groups carry equivalent weight—every
user always enjoys all rights deriving from all the groups that he is a member of.
The only difference between the primary and secondary groups is that files newly
created by a user are usually2 assigned to his primary group.

B Up to (and including) version 2.4 of the Linux kernel, a user could be a mem-
ber of at most 32 additional groups; since Linux 2.6 the number of secondary
groups is unlimited.

You can find out a user account’s UID, the primary and secondary groups and
the corresponding GIDs by means of the id program:

$ id

uid=1000(joe) gid=1000(joe) groups=24(cdrom),29(audio),44(video),�

� 1000(joe)

$ id root

uid=0(root) gid=0(root) groups=0(root)

B With the options -u, -g, and -G, id lets itself be persuaded to output just the
account’s UID, the GID of the primary group, or the GIDs of the secondary
groups. (These options cannot be combined.) With the additional option -n

you get names instead of numbers:

$ id -G

1000 24 29 44

$ id -Gn

joe cdrom audio video

B The groups command yields the same result as the ”‘id -Gn”’ command.

You can use the last command to find who logged into your computer andlast

when (and, in the case of logins via the network, from where):

$ last

joe pts/1 pcjoe.example.c Wed Feb 29 10:51 still logged in

bigboss pts/0 pc01.example.c Wed Feb 29 08:44 still logged in

joe pts/2 pcjoe.example.c Wed Feb 29 01:17 - 08:44 (07:27)

sue pts/0 :0 Tue Feb 28 17:28 - 18:11 (00:43)

�����

reboot system boot 3.2.0-1-amd64 Fri Feb 3 17:43 - 13:25 (4+19:42)

�����

For network-based sessions, the third column specifies the name of the ssh client
computer. “:0” denotes the graphical screen (the first X server, to be exact—there
might be more than one).

B Do also note the reboot entry, which tells you that the computer was started.
The third column contains the version number of the Linux operating sys-
tem kernel as provided by “uname -r”.

With a user name, last provides information about a particular user:

$ last

joe pts/1 pcjoe.example.c Wed Feb 29 10:51 still logged in

joe pts/2 pcjoe.example.c Wed Feb 29 01:17 - 08:44 (07:27)

�����

2The exception occurs where the owner of a directory has decreed that new files and subdirectories
within this directory are to be assigned to the same group as the directory itself. We mention this
strictly for completeness.

11.2 User and Group Information 163

B You might be bothered (and rightfully so!) by the fact that this somewhat
sensitive information is apparently made available on a casual basis to arbi-
trary system users. If you (as the administrator) want to protect your users’
privacy somewhat better than you Linux distribution does by default, you
can use the

chmod o-r /var/log/wtmp

command to remove general read permissions from the file that last con-
sults for the telltale data. Users without administrator privileges then get to
see something like

$ last

last: /var/log/wtmp: Permission denied

11.1.3 People and Pseudo-Users

Besides “natural” persons—the system’s human users—the user and group con-
cept is also used to allocate access rights to certain parts of the system. This means
that, in addition to the personal accounts of the “real” users like you, there are fur-
ther accounts that do not correspond to actual human users but are assigned to pseudo-users

administrative functions internally. They define functional “roles” with their own
accounts and groups.

After installing Linux, you will find several such pseudo-users and groups in
the /etc/passwd and /etc/group files. The most important role is that of the root user
(which you know) and its eponymous group. The UID and GID of root are 0 (zero).

B root’s privileges are tied to UID 0; GID 0 does not confer any additional
access privileges.

Further pseudo-users belong to certain software systems (e. g., news for Usenet
news using INN, or postfix for the Postfix mail server) or certain components or
devices (such as printers, tape or floppy drives). You can access these accounts,
if necessary, like other user accounts via the su command. These pseudo-users pseudo-users for privileges

are helpful as file or directory owners, in order to fit the access rights tied to file
ownership to special requirements without having to use the root account. The
same appkies to groups; the members of the disk group, for example, have block-
level access to the system’s disks.

Exercises

C 11.1 [1] How does the operating system kernel differentiate between various
users and groups?

C 11.2 [2] What happens if a UID is assigned to two different user names? Is
that allowed?

C 11.3 [1] What is a pseudo-user? Give examples!

C 11.4 [2] (On the second reading.) Is it acceptable to assign a user to group
disk who you would not want to trust with the root password? Why (not)?

11.2 User and Group Information

11.2.1 The /etc/passwd File

The /etc/passwd file is the system user database. There is an entry in this file for
every user on the system—a line consisting of attributes like the Linux user name,

164 11 User Administration

“real” name, etc. After the system is first installed, the file contains entries for
most pseudo-users.

The entries in /etc/passwd have the following format:

⟨user name⟩:⟨password⟩:⟨UID⟩:⟨GID⟩:⟨GECOS⟩:⟨home directory⟩:⟨shell⟩

⟨user name⟩ This name should consist of lowercase letters and digits; the first char-
acter should be a letter. Unix systems often consider only the first eight
characters—Linux does not have this limitation but in heterogeneous net-
works you should take it into account.

A Resist the temptation to use umlauts, punctuation and similar special
characters in user names, even if the system lets you do so—not all
tools that create new user accounts are picky, and you could of course
edit /etc/passwd by hand. What seems to work splendidly at first glance
may lead to problems elsewhere later.

B You should also stay away from user names consisting of only upper-
case letters or only digits. The former may give their owners trouble
logging in (see Exercise 11.6), the latter can lead to confusion, espe-
cially if the numerical user name does not equal the account’s numeri-
cal UID. Commands such as ”‘ls -l”’ will display the UID if there is no
corresponding entry for it in /etc/passwd, and it is not exactly straight-
forward to tell UIDs from purely numerical user names in ls output.

⟨password⟩ Traditionally, this field contains the user’s encrypted password. Today,
most Linux distributions use “shadow passwords”; instead of storing the
password in the publically readable /etc/passwd file, it is stored in /etc/shadow

which can only be accessed by the administrator and some privileged pro-
grams. In /etc/passwd, a “x” calls attention to this circumstance. Every user
can avail himself of the passwd program to change his password.

⟨UID⟩ The numerical user identifier—a number between 0 and 232 − 1. By con-
vention, UIDs from 0 to 99 (inclusive) are reserved for the system, UIDs
from 100 to 499 are for use by software packages if they need pseudo-user
accounts. With most popular distributions, “real” users’ UIDs start from
500 (or 1000).
Precisely because the system differentiates between users not by name but
by UID, the kernel treats two accounts as completely identical if they con-
tain different user names but the same UID—at least as far as the access
privileges are concerned. Commands that display a user name (e. g., ”‘ls
-l”’ or id) show the one used when the user logged in.

⟨GID⟩ The GID of the user’s primary group after logging in.primary group

The Novell/SUSE distributions (among others) assign a single group
such as users as the shared primary group of all users. This method is
quite established as well as easy to understand.

Many distributions, such as those by Red Hat or Debian GNU/Linux,
create a new group whenever a new account is created, with the GID
equalling the account’s UID. The idea behind this is to allow more
sophisticated assignments of rights than with the approach that puts
all users into the same group users. Consider the following situation:
Jim (user name jim) is the personal assistant of CEO Sue (user name
sue). In this capacity he sometimes needs to access files stored inside
Sue’s home directory that other users should not be able to get at. The
method used by Red Hat, Debian & co., “one group per user”, makes it
straightforward to put user jim into group sue and to arrange for Sue’s

11.2 User and Group Information 165

files to be readable for all group members (the default case) but not oth-
ers. With the “one group for everyone” approach it would have been
necessary to introduce a new group completely from scratch, and to
reconfigure the jim and sue accounts accordingly.

By virtue of the assignment in /etc/passwd, every user must be a member of
at least one group.

B The user’s secondary groups (if applicable) are determined from en-
tries in the /etc/group file.

⟨GECOS⟩ This is the comment field, also known as the “GECOS field”.

B GECOS stands for “General Electric Comprehensive Operating Sys-
tem” and has nothing whatever to do with Linux, except that in the
early days of Unix this field was added to /etc/passwd in order to keep
compatibility data for a GECOS remote job entry service.

This field contains various bits of information about the user, in particular
his “real” name and optional data such as the office number or telephone
number. This information is used by programs such as mail or finger. The
full name is often included in the sender’s address by news and mail soft-
ware.

B Theoretically there is a program called chfn that lets you (as a user)
change the content of your GECOS field. Whether that works in any
particular case is a different question, since at least in a corporate set-
ting one does not necessarily want to allow people to change their
names at a whim.

⟨home directory⟩ This directory is that user’s personal area for storing his own files.
A newly created home directory is by no means empty, since a new user
normally receives a number of “profile” files as his basic equipment. When
a user logs in, his shell uses his home directory as its current directory, i. e.,
immediately after logging in the user is deposited there.

⟨shell⟩ The name of the program to be started by login after successful authentication—
this is usually a shell. The seventh field extends through the end of the line.

B The user can change this entry by means of the chsh program. The
eligible programs (shells) are listed in the /etc/shells file. If a user is
not supposed to have an interactive shell, an arbitrary program, with
arguments, can be entered here (a common candidate is /bin/true). This
field may also remain empty, in which case the standard shell /bin/sh
will be started.

B If you log in to a graphical environment, various programs will be
started on your behalf, but not necessarily an interactive shell. The
shell entry in /etc/passwd comes into its own, however, when you in-
voke a terminal emulator such as xterm or konsole, since these programs
usually check it to identify your preferred shell.

Some of the fields shown here may be empty. Absolutely necessary are only the
user name, UID, GID and home directory. For most user accounts, all the fields
will be filled in, but pseudo-users might use only part of the fields.

The home directories are usually located below /home and take their name from home directories

their owner’s user name. In general this is a fairly sensible convention which
makes a given user’s home directory easy to find. In theory, a home directory
might be placed anywhere in the file system under a completely arbitrary name.

B On large systems it is common to introduce one or more additional levels
of directories between /home and the “user name” directory, such as

166 11 User Administration

/home/hr/joe Joe from Human Resources
/home/devel/sue Sue from Development
/home/exec/bob Bob the CEO

There are several reasons for this. On the one hand this makes it easier to
keep one department’s home directory on a server within that department,
while still making it available to other client computers. On the other hand,
Unix (and some Linux) file systems used to be slow dealing with directories
containing very many files, which would have had an unfortunate impact
on a /home with several thousand entries. However, with current Linux file
systems (ext3 with dir_index and similar) this is no longer an issue.

Note that as an administrator you should not really be editing /etc/passwd by
hand. There is a number of programs that will help you create and maintain usertools

accounts.

B In principle it is also possible to store the user database elsewhere than in
/etc/passwd. On systems with very many users (thousands), storing user
data in a relational database is preferable, while in heterogeneous networks
a shared multi-platform user database, e. g., based on an LDAP directory,
might recommend itself. The details of this, however, are beyond the scope
of this course.

11.2.2 The /etc/shadow File

For security, nearly all current Linux distributions store encrypted user passwords
in the /etc/shadow file (“shadow passwords”). This file is unreadable for normal
users; only root may write to it, while members of the shadow group may read it in
addition to root. If you try to display the file as a normal user an error occurs.

B Use of /etc/shadow is not mandatory but highly recommended. However
there may be system configurations where the additional security afforded
by shadow passwords is nullified, for example if NIS is used to export user
data to other hosts (especially in heterogeneous Unix environments).

Again, this file contains one line for each user, with the following format:format

⟨user name⟩:⟨password⟩:⟨change⟩:⟨min⟩:⟨max⟩�
�:⟨warn⟩:⟨grace⟩:⟨lock⟩:⟨reserved⟩

For example:

root:gaY2L19jxzHj5:10816:0:10000::::

daemon:*:8902:0:10000::::

joe:GodY6c5pZk1xs:10816:0:10000::::

Here is the meaning of the individual fields:

⟨user name⟩ This must correspond to an entry in the /etc/passwd file. This field
“joins” the two files.

⟨password⟩ The user’s encrypted password. An empty field generally means that
the user can log in without a password. An asterisk or an exclamation point
prevent the user in question from logging in. It is common to lock user’s ac-
counts without deleting them entirely by placing an asterisk or exclamation
point at the beginning of the corresponding password.

⟨change⟩ The date of the last password change, in days since 1 January 1970.

11.2 User and Group Information 167

⟨min⟩ The minimal number of days that must have passed since the last password
change before the password may be changed again.

⟨max⟩ The maximal number of days that a password remains valid without hav-
ing to be changed. After this time has elapsed the user must change his
password.

⟨warn⟩ The number of days before the expiry of the ⟨max⟩ period that the user will
be warned about having to change his password. Generally, the warning
appears when logging in.

⟨grace⟩ The number of days, counting from the expiry of the ⟨max⟩ period, after
which the account will be locked if the user does not change his password.
(During the time from the expiry of the ⟨max⟩ period and the expiry of this
grace period the user may log in but must immediately change his pass-
word.)

⟨lock⟩ The date on which the account will be definitively locked, again in days
since 1 January 1970.

Some brief remarks concerning password encryption are in order. You might password encryption

think that if passwords are encrypted they can also be decrypted again. This would
open all of the system’s accounts to a clever cracker who manages to obtain a copy
of /etc/shadow. However, in reality this is not the case, since password “encryption”
is a one-way street. It is impossible to recover the decrypted representation of a
Linux password from the “encrypted” form because the method used for encryp-
tion prevents this. The only way to “crack” the encryption is by encrypting likely
passwords and checking whether they match what is in /etc/shadow.

B Let’s assume you select the characters of your password from the 95 vis-
ible ASCII characters (uppercase and lowercase letters are distinguished).
This means that there are 95 different one-character passwords, 952 = 9025
two-character passwords, and so on. With eight characters you are already
up to 6.6 quadrillion (6.6 ⋅ 1015) possibilities. Stipulating that you can trial-
encrypt 10 million passwords per second (not entirely unrealistic on current
hardware), this means you would require approximately 21 years to work
through all possible passwords. If you are in the fortunate position of own-
ing a modern graphics card, another acceleration by a factor of 50–100 is
quite feasible, which makes that about two months. And then of course
there are handy services like Amazon’s EC2, which will provide you (or
random crackers) with almost arbitrary CPU power, or the friendly neigh-
bourhood Russian bot net … so don’t feel too safe.

B There are a few other problems. The traditional method (usually called
“crypt” or “DES”—the latter because it is based on, but not identical to, the
eponymous encryption method3) should no longer be used if you can avoid
it. It has the unpleasant property of only looking at the first eight characters
of the entered password, and clever crackers can nowadays buy enough disk
space to build a pre-encrypted cache of the 50 million (or so) most common
passwords. To “crack” a password they only need to search their cache for
the encrypted password, which can be done extremely quickly, and read off
the corresponding clear-text password.

B To make things even more laborious, when a newly entered password is
encrypted the system traditionally adds a random element (the so-called

3If you must know exactly: The clear-text password is used as the key (!) to encrypt a constant
string (typically a sequence of zero bytes). A DES key is 56 bits, which just happens to be 8 characters
of 7 bits each (as the leftmost bit in each character is ignored). This process is repeated for a total of
25 rounds, with the previous round’s output serving as the new input. Strictly speaking the encryption
scheme used isn’t quite DES but changed in a few places, to make it less feasible to construct a special
password-cracking computer from commercially available DES encryption chips.

168 11 User Administration

“salt”) which selects one of 4096 different possibilities for the encrypted
password. The main purpose of the salt is to avoid random hits result-
ing from user 𝑋, for some reason or other, getting a peek at the content
of /etc/shadow and noting that his encrypted password looks just like that
of user 𝑌 (hence letting him log into user 𝑌’s account using his own clear-
text password). For a pleasant side effect, the disk space required for the
cracker’s pre-encrypted dictionary from the previous paragraph is blown
up by a factor of 4096.

B Nowadays, password encryption is commonly based on the MD5 algorithm,
allows for passwords of arbitrary length and uses a 48-bit salt instead of
the traditional 12 bits. Kindly enough, the encryption works much more
slowly than “crypt”, which is irrelevant for the usual purpose (checking a
password upon login—you can still encrypt several hundred passwords per
second) but does encumber clever crackers to a certain extent. (You should
not let yourself be bothered by the fact that cryptographers poo-poo the
MD5 scheme as such due to its insecurity. As far as password encryption is
concerned, this is fairly meaningless.)

A You should not expect too much of the various password administration pa-
rameters. They are being used by the text console login process, but whether
other parts of the system (such as the graphical login screen) pay them any
notice depends on your setup. Nor is there usually an advantage in forc-
ing new passwords on users at short intervals—this usually results in a se-
quence like bob1, bob2, bob3, …, or users alternate between two passwords.
A minimal interval that must pass before a user is allowed to change their
password again is outright dangerous, since it may give a cracker a “win-
dow” for illicit access even though the user knows their password has been
compromised.

The problem you need to cope with as a system administrator is usually not
people trying to crack your system’s passwords by “brute force”. It is much more
promising, as a rule, to use “social engineering”. To guess your password, the
clever cracker does not start at a, b, and so on, but with your spouse’s first name,
your kids’ first names, your car’s plate number, your dog’s birthday et cetera. (We
do not in any way mean to imply that you would use such a stupid password. No,
no, not you by any means. However, we are not quite so positive about your boss
…) And then there is of course the time-honoured phone call approach: “Hi, this
is the IT department. We’re doing a security systems test and urgently require
your user name and password.”

There are diverse ways of making Linux passwords more secure. Apart from
the improved encryption scheme mentioned above, which by now is used by de-
fault by most Linux distributions, these include complaining about (too) weak
passwords when they are first set up, or proactively running software that will
try to identify weak encrypted passwords, just like clever crackers would (Cau-
tion: Do this in your workplace only with written (!) pre-approval from your
boss!). Other methods avoid passwords completely in favour of constantly chang-
ing magic numbers (as in SecurID) or smart cards. All of this is beyond the scope
of this manual, and therefore we refer you to the Linup Front manual Linux Secu-
rity.

11.2.3 The /etc/group File

By default, Linux keeps group information in the /etc/group file. This file containsgroup database

one-line entry for each group in the system, which like the entries in /etc/passwd

consists of fields separated by colons (:). More precisely, /etc/group contains four
fields per line.

⟨group name⟩:⟨password⟩:⟨GID⟩:⟨members⟩

11.2 User and Group Information 169

Their meaning is as follows:

⟨group name⟩ The name of the group, for use in directory listings, etc.

⟨password⟩ An optional password for this group. This lets users who are not mem-
bers of the group via /etc/shadow or /etc/group assume membership of the
group using newgrp. A “*” as an invalid character prevents normal users
from changing to the group in question. A “x” refers to the separate pass-
word file /etc/gshadow.

⟨GID⟩ The group’s numerical group identifier.

⟨Members⟩ A comma-separated list of user names. This list contains all users who
have this group as a secondary group, i. e., who are members of this group
but have a different value in the GID field of their /etc/passwd entry. (Users
with this group as their primary group may also be listed here but that is
unnecessary.)

A /etc/group file could, for example, look like this:

root:x:0:root

bin:x:1:root,daemon

users:x:100:

project1:x:101:joe,sue

project2:x:102:bob

The entries for the root and bin groups are entries for administrative groups, sim- administrative groups

ilar to the system’s pseudo-user accounts. Many files are assigned to groups like
this. The other groups contain user accounts.

Like UIDs, GIDs are counted from a specific value, typically 100. For a valid GID values

entry, at least the first and third field (group name and GID) must be filled in.
Such an entry assigns a GID (which might occur in a user’s primary GID field in
/etc/passwd) a textual name.

The password and/or membership fields must only be filled in for groups that
are assigned to users as secondary groups. The users listed in the membership membership list

list are not asked for a password when they want to change GIDs using the newgrp

command. If an encrypted password is given, users without an entry in the mem- group password

bership list can authenticate using the password to assume membership of the
group.

B In practice, group passwords are hardly if ever used, as the administrative
overhead barely justifies the benefits to be derived from them. On the one
hand it is more convenient to assign the group directly to the users in ques-
tion (since, from version 2.6 of the Linux kernel on, there is no limit to the
number of secondary groups a user can join), and on the other hand a single
password that must be known by all group members does not exactly make
for bullet-proof security.

B If you want to be safe, ensure that there is an asterisk (“*”) in every group
password slot.

11.2.4 The /etc/gshadow File

As for the user database, there is a shadow password extension for the group
database. The group passwords, which would otherwise be encrypted but read-
able for anyone in /etc/group (similar to /etc/passwd), are stored in the separate file
/etc/gshadow. This also contains additional information about the group, for ex-
ample the names of the group administrators who are entitled to add or remove
members from the group.

170 11 User Administration

11.2.5 The getent Command

Of course you can read and process the /etc/passwd, /etc/shadow, and /etc/group files,
like all other text files, using programs such as cat, less or grep (OK, OK, you need
to be root to get at /etc/shadow). There are, however, some practical problems:

• You may not be able to see the whole truth: Your user database (or parts of
it) might be stored on an LDAP server, SQL database, or a Windows domain
controller, and there really may not be much of interest in /etc/passwd.

• If you want to look for a specific user’s entry, it is slightly inconvenient to
type this using grep if you want to avoid “false positives”.

The getent command makes it possible to query the various databases for user and
group information directly. With

$ getent passwd

you will be shown something that looks like /etc/passwd, but has been assembled
from all sources of user information that are currently configured on your com-
puter. With

$ getent passwd hugo

you can obtain user hugo’s entry, no matter where it is actually stored. Instead
of passwd, you may also specify shadow, group, or gshadow to consult the respective
database. (Naturally, even with getent you can only access shadow and gshadow as
user root.)

B The term “database” is understood as “totality of all sources from where
the C library can obtain information on that topic (such as users)”. If you
want to know exactly where that information comes from (or might come
from), then read nsswitch.conf(5) and examine the /etc/nsswitch.conf file on
your system.

B You may also specify several user or group names. In that case, information
on all the named users or groups will be output:

$ getent passwd hugo susie fritz

Exercises

C 11.5 [1] Which value will you find in the second column of the /etc/passwd

file? Why do you find that value there?

C 11.6 [2] Switch to a text console (using, e. g., Alt + F1) and try logging in
but enter your user name in uppercase letters. What happens?

C 11.7 [2] How can you check that there is an entry in the shadow database for
every entry in the passwd database? (pwconv only considers the /etc/passwd and
/etc/shadow files, and also rewrites the /etc/shadow file, which we don’t want.

11.3 Managing User Accounts and Group Information

After a new Linux distribution has been installed, there is often just the root ac-
count for the system administrator and the pseudo-users’ accounts. Any other
user accounts must be created first (and most distributions today will gently but
firmly nudge the installing person to create at least one “normal” user account).

As the administrator, it is your job to create and manage the accounts for all
required users (real and pseudo). To facilitate this, Linux comes with several toolstools for user management

for user management. With them, this is mostly a straightforward task, but it is
important that you understand the background.

11.3 Managing User Accounts and Group Information 171

11.3.1 Creating User Accounts

The procedure for creating a new user account is always the same (in principle)
and consists of the following steps:

1. You must create entries in the /etc/passwd (and possibly /etc/shadow) files.

2. If necessary, an entry (or several) in the /etc/group file is necessary.

3. You must create the home directory, copy a basic set of files into it, and
transfer ownership of the lot to the new user.

4. If necessary, you must enter the user in further databases, e. g., for disk quo-
tas, database access privilege tables and special applications.

All files involved in adding a new account are plain text files. You can perform
each step manually using a text editor. However, as this is a job that is as tedious
as it is elaborate, it behooves you to let the system help you, by means of the useradd

program.
In the simplest case, you pass useradd merely the new user’s user name. Op- useradd

tionally, you can enter various other user parameters; for unspecified parameters
(typically the UID), “reasonable” default values will be chosen automatically. On
request, the user’s home directory will be created and endowed with a basic set of
files that the program takes from the /etc/skel directory. The useradd command’s
syntax is:

useradd [⟨options⟩] ⟨user name⟩

The following options (among others) are available:

-c ⟨comment⟩ GECOS field entry

-d ⟨home directory⟩ If this option is missing, /home/⟨user name⟩ is assumed

-e ⟨date⟩ On this date the account will be deactivated automatically (format
“YYYY-MM-DD”)

-g ⟨group⟩ The new user’s primary group (name or GID). This group must exist.

-G ⟨group⟩[,⟨group⟩]… Supplementary groups (names or GIDs). These groups
must also exist.

-s ⟨shell⟩ The new user’s login shell

-u ⟨UID⟩ The new user’s numerical UID. This UID must not be already in use,
unless the “-o” option is given

-m Creates the home directory and copies the basic set of files to it. These files
come from /etc/skel, unless a different directory was named using “-k
⟨directory⟩”.

For instance, the

useradd -c "Joe Smith" -m -d /home/joe -g devel \

> -k /etc/skel.devel

command creates an account by the name of joe for a user called Joe Smith, and
assigns it to the devel group. joe’s home directory is created as /home/joe, and the
files from /etc/skel.devel are being copied into it.

B With the -D option (on SUSE distributions, --show-defaults) you may set de-
fault values for some of the properties of new user accounts. Without addi-
tional options, the default values are displayed:

172 11 User Administration

useradd -D

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/sh

SKEL=/etc/skel

CREATE_MAIL_SPOOL=no

You can change these values using the -g, -b, -f, -e, and -s options, respec-
tively:

useradd -D -s /usr/bin/zsh zsh as the default shell

The final two values in the list cannot be changed.

B useradd is a fairly low-level tool. In real life, you as an experienced adminis-
trator will likely not be adding new user accounts by means of useradd, but
through a shell script that incorporates your local policies (just so you don’t
have to remember them all the time). Unfortunately you will have to come
up with this shell script by yourself—at least unless you are using Debian
GNU/Linux or one of its derivatives (see below).

Watch out: Even though every serious Linux distribution comes with a program
called useradd, the implementations differ in their details.

The Red Hat distributions include a fairly run-of-the-mill version of useradd,
without bells and whistles, which provides the features discussed above.

The SUSE distributions’ useradd is geared towards optionally adding users to
a LDAP directory rather than the /etc/passwd file. (This is why the -D option
cannot be used to query or set default values like it can elsewhere—it is
already spoken for to do LDAPy things.) The details are beyond the scope
of this manual.

On Debian GNU/Linux and Ubuntu, useradd does exist but the recom-
mended method to create new user accounts is a program called adduser

(thankfully this is not confusing). The advantage of adduser is that it plays
according to Debian GNU Linux’s rules, and furthermore makes it possible
to execute arbitrary other actions for a new account besides creating the
actual account. For example, one might create a directory in a web server’s
document tree so that the new user (and nobody else) can publish files
there, or the user could automatically be authorised to access a database
server. You can find the details in adduser(8) and adduser.conf(5).

After it has been created using useradd, the new account is not yet accessible;
the system administrator must first set up a password. We shall be explaining thispassword

presently.

11.3.2 The passwd Command

The passwd command is used to set up passwords for users. If you are logged in as
root, then

passwd joe

asks for a new password for user john (You must enter it twice as it will not be
echoed to the screen).

The passwd command is also available to normal users, to let them change their
own passwords (changing other users’ passwords is root’s prerogative):

11.3 Managing User Accounts and Group Information 173

$ passwd

Changing password for joe.

(current) UNIX password: secret123

Enter new UNIX password: 321terces

Retype new UNIX password: 321terces

passwd: password updated successfully

Normal users must enter their own password correctly once before being allowed
to set a new one. This is supposed to make life difficult for practical jokers that
play around on your computer if you had to step out very urgently and didn’t
have time to engage the screen lock.

On the side, passwd serves to manage various settings in /etc/shadow. For exam-
ple, you can look at a user’s “password state” by calling the passwd command with
the -S option:

passwd -S bob

bob LK 10/15/99 0 99999 7 0

The first field in the output is (once more) the user name, followed by the password
state: “PS” or “P” if a password is set, “LK” or “L” for a locked account, and “NP” for
an account with no password at all. The other fields are, respectively, the date of
the last password change, the minimum and maximum interval for changing the
password, the expiry warning interval and the “grace period” before the account
is locked completely after the password has expired. (See also Section 11.2.2.)

You can change some of these settings by means of passwd options. Here are a
few examples:

passwd -l joe Lock the account
passwd -u joe Unlock the account
passwd -n 7 joe Password change at most every 7 days
passwd -x 30 joe Password change at least every 30 days
passwd -w 3 joe 3 days grace period before password expires

E Locking and unlocking accounts by means of -l and -u works by putting
a “!” in front of the encrypted password in /etc/shadow. Since “!” cannot
result from password encryption, it is impossible to enter something upon
login that matches the “encrypted password” in the user database—hence
access via the usual login procedure is prevented. Once the “!” is removed,
the original password is back in force. (Astute, innit?) However, you should
keep in mind that users may be able to gain access to the system by other
means that do not refer to the encrypted password in the user database,
such as the secure shell with public-key authentication.

Changing the remaining settings in /etc/shadow requires the chage command:

chage -E 2009-12-01 joe Lock account from 1 Dec 2009
chage -E -1 joe Cancel expiry date
chage -I 7 joe Grace period 1 week from password expiry
chage -m 7 joe Like passwd -n (Grr.)
chage -M 7 joe Like passwd -x (Grr, grr.)
chage -W 3 joe Like passwd -w (Grr, grr, grr.)

(chage can change all settings that passwd can change, and then some.)

B If you cannot remember the option names, invoke chage with the name of
a user account only. The program will present you with a sequence of the
current values to change or confirm.

174 11 User Administration

You cannot retrieve a clear-text password even if you are the administrator.
Even checking /etc/shadow doesn’t help, since this file stores all passwords already
encrypted. If a user forgets their password, it is usually sufficient to reset their
password using the passwd command.

B Should you have forgotten the root password and not be logged in as root by
any chance, your last option is to boot Linux to a shell, or boot from a rescue
disk or CD. (See Chapter 16.) After that, you can use an editor to clear the
⟨password⟩ field of the root entry in /etc/passwd.

Exercises

C 11.8 [3] Change user joe’s password. How does the /etc/shadow file change?
Query that account’s password state.

C 11.9 [!2] The user dumbo has forgotten his password. How can you help him?

C 11.10 [!3] Adjust the settings for user joe’s password such that he can change
his password after at least a week, and must change it after at most two
weeks. There should be a warning two days before the two weeks are up.
Check the settings afterwards.

11.3.3 Deleting User Accounts

To delete a user account, you need to remove the user’s entries from /etc/passwd and
/etc/shadow, delete all references to that user in /etc/group, and remove the user’s
home directory as well as all other files created or owned by that user. If the
user has, e. g., a mail box for incoming messages in /var/mail, that should also be
removed.

Again there is a suitable command to automate these steps. The userdel com-userdel

mand removes a user account completely. Its syntax:

userdel [-r] ⟨user name⟩

The -r option ensures that the user’s home directory (including its content) and
his mail box in /var/mail will be removed; other files belonging to the user—e. g.,
crontab files—must be delete manually. A quick way to locate and remove files
belonging to a certain user is the

find / -uid ⟨UID⟩ -delete

command. Without the -roption, only the user information is removed from the
user database; the home directory remains in place.

11.3.4 Changing User Accounts and Group Assignment

User accounts and group assignments are traditionally changed by editing the
/etc/passwd and /etc/group files. However, many systems contain commands like
usermod and groupmod for the same purpose, and you should prefer these since they
are safer and—mostly—more convenient to use.

The usermod program accepts mostly the same options as useradd, but changesusermod

existing user accounts instead of creating new ones. For example, with

usermod -g ⟨group⟩ ⟨user name⟩

you could change a user’s primary group.
Caution! If you want to change an existing user account’s UID, you could editChanging UIDs

the ⟨UID⟩ field in /etc/passwd directly. However, you should at the same time trans-
fer that user’s files to the new UID using chown: “chown -R tux /home/tux” re-confers

11.3 Managing User Accounts and Group Information 175

ownership of all files below user tux’s home directory to user tux, after you have
changed the UID for that account. If “ls -l” displays a numerical UID instead of
a textual name, this implies that there is no user name for the UID of these files.
You can fix this using chown.

11.3.5 Changing User Information Directly—vipw

The vipw command invokes an editor (vi or a different one) to edit /etc/passwd di-
rectly. At the same time, the file in question is locked in order to keep other users
from simultaneously changing the file using, e. g., passwd (which changes would
be lost). With the -s option, /etc/shadow can be edited.

B The actual editor that is invoked is determined by the value of the VISUAL

environment variable, alternatively that of the EDITOR environment variable;
if neither exists, vi will be launched.

Exercises

C 11.11 [!2] Create a user called test. Change to the test account and create a
few files using touch, including a few in a different directory than the home
directory (say, /tmp). Change back to root and change test’s UID. What do
you see when listing user test’s files?

C 11.12 [!2] Create a user called test1 using your distribution’s graphical tool
(if available), test2 by means of the useradd command, and another, test3,
manually. Look at the configuration files. Can you work without problems
using any of these three accounts? Create a file using each of the new ac-
counts.

C 11.13 [!2] Delete user test2’s account and ensure that there are no files left
on the system that belong to that user.

C 11.14 [2] Change user test1’s UID. What else do you need to do?

C 11.15 [2] Change user test1’s home directory from /home/test1 to /home/user/

test1.

11.3.6 Creating, Changing and Deleting Groups

Like user accounts, you can create groups using any of several methods. The
“manual” method is much less tedious here than when creating new user ac-
counts: Since groups do not have home directories, it is usually sufficient to edit
the /etc/group file using any text editor, and to add a suitable new line (see be-
low for vigr). When group passwords are used, another entry must be added to
/etc/gshadow.

Incidentally, there is nothing wrong with creating directories for groups.
Group members can place the fruits of their collective labour there. The approach
is similar to creating user home directories, although no basic set of configuration
files needs to be copied.

For group management, there are, by analogy to useradd, usermod, and userdel,
the groupadd, groupmod, and groupdel programs that you should use in favour of edit-
ing /etc/group and /etc/gshadow directly. With groupadd you can create new groups groupadd

simply by giving the correct command parameters:

groupadd [-g ⟨GID⟩] ⟨group name⟩

The -g option allows you to specify a given group number. As mentioned be-
fore, this is a positive integer. The values up to 99 are usually reserved for system
groups. If -g is not specified, the next free GID is used.

You can edit existing groups with groupmod without having to write to /etc/group groupmod

directly:

176 11 User Administration

groupmod [-g ⟨GID⟩] [-n ⟨name⟩] ⟨group name⟩

The “-g ⟨GID⟩” option changes the group’s GID. Unresolved file group assign-
ments must be adjusted manually. The “-n ⟨name⟩” option sets a new name for the
group without changing the GID; manual adjustments are not necessary.

There is also a tool to remove group entries. This is unsurprisingly called
groupdel:groupdel

groupdel ⟨group name⟩

Here, too, it makes sense to check the file system and adjust “orphaned” group
assignments for files with the chgrp command. Users’ primary groups may not be
removed—the users in question must either be removed beforehand, or they must
be reassigned to a different primary group.

The gpasswd command is mainly used to manipulate group passwords in a waygpasswd

similar to the passwd command. The system administrator can, however, delegate
the administration of a group’s membership list to one or more group adminis-group administrator

trators. Group administrators also use the gpasswd command:

gpasswd -a ⟨user⟩ ⟨group⟩

adds the ⟨user⟩ to the ⟨group⟩, and

gpasswd -d ⟨user⟩ ⟨group⟩

removes him again. With

gpasswd -A ⟨user⟩,… ⟨group⟩

the system administrator can nominate users who are to serve as group adminis-
trators.

The SUSE distributions haven’t included gpasswd for some time. Instead
there are modified versions of the user and group administration tools that
can handle an LDAP directory.

As the system administrator, you can change the group database directly using
the vigr command. It works like vipw, by invoking an editor for “exclusive” accessvigr

to /etc/group. Similarly, “vigr -s” gives you access to /etc/gshadow.

Exercises

C 11.16 [2] What are groups needed for? Give possible examples.

C 11.17 [1] Can you create a directory that all members of a group can access?

C 11.18 [!2] Create a supplementary group test. Only user test1 should be a
member of that group. Set a group password. Log in as user test1 or test2

and try to change over to the new group.

11.3 Managing User Accounts and Group Information 177

Commands in this Chapter

adduser Convenient command to create new user accounts (Debian)
adduser(8) 172

chfn Allows users to change the GECOS field in the user database
chfn(1) 165

getent Gets entries from administrative databases getent(1) 170
gpasswd Allows a group administrator to change a group’s membership and up-

date the group password gpasswd(1) 176
groupadd Adds user groups to the system group database groupadd(8) 175
groupdel Deletes groups from the system group database groupdel(8) 176
groupmod Changes group entries in the system group database groupmod(8) 175
groups Displays the groups that a user is a member of groups(1) 162
id Displays a user’s UID and GIDs id(1) 162
last List recently-logged-in users last(1) 162
useradd Adds new user accounts useradd(8) 171
userdel Removes user accounts userdel(8) 174
usermod Modifies the user database usermod(8) 174
vigr Allows editing /etc/group or /etc/gshadow with “file locking”, to avoid con-

flicts vipw(8) 176

Summary

• Access to the system is governed by user accounts.
• A user account has a numerical UID and (at least) one textual user name.
• Users can form groups. Groups have names and numerical GIDs.
• “Pseudo-users” and “pseudo-groups” serve to further refine access rights.
• The central user database is (normally) stored in the /etc/passwd file.
• The users’ encrypted passwords are stored—together with other password

parameters—in the /etc/shadow file, which is unreadable for normal users.
• Group information is stored in the /etc/group and /etc/gshadow files.
• Passwords are managed using the passwd program.
• The chage program is used to manage password parameters in /etc/shadow.
• User information is changed using vipw or—better—using the specialised

tools useradd, usermod, and userdel.
• Group information can be manipulated using the groupadd, groupmod, groupdel

and gpasswd programs.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

12
Access Control

Contents

12.1 The Linux Access Control System 180
12.2 Access Control For Files And Directories 180

12.2.1 The Basics . 180
12.2.2 Inspecting and Changing Access Permissions. 181
12.2.3 Specifying File Owners and Groups—chown and chgrp 182
12.2.4 The umask . 183

12.3 Access Control Lists (ACLs) 185
12.4 Process Ownership 185
12.5 Special Permissions for Executable Files 185
12.6 Special Permissions for Directories 186
12.7 File Attributes . 188

Goals

• Understanding the Linux access control/privilege mechanisms
• Being able to assign access permissions to files and directories
• Knowing about the “umask”, SUID, SGID and the “sticky bit”
• Knowing about file attributes in the ext file systems

Prerequisites

• Knowledge of Linux user and group concepts (see Chapter 11)
• Knowledge of Linux files and directories

adm1-rechte.tex (33e55eeadba676a3)

180 12 Access Control

12.1 The Linux Access Control System

Whenever several users have access to the same computer system there must be
an access control system for processes, files and directories in order to ensure thataccess control system

user 𝐴 cannot access user 𝐵’s private files just like that. To this end, Linux imple-
ments the standard system of Unix privileges.

In the Unix tradition, every file and directory is assigned to exactly one user
(its owner) and one group. Every file supports separate privileges for its owner,separate privileges

the members of the group it is assigned to (“the group”, for short), and all other
users (“others”). Read, write and execute privileges can be enabled individually
for these three sets of users. The owner may determine a file’s access privileges.
The group and others may only access a file if the owner confers suitable privileges
to them. The sum total of a file’s access permissions is also called its access mode.access mode

In a multi-user system which stores private or group-internal data on a gen-
erally accessible medium, the owner of a file can keep others from reading or
modifying his files by instituting suitable access control. The rights to a file can beaccess control

determined separately and independently for its owner, its group and the others.
Access permissions allow users to map the responsibilities of a group collabora-
tive process to the files that the group is working with.

12.2 Access Control For Files And Directories

12.2.1 The Basics

For each file and each directory in the system, Linux allows separate access rights
for each of the three classes of users—owner, members of the file’s group, others.
These rights include read permission, write permission, and execute permission.

As far as files are concerned, these permissions control approximately whatfile permissions

their names suggest: Whoever has read permission may look at the file’s content,
whoever has write permission is allowed to change its content. Execute permis-
sion is necessary to launch the file as a process.

B Executing a binary “machine-language program” requires only execute per-
mission. For files containing shell scripts or other types of “interpreted”
programs, you also need read permission.

For directories, things look somewhat different: Read permission is requireddirectory permissions

to look at a directory’s content—for example, by executing the ls command. You
need write permission to create, delete, or rename files in the directory. “Execute”
permission stands for the possibility to “use” the directory in the sense that you
can change into it using cd, or use its name in path names referring to files farther
down in the directory tree.

B In directories where you have only read permission, you may read the file
names but cannot find out anything else about the files. If you have only “ex-
ecute permission” for a directory, you can access files as long as you know
their names.

Usually it makes little sense to assign write and execute permission to a directory
separately; however, it may be useful in certain special cases.

A It is important to emphasise that write permission on a file is completely
immaterial if the file is to be deleted—you need write permission to the direc-
tory that the file is in and nothing else! Since “deleting” a file only removes
a reference to the actual file information (the inode) from the directory, this
is purely a directory operation. The rm command does warn you if you’re
trying to delete a file that you do not have write permission for, but if you
confirm the operation and have write permission to the directory involved,
nothing will stand in the way of the operation’s success. (Like any other

12.2 Access Control For Files And Directories 181

Unix-like system, Linux has no way of “deleting” a file outright; you can
only remove all references to a file, in which case the Linux kernel decides
on its own that no one will be able to access the file any longer, and gets rid
of its content.)

B If you do have write permission to the file but not its directory, you cannot
remove the file completely. You can, however, truncate it down to 0 bytes
and thereby remove its content, even though the file itself still exists in prin-
ciple.

For each user, Linux determines the “most appropriate” access rights. For ex-
ample, if the members of a file’s group do not have read permission for the file
but “others” do, then the group members may not read the file. The (admittedly
enticing) rationale that, if all others may look at the file, then the group members,
who are in some sense also part of “all others”, should be allowed to read it as
well, does not apply.

12.2.2 Inspecting and Changing Access Permissions

You can obtain information about the rights, user and group assignment that ap- information

ply to a file using “ls -l”:

$ ls -l

-rw-r--r-- 1 joe users 4711 Oct 4 11:11 datei.txt

drwxr-x--- 2 joe group2 4096 Oct 4 11:12 testdir

The string of characters in the first column of the table details the access permis-
sions for the owner, the file’s group, and others (the very first character is just the
file type and has nothing to do with permissions). The third column gives the
owner’s user name, and the fourth that of the file’s group.

In the permissions string, “r”, “w”, and “x” signify existing read, write, and
execute permission, respectively. If there is just a “-” in the list, then the corre-
sponding category does not enjoy the corresponding privilege. Thus, “rw-r--r--”
stands for “read and write permission for the owner, but read permission only for
group members and others”.

As the file owner, you may set access permissions for a file using the chmod com- chmod command

mand (from “change mode”). You can specify the three categories by means of the
abbreviations “u” (user) for the owner (yourself), “g” (group) for the file’s group’s
members, and “o” (others) for everyone else. The permissions themselves are
given by the already-mentioned abbreviations “r”, “w”, and “x”. Using “+”, “-”,
and “=”, you can specify whether the permissions in question should be added to
any existing permissions, “subtracted” from the existing permissions, or used to
replace whatever was set before. For example:

$ chmod u+x file Execute permission for owner
$ chmod go+w file sets write permission for group and others
$ chmod g+rw file sets read and write permission for group
$ chmod g=rw,o=r file sets read and write permission,

removes group execute permission;
sets just read permission for others

$ chmod a+w file equivalent to ugo+w

B In fact, permission specifications can be considerably more complex. Con-
sult the info documentation for chmod to find out all the details.

A file’s owner is the single user (apart from root) who is allowed to change a
file’s or directory’s access permissions. This privilege is independent of the actual
permissions; the owner may take away all their own permissions, but that does
not keep them from giving them back later.

The general syntax of the chmod command is

182 12 Access Control

chmod [⟨options⟩] ⟨permissions⟩ ⟨name⟩ …

You can give as many file or directory names as desired. The most important
options include:

-R If a directory name is given, the permissions of files and directories inside this
directory will also be changed (and so on all the way down the tree).

--reference=⟨name⟩ Uses the access permissions of file ⟨name⟩. In this case no
⟨permissions⟩ must be given with the command.

B You may also specify a file’s access mode “numerically” instead of “symbol-
ically” (what we just discussed). In practice this is very common for setting
all permissions of a file or directory at once, and works like this: The three
permission triples are represented as a three-digit octal number—the first
digit describes the owner’s rights, the second those of the file’s group, and
the third those that apply to “others”. Each of these digits derives from
the sum of the individual permissions, where read permission has value 4,
write permission 2, and execute permission 1. Here are a few examples for
common access modes in “ls -l” and octal form:

rw-r--r-- 644
r-------- 400
rwxr-xr-x 755

B Using numerical access modes, you can only set all permissions at once—
there is no way of setting or removing individual rights while leaving the
others alone, like you can do with the “+” and “-” operators of the symbolic
representation. Hence, the command

$ chmod 644 file

is equivalent to the symbolic

$ chmod u=rw,go=r file

12.2.3 Specifying File Owners and Groups—chown and chgrp

The chown command lets you set the owner and group of a file or directory. This
command takes the desired owner’s user name and/or group name and the file
or directory name the change should apply to. It is called like

chown ⟨user name⟩[:][⟨group name⟩] ⟨name⟩ …

chown :⟨group name⟩ ⟨name⟩ …

If both a user and group name are given, both are changed; if just a user name is
given, the group remains as it was; if a user name followed by a colon is given,
then the file is assigned to the user’s primary group. If just a group name is given
(with the colon in front), the owner remains unchanged. For example:

chown joe:devel letter.txt

chown www-data foo.html new user www-data

chown :devel /home/devel new group devel

B chown also supports an obsolete syntax where a dot is used in place of the
colon.

12.2 Access Control For Files And Directories 183

To “give away” files to other users or arbitrary groups you need to be root. The
main reason for this is that normal users could otherwise annoy one another if
the system uses quotas (i.e., every user can only use a certain amount of storage
space).

Using the chgrp command, you can change a file’s group even as a normal
user—as long as you own the file and are a member of the new group:

chgrp ⟨group name⟩ ⟨name⟩ …

B Changing a file’s owner or group does not change the access permissions
for the various categories.

chown and chgrp also support the -R option to apply changes recursively to part
of the directory hierarchy.

B Of course you can also change a file’s permissions, group, and owner using
most of the popular file browsers (such as Konqueror or Nautilus).

Exercises

C 12.1 [!2] Create a new file. What is that file’s group? Use chgrp to assign the
file to one of your secondary groups. What happens if you try to assign the
file to a group that you are not a member of?

C 12.2 [4] Compare the mechanisms that various file browsers (like Kon-
queror, Nautilus, …) offer for setting a file’s permissions, owner, group, …
Are there notable differences?

12.2.4 The umask

New files are usually created using the (octal) access mode 666 (read and write
permission for everyone). New directories are assigned the access mode 777.
Since this is not always what is desired, Linux offers a mechanism to remove cer-
tain rights from these access modes. This is called “umask”.

B Nobody knows exactly where this name comes from—even though there
are a few theories that all sound fairly implausible.

The umask is an octal number whose complement is ANDed bitwise to the
standard access mode—666 or 777—to arrive at the new file’s or directory’s actual
access mode. In other words: You can consider the umask an access mode contain- umask interpretation

ing exactly those rights that the new file should not have. Here’s an example—let
the umask be 027:

1. Umask value: 027 ----w-rwx

2. Complement of umask value: 750 rwxr-x---

3. A new file’s access mode: 666 rw-rw-rw-

4. Result (2 and 3 ANDed together): 640 rw-r-----

The third column shows the octal value, the fourth a symbolic representation. The
AND operation in step 4 can also be read off the fourth column of the second and
third lines: In the fourth line ther e is a letter in each position that had a letter in
the second and the third line—if there is just one dash (“-”), the result will be a
dash.

B If you’d rather not bother with the complement and AND, you can simply
imagine that each digit of the umask is subtracted from the corresponding
digit of the actual access mode and negative results are considered as zero
(so no “borrowing” from the place to the left). For our example—access
mode 666 and umask 027—this means something like

666 ⊖ 027 = 640,

since 6 ⊖ 0 = 6, 6 ⊖ 4 = 2, and 6 ⊖ 7 = 0.

184 12 Access Control

The umask is set using the umask shell command, either by invoking it di-umask shell command

rectly or via a shell startup file—typically ~/.profile, ~/.bash_profile, or ~/.bashrc.
The umask is a process attribute similar to the current directory or the processprocess attribute

environment, i. e., it is passed to child processes, but changes in a child process do
not modify the parent process’s settings.

The umask command takes a parameter specifying the desired umask:syntax

umask [-S |⟨umask⟩]

The umask may be given as an octal number or in a symbolic representation sim-symbolic representation

ilar to that used by chmod—deviously enough, the symbolic form contains the per-
missions that should be left (rather than those to be taken away):

$ umask 027 … is equivalent to …
$ umask u=rwx,g=rx,o=

This means that in the symbolic form you must give the exact complement of the
value that you would specify in the octal form—exactly those rights that do not
occur in the octal specification.

If you specify no value at all, the current umask is displayed. If the -S option
is given, the current umask is displayed in symbolic form (where, again, the re-
maining permissions are set):

$ umask

0027

$ umask -S

u=rwx,g=rx,o=

Note that you can only remove permissions using the umask. There is no wayexecute permission?

of making files executable by default.
Incidentally, the umask also influences the chmod command. If you invoke chmodumask and chmod

with a “+” mode (e. g., “chmod +w file”) without referring to the owner, group or oth-
ers, this is treated like “a+”, but the permissions set in the umask are not modified.
Consider the following example:

$ umask 027

$ touch file

$ chmod +x file

$ ls -l file

-rwxr-x--- 1 tux users 0 May 25 14:30 file

The “chmod +x” sets execute permission for the user and group, but not the others,
since the umask contains the execute bit for “others”. Thus with the umask you
can take precautions against giving overly excessive permissions to files.

B Theoretically, this also works for the chmod operators “-” and “=”, but this
does not make a lot of sense in practice.

Exercises

C 12.3 [!1] State a numerical umask that leaves the user all permissions, but
removes all permissions from group members and others? What is the cor-
responding symbolic umask?

C 12.4 [2] Convince yourself that the “chmod +x” and “chmod a+x” commands
indeed differ from each other as advertised.

12.3 Access Control Lists (ACLs) 185

12.3 Access Control Lists (ACLs)

As mentioned above, Linux allows you to assign permissions for a file’s owner,
group, and all others separately. For some applications, though, this three-tier
system is too simple-minded, or the more sophisticated permission schemes of
other operating systems must be mapped to Linux. Access control lists (ACLs)
can be used for this.

On most file systems, Linux supports “POSIX ACLs” according to IEEE 1003.1e
(draft 17) with some Linux-specific extensions. This lets you specify additional
groups and users for files and directories, who then can be assigned read, write,
and execute permissions that differ from those of the file’s group and “others”.
Other rights, such as that to assign permissions, are still restricted to a file’s owner
(or root) and cannot be delegated even wiht ACLs. The setfacl and getfacl com-
mands are used to set and query ACLs.

ACLs are a fairly new and rarely-used addition to Linux, and their use is subject
to certain restrictions. The kernel does oversee compliance with them, but, for
instance, not every program is able to copy ACLs along with a file’s content—you
may have to use a specially-adapted tar (star) for backups of a file system using
ACLs. ACLs are supported by Samba, so Windows clients get to see the correct
permissions, but if you export file systems to other (proprietary) Unix systems, it
may be possible that your ACLs are ignored by Unix clients that do not support
ACLs.

B You can read up on ACLs on Linux on http://acl.bestbits.at/ and in acl(5)
as well as getfacl(1) and setfacl(1).

Detailed knowledge of ACLs is not required for the LPIC-1 exams.

12.4 Process Ownership

Linux considers not only the data on a storage medium as objects that can be
owned. The processes on the system have owners, too.

Many commands create a process in the system’s memory. During normal use,
there are always several processes that the system protects from each other. Every
process together with all data within its virtual address space is assigned to a Processes have owners

user, its owner. This is most often the user who started the process—but processes
created using administrator privileges may change their ownership, and the SUID
mechanism (Section 12.5) can also have a hand in this.

The owners of processes are displayed by the ps program if it is invoked using
the -u option.

ps -u

USER PID %CPU %MEM SIZE RSS TTY STAT START TIME COMMAND

bin 89 0.0 1.0 788 328 ? S 13:27 0:00 rpc.portmap

test1 190 0.0 2.0 1100 28 3 S 13:27 0:00 bash

test1 613 0.0 1.3 968 24 3 S 15:05 0:00 vi XF86.tex

nobody 167 0.0 1.4 932 44 ? S 13:27 0:00 httpd

root 1 0.0 1.0 776 16 ? S 13:27 0:03 init [3]

root 2 0.0 0.0 0 0 ? SW 13:27 0:00 (kflushd)

12.5 Special Permissions for Executable Files

When listing files using the “ls -l” command, you may sometimes encounter per-
mission sets that differ from the usual rwx, such as

-rwsr-xr-x 1 root shadow 32916 Dec 11 20:47 /usr/bin/passwd

186 12 Access Control

What does that mean? We have to digress here for a bit:
Assume that the passwd program carries the usual access mode:

-rwxr-xr-x 1 root shadow 32916 Dec 11 20:47 /usr/bin/passwd

A normal (unprivileged) user, say joe, wants to change his password and invokes
the passwd program. Next, he receives the message “permission denied”. What is
the reason? The passwd process (which uses joe’s privileges) tries to open the /etc/

shadow file for writing and fails, since only root may write to that file—this cannot
be different since otherwise, everybody would be able to manipulate passwords
arbitrarily and, for example, change the root password.

By means of the set-UID bit (frequently called “SUID bit”, for short) a programSUID bit

can be caused to run not with the invoker’s privileges but those of the file owner—
here, root. In the case of passwd, the process executing passwd has write permission
to /etc/shadow, even though the invoking user, not being a system administrator,
generally doesn’t. It is the responsibility of the author of the passwd program to en-
sure that no monkey business goes on, e. g., by exploiting programming errors to
change arbitrary files except /etc/shadow, or entries in /etc/shadow except the pass-
word field of the invoking user. On Linux, by the way, the set-UID mechanism
works only for binary programs, not shell or other interpreter scripts.

B Bell Labs used to hold a patent on the SUID mechanism, which was invented
by Dennis Ritchie [SUID]. Originally, AT&T distributed Unix with the
caveat that license fees would be levied after the patent had been granted;
however, due to the logistical difficulties of charging hundreds of Unix in-
stallations small amounts of money retroactively, the patent was released
into the public domain.

By analogy to the set-UID bit there is a SGID bit, which causes a process to beSGID bit

executed with the program file’s group and the corresponding privileges (usually
to access other files assigned to that group) rather than the invoker’s group setting.

The SUID and SGID modes, like all other access modes, can be changed usingchmod syntax

the chmod program, by giving symbolic permissions such as u+s (sets the SUID bit)
or g-s (deletes the SGID bit). You can also set these bits in octal access modes by
adding a fourth digit at the very left: The SUID bit has the value 4, the SGID bit
the value 2—thus you can assign the access mode 4755 to a file to make it readable
and executable to all users (the owner may also write to it) and to set the SUID bit.

You can recognise set-UID and set-GID programs in the output of “ls -l” byls output

the symbolic abbreviations “s” in place of “x” for executable files.

12.6 Special Permissions for Directories

There is another exception from the principle of assigning file ownership accord-
ing to the identity of its creator: a directory’s owner can decree that files created
in that directory should belong to the same group as the directory itself. This can
be specified by setting the SGID bit on the directory. (As directories cannot beSGID for directories

executed, the SGID bit is available to be used for such things.)
A directory’s access permissions are not changed via the SGID bit. To create a

file in such a directory, a user must have write permission in the category (owner,
group, others) that applies to him. If, for example, a user is neither the owner of a
directory nor a member of the directory’s group, the directory must be writable for
“others” for him to be able to create files there. A file created in a SGID directory
then belongs to that directory’s group, even if the user is not a member of that
group at all.

B The typical application for the SGID bit on a directory is a directory that is
used as file storage for a “project group”. (Only) the members of the project
group are supposed to be able to read and write all files in the directory, and

12.6 Special Permissions for Directories 187

to create new files. This means that you need to put all users collaborating
on the project into a project group (a secondary group will suffice):

groupadd project Create new group
usermod -a -G project joe joe into the group
usermod -a -G project sue sue too
�����

Now you can create the directory and assign it to the new group. The owner
and group are given all permissions, the others none; you also set the SGID
bit:

cd /home/project

chgrp project /home/project

chmod u=rwx,g=srwx /home/project

Now, if user hugo creates a file in /home/project, that file should be assigned
to group project:

$ id

uid=1000(joe) gid=1000(joe) groups=101(project),1000(joe)

$ touch /tmp/joe.txt Test: standard directory
$ ls -l /tmp/joe.txt

-rw-r--r-- 1 joe joe 0 Jan 6 17:23 /tmp/joe.txt

$ touch /home/project/joe.txt project directory
$ ls -l /home/project/joe.txt

-rw-r--r-- 1 joe project 0 Jan 6 17:24 /home/project/joe.txt

There is just a little fly in the ointment, which you will be able to discern by
looking closely at the final line in the example: The file does belong to the
correct group, but other members of group project may nevertheless only
read it. If you want all members of group project to be able to write to it as
well, you must either apply chmod after the fact (a nuisance) or else set the
umask such that group write permission is retained (see Exercise 12.6).

The SGID mode only changes the system’s behaviour when new files are cre-
ated. Existing files work just the same as everywhere else. This means, for in-
stance, that a file created outside the SGID directory keeps its existing group as-
signment when moved into it (whereas on copying, the new copy would be put
into the directory’s group).

The chgrp program works as always in SGID directories, too: the owner of a
file can assign it to any group he is a member of. Is the owner not a member of
the directory’s group, he cannot put the file into that group using chgrp—he must
create it afresh within the directory.

B It is possible to set the SUID bit on a directory—this permission does not
signify anything, though.

Linux supports another special mode for directories, where only a file’s owner
may delete or remove files within that directory:

drwxrwxrwt 7 root root 1024 Apr 7 10:07 /tmp

This t mode, the “sticky bit”, can be used to counter a problem which arises when
public directories are in shared use: Write permission to a directory lets a user
delete other users’ files, regardless of their access mode and owner! For example,
the /tmp directories are common ground, and many programs create their tempo-
rary files there. To do so, all users have write permission to that directory. This
implies that any user has permission to delete files there.

188 12 Access Control

Table 12.1: The most important file attributes

Attribute Meaning
A atime is not updated (interesting for mobile computers)
a (append-only) The file can only be appended to
c The file’s content is compressed transparently (not implemented)
d The file will not be backed up by dump

i (immutable) The file cannot be changed at all
j Write operations to the file’s content are passed through the journal

(ext3 only)
s File data will be overwritten with zeroes on deletion (not imple-

mented)
S Write operations to the file are performed “synchronously”, i. e.,

without buffering them internally
u The file may be “undeleted” after deletion (not implemented)

Usually, when deleting or renaming a file, the system does not consider that
file’s access permissions. If the “sticky bit” is set on a directory, a file in that di-
rectory can subsequently be deleted only by its owner, the directory’s owner, or
root. The “sticky bit” can be set or removed by specifying the symbolic +t and -t

modes; in the octal representation it has value 1 in the same digit as SUID and
SGID.

B The “sticky bit” derives its name from an additional meaning it used to have
in earlier Unix systems: At that time, programs were copied to swap space
in their entirety when started, and removed completely after having termi-
nated. Program files with the sticky bit set would be left in swap space
instead of being removed. This would accelerate subsequent invocations of
those programs since no copy would have to be done. Like most current
Unix systems, Linux uses demand paging, i. e., it fetches only those parts
of the code from the program’s executable file that are really required, and
does not copy anything to swap space at all; on Linux, the sticky bit never
had its original meaning.

Exercises

C 12.5 [2] What does the special “s” privilege mean? Where do you find it?
Can you set this privilege on a file that you created yourself?

C 12.6 [!1] Which umask invocation can be used to set up a umask that would, in
the project directory example above, allow all members of the project group
to read and write files in the project directory?

C 12.7 [2] What does the special “t” privilege mean? Where do you find it?

C 12.8 [4] (For programmers.) Write a C program that invokes a suitable com-
mand (such as id). Set this program SUID root (or SGID root) and observe
what happens when you execute it.

C 12.9 [I]f you leave them alone for a few minutes with a root shell, clever
users might try to stash a SUID root shell somewhere in the system, in order
to assume administrator privileges when desired. Does that work with bash?
With other shells?

12.7 File Attributes

Besides the access permissions, the ext2 and ext3 file systems support further filefile attributes

12.7 File Attributes 189

attributes enabling access to special file system features. The most important file
attributes are summarised in Table 12.1.

Most interesting are perhaps the “append-only” and “immutable” attributes, a and i attributes

which you can use to protect log files and configuration files from modification;
only root may set or reset these attributes, and once set they also apply to processes
running as root.

B In principle, an attacker who has gained root privileges may reset these at-
tributes. However, attackers do not necessarily consider that they might be
set.

The A attribute may also be useful; you can use it on mobile computers to ensure A attribute

that the disk isn’t always running, in order to save power. Usually, whenever
a file is read, its “atime”—the time of last access—is updated, which of course
entails an inode write operation. Certain files are very frequently looked at in
the background, such that the disk never gets to rest, and you can help here by
judiciously applying the A attribute.

B The c, s and u attributes sound very nice in theory, but are not (yet) sup-
ported by “normal” kernels. There are some more or less experimental en-
hancements making use of these attributes, and in part they are still pipe
dreams.

You can set or reset attributes using the chattr command. This works rather chattr

like chmod: A preceding “+” sets one or more attributes, “-” deletes one or more
attributes, and “=” causes the named attributes to be the only enabled ones. The
-R option, as in chmod, lets chattr operate on all files in any subdirectories passed
as arguments and their nested subdirectories. Symbolic links are ignored in the
process.

chattr +a /var/log/messages Append only
chattr -R +j /data/important Data journaling …
chattr -j /data/important/notso … with exception

With the lsattr command, you can review the attributes set on a file. The pro- lsattr

gram behaves similar to “ls -l”:

lsattr /var/log/messages

-----a----------- /var/log/messages

Every dash stands for a possible attribute. lsattr supports various options such
as -R, -a, and -d, which generally behave like the eponymous options to ls.

Exercises

C 12.10 [!2] Convince yourself that the a and i attributes work as advertised.

C 12.11 [2] Can you make all dashes disappear in the lsattr output for a given
file?

190 12 Access Control

Commands in this Chapter

chattr Sets file attributes for ext2 and ext3 file systems chattr(1) 189
chgrp Sets the assigned group of a file or directory chgrp(1) 182
chmod Sets access modes for files and directories chmod(1) 181
chown Sets the owner and/or assigned group of a file or directory

chown(1) 182
getfacl Displays ACL data getfacl(1) 185
lsattr Displays file attributes on ext2 and ext3 file systems lsattr(1) 189
setfacl Enables ACL manipulation setfacl(1) 185
star POSIX-compatible tape archive with ACL support star(1) 185

Summary

• Linux supports file read, write and execute permissions, where these per-
missions can be set separately for a file’s owner, the members of the file’s
group and “all others”.

• The sum total of a file’s permissions is also called its access mode.
• Every file (and directory) has an owner and a group. Access rights—read,

write, and execute permission—are assigned to these two categories and
“others” separately. Only the owner is allowed to set access rights.

• Access rights do not apply to the system administrator (root). He may read
or write all files.

• File permissions can be manipulated using the chmod command.
• Using chown, the system administrator can change the user and group as-

signment of arbitrary files.
• Normal users can use chgrp to assign their files to different groups.
• The umask can be used to limit the standard permissions when files and

directories are being created.
• The SUID and SGID bits allow the execution of programs with the privileges

of the file owner or file group instead of those of the invoker.
• The SGID bit on a directory causes new files in that directory to be assigned

the directory’s group (instead of the primary group of the creating user).
• The “sticky bit” on a directory lets only the owner (and the system admin-

istrator) delete files.
• The ext file systems support special additional file attributes.

Bibliography

SUID Dennis M. Ritchie. “Protection of data file contents”. US patent 4,135,240.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

13
Process Management

Contents

13.1 What Is A Process? 192
13.2 Process States . 193
13.3 Process Information—ps 194
13.4 Processes in a Tree—pstree 195
13.5 Controlling Processes—kill and killall 196
13.6 pgrep and pkill . 197
13.7 Process Priorities—nice and renice 199
13.8 Further Process Management Commands—nohup and top 199

Goals

• Knowing the Linux process concept
• Using the most important commands to query process information
• Knowing how to signal and stop processes
• Being able to influence process priorities

Prerequisites

• Linux commands

adm1-prozesse.tex (33e55eeadba676a3)

192 13 Process Management

13.1 What Is A Process?

A process is, in effect, a “running program”. Processes have code that is executed,
and data on which the code operates, but also various attributes the operating uses
to manage them, such as:

• The unique process number (PID or “process identity”) serves to identifyprocess number

the process and can only be assigned to a single process at a time.

• All processes know their parent process number, or PPID. Every process canparent process number

spawn others (“children”) that then contain a reference to their procreator.
The only process that does not have a parent process is the “pseudo” process
with PID 0, which is generated during system startup and creates the “init”
process with a PID of 1, which in turn is the ancestor of all other processes
in the system.

• Every process is assigned to a user and a set of groups. These are impor-user
groups tant to determine the access the process has to files, devices, etc. (See Sec-

tion 12.4.) Besides, the user the process is assigned to may stop, terminate,
or otherwise influence the process. The owner and group assignments are
passed on to child processes.

• The system splits the CPU time into little chunks (“time slices”), each of
which lasts only for a fraction of a second. The current process is entitled to
such a time slice, and afterwards the system decides which process should
be allowed to execute during the next time slice. This decision is made by
the appropriate “scheduler” based on the priority of a process.priority

B In multi-processor systems, Linux also takes into account the particu-
lar topology of the computer in question when assigning CPU time to
processes—it is simple to run a process on any of the different cores
of a multi-core CPU which share the same memory, while the “migra-
tion” of a process to a different processor with separate memory entails
a noticeable administrative overhead and is therefore less often worth-
while.

• A process has other attributes—a current directory, a process environment,other attributes

…—which are also passed on to child processes.

You can consult the /proc file system for this type of information. This process fileprocess file system

system is used to make available data from the system kernel which is collected at
run time and presented by means of directories and files. In particular, there are
various directories using numbers as names; every such directory corresponds to
one process and its name to the PID of that process. For example:

dr-xr-xr-x 3 root root 0 Oct 16 11:11 1

dr-xr-xr-x 3 root root 0 Oct 16 11:11 125

dr-xr-xr-x 3 root root 0 Oct 16 11:11 80

In the directory of a process, there are various “files” containing process informa-
tion. Details may be found in the proc(5) man page.

B The job control available in many shells is also a form of process management—job control

a “job” is a process whose parent process is a shell. From the corresponding
shell, its jobs can be controlled using commands like jobs, bg, and fg, as well
as the key combinations Ctrl + z and Ctrl + c (among others). More in-
formation is available from the manual page of the shell in question, or
from the Linup Front training manual, Introduction to Linux for Users and
Administrators.

13.2 Process States 193

Process
is

created
runnable operating Process

terminates

sleeping

Figure 13.1: The relationship between various process states

Exercises

C 13.1 [3] How can you view the environment variables of any of your pro-
cesses? (Hint: /proc file system.)

C 13.2 [2] (For programmers.) What is the maximum possible PID? What hap-
pens when this limit is reached? (Hint: Look for the string “PID_MAX” in the
files below /usr/include/linux.)

13.2 Process States

Another important property of a process is its process state. A process in mem- process state

ory waits to be executed by the CPU. This state is called “runnable”. Linux uses
pre-emptive multitasking, i. e., a scheduler distributes the available CPU time to pre-emptive multitasking

waiting processes in pieces called “time slices”. If a process is actually execut-
ing on the CPU, this state is called “operating”, and after its time slice is over the
process reverts to the “runnable” state.

B From an external point of view, Linux does not distinguish between these
two process states; the process in question is always marked “runnable”.

It is quite possible that a process requires further input or needs to wait for
peripheral device operations to complete; such a process cannot be assigned CPU
time, and its state is considered to be “sleeping”. Processes that have been stopped
by means of Ctrl + z using the shell’s job control facility are in state “stopped”.
Once the execution of a process is over, it terminates itself and makes a return return code

code available, which it can use to signal, for example, whether it completed suc-
cessfully or not (for a suitable definition of “success”).

Once in a while processes appear who are marked as zombies using the “Z” zombies

state. These “living dead” usually exist only for a brief instant. A process becomes
a zombie when it finishes and dies for good once its parent process has queried
its return code. If a zombie does not disappear from the process table this means
that its parent should really have picked up the zombie’s return code but didn’t.
A zombie cannot be removed from the process table. Because the original pro-
cess no longer exists and cannot take up neither RAM nor CPU time, a zombie
has no impact on the system except for an unattractive entry in the system state.
Persistent or very numerous zombies usually indicate programming errors in the
parent process; when the parent process terminates they should do so as well.

B Zombies disappear when their parent process disappears because “or-
phaned” processes are “adopted” by the init process. Since the init process

194 13 Process Management

spends most of its time waiting for other processes to terminate so that it
can collect their return code, the zombies are then disposed of fairly quickly.

B Of course, zombies take up room in the process table that might be required
for other processes. If that proves a problem, look at the parent process.

Exercises

C 13.3 [2] Start a xclock process in the background. In the $! shell variable you
will find the PID of that process (it always contains the PID of the most re-
cently launched background process). Check the state of that process by
means of the “grep ^State: /proc/$!/status” command. Stop the xclock by
moving it to the foreground and stopping it using Ctrl + z . What is the
process state now? (Alternatively, you may use any other long-running pro-
gram in place of xclock.)

C 13.4 [4] (When going over this manual for the second time.) Can you create
a zombie process on purpose?

13.3 Process Information—ps

You would normally not access the process information in /proc directly but use
the appropriate commands to query it.

The ps (“process status”) command is available on every Unix-like system.
Without any otions, all processes running on the current terminal are output. The
resulting list contains the process number PID, the terminal TTY, the process state
STAT, the CPU time used so far TIME and the command being executed.

$ ps

PID TTY STAT TIME COMMAND

997 1 S 0:00 -bash

1005 1 R 0:00 ps

$ _

There are two processes currently executing on the tty1 terminal: Apart from the
bash with PID 997, which is currently sleeping (state “S”), a ps command is executed
using PID 1005 (state “R”). The “operating” state mentioned above is not being
displayed in ps output.

The syntax of ps is fairly confusing. Besides Unix98-style options (like -l) and
GNU-style long options (such as --help), it also allows BSD-style options without
a leading dash. Here is a selection out of all possible parameters:

a (“all”) displays all processes with a terminal

--forest displays the process hierarchy

l (“long”) outputs extra information such as the priority

r (“running”) displays only runnable processes

T (“terminal”) displays all processes on the current terminal

U ⟨name⟩ (“user”) displays processes owned by user ⟨name⟩

x also displays processes without a terminal

B The unusual syntax of ps derives from the fact that AT&T’s ps traditionally
used leading dashes on options while BSD’s didn’t (and the same option
can have quite different results in both flavours). When the big reunification
came in System V Release 4, one could hang on to most options with their
customary meaning.

13.4 Processes in a Tree—pstree 195

If you give ps a PID, only information pertaining to the process in question will
be displayed (if it exists):

$ ps 1

PID TTY STAT TIME COMMAND

1 ? Ss 0:00 init [2]

With the -C option, ps displays information about the process (or processes) based
on a particular command:

$ ps -C konsole

PID TTY TIME CMD

4472 ? 00:00:10 konsole

13720 ? 00:00:00 konsole

14045 ? 00:00:14 konsole

(Alternatively, grep would help here as well.)

Exercises

C 13.5 [!2] What does the information obtainable with the ps command mean?
Invoke ps without an option, then with the a option, and finally with the ax

option. What does the x option do?

C 13.6 [3] The ps command allows you to determine the output format your-
self by means of the -o option. Study the ps(1) manual page and specify a
ps command line that will output the PID, PPID, the process state and the
command.

13.4 Processes in a Tree—pstree

If you do not want to obtain every bit of information about a process but are rather
interested in the relationships between processes, the pstree command is helpful. pstree

pstree displays a process tree in which the child processes are shown as depending
on their parent process. The processes are displayed by name:

$ pstree

init-+-apache---7*[apache]

|-apmd

|-atd

|-cannaserver

|-cardmgr

|-chronyd

|-cron

|-cupsd

|-dbus-daemon-1

|-events/0-+-aio/0

| |-kblockd/0

| `-2*[pdflush]

|-6*[getty]

|-ifd

|-inetd

|-kapmd

|-kdeinit-+-6*[kdeinit]

| |-kdeinit-+-bash---bash

| | |-2*[bash]

| | |-bash---less

196 13 Process Management

| | |-bash-+-pstree

| | | `-xdvi---xdvi.bin---gs

| | `-bash---emacs---emacsserver

| |-kdeinit---3*[bash]

| |-kteatime

| `-tclsh

|-10*[kdeinit]

|-kdeinit---kdeinit

�����

Identical processes are collected in brackets and a count and “*” are displayed.
The most important options of pstree include:

-p displays PIDs along with process names

-u displays process owners’ user name

-G makes the display prettier by using terminal graphics characters—whether this
is in fact an improvement depends on your terminal

B You can also obtain an approximated tree structure using “ps --forest”. The
tree structure is part of the COMMAND column in the output.

13.5 Controlling Processes—kill and killall

The kill command sends signals to selected processes. The desired signal can besignals

specified either numerically or by name; you must also pass the process number
in question, which you can find out using ps:

$ kill -15 4711 Send signal SIGTERM to process 4711
$ kill -TERM 4711 Same thing
$ kill -SIGTERM 4711 Same thing again
$ kill -s TERM 4711 Same thing again
$ kill -s SIGTERM 4711 Same thing again
$ kill -s 15 4711 Guess what

Here are the most important signals with their numbers and meaning:

SIGHUP (1, “hang up”) causes the shell to terminate all of its child processes that
use the same controlling terminal as itself. For background processes with-
out a controlling terminal, this is frequently used to cause them to re-read
their configuration files (see below).

SIGINT (2, “interrupt”) Interrupts the process; equivalent to the Ctrl + c key com-
bination.

SIGKILL (9, “kill”) Terminates the process and cannot be ignored; the “emergency
brake”.

SIGTERM (15, “terminate”) Default for kill and killall; terminates the process.

SIGCONT (18, “continue”) Lets a process that was stopped using SIGSTOP continue.

SIGSTOP (19, “stop”) Stops a process temporarily.

SIGTSTP (20, “terminal stop”) Equivalent to the Ctrl + z key combination.

A You shouldn’t get hung up on the signal numbers, which are not all guaran-
teed to be the same on all Unix versions (or even Linux platforms). You’re
usually safe as far as 1, 9, or 15 are concerned, but for everything else you
should rather be using the names.

13.6 pgrep and pkill 197

Unless otherwise specified, the signal SIGTERM (“terminate”) will be sent, which
(usually) ends the process. Programs can be written such that they “trap” signals
(handle them internally) or ignore them altogether. Signals that a process neither
traps nor ignores usually cause it to crash hard. Some (few) signals are ignored
by default.

The SIGKILL and SIGSTOP signals are not handled by the process but by the kernel
and hence cannot be trapped or ignored. SIGKILL terminates a process without
giving it a chance to object (as SIGTERM would), and SIGSTOP stops the process such
that it is no longer given CPU time.

kill does not always stop processes. Background processes which provide sys-
tem services without a controlling terminal—daemons—usually reread their con- daemons

figuration files without a restart if they are sent SIGHUP (“hang up”).
You can apply kill, like many other Linux commands, only to processes that

you actually own. Only root is not subject to this restriction.
Sometimes a process will not even react to SIGKILL. The reason for this is ei-

ther that it is a zombie (which is already dead and cannot be killed again) or else
blocked in a system call. The latter situation occurs, for example, if a process waits
for a write or read operation on a slow device to finish.

An alternative to the kill command is the killall command. killall acts just killall

like kill—it sends a signal to the process. The difference is that the process must
be named instead of addressed by its PID, and that all processes of the same name
are signalled. If no signal is specified, it sends SIGTERM by default (like kill). killall
outputs a warning if there was nothing to signal to under the specified name.

The most important options for killall include:

-i killall will query you whether it is actually supposed to signal the process in
question.

-l outputs a list of all available signals.

-w waits whether the process that was signalled actually terminates. killall

checks every second whether the process still exists, and only terminates
once it is gone.

A Be careful with killall if you get to use Solaris or BSD every now and then.
On these systems, the command does exactly what its name suggests—it
kills all processes.

Exercises

C 13.7 [2] Which signals are being ignored by default? (Hint: signal(7))

13.6 pgrep and pkill

As useful as ps and kill are, as difficult can it be sometimes to identify exactly the
right processes of interest. Of course you can look through the output of ps using
grep, but to make this “foolproof” and without allowing too many false positives
is at least inconvenient, if not tricky. Nicely enough, Kjetil Torgrim Homme has
taken this burden off us and developed the pgrep program, which enables us to
search the process list conveniently. A command like

$ pgrep -u root sshd

will, for example, list the PIDs of all sshd processes belonging to root.

B By default, pgrep restricts itself to outputting PIDs. Use the -l option to get it
to show the command name, too. With -a it will list the full command line.

B The -d option allows you to specify a separator (the default is “\n”):

198 13 Process Management

$ pgrep -d, -u hugo bash

4261,11043,11601,12289

You can obtain more detailed information on the processes by feeding the
PIDs to ps:

$ ps up $(pgrep -d, -u hugo bash)

(The p option lets you give ps a comma-separated list of PIDs of interest.)

pgrep’s parameter is really an (extended) regular expression (consider egrep)
which is used to examine the process names. Hence something like

$ pgrep '^([bd]a|t?c|k|z|)sh$'

will look for the common shells.

B Normally pgrep considers only the process name (the first 15 characters of the
process name, to be exact). Use the -f option to search the whole command
line.

You can add search criteria by means of options. Here is a small selection:

-G Consider only processes belonging to the given group(s). (Groups can be spec-
ified using names or GIDs.)

-n Only display the newest (most recently started) of the found processes.

-o Only display the oldest (least recently started) of the found processes.

-P Consider only processes whose parent processes have one of the given PIDs.

-t Consider only processes whose controlling terminal is listed. (Terminal names
should be given without the leading “/dev/”.)

-u Consider only processes with the given (effective) UIDs.

B If you specify search criteria but no regular expression for the process name,
all processes matching the search criteria will be listed. If you omit both you
will get an error message.

The pkill command behaves like pgrep, except that it does not list the found
processes’ PIDs but sends them a signal directly (by default, SIGTERM). As in kill

you can specify another signal:

pkill -HUP syslogd

The --signal option would also work:

pkill --signal HUP syslogd

B The advantage of pkill compared to killall is that pkill can be much more
specific.

Exercises

C 13.8 [!1] Use pgrep to determine the PIDs of all processes belonging to user
hugo. (If you don’t have a user hugo, then specify some other user instead.)

C 13.9 [2] Use two separate terminal windows (or text consoles) to start one
“sleep 60” command each. Use pkill to terminate (a) the first command
started, (b) the second command started, (c) the command started in one
of the two terminal windows.

13.7 Process Priorities—nice and renice 199

13.7 Process Priorities—nice and renice

In a multi-tasking operating system such as Linux, CPU time must be shared
among various processes. This is the scheduler’s job. There is normally more
than one runnable process, and the scheduler must allot CPU time to runnable
processes according to certain rules. The deciding factor for this is the priority priority

of a process. The priority of a process changes dynamically according to its prior
behaviour—“interactive” processes, i. e, ones that do I/O, are favoured over those
that just consume CPU time.

As a user (or administrator) you cannot set process priorities directly. You can
merely ask the kernel to prefer or penalise processes. The “nice value” quantifies
the degree of favouritism exhibited towards a process, and is passed along to child
processes.

A new process’s nice value can be specified with the nice command. Its syntax nice

is

nice [-⟨nice value⟩] ⟨command⟩ ⟨parameter⟩ …

(nice is used as a “prefix” for another command).
The possible nice values are numbers between −20 and +19. A negative nice possible nice values

value increases the priority, a positive value decreases it (the higher the value, the
“nicer” you are towards the system’s other users by giving your own processes a
lower priority). If no nice value is specified, the default value of +10 is assumed.
Only root may start processes with a negative nice value (negative nice value are
not generally nice for other users).

The priority of a running process can be influenced using the renice command. renice

You call renice with the desired new nice value and the PID (or PIDs) of the pro-
cess(es) in question:

renice [-⟨nice value⟩] ⟨PID⟩ …

Again, only the system administrator may assign arbitrary nice values. Normal
users may only increase the nice value of their own processes using renice—for
example, it is impossible to revert a process started with nice value 5 back to nice
value 0, while it is absolutely all right to change its nice value to 10. (Think of a
ratchet.)

Exercises

C 13.10 [2] Try to give a process a higher priority. This may possibly not
work—why? Check the process priority using ps.

13.8 Further Process Management Commands—nohup

and top

When you invoke a command using nohup, that command will ignore a SIGHUP sig- Ignoring SIGHUP

nal and thus survive the demise of its parent process:

nohup ⟨command⟩ …

The process is not automatically put into the background but must be placed there
by appending a & to the command line. If the program’s standard output is a ter-
minal and the user has not specified anything else, the program’s output together
with its standard error output will be redirected to the nohup.out file. If the current
directory is not writable for the user, the file is created in the user’s home directory
instead.

200 13 Process Management

top unifies the functions of many process management commands in a singletop

program. It also provides a process table which is constantly being updated. You
can interactively execute various operations; an overview is available using h .
For example, it is possible to sort the list according to several criteria, send signals
to processes (k), or change the nice value of a process (r).

Commands in this Chapter

kill Terminates a background process bash(1), kill(1) 196
killall Sends a signal to all processes matching the given name

killall(1) 197
nice Starts programs with a different nice value nice(1) 199
nohup Starts a program such that it is immune to SIGHUP signals nohup(1) 199
pgrep Searches processes according to their name or other criteria

pgrep(1) 197
pkill Signals to processes according to their name or other criteria

pkill(1) 198
ps Outputs process status information ps(1) 194
pstree Outputs the process tree pstree(1) 195
renice Changes the nice value of running processes renice(8) 199
top Screen-oriented tool for process monitoring and control top(1) 199

Summary

• A process is a program that is being executed.
• Besides a program text and the corresponding data, a process has attributes

such as a process number (PID), parent process number (PPID), owner,
groups, priority, environment, current directory, …

• All processes derive from the init process (PID 1).
• ps can be used to query process information.
• The pstree command shows the process hierarchy as a tree.
• Processes can be controlled using signals.
• The kill and killall commands send signals to processes.
• The nice and renice commands are used to influence process priorities.

ulimit limits the resource usage of a process.
• top is a convenient user interface for process management.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

14
Hard Disks (and Other Secondary
Storage)

Contents

14.1 Fundamentals . 202
14.2 Bus Systems for Mass Storage 202
14.3 Partitioning . 205

14.3.1 Fundamentals 205
14.3.2 The Traditional Method (MBR) 206
14.3.3 The Modern Method (GPT) 207

14.4 Linux and Mass Storage 208
14.5 Partitioning Disks. 210

14.5.1 Fundamentals 210
14.5.2 Partitioning Disks Using fdisk 212
14.5.3 Formatting Disks using GNU parted 215
14.5.4 gdisk . 216
14.5.5 More Partitioning Tools 217

14.6 Loop Devices and kpartx 217
14.7 The Logical Volume Manager (LVM) 219

Goals

• Understanding how Linux deals with secondary storage devices based on
ATA, SATA, and SCSI.

• Understanding MBR-based and GPT-based partitioning
• Knowing about Linux partitioning tools and how to use them
• Being able to use loop devices

Prerequisites

• Basic Linux knowledge
• Knowledge about Linux hardware support

adm1-platten.tex (33e55eeadba676a3)

202 14 Hard Disks (and Other Secondary Storage)

14.1 Fundamentals

RAM is fairly cheap these days, but even so not many computers can get by with-
out the permanent storage of programs and data on mass storage devices. These
include (among others):

• Hard disks with rotating magnetic platters

• “Solid-state disks” (SSDs) that look like hard disks from the computer’s
point of view, but use flash memory internally

• USB thumb drives, SD cards, CF cards, and other interchangeable media
based on flash memory

• RAID systems that aggregate hard disks and present them as one big storage
medium

• SAN devices which provide “virtual” disk drives on the network

• File servers that offer file access at an abstract level (CIFS, NFS, …)

In this chapter we shall explain the basics of Linux support for the first three en-
tries in the list—hard disks, SSDs and flash-based portable media like USB thumb
drives. RAID sstems and SAN are discussed in the Linup Front training man-
ual, Linux Storage and File Systems, file servers are discussed in Linux Infrastructure
Services.

14.2 Bus Systems for Mass Storage

IDE, ATA and SATA Until not so long ago, hard disks and optical drives such
as CD-ROM and DVD readers and writers used to be connected via a “IDE con-IDE

troller”, of which self-respecting PCs had at least two (with two “channels” each).

B “IDE” is really an abbreviation of “Integrated Drive Electronics”. The “inte-
grated drive electronics” alluded to here lets the computer see the disk as a
sequence of numbered blocks without having to know anything about sec-
tors, cylinders, and read/write heads, even though this elaborate charade
is still kept up between the BIOS, disk controller, and disks. However, for a
long time this description has applied to all hard disks, not just those with
the well-known “IDE” interface, which by now is officially called “ATA”,
short for “AT Attachment”1.

Computers bought new these days usually still contain IDE interfaces, but the
method of choice to connect hard disks and optical drives today is a serial ver-
sion of the ATA standard, imaginatively named “Serial ATA” (SATA, for short).Serial ATA

Since SATA (i. e., approximately 2003), traditional ATA (or “IDE”) is commonly
called “P-ATA”, an abbreviation of “parallel ATA”. The difference applies to the
cable, which for traditional ATA is an inconvenient-to-place and electrically not
100% fortunate 40- or 80-lead ribbon cable which can transfer 16 data bits in par-
allel, and which links several devices at once to the controller. SATA, on the other
hand, utilises narrow flat seven-lead cables for serial transmission, one per device
(usually produced in a cheerful orange colour).

B SATA cables and connectors are much more sensitive mechanically than the
corresponding P-ATA hardware, but they make up for that through other
advantages: They are less of an impediment to air flow in a PC case, cannot
be installed wrongly due to their different connectors on each end, which
furthermore cannot be plugged in the wrong way round. In addition, the il-
logical separation between 2.5-inch and 3.5-inch diskdrives, which required
different connectors for P-ATA, goes away.

1Anyone remember the IBM PC/AT?

14.2 Bus Systems for Mass Storage 203

B Interestingly, serial ATA allows considerably faster data transfers than tra-
ditional ATA, even though with the former all bits are transferred in “single
file” rather than 16 at a go in parallel. This is due to the electrical proper-
ties of the interface, which uses differential transmission and a signalling
voltage of only 0.5 V instead of 5 V. (This is why cables may be longer, too—
1 m instead of formerly 45 cm.) Current SATA interfaces can theoretically
transfer up to 16 GiBit/s (SATA 3.2) which due to encoding and other im-
pediments comes out as approximately 2 MiB/s—rather more than single
disk drives can keep up with at sustained rates, but useful for RAID sys-
tems that access multiple disk drives at the same time, and for fast SSDs. It
is unlikely that SATA speeds will evolve further, since the trend with SSDs
is towards connecting them directly via PCIe2.

B Besides the higher speed and more convenient cabling, SATA also offers
the advantage of “hot-swapping”: It is possible to disconnect a SATA disk
drive and connect another one in its place, without having to shut down the
computer. This of course presupposes that the computer can do without
the data on the drive in question—typically because it is part of a RAID-1
or RAID-5, where the the data on the new drive can be reconstructed based
on other drives in the system. With traditional ATA, this was impossible (or
only possible by jumping through hoops).

B External SATA (“eSATA”) is a derivative of SATA for use with external eSATA
drives. It has different connectors and electrical specifications, which are
much more robust mechanically and better suited for hot-swapping. In
the meantime, it has been almost completely ousted from the market by
USB 3.𝑥, but can still be found in older hardware.

SCSI and SAS The “Small Computer System Interface” or SCSI (customary pro-
nunciation: “SCUZ-zy”) has served for more than 25 years to connect hard disks,
tape drives and other mass storage devices, but also peripherals such as scanners,
to “small” computers3. SCSI buses and connectors exist in a confusing variety,
beginning with the “traditional” 8-bit bus and ranging from the fast 16-bit vari-
eties to new, even faster serial implementations (see below). They also differ in
the maximum number of devices per bus, and in physical parameters such as the
maximum cable length and the allowable distances between devices on the cable.
Nicely enough, most of the variants are compatible or can be made compatible
(possibly with loss of efficiency!). Varieties such as FireWire (IEEE-1394) or Fiber-
Channel are treated like SCSI by Linux.

B Nowadays, most work goes into the serial SCSI implementations, most no-
tably “Serial Attached SCSI” (SAS). As with SATA, data transfer is poten-
tially faster (at the moment, SAS is slightly slower than the fastest parallel
SCSI version, Ultra-640 SCSI) and electrically much less intricate. In partic-
ular, the fast parallel SCSI versions are plagued by clocking problems that
derive from the electrical properties of the cables and termination, and that
do not exist with SAS (where the pesky termination is no longer necessary
at all).

B SAS and SATA are fairly closely related; the most notable differences are that
SAS allows things like accessing a drive via several cable paths for redun-
dancy (“multipath I/O”; SATA requires jumping through hoops for this),
supports more extensive diagnosis and logging functions, and is based on
a higher signalling voltage, which allows for longer cables (up to 8 m) and
physically larger servers.

2SATA in a strict sense allows speeds up to 6 GiBit/s; the higher speed of SATA 3.2 is already
achieved by means of PCIe. This “SATA Express” specification defines an interface that can carry
SATA signals as well as PCIe, such that compatible devices can be connected not only to SATA Express
controllers, but also to older hosts which support “only” SATA with up to 6 GiBit/s.

3Nobody has ever defined the meaning of “small” in this context, but it must be something like
“can be bodily lifted by at most two people”

204 14 Hard Disks (and Other Secondary Storage)

Table 14.1: Different SCSI variants

Name Width Transfer rate Devices Explanation
SCSI-1 8 bit ≤ 5 MiB/s 8 “Ancestor”
SCSI-2 »Fast« 8 bit 10 MiB/s 8
SCSI-2 »Wide« 16 bit 20 MiB/s 16
SCSI-3 »Ultra« 8 bit 20 MiB/s 8
SCSI-3 »Ultrawide« 16 bit 40 MiB/s 16
Ultra2 SCSI 16 bit 80 MiB/s 16 LVD busa

Ultra-160 SCSIb 16 bit 160 MiB/s 16 LVD bus
Ultra-320 SCSIc 16 Bit 320 MiB/s 16 LVD bus
Ultra-640 SCSI 16 Bit 640 MiB/s 16 LVD bus

B SATA and SAS are compatible to an extent where you can use SATA disk
drives on a SAS backplane (but not vice-versa).

“Pure-bred” SCSI, as far as PCs are concerned, is found mostly in servers; workVorkommen

stations and “consumer PCs” tend to use IDE or SATA for mass storage and USB
for other devices. Devices based on IDE and USB are much cheaper to manu-
facture than SCSI-based devices—IDE disks, for example, cost about a third or a
fourth of the price of comparatively large SCSI disks.

B We do need to mention that SCSI disks are usually designed especially for
use in servers, and are therefore optimised for high speed and longevity.
SATA disks for workplace PCs do not come with the same warranties, are
not supposed to rival a jet fighter for noise, and should support fairly fre-
quent starting and stopping.

As a Linux administrator, you should know about SCSI even if you do not run
any SCSI-based systems, since from the point of view of the Linux kernel, in ad-
dition to SATA many USB or FireWire devices are accessed like SCSI devices and
use the same infrastrucure.

B Every device on a SCSI bus requires a unique “SCSI ID”. This numberSCSI ID

between 0 and 7 (15 on the wide buses) is used to address the device.
Most “true” SCSI devices sport jumpers or a switch to select it; with Fibre-
Channel, USB, or SATA devices that are accessed via the SCSI infrastructure,
the system arranges for suitable unique SCSI IDs to be assigned.

B To use SCSI, a PC needs at least one host adapter (or “host”). Motherboard-host adapter

based and better expansion card host adapters contain a SCSI BIOS whichSCSI BIOS
lets the system boot from a SCSI device. You can also use this to check which
SCSI IDs are available and which are used, and which SCSI device, if any,
should be used for booting.

B The host adapter counts as a device on the SCSI bus—apart from itself you
can connect 7 (or 15) other devices.

B If your BIOS can boot from SCSI devices, you can also select in the boot orderboot order

whether the ATA disk C: should be preferred to any (potentially) bootable
SCSI devices.

B Most important for the correct function of a parallel SCSI system is appro-
priate termination of the SCSI bus. This can either be ensured via a specialtermination

plug (“terminator”) or switched on or off on individual devices. Erroneous
termination is the possible origin of all sorts of SCSI problems. If you do
experience difficulties with SCSI, always check first that termination is in
order. SAS does not require termination.

14.3 Partitioning 205

USB With the new fast USB variants, few if any compromises will be needed
when connecting mass storage devices—reading and writing speeds are bounded
by the storage device, not (as with USB 1.1 and USB 2.0) by the bus. Linux manages
USB-based storage devices exactly like SCSI devices.

Exercises

C 14.1 [1] How many hard disks or SSDs does your computer contain? What
is their capacity? How are they connected to the computer (SATA, …)?

14.3 Partitioning

14.3.1 Fundamentals

Mass storage devices such as hard disks or SSDs are commonly “partitioned”, i. e.,
subdivided into several logical storage devices that the operating system can then
access independently. This does not only make it easier to use data structures that
are appropriate to the intended use—sometimes partitioning is the only way to
make a very large storage medium fully accessible, if limits within the operating
system preclude the use of the medium “as a whole” (even though this sort of
problem tends to be rare today).

Advantages of partitioning include the following:

• Logically separate parts of the system may be separated. For example, you
could put your users’ data on a different partition from that used by the op-
erating system itself. This makes it possible to reinstall the operating system
from scratch without endangering your users’ data. Given the often rudi-
mentary “upgrade” functionality of even current distributions this is very
important. Furthermore, if inconsistencies occur in a file system then only
one partition may be impacted at first.

• The structure of the file system may be adapted to the data to be stored.
Most file systems keep track of data by means of fixed-size “blocks”, where
every file, no matter how small, occupies at least a single block. With a 4 KiB
block size this implies that a 500-byte file only occupies 1/8 of its block—the
rest goes to waste. If you know that a directory will contain mostly small
files (cue: mail server), it may make sense to put this directory on a parti-
tion using smaller blocks (1 or 2 KiB). This can reduce waste considerably.
Some database servers, on the other hand, like to work on “raw” partitions
(without any file system) that they manage themselves. An operating sys-
tem must make that possible, too.

• “Runaway” processes or incautious users can use up all the space available
on a file system. At least on important server systems it makes sense to
allow user data (including print jobs, unread e-mail, etc.) only on partitions
that may get filled up without getting the system itself in trouble, e.g., by
making it impossible to append information to important log files.

There are currently two competing methods to partition hard disks for PCs.
The traditional method goes back to the 1980s when the first hard disks (with
awesome sizes like 5 or 10 MB) appeared. Recently a more modern method was
introduced; this does away with various limitations of the traditional approach,
but in some cases requires special tools.

B Hard disks are virtually always partitioned, even though at times only one
partition will be created. With USB thumb drives, one sometimes eschews
partitioning altogether.

206 14 Hard Disks (and Other Secondary Storage)

Table 14.2: Partition types for Linux (hexadecimal)

Type Description
81 Linux data
82 Linux swap space
86 RAID super block (old style)
8E Linux LVM
E8 LUKS (encrypted partition)
EE “Protective partition” for GPT-partitioned disk
FD RAID super block with autodetection
FE Linux LVM (old style)

14.3.2 The Traditional Method (MBR)

The traditional method stores partitioning information inside the “master boot
record” (MBR), the first sector (number 0) of a hard disk. (Traditionally, PC hard
disk sectors are 512 bytes long, but see below.) The space there—64 bytes starting
at offset 446—is sufficient for four primary partitions. If you want to create moreprimary partitions

than four partitions, you must use one of these primary partitions as an extendedextended partition
partition. An extended partition may contain further logical partitions.logical partitions

B The details about logical partitions are not stored inside the MBR, but at the
start of the partition (extended or logical) in question, i. e., they are scattered
around the hard disk.

Partition entries today usually store the starting sector number of the partition on
the disk as well as the length of the partition in question in sectors4. Since these
values are 32-bit numbers, given the common 512-byte sectors this results in a
maximum partition size of 2 TiB.

B There are hard disks available today which are larger than 2 TiB. Such disks
cannot be made fully accessible using MBR partitioning. One common ruse
consists in using disks whose sectors are 4096 bytes long instead of 512. This
will let you have 16-TiB disks even with MBR, but not every operating sys-
tem supports such “4Kn” drives (Linux from kernel 2.6.31, Windows from
8.1 or Server 2012).

B 4-KiB sectors are useful on hard disks even without considering partitions.
The larger sectors are more efficient for storing larger files and allow better
error correction. Therefore the market offers “512e” disks which use 4-KiB
sectors internally but pretend to the outside that they really have 512-byte
sectors. This means that if a single 512-byte sector needs to be rewritten, the
adjoining 7 sectors must be read and also rewritten (a certain, but usually
bearable, loss of efficiency, since data is most often written in larger chunks).
When partitioning, you will have to pay attention that the 4-KiB blocks that
Linux uses internally for hard disk access coincide with the disk’s internal
4-KiB sectors—if that is not the case, then to write one 4-KiB Linux block two
4-KiB disk sectors might have to be read and rewritten, and that would not
be good. (Fortunately, the partitioning tools help you watch out for this.)

Besides the starting address and length of the (primary) partitions, the parti-
tion table contains a partition type which loosely describe the type of data man-partition type

agement structure that might appear on the partition. A selection of Linux parti-
tion types appears in Table 14.2.

4In former times, partitions used to be described in terms of the cylinder, head, and sector addresses
of the sectors in question, but this has been deprecated for a very long time.

14.3 Partitioning 207

14.3.3 The Modern Method (GPT)

In the late 1990s, Intel developed a new partitioning method that should do away
with the limitations of the MBR approach, namely “GUID Partition Table” or GPT.

B GPT was developed hand-in-hand with UEFI and is part of the UEFI spec-
ification today. You can, however, use a BIOS-based Linux system to access
GPT-partitioned disks and vice-versa.

B GPT uses 64-bit sector addresses and thus allows a maximum disk size of
8 ZiB—zebibyte, in case you haven’t run into that prefix. 1 ZiB are 270 bytes,
or, roughly speaking, about one million million tebibytes. This should last
even the NSA for a while. (Disk manufactures, who prefer to talk powers of
ten rather than powers of two, will naturally sell you an 8-ZiB disk as a 9.4
zettabyte disk.)

With GPT, the first sector of the disk remains reserved as a “protective MBR”
which designates the whole disk as partitioned from a MBR point of view. This
avoids problems if a GPT-partitioned disk is connected to a computer that can’t
handle GPT.

The second sector (address 1) contains the “GPT header” which stores man-
agement information for the whole disk. Partitioning information is usually con-
tained in the third and subsequent sectors.

B The GPT header points to the partitioning information, and therefore they
could be stored anywhere on the disk. It is, however, reasonable to place
them immediately after the GPT header. The UEFI header stipulates a min-
imum of 16 KiB for partitioning information (regardless of the disk’s sector
size).

B On a disk with 512-byte sectors, with a 16 KiB space for partitioning infor-
mation the first otherwise usable sector on the disk is the one at address 34.
You should, however, avoid placing the disk’s first partition at that address
because that will get you in trouble with 512e disks. The next correctly-
aligned sector is the one at address 40.

B For safety reasons, GPT replicates the partitioning information at the end of
the disk.

Traditionally, partition boundaries are placed at the start of a new “track” on
the disk. Tracks, of course, are a relic from the hard disk paleolithic, since con-
temporary disks are addressed linearly (in other words, the sectors are numbered
consecutively from the start of the disk to the end)—but the idea of describing a
disk by means of a combination of a number of read/write heads, a number of
“cylinders”, and a number of sectors per “track” (a track is the concentric circle a
single head describes on a given cylinder) has continued to be used for a remark-
ably long time. Since the maximum number of sectors per track is 63, this means
that the first partition would start at block 63, and that is, of course, disastrous for
512e disks.

B Since Windows Vista it is common to have the first partition start 1 MiB after
the start of the disk (with 512-byte sectors, at sector 2048). This isn’t a bad
idea for Linux, either, since the ample free space between the partition table
and the first partition can be used to store the GRUB boot loader. (The space
between the MBR and sector 63 was quite sufficient earlier, too.)

Partition table entries are at least 128 bytes long and, apart from 16-byte GUIDs
for the partition type and the partition itself and 8 bytes each for a starting and
ending block number, contains 8 bytes for “attributes” and 72 bytes for a partition
name. It is debatable whether 16-byte GUIDs are required for partition types, but
on the one hand the scheme is called “GUID partition table” after all, and on the
other hand this ensures that we won’t run out of partition types anytime soon. A
selection is displayed in Table 14.3.

208 14 Hard Disks (and Other Secondary Storage)

GUID Description
00000000-0000-0000-0000-000000000000 Unused entry
C12A7328-F81F-11D2-BA4B-00A0C93EC93B EFI system partition (ESP)
21686148-6449-6E6F-744E-656564454649 BIOS boot partition
0FC63DAF-8483-4772-8E79-3D69D8477DE4 Linux file system
A19D880F-05FC-4D3B-A006-743F0F84911E Linux RAID partition
0657FD6D-A4AB-43C4-84E5-0933C84B4F4F Linux swap space
E6D6D379-F507-44C2-A23C-238F2A3DF928 Linux LVM
933AC7E1-2EB4-4F13-B844-0E14E2AEF915 /home partition
3B8F8425-20E0-4F3B-907F-1A25A76F98E8 /srv partition
7FFEC5C9-2D00-49B7-8941-3EA10A5586B7 dm-crypt partition
CA7D7CCB-63ED-4C53-861C-1742536059CC LUKS partition

Table 14.3: Partition type GUIDs for GPT (excerpt)

B Linux can use GPT-partitioned media. This needs the “EFI GUID Partition
support” option enabled in the kernel, but with current distributions this
is the case. Whether the installation procedure allows you to create GPT-
partitioned disks is a different question, just like the question of whether
the boot loader will be able to deal with them. But that is neither here nor
there.

14.4 Linux and Mass Storage

If a mass storage device is connected to a Linux computer, the Linux kernel tries
to locate any partitions. It then creates block-oriented device files in /dev for the
device itself and its partitions. You can subsequently access the partitions’ device
files and make the directory hierarchies there available as part of the computer’s
file system.

B A new mass storage device may have no partitions at all. In this case you
can use suitable tools to create partitions. This will be explained later in this
chapter. The next step after partitioning consists of generating file systems
on the partitions. This is explained in detail in Chapter 15.

The device names for mass storage are usually /dev/sda, /dev/sdb, …, in the order
the devices are recognised. Partitions are numbered, the /dev/sda device therefore
contains partitions like /dev7sda1, /dev/sda2, … A maximum of 15 partitions per de-
vice is possible. If /dev/sda is partitioned according to the MBR scheme, /dev/sda1
to /dev/sda4 correspond to the primary partitions (possibly including an extended
partition), while any logical partitions are numbered starting with /dev/sda5 (re-
gardless of whether there are four primary partitions on the disk or fewer).

B The “s” in /dev/sda derives from “SCSI”. Today, almost all mass storage de-
vices in Linux are managed as SCSI devices.

B For P-ATA disks there is another, more specific mechanism. This accesses
the IDE controllers inside the computer directly—the two drives connected
to the first controller are called /dev/hda and /dev/hdb, the ones connected to
the second /dev/hdc and /dev/hdd. (These names are used independently of
whether the drives actually exist or not—if you have a single hard disk and
a CD-ROM drive on your system, you do well to connect the one to one
controller and the other to the other so they will not be in each other’s way.
Therefore you will have /dev/hda for the disk and /dev/hdc for the CD-ROM
drive.) Partitions on P-ATA disks are, again, called /dev/hda1, /dev/hda2 and
so on. In this scheme, 63 (!) partitions are allowed.

14.4 Linux and Mass Storage 209

B If you still use a computer with P-ATA disks, you will notice that in the
vast majority of cases the SCSI infrastructure is used for those, too (note the
/dev/sda style device names). This is useful for convenience and consistency.
Some very few P-ATA controllers are not supported by the SCSI infrastruc-
ture, and must use the old P-ATA specific infrastructure.

B The migration of an existing Linux system from “traditional” P-ATA drivers
to the SCSI infrastructure should be well-considered and involve changing
the configuration in /etc/fstab such that file systems are not mounted via
their device files but via volume labels or UUIDs that are independent of
the partitions’ device file names. (See Section 15.2.3.)

The Linux kernel’s mass storage subsystem uses a three-tier architecture. At architecture

the bottom there are drivers for the individual SCSI host adapters, SATA or USB
controllers and so on, then there is a generic “middle layer”, on top of which there
are drivers for the various devices (disks, tape drives, …) that you might encounter
on a SCSI bus. This includes a “generic” driver which is used to access devices
without a specialised driver such as scanners or CD-ROM recorders. (If you can
still find any of those anywhere.)

B Every SCSI host adapter supports one or more buses (“channels”). Up to
7 (or 15) other devices can be connected to each bus, and every device can
support several “local unit numbers” (or LUNs), such as the individual CDs LUNs

in a CD-ROM changer (rarely used). Every SCSI device in the system can
thus be describe by a quadrupel (⟨host⟩, ⟨channel⟩, ⟨ID⟩, ⟨LUN⟩). Usually
(⟨host⟩, ⟨channel⟩, ⟨ID⟩) are sufficient.

B In former times you could find information on SCSI devices within the /proc/

scsi/scsi directory. This is no longer available on current systems unless the
kernel was compiled using “Legacy /proc/scsi support”.

B Nowadays, information about “SCSI controllers” is available in /sys/class/

scsi_host (one directory per controller). This is unfortunately not quite as
accessible as it used to be. You can still snoop around:

cd /sys/class/scsi_host/host0/device

ls

power scsi_host subsystem target0:0:0 uevent

cd target0:0:0; ls

0:0:0:0 power subsystem uevent

ls 0:0:0:0/block

sda

A peek into /sys/bus/scsi/devices will also be instructive:

ls /sys/bus/scsi/devices

0:0:0:0 10:0:0:0 host1 host2 host4 target0:0:0 target10:0:0

1:0:0:0 host0 host10 host3 host5 target1:0:0

Device names such as /dev/sda, /dev/sdb, etc. have the disadvantage of not being
very illuminating. In addition, they are assigned to devices in the order of their
appearance. So if today you connect first your MP3 player and then your digital
camera, they might be assigned the device files /dev/sdb and /dev/sdc; if tomorrow
you start with the digital camera and continue with the MP3 player, the names
might be the other way round. This is of course a nuisance. Fortunately, udev

assigns some symbolic names on top of the traditional device names. These can
be found in /dev/block:

210 14 Hard Disks (and Other Secondary Storage)

ls -l /dev/block/8:0

lrwxrwxrwx 1 root root 6 Jul 12 14:02 /dev/block/8:0 -> ../sda

ls -l /dev/block/8:1

lrwxrwxrwx 1 root root 6 Jul 12 14:02 /dev/block/8:1 -> ../sda1

ls -l /dev/disk/by-id/ata-ST9320423AS_5VH5TBTC

lrwxrwxrwx 1 root root 6 Jul 12 14:02 /dev/disk/by-id/�

� ata-ST9320423AS_5VH5TBTC -> ../../sda

ls -l /dev/disk/by-id/ata-ST9320423AS_5VH5TBTC-part1

lrwxrwxrwx 1 root root 6 Jul 12 14:02 /dev/disk/by-id/�

� ata-ST9320423AS_5VH5TBTC-part1 -> ../../sda1

ls -l /dev/disk/by-path/pci-0000:00:1d.0-usb-�

� 0:1.4:1.0-scsi-0:0:0:0

lrwxrwxrwx 1 root root 6 Jul 12 14:02 /dev/disk/by-path/�

� pci-0000:00:1d.0-usb-0:1.4:1.0-scsi-0:0:0:0 -> ../../sdb

ls -l /dev/disk/by-uuid/c59fbbac-9838-4f3c-830d-b47498d1cd77

lrwxrwxrwx 1 root root 10 Jul 12 14:02 /dev/disk/by-uuid/�

� c59fbbac-9838-4f3c-830d-b47498d1cd77 -> ../../sda1

ls -l /dev/disk/by-label/root

lrwxrwxrwx 1 root root 10 Jul 12 14:02 /dev/disk/by-label/root �

� -> ../../sda1

These device names are derived from data such as the (unique) serial number of
the disk drive, its position on the PCIe bus, or the UUID or name of the file system,
and are independent of the name of the actual device file.

Exercises

C 14.2 [!2] On your ssytem there are two SATA hard disks. The first disk has
two primary and two logical partitions. The second disk has one primary
and three logical partitions. Which are the device names for these partitions
on Linux?

C 14.3 [!1] Examine the /dev directory on your system. Which storage me-
dia are available and what are the corresponding device files called? (Also
check /dev/block and /dev/disk.)

C 14.4 [1] Plug a USB thumb drive into your computer. Check whether new
device files have been added to /dev. If so, which ones?

14.5 Partitioning Disks

14.5.1 Fundamentals

Before you partition the (possibly sole) disk on a Linux system, you should briefly
consider what a suitable partitioning scheme might look like and how big the
partitions ought to be. Changes after the fact are tedious and inconvenient at best
and may at worst necessitate a complete re-install of the system (which would be
exceedingly tedious and inconvenient). (See Section 14.7 for an alternative, much
less painful approach.)

Here are a few basic suggestions for partitioning:

• Apart from the partition with the root directory /, you should provide at
least one spearate partition for the file system containing the /home directory.
This lets you cleanly separate the operating system from your own data, and
facilitates distribution upgrades or even switching from one Linux distribu-
tion to a completely different one.

14.5 Partitioning Disks 211

B If you follow this approach, you should probably also use symbolic
links to move the /usr/local and /opt directories to (for example) /home/
usr-local and /home/opt. This way, these directories, which also contain
data provided by you, are on “your” partition and can more easily be
included in regular backups.

• It is absolutely possible to fit a basic Linux system into a 2 GiB partition, but,
considering today’s (low) costs per gigabyte for hard disk storage, there is
little point in scrimping and saving. With something like 30 GiB, you’re sure
to be on the safe side and will have enough room for log files, downloaded
distribution packages during a larger update, and so on.

• On server systems, it may make sense to provide separate partitions for /tmp,
/var, and possibly /srv. The general idea is that arbitrary users can put data
into these directories (besides outright files, this could include unread or
unsent e-mail, queued print jobs, and so on). If these directories are on
separate partitions, users cannot fill up the system in general and thereby
create problems.

• You should provide swap space of approximately the same size as the com-
puter’s RAM, up to a maximum of 8 GiB or thereabouts. Much more is
pointless, but on workstations and mobile computers you may want to avail
yourself of the possibility to “suspend” your computer instead of shutting
it down, in order to speed up a restart and end up exactly where you were
before—and the infrastructures enabling this like to use the swap space to
save the RAM content.

B There used to be a rule of thumb saying that the swap space should be
about twice or three times the available RAM size. This rule of thumb
comes from traditional Unix systems, where RAM works as “cache”
for the swap space. Linux doesn’t work that way, instead RAM and
swap space are added—on a computer with 4 GiB of RAM and 2 GiB
of swap space, you get to run processes to the tune of 6 GiB or so. With
8 GiB of RAM, providing 16 to 24 GiB of swap space would be absurd.

B You should dimension the RAM of a computer (especially a server) to
be big enough that practically no swap space is necessary during nor-
mal operations.; on an 8-GiB server, you won’t usually need 16 GiB of
swap space, but a gigabyte or two to be on the safe side will certainly
not hurt (especially considering today’s prices for disk storage). That
way, if RAM gets tight, the computer will slow down before processes
crash outright because they cannot get memory from the operating sys-
tem.

• If you have several (physical) hard disks, it can be useful to spread the sys-
tem across the available disks in order to increase the access speeed to indi-
vidual components.

B Traditionally, one would place the root file system (/ with the essential
subdirectories /bin, /lib, /etc, and so on) on one disk and the /usr direc-
tory with its subdirectories on a separate file system on another disk.
However, the trend on Linux is decisively away from the (artificial)
separation between /bin and /usr/bin or /lib and /usr/lib and towards
a root file system which is created as a RAM disk on boot. Whether the
traditional separation of / and /usr will gain us a lot in the future is up
for debate.

B What will certainly pay off is to spread swap space across several disks.
Linux always uses the least-used disk for swapping.

212 14 Hard Disks (and Other Secondary Storage)

Provided that there is enough empty space on the medium, new partitions
can be created and included (even while the system is running). This procedure
consists of the following steps:

1. Backup the current boot sectors and data on the hard disk in question

2. Partition the disk using fdisk (or a similar program)

3. Possibly create file systems on the new partitions (“formatting”)

4. Making the new file systems accessible using mount or /etc/fstab

B Items 3 and 4 on this list will be considered in more detail in Chapter 15.

Data and boot-sector contents can be saved using the dd program (among others).

dd if=/dev/sda of=/dev/st0

will, for example, save all of the sda hard disk to magnetic tape.
You should be aware that the partitioning of a storage medium has nothing to

do with the data stored on it. The partition table simply specifies where on the
disk the Linux kernel can find the partitions and hence the file structures. Once the
Linux kernel has located a partition, the content of the partition table is irrelevant
until it searches again, possibly during the next system boot. This gives you—
if you are courageous (or foolhardy)—far-reaching opportunities to tweak your
system while it is running. For example, you can by all means enlarge partitions
(if after the end of the partition there is unused space or a partition whose contents
you can do without) or make them smaller (and possibly place another partition
in the space thus freed up). As long as you exercise appropriate care this will be
reasonably safe.

B This should of course in no way discourage you from making appropriate
backup copies before doing this kind of open-heart surgery.

B In addition, the file systems on the disks must play along with such shenani-
gans (many Linux file systems can be enlarged without loss of data, and
some of them even be made smaller), or you must be prepared to move the
data out of the way, generate a new file system, and then fetch the data back.

14.5.2 Partitioning Disks Using fdisk

fdisk is an interactive program for manipulating disk partition tables. It can alsofdisk

create “foreign” partition types such as DOS partitions. Drives are addressed us-
ing the corresponding device files (such as /dev/sda for the first disk).

B fdisk confines itself to entering a partition into the partition table and setting
the correct partition type. If you create a DOS or NTFS partition using fdisk,
this means just that the partition exists in the partition table, not that you can
boot DOS or Windows NT now and write files to that partition. Before doing
that, you must create a file system, i. e., write the appropriate management
data structures to the disk. Using Linux-based tools you can do this for
many but not all non-Linux file systems.

After invoking “fdisk ⟨device⟩”, the program comes back with a succinct prompt
of

fdisk /dev/sdb Neue (leere) Platte
Welcome to fdisk (util-linux 2.25.2).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

Device does not contain a recognized partition table.

14.5 Partitioning Disks 213

Created a new DOS disklabel with disk identifier 0x68d97339.

Command (m for help): _

The m command will display a list of the available commands.

B fdisk lets you partition hard disks according to the MBR or GPT schemes.
It recognises an existing partition table and adjusts itself accordingly. On
an empty (unpartitioned) disk fdisk will by default create an MBR partition
table, but you can change this afterwards (we’ll show you how in a little
while).

You can create a new partition using the “n” command:

Command (m for help): n

Partition type

p primary (0 primary, 0 extended, 4 free)

e extended (container for logical partitions)

Select (default p): p

Partition number (1-4, default 1): 1

First sector (2048-2097151, default 2048): ↩
Last sector, +sectors or +sizeK,M,G,T,P (2048-2097151,�

� default 2097151): +500M

Created a new partition 1 of type 'Linux' and of size 500 MiB.

Command (m for help): _

The p command displays the current partition table. This could look like this:

Command (m for help): p

Disk /dev/sdb: 1 GiB, 1073741824 bytes, 2097152 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x68d97339

Device Boot Start End Sectors Size Id Type

/dev/sdb1 2048 1026047 1024000 500M 83 Linux

B You can change the partition type using the t command. You must select the
desired partition and can then enter the code (as a hexadecimal number). L
displays the whole list.

You can delete a partition you no longer want by means of the d command. When
you’re done, you can write the partition table to disk and quit the program using
w. With q, you can quit the program without rewriting the partition table.

B After storing the partition table, fdisk tries to get the Linux kernel to reread
the new partition table; this works well with new or unused disks, but fails
if a partition on the disk is currently in use (as a mounted file system, active
swap space, …). This lets you repartition the disk with the / file system only
with a system reboot. One of the rare occasions when a Linux system needs
to be rebooted …

Like all Linux commands, fdisk supports a number of command-line options. Options
The most important of those include:

214 14 Hard Disks (and Other Secondary Storage)

-l displays the partition table of the selected disk and then terminates the pro-
gram.

-u (“units”) lets you select the units of measure used when displaying partition
tables. The default is “sectors”; if you specify “-u=cylinders”, cylinders will
be used instead (but there is no good reason for that today).

B If you use fdisk in MBR mode, it tries to observe the usual conventions and
arrange the partitions such that they work properly on 4Kn and 512e hard
disks. You should follow the program’s suggestions wherever possible, and
not deviate from them unless there are very compelling reasons.

If you partition a hard disk according to the GPT standard and there is no GPT-
style partition table on the disk yet, you can generate one using the g command
(Warning: A possibly existing MBR partition table will be overwritten in the pro-
cess):

Command (m for help): g

Created a new GPT disklabel (GUID: C2A556FD-7C39-474A-B383-963E09AA7269)

(The GUID shown here applies to the disk as a whole.) Afterwards you can use the
n command to create partitions in the usual way, even if the dialog looks slightly
different:

Command (m for help): n

Partition number (1-128, default 1): 1

First sector (2048-2097118, default 2048): ↩
Last sector, +sectors or +sizeK,M,G,T,P (2048-2097118, default�

� 2097118): +32M

Created a new partition 1 of type 'Linux filesystem' and of size 32 MiB.

The partition type selection is different, too, because it is about GUIDs rather than
two-digit hexadecimal numbers:

Command (m for help): t

Selected partition 1

Partition type (type L to list all types): L

1 EFI System C12A7328-F81F-11D2-BA4B-00A0C93EC93B

�����

14 Linux swap 0657FD6D-A4AB-43C4-84E5-0933C84B4F4F

15 Linux filesystem 0FC63DAF-8483-4772-8E79-3D69D8477DE4

16 Linux server data 3B8F8425-20E0-4F3B-907F-1A25A76F98E8

17 Linux root (x86) 44479540-F297-41B2-9AF7-D131D5F0458A

18 Linux root (x86-64) 4F68BCE3-E8CD-4DB1-96E7-FBCAF984B709

�����

Partition type (type L to list all types): _

Exercises

C 14.5 [!2] Create an empty 1 GiB file using the

dd if=/dev/zero of=$HOME/test.img bs=1M count=1024

command. Use fdisk to “partition” the file according to the MBR scheme:
Create two Linux partitions of 256 MiB and 512 MiB, respectively, and create
a swap space partitions using the balance.

C 14.6 [!2] Repeat the following exercise, but create a GPT partition table in-
stead. Assume that the 512-MiB partition will contain a /home directory.

14.5 Partitioning Disks 215

14.5.3 Formatting Disks using GNU parted

Another popular program for partitioning storage media is the GNU project’s
parted. Featurewise, it is roughly comparable with fdisk, but it has a few useful
features.

B Unlike fdisk, parted does not come pre-installed with most distributions, but
can generally be added after the fact from the distribution’s servers.

Similar to fdisk, parted must be started with the name of the medium to be
partitioned as a parameter.

parted /dev/sdb

GNU Parted 3.2

Using /dev/sdb

Welcome to GNU Parted! Type 'help' to view a list of commands.

(parted) _

You can create a new partition using mkpart. This works either interactively …

(parted) mkpart

Partition name? []? Test

File system type? [ext2]? ext4

Start? 211MB

End? 316MB

… or directly when the command is invoked:

(parted) mkpart primary ext4 211MB 316MB

B You can abbreviate the commands down to an unambiguous prefix. Hence,
mkp will work instead of mkpart (mk would collide with the mklabel command).

B The file system type will only be used to guess a partition type. You will
still need to manually create a file system on the partition later on.

You can examine the partition table using the print command:

(parted) p

Model: ATA VBOX HARDDISK (scsi)

Disk /dev/sdb: 1074MB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name Flags

1 1049kB 106MB 105MB

2 106MB 211MB 105MB

3 211MB 316MB 105MB ext4 primary

(parted) _

(This also shows you where the magic numbers “211MB” and “316MB” came from,
earlier on.)

B print has a few interesting subcommands: “print devices” lists all available
block devices, “print free” displays free (unallocated) space, and “print all”
outputs the partition tables of all block devices.

You can get rid of unwanted partitions using rm. Use name to give a name to a
partition (only for GPT). The quit command stops the program.

216 14 Hard Disks (and Other Secondary Storage)

A Important: While fdisk updates the partition table on the disk only once you
leave the program, parted does it on an ongoing basis. This means that the
addition or removal of a partition takes effect on the disk immediately.

If you use parted on a new (unpartitioned) disk, you must first create a partition
table.

(parted) mklabel gpt

creates a GPT-style partition table, and

(parted) mklabel msdos

one according to the MBR standard. There is no default value; without a partition
table, parted will refuse to execute the mkpart command.

If you inadvertently delete a partition that you would rather have kept, parted
can help you find it again. You will just need to tell it approximately where on the
disk the partition used to be:

(parted) rm 3 Oops.
(parted) rescue 200MB 350MB

Information: A ext4 primary partition was found at 211MB -> 316MB.

Do you want to add it to the partition table?

Yes/No/Cancel? yes

For this to work, there must be a file system on the partition, because parted looks
for data blocks that appear to be the start of a file system.

In addition to the interactive mode, parted allows you to pass commands im-
mediately on the Linux command line, like this:

parted /dev/sdb mkpart primary ext4 316MB 421MB

Information: You may need to update /etc/fstab.

Exercises

C 14.7 [!2] Repeat Exercise 14.5 using parted rather than fdisk, for the MBR as
well as the GPT scheme.

C 14.8 [2] (If you have worked through Chapter 15 already.) Generate Linux
file systems on the partitions on the “disk” from the earlier exercises. Re-
move these partitions. Can you restore them using parted’s rescue command?

14.5.4 gdisk

The gdisk program specialises in GPT-partitioned disks and can do a few useful
things the previously explained programs can’t. You may however have to install
it specially.

The elementary functions of gdisk correspond to those of fdisk and parted, and
we will not reiterate those (read the documentation and do a few experiments). A
few features of gdisk, however, are of independent interest:

• You can use gdisk to convert an MBR-partitioned medium to a GPT-partitioned
medium. This presupposes that there is enough space at the start and the
end of the medium for GPT partition tables. With media where, according
to current conventions, the first partition starts at sector 2048, the former is
not a problem, but the latter may be. You will possibly have to ensure that
the last 33 sectors on the medium are not assigned to a partition.

14.6 Loop Devices and kpartx 217

For the conversion it is usually sufficient to start gdisk with the device file
name of the medium in question as a parameter. You will either receive
a warning that no GPT partition table was found and disk used the MPT
partition table instead (at this point you can quit the program using w and
you’re done), or that an intact MBR, but a damaged GPT partition table was
found (then you tell gdisk to follow the MBR, and can then quit the program
using w and you’re done).

• The other direction is also possible. To do this, you must use the r command
in gdisk to change to the menu for “recovery/transformation commands”,
and select the g command there (“convert GPT into MBR and exit”). After-
wards you can quit the program using w and convert the storage medium
this way.

Exercises

C 14.9 [!2] Repeat Exercise 14.5 using gdisk rather than fdisk and generate a
GPT partition table.

C 14.10 [2] Create (e. g., using fdisk) an MBR-partitioned “disk” and use gdisk

to convert it to GPT partitioning. Make sure that a correct “protective MBR”
was created.

14.5.5 More Partitioning Tools

Most distributions come with alternative ways of partitioning disks. Most of them distributions

offer the cfdisk program as an alternative to fdisk. This is screen-oriented and thus
somewhat more convenient to use. Even easier to use are graphical programs,
such as SUSE’s YaST or “DiskDruid” on Red Hat distributions.

B Also worth mentioning is sfdisk, a completely non-interactive partitioning
program. sfdisk takes partitioning information from an input file and is
therefore useful for unattended partitioning, e. g., as part of an automated
installation procedure. Besides, you can use sfdisk to create a backup copy
of your partitioning information and either print it as a table or else store it
on a disk or CD as a file. If the worst happens, this copy can then be restored
using sfdisk.

B sfdisk only works for MBR-partitioned disks. There is a corresponding pro-
gram called sgdisk which does an equivalent job for GPT-partitioned disks.
However, sfdisk and sgdisk are not compatible—their option structures are
completely different.

14.6 Loop Devices and kpartx

Linux has the useful property of being able to treat files like storage media. This
means that if you have a file you can partition it, generate file systems, and gener-
ally treat the “partitions” on that file as if they were partitions on a “real” hard
disk. In real life, this can be useful if you want to access CD-ROMs or DVDs
without having a suitable drive in your computer (it is also faster). For learn-
ing purposes, it means that you can perform various experiments without having
to obtain extra hard disks or mess with your computer.

A CD-ROM image can be created straightforwardly from an existing CD-ROM CD-ROM image

using dd:

dd if=/dev/cdrom of=cdrom.iso bs=1M

You can subsequently make the image directly accessible:

218 14 Hard Disks (and Other Secondary Storage)

mount -o loop,ro cdrom.iso /mnt

In this example, the content of the CD-ROM will appear within the /mnt directory.
You can also use the dd command to create an empty file:

dd if=/dev/zero of=disk.img bs=1M count=1024

That file can then be “partitioned” using one of the common partitioning tools:

fdisk disk.img

Before you can do anything with the result, you will have to ensure that there are
device files available for the partitions (unlike with “real” storage media, this is
not automatic for simulated storage media in files). To do so, you will first need a
device file for the file as a whole. This—a so-called “loop device”—can be created
using the losetup command:

losetup -f disk.img

losetup -a

/dev/loop0: [2050]:93 (/tmp/disk.img)

losetup uses device file names of the form “/dev/loop𝑛”. The “-f” option makes the
program search for the first free name. “losetup -a” outputs a list of the currently
active loop devices.

Once you have assigned your disk image to a loop device, you can create device
files for its partitions. This is done using the kpartx command.

B You may have to install kpartx first. On Debian and Ubuntu, the package is
called kpartx.

The command to create device files for the partitions on /dev/loop0 is

kpartx -av /dev/loop0

add map loop0p1 (254:0): 0 20480 linear /dev/loop0 2048

add map loop0p2 (254:1): 0 102400 linear /dev/loop0 22528

(without the “-v” command, kpartx keeps quiet). The device files then appear in
the /dev/mapper directory:

ls /dev/mapper

control loop0p1 loop0p2

Now nothing prevents you from, e. g., creating file systems on these “partitions”
and mounting them into your computer’s directory structure. See Chapter 15.

When you no longer need the device files for the partitions, you can remove
them again using the

kpartx -dv /dev/loop0

del devmap : loop0p2

del devmap : loop0p1

command. An unused loop device can be released using

losetup -d /dev/loop0

B The

losetup -D

command releases all loop devices.

14.7 The Logical Volume Manager (LVM) 219

Exercises

C 14.11 [!2] Use the test “disk” from Exercise 14.5. Assign it a loop device
using losetup and make its partitions accessible with kpartx. Convince your-
self that the correct device files show up in /dev/mapper. Then release the
partitions and the loop device again.

14.7 The Logical Volume Manager (LVM)

Partitioning a disk and creating file systems on it seems like a simple and obvious
thing to do. On the other hand, you are committing yourself: The partition scheme
of a hard disk can only be changed with great difficulty and, if the disk in question
contains the root file system, may even involve the use of a “rescue system”. In
addition, there is no compelling reason why you should be constrained in your
system architecture by trivialities such as the limited capacity of hard disks and
the fact that file system can be at most as large as the partitions they are sitting on.

One method to transcend these limitations is the use of the “Logical Volume
Manager” (LVM). LVM provides an abstraction layer between disks (and disk par-
titions) and file systems—instead of creating file systems directly on partitions,
you can contribute partitions (or whole disks) to a “pool” of disk space and then
allocate space from that pool to create file systems. Single file systems can freely
use space which is located on more than one physical disk.

In LVM terminology, disks and disk partitions are considered “physical vol-
umes” (PV) which are made part of a “volume group” (VG). There may be more
than one VG on the same computer. The space within a VG is available for cre-
ating “logical volumes” (LV), which can then hold arbitrary file systems or swap
space.

B When creating LVs, you can cause their storage space to be spread deviously
across several physical disks (“striping”) or multiple copies of their data to
be stored in several places within the VG at the same time (“mirroring”).
The former is supposed to decrease retrieval time (even if there is a danger
of losing data whenever any of the disks in the volume group fail), the latter
is supposed to reduce the risk of losing data (even if you are paying for this
with increased access times). In real life, you will probably prefer to rely on
(hardware or software) RAID instead of using LVM’s features.

One of the nicer properties of LVM is that LVs can be changed in size while the
system is running. If a file system is running out of space, you can first enlarge
the underlying LV (as long as your VG has unused space available—otherwise you
would first need to install another disk and add it to the VG). Afterwards you can
enlarge the file system on the LV in question.

B This presumes that the file system in question enables size changes after the
fact. With the popular file systems, e. g., ext3 or ext4, this is the case. They
even allow their size to be increased while the file system is mounted. (You
will need to unmount the file system to reduce the size.)

B If you use a file system that does not let itself be enlarged, you will have
to bite the bullet, copy the data elsewhere, recreate the file system with the
new size, and copy the data back.

If a disk within your VG should start acting up, you can migrate the LVs from
that disk to another within the VG (if you still have or can make enough space).
After that, you can withdraw the flaky disk from the VG, install a new disk, add
that to the VG and migrate the LVs back.

B You can do that, too, while the system is running and with your users none
the wiser—at least as long as you have invested enough loose change into
making your hard disks “hot-swappable”.

220 14 Hard Disks (and Other Secondary Storage)

Also nice are “snapshots”, which you can use for backup copies without hav-“snapshots”

ing to take your system offline for hours (which would otherwise be necessary
to ensure that nothing changes while the backup is being performed). You can
“freeze” the current state of an LV on another (new) LV—which takes a couple of
seconds at most—and then make a copy of that new LV in your own time while
normal operations continue on the old LV.

B The “snapshot” LV only needs to be big enough to hold the amount of
changes to the original LV you expect while the backup is being made (plus
a sensible safety margin), since only the changes are being stored inside the
new LV. Hence, nobody prevents you from making a snapshot of your 10 TB
file system even if you don’t have another 10 TB of free disk space: If you
only expect 10 GB of data to be changed while you’re writing the copy to
tape, a snapshot LV of 20–30 GB should be fairly safe.

B As a matter of fact it is now possible to create writable snapshots. This is
useful, for example, if you are working with “virtual machines” that share
a basic OS installation but differ in details. Writable snapshots make it pos-
sible to make the basic installation in one LV for all virtual machines and
then store the configuration specific to each virtual machine in one LV with
a writable snapshot each. (You shouldn’t overstretch this approach, though;
if you change the LV with the basic installation the virtual machines won’t
notice.)

On Linux, LVM is a special application of the “device mapper”, a system com-
ponent enabling the flexible use of block devices. The device mapper also pro-
vides other useful features such as encrypted disks or space-saving storage provi-
sioning for “virtual servers”. Unfortunately we do not have room in this training
manual to do LVM and the device mapper justice, and refer you to the manual,
Linux Storage and File Systems (STOR).

Commands in this Chapter

cfdisk Character-screen based disk partitioner cfdisk(8) 217
gdisk Partitioning tool for GPT disks gdisk(8) 216
kpartx Creates block device maps from partition tables kpartx(8) 218
losetup Creates and maintains loop devices losetup(8) 218
sfdisk Non-interactive hard disk partitioner sfdisk(8) 217
sgdisk Non-interactive hard disk partitioning tool for GPT disks

sgdisk(8) 217

14.7 Bibliography 221

Summary

• Linux supports all notable types of mass storage device—magnetic hard
disks (SATA, P-ATA, SCSI, SAS, Fibre Channel, USB, …), SSDs, USB thumb
drives, SD cards, …

• Storage media such as hard disks may be partitioned. Partitions allow the
independent management of parts of a hard disk, e. g., with different file
systems or operating systems.

• Linux can deal with storage media partitioned according to the MBR and
GPT schemes.

• Linux manages most storage media like SCSI devices. There is an older
infrastructure for P-ATA disks which is only rarely used.

• Linux offers various tools for partitioning such as fdisk, parted, gdisk, cfdisk,
or sfdisk. Various distributions also provide their own tools.

• Loop devices make block-oriented devices from files. Partitions on loop de-
vices can be made accessible using kpartx.

• The Logical Volume Manager (LVM) decouples physical storage space on
media from logical storage structures. It enables the flexible management
of mass storage, e. g., to create file systems which are larger than a single
physical storage medium. Snapshots help create backup copies and provi-
sion storage space for virtual machines.

Bibliography

SCSI-2.4-HOWTO03 Douglas Gilbert. “The Linux 2.4 SCSI subsystem HOWTO”,
May 2003. http://www.tldp.org/HOWTO/SCSI-2.4-HOWTO/

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

15
File Systems: Care and Feeding

Contents

15.1 Creating a Linux File System. 224
15.1.1 Overview . 224
15.1.2 The ext File Systems 226
15.1.3 ReiserFS . 234
15.1.4 XFS . 235
15.1.5 Btrfs . 237
15.1.6 Even More File Systems 238
15.1.7 Swap space . 239

15.2 Mounting File Systems 240
15.2.1 Basics . 240
15.2.2 The mount Command 240
15.2.3 Labels and UUIDs 242

15.3 The dd Command . 244

Goals

• Knowing the most important file systems for Linux and their properties
• Being able to generate file systems on partitions and storage media
• Knowing about file system maintenance tools
• Being able to manage swap space
• Being able to mount local file systems
• Knowing how to set up disk quotas for users and groups

Prerequisites

• Competent use of the commands to handle files and directories
• Knowledge of mass storage on Linux and partitioning (Chapter 14)
• Existing knowledge about the structure of PC disk storage and file systems

is helpful

adm1-dateisysteme-opt.tex[!quota] (33e55eeadba676a3)

224 15 File Systems: Care and Feeding

15.1 Creating a Linux File System

15.1.1 Overview

After having created a new partition, you must “format” that partition, i. e., write
the data structures necessary to manage files and directories onto it. What these
data structures look like in detail depends on the “file system” in question.

B Unfortunately, the term “file system” is overloaded on Linux. It means, for
example:

1. A method to arrange data and management information on a medium
(“the ext3 file system”)

2. Part of the file hierarchy of a Linux system which sits on a particular
medium or partition (“the root file system”, “the /var file system”)

3. All of the file hierarchy, across media boundaries

The file systems (meaning 1 above) common on Linux may differ considerably.
On the one hand, there are file systems that were developed specifically for Linux,
such as the “ext filesystems” or the Reiser file system, and on the other hand there
are file systems that originally belonged to other operating systems but that Linux
supports (to a greater or lesser degree) for compatibility. This includes the file
systems of DOS, Windows, OS X, and various Unix variants as well as “network
file systems” such as NFS or SMB which allow access to file servers via the local
network.

Many file systems “native” to Linux are part of the tradition of file systems com-
mon on Unix, like the Berkeley Fast Filesystem (FFS), and their data structures are
based on those. However, development did not stop there; more modern influ-
ences are constantly being integrated in order to keep Linux current with the state
of the art.

B Btrfs (pronounced “butter eff ess”) by Chris Mason (Fusion-IO) is widely
considered the answer to the famous ZFS of Solaris. (The source code for
ZFS is available but cannot be integrated in the Linux directly, due to li-
censing considerations.) Its focus is on “fault tolerance, repairs and simple
administration”. By now it seems to be mostly usable, at least some distri-
butions rely on it.

With Linux file systems it is common to have a superblock at the beginningsuperblock

of the file system. This contains information pertaining to the file system as a
whole—such as when it was last mounted or unmounted, whether it was un-
mounted “cleanly” or because of a system crash, and so on. The superblock nor-
mally also points to other parts of the management data structures, like where the
inodes or free/occupied block lists are to be found and which parts of the medium
are available for data.

B It is usual to keep spare copies of the superblock elsewhere on the file sys-
tem, in case something happens to the original. This is what the ext file
systems do.

B On disk, there is usually a “boot sector” in front of the superblock, into
which you can theoretically put a boot loader (Chapter 16). This makes it
possible to, e. g., install Linux on a computer alongside Windows and use
the Windows boot manager to start the system.

On Linux, file systems (meaning 2 above) are created using the mkfs command.mkfs

mkfs is independent of the actual file system (meaning 1) desired; it invokes the real
routine specific to the file system (meaning 1) in question, mkfs.⟨file system name⟩.
You can select a file system type by means of the -t option—with “mkfs -t ext2”,
for example, the mkfs.ext2 program would be started (another name for mke2fs).

15.1 Creating a Linux File System 225

When the computer has been switched off inadvertently or crashed, you have
to consider that the file system might be in an inconsistent state (even though this inconsistent state

happens very rarely in real life, even on crashes). File system errors can occur
because write operations are cached inside the computer’s RAM and may be lost
if the system is switched off before they could be written to disk. Other errors can
come up when the system gives up the ghost in the middle of an unbuffered write
operation.

Besides data loss, problems can include errors within the file system manage- structural errors

ment structure. These can be located and repaired using suitable programs and
include

• Erroneous directory entries

• Erroneous inode entries

• Files that do not occur in any directory

• Data blocks belonging to several different files

Most but not all such problems can be repaired automatically without loss of data;
generally, the file system can be brought back to a consistent state.

B On boot, the system will find out whether it has not been shut down cor-
rectly by checking a file system’s state. During a regular shutdown, the file
systems are unmounted and the “valid flag” in every file system’s super valid flag

block will be set. On boot, this super block information may be used to au-
tomatically check these possibly-erroneous file systems and repair them if
necessary—before the system tries to mount a file system whose valid flag
is not set, it tries to do a file system check.

B With all current Linux distributions, the system initialisation scripts exe-
cuted by init after booting contain all necessary commands to perform a
file system check.

If you want to check the consistency of a file system you do not need to wait
for the next reboot. You can launch a file system check at any time. Should a file file system check

contain errors, however, it can only be repaired if it is not currently mounted. This
restriction is necessary so that the kernel and the repair program do not “collide”.
This is another argument in favour of the automatic file system checks during
booting.

Actual consistency checks are performed using the fsck command. Like mkfs,
depending on the type of the file system to be checked this command uses a spe-
cific sub-command called fsck.⟨type⟩—e.g., fsck.ext2 for ext2. fsck identifies the
required sub-command by examining the file system in question. Using the

fsck /dev/sdb1

command, for example, you can check the file system on /dev/sdb1.

B The simple command

fsck

checks all file systems listed in /etc/fstab with a non-zero value in the sixth
(last) column in sequence. (If several different values exist, the file systems
are checked in ascending order.) /etc/fstab is explained in more detail in
Section 15.2.2.

B fsck supports a -t option which at first sight resembles mkfs but has a dif-
ferent meaning: A command like

226 15 File Systems: Care and Feeding

fsck -t ext3

checks all file systems in /etc/fstab that are marked as type ext3 there.

The most important options of fsck include:options

-A (All) causes fsck to check all file systems mentioned in /etc/fstab.

B This obeys the checking order in the sixth column of the file. If several
file systems share the same value in that column, they are checked in
parallel if they are located on different physical disks.

-R With -A, the root file system is not checked (which is useful if it is already
mounted for writing).

-V Outputs verbose messages about the check run.

-N Displays what fsck would do without actually doing it.

-s Inhibits parallel checking of multiple file systems. The “fsck” command with-
out any parameters is equivalent to “fsck -A -s”.

Besides its own options, you can pass additional options to fsck which it will
forward to the specific checking program. These must occur after the name of the
file system(s) to be checked and possibly a “--” separator. The -a, -f, -p and -v

options are supported by most such programs. Details may be found within the
documentation for the respective programs. The

fsck /dev/sdb1 /dev/sdb2 -pv

for example would check the file systems on the /dev/sdb1 and /dev/sdb2 partitions
automatically, fix any errors without manual intervention and report verbosely on
its progress.

B At program termination, fsck passes information about the file system state
to the shell:

0 No error was found in the file system
1 Errors were found and corrected
2 Severe errors were found and corrected. The system should be rebooted
4 Errors were found but not corrected
8 An error occurred while the program was executed
16 Usage error (e. g., bad command line)
128 Error in a shared library function

It is conceivable to analyse these return values in an init script and deter-
mine how to continue with the system boot. If several file systems are being
checked (using the -A option), the return value of fsck is the logical OR of
the return values of the individual checking programs.

15.1.2 The ext File Systems

History and Properties The original “extended file system” for Linux was imple-
mented in April, 1992, by Rémy Card. It was the first file system designed specif-
ically for Linux (although it did take a lot of inspiration from general Unix file
systems) and did away with various limitations of the previously popular Minix
file system.

15.1 Creating a Linux File System 227

B The Minix file system had various nasty limits such as a maximum file sys-
tem size of 64 MiB and file names of at most 14 characters. (To be fair, Minix
was introduced when the IBM PC XT was considered a hot computer and
64 MiB, for PCs, amounted to an unimaginably vast amount of disk storage.
By 1990, that assumption had begun to crumble.) ext allowed file systems
of up to 2 GiB—quite useful at the time, but naturally somewhat ridiculous
today.

B The arrival of the ext file system marks another important improvement
to the Linux kernel, namely the introduction of the “virtual file system
switch”, or VFS. The VFS abstracts file system operations such as the open-
ing and closing of files or the reading and writing of data, and as such
enables the coexistence of different file system implementations in Linux.

A The original ext file system is no longer used today. From here on, when we
talk about “the ext file systems”, we refer to ext2 and everything newer than
that.

The subsequent version, ext2 (the “second extended file system”), which was
begun by Rémy Card in January, 1993, amounted to a considerable rework of the
original “extended file system”. The development of ext2 made use of many ideas
from the BSD “Berkeley Fast Filesystem”. ext2 is still being maintained and makes
eminent sense for certain applications.

B Compared to ext, ext2 pushes various size limits—with the 4 KiB block size
typical for Intel-based Linux systems, file systems can be 16 TiB and single
files 2 TiB in size. Another important improvement in ext2 was the intro-
duction of separate timestamps for the last access, last content modification
and last inode modification, which achieved compatibility to “traditional”
Unix in this respect.

B From the beginning, ext2 was geared towards continued development and
improvement: Most data structures contained surplus space which was
later used for important extensions. These include ACLs and “extended
attributes”.

Since the end of the 1990s, Stephen Tweedie worked on a successor to ext2,
which was made part of the Linux kernel at the end of 2001 under the name of
ext3. (That was Linux 2.4.15.) The most important differences between ext2 and
ext3 include:

• ext3 supports Journaling.

• ext3 allows enlarging file systems while they are mounted.

• ext3 supports more efficient internal data structures for directories with
many entries.

Even so it is largely compatible with ext2. It is usually possible to access ext3 file
systems as ext2 file systems (which implies that the new features cannot be used)
and vice-versa.

B “Journaling” solves a problem that can be very tedious with the increasing
size of file systems, namely that an unforeseen system crash makes it neces-
sary to do a complete consistency check of the file system. The Linux kernel
does not perform write operations immediately, but buffers the data in RAM
and writes them to disk when that is convenient (e. g., when the read/write
head of the disk drive is in the appropriate place). In addition, many write
operations involve writing data to various places on the disk, e. g., one or
more data blocks, the inode table, and the list of available blocks on the
disk. If the power fails in the right (or wrong) moment, such an operation
can remain only half-done—the file system is “inconsistent” in the sense
that a data block can be assigned to a file in the inode, but not marked used
in the free-block list. This can lead to serious problems later on.

228 15 File Systems: Care and Feeding

B A journaling file system like ext3 considers every write access to the disk
as a “transaction” which must be performed completely or not at all. By
definition, the file system is consistent before and after a transaction is per-
formed. Every transaction is first written into a special area of the file sys-
tem called the journal. If it has been entirely written, it is marked “complete”
and, as such, it is official. The Linux kernel can do the actual write opera-
tions later.—If the system crashes, a journaling file system does not need to
undergo a complete file system check, which with today’s file system sizes
could take hours or even days. Instead, the journal is considered and any
transactions marked “complete” are transferred to the actual file system.
Transactions not marked “complete” are thrown out.

A Most journaling file systems use the journal to log changes to the file sys-
tem’s “metadata”, i. e., directories, inodes, etc. For efficiency, the actual file
data are normally not written to the journal. This means that after a crash
and reboot you will have a consistent file system without having to spend
hours or days on a complete consistency check. However, your file contents
may have been scrambled—for example, a file might contain obsolete data
blocks because the updated ones couldn’t be written before the crash. This
problem can be mitigated by writing the data blocks to disk first and then
the metadata to the journal, but even that is not without risk. ext3 gives
you the choice between three operating modes—writing everything to the
journal (mount option data=journal), writing data blocks directly and then
metadata to the journal (data=ordered), or no restrictions (data=writeback). The
default is data=ordered.

B Writing metadata or even file data twice—once to the journal, and then later
to the actual file system—involves a certain loss of performance compared
to file systems like ext2, which ignore the problem. One approach to fix
this consists of log-structured file systems, in which the journal makes up the
actual file system. Within the Linux community, this approach has so far not
prevailed. Another approach is exemplified by “copy-on-write filesystems”
like Btrfs.

A Using a journaling file system like ext3 does not absolve you from having to
perform complete consistency checks every so often. Errors in a file system’s
data structures might arise through disk hardware errors, cabling problems,
or the dreaded cosmic rays (don’t laugh) and might otherwise remain un-
noticed until they wreak havoc. For this reason, the ext file systems force a
file system check every so often when the system is booted (usually when
you can least afford it). You will see how to tweak this later in this chapter.

A With server systems that are rarely rebooted and that you cannot simply
take offline for a few hours or days for a prophylactic file system check, you
may have a big problem. We shall also come back to this.

The apex of ext file system evolution is currently represented by ext4, which has
been developed since 2006 under the guidance of Theodore Ts’o. This has been
considered stable since 2008 (Kernel version 2.6.28). Like ext3 and ext2, backward
compatibility was an important goal: ext2 and ext3 file systems can be mounted
as ext4 file systems and will profit from some internal improvements in ext4. On
the other hand, the ext4 code introduces some changes that result in file systems
no longer being accessible as ext2 and ext3. Here are the most important improve-
ments in ext4 as compared to ext3:

• Instead of maintaining the data blocks of individual files as lists of block
numbers, ext4 uses “extents”, i. e., groups of physically contiguous blocks
on disk. This leads to a considerable simplification of space management
and to greater efficiency, but makes file systems using extents incompatible
to ext3. It also avoids fragmentation, or the wild scattering of blocks belong-
ing to the same file across the whole file system.

15.1 Creating a Linux File System 229

• When data is written, actual blocks on the disk are assigned as late as pos-
sible. This also helps prevent fragmentation.

• User programs can advise the operating system how large a file is going
to be. Again, this can be used to assign contiguous file space and mitigate
fragmentation.

• Ext4 uses checksums to safeguard the journal. This increases reliability and
avoids some hairy problems when the journal is replayed after a system
crash.

• Various optimisations of internal data structures increase the speed of con-
sistency checks.

• Timestamps now carry nanosecond resolution and roll over in 2242 (rather
than 2038).

• Some size limits have been increased—directories may now contain 64,000
or more subdirectories (previously 32,000), files can be as large as 16 TiB,
and file systems as large as 1 EiB.

In spite of these useful improvements, according to Ted Ts’o ext4 is not to be con-
sidered an innovation, but rather a stopgap until even better file systems like Btrfs
become available.

All ext file systems include powerful tools for consistency checks and file sys-
tem repairs. This is very important for practical use.

Creating ext file systems To create a ext2 or ext3 file system, it is easiest to use the
mkfs command with a suitable -t option:

mkfs -t ext2 /dev/sdb1 ext2 file system
mkfs -t ext3 /dev/sdb1 ext3 file system
mkfs -t ext4 /dev/sdb1 ext4 file system

After the -t option and its parameter, you can specify further parameters which
will be passed to the program performing the actual operation—in the case of the
ext file systems, the mke2fs program. (In spite of the e2 in its name, it can also create
ext3 and ext4 file systems.)

B The following commands would also work:

mkfs.ext2 /dev/sdb1 ext2 file system
mkfs.ext3 /dev/sdb1 ext3 file system
mkfs.ext4 /dev/sdb1 ext4 file system

These are exactly the commands that mkfs would invoke. All three com-
mands are really symbolic links referring to mke2fs; mke2fs looks at the name
used to call it and behaves accordingly.

B You can even call the mke2fs command directly: mke2fs

mke2fs /dev/sdb1

(Passing no options will get you a ext2 file system.)

The following options for mke2fs are useful (and possibly important for the
exam):

-b ⟨size⟩ determines the block size. Typical values are 1024, 2048, or 4096. On
partitions of interesting size, the default is 4096.

230 15 File Systems: Care and Feeding

-c checks the partition for damaged blocks and marks them as unusable.

B Current hard disks can notice “bad blocks” and replace them by blocks
from a “secret reserve” without the operating system even noticing (at
least as long as you don’t ask the disk directly). While this is going on,
“mke2fs -c”) does not provide an advantage. The command will only
find bad blocks when the secret reserve is exhausted, and at that point
you would do well to replace the disk, anyway. (A completely new
hard disk would at this point be a warranty case. Old chestnuts are
only fit for the garbage.)

-i ⟨count⟩ determines the “inode density”; an inode is created for every ⟨count⟩
bytes of space on the disk. The value must be a multiple of the block size
(option b); there is no point in selecting a ⟨count⟩ that is less than the block
size. The minimum value is 1024, the default is the current block size.

-m ⟨percentage⟩ sets the percentage of data blocks reserved for root (default: 5%)

-S causes mke2fs to rewrite just the super blocks and group descriptors and leave
the inodes intact

-j creates a journal and, hence, an ext3 or ext4 file system.

B It is best to create an ext4 file system using one of the precooked calls
like “mkfs -t ext4”, since mke2fs then knows what it is suppsed to do. If
you must absolutely do it manually, use something like

mke2fs -j -O extents,uninit_bg,dir_index /dev/sdb1

The ext file systems (still) need at least one complete data block for every file, no
matter how small. Thus, if you create an ext file system on which you intend
to store many small files (cue: mail or Usenet server), you may want to select a
smaller block size in order to avoid internal fragmentation. (On the other hand,internal fragmentation

disk space is really quite cheap today.)

B The inode density (-i option) determines how many files you can create on
the file system—since every file requires an inode, there can be no more
files than there are inodes. The default, creating an inode for every single
data block on the disk, is very conservative, but from the point of view of
the developers, the danger of not being able to create new files for lack of
inodes seems to be more of a problem than wasted space due to unused
inodes.

B Various file system objects require inodes but no data blocks—such as de-
vice files, FIFOs or short symbolic links. Even if you create as many inodes
as data blocks, you can still run out of inodes before running out of data
blocks.

B Using the mke2fs -F option, you can “format” file system objects that are not
block device files. For example, you can create CD-ROMs containing an ext2

file system by executing the command sequence

dd if=/dev/zero of=cdrom.img bs=1M count=650

mke2fs -F cdrom.img

mount -o loop cdrom.img /mnt

… copy stuff to /mnt …
umount /mnt

cdrecord -data cdrom.img

(/dev/zero is a “device” that produces arbitrarily many zero bytes.) The re-
sulting CD-ROMs contain “genuine” ext2 file systems with all permissions,
attributes, ACLs etc., and can be mounted using

15.1 Creating a Linux File System 231

mount -t ext2 -o ro /dev/scd0 /media/cdrom

(or some such command); you should replace /dev/scd0 by the device name
of your optical drive. (It is best to avoid using an ext3 file system here, since
the journal would be an utter waste of space. An ext4 file system, though,
can be created without a journal.)

Repairing ext file systems e2fsck is the consistency checker for ext file systems. e2fsck

There are usually symbolic links such as fsck.ext2 so it can be invoked from fsck.

B Like mke2fs, e2fsck also works for ext3 and ext4 file systems.

B You can of course invoke the program directly, which might save you a little
typing when passing options. On the other hand, you can only specify the
name of one single partition (strictly speaking, one single block device).

The most important options for e2fsck include: options

-b ⟨number⟩ reads the super block from block ⟨number⟩ of the partition (rather
than the first super block)

-B ⟨size⟩ gives the size of a block group between two copies of the super block;
with the ext file systems, backup copies of the super block are usually placed
every 8192 blocks, on larger disks every 32768 blocks. (You can query this
using the tune2fs command explained below; look for “blocks per group” in
the output of “tune2fs -l”.)

-f forces a file system to be checked even if its super block claims that it is clean

-l ⟨file⟩ reads the list of bad blocks from the ⟨file⟩ and marks these blocks as “used”

-c (“check”) searches the file system for bad blocks

-p (“preen”) causes errors to be repaired automatically with no further user in-
teraction

-v (“verbose”) outputs information about the program’s execution status and the
file system while the program is running

The device file specifies the partition whose file system is to be checked. If that
partition does not contain an ext file system, the command aborts. e2fsck performs
the following steps: steps

1. The command line arguments are checked

2. The program checks whether the file system in question is mounted

3. The file system is opened

4. The super block is checked for readability

5. The data blocks are checked for errors

6. The super block information on inodes, blocks and sizes are compared with
the current system state

7. Directory entries are checked against inodes

8. Every data block that is marked “used” is checked for existence and whether
it is referred to exactly once by some inode

9. The number of links within directories is checked with the inode link coun-
ters (must match)

232 15 File Systems: Care and Feeding

10. The total number of blocks must equal the number of free blocks plus the
number of used blocks

B e2fsck returns an exit code with the same meaning as the standard fsck exitexit code

codes..

It is impossible to list all the file system errors that e2fsck can handle. Here are
a few important examples:

• Files whose inodes are not referenced from any directory are placed in the
file system’s lost+found directory using the inode number as the file name
and can be moved elsewhere from there. This type of error can occur, e. g.,
if the system crashes after a file has been created but before the directory
entry could be written.

• An inode’s link counter is greater than the number of links pointing to this
inode from directories. e2fsck corrects the inode’s link counter.

• e2fsck finds free blocks that are marked used (this can occur, e. g., when the
system crashes after a file has been deleted but before the block count and
bitmaps could be updated).

• The total number of blocks is incorrect (free and used blocks together are
different from the total number of blocks).

Not all errors are straightforward to repair. What to do if the super block iscomplicated errors

unreadable? Then the file system can no longer be mounted, and e2fsck often fails
as well. You can then use a copy of the super block, one of which is included with
every block group on the partition. In this case you should boot a rescue system
and invoke fsck from there. With the -b option, e2fsck can be forced to consider a
particular block as the super block. The command in question then becomes, for
example:

e2fsck -f -b 8193 /dev/sda2

B If the file system cannot be automatically repaired using fsck, it is pos-
sible to modify the file system directly. However, this requires very de-
tailed knowledge of file system structures which is beyond the scope of
this course.—There are two useful tools to aid with this. First, the dumpe2fs

program makes visible the internal management data structures of a ext

file system. The interpretation of its output requires the aforementioned
detailed knowledge. An ext file system may be repaired using the debugfs

file system debugger.

A You should keep your hands off programs like debugfs unless you know ex-
actly what you are doing. While debugfs enables you to manipulate the file
system’s data structures on a very low level, it is easy to damage a file sys-
tem even more by using it injudiciously. Now that we have appropriately
warned you, we may tell you that

debugfs /dev/sda1

will open the ext file system on /dev/sda1 for inspection (debugfs, reasonably,
enables writing to the file system only if it was called with the -w option).
debugfs displays a prompt; “help” gets you a list of available commands.
These are also listed in the documentation, which is in debugfs(8).

15.1 Creating a Linux File System 233

Querying and Changing ext File System Parameters If you have created a parti-
tion and put an ext file system on it, you can change some formatting parameters changing format parameters

after the fact. This is done using the tune2fs command, which should be used with
utmost caution and should never be applied on a file system mounted for writing:

tune2fs [⟨options⟩] ⟨device⟩

The following options are important:

-c ⟨count⟩ sets the maximum number of times the file system may be mounted
between two routine file system checks. The default value set by mke2fs is a
random number somewhere around 30 (so that not all file systems are pre-
emptively checked at the same time). The value 0 means “infinitely many”.

-C ⟨count⟩ sets the current “mount count”. You can use this to cheat fsck or (by
setting it to a larger value than the current maximum set up using -c) force
a file system check during the next system boot.

-e ⟨behaviour⟩ determines the behaviour of the system in case of errors. The fol-
lowing possibilities exist:

continue Go on as normal
remount-ro Disallow further writing to the file system
panic Force a kernel panic

In every case, a file system consistency check will be performed during the
next reboot.

-i ⟨interval⟩⟨unit⟩ sets the maximum time between two routine file system checks.
⟨interval⟩ is an integer; the ⟨unit⟩ is d for days, w for weeks and m for months.
The value 0 means “infinitely long”.

-l displays super block information.

-m ⟨percent⟩ sets the percentage of data blocks reserved for root (or the user speci-
fied using the -u option). The default value is 5%.

-L ⟨name⟩ sets a partition name (up to 16 characters). Commands like mount and
fsck make it possible to refer to partitions by their names rather than the
names of their device files.

To upgrade an existing ext3 file system to an ext4 file system, you need to exe-
cute the commands

tune2fs -O extents,uninit_bg,dir_index /dev/sdb1

e2fsck -fDp /dev/sdb1

(stipulating that the file system in question is on /dev/sdb1). Make sure to change
/etc/fstab such that the file system is mounted as ext4 later on (see Section 15.2).

B Do note, though, that all existing files will still be using ext3 structures—
improvements like extents will only be used for files created later. The
e4defrag defragmentation tool is supposed to convert older files but is not
quite ready yet.

B If you have the wherewithal, you should not upgrade a file system “in place”
but instead backup its content, recreate the file system as ext4, and the re-
store the content. The performance of ext4 is considerably better on “native”
ext4 file systems than on converted ext3 file systems—this can amount to a
factor of 2.

234 15 File Systems: Care and Feeding

B If you have ext2 file systems lying around that you would like to convert into
ext3 file systems: This is easily done by creating a journal. tune2fs will do
that for you, too:

tune2fs -j /dev/sdb1

Again, you will have to adjust /etc/fstab if necessary.

Exercises

C 15.1 [!2] Generate an ext4 file system on a suitable medium (hard disk par-
tition, USB thumb drive, file created using dd).

C 15.2 [2] Change the maximum mount count of the filesystem created in Ex-
ercise 15.1 to 30. In addition, 30% of the space available on the file system
should be reserved for user test.

15.1.3 ReiserFS

Overview ReiserFS is a Linux file system meant for general use. It was developed
by a team under the direction of Hans Reiser and debuted in Linux 2.4.1 (that was
in 2001). This made it the first journaling file system available for Linux. ReiserFS
also contained some other innovations that the most popular Linux file system at
the time, ext2, did not offer:

• Using a special tool, ReiserFS file systems could be changed in size. Enlarge-
ment was even possible while the file system was mounted.

• Small files and the ends of larger files could be packed together to avoid
“internal fragmentation” which arises in file systems like ext2 because space
on disk is allocated based on the block size (usually 4 KiB). With ext2 and
friends, even a 1-byte file requires a full 4-KiB block, which could be consid-
ered wasteful (a 4097-byte file requires two data blocks, and that is almost
as bad). With ReiserFS, several such files could share one data block.

B There is nothing in principle that would keep the ext developers to add
this “tail packing” feature to the ext file systems. This was discussed
and the consensus was that by now, disk space is cheap enough that
the added complexity would be worth the trouble.

• Inodes aren’t pregenerated when the file system is created, but are allocated
on demand. This avoids a pathological problem possible with the ext file
systems, where there are blocks available in the file system but all inodes
are occupied and no new files can be generated.

B The ext file systems mitigate this problem by allocating one inode per
data block per default (the inode density corresponds to the block size).
This makes it difficult to provoke the problem.

• ReiserFS uses trees instead of lists (like ext2) for its internal management
data structures. This makes it more efficient for directories with many files.

B Ext3 and in particular ext4 can by now do that too.

As a matter of fact, ReiserFS uses the same tree structure not just for di-
rectory entries, but also for inodes, file metadata and file block lists, which
leads to a performance increase in places but to a decrease in others.

For a long time, ReiserFS used to be the default file system for the SUSE
distributions (and SUSE contributed to the project’s funding). Since 2006,
Novell/SUSE has moved from ReiserFS to ext3; very new SLES versions use
Btrfs for their root file system.

15.1 Creating a Linux File System 235

A In real life you should give the Reiser file system (and its designated succes-
sor, Reiser4) a wide berth unless you need to manage older systems using
it. This is less to do with the fact that Hans Reiser was convicted of his
wife’s murder (which of course does not speak in his favour as a human
being, but things like these do happen not just among Linux kernel devel-
opers), but more with the fact that the Reiser file system does have its good
points but is built on a fairly brittle base. For example, certain directory
operations in ReiserFS break basic assumptions that are otherwise univer-
sally valid for Unix-like file systems. This means, for instance, that mail
servers storing mailboxes on a ReiserFS file system are less resilient against
system crashes than ones using different file systems. Another grave prob-
lem, which we will talk about briefly later on, is the existence of technical
flaws in the file system repair program. Finally—and that may be the most
serious problem—nobody seems to maintain the code any longer.

Creating ReiserFS file systems mkreiserfs serves to create a ReiserFS file system. mkreiserfs

The possible specification of a logical block size is currently ignored, the size is
always 4 KiB. With dumpreiserfs you can determine information about ReiserFS dumpreiserfs

file systems on your disk. resize_reiserfs makes it possible to change the size of resize_reiserfs

currently-unused ReiserFS partitions. Mounted partitions may be resized using a
command like “mount -o remount,resize=⟨block count⟩ ⟨mount point⟩”.

Consistency Checks for ReiserFS For the Reiser file system, too, there is a check- Reiser file system

ing and repair program, namely reiserfsck.
reiserfsck performs a consistency check and tries to repair any errors found,

much like e2fsck. This program is only necessary if the file system is really dam-
aged. Should a Reiser file system merely have been unmounted uncleanly, the
kernel will automatically try to restore it according to the journal.

A reiserfsck has some serious issues. One is that when the tree structure needs
to be reconstructed (which may happen in certain situations) it gets com-
pletely mixed up if data files (!) contain blocks that might be misconstrued
as another ReiserFS file system’s superblock. This will occur if you have
an image of a ReiserFS file system in a file used as a ReiserFS-formatted
“virtual” hard disk for a virtualisation environment such as VirtualBox or
VMware. This effectively disqualifies the ReiserFS file system for serious
work. You have been warned.

Exercises

C 15.3 [!1] What is the command to create a Reiser file system on the first
logical partition of the second disk?

15.1.4 XFS

The XFS file system was donated to Linux by SGI (the erstwhile Silicon Graphics, XFS
Inc.); it is the file system used by SGI’s Unix variant, IRIX, which is able to handle
very large files efficiently. All Linux distributions of consequence offer XFS sup-
port, even though few deploy it by default; you may have to install the XFS tools
separately.

B In some circles, “XFS” is the abbreviation of “X11 Font Server”. This can
occur in distribution package names. Don’t let yourself be confused.

You can create an XFS file system on an empty partition (or file) using the

mkfs -t xfs /dev/sda2

236 15 File Systems: Care and Feeding

command (insert the appropriate device name). Of course, the real work is done
by a program called mkfs.xfs. You can control it using various options; consult the
documentation (xfs(5) and mkfs.xfs(8)).

B If performance is your goal, you can, for example, create the journal on an-
other (physical) storge medium by using an option like “-l logdev=/dev/sdb1,size=10000b”.
(The actual file system should of course not be on /dev/sdb, and the partition
for the journal should not otherwise be used.)

The XFS tools contain a fsck.xfs (which you can invoke using “fsck -t xfs”), but
this program doesn’t really do anything at all—it is merely there to give the sys-
tem something to call when “all” file systems are to be checked (which is easier
than putting a special exception for XFS into fsck). In actual fact, XFS file sys-
tems are checked automatically on mounting if they have not been unmounted
cleanly. If you want to check the consistency of an XFS or have to repair one, use
the xfs_repair(8) program—“xfs_repair -n” checks whether repairs are required;
without the option, any repairs will be performed outright.

B In extreme cases xfs_repair may not be able to repair the file system. In such a
situation you can use xfs_metadump to create a dump of the filesystem’s meta-
data and send that to the developers:

xfs_metadump /dev/sdb1 sdb1.dump

(The file system must not be mounted when you do this.) The dump is a
binary file that does not contain actual file data and where all file names
have been obfuscated. Hence there is no risk of inadvertently passing along
confidential data.

B A dump that has been prepared using xfs_metadump can be written back
to a file system (on a “real” storage medium or an image in a file) using
xfs_mdrestore. This will not include file contents as these aren’t part of the
dump to begin with. Unless you are an XFS developer, this command will
not be particularly interesting to you.

The xfs_info command outputs information about a (mounted) XFS file system:

xfs_info /dev/sdb1

meta-data=/dev/sdb1 isize=256 agcount=4, agsize=16384 blks

= sectsz=512 attr=2, projid32bit=1

= crc=0 finobt=0

data = bsize=4096 blocks=65536, imaxpct=25

= sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0 ftype=0

log =Intern bsize=4096 blocks=853, version=2

= sectsz=512 sunit=0 blks, lazy-count=1

realtime =keine extsz=4096 blocks=0, rtextents=0

You can see, for example, that the file system consists of 65536 blocks of 4 KiB each
(bsize and blocks in the data section), while the journal occupies 853 4-KiB blocks
in the same file system (Intern, bsize and blocks in the log section).

B The same information is output by mkfs.xfs after creating a new XFS file
system.

You should avoid copying XFS file systems using dd (or at least proceed very
cautiously). This is because every XFS file system contains a unique UUID, and
programs like xfsdump (which makes backup copies) can get confused if they run
into two independent file systems using the same UUID. To copy XFS file systems,
use xfsdump and xfsrestore or else xfs_copy instead.

15.1 Creating a Linux File System 237

15.1.5 Btrfs

Btrfs is considered the up-and-coming Linux file system for the future. It com-
bines the properties traditionally associated with a Unix-like file system with some
innovative ideas that are partly based on Solaris’s ZFS. Besides some features oth-
erwise provided by the Logical Volum Manager (LVM; Section 14.7)—such as the
creation of file systems that span several physical storage media—or provided
by the Linux kernel’s RAID support—such as the redundant storage of data on
several physical media—this includes transparent data compression, consistency
checks on data blocks by means of checksums, and various others. The “killer
feature” is probably snapshots that can provide views of different versions of files
or complete file hierarchies simultaneously.

B Btrfs is several years younger than ZFS, and its design therefore contains a
few neat ideas that hadn’t been invented yet when ZFS was first introduced.
ZFS is currently considered the “state of the art” in file systems, but it is to
be expected that some time in the not-too-distant future it will be overtaken
by Btrfs.

B Btrfs is based, in principle, on the idea of “copy on write”. This means that
if you create a snapshot of a Btrfs file system, nothing is copied at all; the
system only notes that a copy exists. The data is accessible both from the
original file system and the snapshot, and as long as data is just being read,
the file systems can share the complete storage. Once write operations hap-
pen either in the original file system or the snapshot, only the data blocks
being modified are copied. The data itself is stored in efficient data struc-
tures called B-trees.

Btrfs file systems are created with mkfs, as usual:

mkfs -t btrfs /dev/sdb1

B You can also mention several storage media, which will all be made part
of the new file system. Btrfs stores metadata such as directory information
redundantly on several media; by default, data is spread out across various
disks (“striping”) in order to accelerate access1. You can, however, request
other storage arrangements:

mkfs -t btrfs -L MyBtrfs -d raid1 /dev/sdb1 /dev/sdc1

This example generates a Btrfs file system which encompasses the /dev/sdb1

and /dev/sdc1 disks and is labeled “MyBtrfs”. Data is stored redundantly on
both disks (“-d raid1”).

B Within Btrfs file systems you can create “subvolumes”, which serve as a type
of partition at the file system level. Subvolumes are the units of which you
will later be able to make snapshots. If your system uses Btrfs as its root file
system, the command

btrfs subvolume create /home

would, for instance, allow you to keep your own data within a separate sub-
volume. Subvolumes do not take a lot of space, so you should not hesitate
to create more of them rather than fewer—in particular, one for every direc-
tory of which you might later want to create independent snapshots, since
it is not possible to make directories into subvolumes after the fact.

1In other words, Btrfs uses RAID-1 for metadata and RAID-0 for data.

238 15 File Systems: Care and Feeding

B You can create a snapshot of a subvolume using

btrfs subvolume snapshot /mnt/sub /mnt/sub-snap

The snapshot (here, /mnt/sub-snap) is at first indistinguishable from the origi-
nal subvolume (here, /mnt/sub); both contain the same files and are writable.
At first no extra storage space is being used—only if you change files in the
original or snapshot or create new ones, the system copies whatever is re-
quired.

Btrfs makes on-the-fly consistency checks and tries to fix problems as they are
detected. The “btrfs scrub start” command starts a house-cleaning operation that
recalculates the checksums on all data and metadata on a Btrfs file system and
repairs faulty blocks according to a different copy if required. This can, of course,
take a long time; with “btrfs scrub status” you can query how it is getting on, with
“btrfs scrub cancel” you can interrupt it, and restart it later with “btrfs scrub resume”.

There is a fsck.btrfs program, but it does nothing beyond outputting a message
that it doesn’t do anything. The program is required because something needs
to be there to execute when all file systems are checked for consistency during
startup. To really check or repair Btrfs file systems there is the “btrfs check” com-
mand. By default this does only a consistency check, and if it is invoked with the
“--repair” it tries to actually repair any problems it found.

Btrfs is very versatile and complex and we can only give you a small glimpse
here. Consult the documentation (starting at btrfs(8)).

Exercises

C 15.4 [!1] Generate a Btrfs file system on an empty partition, using “mkfs -t

btrfs”.

C 15.5 [2] Within your Btrfs file system, create a subvolume called sub0. Create
some files within sub0. Then create a snapshot called snap0. Convince your-
self that sub0 and snap0 have the same content. Remove or change a few files
in sub0 and snap0, and make sure that the two subvolumes are independent
of each other.

15.1.6 Even More File Systems

tmpfs is a flexible implementation of a “RAM disk file system”, which stores filestmpfs

not on disk, but in the computer’s virtual memory. They can thus be accessed
more quickly, but seldom used files can still be moved to swap space. The size of
a tmpfs is variable up to a set limit. There is no special program for generating a
tmpfs, but you can create it simply by mounting it: For example, the

mount -t tmpfs -o size=1G,mode=0700 tmpfs /scratch

command creates a tmpfs of at most 1 GiB under the name of /scratch, which can
only be accessed by the owner of the /scratch directory. (We shall be coming back
to mounting file systems in Section 15.2.)

A popular file system for older Windows PCs, USB sticks, digital cameras, MP3
players and other “storage devices” without big ideas about efficiency and flexi-
bility is Microsoft’s venerable VFAT file system. Naturally, Linux can mount, read,VFAT

and write media formatted thusly, and also create such file systems, for example
by

mkfs -t vfat /dev/mcblk0p1

15.1 Creating a Linux File System 239

(insert the appropriate device name again). At this point you will no longer be sur-
prised to hear that mkfs.vfat is just another name for the mkdosfs program, which
can create all sorts of MS-DOS and Windows file systems—including the file sys-
tem used by the Atari ST of blessed memory. (As there are Linux variants running
on Atari computers, this is not quite as far-fetched as it may sound.)

B mkdosfs supports various options allowing you to determine the type of file
system created. Most of these are of no practical consequence today, and
mkdosfs will do the Right Thing in most cases, anyway. We do not want to
disgress into a taxonomy of FAT file system variants and restrict ourselves to
pointing out that the main difference between FAT and VFAT is that file sys-
tems of the latter persuasion allow file names that do not follow the older,
strict 8 + 3 scheme. The “file allocation table”, the data structure that re-
members which data blocks belong to which file and that gave the file sys-
tem its name, also exists invarious flavours, of which mkdosfs selects the one
most suitable to the medium in question—floppy disks are endowed with a
12-bit FAT, and hard disk (partitions) or (today) USB sticks of considerable
capacity get 32-bit FATs; in the latter case the resulting file system is called
“VFAT32”.

NTFS, the file system used by Windows NT and its successors including Win- NTFS

dows Vista, is a bit of an exasperating topic. Obviously there is considerable
interest in enabling Linux to handle NTFS partitions—everywhere but on Mi-
crosoft’s part, where so far one has not deigned to explain to the general public
how NTFS actually works. (It is well-known that NTFS is based on BSD’s “Berke-
ley Fast Filesystem”, which is reasonably well understood, but in the meantime
Microsoft butchered it into something barely recognisable.) In the Linux com-
munity there have been several attempts to provide NTFS support by trying to
understand NTFS on Windows, but complete success is still some way off. At
the moment there is a kernel-based driver with good support for reading, but
questionable support for writing, and another driver running in user space which
according to the grapevine works well for reading and writing. Finally, there are
the “ntfsprogs”, a package of tools for managing NTFS file systems, which also
allow rudimentary access to data stored on them. Further information is available
from http://www.linux-ntfs.org/.

15.1.7 Swap space

In addition to the file system partitions, you should always create a swap parti- swap partition

tion. Linux can use this to store part of the content of system RAM; the effective
amount of working memory available to you is thus greater than the amount of
RAM in your computer.

Before you can use a swap partition you must “format” it using the mkswap com-
mand:

mkswap /dev/sda4

This writes some administrative data to the partition.
When the system is started, it is necessary to “activate” a swap partition. This

corresponds to mounting a partition with a file system and is done using the swapon

command:

swapon /dev/sda4

The partition should subsequently be mentioned in the /proc/swaps file:

cat /proc/swaps

Filename Type Size Used Priority

/dev/sda4 partition 2144636 380 -1

240 15 File Systems: Care and Feeding

After use the swap partition can be deactivated using swapoff:

swapoff /dev/sda4

B The system usually takes care of activating and deactivating swap parti-
tions, as long as you put them into the /etc/fstab file. See Section 15.2.2.

You can operate up to 32 swap partitions (up to and including kernel version
2.4.10: 8) in parallel; the maximum size depends on your computer’s architecture
and isn’t documented anywhere exactly, but “stupendously gigantic” is a reason-
able approximation. It used to be just a little less than 2 GiB for most Linux plat-
forms.

B If you have several disks, you should spread your swap space across all of
them, which should increase speed noticeably.

B Linux can prioritise swap space. This is worth doing if the disks containing
your swap space have different speeds, because Linux will prefer the faster
disks. Read up on this in swapon(8).

B Besides partitions, you can also use files as swap space. Since Linux 2.6 this
isn’t even any slower! This allows you to temporarily provide space for rare
humongous workloads. You must initially create a swap file as a file full of
zeros, for instance by using

dd if=/dev/zero of=swapfile bs=1M count=256

before preparing it using the mkswap command and activating it with swapon.
(Desist from tricks using dd or cp; a swap file may not contain “holes”.)

B You can find information about the currently active swap areas in the /proc/

swaps file.

15.2 Mounting File Systems

15.2.1 Basics

To access data stored on a medium (hard disk, USB stick, floppy, …), it would in
principle be possible to access the device files directly. This is in fact being done,
for example when accessing tape drives. However, the well-known file manage-
ment commands (cp, mv, and so on) can only access files via the directory tree.
To use these commands, storage media must be made part of the directory tree
(“mounted”) using their device files. This is done using the mount command.

The place in the directory tree where a file system is to be mounted is called a
mount point. This can be any directory; it does not even have to be empty, but youmount point

will not be able to access the original directory content while another file system
is mounted “over” it.

B The content reappears once the file system is unmounted using umount. Even
so you should restrain yourself from mounting stuff on /etc and other im-
portant system directories …

15.2.2 The mount Command

The mount command mounts file systems into the directory tree. It can also be
used to display the currently mounted file systems, simply by calling it without
parameters:

15.2 Mounting File Systems 241

proc /proc proc defaults 0 0

/dev/sda2 / ext3 defaults,errors=remount-ro 0 1

/dev/sda1 none swap sw 0 0

/dev/sda3 /home ext3 defaults,relatime 0 1

/dev/sr0 /media/cdrom0 udf,iso9660 ro,user,exec,noauto 0 0

/dev/sdb1 /media/usb auto user,noauto 0 0

/dev/fd0 /media/floppy auto user,noauto,sync 0 0

Figure 15.1: The /etc/fstab file (example)

$ mount

/dev/sda2 on / type ext3 (rw,relatime,errors=remount-ro)

tmpfs on /lib/init/rw type tmpfs (rw,nosuid,mode=0755)

proc on /proc type proc (rw,noexec,nosuid,nodev)

sysfs on /sys type sysfs (rw,noexec,nosuid,nodev)

�����

To mount a medium, for example a hard disk partition, you must specify its
device file and the desired mount point:

mount -t ext2 /dev/sda5 /home

It is not mandatory to specify the file system type using the -t option, since the
kernel can generally figure it out for itself. If the partition is mentioned in /etc/

fstab, it is sufficient to give either the mount point or the device file:

mount /dev/sda5 One possibility …
mount /home … and another

Generally speaking, the /etc/fstab file describes the composition of the whole /etc/fstab

file system structure from various file systems that can be located on different
partitions, disks etc. In addition to the device names and corresponding mount
points, you can specify various options used to mount the file systems. The allow-
able options depend on the file system; many options are to be found in mount(8).

A typical /etc/fstab file could look similar to Figure 15.1. The root partition
usually occupies the first line. Besides the “normal” file systems, pseudo file sys-
tems such as devpts or proc and the swap areas are mentioned here.

The third field describes the type of the file system in question. Entries like ext3 type

and iso9660 speak for themselves (if mount cannot decide what to do with the type
specification, it tries to delegate the job to a program called /sbin/mount.⟨type⟩), swap
refers to swap space (which does not require mounting), and auto means that mount
should try to determine the file system’s type.

B To guess, mount utilises the content of the /etc/filesystems file, or, if that file
does not exist, the /proc/filesystems file. (/proc/filesystems is also read if /etc/
filesystems ends with a line containing just an asterisk.) In any case, mount
processes only those lines that are not marked nodev. For your edification,
here is a snippet from a typical /proc/filesystems file:

nodev sysfs

nodev rootfs

�����

nodev usbfs

ext3

nodev nfs

vfat

242 15 File Systems: Care and Feeding

xfs

�����

B The kernel generates /proc/filesystems dynamically based on those file sys-
tems for which it actually contains drivers. /etc/filesystems is useful if you
want to specify an order for mount’s guesswork that deviates from the one
resulting from /proc/filesystems (which you cannot influence).

B Before mount refers to /etc/filesystems, it tries its luck with the libblkid and
libvolume_id libraries, both of which are (among other things) able to deter-
mine which type of file system exists on a medium. You can experiment
with these libraries using the command line programs blkid and vol_id:

blkid /dev/sdb1

/dev/sdb1: LABEL="TESTBTRFS" UUID="d38d6bd1-66c3-49c6-b272-eabdae�

� 877368" UUID_SUB="3c093524-2a83-4af0-8290-c22f2ab44ef3" �

� TYPE="btrfs" PARTLABEL="Linux filesystem" �

� PARTUUID="ade1d2db-7412-4bc1-8eab-e42fdee9882b"

The fourth field contains the options, including:options

defaults Is not really an option, but merely a place holder for the standard options
(see mount(8)).

noauto Opposite of auto, keeps a file system from being mounted automatically
when the system is booted.

user In principle, only root can mount storage devices (normal users may only
use the simple mount command to display information), unless the user op-
tion is set. In this case, normal users may say “mount ⟨device⟩” or “mount
⟨mount point⟩”; this will mount the named device on the designated mount
point. The user option will allow the mounting user to unmount the device
(root, too); there is a similar option users that allows any user to unmount
the device.

sync Write operations are not buffered in RAM but written to the medium directly.
The end of the write operation is only signaled to the application program
once the data have actually been written to the medium. This is useful for
floppies or USB thumb drives, which might otherwise be inadvertently re-
moved from the drive while unwritten data is still buffered in RAM.

ro This file system is mounted for reading only, not writing (opposite of rw)

exec Executable files on this file system may be invoked. The opposite is noexec;
exec is given here because the user option implies the noexec option (among
others).

As you can see in the /dev/sdb entry, later options can overwrite earlier ones: user

implies the noexec option, but the exec farther on the right of the line overwrites
this default.

15.2.3 Labels and UUIDs

We showed you how to mount file systems using device names such as /dev/hda1.
This has the disadvantage, though, that the correspondence between device files
and actual devices is not necessarily fixed: As soon as you remove or repartition a
disk or add another, the correspondence may change and you will have to adjust
the configuration in /etc/fstab. With some device types, such as USB media, you
cannot by design rely on anything. This is where labels and UUIDs come in.

A label is a piece of arbitrary text of up to 16 characters that is placed in a filelabel

system’s super block. If you have forgotten to assign a label when creating the

15.2 Mounting File Systems 243

file system, you can add one (or modify an existing one) at any time using e2label.
The command

e2label /dev/sda3 home

(for example) lets you refer to /dev/sda3 as LABEL=home, e. g., using

mount -t ext2 LABEL=home /home

The system will then search all available partitions for a file system containing this
label.

B You can do the same using the -L option of tune2fs:

tune2fs -L home /dev/sda3

B The other file systems have their ways and means to set labels, too. With
Btrfs, for example, you can either specify one when the file system is gener-
ated (option “-L”) or use

btrfs filesystem label /dev/sdb1 MYLABEL

If you have very many disks or computers and labels do not provide the re-
quired degree of uniqueness, you can fall back to a “universally unique identifier”
or UUID. An UUID typically looks like UUID

$ uuidgen

bea6383f-22a7-453f-8ef5-a5b895c8ccb0

and is generated automatically and randomly when a file system is created. This
ensures that no two file systems share the same UUID. Other than that, UUIDs
are used much like labels, except that you now need to use UUID=bea6383f-22a7-

453f-8ef5-a5b895c8ccb0 (Gulp.) You can also set UUIDs by means of tune2fs, or create
completely new ones using

tune2fs -U random /dev/hda3

This should seldom prove necessary, though, for example if you replace a disk or
have cloned a file system.

B Incidentally, you can determine a file system’s UUID using

tune2fs -l /dev/hda2 | grep UUID

Filesystem UUID: 4886d1a2-a40d-4b0e-ae3c-731dd4692a77

B With other file systems (XFS, Btrfs) you can query a file system’s UUID (blkid
is your friend) but not necessarily change it.

B The

lsblk -o +UUID

command gives you an overview of all your block devices and their UUIDs.

B You can also access swap partitions using labels or UUIDs:

swapon -L swap1

swapon -U 88e5f06d-66d9-4747-bb32-e159c4b3b247

244 15 File Systems: Care and Feeding

You can find the UUID of a swap partition using blkid or lsblk, or check the
/dev/disk/by-uuid directory. If your swap partition does not have a UUID nor
a label, you can use mkswap to assign one.

You can also use labels and UUIDs in the /etc/fstab file (one might indeed claim
that this is the whole point of the exercise). Simply put

LABEL=home

or

UUID=bea6383f-22a7-453f-8ef5-a5b895c8ccb0

into the first field instead of the device name. Of course this also works for swap
space.

Exercises

C 15.6 [!2] Consider the entries in files /etc/fstab and /etc/mtab. How do they
differ?

15.3 The dd Command

dd is a command for copying files “by block”. It is used with particular preference
to create “images”, that is to say complete copies of file systems—for example,
when preparing for the complete restoration of the system in case of a catastrophic
disk failure.

dd (short for “copy and convert”2) reads data block by block from an input file
and writes it unchanged to an output file. The data’s type is of no consequence.
Neither does it matter to dd whether the files in question are regular files or device
files.

Using dd, you can create a quickly-restorable backup copy of your system par-
tition as follows:

dd if=/dev/sda2 of=/data/sda2.dump

This saves the second partition of the first SCSI disk to a file called /data/sda2.

dump—this file should of course be located on another disk. If your first disk is
damaged, you can easily and very quickly restore the original state after replacing
it with an identical (!) drive:

dd if=/data/sda2.dump of=/dev/sda2

(If /dev/sda is your system disk, you must of course have booted from a rescue or
live system.)

For this to work, the new disk drive’s geometry must match that of the old one.
In addition, the new disk drive needs a partition table that is equivalent to the oldpartition table

one. You can save the partition table using dd as well (at least for MBR-partitioned
disks):

dd if=/dev/sda of=/media/floppy/mbr_sda.dump bs=512 count=1

Used like this, dd does not save all of the hard disk to floppy disk, but writes every-
thing in chunks of 512 bytes (bs=512)—one chunk (count=1), to be exact. In effect, all
of the MBR is written to the floppy. This kills two birds with the same stone: the
boot loader’s stage 1 also ends up back on the hard disk after the MBR is restored:

2Seriously! The dd command is inspired by a corresponding command on IBM mainframes (hence
the parameter syntax, which according to Unix standards is quite quaint), which was called CC (as in
“copy and convert”), but on Unix the cc name was already spoken for by the C compiler.

15.3 The dd Command 245

dd if=/media/floppy/mbr_sda.dump of=/dev/sda

You do not need to specify a chunk size here; the file is just written once and is
(hopefully) only 512 bytes in size.

A Caution: The MBR does not contain partitioning information for logical par-
titions! IF you use logical partitions, you should use a program like sfdisk

to save all of the partitioning scheme—see below.

B To save partitioning information for GPT-partitioned disks, use, for exam-
ple, gdisk (the b command).

B dd can also be used to make the content of CD-ROMs or DVDs permanently
accessible from hard disk. The “dd if=/dev/cdrom of=/data/cdrom1.iso” places
the content of the CD-ROM on disk. Since the file is an ISO image, hence
contains a file system that the Linux kernel can interpret, it can also be
mounted. After “mount -o loop,ro /data/cdrom.iso /mnt” you can access the
image’s content. You can of course make this permanent using /etc/fstab.

Commands in this Chapter

blkid Locates and prints block device attributes blkid(8) 242
dd “Copy and convert”, copies files or file systems block by block and does

simple conversions dd(1) 244
debugfs File system debugger for fixing badly damaged file systems. For gurus

only! debugfs(8) 232
dumpe2fs Displays internal management data of the ext2 file system. For gurus

only! dumpe2fs(8) 232
dumpreiserfs Displays internal management data of the Reiser file system. For

gurus only! dumpreiserfs(8) 235
e2fsck Checks ext2 and ext3 file systems for consistency e2fsck(8) 231
e2label Changes the label on an ext2/3 file system e2label(8) 242
fsck Organises file system consistency checks fsck(8) 225
lsblk Lists available block devices lsblk(8) 243
mkdosfs Creates FAT-formatted file systems mkfs.vfat(8) 238
mke2fs Creates ext2 or ext3 file systems mke2fs(8) 229
mkfs Manages file system creation mkfs(8) 224
mkfs.vfat Creates FAT-formatted file systems mkfs.vfat(8) 238
mkfs.xfs Creates XFS-formatted file systems mkfs.xfs(8) 235
mkreiserfs Creates Reiser file systems mkreiserfs(8) 235
mkswap Initialises a swap partition or file mkswap(8) 239
mount Includes a file system in the directory tree mount(8), mount(2) 240
reiserfsck Checks a Reiser file system for consistency reiserfsck(8) 235
resize_reiserfs Changes the size of a Reiser file system resize_reiserfs(8) 235
swapoff Deactivates a swap partition or file swapoff(8) 239
swapon Activates a swap partition or file swapon(8) 239
tune2fs Adjusts ext2 and ext3 file system parameters tunefs(8) 232, 243
vol_id Determines file system types and reads labels and UUIDs

vol_id(8) 242
xfs_mdrestore Restores an XFS metadata dump to a filesystem image

xfs_mdrestore(8) 236
xfs_metadump Produces metadata dumps from XFS file systems

xfs_metadump(8) 236

246 15 File Systems: Care and Feeding

Summary

• After partitioning, a file system must be created on a new partition before
it can be used. To do so, Linux provides the mkfs command (with a number
of file-system-specific auxiliary tools that do the actual work).

• Improperly unmounted file systems may exhibit inconsistencies. If Linux
notes such file systems when it boots, these will be checked automatically
and, if possible, repaired. These checks can also be triggered manually us-
ing programs such as fsck and e2fsck.

• The mount command serves to integrate file systems into the directory tree.
• With dd, partitions can be backed up at block level.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

16
Booting Linux

Contents

16.1 Fundamentals . 248
16.2 GRUB Legacy . 251

16.2.1 GRUB Basics 251
16.2.2 GRUB Legacy Configuration 252
16.2.3 GRUB Legacy Installation 253
16.2.4 GRUB 2 . 254
16.2.5 Security Advice 255

16.3 Kernel Parameters 255
16.4 System Startup Problems 257

16.4.1 Troubleshooting 257
16.4.2 Typical Problems 257
16.4.3 Rescue systems and Live Distributions 259

Goals

• Knowing the GRUB Legacy and GRUB 2 boot loaders and how to configure
them

• Being able to diagnose and fix system start problems

Prerequisites

• Basic knowledge of the PC startup procedure
• Handling of configuration files

adm1-boot.tex (33e55eeadba676a3)

248 16 Booting Linux

16.1 Fundamentals

When you switch on a Linux computer, an interesting and intricate process takes
place during which the computer initialises and tests itself before launching the
actual operating system (Linux). In this chapter, we consider this process in some
detail and explain how to adapt it to your requirements and to find and repair
problems if necessary.

B The word “to boot” is short for “to pull oneself up by one’s bootstraps”.
While, as Newton tells us, this is a physical impossibility, it is a good image
for what goes on, namely that the computer gets itself started from the most
basic beginnings.

Immediately after the computer is switched on, its firmware—depending on
the computer’s age, either the “basic input/output system” (BIOS) or “unified
extensible firmware interface” (UEFI) takes control. What happens next depends
on the firmware.

BIOS startup On BIOS-based systems, the BIOS searches for an operating system
on media like CD-ROM or hard disk, depending on the boot order specified in the
BIOS setup. On disks (hard or floppy), the first 512 bytes of the boot medium will
be read. These contain special information concerning the system start. Generally,
this area is called the boot sector; a hard disk’s boot sector is also called the masterboot sector

master boot record boot record (MBR).

B We already came across the MBR when discussing the eponymous disk par-
titioning scheme in Chapter 14. We’re now looking at the part of the MBR
that does not contain partitioning information.

The first 446 bytes of the MBR contain a minimal startup program which in
turn is responsible for starting the operating system—the boot loader. The restboot loader

is occupied by the partition table. 446 bytes are not enough for the complete boot
loader, but they suffice for a small program which can fetch the rest of the boot
loader from disk using the BIOS. In the space between the MBR and the start of
the first partition—at least sector 63, today more likely sector 2048 there is enough
room for the rest of the boot loader. (We shall come back to that topic presently.)

Modern boot loaders for Linux (in particular, the “Grand Unified Boot loader”
or GRUB) can read common Linux file systems and are therefore able to find theGRUB

operating system kernel on a Linux partition, load it into RAM and start it there.

B GRUB serves not just as a boot loader, but also as a boot manager. As such,boot manager

it can, according to the user’s preferences, launch various Linux kernels or
even other operating systems.

B Bootable CD-ROMs or DVDs play an important role for the installation or
update of Linux systems, or as the basis of “live systems” that run directly
from read-only media without having to be installed on disk. To boot a
Linux computer from CD, you must in the simplest case ensure that the
CD-ROM drive is ahead of the firmware’s boot order than the hard disk,
and start the computer while the desired CD is in the drive.

B In the BIOS tradition, booting off CD-ROMs follows different rules than
booting off hard disk (or floppy disk). The “El Torito” standard (which
specifies these rules) basically defines two approaches: One method is to
include an image of a bootable floppy disk on the CD-ROM (it may be as big
as 2.88 MiB), which the BIOS finds and boots; the other method is to boot
directly off the CD-ROM, which requires a specialised boot loader (such as
ISOLINUX for Linux).

16.1 Fundamentals 249

B With suitable hardware and software (usually part of the firmware today),
a PC can boot via the network. The kernel, root file system, and everything
else can reside on a remote server, and the computer itself can be diskless
and hence ear-friendly. The details would be a bit too involved and are irrel-
evant for LPIC-1 in any case; if necessary, look for keywords such as “PXE”
or “Linux Terminal Server Project”.

UEFI boot procedure UEFI-based systems do not use boot sectors. Instead, the
UEFI firmware itself contains a boot manager which exploits information about
the desired operating system which is held in non-volatile RAM (NVRAM). Boot
loaders for the different operating systems on the computer are stored as regular
files on an “EFI system partition” (ESP), where the firmware can read and start
them. The system either finds the name of the desired boot loader in NVRAM, or
else falls back to the default name, /EFI/BOOT/BOOTX64.EFI. (The X64 here stands for
“64-bit Intel-style PC”. Theoretically, UEFI also works for 32-bit systems, but that
doesn’t mean it is a great idea.) The operating-system specific boot loader then
takes care of the rest, as in the BIOS startup procedure.

B The ESP must officially contain a FAT32 file system (there are Linux distri-
butions that use FAT16, but that leads to problems with Windows 7, which
requires FAT32). A size of 100 MiB is generally sufficient, but some UEFI
implementations have trouble with FAT32 ESPs which are smaller than
512 MiB, and the Linux mkfs command will default to FAT16 for partitions
of up to 520 MiB. With today’s prices for hard disks, there is little reason
not to play it safe and create an ESP of around 550 MiB.

B In principle it is possible to simply write a complete Linux kernel as BOOTX64.

EFI on the ESP and thus manage without any boot loader at all. PC-based
Linux distributions don’t usually do this, but this approach is interesting for
embedded systems.

B Many UEFI-based systems also allow BIOS-style booting from MBR-parti-
tioned disks, i. e., with a boot sector. This is called “compatibility support
module” or CSM. Sometimes this method is used automatically if a tradi-
tional MBR is found on the first recognised hard disk. This precludes an
UEFI boot from an ESP on an MBR-partitioned disk and is not 100% ideo-
logically pure.

B UEFI-based systems boot from CD-ROM by looking for a file called /EFI/

BOOT/BOOTX64.EFI—like they would for disks. (It is feasible to produce CD-
ROMs that boot via UEFI on UEFI-based systems and via El Torito on BIOS-
based systems.)

“UEFI Secure Boot” is supposed to prevent computers being infected with UEFI Secure Boot

“root kits” that usurp the startup procedure and take over the system before the
actual operating system is being started. Here the firmware refuses to start boot
loaders that have not been cryptographically signed using an appropriate key. Ap-
proved boot loaders, in turn, are responsible for only launching operating system
kernels that have been cryptographically signed using an appropriate key, and
approved operating system kernels are expected to insist on correct digital sig-
natures for dynamically loadable drivers. The goal is for the system to run only
“trusted” software, at least as far as the operating system is concerned.

B A side effect is that this way one gets to handicap or exclude potentially un-
desirable operating systems. In principle, a company like Microsoft could
exert pressure on the PC industry to only allow boot loaders and operating
systems signed by Microsoft; since various anti-trust agencies would take a
dim view to this, it is unlikely that such a step would become part of offi-
cial company policy. It is more likely that the manufacturers of PC mother-
boards and UEFI implementations concentrate their testing and debugging

250 16 Booting Linux

efforts on the “boot Windows” application, and that Linux boot loaders will
be difficult or impossible to get to run simply due to inadvertent firmware
bugs.

Linux supports UEFI Secure Boot in various ways. There is a boot loader called
“Shim” (developed by Matthew Garrett) which a distributor can have signed byShim

Microsoft. UEFI starts Shim and Shim then starts another boot loader or operating
system kernel. These can be signed or unsigned; the security envisioned by UEFI
Secure Boot is, of course, only obtainable with the signatures. You can install your
own keys and then sign your own (self-compiled) kernels.

B The details for this would be carrying things too far. Consult the Linup
Front training manual Linux System Customisation

An alternative to Shim is “PreLoader” (by James Bottomley, distributed by thePreLoader

Linux Foundation). PreLoader is simpler than Shim and makes it possible to ac-
credit a (possibly unsigned) subsequent boot loader with the system, and boot it
later without further enquiries.

Hard disks: MBR vs. GPT The question of which partitioning scheme a hard
disk is using and the question of whether the computer boots via the BIOS (or
CSM) or UEFI really don’t have a lot to do with each other. At least with Linux it
is perfectly possible to boot a BIOS-based system from a GPT-partitioned disk or
a UEFI-based system from an MBR-partitioned disk (the latter possibly via CSM).

B To start a BIOS-based system from a GPT-partitioned disk it makes sense to
create a “BIOS boot partition” to hold that part of the boot loader that does
not fit into the MBR. The alternative—using the empty space between the
MBR and the start of the first partition—is not reliable for GPT-partitioned
disks, since the GPT partition table takes up at least part of this space and/
or the first partition might start immediately after the GPT partition table.
The BIOS boot partition does not need to be huge at all; 1 MiB is probably
amply enough.

After the boot loader The boot loader loads the Linux operating system kernel
and passes the control to it. With that, it is itself extraneous and can be removed
from the system; the firmware, too, will be ignored from now on—the kernel is
left to its own devices. In particular, it must be able to access all drivers required
to initialise the storage medium containing the root file system, as well as that file
system itself (the boot loader used the firmware to access the disk), typically at
least a driver for an IDE, SATA, or SCSI controller and the file system in question.
These drivers must be compiled into the kernel or—the preferred method today—
will be taken from “early userspace”, which can be configured without having to
recompile the kernel. (As soon as the root file system is available, everything is
peachy because all drivers can be read from there.) The boot loader’s tasks also
include reading the early-userspace data.

B The “early userspace” used to be called an “initial RAM disk”, because the
data was read into memory en bloc as a (usually read-only) medium, and
treated by the kernel like a block-oriented disk. There used to be special
compressed file systems for this application. The method most commonly
used today stipulates that the early-userspace data is available as a cpio

archive which the kernel extracts directly into the disk block cache, as if
you had read each file in the archive directly from a (hypothetical) storage
medium. This makes it easier to get rid of the early userspace once it is no
longer required.

B The kernel uses cpio instead of tar because cpio archives in the format used
by the kernel are better-standardised and easier to unpack than tar archives.

16.2 GRUB Legacy 251

As soon as the “early userspace” is available, a program called /init is invoked.
This is in charge of the remaining system initialisation, which includes tasks such
as the identification of the storage medium that should be made available as the
root file system, the loading of any required drivers to access that medium and the
file system (these drivers, of course, also come from early userspace), possibly the
(rudimentary) configuration of the network in case the root file system resides on
a remote file server, and so on. Subsequently, the early userspace puts the desired
root file system into place at “/” and transfers control to the actual init program—
today most often either System-V init (Chapter 17) or systemd (Chapter 18), in
each case under the name of /sbin/init. (You can juse the kernel command line
option init= to pick a different program.)

B If no early userspace exists, the operating system kernel makes the storage
medium named on its command line using the root= option available as the
root file system, and starts the program given by the init= option, by default
/sbin/init.

Exercises

C 16.1 [2] Whereabouts on an MBR-partitioned hard disk may a boot loader
reside? Why?

16.2 GRUB Legacy

16.2.1 GRUB Basics

Many distributions nowadays use GRUB as their standard boot loader. It has var-
ious advantages compared to LILO, most notably the fact that it can handle the
common Linux file systems. This means that it can read the kernel directly from a
file such as /boot/vmlinuz, and is thus immune against problems that can develop if
you install a new kernel or make other changes to your system. Furthermore, on
the whole GRUB is more convenient—for example offering an interactive GRUB GRUB shell

shell featuring various commands and thus allowing changes to the boot setup
for special purposes or in case of problems.

A The GRUB shell allows access to the file system without using the usual
access control mechanism. It should therefore never be made available to
unauthorised people, but be protected by a password (on important com-
puters, at least). See also Section 16.2.5.

Right now there are two widespread versions of GRUB: The older version
(“GRUB Legacy”) is found in older Linux distributions—especially those with an
“enterprise” flavour’—, while the newer distributions tend to rely on the more
modern version GRUB 2 (Section 16.2.4).

The basic approach taken by GRUB Legacy follows the procedure outlined in
Section 16.1. During a BIOS-based startup, the BIOS finds the first part (“stage 1”)
of the boot loader in the MBR of the boot disk (all 446 bytes of it). Stage 1 is able
to find the next stage based on sector lists stored inside the program (as part of
the 446 bytes) and the BIOS disk access functions1.

The “next stage” is usually stage 1.5, which is stored in the otherwise un-
used space immediately after the MBR and before the start of the first partition.
Stage 1.5 has rudimentary support for Linux file systems and can find GRUB’s
“stage 2” within the file system (normally below /boot/grub). Stage 2 may be any-
where on the disk. It can read file systems, too, and it fetches its configuration
file, displays the menu, and finally loads and starts the desired operating system
(in the case of Linux, possibly including the “early userspace”).

1At least as long as the next stage can be found within the first 1024 “cylinders” of the disk. There
are historical reasons for this and it can, if necessary, be enforced through appropriate partitioning.

252 16 Booting Linux

B Stage 1 could read stage 2 directly, but this would be subject to the same
restrictions as reading stage 1.5 (no file system access and only within the
first 1024 cylinders). This is why things aren’t usually arranged that way.

B GRUB can directly load and start most Unix-like operating systems for x86
computers, including Linux, Minix, NetBSD, GNU Hurd, Solaris, Reac-
tOS, Xen, and VMware ESXi2. The relevant standard is called “multiboot”.
GRUB starts multiboot-incompatible systems (notably Windows) by invok-
ing the boot loader of the operating system in question—a procedure called
“chain loading”.

To make GRUB Legacy work with GPT-partitioned disks, you need a BIOS boot
partition to store its stage 1.5. There is a version of GRUB Legacy that can deal with
UEFI systems, but for UEFI boot you are generally better off using a different boot
loader.

16.2.2 GRUB Legacy Configuration

The main configuration file for GRUB Legacy is usually stored as /boot/grub/menu./boot/grub/menu.lst

lst. It contains basic configuration as well as the settings for the operating systems
to be booted. This file might look as follows:

default 1

timeout 10

title linux

kernel (hd0,1)/boot/vmlinuz root=/dev/sda2

initrd (hd0,1)/boot/initrd

title failsafe

kernel (hd0,1)/boot/vmlinuz.bak root=/dev/sda2 apm=off acpi=off

initrd (hd0,1)/initrd.bak

title someothersystem

root (hd0,2)

makeactive

chainloader +1

title floppy

root (fd0)

chainloader +1

The individual parameters have the following meaning:

default Denotes the default system to be booted. Caution: GRUB counts from 0!
Thus, by default, the configuration above launches the failsafe entry.

timeout This is how many seconds the GRUB menu will be displayed before the
default entry will be booted.

title Opens an operating system entry and specifies its name, which will be dis-
played within the GRUB menu.

kernel Specifies the Linux kernel to be booted. (hd0,1)/boot/vmlinuz, for example,
means that the kernel is to be found in /boot/vmlinuz on the first partition of
the zeroth hard disk, thus in our example, for linux, on /dev/hda2. Caution:
The zeroth hard disk is the first hard disk in the BIOS boot order! There is
no distinction between IDE and SCSI! And: GRUB starts counting at 0 …
Incidentally, GRUB takes the exact mapping of the individual drives from
the device.map file.
After the kernel location, arbitrary kernel parameters can be passed. This
includes the boot= entry.

2The “U” in GRUB must stand for something, after all.

16.2 GRUB Legacy 253

initrd Denotes the location of the cpio archive used for the “early userspace”.

root Determines the system partition for foreign operating systems. You can also
specify media that only occasionally contain something bootable, such as
the floppy disk drive—this will let you boot from floppy even though the
floppy disk is disabled in the BIOS boot order.

chainloader +1 Denotes the boot loader to be loaded from the foreign system’s sys-
tem partition. Generally this is the content of that partition’s boot loader.

makeactive Marks the specified partition temporarily as “bootable”. Some operat-
ing systems (not Linux) require this in order to be able to boot off the par-
tition in question. By the way: GRUB supports a few more such directives,
for example map, which makes it possible to fool a system into believing it
is installed on a different hard disk (than, e. g., the often disdained second
disk) than it actually is.

16.2.3 GRUB Legacy Installation

Here “installation” does not refer to the installation of an RPM package but the
installation of the GRUB boot sector, or stage 1 (and very likely the stage 1.5). This
is very seldom required, for example during the original installation of the system
(where the installation procedure of your distribution will do it for you).

The installation is done using the grub command, which invokes the GRUB
shell. It is most convenient to use a “batch” file, since otherwise you would have to
start from the very beginning after an erroneous input. Some distributions (e. g.,
those by SUSE/Novell) already come with a suitable file. In this case, the instal-
lation procedure might look like

grub --batch --device-map=/boot/grub/device.map < /etc/grub.inst

The --device-map option creates a device.map file under the specified name, if none
exists already.

The /etc/grub.inst file could have the following content: /etc/grub.inst

root (hd0,1)

setup (hd0)

quit

Here, root denotes the partition containing GRUB’s “home directory” (usually
/boot/grub—the other parts of GRUB necessary for the installation will be looked
for in this directory).

A The partition you specify using root here has nothing to do with the partition
containing your Linux distribution’s root directory, which you specify using
root= in your Linux kernels’ menu entries. At least not necessarily. See also
Section 16.3.

setup installs GRUB on the specified device, here in hd0’s MBR. GRUB’s setup

command is a simplified version of a more general command called install, which
should work in most cases.

B Alternatively, you may use the grub-install script to install the GRUB com- grub-install

ponents. This comes with some distributions.

Inside the GRUB shell it is straightforward to figure out how to specify a hard disk specification

disk in the root or kernel directives. The GRUB shell command find is useful here:

grub

�����

grub> find /boot/vmlinuz

(hd0,1)

254 16 Booting Linux

16.2.4 GRUB 2

GRUB 2 is a completely new implementation of the boot loader that did not makenew implementation

particular concessions to GRUB-Legacy compatibility. GRUB 2 was officially re-
leased in June 2012, even though various distributions used earlier versions by
default.

The LPIC-1 certificate requires knowledge of GRUB 2 from version 3.5 of the
exam (starting on 2 July 2012).

As before, GRUB 2 consists of several stages that build on each other:

• Stage 1 (boot.img) is placed inside the MBR (or a partition’s boot sector) on
BIOS-based systems. It can read the first sector of stage 1.5 by means of the
BIOS, and that in turn will read the remainder of stage 1.5.

• Stage 1.5 (core.img) goes either between the MBR and the first partition
(on MBR-partitioned disks) or else into the BIOS boot partition (on GPT-
partitioned disks). Stage 1.5 consists of a first sector which is tailored to
the boot medium (disk, CD-ROM, network, …) as well as a “kernel” that
provides rudimentary functionality like device and file access, processing
a command line, etc., and an arbitrary list of modules.

B This modular structure makes it easy to adapt stage 1.5 to size restric-
tions.

• GRUB 2 no longer includes an explicit stage 2; advanced functionality will
be provided by modules and loaded on demand by stage 1.5. The modules
can be found in /boot/grub, and the configuration file in /boot/grub/grub.cfg.

B On UEFI-based systems, the boot loader sits on the ESP in a file called
EFI/⟨operating system⟩/grubx64.efi, where ⟨operating system⟩ is something
like debian or fedora. Have a look at the /boot/efi/EFI directory on your
UEFI”=based Linux system.

B Again, the “x64” in “grubx64.efi” stands for “64-bit PC”.

The configuration file for GRUB 2 looks markedly different from that for GRUBconfiguration file

Legacy, and is also rather more complicated (it resembles a bash script more than
a GRUB Legacy configuration file). The GRUB 2 authors assume that system man-
agers will not create and maintain this file manually. Instead there is a command
called grub-mkconfig which can generate a grub.cfg file. To do so, it makes use ofgrub-mkconfig

a set of auxiliary tools (shell scripts) in /etc/grub.d, which, e. g., search /boot for
Linux kernels to add to the GRUB boot menu. (grub-mkconfig writes the new con-
figuration file to its standard output; the update-grub command calls grub-mkconfigupdate-grub

and redirects its output to /boot/grub/grub.cfg.)
You should therefore not modify /boot/grub/grub.cfg directly, since your distri-

bution is likely to invoke update-grub after, e. g., installing a kernel update, which
would overwrite your changes to grub.cfg.

Usually you can, for instance, add more items to the GRUB 2 boot menu by
editing the /etc/grub.d/40_custom file. grub-mkconfig will copy the content of this file
verbatim into the grub.cfg file. As an alternative, you could add your configuration
settings to the /boot/grub/custom.cfg file, which will be read by grub.cfg if it exists.

For completeness’ sake, here is an excerpt from a typical grub.cfg file. By anal-
ogy to the example in Section 16.2.2, a menu entry to start Linux might look like
this for GRUB 2:

menuentry 'Linux' --class gnu-linux --class os {

insmod gzio

insmod part_msdos

insmod ext2

16.3 Kernel Parameters 255

set root='(hd0,msdos2)'

linux /boot/vmlinuz root=/dev/hda2

initrd /boot/initrd.img

}

(grub-mkconfig usually produces more complicated stuff.) Do note that the GRUB
modules for decompression (gzio), for MS-DOS-like partitioning support (part_msdos)
and the ext2 file system must be loaded explicitly. With GRUB 2, partition num-
bering starts at 1 (it used to be 0 for GRUB Legacy), so (hd0,msdos2) refers to the
second MS-DOS partition on the first hard disk. Instead of kernel, linux is used to
start a Linux kernel.

16.2.5 Security Advice

The GRUB shell offers many features, in particular access to the file system with-
out the root password! Even entering boot parameters may prove dangerous since boot parameters

it is easy to boot Linux directly into a root shell. GRUB makes it possible to close
these loopholes by requiring a password. password

For GRUB Legacy, the password is set in the menu.lst file. Here, the entry
“password --md5 ⟨encrypted password⟩” must be added to the global section. You
can obtain the encrypted password via the grub-md5-crypt command (or “md5crypt”
within the GRUB shell) and then use, e. g., the GUI to “copy and paste” it to the file.
Afterwards, the password will need to be input whenever something is changed
interactively in the GRUB menu.

B You can also prevent particular systems from being booted by adding the
lock option to the appropriate specific section within menu.lst. GRUB will
query for the password when that system is to be booted. All other systems
can still be started without a password.

Exercises

C 16.2 [2] Which file contains your boot loader’s configuration? Create a new
entry that will launch another operating system. Make a backup copy of the
file first.

C 16.3 [!3] Prevent a normal user from circumventing init and booting directly
into a shell. How do you generate a password request when a particular
operating system is to be booted?

16.3 Kernel Parameters

Linux can accept a command line from the boot loader and evaluate it during the
kernel start procedure. The parameters on this command line can configure de-
vice drivers and change various kernel options. This mechanism for Linux kernel Linux kernel runtime configura-

tionruntime configuration is particularly helpful with the generic kernels on Linux
distribution boot disks, when a system with problematic hardware needs to be
booted. To do this, LILO supports the append=…option, while GRUB lets you ap-
pend parameters to the kernel specification.

Alternatively, you can enter parameters interactively as the system is being
booted. You may have to grab GRUB’s attention quickly enough (e. g., by press-
ing a cursor or shift key while the boot menu or splash screen is displayed). Af-
terwards you can navigate to the desired menu entry and type e . GRUB then
presents you with the desired entry, which you can edit to your heart’s content
before continuing the boot operation.

There are various types of parameters. The first group overwrites hardcoded
defaults, such as root or rw. Another group of parameters serves to configure de- configuring device drivers

256 16 Booting Linux

vice drivers. If one of these parameters occurs on the command line, the initial-
isation function for the device driver in question is called with the arguments
specified there rather than the built-in default values.

B Nowadays most Linux distributions use modular kernels that have only
very few device drivers built in. Modular device drivers cannot be con-
figured from the kernel command line.

B During booting, if there are problems with a device driver that is built into
the kernel, you can usually disable this driver by specifying the number 0
as the parameter for the corresponding boot parameter.

Finally, there are parameters governing general settings. These include, e. g.,general settings

init or reserve. We shall be discussing some typical parameters from the multitude
of possible settings. Further parameters can be found within the kernel sources’
documentation area. Specific details for particular hardware must be researched
in the manual or on the Internet.

ro This causes the kernel to mount the root partition read-only

rw This causes the kernel to mount the root partition with writing enabled, even if
the kernel executable or the boot loader configuration file specify otherwise

init=⟨program⟩ Runs ⟨program⟩ (e. g., /bin/bash) instead of the customary /sbin/init

⟨runlevel⟩ Boots into runlevel ⟨runlevel⟩, where ⟨runlevel⟩ is generally a number
between 1 and 5. Otherwise the initial runlevel is taken from /etc/inittab.
(Irrelevant for computers running systemd.)

single Boots to single-user mode.

maxcpus=⟨number⟩ On a multi-processor (or, nowadays, multi-core) system, use
only as many CPUs as specified. This is useful for troubleshooting or per-
formance measurements.

mem=⟨size⟩ Specifies the amount of memory to be used. On the one hand, this is
useful if the kernel cannot recognise the correct size by itself (fairly unlikely
these days) or you want to check how the system behaves with little mem-
ory. The ⟨size⟩ is a number, optionally followed by a unit (“TokenG” for
gibibytes, “M” for mebibytes, or “K” for kibibytes).

A A typical mistake is something like mem=512. Linux is thrifty about sys-
tem resources, but even it can’t quite squeeze itself into 512 bytes (!) of
RAM.

panic=⟨seconds⟩ Causes an automatic reboot after ⟨seconds⟩ in case of a catastrophic
system crash (called a “kernel panic” in the patois, Edsger Dijkstra’s dictum,
“The use of anthropomorphic terminology when dealing with computing
systems is a symptom of professional immaturity”, notwithstanding).

hd𝑥=noprobe Causes the kernel to ignore the disk-like device /dev/hd𝑥 (IDE disk, CD-
ROM, …) completely. It is not sufficient to disable the device in the BIOS, as
Linux will find and access it even so.

noapic and similar parameters like nousb, apm=off, and acpi=off tell Linux not to use
certain kernel features. These options can help getting Linux to run at all
on unusual computers, in order to analyse problems in these areas more
thoroughly and sort them out.

A complete list of all parameters available on the kernel command line is given in
the file Documentation/kernel-parameters.txt, which is part of the Linux source code.
(However, before you install kernel sources just to get at this file, you should prob-
ably look for it on the Internet.)

16.4 System Startup Problems 257

B Incidentally, if the kernel notices command-line options that do not corre-
spond to kernel parameters, it passes them to the init process as environ- init environment variables

ment variables.

16.4 System Startup Problems

16.4.1 Troubleshooting

Usually things are simple: You switch on the computer, stroll over to the coffee
machine (or not—see Section 17.1), and when you come back you are greeted by
the graphical login screen. But what to do if things don’t work out that way?

The diagnosis of system startup problems sometimes isn’t all that easy—all
sorts of messages zoom by on the screen or (with some distributions) are not dis-
played at all, but hidden behind a nice little picture. The system logging service
(syslogd) is also started only after a while. Fortunately, though, Linux does not
leave you out in the cold if you want to look at the kernel boot messages at leisure.

For logging purposes, the system startup process can be divided into two
phases. The “early” phase begins with the first signs of life of the kernel and
continues up to the instant where the system logging service is activated. The
“late” phase begins just then and finishes in principle when the computer is shut
down.

The kernel writes early-phase messages into an internal buffer that can be dis-
played using the dmesg command. Various distributions arrange for these messages
to be passed on to the system logging service as soon as possible so they will show
up in the “official” log.

The system logging service, which we are not going to discuss in detail here,
runs during the “late” phase. It will be covered in the Linup Front training man-
ual, Linux Administration II (and the LPI-102 exam). For now it will be sufficient
to know that most distribution place most messages sent to the system logging
service into the /var/log/messages file. This is also where messages from the boot
process end up if they have been sent after the logging service was started.

On Debian GNU/Linux, /var/log/messages contains only part of the system
messages, namely anything that isn’t a grave error message. If you would
like to see everything you must look at /var/log/syslog—this contains all mes-
sages except (for privacy reasons) those dealing with authentication. The
“early phase” kernel messages, too, incidentally.

B Theoretically, messages sent after init was started but before the system log-
ging service was launched might get lost. This is why the system logging
service is usually among the first services started after init.

16.4.2 Typical Problems

Here are some of the typical snags you might encounter on booting:

The computer does not budge at all If your computer does nothing at all, it
probably suffers from a hardware problem. (If you’re diagnosing such a
case by telephone, then do ask the obvious questions such as “Is the power
cable plugged into the wall socket?”—perhaps the cleaning squad was des-
perate to find a place to plug in their vacuum cleaner—, and “Is the power
switch at the back of the case switched to On?”. Sometimes the simple
things will do.) The same is likely when it just beeps or flashes its LEDs
rhythmically but does not appear to actually start booting.

B The beeps or flashes can allow the initiated to come up with a rough di-
agnosis of the problem. Details of hardware troubleshooting, though,
are beyond the scope of this manual.

258 16 Booting Linux

Things go wrong before the boot loader starts The firmware performs various
self-tests and outputs error messages to the screen if things are wrong (such
as malfunctioning RAM chips). We shall not discuss how to fix these prob-
lems. If everything works fine, your computer ought to identify the boot
disk and launch the boot loader.

The boot loader does not finish This could be because the operating system can-
not find it (e. g., because the drive it resides on does not show up in the
firmware boot order) or it is damaged. In the former case you should ensure
that your firmware does the Right Thing (not our topic). In the latter case
you should receive at least a rudimentary error message, which together
with the boot loader’s documentation should allow you to come up with an
explanation.

B GRUB as a civilised piece of software produces clear-text error mes-
sages which are explained in more detail in the GRUB info documen-
tation.

The cure for most of the fundamental (as opposed to configuration-related)
boot loader problems, if they cannot be obviously reduced to disk or BIOS
errors, consist of booting the system from CD-ROM—the distribution’s
“rescue system” or a “live distribution” such as Knoppix recommend
themselves—and to re-install the boot loader.

B The same applies to problems like a ruined partition table in the MBR.
Should you ever accidentally overwrite your MBR, you can restore a
backup (you do have one, don’t you?) using dd or re-instate the par-
titioning using sfdisk (you do have a printout of your partition table
stashed away somewhere, don’t you?) and rewrite the boot loader.

B In case of the ultimate worst-case partition table scenario, there are
programs which will search the whole disk looking for places that look
like file system superblocks, and (help) recover the partition scheme
that way. We’re keeping our fingers crossed on your behalf that you
will never need to run such a program.

The kernel doesn’t start Once the boot loader has done its thing the kernel
should at least start (which generally leads to some activity on the screen).
Distribution kernels are generic enough to run on most PCs, but there may
still be problems, e. g., if you have a computer with extremely modern hard-
ware which the kernel doesn’t yet support (which is fatal if, for example, a
driver for the disk controller is missing) or you have messed with the initial
RAM disk (Shame, if you didn’t know what you were doing!). It may be
possible to reconfigure the BIOS (e. g., by switching a SATA disk controller
into a “traditional” IDE-compatible mode) or to deactivate certain parts of
the kernel (see Section 16.3) in order to get the computer to boot. It makes
sense to have another computer around so you can search the Internet for
help and explanations.

B If you are fooling around with the kernel or want to install a new ver-
sion of your distribution kernel, do take care to have a known-working
kernel around. If you always have a working kernel in your boot
loader menu, you can save yourself from the tedious job of slinging
CDs about.

Other problems Once the kernel has finished its initialisations, it hands control
off to the “init” process. You will find out more about this in Chapter 17.
However, you should be out of the woods by then.

16.4 System Startup Problems 259

16.4.3 Rescue systems and Live Distributions

As a system administrator, you should always keep a “rescue system” for your
distribution handy, since usually you need it exactly when you are least in a posi-
tion to obtain it quickly. (This applies in particular if your Linux machine is your
only computer.) A rescue system is a pared-down version of your distribution
which you can launch from a CD or DVD (formerly a floppy disk or disks) and
which runs in a RAM disk.

B Should your Linux distribution not come with a separate rescue system on
floppy disk or CD, then get a “live distribution” such as Knoppix. Live dis-
tributions are started from CD (or DVD) and work on your computer with-
out needing to be installed first. You can find Knoppix as an ISO image on
http://www.knoppix.de/ or, every so often, as a freebie with computer maga-
zines.

The advantage of rescue systems and live distributions consists in the fact that
they work without involving your hard disk. Thus you can do things like fsck

your root file system, which are forbidden while your system is running from
hard disk. Here are a few problems and their solutions:

Hosed the kernel? Boot the rescue system and re-install the corresponding pack-
age. In the simplest case, you can enter your installed system’s root file from
the rescue system like so:

mount -o rw /dev/sda1 /mnt Device name may differ
chroot /mnt

_ We are now seeing the installed distribution

After this you can activate the network interface or copy a kernel package
from a USB key or CD-ROM and install it using the package management
tool of your distribution.

Forgot the root password? Boot the rescue system and change to the installed dis-
tribution as above. Then do

passwd

(You could of course fix this problem without a rescue system by restarting
your system with “init=/bin/bash rw” as a kernel parameter.)

B Live distributions such as Knoppix are also useful to check in the computer
store whether Linux supports the hardware of the computer you have been
drooling over for a while already. If Knoppix recognises a piece of hardware,
you can as a rule get it to run with other Linux distributions too. If Knoppix
does not recognise a piece of hardware, this may not be a grave problem
(there might be a driver for it somewhere on the Internet that Knoppix does
not know about) but you will at least be warned.

B If there is a matching live version of your distribution—with Ubuntu, for
example, the live CD and the installation CD are identical—, things are es-
pecially convenient, since the live distribution will typically recognise the
same hardware that the installable distribution does.

260 16 Booting Linux

Commands in this Chapter

dmesg Outputs the content of the kernel message buffer dmesg(8) 257
grub-md5-crypt Determines MD5-encrypted passwords for GRUB Legacy

grub-md5-crypt(8) 255

Summary

• A boot loader is a program that can load and start an operating system.
• A boot manager is a boot lader that lets the user pick one of several operating

systems or operating system installations.
• GRUB is a powerful boot manager with special properties—such as the pos-

sibility of accessing arbitrary files and a built-in command shell.
• The GRUB shell helps to install GRUB as well as to configure individual boot

procedures.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

17
System-V Init and the Init Process

Contents

17.1 The Init Process . 262
17.2 System-V Init . 262
17.3 Upstart . 268
17.4 Shutting Down the System 270

Goals

• Understanding the System-V Init infrastructure
• Knowing /etc/inittab structure and syntax
• Understanding runlevels and init scripts
• Being able to shut down or restart the system orderly

Prerequisites

• Basic Linux system administration knowledge
• Knowledge of system start procedures (Chapter 16)

adm1-init.tex (33e55eeadba676a3)

262 17 System-V Init and the Init Process

17.1 The Init Process

After the firmware, the boot loader, the operating system kernel and (possibly)
the early userspace have done their thing, the “init process” takes over the reins.
Its job is to finish system initialisation and supervise the ongoing operation of the
system. For this, Linux locates and starts a program called /sbin/init./sbin/init

B The init process always has process ID 1. If there is an early userspace, it in-
herits this from the process that was created to run /init, and subsequently
goes on to replace its program text by that of the init process.

B Incidentally, the init process enjoys a special privilege: it is the only pro-
cess that cannot be aborted using “kill -9”. (It can decide to shuffle off this
mortal coil of its own accord, though.)

B If the init process really quits, the kernel keeps running. There are purists
who start a program as the init process that will set up packet filtering rules
and then exit. Such a computer makes a practically impregnable firewall,
but is somewhat inconvenient to reconfigure without a rescue system …

B You can tell the Linux kernel to execute a different program as the init pro-
cess by specifying an option like “init=/sbin/myinit” on boot. There are no
special properties that this program must have, but you should remember
that, if it ever finishes, you do not get another one without a reboot.

17.2 System-V Init

Basics The traditional infrastructure that most Linux distributions used to use
is called “System-V init” (pronounced “sys-five init”). The “V” is a roman nu-System-V init

meral 5, and it takes its name from the fact that it mostly follows the example of
Unix System V, where something very similar showed up for the first time. That
was during the 1980s.

B For some time there was the suspicion that an infrastructure designed ap-
proximately 30 years ago was no longer up to today’s demands on a Linux
computer’s init system. (Just as a reminder: When System-V init was new,
the typical Unix system was a VAX with 30 serial terminals.) Modern com-
puters must, for example, be able to deal with frequent changes of hardware
(cue USB), and that is something that System-V init finds relatively difficult
to handle. Hence there were several suggestions for alternatives to System-V
init. One of these—systemd by Lennart Poettering and Kay Sievers—seems
to have won out and is the current or upcoming standard of practically all
Linux distributions of importance (we discuss it in more detail in Chap-
ter 18). Another is Upstart by Scott James Remnant (see Section 17.3).

One of the characteristic features of System-V init are runlevels, which describerunlevels

the system’s state and the services that it offers. Furthermore, the init process en-
sures that users can log in on virtual consoles, directly-connected serial terminals,
etc., and manages system access via modems if applicable. All of this is configured
by means of the /etc/inittab file

The syntax of /etc/inittab (Figure 17.1), like that of many other Linux configu-/etc/inittab

ration files, is somewhat idiosyncratic (even if it is really AT&T’s fault). All lines
that are not either empty or comments— starting with “#” as usual—consist of
four fields separated by colons:

Label The first field’s purpose is to identify the line uniquely. You may pick an
arbitrary combination of up to four characters. (Do yourself a favour and
stick with letters and digits.) The label is not used for anything else.

17.2 System-V Init 263

Standard runlevel

id:5:initdefault

First script to be executed

si::bootwait:/etc/init.d/boot

runlevels

l0:0:wait:/etc/init.d/rc 0

l1:1:wait:/etc/init.d/rc 1

l2:2:wait:/etc/init.d/rc 2

l3:3:wait:/etc/init.d/rc 3

#l4:4:wait:/etc/init.d/rc 4

l5:5:wait:/etc/init.d/rc 5

l6:6:wait:/etc/init.d/rc 6

ls:S:wait:/etc/init.d/rc S

~~:S:respawn:/sbin/sulogin

Ctrl-Alt-Del

ca::ctrlaltdel:/sbin/shutdown -r -t 4 now

Terminals

1:2345:respawn:/sbin/mingetty --noclear tty1

2:2345:respawn:/sbin/mingetty tty2

3:2345:respawn:/sbin/mingetty tty3

4:2345:respawn:/sbin/mingetty tty4

5:2345:respawn:/sbin/mingetty tty5

6:2345:respawn:/sbin/mingetty tty6

Serial terminal

S0:12345:respawn:/sbin/agetty -L 9600 ttyS0 vt102

Modem

mo:235:respawn:/usr/sbin/mgetty -s 38400 modem

Figure 17.1: A typical /etc/inittab file (excerpt)

264 17 System-V Init and the Init Process

B This is not 100% true for lines describing terminals, where according
to convention the label corresponds to the name of the device file in
question, but without the “tty” at the beginning, hence 1 for tty1 or S0

for ttyS0. Nobody knows exactly why.

Runlevels The runlevels this line applies to. We haven’t yet explained in detail
how runlevels work, so excuse us for the moment for limiting ourselves to
telling you that they are usually named with digits and the line in question
will be considered in all runlevels whose digit appears in this field.

B In addition to the runlevels with digits as names there is one called “S”.
More details follow below.

Action The third field specifies how to handle the line. The most important pos-
sibilities include

respawn The process described by this line will immediately be started again
once it has finished. Typically this is used for terminals which, after the
current user is done with their session, should be presented brand-new
to the next user.

wait The process described by this line is executed once when the system
changes to the runlevel in question, and init waits for it to finish.

bootwait The process described by this line will be executed once during
system startup. init waits for it to finish. The runlevel field on this line
will be ignored.

initdefault The runlevel field of this line specifies which runlevel the system
shoud try to reach after booting.

B With LSB-compliant distributions, this field usually says “5” if the
system should accept logins on the graphical screen, otherwise
“3”. See below for details.

B If this entry (or the whole file /etc/inittab) is missing, you will need
to state a run level on the console.

ctrlaltdel Specifies what the system should do if the init process is being
sent a SIGINT—which usually happens if anyone presses the Ctrl + Alt

+ Del combination. Normally this turns out to be some kind of shutdown
(see Section 17.4).

B There are a few other actions. powerwait, powerfail, powerokwait, and
powerfailnow, for example, are used to interface System-V init with
UPSs. The details are in the documentation (init(8) and inittab(5)).

Command The fourth field describes the command to be executed. It extends to
the end of the line and you can put whatever you like.

If you have made changes to /etc/inittab, these do not immediately take effect.
You must execute the “telinit q” command first in order to get init to reread the
configuration file.

The Boot Script With System-V init, the init process starts a shell script, the boot
script, typically /etc/init.d/boot (Novell/SUSE), /etc/rc.d/init.d/boot (Red Hat), or
/etc/init.d/rcS (Debian). (The exact name occurs in /etc/inittab; look for an entry
whose action is bootwait.)

The boot script performs tasks such as checking and possibly correcting the
file systems listed in /etc/fstab, initialising the system name and Linux clock, and
other important prerequisites for stable system operation. Next, kernel modules
will be loaded if required, file systems mounted and so on. The specific actions
and their exact order depend on the Linux distribution in use.

17.2 System-V Init 265

B Today, boot usually confines itself to executing the files in a directory such as
/etc/init.d/boot.d (SUSE) in turn. The files are executed in the order of their
names. You can put additional files in this directory in order to execute
custom code during system initialisation.

Exercises

C 17.1 [2] Can you find out where your distribution keeps the scripts that the
boot script executes?

C 17.2 [!2] Name a few typical tasks performed by the boot script. In which
order should these be executed?

Runlevels After executing the boot script, the init process attempts to place the
system in one of the various runlevels. Exactly which one is given by /etc/inittab runlevels

or determined at the system’s boot prompt and passed through to init by the
kernel.

The various runlevels and their meaning have by now been standardised across standardised runlevels

most distributions roughly as follows:

1 Single-user mode with no networking

2 Multi-user mode with no network servers

3 Multi-user mode with network servers

4 Unused; may be configured individually if required

5 As runlevel 3, but with GUI login

6 Reboot

0 System halt

B The system runs through the S (or s) runlevel during startup, before it
changes over to one out of runlevels 2 to 5. If you put the system into
runlevel 1 you will finally end up in runlevel S.

When the system is started, the preferred runlevels are 3 or 5—runlevel 5 is typical
for workstations running a GUI, while runlevel 3 makes sense for server systems
that may not even contain a video interface. In runlevel 3 you can always start a
GUI afterwards or redirect graphics output to another computer by logging into
your server from that machine over the network.

These predefined runlevels derive from the LSB standard. Not all distribu-
tions actually enforce them; Debian GNU/Linux, for example, mostly leaves
runlevel assignment to the local administrator.

B You may use runlevels 7 to 9 but you will have to configure them yourself.

During system operation, the runlevel can be changed using the telinit com- telinit command

mand. This command can only be executed as root: “telinit 5” changes imme-
diately to runlevel ⟨runlevel⟩. All currently running services that are no longer
required in the new runlevel will be stopped, while non-running services that are
required in the new runlevel will be started.

B You may use init in place of telinit (the latter is just a symbolic link to the
former, anyway). The program checks its PID when it starts, and if it is not 1,
it behaves like telinit, else init.

The runlevel command displays the previous and current runlevel: runlevel

266 17 System-V Init and the Init Process

runlevel

N 5

Here the system is currently in runlevel 5, which, as the value “N” for the “previous
runlevel” suggests, was entered right after the system start. Output such as “5 3”
would mean that the last runlevel change consisted of bringing the system from
runlevel 5 to runlevel 3.

B We have concealed some more runlevels from you, namely the “on-demand
runlevels” A, B, and C. You may make entries in /etc/inittab which are meant
for any of these three runlevels and use the ondemand action, such as

xy:AB:ondemand:…

If you say something like

telinit A

these entries are executed, but the actual runlevel does not change: If you
were in runlevel 3 before the telinit command, you will still be there when
it finishes. a, b, and c are synonyms for A, B, and C.

Exercises

C 17.3 [!2] Display the current runlevel. What exactly is being output? Change
to runlevel 2. Check the current runlevel again.

C 17.4 [2] Try the on-demand runlevels: Add a line to /etc/inittab which ap-
plies to, e. g., runlevel A. Make init reread the inittab file. Then enter the
»telinit A« command.

Init Scripts The services available in the various runlevels are started and
stopped using the scripts in the /etc/init.d (Debian, Ubuntu, SUSE) or /etc/

rc.d/init.d (Red Hat) directories. These scripts are executed when changing from
one runlevel to another, but may also be invoked manually. You may also add
your own scripts. All these scripts are collectively called init scripts.init scripts

The init scripts>parametersinit scripts usually support parameters such asstart,
stop, status, restart, or reload, which you can use to start, stop, …, the correspond-
ing services. The “/etc/init.d/network restart” command might conceivably deac-
tivate a system’s network cards and restart them with an updated configuration.

Of course you do not need to start all services manually when the system is
started or you want to switch runlevels. For each runlevel 𝑟 there is a rc𝑟.d di-runlevel directories

rectory in /etc (Debian and Ubuntu), /etc/rc.d (Red Hat), or /etc/init.d (SUSE).
The services for each runlevel and the runlevel transitions are defined in terms of
these directories, which contain symbolic links to the scripts in the init.d direc-
tory. These links are used by a script, typically called /etc/init.d/rc, to start and
stop services when a runlevel is entered or exited.

This is done according to the names of the links, in order to determine the start-
ing and stopping order of the services. There are dependencies between various
services—there would not be much point in starting network services such as the
Samba or web servers before the system’s basic networking support has been ac-
tivated. The services for a runlevel are activated by calling all symbolic links inActivating services

its directory that start with the letter “S”, in lexicographical order with the start

parameter. Since the link names contain a two-digit number after the “S”, you
can predetermine the order of invocation by carefully choosing these numbers.
Accordingly, to deactivate the services within a runlevel, all the symbolic links
starting with the letter “K” are called in lexicographical order with the stop pa-
rameter.

17.2 System-V Init 267

If a running service is also supposed to run in the new run level, an extraneous
restart can be avoided. Therefore, before invoking a K link, the rc script checks
whether there is an S link for the same service in the new runlevel’s directory. If
so, the stopping and immediate restart are skipped.

Debian GNU/Linux takes a different approach: Whenever a new runlevel
𝑟 is entered, all symbolic links in the new directory (/etc/rc𝑟.d) are executed.
Links beginning with a “K” are passed stop and links beginning with a “S”
are passed start as the parameter.

To configure services in a runlevel or to create a new runlevel, you can in princi- Configuring services

ple manipulate the symbolic links directly. However, most distributions deprecate
this.

The Red Hat distributions use a program called chkconfig to configure run-
levels. “chkconfig quota 35”, for example, inserts the quota service not in run-
level 35, but runlevels 3 and 5. “chkconfig -l” gives a convenient overview
of the configured runlevels.

The SUSE distributions use a program called insserv to order the services
in each runlevel. It uses information contained in the init scripts to calcu-
late a sequence for starting and stopping the services in each runlevel that
takes the dependencies into account. In addition, YaST2 offers a graphical
“runlevel editor”, and there is a chkconfig program which however is just a
front-end for insserv.

Nor do you have to create links by hand on Debian GNU/Linux—you
may use the update-rc.d program. However, manual intervention is still
allowed—update-rc.d’s purpose is really to allow Debian packages to inte-
grate their init scripts into the boot sequence. With the

update-rc.d mypackage defaults

command, the /etc/init.d/mypackage script will be started in runlevels 2, 3, 4,
and 5 and stopped in runlevels 0, 1 and 6. You can change this behaviour by
means of options. If you do not specify otherwise, update-rc.d uses the se-
quence number 20 to calculate the position of the service—contrary to SUSE
and Red Hat, this is not automated.—The insserv command is available on
Debian GNU/Linux as an optional package; if it is installed, it can man-
age at least those init scripts that do contain the necessary metadata like it
would on the SUSE distributions. However, this has not been implemented
throughout.

Exercises

C 17.5 [!2] What do you have to do to make the syslog service reread its con-
figuration?

C 17.6 [1] How can you conveniently review the current runlevel configura-
tion?

C 17.7 [!2] Remove the cron service from runlevel 2.

Single-User Mode In single-user mode (runlevel S), only the system administra- single-user mode

tor may work on the system console. There is no way of changing to other virtual
consoles. The single-user mode is normally used for administrative work, espe-
cially if the file system needs to be repaired or the quota system set up.

268 17 System-V Init and the Init Process

B You can mount the root file system read-only on booting, by passing the S

option on the kernel command line. If you boot the system to single-user
mode, you can also disable writing to the root file system “on the fly”, using
the remount and ro mount options: “mount -o remount,ro /” remounts the root
partition read-only; “mount -o remount,rw /” undoes it again.

B To remount a file system “read-only” while the system is running, no pro-
cess may have opened a file on the file system for writing. This means that
all such programs must be terminated using kill. These are likely to be
daemons such as syslogd or cron.

It depends on your distribution whether or not you get to leave single-user
mode, and how.

To leave single-user mode, Debian GNU/Linux recommends a reboot
rather than something like »telinit 2«. This is because entering single-
user mode kills all processes that are not required in signle-user mode.
This removes some essential background processes that were started when
the system passed through runlevel S during boot, which is why it is unwise
to change from runlevel S to a multi-user runlevel.

Exercises

C 17.8 [!1] Put the system into single-user mode (Hint: telinit). What do you
need to do to actually enter single-user mode?

C 17.9 [1] Convince yourself that you really are the single user on the sys-
tem while single-user mode is active, and that no background processes are
running.

17.3 Upstart

While System-V init traditionally stipulates a “synchronous” approach—the init
system changes its state only through explicit user action, and the steps taken
during a state change, like init scripts, are performed in sequence—, Upstart uses
an “event-based” philosophy. This means that the system is supposed to react to
external events (like plugging in an USB device). This happens “asynchronously”.
Starting and stopping services creates new events, so that—and that is one of the
most important differences between System-V init and Upstart—a service can be
restarted automatically if it crashes unexpectedly. (System-V init, on the other
hand, wouldn’t be bothered at all.)

Upstart has been deliberately designed to be compatible with System-V init, at
least to a point where init scripts for services can be reused without changes.

Upstart was developed by Scott James Remnant, at the time an employee of
Canonical (the company behind Ubuntu) and accordingly debuted in that
distributon. Since Ubuntu 6.10 (“Edgy Eft”) it is the standard init system on
Ubuntu, although it used to be run in a System-V compatible mode at first;
since Ubuntu 9.10 (“Karmic Koala”) it is running in “native” mode.

It turns out that Ubuntu is currently in the process of switching over to sys-
temd (see Chapter 18).

Since version 3.5 of the LPIC-1 certificate exams (as of 2 July 2012) you are
expected to know that Upstart exists and what its major properties are. Con-
figuration and operational details are not required.

17.3 Upstart 269

rsyslog - system logging daemon

#

rsyslog is an enhanced multi-threaded replacement for the traditional

syslog daemon, logging messages from applications

description "system logging daemon"

start on filesystem

stop on runlevel [06]

expect fork

respawn

exec rsyslogd -c4

Figure 17.2: Upstart configuration file for job rsyslog

B Upstart is also purported to accelerate the boot process by being able to
initialise servides in parallel. In actual practice this isn’t the case, as the
limiting factor during booting is, for the most part, the speed with which
blocks of data can be moved from disk to RAM. At the Linux Plumbers
Conference 2008, Arjan van de Ven and Auke Kok demonstrated that it is
possible to boot an Asus EeePC all the way to a usable desktop (i. e., not a
Windows-like desktop with a churning hard disk in the background) within
5 seconds. This work was based on System-V init rather than Upstart.

Upstart configuration is based on the idea of “Jobs” that take on the role of Jobs

init scripts (although init scripts, as we mentioned, are also supported). Upstart
distinguishes “tasks”—jobs that run for a limited time and then shut themselves
down—and “services”—jobs that run permanently “in the background”.

B Tasks can be long-running, too. The main criterion is that services—think
of a mail, database, or web server—do not terminate of their own accord
while tasks do.

Jobs are configured using files within the /etc/init directory. The names of these
files derive from the job name and the “.conf” suffix. See Figure 17.2 for an exam-
ple.

One of the main objectives of Upstart is to avoid the large amounts of template-
like code typical for most System-V init scripts. Accordingly, the Upstart configu-
ration file confines itself to stating how the service is to be started (“exec rsyslogd

-c4”). In addition, it specifies that the service is to be restarted in case it crashes
(“respawn”) and how Upstart can find out which process to track (“expect fork” says
that the rsyslog process puts itself into the background by creating a child process
and then exiting—Upstart must then watch out for that child process).—Compare
this to /etc/init.d/syslogd (or similar) on a typical Linux based on System-V init.

While with “classic” System-V init the system administrator assigns a “global”
order in which the init scripts for a particular runlevel are to be executed, with
Upstart the jobs decide “locally” where they want to place themselves within a
network of dependencies. The “start on …” and “stop on …” lines stipulate events
that lead to the job being started or stopped. In our example, rsyslog is started as
soon as the file system is available, and stopped when the system transitions to
the “runlevels” 0 (halt) or 6 (reboot). System-V init’s runlevel directories with
symbolic links are no longer required.

B Upstart supports runlevels mostly for compatibility with Unix tradition and
to ease the migration of System-V init based systems to Upstart. They are

270 17 System-V Init and the Init Process

not required in principle, but at the moment are still necessary to shut down
the system (!).

B Newer implementations of System-V init also try to provide dependencies
between services in the sense that init script 𝑋 is always executed after init
script 𝑌 and so on. (This amounts to a scheme for automatic assignment
of the priority numbers within the runlevel directories.) This is done using
metadata contained in standardised comments at the beginning of the init
scripts. The facilities that this approach provides do fall short of those of
Upstart, though.

On system boot, Upstart creates the startup event as soon as its own initialisa-
tion is complete. This makes it possible to execute other jobs. The complete boot
sequence derives from the startup event and from events being created through
the execution of further jobs and expected by others.

B For example, on Ubuntu 10.04 the startup event invokes the mountall task
which makes the file systems available. Once that is finished, the filesystem

event is created (among others), which in turn triggers the start of the rsyslog

service from Figure 17.2.

With Upstart, the initctl command is used to interact with the init process:

initctl list Which jobs are running now?
alsa-mixer-save stop/waiting

avahi-daemon start/running, process 578

mountall-net stop/waiting

rc stop/waiting

rsyslog start/running, process 549

�����

initctl stop rsyslog Stop a job
rsyslog stop/waiting

initctl status rsyslog What is its status?
rsyslog stop/waiting

initctl start rsyslog Restart a job
rsyslog start/running, process 2418

initctl restart rsyslog Stop and start
rsyslog start/running, process 2432

B The “initctl stop”, “initctl start”, “initctl status”, and “initctl stop” can
be abbreviated to “stop”, “start”, ….

17.4 Shutting Down the System

A Linux computer should not simply be powered off, as that could lead to data
loss—possibly there are data in RAM that ought to be written to disk but are still
waiting for the proper moment in time. Besides, there might be users logged in on
the machine via the network, and it would be bad form to surprise them with an
unscheduled system halt or restart. The same applies to users taking advantage
of services that the computer offers on the Net.

B It is seldom necessary to shut down a Linux machine that should really run
continuously. You can install or remove software with impunity and also re-
configure the system fairly radically without having to restart the operating
system. The only cases where this is really necessary include kernel changes
(such as security updates) or adding new or replacing defective hardware
inside the computer case.

17.4 Shutting Down the System 271

B The first case (kernel changes) is being worked on. The kexec infrastructure
makes it possible to load a second kernel into memory and jump into it
directly (without the detour via a system reboot). Thus it is quite possible
that in the future you will always be able to run the newest kernel without
actually having to reboot your machine.

B With the correct kind of (expensive) hardware you can also mostly sort out
the second case: Appropriate server systems allow you to swap CPUs, RAM
modules, and disks in and out while the computer is running.

There are numerous ways of shutting down or rebooting the system:

• By valiantly pushing the system’s on/off switch. If you keep it pressed until on/off switch
the computer is audibly shutting down the system will be switched off. You
should only do this in cases of acute panic (fire in the machine hall or a
sudden water influx).

• Using the shutdown command. This is the cleanest method of shutting down shutdown

or rebooting.

• For System-V init: The “telinit 0” command can be used to switch to run-
level 0. This is equivalent to a shutdown.

• Using the halt command. This is really a direct order to the kernel to halt the
system, but many distributions arrange for halt to call shutdown if the system
is not in runlevels 0 or 6 already.

B There is a reboot command for reboots, which like halt usually relies on reboot

shutdown. (In fact, halt and reboot are really the same program.)

The commands are all restricted to the system administrator.

B The key combination Ctrl + Alt + Del may also work if it is configured ap-
propriately in /etc/inittab (see Section 17.1).

B Graphical display managers often offer an option to shut down or reboot
the system. You may have to configure whether the root password must be
entered or not.

B Finally, modern PCs may interpret a (short) press on the on/off switch as
“Please shut down cleanly” rather than “Please crash right now”.

Normally you will be using the second option, the shutdown command. It en-
sures that all logged-in users are made aware of the impending system halt, pre-
vents new logins, and, according to its option, performs any requisite actions to
shut down the system:

shutdown -h +10

for example will shut down the system in ten minutes’ time. With the -r option,
the system will be restarted. With no option, the system will go to single-user
mode after the delay has elapsed.

B You may also give the time of shutdown/reboot as an absolute time:

shutdown -h 12:00 High Noon

B For shutdown, the now keyword is a synonym of “+0”—immediate action. Do
it only if you are sure that nobody else is using the system.

Here is exactly what happens when the shutdown command is given:

272 17 System-V Init and the Init Process

1. All users receive a broadcast message saying that the system will be shutbroadcast message

down, when, and why.

2. The shutdown command automatically creates the /etc/nologin file, which is
checked by login (or, more precisely, the PAM infrastructure); its existence
prevents new user logins (except for root).

B For consolation, users that the system turns away are being shown the
content of the /etc/nologin file.

The file is usually removed automatically when the system starts up again.

3. The system changes to runlevel 0 or 6. All services will be terminated by
means of their init scripts (more exactly, all services that do not occur in
runlevels 0 or 6, which is usually all of them).

4. All still-running processes are first sent SIGTERM. They may intercept this sig-
nal and clean up after themselves before terminating.

5. Shortly afterwards, all processes that still exist are forcibly terminated by
SIGKILL.

6. The file systems are unmounted and the swap spaces are deactivated.

7. Finally, all system activities are finished. Then either a warm start is initi-
ated or the computer shut off using APM or ACPI. If that doesn’t work, the
message “System halted” is displayed on the console. At that point you can
hit the switch yourself.

B You may pass some text to shutdown after the shut-down delay time, which
is displayed to any logged-in users:

shutdown -h 12:00 '

System halt for hardware upgrade.

Sorry for the inconvenience!

'

B If you have executed shutdown and then change your mind after all, you can
cancel a pending shutdown or reboot using

shutdown -c "No shutdown after all"

(of course you may compose your own explanatory message).

By the way: The mechanism that shutdown uses to notify users of an impending
system halt (or similar) is available for your use. The command is called wall (shortwall

for “write to all”):

$ wall "Cake in the break room at 3pm!"

will produce a message of the form

Broadcast message from hugo@red (pts/1) (Sat Jul 18 00:35:03 2015):

Cake in the break room at 3pm!

on the terminals of all logged-in users.

B If you send the message as a normal user, it will be received by all users who
haven’t blocked their terminal for such messages using “mesg n”. If you want
to reach those users, too, you must send the message as root.

17.4 Shutting Down the System 273

B Even if you’re not logged in on a text terminal but are instead using a graphi-
cal environment: Today’s desktop environments will pick up such messages
and show them in an extra window (or something; that will depend on the
desktop environment).

B If you’re root and the parameter of wall looks like the name of an existing
file, that file will be read and its content sent as the message:

echo "Cake in the break room at 3pm!" >cake.txt

wall cake.txt

You don’t get to do this as an ordinary user, but you can still pass the mes-
sage on wall’s standard input. (You can do that as root, too, of course.) Don’t
use this for War and Peace.

B If you’re root, you can suppress the header line “Broadcast message …” using
the -n option (short for --nobanner).

Exercises

C 17.10 [!2] Shut down your system 15 minutes from now and tell your users
that this is simply a test. How do you prevent the actual shutdown (so that
it really is simply a test)?

B What happens if you (as root) pass wall the name of a non-existent file as its
parameter?

C 17.11 [2] wall is really a special case of the write command, which you can use
to “chat” with other users of the same computer in an unspeakably primitive
fashion. Try write, in the easiest case between two different users in different
windows or consoles. (write was a lot more interesting back when one had
a VAX with 30 terminals.)

Commands in this Chapter

chkconfig Starts or shuts down system services (SUSE, Red Hat)
chkconfig(8) 267

halt Halts the system halt(8) 271
initctl Supervisory tool for Upstart initctl(8) 270
insserv Activates or deactivates init scripts (SUSE) insserv(8) 267
reboot Restarts the computer reboot(8) 271
runlevel Displays the previous and current run level runlevel(8) 265
shutdown Shuts the system down or reboots it, with a delay and warnings for

logged-in users shutdown(8) 271
update-rc.d Installs and removes System-V style init script links (Debian)

update-rc.d(8) 267

274 17 System-V Init and the Init Process

Summary

• After starting, the kernel initialises the system and then hands off control to
the /sbin/init program as the first userspace process.

• The init process controls the system and takes care, in particular, of acti-
vating background services and managing terminals, virtual consoles, and
modems.

• The system distinguishes various “runlevels” (operating states) that are de-
fined through different sets of running services.

• A single-user mode is available for large or intrusive administrative tasks.
• The shutdown command is a convenient way of shutting down or rebooting

the system (and it’s friendly towards other users, too).
• You can use the wall command to send a message to all logged-in users.
• Linux systems seldom need to be rebooted—actually only when a new op-

erating system kernel or new hardware has been installed.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

18
Systemd

Contents

18.1 Overview. 276
18.2 Unit Files . 277
18.3 Unit Types . 281
18.4 Dependencies . 282
18.5 Targets. 284
18.6 The systemctl Command 286
18.7 Installing Units. 289

Goals

• Understanding the systemd infrastructure
• Knowing the structure of unit files
• Understanding and being able to configure targets

Prerequisites

• Knowledge of Linux system administration
• Knowledge of system start procedures (Chapter 16)
• Knowledge about System-V init (Chapter 17)

adm1-systemd.tex (33e55eeadba676a3)

276 18 Systemd

18.1 Overview

Systemd, by Lennart Poettering and Kay Sievers, is another alternative to the old-
fashioned System-V init system. Like Upstart, systemd transcends the rigid lim-
itations of System-V init, but implements various concepts for the activation and
control of services with much greater rigour than Upstart.

B Systemd is considered the future standard init system by all mainstream
distributions. On many of them—such as Debian, Fedora, RHEL, CentOS,
openSUSE, and SLES—it is now provided by default. Even Ubuntu, origi-
nally the main instigator of Upstart, has by now declared for systemd.

While System-V init and Upstart use explicit dependencies among services—
for instance, services using the system log service can only be started once that
service is running—, systemd turns the dependencies around. A service requiringdependencies

the system log service doesn’t do this because the log service needs to be running,
but because it itself wants to send messages to the system log. This means it must
access the communication channel that the system log service provides. Hence it
is sufficient if systemd itself creates that communication channel and passes it to
the system log service once that becomes available—the service wanting to send
messages to the log will wait until its messages can actually be accepted. Hence,
systemd can in principle create all communication channels first and then start
all services simultaneously without regard to any dependencies whatsoever. The
dependencies will sort themselves out without any explicit configuration.

B This approach also works when the system is running: If a service is ac-
cessed that isn’t currently running, systemd can start it on demand.

B The same approach can in principle also be used for file systems: If a service
wants to open a file on a file system that is currently unavailable, the access
is suspended until the file system can actually be accessed.

Systemd uses “units” as an abstraction for parts of the system to be managedunits

such as services, communication channels, or devices. “Targets” replace SysVtargets

init’s runlevels and are used to collect related units. For example, there is a target
multiuser.target that corresponds to the traditional runlevel 3. Targets can depend
on the availability of devices—for instance, a bluetooth.target could be requested
when a USB Bluetooth adapter is plugged in, and it could launch the requisite
software. (System-V init starts the Bluetooth software as soon as it is configured,
irrespective of whether Bluetooth hardware is actually available.)

In addition, systemd offers more interesting properties that System-V init and
Upstart cannot match, including:

• Systemd supports service activation “on demand”, not just depending on
hardware that is recognised (as in the Bluetooth example above), but also
via network connections, D-Bus requests or the availability of certain paths
within the file system.

• Systemd allows very fine-grained control of the services it launches, con-
cerning, e. g., the process environment, resource limits, etc. This includes
security improvements, e. g., providing only a limited view on the file sys-
tem for certain services, or providing services with a private /tmp directory
or networking environment.

B With SysV init this can be handled on a case-by-case basis within the
init scripts, but by comparison this is very primitive and tedious.

• Systemd uses the Linux kernel’s cgroups mechanism to ensure, e. g., that
stopping a service actually stops all related processes.

• If desired, systemd handles services’ logging output; the services only need
to write messages to standard output.

18.2 Unit Files 277

• Systemd makes configuration maintenance easier, by cleanly separating dis-
tribution default and local customisations.

• Systemd contains a number of tools in C that handle system initialisation
and do approximately what distribution-specific “runlevel S” scripts would
otherwise do. Using them can speed up the boot process considerably and
also improves cross-distribution standardisation.

Systemd is designed to offer maximum compatibility with System-V init and other
“traditions”. For instance, it supports the init scripts of System-V init if no na-
tive configuration file is available for a service, or it takes the file systems to be
mounted on startup from the /etc/fstab file.

You can use the systemctl command to interact with a running systemd, e. g.,
to start or stop services explicitly:

systemctl status rsyslog.service

● rsyslog.service - System Logging Service

Loaded: loaded (/lib/systemd/system/rsyslog.service; enabled)

Active: active (running) since Do 2015-07-16 15:20:38 CEST;�

� 3h 12min ago

Docs: man:rsyslogd(8)

http://www.rsyslog.com/doc/

Main PID: 497 (rsyslogd)

CGroup: /system.slice/rsyslog.service

└─497 /usr/sbin/rsyslogd -n

systemctl stop rsyslog.service

Warning: Stopping rsyslog.service, but it can still be activated by:

syslog.socket

systemctl start rsyslog.service

Systemd calls such change requests for the system state “jobs”, and puts them into
a queue.

B Systemd considers status change requests “transactions”. If a unit is being transactions

started or stopped, it (and any units that depend on it) are put into a tempo-
rary transaction. Then systemd checks that the transaction is consistent—in
particular, that no circular dependencies exist. If that isn’t the case, systemd
tries to repair the transaction by removing jobs that are not essential in order
to break the cycle(s). Non-essential jobs that would lead to running services
being stopped are also removed. Finally, systemd checks whether the jobs
within the transaction would conflict with other jobs that are already in the
queue, and refuses the transaction if that is the case. Only if the transaction
is consistent and the minimisation of its impact on the system is complete,
will its jobs be entered into the queue.

Exercises

C 18.1 [!1] Use “systemctl status” to get a picture of the units that are active on
your computer. Check the detailed status of some interesting-looking units.

18.2 Unit Files

One of the more important advantages of systemd is that it uses a unified file
format for all configuration files—no matter whether they are about services to
be started, devices, communication channels, file systems, or other artefacts that
systemd manages.

278 18 Systemd

B This is in stark contrast to the traditional infrastructure based on System-V
init, where almost every functionality is configured in a different way: per-
manently running background services in /etc/inittab, runlevels and their
services via init scripts, file systems in /etc/fstab, services that are run on
demand in /etc/inetd.conf, … Every single such file is syntactically different
from all others, while with systemd, only the details of the possible (and
sensible) configuration settings differ—the basic file format is always the
same.

A very important observation is: Unit files are “declarative”. This means that
they simply describe what the desired configuration looks like—unlike System V
init’s init scripts, which contain executable code that tries to achieve the desired
configuration.

B Init scripts usually consider of huge amounts of boilerplate code which de-
pends on the distribution in question, but which you still need to read and
understand line-per-line if there is a problem or you want to do something
unusual. For somewhat more complex background services, init scripts of a
hundred lines or more are not unusual. Unit files for systemd, though, usu-
ally get by with a dozen lines or two, and these lines are generally pretty
straightforward to understand.

B Of course unit files occasionally contain shell commands, for example to
explain how a specific service should be started or stopped. These, however,
are generally fairly obvious one-liners.

Syntax The basic syntax of unit files is explained in systemd.unit(5). You can find
an example for a unit file in Figure 18.1. A typical characteristic is the subdivision
into sections that start with a title in square brackets1. All unit files (no matter
what they are supposed to do) can include [Unit] and [Install] sections (see be-
low). Besides, there are sections that are specific to the purpose of the unit.

As usual, blank lines and comment lines are ignored. Comment lines can start
with a # or ;. Over-long lines can be wrapped with a \ at the end of the line,
which will be replaced by a space character when the file is read. Uppercase and
lowercase letters are important!

Lines which are not section headers, empty lines, nor comment lines contain
“options” according to a “⟨name⟩ = ⟨value⟩” pattern. Various options may occuroptions

several times, and systemd’s handling of that depends on the option: Multiple
options often form a list; if you specify an empty value, all earlier settings will be
ignored. (If that is the case, the documentation will say so.)

B Options that are not listed in the documentation will be flagged with a warn-
ing by systemd and otherwise ignored. If a section or option name starts
with “X-”, it is ignored completely (options in an “X-” section do not need
their own “X-” prefix).

B Yes/no settings in unit files can be given in a variety of ways. 1, true, yes,
and on stand for “yes”, 0, false, no, and off for “no”.

B Times can also be specified in various ways. Simple integers will be inter-
preted as seconds2. If you append a unit, then that unit applies (allowed
units include us, ms, s, min, h, d, w in increasing sequence from microseconds
to weeks—see systemd.time(7)). You can concatenate several time specifica-
tions with units (as in “10min 30s”), and these times will be added (here,
630 seconds).

1The syntax is inspired by the .desktop files of the “XDG Desktop Entry Specification” [XDG-DS14],
which in turn have been inspired by the INI files of Microsoft Windows.

2Most of the time, anyway—there are (documented) exceptions.

18.2 Unit Files 279

This file is part of systemd.

#

systemd is free software; you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as

published by the Free Software Foundation; either version 2.1

of the License, or (at your option) any later version.

[Unit]

Description=Console Getty

Documentation=man:agetty(8)

After=systemd-user-sessions.service plymouth-quit-wait.service

After=rc-local.service

Before=getty.target

[Service]

ExecStart=-/sbin/agetty --noclear --keep-baud console �

� 115200,38400,9600 $TERM

Type=idle

Restart=always

RestartSec=0

UtmpIdentifier=cons

TTYPath=/dev/console

TTYReset=yes

TTYVHangup=yes

KillMode=process

IgnoreSIGPIPE=no

SendSIGHUP=yes

[Install]

WantedBy=getty.target

Figure 18.1: A systemd unit file: console-getty.service

280 18 Systemd

Searching and finding settings Systemd tries to locate unit files along a list of
directories that is hard-coded in the program. Directories nearer the front of the
list have precedence over directories nearer the end.

B The details are system-dependent, at least to a certain degree. The usual list
is normally something like

/etc/systemd/system Local configuration
/run/systemd/system Dynamically generated unit files
/lib/systemd/system Unit files for distribution packages

Systemd offers various clever methods for customising settings without havingLocal customisation

to change the unit files generally provided by your distribution—which would be
inconvenient if the distribution updates the unit files. Imagine you want to change
a few settings in the example.service file:

• You can copy the distribution’s example.service file from /lib/systemd/system

to /etc/systemd/system and make any desired customisations. The unit file
furnished by the distribution will then not be considered at all.

• You can create a directory /etc/systemd/system/example.service.d containing a
file—for example, local.conf. The settings in that file override settings with
the same name in /lib/systemd/system/example.service, but any settings not
mentioned in local.conf stay intact.

B Take care to include any required section titles in local.conf, such that
the options can be identified correctly.

B Nobody keeps you from putting several files into /etc/systemd/system/

example.service.d. The only prerequisite is that file names must end in
.conf. Systemd makes no stipulation about the order in which these
files are read—it is best to ensure that every option occurs in just one
single file.

Template unit files Sometimes several services can use the same or a very similar
unit file. In this case it is convenient not to have to maintain several copies of
the same unit file. Consider, for example, the terminal definition lines in /etc/

inittab—it would be good not to have to have one unit file per terminal.
Systemd supports this by means of unit files with names like example@.service.

You could, for example, have a file called getty@.service and then configure a vir-Instantiation

tual console on /dev/tty2 simply by creating a symbolic link from getty@tty2.service

to getty@.service. When this console is to be activated, systemd reads the getty@

.service file and replaces the %I key, wherever it finds it, by whatever comes be-
tween @ and . in the name of the unit file, i. e., tty2. The result of that replacement
is then put into force as the configuration.

B In fact, systemd replaces not just %I but also some other sequences (and that
not just in template unit files). The details may be found in systemd.unit(5),
in the “Specifiers” section.

Basic settings All unit files may contain the [Unit] and [Install] sections. The
former contains general information about the unit, the latter provides details for
its installation (for example, to introduce explicit dependencies—which we shall
discuss later).

Here are some of the more important options from the [Unit] section (the com-
plete list is in systemd.unit(5)):

Description A description of the unit (as free text). Will be used to make user in-
terfaces more friendly.

18.3 Unit Types 281

Documentation A space-separated list of URLs containing documentation for the
unit. The allowed protocol schemes include http:, https:, file:, info:, and
man: (the latter three refer to locally-installed documentation). An empty
value clears the list.

OnFailure A space-separated list of other units which will be activated if this unit
transitions into the failed state.

SourcePath The path name of a configuration file from which this unit file has been
generated. This is useful for tools that create unit files for systemd from
external configuration files.

ConditionPathExists Checks whether there is a file (or directory) under the given
absolute path name. If not, the unit will be classed as failed. If there is a
! in front of the path name, then a file (or directory) with that name must
not exist. (There are loads of other “Condition…” tests—for example, you can
have the execution of units depend on whether the system has a particular
computer architecture, is running in a virtual environment, is running on
AC or battery power or on a computer with a particular name, and so on.
Read up in systemd.unit(5).)

Exercises

C 18.2 [!2] Browse the unit files of your system under /lib/systemd/system (or
/usr/lib/systemd/system, depending on the distribution). How many different
Condition… options can you find?

18.3 Unit Types

Systemd supports a wide variety of “units”, or system components that it can
manage. These are easy to tell apart by the extensions of the names of the corre-
sponding unit files. As mentioned in Section 18.2, all units share the same basic
file format. Here is a list of the most important unit types:

.service A process on the computer that is executed and managed by systemd.
This includes both background services that stay active for a long time (pos-
sibly until the system is shut down), and processes that are only executed
once (for example when the system is booting).

B When a service is invoked by name (such as example) but no correspond-
ing unit file (here, example.service) can be found, systemd looks for a
System-V init script with the same name and generates a service unit
for that on the fly. (The compatibility is fairly wide-ranging but not
100% complete.)

.socket A TCP/IP or local socket, i. e., a communication end point that client pro-
grams can use to contact a server. Systemd uses socket units to activate
background services on demand.

B Socket units always come with a corresponding service unit which will
be started when systemd notes activity on the socket in question.

.mount A “mount point” on the system, i. e., a directory where a file system should
be mounted.

B The names of these units are derived from the path name by means
of replacing all slashes (“/”) with hyphens (“-”) and all other non-
alphanumeric (as per ASCII) characters with a hexadecimal replace-
ment such as \x2d (“.” is only converted if it is the first charac-
ter of a path name). The name of the root directory (“/”) becomes

282 18 Systemd

“-”, but slashes at the start or end of all other names are removed.
The directory name /home/lost+found, for instance, becomes home-lost\

textbackslash x2bfound.

B You can try this replacement using the “systemd-escape -p” command:

$ systemd-escape -p /home/lost+found

-home-lost\x2bfound

$ systemd-escape -pu home-lost\\x2bfound

/home/lost+found

The “-p” option marks the parameter as a path name. The “-u” option
undoes the replacement.

.automount Declares that a mount point should be mounted on demand (instead
of prophylactically when the system is booted). The names of these units
result from the same path name transformation. The details of mounting
must be described by a corresponding mount unit.

.swap Describes swap space on the system. The names of these units result from
the path name transformation applied to the device or file name in question.

.target A “target”, or synchronisation point for other units during system boot
or when transitioning into other system states. Vaguely similar to System-V
init’s runlevels. See Section 18.5.

.path Observes a file or a directory and starts another unit (by default, a service
unit of the same name) when, e. g., changes to the file have been noticed or
a file has been added to an otherwise empty directory.

.timer Starts another unit (by default, a service unit of the same name) at a cer-
tain point in time or repeatedly at certain intervals. This makes systemd a
replacement for cron and at.

(There are a few other unit types, but to explain all of them here would be carrying
things too far.)

Exercises

C 18.3 [!2] Look for examples for all of these units on your system. Examine
the unit files. If necessary, consult the manpages for the various types.

18.4 Dependencies

As we have mentioned before, systemd can mostly get by without explicit depen-
dencies because it is able to exploit implicit dependencies (e. g., on communication
channels). Even so, it is sometimes necessary to specify explicit dependencies.
Various options in the [Unit] section of a service file (e.g., example.service) allow
you to do just that. For example:

Requires Specifies a list of other units. If the current unit is activated, the listed
units are also activated. If one of the listed units is deactivated or its acti-
vation fails, then the current unit will also be deactivated. (In other words,
the current unit “depends on the listed units”.)

B The Requires dependencies have nothing to do with the order in which
the units are started or stopped—you will have to configure that sepa-
rately with After or Before. If no explicit order has been specified, sys-
temd will start all units at the same time.

18.4 Dependencies 283

B You can specify these dependencies without changing the unit file, by
creating a directory called /etc/systemd/system/example.service.requires

and adding symbolic links to the desired unit files to it. A directory
like
ls -l /etc/systemd/system/example.service.requires

lrwxrwxrwx 1 root root 34 Jul 17 15:56 network.target -> �

� /lib/systemd/system/network.target

lrwxrwxrwx 1 root root 34 Jul 17 15:57 syslog.service -> �

� /lib/systemd/system/syslog.service

corresponds to the setting

[Unit]

Requires = network.target syslog.service

in example.service.

Wants A weaker form of Requires. This means that the listed units will be started to-
gether with the current unit, but if their activation fails this has no influence
on the process as a whole. This is the recommended method of making the
start of one unit depend on the start of another one.

B Here, too, you can specify the dependencies “externally” by creating a
directory called example.service.wants.

Conflicts The reverse of Requires—the units listed here will be stopped when the
current unit is started, and vice versa.

B Like Requires, Conflicts makes no stipulation to the order in which units
are started or stopped.

B If a unit 𝑈 conflicts with another unit 𝑉 and both are to be started at
the same time, this operation fails if both units are an essential part of
the operation. If one (or both) units are not essential parts of the op-
eration, the operation is modified: If only one unit is not mandatory,
that one will not be started, if both are not mandatory, the one men-
tioned in Conflicts will be started and the one whose unit file contains
the Conflicts option will be stopped.

Before (and After) These lists of units determine the starting order. If example.

service contains the “Before=example2.service” option and both units are be-
ing started, the start of example2.service will be delayed until example.service
has been started. After is the converse of Before, i. e., if example2.service con-
tains the option “After=example.service” and both units are being started, the
same effect results—example2.service will be delayed.

B Notably, this has nothing to do with the dependencies in Requires and
Conflicts. It is common, for example, to list units in both Requires and
After. This means that the listed unit will be started before the one
whose unit file contains these settings.

When deactivating units, the reverse order is observed. If a unit with a Before

or After dependency on another unit is deactivated, while the other is being
started, then the deactivation takes place before the activation no matter in
which direction the dependency is pointing. If there is no Before or After

dependency between two units, they will be started or stopped simultane-
ously.

284 18 Systemd

Table 18.1: Common targets for systemd (selection)

Target Description
basic.target Basic system startup is finished (file systems, swap

space, sockets, timers etc.)
ctrl-alt-del.target Is executed when Ctrl + Alt + Del was pressed. Often

the same as reboot.target.
default.target Target which systemd attempts to reach on sys-

tem startup. Usually either multi-user.target or
graphical.target.

emergency.target Starts a shell on the system console. For emer-
gencies. Is usually activated by means of the
“systemd.unit=emergency.target” on the kernel command
line.

getty.target Activates the statically-defined getty instances (for ter-
minals). Corresponds to the getty lines in /etc/inittab

on System-V init.
graphical.target Establishes a graphical login prompt. Depends on

multi-user.target.
halt.target Stops the system (without powering it down).
multi-user.target Establishes a multi-user system without a graphical lo-

gin prompt. Used by graphical.target.
network-online.target Serves as a dependency for units that require network

services (not ones that provide network services), such
as mount units for remote file systems. How exactly the
system determines whether the network is available de-
pends on the method for network configuration.

poweroff.target Stops the system and powers it down.
reboot.target Restarts the system.
rescue.target Performs basic system initialisation and then starts a

shell.

Exercises

C 18.4 [!1] What advantage do we expect from being able to configure depen-
dencies via symbolic links in directories like example.service.requires instead
of the example.service unit file?

C 18.5 [2] Check your system configuration for examples of Requires, Wants and
Conflicts dependencies, with or without corresponding Before and After de-
pendencies.

18.5 Targets

Targets in systemd are roughly similar to runlevels in System-V init: a possibil-
ity of conveniently describing a set of services. While System-V init allows only
a relatively small number of runlevels and their configuration is fairly involved,
systemd makes it possible to define various targets very easily.

Unit files for targets have no special options (the standard set of options for
[Unit] and [Install] should be enough). Targets are only used to aggregate other
units via dependencies or create standardised names for synchronisation points in
dependencies (local-fs.target, for example, can be used to start units depending
on local file systems only once these are actually available). An overview of the
most important targets is in Table 18.1.

In the interest of backwards compatibility to System-V init, systemd defines a
number of targets that correspond to the classical runlevels. Consider Table 18.2.

18.5 Targets 285

Table 18.2: Compatibility targets for System-V init

Ziele Äquivalent
runlevel0.target poweroff.target

runlevel1.target rescue.target

runlevel2.target multi-user.target (recommended)
runlevel3.target graphical.target (recommended)
runlevel4.target graphical.target (recommended)
runlevel5.target graphical.target (recommended)
runlevel6.target reboot.target

You can set the default target which systemd will attempt to reach on system default target

boot by creating a symbolic link from /etc/systemd/system/default.target to the de-
sired target’s unit file:

cd /etc/systemd/system

ln -sf /lib/systemd/system/multi-user.target default.target

(This is the moral equivalent to the initdefault line in the /etc/inittab file of System-
V init.) A more convenient method is the “systemctl set-default” command:

systemctl get-default

multi-user.target

systemctl set-default graphical

Removed symlink /etc/systemd/system/default.target.

Created symlink from /etc/systemd/system/default.target to �

� /lib/systemd/system/graphical.target.

systemctl get-default

graphical.target

(As you can see, that doesn’t do anything other than tweak the symbolic link,
either.)

To activate a specific target (like changing to a specific runlevel on System-V Activate specific target

init), use the “systemctl isolate” command:

systemctl isolate multi-user

(“File*.target” will be appended to the parameter if necessary). This command
starts all units that the target depends upon and stops all other units.

B “systemctl isolate” works only for units in whose [Unit] sections the “AllowIsolate”
option is switched on.

To stop the system or to change to the rescue mode (System-V init aficionados
would call this “single-user mode”) there are the shortcuts

systemctl rescue

systemctl halt

systemctl poweroff Like halt, but with power-down
systemctl reboot

These commands correspond roughly to their equivalents using “systemctl isolate”,
but also output a warning to logged-in users. You can (and should!) of course
keep using the shutdown command.

You can return to the default operating state using

systemctl default

286 18 Systemd

Exercises

C 18.6 [!2] Which other services does the multi-user.target depend on? Do
these units depend on other units in turn?

C 18.7 [2] Use “systemctl isolate” to change your system to the rescue (single-
user) mode, and “systemctl default” to come back to the standard mode.
(Hint: Do this from a text console.)

C 18.8 [2] Restart your system using “systemctl reboot” and then once again
with shutdown. Consider the difference.

18.6 The systemctl Command

The systemctl command is used to control systemd. We have already seen a few
applications, and here is a more systematic list. This is, however, still only a small
excerpt of the complete description.

The general structure of systemctl invocations is

systemctl ⟨subcommand⟩ ⟨parameters⟩ …

systemctl supports a fairly large zoo of subcommands. The allowable parameters
(and options) depend on the subcommand in question.

B Often unit names are expected as parameters. These can be specifiedunit names as parameters

either with a file name extension (like, e. g., example.service) or without
(example). In the latter case, systemd appends an extension that it considers
appropriate—with the start command, for example, “.service”, with the
isolate command on the other hand, “.target”.

Commands for units The following commands deal with units and their man-
agement:

list-units Displays the units systemd knows about. You may specify a unit type
(service, socket, …) or a comma-separated list of unit types using the -t op-
tion, in order to confine the output to units of the type(s) in question. You
can also pass a shell search pattern in order to look for specific units:

systemctl list-units "ssh*"

UNIT LOAD ACTIVE SUB DESCRIPTION

ssh.service loaded active running OpenBSD Secure Shell server

LOAD = Reflects whether the unit definition was properly loaded.

ACTIVE = The high-level unit activation state, i.e. generalization

of SUB.

SUB = The low-level unit activation state, values depend on

unit type.

1 loaded units listed. Pass --all to see loaded but inactive units,

too. To show all installed unit files use 'systemctl

list-unit-files'.

B As usual, quotes are a great idea here, so the shell will not vandalise
the search patterns that are meant for systemd.

start Starts one or more units mentioned as parameters.

18.6 The systemctl Command 287

B You can use shell search patterns here, too. The search patterns only
work for units that systemd knows about; inactive units that are not
in a failed state will not be searched, nor will units instantiated from
templates whose exact names are not known before the instantiation.
You should not overtax the search patterns.

stop Stops one or more units mentioned as parameters (again with search pat-
terns).

reload Reloads the configuration for the units mentioned as parameters (if the pro-
grams underlying these units go along). Search patterns are allowed.

B This concerns the configuration of the background services them-
selves, not the configuration of the services from systemd’s point of
view. If you want systemd to reload its own configuration with respect
to the background services, you must use the “systemctl daemon-reload”
command.

B What exactly happens on a “systemctl reload” depends on the back-
ground service in question (it usually involves a SIGHUP). You can con-
figure this in the unit file for the service.

restart Restarts the units mentioned as parameters (search patterns are allowed).
If a unit doesn’t yet run, it is simply started.

try-restart Like restart, but units that don’t run are not started.

reload-or-restart (and reload-or-try-restart) Reloads the configuration of the
named units (as per reload), if the units allow this, or restarts them (as
per restart or try-restart) if they don’t.

B Instead of reload-or-try-restart you can say force-reload for convenience
(this is at least somewhat shorter).

isolate The unit in question is started (including its dependencies) and all other
units are stopped. Corresponds to a runlevel change on System-V init.

kill Sends a signal to one or several processes of the unit. You can use the
--kill-who option to specify which process is targeted. (The options include
main, control, and all—the latter is the default—, and main and control are
explained in more detail in systemctl(1).) Using the --signal option (-s for
short) you can determine which signal is to be sent.

status Displays the current status of the named unit(s), followed by its most recent
log entries. If you do not name any units, you will get an overview of all
units (possibly restricted to particular types using the -t option).

B The log excerpt is usually abridged to 10 lines, and long lines will be
shortened. You can change this using the --lines (-n) and --full (-l)
options.

B “status” is used for human consumption. If you want output that is
easy to process by other programs, use “systemctl show”.

cat Displays the configuration file(s) for one or more units (including fragments
in configuration directories specifically for that unit). Comments with the
file names in question are inserted for clarity.

help Displays documentation (such as man pages) for the unit(s) in question: For
example,

$ systemctl help syslog

288 18 Systemd

invokes the manual page for the system log service, regardless of which
program actually provides the log service.

B With most distributions, commands like

service example start

service example stop

service example restart

service example reload

work independently of whether the system uses systemd or System-V init.

In the next section, there are a few commands that deal with installing and
deinstalling units.

Other commands Here are a few commands that do not specifically deal with
particular units (or groups of units).
daemon-reload This command causes systemd to reload its configuration. This in-

cludes regenerating unit files that have been created at runtime from other
configuration files on the system, and reconstructing the dependency tree.

B Communication channels that systemd manages on behalf of back-
ground services will persist across the reload.

daemon-reexec Restarts the systemd program. This saves systemd’s internal state and
restores it later.

B This command is mostly useful if a new version of systemd has been
installed (or for debugging systemd. Here, too, communication channels
that systemd manages on behalf of background services will persist
across the reload.

is-system-running Outputs the current state of the system. Possible answers in-
clude:

initializing The system is in the early boot stage (the basic.target, rescue.target,
or emergency.target targets have not yet been reached).

starting The system is in the late boot stage (there are still jobs in the queue).
running The system is running normally.
degraded The system is running normally, but one or more units are in a

failed state.
maintenance One of the rescue.target or emergency.target targets are active.
stopping The system is being shut down.

Exercises

C 18.9 [!2] Use systemctl to stop, start, and restart a suitably innocuous service
(such as cups.service) and to reload its configuration.

C 18.10 [2] The runlevel command of System-V init outputs the system’s cur-
rent runlevel. What would be an approximate equivalent for systemd?

C 18.11 [1] What is the advantage of

systemctl kill example.service

versus

killall example

(or “pkill example”)?

18.7 Installing Units 289

18.7 Installing Units

To make a new background service available using systemd, you need a unit file,
for example example.service. (Thanks to backwards compatibility, a System-V init
script would also do, but we won’t go there just now.) You need to place this in a
suitable file (we recommend /etc/systemd/system. Next, it should appear when you
invoke “systemctl list-unit-files”:

systemctl list-unit-files

UNIT FILE STATE

proc-sys-fs-binfmt_misc.automount static

org.freedesktop.hostname1.busname static

org.freedesktop.locale1.busname static

�����

example.service disabled

�����

The disabled state means that the unit is available in principle, but is not being
started automatically.

You can “activate” the unit, or mark it to be started when needed (e. g., during Activating units

system startup or if a certain communication channel is being accessed), by issuing
the “systemctl enable” command:

systemctl enable example

Created symlink from /etc/systemd/system/multi-user.target.wants/�

�example.service to /etc/systemd/system/example.service.

The command output tells you what happens here: A symbolic link to the ser-
vice’s unit file from the /etc/systemd/system/multi-user.target.wants directory en-
sures that the unit will be started as a dependency of the multi-user.target.

B You may ask yourself how systemd knows that the example unit should be
integrated in the multi-user.target (and not some other target). The answer
to that is: The example.service file has a section saying

[Install]

WantedBy=multi-user.target

After an enable, systemd does the equivalent of a “systemctl daemon-reload”. How-
ever, no units will be started (or stopped).

B You could just as well create the symbolic links by hand. You would, how-
ever, have to take care of the “systemctl daemon-reload” yourself, too.

B If you want the unit to be started immediately, you can either give the

systemctl start example

command immediately afterwards, or you invoke “systemctl enable” with the
--now option.

B You can start a unit directly (using “systemctl start”) without first activating
it with “systemctl enable”. The former actually starts the service, while the
latter only arranges for it to be started at an appropriate moment (e. g., when
the system is booted, or a specific piece of hardware is connected).

You can deactivate a unit again with “systemctl disable”. As with enable, sys-
temd does an implicit daemon-reload.

290 18 Systemd

B Here, too, the unit will not be stopped if it is currently running. (You are
just preventing it from being activated later on.) Use the --now option or an
explicit “systemctl stop”.

B The “systemctl reenable” command is equivalent to a “systemctl disable” im-
mediately followed by a “systemctl enable” for the units in question. This lets
you do a “factory reset” of units.

The “systemctl mask” command lets you “mask” a unit. This means to block itMasking a unit

completely. This will not only prevent it from starting automatically, but will also
keep it from being started by hand. “systemctl unmask” reverts that operation.

B Systemd implements this by linking the name of the unit file in /etc/systemd/

system symbolically to /dev/null. Thus, eponymous files in directories that
systemd considers later (like /lib/systemd/system) will be completely ignored.

Exercises

C 18.12 [!2] What happens if you execute “systemctl disable cups”? (Watch the
commands being output.) Reactivate the service again.

C 18.13 [2] How can you “mask” units whose unit files are in /etc/systemd/

system?

Commands in this Chapter

systemctl Main control utility for systemd systemctl(1) 277, 286

Summary

• Systemd is a modern alternative to System-V init.
• “Units” are system components managed by systemd. They are configured

using unit files.
• Unit files bear a vague resemblance to Microsoft Windows INI files.
• Systemd supports flexible mechanisms for local configuration and the au-

tomatic creation of similar unit files from “templates”.
• Systemd lets you manage a multitude of different units—services, mount

points, timers, …
• Dependencies between units can be expressed in various ways.
• “Targets” are units that vaguely correspond to System-V init’s runlevels.

They are used to group related services and for synchronisation.
• You can use the systemctl command to control systemd.
• Systemd contains powerful tools to install and deinstall units.

Bibliography

systemd “systemd System and Service Manager”.
http://www.freedesktop.org/wiki/Software/systemd/

XDG-DS14 Preston Brown, Jonathan Blandford, Owen Taylor, et al. “Desktop
Entry Specification”, April 2014.

http://standards.freedesktop.org/desktop-entry-spec/latest/

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

19
Time-controlled Actions—cron and
at

Contents

19.1 Introduction. 292
19.2 One-Time Execution of Commands 292

19.2.1 at and batch . 292
19.2.2 at Utilities . 294
19.2.3 Access Control 294

19.3 Repeated Execution of Commands 295
19.3.1 User Task Lists 295
19.3.2 System-Wide Task Lists 296
19.3.3 Access Control 297
19.3.4 The crontab Command 297
19.3.5 Anacron . 298

Goals

• Executing commands at some future time using at

• Executing commands periodically using cron

• Knowing and using anacron

Prerequisites

• Using Linux commands
• Editing files

grd2-automatisierung.tex (6eb247d0aa1863fd)

292 19 Time-controlled Actions—cron and at

19.1 Introduction

An important component of system administration consists of automating re-
peated procedures. One conceivable task would be for the mail server of the
company network to dial in to the ISP periodically to fetch incoming messages.
In addition, all members of a project group might receive a written reminder half
an hour before the weekly project meeting. Administrative tasks like file system
checks or system backups can profitably be executed automatically at night when
system load is noticably lower.

To facilitate this, Linux offers two services which will be discussed in the fol-
lowing sections.

19.2 One-Time Execution of Commands

19.2.1 at and batch

Using the at service, arbitrary shell commands may be executed once at some time
in the future (time-shifted). If commands are to be executed repeatedly, the use
of cron (Section 19.3) is preferable.

The idea behind at is to specify a time at which a command or command se-
quence will be executed. Roughly like this:

$ at 01:00

warning: commands will be executed using /bin/sh

at> tar cvzf /dev/st0 $HOME

at> echo "Backup done" | mail -s Backup $USER

at> Ctrl + D

Job 123 at 2003-11-08 01:00

This would write a backup copy of your home directory to the first tape drive at
1 A. M. (don’t forget to insert a tape) and then mail a completion notice to you.

at’s argument specifies when the command(s) are to be run. Times liketime specification

“⟨HH⟩:⟨MM⟩” denote the next possible such time: If the command “at 14:00”
is given at 8 A. M., it refers to the same day; if at 4 P. M., to the next.

B You can make these times unique by appending today or tomorrow: “at 14:00

today”, given before 2 P. M., refers to today, “at 14:00 tomorrow”, to tomorrow.

Other possibilities include Anglo-Saxon times such as 01:00am or 02:20pm as well as
the symbolic names midnight (12 A. M.), noon (12 P. M.), and teatime (4 P. M.) (!); the
symbolic name now is mostly useful together with relative times (see below).

In addition to times, at also understands date specifications in the formatdate specifications

“⟨MM⟩⟨DD⟩⟨YY⟩” and “⟨MM⟩/⟨DD⟩/⟨YY⟩” (according to American usage, with
the month before the day) as well as “⟨DD⟩.⟨MM⟩.⟨YY⟩” (for Europeans). Be-
sides, American-style dates like “⟨month name⟩ ⟨day⟩” and “⟨month name⟩ ⟨day⟩
⟨year⟩” may also be spelled out. If you specify just a date, commands will be
executed on the day in question at the current time; you can also combine a date
and time specification but must give the date after the time:

$ at 00:00 January 1 2005

warning: commands will be executed using /bin/sh

at> echo 'Happy New Year!'

at> Ctrl + D

Job 124 at 2005-01-01 00:00

Besides “explicit” time and date specification, you can give “relative” times
and dates by passing an offset from some given point in time:

19.2 One-Time Execution of Commands 293

$ at now + 5 minutes

executes the command(s) five minutes from now, while

$ at noon + 2 days

refers to 12 P. M. on the day after tomorrow (as long as the at command is given
before 12 P. M. today). at supports the units minutes, hours, days and weeks.

B A single offset by one single measurement unit must suffice: Combinations
such as

$ at noon + 2 hours 30 minutes

or

$ at noon + 2 hours + 30 minutes

are, unfortunately, disallowed. Of course you can express any reasonable
offset in minutes …

at reads the commands from standard input, i. e., usually the keyboard; with commands

the “-f ⟨file⟩” option you can specify a file instead.

B at tries to run the commands in an environment that is as like the one current
when at was called as possible. The current working directory, the umask,
and the current environment variables (excepting TERM, DISPLAY, and _) are
saved and reactivated before the commands are executed.

Any output of the commands executed by at—standard output and standard error output

output—is sent to you by e-mail.

B If you have assumed another user’s identity using su before calling at, the
commands will be executed using that identity. The output mails will still
be sent to you, however.

While you can use at to execute commands at some particular point in time,
the (otherwise analogous) batch command makes it possible to execute a command
sequence “as soon as possible”. When that will actually be depends on the current ASAP execution

system load; if the system is very busy just then, batch jobs must wait.

B An at-style time specification on batch is allowed but not mandatory. If it is
given, the commands will be executed “some time after” the specified time,
just as if they had been submitted using batch at that time.

B batch is not suitable for environments in which users compete for resources
such as CPU time. Other systems must be employed in these cases.

Exercises

C 19.1 [!1] Assume now is 1 March, 3 P. M. When will the jobs submitted using
the following commands be executed?

1. at 17:00

2. at 02:00pm

3. at teatime tomorrow

4. at now + 10 hours

C 19.2 [1] Use the logger command to write a message to the system log 3 min-
utes from now.

294 19 Time-controlled Actions—cron and at

19.2.2 at Utilities

The system appends at-submitted jobs to a queue. You can inspect the contents
of that queue using atq (you will see only your own jobs unless you are root):Inspect at queue

$ atq

123 2003-11-08 01:00 a hugo

124 2003-11-11 11:11 a hugo

125 2003-11-08 21:05 a hugo

B The “a” in the list denotes the “job class”, a letter between “a” and “z”. You
can specify a job class using the -q option to at; jobs in classes with “later”
letters are executed with a higher nice value. The default is “a” for at jobs
and “b” for batch jobs.

B A job that is currently being executed belongs to the special job class “=”.

You can use atrm to cancel a job. To do so you must specify its job number,Cancelling jobs

which you are told on submission or can look up using atq. If you want to check
on the commands making up the job, you can do that with “at -c ⟨job number⟩”.

The entity in charge of actually executing at jobs is a daemon called atd. It isdaemon

generally started on system boot and waits in the background for work. When
starting atd, several options can be specified:

-b (“batch”) Determines the minimum interval between two batch job executions.
The default is 60 seconds.

-l (“load”) Determines a limit for the system load, above which batch jobs will not
be executed. The default is 0.8.

-d (“debug”) Activates “debug” mode, i. e., error messages will not be passed to
syslogd but written to standard error output.

The atd daemon requires the following directories:

• at jobs are stored in /var/spool/atjobs. Its access mode should be 700, the
owner is at.

• The /var/spool/atspool directory serves to buffer job output. Its owner should
be at and access mode 700, too.

Exercises

C 19.3 [1] Submit a few jobs using at and display the job queue. Cancel the
jobs again.

C 19.4 [2] How would you create a list of at jobs which is not sorted according
to job number but according to execution time (and date)?

19.2.3 Access Control

The /etc/at.allow and /etc/at.deny files determine who may submit jobs using at/etc/at.allow

/etc/at.deny and batch. If the /etc/at.allow file exists, only the users listed in there are entitled
to submit jobs. If the /etc/at.allow file does not exist, the users not listed in /etc/

at.deny may submit jobs. If neither one nor the other exist, at and batch are only
available to root.

Debian GNU/Linux comes with a /etc/at.deny file containing the names of
various system users (including alias, backup, guest, and www-data). This pre-
vents these users from using at.

Here, too, the Ubuntu defaults correspond to the Debian GNU/Linux de-
faults.

19.3 Repeated Execution of Commands 295

Red Hat includes an empty /etc/at.deny file; this implies that any user may
submit jobs.

The openSUSE default corresponds (interestingly) to that of Debian GNU/Linux
and Ubuntu—various system users are not allowed to use at. (The explic-
itly excluded user www-data, for example, doesn’t exist on openSUSE; Apache
uses the identity of the wwwrun user.)

Exercises

C 19.5 [1] Who may use at and batch on your system?

19.3 Repeated Execution of Commands

19.3.1 User Task Lists

Unlike the at commands, the cron daemon’s purpose is to execute jobs at periodic
intervals. cron, like atd, should be started during system boot using an init script.
No action is required on your side, though, because cron and atd are essential parts
of a Linux system. All major distributions install them by default.

Every user has their own task list (commonly called crontab), which is stored in task list

the /var/spool/cron/crontabs (on Debian GNU/Linux and Ubuntu; on SUSE: /var/
spool/cron/tabs, on Red Hat: /var/spool/cron) directory under that user’s name. The
commands described there are executed with that user’s permissions.

B You do not have direct access to your task lists in the cron directory, so you
will have to use the crontab utility instead (see below). See also: Exercise 19.6.

crontab files are organised by lines; every line describes a (recurring) point in syntax

time and a command that should be executed at that time. Empty lines and com-
ments (starting with a “#”) will be ignored. The remaining lines consist of five time time fields

fields and the command to be executed; the time fields describe the minute (0–59), command
hour (0–23), day of month (1–31), month (1–12 or the English name), and weekday
(0–7, where 0 and 7 stand for Sunday, or the English name), respectively, at which
the command is to be executed. Alternatively, an asterisk (“*”) is allowed, which
means “whatever”. For example,

58 17 * * * echo "News is coming on soon"

that the command will be executed daily at 5.58 P. M. (day, month and weekday
are arbitrary).

B The command will be executed whenever hour, minute, and month match
exactly and at least one of the two day specifications—day of month or
weekday—applies. The specification

1 0 13 * 5 echo "Shortly after midnight"

says that the message will be output on any 13th of the month as well as
every Friday, not just every Friday the 13th.

B The final line of a crontab file must end in a newline character, lest it be ig-
nored.

In the time fields, cron accepts not just single numbers, but also comma-
separated lists. The “0,30” specification in the minute field would thus lead to the lists

command being executed every “full half” hour. Besides, ranges can be specified:
“8-11” is equivalent to “8,9,10,11”, “8-10,14-16” corresponds to “8,9,10,14,15,16”.

296 19 Time-controlled Actions—cron and at

Also allowed is a “step size” in ranges. “0-59/10” in the minute field is equivalent
to “0,10,20,30,40,50”. If—like here—the full range of values is being covered, you
could also write “*/10”.

The names allowed in month and weekday specifications each consist of themonth and week-
day specifications first three letters of the English month or weekday name (e. g., may, oct, sun, or wed).

Ranges and lists of names are not permissible.
The rest of the line denotes the command to be executed, which will be passedcommand

by cron to /bin/sh (or the shell specified in the SHELL variable, see below).

B Percent signs (%) within the command must be escaped using a backslash
(as in “\%”), lest they be converted to newline characters. In that case, the
command is considered to extend up to the first (unescaped) percent sign;
the following “lines” will be fed to the command as its standard input.

B By the way: If you as the system administrator would rather not (as cron is
wont to do) a command execution be logged using syslogd, you can suppress
this by putting a “-” as the first character of the line.

Besides commands with repetition specifications, crontab lines may also include
assignments to environment variables. These take the form “⟨variable⟩=⟨value⟩”assignments to en-

vironment variables (where, unlike in the shell, there may be spaces before and after the “=”). If the
⟨value⟩ contains spaces, it should be surrounded by quotes. The following vari-
ables are pre-set automatically:

SHELL This shell is used to execute the commands. The default is /bin/sh, but other
shells are allowed as well.

LOGNAME The user name is taken from /etc/passwd and cannot be changed.

HOME The home directory is also taken from /etc/passwd. However, changing its
value is allowed.

MAILTO cron sends e-mail containing command output to this address (by default,
they go to the owner of the crontab file). If cron should send no messages at
all, the variable must be set to a null value, i. e., MAILTO="".

19.3.2 System-Wide Task Lists

In addition to the user-specific task lists, there is also a system-wide task list. This
resides in /etc/crontab and belongs to root, who is the only user allowed to change/etc/crontab

it. /etc/crontab’s syntax is slightly different from that of the user-specific crontab

files; between the time fields and the command to be executed there is the name
of the user with whose privileges the command is supposed to be run.

B Various Linux distributions support a /etc/cron.d directory; this directory
may contain files which are considered “extensions” of /etc/crontab. Soft-
ware packages installed via the package management mechanism find it
easier to make use of cron if they do not have to add or remove lines to
/etc/crontab.

B Another popular extension are files called /etc/cron.hourly, /etc/cron.daily

and so on. In these directories, software packages (or the system admin-
istrator) can deposit files whose content will be executed hourly, daily, …
These files are “normal” shell scripts rather than crontab-style files.

cron reads its task lists—from user-specific files, the system-wide /etc/crontab,
and the files within /etc/cron.d, if applicable—once on starting and then keeps
them in memory. However, the program checks every minute whether any crontabcrontab changes and cron

files have changed. The “mtime”, the last-modification time, is used for this. If
cron does notice some modification, the task list is automatically reconstructed. In
this case, no explicit restart of the daemon is necessary.

19.3 Repeated Execution of Commands 297

Exercises

C 19.6 [2] Why are users not allowed to directly access their task lists in /var/

spool/cron/crontabs (or wherever your distribution keeps them)? How does
crontab access these files?

C 19.7 [1] How can you arrange for a command to be executed on Friday, the
13th, only?

C 19.8 [3] How does the system ensure that the tasks in /etc/cron.hourly, /etc/
cron.daily, … are really executed once per hour, once per day, etc.?

19.3.3 Access Control

Which users may work with cron to begin with is specified, in a manner similar
to that of at, in two files. The /etc/cron.allow file (sometimes /var/spool/cron/allow)
lists those users who are entitled to use cron. If that file does not exist but the /etc/

cron.deny (sometimes /var/spool/cron/deny) file does, that file lists those users who
may not enjoy automatic job execution. If neither of the files exists, it depends on
the configuration whether only root may avail himself of cron’s services or whether
cron is “free for all”, and any user may use it.

19.3.4 The crontab Command

Individual users cannot change their crontab files manually, because the system
hides these files from them. Only the system-wide task list in /etc/crontab is subject
to root’s favourite text editor.

Instead of invoking an editor directly, all users should use the crontab com- managing task lists

mand. This lets them create, inspect, modify, and remove task lists. With

$ crontab -e

you can edit your crontab file using the editor which is mentioned in the VISUAL or
EDITOR environment variables—alternatively, the vi editor. After the editor termi-
nates, the modified crontab file is automatically installed. Instead of the -e option,
you may also specify the name of a file whose content will be installed as the task
list. The “-” file name stands for standard input.

With the -l option, crontab outputs your crontab file to standard output; with
the -r option, an existing task list is deleted with prejudice.

B With the “-u ⟨user name⟩” option, you can refer to another user (expect to
be root to do so). This is particularly important if you are using su; in this
case you should always use -u to ensure that you are working on the correct
crontab file.

Exercises

C 19.9 [!1] Use the crontab program to register a cron job that appends the
current date to the file /tmp/date.log once per minute. How can you make it
append the date every other minute?

C 19.10 [1] Use crontab to print the content of your task list to the standard
output. Then delete your task list.

C 19.11 [2] (For administrators:) Arrange that user hugo may not use the cron

service. Check that your modification is effective.

298 19 Time-controlled Actions—cron and at

19.3.5 Anacron

Using cron you can execute commands repeatedly at certain points in time. This
obviously works only if the computer is switched on at the times in question –
there is little point in configuring a 2am cron job on a workstation PC when that
PC is switched off outside business hours to save electricity. Mobile computers,
too, are often powered on or off at odd times, which makes it difficult to schedule
the periodic automated clean-up tasks a Linux system needs.

The anacron program (originally by Itai Tzur, now maintained by Pascal Hakim),
like cron, can execute jobs on a daily, weekly, or monthly basis. (In fact, arbitrary
periods of 𝑛 days are fine.) The only prerequisite is that, on the day in question,
the computer be switched on long enough for the jobs to be executed—the exact
time of day is immaterial. However, anacron is activated at most once a day; if you
need a higher frequency (hours or minutes) there is no way around cron.

B Unlike cron, anacron is fairly primitive as far as job management is concerned.
With cron, potentially every user can create jobs; with anacron, this is the
system administrator’s privilege.

The jobs for anacron are specified in the /etc/anacrontab file. In addition to the
customary comments and blank lines (which will be ignored) it may contain as-
signments to environment variables of the form

SHELL=/bin/sh

and job descriptions of the form

7 10 weekly run-parts /etc/cron.weekly

where the first number (here 7) stands for the period (in days) between invocations
of the job. The second number (10) denotes how many minutes after the start of
anacron the job should be launched. Next is a name for the job (here, weekly) and
finally the command to be executed. Overlong lines can be wrapped with a “\” at
the end of the line.

B The job name may contain any characters except white space and the slash.
It is used to identify the job in log messages, and anacron also uses it as the
name of the file in which it logs the time the job was last executed. (These
files are usually placed in /var/spool/anacron.)

When anacron is started, it reads /etc/anacrontab and, for each job, checks
whether it was run within the last 𝑡 days, where 𝑡 is the period from the job
definition. If not, then anacron waits the number of minutes given in the job
definition and then launches the shell command.

B You can specify a job name on anacron’s command line to execute only that
job (if any). Alternatively, you can specify shell search patterns on the com-
mand line in order to launch groups of (skilfully named) jobs with one
anacron invocation. Not specifying any job names at all is equivalent to the
job name, “*”.

B You may also specify the time period between job invocations symbolically:
Valid values include @daily, @weekly, @monthly, @yearly and @annually (the last
two are equivalent).

B In the definition of an environment variable, white space to the left of the “=”
is ignored. To the right of the “=”, it becomes part of the variable’s value.
Definitions are valid until the end of the file or until the same variable is
redefined.

19.3 Repeated Execution of Commands 299

B Some “environment variables” have special meaning to anacron. With
RANDOM_DELAY, you can specify an additional random delay1 for the job launches:
When you set the variable to a number 𝑡, then a random number of minutes
between 0 and 𝑡 will be added to the delay given in the job description.
START_HOURS_RANGE lets you denote a range of hours (on a clock) during which
jobs will be started. Something like

START_HOURS_RANGE=10-12

allows new jobs to be started only between 10am and 12pm. Like cron,
anacron sends job output to the address given by the MAILTO variable, oth-
erwise to the user executing anacron (usually root).

Usually anacron executes the jobs independently and without attention to over-
laps. Using the -s option, jobs are executed “serially”, such that anacron starts a
new job only when the previous one is finished.

Unlike cron, anacron is not a background service, but is launched when the sys-
tem is booted in order to execute any leftover jobs (the delay in minutes is used to
postpone the jobs until the system is running properly, in order to avoid slowing
down the start procedure). Later on you can execute anacron once a day from cron

in order to ensure that it does its thing even if the system is running for a longer
period of time than normally expected.

B It is perfectly feasible to install cron and anacron on the same system. While
anacron usually executes the jobs in /etc/cron.daily, /etc/cron.weekly, and /etc/

cron.monthly that are really meant for cron, the system ensures that anacron

does nothing while cron is active. (See also Exercise 19.13.)

Exercises

C 19.12 [!2] Convince yourself that anacron is working as claimed. (Hint: If
you don’t want to wait for days, try cleverly manipulating the time stamps
in /var/spool/anacron.)

C 19.13 [2] On a long-running system that has both cron and anacron installed,
how do you avoid anacron interfering with cron? (Hint: Examine the content
of /etc/cron.daily and friends.)

Commands in this Chapter

anacron Executes periodic job even if the computer does not run all the time
anacron(8) 298

at Registers commands for execution at a future point in time at(1) 292
atd Daemon to execute commands in the future using at atd(8) 294
atq Queries the queue of commands to be executed in the future

atq(1) 293
atrm Cancels commands to be executed in the future atrm(1) 294
batch Executes commands as soon as the system load permits batch(1) 293
crontab Manages commands to be executed at regular intervals crontab(1) 297

1Duh!

300 19 Time-controlled Actions—cron and at

Summary

• With at, you can register commands to be executed at some future (fixed)
point in time.

• The batch command allows the execution of commands as soon as system
load allows.

• atq and atrm help manage job queues. The atd daemon causes the actual
execution of jobs.

• Access to at and batch is controlled using the /etc/at.allow and /etc/at.deny

files.
• The cron daemon allows the periodic repetition of commands.
• Users can maintain their own task lists (crontabs).
• A system-wide task list exists in /etc/crontab and—on many distribu-

tions—in the /etc/cron.d directory.
• Access to cron is managed similarly to at, using the /etc/cron.allow and /etc/

cron.deny files.
• The crontab command is used to manage crontab files.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

20
System Logging

Contents

20.1 The Problem . 302
20.2 The Syslog Daemon 302
20.3 Log Files . 305
20.4 Kernel Logging . 306
20.5 Extended Possibilities: Rsyslog 306
20.6 The “next generation”: Syslog-NG. 310
20.7 The logrotate Program 314

Goals

• Knowing the syslog daemon and how to configure it
• Being able to manage log file using logrotate

• Understanding how the Linux kernel handles log messages

Prerequisites

• Basic knowledge of the components of a Linux system
• Handling configuration files

adm2-syslog.tex (0cd20ee1646f650c)

302 20 System Logging

20.1 The Problem

Application programs need to tell their users something now and then. The com-
pletion of a task or an error situation or warning must be reported in a suitable
manner. Text-oriented programs output appropriate messages on their “termi-
nal”; GUI-based programs might use “alert boxes” or status lines whose content
changes.

The operating system kernel and the system and network services running in
the background, however, are not connected to user terminals. If such a process
wants to output a message, it might write it to the system console’s screen; on X11,
such messages might show up in the xconsole window.

In multi-user mode, writing a system message to the system console only is
not sufficient. Firstly, it is not clear that the message will actually be read by root,
secondly, these screen messages cannot be saved and may easily get lost.

20.2 The Syslog Daemon

The solution of this problem consists of the syslog daemon or syslogd. Instead of
outputting a message directly, system messages with a specific meaning can be
output using the syslog() function, which is part of the Linux C runtime library.
Such messages are accepted by syslogd via the local socket /dev/log.

B Kernel messages are really handled by a different program called klogd.
This program preprocesses the messages and usually passes them along to
syslogd. See Section 20.4.

syslogd proves very useful when debugging. It logs the different system messageslog

and is—as its name suggests—a daemon program. The syslogd program is usually
started via an init script while the system is booted. When it receives messages, it
can write them to a file or sends them on across the network to another computer
which manages a centralised log.

B The common distributions (Debian GNU/Linux, Ubuntu, Red Hat Enter-
prise Linux, Fedora, openSUSE, …) have all been using, for various lengths
of time, a package called “Rsyslog”, which is a more modern implementa-
tion of a syslogd with more room for configuration. The additional capabil-
ities are, however, not essential for getting started and/or passing the LPI
exam. If you skip the first part of the Rsyslog configuration file, the remain-
der corresponds, to a very large extent, to what is discussed in this chapter.
There is more about Rsyslog in Section 20.5.

Instead of syslogd, certain versions of the Novell/SUSE distributions, in par-
ticular the SUSE Linux Enterprise Server, use the Syslog-NG package in-
stead of syslogd. This is configured in a substantially different manner. For
the LPIC-1 exam, you need to know that Syslog-NG exists and roughly what
it does; see Section 20.6.

The administrator decides what to do with individual messages. The configu-
ration file /etc/syslog.conf specifies which messages go where./etc/syslog.conf

B By default, Rsyslog uses /etc/rsyslog.conf as its configuration file. This is
largely compatible to what syslogd would use. Simply ignore all lines start-
ing with a dollar sign ($).

The configuration file consists of two columns and might look like this:

kern.warn;*.err;authpriv.none /dev/tty10

kern.warn;*.err;authpriv.none |/dev/xconsole

*.emerg *

20.2 The Syslog Daemon 303

Table 20.1: syslogd facilities

Facility Meaning
authpriv Confidential security subsystem messages

cron Messages from cron and at

daemon Messages from daemon programs with no more specific facility
ftp FTP daemon messages
kern System kernel messages
lpr Printer subsystem messages
mail Mail subsystem messages
news Usenet news subsystem messages

syslog syslogd messages
user Messages about users
uucp Messages from the UUCP subsystem
local𝑟 (0 ≤ 𝑟 ≤ 7) Freely usable for local messages

Table 20.2: syslogd priorities (with ascending urgency)

Priority Meaning
none No priority in the proper sense—serves to exclude all messages from

a certain facility
debug Message about internal program states when debugging
info Logging of normal system operations

notice Documentation of particularly noteworthy situations during normal
system operations

warning (or warn) Warnings about non-serious occurrences which are not se-
rious but still no longer part of normal operations

err Error messages of all kinds
crit Critical error messages (the dividing line between this and err is not

strictly defined)
alert “Alarming” messages requiring immediate attention
emerg Final message before a system crash

.=warn;.=err -/var/log/warn

*.crit /var/log/warn

.;mail.none;news.none -/var/log/messages

The first column of each line determines which messages will be selected, and the
second line says where these messages go. The first column’s format is

⟨facility⟩.⟨priority⟩[;⟨facility⟩.⟨priority⟩]…

where the ⟨facility⟩ denotes the system program or component giving rise to the facilities

message. This could be the mail server, the kernel itself or the programs managing
access control to the system. Table 20.1 shows the valid facilities. If you specify
an asterisk (“*”) in place of a facility, this serves as placeholder for any facility. It
is not easily possible to define additional facilities; the “local” facilities local0 to
local7 should, however, suffice for most purposes.

The ⟨priority⟩ specifies how serious the message is. The valid priorities are priorities

summarised in Table 20.2.

B Who gets to determine what facility or priority is attached to a message?
The solution is simple: Whoever uses the syslog() function, namely the de-
veloper of the program in question, must assign a facility and priority to
their code’s messages. Many programs allow the administrator to at least
redefine the message facility.

304 20 System Logging

A selection criterion of the form mail.info means “all messages of the mail sub-selection criteria

system with a priority of info and above”. If you just want to capture messages
of a single priority, you can do this using a criterion such as mail.=info. The as-
terisk (“*”) stands for any priority (you could also specify “debug”). A preceding !

implies logical negation: mail.!info deselects messages from the mail subsystem
at a priority of info and above; this makes most sense in combinations such as
mail.*;mail.!err, to select certain messages of low priority. ! and = may be com-
bined; mail.!=info deselects (exactly) those messages from the mail subsystem with
priority info.

You may also specify multiple facilites with the same priority like mail,news.info;Multiple facilities—same priority

this expression selects messages of priority info and above that belong to the mail

or news facilities.
Now for the right-hand column, the messages’ targets. Log messages can beactions

handled in different ways:
• They can be written to a file. The file name must be specified as an absolute

path. If there is a - in front of the path, then unlike normal syslogd opera-
tion, the file will not immediately be written to on disk. This means that
in case of a system crash you might lose pending log messages—for fairly
unimportant messages such as those of priority notice and below, or for mes-
sages from “chatty” facilities such as mail and news, this may not really be
a problem.
The file name may also refer to a device file (e. g., /dev/tty10 in the example
above).

• Log messages can be written to a named pipe (FIFO). The FIFO name must
be given as an absolute path with a preceding “|”. One such FIFO is /dev/

xconsole.

• They can be passed across the network to another syslogd. This is specified
as the name or IP address of the target system with a preceding @ character.
This is especially useful if a critical system state occurs that renders the local
log file inaccessible; to deprive malicious crackers from a way to hide their
traces; or to collect the log messages of all hosts in a network on a single
computer and process them there.
On the target host, the syslogd must have been started using the -r (“remote”)
option in order to accept forwarded messages. How to do that depends on
your Linux distribution.

• They can be sent directly to users. The user names in question must be given
as a comma-separated list. The message will be displayed on the listed
users’ terminals if they are logged in when the message arrives.

• They can be sent to all logged-in users by specifying an asterisk (“*”) in place
of a login name.

As a rule, after installation your system already contains a running syslogd andChanging configuration

a fairly usable /etc/syslog.conf. If you want to log more messages, for example
because specific problems are occurring, you should edit the syslog.conf file and
then send syslogd a SIGHUP signal to get it to re-read its configuration file.

B You can test the syslogd mechanism using the logger program. An invocation
of the form

$ logger -p local0.err -t TEST "Hello World"

produces a log message of the form

Aug 7 18:54:34 red TEST: Hello World

Most modern programming languages make it possible to access the
syslog() function.

20.3 Log Files 305

Exercises

C 20.1 [2] Find out when somebody last assumed root’s identity using su.

C 20.2 [!2] Reconfigure syslogd such that, in addition to the existing configu-
ration, it writes all (!) messages to a new file called /var/log/test. Test your
answer.

C 20.3 [3] (Requires two computers and a working network connection.) Re-
configure syslogd on the first computer such that it accepts log messages
from the network. Reconfigure syslogd on the second computer such that it
sends messages from facility local0 to the first computer. Test the configu-
ration.

C 20.4 [2] How can you implement a logging mechanism that is safe from
attackers that assume control of the logging computer? (An attacker can
always pretend further messages from being logged. We want to ensure
that the attacker cannot change or delete messages that have already been
written.)

20.3 Log Files

Log files are generally created below /var/log. The specific file names vary—refer /var/log

to the syslog.conf file if you’re in doubt. Here are some examples:

Debian GU/Linux collects all messages except those to do with authentica-
tion in the /var/log/syslog file. There are separate log files for the auth, daemon,
kern, lpr, mail, user, and uucp facilities, predictably called auth.log etc. On top
of that, the mail system uses files called mail.info, mail.warn, and mail.err,
which respectively contain only those messages with priority info etc. (and
above). Debugging messages from all facilities except for authpriv, news, and
mail end up in /var/log/debug, and messages of priority info, notice, and warn

from all facilities except those just mentioned as well as cron and daemon in
/var/log/messages.

The defaults on Ubuntu correspond to those on Debian GNU/Linux.

On Red Hat distributions, all messages with a priority of info or above,
except those from authpriv and cron, are written to /var/log/messages, while
messages from authpriv are written to /var/log/secure and those from cron to
/var/log/cron. All messages from the mail system end up in /var/log/maillog.

OpenSUSE logs all messages except those from iptables and the news and
mail facilities to /var/log/messages. Messages from iptables go to /var/log/

firewall. Messages that are not from iptables and have priority warn, err,
or crit are also written to /var/log/warn. Furthermore, there are the /var/

log/localmessages file for messages from the local* facilities, the /var/log/

NetworkManager file for messages from the NetworkManager program, and the
/var/log/acpid file for messages from the ACPI daemon. The mail sys-
tem writes its log both to /var/log/mail (all messages) and to the files
mail.info, mail.warn, and mail.err (the latter for the priorities err and crit),
while the news system writes its log to news/news.notice, news/news.err, and
news/news.crit (according to the priority)—there is no overview log file for
news. (If you think this is inconsistent and confusing, you are not alone.)

A Some log files contain messages concerninig users’ privacy and should thus
only be readable by root. In most cases, the distributions tend to err towards
caution and restrict the access rights to all log files.

306 20 System Logging

You can peruse the log files created by syslogd using less; tail lends itself toInspecting log files

long files (possibly using the -f option). There are also special tools for reading
log files, the most popular of which include logsurfer and xlogmaster.

The messages written by syslogd normally contain the date and time, the hostmessages

name, a hint about the process or component that created the message, and the
message itself. Typical messages might look like this:

Mar 31 09:56:09 red modprobe: modprobe: Can't locate ...

Mar 31 11:10:08 red su: (to root) user1 on /dev/pts/2

Mar 31 11:10:08 red su: pam-unix2: session started for ...

You can remove an overly large log file using rm or save it first by renaming it
with an extension like .old. A new log file will be created when syslogd is next
restarted. However, there are more convenient methods.

20.4 Kernel Logging

The Linux kernel does not send its log messages to syslogd but puts them into
an internal “ring buffer”. They can be read from there in various ways—via a
specialised system call, or the /proc/kmsg “file”. Traditionally, a program called
klogd is used to read /proc/kmsg and pass the messages on to syslogd.

B Rsyslog gets by without a separate klogd program, because it takes care of
kernel log messages directly by itself. Hence, if you can’t find a klogd on your
system, this may very likely be because it is using rsyslog.

During system startup, syslogd and possibly klogd are not immediately available—
they must be started as programs and thus cannot handle the kernel’s start mes-
sages directly. The dmesg command makes it possible to access the kernel log buffer
retroactively and look at the system start log. With a command such as

dmesg >boot.msg

you can write these messages to a file and send it to a kernel developer.

B Using the dmesg command you can also delete the kernel ring buffer (-c op-
tion) and set a priority for direct notifications: messages meeting or exceed-
ing this priority will be sent to the console immediately (-n option). Kernel
messages have priorities from 0 to 7 corresponding to the syslogd priorities
from emerg down to debug. The command

dmesg -n 1

for example causes only emerg messages to be written to the console directly.
All messages will be written to /proc/kmsg in every case—here it is the job of
postprocessing software such as syslogd to suppress unwanted messages.

Exercises

C 20.5 [2] What does dmesg output tell you about the hardware in your com-
puter?

20.5 Extended Possibilities: Rsyslog

Rsyslog by Rainer Gerhards has replaced the traditional BSD syslogd on most com-
mon Linux distributions. Besides greater efficiency, rsyslog’s goal is supporting
various sources and sinks for log messages. For example, it writes messages not
just to text files and terminals, but also a wide selection of databases.

20.5 Extended Possibilities: Rsyslog 307

B According to its own web site, “rsyslog” stands for “rocket-fast syslog”.
Of course one should not overestimate the value of that kind of self-
aggrandisement, but in this case the self-praise is not entirely unwarranted.

The basic ideas behind rsyslog are basically as follows:

• “Sources” pass messages on to “rulesets”. There is one standard built-in
ruleset (RSYSLOG_DefaultRuleset), but you as the user get to define others.

• Every ruleset may contain arbitrarily many rules (even none at all, even
though that does not make a great deal of sense).

• A rule consists of a “filter” and an “action list”. Filters make yes-no deci-
sions about whether the corresponding action list will be executed.

• For each message, all the rules in the ruleset will be executed in order from
the first to the last (and no others). All rules will always be executed, no
matter how the filter decisions go, although there is a “stop processing”
action.

• An action list may contain many actions (at least one). Within an action
list, no further filters are allowed. The actions determine what happens to
matching log messages.

• The exact appearance of log messages in the output may be controlled
through “templates”.

Rsyslog’s configuration can be found in the /etc/rsyslog.conf file. In this file you
may use three different styles of configuration setting in parallel:

• The traditional /etc/syslog.conf syntax (“sysklogd”).

• An obsolete rsyslog syntax (“legacy rsyslog”). You can recognise this by the
commands that start with dollar signs ($).

• The current rsyslog syntax (“RainerScript”). This is best suited for complex
situations.

The first two flavours are line-based. In the current syntax, line breaks are irrele-
vant.

For very simple applications you can still—and should!—use the sysklogd syn-
tax (as discussed in the previous sections). If you want to set configuration pa-
rameters or express complex control flows, RainerScript is more appropriate. You
should avoid the obsolete rsyslog syntax (even if various Linux distributions don’t
do this in their default configurations), except that various features of rsyslog are
only accessible using that syntax.

B As usual, empty lines and comment lines will be ignored. Comment lines
include both lines (and parts of lines) that start with a # (the comment then
stops at the end of the line) and C-style comments that reach from a /*,
disregarding line breaks, until a */.

B C-style comments may not be nested1, but # comments may occur inside C-
style comments. That makes C-style comments particularly useful to “com-
ment out” large swathes of a configuration file in order to make it invisible
to rsyslog.

Rsyslog offers various features that surpass those of BSD syslogd. For example,
you can use extended filter expressions for messages:

:msg, contains, "FOO" /var/log/foo.log

1You don’t get to do that in C, either, so it shouldn’t be a major nuisance.

308 20 System Logging

Extended filter expressions always consist of a colon at the left margin, a “prop-
erty” that rsyslog takes from the message, a filter operator (here, contains), and a
search term. In our example, all log messages whose text contains the character
sequence FOO will be written to the /var/log/foo.log file.

B Apart from msg (the log message proper), the “properties” you may use
include, for example, hostname (the name of the computer sending the mes-
sage), fromhost (the name of the computer that forwarded the message to
rsyslog), pri (the category and priority of the message as an undecoded
number), pri-text (the category and priority as a text string, with the num-
ber appended, as in “local0.err<133>”), syslogfacility and syslogseverity as
well as syslogfacility-text and syslogseverity-text for direct access to the
category and priority, timegenerated (when the message was received) or
inputname (the rsyslog module name of the source of the message). There are
various others; look at rsyslog’s documentation.

B The allowable comparison operators are contains, isequal, startswith, regex,
and eregex. These speak for themselves, except for the latter two—regex con-
siders its parameter as a simple and eregex as an “extended” regular expres-
sion according to POSIX. All comparison operators take upper and lower
case into account.

A The startswith comparison is useful because it is considerably more efficient
than a regular expression that is anchored to the start of the message (as
long as you’re looking for a constant string, anyway). You should, however,
be careful, because what you consider the start of the message and what
rsyslog thinks of that can be quite different. If rsyslog receives a message
via the syslog service, this will, for example, look like

<131>Jul 22 14:25:50 root: error found

As far as rsyslog is concerned, msg does not start (as one might naively as-
sume) at the e of error, but with the space character in front of it. So if you
are looking for messages that start with error, you should say

:msg, startswith, " error" /var/log/error.log

B There is a nice addition on the “action side” of simple rules: With traditional
syslogd, you have already seen that an entry like

local0.* @red.example.com

will forward log messages to a remote host via the (UDP-based) syslog pro-
tocol. With rsyslog, you may also write

local0.* @@red.example.com

to transmit log messages via TCP. This is potentially more reliable, especially
if firewalls are involved.

B At the other end of the TCP connection, of course, there must be a suitably
configured rsyslog listening for messages. You can ensure this, for example,
via

module(load="imtcp" MaxSessions="500")

input(type="imtcp" port="514")

In the obsolete syntax,

20.5 Extended Possibilities: Rsyslog 309

$ModLoad imtcp

$InputTCPMaxSessions 500

$InputTCPServerRun 514

does the same thing.

A Do consider that only the UDP port 514 is officially reserved for the syslog
protocol. The TCP port 514 is really used for a different purpose2. You can
specify a different port just in case:

local0.* @@red.example.com:10514

(and that works for UDP, too, if necessary). The changes required on the
server side will be easy for you to figure out on your own.

The next level of complexity are filters based on expressions that may contain
arbitrary Boolean, arithmetic, or string operations. These always start with an if

at the very left of a new line:

if $syslogfacility-text == "local0" and $msg startswith " FOO" �

� and ($msg contains "BAR" or $msg contains "BAZ") �

� then /var/log/foo.log

(in your file this should all be on one line). With this rule, messages of category
local0 will be written to the /var/log/foo.log file as long as they start with FOO and
also contain either BAR or BAZ (or both). (Watch for the dollar signs at the start of
the property names.)

Rsyslog supports a large number of modules that determine what should hap-
pen to log messages. You might, for example, forward important messages by
e-mail. To do so, you might put something like

module(load="ommail")

template(name="mailBody" type="string" string="ALERT\\r\\n%msg%")

if $msg contains "disk error" then {

action(type="ommail" server="mail.example.com" port="25"

mailfrom="rsyslog@example.com" mailto="admins@example.com"

subject.text="disk error detected"

body.enable="on" template="mailBody"

action.execonlyonceeveryinterval="3600")

}

into your /etc/rsyslog.conf.

B If you have an older version of rsyslog (before 8.5.0) you will need to use the
obsolete syntax to configure the ommail module. That might, for example,
look like

$ModLoad ommail

$ActionMailSMTPServer mail.example.com

$ActionMailFrom rsyslog@example.com

$ActionMailTo admins@example.com

$template mailSubject,"disk error detected"

$template mailBody,"ALERT\\r\\n%msg%"

$ActionMailSubject mailSubject

$ActionExecOnlyOnceEveryInterval 3600

if $msg contains "disk error" then :ommail:;mailBody

$ActionExecOnlyOnceEveryInterval 0q

2… even though nobody nowadays is still interested in the remote-shell service. Nobody reason-
able, anyway.

310 20 System Logging

B Rsyslog’s SMTP implementation is fairly primitive, since it supports neither
encryption nor authentication. This means that the mail server you specify
in the rsyslog configuration must be able to accept mail from rsyslog even
without encryption or authentication.

By the way, rsyslog can handle Linux kernel log messages directly. You simply
need to enable the imklog input module:

module(load="imklog")

or (obsolete syntax)

$ModLoad imklog

A separate klogd process is not necessary.
Detailed information on rsyslog is available, for example, in the online docu-

mentation [rsyslog].

Exercises

C 20.6 [!3] (If your distribution doesn’t use rsyslog already.) Install rsyslog
and create a configuration that is as close to your existing syslogd configura-
tion as possible. Test it with (for example) logger. Where do you see room
for improvement?

C 20.7 [2] PAM, the login and authentication system, logs sign-ons and sign-
offs in the following format:

kdm: :0[5244]: (pam_unix) session opened for user hugo by (uid=0)

�����

kdm: :0[5244]: (pam_unix) session closed for user hugo

Configure rsyslog such that whenever a particular user (e. g. you) logs on
or off, a message is displayed on the system administrator’s (root’s) terminal
if they are logged on. (Hint: PAM messages appear in the authpriv category.)

C 20.8 [3] (Cooperate with another class member if necessary.) Configure
rsyslog such that all log messages from one computer are passed to another
computer by means of a TCP connection. Test this connection using logger.

20.6 The “next generation”: Syslog-NG

Syslog-NG (“NG” for “new generation”) is a compatible, but extended reim-
plementation of a syslog daemon by Balazs Scheidler. The main advantages ofmain advantages

Syslog-NG compared to the traditional syslogd include:

• Filtering of messages based on their content (not just categories and priori-
ties)

• Chaining of several filters is possible

• A more sophisticated input/output system, including forwarding by TCP
and to subprocesses

The program itself is called syslog-ng.

B For syslog clients there is no difference: You can replace a syslogd with
Syslog-NG without problems.

You can find information about Syslog-NG in its manual pages as well as on
[syslog-ng]. This includes documentation as well as a very useful FAQ collection.

20.6 The “next generation”: Syslog-NG 311

Configuration file Syslog-NG reads its configuration from a file, normally /etc/

syslog-ng/syslog-ng.conf. Unlike syslogd, Syslog-NG distinguishes various “entry entry types

types” in its configuration file.
Global options These settings apply to all message sources or the Syslog-NG

daemon itself.

Message sources Sylog-NG can read messages in various ways: from Unix-
domain sockets or UDP like syslogd, but also, for example, from files, FIFOs,
or TCP sockets. Every message source is assigned a name.

Filters Filters are Boolean expressions based on internal functions that can, for
example, refer to the origin, category, priority, or textual content of a log
message. Filters are also named.

Message sinks Syslog-NG includes all logging methods of syslogd and then some.

Log paths A “log path” connects one or several message sources, filters, and
sinks: If messages arrive from the sources and pass the filter (or filters),
they will be forwarded to the specified sink(s). At the end of the day, the
configuration file consists of a number of such log paths.

Options You can specify various “global” options that control Syslog-NG’s gen-
eral behaviour or determine default values for individual message sources or
sinks (specific options for the sources or sinks take priority). A complete list is
part of the Syslog-NG documentation. The general options include various set-
tings for handling DNS and the forwarding or rewriting of messages’ sender host
names.

B If Syslog-NG on host 𝐴 receives a message from host 𝐵, it checks the
keep_hostnames() option. If its value is yes, 𝐵 will be kept as the host name for
the log. If not, the outcome depends on the chain_hostnames() option; if this
is no, then 𝐴 will be logged as the host name, if it is yes, then Syslog-NG will
log 𝐵/𝐴. This is particularly important if the log is then forwarded to yet
another host.

Message Sources In Syslog-NG, message sources are defined using the source

keyword. A message source collects one or more “drivers”. To accomplish the
same as a “normal” syslogd, you would include the line

source src { unix-stream("/dev/log"); internal(); };

in your configuration; this tells Syslog-NG to listen to the Unix-domain socket
/dev/log. internal() refers to messages that Syslog-NG creates by itself.

B A Syslog-NG message source corresponding to the -r option of syslogd might
look like this:

source s_remote { udp(ip(0.0.0.0) port(514)); };

Since that is the default setting,

source s_remote { udp(); };

would also do.

B With ip(), you can let Syslog-NG listen on specific local IP addresses only.
With syslogd, this isn’t possible.

The following source specification lets Syslog-NG replace the klogd program:

source kmsg { file("/proc/kmsg" log_prefix("kernel: ")); };

B All message sources support another parameter, log_msg_size(), which spec-
ifies the maximum message length in bytes.

312 20 System Logging

Table 20.3: Filtering functions for Syslog-NG

Syntax Description
facility(⟨category⟩[,⟨category⟩ …]) Matches messages with one of the listed

categories
level(⟨priority⟩[,⟨priority⟩ …]) Matches messages with one of the listed

priorities
priority(⟨priority⟩[,⟨priority⟩ …]) Same as level()

program(⟨regex⟩) Matches messages where the name of the
sending program matches ⟨regex⟩

host(⟨regex⟩) Matches messages whose sending host
matches ⟨regex⟩

match(⟨regex⟩) Matches messages which match the ⟨regex⟩
themselves

filter(⟨name⟩) Invokes another filtering rule and returns
its value

netmask(⟨IP address⟩/⟨netmask⟩) Checks whether the IP address is in the
given network

Filters Filters are used to sift through log messages or distribute them to various
sinks. They rely on internal functions that consider specific aspects of messages;
these functions can be joined using the logical operators, and, or, and not. A list of
possible functions is shown in Table ??.

You might, for example, define a filter that matches all messages from host green
containing the text error:

filter f_green { host("green") and match("error"); };

B With the level() (or priority() function, you can specify either one or more
priorities separated by commas, or else a range of priorities like “warn ..

emerg”.

Message Sinks Like sources, sinks consist of various “drivers” for logging meth-
ods. For example, you can write messages to a file:

destination d_file { file("/var/log/messages"); };

You can also specify a “template” that describes in which format the message
should be written to the sink in question. When doing so, you can refer to
“macros” that make various parts of the message accessible. For instance:

destination d_file {

file("/var/log/$YEAR.$MONTH.$DAY/messages"

template("$HOUR:$MIN:$SEC $TZ $HOST [$LEVEL] $MSG\n")

template_escape(no)

create_dirs(yes)

);

};

The $YEAR, $MONTH, etc. macros will be replaced by the obvious values. $TZ is the cur-
rent time zone, $LEVEL the message priority, and $MSG the messaeg itself (including
the sender’s process ID). A complete list of macros is part of Syslog-NG’s docu-
mentation.

B The template_escape() parameter controls whether quotes (' and ") should
be “escaped” in the output. This is important if you want to feed the log
messages to, say, an SQL server.

20.6 The “next generation”: Syslog-NG 313

Unlike syslogd, Syslog-NG allows forwarding messages using TCP. This is not
just more convenient when firewalls are involved, but also ensures that no log
messages can get lost (which might happen with UDP). You could define a TCP
forwarding sink like this:

destination d_tcp { tcp("10.11.12.13" port(514); localport(514)); };

B Also very useful is forwarding messages to programs using program().
Syslog-NG starts the program when it is started itself, and keeps it run-
ning until itself is stopped or it receives a SIGHUP. This is not just to increase
efficiency, but serves as a precaution against denial-of-service attacks—if
a new process is started for every new message, an attacker could shut off
logging by sending large amounts of matching log messages. (Other mes-
sages that would point to these shenanigans might then be dropped to the
floor.)

Log paths Log paths serve to bring sources, filters, and sinks together and to ac-
tually evaluate messages. They always start with the log keyword. Here are a few
examples based on rules you know already from our /etc/syslog.conf discussion:

Prerequisites

source s_all { internal(); unix-stream("/dev/log"); };

filter f_auth { facility(auth, authpriv); };

destination df_auth { file("/var/log/auth.log"); };

auth,authpriv.* /var/log/auth.log

log {

source(s_all);

filter(f_auth);

destination(df_auth);

};

This rule causes all messages to do with authentication to be written to the /var/

log/auth.log file. Of course, with syslogd, this can be done in one line …
Here is a somewhat more complex example:

kern.warn;*.err;authpriv.none /dev/tty10

filter f_nearly_all {

(facility(kern) and priority(warn .. emerg))

or (not facility(authpriv,kern));

};

destination df_tty { file("/dev/tty10"); };

log {

source(s_all);

filter(f_nearly_all);

destination(df_tty);

};

Here, too, syslogd’s version is a little more compact, but on the other hand this
description might be easier to follow.

B Every message passes through all log paths, and will be logged by all match-
ing ones (this behaviour equals that of syslogd). If you want a message to not
be further considered after it has passed a particular log path, you can add
the flags(final) option to that path.

B flags(final) does not mean that the message is logged just once; it might
have been logged by other paths before the path in question.

314 20 System Logging

B With flags(fallback), you can declare a path to be the “default path”. This
path will only be considered for log messages that did not match any paths
that were not marked flags(fallback).

Exercises

C 20.9 [!3] Install Syslog-NG and create a configuration that is as close to your
existing syslogd configuration as possible. Test it with (for example) logger.
Where do you see room for improvement?

C 20.10 [2] PAM, the login and authentication system, logs sign-ons and sign-
offs in the following format:

kdm: :0[5244]: (pam_unix) session opened for user hugo by (uid=0)

�����

kdm: :0[5244]: (pam_unix) session closed for user hugo

Configure Syslog-NG such that whenever a particular user (e. g. you) logs
on or off, a message is displayed on the system administrator’s (root’s) ter-
minal if they are logged on. (Hint: PAM messages appear in the authpriv

category.)

C 20.11 [3] (Cooperate with another class member if necessary.) Configure
rsyslog such that all log messages from one computer are passed to another
computer by means of a TCP connection. Test this connection using logger.
Experiment with different settings for keep_hostnames() and chain_hostnames().

20.7 The logrotate Program

Depending on the number of users and the number and type of running services,
the log files can grow fairly large fairly quickly. To keep the system from inun-
dation by garbage, you should on the one hand try to put the relevant directories
(e. g., /var/log or /var) on their own partitions. On the other hand there is software
which checks the log files periodically according to various criteria such as the
size, truncates them and removes or archives old log files. This process is called
“rotation”, and one such program is logrotate.

logrotate is not a daemon, but will usually be executed once a day (or so) using
cron—or a similar service.

B logrotate refuses to modify a log file more than once a day, except if the
decision depend on the size of the log file, you’re using the hourly criterion,
or the --force option (-f for short) was specified with logrotate.

According to convention, logrotate is configured using the /etc/logrotate.conf/etc/logrotate.conf

file and the files within the /etc/logrotate.d directory. The /etc/logrotate.conf/etc/logrotate.d

file sets up general parameters, which can be overwritten by the files in /etc/

logrotate.d if necessary. In /etc/logrotate.conf, there is in particular the “include
/etc/logrotate.d” parameter, which causes the files from that directory to be read
in that place as if they were part of the /etc/logrotate.conf file.

B In principle, logrotate reads all the files named on the command line as con-
figuration files, and the content of files mentioned later overwrites that of
files mentioned earlier. The /etc/logrotate.conf thing is just a (reasonable)
convention which is put into action by means of a suitable invocation of
logrotate in /etc/cron.daily/logrotate (or something equivalent).

20.7 The logrotate Program 315

/var/log/syslog

{

rotate 7

daily

missingok

notifempty

delaycompress

compress

postrotate

invoke-rc.d rsyslog rotate >/dev/null

endscript

}

Figure 20.1: Example configuration for logrotate (Debian GNU/Linux 8.0)

B We mention this here because it gives you the basic possibility to perform,
without undue hassle, separate logrotate runs for log files which aren’t part
of the regular configuration. If, for example, you have an extremely fast-
growing log file of, say, a popular web server, you can manage this using a
separate logrotate instance that runs more often than once a day.

logrotate watches all files that it is told about by the aforementioned configura-
tion files, not just those created by syslogd. By way of example, Figure 20.1 shows
an excerpt of a configuration file for rsyslog from Debian GNU/Linux 8.

The first line of the example specifies the files that this configuration applies
to (here, /var/log/syslog). You may enumerate several files or specify shell search
patterns. After that, inside curly braces, there is a block of directives that define
how logrotate should deal with the given files.

B Typically, /etc/logrotate.conf contains directives that are outside of a brace-
delimited block. These directives serve as defaults that apply to all log files
in the configuration, unless something more specific is given in their own
blocks of directives.

“rotate 7” means that at most seven old versions of each log file will be kept. old versions
When this maximum is reached, the oldest version of the log file will be deleted.

B If you specify an address using mail, files will not be deleted but instead be
sent to the address in question.

B “rotate 0” deletes “rotated” log messages outright without keeping them at
all.

The rotated files are numbered in sequence, this means that if the current version
of the file is called /var/log/syslog, the immediately preceding version will be /var/

log/syslog.1, the version preceding that will be /var/log/syslog.2, and so on.

B You may use the date instead of the sequential numbers. This means that
if today is July 20, 2015, and your logrotate run takes place daily in the
wee hours, the immediately preceding version of the file is not called /var/

log/syslog.1 but /var/log/syslog-20150720, the version preceding that will be
called /var/log/syslog-20150719, and so on. To use this you must specify the
“dateext” directive.

B Using “dateformat”, you can control exactly how the date-based file exten-
sion should look like. To do so, you need to specify a string that may con-
tain the %Y, %m, %d, and %s keys. These stand for the (four-digit) year, calendar
month, and calendar day (in each case two digits and, if necessary, with a
leading zero) and the seconds since 1st January 1970, 12:00 am UTC. As you
can surmise from the previous paragraph, the default is “-%Y%m%d”.

316 20 System Logging

B When you use dateformat, you should note that logrotate does a lexicographic
sort of file names when rotating in order to find out which file is the oldest.
This works with “-%Y%m%d”, but not with “-%d%m%Y”.

“daily” means that log files should be rotated daily. Together with “rotate 7”Time periods

this implies that you always have access to last week’s logs.

B There are also weekly, monthly, and yearly. With weekly, the file will be rotated
when the current day of the week is earlier than the day of the week of the
last rotation, or more than one week has passed since the last rotation (in
the end, this means that rotation will take place on the first day of the week,
which according to US custom is the Sunday). With monthly, the file will be
rotated on the first logrotate run of the month (usually on the first of the
month). With yearly, rotation takes place on the first logrotate run of the
year. Theoretically, hourly rotates the log file every hour, but since logrotate

is normally only run once a day, you will have to arrange for it to be run
frequently enough.

B An alternative criterion is “size”. This will rotate a log file when a certain
size has been exceeded. The file size is given as a parameter—without a
unit, it will be taken to mean bytes, while the units k (or K), M, and G stand for
kibibytes (210 bytes), mebibytes (220 bytes), or gibibytes (230 bytes), respec-
tively.

B “size” and the time-based criteria are mutually exclusive. This means that
if you specify a “size” criterion, rotation will depend solely on file size, no
matter when the file was last rotated.

B File size and time can be used together by means of the “maxsize” and
“minsize” criteria. With “maxsize”, you can specify a size which will cause
logrotate to rotate the file even if the next official date has not been reached.
With “minsize”, the file will only be rotated at the specified point in time if
it has exceeded the given size (small files will be skipped).

“missingok” suppresses error messages if a log file could not be found. (The defaulterror messages

is “nomissingok”.) “notifempty” does not rotate a file if it is empty (the default here
is “ifempty”).

“compress” lets you specify that rotated versions of the log file should be com-
pressed.

B This is by default done with gzip unless you request a different command
using “compresscmd”. Options for that command (which you would otherwise
pass on its command line) can be defined with “compressoptions”. The default
for gzip is “-6”.

The “delaycompress” directive ensures that a freshly rotated file is not compressed
immediately after the rotation but only on the next run. While usually the se-
quence of files would look like

/var/log/syslog /var/log/syslog.1.gz /var/log/syslog.2.gz …

“delaycompress” would get you the sequence

/var/log/syslog /var/log/syslog.1 /var/log/syslog.2.gz …

(in other words, /var/log/syslog.1 remains uncompressed). You need this setting
if there is a chance that the logging program (like rsyslog) might append data
to the file after it has been renamed (rotated)—this can happen because rsyslog
keeps the logfile open, and renaming the file is irrelevant as far as writing to it is
concerned.

This implies that you need to notify rsyslog that there is a new log file. This is
what the

20.7 The logrotate Program 317

postrotate

invoke-rc.d rsyslog rotate >/dev/null

endscript

directive is for. The shell commands between “postrotate” and “endscript” are ex-
ecuted by logrotate whenever the log file has been rotated.

The command itself is basically irrelevant (the idea counts), but what hap-
pens in the end is that rsyslog’s init script will be invoked, and it will send
SIGHUP to the program. Other distributions also have their ways and means.

B The SIGHUP then causes rsyslog to reread its configuration file and close and
reopen all log files. Since /var/log/syslog was renamed earlier on, rsyslog
opens a new log file under that name.—At this point, logrotate could com-
press the /var/log/syslog.1 file, but it has no way of knowing when rsyslog
is really done with the file. This is why this is postponed until the file gets
rotated again.

Between “postrotate” and “endscript” there may be several lines with commands.
logrotate concatenates them all and passes them to the shell (/bin/sh) as a whole.
The commands is passed the name of the log file as a parameter, and that is avail-
able there in the customary fashion as “$1”.

B The postrotate commands are executed once for every log file enumerated at
the start of the configuration block. This means that the commands will per-
haps be executed several times. You can use the “sharedscripts” directive to
ensure that the commands are executed at most once for all files that match
the search pattern (or not at all, if none of the files needed to be rotated).

You can use “create” to make sure that the log file is recreated immediately after
the rotation and before the postrotate commands are executed. This uses the name
of the old file. The file mode, owner, and group derive from the parameters to
create; the three possibilities are

create 600 root adm File mode, user, and group
create root adm Just user and group
create Nothing at all

Unspecified file properties are taken from the previous version of the file.
This is just a selection of the most important configuration parameters. Study

logrotate(8) to see the full list.

Exercises

C 20.12 [!1] Which system-wide defaults does logrotate establish in your dis-
tribution?

C 20.13 [C]onsult /etc/logrotate.conf (and possibly logrotate(8)).

C 20.14 [3] Configure logrotate such that your new /var/log/test log file will
be rotated once it exceeds a length of 100 bytes. 10 rotated versions should
be kept, these older versions should be compressed and should use a name
containing the date of their creation. Test your configuration.

318 20 System Logging

Commands in this Chapter

klogd Accepts kernel log messages klogd(8) 302, 306
logger Adds entries to the system log files logger(1) 304
logrotate Manages, truncates and “rotates” log files logrotate(8) 314
logsurfer Searches the system log files for important events

www.cert.dfn.de/eng/logsurf/ 305
syslogd Handles system log messages syslogd(8) 302
tail Displays a file’s end tail(1) 305
xconsole Displays system log messages in an X window xconsole(1) 302
xlogmaster X11-based system monitoring program

xlogmaster(1), www.gnu.org/software/xlogmaster/ 305

Summary

• The syslogd daemon can accept log messages from various system compo-
nents, write them to files, or pass them on to users or other computers.

• Log messages may belong to diverse facilities and can have various priori-
ties.

• Messages can be sent to syslogd using the logger command.
• Log files are generally placed in the /var/log directory.
• Syslog-NG is a compatible, but extended, reimplementation of a syslog dae-

mon.
• logrotate can be used to manage and archive log files.

Bibliography

RFC3164 C. Lonvick. “The BSD syslog Protocol”, August 2001.
http://www.ietf.org/rfc/rfc3164.txt

rsyslog “Welcome to Rsyslog”. http://www.rsyslog.com/doc/v8-stable/index.html

syslog-ng “syslog-ng – Log Management Software”.
http://www.balabit.com/products/syslog_ng/

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

21
System Logging with Systemd and
“The Journal”

Contents

21.1 Fundamentals . 320
21.2 Systemd and journald 321
21.3 Log Inspection . 323

Goals

• Understanding the fundamentals of journald
• Being able to configure journald
• Being able to issue simple journal queries
• Understanding how journald handles log files

Prerequisites

• Basic knowledge of Linux system components
• Ability to handle configuration files
• Knowledge of the traditional system log service (Chapter 20)
• Knowledge about systemd

adm2-journald.tex (0cd20ee1646f650c)

320 21 System Logging with Systemd and “The Journal”

21.1 Fundamentals

Systemd is a far-reaching renewal of the software that ensures the basic operation
of a Linux computer. In a stricter sense, systemd is about starting and tracking
services and managing resources. Systemd also contains an approach to system
logging that is markedly different from the traditional syslogd method, the “jour-
nal”, and the software components necessary to implement it.

While in the traditional approach the syslog daemon accepts log messages on
UDP port 514 or the /dev/log socket, and (typically) writes them to text files (or
forwards them to other hosts where they are written to text files), in the systemd
world background services can simply write log messages to their standard error
output channel and systemd will arrange for them to be passed to the logging
service1. With systemd, log files are not text files (where every message is possibly
written to several files), but messages are written to a (binary) database that can
then be queried according to diverse criteria.

B For example, it is quite easy to display all messages logged by a specific
service during a specific period of time. In the traditional system this is
fairly difficult.

B In fairness, we should point out that the modern syslog implementations
such as Rsyslog or Syslog-NG are, in principle, capable of writing log mes-
sages to a database. However, it will be your own responsibility to come
up with a suitable database schema, to configure Rsyslog or Syslog-NG ac-
cordingly, and to develop software that allows you convenient access to the
log messages. Systemd includes all this “out of the box”.

B The Journal isn’t confined to textual log messages. It is, for instance, per-
fectly possible to store core dumps of crashed programs in the Journal (as
long as they aren’t ginormously oversized). Whether that is a unqualified
great idea is, of course, debatable, and the systemd developers have already
thought of an alternative method.

Systemd’s log system can also interoperate with the traditional approach. If de-
sired, it logs messages that arrive on /dev/log or UDP port 512, and can pass mes-
sages on to a traditional syslog daemon (or a modern reimplementation).

You have the Journal to thank, too, for the (very convenient) circumstance that
“systemctl status” will show you the most recent log messages by the service in
question:

systemctl status ssh

● ssh.service - OpenBSD Secure Shell server

Loaded: loaded (/lib/systemd/system/ssh.service; enabled)

Active: active (running) since Mo 2015-07-27 13:37:22 CEST; 8h ago

Main PID: 428 (sshd)

CGroup: /system.slice/ssh.service

└─428 /usr/sbin/sshd -D

Jul 27 13:37:23 blue sshd[428]: Server listening on 0.0.0.0 port 22.

Jul 27 13:37:23 blue sshd[428]: Server listening on :: port 22.

Jul 27 13:56:50 blue sshd[912]: Accepted password for hugo from ...sh2

Jul 27 13:56:50 blue sshd[912]: pam_unix(sshd:session): session ...=0)

Hint: Some lines were ellipsized, use -l to show in full.

As the final line of the output suggests, overlong lines are shortened such that they
just fit on the screen. If you want to see them in full, you must invoke systemctl

with the -l option.
1Systemd also offers its own API for log messages

21.2 Systemd and journald 321

Exercises

C 21.1 [2] What are the advantages and disadvantages of the traditional ap-
proach (text files in /var/log) compared to the database-like approach of the
Journal?

21.2 Systemd and journald

The Journal is an integrated part of systemd. In the simplest case, systemd uses
a limited-size ring buffer in /run/log/journal to store a certain number of log mes-
sages in RAM (which is sufficient if you want to pass the messages to a traditional
log service). To take advantage of all Journal features, you should ensure that the
log messages are permanently stored on disk. This is simply done by creating the
directory for storage:

mkdir -p /var/log/journal

systemctl --signal=USR1 kill systemd-journald

(the SIGUSR1 gets systemd to transfer the RAM-based Journal to the new file on
disk).

B The systemd component that takes care of the Journal is called systemd-journald

(or journald to its friends).

The Journal is configured by means of the /etc/systemd/journald.conf file. The
[Journal] section of this file (the only one) contains, for example, the Storage pa-
rameter, which can assume any of the following values:

volatile Log messages are stored only in RAM (in /run/log/journal), even if /var/

log/journal exists.

persistent Log messages are preferably stored on disk (in /var/log/journal). The
directory will be created if it doesn’t exist. During early boot and if the disk
is not writable, systemd falls back onto /run/log/journal.

auto Similar to persistent, but the existence of the /var/log/journal directory deter-
mines whether a persistent Journal will be written—if the directory does
not exist, the volatile Journal in RAM will have to do.

none No log messages will be stored in the Journal at all. You can still pass mes-
sages to a traditional syslog service.

B There are a few other interesting parameters. Compress specifies whether
log files (at least those exceeding a certain size) will be transparently com-
pressed; the default value is yes. Seal lets you ensure that persistent Journal
files are protected against clandestine manipulation by means of a crypto-
graphic signature. You will only need to furnish a key (the document ex-
plains how).

B The RateLimitInterval and RateLimitBurst parameters are supposed to make
it more difficult to flood the log with messages. If a service produces more
than RateLimitBurst messages during a period of time given by RateLimitInterval,
then all further messages until that period of time is over will be ignored
(the log will contain only one message detailing the number of ignored
messages). By default, the limit is 1000+messages in 30 seconds; if you set
either of the parameters to zero, the limitation will be lifted.

B SyncIntervalSec specifies how often the Journal will be synced to disk. The
Journal will always be saved immediately after a message of priority crit (or
above) has been logged; as long as no such message arrives, journald will
wait for the interval specified by SyncIntervalSec before saving it again. The
default value is “5 minutes”.

322 21 System Logging with Systemd and “The Journal”

Use the journalctl command to inspect the log:

journalctl

-- Logs begin at Mo 2015-07-27 13:37:14 CEST, end at Mo 2015-07-27�

� 22:20:47 CEST. --

Jul 27 13:37:14 blue systemd-journal[138]: Runtime journal is using 4.

Jul 27 13:37:14 blue systemd-journal[138]: Runtime journal is using 4.

Jul 27 13:37:14 blue kernel: Initializing cgroup subsys cpuset

Jul 27 13:37:14 blue kernel: Initializing cgroup subsys cpu

Jul 27 13:37:14 blue kernel: Initializing cgroup subsys cpuacct

Jul 27 13:37:14 blue kernel: Linux version 3.16.0-4-amd64 (debian-kern

Jul 27 13:37:14 blue kernel: Command line: BOOT_IMAGE=/boot/vmlinuz-3.

The output strongly resembles what you would find in /var/log/messages, but in
fact includes various improvements (which are, unfortunately, less than obvious
in a printed training manual):

• The log is displayed using your favourite display program for text files (typ-
ically less). Using less, you can look at the ends of over-long lines by using
the horizontal arrow keys.

B This is determined by the value of the SYSTEMD_PAGER environment
variable, failing that the value of PAGER, failing that less. Using the
SYSTEMD_LESS environment variable you can specify options for less (if
you don’t use the system default, this variable is ignored, but then
again you can put options into SYSTEMD_PAGER directly).

B If you invoke journalctl with the --no-pager option or set SYSTEMD_PAGER to
cat or an empty string, the output will not be displayed page by page.

• The output includes all accessible log files, even rotated ones (we’ll talk
more about that later).

• Time stamps are in local (zone) time, not UTC.

• Log messages of priority notice or warning are displayed in bold face.

• Log messages of priority error (or higher) appear in red.

systemd-journald tries to make sensible use of the available space. This means
that new messages are normally appended to the Journal, but if a certain upper
limit for the size of the Journal is reached, it tries to remove old log messages.

B You can specify the SystemMaxUse and RuntimeMaxUse parameters in the /etc/

systemd/journald.conf file. These parameters describe how much space the
Journal may take up under /var/log/journal and /run/log/journal, respec-
tively. The SystemKeepFree and RuntimeKeepFree parameters, on the other hand,
determine how much space must be kept free on the file systems in ques-
tion. systemd-journald takes into account both values (…MaxUse and …KeepFree)
and confines itself to the minimum size dictated by both.

B The Runtime… values are used when the system is booting or no persistent
Journal is used. The System… values apply to the persistent Journal if the
system has been booted far enough. When determining the space used by
the Journal, only files whose names end in .journal will be considered.

B You may specify amounts in bytes or append one of the (binary) units K, M,
G, T, P or E2.

2We assume it will still be some time before you will have to specify a limit for the Journal in
exbibytes (260 bytes), but it is reassuring that the systemd developers are apparently planning for the
future.

21.3 Log Inspection 323

B The default value for …MaxUse is 10% and the one for …KeepFree is 15% of the
file system in question. If there is less space available when systemd-journald

starts than the …KeepFree value dictates, the limit is reduced even further such
that space for other material remains.

Like logrotate, systemd “rotates” the Journal to make room for new messages.
To do so, the available space is subdivided into a number of files, so the oldest
can be discarded from time to time. This rotation is transparent to users, because
systemd-journald does it of its own accord when required and journalctl always eval-
uates the full Journal, no matter how many files it consists of.

B The subdivision is governed by the SystemMaxFileSize and RuntimeMaxFileSize

parameters within the /etc/systemd/journald.conf file. They specify how large
individual Journal files may become—the default is “one eighth of the total
space available for the Journal”, so you will always have a “prehistory” of
seven files and the current file.

B You may also make the log file rotation depend on time: MaxFileSec deter-
mines the maximum time period before systemd starts a new log file. (Usu-
ally the size-based rotation is perfectly adequate.) You can use MaxRetentionSec

to specify an upper limit for how long old log messages are kept around.
The default value for MaxFileSec is 1month (0 means “unlimited”) and that for
MaxRetentionSec is 0 (the mechanism is disabled).

In /etc/systemd/journald.conf you can also configure log forwarding to a tradi- log forwarding

tional syslog system. To do so, simply set

[Journal]

ForwardToSyslog=yes

Exercises

C 21.2 [!2] Configure your computer such that the Journal is stored persis-
tently on disk. Ensure that this really works (e. g., by writing a message
to the log using logger, rebooting the computer and then checking that the
message is still there).

C 21.3 [2] Does your computer still have a traditional syslog daemon? If not,
then install one (BSD syslogd or Rsyslog suggest themselves) and cause log
messages to be forwarded to it. Convince yourself (e. g., using logger) that it
works.

21.3 Log Inspection

You may use journalctl to direct very detailed queries to the Journal. We will
investigate this further in this section, but here are a few introductory remarks.

Access rights While as root you get to see the complete log, as an ordinary user
you will only be able to peruse your own log, namely the messages submitted by
programs that you started yourself (or that the computer started on your behalf).
If you want to have full access even as an ordinary user—we do recommend that
even as an administrator you should, as far as possible, use a non-privileged user
account, after all—you will need to ensure that you are part of the adm group:

usermod -a -G adm hugo

B You must log out and in again before this change will actually become ef-
fective.

324 21 System Logging with Systemd and “The Journal”

Real-time Journal monitoring By analogy to the popular “tail -f” command, you
can watch new messages being written to the Journal:

$ journalctl -f

This, too, will display 10 lines’ worth of output before journalctl waits for further
messages to arrive. As with the good old tail, you can set the number of lines
using the -n option, and that works even without the -f.

Services and priorities You can use the -u option to restrict the output to those
log messages written by a specific systemd unit:

$ journalctl -u ssh

-- Logs begin at Mo 2015-07-27 13:37:14 CEST, end at Di 2015-07-28 �

� 09:32:08 CEST. --

Jul 27 13:37:23 blue sshd[428]: Server listening on 0.0.0.0 port 22.

Jul 27 13:37:23 blue sshd[428]: Server listening on :: port 22.

Jul 27 13:56:50 blue sshd[912]: Accepted password for hugo from 192.16

Jul 27 13:56:50 blue sshd[912]: pam_unix(sshd:session): session opened

B Instead of a specific unit name you can also give a shell search pattern to
include several units. Or simply specify several -u options.

To only display messages of certain priorities, use the -p option. This takes ei-
ther a single numerical or textual priority (emerg has the numerical value 0, debug 7)
and limits the output to messages of that priority or above (below, if you go for
numerical values). Or specify a range in the form

$ journalctl -p warning..crit

to see only those messages whose priority is in that range.

B Of course you may combine the -u and -p options, too:

$ journalctl -u apache2 -p err

displays all error messages (or worse) from Apache.

The -k option limits the output to messages logged by the operating system
kernel. This considers only messages written since the last system boot.

Time If you’re only interested in messages from a certain period of time, you
can limit the output accordingly. The --since and --until options let you specify a
date or time in the “2015-07-27 15:36:11” format, and only messages written since
or until that point in time will be output.

B You can leave off the time completely, in which case “00:00:00” will be as-
sumed. Or leave off just the seconds, then “:00” is implied. If you leave
off the date (which of course requires a time, with or without seconds),
journalctl will assume “today”.

B The yesterday, today, and tomorrow keywords stand for “00:00:00” yesterday,
today, or tomorrow, respectively.

B Relative time specifications are also allowed: “-30m” stands for “half an hour
ago”. (“+1h” stands for “in one hour”, but it is unlikely that your system log
will contain entries from the future3.

3Unless you’re the Doctor and are querying the Journal of the TARDIS.

21.3 Log Inspection 325

Every system boot is assigned a unique identifier, and you can limit your search
to the part of the Journal between one boot and the next. In the simplest case,
“journalctl -b” will consider only messages from the current run:

$ journalctl -b -u apache2

With the --list-boots option, journalctl will output a list of boot identifiers to be
found in the current Journal, together with the periods of time for which there are
log entries:

$ journalctl --list-boots

-1 30eb83c06e054feba2716a1512f64cfc Mo 2015-07-27 22:45:08 CEST—�

� Di 2015-07-28 10:03:31 CEST

0 8533257004154353b45e99d916d66b20 Di 2015-07-28 10:04:22 CEST—�

� Di 2015-07-28 10:04:27 CEST

You may refer to specific boots by passing to -b their index (1 stands for the chrono-
logically first boot in the log, 2 for the second, and so on) or the negative offset in
the first column of the output of “journalctl --list-boots” (0 refers to the current
boot, -1 the one before, and so on).

B You may also specify the 32-character alphanumeric boot ID from the sec-
ond column of “journalctl --list-boots” to search the Journal for that boot
only. That, too, lets you add a positive or negative offset to identify boots
before or after it: In the example above,

$ journalctl -b 8533257004154353b45e99d916d66b20-1

is a roundabout way of saying

$ journalctl -b 1

Arbitrary search operations If you specify a path name as a parameter, journalctl
tries to do something reasonable with it:

• If it refers to an executable file, it looks for Journal entries made by that
program.

• If it refers to a device file, it looks for entries concerning the device in ques-
tion.

These search operations are special cases of a more general search mechanism
offered by the Journal. Systemd does in fact log much more information than
the traditional syslog mechanism4. You see that by invoking journalctl with the
--output=verbose option (see Figure 21.1.)

B The first line in Figure 21.1 is a time stamp for the message together with
a “cursor”. The cursor identifies the message inside the Journal and is
needed, for example, to store log entries on remote computers.

B The subsequent lines are Journal fields that refer to the message in question.
Field names without a leading underscore derive from information submit-
ted by the logging program, and as such are not necessarily trustworthy
(the program could, for example, attempt to lie about its PID or its name—
in SYSLOG_IDENTIFIER). Field names with a leading underscore are supplied by
systemd and cannot be manipulated by the logging program.

4Again, in fairness, we must mention that these can do rather more than they must—even if they
have sometimes acquired that functionality only very recently, in order to catch up with systemd’s
Journal.

326 21 System Logging with Systemd and “The Journal”

Mo 2015-07-27 13:37:23.580820 CEST [s=89256633e44649848747d32096fb42�

� 68;i=1ca;b=30eb83c06e054feba2716a1512f64cfc;m=11a1309;t=51bd9c6f�

� 8812e;x=f3d8849a4bcc3d87]

PRIORITY=6

_UID=0

_GID=0

_SYSTEMD_SLICE=system.slice

_BOOT_ID=30eb83c06e054feba2716a1512f64cfc

_MACHINE_ID=d2a0228dc98041409d7e68858cac6aba

_HOSTNAME=blue

_CAP_EFFECTIVE=3fffffffff

_TRANSPORT=syslog

SYSLOG_FACILITY=4

SYSLOG_IDENTIFIER=sshd

SYSLOG_PID=428

MESSAGE=Server listening on 0.0.0.0 port 22.

_PID=428

_COMM=sshd

_EXE=/usr/sbin/sshd

_CMDLINE=/usr/sbin/sshd -D

_SYSTEMD_CGROUP=/system.slice/ssh.service

_SYSTEMD_UNIT=ssh.service

_SOURCE_REALTIME_TIMESTAMP=1437997043580820

Figure 21.1: Complete log output of journalctl

B PRIORITY, SYSLOG_FACILITY, SYSLOG_IDENTIFIER, SYSLOG_PID, and MESSAGE derive from
the syslog protocol and are pretty self-explanatory. _UID, _GID, _HOSTNAME, _PID,
and _SYSTEMD_UNIT also explain themselves. _BOOT_ID is the identifier of the
current boot, and _MACHINE_ID identifies the logging computer according to
its entry in /etc/machine-id. _CAP_EFFECTIVE specifies the special capabilities of
the logging process, and _TRANSPORT describes how the message reached sys-
temd (apart from syslog, common sources are stdout for messages that the
program wrote to its standard output or standard error output, or kernel

for messages submitted by the operating system kernel via /dev/klog). _COMM,
_EXE, and _CMDLINE all describe the command being executed. _SYSTEMD_SLICE

and _SYSTEMD_CGROUP specify where in systemd’s internal process manage-
ment the logging process may be found. A more detailed explanation is
available from systemd.journal-fields(7).

You may search for all of these fields simply by specifying them on journalctl’s
command line:

$ journalctl _HOSTNAME=red _SYSTEMD_UNIT=apache2.service

B Search terms using different fields are implicitly joined using AND. If the
same field appears in several search terms, these are implicitly joined using
OR.

B There is also an explicit OR:

$ journalctl _HOSTNAME=red _UID=70 + _HOSTNAME=blue _UID=80

shows all processes with the UID 70 on the host red as well as all processes
with the UID 80 on the host blue. (Naturally this only works if you consoli-
date both these Journals on your computer.)

21.3 Log Inspection 327

B Of course you can combine these search terms freely with options, e. g., to
set up time limits or save typing:

$ journalctl -u apache2 _HOSTNAME=red

If (like us) you can never remember which values a search term could assume,
you can simply ask the Journal:

$ journalctl -F _SYSTEMD_UNIT

session-2.scope

udisks2.service

session-1.scope

polkitd.service

dbus.service

user@1000.service

�����

As a further simplification, command line completion works for field names and
values:

$ journalctl _SYS Tab becomes
$ journalctl _SYSTEMD_ Tab

_SYSTEMD_CGROUP= _SYSTEMD_OWNER_UID= _SYSTEMD_SESSION= _SYSTEMD_UNIT=

$ journalctl _SYSTEMD_U Tab becomes
$ journalctl _SYSTEMD_UNIT= Tab Tab

acpid.service lightdm.service ssh.service

anacron.service networking.service systemd-journald.service

�����

$ journalctl _SYSTEMD_UNIT=ss Tab becomes
$ journalctl _SYSTEMD_UNIT=ssh.service

The Journal and journald are immensely flexible and powerful and let the tra-
ditional method (text files in /var/log) appear pretty primitive in comparison.

.

Exercises

C 21.4 [!2] Experiment with journalctl. How many different user identities
have sent messages to the Journal on your computer? Did anything inter-
esting happen yesterday between 1 p. m and 2 p. m.? What were the last
10 messages of priority warning? Think of some interesting questions your-
self and answer them.

Summary

• The “Journal” is a modern system logging service made available by sys-
temd. It relies on binary, database-like log files.

• The Journal is stored either in /run/log/journal or (for persistent logging to
disk) in /var/log/journal.

• Within systemd, systemd-journald takes care of the Journal. You can access
the Journal using journalctl.

• journalctl allows very sophisticated queries of the Journal

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

22
TCP/IP Fundamentals

Contents

22.1 History and Introduction 330
22.1.1 The History of the Internet 330
22.1.2 Internet Administration 330

22.2 Technology . 332
22.2.1 Overview . 332
22.2.2 Protocols . 333

22.3 TCP/IP . 335
22.3.1 Overview . 335
22.3.2 End-to-End Communication: IP and ICMP 336
22.3.3 The Base for Services: TCP and UDP 339
22.3.4 The Most Important Application Protocols. 342

22.4 Addressing, Routing and Subnetting 344
22.4.1 Basics . 344
22.4.2 Routing . 345
22.4.3 IP Network Classes 346
22.4.4 Subnetting . 346
22.4.5 Private IP Addresses 347
22.4.6 Masquerading and Port Forwarding 348

22.5 IPv6. 349
22.5.1 IPv6 Addressing 350

Goals

• Knowing the basic structure of the TCP/IP protocol family
• Knowing the fundamentals of IP addressing
• Understanding the concepts of subnetting and routing
• Knowing the most important properties of and differences between TCP,

UDP, and ICMP
• Knowing about the most important TCP and UDP services
• Knowing the most relevant differences between IPv4 and IPv6

Prerequisites

• Basic knowledge of computer networks and TCP/IP services from a user’s
point of view is helpful

adm2-internet.tex (0cd20ee1646f650c)

330 22 TCP/IP Fundamentals

22.1 History and Introduction

22.1.1 The History of the Internet

The history of networking computers reaches back almost to the beginning of the
“computer age”. Most of the early techniques are all but forgotten today—the “In-
ternet” has won the day. But what is “the Internet”, anyway, and where does it
come from? In this section, we give a brief overview of its history and the devel-
opment of world-wide computer communications. If you already know this from
elsewhere, feel free to skip to the next section. Thank you very much.

The progenitor of today’s Internet is ARPAnet, whose development wasARPAnet

funded by the American defence department. It’s the late 1960s.

B The original object was not, as is often claimed, the construction of a com-
munication infrastructure for the eventuality of nuclear war, but merely re-
search into data communications, while at the same time improving com-
munications between the corporations and universities engaged in defence
research.

In 1969, the ARPAnet consisted of 4 nodes; from 1970 until 1972 the Network Con-
trol Protocol (NCP) was implemented as the basic communication standard on theNCP

ARPAnet. The most important service at the time was electronic mail.
In the 1970s, the idea of an “internet” that was supposed to connect already

existing networks gained traction. Researchers tried to implement “TCP”, a reli-
able communication protocol based on an unreliable transmission protocol (the
idea of making available an unreliable communication protocol in the shape of
UDP only came along later, which explains where the name “TCP/IP” (rather
than “TCP/UDP/IP” or something similar) comes from). The first TCP imple-
mentations appeared in the early 1970s on “large” systems such as TOPS-20 or
Tenex; shortly afterwards it was proved that it was possible to implement TCP
even on workstation-class computers like the Xerox Alto, such that these comput-
ers could also be part of the Internet. The first ethernet was also developed at
Xerox PARC in 1973.

Today’s basic TCP/IP standards appeared in the early 1980s. They were trialled
in BSD—the Unix variant developed at the University of California at Berkeley–,
which led to its popularity among users and computer manufacturers. On 1 Jan-“TCP/IP Flag Day”

uary 1983, the ARPAnet was converted from NCP to TCP/IP. Soon afterwards, the
original ARPAnet was divided administratively into the two components, MILnetMILnet

(for military applications) and ARPAnet (for defence research). Also in 1983, theARPAnet

development of DNS laid the groundworks for future expansion. In the subse-
quent years—1984 to 1986—, more TCP/IP-based networks were created, such as
the National Science Foundation’s NSFNET, and the notion of “the Internet” asNSFNET

the totality of all interconnected TCP/IP networks established itself.
At the end of 1989, Australia, Germany, Israel, Italy, Japan, Mexico, the Nether-

lands, New Zealand, and the United Kingdom were connected to the Internet. It
now consisted of more than 160,000 nodes.

In 1990 the ARPAnet was officially decommissioned (it had been assimiliated
into the Internet for a very long time), and in 1991 NFSNET was opened to com-
mercial users. Commercial providers mushroomed. Today most of the network
infrastructure is privately held.

Today we have a global network of interconnections with a uniform address
space. We use open protocols and uniform communication methods, so everyone
can join in the development and the net is available to anybody. Development of
the Internet is far from finished, though; future improvements will try to address
pressing problems such as address scarcity and the increased need for security.

22.1.2 Internet Administration

A global network like the Internet cannot function without administrative struc-
tures. These started out in the USA, since in the beginning most interconnected

22.1 History and Introduction 331

networks were deployed in that country. It still remains there today, more pre-
cisely with the American Department of Commerce.

B Various people are irked by the dominance of the USA as far as the Inter-
net is concerned. Unfortunately it is very difficult to figure out what to do
about it, as the Americans are not willing to pass the baton formally. On
the other hand, the Department of Commerce pursues a marked laissez-faire
approach, so the opponents can arrange themselves to a certain degree with
the status quo.

Theoretically, control of the Internet rests in the hands of the “Internet Society” Internet Society

(ISOC), an international non-profit organisation founded in 1992. Its members
consist of governments, corporations, universities, other organisations and even
individuals (anybody may join).

B The main goal of ISOC was to give a formal framework to somewhat vaguely
defined institutions such as the IETF (see below) as well as to ensure their
financial support. In addition, ISOC holds copyright to the RFCs, the nor-
mative documents for the Internet, which are freely available to everybody
who is interested.

ISOC’s activities fall into three broad categories:

Standards ISOC is the overarching structure for a number of organisations deal-
ing with the technical development of the Internet. These include:

• The Internet Architecture Board (IAB) is the committee in charge of over-
seeing technical development of the Internet. The IAB takes care of
publishing the RFCs and counsels ISOC leadership on technical mat-
ters.

B The IAB currently has about a dozen members (humans) who have
been selected by the “IETF nominating committee”, one chairper-
son also selected by the IETF nominating committee, and a few
ex-officio members and representatives of other organisations.

• The Internet Engineering Task Force (IETF) is tasked with actually devel-
oping Internet standards and, while doing so, cooperates closely with
institutions like ISO/IEC and the World Wide Web Consortium (W3C).
The IETF is an open organisation without membership, which is oper-
ated by “volunteers” (whose employers usually foot the bill). Within
IETF there is a large number of “working groups” that arrange them-
selves into “areas” according to their subject matter. Every area has one
or two “area directors” who together with the IETF chair form the In-
ternet Engineering Steering Group (IESG). This committee is responsible
for the IETF’s activities.

B Owing to its amorphous structure it is difficult to say how large
IETF is at any given time. In the first years after its institution in
1986, attendance at its regular meetings changed between 30 and
120 people. Since the explosive growth of the Internet in the 1990s
the circle has become somwhat larger, even though after the burst-
ing of the “dot-com bubble” it dropped from 3000 people in 2000
down to about 1200 today.

B The IETF’s mantra is “rough consensus and running code”—it
does not require unanimous decisions but does want to see most
of the group behind winning ideas. There is also a big empha-
sis on solutions that actually work in practice. This and the fact
that most of the work is performed by volunteers can lead to IETF
working groups taking very long to deliver results—especially
if there are too few or too many interested people who want to
contribute.

332 22 TCP/IP Fundamentals

• The Internet Corporation for Assigned Names and Numbers, ICANN for
short, is another non-profit organisation that was incorporated in 1998
to take over some things that, previously, other organisations (in par-
ticular IANA, see the next bullet) had been taking care of on behalf of
the US government. In particular, this means the assignment of IP ad-
dresses and DNS top-level domain names. Especially the latter is an
extremely political issue and every so often brooks conflict.

• The Internet Assigned Numbers Authority (IANA) is in charge of actually
assigning IP addresses and operating the DNS root servers. Adminis-
tratively, IANA is part of ICANN. In addition, IANA is responsible for
the management of all globally unique names and numbers in Internet
protocols published as RFCs. In that respect it cooperates closely with
IETF and the RFC editors.

B IANA delegates the assignment of IP addresses further to so-
called Regional Internet Registries (RIRs), which each handle “dis-
tribution” (usually) to ISPs in some part of the world. Currently
there are five RIRs, with RIPE NCC being in charge of Europe.

Education ISOC runs conferences, seminars, and workshops on important Inter-
net issues, supports local Internet organisations and, through financial aid,
enables experts in developing countries to take part in the discussion and
development of the Internet.

Political Lobbying ISOC cooperates with governments and national and inter-
national bodies in order to further its ideas and values. The declared goal
of ISO is “a future in which people in all parts of the world may use the
Internet to improve their quality of life”.

22.2 Technology

22.2.1 Overview

Computers process digital information. In the “real world”, however, this infor-
mation is represented by means of physical phenomena such as voltage, charge, or
light, and the real world remains fiercely “analogue”. The first challenge of data
communication, then, is to transform the digital information inside the computer
into something analogue—like, for example, a sequence of electrical impulses on
a wire—for transmission to another computer, and transforms that back to digital
information at the other end. The next challenge is to make this work if the first
computer is in Berlin and the other one in New Zealand.

B You can divide data networks very roughly, and without actually looking
at the technology involved, into two groups: Local area networks (LANs)Local area networks

connect a small number of nodes in a geographically limited area, wide areawide area networks

networks (WANs) a potentially large number of nodes in a geographically
very large ara.

B With LANs, the owner (a company or other organisation or—frequently
today—a household) is usually also the operator and the sole user, and the
network offers high bandwidth (100 MBit/s and more). WANs, on the other
hand, connect a multitude of different users who generally do not own the
network, bandwidth is less, and usage more expensive.

There are many different networking technologies for very diverse require-
ments, ranging from very-short-range wireless connections (Bluetooth) and typi-
cal LAN technology like Ethernet to fiber connections based on ATM for WANs.
As programmers and system administrators we do not want to be bothered with
their gory electrical engineering details. Hence we talk about a “protocol stack”

22.2 Technology 333

and try to separate cleanly its individual components—the “electrical” part, the
basic communication between computers on the same network, the basic commu-
nication between computers on different networks, and finally concrete “services”
such as electronic mail or the World Wide Web. But first things first.

22.2.2 Protocols

A “protocol” is an agreed scheme governing how two (or more) nodes on a net-
work talk to one another. The spectrum of possible protocols ranges from rules
for electrical signals on an Ethernet cable or radio signals in a WLAN up to (for
example) protocols governing access to an SQL database server. Protocols can be
roughly divided into three classes:

Transmission protocols (often also called “access methods”) govern data trans-
mission essentially at the level of network cards and physical connections.
Their make-up depends on the physical properties and restrictions arising
from their implementation in “hardware”. For example, the communica-
tion between two computers across a serial “null modem cable” is com-
pletely different from the transmission of data via a radio connection on
a WLAN, and the transmission protocols used follow completely different
requirements.

B The most common transmission protocol in LANs is Ethernet, even
though current Ethernet has hardly anything to do with the epony-
mous original of 1973 (O. K,̇ both involve electricity, but the resem-
blance stops about there). Other standards such as token-ring or field
bus systems only come up for special applications. Also popular today
are WLAN access methods like IEEE 802.11.

Communication protocols serve to organise the communication between com-
puters in different networks without presupposing detailed knowledge of
the medium access methods used. To use your home PC in Germany to
view a web site on kangaroos served by a server at a university in Australia,
you do not want to have to know that your PC is connected via Ethernet
to your home router, which talks ATM to the DSLAM in the telecom shed
across the road, which passes data through fiber around a few corners to
Australia and so on—you just enter www.roos-r-us.au in your browser. It is
thanks to communications protocols that your PC can find the remote web
server and exchange data with it.

B Communication protocols are supposed to prevent you from having to
mess with transmission protocols, but of course they cannot exist with-
out those. The goal of communication protocols is to hide the transmis-
sion protocols’ gory details from you—just like your car’s accelerator
pedal is used to protect you from having to know the precise control
data for its electronic fuel injection control system.

B The communication protocols of interest to us are, of course, IP, TCP,
and UDP. We shall also look at ICMP as an “infrastructure protocol”
providing diagnosis, control, and error notification.

Application protocols implement actual services like electronic mail, file trans-
fer, or Internet telephony based on communication protocols. If communi-
cation protocols are useful to send random bits and bytes to Australia and
get others back, application protocols let you make sense of these bits and
bytes.

B Typical application protocols that you as a Linux administrator might
be confronted with include SMTP, FTP, SSH, DNS, HTTP, POP3, or
IMAP, possibly with “secure”, that is, authenticated and encrypted,

334 22 TCP/IP Fundamentals

Layer 𝑛 + 1 ⟵ Layer 𝑛 + 1 protocol ⟶ Layer 𝑛 + 1
⇕ Service Interface Service Interface ⇕

Layer 𝑛 ⟵ Layer 𝑛 protocol ⟶ Layer 𝑛
⇕ Service Interface Service Interface ⇕
Layer 𝑛 − 1 ⟵ Layer 𝑛 − 1 protocol ⟶ Layer 𝑛 − 1
⇕ ⇕

Physical medium

Figure 22.1: Protocols and service interfaces

Station 1 OSI Layers Station 2

Application Application Application
protocols Presentation protocols

(FTP, HTTP, …) Session (FTP, HTTP, …)

Communication Transport Communication
protocols (IP, TCP) Network protocols (IP, TCP)

Medium access Data Link Medium access
(Ethernet, …) Physical (Ethernet, …)

Figure 22.2: ISO/OSI reference model

offshoots. All of these protocols are used by application programs such
as mail clients or web browsers, and are based on communication pro-
tocols such as TCP or UDP.

B The data exchanged via a protocol are abstractly called protocol data units—protocol data units

depending on the protocol they may have more specific names like “pack-
ets”, “datagrams”, “segments”, or “frames”.

The fact that communication protocols are meant to hide the details of trans-
mission protocols, and that application protocols are meant to hide the details of
communication protocols lets us construct a “layer model” (Figure 22.1) where thelayer model

transmission protocols take up the lowest and the application protocols the high-
est layer. (This is incidentally where the term “protocol stack” comes from.) Every
layer on the sender’s side receives data “from above” and passes it “below”; on
the receiver’s side it is received “from below” and passed on “above”. Conceptu-
ally we still say that two nodes communicate “via HTTP”, when in fact the HTTP
data flow across TCP, IP, and a whole zoo of possible transmission protocols from
one node to the next and still must pass the IP and TCP layers upwards before
becoming visible again as HTTP data.

Technically, within each layer on the sender side, the corresponding protocol
receives a “protocol data unit” at its service interface from the layer above and
adds a “header” containing all the information important for its operation beforeheader

passing it on across the service interface of the layer below. The layer below con-
siders everything it receives on the service interface as data; the previous proto-
col’s header is of no concern to the lower layer. On the receiving side, packets pass
through the same layers in reverse order, and every layer removes “its” header be-
fore passing the “payload data” upwards.

The most well-known layer model is the “ISO/OSI reference model” (Fig-ISO/OSI reference model

ure 22.2). ISO/OSI (short for “Internation Organisation for Standardisation/Open
Systems Interconnection”) used to be the basis of a protocol family proposed by
CCITT, the world organisation of telecommunications agencies and corporations.

B The ISO/OSI network standards never caught on—they were too baroque
and impractical to be useful, and the standards documents were difficult to

22.3 TCP/IP 335

get hold of—, but the reference model with its seven (!) layers has remained
and is popularly used to explain the goings-on of data transmission.

Many protocol stacks cannot be directly mapped to the ISO/OSI reference
model. On the one hand, this results from the fact that not every manufacturer
adheres to the definitions made by the model, on the other hand various protocol
stacks predate the OSI model. Nor should you commit the mistake of confus-
ing the ISO/OSI reference model with a binding “standard” for the structure of
networking software, or even a set of instructions for networking software imple-
mentation. The ISO/OSI reference model is merely a clarification of the concepts
involved and makes them easier to discuss. Even so, here is a brief overview of
the layers in the model:

• Layers 1 and 2 (physical and data link layers) describe how data is sent on
the “wire”. This includes the medium access scheme as well as the encoding
of the data.

• Layer 3 (the network layer) defines the functions required for routing, in-
cluding requisite addressing.

• The transport of application data is described in layer 4 (transport layer).
This distinguishes between connection-oriented and connectionless ser-
vices.

• The layers 5, 6 and 7 (session, presentation, and application layers) are often
not explicitly discriminated in practice (e. g., with the TCP/IP protocols).
These describe the system-independent representation of data within the
network and the interfaces to application protocols.

• In addition, Andy Tanenbaum [Tan02] postulates ĺayers 8 and 9 (the finan-
cial and political layers). While these layers are well-known in practice, they
have so far not been incorporated into the official ISO/OSI reference model.

Exercises

C 22.1 [2] Review briefly the differences between transmission, communica-
tion, and application protocols. Name examples for the various types. (Do
you know ones that are not part of the TCP/IP world?)

C 22.2 [1] What is the main difference between ISO/OSI layers 2 and 3?

22.3 TCP/IP

22.3.1 Overview

TCP/IP stands for “Transmission Control Protocol/Internet Protocol” and is cur-
rently the most wide-spread method of transferring data in computer networks
ranging from two computers in a local network up to the world-wide Internet.
TCP/IP is not just a single protocol but a plethora of different protocols built upon
one another with possibly very different applications. This is called a “protocol
family”.

The protocols from the TCP/IP protocol family can roughly be placed in the
context of the ISO/OSI layer model shown in Figure 22.2. Here, in brief, are the
most important ones:

Medium access layer Ethernet, IEEE 802.11, PPP (these are, strictly speaking, not
TCP/IP protocols)

Internet layer IP, ICMP, ARP

Transport layer TCP, UDP, …

336 22 TCP/IP Fundamentals

Application layer HTTP, DNS, FTP, SSH, NIS, NFS, LDAP, …

In order to understand better the process of data communication, and to be able
to localise and find errors that may occur, it is very useful to know the structure of
the most important protocols and the make-up of the protocol data units involved.
We shall now explain the most important TCP/IP protocols from the internet and
transport layers.

Exercises

C 22.3 [2] Which other protocols of the TCP/IP protocol family can you think
of? Which of the four layers do they belong to?

22.3.2 End-to-End Communication: IP and ICMP

IP IP connects two nodes. As an ISO/OSI layer 3 protocol it is responsible for
the data finding its way across the Internet from the sender to the receiver. The
catch is that this way can involve very long distances consisting of diverse inde-
pendent sections using markedly different networking technologies and exhibit-
ing markedly different communication parameters. Consider a user “surfing” the
Internet at home. Their computer is connected via an analogue modem and the
phone network, using PPP, to a dial-in computer on an ISP’s premises which pro-ISP

vides the actual connection to the Internet. The user’s web requests are then sent
half-way around the world by means of ATM on fiber optics lines before arriving
in a university’s computing center, from where they are passed across the FDDI-
based campus network to a departmental router, which transmits the data to the
web server connected by Ethernet. The web page content then takes the reverse
way back. The various parts of the route use not only different networking tech-
nologies, but also different “local” addresses—-while no addressing is necessary
at all using PPP (there are only two communication stations), Ethernet is based
on 48-bit “MAC” addresses.

One of the achievements of IP is to make available a “global” address spaceaddress space

which assigns a unique address to every node connected to the Internet, by which
that node can be identified. IP also provides routing from one system to anotherrouting

without regard to the actual networking technology in use.
IP is a connectionless protocol, that is, unlike the traditional telephony net-connectionless protocol

work (for example) it provides no fixed connection (a “wire”) for two systems to
communicate1, but the data to be transmitted is divided up in small pieces, the
so-called datagrams, which can then be addressed and delivered independentlydatagrams

from each other. In principle, every datagram can take a different path to the re-
ceiver than the previous one; this makes IP resilient to failure of connections or
routers as long as one route can be found from the source to the target node. IP
does not give guarantees that all transmitted data will actually reach the receiving
system, nor does it guarantee that the data which does in fact arrive will do so in
the order in which it was sent. It is up to “higher-level” protocols to sort this out
if the application requires it.

B Imagine you want to send a long body of text to your aunt in Australia2. To
do this “à la IP”, you would write the text on a large number of individual
postcards. Chances are that on the way down under your postcards will be
mixed up, and the postman there is unlikely to drop them in your aunt’s
letter box in precisely the same order that you posted them here. It is also
quite possible for the odd postcard to be delayed or lost somewhere on the
way.

1Even the telephone network—affectionately called POTS (for “plain old telephone system”)—no
longer works this way.

2Read “Germany” if you are reading this in Australia.

22.3 TCP/IP 337

0 3 4 7 8 15 16 18 19 31

Version Hdr
Len

Type of Service Total length

Identification Flags Fragment Offset

Time to Live Protocol Header checksum

Source Address
Target Address

Options (optional)

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪
⎭

Header

Data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 22.3: Structure of an IP datagram. Every line corresponds to 32 bits.

B Why is this an advantage? The traditional telephone network with its wires
connected from one end to the other was very susceptible to disturbances—
if any segment on the way failed, the whole conversation broke down and
needed to be reconstructed (a big deal, back in the days of manually pre-
pared connections). If a problem or interruption develops during connec-
tionless transmission, the network can look for alternative routes for future
datagrams that detour around the damaged part. Methods like TCP make
it possible to detect which data was lost due to the problem and arrange for
it to be retransmitted.

Besides, IP takes care of fragmentation. IP datagrams may be up to 65535 fragmentation

bytes long, but most transmission protocols only allow much shorter protocol data
units—with Ethernet, for example, at most 1500 bytes. Thus longer datagrams
need to be “fragmented”—for transmission across such a medium the datagram is
taken apart, split up into numbered fragments, and reassembled later. IP ensures
that only datagrams with no missing fragments are officially considered received.

B The official specification of IP is [RFC0791]. You do not need to read this but
it may be helpful against insomnia.

B Figure 22.3 shows the structure of an IP datagram. We should briefly ex-
plain at least two of the fields:

• The “time to live” (or TTL) states the maximum life span of the data-
gram. It is set by the sender and decremented (reduced by 1) by each
node the datagram passes through on its way to the recipient. If the
TTL reaches zero, the datagram is dropped, and the sender is noti-
fied. This serves to prevent “flying Dutchmen”—datagrams that due
to routing errors run in circles on the Internet without ever reaching
their destination. (A common default value is 64, which considering
the current extent of the Internet is usually more than enough.)

• The “type of service” (TOS) specifies the quality of service desired for
the datagram. Theoretically you get to pick, in addition to one of seven
precedence levels (which will be ignored), any of the attributes “low la-
tency”, “high throughput”, “high reliability”, or “low cost”. Whether
this makes any difference whatsoever as far as the actual transmission
is concerned is anybody’s guess, since these options are only advisory
and routers like to ignore them altogether. (If that wasn’t the case,

338 22 TCP/IP Fundamentals

0 7 8 15 16 23 24 31

Type Code Checksum
Type-dependent data structure

Type-dependent data structure

Figure 22.4: Structure of an ICMP packet

then probably all datagrams would have all these desirable options
switched on.)

ICMP Another important protocol, is the “Internet Control Message Protocol”,
or ICMP for short (see Figure 22.4). It is used for network management and to
report network problems, such as a failed connection or an unreachable subnet.
The very well-known ping program, for example, uses two special ICMP messages
(echo request and echo reply). The ICMP packet is encapsulated as data inside an
IP datagram and contains further data fields depending on the code.

IP and Transmission Protocols To be able to use IP to transmit data regardless
of the actual network technology used, we need to define on a case-by-case basis
how IP datagrams are forwarded across the network in question—whether that is
Ethernet, PPP over an analogue telephone line, ATM, WLAN, …

With Ethernet, for example, all nodes are connected (if only conceptually) to a
shared medium—in “classic” Ethernet, a single long coaxial cable running from
one node to the next, today more often using twisted-pair cables and a common
star hub or switch. Everything a node sends is received by all the other nodes, but
these usually pick up only those protocol data units that are actually addressed to
them (today, switches help by “pre-sorting” the traffic). If two nodes transmit si-
multaneously, a collision occurs, which is handled by both nodes stopping trans-collision

mission, waiting for a random period of time, and trying again. Such a shared
Ethernet medium is also called a “segment”.segment

Every Ethernet interface has a unique address, the 48-bit “MAC address” (shortMAC address
for “medium access control”). Ethernet protocol data units, the so-called frames,frames
can be sent either to particular other nodes within the segment by specifying their
MAC address as the recipient—the frame will be seen by all nodes but ignored by
all but the addressed node—, or else broadcast to all other nodes on the segment.broadcast

B Ethernet adapters usually also support a so-called “promiscuous mode”,
in which all frames—even the ones that would otherwise be ignored as
uninteresting—are passed to the operating system. This is used by inter-
esting applications such as network analysis programs and cracker tools.

This is used to integrate IP and Ethernet. If a node (let’s call it 𝐴) wants to
communicate with another node (𝐵) whose IP address it knows, but whose MAC
address it doesn’t know, it asks all connected nodes by Ethernet broadcast:

Node 𝐴: Who here has IP address 203.177.8.4?
Node 𝐵: I do, and my MAC address is 00:06:5B:D7:30:6F

This procedure follows the “Address Resolution Protocol” (ARP, [RFC0826]).ARP

Once node 𝐴 has received node 𝐵’s MAC address, it stores it for a certain time
in its “ARP cache” in order to not have to repeat the query for every frame; IPARP cache

datagrams to nodes whose IP and MAC addresses are part of the ARP cache can
be addressed directly at the Ethernet level by embeddng them as “payload data”
into Ethernet frames. You can access the ARP cache using the arp command—not
just to read, but also to write new entries. arp output could look like this:

22.3 TCP/IP 339

0 3 4 9 10 11 12 13 14 15 16 23 24 31

Source Port Destination Port
Sequence Number

Acknowledgement Number

Offset Reserved
U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window
Checksum Urgent Pointer

Options Padding

Data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 22.5: Structure of a TCP Segment

arp

Address Hwtype Hwaddress Flags Mask Iface

server.example.org ether 00:50:DB:63:62:CD C eth0

Datagrams addressed to IP addresses that do not belong to nodes on the same
Ethernet segment must be routed (Section 22.4.2). Routing

Exercises

C 22.4 [3] Estimate the minimal TTL that is necessary to be able to reach all
other nodes on the Internet from your computer. How would you go about
determining the minimal TTL required to reach a specific node? Is that
number constant?

22.3.3 The Base for Services: TCP and UDP

TCP The “Transmission Control Protocol” (TCP) is a reliable, connection-oriented
protocol defined in [RFC0793] (among others). Unlike the connectionless IP, TCP
supports operations to open and tear down connections, which arrange for a “vir-
tual” connection between the source and destination nodes—since TCP data, like
all other data, is transmitted based on IP, the actual data transmission still hap-
pens unreliably and on a connectionless basis. TCP achieves reliability by means
of the destination node acknowledging the receipt of each packet (“segment”, in
TCP parlance). Each of the two communicating nodes annotates its segments with
sequence numbers, which the other node declares “received” in one of its next sequence numbers

segments. If there is no such acknowlegement within a certain defined period of
time, the sending node retries sending the segment in order to perhaps receive
an acknowledgement then. To avoid loss of performance, a “sliding window”
protocol is used so a number of segments can remain unacknowledged at the
same time. Even so, TCP is considerably slower than IP.

B In point of fact, TCP acknowledgements are based on octets (popularly
known as bytes) rather than segments—but for our purposes the difference
is mostly academic.

Every TCP segment contains a header of at least 20 bytes (Figure 22.5) in ad-
dition to the IP header. (Remember: The TCP segment including the TCP header

340 22 TCP/IP Fundamentals

SENDER RECIPIENT

-
Synchronisation request

Flags: SYN

�
Acknowledgement and Synchronisation

Flags: ACK, SYN

-
Acknowledgement (and Data)

Flags: ACK

�
Acknowledgement and Data

Flags: ACK

Figure 22.6: Starting a TCP connection: The Three-Way Handshake

is considered “data” by IP, the protocol of the layer below.) Errors in the data
can be detected based on a checksum. Every system supports many independent,
simultaneous TCP connections distinguished based on port numbers.port numbers

B The combination of an IP address and a port number together with the IP
address and the port number of the “peer” is called a “socket”. (The same
TCP port on a node may take part in several TCP connections to different
peers—defined by the peer’s IP address and port number.)

The virtual connection is built using the three-way handshake (see Fig-three-way handshake

ure 22.6). Using the three-way handshake, the communication peers agree on
the sequence numbers to be used. Two flags in the TCP header, SYN and ACK, playflags

an important role in this. The first data segment sent to the recipient has the SYN

flag set and the ACK flag cleared. Such a segment indicates a connection request.
The recipient acknowledges this using a TCP segment that has both the SYN and
ACK flags set. The sender in turn acknowledges this segment using one that has the
ACK flag set but not the SYN flag. At this point the connection has been established.
Subsequent TCP segments also have the ACK flag set only.—At the end of the com-
munication, the connection is torn down by means of a two-way handshake using
the FIN flag.

B The two nodes need to agree about the start of a connection, but a connection
can be torn down unilaterally. In fact this feature is required for commands
like the following to work:

$ cat bla | ssh blue sort

This uses the Secure Shell (see Chapter 25) to run the sort command on node
blue, and feeds data into its standard input. (ssh reads its standard input lo-
cally, forwards the data to the remote computer, and passes it to the sort

command on its standard input.) sort, however, works by reading all of its
standard input, then sorting the data it read, and writing the sorted data to
its standard output, which is then passed by ssh back to the local computer
(and the screen).—The problem is that ssh needs to signal the remote sort

that all the input has been read, and that it can start sorting and outputting
the data. This happens by closing the connection “to” the remote computer.
The part of the connection reading “from” the remote computer, however,
remains open and can transport the sort output back—if a connection tear-
down always affected both directions, this application would not work.

22.3 TCP/IP 341

0 15 16 31

Source Port Destination Port
Length Checksum

Data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 22.7: Structure of a UDP datagram

B Of course, after a unilateral teardown data are still passed between the
nodes in both directions, since the node that tore down the connection
must still acknowledge the data it receives via the remaining part of the
connection. It can no longer send payload data across the connection,
though.

UDP Unlike TCP, the “User Datagram Protocol” (UDP) [RFC0768] is a connec-
tionless and unreliable protocol. In fact it isn’t much more than “IP with ports”,
since, like TCP, a node can support at most 65535 communication end points (UDP
and TCP may use the same port number simultaneously for different purposes).
UDP requires neither the connection initialisiation of TCP nor the acknowledge-
ments, hence the protocol is much “faster”—the price to pay is that, as with IP,
data can get lost or mixed up.

B UDP is used either where there is only very little data to transmit, so that
the cost of a TCP connection initialisation is very high in comparison—cue
DNS—or where not every single bit counts but delays are unacceptable.
With Internet telephony or video transmission, lost datagrams call attention
to themselves through cracking noises or “snow” in the picture; a longer
hiatus like the ones common with TCP would be much more obnoxious.

Ports TCP and UDP support the idea of ports, which allow a system to maintain
more than one connection at any given time (OK, there are no “connections” with
UDP, but even so …). There are 65536 ports each for TCP and UDP, which however
cannot all be used sensibly: Port number 0 is a signal to the system’s TCP/IP stack
to pick an otherwise unused port.

Most ports are freely available to users of the system, but various ports are offi-
cially asigned to particular services. We distinguish well-known ports and reg- well-known ports

registered portsistered ports. For example, the rules say that TCP port 25 on a system is reserved
for its mail server, which is listening there to accept connections according to the
“Simple Mail Transfer Protocol” (SMTP). Similarly, the TCP port 21 is reserved
for the FTP server and so on. These assignments are published on a regular basis
by IANA and can be found, for example, at http://www.iana.org/assignments/port-

numbers.

B According to IANA, the “well-known ports” are ports 0 to 1023, while the
“registered ports” are ports 1024 to 49151. If you want to release a program
offering a new service, you should request one or more port numbers from
IANA.

B The remaining ports—from 49152up to 65535—are called “dynamic and/or
private ports” in IANA jargon. These are used for the client side of connec-
tions (it is unlikely that your system will need to maintain more than 16.000

342 22 TCP/IP Fundamentals

Network services, Internet style

echo 7/tcp

echo 7/udp

discard 9/tcp sink null

discard 9/udp sink null

systat 11/tcp users

daytime 13/tcp

daytime 13/udp

netstat 15/tcp

qotd 17/tcp quote

chargen 19/tcp ttytst source

chargen 19/udp ttytst source

ftp-data 20/tcp

ftp 21/tcp

fsp 21/udp fspd

ssh 22/tcp # SSH Remote Login Protocol

ssh 22/udp # SSH Remote Login Protocol

telnet 23/tcp

smtp 25/tcp mail

�����

Figure 22.8: The /etc/services file (excerpt)

connection to TCP servers at the same time) or for the implementation of
“private” servers.

B When IANA reserves a port number for a TCP-based protocol, it tends to
reserve the same port number for UDP as well, even though the TCP pro-
tocol in question makes no sense with UDP, and vice versa. For example,
port 80 is reserved for HTTP both as a TCP and a UDP port, even though
UDP-based HTTP is not currently an interesting topic. This leaves elbow
room for future extensions.

On a Linux system, a table of assignments is available in the /etc/services file
(Figure 22.8). This table is used, for example, by the Internet daemon (inetd or
xinetd) or the C library function getservbyname() to find the port corresponding to
a given service name.

B You can change /etc/services, e. g., to support your own services. Do watch
for updates of the file by your distribution.

On Unix-like systems, ports 0 to 1023 are privileged—only root may open them.privileged ports

This is a security precaution against arbitrary users launching, e. g., their own web
server on an otherwise unused port 80 in order to appear official.

22.3.4 The Most Important Application Protocols

In the previous section we introduced the idea of a “service”. While communica-
tion protocols like TCP and UDP are concerned with moving data from one node
to another, “services” usually rely on application protocols that assign meaning
to the data exchanged using the communication protocol. If, for example, you
send an e-mail message using SMTP, your computer contacts the remote SMTP
server (via TCP on port 25), identifies itself, sends your address as well as that of
the recipient (or recipients) and the actual message—in each case after the remote
server prompted for them. The details of this conversation are specified by the
application protocol, SMTP.

22.3 TCP/IP 343

Table 22.1: Common application protocols based on TCP/IP

Port C Prot Name Explanation
20 TCP FTP File transfer (data connections)
21 TCP FTP File transfer (control connections)
22 TCP SSH Secure (authenticated and encrypted) login to remote computers;

secure file transfer
23 TCP TELNET Login to remote computers (insecure and obsolete)
25 TCP SMTP Electronic mail transfer
53 UDP/TCP DNS Name and address resolution and related directory services
80 TCP HTTP World Wide Web resource access

110 TCP POP3 Access to remote e-mail mailboxes
123 UDP/TCP NTP Network Time Protocol (time synchronisation)
137 UDP NETBIOS NetBIOS name service
138 UDP NETBIOS NetBIOS datagram service
139 TCP NETBIOS NetBIOS session service
143 TCP IMAP Access to e-mail stored remotely
161 UDP SNMP Network management
162 UDP SNMP Traps for SNMP
389 TCP LDAP Directory service
443 TCP HTTPS HTTP via SSL (authenticated/encrypted)
465 TCP SSMTP SMTP via SSL (obsolete, don’t use!)*
514 UDP Syslog Logging service
636 TCP LDAPS LDAP via SSL (authenticated/encrypted)*
993 TCP IMAPS IMAP via SSL (authenticated/encrypted)*
995 TCP POP3S POP3 via SSL (authenticated/encrypted)*

* These services may also be accessed via connections that are first established in the clear and then
“upgraded” to authenticated and encrypted connections later on.

344 22 TCP/IP Fundamentals

B “Services” and “protocols” are not exactly equivalent. A “service” is some-
thing you want to use the computer for, such as e-mail, web access, or print-
ing on a remote printer server. For many services on the Internet there are
“canonical” protocols that recommend themselves—for e-mail, for exam-
ple, there are hardly any alternatives to SMTP—, but some services use the
same underlying protocol as others. The Web is usually accessed via HTTP
and remote printer servers via the “Internet Printing Protocol” (IPP). How-
ever, if you look closely enough you will notice that IPP, as used today, is
really glorified HTTP. The only difference is that HTTP uses TCP port 80
while IPP uses TCP port 631.

Table 22.1 shows a summary of some important application protocols. We will
encounter several of them later on in this manual; others will covered in other
Linup Front training manuals.

Bad news for LPIC-1 candidates: LPI wants you to know the port numbers
and services from Table 22.1 by heart (LPI objective 109.1). Have fun swot-
ting up.

22.4 Addressing, Routing and Subnetting

22.4.1 Basics

Every network interface in a system on a TCP/IP network has at least one IP ad-
dress. In this case, an “interface” is that part of a system that is able to send and
receive IP datagrams. A single system can contain more than one such interface
and then generally uses more than one IP address. With

$ /sbin/ifconfig

or

$ /sbin/ip addr show

you can list the configured interfaces or network devices.
IP addresses are 32 bits long and are usually written as “dotted quads”—theyIP addresses

are viewed as a sequence of four eight-bit numbers written in decimal notation as
values between 0 and 255, like “203.177.8.4”3. Each IP address is assigned to be
globally unique and denotes a node in a particular network on the Internet. To do
so, IP addresses are split into a network and a host part. This split is variable and
can be adapted to the number of node addresses required in a network. If the host
part takes 𝑛 bits, 32 − 𝑛 bits remain for the network part. The split is documented
by the network mask, which contains a binary 1 for each bit in the IP addressnetwork mask

belonging to the network part, and a binary 0 for each bit of the host part. The
network mask is notated either as a dotted quad or—frequently—as the number
of ones. “203.177.8.4/24” is thus an address in a network with a network mask of
“255.255.255.0”.

By way of an example, let’s assume a 28-node network. The next higher power
of 2 is 32 = 25. This means that 5 bits are required to number all the nodes. The
remaining 27 bits (32 − 5) identify the network and are the same in all systems on
that network. The network mask is 255.255.255.224, since the top three bits are set
in the final “quad”—those with values 128, 64, and 32, or 224 altogether.

By convention, the first and last IP addresses in a network are reserved for
special purposes: The first address (host part all binary zeroes) is the networknetwork address

address, the last address (host part all binary ones) the broadcast address. In thebroadcast address

3Incidentally, it is quite legal and supported by most programs to give an IP address as a decimal
number that has been “multiplied out”—in our example, 3417376772 instead of 203.177.8.4. This is the
key ingredient to “trick URLs” of the form http://www.microsoft.com@3417376772/foo.html.

22.4 Addressing, Routing and Subnetting 345

Table 22.2: Addressing example

IP Address
Meaning binary decimal

Network mask 11111111 11111111 11111111 11100000 255.255.255.224

Network address 11001011 10110001 00001000 00000000 203.177.8.0

Host addresses 11001011 10110001 00001000 00000001 203.177.8.1

⋮ ⋮ ⋮
11001011 10110001 00001000 00011110 203.177.8.30

Broadcast address 11001011 10110001 00001000 00011111 203.177.8.31

example above, 203.177.8.0 is the network address and 203.177.8.31 the broadcast
address. The numbers 1 to 30 are available for nodes (Table 22.2).

B The address 255.255.255.255 is a broadcast address, but not for all of the In-
ternet, but the local network segment (for example, all the stations on the
same Ethernet). This address is used if no more precise address is known,
for example if a node wants to obtain an IP address and network mask via
DHCP.

22.4.2 Routing

Routing is used to send IP datagrams that cannot be delivered directly within
the local network on to the correct destination4. In fact, you might argue that
routing is the central property that sets TCP/IP apart from “toy protocols” such
as NetBEUI and Appletalk, and which made the Internet, as we know it, possible
in the first place.

Routing applies where the recipient of an IP datagram cannot be found within
the same network as the sender. The sender can figure this out straightforwardly
based on the desired recipient’s IP address, by considering that part of the desti-
nation address that is “covered” by its own network mask and checking whether
this matches its own network address. If this is the case, the recipient is “local”
and can be reached directly (Section 22.3.2 on page 338).

If the recipient cannot be reached directly, the node (at least if it is a Linux host)
consults a routing table which should contain at least a “default gateway”, i. e., a routing table

node that takes care of forwarding datagrams that cannot be delivered outright.
(This node usually needs to be reachable directly.) Such a node is called a “router”
and is either a computer in its own right or else a special appliance manufactured
for the purpose.

B In principle, the router proceeds just like we described: It contains vari-
ous network interfaces, each of which is assigned an address and a network
mask, and can deliver datagrams immediately to nodes that according to
the network masks of its interfaces can be identified as being part of one of
“its” networks. Other directly reachable nodes acting as routers are called
upon for more forwarding if necessary.

B In real life, routing tables can be considerably more complex. For example,
it is possible to forward datagrams directed to particular nodes or networks
to other routers that are not the default gateway.

An important observation is that a node (PC or router) usually determines just
the directly following routing step (also called “hop”), instead of specifying the
complete path from the original sender of the datagram to the final recipient. This

4This was already foreseen in the Old Testament: “He leadeth me in the paths of righteousness for
his name’s sake.” (Psalm 23:3) Of course on the Internet there are few better methods of completely
ruining your reputation than a spectacularly wrong router misconfiguration.

346 22 TCP/IP Fundamentals

Table 22.3: Traditional IP Network Classes

Class Network part Number of networks Hosts per network Addresses

Class A 8 Bit 128 – 126 usable 16.777.214 (224 − 2) 0.0.0.0 – 127.255.255.255

Class B 16 Bit 16.384 (214) 65.534 (216 − 2) 128.0.0.0 – 191.255.255.255

Class C 24 Bit 2.097.152 (221) 254 (28 − 2) 192.0.0.0 – 223.255.255.255

Class D - - - 224.0.0.0 – 239.255.255.255

Class E - - - 240.0.0.0 – 254.255.255.255

means that it is up to each router between the sender and recipient to pick that
hop that it considers most sensible. Well-configured routers talk to their “neigh-
bours” and can base their routing decisions on information about network load
and possibly known blockages elsewhere in the network. A detailed discussion
of this topic is beyond the scope of this manual.

B In fact it is possible for a datagram to specify the complete path it wants
to take to its destination. This is called “source routing”, is universally
frowned upon, and will be completely ignored by large parts of the net-
work infrastructure, because on the one hand it is at odds with the idea of
dynamic load distribution, and on the other hand it is a common vehicle for
security issues.

22.4.3 IP Network Classes

Traditionally, the set of IP addresses from 0.0.0.0 to 255.255.255.0 was divided into
several network classes which were called “class A”, “class B”, and “class C”.network classes

B There are also “class D” (multicast addresses) and “class E” (experimental)
addresses, but these are of little interest to the assignment of IP addresses
to nodes.

Classes A to C differ by their network masks, which amounts to the number of
networks available per class and the number of hosts available in these networks.
While a class A address has an 8-bit network part, a class B address uses 16 bits,
and a class C address 24. A fixed range of IP addresses was assigned to each of
the network classes. (Table 22.3)

Due to the increasing scarcity of IP addresses the division of the IP address
space into the three address classes was abandoned during the 1990s. Now we
are using “classless inter-domain routing” (CIDR) according to [RFC1519]. While
according to the “old” scheme the boundary between the network and host ad-
dresses could only occur in one of three different places, CIDR makes it possible
to assign arbitrary network masks and thus fine-tune the size of the address range
made available to a customer (usually an ISP) as well as work against the “explo-
sion” of routing tables. An installation with sixteen adjacent “class C” networks
(network mask “/24” can be viewed for routing purposes as one network with a
/20 netmask—a considerable simplification, since routing tables can be that much
simpler. On the Internet, addresses whose network part is more than 19 bits long
are no longer routed directly; in general you must arrange for a provider to man-
age all of the addresses and forwards the IP datagrams suitably.

22.4.4 Subnetting

Frequently a large network is too imprecise or makes no sense otherwise. Hence
operators often divide their networks into several smaller networks. This hap-
pens by adding another fixed part to the fixed network part of an IP address. In
our previous example, subnetting might work approximately like this: Instead of a
“large” network with 32 addresses (for 30 nodes) you might prefer two “smaller”

22.4 Addressing, Routing and Subnetting 347

Table 22.4: Subnetting Example

IP Address
Meaning binary decimal
Network mask 11111111 11111111 11111111 11110000 255.255.255.240

Network address (1) 11001011 10110001 00001000 00000000 203.177.8.0

Host addresses (1) 11001011 10110001 00001000 00000001 203.177.8.1

⋮ ⋮ ⋮
11001011 10110001 00001000 00001110 203.177.8.14

Broadcast address (1) 11001011 10110001 00001000 00001111 203.177.8.15

Network address (2) 11001011 10110001 00001000 00010000 203.177.8.16

Host addresses (2) 11001011 10110001 00001000 00010001 203.177.8.17

⋮ ⋮ ⋮
11001011 10110001 00001000 00011110 203.177.8.30

Broadcast address (2) 11001011 10110001 00001000 00011111 203.177.8.31

Table 22.5: Private IP address ranges according to RFC 1918

Adressraum from to
Class A 10.0.0.0 – 10.255.255.255

Class B 172.16.0.0 – 172.31.255.255

Class C 192.168.0.0 – 192.168.255.255

networks with up to 16 addresses (up to 14 nodes), for example to be able to de-
ploy separate Ethernet cables for security. You can lengthen the network mask
by 1 bit; the network, host, and broadcast addresses can be derived from this as
above (Table 22.4).

B It isn’t necessary for all subnets to have the same size. The 203.177.8.0/24 net- subnets of different size

work, for example, could straightforwardly be subdivided into one subnet
with 126 host addresses (e. g., 203.177.8.0/25 with the host addresses 203.177.

8.1 to 203.177.8.126 and the broadcast address 203.177.8.127) and two subnets
with 62 host addresses (e. g., 203.177.8.128/26 and 203.177.8.192/26 with the
respective host addresses of 203.177.8.192 up to 203.177.8.190 as well as 203.

177.8.193 up to 203.177.8.255 and the broadcast addresses 203.177.8.191 and
203.177.8.255).

B The smallest possible IP network has a 30-bit network part and a 2 bit station smallest possible IP network

part. This amounts to a total of four addresses, one of which is the network
address and one is the broadcast address, so two addresses are left over for
statues. You will find this arrangement every so often with point-to-point
links via modem or ISDN.

22.4.5 Private IP Addresses

IP addresses are globally unique and must therefore be administered centrally. Globally unique distribution of
IP addressesHence you cannot pick your own e-mail address arbitrarily, but must apply for

one—usually to your ISP, who in turn has been assigned a block of IP addresses
by a national or international body (Section 22.1.2). The number of internationally
possible network addresses is, of course, limited.

B At the beginning of February 2011, IANA assigned the last five available
/8 address ranges to the five regional registries. It is probable that APNIC
(Asia Pacific Network Information Centre) will run out of IP addresses first,
possibly in mid-2011. After that, the only solutions will be begging or IPv6.

According to [RFC1918], special IP address ranges, the private addresses, are private addresses

348 22 TCP/IP Fundamentals

reserved for systems that are not connected to the Internet. These addresses will
not be routed on the Internet at large (Table 22.5).

You can use these addresses with impunity within your local networks—
including subnetting and all other bells and whistles.

22.4.6 Masquerading and Port Forwarding

IP addresses are a scarce resource today, and that will remain so until we have
all converted to IPv6 (Section 22.5). Therefore it is highly probable that you will
be assigned only one “official” (i. e., non-RFC 1918) address to connect all of your
network to the Internet—with home networks or ones in small companies this is
even the rule. The solution (an euphemism for “lame kludge”) consists of “mas-
querading” as well as “port forwarding”. Both approaches are based on the fact
that only your router is connected to the Internet by means of a public IP address.
All other nodes within your network use addresses according to [RFC1918]. Mas-Masquerading

querading implies that your router rewrites datagrams that nodes within your
network send “outside” in order to replace those nodes’ IP addresses by its own,
and forwards the corresponding response datagrams to the proper senders. Both
the nodes inside your network and “the Internet” are not aware of the fact—the
former assume that they are talking directly to the Internet, while the latter only
gets to see the (official) IP address of your router. Conversely, port forwardingport forwarding

enables nodes on the Internet to connect to services such as DNS, e-mail or HTTP
through their respective ports on the router, while the router forwards the data-
grams in question to a node on the inside that performs the actual service.

A You should resist the temptation of making your router simultaneously your
web, mail, or DNS server; the danger of an intruder compromising your
router through one of the large server programs and therefore, in the worst
case, getting access to all of your local network, is much too great.

B Port forwarding and masquerading are two examples of a concept that is
generally called NAT (network address translation). In particular, we canNAT

think of masquerading as “source NAT”, since the sender address of outgo-
ing datagrams is modified5, while port forwarding is an instance of “desti-
nation NAT”—since the destination address of datagrams addressed to us
is changed.

Exercises

C 22.5 [1] Can the following IP addresses with the given network mask be
used as host addresses in the appropriate IP network? If not, why not?

IP Address Network mask
a) 172.55.10.3 255.255.255.252

b) 138.44.33.12 255.255.240.0

c) 10.84.13.160 255.255.255.224

C 22.6 [2] Which reasons could you have to divide the address range your ISP
assigned to you into subnets?

C 22.7 [T]he network at IP address 145.2.0.0, with the network mask 255.255.

0.0, was divided, using the subnet mask 255.255.240.0, into the following
subnets:

• 145.2.128.0

• 145.2.64.0

5The fact that we also need to rewrite the recipient address of incoming datagrams will be ignored
for convenience.

22.5 IPv6 349

• 145.2.192.0

• 145.2.32.0

• 145.2.160.0

Which other subnets are also possible? Which subnet contains the station
145.2.195.13?

22.5 IPv6

The most popular incarnation of IP is version 4, or “IPv4” for short. Due to the IPv4

explosive growth of the Internet, this version comes up against various limits—the
main problems are the increasing scarcity of addresses, the chaotic assignment of
addresses, and the highly complex routing resulting from this, as well as a fairly
sketchy support of security mechanisms and tools for ensuring quality of service.
IPv6 is supposed to sort this out. IPv6

The most important properties of IPv6 include: properties

• The length of addresses was increased from 32 to 128 bits, resulting in a
total of 3.4 ⋅ 1038 addresses. This would suffice to assign approximately
50.000 quadrillion6 IP addresses (a 28-digit number) to each living person
on Earth. That should be enough for the foreseeable future.

• IPv6 stations can automatically obtain configuration parameters from a
router when they are connected to a network. If necessary, there is still a
DHCPv6 protocol.

• There are only 7 fields in an IP header, so routers can process datagrams
more quickly. You get get to use several headers if necessary.

• Extended support for options and extensions, which also contributes to
router processing speed.

• Improved transmission of audio and video data and better support for re-
altime applications.

• Increased security by means of secured data transmission and mechanisms
for authentication and integrity protection.

• Extensibility to ensure the future of the protocol. The protocol does not try
to cover all possiblities, since the future brings new ideas that cannot be
foreseen today. Instead, the protocol is open to the integration of additional
functionality in a backwards-compatible manner.

Even though the standardisation of IPv6 has been finished for some time, the gen-
eral implementation leaves much to be desired. In particular the service providers implementation

are still acting coyly. Linux already supports IPv6, so the conversion of a Linux-
based infrastructure to the new standard will not present big problems. You can
also transport IPv6 datagrams via IPv4 for testing purposes, by embedding them
into IPv4 datagrams (“tunnelling”). Thus a company could base its internal net-
work on IPv6 and even connect several premises via a “virtual” IPv6 network
within the traditional IPv4 network.

We should also stress that IPv6 is a targeted replacement for IPv4. Most IP-
based protocols—starting with TCP and UDP—remain unchanged. Only at the
“infrastructure level” will some protocols become extraneous or be replaced by
IPv6-based versions.

6What our American friends would call a “septillion”

350 22 TCP/IP Fundamentals

22.5.1 IPv6 Addressing

IPv6 supports 2128 distinct addresses—an unimaginably large number. Essen-
tially, every grain of sand on Earth could be assigned several addresses, but that
isn’t even the goal: The large address space enables much more flexible address
assignment for various purposes, as well as much simplified routing.

Unlike IPv4 addresses, IPv6 addresses are not notated as decimal numbers, butNotation

instead as hexadecimal (base-16) numbers. Four hexadecimal digits are grouped
and these groups are separated by colons. For example, an IPv6 address might
look like

fe80:0000:0000:0000:025a:b6ff:fe9c:406a

Leading zeroes in a group may be omitted, and (at most) one run of “zero blocks”
may be replaced by two colons. Hence, an abbreviated rendition of the address
from the previous example might be

fe80::25a:b6ff:fe9c:406a

The IPv6 address ::1—an abbreviation of

0000:0000:0000:0000:0000:0000:0000:0001

—corresponds to the IPv4 loopback address, 127.0.0.1. IPv6 does not support
“broadcast addresses” à la 192.168.1.255—of which more anon.

IPv6 addresses may be divided into a 64-bit “network” part and a 64-bit “sta-
tion” part. This implies that every IPv6 subnet contains 264 addresses, i. e.,
232 times as many as the whole IPv4 internet! Subnetting using variable pre-Subnetting

fix lengths, as used in IPv4 (Section 22.4.4), is not supposed to be part of IPv6.
However, it is assumed that your ISP will provide you with a “/56” address prefix
so that you can use 256 subnets with 264 addresses each, which shouldn’t really
cramp your style. (You can specify network prefixes by appending a slash and
the decimal prefix length to an address—an address like fe80::/16 describes the
network where addresses start with fe80 and then continue arbitrarily.)

There are three basic types of IPv6 addresses:types of IPv6 addresses

• “Unicast” addresses apply to one particular network interface (a station may
be equipped with several network interfaces, which will each have their own
addresses).

• “Anycast” addresses refer to a group of network interfaces. These typically
belong to different stations, and the “closest” station is supposed to answer.
For example, you may address all routers in an IPv6 network by using the
address resulting from appending an all-zero station part to the (64-bit) ad-
dress prefix of the network.

• “Multicast” addresses are used to deliver the same packets to several net-
work interfaces. As we said, IPv6 does not use broadcast; broadcast is a
special case of multicast. The address ff02::1, for example, refers to all sta-
tions on the local network.

In addition, we can distinguish various scopes:scopes

• “Global” scope applies to addresses that are routed within the whole (IPv6)
internet.

• “Link-local” scope applies to addresses that are not routed and are only
valid within the same network. Such addresses are commonly used for
internal administrative purposes. Link-local addresses are always located
within the fe80::/64 network; the other 64 bits are, in the most straightfor-
ward instance, derived from the MAC address of the interface.

22.5 IPv6 351

• “Site-local” scope applies to addresses that are only routed within one
“site”. Nobody knows exactly what this is supposed to mean, and site-local
addresses have accordingly been deprecated (again). Site-local addresses
use the fec0::/10 prefix.

• “Unique-local” addresses are similar to site-local addresses and correspond
roughly to the RFC 1918 addresses (192.168.𝑥.𝑦 etc.) of IPv4. However, IPv6
does make it easy to use “proper”, i. e., globally visible, addresses, so you
do not have to resort to using unique-local addresses in order to assign your
stations any addresses at all. Hence there is no compelling reason to use
unique-local addresses in the first place, other than as a fallback position if
something is terribly wrong with your “real” prefix. Unique-local addresses
use the fd00::/8 prefix, and you are allowed to pick your own next 40 bits
for a /48 network (but don’t pick fd00::/48).

It is important to stress that, with IPv6, every network interface can have several several addresses
addresses. It gets an automatic link-local address, but can have several unique-
local or global addresses on top of that with no problems whatsoever. All of these
addresses carry equal weight.

B A useful command for the harried IPv6 administrator is ipv6calc, which ipv6calc

makes handling IPv6 addresses easier. For instance, it will output infor-
mation about an address:

$ ipv6calc --showinfo fe80::224:feff:fee4:1aa1

No input type specified, try autodetection... found type: ipv6addr

No output type specified, try autodetection... found type: ipv6addr

Address type: unicast, link-local

Error getting registry string for IPv6 address:�

� reserved(RFC4291#2.5.6)

Interface identifier: 0224:feff:fee4:1aa1

EUI-48/MAC address: 00:24:fe:e4:1a:a1

MAC is a global unique one

MAC is an unicast one

OUI is: AVM GmbH

The address in question is a link-local unicast address whose station part
hints at a device manufactured by AVM GmbH (in point of fact a FRITZ!Box,
a type of DSL router/PBX/home server very popular in Germany).

B ipv6calc also serves to convert addresses from one format into another. For
example, you might simulate the method used to derive the station part of
an IPv6 address (also called “EUI-64”) from a MAC address:

$ ipv6calc --in mac --out eui64 00:24:fe:e4:1a:a1

No action type specified, try autodetection... found type: geneui64

0224:feff:fee4:1aa1

Commands in this Chapter

arp Allows access to the ARP cache (maps IP to MAC adresses) arp(8) 338
inetd Internet superserver, supervises ports and starts services inetd(8) 342
ipv6calc Utility for IPv6 address calculations ipv6calc(8) 351
xinetd Improved Internet super server, supervises ports and starts services

xinetd(8) 342

352 22 TCP/IP Fundamentals

Summary

• The Internet has its roots in the initial ARPAnet of the 1960s, was put on its
present technological basis in the early 1980s, and experienced incredible
growth in the 1980s and 1990s.

• The ISO/OSI reference model serves to provide terminology for the struc-
ture of computer communications.

• Today TCP/IP is the most popular protocol family for data transmission
across computer networks.

• ICMP is used for network management and problem reporting.
• TCP provides a connection-oriented and reliable transport service based on

IP.
• Like IP, UDP is connectionless and unreliable, but much simpler and faster

than TCP.
• TCP and UDP use port numbers to distinguish between different connec-

tions on the same computer.
• Different TCP/IP services have fixed port numbers assigned for them. This

assignment may be inspected in the /etc/services file.
• IP addresses identify nodes world-wide. They are 32 bits long and consist

of a network and a host part. The network mask specifies the split between
these.

• In former times, the available IP addresses were divided into classes. Today
we use classless routing with variable-length network masks.

• IP networks can be further subdivided into subnetworks by adjusting the
network mask.

• Some IP address ranges are reserved for use in local networks. They will
not be routed by ISPs.

• IPv6 lifts various restrictions of the IPv4 common today, but so far has not
been widely adopted.

Bibliography

IPv6-HOWTO05 Peter Bieringer. “Linux IPv6 HOWTO”, October 2005.
http://www.tldp.org/HOWTO/Linux+IPv6-HOWTO/

RFC0768 J. Postel. “User Datagram Protocol”, August 1980.
http://www.ietf.org/rfc/rfc0768.txt

RFC0791 Information Sciences Institute. “Internet Protocol”, September 1981.
http://www.ietf.org/rfc/rfc0791.txt

RFC0793 Information Sciences Institute. “Transmission Control Protocol”,
September 1981. http://www.ietf.org/rfc/rfc0793.txt

RFC0826 David C. Plummer. “An Ethernet Address Resolution Protocol – or –
Converting Network Protocol Addresses to 48.bit Ethernet Addresses for
Transmission on Ethernet Hardware”, November 1982.

http://www.ietf.org/rfc/rfc0826.txt

RFC1519 V. Fuller, T. Li, J. Yu, et al. “Classless Inter-Domain Routing (CIDR): an
Address Assignment and Aggregation Strategy”, September 1993.

http://www.ietf.org/rfc/rfc1519.txt

RFC1918 Y. Rekhter, B. Moskowitz, D. Karrenberg, et al. “Address Allocation for
Private Internets”, February 1996. http://www.ietf.org/rfc/rfc1918.txt

RFC4291 R. Hinden, S. Deering. “IP Version 6 Addressing Architecture”, Febru-
ary 2006. http://www.ietf.org/rfc/rfc4291.txt

Ste94 W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-
Wesley Professional Computing Series. Boston etc.: Addison-Wesley, 1994.

22.5 Bibliography 353

Tan02 Andrew S. Tanenbaum. Computer Networks. Prentice Hall PTR, 2002, third
edition.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

23
Linux Network Configuration

Contents

23.1 Network Interfaces 356
23.1.1 Hardware and Drivers 356
23.1.2 Configuring Network Adapters Using ifconfig 357
23.1.3 Configuring Routing Using route 358
23.1.4 Configuring Network Settings Using ip 360

23.2 Persistent Network Configuration 361
23.3 DHCP . 364
23.4 IPv6 Configuration 365
23.5 Name Resolution and DNS 366

Goals

• Knowing the network configuration mechanisms of the most important dis-
tributions

• Being able to configure network interfaces
• Being able to set up static routes
• Being able to configure Linux as a DHCP and DNS client

Prerequisites

• Knowledge about Linux system administration
• Knowledge about TCP/IP fundamentals (Chapter 22)

adm2-netconf.tex (0cd20ee1646f650c)

356 23 Linux Network Configuration

23.1 Network Interfaces

23.1.1 Hardware and Drivers

Depending on the technology and medium access scheme used, Linux computers
access the network by means of modems, ISDN adapters, Ethernet or WLAN cards
or similar devices. The following sections concentrate mostly on the configuration
of Ethernet adapters.

Like other hardware, a network interface on Linux is controlled by the kernel—
today usually by means of modular drivers that are loaded dynamically on de-
mand. Unlike, for example, hard disk partitions or printers, network interfaces do
not appear as device files in the /dev directory, but are accessed via “interfaces”.interfaces

These interfaces are “virtual” in the sense that the kernel makes them available af-
ter a suitable driver has been loaded, and that a network interface can be accessed
through more than one (mostly) independent interface. The interfaces are named;
a typical name for an Ethernet interface would be eth0.

Nowadays network adapters are recognised by the kernel when the system is
booted; it can identify the correct driver by means of the adapter’s PCI ID. It is up
to the udev infrastructure to name the device and actually load the driver.

One obstacle that modern Linux distributions present here is that the interface
name is tied to the adapter’s MAC address. (Every network adapter has a globally
unique MAC address which is set by the manufacturer.) Thus if you replace the
network adapter inside a computer without resetting the information udev keeps
about network adapters it has seen, chances are that your new adapter will be
called eth1, and the configuration, which is based on an adapter called eth0, will
not apply.

B A typical place where such information ends up is the /etc/udev/rules.d di-
rectory. In a file like 70-persistent-net.rules there might be lines such as

SUBSYSTEM=="net", DRIVERS=="?*",�

� ATTRS{address}=="00:13:77:01:e5:4a", NAME="eth0"

which assign the name eth0 to the adapter with the MAC address 00:13:77:01:e5:4a.
You can fix the MAC address by hand, or remove the line completely and
have udev adapt the entry to the changed reality during the next system
boot.

B Don’t tie yourself in knots if you are running Linux in a virtual machine
and can’t find the 70-persistent-net.rules file. For most “virtual” network
interfaces, it may not be created in the first place.

B Formerly (before udev) it was up to the installation procedures provided by
the distribution to come up with the correct drivers for network adapters,
and to make these known to the system. Typically this was done by means
of the /etc/modules.conf file, where entries such as

alias eth0 3c59x

needed to be placed—this would tell the kernel to load the driver module
3c59x.o upon the first access to the eth0 interface. But no more …

B Of course the Linux kernel is not necessarily modular, even though the stan-
dard kernels in most distributions can’t do without modules. If you compile
your own kernel (see, for example, Linux System Configuration), you can put
the drivers for your network interfaces directly into the kernel.

B For special requirements, typically for computers with increased security
needs such as packet-filtering routers or servers that are exposed to the In-
ternet, you can even remove the module-loading infrastructure from the
kernel completely. This makes it harder (albeit not impossible) for crackers
to take over the system without being noticed.

23.1 Network Interfaces 357

23.1.2 Configuring Network Adapters Using ifconfig

Before you can use a network interface to access the network, it must be assigned
an IP address, a network mask, and so on. Traditionally, this is done by hand
using the ifconfig command:

ifconfig eth0 192.168.0.75 up

ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:A0:24:56:E3:73

inet addr:192.168.0.75 Bcast:192.168.0.255 Mask:255.255.255.0

inet6 addr: fe80::2a0:24ff:fe56:e373/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:6 errors:0 dropped:0 overruns:0 carrier:6

collisions:0 txqueuelen:100

RX bytes:0 (0.0 b) TX bytes:460 (460.0 b)

Interrupt:5 Base address:0xd800

After an IP address has been assigned, you can view the status of an interface by
invoking the same command without specifying an IP address. This displays not
only the current IP address but also the hardware type, the MAC (or hardware)
address, the broadcast address, the network mask, the IPv6 address, and many
other data. In the example you can see that the kernel will set items such as the
network mask and broadcast address to default values (here those of a class C
network, according to the first octet of the IP address) if no explicit values are
given. Should the desired values deviate from the default you must specify them
explicitly.

ifconfig eth0 192.168.0.75 netmask 255.255.255.192 textbackslash

> broadcast 192.168.0.64

ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:A0:24:56:E3:73

inet addr:192.168.0.75 Bcast:192.168.0.64 Mask:255.255.255.192

inet6 addr: fe80::2a0:24ff:fe56:e373/64 Scope:Link

�����

B Using the parameters up and down, you can switch individual interfaces on
and off with ifconfig.

B By convention, the loopback interface has the IP address 127.0.0.1 and will loopback interface
be configured automatically. Should this not happen for some reason, or
should the configuration be lost, you can do it yourself using

ifconfig lo 127.0.0.1 up

For testing or for special requirements it may make sense to define an alias for alias

an interface, using a different IP address, network mask, etc. This is no problem
using ifconfig:

ifconfig eth0:0 192.168.0.111

ifconfig eth0:0

eth0:0 Link encap:Ethernet HWaddr 00:A0:24:56:E3:72

inet addr:192.168.0.111 Bcast:192.168.0.255 Mask:255.255.255.0

UP BROADCAST MULTICAST MTU:1500 Metric:1

Interrupt:5 Base address:0xd800

The alias name is constructed from the interface name by adding an extension
separated by a colon. What the extension looks like is immaterial (there is nothing
wrong with eth0:Mr.X), but by convention alias names are numbered sequentially:
eth0:0, eth0:1, …

358 23 Linux Network Configuration

Exercises

C 23.1 [1] Which kernel module applies to your network adapter? Is it
loaded?

C 23.2 [!1] Check whether your network adapter is running, and which IP
address is assigned to it.

C 23.3 [!2] Assign a new IP address to your network adapter (possibly accord-
ing to your instructor’s directions). Check whether you can still reach other
computers on the network.

23.1.3 Configuring Routing Using route

Every computer in a TCP/IP network requires routing, since even the simplest
node contains at least two network interfaces—the loopback interface and the in-
terface leading to the rest of the network, like an Ethernet or WLAN card or an
Internet connection. The routes for the loopback interface and the networks that
are directly connected to the network adapters are set up automatically by current
Linux kernels when the adapters are initialised. Other routes—in particular, the
“default route” which specifies where datagrams are sent in the absence of more
specific instructions—must be configured explicitly.

B In principle we are distinguishing between static and dynamic routing. With
the former, routes are set up manually and seldom if ever changed. With the
latter, the system talks to other routers in its vicinity and adapts its routes to
the current state of the network. Dynamic routing requires the installation
of a “routing daemon” such as gated or routed and will not be discussed fur-
ther here. The rest of this section confines itself to explaining static routing.

The kernel maintains a routing table summarising the current routing config-routing table

uration. It contains rules (the routes) that describe which datagrams should be
sent where, based on their destination address. You can inspect the routing table
using the route command:

ifconfig eth0 192.168.0.75

route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.0.0 * 255.255.255.0 U 0 0 0 eth0

The columns in this table have the following meaning:

• The first column contains the destination address. This can be network or
node addresses or the entry for the default route (called default). The defaultdefault route

route gives the address for all datagrams to which no other routes apply.

• The second column defines a router that the datagrams in question will be
passed to. Valid entries at this point include node addresses or the “*” entry
if the datagrams do not need to go to another router.

• The third column contains the network mask for the destination address. If
the destination address is a single node, the value 255.255.255.255 appears.
The default route has the value 0.0.0.0.

• The fourth column contains flags describing the route in more detail, in-
cluding:

U The route is active (“up”)
G The route is a “gateway route”, that is, it points to a router (rather than a

network that is connected directly, as in “*”).

23.1 Network Interfaces 359

H The route is a “host route”, that is, the destination is a specific node. G and
H are not mutually exclusive and may occur together.

• The fifth and sixth columns contain data which is important for dynamic
routing: The “metric” in the fifth column gives the number of “hops” to the
destination; it is not evaluated by the Linux kernel, but mostly useful for
programs such as gated. The value in the sixth column is not used on Linux.

• The seventh column details how often the route has been used.

• Finally, the eighth column optionally contains the name of the interface that
should be used to forward the datagrams. This mostly applies to routers
that contain several interfaces, such as Ethernet adapters in different net-
work segments or an Ethernet adapter and an ISDN adapter.

The example illustrates that, when ifconfig is used to assign an IP address, the
kernel not only sets up the network mask and broadcast address, but also assigns
at least one route—that which forwards all datagrams whose destination address
is within the network that is directly connected to that interface.

A more complicated example for a routing table might look like

route

Kernel IP Routentabelle

Ziel Router Genmask Flags Metric Ref Use Iface

192.168.0.0 * 255.255.255.0 U 0 0 0 eth0

192.168.2.0 * 255.255.255.0 U 0 0 0 eth1

10.10.3.0 192.168.0.1 255.255.255.0 UG 0 0 0 eth0

112.22.3.4 * 255.255.255.255 UH 0 0 0 ppp0

default 112.22.3.4 0.0.0.0 UG 0 0 0 ppp0

The computer in this example is apparently a router containing three network
interfaces. The first three routes are network routes, and according to their des-
tination addresses datagrams will be routed either via eth0, eth1, or the router
192.168.0.1 (which may be reached via the first route). The fourth route is a “host
route” enabling a point-to-point connection to an ISP’s computer via the modem,
ppp0. The fifth route is the corresponding default route forwarding all datagrams
not addressed to the local networks 192.168.0.0/24, 192.168.2.0/24, or 10.10.3.0/24 to
the world via the modem.

The route command serves not just to inspect but also to manipulate the rout-
ing table. To establish the example above (three local Ethernet segments and the
PPP connection) the routing table must be constructed according to the following
commands:

route add -net 192.168.0.0 netmask 255.255.255.0 dev eth0

route add -net 192.168.2.0 netmask 255.255.255.0 dev eth1

route add -net 10.10.3.0 netmask 255.255.255.0 gw 192.168.0.1

route add -host 112.22.3.4 dev ppp0

route add default dev ppp0

B The first two lines in the example are not strictly necessary, as the corre-
sponding routes will be set up automatically when the interfaces are as-
signed their addresses.

More generally, route supports the following syntax to add and delete routes:

route add [-net |-host] ⟨destination⟩ [netmask ⟨netmask⟩]�
� [gw ⟨gateway⟩] [[dev] ⟨interface⟩]
route del [-net |-host] ⟨destination⟩ [netmask ⟨netmask⟩]�
� [gw ⟨gateway⟩] [[dev] ⟨interface⟩]

360 23 Linux Network Configuration

To add a route, you must specify the corresponding parameter (add); then you
specify whether the route is a host or network route (-host or -net), followed by
the destination. For a network route, a netmask must be specified either via the
netmask ⟨netmask⟩ option or by appending a CIDR-style netmask to the destination
address. For each route there must be either a router (⟨gateway⟩) or a destination
interface covering the next hop.

The example routes could be deleted like this:

route del -net 192.168.0.0 netmask 255.255.255.0

route del -net 192.168.2.0 netmask 255.255.255.0

route del -net 10.0.3.0 netmask 255.255.255.0

route del -host 112.22.3.4

route del default

To delete a route you need to specify the same parameters as when adding it—only
the gateway or interface specifications may be left off. With duplicate destinations,
e. g., the same destination network via two different interfaces, the newest (least
recently inserted) route will be removed.

B If a station is to be used as a gateway between several networks (as in the
example), the kernel should forward incoming IP datagrams not intended
for the station itself according to the routing table. This feature, known as
IP forwarding, is disabled by default. Its current state can be inspectedIP forwarding

and changed using the /proc/sys/net/ipv4/ip_forward (pseudo) file. It con-
tains only one character—a zero (disabled) or one (enabled)—, and is usu-
ally written to using echo:

cat /proc/sys/net/ipv4/ip_forward

0

echo 1 > /proc/sys/net/ipv4/ip_forward

cat /proc/sys/net/ipv4/ip_forward

1

A Attention: Like the other command-based settings, this is lost when the
computer is shut down. (Distributions have ways of making this setting per-
manent; for Debian GNU/Linux, include a line containing “ip_forward=yes”
in the /etc/network/options file, for the Novell/SUSE distributions, put
“IP_FORWARD="yes"” in /etc/sysconfig/sysctl. For Red Hat distributions, add a
line containing

net.ipv4.ip_forward = 1

to the /etc/sysctl.conf file.)

23.1.4 Configuring Network Settings Using ip

The ip command can be used to set up both network interfaces and routes. It is
the designated successor to the commands described above. Its syntax is roughly
like

ip [⟨options⟩] ⟨object⟩ [⟨command⟩ [⟨parameters⟩]]

Possible ⟨object⟩s include link (parameters of a network interface), addr (IP address
and other addresses of a network interface), and route (querying, adding, and
deleting routes). There are specific commands for each object type.

If no command is given, the current settings are displayed according to the list

and show commands. Other typical commands are set for link objects as well as add

and del for addr and route objects.

23.2 Persistent Network Configuration 361

Most commands require additional parameters, since if you want to assign an
IP address using “ip addr add”, you will have to specify what address you are talk-
ing about.

You can find out more about the requisite syntax by invoking ip using the help

subcommand. Thus, “ip help” displays all possible objects, while “ip link help”
shows all parameters pertaining to link objects including their syntax. Unfortu-
nately the syntax is not always straightforward.

B If you know your way around Cisco routers you will have noted a certain
similarity to the Cisco ip command. This similarity is deliberate.

For example: If you wanted to assign an IP address to a network interface, you
might use the following command:

ip addr add local 192.168.2.1/24 dev eth0 brd +

Unlike ifconfig, ip requires the netmask and broadcast address to be present (even
if specified indirectly using brd +). The local parameter is used to specify that an IP
address for a local interface is forthcoming, but since this is the default parameter
for “ip addr add”, the local may also be left off. You can find out about default
parameters from the ip(8) manual page.

Caution: Unlike ifconfig, after having been assigned an IP address, the interface
is not yet activated. This must be done separately:

ip addr show dev eth0

2: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo-fast qlen 100

link/ether 00:a0:24:56:e3:72 brd ff:ff:ff:ff:ff:ff

inet 192.168.2.1/24 brd 192.168.2.255 scope global eth0

ip link set up dev eth0

ip addr show dev eth0

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo-fast qlen 100

link/ether 00:a0:24:56:e3:72 brd ff:ff:ff:ff:ff:ff

inet 192.168.2.1/24 brd 192.168.2.255 scope global eth0

inet6 fe80::2a0:24ff:fe56:e372/64 scope link

You can also assign interface aliases using ip:

ip addr add 192.168.0.222/24 dev eth0 brd + label eth0:0

It is useful to learn about ip, not only because it is the upcoming standard,
but also because it is often more straightforward to use than the alternatives. For
example, setting and deleting routes is easier than it is with route:

ip route add 192.168.2.1 via 192.168.0.254

ip route del 192.168.2.1

23.2 Persistent Network Configuration

One thing is for sure: Once you have figured out the correct network configuration
for your system, you do not want to set it up over and over again. Unfortunately,
though, the Linux kernel forgets all about it when it is shut down.

The various Linux distributions have solved this problem in different ways:

On Debian GNU/Linux and its derivatives, the network configuration is
stored in the /etc/network/interfaces file. This file is mostly self-explanatory:

362 23 Linux Network Configuration

cat /etc/network/interfaces

auto lo eth0

iface lo inet loopback

iface eth0 inet static or ‘‘… inet dhcp’’
address 192.168.0.2

netmask 255.255.255.0

network 192.168.0.0

broadcast 192.168.0.255

up route add -net 10.10.3.0/24 gw 192.168.0.1

down route del -net 10.10.3.0/24 gw 192.168.0.1

In the file there is an entry for each interface. Using the ifup and ifdown com-
mands, the interfaces can be activated or deactivated individually or (with
the -a) collectively; when the system is booted, the /etc/init.d/networking

script takes care of initialising the interfaces. (Alternatively, udev will do
it, provided the interfaces in question are listed in a line like “allow-hotplug
eth0”. This is mostly interesting for network adapters that are not always
available, like USB-based Ethernet or UMTS adapters.)—Lines starting with
up contain commands that will be run when the interface is being brought
up (in the order they are in the file); conversely, lines startign with down

give commands to be executed when the interface is being shut down.
You can find more examples for the strange and wonderful things that are
possible with the Debian network configuration mechanism by looking at
interfaces(5) and the /usr/share/doc/ifupdown/examples/network-interfaces.gz

file.

YaST, the central configuration tool for the Novell/SUSE distributions, natu-
rally contains modules to configure network adapters. Settings made using
YaST are commonly stored as variables in files below /etc/sysconfig, where
init scripts or the SuSEconfig program can pick them up. Network configura-
tion settings in particular are stored in the /etc/sysconfig/network directory,
and you can even modify the files in there manually. There is a file called
ifcfg-⟨interface⟩ for each interface (e. g., ifcfg-eth0) which contains the set-
tings for that particular interface. This could look like

BOOTPROTO='static' or dhcp (among others)
BROADCAST='192.168.0.255'

ETHTOOL_OPTIONS=''

IPADDR='192.168.0.2'

MTU=''

NAME='79c970 [PCnet32 LANCE]' Name inside YaST
(VMware says hello)

NETMASK='255.255.255.0' Or PREFIXLEN=24

NETWORK='192.168.0.0'

REMOTE_IPADDR='' Remote peer with PPP
STARTMODE='auto' or manual, hotplug, …
USERCONTROL='no'

(a more detailed explanation can be found in ifcfg(5)). More general net-
work settings go into /etc/sysconfig/network/config.—The SUSE distribu-
tions, too, support commands called ifup and ifdown, whose function, how-
ever, is subtly different from those on Debian GNU/Linux. At least the basic
invocations like “ifup eth0” are the same, but even “ifup -a” doesn’t work—
to start or stop all interfaces, you must call “rcnetwork start” or “rcnetwork
stop”. (As a consolation prize, “rcnetwork start eth0” also works.) Typically

23.2 Persistent Network Configuration 363

for SUSE, rcnetwork is nothing but a symbolic link to the /etc/init.d/network

init script.

On the Novell/SUSE distributions you can configure routes using the /etc/

sysconfig/network/routes file. The content of this file (shown here to match
the example above) resembles the output of the route command:

cat /etc/sysconfig/network/routes

10.10.3.0 192.168.0.1 255.255.255.0 eth0

112.22.3.4 0.0.0.0 255.255.255.255 ppp0

default 112.22.3.4 - -

If no gateway is to be used, the correct value is “0.0.0.0”, unset network
masks or interface names are represented by a “-” character. Routes, too,
are set by means of the “rcnetwork restart” command. As far as the last two
routes in the example are concerned, it turns out that point-to-point routes
for dialup connections are usually set up dynamically by the daemons in
question (such as pppd).—If you want to define routes for specific interfaces,
you can also put the lines in question into a file called ifroute-⟨interface⟩
(such as ifroute-eth0) rather than the routes file. The fourth column (the one
containing the interface names) will then be replaced by the interface name
if you leave it blank in the file.

Like SUSE, Fedora and the other Red Hat distributions use files inside a
/etc/sysconfig directory to set various variables. As on SUSE, there are files
like ifcfg-eth0 for the configuration of each interface, but they are stored in a
directory called /etc/sysconfig/network-scripts. However, SUSE files are not
directly transferable, since their internal structure differs from the Red Hat
files. On Red Hat, you might implement our example configuration for eth0

as follows: The /etc/sysconfig/network-scripts/ifcg-eth0 file contains

DEVICE=eth0

BOOTPROTO=none

ONBOOT=yes

NETWORK=192.168.0.0

NETMASK=255.255.255.0

IPADDR=192.168.0.2

USERCTL=no

The ifup and ifdown commands exist on Fedora, too, but as on SUSE you can
only bring up or shut down one interface at any one time.

On Red Hat, static routes can be placed in a file inside /etc/sysconfig/network-

scripts called route-⟨interface⟩ (for example, route-eth0). In this case, the for-
mat is like

ADDRESS0=10.10.3.0

NETMASK0=255.255.255.0

GATEWAY0=192.168.0.1

(additional routes use ADDRESS1, NETMASK1, …, ADDRESS2 and so on). There is an
older file format according to which every line of the file is simply appended
to “ip route add”, which lends itself to lines like

10.10.3.0/24 via 192.168.0.1

Finally, you can define static routes in /etc/sysconfig/static-routes without
having to refer to individual interfaces. Lines in this file are only taken into
account if they start with the any keyword; the remainder of the line is ap-
pended to “route add -” (Consistency? We don’t need no steenkin’ consis-
tency!), such that a line like

364 23 Linux Network Configuration

any net 10.10.3.0 netmask 255.255.255.0 gw 192.168.0.1

executes the

route add -net 10.10.3.0 netmask 255.255.255.0 gw 192.168.0.1

command.

23.3 DHCP

DHCP, the “Dynamic Host Configuration Protocol” is used to save you as the ad-
ministrator from having to define network parameters on every single host in the
network. Instead, a Linux machine fetches its network parameters—apart from
its IP address and accessories, typically the address of a default router and one
or more DNS servers—from a remote DHCP server when the network adapter is
brought up.

B The prerequisite for this to work is, of course, an existing DHCP server. Ex-
plaining the installation and maintenance of a DHCP server is, sadly, be-
yond the scope of this manual, but if you are using one of the common DSL
routers for Internet access or, at work, can avail yourself of the services of a
competent IT department, this isn’t really your problem—the required func-
tionality will be readily available and/or can be straightforwardly activated.

Most Linux distributions make it very easy to use DHCP for configuration:

On Debian GNU/Linux or Ubuntu, simply replace, in /etc/network/interfaces,
the line

iface eth0 inet static

and any following lines containing address or routing information by the
line

iface eth0 inet dhcp

This causes the computer to obtain its address, network mask, and default
route from the DHCP server. You can still use up and down to execute com-
mands once the link has been brought up or before it is torn down.

On the Novell/SUSE distributions, change the

BOOTPROTO='static'

parameter in the file containing the configuration for the interface in ques-
tion (ifcfg-eth0 or whatever) to

BOOTPROTO='dhcp'

You may leave the BROADCAST, IPADDR, NETMASK, and NETWORK settings empty.

To use DHCP on Fedora and the other Red Hat distributions, change the
configuration file of the interface to read

BOOTPROTO=none

instead of

23.4 IPv6 Configuration 365

BOOTPROTO=dhcp

You can simply omit the address parameters.

Generally, the distribution-specific network configuration methods support
various other options such as VLAN (several “virtual” networks on the same wire
that cannot see one another), encryption, or bonding (several network adapters
work in parallel, for more capacity and/or fault tolerance). Another important
use case is for a mobile computer to take part in several networks, such as at home
and at the office. The options actually offered differ greatly between distributions
and cannot be discussed here in detail.

23.4 IPv6 Configuration

To integrate your computer into an IPv6 network, in the ideal case you need to do
nothing at all: The mechanism of “stateless address autoconfiguration” (SLAAC) SLAAC

makes it possible for everything to take place automatically. With IPv6, SLAAC
plays approximately the role that DHCP would in IPv4, at least for simple appli-
cations.

If a new IPv6 network interface is activated, the station first generates the ap- Procedure

propriate link-local address. This assumes the fe80::/64 prefix and derives the
station part from the MAC address of the interface in question1. After that, the
station sends a link-local “router solicitation” (RS) on that interface to the mul-
ticast address, ff02::2, which refers to all routers in the subnet. This causes the
router (or routers) on the physical network of the interface to emit “router adver-
tisements” (RA) containing the prefixes they are routing. On that basis, the station
constructs additional (possibly globally visible) addresses for the interface.—RS
and RA are part of the “Neighbor Discovery Protocol” (NDP), which in turn be-
longs to ICMPv6, the IPv6 counterpart to ICMP. RAs and the IPv6 addresses de-
rived from them only remain valid for a certain time if they are not refreshed.
Hence, routers send unsolicited RAs every so often; the RS only serves to avoid
having to wait for the next unsolicited RA when a new interface is brought up, by
making it possible to obtain the necessary information at once.

The advantage of this approach is that it does not require explicit configuration Advantages

within a DHCP server. It is also straightforward to obtain redundancy by config-
uring several routers within the same subnet. In addition, routers do not need to
remember (as they would with DHCP) which station is currently using which IP
address (hence, “stateless”). All of this does not mean, however, that in IPv6 you
can do without DHCP altogether (there is DHCPv6), since there are important bits
of information that can’t be obtained via SLAAC (think “DNS server”—although
there is a new, not yet widely supported, standard to fix that).

You can check the addresses the system has assigned to an interface: Querying addresses

ip addr show eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500�

� qdisc pfifo_fast state UP qlen 1000

link/ether 70:5a:b6:9c:40:6a brd ff:ff:ff:ff:ff:ff

inet 192.168.178.130/24 brd 192.168.178.255 scope global eth0

inet6 2001:db8:56ee:0:725a:b6ff:fe9c:406a/64 scope global dynamic

valid_lft 6696sec preferred_lft 3096sec

inet6 fe80::725a:b6ff:fe9c:406a/64 scope link

valid_lft forever preferred_lft forever

1The method for this is as follows: Consider the MAC address, 𝑚𝑛:𝑜𝑝:𝑞𝑟:𝑠𝑡:𝑢𝑣:𝑤𝑥. The 3rd bit of 𝑛
(counting from the left), which in a MAC address is always zero, is set to one (we shall call the result 𝑛′),
and the station address is then 𝑚𝑛′𝑜𝑝:𝑞𝑟ff:fe𝑠𝑡:𝑢𝑣𝑤𝑥. The MAC address 70:5a:b6:9c:40:6a, for example,
becomes the station address 725a:b6ff:fe9c:406a.

366 23 Linux Network Configuration

This contains both the link-local address (“scope link”, starting with fe80::) and a
globally visible address (“scope global dynamic”, beginning with 2001:) which the
interface has obtained via SLAAC. If you look closely, you can also correlate the
MAC address (in the link/ether line) with the station parts of the IPv6 addresses.

Incidentally, the station parts of your IPv6 addresses, which are derived from
your MAC addresses, are a potential problem for your privacy. If you always useprivacy

the same source address to surf the ’net, it is trivial to correlate your activities (web
sites visited and so on) with that address. Even if, as people will say, you have
nothing to hide, nobody can fault you for the queasy feeling this might give you
as a matter of principle. One way of ameliorating the problem are the “privacy
extensions”, which add a random, otherwise unused, station part for outgoing
traffic and pick a new one every so often. The privacy extensions can be activated
for an interface (here eth0) using sysctl:

sysctl -w net.ipv6.conf.eth0.use_tempaddr=2

ip link set dev eth0 down

ip link set dev eth0 up

To make this setting permanent, enter it in /etc/sysctl.conf.
Finally, it is still possible to assign IP adresses manually. You can do this eitherManual configuration

using ifconfig:

ifconfig eth0 inet6 add 2001:db8:abcd::1/64

or using ip:

ip addr add 2001:db8:abcd::1/64 dev eth0

How to make this configuration permanent will depend on your distribution; the
techniques for this largely correspond to those discussed in Section 23.2.

23.5 Name Resolution and DNS

The DNS or “Domain Name System” is one of the fundamental ingredients for the
scalability of the Internet. Its job is to assign human-readable names to network
nodes and to find the corresponding IP addresses (or vice versa). It does this by
means of a worldwide distributed “database” of DNS servers.

B By now, DNS takes care of many other jobs, from figuring out the mail
servers for a domain to helping with spam avoidance.

Programs on a Linux machine usually do not talk to the DNS directly, but avail
themselves of the services of a “resolver”. This is usually part of the C runtimeresolver

library. The central configuration file for the resolver is called /etc/resolv.conf. It
is used, e. g., to define the DNS servers that the resolver is to consult. There are
five main directives:

domain ⟨Name⟩ (local domain) This is the domain name that the resolver tries to
append to incomplete names (typically, those that do not contain a period).

B Exactly which names are considered incomplete is governed by the
ndots option (see Table 23.1).

search ⟨Domain1⟩ ⟨Domain2⟩ … (search list) As an alternative to a single entry us-
ing domain, you can specify a list of several domain names to be appended to
incomplete names. The entries in the list are separated by spaces. At first
the resolver tries the unchanged name. If this fails, the list entries are ap-
pended in order and these names are tried. domain and search are mutually
exclusive; if both occur in a configuration, whichever line is last in the file
wins.

23.5 Name Resolution and DNS 367

Table 23.1: Options within /etc/resolv.conf

Option Result
debug Regular log messages are output to stdout (commonly

unimplemented).
ndots ⟨n⟩ The minimum number of dots within a name which

will cause the resolver to perform a direct query with-
out accessing the search list.

attempts ⟨n⟩ The number of times the resolver will query a server
before giving up. The maximum value is 5.

timeout ⟨n⟩ The initial time out for query attempts in seconds. The
maximum value is 30.

rotate Not only the first, but all specified servers will be
queried in rotation.

no-check-names Deactivates the standard check whether returned host
names only contain allowable characters.

nameserver 192.168.10.1

nameserver 192.168.0.99

search foo.example.com bar.example.com example.com

Figure 23.1: /etc/resolv.conf example

nameserver ⟨IP address⟩ (local DNS server) The local resolver will consult the DNS
server given here. You may define up to three name servers in separate
nameserver directives, which will be consulted in sequence if required.

sortlist ⟨IP address⟩[/⟨network mask⟩] (sort order) If several addresses are re-
turned for a name, the one matching the specification here will be preferred.
In the sort list there is room for up to ten entries.

options ⟨Option⟩ (options) This is used for specific resolver settings which are de-
tailed (together with their default values) in Table 23.1. In practice these are
seldom, if ever, changed.

You can see a typical /etc/resolv.conf file in Figure 23.1.
An alternative to DNS is the “local” resolution of host names and IP addresses

by means of the /etc/hosts file. As the sole method for name resolution this is
only of interest for small networks that are not connected to the Internet, but we
should mention it nevertheless—if you only need to deal with a few computers, it
is conceivably more straightforward to simply configure the DNS client side and
assign names and addresses to your own computers using /etc/hosts. You do have
to take care that the file is the same on all your computers.

B For small networks we recommend the dnsmasq program, which makes the
content of an /etc/hosts file available via DNS, while passing all other DNS
queries on to the “real” DNS. It even works as a DHCP server on the side.

The content of the /etc/hosts file is plain ASCII text which may contain line-
based entries as well as comments starting with “#”. These entries contain an IP
address in the first column and the “fully qualified domain name” (FQDN) of a
host in the second. It is also permissible to add more names on the same line.
Spaces or tabs can be used to separate columns. Figure 23.2 shows the content of
a typical /etc/hosts file.

B When the Internet was new—until the early 1980s—there was essentially
one big /etc/hosts file for everybody, and domains hadn’t been invented yet.
At that time the Internet consisted of fewer nodes (thousands instead of

368 23 Linux Network Configuration

#

hosts This file describes a number of hostname-to-address

mappings for the TCP/IP subsystem. It is mostly

used at boot time, when no name servers are running.

On small systems, this file can be used instead of a

"named" name server.

Syntax:

#

IP-Address Full-Qualified-Hostname Short-Hostname

#

special IPv6 addresses

127.0.0.1 localhost

192.168.0.99 linux.example.com linux

Figure 23.2: The /etc/hosts file (SUSE)

gazillions), but the maintenance and distribution of current versions of the
file came to be a growing problem. Hence, DNS.

The exact mechanisms the C library uses for name resolution are controlled
by means of a file called /etc/nsswitch.conf. This determines, for example, which
name resolution services are used in which order. In addition there are rules forname resolution services

the resolution of user names, groups, etc., which will not concern us at this point.
You can refer to nsswitch.conf(5) for a detailed description of its syntax and func-
tion.

The part of /etc/nsswitch.conf pertinent to host name resolution could look like:

hosts: files dns

This means that the C library will try to resolve host names based on the local files
(namely, /etc/hosts). Only if this fails will it query DNS.

Commands in this Chapter

dnsmasq A lightweight DHCP and caching DNS server for small installations
dnsmasq(8) 367

ifconfig Configures network interfaces ifconfig(8) 356
ifdown Shuts down a network interface (Debian) ifdown(8) 362
ifup Starts up a network interface (Debian) ifup(8) 362
ip Manages network interfaces and routing ip(8) 360
route Manages the Linux kernel’s static routing table route(8) 358

23.5 Name Resolution and DNS 369

Summary

• Nowadays the Linux kernel loads networking drivers on demand using the
udev infrastructure.

• The ifconfig command is used for low-level configuration of network inter-
face parameters. You can use it to configure the loopback interface and to
assign alias names for interfaces.

• Routes specify how IP datagrams should be forwarded to their destinations.
• The route command is used to configure routes.
• The ip command is a convenient replacement for ifconfig and route.
• The various Linux distributions offer different methods of persistent net-

work configuration
• DHCP lets Linux hosts obtain networking parameters dynamically from a

central server.
• Common name resolution mechanisms are based on DNS or local configu-

ration files.
• The order of name resolution is specified in the /etc/nsswitch.conf file.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

24
Network Troubleshooting

Contents

24.1 Introduction. 372
24.2 Local Problems. 372
24.3 Checking Connectivity With ping 372
24.4 Checking Routing Using traceroute And tracepath 375
24.5 Checking Services With netstat And nmap 378
24.6 Testing DNS With host And dig 381
24.7 Other Useful Tools For Diagnosis 383

24.7.1 telnet and netcat 383
24.7.2 tcpdump . 385
24.7.3 wireshark . 385

Goals

• Knowing strategies for network troubleshooting
• Being able to use tools like ping, traceroute, and netstat for problem analysis
• Being able to fix simple network configuration errors

Prerequisites

• Knowledge about Linux system administration
• Knowledge about TCP/IP fundamentals (Chapter 22)
• Knowledge about Linux network configuration (Chapter 23)

adm2-netprobleme.tex (0cd20ee1646f650c)

372 24 Network Troubleshooting

24.1 Introduction

System administrators love this: No sooner have you settled in comfortably in
front of your computer with a nice cup of coffee or tea, looking forward to perus-
ing the newest news on LWN.net, that a noxious person stands in the doorway: “I
can’t get on the network!” Alas for the peace and quiet. But what to do?

Computer networking is a difficult topic, and therefore you should not be sur-
prised when All Sorts Of Things Go Wrong. In this chapter we show you the most
important tools and strategies to find and iron out problems.

24.2 Local Problems

The first order of the day is to convince yourself that the network adapter is present
and recognised. (For starters, do take a discreet look at the back of the computer
to ascertain that the cable is still sitting in the correct socket, and that the ladies
and gentlemen of the cleaning squad have not played “creative reconfiguration”.)

Check the output of “ifconfig -a”. With this parameter, the program gives you
an overview of all network interfaces inside the computer, even the ones that are
not currently configured. At least lo and eth0 (if the computer is networked using
Ethernet) should be visible. If this isn’t the case, you have already found the first
problem: Possibly there is something wrong with the driver, or the adapter is not
being recognised.

B If, instead of eth0, you only see something like eth1, it is possible that the
network card was replaced, and udev assigned a new interface name to the
card on account of its new MAC address. This shouldn’t really happen
with network cards that are reasonably firmly attached to the computer
(or, if it does, it should happen because you, being the administrator, did it
yourself), but perhaps your colleagues have surreptitiously swapped their
PC(MCIA) network adapters or USB-based UMTS dongles. The remedy is
to delete the line referring to the old device from the /etc/udev/rules.d/70-

persistent-net.rules (or some such), and to correct the interface name in the
line referring to the new device. Restart udev afterwards.

B If the output of ifconfig shows nothing remotely resembling your network
adapter, then check, using lsmod, whether the driver module in question was
loaded at all. If you do not know what the driver module in question is to
begin with, you can search the output of “lspci -k” for the stanza pertaining
to your network adapter. This might look like

02.00.0 Ethernet controller: Broadcom Corporation NetXtreme�

� BCM5751 Gigabit Ethernet PCI Express (rev 01)

Kernel driver in use: tg3

Kernel modules: tg3

In this case you should ascertain that the tg3 module has been loaded.

24.3 Checking Connectivity With ping

If the output of ifconfig shows the interface and the parameters displayed with it
look reasonable, too (check the IP address, the network mask—very important—
, and the broadcast address, in particular), then it is time for some connectivity
tests. The simplest tool for this is a program called ping, which takes an IP address
(or a DNS name) and tries to send an ICMP ECHO REQUEST datagram to the host in
question. That host should reply with an ICMP ECHO REPLY datagram, which ping

receives and reports.
First, you should check whether the computer can talk to itself:

24.3 Checking Connectivity With ping 373

ping 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.039 ms

64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.039 ms

64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.032 ms

64 bytes from 127.0.0.1: icmp_seq=4 ttl=64 time=0.040 ms

Interrupt using Ctrl + c …
--- 127.0.0.1 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 2997ms

rtt min/avg/max/mdev = 0.032/0.037/0.040/0.006 ms

The output tells you that the “other host” (in this case merely the loopback inter-
face on 127.0.0.1) can be reached reliably (no packets were lost).

B What about “56(84) bytes of data”? Easy: An IP datagram header with-
out options is 20 bytes long. Added to that is the header of an ICMP ECHO

REQUEST datagram at 8 bytes. This explains the difference between 56 and 84.
The magic number 56 results from the fact that ping normally ensures that
exactly 64 bytes of payload data are transmitted inside each IP datagram,
namely the 8-byte ICMP header and 56 bytes of “padding”. If “enough”
padding is available, namely at least the size of a struct timeval in C (eight
bytes or so), ping uses the start of the padding for a timestamp to measure
the packet round-trip time.

The next step should be to “ping” your network card interface. The output
there should look approximately like the other one.

B If you have arrived here without running into error messages, chances are
that the basic networking functionality of your computer is working. The
remaining possible sources of trouble rest elsewhere in the network or else
farther up your computer’s protocol stack.

The next ping goes to the default gateway (or another host on the local net-
work). If this does not work at all, the network mask might be set up wrong (pos-
sibly on the other host!?). Other possibilities include hardware trouble, such as a
kink in the cable or a broken plug—which would also explain a connection that
sometimes works and sometimes doesn’t.

B The common rectangular plugs for Ethernet cables are kept in place using
a plastic thingamajig which likes to break off, in which case contact is often
flaky to impossible.

B “Free-flying” cables are prone to accidents with sharp implements and do
not like being run over with office chairs. If you suspect that a cable is faulty
you can corroborate or deny that by exchanging it for a known-working one
or testing it using an Ethernet cable tester. Of course cables should really
be strung inside a proper conduit, on top of the false ceiling, or below the
raised floor.

Now you can continue pinging hosts outside your local network. If this works
this is a good sign; if you get no answers at all, you might be dealing with a rout-
ing problem or else an overzealous firewall that filters ICMP traffic à la ping at
least partly (which it shouldn’t, but some people do throw out the baby with the
bathwater).

ping supports a great number of options that extend the testing possibilities
or change the way the program works. The most important options for the pur-
poses of testing are probably -f (flood ping) for quickly checking out intermittent
network problems, and -s to specify a size for the datagrams.

374 24 Network Troubleshooting

Table 24.1: Important ping options

Option Meaning
-a Audible pings
-b ⟨network address⟩ Broadcast ping
-c ⟨count⟩ Number of datagrams to be sent (ping will exit

afterwards)
-f “Flood ping”: A dot is output for every ECHO

REQUEST datagram sent, and a backspace charac-
ter for every ECHO REPLY received. The result is a
row of dots that tells you how many datagrams
have been dropped during transmission. If you
haven’t simultaneously specified the -i option,
ping transmits at least 100 datagrams per second
(more if the network can handle more). Only root

may do that, though; normal users are limited to
a minimum interval of 0.2 seconds.

-i ⟨time⟩ Waits for ⟨time⟩ seconds between sending two
datagrams. The default is one second, except
when flood pinging as root.

-I ⟨sender⟩ Sets the sender address for the datagrams. The
⟨sender⟩ may be an IP address or the name of an
interface (in which case the IP address of that in-
terface will be used).

-n Display without DNS name resolution
-s ⟨size⟩ Determines the size of the “padding” in bytes;

the default value is 56. Sometimes there are
problems with very large datagrams that must
be fragmented, and ping can help diagnose these
by means of this option. (Long ago it used to be
possible to crash computers using very large ping

datagrams—the dreaded “ping of death”.)

24.4 Checking Routing Using traceroute And tracepath 375

B -a can come in useful if you have to creep around under a table to find a
loose cable.

The corresponding command to test IPv6 is called ping6 and is invoked in a ping6

manner very similar to that of ping. You just need to take care to specify the inter-
face you want to use. Watch for the “%eth0” at the end of the IPv6 address:

$ ping6 fe80::224:feff:fee4:1aa1%eth0

PING fe80::224:feff:fee4:1aa1%eth0(fe80::224:feff:fee4:1aa1)�

� 56 data bytes

64 bytes from fe80::224:feff:fee4:1aa1: icmp_seq=1 ttl=64 time=3.65 ms

64 bytes from fe80::224:feff:fee4:1aa1: icmp_seq=2 ttl=64 time=4.30 ms

�����

With link-local addresses, in particular, it is possible for several interfaces to use
the same address, and ambiguities must thus be avoided. Other than that, the
options of ping6 correspond for the most part to those of ping.

Exercises

C 24.1 [!2] Compare the packet round-trip times of a ping to 127.0.0.1 to those
of a ping to a remote host (another computer on the LAN or the default gate-
way/DSL router/…).

C 24.2 [2] How long does your system take to send a million datagrams to
itself in flood-ping mode?

C 24.3 [2] (If your local network supports IPv6.) Use ping6 to check the con-
nectivity to any IPv6 routers on your LAN (multicast address ff02::2). What
answers do you receive?

24.4 Checking Routing Using traceroute And tracepath

If you cannot reach a station outside your local network using ping, this could be
due to a routing problem. Programs like traceroute and tracepath help you pinpoint
these problems.

B The typical case is that you can in fact reach all hosts on the local network but
none beyond. The usual suspects are your default route on the one hand and
the host the default route points to on the other. Make sure that the output
of route (or “ip route list”) shows the correct default route. If a ping to the de-
fault gateway works but a ping to a host beyond the default gateway doesn’t,
then something may be wrong with the gateway. Check whether another
host can reach other hosts beyond the gateway, and whether your host is
reachable from the gateway. (Also keep in mind that the default router may
be running a packet filter that blocks ICMP.)

B A different sort of problem can arise if you are not connected directly to the
router that in turn connects you to the internet, but must go across a dif-
ferent router. In that case it is possible that you can send ping datagrams to
the Internet router, but that its replies cannot reach you because it does not
have a route that will direct traffic for “your” network to the intermediate
router.

traceroute is basically an extended form of ping. This does not merely check a
remote node for signs of life, but displays the route that datagrams take through
the network. It keeps track of the routers the datagram passes through and the
quality of the connection to the routers in question.

376 24 Network Troubleshooting

Unlike ping, this is not based on ICMP, but (traditionally) on UDP. traceroute
sends three UDP datagrams to arbitrary ports on the destination node (one hopes
that not all three of these have servers listening on them). The first three data-
grams have a TTL of 1, the next three a TTL of 2, and so on. The first router on
the way to the destination decrements the TTL by 1. For the first round of data-
grams, which only had a TTL of 1 in the first place, this means curtains—they
are dropped, and the sender gets an ICMP TIME EXCEEDED message, which (being
an IP datagram) contains the router’s IP address. The second three datagrams
are dropped by the second router and so on. That way you can follow the exact
route of the datagrams towards the destination. Of course, the destination node
itself doesn’t send TIME EXCEEDED but PORT UNREACHABLE, so traceroute can notice that it
is done.

The procedure looks roughly like this:

$ traceroute www.linupfront.de

traceroute to www.linupfront.de (31.24.175.68), 30 hops max,�

� 60 byte packets

1 fritz.box (192.168.178.1) 5.959 ms 5.952 ms 5.944 ms

2 217.0.119.34 (217.0.119.34) 28.889 ms 30.625 ms 32.575 ms

3 87.186.202.242 (87.186.202.242) 35.163 ms 36.961 ms 38.551 ms

4 217.239.48.134 (217.239.48.134) 41.413 ms 43.002 ms 44.908 ms

5 xe-11-0-1.fra29.ip4.gtt.net (141.136.101.233) 46.769 ms �

� 49.231 ms 51.282 ms

6 xe-8-1-2.fra21.ip4.gtt.net (141.136.110.101) 53.412 ms �

� xe-0-2-3.fra21.ip4.gtt.net (89.149.129.37) 49.198 ms �

� xe-8-1-2.fra21.ip4.gtt.net (141.136.110.101) 52.314 ms

7 21cloud-gw.ip4.gtt.net (77.67.76.90) 52.547 ms 30.822 ms�

� 30.018 ms

8 s0a.linupfront.de (31.24.175.68) 38.127 ms 38.406 ms 38.402 ms

The output consists of several numbered lines. One line corresponds to a group
of three datagrams. It shows the node sending the TIME EXCEEDED message as well
as the transmission time of the three datagrams.

B Asterisks in the output mean that there was no answer for one of the data-
grams within (usually) five seconds. That happens.

B Maybe you are wondering why the output finishes with s0a.linupfront.de

even though we wanted to reach www.linupfront.de. This is not a problem;
the www.linupfront.de web site—together with a few other useful services—is
hosted on a machine we call s0a.linupfront.de, and that happens to be the
answer that DNS provides if you ask it for the name belonging to the IP
address, 31.24.175.68.

A The fact that IP networks use packet switching implies, theoretically, that
the output of traceroute is just a momentary snapshot. If you try it again,
the new datagrams might in principle take a completely different route to
the destination. However, this does not occur very often in practice.

The traditional technique based on UDP datagrams doesn’t work in all cases
today, as there are overzealous firewalls that drop datagrams addressed to “un-
likely” UDP ports. You can use the -I option to get traceroute to use ICMP instead
of UDP (it then works essentially like ping). If you need to deal with an especially
overzealous firewall that filters ICMP as well, you can use a TCP-based technique
by means of the -T option (short for “-M tcp”). This tries to address port 80 on the
destination node and recommends itself particularly if the destination node is a
web server. (You can request a different port by means of the -p option.)

B The “TCP-based technique” does not actually open a connection to the
destination node and thus stays invisible to application programs there.
traceroute also offers some other methods.

24.4 Checking Routing Using traceroute And tracepath 377

B You can use traceroute with IPv6 by giving the -6 option. A convenient ab-
breviation for this is traceroute6. Everything else stays the same. traceroute6

The tracepath program does basically the same thing as traceroute, but does not tracepath

offer most of the tricky options and can be invoked by regular users (without root
privileges). In addition, it determines the “path MTU” (of which more anon).
Here is some exemplary output produced by tracepath:

$ tracepath www.linupfront.de

1?: [LOCALHOST] pmtu 1500

1: fritz.box 13.808ms

1: fritz.box 5.767ms

2: p5B0FFBB4.dip0.t-ipconnect.de 11.485ms pmtu 1492

2: 217.0.119.34 48.297ms

3: 87.186.202.242 46.817ms asymm 4

4: 217.239.48.134 48.607ms asymm 5

5: xe-11-0-1.fra29.ip4.gtt.net 47.635ms

6: xe-7-1-0.fra21.ip4.gtt.net 49.070ms asymm 5

7: 21cloud-gw.ip4.gtt.net 48.792ms asymm 6

8: s0a.linupfront.de 57.063ms reached

Resume: pmtu 1492 hops 8 back 7

Just like traceroute, tracepath outputs the addresses of all routers on the route to the
destination node. The remainder of the line shows the time the datagrams took
as well as additional iinformation; “asymm 5”, for example, means that the router’s
answer took 5 hops instead of the 4 hops of the request, but this information isn’t
always reliable.

This brings us to the “path MTU” problem, which can be explained as follows:
Fundamentally, IP allows datagrams of up to 65535 bytes, but not every medium
access scheme can actually transmit these datagrams in one piece. Ethernet, for
example, allows frames of at most 1518 bytes, including 14 bytes for the frame
header and 4 bytes for a checksum at the end of the frame. This means that an
Ethernet frame can carry at most 1500 bytes of payload, and if the IP layer above
wants to transmit a larger datagram, that datagram must be “fragmented”, that
is, split across several frames. We say that the “maximum transmission unit”, or
MTU, for Ethernet is 1500.

Of course the IP implementation of the sending node cannot foresee which
medium access schemes will be used on the way to the destination and whether
fragmentation will be necessary (and, if so, how large the fragments may be). This
only comes out when data are actually transmitted. Routers should really be han-
dling this transparently—if a datagram arrives at one end that is too big to be
sent out in its entirety at the other end, the router could fragment it—, but router
manufacturers like to shirk this resource-intensive work. Instead, datagrams are
typically sent with the “don’t fragment” bit in the header switched on, which for-
bids other routers to break them up further. If such a datagram arrives at a point
where it is too big for the next hop, the router in question uses ICMP to send a
“destination unreachable; fragmentation needed but forbidden; MTU would be
𝑛” message. In this case the sending node can try again using smaller fragments.
This method is called “path MTU discovery”.

The whole thing can still go gloriously wrong, namely if an overzealous firewall
along the way blocks ICMP traffic. In this case the error messages concerning the
required MTU never reach the sender of the datagrams, who consequently hasn’t
the faintest idea of what is going on. In practice this leads to web pages not being
displayed correctly, and/or connections that simply “hang”. The problem arises
most conspicuously where “Deutsche Telekom”-style ADSL is in use, since that
uses a protocol called “PPP over Ethernet” (PPPoE), which subtracts 8 bytes from
the usual 1500-byte Ethernet MTU for management purposes. The problems nor-
mally disappear if you set the MTU for the interface in question to 1492 manually.
The remote node then adheres to that value.

378 24 Network Troubleshooting

On Debian GNU/Linux (and Ubuntu) you can set the MTU for a statically
configured interface by adding a mtu clause to the interface definition in /etc/

network/interfaces:

iface eth0 inet static

�����

mtu 1492

�����

This value should then become effective the next time the interface is started.

If your interface is configured via DHCP and the DHCP server sends the
wrong MTU (which might happen), then you can remove the interface-mtu

clause from the request entry in the /etc/dhcp/dhclient.conf file. This will
make Linux default to the standard value of 1500 during the next DHCP
negotiation. You can specify a different value explicitly using

iface eth0 inet dhcp

�����

post-up /sbin/ifconfig eth0 mtu 1492

�����

The alternative command

iface eth0 inet dhcp

�����

post-up /sbin/ip link set dev eth0 mtu 1492

�����

also works.

On the SUSE distributions you can set the MTU in the ifcfg- file corre-
sponding to the interface in question (there is an MTU= line). Alternatively
you can use the “/etc/sysconfig editor” offered by YaST, under “Hardware/
Network”. You then need to restart the network interface manually (using
ifdown/ifup) or reboot the computer.

Like SUSE, the Red Hat distributions allow an MTU setting in the ifcfg- file
of the interface in question. Here, too, you need to restart the interface to
make the new setting effective.

If you’re using IPv6: tracepath6 is to tracepath what traceroute6 is to traceroute.

24.5 Checking Services With netstat And nmap

If you would like to run a service but client hosts cannot connect to it, being re-
jected with error messages like

Unable to connect to remote host: Connection refused

you should ensure that the service actually “listens” for connections as it should.
You can do this, for example, with the netstat program:

$ netstat -tul

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 red.example.com:www *:* LISTEN

tcp 0 0 red.example.com:ftp *:* LISTEN

tcp 0 0 red.example.com:ssh *:* LISTEN

24.5 Checking Services With netstat And nmap 379

The -l option causes netstat to display “listening” programs only. With the -t and
-u options you can confine netstat’s output to TCP-based and UDP-based services,
respectively.

In the output, the columns have the following meanings:

Proto The protocol (tcp, udp, raw, …) used by the socket.

Recv-Q The number of bytes of data that have been received but not been picked
up by the application program.

Send-Q The number of bytes sent out that have not yet been acknowledged by the
remote host.

Local Address Local address and port number of the socket. An asterisk (“*”) in
this place for “listening” sockets means they are listening on all available
addresses, e. g., on 127.0.0.1 and the IP address of the Ethernet card.

Foreign Address The address and port number of the socket on the remote host.

State The state of the socket. raw sockets do not have states and udp sockets usually
not either. States defined for tcp sockets include the following:

ESTABLISHED A connection is established.
SYN_SENT The socket tries to establish a connection and has sent the first

packet of the three-way handshake, but not yet received a reply.
SYN_RECV The socket (a “listening” one) has received and acknowledged a

connection request.
FIN_WAIT1 The socket is closed, the connection is in the process of being torn

down.
FIN_WAIT2 The connection is torn down and the socket waits for confirmation

from the remote host.
TIME_WAIT After the connection has been torn down, the socket waits to pro-

cess packets that may still remain in the network.
CLOSE The socket is not being used.
CLOSE_WAIT The remote host has closed the connection and waits for the local

host to close it too.
LISTEN The socket “listens” for incoming connections. Such sockets are only

displayed if you have specified the -l or -a options.

B Without -t or -u, netstat, in addition to its TCP and UDP listings, outputs
information about active Unix domain sockets. These are largely uninter-
esting.

B If you leave off the -l option, you get a list of active network connections
instead (those where your computer operates as a server as well as those
where it acts as the client).

If your service does not show up in the output of “netstat -tul”, this indicates
that the program in question isn’t running. If the service does occur in the list,
one possibility is that clients are rejected by a firewall configuration before they
even reach it. On the other hand, it is possible that the port in question is blocked
by another program which for some reason does not work correctly. In this case
you can use “netstat -tulp” to display the process ID and name of the the program
serving the port. This takes root privileges, however.

netstat assumes that you have at least shell access, if not root privileges, on
the computer where you want to execute the program. But what about check-
ing “from outside” which ports are available on a host? There are solutions for
this, too. The nmap program is a port scanner which checks for open, filtered, and port scanner

unused TCP and UDP ports on a computer over the network. Of course the “com-
puter” can just as well be a firewall infrastructure, thus nmap can help you uncover
gaps in your security strategy.

380 24 Network Troubleshooting

B nmap is not automatically part of a Linux installation. You will probably have
to install it manually.

B The scanning of computers that are not part of your immediate jurisdiction
can be a crime! (In some places—like Germany—, even owning “hacker”
tools like nmap can get you in trouble if you are unlucky and/or make some
bad moves.) Therefore do restrict yourself to computers where it is abun-
dantly clear that you are allowed to use nmap. For additional security, get
your client or sufficiently exalted boss to sign off on it in writing.

In the simplest case you give nmap the name or IP address of the computer to be
examined (be prepared for a certain delay):

nmap blue.example.com

Starting Nmap 4.68 (http://nmap.org) at 2009-02-04 00:09 CET

Interesting ports on blue.example.com (172.16.79.2):

Not shown: 1710 closed ports

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

53/tcp open domain

80/tcp open http

443/tcp open https

MAC Address: 00:50:56:FE:05:04 (VMWare)

Nmap done: 1 IP address (1 host up) scanned in 9.751 seconds

nmap considers ports “open” if a service can be reached. Ports for which the target
host returns an error message are marked “closed”, while ports where there is
no reaction at all (e. g., because the inquiry packets are simply thrown away by
the target host or a firewall, and not even an error message is sent in reply) are
designated “filtered”.

B If you do not specify otherwise, nmap analyses the target host’s TCP ports
using a “SYN scan”. For each of the ports under consideration, the pro-
gram sends a TCP segment with the SYN flag set (as if it wanted to start a
new connection). If the target host answers with a TCP segment that has
the SYN and ACK flags set, nmap assumes that the port is in use. However,
it takes no further action (in particular, it does not acknowledge the seg-
ment), so the “half-open” connection is thrown out by the target host after
the statutory timeouts have occurred. If instead the target host answers with
a segment with the RST flag set, the port is “closed”. If after several tries
there is no answer or only ICMP unreachability messages, the port is set to
“filtered”.—SYN scans require root privileges.

B Other techniques that nmap offers include the “TCP connect scan” (which
does not require special privileges but is clumsy and easily recognised by
the target host), the “UDP scan” and several other variants of TCP-based
scans, e. g., to discover firewall rulesets. Consult the documentation in
nmap(1).

B nmap can not only identify the active ports on a host, but can in many cases
even tell you which software is used to serve the ports. For this, you need
to specify the -A option and be very patient indeed. For this, nmap relies on a
database of “signatures” of diverse programs that comes with the software.

B The features of nmap surpass by far what we can present in this training man-
ual. Read the documentation (in nmap(1)) and at all times be aware on the
legal restriction mentioned earlier.

24.6 Testing DNS With host And dig 381

24.6 Testing DNS With host And dig

If connections to hosts addressed by name take ages to set up or fail to be estab-
lished after some delay, while trying to make the same connection based on the
IP address is as quick as usual, the DNS may be to blame. Conversely, your com-
puter may take a long time to connect because the remote host tries to find a name
for your IP address and runs into some problem or other there. To test DNS, you
can, for instance, use the host and dig programs.

B “And what about nslookup?” we hear you say. Sorry, but nslookup has been
deprecated for a while and is only still supported for compassionate reasons.

host is a very simple program, which in the most straightforward case accepts
a DNS name and outputs the IP address(es) that derive from it:

$ host www.linupfront.de

www.linupfront.de is an alias for s0a.linupfront.de.

s0a.linupfront.de has address 31.24.175.68

And it also works the other way round:

$ host 193.99.144.85

85.144.99.193.in-addr.arpa domain name pointer www.heise.de

(Don’t ask.)
You can compare the output of several DNS servers by specifying the IP ad-

dress (or the name, but the IP address is safer) as part of your query:

$ host www.linupfront.de 127.0.0.1

Using domain server:

Name: 127.0.0.1

Address: 127.0.0.1#53

Aliases:

www.linupfront.de is an alias for s0a.linupfront.de.

s0a.linupfront.de has address 31.24.175.68

In this way you can check whether a DNS server gives the correct answers.

B You can request particular types of DNS record by using the -t option, as in

$ host -t mx linupfront.de MX record desired
linupfront.de mail is handled by 10 s0a.linupfront.de

B With -l you can obtain a list of the most important names in a domain—at
least if you’re allowed. Together with the -a option, this gives you a list of
all names.

The dig program does essentially what host does, but allows for more detailed
analysis. It provides more extensive output than host:

$ dig www.linupfront.de

; <<>> DiG 9.9.5-10-Debian <<>> www.linupfront.de

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1443

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

382 24 Network Troubleshooting

;; QUESTION SECTION:

;www.linupfront.de. IN A

;; ANSWER SECTION:

www.linupfront.de. 3600 IN CNAME s0a.linupfront.de.

s0a.linupfront.de. 3600 IN A 31.24.175.68

;; Query time: 51 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Wed Jul 22 18:00:34 CEST 2015

;; MSG SIZE rcvd: 69

To resolve IP addresses into names, you must specify the -x option:

$ dig -x 31.24.175.68

; <<>> DiG 9.9.5-10-Debian <<>> -x 31.24.175.68

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 63823

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;68.175.24.31.in-addr.arpa. IN PTR

;; ANSWER SECTION:

68.175.24.31.in-addr.arpa. 86400 IN PTR s0a.linupfront.de.

;; Query time: 50 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Wed Jul 22 18:01:31 CEST 2015

;; MSG SIZE rcvd: 74

To query a specific DNS server, give its address after a @:

$ dig www.linupfront.de @192.168.20.254

B You can specify a DNS record type after the name you’re looking for:

$ dig linupfront.de mx

; <<>> DiG 9.9.5-10-Debian <<>> linupfront.de mx

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 15641

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;linupfront.de. IN MX

;; ANSWER SECTION:

linupfront.de. 3600 IN MX 10 s0a.linupfront.de.

;; Query time: 49 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Wed Jul 22 17:59:36 CEST 2015

;; MSG SIZE rcvd: 51

24.7 Other Useful Tools For Diagnosis 383

In principle, you can also use the getent command to test name resolution: getent

$ getent hosts www.linupfront.de

31.24.175.68 s0a.linupfront.de www.linupfront.de

The difference between host and dig on the one side and getent on the other side
is that the former two query the DNS directly. The latter command, however,
queries the C library. This means on the one hand that the lookup order given in
/etc/nsswitch.conf is obeyed. On the other hand you will receive the answer in the
form that you would otherwise encounter in /etc/hosts.

B In /etc/nsswitch.conf there is usually a line like

hosts: files dns

This means that /etc/hosts will be looked at first, then DNS. The advantage is
that you get to see exactly what application programs using the C library get
to see. For example, for some reason there might be a definition in /etc/hosts

for some name, which then has precedence over the DNS (because the DNS
will no longer be consulted after a match in /etc/hosts).

B From other getent applications, you may be used to something like

$ getent passwd

giving you a list of all users known to the system, in /etc/passwd format, even
if the users aren’t all listed in the local password file. This may work for
users but doesn’t have to (if you are working in a large enterprise, your user
database administrators may have prevented this). For DNS, a command
like

$ getent hosts

will definitely not lead to all names in the worldwide DNS being listed.
(Which is probably for the best, all things considered.)

DNS is a very intricate topic with ample room for mistakes. However, the
detailed diagnosis of DNS problems requires considerable knowledge. DNS is
treated in detail in the Linup Front training manual, The Domain Name System.

24.7 Other Useful Tools For Diagnosis

24.7.1 telnet and netcat

The telnet command is used to log on to a remote host using the TELNET pro-
tocol or—more generally—to contact an arbitrary TCP port. TELNET should no
longer be used for remote access, as no strong authentication is used and data is
transmitted in the clear (without encryption). The Secure Shell (ssh, Chapter 25)
is a reasonable alternative.

The telnet client program, however, is very suitable to test many other ser-
vices. With “telnet ⟨address⟩ ⟨service⟩'', a connection to any port can be estab-
lished (“⟨service⟩” is either a port number or a service name from “/etc/services”).
Therefore “telnet 192.168.0.100 80” opens a connection to a web server. In this
case it would even be possible to request resources from the server using suitable
HTTP commands. Here’s a different example:

384 24 Network Troubleshooting

$ telnet 192.168.0.1 22

Trying 192.168.0.1...

Connected to 192.168.0.1.

Escape character is ']̂'.

SSH-2.0-OpenSSH_6.7p1 Debian-6

In this case, telnet connects to the SSH port on a remote host, the remote sshd

answers with its protocol and program version.

B The “escape character” lets you take a “time-out” from the TCP connection
in order to enter telnet commands. The most interesting commands are
probably close (terminates the connection), status (displays the connection
status), and ! (can be used to execute commands on the local computer
while the connection is ongoing):

$ telnet 192.168.0.1 22

Trying 192.168.0.1...

Connected to 192.168.0.1.

Escape character is ']̂'.

SSH-2.0-OpenSSH_6.7p1 Debian-6

Ctrl + Esc

telnet> status

Connected to 192.168.0.1.

Operating in obsolete linemode

Local character echo

Escape character is ']̂'.

_

B The “!” command may be deactivated in your copy of telnet. In that case
you can still suspend the telnet program to the background using the z com-
mand (think “shell job control”), and reactivate it again later with the shell’s
fg command.

An alternative to the TELNET client, telnet, is the netcat program. In the sim-
plest case, netcat behaves like telnet (even though it is much less chatty):

$ netcat 192.168.0.1 22

SSH-2.0-OpenSSH_6.7p1 Debian-6

B The command is frequently called nc instead of (or in addition to) netcat.
The rest stays the same, though.

B There are two popular versions of netcat in circulation, a “traditional” ver-
sion (by somebody called “Hobbit”) and one from the OpenBSD system.
The latter has many more features (such as support for IPv6 or Unix do-
main sockets). For the rest of this section we are assuming the OpenBSD
netcat.

On Debian GNU/Linux, the default netcat is the traditional version (from
the netcat-traditional package). If you want to use the souped-up version,
you need to install the netcat-openbsd package. The OpenBSD netcat installs
itself under the nc name only; the traditional version remains accessible as
netcat unless you deinstall that package.

In addition to the client side of a TCP connection, netcat also implements the
server side if desired (it doesn’t do anything particularly useful by itself, though).
For example, you can make it listen to a connection on port 4711 using the

24.7 Other Useful Tools For Diagnosis 385

$ nc -l 4711

command. You can then, in a different window, use

$ nc localhost 4711

to connect to your “server”. Whatever you type on the client side appears on the
server and vice-versa. The poor person’s file transfer works as follows: On the poor person’s file transfer

target host, type

$ nc -l 4711 >myfile

and on the source host, type

$ nc red.example.com 4711 <myfile

24.7.2 tcpdump

The tcpdump program is a network sniffer which analyses the packets moving network sniffer

through a network interface. The network adapter is switched to “promiscuous
mode”, where it reads and reports all packets (and not, as usual, only those ad-
dressed to the local interface). Therefore the command can only be used by the
root user.

Here is a brief example of its use:

tcpdump -ni eth0

tcpdump: listening on eth0

14:26:37.292993 arp who-has 192.168.0.100 tell 192.168.0.1

14:26:37.293281 arp reply 192.168.0.100 is-at 00:A0:24:56:E3:75

14:26:37.293311 192.168.0.1.35993 > 192.168.0.100.21: S 140265170:

140265170(0) ...

14:26:37.293617 192.168.0.100.21 > 192.168.0.1.35993: S 135130228:

135130228(0) ack 140265171 ...

14:26:37.293722 192.168.0.1.35993 > 192.168.0.100.21: . ack 1 ...

Program interrupted
5 packets received by filter

0 packets dropped by kernel

This example shows how a connection to an FTP server is assembled. The “-ni
eth0” parameters switch off DNS and port name resolution and involve the eth0

interface only. For each packet, the program displays the exact time, source and
destination hosts, any flags in the TCP header (S: SYN bit), the sequence number of
the data, a possibly-set ACK bit, the expected sequence number of the next segment,
and so on.

The first packet shown here does not contain a destination address, it is an
ARP query: The computer with the 192.168.0.100 address is asked for its MAC
address—which it presents in the second packet. The next few packets show a
typical three-way handshake.

24.7.3 wireshark

wireshark is a network sniffer like tcpdump. However, wireshark comes with a much
more impressive feature set. It is a GUI program which allows for detailed analy-
sis of all network packets. Its output consists of three window panes: The topmost
displays incoming packets, the bottommost decodes the data in hexadecimal nota-
tion, and the center pane allows the convenient and detailed dissection of header
information (and payload data).

386 24 Network Troubleshooting

Like nmap, wireshark is not a standard Unix tool and usually needs to be installed
specifically. Both tcpdump and wireshark must be used with care, since it is easy to
break existing law even within a LAN. After all, there might be data displayed
which are nobody’s business.

B Until some years ago, the wireshark program was called ethereal and may
conceivably be found under this name on older machines.

Commands in this Chapter

getent Gets entries from administrative databases getent(1) 382
host Searches for information in the DNS host(1) 381
nmap Network port scanner, analyses open ports on hosts nmap(1) 379
ping Checks basic network connectivity using ICMP ping(8) 372
ping6 Checks basic network connectivity (for IPv6) ping(8) 373
tcpdump Network sniffer, reads and analyzes network traffic tcpdump(1) 385
telnet Opens connections to arbitrary TCP services, in particular TELNET (re-

mote access) telnet(1) 383
tracepath Traces path to a network host, including path MTU discovery

tracepath(8) 377
tracepath6 Equivalent to tracepath, but for IPv6 tracepath(8) 378
traceroute Analyses TCP/IP routing to a different host traceroute(8) 375

Summary

• Programs like netstat, telnet, nmap, tcpdump or wireshark provide powerful tools
to diagnose problems with network services.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

25
The Secure Shell

Contents

25.1 Introduction. 388
25.2 Logging Into Remote Hosts Using ssh 388
25.3 Other Useful Applications: scp and sftp 391
25.4 Public-Key Client Authentication 392
25.5 Port Forwarding Using SSH 394

25.5.1 X11 Forwarding 394
25.5.2 Forwarding Arbitrary TCP Ports 395

Goals

• Knowing how to use and configure the Secure Shell (SSH)

Prerequisites

• Knowledge about Linux system administration
• Knowledge about TCP/IP fundamentals (Chapter 22)
• Knowledge about Linux network configuration (Chapter 23)
• A basic awareness of cryptography is helpful

adm2-ssh.tex (0cd20ee1646f650c)

388 25 The Secure Shell

25.1 Introduction

SSH (“Secure Shell”) is a TCP/IP-based networking protocol. It provides data
transmission in a public network using strong authentication and encryption. Its
applications include interactive sessions, file transfer, and the secure forwarding
of other protocols (“tunneling”).

B Encryption is important to keep unauthorised people listening to the net-
work traffic from being able to read the content being transferred. Authen-
tication ensures one the one hand that you as the user are talking to the
correct server, and on the other hand that the server lets you access the cor-
rect user account.

OpenSSH, which comes with most Linux distributions, is a freely availableOpenSSH

implementation of this protocol. This implementation contains some SSH clients
as well as an SSH server (sshd).

Used properly, SSH can prevent the following attacks:attacks

• “DNS spoofing”, i. e., forged or adulterated DNS entries.

• “IP spoofing”, where an attacker sends datagrams from one host which pre-
tend that they come from another (trusted) host.

• IP source routing, where a host can pretend that datagrams come from an-
other (trusted) host.

• Sniffing of passwords and content transmitted in the clear on hosts along
the transmission path.

• Manipulation of transmitted data by hosts along the transmission path.

• Attacks on the X11 server by means of sniffed authentication data and
spoofed connections to the X11 server.

B SSH offers a complete replacement for the insecure TELNET, RLOGIN andUse

RSH protocols. In addition, it enables users to copy files from or to remote
hosts and is thus a secure replacement for RCP and many applications of
FTP.

A There are two versions of the SSH protocol, 1 and 2. Most servers can ac-protocol versions

cept connections using both versions. Still, please do avoid version 1, which
exhibits various security vulnerabilities.

25.2 Logging Into Remote Hosts Using ssh

To log into a remote host using SSH, you need to invoke the ssh command, for
example like

$ ssh blue.example.com

hugo@blue.example.com's password: geHe1m

Last login: Mon Feb 2 10:05:25 2009 from 192.168.33.1

Debian GNU/Linux (etch/i686) blue.example.com

hugo@blue:~$ _

ssh assumes that your user name on the remote host is the same as the local one.
If this isn’t the case, you can set your remote user name like

$ ssh hschulz@blue.example.com

25.2 Logging Into Remote Hosts Using ssh 389

Under the hood, approximately the following steps take place to establish the con-
nection:

• Client and server send each other information about their host keys, sup-
ported cryptographic schemes, and so on. The client checks whether the
server’s public key is the same as it used to (see below for more informa-
tion) and negotiates a shared secret with the server, which then serves as
the (symmetric) key to encrypt the connection. At the same time the client
checks the server’s authenticity and breaks the connection if there is any
doubt. The (gory) details are in [RFC4253].

• The server checks the client’s authenticity using one of several different
methods (in this case it asks for a password). The password is already sent
over the encrypted connection and, unlike other protocols like FTP or TEL-
NET, cannot be “sniffed” by people who listen in.

The first step is quite important. The following example shows what happens if
you contact the remote host for the first time:

$ ssh blue.example.com

The authenticity of host 'blue.example.com (192.168.33.2)' can't be�

� established.

RSA key fingerprint is 81:24:bf:3b:29:b8:f9:f3:46:57:18:1b:e8:40:5a�

� :09.

Are you sure you want to continue connecting (yes/no)? _

The host blue.example.com is still unknown here, and ssh asks you to verify its host
key. This is to be taken seriously. If you skip this verification step, you lose the
guarantee that nobody is listening in to your connection.

B The danger is here that somebody will intercept your connection request
and pretend that they are blue.example.com. Behind the scenes they can estab-
lish their own connection to blue.example.com and pass everything along that
you (naively) send to them, and conversely forward blue’s answers back to
you. You don’t see the difference, but the attacker can read everything that
you transmit. This is called a “man-in-the-middle attack”.

B To check, you need to contact the remote system’s administrator (e. g., by
telephone) and ask them to read their public host key’s “fingerprint”. This
can be displayed using “ssh-keygen -l” and must be identical to the “RSA key

fingerprint” from the SSH login dialogue.

B The SSH key pairs of a host can be found in the ssh_host_𝑥_key and ssh_ SSH key pairs

host_𝑥_key.pub files within the /etc/ssh directory. 𝑥 stands for a specific cryp-
tographic method which clients can use to check the server’s authenticity.

B Possible values for 𝑥 include (July 2015):

rsa The RSA algorithm. This is secure (according to the current state of the
art), as long as you use keys that are longer than 1024 bits. (2048 bits
sound good. Use 4096 bits if you’re Edward Snowden or are oth-
erwise assuming that organisations like the NSA have it in for you
specifically—and not only accidentally at random.)

dsa The DSA algorithm. This only allows 1024-bit keys and should be
avoided today, also because it is susceptible to weaknesses in random
number generation.

ecdsa The DSA algorithm based on elliptic curves. This lets you pick be-
tween 256, 384, and 521 bits1. (Elliptic curves do not need as many
bits, so the lower numbers are unproblematic.)

1Yes, indeed 521, this is not a typo for 512. (2521 − 1 is a Mersenne prime number, and that makes
the implementation faster. 521 bits are pretty much overkill, though.

390 25 The Secure Shell

ed25519 A fast and (according to current knowledge) very secure method
invented by Daniel J. Bernstein. Within the Secure Shell context this is
still fairly new.

You probably won’t go wrong with 2048-bit RSA, at least for the next few
years. If you’re sure that your clients and servers support Ed25519, then
that is a suitable alternative.

B A “key pair”, just so we mention this, is a set of two matching keys (!), one
private and one public. The public key may be told to everyone as long as
the private key stays confidential. Whatever is encrypted using the public
key can only be decrypted using the private key from the same pair, and vice
versa.

If the remote host’s public key is authentic, then reply to the question with
“yes”. ssh then stores the public key in the ~/.ssh/known_hosts file to use as a base
for comparison during future connection requests.

Should you ever see a message like

$ ssh blue.example.com

@@@

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

@@@

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle�

� attack)!

It is also possible that the RSA host key has just been changed.

The fingerprint for the RSA key sent by the remote host is

38:fa:2e:d3:c7:c1:0f:26:2e:59:e8:16:a4:0a:0b:94.

Please contact your system administrator.

Add correct host key in /home/hugo/.ssh/known_hosts to get rid of�

� this message.

Offending key in /home/hugo/.ssh/known_hosts:4

RSA host key for blue.example.com has changed and you have requested�

� strict checking.

Host key verification failed.

when trying to establish an ssh connection, you may be about to become the victim
of a man-in-the-middle attack—the public key that the server presents does not
equal the one stored for the server in the known_hosts file. You should contact the
remote host’s administrator to find out what is going on—perhaps the host key
needed to be changed for other reasons.

B You can change this behaviour by changing the appropriate setting in the
~/.ssh/config file:

StrictHostKeyChecking ask default setting
StrictHostKeyChecking no always accept everything
StrictHostKeyChecking yes never accept anything new

When “StrictHostKeyChecking yes” is set, you can only establish connections
to hosts that are already in your known_hosts file. All others will be refused.

After having established a connection using ssh, you can use the remote host
as if you sat in front of it. You can close the connection using exit or Ctrl + d .

B Unless you specify otherwise, during interactive ssh sessions the tilde (“~”)
will be considered a special “escape character” if it occurs immediately after
a newline character. This lets you control ssh during an ongoing session. In
particular, the “~.” sequence will close the connection, which may come in
useful if a program has become stuck at the “other end”. You can do other
interesting things—look at the “ESCAPE CHARACTERS” section of ssh(1).

25.3 Other Useful Applications: scp and sftp 391

Incidentally, ssh does not restrict you to interactive sessions, but lets you execute
single commands on the remote host:

$ ssh blue.example.com hostname

hugo@blue.example.com's password: geHe1m

blue.example.com

$ _

Of course you need to take into account that the shell on your computer will try to
process the command line in order to replace shell wildcard patterns etc. before
it is transmitted to the remote host. Use backslashes or quotes if you are in doubt.

Exercises

C 25.1 [!1] Use the ssh command to log in to another host (if necessary, your
instructor will tell you which one). What happens? Log out and log in again
to the same host. What is different?

C 25.2 [2] Remove the remote host’s entry created during Exercise 25.1 from
the ~/.ssh/known_hosts file and set the StrictHostKeyChecking parameter in the
~/.ssh/ssh_config file to yes. Try logging in to the remote host again. What
happens? What happens if the option StrictHostKeyChecking is set to no?

C 25.3 [2] Must the ~/.ssh/known_hosts file be readable for the user only and if
so, why? (If not, why not?)

C 25.4 [!2] Execute the hostname and date commands on the remote host, using
a single invocation of the ssh command.

25.3 Other Useful Applications: scp and sftp

Using scp you can copy files between two hosts via an SSH connection:

$ scp blue.example.com:hello.c .

hugo@blue.example.com's password: geHe1m

hello.c 100% |***********************| 33 KB 00:01

The syntax is based on the cp command: Just like with cp, you can specify two file
names (source and destination) or a list of file names and a destination directory.
With the -r option, scp copies directory contents recursively.

B You may even copy files between two different remote hosts:

$ scp hugo@blue.example.com:hello.c \

> hschulz@pink.example.com:hello-new.c

The sftp command is inspired loosely by common FTP clients, but needs an
SSH connection. It has nothing whatsoever to do with FTP otherwise—in partic-
ular, you cannot use it to communicate with an FTP server.

After having established a connection using a command like

$ sftp hugo@blue.example.com

you can use commands such as get, put, or mget to transfer files between your local
host and the remote host, inspect the contents of a directory on the remote host us-
ing ls, and change into different directories there by means of cd. At the beginning
of a session you will be placed in your home directory on the remote computer.

392 25 The Secure Shell

25.4 Public-Key Client Authentication

Normally the SSH server will authenticate you as a user by means of a pasword
that is assigned to your account on the server (usually in /etc/passwd or /etc/shadow).
Since the password is queried only after the encrypted connection has already
been established, this is in principle safe from unwanted listeners. However, you
may be bothered by the fact that your password itself is stored on the server—even
though it is encrypted, the password file could fall in the hands of crackers who
then apply “John the Ripper” to it. It would be better if nothing secret about you
would be stored on the remote host at all.

You can achieve this by using public-key client authentication instead of the
simple password-based client authentication. In a nutshell, you create a key pair
consisting of a public and a private key and deposit the public key on the SSH
server. The public key does not need to be specially protected (it is a public key,
after all); you will need to sit on the private key, but it will never leave your own
computer (which you never let out of your sight, don’t you?).

B You can also put your private key on an USB stick if you think that will be
more secure.

The server can authenticate you as the rightful owner of the private key match-
ing the deposited public key by generating a random number, encrypting it using
the public key, and sending it to you. You decrypt (or rather, your ssh decrypts)
the encrypted random number using the private key. The result is returned to the
server, which compares it to its original random number, and if the two match it
believes you that you are yourself.

B Of course all of this takes place across the encrypted connection and is there-
fore secure from unwanted listeners and scumbags that want to mess with
your data.

To use public-key client authentication, you first need to generate a key pair.
This is done using the ssh-keygen command:

$ ssh-keygen -t rsa -b 2048 or ed25519

Generating public/private rsa key pair.

Enter file in which to save the key (/home/hugo/.ssh/id_rsa): ↩
Created directory '/home/hugo/.ssh'.

Enter passphrase (empty for no passphrase): secret

Enter same passphrase again: secret

Your identification has been saved in /home/hugo/.ssh/id_rsa.

Your public key has been saved in /home/hugo/.ssh/id_rsa.pub.

The key fingerprint is:

39:ab:15:f4:2f:c4:e6:21:26:c4:43:d7:27:22:a6:c4 hugo@blue

The key's randomart image is:

+---[RSA 2048]----+

| |

| Eoo.. o . |

| . o+... o |

| .. o + |

| . S * |

| o O o |

| o o . |

| o . |

| . |

+-----------------+

The command first asks where you would like the key pair to be stored. The
default is reasonable and you should simply confirm it.

25.4 Public-Key Client Authentication 393

Next, ssh-keygen asks for a “passphrase”. This is used to encrypt the private
key in order to prevent somebody who happens to find your private key from
impersonating you to the SSH server.

B You can (and should) really use a longer sentence here. A shorter password
from a variegated mixture of letters, digits, and special caharacter is proba-
bly O. K., too. The usual rules for that kind of secret apply.

You must use keys without a passphrase for non-interactive SSH connections, e. g.,
for shell scripts and cron jobs. In this case you just press ↩ when you are asked
for the passphrase.

B It is possible to connect a public key on the server with a particular com-
mand. Client connections using this public key will then not launch a shell
session; instead, the command in question will be started directly. This can
significantly mitigate the security risk connected with unencrypted private
keys for the use of scripts.

The result of ssh-keygen are the two files id_rsa and id_rsa.pub in the ~/.ssh direc-
tory. The former contains the private and the latter the public key.

B If you have specified “-t ed25519” during the key generation, the files are, of
course, called id_ed25519 and id_ed25519.pub.

B The ssh-keygen command also shows you the fingerprint of the public key
and a “randomart image”. The latter is a graphical representation of the
public key, a kind of graphical fingerprint. Theoretically this should enable
you to tell at a glance whether a public key has changed or not. The idea is,
with all due respect, debatable.

B Of course nobody prevents you from invoking ssh-keygen multiple times
in order to generate several key pairs with different encryption methods.
(Or several key pairs with the same encryption method for use with differ-
ent servers. You will naturally need to ensure that these use different file
names.)

The next step is to deposit the public key, i. e., the content of the id_rsa.pub file,
in the ~/.ssh/authorized_keys file in your user account on the remote host. This is
most easily done using the ssh-copy-id command:

$ ssh-copy-id hugo@blue.example.com

hugo@blue.example.com's password: geHe1m Ein letztes Mal
Now try logging into the machine, with "ssh 'hugo@blue.example.com'",�

� and check in:

.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expecting.

$ _

B Of course you could just as well do that “the hard way” using scp and/or
ssh. Just make sure not to overwrite any keys that may already exist in ~/

.ssh/authorized_keys and that you would want to hang on to.

B If you set the PasswordAuthentication entry in the /etc/ssh/sshd_config file on
the server to no and PubkeyAuthentication to yes, then users can only authen-
ticate via the public key method. This is basically a good idea since crack-
ers enjoy running automatic programs that try obvious passwords on SSH
servers.

394 25 The Secure Shell

Public-key authentication, if you are using a passphrase, is not more convenient
than password authentication, but considerably more secure. If you want to log
in to the same host as the same user several times in a row, constantly re-entering
the passphrase can be a nuisance, though. The ssh-agent was developed to help
with this.

The ssh-agent program remembers the passphrase and passes it to SSH clientssh-agent

programs as needed. The program is started using, e. g., “ssh-agent bash”. This
opens a new bash, in which you must add the passphrase using ssh-add:ssh-add

$ ssh-add

Enter passphrase for /home/test/.ssh/id_rsa: Quoth the raven

Identity added: /home/test/.ssh/id_rsa (/home/test/.ssh/id_rsa)

Every instance of ssh, scp, or sftp started from the new shell gets the passphrase
from the SSH agent. The agent “forgets” the passphrase once you leave the shell
using exit or instruct it, using “ssh-add -D”, to forget all stored identities..

With Debian GNU/Linux, the login shell/GUI may be started with the
ssh-agent active right away, so you can ssh-add your passphrase at the very
beginning of your session.

B To be fair, we ought to mention that ssh-agent increases convenience to the
detriment of security. If you leave your computer unattended (or if you lose
your “suspended” laptop), an unauthorised person might be able to use the
SSH programs without being asked for a passphrase. The same applies to
programs that somehow get access to your session, such as viruses, worms
and other vermin …

Exercises

C 25.5 [!2] Using ssh-keygen, create an RSA key pair for SSH version 2. (Re-
member, at least 2048 bits!) Install the public key on the remote host and
check that you are no longer asked for the remote password upon login.
What do you need to enter instead?

C 25.6 [!1] Determine your public key’s “fingerprint”.

C 25.7 [2] Under what circumstances might you want to refrain from using a
passphrase for your private key?

25.5 Port Forwarding Using SSH

25.5.1 X11 Forwarding

Using X11 forwarding, you can execute graphical programs on a remote host,executing GUI programs

where graphics output and keyboard/mouse input take place on your local com-
puter. You merely need to use ssh to log in to the remote host, giving the -X (up-
percase X!) option. On the server side, X11 forwarding (parameter X11Forwarding

in /etc/ssh/sshd_config) must be enabled.
After logging in using “ssh -X [⟨user name⟩@]⟨host⟩” you may execute arbitrary

X clients whose input and output are directed to the local X server. This is due to
several factors:

• When logging in using -X, the DISPLAY variable is set up to point to a “proxy”
X server provided by sshd. This directs X clients started on the remote host
to this server.

• Everything a remote X client sends to the proxy X server is sent to the (real)
X server on the SSH client.

25.5 Port Forwarding Using SSH 395

• All the X11 traffic is encrypted so eavesdroppers cannot listen in (tunneling).

B You can also enable X11 forwarding globally in order to avoid having to type
the -X option. You just need to add “ForwardX11 yes” to your ~/.ssh_config (or
/etc/ssh/ssh_config for a system-wide default).

X11 forwarding is preferable to the standard X packet redirection (using DISPLAY)
not only because of its increased security but also because it is much more conve-
nient. You pay for this with some extra effort for encryption, which on modern
hardware ought to be barely noticeable.

B Even X11 forwarding is not without its security risks. Users who can cir-
cumvent file access rights on the remote host (e. g., because they are root)
may access your local X11 display. For this reason you should probably
avoid enabling X11 forwarding globally. The same risk exists, of course,
with “conventional” X11 redirection using DISPLAY.

25.5.2 Forwarding Arbitrary TCP Ports

SSH can forward and tunnel not only the X protocol, but also nearly every other Port forwarding

TCP-based protocol. This can be set up using the -R and -L options. The following
command tunnels connections to the local TCP port 10110 first via an SSH con-
nection to the computer blue.example.com. From there it continues (unencrypted)
to the TCP port 110 (POP3) on the mail.example.com host:

$ ssh -L 10110:mail.example.com:110 hugo@blue.example.com

The benefit of this approach is approximately as follows: Imagine your firewall
blocks POP3 but passes SSH. By means of the port redirection you can enter the
internal network via SSH and then connect from the blue.example.com host to the
mail server on the internal network. In your mail program you need to specify
localhost and the local TCP port 10110 as the “POP3 server”.

B You could theoretically forward the local TCP port 110, but you need to be
root to do it.

B The name of the forwarding destination host (here mail.example.com) is re-
solved from the perspective of the SSH server (here blue.example.com). This
means that a redirection of the form

$ ssh -L 10110:localhost:110 hugo@blue.example.com

connects you to port 110 on blue.example.com rather than your own computer.

B A port forwarding like

-L 10110:mail.example.com:10

opens port 10110 on all IP addresses on your computer. This opens the redi-
rection, in principle, to all other hosts that can reach this port over the net-
work. To prevent this you can use the fact that ssh allows you to specify a
local address for the redirected port: With

-L localhost:10110:mail.example.com:110

the redirection only applies to the local interface.

396 25 The Secure Shell

If you invoke ssh as shown, you get an interactive session on top of the port
forwarding. If you do not need this—because the forwarding takes place within a
cron job—you can specify the -N option, which restricts ssh to do the port forward-
ing and not establish an interactive session.

Another (possibly better) technique for automatically forwarding services uses
a ssh invocation like

$ ssh -f -L 10110:mail.example.com:110 blue sleep 10

$ getmail_fetch -p10110 localhost hugomail MaIl123 Maildir/

The -f option causes the ssh process to go to the background immediately before
the “sleep 10” command is executed. This means that a command that you execute
immediately after the ssh command (here getmail_fetch, which retrieves e-mail via
POP3) has 10 seconds to establish a connection to the local port 10110. The ssh

process exits either after 10 seconds or else when the (last) connection via the
local port 10110 is torn down, whichever occurs later.

Port forwarding also works the other way round:

$ ssh -R 10631:localhost:631 hugo@blue.example.com

opens the TCP port 10631 on the SSH server, and connections that programs there
make with that port will be redirected across the SSH connection to your local
host. Your local host then takes care of redirecting the decrypted data to the des-
tination, here port 631 on your local host itself. (This type of port forwarding is
considerably less important than the one using -L.)

B The -R port forwarding usually binds the remote port to the localhost inter-
face on the SSH server. In principle you can pick another interface as shown
above (“*” implies “all”), but whether that works depends on the configu-
ration of the SSH server.

You can also add port forwarding after the fact. Do this using the “~C” key
combination (it must be an uppercase C), which gives you a “command line”:

����� An SSH session is in progress here
remote$ ↩
remote$ ~ C

ssh> -L 10025:localhost:25

Forwarding port.

����� SSH session goes on

On the “command line” you can add -L and -R options (among other things), as if
you had typed them directly on the ssh command line. Using -KR, followed by the
port number, you can also cancel an -R port forwarding (unfortunately there is no
-KL). With the “~#” command you can check the currently active connections:

�����

remote$ ~#

The following connections are open:

#2 client-session (t4 r0 i0/0 o0/0 fd 6/7 cfd -1)

#3 direct-tcpip: listening port 10025 for localhost port 25, �

� connect from 127.0.0.1 port 57250 �

� (t4 r1 i0/0 o0/0 fd 9/9 cfd -1)

�����

A As you have undoubtedly gleaned from the preceding sections, ssh provides
the opportunity for all sorts of shenanigans that would bring tears to the
eyes of a corporate IT security officer. Please do consider this chapter a pre-
sentation of some of the features of ssh, not a recommendation to actually

25.5 Bibliography 397

use as many of them as possible (at least not without a sound reason). As
the operator of an SSH server you should, in particular, study its documen-
tation (such as sshd_config(5)) in order to find out how to suppress use of the
more dangerous options. Unfortunately there is not enough room in this
manual for a complete treatment of the SSH server configuration.

Exercises

C 25.8 [!1] How can you use ssh to conveniently start X11 clients as root from
an unprivileged user account on the same host?

C 25.9 [3] Use ssh to forward port 4711 (or some other suitable local port) to
the echo port (port 7) of a remote host. Check using a packet sniffer (tcpdump
or wireshark) that a connection to the local port 4711, e. g. using “telnet
localhost 4711”, actually causes an encrypted data transfer to the remote host
and is decrypted only there.

Commands in this Chapter

scp Secure file copy program based on SSH scp(1) 391
sftp Secure FTP-like program based on SSH sftp(1) 391
ssh ”‘Secure shell”’, creates secure interactive sessions on remote hosts

ssh(1) 388
ssh-add Adds private SSH keys to ssh-agent ssh-add(1) 394
ssh-agent Manages private keys and pass phrases for SSH ssh-agent(1) 394
ssh-copy-id Copies public SSH keys to other hosts ssh-copy-id(1) 393
ssh-keygen Generates and manages keys for SSH ssh-keygen(1) 392
sshd Server for the SSH protocol (secure interactive remote access)

sshd(8) 388

Summary

• The Secure Shell allows convenient and secure interactive sessions on re-
mote hosts (and thus replaces TELNET, RSH and RLOGIN) as well as the
secure transmission of files similar to RCP or FTP.

• OpenSSH is a powerful, freely available Secure Shell implementation.
• The user may choose from password authentication and public key authen-

tication. The latter is more secure but more difficult to set up.
• The Secure Shell can forward X11 graphics display and interaction as well

as arbitrary TCP connections across the encrypted channel.

Bibliography

BS01 Daniel J. Barrett, Richard Silverman. SSH, The Secure Shell: The Definitive
Guide. Sebastopol, CA: O’Reilly & Associates, 2001. ISBN 0-596-00011-1.

http://www.oreilly.com/catalog/sshtdg/

RFC4253 T. Ylonen, C. Lonvick. “The Secure Shell (SSH) Transport Layer Proto-
col”, January 2006. http://www.ietf.org/rfc/rfc4253.txt

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

26
Software Package Management
Using Debian Tools

Contents

26.1 Overview. 400
26.2 The Basis: dpkg . 400

26.2.1 Debian Packages 400
26.2.2 Package Installation 401
26.2.3 Deleting Packages 402
26.2.4 Debian Packages and Source Code 403
26.2.5 Package Information. 403
26.2.6 Package Verification 406

26.3 Debian Package Management: The Next Generation 407
26.3.1 APT . 407
26.3.2 Package Installation Using apt-get 407
26.3.3 Information About Packages 409
26.3.4 aptitude . 410

26.4 Debian Package Integrity 412
26.5 The debconf Infrastructure 413
26.6 alien: Software From Different Worlds 414

Goals

• Knowing the basics of Debian packaging tools
• Being able to use dpkg for package management
• Being able to use apt-get, apt-cache, and aptitude

• Being aware of the principles of Debian package integrity
• Knowing how to convert RPM packages to Debian packages using alien

Prerequisites

• Knowledge of Linux system administration
• Experience with Debian GNU/Linux or a Debian GNU/Linux derivative is

helpful

adm1-deb.tex (33e55eeadba676a3)

400 26 Software Package Management Using Debian Tools

26.1 Overview

Software packages in Debian GNU/Linux and derived distributions such as
Ubuntu, Knoppix, Xandros, or Sidux are maintained using the dpkg tools. It
serves to install software packages, to manage dependencies, to catalog installed
software, to control updates to software packages, and to de-install packages that
are no longer required. Program such as aptitude serve as front-ends to dpkg, al-
lowing the convenient selection of software packages. The debconf infrastructure
is used to configure packages upon installation.

B The Debian and Red Hat package management systems were developed at
about the same time and have different strengths and weaknesses. As usual
in the free software community, the religious wars around dpkg and rpm have
not led to one of the competitors carrying the day. With the increasing pop-
ularity of Debian derivatives—most notably Ubuntu—this remains unlikely
for the foreseeable future, too.

B The LSB standard for a basic Linux infrastructure that third-party vendors
can port their software to does prescribe a restricted version of RPM as its
package format. However, this does not imply that a LSB-compliant Linux
distribution must be RPM-based from the ground up, but only that it must
be able to install software packages from third-party vendors that conform
to the LSB flavour of RPM.

For Debian GNU/Linux, this is of course a piece of cake. The reason
why Debian GNU/Linux is not officially touted as “LSB-compliant” is be-
cause LSB is run by an industry consortium of which Debian, being a non-
commercial project, is not a member. The description for the lsb package
on Debian GNU/Linux states:

The intent of this package is to provide a best current practice way
of installing and running LSB packages on Debian GNU/Linux.
Its presence does not imply that Debian fully complies with the
Linux Standard Base, and should not be construed as a statement
that Debian is LSB-compliant.

While its title talks about “Debian tools”, everything in this chapter also
applies to Ubuntu, since Ubuntu takes substantial parts of its infrastructure
from Debian GNU/Linux. We shall be pointing out significant differences
that do exist.

26.2 The Basis: dpkg

26.2.1 Debian Packages

Within the Debian infrastructure, the software on the system is divided into pack-packages

ages. Packages have names that indicate the software contained within and theirpackage names
version. The

hello_2.8-2_amd64.deb

file, for example, contains the hello program’s 2.8 version; in particular this is the
second release of this package within the distribution (for a future 2.9 package
the count would start over at 1). Packages like apt which have been specifically
developed for Debian do not include a “Debian release number”. The amd64 indi-
cates that the package contains architecture-specific parts for Intel and AMD x86
processors (and compatibles) in 64-bit mode—32-bit packages use i386, and pack-
ages that contain only documentation or architecture-independent scripts use all

instead.

26.2 The Basis: dpkg 401

B A Debian package is an archive created using the ar program and generally package structure

contains three components:

$ ar t hello_2.8-2_amd64.deb

debian-binary

control.tar.gz

data.tar.gz

The debian-binary file contains the version number of the package format
(currently 2.0). In control.tar.gz there are Debian-specific scripts and control
files, and data.tar.gz contains the actual package files. During installation, installation
control.tar.gz is unpacked first, so that a possible preinst script can be exe-
cuted prior to unpacking the actual package files. After this, data.tar.gz will
be unpacked, and the package will be configured if necessary by executing
the postinst script from control.tar.gz.

Exercises

C 26.1 [2] Obtain an arbitrary Debian package (such as hello) and take it apart
using ar and tar. Can you find the installation scripts? Which information
is contained in control.tar.gz, and which is in data.tar.gz?

26.2.2 Package Installation

You can easily install a locally-available Debian package using the

dpkg --install hello_2.8-2_amd64.deb

command, where --install can be abbreviated to -i. With --unpack and --configure

(-a), the unpacking and configuration steps can also be executed separately.

In real life, the short option names such as -i are convenient. However, if
you intend to pass the LPI-101 exam, you should be sure to learn the long
option names as well, since these, vexatingly, occur in the exam questions.
In the case of -i and --install, it is probably straightforward to come up with
the correspondence; with -a and --configure, this is already somewhat less
obvious.

B Options for dpkg can be given on the command line or else placed in the
/etc/dpkg/dpkg.cfg file. In this file, the dashes at the start of the option names dpkg.cfg

must be omitted.

If a package is installed using “dpkg --install”, even though an earlier version Upgrade

already exists on the system, the older version is deinstalled before configuring
the new one. If an error occurs during installation, the old version can be restored
in many cases.

There are various reasons that might prevent a successful package installation, installation problems
including:

• The package requires one or more other packages that either have not yet
been installed, or that are not included in the same installation operation.
The corresponding check can be disabled using the --force-depends option—
but this can severely mess up the system.

• An earlier version of the package is installed and set to hold (e. g., using
aptitude). This prevents newer versions of the package from being installed.

• The package tries to unpack a file that already exists on the system and be-
longs to a different package, unless the current package is explicitly labeled
as “replacing” that package, or the --force-overwrite option was specified.

402 26 Software Package Management Using Debian Tools

Some packages conflict with each other (see the possibilities for package depen-conflicts

dencies on page 405). For example, only one mail transport program may be in-
stalled at one time; if you want to install, e. g., Postfix, Exim (the Debian default
MTA) must be removed at the same time. dpkg manages this if certain conditions
are fulfilled.

Sometimes packages do not depend on a particular other package but on aVirtual packages

“virtual” package describing a feature that can, in principle, be provided by any
of several other packages, such as mail-transport-agent, which is provided by pack-
ages like postfix, exim, or sendmail. In this case it is possible to replace, say, Exim by
Postfix in spite of dependencies, as a program providing the “virtual” functional-
ity will be available at all times.

Exercises

C 26.2 [1] Download a Debian package—say, hello—from ftp.debian.org (or
any other Debian mirror) and install it using dpkg. (If you use anything else,
such as apt-get—see next section—, you’re cheating!) You can find Debian
packages on the server reasonably conveniently given their names, by look-
ing in pool/main for a subdirectory corresponding to the first character of
the name, and in there looking for a subdirectory whose name is that of the
package1, in our case pool/main/h/hello. Exception: Since very many package
names start with lib, a package like libfoobar ends up in pool/main/libf.

C 26.3 [2] Locate the current list of virtual packages in Debian GNU/Linux.
Where did you find it? When did the last update take place?

26.2.3 Deleting Packages

A package is removed using the

dpkg --remove hello

command (“dpkg -r”, for short). Its configuration files (all the files listed in the
conffiles file within control.tar.gz), though, are kept around in order to facilitate
a subsequent reinstallation of the package. The

dpkg --purge hello

(or “dpkg -P”) command removes the package including its configuration files.

B The “configuration files” of a Debian package are all files in the package
whose names occur in the conffiles file in control.tar.gz. (Look at /var/lib/

dpkg/info/⟨package name⟩.conffiles.)

Package removal does not necessarily work, either. Possible obstacles include:Removal problems

• The package is required by one or more other packages that are not about
to be removed as well.

• The package is marked “essential” (to system functionality). The shell, for
example, cannot simply be removed since some important scripts could no
longer be executed.

Here, too, the relevant checks can be disabled using suitable --force-… options (at
your own risk).

Exercises

C 26.4 [1] Remove the package you installed during Exercise 26.2. Make sure
that its configuration files are removed as well.

1The source code package, really, which may differ. So don’t get too fancy.

26.2 The Basis: dpkg 403

26.2.4 Debian Packages and Source Code

When dealing with source code, a basic principle of the Debian project is to distin-
guish clearly between the original source code and any Debian-specific changes.
Accordingly, all changes are placed in a separate archive. In addition to the
Debian-specific control files, these include more or less extensive fixes and cus-
tomisations to the software itself. For each package version, there is also a “source source control file

control file” (using the .dsc suffix) containing checksums for the original archive
and the changes file, which will be digitally signed by the Debian maintainer in
charge of the package:

$ ls hello*

-rw-r--r-- 1 anselm anselm 6540 Jun 7 13:18 hello_2.8-2.debian.tar.gz

-rw-r--r-- 1 anselm anselm 1287 Jun 7 13:18 hello_2.8-2.dsc

-rw-r--r-- 1 anselm anselm 697483 Mai 27 23:47 hello_2.8.orig.tar.gz

You can also see that the original source code archive does not change for all of the
2.8 version of the program (it does not contain a Debian release number). Every
new version of the Debian package of hello’s 2.8 version comes with new .dsc

and .debian.tar.gz files. The latter contains all the changes relative to the original
archive (rather than the hello_2.8-2 package).

B In former times, the Debian project used a less complicated structure where
there was one single file (created with diff) containing all Debian-specific
changes—in our example, hypothetically hello_2.8-2.diff.gz. This approach
is still supported, and you may find this structure with older packages that
have not been changed to use the new method instead. The new struc-
ture does have the advantage that different changes—like the introduction
of the Debian-specific control files and any changes to the actual original
code—can be more cleanly separated, which greatly simplifies maintaining
the package within the Debian project.

The dpkg-source command is used to reconstruct a package’s source code from dpkg-source

the original archive and the Debian changes such that you can recompile your
own version of the Debian package. To do so, it must be invoked with the name
of the source control file as an argument:

$ dpkg-source -x hello_2.8-2.dsc

The original archive and the .debian.tar.gz or .diff.gz file must reside in the same
directory as the source control file. dpkg-source also places the unpacked source
code there.

B dpkg-source is also used when generating source archives and Debian change Preparing Debian packages

files during Debian package preparation. However, this topic is beyond the
scope of the LPIC-1 certification.

Exercises

C 26.5 [1] Obtain the source code for the package you installed during Exer-
cise 26.2, and unpack it. Take a look at the debian subdirectory of the result-
ing directory.

26.2.5 Package Information

You can obtain a list of installed packages using “dpkg --list” (-l, for short): package list

$ dpkg --list

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/H

404 26 Software Package Management Using Debian Tools

|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,

||/ Name Version Description

+++-==============-==============-==========================

ii a2ps 4.13b+cvs.2003 GNU a2ps - 'Anything to Po

ii aalib1 1.4p5-19 ascii art library

ii abcm2ps 4.0.7-1 Translates ABC music descr

ii abcmidi 20030521-1 A converter from ABC to MI

�����

(truncated on the right for space reasons) This list can be narrowed down using
shell search patterns:shell search patterns

$ dpkg -l lib*-tcl

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/H

|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,

||/ Name Version Description

+++-==============-==============-==========================

pn libdb3-tcl <none> (no description available)

un libdb4.0-tcl <none> (no description available)

un libdb4.1-tcl <none> (no description available)

un libmetakit-tcl <none> (no description available)

ii libsqlite-tcl 2.8.9-1 SQLite TCL bindings

rc libsqlite0-tcl 2.6.1-2 SQLite TCL bindings

The packages with version “<none>” are part of the distribution but are either not
installed on the current system (status un) or have been removed (status pn).

You can find out about an individual package’s status with the --status (-s)package status

option:

$ dpkg --status hello

Package: hello

Status: install ok installed

Priority: optional

Section: devel

Installed-Size: 553

Maintainer: Santiago Vila <sanvila@debian.org>

Architecture: amd64

Version: 2.8-2

Depends: libc6 (>= 2.4), dpkg (>= 1.15.4) | install-info

Description: The classic greeting, and a good example

The GNU hello program produces a familiar, friendly greeting. It

allows non-programmers to use a classic computer science tool which

would otherwise be unavailable to them.

.

Seriously, though: this is an example of how to do a Debian package.

It is the Debian version of the GNU Project's `hello world' program

(which is itself an example for the GNU Project).

Homepage: http://www.gnu.org/software/hello/

Besides the package name (Package:), its output includes information about the
package’s status and priority (from required via important, standard and optional

down to extra) and its approximate area of interest (Section:). The Maintainer: is
the person who is in charge of the package on behalf of the Debian project.

B Packages of priority required are necessary for proper operation of the sys-Priorities

tem (usually because dpkg depends on them). The important priority encom-
passes packages one would expect to be available on a Unix-like system2.

2The definition is something like “A package is important if, should it be missing, experienced Unix
users would shake their heads and go “WTF?”.

26.2 The Basis: dpkg 405

standard adds those packages that make sense for a net but not overly re-
strictive system running in text mode—this priority describes what you get
if you install Debian GNU/Linux without selecting any additional pack-
ages. The optional priority applies to everything you might want to install
if you do not look too closely and have no particular requirements. This
includes things like the X11 GUI and a whole load of applications (such as
TEX). There should be no conflicts within optional. Finally, extra is used for
all packages that conflict with packages of other priorities, or that are only
useful for specialised applications.

B Packages may not depend on packages of lower priority. For this to hold in
all cases, the priorities of some packages have deliberately been tweaked.

An important area of information are the package dependencies, of which package dependencies

there are several types:

Depends The named packages must be configured for the package to be able to be
configured. As in the preceding example, specific versions of the packages
may be called for.

Pre-Depends The named packages must be completely installed before installation
of the package can even begin. This type of dependency is used if, for exam-
ple, the package’s installation scripts absolutely require software from the
other package.

Recommends A non-absolute but very obvious dependency. You would nearly al-
ways install the named packages alongside this package, and only refrain
from doing so in very unusual circumstances.

Suggests The named packages are useful in connection with the package but not
required.

Enhances Like Suggests, but in reverse—this package is useful for the named pack-
age (or packages).

Conflicts This package cannot be installed at the same time as the named pack-
ages.

If a package isn’t installed locally at all, “dpkg --status” only outputs an error
message:

dpkg -s xyzzy

Package `xyzzy' is not installed and no info is available.

Use dpkg --info (= dpkg-deb --info) to examine archive files,

and dpkg --contents (= dpkg-deb --contents) to list their contents.

The --listfiles (-L) option provides a list of files within the package: list of files

$ dpkg --listfiles hello

/.

/usr

/usr/share

/usr/share/doc

/usr/share/doc/hello

/usr/share/doc/hello/changelog.Debian.gz

/usr/share/doc/hello/copyright

/usr/share/doc/hello/NEWS

/usr/share/doc/hello/changelog.gz

/usr/share/info

/usr/share/info/hello.info.gz

/usr/share/man

406 26 Software Package Management Using Debian Tools

/usr/share/man/man1

/usr/share/man/man1/hello.1.gz

/usr/share/locale

�����

Finally, you can use the --search (or -s) option to find out which package (if any)package search

claims a given file. Search patterns are allowed:

$ dpkg -S bin/m*fs

dosfstools: /sbin/mkdosfs

cramfsprogs: /usr/sbin/mkcramfs

util-linux: /sbin/mkfs.cramfs

smbfs: /sbin/mount.smbfs

�����

The search may take some time, though.

B If you’re looking for the package for a file that is not on your system—for
example, if you plan to install that package afterwards—, you can use the
search form on http://www.debian.org/distrib/packages#search_contents. This
allows you to search any or all Debian distributions and architectures as
well as to search for exact file name matches and file names containing cer-
tain search terms.

Exercises

C 26.6 [3] How many packages whose names start with lib are installed on
your system? How many of those packages have priority required?

26.2.6 Package Verification

The integrity of an installed package can be checked using the debsums programintegrity of an installed package

(from the eponymous package):

$ debsums hello

/usr/share/doc/hello/changelog.Debian.gz OK

/usr/share/doc/hello/copyright OK

/usr/share/doc/hello/NEWS OK

/usr/share/doc/hello/changelog.gz OK

/usr/share/info/hello.info.gz OK

�����

This compares the MD5 checksums of the individual files with the content of
the corresponding file in /var/lib/dpkg/info (here, hello.md5sums). If an actual file’s
checksum does not match the set value, FAILED is displayed in place of OK.

B debsums can uncover “inadvertent” changes to a package’s files, but does not
provide protection from intruders who maliciously modify files. After all, aprotection from intruders

cracker could place the checksum of a modified file in its package’s md5sums

list. Neither does this method help agains “Trojan” packages that hide ma-
licious code behind an innocuous facade. We shall be coming back to the
“integrity of packages” topic in Section 26.4.

Exercises

C 26.7 [!2] Change a file in an installed Debian package. (Look for a not-so-
important one, like that from Exercise 26.2.) You could, for example, append
a few lines of text to the README.Debian file (be root). Check the integrity of the
package’s files using debsums.

26.3 Debian Package Management: The Next Generation 407

26.3 Debian Package Management: The Next Genera-
tion

26.3.1 APT

dpkg is a powerful tool, but still somewhat restricted in its potential. For example,
it is a bit aggravating that it will notice unfilled dependencies between packages,
but then just throw in the towel instead of contributing constructively to a solution
of the problem. Furthermore, while it is nice be able to install locally-available
packages, one would wish for convenient access to FTP or web servers offering
packages.

B The dselect program, which in the early days of Debian served as an inter-
active front-end to package management, is officially deprecated today—its
inconvenience was proverbial, even though reading the manual did help as
a rule.

Quite early in the history of the Debian project (by today’s standards), the De-
bian community started developing APT, the “Advanced Packaging Tool”. This
project, in its significance as in its ultimate pointlessness, is comparable to the
quest of the Knights of the Round Table for the Holy Grail, but, like the Grail
quest, APT development led to many noble deeds along the way. Although few
dragons were slain and damsels freed from distress, the APT developers produced
very important and powerful “partial solutions” whose convenience and feature
set remains unequalled (which is why some RPM-based distributions have begun
to ad-“apt” them for their purposes).

26.3.2 Package Installation Using apt-get

The first of these tools is apt-get, which represents a sort of intelligent superstruc-
ture for dpkg. It does not offer an interactive interface for package selection, but
could initially be used as a back-end for dselect, to install packages selected in
dselect. Today it is mostly useful on the command line. The most important prop-
erties of apt-get include the following:

• apt-get can manage a set of installation sources simultaneously. For exam- Several installation sources

ple, it is possible to use a “stable” Debian distribution on CD-ROM in par-
allel to a HTTP-based server containing security updates. Packages are nor-
mally installed from CD-ROM; only if the HTTP server offers a more current
version of a package will it be fetched from the network. Certain packages
can be requested from certain sources; you can, for example, use a stable
Debian distribution for the most part but take some packages from a newer
“unstable” distribution.

• It is possible to update all of the distribution at once (using “apt-get dist-upgrade”),Upgrades

with dependencies being resolved even in the face of package renamings
and removals.

• A multitude of auxiliary tools allows, e. g., setting up caching proxy servers auxiliary tools

for Debian packages (apt-proxy), installing packages on systems that are not
connected to the Internet (apt-zip), or retrieving a list of bugs for a pack-
age before actually installing it (apt-listbugs). With apt-build, you can com-
pile packages with specific optimisations for your system and create a local
package repository containing such packages.

Package sources for apt-get are declared in /etc/apt/sources.list: package sources

deb http://ftp.de.debian.org/debian/ stable main

deb http://security.debian.org/ stable/updates main

deb-src http://ftp.de.debian.org/debian/stable main

408 26 Software Package Management Using Debian Tools

Binary packages will be fetched from http://ftp.de.debian.org/, as will the corre-
sponding source code. In addition, the security.debian.org server is accessed, on
which the Debian project places updated package version that fix security bugs.

The standard operating procedure using apt-get is as follows: First you updateoperating procedure

the local package availability database:

apt-get update

This consults all package sources and integrates the results into a common pack-
age list. You can install packages using “apt-get install”:

apt-get install hello

Reading Package Lists... Done

Building Dependency Tree... Done

The following NEW packages will be installed:

hello

0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.

Need to get 68.7kB of archives.

After unpacking 566kB of additional disk space will be used.

This will also install or upgrade all packages mentioned in Depends: dependencies,
as well as any packages that these packages depend upon, and so on.

You may also install several packages at the same time:

apt-get install hello python

or install some packages and install others simultaneously: The

apt-get install hello- python python-django+

command would remove the hello package and install the python and python-django

packages (including their dependencies). The “+” is not mandatory but allowed.
With “apt-get remove” you can remove packages directly.

The “apt-get upgrade” installs the newest available versions of all packages in-simple update

stalled on the system. This will not remove installed packages nor install new
packages; packages that cannot be updated without such actions (because depen-
dencies have changed) remain at their present state.

The “apt-get dist-upgrade” command enables an “intelligent” conflict resolution“intelligent” update

scheme which tries to resolve changed dependencies by judiciously removing and
installing packages. This prefers more important packages (according to their pri-
ority) over less important ones.

You can fetch a package’s source code using the “apt-get source” command:source code

apt-get source hello

This also works if the binary package is one of several that have been created from
a (differently named) source package.

B The apt programs are usually configured by means of the /etc/apt/apt.conf

file. This includes options for apt-get, apt-cache, and other commands from
the apt bunch.

Exercises

C 26.8 [!1] Use apt-get to install the hello package and then remove it again.

C 26.9 [1] Download the source code for the hello package using apt-get.

26.3 Debian Package Management: The Next Generation 409

26.3.3 Information About Packages

Another useful program is apt-cache, which searches apt-get’s package sources: apt-cache

$ apt-cache search hello hello in name or description
�����

grhino-data - othello/reversi boardgame - data-files

gtkboard - many board games in one program

hello - The classic greeting, and a good example

hello-debhelper - The classic greeting, and a good example

jester - board game similar to Othello

�����

$ apt-cache show hello

Package: hello

Version: 2.8-2

Installed-Size: 553

Maintainer: Santiago Vila <sanvila@debian.org>

Architecture: amd64

�����

The output of “apt-cache show” mostly corresponds to that of “dpkg --status”, except
that it works for all packages in a package source, no matter whether they are
installed locally, while dpkg only deals with packages that are actually installed.

There are also a few other interesting apt-cache subcommands: depends displays
all the dependencies of a package as well as the names of packages fulfilling that
dependency:

$ apt-cache depends hello

hello

Depends: libc6

|Depends: dpkg

Depends: install-info

B The vertical bar in the second dependency line indicates that the depen-
dency in this line or the one in the following line must be fulfilled. In this
example, the dpkg package or the install-info package must be installed (or
both).

Conversely, rdepends lists the names of all packages depending on the named pack-
age:

$ apt-cache rdepends python

python

Reverse Depends:

libboost-python1.4.1

mercurial-nested

mercurial-nested

python-apt

python-apt

�����

B If a package occurs several times in the list, this is probably because the
original package specified it several times, typically with version numbers.
The python-apt package, for example, contains among other things

… python (>= 2.6.6-7~), python (<< 2.8), …

to signal that it will only work with particular versions of the Debian Python
package.

410 26 Software Package Management Using Debian Tools

stats provides an overview of the content of the package cache:

$ apt-cache stats

Total package names: 33365 (1335k) All packages in the cache
Normal packages: 25672 Packages that really exist
Pure virtual packages: 757 Placeholders for functionality
Single virtual packages: 1885 Just one implementation
Mixed virtual packages: 267 Several implementations
Missing: 4784 Packages in dependencies that no (longer?) exist

Total distinct versions: 28955 (1506k) Package versions in the cache
Total distinct descriptions: 28955 (695k)

Total dependencies: 182689 (5115k) Number of pairwise relationships
Total ver/file relations: 31273 (500k)

Total Desc/File relations: 28955 (463k)

Total Provides mappings: 5747 (115k)

Total globbed strings: 100 (1148)

Total dependency version space: 756k

Total slack space: 73.5k

Total space accounted for: 8646k

Exercises

C 26.10 [2] How can you find all packages that must be installed for a particu-
lar package to work? (Compare the output of “apt-cache depends x11-apps” to
that of “apt-cache depends libxt6”.)

26.3.4 aptitude

The program aptitude does package selection and management and has taken over
the old dselect’s rôle in Debian GNU/Linux. On the console or inside a terminal
emulator, it features an interactive user interface with menus and dialogs, but also
provides command-line options that are roughly compatible to those of apt-get.
Since Debian 4.0 (popularly called “etch”), aptitude is the recommended program
for package installation and updates.

B Newer versions of aptitude include a GTK+-based user interface that can be
installed optionally.

Compared to apt-get and dselect, aptitude offers various improvements, includ-improvements

ing:

• It does not necessarily need to be invoked as root, but asks for the root pass-
word before actions requiring administrator privileges are performed.

• It can remember which packages have been installed to fulfil dependencies,
and remove these automatically if all packages depending on them have
been removed. (In the meantime apt-get has learned to do that, too; see
apt-get(8), the autoremove command.)

• With aptitude, you have interactive access to all versions of a package avail-
able from various package sources, not just the most up-to-date one.

The aptitude command invokes the interactive UI (Figure 26.1). Near the topinteractive UI

of the console (or terminal, as the case may be) you see a “menu bar”, below that
there is a line with a short help message and a line with the program’s version
number. The remainder of the screen is split in two parts: The upper half displays
an overview of the various types of package (updated, new, installed, and so on),
the lower half is used for explanatory messages.

With the ↑ and ↓ keys you can navigate in the package list. Lines starting
wiht --- represent the headings of “subtrees” of the package list, and ↩ can be

26.3 Debian Package Management: The Next Generation 411

Figure 26.1: The aptitude program

used to “open” the next level of such a subtree. (You can open all of the subtree
by typing] .) / gives you a window that lets you enter a search term (or reg-
ular expression) for a package name. When scrolling through the package lists,
explanations for the packages encountered are displayed in the lower part of the
screen, and you can scroll these up or down using the a and z keys. The i key
lets you change from the explanatory text to a representation of the dependencies.

If the cursor bar sits on a package’s line, you can select it for installation or
updating using the + key, or mark it for deletion using - . If you want to remove
it completely (as in “dpkg --purge”), use _ . = sets a package’s status to “hold”,
which means that it will no longer be automatically upgraded.

With u , you can update the package lists (like “apt-get update”) and then check
the “Updated Packages” subtree to find which packages aptitude would update.
Using U , you can mark all of these packages for actual updating. The “New
Packages” subtree displays those packages added since the last update; f empties
this list and places these packages among the “normal” lists. The Ctrl + t key
combination opens the menu bar, in which you can move using the arrow keys
and select a function using ↩ .

The g command starts the actual installation, update, or package removal. At
first it shows an overview of the planned actions, which you may revise using the
usual commands. Another g starts the actual work: First all required new pack-
ages are fetched, then aptitude calls dpkg to atually install or remove the desired
packages.

B Contrary to popular perception, aptitude is not really a front-end to apt-get,
but does by itself whatever apt-get would otherwise do.

If conflicts occur, aptitude offers solution strategies by way of suitable proposals solution strategies

for installations, updates, or package removals, from which you can pick the one
that is most appropriate.

B In its default configuration, aptitude automatically installs even those pack-
ages that a package marks Recommended:. This is not always what is wanted
and can be switched off from the “Options” menu.

You can install and use aptitude on Ubuntu, but it is not the recommended
program. For this reason, it does not agree 100% with the graphical tools

412 26 Software Package Management Using Debian Tools

proposed for package management by Ubuntu—so you should either do
everything like Ubuntu recommends, or else do everything using aptitude.

26.4 Debian Package Integrity

The debsums program is used to check the integrity of the files in a single package
(Section 26.2.6). This is nice but does not ensure that an attacker has not manip-
ulated both the files in the package and the .md5sums file containing the original
checksums. The question remains: How does the Debian project ensure the in-integrity of complete packages

tegrity of complete packages (and, based on this, the integrity of the whole distri-
bution)? This works as follows:

• Every Debian package is cryptographically signed by a Debian developer.
This means that the receipient of the package can use the developer’s public
key to verify that they received the package in the state it was in when the
developer released it.

B The Debian developer who signed the package must not necessar-
ily have been the person who assembled it. In principle, every De-
bian developer may sign and release any package in Debian (a “non-
maintainer upload”), and this is being done in practice for timely
updates fixing critical security holes and to adopt “orphaned” pack-
ages. Furthermore, there are numerous people who help with Debian
GNU/Linux and, even though they are not formally Debian develop-
ers (or whose applications for developer status are pending), maintain
packages. These people cannot by themselves release packages, but
must do this via a “sponsor” who must be a Debian developer. The
sponsor assumes the responsibility that the package is reasonable.

A You should not overestimate the security gained through digital sig-
natures: A developer’s signature does not guarantee that there is no
malicious code in a package, but only that the developer signed the
package. Theoretically it is possible for a cracker to pass the Debian
developer accreditation procedure and be able to release official pack-
ages into the distribution—whose control scripts most users will exe-
cute uncritically as root. Most other Linux distributions share the same
weaknesses.

• The Debian infrastructure only accepts packages for publication that have
been signed by a Debian developer.

• On the Debian server (and all servers mirroring Debian GNU/Linux) there
is a file (or several) called Packages.gz for each current Debian distribution.
This file contains the MD5 checksums of all packages in the distribution, as
they are on the server; since the server only accepts packages from accred-
ited developers, these are authentic.

• For each current Debian distribution on the server there is a file called
Release, which contains the MD5 checksums of the Packages.gz file(s) in-
volved. This file is cryptographically signed (the signature is in a file called
Release.gpg).

With this chain of checksums and signatures, the integrity of packages in the dis-
tribution can be checked:

• A new package is downloaded and its MD5 checksum is determined.

• We check whether the signature of the Release file is correct, and, if so, read
the MD5 checksum of Packages.gz from that file.

26.5 The debconf Infrastructure 413

• With that checksum, we verify the integrity of the actual Packages.gz file.

• The MD5 checksum of the package given in Packages.gz must match that of
the downloaded file.

If the MD5 checksum of the downloaded file does not match the “nominal value”
from Packages.gz, the administrator is made aware of this fact and the package is
not installed (just yet, anyway).

B It is possible to configure a Debian system such that it only installs packages
that can be verified in this way. (Usually all you get is warnings which can be
overridden manually.) With this, you can construct an infrastructure where
only packages from a considered-safe-and-sensible “subdistribution” can
be installed. These packages may be from Debian GNU/Linux or else have
been made available locally.

B The APT infrastructure only trusts package sources for which a public
GnuPG key has been placed in the /etc/apt/trusted.gpg. The apt-key pro-
gram is used to maintain this file.

B The current public keys for Debian package sources are contained in the
debian-archive-keyring package and can be renewed by updating this file.
(Debian rotates the keys on a yearly basis).

You can find out more about managing signed packages in Debian in [F+07,
chapter 7]. We explain GnuPG in the Linup Front training manual Linux Admin-
istration II.

26.5 The debconf Infrastructure

Sometimes questions come up during the installation of software packages. For
example, if you are installing a mail server package, it is important to know, in or-
der to generate an appropriate configuration file, whether the computer in ques-
tion is connected directly to the Internet, whether it is part of a LAN with its own
dedicated mail server, or whether it uses a dial-up connection to access the net. It
is also necessary to know the domain the computer is to use for its messages and
so on.

The debconf mechanism is designed to collect this information and to store
it for future use. It is basically a database for system-wide configuration set-
tings, which can, for example, be accessed by the installation scripts of a package.
To manipulate the database, debconf supports modular user interfaces covering
all tastes from very simple textual prompts to text-oriented dialogs and various
graphical desktop applications such as KDE and GNOME. There are also inter-
faces to popular programming languages like Python.

You can redo the initial debconf-based configuration of a software package at
any time by giving a command like

dpkg-reconfigure my-package

dpkg-reconfigure repeats the questions asked during the original installation pro-
cess of the package, using the pre-set user interface.

B You can select another user interface on an ad-hoc basis by means of the
--frontend (or -f) option. The possible names are given in debconf(7) if you
have installed the debconf-doc package. The default is dialog.

B To change the user interface temporarily if you are not calling dpkg-reconfigure

directly, use the DEBCONF_FRONTEND environment variable:

DEBCONF_FRONTEND=noninteractive aptitude upgrade

414 26 Software Package Management Using Debian Tools

With dpkg-reconfigure, you can also control the level of detail of the questions
you will be asked. Use the --priority (or -p) option followed by a priority. The
possible priorities are (in descending order):

critical Questions you absolutely must answer lest terrible things happen.

high Questions without a sensible default—your opinion counts.

medium Questions with a sensible default.

low Trivial questions with a default that works most of the time.

If you say something like

dpkg-reconfigure --priority=medium my-package

you will be asked all priority critical, high, and medium questions; any priority low

questions will be skipped.

B For ad-hoc changes if debconf is called indirectly, there is also the DEBCONF_PRIORITY

environment variable.

The debconf infrastructure is fairly complex but useful. For example, it is pos-
sible to put the answers into an LDAP database that is accessible to all computers
on a network. You can thus install a large number of machines without manual
intervention. To explain this in detail would, however, be beyond the scope of this
manual.

Exercises

C 26.11 [1] How can you change the pre-set user interface for debconf on a
permanent basis?

26.6 alien: Software From Different Worlds

Many software packages are only available in the popular RPM format. Commer-
cial packages in particular are more likely to be offered for the Red Hat or SUSE
distributions, even though nothing would prevent anyone from trying the soft-
ware on Debian GNU/Linux (serious use may be precluded by the loss of man-
ufacturer support if a non-approved platform is used). You cannot install RPM
packages on a Debian system directly, but the alien program makes it possible
to convert the package formats of various Linux distributions—besides RPM also
the Stampede and Slackware formats (not that these are desperately required)—to
the Debian package format (and vice-versa).

Important: While alien will let you convert packages from one format to another,
there is no guarantee whatsoever that the resulting package will be useful in any
way. On the one hand, the programs in the package may depend on libraries
that are not available (or not available in the appropriate version) in the target
distribution—since alien does not deal with dependencies, you must sort out any
problems of this type manually. On the other hand, it is quite possible that the
package integrates itself into the source distribution in a way that is impossible or
difficult to replicate on the target distribution.

As a matter of principle, the farther “down” a package sits in the system the
smaller the probability that alien will do what you want. With packages that con-
sist of a few executable programs without bizarre library dependencies, the cor-
responding manual pages, and a few example files, chances are good for alien

to do the Right Thing. With system services that must integrate into the system
boot sequence, things may well look different. And you should not even think of
replacing libc …

26.6 Bibliography 415

B alien is used, in particular, to convert LSB-compliant software packages for
installation on a Debian GNU/Linux system—LSB specifies RPM as the
software distribution package format.

After these introductory remarks, we’ll show you quickly how to use alien to
convert a RPM package to a Debian package:

alien --to-deb paket.rpm

(Where --to-deb represents the default case and may be left out.) The reverse is
possible using

alien --to-rpm paket.deb

To assemble and disassemble RPM files, the rpm program must be installed (which
is available as a package for Debian GNU/Linux); to assemble deb packages you
need a few pertinent Debian packages which are listed in alien(1p). (As mentioned
in Section 26.2, you can take deb packages to bits on almost all Linux systems using
“on-board tools” such as tar, gzip, and ar.)

Commands in this Chapter

alien Converts various software packaging formats alien(1) 414
apt-get Powerful command-line tool for Debian GNU/Linux package manage-

ment apt-get(8) 407
aptitude Convenient package installation and maintenance tool (Debian)

aptitude(8) 410
dpkg Debian GNU/Linux package management tool dpkg(8) 400
dpkg-reconfigure Reconfigures an already-installed Debian package

dpkg-reconfigure(8) 413

Bibliography

F+07 Javier Fernández-Sanguino Peña, et al. “Securing Debian Manual”, 2007.
http://www.debian.org/doc/manuals/securing-debian-howto/

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

27
Package Management with RPM
and YUM

Contents

27.1 Introduction. 418
27.2 Package Management Using rpm 419

27.2.1 Installation and Update 419
27.2.2 Deinstalling Packages 419
27.2.3 Database and Package Queries 420
27.2.4 Package Verification 422
27.2.5 The rpm2cpio Program 422

27.3 YUM . 423
27.3.1 Overview . 423
27.3.2 Package Repositories 423
27.3.3 Installing and Removing Packages Using YUM 424
27.3.4 Information About Packages 426
27.3.5 Downloading Packages. 428

Goals

• Knowing the basics of RPM and related tools
• Being able to use rpm for package management
• Being able to use YUM

Prerequisites

• Knowledge of Linux system administration
• Experience with an RPM-based Linux distribution is helpful

adm1-rpm.tex (33e55eeadba676a3)

418 27 Package Management with RPM and YUM

27.1 Introduction

The “Red Hat Package Manager” (RPM, for short) is a tool for managing software
packages. It supports the straightforward installation and deinstallation of pack-
ages while ensuring that different packages do not conflict and that dependencies
between the packages are taken into account. In addition, RPM allows you to
specify package queries and to ensure the integrity of packages.

RPM’s core is a database. Software packages add themselves when they are
installed and remove themselves again when they are deinstalled. To allow this,
software packages must be provided in a specific format, i. e., as RPM packages.

The RPM package format is used used by many distributions (including those
by Red Hat, Novell/SUSE, TurboLinux, and Mandriva). An arbitrary RPM pack-
age, though, cannot generally be installed on any RPM-based distribution without
forethought: Since the RPM package contains compiled software, it must fit the
processor architecture in use; since file system structure, the type of service con-
trol (init scripts, etc.), and the internal description of dependencies differ between
distributions or even between different versions of the same distribution, careless
installation across distribution may cause problems.

B RPM was originally developed by Red Hat and was accordingly called “Red
Hat Package Manager” at first. Since various other distributions have taken
to using the program, it has been renamed to “RPM Package Manager”.

B At the moment there is a certain controversy as to who is in charge of further
development of this critical piece of infrastructure. After a long hiatus, dur-
ing which nobody really bothered to put out a canonical version, some Fe-
dora developers tried in 2006/7 to restart RPM development as an officially
distribution-neutral project (this project is now led by Panu Matilainen of
Red Hat, with developers affiliated with some other RPM-using distribu-
tions in support). Independently, Jeff Johnson, the last official RPM devel-
oper at Red Hat (who is no longer with the company), is putting work into
RPM and claims that his code represents “the official code base”—although
no Linux distribution seems to pay attention.

An RPM package has a compound file name, for examplefile name

openssh-3.5p1-107.i586.rpm

which usually consists of the package name (openssh-3.5p1-107), the architecture
(i586) and the .rpm suffix. The package name is used to identify the package inter-
nally once it has been installed. It contains the name of the software (openssh) and
the software version as assigned by its original developers (3.5p1) followed by a
release number (107) assigned by the package builder (the distributor).

The “RPM Package Manager” is invoked using the rpm command, followed by
a basic mode. The most important modes will be discussed presently, exceptingbasic mode

the modes for initialising the RPM database and constructing and signing RPM
packages, which are outside the scope of this course.

There is a number of global options as well as supplementary, mode-specificoptions

options. Since some modes and supplementary options are identical, the mode
must (unlike with tar) be specified first.

Global options include -v and -vv, which increase the “verbosity” of RPM’s
output.

B RPM’s configuration is stored within the /usr/lib/rpm directory; local or in-
dividual customisations are made within the /etc/rpmrc or ~/.rpmrc files, but
should not be necessary for normal operations.

27.2 Package Management Using rpm 419

27.2 Package Management Using rpm

27.2.1 Installation and Update

An RPM package is installed in -i mode, followed by the package file’s path name,
such as

rpm -i /tmp/openssh-3.5p1-107.i586.rpm

You may also specify the path as an HTTP or FTP URL in order to install package
files that reside on remote serers. It is permissible to specify several packages at
once, as in “rpm -i /tmp/*.rpm”.

Additionally, there are the two related modes -U (“upgrade”) and -F (“freshen”).
The former removes any older versions of a package as well as installing the new
one, while the latter installs the package only if an earlier version is already
installed (which is subsequently removed).

All three modes support a number of options, which must absolutely be men-
tioned after the mode. Besides -h (“hash mark”, for a progress bar) there is --test,
which prevents the actual installation and only checks for possible conflicts.

When a conflict occurs, the package in question is not installed. Conflicts arise
if

• an already-installed package is to be installed again,

• a package is to be installed even though it is already installed in a different
version (mode -i) or a more current version (mode -U),

• the installation would overwrite a file belonging to a different package,

• a package requires a different package which is not already installed or
about to be installed.

If the installation fails for any of these reasons, you can force it to be performed
through options. For example, the --nodeps option disables the dependency check.

Further options can influence the installation itself (rather than just the security
checks). For example, you can move packages to different directories on installa-
tion. This is the only way to install, e. g., Apache 1.3 and Apache 2.0 at the same
time, since usually both of them would claim /sbin/http for themselves: one of the
two must move to /usr/local.

27.2.2 Deinstalling Packages

Packages can be deinstalled using -e (“erase”) mode, e. g.,

rpm -e openssh-3.5p1-107

Note that you need to specify the internal package name rather than the package
file path, since RPM does not remember the latter. (The next section will tell you
how to find out the package name.) You can also abbreviate the package name as
long as it stays unique. If there is no other openssh package, you might also remove
it by

rpm -e openssh

Again, RPM takes care not to remove packages that other packages depend upon.
The --test and --nodeps options have the same meaning as upon installation;

they must also appear after the mode.
When deinstalling, all of the package’s installed files will be removed unless

they are configuration files that you have changed. These will not be removed but configuration files

merely renamed by appending the .rpmsave suffix. (The RPM package determines
which of its files will be considered configuration files.)

420 27 Package Management with RPM and YUM

27.2.3 Database and Package Queries

The “RPM Package Manager” becomes even more useful if you do not just con-
sider it a package installation and removal tool, but also an information source.
The mode for this is -q (“query”), and you can specify in more detail what kind of
information you would like to obtain and from which package.

Specifying the Package Without further options, rpm expects an internal package
name, which may be abbreviated, and it outputs the full package name:

$ rpm -q openssh

openssh-3.5p1-107

This makes it easy to determine how current your system is. You can also find the
package claiming a file, using the -f option:

$ rpm -qf /usr/bin/ssh

openssh-3.5p1-107

This lets you relate unknown files to a package. As a third possibility, you can
obtain a list of all installed packages with the -a option:

$ rpm -qa

This list may of course be processed further, as in the following example:1

$ rpm -qa | grep cups

cups-client-1.1.18-82

cups-libs-1.1.18-82

kdelibs3-cups-3.1.1-13

cups-drivers-1.1.18-34

cups-drivers-stp-1.1.18-34

cups-1.1.18-82

Finally, RPM allows you to query a non-installed package. Use -p followed by
the package file’s name:

$ rpm -qp /tmp/openssh-3.5p1-107.i586.rpm

openssh-3.5p1-107

This does not look too spectacular, since the internal package name was already
part of the package file name. But the file name might have been changed until it
no longer had anything to do with the actual package name, and secondly, there
are other questions that you might want to ask.

Specifying the Query If you are not just interested in the package name, you can
extend your query. Every extension may be combined with every way of specify-
ing a packet. Via

$ rpm -qi openssh

you can obtain detailed information (-i) about the package; while -l provides a
list of all files belonging to the package, together with -v it forms an equivalent to
the ls -l command:

1The naming and arrangement of packages is the package preparer’s concern; differences may occur
depending on the distribution and version.

27.2 Package Management Using rpm 421

$ rpm -qlf /bin/bash

/bin/bash

/bin/sh

�����

$ rpm -qlvf /bin/bash

-rwxr-xr-x root root 491992 Mar 14 2003 /bin/bash

lrwxrwxrwx root root 4 Mar 14 2003 /bin/sh -> bash

�����

It is important to note that the files listed for a package are only those that show
up in the RPM database, namely those that a package brought along when it was
installed. This does not include files that were generated during installation (by
the package’s installation scripts) or during system operation (log files, etc.).

We have already seen that RPM treats configuration files specially (when de-
installing). The second class of special files are documentation files; these can be
omitted from installation. The -c and -d options of query mode behave like -l, but
they confine themselves to configuration and documentation files, respectively.

Advanced Queries The following details are not relevant for LPIC-1, but they
will improve your understanding of RPM’s concepts and database structure.

Dependencies between packages can belong to various types. For example, a dependencies

package may simply require a shell, i. e., /bin/sh. By means of

$ rpm -qf /bin/sh

bash-2.05b-105

it is straightforward to find out that this file is provided by the bash package (the
same can be done for non-installed packages).

Things are different, e. g., for the SAINT package, a security analysis tool which
requires a web browser. Every specific dependency on a particular web browser
would be unduly limiting. For this reason, RPM lets packages provide or depend
upon “capabilities”. In our example, SAINT requires the abstract capability “web
browser”. The files and capabilities that a package requires can be queried using
the --requires option:2

$ rpm -q --requires saint

web_browser

/bin/rm

/bin/sh

/usr/bin/perl

�����

The packages providing these capabilities can be found using the --whatprovides

option:

$ rpm -q --whatprovides web_browser

w3m-0.3.2.2-53

mozilla-1.2.1-65

lynx-2.8.4-391

For SAINT, you need just one of these packages.
In the same manner, the --provides and --whatrequires options allow you to

query the services (or files, with the -l option) that a package offers, and a ser-
vice’s consumers.

2Here, again, the assignment and naming of capabilities is up to the package preparer; it may thus
differ between distributions and versions.

422 27 Package Management with RPM and YUM

27.2.4 Package Verification

Pre-Installation Checks Two things may happen to a package which might pre-
clude its installation: It may have been damaged during the download, i. e., the
package is erroneous. Or the package is not what it pretends to be, i. e., it has
been falsified—for example, because some malicious person tries to pass a “Tro-
jan” package off as the original.

RPM safeguards you against both scenarios: with

$ rpm --checksig /tmp/openssh-3.5p1-107.i586.rpm

/tmp/openssh-3.5p1-107.i586.rpm: md5 gpg OK

an MD5 checksum of the package is compared to the checksum contained within
itself, which guarantees the proper transmission of the package. In addition, the
signature within the package, which was created using the private PGP or GPG
key of the package preparer, is checked using the package preparer’s public key.
This guarantees that the correct package has arrived.

Should the MD5 checksum be correct but not the signature, the output looks
correspondingly different:

$ rpm --checksig /tmp/openssh-3.5p1-107.i586.rpm

/tmp/openssh-3.5p1-107.i586.rpm: md5 GPG NOT OK

Of course your distributor’s public key must be available on your system for
the signature checks.

Post-Installation Verification RPM lets you compare certain values within the
RPM database to the file system. This is done by means of the -V (“verify”) mode;
instead of one or more internal package names, this mode can use all specifica-
tions made available for the query mode.

rpm -V openssh

.......T c /etc/init.d/sshd

S.5....T c /etc/pam.d/sshd

S.5....T c /etc/ssh/ssh_config

SM5....T c /etc/ssh/sshd_config

.M...... /usr/bin/ssh

This output contains all files for which at least one “required” value from the
database differs from the “actual” value within the file system: a “.” signifies
agreement, while a letter indicates a deviation. The following checks are per-
formed: access mode and file type (M), owner and group (U, G); for symbolic links,
the path of the referenced file (L); for device files, major and minor device num-
bers (D); for plain files the size (S), modification time (T), and content (5). Since
configuration files are unlikely to remain in their original state, they are labeled
with a c.

Even though the verification of installed packages using RPM cannot replace
an “intrusion detection system” (why should an intruder not modify the RPM
database as well?), it can be useful to limit the damage, e. g., after a hard disk
crash.

27.2.5 The rpm2cpio Program

RPM packages are essentially cpio archives with a prepended “header”. You can
use this fact to extract individual files from an RPM package without having to
install the package first. Simply convert the RPM package to a cpio archive using
the rpm2cpio program, and feed the archive into cpio. Since rpm2cpio works as a filter,
you can easily connect the two programs using a pipe:

27.3 YUM 423

$ rpm2cpio hello-2.4-1.fc10.i386.rpm \

> | cpio -idv ./usr/share/man/man1/hello.1.gz

./usr/share/man/man1/hello.1.gz

387 blocks

$ zcat usr/share/man/man1/hello.1.gz | head

.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.35.

.TH HELLO "1" "December 2008" "hello 2.4" "User Commands"

.SH NAME

hello \- friendly greeting program

�����

Exercises

C 27.1 [2] Use rpm2cpio and cpio to display the list of files contained in an RPM
package.

27.3 YUM

27.3.1 Overview

The rpm program is useful but does have its limits. As a basic tool it can install pack-
ages that are available as files or URLs, but, for example, does not help with lo-
cating appropriate, possibly installable packages. Many RPM-based distributions
use YUM (short for “Yellow Dog Updater, Modified”, after the distribution for
which the program was originally developed) to enable access to package sources package sources

(repositories) available on the Internet or on CD-ROM.

B In RPM-based distributions, YUM takes up approximately the same “eco-
logical niche” occupied by apt-get in Debian GNU/Linux and its deriva-
tives.

B YUM is usually controlled via the command line, but the “yum shell” com-
mand starts a “YUM shell” where you can enter multiple YUM commands
interactively.

27.3.2 Package Repositories

YUM introduces the concept of package repositories. A package repository is a set of
RPM packages that is available via the network and allows the installation of pack-
ages with YUM. The “yum repolist” command outputs a list of configured package
repositories:

$ yum repolist

Loaded plugins: refresh-packagekit

repo id repo name status

fedora Fedora 10 - i386 enabled: 11416

updates Fedora 10 - i386 - Updates enabled: 3324

repolist: 14740

“yum repolist disabled” yields a list of known but disabled repositories:

$ yum repolist disabled

Loaded plugins: refresh-packagekit

repo id repo name status

fedora-debuginfo Fedora 10 - i386 - Debug disabled

fedora-source Fedora 10 - Source disabled

424 27 Package Management with RPM and YUM

rawhide Fedora - Rawhide - Development disabled

�����

To enable a repository, you need to give the --enablerepo= option, followed by the
“repo ID” from the list. This only works in connection with a “genuine” yum com-
mand; repolist is fairly innocuos:

$ yum --enablerepo=rawhide repolist

Loaded plugins: refresh-packagekit

rawhide | 3.4 kB 00:00

rawhide/primary_db | 7.2 MB 00:14

repo id repo name status

fedora Fedora 10 - i386 enabled: 11416

rawhide Fedora - Rawhide - Development enabled: 12410

updates Fedora 10 - i386 - Updates enabled: 3324

repolist: 27150

You can disable a repository using the --disablerepo option.

B Repositories are most conveniently made known to YUM by means of con-
figuration files in the /etc/yum.repos.d directory. (You could also enter them
into /etc/yum.conf directly, but this is more inconvenient to manage.)

B YUM keeps itself current as far as the content of repositories is concerned.
There is no equivalent to the Debian tools’ “apt-get update”.

27.3.3 Installing and Removing Packages Using YUM

To install a new package using YUM, you merely need to know its name. YUM
checks whether the active repositories contain an appropriately-named package,
resolves any dependencies the package may have, downloads the package and
possibly other packages that it depends upon, and installs all of them:

yum install hello

Setting up Install Process

Parsing package install arguments

Resolving Dependencies

--> Running transaction check

---> Package hello.i386 0:2.4-1.fc10 set to be updated

--> Finished Dependency Resolution

Dependencies Resolved

===

Package Arch Version Repository Size

===

Installing:

hello i386 2.4-1.fc10 updates 68 k

Transaction Sum

===

Install 1 Package(s)

Update 0 Package(s)

Remove 0 Package(s)

Total download size: 68 k

Is this ok [y/N]: y

Downloading Packages:

hello-2.4-1.fc10.i386.rpm | 68 kB 00:00

27.3 YUM 425

====================== Entering rpm code =======================

Running rpm_check_debug

Running Transaction Test

Finished Transaction Test

Transaction Test Succeeded

Running Transaction

Installing : hello 1/1

====================== Leaving rpm code ========================

Installed:

hello.i386 0:2.4-1.fc10

Complete!

B YUM accepts not just simple package names, but also package names with
architecture specifications, version numbers, and release numbers. Check
yum(8) to find the allowable formats.

Removing packages is just as simple:

yum remove hello

This will also remove packages that this package depends upon—as long as these
are not required by another installed package, anyway.

B Instead of “yum remove” you can also say “yum erase”—the two are equivalent.

You can update packages using “yum update”:

yum update hello

checks whether a newer version of the package is available and installs that if
this is the case. YUM takes care that all dependencies are resolved. “yum update”
without a package name attempts to update all installed packages.

B When the --obsoletes is specified (the default case), yum tries to handle the
case where one package has been replaced by another (of a different name).
This makes full upgrades of the whole distribution easier to perform.

B “yum upgrade” is the same as “yum update --obsoletes”—but saves some typing
in the case that you have switched off the obsoletes option in the configura-
tion.

B YUM supports the idea of “package groups”, i. e., packages that together
are useful for a certain task. The available package groups can be displayed
using “yum grouplist”:

$ yum grouplist

Loaded plugins: refresh-packagekit

Setting up Group Process

Installed Groups:

Administration Tools

Authoring and Publishing

Base

Dial-up Networking Support

Editors

�����

B If you want to know which packages a group consists of, use “yum groupinfo”:

426 27 Package Management with RPM and YUM

$ yum groupinfo 'Printing Support'

Loaded plugins: refresh-packagekit

Setting up Group Process

Group: Printing Support

Description: Install these tools to enable the system to�

� print or act as a print server.

Mandatory Packages:

cups

ghostscript

Default Packages:

a2ps

bluez-cups

enscript

�����

A group is considered “installed” if all its “mandatory” packages are in-
stalled. Besides these there are “default packages” and “optional packages”.

B “yum groupinstall” lets you install the packages of a group. The configuration
option group_package_types determines which class package will actually be
installed—usually the “mandatory” and the “default packages”.

B “yum groupremove” removes all packages of a group, without taking into ac-
count package classes (group_package_types is ignored). Note that packages
can belong to more than one group at the same time, so they may be miss-
ing from group 𝑋 after having been removed along with group 𝑌.

27.3.4 Information About Packages

The “yum list” command is available to find out which packages exist:

$ yum list gcc

Loaded plugins: refresh-packagekit

Installed Packages

gcc.i386 4.3.2-7 installed

You can also give a search pattern (it is best to put it inside quotes so the shell will
not mess with it):

$ yum list "gcc*"

Loaded plugins: refresh-packagekit

Installed Packages

gcc.i386 4.3.2-7 installed

gcc-c++.i386 4.3.2-7 installed

Availabe Packages

gcc-gfortran.i386 4.3.2-7 fedora

gcc-gnat.i386 4.3.2-7 fedora

�����

The “installed packages” are installed on the local system, while the “available
packages” can be fetched from repositories. The repository offering the package
is displayed on the far right.

To restrict the search to locally installed, or uninstalled but available, packages,
you can use “yum list installed” or “yum list available”:

$ yum list installed "gcc*"

Loaded plugins: refresh-packagekit

27.3 YUM 427

Installed Packages

gcc.i386 4.3.2-7 installed

gcc-c++.i386 4.3.2-7 installed

$ yum list available "gcc*"

Loaded plugins: refresh-packagekit

Available Packages

gcc-gfortran.i386 4.3.2-7 fedora

gcc-gnat.i386 4.3.2-7 fedora

�����

B “yum list updates” lists the packages that are installed and for which updates
are available, while “yum list recent” lists the packages that have “recently”
arrived in a repository. “yum list extras” points out packages that are in-
stalled locally but are not available from any repository.

To find out more about a package, use “yum info”:

$ yum info hello

Loaded plugins: refresh-packagekit

Installed Packages

Name : hello

Arch : i386

Version : 2.4

Release : 1.fc10

Size : 186 k

Repo : installed

Summary : Prints a Familiar, Friendly Greeting

URL : http://www.gnu.org/software/hello/

License : GPLv3+ and GFDL and BSD and Public Domain

Description: Hello prints a friendly greeting. It also serves as a

: sample GNU package, showing practices that may be

: useful for GNU projects.

The advantage over “rpm -qi” is that “yum info” also works for packages that are not
installed locally but are available from a repository.

B You con otherwise use “yum info” like “yum list”—“yum info installed”, for ex-
ample, displays detailed information about all installed packages.

Using “yum search”, you can search for all packages in whose name or descrip-
tion a given string occurs:

$ yum search mysql

Loaded plugins: refresh-packagekit

============================ Matched: mysql ========================

dovecot-mysql.i386 : MySQL backend for dovecot

koffice-kexi-driver-mysql.i386 : Mysql-driver for kexi

libgda-mysql.i386 : MySQL provider for libgda

�����

Unfortunately, the resulting list is unsorted and a little difficult to read. yum uses
boldface to emphasise the places where the search string occurs.

B You can examine a package’s dependencies using “yum deplist”:

$ yum deplist gcc

Loaded plugins: refresh-packagekit

Finding dependencies:

package: gcc.i386 4.3.2-7

428 27 Package Management with RPM and YUM

dependency: binutils >= 2.17.50.0.17-3

provider: binutils.i386 2.18.50.0.9-7.fc10

dependency: libc.so.6(GLIBC_2.3)

provider: glibc.i386 2.9-2

�����

27.3.5 Downloading Packages

If you want to download a package from a repository but do not want to install it
outright, you can use the yumdownloader program. A command like

$ yumdownloader --destdir /tmp hello

searches the repositories for the hello package just like YUM would and down-
loads the corresponding file to the /tmp directory.

The --resolve option causes dependencies to be resolved and any other missing
packages to be downloaded as well—but only those that are not installed on the
local system.

B With the --urls option, nothing is downloaded at all, but yumdownloader out-
puts the URLs of the packages it would otherwise have downloaded.

B With the --source option, yumdownloader downloads source RPMs instead of
binary RPMs.

Commands in this Chapter

cpio File archive manager cpio(1) 422
rpm Package management tool used by various Linux distributions (Red Hat,

SUSE, …) rpm(8) 418
rpm2cpio Converts RPM packages to cpio archives rpm2cpio(1) 422
vimtutor Interactive introduction to vim vimtutor(1) 430
yum Convenient RPM package maintenance tool yum(8) 423

Summary

• RPM is a system for Linux software package management which is used by
various distributions such as those by Red Hat and Novell/SUSE.

• YUM is a front-end for rpm that gives access to package repositories over the
network.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

A
Sample Solutions

This appendix contains sample solutions for selected exercises.

1.2 There is a copy of linux-0.01.tar.gz on ftp.kernel.org.

1.3

1. False. GPL software may be sold for arbitrary amounts of money, as long as
the buyer receives the source code (etc.) and the GPL rights.

2. False. Companies are encouraged to develop products based on GPL code,
but these products must also be distributed under the GPL. Of course a
company is not required to give away their product to the world at large—it
only needs to make the source code available to its direct customers who
bought the executables, but these may make full use of their rights to the
software under the GPL.

3. True.

4. False. You may use a program freely without having accepted the GPL (it
is not a contract). The GPL governs just the redistribution of the software,
and you can peruse the GPL before doing that. (Interactive programs are
supposed to call your attention to the GPL.) The observation is true that
only those conditions can be valid that the software recipient could know
before the purchase of the product; since the GPL gives to the recipient rights
that he would otherwise not have had at all—such as the right to distribute
original or modified code—this is not a problem: One may ignore the GPL
completely and still do all with the software that copyright allows for. This
is a marked difference to the EULAs of proprietary programs; these try to es-
tablish a contract relationship in which the buyer explicitly gives away rights
that he would otherwise have been entitled to by copyright law (such as the
right to inspect the program to find out its structure). This of course only
works before the purchase (if at all).

1.5 This exercise can of course not be answered correctly in printed courseware.
Look around—on ftp.kernel.org or in the weekly edition of http://lwn.net/.

2.2 In both cases, the message “Login incorrect” appears, but only after the pass-
word has been prompted for and entered. This is supposed to make it difficult
to guess valid user names (those that do not elicit an error message right away).
The way the system is set up, a “cracker” cannot tell whether the user name was

430 A Sample Solutions

invalid already, or whether the password was wrong, which makes breaking into
the system a lot more difficult.

2.5 Decency forbids us from printing a sample program here. It is reasonably
simple using the (deprecated) C function getpass(3).

3.2 In the login shell, the output is “-bash”, whereas in the “subshell” it is “bash”.
The minus sign at the beginning tells the shell to behave as a login shell rather
than a “normal” shell, which pertains to the initialisation.

3.3 alias is an internal command (does not work otherwise). rm is an external
command. Within bash, echo and test are internal commands but are also avail-
able as external commands (executable program files), since other shells do not
implement them internally. In bash’s case, they are internal mostly for reasons of
efficiency.

4.2 Try “apropos process” or “man -k process”.

4.5 The format and tools for info files were written in the mid-1980s. HTML
wasn’t even invented then.

5.1 In theory, you could start every program on the system and check whether
it behaves like a text editor … but that might take more time than this exercise
is worth. You could, for example, begin with a command like “apropos edit” and
see which of the man pages in the output correspond with an actual text editor
(rather than an editor for graphics, icons, X resources or some such). Text editors
from graphical desktop environments such as KDE or GNOME frequently do not
actually have man pages, but are documented within the desktop environment, so
it can be useful to check the desktop’s menus for a submenu such as “Editors” or
“Office”. The third possibility is to use a package management command—such
as “rpm -qa” or “dpkg -l”—to obtain a list of installed software packages and check
for text editors there.

5.2 The program is called vimtutor.

6.1 In Linux, the current directory is a process attribute, i. e., every process has
its own current directory (with DOS, the current directory is a feature of the drive,
which of course is inappropriate in a multi-user system). Therefore cd must be
an internal command. If it was an external command, it would be executed in a
new process, change that process’s current directory and quit, while the invoking
shell’s current directory would remain unchanged throughout the process.

6.4 If a file name is passed to ls, it outputs information about that file only. With
a directory name, it outputs information about all the files in that directory.

6.5 The -d option to ls does exactly that.

6.6 This could look approximately like so:

$ mkdir -p grd1-test/dir1 grd1-test/dir2 grd1-test/dir3

$ cd grd1-test/dir1

$ vi hello

$ cd

$ vi grd1-test/dir2/howdy

$ ls grd1-test/dir1/hallo grd1-test/dir2/howdy

grd1-test/dir1/hello

A Sample Solutions 431

grd1-test/dir2/howdy

$ rmdir grd1-test/dir3

$ rmdir grd1-test/dir2

rmdir: grd1-test/dir2: Directory not empty

To remove a directory using rmdir, it must be empty (except for the entries “.” and
“..”, which cannot be removed).

6.7 The matching names are, respectively

(a) prog.c, prog1.c, prog2.c, progabc.c

(b) prog1.c, prog2.c

(c) p1.txt, p2.txt, p21.txt, p22.txt

(d) p1.txt, p21.txt, p22.txt, p22.dat

(e) all names

(f) all names except prog (does not contain a period)

6.8 “ls” without arguments lists the content of the current directory. Directories
in the current directory are only mentioned by name. “ls” with arguments, on the
other hand (and in particular “ls *”—ls does not get to see the search pattern, after
all) lists information about the given arguments. For directories this means that
the content of the directories is listed as well.

6.9 The “-l” file (visible in the output of the first command) is interpreted as an
option by the ls command. Thus it does not show up in the output of the second
command, since ls with path name arguments only outputs information about
the files specified as arguments.

6.10 If the asterisk matched file names starting with a dot, the recursive dele-
tion command “rm -r *” would also apply to the “..” entry of a directory. This
would delete not just subdirectories of the current directory, but also the enclosing
directory and so on.

6.11 Here are the commands:

$ cd

$ cp /etc/services myservices

$ mv myservices src.dat

$ cp src.dat /tmp

$ rm src.dat /tmp/src.dat

6.12 When you rename a directory, all its files and subdirectories will automat-
ically be “moved” so as to be within the directory with its new name. An -R to mv

is therefore completely unnecessary.

6.13 The simple-minded approach—something like “rm -file”—fails because rm

misinterprets the file name as a sequence of options. The same goes for commands
like “rm "-file"” or “rm '-file'”. The following methods work better:

1. With “rm ./-file”, the dash is no longer at the start of the parameter and
thus no longer introduces an option.

2. With “rm -- -file”, you tell rm that there are definitely no options after the
“--” but only path names. This also works with many other programs.

432 A Sample Solutions

6.14 During the replacement of the “*”, the “-i” file is picked up as well. Since
the file names are inserted into the command line in ASCII order, rm sees a param-
eter list like

-i a.txt b.jpg c.dat or whatever

and considers the “-i” the option -i, which makes it remove files only with confir-
mation. We hope that this is sufficient to get you to think things over.

6.15 If you edit the file via one link, the new content should also be visible via
the other link. However, there are “clever” editors which do not overwrite your
file when saving, but save a new file and rename it afterwards. In this case you
will have two different files again.

6.16 If the target of a symbolic link does not exist (any longer), accessing that
“dangling” link will lead to an error message.

6.17 To itself. You can recognise the file system root directory by this.

6.18 On this system, the /home directory is on a separate partition and has inode
number 2 on that partition, while the / directory is inode number 2 on its own
file system. Since inode numbers are only unique within the same physical file
system, the same number can show up for different files in “ls -i” output; this is
no cause for concern.

6.19 Hard links are indistinguishable, equivalent names for the same file (or,
hypothetically, directory). But every directory has a “link” called “..” referring to
the directory “above”. There can be just one such link per directory, which does
not agree with the idea of several equivalent names for that directory. Another
argument against hard links on directories is that for every name in the file system
tree there must be a unique path leading to the root directory (/) in a finite number
of steps. If hard links to directories were allowed, a command sequence such as

$ mkdir -p a/b

$ cd a/b

$ ln .. c

could lead to a loop.

6.20 The reference counter for the subdirectory has the value 2 (one link results
from the name of the subdirectory in ~, one from the “.” link in the subdirectory
itself). If there were additional subdirectories within the directory, their “..” links
would increment the reference counter beyond its minimum value of 2.

6.21 The chain of symbolic links will be followed until you reach something that
is not a symbolic link. However, the maximum length of such chains is usually
bounded (see Exercise 6.22).

6.22 Examining this question becomes easier if you can use shell loops (see Sec-
tion 8.6). Something like

$ touch d

$ ln -s d L1

$ i=1

$ while ls -lH L$i >/dev/null

> do

> ln -s L$i L$((i+1))

A Sample Solutions 433

> i=$((i+1))

> done

creates a “chain” of symbolic links where every link points to the previous one.
This is continued until the “ls -lH” command fails. The error message will tell
you which length is still allowed. (On the author’s computer, the result is “40”,
which in real life should not unduly cramp anybody’s style.)

6.23 Hard links need hardly any space, since they are only additional directory
entries. Symbolic links are separate files and need one inode at least (every file
has its own inode). Also, some space is required to store the name of the target
file. In theory, disk space is assigned to files in units of the file system’s block
size (1 KiB or more, usually 4 KiB), but there is a special exception in the ext file
systems for “short” symbolic links (smaller than approximately 60 bytes), which
can be stored within the inode itself and do not require a full data block. Other
file systems such as the Reiser file system can handle short files of any type very
efficiently, thus the space required for symbolic links ought to be negligible.

6.24 One possible command could be “find / -size +1024k -print”.

6.25 The basic approach is something like

find . -maxdepth 1 ⟨tests⟩ -ok rm '{}' \;

The ⟨tests⟩ should match the file as closely as possible. The “-maxdepth 1” option
restricts the search to the current directory (no subdirectories). In the simplest
case, use “ls -i” to determine the file’s inode number (e.g., 4711) and then use

find . -maxdepth 1 -inum 4711 -exec rm -f '{}' \;

to delete the file.

6.26 Add a line like

find /tmp -user $LOGNAME -type f -exec rm '{}' \;

or—more efficiently—

find /tmp -user $LOGNAME -type f -print0 \

| xargs -0 -r rm -f

to the file .bash_logout in your home directory. (The LOGNAME environment variable
contains the current user name.)

6.27 Use a command like “locate '*/README'”. Of course, something like “find /
-name README” would also do the trick, but it will take a lot longer.

6.28 Immediately after its creation the new file does not occur in the database
and thus cannot be found (you need to run updatedb first). The database also
doesn’t notice that you have deleted the file until you invoke updatedb again.—It
is best not to invoke updatedb directly but by means of the shell script that your
distribution uses (e. g., /etc/cron.daily/find on Debian GNU/Linux). This ensures
that updatedb uses the same parameters as always.

6.29 slocate should only return file names that the invoking user may access.
The /etc/shadow file, which contains the users’ encrypted passwords, is restricted
to the system administrator (see Linux Administration I).

434 A Sample Solutions

7.1 A (probable) explanation is that the ls program works roughly like this:

Read directory information to list 𝑙;
if (option -U not specified) {

Sort the entries of 𝑙;
}

Write 𝑙 to standard output;

That is, everything is being read, then sorted (or not), and then output.
The other explanation is that, at the time the filelist entry is being read, there

has not in fact been anything written to the file to begin with. For efficiency, most
file-writing programs buffer their output internally and only call upon the oper-
ating system to write to the file if a substantial amount of data has been collected
(e. g. 8192 bytes). This can be observed with commands that produce very much
output relatively slowly; the output file will grow by 8192 bytes at a time.

7.2 When ls writes to the screen (or, generally, a “screen-like” device), it formats
the output differently from when it writes to a “real” file: It tries to display several
file names on the same line if the file names’ length permits, and can also colour
the file names according to their type. When output is redirected to a “real” file,
just the names will be output one per line, with no formatting.

At first glance this seems to contradict the claim that programs do not know
whether their output goes to the screen or elsewhere. This claim is correct in the
normal case, but if a program is seriously interested in whether its output goes
to a screen-like device (a “terminal”) it can ask the system. In the case of ls, the
reasoning behind this is that terminal output is usually looked at by people who
deserve as much information as possible. Redirected output, on the other hand, is
processed by other programs and should therefore be simple; hence the limitation
to one file name per line and the omission of colors, which must be set up using
terminal control characters which would “pollute” the output.

7.3 The shell arranges for the output redirection before the command is invoked.
Therefore the command sees only an empty input file, which usually does not lead
to the desired result.

7.4 The file is read from the beginning, and all that is read is appended to the
file at the same time, so that it grows until it takes up all the free space on the disk.

7.5 You need to redirect standard output to standard error output:

echo Error >&2

7.6 There is nothing wrong in principle with

… | tee foo | tee bar | …

However, it is easier to write

… | tee foo bar | …

See also tee’s documentation (man page or info page).

7.7 Pipe the list of file names through “cat -b”.

7.8 One method would be “head -n 13 | tail -n 1”.

7.10 tail notices it, emits a warning, and continues from the new end of file.

A Sample Solutions 435

7.11 The tail window displays

Hello

orld

The first line results from the first echo; the second echo overwrites the complete
file, but “tail -f” knows that it has already written the first six characters of the
file (“Hello” and a newline character)—it just waits for the file to become longer,
and then outputs whatever is new, in particular, “orld” (and a newline character).

7.12 With “a”, invisible characters are displayed using their symbolic names like
“cr” or “lf”, with “c” using backslash sequences such as “\r” or “\n”. With “a”,
the space character appears as “sp”.

7.13 The desired range of values (0…65535 = 216 −1) corresponds exactly to the
range of values that can be stored in two bytes. Thus we must read two bytes from
/dev/random and output them as a decimal number:

$ r=`od -An -N2 -tu2 /dev/random`

$ echo $r

4711

The -N2 option reads two bytes, and -tu2 formats them as an unsigned 2-byte dec-
imal number. -An suppresses the position offset (see Table 7.4).

7.14 Try

$ echo "ALEA IACTA EST" | tr A-Z D-ZA-C

DOHD LDFWD HVW

$ echo "DOHD LDFWD HVW" | tr A-Z X-ZA-W

ALEA IACTA EST

Similar to Caesar’s cipher is the “ROT13” method used, e. g., to publish potentially-
offensive jokes on USENET while preventing sensitive persons from accidentally
seeing them (the method leaves something to be desired as far as “real” encryp-
tion of private content is concerned). ROT13 can be described by the command
“tr A-Za-z N-ZA-Mn-za-m”; the advantage of this method is that you get the original
text again if you apply it twice over. The ROT13 routine in a news reader can thus
be used for decryption as well as encryption, which simplifies the code.

7.15 The easy way is of course “tr AEIOU AAAAA”. To save typing, “tr AEIOU A” will
also do.

7.16 One way to do this is

$ tr -cs '[:alpha:]' '\n'

The “-c [:alpha:] \n” converts all non-letters to newline characters, the -s option
causes runs of these newline characters to be replace by a single newline. It is
advisable to put the parameters in single quotes to keep the brackets from being
processed by the shell. (If you want to do this for German-language text, you
should set the LANG environment to de_DE (or some such) to ensure that umlauts
and “ß” are considered letters.)

7.17 To make this work, the “-” character must occur at the end of ⟨s1⟩—if it oc-
curs at the beginning, “-az” will look like a command option (which tr does not
understand), if it occurs in the middle, “a-z” looks like a character range. Alterna-
tively, with more typing, you could circumscribe the “-” character by “[=-=]” (see
Table 7.6), which may occur anywhere in the string.

436 A Sample Solutions

7.18 Use something like “cat -T” (see the documentation) or “od -tc”.

7.19 The command to do this is “nl -v 100 -l 2 frog.txt”.

7.20 The tac command is your friend:

$ tac frog.txt | cat -n | tac

(“nl -ba” would have been fine instead of “cat -n”).

7.21 With the first command, wc considers all input files separately and outputs
a line of totals in addition to the results for the individual files. With the second
command, wc considers its standard input, where the fact that this consists of three
separate files is no longer evident. Therefore, with the second command, there is
just one line of output instead of four.

7.24 The line containing the name “de Leaping” is sorted wrongly, since on that
line the second field isn’t really the first name but the word “Leaping”. If you look
closely at the examples you will note that the sorted output is always correct—
regarding “Leaping”, not “Gwen”. This is a strong argument for the second type
of input file, the one with the colon as the separator character.

7.25 You can sort the lines by year using “sort -k 1.4,1.8”. If two lines are equal
according to the sort key, sort makes an “emergency comparison” considering the
whole line, which in this case leads to the months getting sorted correctly within
every year. If you want to be sure and very explicit, you could also write “sorkt -k

1.4,1.8 -k 1.1,1.2”.

7.26 With the solution of Exercise 7.16, the matter is straightforward:

$ tr -cs '[:alpha:]' '\n' | sort -uf

The -u option to sort ensures that from a sequence of equal words, only the first
word will be output. The -f option treats uppercase and lowercase letters as iden-
tical (“LC_COLLATE=en_GB” would do that as well).

7.30 Use something like

cut -d: -f 4 /etc/passwd | sort -u | wc -l

The cut command isolates the group number in each line of the user database.
“sort -u” (see also Exercise 7.26) constructs a sorted list of all group numbers con-
taining each group number exactly once. Finally, “wc -l” counts the number of
lines in that list. The result is the number of different primary groups in use on
the system.

8.1 For example:

1. %d-%m-%Y

2. %y-%j (WK%V)

3. %Hh%Mm%Ss

8.2 We don’t know either, but try something like “TZ=America/Los_Angeles date”.

A Sample Solutions 437

8.4 If you change an environment variable in the child process, its value in the
parent process remains unmodified. There are ways and means to pass informa-
tion back to the parent process but the environment is not one.

8.5 Start a new shell and remove the PATH variable from the environment (with-
out deleting the variable itself). Try starting external programs.—If PATH does not
exist at all, the shell will not start external programs.

8.6 Unfortunately we cannot offer a system-independent sample solution; you
need to see for yourself (using which).

8.7 Using whereis, you should be able to locate two files called /usr/share/man/man1/

crontab.1.gz and /usr/share/man/man5/crontab.5.gz. The former contains the docu-
mentation for the actual crontab command, the latter the documentation for the
format of the files that crontab creates. (The details are irrelevant for this exercise;
see Advanced Linux.)

8.8 bash uses character sequences of the form “!⟨character⟩” to access previous
commands (an alternative to keyboard functions such as Ctrl + r which have mi-
grated from the C shell to bash). The “!"” character sequence, however, counts as
a syntax error.

8.9 None.

8.10 If the file name is passed as a parameter, wc insists on outputting it together
with the number of lines. If wc reads its standard input, it only outputs the line
count.

8.11 Try something like

#!/bin/bash

pattern=$1

shift

�����

for f

do

grep $pattern "$f" && cp "$f" backup

done

After the shift, the regular expression is no longer the first parameter, and that
must be taken into account for “for f”.

8.12 If the -f file test is applied to a symbolic link, it always applies to the file (or
directory, or whatever) that the link refers to. Hence it also succeeds if the name
in question is really just a symbolic link. (Why does this problem not apply to
filetest2?)

8.14 With the first command line, you need to wait 10 seconds for a new shell
command prompt. With the second, the waiting time amounts to 5 seconds,
after which the second sleep is started in the background. With the third line,
the new command prompt appears immediately, after two background processes
have been created.

438 A Sample Solutions

9.2 You can find out about this using something like

ls /bin /sbin /usr/bin /usr/sbin | wc -l

Alternatively, you can hit Tab twice at a shell prompt—the shell will answer
something like

Display all 2371 possibilities? (y or n)

and that is—depending on PATH—your answer. (If you are logged in as a normal—
non-privileged—user, the files in /sbin and /usr/sbin will not normally be included
in the total.)

9.3 Use “grep ⟨pattern⟩ *.txt /dev/null” instead of “grep ⟨pattern⟩ *.txt”. Thus
grep always has at least two file name parameters, but /dev/null does not otherwise
change the output.—The GNU implementation of grep, which is commonly found
on Linux, supports an -H option which does the same thing but in a non-portable
manner.

9.4 With cp to an existing file, the file is opened for writing and truncated to
length 0, before the source data is written to it. For /dev/null, this makes the data
disappear. With mv to an existing file, the target file is first removed—and that is
a directory operation which, disregarding the special nature of /dev/null, simply
removes the name null from the directory /dev and creates a new file called null

with the content of foo.txt in its place.

9.6 It is inadvisable because firstly it doesn’t work right, secondly the data in
question isn’t worth backing up anyway since it is changing constantly (you would
be wasting lots of space on backup media and time for copying), and thirdly be-
cause such a backup could never be restored. Uncontrolled write operations to,
say, /proc/kcore will with great certainty lead to a system crash.

10.1 Access control applies to normal users but not the administrator. root may
do anything! The root account should only be used to execute commands that
really require root’s privileges, e. g., to partition the disk, to create file systems,
to add user accounts, or to change system configuration files. All other actions
should be performed from an unprivileged account. This includes invoking ad-
ministration commands to gather information (where possible) and unpacking tar

archives.

10.2 As root you may do anything, therefore it is very easy to damage the system,
e. g., through inadvertently mistyped commands.

10.3 This question aims at a comparison to other operating systems. Depend-
ing on the system in question, there are no access controls at all (DOS, Win-
dows 95/98) or different methods for access control (Windows NT/2000/XP or
Windows Vista). Accordingly, the former do not support administrator access (as
opposed to normal user access), while the latter even allow the creation of several
administrator accounts.

10.4 Basically you can log in as root, or create a UID 0 shell using su. The latter
method is better, e. g., because the change including the former UID is logged.

10.5 The shell prompt often looks different. In addition, the id command may
help.

A Sample Solutions 439

10.6 You can either log in directly or su. For frequent changes, it is a good idea
to log in on two consoles at the same time, and obtain a root shell using su on one.
Alternatively, you could open several terminal windows on a GUI.

10.7 You will generally find the log entry in /var/log/messages.

10.10 The obvious advantage is that administration is possible from anywhere,
if necessary by using an internet-enabled cell phone on the beach, and without
having to have access to specialised hardware or software. The obvious disad-
vantage is that you need to secure access to the administration tool very carefully,
in order to prevent unbidden guests to “misconfigure” your system (or worse).
This may imply that (the obvious advantage notwithstanding) you may be able
to provide the administration tool only from within the local network, or that
you should secure access to it using strong cryptography (e. g., SSL with client
certificates). If you consider deploying Webmin in your company, you should dis-
cuss the possibility of external access very carefully with the appropriate decision
makers and/or corporate data protection officers in order to avoid extremely dire
consequences that could hit you if problems appear. Consider yourself warned.

11.1 By their respective numerical UIDs and GIDs.

11.2 This works but is not necessarily a good idea. As far as the system is con-
cerned, the two are a single user, i. e., all files and processes with that UID belong
to both user names.

11.3 A pseudo-user’s UID is used by programs in order to obtain particular well-
defined access rights.

11.4 Whoever is in group disk has block-level read and write permission to the
system’s disks. With knowledge of the file system structure it is easy to make a
copy of /bin/sh into a SUID root shell (Section 12.5) by changing the file system
metadata directly on disk. Thus, group disk membership is tantamount to root

privileges; you should put nobody into the disk group whom you would not want
to tell the root password outright.

11.5 You will usually find an “x”. This is a hint that the password that would
usually be stored there is indeed stored in another file, namely /etc/shadow, which
unlike the former file is readable only for root.

11.6 There are basically two possibilities:

1. Nothing. In this case the system should turn you away after you entered
your password, since no user account corresponds to the all-uppercase user
name.

2. From now on, the system talks to you in uppercase letters only. In this case
your Linux system assumes that you are sitting in front of an absolutely
antediluvial terminal (1970s vintage or so) that does not support lowercase
letters, and kindly switches its processing of input and output data such that
uppercase letters in the input are interpreted as lowercase, and lowercase
letters in the output are displayed as uppercase. Today this is of limited
benefit (except if you work in a computer museum), and you should log out
as quickly again as possible before your head explodes. Since this behaviour
is so atavistic, not every Linux distribution goes along with it, though.

11.7 Use getent, cut, and sort to generate lists of user names for the databases,
and comm to compare the two lists.

440 A Sample Solutions

11.8 Use the passwd command if you’re logged in as user joe, or “passwd joe” as
root. In joe’s entry in the /etc/shadow file there should be a different value in the
second field, and the date of the last password change (field 3) should show the
current date (in what unit?)

11.9 As root, you set a new password for him using “passwd dumbo”, as you cannot
retrieve his old one even though you are the administrator.

11.10 Use the command “passwd -n 7 -x 14 -w 2 joe”. You can verify the settings
using “passwd -S joe”.

11.11 Use the useradd command to create the user, “usermod -u” to modify the
UID. Instead of a user name, the files should display a UID as their owner, since
no user name is known for that UID …

11.12 For each of the three user accounts there should be one line in /etc/passwd

and one in /etc/shadow. To work with the accounts, you do not necessarily need a
password (you can use su as root), but if you want to login you do. You can create
a file without a home directory by placing it in /tmp (in case you forgot—a home
directory for a new user would however be a good thing).

11.13 Use the userdel command to delete the account. To remove the files, use
the “find / -uid ⟨UID⟩ -delete” command.

11.14 If you use “usermod -u”, you must reassign the user’s file to the new UID,
for example by means of “find / -uid ⟨UID⟩ -exec chown test1 {} \;” or (more effi-
ciently) “chown -R --from=⟨UID⟩ test1 /”. In each case, ⟨UID⟩ is the (numerical) for-
mer UID.

11.15 You can either edit /etc/passwd using vipw or else call usermod.

11.16 Groups make it possible to give specific privileges to groups [sic!] of users.
You could, for example, add all HR employees to a single group and assign that
group a working directory on a file server. Besides, groups can help organise
access rights to certain peripherals (e. g., by means of the groups disk, audio, or
video).

11.17 Use the “mkdir ⟨directory⟩” command to create the directory and “chgrp
⟨groupname⟩ ⟨directory⟩” to assign that directory to the group. You should also
set the SGID bit to ensure that newly created files belong to the group as well.

11.18 Use the following commands:

groupadd test

gpasswd -a test1 test

Adding user test1 to group test

gpasswd -a test2 test

Adding user test2 to group test

gpasswd test

Changing the password for group test

New Password:x9q.Rt/y

Re-enter new password:x9q.Rt/y

To change groups, use the “newgrp test” command. You will be asked for the pass-
word only if you are not a member of the group in question.

A Sample Solutions 441

12.1 A new file is assigned to your current primary group. You can’t assign a
file to a group that you are not a member of—unless you are root.

12.3 077 and ”‘u=rwx,go=”’, respectively.

12.5 This is the SUID or SGID bit. The bits cause a process to assume the
UID/GID of the executable file rather than that of the executing user. You can
see the bits using “ls -l”. Of course you may change all the permissions on your
own files. However, at least the SUID bit only makes sense on binary executable
files, not shell scripts and the like.

12.6 One of the two following (equivalent) commands will serve:

$ umask 007

$ umask -S u=rwx,g=rwx

You may perhaps ask yourself why this umask contains x bits. They are indeed
irrelevant for files, as files are not created executable by default. However it might
be the case that subdirectories are desired in the project directory, and it makes
sense to endow these with permissions that allow them to be used reasonably.

12.7 The so-called “sticky bit” on a directory implies that only the owner of a
file (or the owner of the directory) may delete or rename it. You will find it, e. g.,
on the /tmp directory.

12.9 This doesn’t work with the bash shell (at least not without further trickery).
We can’t speak for other shells here.

12.11 You cannot do this with chattr alone, since various attributes can be dis-
played with lsattr but not set with chattr. Read up on the details in chattr(1).—In
addition, some attributes are only defined for “plain” files while others are only
defined for directories; you will, for example, find it difficult to make the D and
E attributes visible for the same “file system object” at the same time. (The E at-
tribute is to do with transparent compression, which cannot be used on directo-
ries, while D only applies to directories—write operations to such directories will
be performed synchronously.)

13.1 In the directory of a process below /proc there is a file called environ which
contains the environment variables of that process. You can output this file using
cat. The only blemish is that the variables in this file are separated using zero
bytes, which looks messy on the screen; for convenience, you might use something
like “tr "\0" "\n" </proc/4711/environ” to display the environment.

13.2 Funnily enough, the limit is not documented in any obvious placees. In
/usr/include/linux/threads.h on a Linux 2.6 kernel, the constant PID_MAX_LIMIT is de-
fined with a value of 32768; this is the lowest value that will by default not be
assigned to processes. You can query the actual value in /proc/sys/kernel/pid_max

(or even change it—the maximum for 32-bit platforms is actually 32768, while on
64-bit systems you may set an arbitrary value of up to 222, which is approximately
4 million).

The PIDs assigned to processes rise monotonically at first. When the above-
mentioned limit is reached, assignment starts again with lower PIDs, where PIDs
that are still being used by processes are of course not given again to others. Many
low PIDs are assigned to long-running daemons during the boot process, and for
this reason after the limit has been reached, the search for unused PIDs starts again
not at PID 1 but at PID 300. (The details are in the kernel/pid_namespace.c file within
the Linux source code.)

442 A Sample Solutions

13.4 As we said, zombies arise when the parent process does not pick up the
return code of a child process. Thus, to create a zombie you must start a child
process and then prevent the parent process from picking up its return code, for
example by stopping it by means of a signal. Try something like

$ sh

$ echo $$ In the subshell
12345

$ sleep 20

In a different window:
$ kill -STOP 12345

Wait
$ ps u | grep sleep

joe 12346 0.0 0.0 3612 456 pts/2 Z 18:19 0:00 sleep 20

13.5 Consult ps(1).

13.6 Try

$ ps -o pid,ppid,state,cmd

13.7 Usually SIGCHLD (“child process finished”—sometimes called SIGCLD), SIGURG
(urgent data was received on a network connection) and SIGWINCH (the size of the
window for a text-based program was changed). These three events are so inane
that the process should not be terminated on their account.

13.8 Something like

$ pgrep -u hugo

should suffice.

13.10 Use, e. g., the “renice -10 ⟨PID⟩” command. You can only specify negative
nice values as root.

14.2 sda1, sda2, sda5, sda6, and sdb1, sdb5, sdb6, sdb7.

15.2 Use tune2fs with the -c, -u and -m options.

15.3 mkreiserfs /dev/sdb5

15.6 /etc/fstab contains all frequently-used file systems and their mount points,
while /etc/mtab contains those file systems that are actually mounted at the mo-
ment.

16.1 The boot loader can be placed inside the MBR, in another (partition) boot
sector, or a file on disk. In the two latter cases, you will need another boot loader
that can “chain load” the Linux boot loader. Be that as it may, for a Linux system
you absolutely need a boot loader that can boot a Linux kernel, such as GRUB
(there are others).

16.3 Assign a password preventing the unauthorised entry of kernel parame-
ters. With GRUB Legacy, e. g., using

password --md5 ⟨encrypted keyword⟩

lock helps with the password request for a specific operating system.

A Sample Solutions 443

17.3 You can display the previous and current runlevel using runlevel. If the
previous runlevel is “N” that means “none”—the system started into the current
runlevel. To change, say “init 2”, then “runlevel” again to check.

17.4 A possible entry for the inittab file might be

aa:A:ondemand:/bin/date >/tmp/runlevel-a.txt

This entry should write the current time to the mentioned file if you activate it
using “telinit A”. Don’t forget the “telinit q” to make init reread its configuration
file.

17.5 Call the syslog init script with the restart or reload parameters.

17.6 For example, by using “chkconfig -l” (on a SUSE or Red Hat system).

17.7 It is tempting just to remove the symbolic links from the runlevel directory
in question. However, depending on the distribution, they may reappear after the
next automated change. So if your distribution uses a tool like chkconfig or insserv

you had better use that.

17.8 You should be prepared for the system asking for the root password.

17.10 Use the

shutdown -h +15 'This is just a test'

command; everything that you pass to shutdown after the delay will be sent to your
users as a broadcast message. To cancel the shutdown, you can either interrupt
the program using the Ctrl + c key combination (if you started shutdown in the
foreground), or give the “shutdown -c” command.

17.10 The file name will be sent as the message.

18.4 The unit file does not need to be modified in order to express dependencies.
This makes the automatic installation and, in particular, deinstallation of units
as part of software packages easier (e. g., in the context of a distribution-specific
package management tool) and allows the seamless updating of unit files by a
distribution.

18.10 There is no exact equivalent because systemd does not use the runlevel
concept. You can, however, display all currently active targets:

systemctl list-units -t target

18.11 “systemctl kill” guarantees that the signal will only be sent to processes
belonging to the unit in question. The other two commands send the signal to all
processes whose name happens to be example.

18.13 You can’t (“systemctl mask” outputs an error message). You must deactivate
the service and then remove, move, or rename the unit file.

19.1 (a) On 1 March, 5 P. M.; (b) On 2 March, 2 P. M.; (c) On 2 March, 4 P. M.; (d)
On 2 March, 1 A. M.

444 A Sample Solutions

19.2 Use, e. g., “at now + 3 minutes”.

19.4 One possibility might be “atq | sort -bk 2”.

19.6 Your task list itself is owned by you, but you do not have permission to write
to the crontabs directory. Debian GNU/Linux, for example, uses the following
permission bits:

$ ls -ld /var/spool/cron/crontabs

drwx-wx--T 2 root crontab 4096 Aug 31 01:03 /var/spool/cron/crontabs

As usual, root has full access to the file (in fact regardless of the permission bits)
und members of the crontab group can write to files in the directory. Note that
members of that group have to know the file names in advance, because the di-
rectory is not searchable by them (ls will not work). The crontab utility is a set-GID
program owned by the crontab group:

$ ls -l $(which crontab)

-rwxr-sr-x 1 root crontab 27724 Sep 28 11:33 /usr/bin/crontab

So it is executed with the access permissions of the crontab group, no matter which
users invokes the program. (The set-GID mechanism is explained in detail in the
document Linux System Administration I.)

19.7 Register the job for the 13th of every month and check within the script
(e. g., by inspecting the result of “date +%u”) if the current day is a Friday.

19.8 The details depend on the distribution.

19.9 Use something like

* * * * logger -p local0.info "cron test"

To write the date to the file every other minute, you could use the following line:

0,2,4,�����,56,58 * * * * /bin/date >>/tmp/date.log

But this one is more convenient:

*/2 * * * * /bin/date >>/tmp/date.log

19.10 The commands to accomplish this are »crontab -l« and »crontab -r«.

19.11 You should add hugo to the /etc/cron.deny file (on SUSE distributions, /var/
spool/cron/deny) or delete him from /etc/cron.allow.

19.13 /etc/cron.daily contains a script called 0anacron which is executed as the
first job. This script invokes “anacron -u”; this option causes anacron to update the
time stamps without actually executing jobs (which is the next thing that cron will
do). When the system is restarted, this will prevent anacron from running jobs
unnecessarily, at least if the re-boot occurs after cron has done its thing.

20.1 Such events are customarily logged by syslogd to the /var/log/messages file.
You can solve the problem most elegantly like

grep 'su: (to root)' /var/log/messages

A Sample Solutions 445

20.2 Insert a line

. -/var/log/test

anywhere in /etc/syslog.conf. Then tell syslogd using “kill -HUP …” to re-read its
configuration file. If you check /var/log afterwards, the new file should already be
there and contain some entries (which ones?).

20.3 On the receiving system, syslogd must be started using the -r parameter (see
p. 304). The sending system needs a configuration line of the form

local0.* @blue.example.com

(if the receiving system is called “blue.example.com”).

20.4 The only safe method consists of putting the log out of the attacker’s reach.
Therefore you must send the messages to another host. If you don’t want the
attacker to be able to compromise that host, too, then you should connect the log-
ging host to the one storing the log by means of a serial interface, and configure
syslogd such that it sends the messages to the corresponding device (/dev/ttyS0 or
something). On the storing host, a simple program can accept the messages on the
serial interface and store them or process them further. Alternatively, you could
of course also use an (old-fashioned) dot-matrix printer with fan-fold paper.

20.5 You can, among other things, expect information about the amount and us-
age of RAM, available CPUs, disks and other mass storage devices (IDE and SCSI),
USB devices and network cards. Of course the details depend on your system and
your Linux installation.

20.10 Versuchen Sie etwas wie

We assume a suitable source definition.

filter login_hugo {

facility(authpriv)

and (match("session opened") or match("session closed"))

and match("user hugo");

};

destination d_root { usertty("root"); };

log { source(...);

filter(login_hugo);

destination(d_root);

};

20.14 In /etc/logrotate.d, create an arbitrarily-named file containing the lines

/var/log/test {

compress

dateext

rotate 10

size 100

create

}

446 A Sample Solutions

21.1 Text files are, in principle, amenable to the standard Unix tools (grep etc.)
and, as such, ideologically purer. They can be inspected without specialised soft-
ware. In addition, the concept is very well understood and there are gazillions of
tools that help evaluate the traditional log files. Disadvantages include the fact
that text files are difficult to search, and any sort of targeted evaluation is either
extremely tedious or else requires additional (non-standardised) software. There
is no type of cryptographic protection against the manipulation of log entries, and
the amount of information that can be written to the log is limited.

22.2 ISO/OSI layer 2 describes the interaction between two nodes that are con-
nected directly (e. g., via Ethernet). Layer 3 describes the interaction among
nodes that are not networked directly, and thus includes routing and media-
independent addressing (e. g., IP over Ethernet or Token-Ring or …).

22.3 You can look to the /etc/services and (possibly) /etc/protocols files for inspi-
ration. You will have to assign the protocols to layers by yourself. Hint: Practically
everything mentioned in /etc/services belongs to the application layer.

22.4 It is, of course, impossible to give a specific answer, but usually a TTL of
30–40 should be more than sufficient. (The default value is 64.) You can determine
the minimal TTL by means of sending successive packets with increasing TTL
(starting at TTL 1) to the desired target. If you receive an ICMP error message
from some router telling you that the packet was discarded, the TTL is still too
low. (The traceroute program automates this procedure.) This “minimal” TTL
is naturally not a constant, since IP does not guarantee a unique path for packet
delivery.

22.5

1. The 127.55.10.3 address cannot be used as a host address since it is that net-
work’s broadcast address.

2. The 138.44.33.12 address can be used as a host address.

3. The 10.84.13.160 address is the network address of the network in question
and is thus unavailable as a host address.

22.6 For example, to implement certain network topologies or assign parts of
the address range to computers in different providers.

22.7 There are 16 subnets altogether (which is obvious from the fact that the
subnet mask has four more bits set than the original netmask). Further subnets are
145.2.0.0, 145.2.16.0, 145.2.48.0, 145.2.80.0, 145.2.96.0 145.2.112.0, 145.2.144.0, 145.2.
176.0, 145.2.208.0, 145.2.224.0, and 145.2.240.0. The node with the IP address 145.2.

195.13 is part of the 145.2.192.0 subnet.

23.1 lsmod displays all loaded modules. “rmmod ⟨module name⟩” tries to unload a
module, which will fail when the module is still in use.

23.2 This is done most easily with ifconfig.

23.3 Use “ifconfig ⟨interface⟩ ⟨IP address⟩”. To check whether other computers
can be reached, use the ping command.

24.1 The former should be on the order of tens of microseconds, the latter—
depending on the networking infrastructure—in the vicinity of milliseconds.

A Sample Solutions 447

24.2 Try something like

ping -f -c 1000000 localhost

The total running time is at the end of the penultimate line of output from ping.
(On the author’s system it takes approximately 13 seconds.)

24.3 For example:

$ ping6 ff02::2%eth0

PING ff02::2%eth0(ff02::2) 56 data bytes

64 bytes from fe80::224:feff:fee4:1aa1: icmp_seq=1 ttl=64 time=12.4 ms

64 bytes from fe80::224:feff:fee4:1aa1: icmp_seq=2 ttl=64 time=5.27 ms

64 bytes from fe80::224:feff:fee4:1aa1: icmp_seq=3 ttl=64 time=4.53 ms

Ctrl + c

--- ff02::2%eth0 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 4.531/7.425/12.471/3.581 ms

25.1 During the first login procedure, ssh should ask you to confirm the remote
host’s public server key. During the second login procedure, the public server key
is already stored in the ~/.ssh/known_hosts file and does not need to be reconfirmed.

25.2 In the first case, the connection is refused, since no public server key for the
remote host is available from ~/.ssh/known_hosts. In the second case, the connection
is established without a query.

25.3 The file contains public keys only and thus does not need to be kept secret.

25.6 Use something like

$ ssh-keygen -l -f ~/.ssh/id_rsa.pub

(Does it make a difference whether you specify id_rsa.pub or id_rsa?)

25.7 Noninteractive programs that need to use an SSH connection are often un-
able to enter a passphrase. In restricted cases like these, it is conceivable to use
a private key without a passphrase. You should then make use of the possibility
to make a public key on the remote host useable for specific commands only (in
particular the ones that the noninteractive program needs to invoke). Details may
be found in sshd(8).

25.8 Try “ssh -X root@localhost”.

25.9 One possible command line might be

ssh -L 4711:localhost:7 user@remote.example.com

Do consider that localhost is evaluated from the perspective of the remote host.
Unfortunately, ssh does not allow symbolic names of well-known ports (as per
/etc/services).

26.11 Try

dpkg-reconfigure debconf

448 A Sample Solutions

27.1 This is most easily done using something like

$ rpm2cpio ⟨package⟩ | cpio -t

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

B
Example Files

In various places, the fairy tale The Frog King, more exactly The Frog King, or Iron
Henry, from German Children’s and Domestic Fairy Tales by the brothers Grimm, is
used as an example. The fairy tale is presented here in its entirety to allow for
comparisons with the examples.

The Frog King, or Iron Henry

In olden times when wishing still helped one, there lived a king whose

daughters were all beautiful, but the youngest was so beautiful that

the sun itself, which has seen so much, was astonished whenever it

shone in her face.

Close by the king's castle lay a great dark forest, and under an old

lime-tree in the forest was a well, and when the day was very warm,

the king's child went out into the forest and sat down by the side of

the cool fountain, and when she was bored she took a golden ball, and

threw it up on high and caught it, and this ball was her favorite

plaything.

Now it so happened that on one occasion the princess's golden ball did

not fall into the little hand which she was holding up for it, but on

to the ground beyond, and rolled straight into the water. The king's

daughter followed it with her eyes, but it vanished, and the well was

deep, so deep that the bottom could not be seen. At this she began to

cry, and cried louder and louder, and could not be comforted.

And as she thus lamented someone said to her, »What ails you, king's

daughter? You weep so that even a stone would show pity.«

She looked round to the side from whence the voice came, and saw a

frog stretching forth its big, ugly head from the water. »Ah, old

water-splasher, is it you,« she said, »I am weeping for my golden

ball, which has fallen into the well.«

»Be quiet, and do not weep,« answered the frog, »I can help you, but

what will you give me if I bring your plaything up again?«

»Whatever you will have, dear frog,« said she, »My clothes, my pearls

and jewels, and even the golden crown which I am wearing.«

grd1-beispiele.tex (be27bba8095b329b)

450 B Example Files

The frog answered, »I do not care for your clothes, your pearls and

jewels, nor for your golden crown, but if you will love me and let me

be your companion and play-fellow, and sit by you at your little

table, and eat off your little golden plate, and drink out of your

little cup, and sleep in your little bed - if you will promise me this

I will go down below, and bring you your golden ball up again.«

»Oh yes,« said she, »I promise you all you wish, if you will but bring

me my ball back again.« But she thought, »How the silly frog does

talk. All he does is to sit in the water with the other frogs, and

croak. He can be no companion to any human being.«

But the frog when he had received this promise, put his head into the

water and sank down; and in a short while came swimming up again with

the ball in his mouth, and threw it on the grass. The king's daughter

was delighted to see her pretty plaything once more, and picked it up,

and ran away with it.

»Wait, wait,« said the frog. »Take me with you. I can't run as you

can.« But what did it avail him to scream his croak, croak, after her,

as loudly as he could. She did not listen to it, but ran home and soon

forgot the poor frog, who was forced to go back into his well again.

The next day when she had seated herself at table with the king and

all the courtiers, and was eating from her little golden plate,

something came creeping splish splash, splish splash, up the marble

staircase, and when it had got to the top, it knocked at the door and

cried, »Princess, youngest princess, open the door for me.«

She ran to see who was outside, but when she opened the door, there

sat the frog in front of it. Then she slammed the door to, in great

haste, sat down to dinner again, and was quite frightened.

The king saw plainly that her heart was beating violently, and said,

»My child, what are you so afraid of? Is there perchance a giant

outside who wants to carry you away?«

»Ah, no,« replied she. »It is no giant but a disgusting frog.«

»What does that frog want from you?«

»Yesterday as I was in the forest sitting by the well, playing, my

golden ball fell into the water. And because I cried so, the frog

brought it out again for me, and because he so insisted, I promised

him he should be my companion, but I never thought he would be able to

come out of his water. And now he is outside there, and wants to come

in to me.«

In the meantime it knocked a second time, and cried, »Princess,

youngest princess, open the door for me, do you not know what you said

to me yesterday by the cool waters of the well. Princess, youngest

princess, open the door for me.«

Then said the king, »That which you have promised must you perform.

Go and let him in.«

She went and opened the door, and the frog hopped in and followed her,

step by step, to her chair. There he sat and cried, »Lift me up beside

B Example Files 451

you.« She delayed, until at last the king commanded her to do it. Once

the frog was on the chair he wanted to be on the table, and when he

was on the table he said, »Now, push your little golden plate nearer

to me that we may eat together.« The frog enjoyed what he ate, but

almost every mouthful she took choked her.

At length he said, »I have eaten and am satisfied, now I am tired,

carry me into your little room and make your little silken bed ready,

and we will both lie down and go to sleep.« The king's daughter began

to cry, for she was afraid of the cold frog which she did not like to

touch, and which was now to sleep in her pretty, clean little bed.

But the king grew angry and said, »He who helped you when you were in

trouble ought not afterwards to be despised by you.«

So she took hold of the frog with two fingers, carried him upstairs,

and put him in a corner, but when she was in bed he crept to her and

said, »I am tired, I want to sleep as well as you, lift me up or I

will tell your father.«

At this she was terribly angry, and took him up and threw him with all

her might against the wall. »Now, will you be quiet, odious frog,«

said she. But when he fell down he was no frog but a king's son with

kind and beautiful eyes. He by her father's will was now her dear

companion and husband. Then he told her how he had been bewitched by a

wicked witch, and how no one could have delivered him from the well

but herself, and that to-morrow they would go together into his

kingdom.

And indeed, the next morning a carriage came driving up with eight

white horses, which had white ostrich feathers on their heads, and

were harnessed with golden chains, and behind stood the young king's

servant Faithful Henry.

Faithful Henry had been so unhappy when his master was changed into a

frog, that he had caused three iron bands to be laid round his heart,

lest it should burst with grief and sadness. The carriage was to

conduct the young king into his kingdom. Faithful Henry helped them

both in, and placed himself behind again, and was full of joy because

of this deliverance.

And when they had driven a part of the way the king's son heard a

cracking behind him as if something had broken. So he turned round and

cried, »Henry, the carriage is breaking.« »No, master, it is not the

carriage. It is a band from my heart, which was put there in my great

pain when you were a frog and imprisoned in the well.«

Again and once again while they were on their way something cracked,

and each time the king's son thought the carriage was breaking, but it

was only the bands which were springing from the heart of Faithful

Henry because his master was set free and was happy.

(Linup Front GmbH would like to point out that the authors strongly disap-
prove of any cruelty to animals.)

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

C
LPIC-1 Certification

C.1 Overview

The Linux Professional Institute (LPI) is a vendor-independent non-profit organi-
zation dedicated to furthering the professional use of Linux. One aspect of the
LPI’s work concerns the creation and delivery of distribution-independent certi-
fication exams, for example for Linux professionals. These exams are available
world-wide and enjoy considerable respect among Linux professionals and em-
ployers.

Through LPIC-1 certification you can demonstrate basic Linux skills, as re-
quired, e. g., for system administrators, developers, consultants, or user support
professionals. The certification is targeted towards Linux users with 1 to 3 years
of experience and consists of two exams, LPI-101 and LPI-102. These are offered
as computer-based multiple-choice and fill-in-the-blanks tests in all Pearson VUE
and Thomson Prometric test centres. On its web pages at http://www.lpi.org/, the
LPI publishes objectives outlining the content of the exams. objectives

This training manual is part of Linup Front GmbH’s curriculum for preparation
of the LPI-101 exam and covers part of the official examination objectives. Refer
to the tables below for details. An important observation in this context is that
the LPIC-1 objectives are not suitable or intended to serve as a didactic outline for
an introductory course for Linux. For this reason, our curriculum is not strictly
geared towards the exams or objectives as in “Take classes 𝑥 and 𝑦, sit exam 𝑝,
then take classes 𝑎 and 𝑏 and sit exam 𝑞.” This approach leads many prospective
students to the assumption that, being complete Linux novices, they could book
𝑛 days of training and then be prepared for the LPIC-1 exams. Experience shows
that this does not work in practice, since the LPI exams are deviously constructed
such that intensive courses and exam-centred “swotting” do not really help.

Accordingly, our curriculum is meant to give you a solid basic knowledge of
Linux by means of a didactically reasonable course structure, and to enable you as
a participant to work independently with the system. LPIC-1 certification is not a
primary goal or a goal in itself, but a natural consequence of your newly-obtained
knowledge and experience.

C.2 Exam LPI-101

The following table displays the objectives for the LPI-101 exam and the materials
from the “Concise Linux” series covering these objectives. The numbers in the
columns for the individual manuals refer to the chapters containing the material
in question.

lxk1-objs-101.tex (807d647231c25323)

454 C LPIC-1 Certification

No Wt Title LXK1
101.1 2 Determine and configure hardware settings 14
101.2 3 Boot the system 16–18
101.3 3 Change runlevels/boot targets and shutdown or reboot system 17–18
102.1 2 Design hard disk layout 14
102.2 2 Install a boot manager 16
102.3 1 Manage shared libraries –
102.4 3 Use Debian package management 26
102.5 3 Use RPM and YUM package management 27
103.1 4 Work on the command line 3–4
103.2 3 Process text streams using filters 7
103.3 4 Perform basic file management 6, 15.3
103.4 4 Use streams, pipes and redirects 7
103.5 4 Create, monitor and kill processes 13
103.6 2 Modify process execution priorities 13
103.7 2 Search text files using regular expressions 7
103.8 3 Perform basic file editing operations using vi 5
104.1 2 Create partitions and filesystems 14–15
104.2 2 Maintain the integrity of filesystems 15
104.3 3 Control mounting and unmounting of filesystems 15
104.4 1 Manage disk quotas –
104.5 3 Manage file permissions and ownership 12
104.6 2 Create and change hard and symbolic links 6
104.7 2 Find system files and place files in the correct location 6, 9

C.3 Exam LPI-102

The following table displays the objectives for the LPI-102 exam and the materials
from the “Concise Linux” series covering these objectives. The numbers in the
columns for the individual manuals refer to the chapters containing the material
in question.

No Wt Title LXK1
105.1 4 Customize and use the shell environment –
105.2 4 Customize or write simple scripts –
105.3 2 SQL data management –
106.1 2 Install and configure X11 –
106.2 1 Setup a display manager –
106.3 1 Accessibility –
107.1 5 Manage user and group accounts and related system files 11
107.2 4 Automate system administration tasks by scheduling jobs 19
107.3 3 Localisation and internationalisation –
108.1 3 Maintain system time –
108.2 3 System logging 20–21
108.3 3 Mail Transfer Agent (MTA) basics –
108.4 2 Manage printers and printing –
109.1 4 Fundamentals of internet protocols 22–23
109.2 4 Basic network configuration 23–24
109.3 4 Basic network troubleshooting 23–24
109.4 2 Configure client side DNS 23
110.1 3 Perform security administration tasks 11, 23–24
110.2 3 Setup host security 11, 23
110.3 3 Securing data with encryption 25

C LPIC-1 Certification 455

C.4 LPI Objectives In This Manual

101.1 Determine and configure hardware settings

Weight 2
Description Candidates should be able to determine and configure fundamen-
tal system hardware.
Key Knowledge Areas

• Enable and disable integrated peripherals
• Configure systems with or without external peripherals such as keyboards
• Differentiate between the various types of mass storage devices
• Know the differences between coldplug and hotplug devices
• Determine hardware resources for devices
• Tools and utilities to list various hardware information (e.g. lsusb, lspci, etc.)
• Tools and utilities to manipulate USB devices
• Conceptual understanding of sysfs, udev, dbus

The following is a partial list of the used files, terms and utilities:

• /sys/

• /proc/

• /dev/

• modprobe

• lsmod

• lspci

• lsusb

101.2 Boot the system

Weight 3
Description Candidates should be able to guide the system through the booting
process.
Key Knowledge Areas

• Provide common commands to the boot loader and options to the kernel at
boot time

• Demonstrate knowledge of the boot sequence from BIOS to boot completion
• Understanding of SysVinit and systemd
• Awareness of Upstart
• Check boot events in the log files

The following is a partial list of the used files, terms and utilities:

• dmesg

• BIOS
• bootloader
• kernel
• initramfs
• init

• SysVinit
• systemd

101.3 Change runlevels/boot targets and shutdown or reboot sys-
tem

Weight 3

456 C LPIC-1 Certification

Description Candidates should be able to manage the SysVinit runlevel or sys-
temd boot target of the system. This objective includes changing to single user
mode, shutdown or rebooting the system. Candidates should be able to alert users
before switching runlevels/boot targets and properly terminate processes. This
objective also includes setting the default SysVinit runlevel or systemd boot target.
It also includes awareness of Upstart as an alternative to SysVinit or systemd.
Key Knowledge Areas

• Set the default runlevel or boot target
• Change between runlevels/boot targets including single user mode
• Shutdown and reboot from the command line
• Alert users before switching runlevels/boot targets or other major system

events
• Properly terminate processes

The following is a partial list of the used files, terms and utilities:

• /etc/inittab

• shutdown

• init

• /etc/init.d/

• telinit

• systemd
• systemctl

• /etc/systemd/

• /usr/lib/systemd/

• wall

102.1 Design hard disk layout

Weight 2
Description Candidates should be able to design a disk partitioning scheme for
a Linux system.
Key Knowledge Areas

• Allocate filesystems and swap space to separate partitions or disks
• Tailor the design to the intended use of the system
• Ensure the /boot partition conforms to the hardware architecture require-

ments for booting
• Knowledge of basic features of LVM

The following is a partial list of the used files, terms and utilities:

• / (root) filesystem
• /var filesystem
• /home filesystem
• /boot filesystem
• swap space
• mount points
• partitions

102.2 Install a boot manager

Weight 2
Description Candidates should be able to select, install and configure a boot
manager.
Key Knowledge Areas

• Providing alternative boot locations and backup boot options

C LPIC-1 Certification 457

• Install and configure a boot loader such as GRUB Legacy
• Perform basic configuration changes for GRUB 2
• Interact with the boot loader

The following is a partial list of the used files, terms and utilities:

• menu.lst, grub.cfg and grub.conf

• grub-install

• grub-mkconfig

• MBR

102.4 Use Debian package management

Weight 3
Description Candidates should be able to perform package management using
the Debian package tools.
Key Knowledge Areas

• Install, upgrade and uninstall Debian binary packages
• Find packages containing specific files or libraries which may or may not be

installed
• Obtain package information like version, content, dependencies, package

integrity and installation status (whether or not the package is installed)

The following is a partial list of the used files, terms and utilities:

• /etc/apt/sources.list

• dpkg

• dpkg-reconfigure

• apt-get

• apt-cache

• aptitude

102.5 Use RPM and YUM package management

Weight 3
Description Candidates should be able to perform package management using
RPM and YUM tools.
Key Knowledge Areas

• Install, re-install, upgrade and remove packages using RPM and YUM
• Obtain information on RPM packages such as version, status, dependencies,

integrity and signatures
• Determine what files a package provides, as well as find which package a

specific file comes from

The following is a partial list of the used files, terms and utilities:

• rpm

• rpm2cpio

• /etc/yum.conf

• /etc/yum.repos.d/

• yum

• yumdownloader

103.1 Work on the command line

Weight 4

458 C LPIC-1 Certification

Description Candidates should be able to interact with shells and commands
using the command line. The objective assumes the Bash shell.
Key Knowledge Areas

• Use single shell commands and one line command sequences to perform
basic tasks on the command line

• Use and modify the shell environment including defining, referencing and
exporting environment variables

• Use and edit command history
• Invoke commands inside and outside the defined path

The following is a partial list of the used files, terms and utilities:

• bash

• echo

• env

• export

• pwd

• set

• unset

• man

• uname

• history

• .bash_history

103.2 Process text streams using filters

Weight 3
Description Candidates should should be able to apply filters to text streams.
Key Knowledge Areas

• Send text files and output streams through text utility filters to modify the
output using standard UNIX commands found in the GNU textutils pack-
age

The following is a partial list of the used files, terms and utilities:

• cat

• cut

• expand

• fmt

• head

• join

• less

• nl

• od

• paste

• pr

• sed

• sort

• split

• tail

• tr

• unexpand

• uniq

• wc

103.3 Perform basic file management

Weight 4

C LPIC-1 Certification 459

Description Candidates should be able to use the basic Linux commands to
manage files and directories.
Key Knowledge Areas

• Copy, move and remove files and directories individually
• Copy multiple files and directories recursively
• Remove files and directories recursively
• Use simple and advanced wildcard specifications in commands
• Using find to locate and act on files based on type, size, or time
• Usage of tar, cpio and dd

The following is a partial list of the used files, terms and utilities:

• cp

• find

• mkdir

• mv

• ls

• rm

• rmdir

• touch

• tar

• cpio

• dd

• file

• gzip

• gunzip

• bzip2

• xz

• file globbing

103.4 Use streams, pipes and redirects

Weight 4
Description Candidates should be able to redirect streams and connect them in
order to efficiently process textual data. Tasks include redirecting standard input,
standard output and standard error, piping the output of one command to the
input of another command, using the output of one command as arguments to
another command and sending output to both stdout and a file.
Key Knowledge Areas

• Redirecting standard input, standard output and standard error
• Pipe the output of one command to the input of another command
• Use the output of one command as arguments to another command
• Send output to both stdout and a file

The following is a partial list of the used files, terms and utilities:

• tee

• xargs

103.5 Create, monitor and kill processes

Weight 4
Description Candidates should be able to perform basic process management.
Key Knowledge Areas

• Run jobs in the foreground and background

460 C LPIC-1 Certification

• Signal a program to continue running after logout
• Monitor active processes
• Select and sort processes for display
• Send signals to processes

The following is a partial list of the used files, terms and utilities:

• &

• bg

• fg

• jobs

• kill

• nohup

• ps

• top

• free

• uptime

• pgrep

• pkill

• killall

• screen

103.6 Modify process execution priorities

Weight 2
Description Candidates should be able to manage process execution priorities.
Key Knowledge Areas

• Know the default priority of a job that is created
• Run a program with higher or lower priority than the default
• Change the priority of a running process

The following is a partial list of the used files, terms and utilities:

• nice

• ps

• renice

• top

103.7 Search text files using regular expressions

Weight 2
Description Candidates should be able to manipulate files and text data using
regular expressions. This objective includes creating simple regular expressions
containing several notational elements. It also includes using regular expression
tools to perform searches through a filesystem or file content.
Key Knowledge Areas

• Create simple regular expressions containing several notational elements
• Use regular expression tools to perform searches through a filesystem or file

content

The following is a partial list of the used files, terms and utilities:

• grep

• egrep

• fgrep

• sed

• regex(7)

C LPIC-1 Certification 461

103.8 Perform basic file editing operations using vi

Weight 3
Description Candidates should be able to edit text files using vi. This objective
includes vi navigation, basic vi modes, inserting, editing, deleting, copying and
finding text.
Key Knowledge Areas

• Navigate a document using vi

• Use basic vi modes
• Insert, edit, delete, copy and find text

The following is a partial list of the used files, terms and utilities:

• vi

• /, ?
• h, j, k, l
• i, o, a
• c, d, p, y, dd, yy
• ZZ, :w!, :q!, :e!

104.1 Create partitions and filesystems

Weight 2
Description Candidates should be able to configure disk partitions and then
create filesystems on media such as hard disks. This includes the handling of
swap partitions.
Key Knowledge Areas

• Manage MBR partition tables
• Use various mkfs commands to create various filesystems such as:

– ext2/ext3/ext4
– XFS
– VFAT

• Awareness of ReiserFS and Btrfs
• Basic knowledge of gdisk and parted with GPT

The following is a partial list of the used files, terms and utilities:

• fdisk

• gdisk

• parted

• mkfs

• mkswap

104.2 Maintain the integrity of filesystems

Weight 2
Description Candidates should be able to maintain a standard filesystem, as
well as the extra data associated with a journaling filesystem.
Key Knowledge Areas

• Verify the integrity of filesystems
• Monitor free space and inodes
• Repair simple filesystem problems

The following is a partial list of the used files, terms and utilities:

462 C LPIC-1 Certification

• du

• df

• fsck

• e2fsck

• mke2fs

• debugfs

• dumpe2fs

• tune2fs

• XFS tools (such as xfs_metadump and xfs_info)

104.3 Control mounting and unmounting of filesystems

Weight 3
Description Candidates should be able to configure the mounting of a filesys-
tem.
Key Knowledge Areas

• Manually mount and unmount filesystems
• Configure filesystem mounting on bootup
• Configure user mountable removable filesystems

The following is a partial list of the used files, terms and utilities:

• /etc/fstab

• /media/

• mount

• umount

104.5 Manage file permissions and ownership

Weight 3
Description Candidates should be able to control file access through the proper
use of permissions and ownerships.
Key Knowledge Areas

• Manage access permissions on regular and special files as well as directories
• Use access modes such as suid, sgid and the sticky bit to maintain security
• Know how to change the file creation mask
• Use the group field to grant file access to group members

The following is a partial list of the used files, terms and utilities:

• chmod

• umask

• chown

• chgrp

104.6 Create and change hard and symbolic links

Weight 2
Description Candidates should be able to create and manage hard and symbolic
links to a file.
Key Knowledge Areas

• Create links
• Identify hard and/or soft links
• Copying versus linking files

C LPIC-1 Certification 463

• Use links to support system administration tasks

The following is a partial list of the used files, terms and utilities:

• ln

• ls

104.7 Find system files and place files in the correct location

Weight 2
Description Candidates should be thoroughly familiar with the Filesystem Hi-
erarchy Standard (FHS), including typical file locations and directory classifica-
tions.
Key Knowledge Areas

• Understand the correct locations of files under the FHS
• Find files and commands on a Linux system
• Know the location and purpose of important file and directories as defined

in the FHS

The following is a partial list of the used files, terms and utilities:

• find

• locate

• updatedb

• whereis

• which

• type

• /etc/updatedb.conf

107.1 Manage user and group accounts and related system files

Weight 5
Description Candidates should be able to add, remove, suspend and change
user accounts.
Key Knowledge Areas

• Add, modify and remove users and groups
• Manage user/group info in password/group databases
• Create and manage special purpose and limited accounts

The following is a partial list of the used files, terms and utilities:

• /etc/passwd

• /etc/shadow

• /etc/group

• /etc/skel/

• chage

• getent

• groupadd

• groupdel

• groupmod

• passwd

• useradd

• userdel

• usermod

464 C LPIC-1 Certification

107.2 Automate system administration tasks by scheduling jobs

Weight 4
Description Candidates should be able to use cron or anacron to run jobs at reg-
ular intervals and to use at to run jobs at a specific time.
Key Knowledge Areas

• Manage cron and at jobs
• Configure user access to cron and at services
• Configure anacron

The following is a partial list of the used files, terms and utilities:

• /etc/cron.{d,daily,hourly,monthly,weekly}/
• /etc/at.deny

• /etc/at.allow

• /etc/crontab

• /etc/cron.allow

• /etc/cron.deny

• /var/spool/cron/

• crontab

• at

• atq

• atrm

• anacron

• /etc/anacrontab

108.2 System logging

Weight 3
Description Candidates should be able to configure the syslog daemon. This
objective also includes configuring the logging daemon to send log output to a
central log server or accept log output as a central log server. Use of the systemd
journal subsystem is covered. Also, awareness of rsyslog and syslog-ng as alter-
native logging systems is included.
Key Knowledge Areas

• Configuration of the syslog daemon
• Understanding of standard facilities, priorities and actions
• Configuration of logrotate
• Awareness of rsyslog and syslog-ng

The following is a partial list of the used files, terms and utilities:

• syslog.conf

• syslogd

• klogd

• /var/log/

• logger

• logrotate

• /etc/logrotate.conf

• /etc/logrotate.d/

• journalctl

• /etc/systemd/journald.conf

• /var/log/journal/

109.1 Fundamentals of internet protocols

Weight 4

C LPIC-1 Certification 465

Description Candidates should demonstrate a proper understanding of TCP/IP
network fundamentals.
Key Knowledge Areas

• Demonstrate an understanding of network masks and CIDR notation
• Knowledge of the differences between private and public »dotted quad« IP

addresses
• Knowledge about common TCP and UDP ports and services (20, 21, 22, 23,

25, 53, 80, 110, 123, 139, 143, 161, 162, 389, 443, 465, 514, 636, 993, 995)
• Knowledge about the differences and major features of UDP, TCP and ICMP
• Knowledge of the major differences between IPv4 and IPv6
• Knowledge of the basic features of IPv6

The following is a partial list of the used files, terms and utilities:

• /etc/services

• IPv4, IPv6
• Subnetting
• TCP, UDP, ICMP

109.2 Basic network configuration

Weight 4
Description Candidates should be able to view, change and verify configuration
settings on client hosts.
Key Knowledge Areas

• Manually and automatically configure network interfaces
• Basic TCP/IP host configuration
• Setting a default route

The following is a partial list of the used files, terms and utilities:

• /etc/hostname

• /etc/hosts

• /etc/nsswitch.conf

• ifconfig

• ifup

• ifdown

• ip

• route

• ping

109.3 Basic network troubleshooting

Weight 4
Description Candidates should be able to troubleshoot networking issues on
client hosts.
Key Knowledge Areas

• Manually and automatically configure network interfaces and routing ta-
bles to include adding, starting, stopping, restarting, deleting or reconfig-
uring network interfaces

• Change, view, or configure the routing table and correct an improperly set
default route manually

• Debug problems associated with the network configuration

The following is a partial list of the used files, terms and utilities:

466 C LPIC-1 Certification

• ifconfig

• ip

• ifup

• ifdown

• route

• host

• hostname

• dig

• netstat

• ping

• ping6

• traceroute

• traceroute6

• tracepath

• tracepath6

• netcat

109.4 Configure client side DNS

Weight 2
Description Candidates should be able to configure DNS on a client host.
Key Knowledge Areas

• Query remote DNS servers
• Configure local name resolution and use remote DNS servers
• Modify the order in which name resolution is done

The following is a partial list of the used files, terms and utilities:

• /etc/hosts

• /etc/resolv.conf

• /etc/nsswitch.conf

• host

• dig

• getent

110.1 Perform security administration tasks

Weight 3
Description Candidates should know how to review system configuration to
ensure host security in accordance with local security policies.
Key Knowledge Areas

• Audit a system to find files with the suid/sgid bit set
• Set or change user passwords and password aging information
• Being able to use nmap and netstat to discover open ports on a system
• Set up limits on user logins, processes and memory usage
• Determine which users have logged in to the system or are currently logged

in
• Basic sudo configuration and usage

The following is a partial list of the used files, terms and utilities:

• find

• passwd

• fuser

• lsof

• nmap

C LPIC-1 Certification 467

• chage

• netstat

• sudo

• /etc/sudoers

• su

• usermod

• ulimit

• who, w, last

110.2 Setup host security

Weight 3
Description Candidates should know how to set up a basic level of host security.
Key Knowledge Areas

• Awareness of shadow passwords and how they work
• Turn off network services not in use
• Understand the role of TCP wrappers

The following is a partial list of the used files, terms and utilities:

• /etc/nologin

• /etc/passwd

• /etc/shadow

• /etc/xinetd.d/

• /etc/xinetd.conf

• /etc/inetd.d/

• /etc/inetd.conf

• /etc/inittab

• /etc/init.d/

• /etc/hosts.allow

• /etc/hosts.deny

110.3 Securing data with encryption

Weight 3
Description The candidate should be able to use public key techniques to secure
data and communication.
Key Knowledge Areas

• Perform basic OpenSSH 2 client configuration and usage
• Understand the role of OpenSSH 2 server host keys
• Perform basic GnuPG configuration, usage and revocation
• Understand SSH port tunnels (including X11 tunnels)

The following is a partial list of the used files, terms and utilities:

• ssh

• ssh-keygen

• ssh-agent

• ssh-add

• ~/.ssh/id_rsa and id_rsa.pub

• ~/.ssh/id_dsa and id_dsa.pub

• /etc/ssh/ssh_host_rsa_key and ssh_host_rsa_key.pub

• /etc/ssh/ssh_host_dsa_key and ssh_host_dsa_key.pub

• ~/.ssh/authorized_keys

• ssh_known_hosts

• gpg

• ~/.gnupg/

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

D
Command Index

This appendix summarises all commands explained in the manual and points to
their documentation as well as the places in the text where the commands have
been introduced.

. Reads a file containing shell commands as if they had been entered on
the command line bash(1) 128

adduser Convenient command to create new user accounts (Debian)
adduser(8) 172

alien Converts various software packaging formats alien(1) 414
anacron Executes periodic job even if the computer does not run all the time

anacron(8) 298
apropos Shows all manual pages whose NAME sections contain a given keyword

apropos(1) 49
apt-get Powerful command-line tool for Debian GNU/Linux package manage-

ment apt-get(8) 407
aptitude Convenient package installation and maintenance tool (Debian)

aptitude(8) 410
arp Allows access to the ARP cache (maps IP to MAC adresses) arp(8) 338
at Registers commands for execution at a future point in time at(1) 292
atd Daemon to execute commands in the future using at atd(8) 294
atq Queries the queue of commands to be executed in the future

atq(1) 293
atrm Cancels commands to be executed in the future atrm(1) 294
bash The “Bourne-Again-Shell”, an interactive command interpreter

bash(1) 38, 39
batch Executes commands as soon as the system load permits batch(1) 293
bg Continues a (stopped) process in the background bash(1) 134
blkid Locates and prints block device attributes blkid(8) 242
cat Concatenates files (among other things) cat(1) 94
cd Changes a shell’s current working directory bash(1) 67
cfdisk Character-screen based disk partitioner cfdisk(8) 217
chattr Sets file attributes for ext2 and ext3 file systems chattr(1) 189
chfn Allows users to change the GECOS field in the user database

chfn(1) 165
chgrp Sets the assigned group of a file or directory chgrp(1) 182
chkconfig Starts or shuts down system services (SUSE, Red Hat)

chkconfig(8) 267
chmod Sets access modes for files and directories chmod(1) 181
chown Sets the owner and/or assigned group of a file or directory

chown(1) 182

470 D Command Index

convmv Converts file names between character encodings convmv(1) 64
cp Copies files cp(1) 74
cpio File archive manager cpio(1) 422
crontab Manages commands to be executed at regular intervals crontab(1) 297
csh The “C-Shell”, an interactive command interpreter csh(1) 39
cut Extracts fields or columns from its input cut(1) 112
date Displays the date and time date(1) 120, 41
dd “Copy and convert”, copies files or file systems block by block and does

simple conversions dd(1) 244
debugfs File system debugger for fixing badly damaged file systems. For gurus

only! debugfs(8) 232
dmesg Outputs the content of the kernel message buffer dmesg(8) 145, 257
dnsmasq A lightweight DHCP and caching DNS server for small installations

dnsmasq(8) 367
dpkg Debian GNU/Linux package management tool dpkg(8) 400
dpkg-reconfigure Reconfigures an already-installed Debian package

dpkg-reconfigure(8) 413
dumpe2fs Displays internal management data of the ext2 file system. For gurus

only! dumpe2fs(8) 232
dumpreiserfs Displays internal management data of the Reiser file system. For

gurus only! dumpreiserfs(8) 235
e2fsck Checks ext2 and ext3 file systems for consistency e2fsck(8) 231
e2label Changes the label on an ext2/3 file system e2label(8) 242
echo Writes all its parameters to standard output, separated by spaces

bash(1), echo(1) 41
ed Primitive (but useful) line-oriented text editor ed(1) 55
elvis Popular “clone” of the vi editor elvis(1) 54
env Outputs the process environment, or starts programs with an adjusted

environment env(1) 122
ex Powerful line-oriented text editor (really vi) vi(1) 54
exit Quits a shell bash(1) 34
expand Replaces tab characters in its input by an equivalent number of spaces

expand(1) 102
export Defines and manages environment variables bash(1) 121
fg Fetches a background process back to the foreground bash(1) 134
file Guesses the type of a file’s content, according to rules file(1) 138
find Searches files matching certain given criteria find(1), Info: find 81
fmt Wraps the lines of its input to a given width fmt(1) 103
free Displays main memory and swap space usage free(1) 144
fsck Organises file system consistency checks fsck(8) 225
gdisk Partitioning tool for GPT disks gdisk(8) 216
gears Displays turning gears on X11 gears(1) 135
getent Gets entries from administrative databases getent(1) 170, 382
getfacl Displays ACL data getfacl(1) 185
gpasswd Allows a group administrator to change a group’s membership and up-

date the group password gpasswd(1) 176
groff Sophisticated typesetting program groff(1) 47, 49
groupadd Adds user groups to the system group database groupadd(8) 175
groupdel Deletes groups from the system group database groupdel(8) 176
groupmod Changes group entries in the system group database groupmod(8) 175
groups Displays the groups that a user is a member of groups(1) 162
grub-md5-crypt Determines MD5-encrypted passwords for GRUB Legacy

grub-md5-crypt(8) 255
halt Halts the system halt(8) 271
hash Shows and manages ”‘seen”’ commands in bash bash(1) 123
hd Abbreviation for hexdump hexdump(1) 98
head Displays the beginning of a file head(1) 96
help Displays on-line help for bash commands bash(1) 41, 46

D Command Index 471

hexdump Displays file contents in hexadecimal (octal, …) form hexdump(1) 98
history Displays recently used bash command lines bash(1) 125
host Searches for information in the DNS host(1) 381
id Displays a user’s UID and GIDs id(1) 162
ifconfig Configures network interfaces ifconfig(8) 356
ifdown Shuts down a network interface (Debian) ifdown(8) 362
ifup Starts up a network interface (Debian) ifup(8) 362
inetd Internet superserver, supervises ports and starts services inetd(8) 342
info Displays GNU Info pages on a character-based terminal info(1) 49
initctl Supervisory tool for Upstart initctl(8) 270
insserv Activates or deactivates init scripts (SUSE) insserv(8) 267
ip Manages network interfaces and routing ip(8) 360
ipv6calc Utility for IPv6 address calculations ipv6calc(8) 351
jobs Reports on background jobs bash(1) 134
join Joins the lines of two files according to relational algebra join(1) 114
kdesu Starts a program as a different user on KDE KDE: help:/kdesu 35
kill Terminates a background process bash(1), kill(1) 135, 196
killall Sends a signal to all processes matching the given name

killall(1) 197
klogd Accepts kernel log messages klogd(8) 145, 302, 306
kpartx Creates block device maps from partition tables kpartx(8) 218
ksh The ”‘Korn shell”’, an interactive command interpreter ksh(1) 39
last List recently-logged-in users last(1) 162
less Displays texts (such as manual pages) by page less(1) 48, 80
ln Creates (“hard” or symbolic) links ln(1) 76
locate Finds files by name in a file name database locate(1) 84
logger Adds entries to the system log files logger(1) 304
logout Terminates a shell session bash(1) 33
logrotate Manages, truncates and “rotates” log files logrotate(8) 314
logsurfer Searches the system log files for important events

www.cert.dfn.de/eng/logsurf/ 305
losetup Creates and maintains loop devices losetup(8) 218
ls Lists file information or directory contents ls(1) 67
lsattr Displays file attributes on ext2 and ext3 file systems lsattr(1) 189
lsblk Lists available block devices lsblk(8) 243
man Displays system manual pages man(1) 46
manpath Determines the search path for system manual pages manpath(1) 47
mkdir Creates new directories mkdir(1) 69
mkdosfs Creates FAT-formatted file systems mkfs.vfat(8) 238
mke2fs Creates ext2 or ext3 file systems mke2fs(8) 229
mkfifo Creates FIFOs (named pipes) mkfifo(1) 139
mkfs Manages file system creation mkfs(8) 224
mkfs.vfat Creates FAT-formatted file systems mkfs.vfat(8) 238
mkfs.xfs Creates XFS-formatted file systems mkfs.xfs(8) 235
mknod Creates device files mknod(1) 139
mkreiserfs Creates Reiser file systems mkreiserfs(8) 235
mkswap Initialises a swap partition or file mkswap(8) 239
more Displays text data by page more(1) 80
mount Includes a file system in the directory tree mount(8), mount(2) 240
mv Moves files to different directories or renames them mv(1) 75
nice Starts programs with a different nice value nice(1) 199
nmap Network port scanner, analyses open ports on hosts nmap(1) 379
nohup Starts a program such that it is immune to SIGHUP signals nohup(1) 199
od Displays binary data in decimal, octal, hexadecimal, … formats

od(1) 97
paste Joins lines from different input files paste(1) 114
pgrep Searches processes according to their name or other criteria

pgrep(1) 197

472 D Command Index

ping Checks basic network connectivity using ICMP ping(8) 372
ping6 Checks basic network connectivity (for IPv6) ping(8) 373
pkill Signals to processes according to their name or other criteria

pkill(1) 198
pr Prepares its input for printing—with headers, footers, etc. pr(1) 104
ps Outputs process status information ps(1) 194
pstree Outputs the process tree pstree(1) 195
pwd Displays the name of the current working directory pwd(1), bash(1) 67
reboot Restarts the computer reboot(8) 271
reiserfsck Checks a Reiser file system for consistency reiserfsck(8) 235
renice Changes the nice value of running processes renice(8) 199
reset Resets a terminal’s character set to a “reasonable” value tset(1) 95
resize_reiserfs Changes the size of a Reiser file system resize_reiserfs(8) 235
rm Removes files or directories rm(1) 75
rmdir Removes (empty) directories rmdir(1) 70
route Manages the Linux kernel’s static routing table route(8) 358
rpm Package management tool used by various Linux distributions (Red Hat,

SUSE, …) rpm(8) 418
rpm2cpio Converts RPM packages to cpio archives rpm2cpio(1) 422
runlevel Displays the previous and current run level runlevel(8) 265
scp Secure file copy program based on SSH scp(1) 391
sed Stream-oriented editor, copies its input to its output making changes in

the process sed(1) 55
set Manages shell variables and options bash(1) 122
setfacl Enables ACL manipulation setfacl(1) 185
sfdisk Non-interactive hard disk partitioner sfdisk(8) 217
sftp Secure FTP-like program based on SSH sftp(1) 391
sgdisk Non-interactive hard disk partitioning tool for GPT disks

sgdisk(8) 217
sh The “Bourne shell”, an interactive command interpreter sh(1) 39
shutdown Shuts the system down or reboots it, with a delay and warnings for

logged-in users shutdown(8) 271
slocate Searches file by name in a file name database, taking file permissions into

account slocate(1) 85
sort Sorts its input by line sort(1) 107
source Reads a file containing shell commands as if they had been entered on

the command line bash(1) 128
ssh ”‘Secure shell”’, creates secure interactive sessions on remote hosts

ssh(1) 388
ssh-add Adds private SSH keys to ssh-agent ssh-add(1) 394
ssh-agent Manages private keys and pass phrases for SSH ssh-agent(1) 394
ssh-copy-id Copies public SSH keys to other hosts ssh-copy-id(1) 393
ssh-keygen Generates and manages keys for SSH ssh-keygen(1) 392
sshd Server for the SSH protocol (secure interactive remote access)

sshd(8) 388
star POSIX-compatible tape archive with ACL support star(1) 185
su Starts a shell using a different user’s identity su(1) 154, 34
sudo Allows normal users to execute certain commands with administrator

privileges sudo(8) 152, 35
swapoff Deactivates a swap partition or file swapoff(8) 239
swapon Activates a swap partition or file swapon(8) 239
syslogd Handles system log messages syslogd(8) 145, 302
systemctl Main control utility for systemd systemctl(1) 277, 286
tac Displays a file back to front tac(1) 95
tail Displays a file’s end tail(1) 305, 96
tcpdump Network sniffer, reads and analyzes network traffic tcpdump(1) 385
tcsh The “Tenex C shell”, an interactive command interpreter tcsh(1) 39

D Command Index 473

telnet Opens connections to arbitrary TCP services, in particular TELNET (re-
mote access) telnet(1) 383

test Evaluates logical expressions on the command line
test(1), bash(1) 130

top Screen-oriented tool for process monitoring and control top(1) 199
tr Substitutes or deletes characters on its standard input tr(1) 100
tracepath Traces path to a network host, including path MTU discovery

tracepath(8) 377
tracepath6 Equivalent to tracepath, but for IPv6 tracepath(8) 378
traceroute Analyses TCP/IP routing to a different host traceroute(8) 375
tune2fs Adjusts ext2 and ext3 file system parameters tunefs(8) 232, 243
type Determines the type of command (internal, external, alias) bash(1) 41
unexpand “Optimises” tabs and spaces in its input lines unexpand(1) 102
uniq Replaces sequences of identical lines in its input by single specimens

uniq(1) 111
unset Deletes shell or environment variables bash(1) 122
update-rc.d Installs and removes System-V style init script links (Debian)

update-rc.d(8) 267
updatedb Creates the file name database for locate updatedb(1) 85
uptime Outputs the time since the last system boot as well as the system load

averages uptime(1) 144
useradd Adds new user accounts useradd(8) 171
userdel Removes user accounts userdel(8) 174
usermod Modifies the user database usermod(8) 174
vi Screen-oriented text editor vi(1) 54
vigr Allows editing /etc/group or /etc/gshadow with “file locking”, to avoid con-

flicts vipw(8) 176
vim Popular “clone” of the vi editor vim(1) 54
vimtutor Interactive introduction to vim vimtutor(1) 430
vol_id Determines file system types and reads labels and UUIDs

vol_id(8) 242
wc Counts the characters, words and lines of its input wc(1) 107
whatis Locates manual pages with a given keyword in its description

whatis(1) 49
whereis Searches executable programs, manual pages, and source code for given

programs whereis(1) 123
which Searches programs along PATH which(1) 123
xargs Constructs command lines from its standard input

xargs(1), Info: find 83
xclock Displays a graphical clock xclock(1x) 135
xconsole Displays system log messages in an X window xconsole(1) 302
xfs_mdrestore Restores an XFS metadata dump to a filesystem image

xfs_mdrestore(8) 236
xfs_metadump Produces metadata dumps from XFS file systems

xfs_metadump(8) 236
xinetd Improved Internet super server, supervises ports and starts services

xinetd(8) 342
xlogmaster X11-based system monitoring program

xlogmaster(1), www.gnu.org/software/xlogmaster/ 305
yum Convenient RPM package maintenance tool yum(8) 423

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

Index

This index points to the most important key words in this document. Particu-
larly important places for the individual key words are emphasised by bold type.
Sorting takes place according to letters only; “~/.bashrc” is therefore placed under
“B”.

., 66

., 128

.., 66
/, 147, 210
_ (environment variable), 293

access mode, 180
adduser, 172
administration tools, 152
alias, 42, 430
alien, 399, 414–415

--to-deb (option), 415
anacron, 298–299, 444

-s (option), 299
-u (option), 444

apropos, 49
apt, 400, 408
apt-cache, 399, 408–410
apt-get, 399, 402, 407–408, 410–411,

423–424
dist-upgrade (option), 407–408
install (option), 408
remove (option), 408
source (option), 408
upgrade (option), 408

apt-key, 413
aptitude, 399–401, 410–411
ar, 400–401, 415
arp, 338
at, 282, 292–295, 297

-c (option), 294
-f (option), 293
-q (option), 294

ATA, 202
atd, 294–295

-b (option), 294
-d (option), 294
-l (option), 294

atq, 293–294
-q (option), 294

atrm, 294

awk, 99, 113

bash, 38–39, 42, 46, 51, 67, 89–90, 99,
121–123, 126, 128, 130,
135–136, 188, 194, 394, 437,
441, 470–471

-c (option), 127
~/.bash_history, 125
batch, 293–295
Bell Laboratories, 16
Berkeley, 16
Bernstein, Daniel J., 389
bg, 134–135, 192
/bin, 41, 140–141, 143
/bin/ls, 123
/bin/sh, 439
/bin/sh, 296
/bin/true, 165
blkid, 242–243
block devices, 141
/boot, 139–140, 254
boot manager, 248
boot script, 264
boot sector, 248
/boot/grub, 253
/boot/grub/custom.cfg, 254
/boot/grub/grub.cfg, 254
/boot/grub/menu.lst, 252
Bottomley, James, 250
Bourne, Stephen L., 38
broadcast address, 344
BSD, 16
BSD license, 20
btrfs, 238
btrfs check

--repair (option), 238
buffers, 55

C, 16
Cameron, Jamie, 156
Canonical Ltd., 28
Card, Rémy, 226–227

476 Index

cat, 91, 94–95, 97, 138, 169, 441
cc, 244
cd, 41, 66–67, 86, 180, 391, 430
cfdisk, 217
chage, 173
character devices, 141
chattr, 189, 441

-R (option), 189
chfn, 165
chgrp, 176, 182–183, 187

-R (option), 183
child process, 132
chkconfig, 267, 443
chmod, 82, 128, 153, 181, 184, 186–187,

189
-R (option), 182
--reference=⟨name⟩ (option), 182

chown, 174, 182–183
-R (option), 183

chsh, 165
comm, 439
command substitution, 90
connectionless protocol, 336
convmv, 64
cp, 74–77, 79, 240, 391, 438

-a (option), 79
-i (option), 74
-L (option), 79
-l (option), 77, 79
-P (option), 79
-s (option), 79

cpio, 250, 252, 422–423, 428, 472
cron, 85, 267, 282, 292, 295–299, 314,

393, 395, 444
crontab, 124, 295–297, 437, 444

-e (option), 297
-l (option), 297, 444
-r (option), 297, 444
-u (option), 297

csh, 39
cut, 112–114, 436, 439

-c (option), 112–113
-d (option), 113
-f (option), 113
--output-delimiter (option), 113
-s (option), 114

datagrams, 336
date, 41, 120–121, 444
dd, 142, 212, 217–218, 234, 236, 240,

244–245, 258
DEBCONF_FRONTEND (environment

variable), 413
DEBCONF_PRIORITY (environment

variable), 414
Debian Free Software Guidelines, 21
Debian project, 27
debsums, 406, 412
debugfs, 232

-w (option), 232
definitions, 14
demand paging, 188
/dev, 141, 356, 438
/dev/block, 209
/dev/fd0, 139
/dev/klog, 325
/dev/log, 302, 311, 320
/dev/mapper, 218
/dev/null, 141, 146, 290, 438
/dev/random, 100, 142, 435
/dev/scd0, 231
/dev/sda, 208, 212
/dev/tty, 89
/dev/ttyS0, 154
/dev/urandom, 142
/dev/xconsole, 304
/dev/zero, 98, 142, 230
diff, 403
dig, 380–381, 383

-x (option), 382
Dijkstra, Edsger, 256
dirs, 67
disk, 216
disk cache, 224
DISPLAY (environment variable), 293,

394–395
dmesg, 145, 257, 306

-c (option), 306
-n (option), 306

dnsmasq, 367
domain (/etc/resolv.conf), 366
dpkg, 399–402, 404–407, 409, 411

-a (option), 401
--configure (option), 401
--force-depends (option), 401
--force-overwrite (option), 401
-i (option), 401
--install (option), 401
-L (option), 405
-l (option), 403
--list (option), 403
--listfiles (option), 405
-P (option), 402
--purge (option), 411
-r (option), 402
-s (option), 404, 406
--search (option), 406
--status (option), 404–405, 409
--unpack (option), 401

dpkg-reconfigure, 413
-f (option), 413
--frontend (option), 413
-p (option), 413
--priority (option), 413

dpkg-source, 403
dselect, 407, 410
dump, 188

Index 477

dumpe2fs, 232
dumpreiserfs, 235

e2fsck, 231–232, 235
-B (option), 231
-b (option), 231–232
-c (option), 231
-f (option), 231
-l (option), 231
-p (option), 231
-v (option), 231

e2label, 242
e4defrag, 233
echo, 41–42, 71, 95, 97, 120, 360, 430, 435

-n (option), 120
ed, 55
EDITOR (environment variable), 175, 297
egrep, 198
elvis, 54
env, 122
environment variable

_, 293
DEBCONF_FRONTEND, 413
DEBCONF_PRIORITY, 414
DISPLAY, 293, 394–395
EDITOR, 175, 297
HOME, 296
LANG, 108, 435
LC_ALL, 108
LC_COLLATE, 108, 436
LOGNAME, 296, 433
MAILTO, 296
MANPATH, 47
PAGER, 322
PATH, 66, 122–124, 128, 135, 436,

438, 473
SHELL, 296
SYSTEMD_LESS, 322
SYSTEMD_PAGER, 322
TERM, 80, 293
TZ, 120
VISUAL, 175, 297

environment variables, 121
/etc, 142, 155, 240
/etc/anacrontab, 298
/etc/apt/apt.conf, 408
/etc/apt/sources.list, 407
/etc/apt/trusted.gpg, 413
/etc/at.allow, 294
/etc/at.deny, 294
/etc/at.deny, 294
/etc/cron.allow, 297, 444
/etc/cron.d, 296
/etc/cron.daily, 85, 296–297
/etc/cron.deny, 297, 444
/etc/cron.hourly, 296–297
/etc/crontab, 296–297
/etc/dpkg/dpkg.cfg, 401
/etc/filesystems, 241–242

/etc/fstab, 142, 147–149, 209, 212,
225–226, 233, 240–241, 243,
245, 264, 277, 442

/etc/group, 163, 165, 168–169, 171,
174–176

/etc/grub.d, 254
/etc/grub.d/40_custom, 254
/etc/grub.inst, 253
/etc/gshadow, 169, 175–177, 473
/etc/hosts, 142, 367–368, 383
/etc/inetd.conf, 277
/etc/init, 269
/etc/init.d/*, 142
/etc/init.d/network, 362
/etc/init.d/networking, 362
/etc/inittab, 142, 262, 264–266, 271, 277,

280, 284–285
/etc/issue, 142
/etc/logrotate.conf, 314–315
/etc/logrotate.d, 314, 445
/etc/machine-id, 325
/etc/magic, 138
/etc/modules.conf, 356
/etc/motd, 142
/etc/mtab, 142, 144, 244, 442
/etc/network/interfaces, 361, 364, 377
/etc/network/options, 360
/etc/nologin, 271
/etc/nsswitch.conf, 170, 368, 383
/etc/passwd, 93, 116, 142, 149, 163–166,

168–172, 174–175, 296, 383,
391, 440

/etc/protocols, 446
/etc/rc.d/init.d, 142
/etc/resolv.conf, 366

domain, 366
nameserver, 366
options, 367
search, 366
sortlist, 367

/etc/rpmrc, 418
/etc/rsyslog.conf, 302, 307, 309
/etc/securetty, 154
/etc/services, 342, 383, 446–447
/etc/shadow, 86, 142, 164, 166–167,

169–171, 173–175, 177, 186,
391, 433, 439–440

/etc/shells, 39, 165
/etc/skel, 171
/etc/ssh, 389
/etc/ssh/ssh_config, 394
/etc/ssh/sshd_config, 393–394
/etc/sysconfig, 156, 362–363
/etc/sysconfig/locate, 85
/etc/sysconfig/network, 362
/etc/sysconfig/network-scripts, 363
/etc/sysconfig/network-scripts/ifcg-eth0,

363

478 Index

/etc/sysconfig/network/config, 362
/etc/sysconfig/network/routes, 363
/etc/sysconfig/static-routes, 363
/etc/sysconfig/sysctl, 360
/etc/sysctl.conf, 360, 366
/etc/syslog-ng/syslog-ng.conf, 310
/etc/syslog.conf, 302, 304, 307, 313, 445
/etc/systemd/journald.conf, 321–323
/etc/udev/rules.d, 356
/etc/udev/rules.d/70-persistent-

net.rules, 372
/etc/updatedb.conf, 85
/etc/yum.conf, 424
/etc/yum.repos.d, 424
ethereal, 386
ethernet, 330
ex, 54, 57, 59
exit, 34, 39, 41, 127
expand, 102

-i (option), 102
-t (option), 102

export, 121–122
-n (option), 122

fdisk, 212–217
-l (option), 213
-u (option), 213

fg, 134, 192, 384
fgrep, 124
FHS, 139
file, 138
file attributes, 188
find, 81–84, 433

-exec (option), 83
-maxdepth (option), 433
-name (option), 433
-ok (option), 83
-print (option), 81, 83
-print0 (option), 83

finger, 165
flags, 340
fmt, 103, 105

-c (option), 103–104
-w (option), 103

Fox, Brian, 38
fragmentation, 337
free, 144
Free Software Foundation, 17
freeware, 19
fsck, 225–226, 231–233, 236, 259

-A (option), 226
-a (option), 226
-f (option), 226
-N (option), 226
-p (option), 226
-R (option), 226
-s (option), 226
-t (option), 225, 236
-V (option), 226

-v (option), 226
fsck.ext2, 231
fsck.xfs, 236
FSF, 17

Garrett, Matthew, 250
gated, 358
gcc, 64
gdisk, 216–217, 245
gears, 135
gedit, 59
Gerhards, Rainer, 306
getent, 169–170, 382–383, 439
getfacl, 185
getmail_fetch, 396
getty, 284
GNOME, 59, 413
GNU, 17
gpasswd, 176

-A (option), 176
-a (option), 176
-d (option), 176

GPL, 17
grep, 47, 88, 91, 94–95, 112, 140, 146,

169–170, 195, 197, 438, 445
-H (option), 438

groff, 47, 49, 54
group, 161

administrative, 169
administrator, 176
password, 169, 176

groupadd, 175
-g (option), 175

groupdel, 175–176
groupmod, 174–175

-g (option), 176
-n (option), 176

groups, 153
groups, 162
GRUB, 248

boot problems, 258
grub, 253

--device-map (option), 253
lock (option), 442
password (option), 255

grub-install, 253
grub-md5-crypt, 255
grub-mkconfig, 254–255
gzip, 316, 415

-6 (option), 316

Hakim, Pascal, 298
halt, 271
hard disks

SCSI, 203
hash, 123

-r (option), 123
hd, 98
head, 96–97

Index 479

-c (option), 96
-n (option), 96
-𝑛 (option), 96

hello, 400, 403
help, 41, 46, 123, 126
hexdump, 98–99, 116, 470
history, 125–126

-c (option), 126
HOME (environment variable), 296
/home, 80, 145–146, 165–166, 210
home directory, 161
/home/opt, 210
Homme, Kjetil Torgrim, 197
host, 380–381, 383

-a (option), 381
-l (option), 381
-t (option), 381

-i, 432
IANA, 341
id, 36, 162, 164, 188, 438

-G (option), 162
-g (option), 162
-Gn (option), 162
-n (option), 162
-u (option), 162

id_ed25519, 393
id_ed25519.pub, 393
id_rsa, 393
id_rsa.pub, 393
ifconfig, 356–357, 359, 361, 366, 372, 446

-a (option), 372
ifdown, 362–363, 378

-a (option), 362
ifup, 362–363, 378

-a (option), 362
inetd, 342
info, 49
init, 142, 225, 255, 257, 264–266, 443
init scripts, 266, 272

parameters, 266
initctl, 270
initctl start, 270
initctl status, 270
initctl stop, 270
inode numbers, 76
insserv, 267, 443
ip, 360–361, 366, 375

addr (option), 360
addr add (option), 361
brd + (option), 361
help (option), 360
link (option), 360
local (option), 361
route (option), 360

IP forwarding, 360
ipv6calc, 351
ISOLINUX, 248

jobs, 134–135, 192
Johnson, Jeff, 418
join, 114–115
journalctl, 321–327

-b (option), 324–325
-f (option), 324
-k (option), 324
--list-boots (option), 325
-n (option), 324
--no-pager (option), 322
--output=verbose (option), 325
-p (option), 324
--since (option), 324
-u (option), 324
--until (option), 324

journald, 327
Journaling, 227
Joy, Bill, 54

kate, 59
KDE, 59, 413
kdesu, 35
kernel modules, 141
kill, 135, 196–198, 267
killall, 196–198

-i (option), 197
-l (option), 197
-w (option), 197

klogd, 145, 302, 306, 310–311
Knoppix, 28
Kok, Auke, 268
konsole, 165
Korn, David, 38
kpartx, 217–218, 220

-v (option), 218
Krafft, Martin F., 27
ksh, 39

label, 242
LANG (environment variable), 108, 435
last, 162–163
LC_ALL (environment variable), 108
LC_COLLATE (environment variable), 108,

436
less, 48, 80–81, 89, 92, 169, 305, 322
/lib, 141
/lib/modules, 141
linux-*.tar.gz, 17
linux-0.01.tar.gz, 429
ln, 76–79, 139

-b (option), 79
-f (option), 79
-i (option), 79
-s (option), 78–79, 139
-v (option), 79

Local area networks, 332
locate, 84–86, 433, 473

-e (option), 85
logger, 293, 304, 310, 314, 323

480 Index

login, 154, 165, 271
LOGNAME (environment variable), 296, 433
logout, 33
logrotate, 314–317, 323

-f (option), 314
--force (option), 314

logsurfer, 305
losetup, 218

-a (option), 218
-f (option), 218

lost+found, 146, 232
lpr, 104
ls, 49, 67–69, 71, 73, 76, 79, 90, 92–93,

107, 112, 123, 140, 164,
180–181, 189, 430–431,
433–434

-a (option), 68
-d (option), 69, 430
-F (option), 68
-H (option), 79
-i (option), 76
-L (option), 79
-l (option), 68–69, 79, 164, 181, 189
-p (option), 68
-U (option), 92

lsattr, 189, 441
-a (option), 189
-d (option), 189
-R (option), 189

LSB, 400
lsblk, 243
lsmod, 372, 446
lspci, 372

-k (option), 372

mail, 165
MAILTO (environment variable), 296
man, 46–49, 72, 81, 144

-a (option), 48
-f (option), 49
-k (option), 49

MANPATH (environment variable), 47
manpath, 47
Mason, Chris, 224
master boot record, 248
Matilainen, Panu, 418
/media, 145
/media/cdrom, 145
/media/dvd, 145
/media/floppy, 145
mesg, 272
Minix, 16, 226
minsize, 316
mkdir, 69–70, 138–140

-p (option), 69
mkdosfs, 238–239
mke2fs, 224, 229–230, 233

-F (option), 230
mkfifo, 139

mkfs, 224–225, 229–230, 237–238, 249
-t (option), 224, 229–230, 238

mkfs.btrfs

-d (option), 237
-L (option), 243

mkfs.vfat, 238
mkfs.xfs, 235–236

-l (option), 236
mknod, 139
mkreiserfs, 235
mkswap, 239–240, 243
/mnt, 145, 230
more, 80

-l (option), 80
-n ⟨number⟩ (option), 80
-s (option), 80

Morton, Andrew, 22
mount, 124, 140, 212, 233, 240–242

-t (option), 241
mount point, 240
Multics, 16
Murdock, Ian, 27
mv, 75–77, 240, 431, 438

-b (option), 75
-f (option), 75
-i (option), 75
-R (option), 76, 431
-u (option), 75
-v (option), 75

nameserver (/etc/resolv.conf), 366
NAT, 348
nc, 384
netcat, 384
netstat, 378–379

-l (option), 378–379
-t (option), 378–379
-u (option), 378–379

network address, 344
network classes, 346
network mask, 344
newgrp, 169
nice, 199, 294
nl, 105–106

-b (option), 106
-i (option), 106
-n (option), 106
-w (option), 106

nmap, 378–380, 385
-A (option), 380

nobody, 85
nohup, 199
nohup.out, 199
Novell, 26
NSA, 389
nslookup, 381

objectives, 453
od, 97–98, 100, 435

Index 481

-A (option), 435
-N (option), 98, 435
-t (option), 97–98, 435
-v (option), 98

Open Source, 17
OpenSSH, 388
/opt, 142–143, 146, 210
options (/etc/resolv.conf), 367

Packages.gz, 412–413
PAGER (environment variable), 322
parted, 214–216
passwd, 164, 172–173, 175–176, 185–186,

439
-l (option), 173
-S (option), 173
-u (option), 173

passwd -n, 173
passwd -w, 173
passwd -x, 173
passwords, 161, 164, 166

changing, 172
group —, 169, 176
GRUB, 255
setting up, 172
shadow –, 164
shadow —, 166

paste, 113–115
-d (option), 114
-s (option), 114

PATH (environment variable), 66,
122–124, 128, 135, 436, 438,
473

PDP-11, 16
perl, 113
pgrep, 197–198

-a (option), 197
-d (option), 197
-f (option), 198
-G (option), 198
-l (option), 197
-n (option), 198
-o (option), 198
-P (option), 198
-t (option), 198
-u (option), 198

ping, 338, 372–373, 375–376, 446–447
-a (option), 373
-b (option), 373
-c (option), 373
-f (option), 373
-I (option), 373
-i (option), 373
-n (option), 373
-s (option), 373

ping6, 373, 375
pipeline, 92
pipes, 92
pkill, 197–198, 288

--signal (option), 198
Poettering, Lennart, 262, 276
popd, 67
port numbers, 339
port scanner, 379
ports, 341
pppd, 363
pr, 104–105
pre-emptive multitasking, 193
primary group, 164
printf, 99
priority, 198
/proc, 143–144, 147, 192, 194, 441
/proc/cpuinfo, 143
/proc/devices, 143
/proc/dma, 143
/proc/filesystems, 241–242
/proc/interrupts, 143–144
/proc/ioports, 144
/proc/kcore, 144, 438
/proc/kmsg, 306
/proc/loadavg, 144
/proc/meminfo, 144
/proc/mounts, 144
/proc/scsi, 144
/proc/swaps, 239–240
/proc/sys/kernel/pid_max, 441
process state, 193
ps, 144, 185, 194–198

a (option), 194–195
ax (option), 195
-C (option), 195
--forest (option), 194, 196
--help (option), 194
-l (option), 194
-o (option), 195
p (option), 198
r (option), 194
T (option), 194
U (option), 194
-u (option), 185
x (option), 194–195

pseudo devices, 141
pseudo-users, 163
pstree, 195–196

-G (option), 196
-p (option), 196
-u (option), 196

“public-domain” software, 19
pushd, 67
pwconv, 170
pwd, 67, 86
Python, 413

Qt, 21

Ramey, Chet, 38
rcnetwork, 362
reboot, 271

482 Index

Red Hat, 22
reference counter, 76
registered ports, 341
Reiser, Hans, 234
reiserfsck, 235
Release, 412
Release.gpg, 412
Remnant, Scott James, 262, 268
renice, 199
reset, 95
resize_reiserfs, 235
restart, 443
return code, 193
return value, 126
Ritchie, Dennis, 16, 186
rm, 42, 75–76, 79, 83, 180, 306, 430–431

-f (option), 76
-i (option), 75–76, 432
-r (option), 76
-v (option), 76

rmdir, 70, 431
-p (option), 70

rmmod, 446
/root, 139, 146
root, 380
root directory, 139
route, 358–359, 361, 363, 375

-host (option), 359
-net (option), 359
netmask ⟨netmask⟩ (option), 359

routed, 358
Routing, 339
rpm, 400, 415, 418, 420, 423, 427

-a (option), 420
-c (option), 421
-d (option), 421
-e (option), 419
-F (option), 419
-f (option), 420
-h (option), 419
-i (option), 418–420
-l (option), 420–421
--nodeps (option), 419
-p (option), 420
--provides (option), 421
-q (option), 419
-qi (option), 427
--requires (option), 421
--test (option), 419
-U (option), 419
-V (option), 422
-v (option), 418, 420
-vv (option), 418
--whatprovides (option), 421
--whatrequires (option), 421

rpm2cpio, 422–423
~/.rpmrc, 418
/run/log/journal, 321

runlevel, 271–272
changing —, 265

runlevel, 265, 288, 442
runlevels, 262

configuring —, 267
meaning, 265

/sbin, 141, 143
/sbin/init, 262
Scheidler, Balazs, 310
scp, 391, 393–394

-r (option), 391
search (/etc/resolv.conf), 366
sed, 55
SELinux, 152
set, 122
setfacl, 185
sfdisk, 217, 245, 258
sftp, 391, 394
sgdisk, 217
sh, 39
SHELL (environment variable), 296
shell script, 128
shell variables, 121
shutdown, 153, 264, 271–272, 285–286

-c (option), 443
-r (option), 271

Shuttleworth, Mark, 28
Sievers, Kay, 262, 276
signals, 196
single-user mode, 267
SkoleLinux, 28
sleep, 198, 396, 437
slocate, 85–86, 433
Snowden, Edward, 389
sort, 93–94, 107–109, 111–112, 117, 124,

130, 145, 340, 436, 439
-b (option), 109–110
-f (option), 436
-k (option), 108
-n (option), 111
-r (option), 110
-t (option), 110
-u (option), 436, 482

-u, 112
sortlist (/etc/resolv.conf), 367
source, 128
/srv, 145, 211
~/.ssh, 393
ssh, 162, 340, 383, 388–397, 447

-f (option), 396
-KR (option), 396
-L (option), 395–396
-N (option), 395
-R (option), 395–396
-X (option), 394

ssh-add, 394
-D (option), 394

ssh-agent, 393–394

Index 483

ssh-copy-id, 393
ssh-keygen, 389, 392–394

-l (option), 389
-t ed25519 (option), 393

~/.ssh/authorized_keys, 393
~/.ssh/config, 390
~/.ssh/known_hosts, 390–391, 447
~/.ssh/ssh_config, 391
~/.ssh_config, 394
sshd, 197, 383, 388, 394
Stallman, Richard M., 17
standard channels, 88
star, 185
su, 34, 36, 154–155, 163, 293, 297, 304,

438, 440
subnetting, 346
sudo, 35, 152, 155
super user, 152
superblock, 224
SUSE, 22
SuSEconfig, 156, 362
swap partition, 239
swapoff, 239
swapon, 239–240
symbolic links, 78
/sys, 144
/sys/bus/scsi/devices, 209
sysctl, 366
syslog, 267, 443
Syslog-NG, 310
syslog-ng, 310
syslog.conf, 305
syslogd, 144–145, 257, 267, 294, 296, 302,

304–308, 310–315, 323,
444–445

-r (option), 304, 311, 445
system load, 293
systemctl, 277, 285–290, 320, 443

--full (option), 287
--kill-who (option), 287
-l (option), 287, 320
--lines (option), 287
-n (option), 287
--now (option), 289
-s (option), 287
--signal (option), 287
-t (option), 286–287

systemd, 288
systemd-escape, 282

-p (option), 282
-u (option), 282

systemd-journald, 321–323
SYSTEMD_LESS (environment variable),

322
SYSTEMD_PAGER (environment variable),

322

tac, 95, 97, 436
-b (option), 95

-s (option), 95
tail, 96–97, 305, 323–324, 434

-c (option), 96
-f (option), 96, 305, 323
-n (option), 96
-𝑛 (option), 96

Tanenbaum, Andrew S., 16
tar, 185, 250, 401, 415, 418, 438
tcpdump, 385, 397
tcsh, 39
tee, 93, 434

-a (option), 93
telinit, 264–266, 268

q (option), 264
telnet, 383–384
TERM (environment variable), 80, 293
termination, 204
test, 42, 130, 430

-f (option), 437
Thawte, 28
Thompson, Ken, 16
/tmp, 145, 147, 175, 187, 211, 440
top, 199
Torvalds, Linus, 16, 19, 22
touch, 175
tr, 100–102, 435

-c (option), 100, 435
-s (option), 101, 435

tracepath, 375, 377–378
tracepath6, 378
traceroute, 375–378, 446

-6 (option), 376
-I (option), 376
-M tcp (option), 376
-p (option), 376
-T (option), 376

traceroute6, 376, 378
Ts’o, Theodore, 228
tune2fs, 231–233, 243, 442

-c (option), 442
-L (option), 243
-l (option), 231
-m (option), 442
-u (option), 442

Tweedie, Stephen, 227
type, 41, 123
TZ (environment variable), 120
Tzur, Itai, 298

Ubuntu, 28
UID, 161
umask, 184, 188

-S (option), 184
umount, 148, 240
uname, 162

-r (option), 162
unexpand, 102

-a (option), 102
uniq, 111

484 Index

Unix, 16
unset, 122
update-grub, 254
update-rc.d, 267
updatedb, 85, 433
uptime, 144
user accounts, 160
user database, 163, 166

stored elsewhere, 166
user name, 161
useradd, 171–172, 174–175, 440
userdel, 174–175

-r (option), 174
usermod, 174–175, 440
/usr, 139, 143
/usr/bin, 41, 139, 143
/usr/lib, 143
/usr/lib/rpm, 418
/usr/local, 143, 145, 210, 419
/usr/local/bin, 139
/usr/sbin, 143
/usr/share, 143
/usr/share/doc, 143
/usr/share/file, 138
/usr/share/file/magic, 138
/usr/share/info, 143
/usr/share/man, 47, 143
/usr/share/zoneinfo, 120
/usr/src, 143
UUID, 243

van de Ven, Arjan, 268
/var, 144–145, 147, 211
/var/lib/dpkg/info, 406
/var/log, 144, 305, 320, 327
/var/log/journal, 321
/var/log/messages, 155, 257, 322, 439, 444
/var/log/syslog, 257
/var/mail, 78, 144, 174
/var/spool, 147
/var/spool/atjobs, 294
/var/spool/atspool, 294
/var/spool/cron, 144
/var/spool/cron/allow, 297
/var/spool/cron/crontabs, 295–296
/var/spool/cron/deny, 297, 444
/var/spool/cups, 144
/var/tmp, 145, 147
Verisign, 28
vi, 54–60, 78, 157, 175, 297
vigr, 175–176

-s (option), 176
vim, 54, 59, 428, 473
vimtutor, 430
vipw, 175–176, 440

-s (option), 175
VISUAL (environment variable), 175, 297
vmlinuz, 140
vol_id, 242

Volkerding, Patrick, 26

w, 216
wall, 272–274

-n (option), 273
--nobanner (option), 273

wc, 91, 107, 117, 130, 436–437
-l (option), 130

Webmin, 156
well-known ports, 341
whatis, 49
whereis, 123, 437
which, 123, 437
wide area networks, 332
wireshark, 385–386, 397
write, 273

Xandros, 28
xargs, 83

-0 (option), 83
-r (option), 83

xclock, 135, 194
-update 1 (option), 135

xconsole, 302
xfs_copy, 236
xfs_info, 236
xfs_mdrestore, 236
xfs_metadump, 236
xfs_repair, 236

-n (option), 236
xfsdump, 236
xfsrestore, 236
xinetd, 342
xlogmaster, 305
xterm, 124, 165

YUM, 423
yum, 423, 425–427

--disablerepo (option), 424
--enablerepo= (option), 423
--obsoletes (option), 425

yumdownloader, 428
--resolve (option), 428
--source (option), 428
--urls (option), 428

zombies, 193
zsh, 172

	Contents
	List of Tables
	List of Figures
	Preface
	Introduction
	What is Linux?
	Linux History
	Free Software, ``Open Source'' and the GPL
	Linux—The Kernel
	Linux Properties
	Linux Distributions

	Using the Linux System
	Logging In and Out
	Switching On and Off
	The System Administrator

	Who's Afraid Of The Big Bad Shell?
	Why?
	What Is The Shell?

	Commands
	Why Commands?
	Command Structure
	Command Types
	Even More Rules

	Getting Help
	Self-Help
	The *help Command and the *–help Option
	The On-Line Manual
	Overview
	Structure
	Chapters
	Displaying Manual Pages

	Info Pages
	HOWTOs
	Further Information Sources

	The vi Editor
	Editors
	The Standard—*vi
	Overview
	Basic Functions
	Extended Commands

	Other Editors

	Files: Care and Feeding
	File and Path Names
	File Names
	Directories
	Absolute and Relative Path Names

	Directory Commands
	The Current Directory: *cd & Co.
	Listing Files and Directories—*ls
	Creating and Deleting Directories: *mkdir and *rmdir

	File Search Patterns
	Simple Search Patterns
	Character Classes
	Braces

	Handling Files
	Copying, Moving and Deleting—*cp and Friends
	Linking Files—*ln and ln -s
	Displaying File Content—*more and *less
	Searching Files—*find
	Finding Files Quickly—*locate and *slocate

	Standard I/O and Filter Commands
	I/O Redirection and Command Pipelines
	Standard Channels
	Redirecting Standard Channels
	Command Pipelines

	Filter Commands
	Reading and Writing Files
	Outputting and Concatenating Text Files—*cat and *tac
	Beginning and End—*head and *tail
	Just the Facts, Ma'am—*od and *hexdump

	Text Processing
	Character by Character—*tr, *expand and *unexpand
	Line by Line—*fmt, *pr and so on

	Data Management
	Sorted Files—*sort and *uniq
	Columns and Fields—*cut, *paste etc.

	More About The Shell
	Simple Commands: *sleep, *echo, and *date
	Shell Variables and The Environment
	Command Types—Reloaded
	The Shell As A Convenient Tool
	Commands From A File
	The Shell As A Programming Language
	Foreground and Background Processes

	The File System
	Terms
	File Types
	The Linux Directory Tree
	Directory Tree and File Systems
	Removable Media

	System Administration
	Introductory Remarks
	The Privileged root Account
	Obtaining Administrator Privileges
	Distribution-specific Administrative Tools

	User Administration
	Basics
	Why Users?
	Users and Groups
	People and Pseudo-Users

	User and Group Information
	The /etc/passwd File
	The */etc/shadow File
	The */etc/group File
	The */etc/gshadow File
	The getent Command

	Managing User Accounts and Group Information
	Creating User Accounts
	The *passwd Command
	Deleting User Accounts
	Changing User Accounts and Group Assignment
	Changing User Information Directly—*vipw
	Creating, Changing and Deleting Groups

	Access Control
	The Linux Access Control System
	Access Control For Files And Directories
	The Basics
	Inspecting and Changing Access Permissions
	Specifying File Owners and Groups—*chown and *chgrp
	The umask

	Access Control Lists (ACLs)
	Process Ownership
	Special Permissions for Executable Files
	Special Permissions for Directories
	File Attributes

	Process Management
	What Is A Process?
	Process States
	Process Information—*ps
	Processes in a Tree—pstree
	Controlling Processes—*kill and *killall
	pgrep and pkill
	Process Priorities—*nice and *renice
	Further Process Management Commands—*nohup and *top

	Hard Disks (and Other Secondary Storage)
	Fundamentals
	Bus Systems for Mass Storage
	Partitioning
	Fundamentals
	The Traditional Method (MBR)
	The Modern Method (GPT)

	Linux and Mass Storage
	Partitioning Disks
	Fundamentals
	Partitioning Disks Using fdisk
	Formatting Disks using GNU parted
	gdisk
	More Partitioning Tools

	Loop Devices and kpartx
	The Logical Volume Manager (LVM)

	File Systems: Care and Feeding
	Creating a Linux File System
	Overview
	The ext File Systems
	ReiserFS
	XFS
	Btrfs
	Even More File Systems
	Swap space

	Mounting File Systems
	Basics
	The *mount Command
	Labels and UUIDs

	The *dd Command

	Booting Linux
	Fundamentals
	GRUB Legacy
	GRUB Basics
	GRUB Legacy Configuration
	GRUB Legacy Installation
	GRUB 2
	Security Advice

	Kernel Parameters
	System Startup Problems
	Troubleshooting
	Typical Problems
	Rescue systems and Live Distributions

	System-V Init and the Init Process
	The Init Process
	System-V Init
	Upstart
	Shutting Down the System

	Systemd
	Overview
	Unit Files
	Unit Types
	Dependencies
	Targets
	The systemctl Command
	Installing Units

	Time-controlled Actions—*cron and *at
	Introduction
	One-Time Execution of Commands
	*at and *batch
	at Utilities
	Access Control

	Repeated Execution of Commands
	User Task Lists
	System-Wide Task Lists
	Access Control
	The *crontab Command
	Anacron

	System Logging
	The Problem
	The Syslog Daemon
	Log Files
	Kernel Logging
	Extended Possibilities: Rsyslog
	The ``next generation'': Syslog-NG
	The *logrotate Program

	System Logging with Systemd and ``The Journal''
	Fundamentals
	Systemd and journald
	Log Inspection

	TCP/IP Fundamentals
	History and Introduction
	The History of the Internet
	Internet Administration

	Technology
	Overview
	Protocols

	TCP/IP
	Overview
	End-to-End Communication: IP and ICMP
	The Base for Services: TCP and UDP
	The Most Important Application Protocols

	Addressing, Routing and Subnetting
	Basics
	Routing
	IP Network Classes
	Subnetting
	Private IP Addresses
	Masquerading and Port Forwarding

	IPv6
	IPv6 Addressing

	Linux Network Configuration
	Network Interfaces
	Hardware and Drivers
	Configuring Network Adapters Using ifconfig
	Configuring Routing Using route
	Configuring Network Settings Using ip

	Persistent Network Configuration
	DHCP
	IPv6 Configuration
	Name Resolution and DNS

	Network Troubleshooting
	Introduction
	Local Problems
	Checking Connectivity With ping
	Checking Routing Using traceroute And tracepath
	Checking Services With netstat And nmap
	Testing DNS With host And dig
	Other Useful Tools For Diagnosis
	*telnet and *netcat
	*tcpdump
	*wireshark

	The Secure Shell
	Introduction
	Logging Into Remote Hosts Using *ssh
	Other Useful Applications: *scp and *sftp
	Public-Key Client Authentication
	Port Forwarding Using SSH
	X11 Forwarding
	Forwarding Arbitrary TCP Ports

	Software Package Management Using Debian Tools
	Overview
	The Basis: dpkg
	Debian Packages
	Package Installation
	Deleting Packages
	Debian Packages and Source Code
	Package Information
	Package Verification

	Debian Package Management: The Next Generation
	APT
	Package Installation Using apt-get
	Information About Packages
	*aptitude

	Debian Package Integrity
	The debconf Infrastructure
	alien: Software From Different Worlds

	Package Management with RPM and YUM
	Introduction
	Package Management Using *rpm
	Installation and Update
	Deinstalling Packages
	Database and Package Queries
	Package Verification
	The rpm2cpio Program

	YUM
	Overview
	Package Repositories
	Installing and Removing Packages Using YUM
	Information About Packages
	Downloading Packages

	Sample Solutions
	Example Files
	LPIC-1 Certification
	Overview
	Exam LPI-101
	Exam LPI-102
	LPI Objectives In This Manual

	Command Index
	Index

