
Performance Harness for JMS: Manual

IBM Performance Harness for
Java(tm) Message Service

For all updates and feedback, please visit
http://www.alphaworks.ibm.com/tech/perfharness

Internal users should use
https://w3.webahead.ibm.com/w3ki/display/perfharness

Table of Contents

1. What is Performance Harness for JMS
2. What's new in version 1.2?

3. Using Performance Harness for JMS
4. Requirements

5. HOWTO
o How to set the Java classpath

o How to use the built in help
o How to choose your JMS test class

o How to choose from the available JMS provider classes
o How to use JNDI administered objects

o How to use multiple JMS destinations
o How to use multiple JMS destinations

o How to use the non-JMS "WebSphere MQ classes for
Java"

o How to use the HTTP module

6. Example Invocations
7. Command-line parameter reference

8. Troubleshooting
9. Acknowledgments

10. Feedback

What is Performance Harness for JMS

The Java™ Message Service API offers a vendor-neutral approach to
messaging in Java and J2EE environments. Both for vendors

developing JMS services and customers using those services, an
understanding of the performance characteristics is one of the key

features of creating the best solution possible.

Performance Harness for Java™ Message Service is a flexible and

modular Java package for performance testing of JMS scenarios and
providers. It provides a complete set of JMS functionality as well as

many other features such as throttled operation (a fixed rate and/or
number of messages), multiple destinations, live performance

reporting, JNDI and multiple vendor plug-ins. It is one of the many

Performance Harness for JMS: Manual

tools used by WebSphere MQ, WebSphere Message Broker, and

WebSphere ESB performance teams for tests ranging from a single
client to more than 10,000 clients.

There are many modules implementing point-to-point and publish-

subscribe modes of operation, which can be explored through the
documentation. Each of these modules, when selected, sends

and/or receives messages from the selected JMS provider as fast
they can (unless a certain rate is specified). They share a common

command-line reporting mechanism and will print their current
throughput rate on a user-selected periodic basis and also output

summary statistics at the end of a test. The included help and

documentation provide detailed usage instructions and describe
many further features and configuration parameters for

investigation.

With the release of v1.2 the tool is now extending beyond the
realms of JMS Messaging to include native MQ as well as support for

other transports such as HTTP/SOAP to allow the tool to be used to
more fully drive the various transports that ESB implementations

such as WebSphere ESB and WebSphere Message Broker provide.

What's new in version 1.2?

• Support for WebSphere MQv7

• Support for Java5
• HTTP module added to allow the testing of HTTP and SOAP

Transports
• New options to many modules

• Many Bug Fixes

Using Performance Harness for JMS

As with any tool, this one has many different uses depending on the
goals of the user, and can also be thoroughly misdirected to

produce useless data. Ensure the performance scenarios you choose

to measure bear some relation to the real world. Failure to do so
will inevitably lead to incorrect facts, figures, assumptions and

decisions. For instance, it is common to see competitive product
comparisons being "won conclusively" by using scenarios that mean

nothing in real customer environments. It is also worthy of note
that performance is usually not the most important factor in any

such comparison, it is simply the easiest to create charts from.

Requirements

• Java 5 or later.

Performance Harness for JMS: Manual

• Client jars from your JMS provider.

• WebSphere MQv7 Client libraries if you wish to run any of the
MQ Java related classes

Migration from previous versions

• As stated in the requirements you will now required to use
Java 5.

• Users of the WebSphere MQ related modules will need to use
WebSphere MQ v7 client libraries.

• Support for 1.02 JMS clients has been removed as it’s
expected all providers to now be JMS 1.1 compliant. Users of

these older modules should migrate to the 1.1 equivalent.
• The WBIMB module has now been renamed to WMB.

HOWTO

This section should explain how to get up and running with
JMSPerfHarness. There are many more parameters beyond those

discussed here, please use the parameter reference in this doc to
see the many additional capabilities.

How to set the Java classpath

JMSPerfHarness does not run as an executable Jar. This is
unfortunate, but unavoidable due to the nature of Jar file manifests

and the requirement for this application to be deployed against
multiple products. Make sure the perfharness.jar and any required

provider jars are on the Java classpath when invoking the tool. It is
assumed you have already accomplished this although the tool will

warn you if you have not.

Therefore invoking JMSPerfHarness can be done in two ways

• Add it to the classpath.

On Windows use:
• set CLASSPATH=perfharness.jar;%CLASSPATH%

• java JMSPerfHarness

On UNIX platforms use:

export CLASSPATH=perfharness.jar:$CLASSPATH

java JMSPerfHarness

• Include the classpath on the Java invocation.
On Windows use

• java -cp "perfharness.jar;%CLASSPATH%" JMSPerfHarness

Performance Harness for JMS: Manual

On UNIX platforms use

java -cp "perfharness.jar:$CLASSPATH" JMSPerfHarness

How to use the built in help

Performance Harness for Java Message Service is a very modular
tool and certain modules need to be selected via the command-line

for different modes of operation. At any time, using "-h" will print
help on the current context (i.e. the currently loaded modules).

Parameter Description

-h
At any time, using "-h" will print help on the current
context (i.e. the currently active modules). It will not

give help on modules that are not active.

-hf
This performs the same as "-h", but prints additional
details on parameters and includes other, seldom used,

parameters

-hm

This gives the full help for a named module, regardless
of whether it is active or not. You do not need to pass

the full classname as the tool will search intelligently for
the named class. Example: -hm WebSphereMQ or -hm

mqjava.Responder

How to choose your JMS test class

The tool's operation is defined by the test class being run and there

are many selections of test class. Each of the following classes may
provide a few additional options to fine tune behaviour. More details

can be found in the previous section.

Parameter Description

-tc jms.r11.Sender Sends messages to a named queue destination.

-tc

jms.r11.Receiver

Receives messages from a named queue

destination. This can be used in conjunction
with the Sender class.

-tc jms.r11.PutGet
Sends a message to queue then retrieves the
same message (using CorrelationId). This is

the default setting.

-tc
jms.r11.Requestor

Sends a message to a queue then waits for a
corresponding reply on a second queue.

-tc

jms.r11.Responder

Waits for a message on a queue then replies to

it on another queue. This can be used in
conjunction with the Requestor class.

Performance Harness for JMS: Manual

-tc

jms.r11.Publisher
Sends messages to a named topic destination.

-tc
jms.r11.Subscriber

subscribes and receives messages from a
named topic. This can be used in conjunction

with the Requestor class.

The above classes all use the JMS 1.1 API.

How to choose from the available JMS provider
classes

The tool comes packages with three JMS provider classes. These are
selected with the "-pc" parameter (which is case-specific)

Parameter Description

-pc
WebSphereMQ

This allows simple command-line access to IBM
WebSphere MQ JMS settings. WebSphereMQ

provides a full JMS implementation using an

industry-proven messaging engine with ten years of
pedigree. The parameters this gives access to care

listed in the previous section.

-pc WMB

This allows simple command-line access to IBM

WebSphere Business Integrator Message Broker

(and Event Broker) JMS settings. Aside from its
many transformation and routing capabilities, WMB

builds upon the JMS capability of WebSphere MQ. It
provides additional high-performance nonpersistent

publish-subscribe, multicast networking and
content-based-routing (above and beyond the

capability of JMS selectors). The parameters this
gives access to are listed in the previous section.

-pc JNDI

This is the default setting. JNDI (Java Naming and

Directory Interface) provides a method for a pure
JMS application to work with any JMS vendor

(including the above products).

How to use JNDI administered objects

JNDI is the default provider class and the most flexible, allowing

object lookup from any JMS vendor. The JNDI objects will need to
be created beforehand, in whatever provider-specific fashion is

documented by that vendor (although some products also provide
auto-creation facilities linked to JNDI lookup).

Performance Harness for JMS: Manual

To enable JNDI you must specify the "-cf" property. This can be

done even with vendor-specific provider classes (in which case most
of the vendor-specific parameters those modules provide will be

ignored).

JNDI parameters

The JNDI specification provides for several ways to pass parameters

to an application. JNDI parameters may be specified from three
sources and are evaluated in the following order in the case of

duplication.

1. The "-ii" and "-iu" parameters are passed directly to the
InitialContext.

2. The Java environment parameters (eg. -
Djava.naming.initial.context=xxx).

3. A jndi.properties file placed on the classpath of the
application. These are described in more detail here. You

must consult the client manuals for your product to fill

in these settings.

Parameter Description

-ii

com.sun.jndi.fscontext.RefFSContextFact
ory

The class your

vendor specifies for
the JNDI

InitialContextFactor
y.

-iu file:/C:/JNDI-Directory

A URL parameter to

the above class
which tells it which

configuration to
use.

-cf test/connfactory

The name of the

JNDI
ConnectionFactory

object
JMSPerfHarness is

to use.

4. When using JNDI, the destinations you specify are the names
of the JNDI objects, not necessarily the same as the

underlying queue or topic destinations. This should only be of
importance if you mix usage of JNDI and non-JNDI provider

classes.

JNDI with WebSphere MQ

Performance Harness for JMS: Manual

If using JNDI with WebSphere MQ, SupportPac ME01 (WebSphere

MQ - Initial Context Factory) allows the queue manager to be used
directly as a JNDI provider and avoids the requirement to predefine

WMQ queues or topics. SupportPac ME01 pre-requires SupportPac
MS0B (MQSeries Java classes for PCF). An example of use is given

below.

How to use multiple JMS destinations

The tool will handle multiple destinations (publish-subscribe topics

or point-to-point queues) with the right configuration parameters.
This allows more complicated scenarios to be constructed across

multiple instances of the tool.

The general concept being applied is that an ordered set of

destinations are created and then distributed evenly amongst the
active threads.

Parameter Description

-d Destination prefix. The default is "DEST"

-db First number in the range.

-dx Last number in the range.

-dn
Number of destinations in the range (or the first

destination to use in a fixed range, see example XXX).

The module will infer the set of destinations from the parameters
being passed. The inferences can best be explained by example:

parameters description -d PARIS Without specifying any other

parameters, all threads will use a single destination, PARIS -d
MYTOPIC -db 10 Specifying only anumeric base creates an open

ended list, each subsequent thread will get an incremented

destination, MYTOPIC10... -d MYTOPIC -db 4 -dn 5 Destinations are
distributed round-robin in the order MYTOPIC4...MYTOPIC8 -d

MYTOPIC -dx 8 -dn 5 As above -d MYTOPIC -dx 4 -dx 8 As above -d
MYTOPIC -dx 4 -dx 8 -dn 6 This is a special case, the range is as

above (4 to 8) but the sequence will start at 6

Notes:

• These parameters only control the names given to

destinations. Specifying "-d TOPIC" does not, in itself, enable
publish-subscribe (you could have a queue named TOPIC).

Performance Harness for JMS: Manual

• In JNDI mode, these become the names of the JNDI

destinations.
• Each single thread is assigned a single destination.

• It is not considered invalid to specify more destinations than
there are threads or to create an uneven balance of

destinations amongst threads.

How to use the non-JMS "WebSphere MQ classes for
Java"

The "WebSphere MQ classes for Java" provide a non-JMS interface

onto the full detail and capabilities of the WebSphere MQ messaging
API (the MQI). These are not part of the JMS portions of this tool

and therefore do not accept many of the JMS specific parameters,

they are most closely related (naturally enough) to the
WebSphereMQ provider module. The following test classes are part

of the mqjava package:

Parameter Description

-tc mqjava.Sender Sends messages to a named queue destination.

-tc
majava.Receiver

Receives messages from a named queue
destination. This can be used in conjunction

with the Sender class.

-tc
mqjava.Requestor

Sends a message to a queue then waits for a
reply on a second queue with a matching

CorrelationId.

-tc
mqjava.Responder

Waits for a message on a queue then replies to
it by placing a message on another queue with

a corresponding CorrelationId. This can be used
in conjunction with the Requestor class.

-tc mqjava.PutGet
Sends a message to queue then retrieves the

same message (using CorrelationId).

The following limitations should be noted:

• There are no publish-subscribe classes implemented for
mqjava, although such functionality is achievable.

• Since this is not JMS, the "-pc" parameter is not valid, nor are

any other JMS specific values. Users commonly try to change
"jms.r11" with" mqjava", this will often not work.

• In this version of JMSPerfHarness, multiple destination options
("-db", "-dx" , "-dp" and "-dn") are not available for the

mqjava package

Performance Harness for JMS: Manual

How to use the HTTP module

The module is a simple HTTP client application which sends and
receives a HTTP message and reports message rates.

Parameter Description

-tc
http.HTTPRequestor

Sends messages to a named URL. It sends the
contents of a file as a HTTP Request and

waits for a response.

See the Example invocations for more explanation

Example invocations

Putting together the lessons from the HOWTO section will give you a
basic operational performance tool. The following are some sample

invocations of the functionality in this tool, see the command-line
reference for the meaning of any unknown parameters:

Point-to-point using JNDI

Persistent, transacted point-to-point JMS in a send-receive loop
(a very basic operational test of queuing) on a single queue

using 6 clients and JNDI administered objects provided by
WebSphere MQSupportPac ME01.

java JMSPerfHarness -tc jms.r11.PutGet -nt 6 -pp -tx -pc JNDI -ii

com.ibm.mq.jms.context.WMQInitialContextFactory -iu

localhost:1414/SYSTEM.DEF.SVRCONN -cf QM_RED -d QUEUE

Point-to-point with WebSphere MQ

Persistent, transacted point-to-point with WebSphereMQ in local
bindings. 10 queue-triplets (each queue has 1 sender and 1

receiver) running on queues (QUEUE1..QUEUE10). The number
of triplets can varied arbitrarily. A corresponding test with topics

simply requires different test class parameters.

export TRIPLETS=10

java JMSPerfHarness -tc jms.r11.Sender -nt $TRIPLETS -pc

WebSphereMQ -jb QM_RED -jt mqb -d QUEUE -db 1 -pp -tx

java JMSPerfHarness -tc jms.r11.Receiver -nt $TRIPLETS -pc

WebSphereMQ -jb QM_RED -jt mqb -d QUEUE -db 1 -pp -tx

Performance Harness for JMS: Manual

Nonpersistent point-to-point with WebSphereMQ in local

bindings. Put a million 100-byte messages to a destination
QUEUE, then get them back again.

export MSGSIZE=100

java JMSPerfHarness -tc jms.r11.Sender -pc WebSphereMQ -jb

QM_RED -jt mqb -d QUEUE -ms $MSGSIZE -mg 1000000

java JMSPerfHarness -tc jms.r11.Receiver -pc WebSphereMQ -jb

QM_RED -jt mqb -d QUEUE

Point-to-point with WebSphere Application Server

Here is a sample batch file that can be used to send/receive

messages from WAS/WESB using the default JMS bindings (I will
just use WESB to denote either WESB/WAS/WPS). I will step

through the parameters of note.

For WAS 6.0.2

SET JAVA_PATH=%WESB_HOME%\java\bin\

SET

EXTDIRS=%WESB_HOME%\classes;%WESB_HOME%\lib;%WESB_HOME%\installedChan

nels;%WESB_HOME%\java\jre\lib\ext;

SET JAR_FILE=c:\JMSPerfHarness\perfharness.jar

%JAVA_PATH%\java \-Xms768M \-Xmx768M \-Djava.ext.dirs=%EXTDIRS% \-cp

%JAR_FILE% JMSPerfHarness \-tc jms.r11.Requestor \-cf

jndi_JMS_BASE_QCF \-ii

com.ibm.websphere.naming.WsnInitialContextFactory \-iu

iiop://machinename.hursley.ibm.com:2812 \-iq jndi_INPUT_Q \-oq

jndi_OUTPUT_Q \-nt %1 \-to 15 \-pf c:\JMSPerfHarness\soabench\soab-

jms.properties \-mf c:\JMSPerfHarness\soabench\soa_med_jms_2k_1k.xml

\-co true \-pp true \-tx true

Access to various directories from the server installation or the J2SE

JMS client (http://www-
1.ibm.com/support/docview.wss?uid=swg24012804) is required

and is setup in the EXTDIRS command variable. I use a
WESB_HOME environment variable to indicate the location of the

server/client jars I wish to run against. Using a large heap and
setting ms equal to mx offers consistent performance levels as heap

expansion is prevented during the run.

All the parameters are shown in detail later but the main ones are
shown below:

-tc This indicates the client type. For most WESB Messaging

scenarios, messages are consumed from an inbound queue and placed on

an outbound queue. The jms.r11.Requestor client will send a message

to the queue defined by the JNDI name specified by the -iq parameter

and look to receive the corresponding response from the JNDI name

specified by the -oq parameter.

-cf This is the name of the Default Messaging Provider's Queue

Performance Harness for JMS: Manual

Connection Factory you wish to use when sending/receiving messages.

This is generally the best entity in which to define which

QualityOfService you wish to use

(http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topi

c=/com.ibm.websphere.pmc.express.doc/ref/rjn_jmscf_modify.html) - Pay

particular attention to the JNDI Name, Persistent and NonPersistent

message reliability and providerEndpoints properties. (The

providerEndpoints must be set if your JMS client is not co-located on

the same machine as your WESB installation)

-ii InitialContextFactory implementation class to be used when

communicating with WESB

-iu Provider URL - This is the RMI port on the server on which the

client will use to lookup JNDI entries

-iq JNDI name of inbound queue

-oq JNDI name of outbound queue

-nt Number of producer threads

-to Producer timeout value (how long each thread waits for its

response)

-pf This denotes a properties file which is used to set bespoke

JMS properties in the request message's JMS header

 When sending JMS messages into WESB using JMS Exports, I use this

file to set the TargetFunctionName. The JMS Export will match this

name against the operations supported by the JMS Export interface

 and invoke the requested operation

-mf This denotes an input file to be sent as the payload of the

message instead of generated text/bytes data.

-co This is set to true to enable Correlation ID matching to

ensure each requestor thread processes its own reply.

-pp Set to true to send a Persistent message.

-tx Set to true to commit each message being sent within a

session.

For WAS 6.1

A few additional directories are required to be set on the EXTDIRS

variable.

 SET

EXTDIRS=%WESB_HOME%\classes;%WESB_HOME%\lib;%WESB_HOME%\plugins;%WESB

_HOME%\java\jre\lib\ext;%WESB_HOME%\runtimes;

Publish-subscribe

• Persistent, transacted publish-subscribe with WebSphereMQ

over TCP/IP. 4 publishers and 40 durable subscribers spread
evenly across 4 topics (TOPIC1..TOPIC4). Durable

subscribers will use the same name (by setting -id) and do
not unsubscribe (un=false). This means the subscribing

application can be started and stopped without message loss.

java JMSPerfHarness -tc jms.r11.Publisher -nt 4 -pc WebSphereMQ -jh

server1 -jb QM_RED -jt mqc -jp 1415 -d TOPIC -db 1 -dx 4

Performance Harness for JMS: Manual

java JMSPerfHarness -tc jms.r11.Subscriber -nt 40 -pc WebSphereMQ -jh

server1 -jb QM_RED -jt mqc -jp 1415 -d TOPIC -db 1 -dx 4 -du -id SUBS

-un false

• Nonpersistent publish-subscribe with WebSphere Message
Broker using the Real-time transport. 1 publisher and 1

subscriber using 1 topic. The real-time flow on the broker is
assumed to be configured to port 1506. Both are set to run

for 120 seconds, with the publisher sending 100 messages a

second. It will send JMSTextMessage objects using the
contents of MyMessage.xml for the message body.

java JMSPerfHarness -tc jms.r11.Publisher -pc WMB -jh server1 -jp

1506 -jt ip -d Topic/0000 -rt 100 -mt text -rl 120 -mf

.\MyMessage.xml

java JMSPerfHarness -tc jms.r11.Subscriber -pc WMB -jh server1 -jp

1506 -jt ip -d Topic/0000 -rl 120

• Nonpersistent publish-subscribe with WebSphere Message
Broker using the Real-time transport. 1 publisher and 1
subscriber using 1 topic. The real-time flow on the broker is

assumed to be configured to port 1506. Both are set to run
for 120 seconds, with the publisher sending 100 messages a

second. It will send JMSTextMessage objects using the

contents of MyMessage.xml for the message body.

java JMSPerfHarness -tc jms.r11.Publisher -pc WMB -jh server1 -jp

1506 -jt ip -d Topic/0000 -rt 100 -mt text -rl 120 -mf

.\MyMessage.xml

java JMSPerfHarness -tc jms.r11.Subscriber -pc WMB -jh server1 -jp

1506 -jt ip -d Topic/0000 -rl 120

• Nonpersistent publish-subscribe with WebSphere Message
Broker using the Reliable Multicast transport for the

subscriber. Topic "Topic/0000" must be defined as a Multicast
topic (see product docs). This subscriber could be run in

conjunction with the real-time publisher shown above. 1
subscriber using 1 topic set to run for 120 seconds, the

subscriber's buffer size is set to 3000 messages.

java JMSPerfHarness -tc jms.r11.Subscriber -pc WMB -jh server1 -jp

1506 -jt ipmcr -d Topic/0000 -jz 3000 -rl 120

• Nonpersistent publish-subscribe with WebSphere Message
Broker using the WebSphere MQ transport. 1 publisher and 1

subscriber using 1 topic. Both are set to run for 240 seconds,
with the publisher sending 100 messages a second. It will

send a 1024-byte JMSBytesMessage to a queue called
PUBLISH on queue manager QM_RED on port 1414.

Performance Harness for JMS: Manual

java JMSPerfHarness -tc jms.r11.Publisher -pc WMB -d Topic/0000 -jh

server1 -jp 1414 -jt mqc -rl 240 -jb QM_RED -jq PUBLISH -ja 100 -rt

100 -mt bytes -ms 1024

java JMSPerfHarness -tc jms.r11.Subscriber -pc WMB -d Topic/0000 -jh

server1 -jp 1414 -jt mqc -rl 240 -jb QM_RED

WebSphere MQ classes for Java

• Persistent, transacted point-to-point Send and Receive using

the mqjava.Requestor using 5 clients. The message file

referenced is one that contains an RFH2 header at the start as
produced from RFHUtil SupportPac IH03. Each client will send

a message to INPUTQUEUE and wait for a reponse on the
OUTPUTQUEUE. The tool will run for 120 secs and print stats

every 5 seconds.

java JMSPerfHarness -tc mqjava.Requestor -iq INPUTQUEUE -oq

OUTPUTQUEUE -rl 120 -jb QM_RED -jh server1 -jp 1414 -mf

c:/Input_XML.msg -rf 2 -ss 5 -nt 5 -pp -tx

HTTP Module

• Driving a HTTP URL. An example invocation is shown below

which will start one http client thread against the URL
"http://10.16.112.39:7080/test". The test will run for 120

secs and will print out message rates every 10 seconds.

java JMSPerfHarness -tc http.HTTPRequestor -jh 10.16.112.39 -jp 7080

-ss 10 -nt 1 -mf E:\input.xml -wi 50 -to 500000 -ur test -wo 10000 -

rl 120

• Driving SOAP Input Node Example. An example invocation is
shown below which will start 20 http client thread against the

URL "http://hound:7800/WssSale/services/WssSale". The
test will run for 310 secs and will print out message rates

every 3 seconds. It will set the SOAPAction header to be
"SummerSale".

java JMSPerfHarness -tc http.HTTPRequestor -jp 7800 -wi 100 -to 50000

-jh HOUND -sa SummerSale -mf i:\InputMessages\SOAP_Sale_4K.xml -nt 20

-ss 3 -rl 310 -ur WssSale/services/WssSale

Some of the main parameters for this module are shown below:

rl = runlength in seconds

ss = stats interval how often rate is printed,

nt = number of threads(clients)

mf = message file path to use as the message contents

wo = write out a copy of the response message to a file after x

messages

wi = wait interval between starting each client in ms,

to = time out interval in milli secs - how long each client will wait

Performance Harness for JMS: Manual

for a response before throwing a timeout,

cs = close socket after each message (uses non persistent HTTP

connections i.e. HTTP 1.0)

sl = sleep time in milliseconds between sending each message

ur = url to append to http://hostname:port/url,

sa = Text to put in the SOAPAction Header.

Command-line Parameter reference

The system is self documenting through the command-line. Use -h,

-hf and -hm to learn about the functionality.

The following is a snapshot of the parameters of the tool, the latest
lists and descriptions are always available using the tools help

options:

com.ibm.uk.hursley.perftools.Config

Centralises parsing, access and reporting of configuration

parameters.

Arg Default Description

v false Show version.

h false Display basic help on current configuration.

hf false Display detailed help on current configuration.

hx false Display help as XML.

hm

Display detailed help on a specific module or modules.
Specify multiple modules as space-separated tokens.

Example: -hm "WebSphereMQ JNDI"

com.ibm.uk.hursley.perftools.Log

A proxy to output to stdout or stderr. There are currently no
extensions to support

external logging, though this could be easily added. There are 5

levels (0-4) of
verbosity defined as (NONE, ERROR, WARNING, INFO, VERBOSE).

Arg Default Description

vo 4
Verbosity below which goes to stdout. The default is
such that everything goes to stdout.

ve 0
Verbosity below which goes to stderr. The default is
such that nothing goes to stderr.

com.ibm.uk.hursley.perftools.ControlThread

Performance Harness for JMS: Manual

Manage the lifecycle of the application and any WorkerThreads.

This also controls the aggregation and reporting of performance
counters.

Arg Default Description

wk 120
Shutdown wait (s). The application will wait this long
for WorkerThreads to shutdown before exiting anyway.

nt 1 Number of WorkerThreads.

mu false
Display memory usage. This reports the number of
bytes in use. Freed memory awaiting garbage

collection is not counted as "used".

ss 10
Statistics reporting period. Setting this to 0 will disable
periodic reporting entirely.

sd normal

Sets what is reported as totalDuration. "normal" =

from 1st iteration to last iteration, excluding
setup/takedown. "tlf" = Time to Last Fire, from start of

main thread till last iteration completes (includes setup
time but not takedown)

su true
Display final summary. This setting is independant of

the periodic statistics reporting.

sp false Display per-thread performance data.

rl 60
Run length in seconds. Setting this to 0 will disable the

timer and run forever.

id

Process identfier. If set, this will be displayed in the
statistics reporting. This is of use if you have to merge

the output of more than one instance of the tool.

wi 1000
WorkerThread start interval (ms). This controls the
pause between starting multiple threads.

sh true Use signal handler to trap SIGINT (CTRL-C).

com.ibm.uk.hursley.perftools.WorkerThread

Base class for all varieties of test. This class implements a general

pacing
algorithm for those tests that wish to use it. The performance

overhead of this
is minimal.

Arg Default Description

tc jms.r11.PutGet

Test definition class. This defines the actual
type of WorkerThreads that will be started. The

selections listed are those packaged with this

tool, there may be others on the classpath that

Performance Harness for JMS: Manual

will not be shown here. Known modules include

• jms.r11.Sender
• jms.r11.Receiver
• jms.r11.Requestor

• jms.r11.Responder
• jms.r11.Publisher

• jms.r11.Subscriber
• mqjava.Sender

• mqjava.Receiver
• mqjava.Requestor

• mqjava.Responder

• mqjava.XAResponder

rp 0 Time period (s) to ramp up to the full rate.

rt 0

Desired rate (operations/sec). If this rate is

greater than the maximum achievable, the
behaviour is such that it runs as fast as

possible. A value of 0 means to always run as
fast as possible. Rates of <1 op/sec are not

currently possible.

mg 0
Fixed number of iterations to run. The default
setting of 0 means there is no iteration limit.

yd 0
Frequency to call Thread.yield(). This may be of

use if the WorkerThreads are not being evenly
scheduled.

com.ibm.uk.hursley.perftools.jms.providers.JMSProvider

Abstract superclass of all JMS providers supported by this tool.

Arg Default Description

du false

Durable subscriptions. Note, if using more
than one JVM, these names will clash. To

avoid this, use the -id parameter to
differentiate the JVMs.

mf

External file to use as message contents.

am 1

JMS acknowledgement mode. 1 = auto
acknowldege, 2 = client acknowledge (not

currently supported), 3 = dups_ok
acknowledgement.

cp true
Use provider-specific correlation-id if

possible.

Performance Harness for JMS: Manual

df DestinationFactory

JMS Destination factory class. Currently,

there is only one option. Known modules
include

• DestinationFactory

tx false Transactionality.

us

Username to authenticate as.

pw

Password to authenticate as.

pp false Use persistent messages.

mt text
Message type

(text,bytes,stream,map,object,empty).

to 5
Polling timeout on receiving messages.
Threads will not stop if this timeout occurs,

it simply the polling interval.

un true
Unsubscribe subscribers when closing. Set
this to false to leave durable subscriptions

after the tool exits.

ms 1000 Message size in bytes.

cc 1

Commit count (transaction batching). The
number of operations completed within a

single transaction. This only applies to test
classes which only normally perform a

single operation (such as Sender or
Subscriber).

pc JNDI

JMS provider class. Known modules include

• WebSphereMQ
• WMB
• JNDI

co true
Use correlation-id. This will use the
correlation-id per thread model.

com.ibm.uk.hursley.perftools.jms.DestinationFactory

This handles destinations for publish-subscribe and point-to-point
domains.

These options only control the names given to destinations.
Specifying

"-d TOPIC" does not enable publish-subscribe ("-tc
jms.r11.Publisher -d TOPIC" does that)

Performance Harness for JMS: Manual

Examples:

-d QUEUE
All threads operate on destination named QUEUE

-d MYTOPIC -dn 3
destinations are distributed round-robin in the order

MYTOPIC1..MYTOPIC3
-d MYTOPIC -db 6 -dn 3

destinations are distributed round-robin in the order
MYTOPIC6..MYTOPIC8

-d MYTOPIC -dx 6 -dn 3
destinations are distributed round-robin in the order

MYTOPIC4..MYTOPIC6
-d MYTOPIC -db 4 -dx 6 -dn 5

destinations are distributed round-robin in the order
MYTOPIC4..MYTOPIC6 starting with MYTOPIC5

Arg Default Description

db 0 Multi-destination numeric base.

dn 0 Multi-destination numeric range.

d QUEUE
Destination prefix. If no other destination parameters
are set, then nothing will be appended to this.

dx 0 Multi-destination numeric maximum.

com.ibm.uk.hursley.perftools.jms.r11.PutGet

Sends a message then receives one from the same queue. Normal

usage is with
correlation identifier to ensure the same message is received.

com.ibm.uk.hursley.perftools.jms.r11.Sender

Send messages to a Queue.

com.ibm.uk.hursley.perftools.jms.r11.Receiver

Receives messages from a Queue. Currently this class, although

JMS 1.1 compliant, is
only coded to accept Queue-domain messages. Use the Subscriber

class for
topic-domain messages.

Arg Default Description

as false Use asyncronous (onMessage) receiving mode.

com.ibm.uk.hursley.perftools.jms.r11.Requestor

Performance Harness for JMS: Manual

Puts a message to a queue then waits for a reply on another queue.

The same
correlation-id is used for every request. This is much faster for JMS

applications.

Arg Default Description

iq REQUEST Queue to place requests on.

oq REPLY
Queue to place replies on. Setting this value to ""
implies the use of temporary queues for each reply.

Correlation-ids are not used in this mode.

com.ibm.uk.hursley.perftools.jms.r11.Responder

Takes messages off the request queue and places the same

message on the reply queue.

Arg Default Description

iq REQUEST Queue to place requests on.

oq REPLY
Queue to place replies on. Setting this value to ""

causes the use of temporary queues for each reply,
using an anonymous MessageProducer.

com.ibm.uk.hursley.perftools.jms.providers.WebSphereMQ

Settings for direct connection to a WMQ broker.

This allows the tool to be run directly against this provider without
the need for JNDI

Note that this module inherits from JNDI module so those
parameters are still applicable

and that all parameters of this module be ignored if you are use
JNDI.

Arg Default Description

jg false

Communicate with non
JMS application

(targetClient=1) Setting

this to true will cause the
JMS client to send or

recieve messages without
RFH2 headers. This is

primarily for
communication with MQI

applications. Certain JMS
functionality is not

available.

Performance Harness for JMS: Manual

js false

Use JMS reliable

messaging. The queue
manager needs altering

before this will be enabled.

jq SYSTEM.BROKER.DEFAULT.STREAM

Publish queue. This defines
the stream for a WMQ

broker, and can therefore
be set on both publishers

and subscribers. Note that
publications cannot cross

streams. Never cross the
streams!

jp 1414
Port of provider host

machine.

jh localhost
DNS/IP of provider host
machine.

jx false Use optimistic publication.

jo true
Use JMS connection
pooling.

jr false

Force compatibility with

WMQ 5.3 older than CSD
6. Forces use of

QueueSubscriptionStore.

jc SYSTEM.DEF.SVRCONN
WMQ Channel to connect
to.

jt mqc

WMQ transport (mqb,

mqc). "mqb" is local-
bindings connections,

"mqc" is TCP/IP
connections.

ja -1

Publish acknowledgement

interval (-1 = jms default).
The maximum messages

that can be placed on the
publish queue is 1.5 * ja,

the publisher will then be
waiting for an

acknowledgement from the
broker.

ju true
Use unique-queue-per-

subscriber.

jb QM
WMQ queue manager to
connect to.

Performance Harness for JMS: Manual

com.ibm.uk.hursley.perftools.jms.providers.WMB

Settings for direct connection to a WebSphere Business Integration

Message/Event Broker.
This allows the tool to be run directly against this provider without

the need for JNDI.
Note that this module inherits from JNDI and WebSphereMQ

modules so those parameters are
still applicable and that all parameters of this module be ignored if

you are use JNDI.

Arg Default Description

jq PUBLISH

Publish queue. This sets the parameter equivalent to

the BROKERPUBQUEUE property with JMSAdmin. For

more information see the WMQ "Using Java" Manual.
The value of this should be set to the value of the

Queue set on the MQInput Node in your PubSub
message flow.

jz 1000

Subscriber buffer size in number of messages.This

sets the parameter equivalent to the MAXBUFFSIZE
property with JMSAdmin. For more information see

the WMQ "Using Java" Manual.

jt mqc

WMQ transport (mqb,mqc,ip,ipmcr or ipmcn).This
sets the parameter equivalent to the TRANSPORT

property with JMSAdmin. For more information see
the WMQ "Using Java" Manual. "mqb" is queued

operation using local-bindings connections, "mqc" is
queued operation client connections, "ip" is direct

connection to the broker using the real-time

transport, "ipmcr" is direct connection to the broker
using the reliable multicast transport (this is

equivalent to setting the MULICAST JMSAdmin
property to RELIABLE), "ipmcn" is direct connection to

the broker using the non-reliable multicast, (This is
equivalent to setting the MULICAST JMSAdmin

property to NOTR)

com.ibm.uk.hursley.perftools.jms.providers.JNDI

Provider-independant access to JMS resources. If using JNDI, all

destination names
will be interpreted as the lookup name rather than the absolute

name. Other JMS provider
extend the JNDI module. If using any of the three JNDI parameters

below, all other provider

Performance Harness for JMS: Manual

specific settings are ignored. All three parameters three must be

specified together.

Arg Default Description

cf

JNDI name of ConnectionFactory. Using this parameter

implicitly turns on JNDI for whatever provider class
you are using.

iu

JNDI providerURL. Examples: file:/C:/JNDI-Directory,
ldap://polaris/o=ibm,c=us.

ii

JNDI initialContextFactory. Examples:

com.sun.jndi.fscontext.RefFSContextFactory,
com.sun.jndi.ldap.LdapCtxFactory,

com.ibm.websphere.naming.WsnInitialContextFactory.

iz

Set to true when using Suns JRE for WAS
communication set into HashTable provided to

InitialContext
Additional properties need to be set when setting up

InitialContext (default: false)

com.ibm.uk.hursley.perftools.mqjava.MQProvider

Provides access to WebSphere MQ classes for Java

Arg Description

jp Port to connect to. (default: 1414)

jh Host to connect to. (default: localhost)

mc
MQ Message Character Set. This value is set on the MQ

Message in the MQMessage.characterSet field. (default: 1208)

rf

Use RFH Header from msg file, as produced by RFHUtil.
(default: 0)

"rf" value of 1 means read as RFH1 header
(MQC.MQFMT_RF_HEADER_1),

Value of 2 means RFH2 header (MQC.MQFMT_RF_HEADER_2).

jc WMQ Channel to connect to. (default: SYSTEM.DEF.SVRCONN)

jt

WMQ transport (mqb, mqbf, mqc). (default: mqc)
"mqb" is local-bindings connections, "mqbf" is local fastpath

connections,
"mqc" is TCP/IP connections.

bf
Force MQOO_BIND_NOT_FIXED for clusters. (default: false)

This is normally done by changing the queue definition to
DEFBIND(NOTFIXED).

ir Port to connect to. (default: 1)

mq MQ message format. This value is set on the MQ Message in

Performance Harness for JMS: Manual

the MQMessage.format field. (default: MQC.MQFMT_STRING)

The value set should be the actual string that is the constant in
the MQC.MQFMT* class,

For example to specify MQC.MQFMT_TRIGGER then set -mq
MQTRIG

me
MQ Message Encoding. This value is set on the MQ Message in

the MQMessage.encodingfield field. (default: 546)

jb WMQ queue manager to connect to. (default: QM)

jl
SSLCipherSuite name (default:)

This controls the SSL encryption methodology.

com.ibm.uk.hursley.perftools.mqjava.PutGet

Sends a message then receives one from the same queue. Normal

usage is with
correlation identifier to ensure the same message is received.

com.ibm.uk.hursley.perftools.mqjava.Sender

Send messages to a Queue.

com.ibm.uk.hursley.perftools.mqjava.Receiver

Receives messages from a Queue.

com.ibm.uk.hursley.perftools.mqjava.Requestor

Puts a message to a queue then waits for a reply on another queue.

The same
correlation-id is used for every request.

Arg Default Description

iq REQUEST Queue to place requests on.

oq REPLY Queue to place replies on.

com.ibm.uk.hursley.perftools.mqjava.Responder

Takes messages off the request queue and places the same
message on the reply queue.

Arg Default Description

iq REQUEST Queue to place requests on.

oq REPLY Queue to place replies on.

com.ibm.uk.hursley.perftools.mqjava.XAResponder

Performance Harness for JMS: Manual

Takes messages off the request queue, performs a database

update, then places
the same message on the reply queue.

Arg Default Description

iq REQUEST Queue to place requests on

ds
COM.ibm.db2.jdbc.DB2XADataSo

urce

XA Data source provider

class or
com.ibm.db2.jcc.DB2DataSo

urce for Type 4 driver

oq REPLY Queue to place replies on

com.ibm.uk.hursley.perfharness.http.HTTPProvider:

Arg Description

hc Specify a value of the content type header (default: text/xml)

nm Number of messages to send for each thread (default: 0).

cs
Close socket after each message. Set to use a new HTTP

connection for each request. (default: false)

rb
Size of the receive buffer in bytes in which the HTTP Reply

message is read. This MUST be big enough for the reply

message. (default: 10000)

ur URL of servlet to send data to (default: "/")

jp HTTP Listener Port to connect to. (default: 7080)

jh Hostname of server to connect to. (default: localhost)

wo
Number of messages sent before a reponse message is written

to a file (default: 0)

mc
Number of HTTP requests to send before renewing an HTTP

persistent connection. (default: 0)
If this value is 0 then the HTTP connection is never closed

sa
Specify a SOAPAction: Tag in the header.The value is the value

of the SOAPAction field. (default:)

Troubleshooting

Please check the "known issues" section in the release notes.

• Invalid parameter: Parameter [??] is not known/valid
in this configuration.

Parameters in this tool belong to specific modules. If that

module is not loaded, no knowledge of its parameters exists.
If you look at the help for the current context (parameter "-

h"), you will see that the corresponding module is not

Performance Harness for JMS: Manual

included. Check your "-pc" and "-tc" settings, you are

probably not referencing the correct module. A full list of
options for these parameters is given in this manual or by

parameter "-hf". In particular, check the case of "-pc
WebSphereMQ" as this is a common fault.

• Invalid parameter: Destination range is negative.

You have either set the minimum value ("-db") greater than
the maximum ("-dx") or have used a combination of "-dx"

and "-dn" which implies a negative starting range. Consult the
HOWTO on multiple destinations.

• Why is it printing ugly stack traces.
This tool is intended to be a utility. As such it is a deliberate

choice to print out all stack traces by default, these may
contain the information that helps solve the problem. If the

problem is a simple one such as a misspelt parameter, these
will be seen in the first few lines of output. Staqc traces can

be turned off by using "-st false".

Requesting help

If these few tips do not answer your query, or you have a

suggestion for improvements, please ask on the alphaWorks forum

page for this product.
When submitting a problem (particularly a crash report) then please

do the following to help us help you:

• Run the tool with "-vo=ALL" to turn on as much debugging
output as possible.

• Include the commandline invocation you used to run the
program.

Acknowledgements

 We would like to acknowledge the contribution of the original tool
author Marc Carter who has now left IBM for his work on which this

release is building upon.

Feedback

 Feedback can be given on the alphaworks forum and also by
sending an e-mail to the current tool owner

Rich_Bicheno@uk.ibm.com.

