

0.0

Users’ Manual

Ed Meyer
Flutter Methods Development

June 9, 2018

2

Part I

Theory

3

Contents

I Theory 3

1 Introduction 11

1.1 Flaps Capabilities . 13

1.2 Typographic Conventions . 15

1.3 Getting Started . 16

1.4 Getting Help . 17

2 The Flaps Input File 19

2.1 Control Program . 20

2.2 Data Blocks . 22

2.3 Matrix IDs . 22

2.4 What’s in a Number? . 24

2.5 Pre-Defined Constants and Conversions 24

2.6 Curly Braces . 25

2.7 Running Flaps . 25

3 Equations of Structural Dynamics 27

3.1 Finite Elements . 27

3.2 Generalized Coordinates . 30

3.3 Frequency Domain: Characteristic Equations 32

3.4 Damping . 33

3.5 Unsteady Aerodynamics . 35

3.6 Controls Equations . 37

5

0.0

3.7 Dynamic Matrix . 37

3.8 Further Reduction of Matrix Size . 38

3.9 Units . 39

3.10 Matrix Properties . 40

3.11 Work and Energy . 41

4 Creating and Manipulating Matrices 45

4.1 Matrix Algebra . 45

4.2 Extracting Elements . 46

4.3 Merging Matrices . 47

4.4 Gyroscopic Matrices . 47

4.5 Force Vectors . 47

5 Parameters 49

5.1 Parameter Format . 49

5.2 Parameter Units . 50

5.3 Parameter State . 51

5.4 Parameter Equations . 51

5.5 Standard Parameters . 55

5.6 Defining New Parameters . 59

5.7 Output Transformation Parameters . 60

5.8 Examples . 61

6 Parameterizing Matrices 63

6.1 Interpolation and Approximation . 64

6.2 ABCD Control-Laws . 67

6.3 Matrix Elements . 72

6.4 User-Subroutine Parameterization . 75

7 Flutter 79

7.1 Flutter Equation . 80

6 CONTENTS

0.0

7.2 Solution Technique . 84

7.3 Start Points . 85

7.4 Fluid Properties . 90

7.5 Unsteady Aerodynamics . 91

7.6 Nonlinear Stability . 92

7.7 Divergence . 93

7.8 Continuity . 94

8 Visualization 99

8.1 Introduction . 99

8.2 Visualizing Matrices . 99

8.3 2D Plots . 99

8.4 3D Animated Modes . 102

8.5 The Future . 104

II Reference 105

9 Demonstration Problems 107

9.1 Summary . 107

9.2 Details . 110

10 Commands Reference 119

10.1 Syntax . 119

10.2 Keyword and Value Options: Option-Options 121

10.3 Examples . 121

10.4 Printed Output . 122

10.5 alge . 124

10.6 apex . 128

10.7 catalog . 134

10.8 export . 135

10.9 extract . 137

CONTENTS 7

0.0

10.10 stab . 140

10.11 gyro . 150

10.12 import . 153

10.13 merge . 159

10.14 output . 161

10.15 param . 164

10.16 print . 177

10.17 purge . 181

10.18 rename . 183

10.19 restore . 185

10.20 save . 186

10.21 vis . 189

III Appendices 197

A Creating Flaps Savefiles 199

A.1 Elfini . 199

A.2 ATLAS . 201

B User-Written Subroutines 205

B.1 Fortran Subroutines . 205

C ABCD Approach to ASE Analysis 211

C.1 Controls Equations . 211

C.2 Structural Equations . 212

C.3 Combining Structural and Controls Equations 212

D ABCD File Format 215

E Rational-Function Approximation 217

F Interpolation Details 219

8 CONTENTS

0.0

F.1 Smoothing TPS Limits . 219

G Describing Functions 223

G.1 Using Describing Functions . 228

H Substructuring for Dynamic Analyses 229

H.1 Static Substructuring . 230

H.2 Dynamic Substructuring . 230

I Regular Expressions 241

I.1 Anchor Characters . 241

I.2 Ordinary Characters . 242

I.3 Modifiers . 242

I.4 Remembered Patterns . 242

J Interval Methods 245

J.1 Interval Arithmetic . 245

K Automatic Differentiation 247

K.1 Traditional Implementation . 247

K.2 Flaps Implementation . 249

L Debugging 251

M Calibrated Airspeed 253

M.1 The Bernoulli Equation . 253

M.2 Incompressible flow . 253

M.3 Compressible flow . 254

M.4 Flaps Equation . 255

M.5 Definition of Calibrated Airspeed . 255

M.6 Dynamic Pressure . 256

Bibliography 257

CONTENTS 9

0.0

Index 261

10 CONTENTS

Chapter 1

Introduction

This manual describes Flaps, a collection of programs that work together through
a common database to perform various structural dynamics analyses in each of the
three basic categories of structural dynamics: vibration, stability, and response. It is
intended both as a reference and a guide to the theory underlying Flaps capabilities.

Most engineering analyses can be done in more than way, so one of the design goals
of Flaps is to facilitate different types of analyses. To this end Flaps includes many
ways to manipulate equations of motion, using commands like alge, extract, merge,
modes, and param, or options within the solution commands stab, fresp, tresp.

Structural dynamics analyses often involve studying the effects of various parameters
on the solution, whether to gain insight into the behavior of the structure or to analyze
behavior at a range of conditions. For example, varying nacelle stiffnesses can give
insight into the flutter characteristics of an aircraft, while varying fuel loading, altitude,
and velocity give the flutter characteristics over a range of flight conditions necessary to
certify an aircraft. Parameters play an important role throughout Flaps. A number of
parameters are pre-defined, along with equations which define them in terms of other
parameters. New parameters may be defined and given arbitrary equations in terms of
other parameters. Pre-defined parameters may be given new equations. The goal is to
allow continuous parameter variations using the solution commands by parameterizing
the matrices which make up the equations of motion.

Vibration problems and general polynomial eigenvalue problems are treated with the
Flaps eigen command. Dynamic response problems can be classified as time-domain,
treated by the tresp command, or frequency-domain, treated by the fresp command.
Dynamic stability analyses can be classified as flutter, treated by the stab command,
and shimmy, treated by the shimmy command. Nonlinearities may be accounted for
using the describing-function technique for frequency-domain analyses, or by directly
specifying equations for matrix elements in the time-domain.

Flaps has no model-building capability; structural models must be built in ATLAS,
Elfini, NASTRAN or the Boeing Aeroelastic Process (BAP), 1

1BAP is a special version of NASTRAN produced by the MSC.Software Corporation for Boeing.

11

1.0

then imported into Flaps. The Flaps import command reads data produced by these
programs and more.

Flaps analyses are portable between platforms in the sense that an Flaps database can
be saved (to an Flaps savefile, possibly on a remote platform) and restored with the
restore command (§10.19) on any other platform. This allows an analysis to be broken
into phases with each phase running on the most appropriate platform. For example,
an analysis might be run on the Cray to generate a ATLAS model and an Flaps
savefile with all the matrices necessary to perform subsequent flutter analyses. Then
the savefile might be restored in an Flaps job on a Linux PC cluster to do flutter
analyses, saving the results on another savefile which might be restored in another
Flaps job on an RS/6000 to visualize flutter modes. It is an unfortunate fact of life
that we cannot yet do all aspects of our analyses on a single platform; the portability
feature of Flaps savefiles is intended as a convenience until we can.

Structural dynamics analyses often comprise numerous commands with many argu-
ments; writing Flaps programs is not unlike writing code in a programming language
such as Fortran or C++. As with these languages, writing Flaps programs is not con-
ducive to graphical user interfaces; a simple text editor is the tool of choice for creating
Flaps programs, as it is with other structural dynamics packages such as NASTRAN,
ATLAS, and Elfini [47]. There is no way to avoid the fact that structural dynamics
analyses are complex. The simplest way to run Flaps is to create a file of commands,
then type apex input-file ; the primary purpose of this manual is to detail how to
create the input-file .

Currently Flaps is available on Unix (or its close cousin Linux) platforms only, includ-
ing

• Boeing Linux PC Clusters (http://cluster.web.boeing.com)

• Desktop PCs with Linux (http://linux.web.boeing.com)

• IBM AIX SPs (http://aixgrp.web.boeing.com)

Following this introductory chapter are chapters giving details of the capabilities in
various Flaps modules and some of the algorithms used in them.

Chapter 2 how to run Flaps and a quick start guide

Chapter 3 is a summary of the equations used at Boeing for stability, response,
and vibration analyses.

Chapter 4 shows how matrices can be modified to change the equations of motion
for use in stability, response, and vibration analyses.

Chapter 5 discusses parameters: using and modifying pre-defined parameters and
defining new ones.

Chapter 6 describes how matrices can be made functions of parameters so that
they may be used for parameter studies.

12 CHAPTER 1. INTRODUCTION

1.1

Chapters 7-10 detail the Flaps capabilities for vibration, stability, and response.

Chapter 11 discusses the visualization capabilities in Flaps

Chapter 12 lists the demonstration problems available.

Chapter 13 is a reference for all Flaps commands.

1.1 Flaps Capabilities

The application programs comprising Flaps fall into the following general categories:

• importing data from other programs

• data manipulation

• parameterization

• vibration, stability and response calculations

• data visualization

1.1.1 Importing Data

Flaps has no structural-model-building capabilities, so it is usually necessary to obtain
structural models from other sources. There are two ways of doing this in Flaps, using
files exported from other programs (several formats) and the import command (§10.12),
or Flaps binary savefiles and the restore command (§10.19). A number of formats
are supported by the import command:

• NASTRAN or BAP database files (binary)

• OUTPUT4 files created in NASTRAN or BAP (ASCII)

• dmig file created in NASTRAN or BAP (ASCII)

• neutral files created in Elfini feintr (base module) or extraction (aeroelasticity
module) (ASCII)

• Matlab or Simulink MAT files (binary)

• Matrix Market - a simple format well suited for large and/or sparse matrices,
popular in the numerical analysis community [24]. (ASCII) Used by the Flaps
print command to display large matrices.

• ESA plot files created by a variety Boeing programs, including Flaps. (ASCII)

1.1. FLAPS CAPABILITIES 13

1.1

Of these, the ASCII files are editable and portable across platforms, unlike the binary
files which are neither. Binary files are generally much smaller than the equivalent
ASCII file.

The other way data may be introduced into Flaps is by creating an Flaps savefile
which can be read with the restore command. Flaps savefiles are binary, so you
cannot edit them, however they use a special format that makes them portable across
computer architectures, and they are much smaller than equivalent ASCII files. Flaps
savefiles may be created using

• the Flaps save command (§10.20)

• the apex import command with a NASTRAN or BAP database (10.12.3)

• the apex extract command with an Elfini database (A.1)

• the ATLAS SAVE command (A.2)

1.1.2 Data Manipulation

Matrix algebra (addition, subtraction, relative difference, transposing, inversion, pseudo-
inverse, and scaling) is available in the alge module for all Flaps matrices. Parame-
terized matrices may be manipulated at specified values of their parameters.

Slices of rows and/or columns may be extracted from Flaps matrices using the extract

command (§10.9). If nodal data are available the rows and columns may be specified
using node/freedom numbers.

Matrices may be merged to form new matrices using the merge (§10.13) command.

Rigid-body modes may be created and used to replace existing rigid-body modes using
the modes command. The modes command also has the ability to change coordinate
systems associated with a modes matrix.

1.1.3 Parameterization

An important aspect of Flaps is its ability to do parameter studies. The key to parame-
ter studies is the ability to define parameters and to create matrices which are functions
of these parameters. Several types of matrix parameterization are available in the param

module (chapter 6), including multi-variable interpolation, rational-function approxi-
mation, branch-mode frequencies, structural-damping, replacing matrix elements with
arbitrary equations, ABCD control-laws, and the most general: user-written subroutine
parameterization.

1.1.4 Vibration, Stability, and Response

The Flaps eigen command solves a number of types of eigenvalue problems including
vibration and buckling. The stab command solves linear flutter equations in the fre-

14 CHAPTER 1. INTRODUCTION

1.2

quency domain for neutral stability and parameter variations. Nonlinearities may be
included using the describing-function technique (§??). Dynamic response problems
in the frequency domain are solved in fresp, or in the time domain with the tresp

command.

1.1.5 Data Visualization

Matrices, unless they are very small, are difficult to examine on the printed page so
Flaps displays them graphically in a way that allows interactive visualization. The
print command (§10.16) is the primary way to visualize matrices.

Results from the computational modules can be plotted in 2D using the vis command
(§10.21); if nodal and modal data are available, animated modes can be visualized by
selecting points from a vis plot.

ESA-formatted plot files [15] are created by param, stab, fresp, and tresp which may
be processed in the Boeing program pegasus [34], good for documentation, but not very
good for quick looks. The Flaps vis command may also be used on the command-line
with any ESA-formatted file; see the vis reference (§10.21.5) for more details.

1.2 Typographic Conventions

Throughout this document the following typographic conventions are used to (hope-
fully) make it more readable:

glossary is used to highlight new terms and concepts when they are first used

Typewriter is used for computer output or listing of computer files

Italic Typewriter indicates a parameter which the user should substitute with an
actual parameter; for example

flaps filename

means that the user is to substitute her own file name for filename

San Serif is used for a computer command or the name of a program, for example
flaps

Bold San Serif indicates something typed by the user; for example

$Login:eem2314

$ is the traditional Unix command prompt (yours will probably look
different).

Ctrl starts a control character. For example, to type Ctrl-d hold down the
control key (sometimes marked Ctrl or Ctrl/Act) and press the “d”
key.

1.2. TYPOGRAPHIC CONVENTIONS 15

1.3

M Matrices and vectors are printed in bold, with matrices in upper case
and vectors in lower case.

1.3 Getting Started

Throughout this document we assume the reader has a rudimentary knowledge of the
Unix operating system, and is familiar with terms like environment variable, directories,
and can use an editor such as vi or emacs. For more details on these and other concepts
see [29], [16], and [1].

1.3.1 The flaps Command

The basic program used in running Flaps is named flaps (actually it’s a script which
you can edit), which should be in your default PATH. While the most common use of
flaps is for processing files of Flaps commands, flaps has other options (see §10.6 for
more details):

apex amvis file visualize modes contained in a Universal-formatted file

apex clean remove any Flaps temporary directories left from failed runs

apex demo change the current working directory to where the Flaps demonstra-
tion files (chapter 9) are kept.

apex dog works like the Unix command cat except that environment variables
are replaced.

apex help display the Flaps User’s Manual (latest version of this manual)

apex matview graphically display a matrix created by Flaps in a file with a .mm

extension (see the print command, §10.16)

apex vis plot data in an ESA-formatted file [34] [15].

1.3.2 How to Avoid Reading this Manual

A quick way to get started is to look at some of the Flaps demonstration files (chapter
9) and modify them to suit your purposes. At the command line if you type apex demo

you will change directories to where the demo files are located; type exit to return to
your previous directory. All files ending with .ax are demonstration input files. You
can copy them to your own directory to modify and run them by typing, for example
($ is the default Unix command prompt):

$ apex stab1 >out 2>err

16 CHAPTER 1. INTRODUCTION

1.4

Note that flaps assumes a default file extension of .ax so it is not necessary to include
it. In this example, output has been redirected to a file named out and the standard
error listing has been redirected to a file named err.

1.4 Getting Help

Like the rest of Flaps, this manual is a work in progress; it is known to be incomplet,
inkorrect, and badly formatted. With that in mind, it is usually a good idea to view
the latest version of this manual online by typing at the Unix command prompt:

$ apex help

or

$ apex rtfm

which displays a pdf version of the manual. You can then print a copy from within the
pdf viewer.

The Loads and Dynamics Wiki (http://fapa.ca.boeing.com/ladwiki) has an Flaps
tutorial, Flaps issues, and lots of information on topics related to Loads and Dynamics.
As with all wikis you are encouraged to add content to the web pages.

If you think you have found a bug in Flaps you should check the bug-tracking system
at http://apex/bugs to see if your bug has already been reported. If it has not, you
can start a new ticket and your problem will get worked on as soon as possible. You
will be notified by email through the bug-tracker about progress on your bug.

A mail list is available at http://apex/flutter for discussion of a broader range of
issues relating to flutter. Mail lists work like this: when you are subscribed to a list
you get mail periodically from other members of the list who wish to make comments,
ask questions, or report problems about anything related to flutter (not necessarily
Flaps). You can send mail to the list by mailing to flutter@apex which then gets sent
to all members of the list; in addition your mail gets saved in an archive. You can view
all postings to the flutter list by visiting http://apex/flutter.

If you want to talk to a real person about Flaps issues, call, email or visit:

Calvin J. Lee

MS 03-KR

425-266-9889

40-88 Bldg 2H3-4.4

calvin.j.lee@boeing.com

1.4. GETTING HELP 17

1.4

18 CHAPTER 1. INTRODUCTION

Chapter 2

The Flaps Input File

Flaps has three modes of operation: interpretive mode, interactive mode, and batch
mode. Interpretive mode is begun when flaps is typed with no filename. In this mode,
commands are interpreted and executed as they are typed. Interpretive mode is mainly
useful for situations where a small amount of typing is involved; for example to restore

a savefile and print a matrix.

Interactive and batch modes always have an associated input file which may be an
actual file or may come from the standard input, usually by means of a Unix here
document [16][29]. A here-document begins with the << operator followed by a string
of characters of your choice, and ending with a line containing only that string. For
example

apex <<eof

import {myfile}

eof

Here-documents are convenient because the input to Flaps can be placed in the script
without creating a separate file, and environment variables are substituted, so a script
like

export DIR=/home/me

apex <<@

import { $DIR/myfile }

@

is equivalent to

apex <<@

import { /home/me/myfile }

@

An Flaps input file consists of a control program followed by any number of optional
data blocks.

19

2.1

2.1 Control Program

The Flaps control program is always the first set of statements in the input file. It
consists of Flaps commands followed by a line containing only the word end. Subse-
quent lines are ignored up to the beginning of the first data block. Flaps commands
are documented in chapter 10. Commands have the form

command { options

...

}

where whitespace (spaces, tabs, and newlines) are ignored, command is one of the com-
mands listed in chapter 10, and the options are enclosed between curly braces. Commas
separate options on a line; the last option on a line does not need to be followed by a
comma - the line break serves to separate it from the next option. There is no limit
on the length of lines.

Comments may be included anywhere by including a number sign (#) followed by the
comment. The # does not have to be the first character on the line. Anything up to the
is taken as part of the control program; the rest of the line is ignored. Whitespace is
ignored within option lists, and you may include comments; for example, the following
is a legal option list:

stab {

id=pk, # neutral-stability

mode=1 # track mode one or...

mode=2 # ... track mode two

...

Note the use of the number sign to disable the mode=1 option.

Some control constructs from the C or C++ programming languages may be included;
for example to test if restoring a savefile was successful you could do this:

if (!restore {savefile}) {

restore{anothersavefile}

}

where here the exclamation point means not , so if restoring savefile is unsuccessful
an attempt is made to restore anothersavefile.

Unix commands may be executed from within the control program by starting the
line with an exclamation point (!). The command may be anything you can type on
the command line including pipes, redirection of input and output, and background
processing (&). For example, to list all directories from within the control program:

! ls -l | grep ’^d’

20 CHAPTER 2. THE FLAPS INPUT FILE

2.1

2.1.1 Environment Variables

Environment variables may be used in the control program similar to the way they are
used in shell scripts, by preceding the variable name with a dollar sign:

restore { $AXROOT/demo/stab123.sf }

In this example AXROOT is an environment variable that is defined by Flaps as the
top-level directory of Flaps. Other environment variables that are defined by Flaps
are

AXROOT The top-level directory of an Flaps installation, for example /boeing/sw/apex/r6.1.

AXTMP Path of the temporary directory for a running Flaps job. The lowest-
level directory has a name composed of AxTmp followed by the process id
of the control program to ensure a unique directory name; for example
/boeing/sw/apex/r6.1/demo/stab1.d/AxTmp2144.

AXNSIG The number of significant figures used in comparing floating-point ma-
trix id attributes (§2.3).

Existing environment variables can be changed and new ones created in an Flaps
control program with the env option in the output command (§10.14). It is not recom-
mended that you change environment variables AXROOT or AXTMP unless you know what
you are doing.

It is also sometimes necessary (but always correct) to enclose the name in curly braces,
for example

restore { ${AXROOT}/demo/stab123.sf }

There is a subtle but important difference between single quotes and double quotes
enclosing environment variables, having to do with when the variables are evaluated.
If the variable is not quoted, or is enclosed in double quotes it is evaluated by Flaps
when the control program is read. On the other hand, if a variable is enclosed in single
quotes it is not evaluated until it is used. For example

output { env="AXPATH=${AXPATH}:/proj/bin" }

...

output { env=’AXPATH=${AXPATH}:/proj/local/bin’ }

...

output { env="AXPATH=${AXPATH}:/ots/matlab/bin" }

After the first output statement environment variable AXPATH is /proj/bin (assuming
it is undefined up to this point), after the second it is /proj/bin:/proj/local/bin, but
after the third it is /ots/matlab/bin due to the use of double quotes instead of single
quotes.

2.1. CONTROL PROGRAM 21

2.3

If the control program is input to Flaps as a here-document (§2.7) environment vari-
ables will be evaluated by the shell as they are fed to Flaps unless the end marker is
enclosed in quotes:

apex << ’@’

output { env=’AXPATH=${AXPATH}:/proj/local/bin’ }

@

2.2 Data Blocks

When used in batch mode the input file may contain the control program followed by
any number of named data blocks. A data block may contain anything between the
opening line which has the form

name {{

and the ending line which consists of two curly braces:

}}

That is, a line consisting of a text string which names the block, followed by any number
of spaces, followed by two consecutive left curly braces begins a data block, and a line
containing just two consecutive curly braces ends the data block

Data blocks can be accessed from anywhere within an Flaps job as if it were a local
file. Using data blocks instead of local files has some important advantages:

• The data can be together in the same file with the rest of the Flaps job.

• The data block is kept on a private directory for the duration of the job so that
it cannot be used inadvertently by another job.

• The private directory where it is kept is removed when the job finishes, so data
storage is not an issue.

2.3 Matrix IDs

Throughout this document the term matrix id or mid for short, is used to refer to the
name and attributes associated with a matrix in the Flaps data manager. In general,
an Flaps matrix consists of a name and a set of optional attribute/value pair. The
notation used to specify a matrix name and its attribute/value pair, called a matrix
id, has the general form

"name,attribute1=value1,attribute2=value2,..."

22 CHAPTER 2. THE FLAPS INPUT FILE

2.3

If a mid contains commas it is usually necessary to enclose it in quotes (single or dou-
ble) in an Flaps control program to distinguish the commas from those that separate
other options. There is no restriction on the lengths of the name, attributes, or val-
ues. Floating-point attributes (attributes with floating-point or complex values) do not
need to use any particular format for the value; values are compared as floating-point
numbers, so for example

"genforce,rfi=0.01"

is equivalent to

"genforce,rfi=1e-2"

Floating-point attribute values are compared to 6 significant figures, so for example

"genforce,rfi=0.01"

is equivalent to

"genforce,rfi=0.01000001"

The number of significant figures used in comparisons can be modified by setting envi-
ronment variable AXNSIG.

It is not always necessary to include all attributes of a mid. A trailing ellipsis can be
used to indicate any attributes, for example

print { "genforce,aerocond=2,..." }

will print all matrices with the name genforce with the attribute aerocond with the
value 2, and any other attributes; so this might be equivalent to

print {

"genforce,aerocase=3,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=3,aerocond=2,rfr=0,rfi=0.04,mach=0.8"

"genforce,aerocase=4,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=4,aerocond=2,rfr=0,rfi=0.04,mach=0.8"

"genforce,aerocase=5,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=5,aerocond=2,rfr=0,rfi=0.04,mach=0.8"

"genforce,aerocase=6,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=6,aerocond=2,rfr=0,rfi=0.04,mach=0.8"

"genforce,aerocase=7,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=7,aerocond=2,rfr=0,rfi=0.04,mach=0.8"

}

In some cases specifying only one or more attributes suffices; for example to save all
matrices with the attribute id=pk the command

2.3. MATRIX IDS 23

2.5

save { id=pk }

would suffice. Or, in the example above

print { aerocond=2 }

prints all the genforce matrices with the attribute aerocond=2.

Some Flaps modules will automatically add the trailing ellipsis when fetching matrices
if fetching the specified name fails. For example

alge { gaf = 2*genforce }

will multiply all matrices with the name genforce and any attributes by 2.

2.3.1 Case Sensitivity

As are most things in Flaps matrix names are case sensitive: genforce, Genforce, and
GENFORCE are all different names.

2.4 What’s in a Number?

Floating point numbers in the Flaps control program have a very flexible format; the
following numbers are equivalent:

314

314.0

0.0314e+4

31400.00D-2

.314E+3

A complex number u + iv may be represented as either (u + iv) or (u + vi). For
example, the following are valid complex numbers:

(3.14+i6.28)

(0.0314e+2 + i.628d+1)

(314D-2 + 0.628e+1i)

2.5 Pre-Defined Constants and Conversions

For convenience several constants and conversion factors are defined. They are used
primarily to scale matrices with the alge command (§10.5) or as a shorthand for pa-
rameter conversion factors (§5.1).

24 CHAPTER 2. THE FLAPS INPUT FILE

2.7

HZPRS conversion factor from rad/sec to Hz (1/2π)

RSRPM conversion factor from rad/sec to revolutions/min (rpm). (2π60
rad/sec
rpm)

KPIPS conversion factor from inches/second to knots (nautical-miles/hour)

3600 sec/hr

(12 in/ft)(6076.11549 ft/naut mi)
= 0.0493736500 knots/(in/sec)

(2.1)

DPR conversion factor from radians to degrees (180/π)

RPD conversion factor from degrees to radians (π/180 = 0.01745...)

G acceleration of gravity = 386.0885826in/sec2 . Also, according to New-
ton’s second law G can be considered a conversion factor from pounds-
force to pounds-mass: 386.0885826 lbmin

lbf sec2

PI π = 3.1415926535897932384626433....

2.6 Curly Braces

You have probably noticed by now the extensive use of curly braces ({ and }) to enclose
options and blocks of data. This reflects the fact that Flaps is written in the C++
programming language, which uses curly braces, as do many modern programming
languages.

A common error when writing Flaps input files is to leave out or misplace a curly
brace; the easy way to check for matching opening and closing braces is with the
matching capability of your editor. If you use the vi editor just put the cursor over
either the opening or closing brace, press the percent key and the cursor will move to
the matching brace. The same works for parentheses and square brackets. Depending
on the version of vi and the options you use it may also highlight the matching brace.
emacs has a similar capability using the ctrl-alt-n and ctrl-alt-p key combinations.

2.7 Running Flaps

Flaps has three modes of operation: interpretive mode, interactive mode, and batch
mode. Interpretive mode is begun when flaps is typed with no filename. In this mode,
commands are interpreted and executed as they are typed. Interpretive mode is mainly
useful for situations where a small amount of typing is involved; for example to restore

a savefile and print a matrix.

Interactive and batch modes always have an associated input file which may be an
actual file or may come from the standard input, usually by means of a Unix here
document [16][29]. A here-document begins with the << operator followed by a string

2.6. CURLY BRACES 25

2.7

of characters of your choice, and ending with a line containing only that string. For
example

apex <<eof

import {myfile}

eof

Here-documents are convenient because the input to Flaps can be placed in the script
without creating a separate file, and environment variables are substituted, so a script
like

export DIR=/home/me

apex <<@

import { $DIR/myfile }

@

is equivalent to

apex <<@

import { /home/me/myfile }

@

If you do not want environment variable to be evaluated when they are input to Flaps
enclose the end marker in quotes:

export DIR=/home/me

apex << ’@’

output { env=’DIR=$DIR/tmp’ }

import { ’$DIR/myfile’ } # imports from /home/me/tmp

@

26 CHAPTER 2. THE FLAPS INPUT FILE

Chapter 3

Equations of Structural
Dynamics

This chapter discusses some of the equations of motion which occur in this manual and
introduces some terminology used. It is written from the point of view of a practicing
engineer rather than from a theoretical point of view. Many textbooks focus on the
theory of structural dynamics, for example [5], [10], [21], and [12]. Instead, we begin
not with Lagrange’s equations but with the equations of motion for a structure modeled
with the finite element method, the most widely used modeling technique today. The
finite element method (fem) had its origins at the Boeing Company with a paper co-
authored by the former head of Flutter Research, M.J. Turner [51]. 1

3.1 Finite Elements

The finite element method is a technique for representing a continuum (with an infinite
number of degrees of freedom) with a finite number of nodes with the displacements
between the nodes represented by interpolating polynomials. The basic equations of
motion for a structure discretized by the finite element method are

Mẍ+Gẋ+Kx = f(t) (3.1)

where the mass matrix (M), the gyroscopic matrix (G), and the stiffness matrix (K)
are large and sparse (see §3.10 for other properties of these matrices). Rows and columns
of these matrices correspond to displacements and rotations at the nodes, generally
termed nodal degrees of freedom (dof). With a given set of initial conditions and
forcing function these equations can be integrated to give the discrete displacements
x(t). This is known as a time-domain analysis.

If the mass, gyro, and stiffness matrix are not functions of time or the displacements,
equation 3.1 is linear ; otherwise it is nonlinear . Linear equations can be treated with
simplification techniques such as characteristic equations (§3.3). Nonlinear equations

1It is ironic that the Boeing Company was never able to capitalize on this seminal work

27

3.1

are much more difficult, but can sometimes be simplified, using for example describing
functions (appendix G).

3.1.1 Reducing Finite Element Model Size

The matrices in equation 3.1 are often very large and contain much more detail than
necessary for most stability and response analyses. Reducing the size of these matrices
is important because computational costs for stability and response analyses rise with
the cube of matrix size; reducing the matrix size by half reduces the cost of stability
analysis by a factor of eight. Reduction techniques include static reduction, Guyan
reduction, load basis, and truncated generalized coordinates.

Static Reduction

The number of degrees of freedom in a finite element model (substructured or not)
is often reduced using a technique known as static reduction or static condensation.
Degrees of freedom which are to be retained are specified with an a-set in NASTRAN
or RETAINED freedoms in ATLAS BC DATA; those which are to be eliminated are in the
NASTRAN o-set or the ATLAS FREE freedoms in ATLAS BC DATA. Partitioning a
stiffness matrix into retained and eliminated degrees-of-freedom the stiffness matrix
can be written as

K =

[
Krr Kre

Ker Kee

]
(3.2)

Then assuming there are no external forces on the nodes to be eliminated:

Kx =

[
Krr Kre

Ker Kee

]{
xr
xe

}
=

{
f r
0e

}
(3.3)

and from this we can solve for the retained dof:(
Krr −KreK

−1
ee Ker

)
xr = f r (3.4)

which is equivalent to a change of coordinate basis:

x = Φq (3.5)

where

q = xr

Φ =

[
I

−K−1ee Ker

]
(3.6)

28 CHAPTER 3. EQUATIONS OF STRUCTURAL DYNAMICS

3.2

Guyan Reduction

Guyan reduction [18] applies the same transformation used in static condensation to
the mass matrix in addition to the stiffness matrix:

M̂ = ΦtMΦ

= M rr −
[
M reK

−1
ee Ker +

(
M reK

−1
ee Ker

)t]
+
(
K−1ee Ker

)t
M eeK

−1
ee Ker

K̂ = ΦtKΦ

= Krr −Kt
erK

−1
ee Ker

f̂ = Φtf

= f r −K−1ee Kerf e

(3.7)

Recall the assumption made with static condensation was that the nodes to be elimi-
nated had no forces on them; extending this transformation to the mass matrix implies
that the eliminated dof have no inertia forces on them. In other words Guyan reduc-
tion can be viewed as a way of redistributing the masses from the eliminated dof to
the retained dof.

A related technique used in Elfini is called a loads basis, obtained by applying unit
forces on the dof to be retained and computing the resulting displacements.

KΦ =

[
Krr Kre

Ker Kee

] [
Φrr

Φer

]
=

[
Irr
0er

]
(3.8)

solving for Φer is easy:

Φer = −K−1ee KerΦrr (3.9)

Instead of solving for Φrr note that because we do not want to transform the retained
dof, Φrr must be the identity, so normalize the basis vectors by post-multiplying by
Φ−1

rr :

Φ =

[
Φrr

K−1ee KerΦrr

]
Φ−1rr =

[
Irr

K−1ee Ker

]
(3.10)

which is identical to equation 3.6.

Guyan Reduction Reconsidered

These techniques are usually applied to finite element models prior to a free-vibration
eigensolution and a further reduction to a truncated set of generalized coordinates 3.2.
In the past this was an important step to make the eigensolution affordable; however
modern eigenvalue solution techniques account for the sparsity of mass and stiffness ma-
trices and Guyan reduction destroys sparsity so an eigensolution can actually be more
expensive after Guyan reduction. This, together with the fact that Guyan reduction is
an approximation technique makes it less useful than in the past.

3.1. FINITE ELEMENTS 29

3.2

3.2 Generalized Coordinates

There are two aspects to describing the behavior of dynamic (or static) systems: a set
of coordinates and their associated coordinate basis. Structures modeled with the finite
element method usually use Cartesian coordinate systems with 3 mutually perpendic-
ular axes as the coordinate basis with translations along and rotations about the axes
as the coordinates. Other, less common coordinate systems used in the finite element
method are spherical and cylindrical coordinates, also referred to as nodal coordinates
and nodal degrees of freedom because each dof represents specific motion of a single
node in the FEM.

Nodal coordinates are not the only way to represent the behavior of structures; gener-
alized coordinates, as the name implies are any set of coordinates and their associated
bases that are capable of any displacements the original nodal coordinates are capable
of. For example, one of the most widely used sets of generalized coordinates are based
on free-vibration eigenvectors. A model with n dof has n free-vibration eigenvectors; if
all these are used as the generalized coordinate basis the model in these generalized
coordinates will also have n dof and is capable of reproducing any set of displacements
in the nodal dof.

The matrices in equation 3.1 are often very large and contain much more detail than
necessary for most stability and response analyses. Reducing the size of the matrices
is usually done by introducing a truncated generalized coordinate basis consisting of a
set of vectors which in some sense approximate solutions to the equations of motion,
for example a few low-frequency free-vibration eigenvectors. These vectors are often
referred to as modes, not to be confused with aeroelastic modes (§7.1). The degrees
of freedom corresponding to the generalized-coordinate basis vectors are known as
generalized coordinates. Transforming the equations of motion to the new basis vectors
is simply a matter of pre- and post-multiplying each matrix by the basis vectors:

M̂ = ΦtMΦ

Ĝ = ΦtGΦ

K̂ = ΦtKΦ

f̂ = Φtf

(3.11)

where Φ is the matrix of generalized-coordinate basis vectors, which typically has many
more rows than columns and each column is a basis vector. These matrices are known
as the generalized mass and generalized stiffness respectively, and the generalized force
vector.

The generalized coordinates are related to the finite-element displacements through the
basis vectors:

x = Φx̂ (3.12)

where x̂ is the vector of generalized-coordinates, sometimes referred to as participation
factors because they are the amount that each of the basis vectors participate in sub-

30 CHAPTER 3. EQUATIONS OF STRUCTURAL DYNAMICS

3.3

sequent solutions of the equations of motion. With this transformation, equation 3.1
becomes

M̂ ¨̂x+ Ĝ ˙̂x+ K̂x̂ = f̂(t) (3.13)

The choice of basis vectors is very important to successfully reducing the size of the
problem; a poor choice will result in a loss of accuracy. The key is to ensure that some
combination of the basis vectors will result in a reasonably accurate approximation
to the true solution vector. Flutter solutions are generally approximated very well
with free-vibration modes as basis vectors. This is due to the fact that air loads tend
to be distributed over the entire structure without highly localized forces; conversely
dynamic response problems that have large point loads tend to have solutions which do
not resemble free-vibration modes, so a free-vibration basis usually must be enriched
with solutions involving the point load. Various techniques based on this idea go by
the names mode acceleration and force summation [10][5].

3.2.1 Creating Basis Vectors

There are numerous techniques for creating basis vectors; among the most common in
use are free-vibration modes, assumed modes, superelement modes, and branch modes.

Free-vibration modes are computed by solving the generalized eigenvalue problem (§??)

Kφi = ω2
iMφi (3.14)

for a small number of the lowest-frequency (ω) modes and using them to form a basis
Φ = [φ1φ2...]

Assumed modes are sets of displacements that are created based on some special knowl-
edge of the behavior of the structure. They generally involve only a few nodal degrees-
of-freedom. For example a common use for assumed modes is to include rigid rotations
of control surfaces in a model that does not have that mode in a set of free-vibration
modes due to the presence of a stiff actuator.

Superelement modes (also known as component or modal-synthesis modes) (§H.2.1)
result from splitting a structure into superelements and computing free-vibration modes
of each piece separately. The assembled set of modes is generally larger to achieve the
same accuracy as free-vibration modes, so less reduction in the problem size is possible.
However, each superelement can be modified and analyzed independently.

The Branch Modes technique (§H.2.2) is a modification of the technique used to com-
pute superelement modes which isolates superelements in the sense that a superelement
has no stiffness coupling between it and the rest of the structure. This allows the stiff-
ness of the superelement to be varied independent of the rest of the structure for
stiffness parameter studies. The modes produced by the Branch Modes method have
displacements only in the superelement; the rest of the structure is fixed.

3.2. GENERALIZED COORDINATES 31

3.3

3.3 Frequency Domain: Characteristic Equations

Up to this point the equations of motion have been expressed as functions of time; here
we show how the equations may be transformed to the frequency domain, replacing
time-dependence with frequency-dependence. In terms of solution efficiency, this is
perhaps the most important simplification that can be made to the equations of motion.

If the right-hand side of eqn. 3.13 is a harmonic function, that is if it has the form

f(t) = Re
(
f̂est

)
where s = σ + iω is the characteristic exponent or Laplace variable,

f̂ is a constant complex vector and Re is the real part of a complex number, we can
assume a solution of the form

x(t) = Re
(
qest

)
= Re

[
qeσt (cosωt+ i sinωt)

]
= eσt

(
qr cosωt− qi sinωt

) (3.15)

where q = qr + iqi is a complex vector of generalized coordinate amplitudes. The kth

component can be written in various ways[9]:

qk = Re (qk) + i Im (qk) = |qk|eiφk = |qk| (cosφk + i sinφk) (3.16)

where φk = arctan Im(qk)
Re(qk)

is the phase angle associated with the kth element of the

complex vector q and |qk| =
√(

qrk
)2

+
(
qik
)2

is the absolute value. Then

xk(t) = Re|qk|eiφkest = Re|qk|eσtei(ωt+φk)

= Re
[
|qk|eσt [cos(ωt+ φk) + i sin(ωt+ φk)]

]
= |qk|eσt cos(ωt+ φk)

(3.17)

Substitution into 3.13 [
s2M̂ + sĜ+ K̂

]
qest = f̂est (3.18)

and dividing both sides by est results in characteristic equations of motion: 2

[
s2M + sG+K

]
q = f (3.19)

With no forcing function on the right-hand side this reduces to a real generalized
eigenvalue problem also known as the free-vibration eigenvalue problem[

−ω2M + ωG+K
]
φ = 0 (3.20)

2without loss of generality we drop the hats from this point on: subsequent equations can be in
terms of generalized-coordinates or the original physical degrees-of-freedom.

32 CHAPTER 3. EQUATIONS OF STRUCTURAL DYNAMICS

3.4

Equation 3.19 are said to be in the frequency or Laplace domain because the time
variable has been replaced with the frequency dependent variable s.

The motion of the structure is determined by the characteristic exponent. From eqn.
3.17 it can be seen that the frequency of oscillation is determined by ω; furthermore,
σ determines whether oscillations are growing (positive values), decaying (negative
values) or are neutrally stable, neither growing nor decaying (zero values).

Related to the real part of the characteristic exponent σ is the log decrement , defined
as the log of the ratio of two consecutive amplitudes of a harmonic motion:

δ = ln

[
x(t)

x(t+ 2π
ω)

]
= ln

[
eσt

eσ(t+
2π
ω
)

]
= −2πσ

ω
= −πγ (3.21)

where

γ =
2σ

ω
(3.22)

is the growth rate. Calling this quantity growth rate is more semantically correct than
the traditional term decay rate because positive values cause growing amplitudes of
oscillation, not decaying. As shown by equation 3.29, values of growth rate are close to
values of structural damping with the opposite sign, and this gives a way of measuring
structural damping in a structure: excite the structure in a particular free-vibration
mode, measure consecutive amplitudes and compute the log decrement.

3.4 Damping

All materials exhibit a loss of energy as they are deformed according to the laws of
thermodynamics. In structural-dynamic analyses these losses are typically modeled as
structural damping or viscous damping. Of these structural damping is more often used
explicitly and can be computed from vibration tests (§3.3); viscous damping is implicit
in unsteady aerodynamics, but is harder to measure in structures.

3.4.1 Structural Damping

Structural damping consists of internal friction due to hysteresis, and friction between
components of a structure [32][50]. Internal friction is independent of the rate of de-
formation, or of the frequency of oscillation. Moreover, it is proportional to the ampli-
tude of displacement and acts opposite to the velocity. The effects of friction between
components complicate the measurement of structural damping, and usually result in
structural damping which is not linear with the amplitude of displacement. Still it is
useful to represent structural damping by idK where i2 = −1 and d is the structural
damping coefficient:

[
s2M + (1 + id)K

]
q = f (3.23)

Structural damping coefficients are estimated during ground vibration tests. They are
different for each mode of vibration but generally range in value from 0.005 to 0.03,

3.4. DAMPING 33

3.4

depending upon the amplitude of vibration. Because of the uncertainty associated with
structural damping, analyses are often done at zero and 0.03 to assess the effects of
this uncertainty on the solution. This is reflected in the FAA requirements for flutter
clearance.

When the generalized coordinates in an analysis are based on vibration modes it is often
desirable to use different structural damping coefficients for each mode; this results in
a stiffness matrix that is a function of multiple structural damping coefficients:

K = K(dk), k = 1,m (3.24)

Structural damping coefficients for individual degrees of freedom can be specified with
the Flaps param command (§10.15); be aware of the interaction between individual co-
efficients and the overall structural damping coefficient when using both types (§6.3.2).

Small values of structural damping result in growth rates with values nearly the negative
of the structural damping coefficient. To see this, consider a single degree of freedom
vibration problem with structural damping:[

s2M + (1 + id)K
]
x = 0 (3.25)

σ2 + 2iσω − ω2 = −(1 + id)K

M
(3.26)

Equating the real and imaginary parts

σ2 − ω2 = −K
M

(3.27)

d = −2σωM

K
= − 2σω

ω2 − σ2
(3.28)

which for motion that is nearly pure harmonic (oscillations that are neither growing
nor decaying rapidly) (σ2 � ω2)

d ≈ −2σ

ω
= −γ (3.29)

This relationship, derived for a single uncoupled equation with small damping will
break down with larger values of damping and possibly with equation coupling; never-
theless this equivalence can be used to estimate the effects of structural damping on a
structure without damping: the point where growth rate is, for example 0.03 is close
to the point where the structure would be neutrally stable if it had 0.03 structural
damping.

There are two ways to include structural damping in an analysis: with the sdamp

parameter (§5.5), which applies to the entire stiffness matrix, or with user-defined
parameters which apply to one or more degrees of freedom in the stiffness matrix,
defined with the param command.

34 CHAPTER 3. EQUATIONS OF STRUCTURAL DYNAMICS

3.5

3.4.2 Viscous Damping

As the name implies, viscous damping is associated with fluid viscosity and is propor-
tional to the velocity, or frequency for harmonic oscillations, thus the viscous damping
matrix V is multiplied by the characteristic exponent:[

s2M + sV + sG+ (1 + id)K
]
q = f (3.30)

Viscous damping may be included in an analysis with the vdamp option.

3.5 Unsteady Aerodynamics

Unsteady aerodynamic matrices are usually generated in terms of the generalized-
coordinate basis Φ as functions of Mach number and reduced frequency. The Mach
number is defined as

M =
Vt
a

(3.31)

where Vt is the true airspeed (the speed relative to the earth) and a is the speed of
sound in the fluid (usually the standard atmosphere). Reduced frequency is defined as

p =
sb

Vt
=
σb

Vt
+ i

ωb

Vt
= g + ik (3.32)

where k is often referred to as k-value or simply reduced frequency, and p is usually
referred to as the complex k-value or complex reduced frequency . b is a reference length,
necessary to make the reduced-frequency dimensionless. Here we assume the reference
length is one and do not consider it further.

By convention the unsteady aerodynamic matrix is included in the characteristic equa-
tions of motion scaled by the negative of the dynamic pressure:

[
s2M + s(V +G) + (1 + id)K − qQ(p,M)

]
q = f (3.33)

Some unsteady aerodynamic processors are capable of generating matrices that are
functions of complex reduced frequency and Mach number; others (including NAS-
TRAN [41]) can generate matrices only at imaginary values of reduced frequency (k)
and Mach number. It has been shown [13, 14] that linear unsteady aerodynamic theories
may be extended to complex reduced frequencies simply by replacing the pure imagi-
nary reduced frequency with complex reduced frequency. This is the approach taken in
the doublet-lattice processors in ATLAS and Flaps. Using aerodynamics generated at
values of complex reduced frequency would then give correct results for motions that
are growing or decaying.

Alternatively, over the years there have been several attempts to approximate unsteady
aerodynamic forces for decaying motion, in addition to the usual forces generated for
harmonic motion. Here we give details on two approximations that are available in the
Flaps stab command.

3.5. UNSTEADY AERODYNAMICS 35

3.6

3.5.1 NASTRAN

NASTRAN [41] adds a term dependent on growth rate:

Q(p) ≈ Q(k) +
σ

ω
Im(Q(k))

= Q(k) +
γ

2
Im(Q(k))

(3.34)

where Im(Q) is the imaginary part of the (real) reduced frequency interpolated un-
steady aerodynamic matrix.

When the frequency approaches zero this added term can become large, depending on
the value of σ. so it would seem to give questionable results at low frequencies, but this
does not appear to be the case (see §3.5.3).

3.5.2 g-Method

Another technique for modifying unsteady aerodynamic matrices generated at (imag-
inary) reduced frequency is due to Chen [8]. Using the fact that complex unsteady
aerodynamic matrices are analytic functions and therefore satisfy the Cauchy-Riemann
equations [9], for small values of g the aerodynamic matrix can be written as

Q(p) ≈ Q(k) + g
∂Q

∂g

= Q(k)− igQ′(k))

(3.35)

where the complex reduced frequency p = g + ik, and

∂Q

∂g
= −i∂Q

∂k
(3.36)

due to the Cauchy-Riemann equations. It can be shown [8] that this approximation
is the same as the NASTRAN approximation if the aerodynamic matrix is a linear
function of reduced frequency or at zero reduced frequency.

3.5.3 Comparison

In both the NASTRAN and g-method modifications of the unsteady aerodynamic ma-
trix the modifications disappear when σ is zero, so these modifications will have no
effect on neutral stability. This example shows little difference in result between these
three aerodynamic formulations.

Sample problem stab10.ax is from the NASTRAN Test Problem Library. It compares
solutions obtained using the p-k method with the NASTRAN and g-method aerody-
namic modifications, and with the V-g formulation (§7.1.1). Two modes in this problem
diverge; one at 976 knots true airspeed and the other at 2254 knots. Of these only the
V-g formulation predicts the correct divergence velocity.

36 CHAPTER 3. EQUATIONS OF STRUCTURAL DYNAMICS

3.7

3.6 Controls Equations

Equations representing control-laws may be included in a matrix T which is usually
larger than the other matrices in the characteristic equation to account for the controls
equations. The general form of a T matrix is

T =

[
T 11 T 12

T 21 T 22

]
(3.37)

where the T11 block is usually zero, the T21 block provides input to the controls equa-
tions due to motion of the structure, the T12 block provides feedback to the structure,
and the T22 block comprises terms of the controls equations.

Control-law matrices are usually functions of the characteristic exponent and dynamic
pressure; including a controls matrix, the characteristic equations of motion can be
written [

s2M + s(V +G) + (1 + id)K − qQ(p,M) + T (s, q)
]
q = f (3.38)

where the mass, stiffness, and aero matrices have been expanded to match the size of
the T matrix:

M =

[
M11 0

0 0

]
(3.39)

as has the vector of generalized coordinates:

q =

{
q1
q2

}
(3.40)

Controls equations can be described with state-space matrices created using Matlab
and Simulink (known as the ABCD approach), or by writing a Fortran subroutine
which fills in the T matrix (known as the user-subroutine or coded approach). More
general control-law equations may be represented with user-written subroutines at the
cost of more effort on the part of the subroutine writer.

Section 6.2 and appendix C detail the ABCD approach, while section 6.4 discusses the
use of user-written subroutines; actual usage instructions are in section 10.15.

3.7 Dynamic Matrix

The sum of all the matrices is known as the dynamic matrix D:

Dq =
[
s2M + s(V +G) + (1 + id)K − qQ(p,M) + T (s, q)

]
q = f (3.41)

Equation 3.41 is used to solve the two major problems of structural dynamics: stability
and response. The homogeneous form (no right-hand-side) is used to determine stability
by solving the nonlinear eigenvalue problem (also known as the flutter equation)

D(s)q = 0 (3.42)

3.6. CONTROLS EQUATIONS 37

3.8

for eigenvalues and eigenvectors (s, q). Stability is then determined from the real part of
s = σ+ iω. If there are n equations in 3.42 there are theoretically n pair of eigenvalues
and eigenvectors, collectively referred to as aeroelastic modes.

Response analyses solve the system of complex linear equations

D(s)q = f (3.43)

with σ = 0, giving the steady-state response to harmonic excitation.

3.7.1 Time Domain Revisited

The dynamic matrix equation (3.41) can be written for time-domain problems by ne-
glecting unsteady aerodynamics and structural damping

Mq̈ + (V +G) q̇ +K + T (t, q, q̇, q̈) = f(t) (3.44)

Unsteady aerodynamics formulated in the frequency domain can be transformed to the
time domain (see sect. ??).

3.8 Further Reduction of Matrix Size

Free-vibration modes may be the simplest modes to compute but they are not the most
useful for doing parameter studies. Often it is necessary to include so-called assumed
modes, which as the name implies are shapes specified by the user, usually to include
control-surface rotations as separate degrees of freedom. In addition, generalized coor-
dinates based on superelements (see appendix H). Both of these techniques result in
generalized-coordinate bases (modes matrices) which are uncoupled in the sense that
some degrees of freedom have motion in only one mode (column of Φ). The term
uncoupled can cause confusion because it is used with opposite meanings depending
on whether you are talking about modes or equations. coupled modes refers to modes
which have been transformed so that they represent free-vibration modes of the entire
airplane; any assumed modes or superelement modes have coupled with the rest of the
structure. Coupled modes result in diagonal generalized mass and stiffness matrices.

On the other hand coupled equations means that the mass and/or stiffness matrices are
not diagonal - exactly the opposite meaning from coupled modes. Thus the vibration
problem 3.14 uncouples the equations of motion by coupling the modes.

The presence of assumed modes and superelement modes increases the size of the ma-
trices over the equivalent free-vibration modes, and sometimes it is desirable to reduce
the size by coupling the modes (or uncoupling the equations of motion). This is done
by solving the vibration problem 3.14 with the generalized mass and stiffness matrices

for a reduced set of modes Φ̂ =
[
φ̂1φ̂2...

]
. Then just as equation 3.12 transformed from

generalized coordinates to physical degrees of freedom, the transformation from the re-
duced generalized coordinates to the original generalized coordinates, and to physical

38 CHAPTER 3. EQUATIONS OF STRUCTURAL DYNAMICS

3.10

degrees of freedom is

x = Φq = ΦΦ̂q̂ (3.45)

The addition of controls equations complicates the transformation somewhat. Assuming
we do not want to alter the controls equations the transformation from generalized
coordinates to reduced generalized coordinates is

ˆ̂Φ =

[
Φ̂ 0
0 I

]
(3.46)

which transforms the sensor and feedback blocks of the T matrix (§3.6)

T̂ = ˆ̂Φ
t
T ˆ̂Φ =

[
Φ̂
t
T 11Φ̂ Φ̂

t
T 12

T 21Φ̂ T 22

]
(3.47)

Demo problem stab7.ax shows how you can make this transformation using Flaps
commands.

3.9 Units

The units of all parameters, vectors, and matrices in equation 3.41 must be consistent:
each term must result in the same units. Matrix units are very important to be aware of,
especially if the matrices used in an analysis come from different sources, for example
if the mass and stiffness matrices are from NASTRAN and the unsteady aerodynamic
matrices are from TRANAIR.

The default units for the right and left sides of an equation in nodal degrees-of-freedom
such as 3.41 are pounds force (lbf) for translational degrees-of-freedom and lbf -in for
rotational degrees-of-freedom. It is the user’s responsibility to ensure that units are
consistent if any changes are made to the parameter or matrix units.

Tables 3.1, 3.2, 3.3, and 3.4 show the matrix, vector, and parameter terms with default
units. Parameter units shown are those used internally to give consistent equations;
parameters may also have external units as shown in table 5.1. Note that mass terms
have been converted from pounds mass (lbm) to lbf -sec2/in using the conversion factor

386.0886
lbm-in

lbf -sec2
(3.48)

which arises from the fact that a lbf is defined as the gravitational force exerted on a
1 lbm object on the surface of the earth. Note also that the default measure of angles,
radians, is not technically a unit due to the fact that it is defined as the angle formed
at the center of a circle by two radii enclosing an arc with an arc-length equal to the
radius, which is dimensionless. Any angle can be expressed in radians by forming a
circle with center at the vertex of the angle and any radius; the angle in radians is the
ratio of the arc-length divided by the radius.

3.9. UNITS 39

3.10

Term Default Units

Dtt,Ktt or T tt lbf/in
Drt,Krt or T rt lbf
Dtr,Ktr or T tr lbf/rad
Drr,Krr or T rr lbf -in/rad

M tt lbf -sec2/rad2-in
M rt lbf -sec2/rad2

M tr lbf -sec2/rad3

M rr lbf -in-sec2/rad3

Gtt or V tt lbf -sec/rad-in
Grt or V rt lbf -sec/rad
Gtr or V tr lbf -sec/rad2

Grr or V rr lbf -in-sec/rad2

Qtt in
Qrt in2

Qtr in2/rad
Qrr in3/rad
Φt in
Φr radians

t subscript refers to translational degrees-of-freedom
r subscript refers to rotational degrees-of-freedom

Table 3.1: Units for Matrices in Nodal Degrees-of-Freedom

3.10 Matrix Properties

Here we discuss various properties of matrices in general and some properties of structural-
dynamic matrices in particular.

Matrices are often too large to view as printed numbers, so Flaps uses a graphical
visualization tool called MatView [22] which can be used to look at the overall structure
of a matrix or examine individual values. The Flaps print command (§10.16). uses
MatView by default.

Mass matrices and stiffness matrices are symmetric: M ij = M ji and because they are
symmetric they have real eigenvalues. In addition, mass matrices are positive definite:
all of their eigenvalues are positive. Stiffness matrices are positive definite if the struc-
ture has no rigid-body modes; otherwise they have zero eigenvalues and are positive
semi-definite. Mass and stiffness matrices in nodal degrees-of-freedom are sparse (many
elements are zero) so special sparse-matrix techniques are used to treat the eigenvalue
problem 3.14.

Gyroscopic matrices are skew-symmetric: Gij = −Gji. Skew-symmetric matrices have
pure imaginary eigenvalues.

Complex matrices can similarly be classified as Hermitian:

A
t

= A∗ = A (3.49)

that is, the conjugate transposed matrix equals the original matrix. The * superscript

40 CHAPTER 3. EQUATIONS OF STRUCTURAL DYNAMICS

3.11

Term Default Units

D̄tt, K̄tt or T̄ tt lbf -in

D̄rt, K̄rt or T̄ rt lbf -in− rad
D̄tr, K̄tr or T̄ tr lbf -in

D̄rr, K̄rr or ¯T rr lbf -in-rad

M̄ tt lbf -sec2-in/rad2

M̄ rt lbf -sec2-in/rad

M̄ tr lbf -sec2-in/rad2

M̄ rr lbf -in-sec2/rad

Ḡtt or V̄ tt lbf -in-sec/rad

Ḡrt or ¯V rt lbf -in-sec

Ḡtr or ¯V tr lbf -in-sec/rad

Ḡrr or ¯V rr lbf -in-sec

Q̄tt in3

Q̄rt in3-rad

Q̄tr in3

Q̄rr in3-rad

t subscript refers to translational degrees-of-freedom
r subscript refers to rotational degrees-of-freedom

Table 3.2: Units for Matrices in Generalized Degrees-of-Freedom

denotes the conjugate transpose, sometimes called the Hermitian transpose. A skew-
Hermitian matrix is one where the conjugate transpose equals the negative of the
matrix: A

t
= A∗ = −A Obviously, any symmetric matrix is also Hermitian (but

not vice versa), and any skew-symmetric matrix is also skew-Hermitian (but not vice
versa). It can also be shown that a Hermitian matrix has a symmetric real part and a
skew-symmetric imaginary part, and a skrew-Hermitian matrix has a skew-symmetric
real part and a symmetric imaginary part. Any real matrix can be written as the sum
of a symmetric and a skew-symmetric matrix:

A = 1
2

(
A+At

)
+ 1

2

(
A−At

)
(3.50)

and any complex matrix can be written as the sum of a Hermitian and a skew-Hermitian
matrix:

A = 1
2 (A+A∗) + 1

2 (A−A∗) (3.51)

3.11 Work and Energy

When the structure is given a small (virtual) displacement [31][43] the corresponding
virtual work due to external forces is

δW = δxtf (3.52)

3.11. WORK AND ENERGY 41

3.11

Term Default Units

f t lbf
fr lbf -in

f̂ t lbf -in

f̂r lbf -in-rad
xt in
xr radians(rad)
q dimensionless

t subscript refers to translational degrees-of-freedom
r subscript refers to rotational degrees-of-freedom

Table 3.3: Vector Units

Term Default Internal†Units

q lbf/in
2

ω rad/sec
M dimensionless
p dimensionless
k dimensionless
g dimensionless
ρ lbfsec

2/in4

s rad/sec
d dimensionless
σ rad/sec
a in/sec
Vt in/sec

†internal units are used for computations

Table 3.4: Parameter Units

Over a given period of time the work done is

W =

∫ t2

t1

ẋtf(t) dt (3.53)

D’Alembert’s principle [31][43] allows us to write an expression for the virtual work in
the frequency domain as

δW = δqtDq (3.54)

and over one cycle of oscillation

W =

∫ 2π
ω

0
Re
(
s qtest

)
Re
(
Dq est

)
dt (3.55)

so for undamped harmonic motion (i.e. neutral stability or flutter), the work done on
the structure in one cycle of oscillation is

W =

n∑
k=1

n∑
l=1

Wkl (3.56)

42 CHAPTER 3. EQUATIONS OF STRUCTURAL DYNAMICS

3.11

where, using 3.17

W =

∫ 2π
ω

0
Re
(
s qtest

)
Re
(
Dq est

)
dt (3.57)

The dynamic matrix can be written as the sum of a Hermitian and a skew-Hermitian
matrix (§3.51):

D = R+ S

R = 1
2 (D +D∗)

S = 1
2 (D −D∗)

(3.58)

which leads to

W = −ω
∫ 2π

ω

0

n∑
k=1

n∑
l=1

[
|qk||ql|Rkl sin (ωt+ φk) cos (ωt+ φl)

− |qk||ql|Skl sin (ωt+ φk) sin (ωt+ φl)

]
dt

= −π
n∑
k=1

n∑
l=1

|qk||ql|
[
Rkl sin (φk − φl)− Skl cos (φk − φl)

]
= −π Im (q∗Dq)

= iπq∗Sq

(3.59)

That is, the work done on the system is only dependent upon the skew-Hermitian part
of the dynamic matrix; mass and stiffness terms do not contribute, nor do gyroscopic
terms, leaving only the skew-Hermitian part of the unsteady aerodynamic, viscous and
structural-damping, and control-law matrices. The total work done on the structure at
flutter is zero because Dq = 0; however, useful information can still be gained from
equation 3.57 if we only sum on k:

W l = iπqlS
∗q (3.60)

which gives the work done on the structure by the lth generalized-coordinate.

3.11. WORK AND ENERGY 43

3.11

44 CHAPTER 3. EQUATIONS OF STRUCTURAL DYNAMICS

Chapter 4

Creating and Manipulating
Matrices

There are several ways to create new matrices and manipulate existing matrices in
Flaps, including matrix algebra, extracting elements of matrices, merging matrices,
and generating specialized matrices like gyroscopic and force matrices.

4.1 Matrix Algebra

Most of the operations defined on matrices are available in Flaps using the alge
command: matrix addition, subtraction, inversion, pseudo-inverse, transpose, inverse-
transpose, real part, imaginary part, and conjugation. Matrices may be real or complex;
operations involving both datatypes result in a complex matrix. For example if Q is an
existing rectangular matrix the statement

alge { shouldbezero = (Q(T)*Q)(-1)*(Q(t)*Q) - Q(-1)*Q }

creates a new matrix shouldbezero which is square and contains all zeros.

Matrices may be multiplied or divided by real or complex scalars or scalar expressions;
scalar expressions may include addition, subtraction, multiplication, division, exponen-
tials, logarithms, square-root, powers, trigonometric functions (sin, cos, tan), inverse
trigonometric functions (arcsin, arccos, arctan). For example,

alge { k = (1/sqrt(1 + i0.03))*AEKHH }

multiplies the real matrix by a complex scalar (1 over the square-root of 1+i0.03),
producing a complex matrix (k). As another example, to evaluate the expression

M̄ =
1
3
√

2
TtM−1T (4.1)

you could use

45

4.3

alge { Mbar = T(t)*M(-1)*T/pow(2,1/3) }

where M and T are existing matrices.

Select elements of matrices may be multiplied or divided by scalar expressions. For
example

alge { k = (1/sqrt(1 + i0.03))*AEKHH{rows=(3 to 6), cols=(3 to 6) }

scales only a 3 by 3 diagonal block.

If a matrix is a function of one or more parameters, the matrix can be evaluated at
specified values by following the matrix name with the parameter names and values
enclosed in curly braces; for example

alge { g = gaf{rfi=0, mach=0.7, rfr=0} }

creates a new matrix (g) which is parameterized matrix gaf evaluated at the three
parameters it is a function of.

Matrices that are functions of parameters may be treated in one of two ways: by
evaluating the matrix at given values of the parameters, resulting in a constant matrix,
or by operating on the parameterized matrix, resulting in a new parameterized matrix.
For example,

param { gaf = genforce }

alge { igaf = gaf(-1) }

will interpolate all genforce matrices and create parameterized matrix gaf, then invert
it and create parameterized matrix igaf; equivalently you could write

alge { igenforce = genforce(-1) }

param { igaf = igenforce }

which will invert each matrix named genforce with any attributes (§2.3) creating ma-
trices named igenforce with the same sets of attributes, then interpolate these.

Matrix dimensions must be conforming : addition and subtraction require matrices with
the same dimensions while multiplication requires the number of columns in the first
matrix equal the number of rows in the second.

4.2 Extracting Elements

Rows, columns, or diagonals of existing matrices may be extracted to create new ma-
trices using the extract command (§10.9). Parameterized matrices are treated in the
same two ways as in the alge command: the extraction is done either on the matrix
evaluated at specified values of the parameters, creating a constant matrix, or directly
on the parameterized matrix, creating a new parameterized matrix.

46 CHAPTER 4. CREATING AND MANIPULATING MATRICES

4.5

4.3 Merging Matrices

Rudimentary matrix merging can be done in Flaps with the merge command. Two or
more matrices may be merged as rows or columns of a new matrix.

4.4 Gyroscopic Matrices

Gyroscopic forces arise from the motion of spinning flexible or rigid bodies; here we
consider only rigid bodies whose spin axis passes through a structural node and whose
orientation is determined by the rotational degrees of freedom at the node. The rate of
change in orientation of the spin vector gives rise to accelerations which in turn produce
moments acting on the rotational degrees of freedom of the node. This is analogous to
the situation with translational degrees of freedom where according to Newton’s second
law the force is the rate of change of momentum

f =
d

dt
(mẋ) (4.2)

which for constant mass reduces to the more familiar vector equation

f = mẍ (4.3)

For a rigid body spinning at a constant rate the analogous equation is

f = ẋ× h = −h× ẋ (4.4)

where f is a vector of moments, x is a vector of the rotational displacements of the
node, h is the angular momentum vector of the part, and × is the vector cross-product.
A gyroscopic matrix can be formed by writing the cross product in matrix form:

f = −

 0 −h3 h2
h3 0 −h1
−h2 h1 0

x1
x2
x3

 (4.5)

Assembling all such 3 by 3 matrices yields the nodal gyroscopic matrix shown in equa-
tion 3.1 which then can be reduced as in equation 3.11.

The Flaps gyro command (§10.11) is used to create gyroscopic matrices in either nodal
or modal degrees of freedom for one or more spinning rigid bodies.

4.5 Force Vectors

Force vectors for use in the fresp or tresp commands may be created with the Flaps
force command.

4.3. MERGING MATRICES 47

4.5

48 CHAPTER 4. CREATING AND MANIPULATING MATRICES

Chapter 5

Parameters

Parameters play a central role in Flaps commands, whether for studying the effects
of parameters on vibration, stability or response, or simply specifying conditions for
various analyses. There are a number of pre-defined (standard) parameters available
in any Flaps processor such as velocity and frequency; new parameters may be de-
fined in most Flaps processors using a common format described in this chapter. All
parameters are persistent : they are available in subsequent processors, and changes to
any parameter (standard or user-defined) take effect in all subsequent processors.

5.1 Parameter Format

All parameters in Flaps are defined (and displayed) using a a common syntax referred
to throughout this manual as a parameter-defn

name(description)[min:max]<conversion> = equation

The components of a parameter are

name Parameters are always referred to by name. There is no limit on the
length of the name, but it may not contain spaces and probably should
not contain commas.

(description) arbitrarily long description of the parameter, enclosed in parentheses.
The description is never used to identify the parameter, only in printed
output and plot files.

[min:max] Minimum and maximum acceptable values for the parameter in ex-
ternal units. Two floating-point numbers separated by a colon and
enclosed in square brackets. If either number is missing the default is
assumed.

<conversion> determines the units used within Flaps for computations, the units

49

5.2

used for presentation in printout or plotfiles, and the conversion factor
between the two.

equation The right-hand-side can be a simple value, multiple values enclosed in
parentheses, or an equation. Standard parameters have multiple built-
in equations (§5.5.1) which are chosen by Flaps commands to give a
consistent set of equations. User-defined equations (§5.4) may consist
of matrix elements, parameter names, scalars, pre-defined constants
(§2.5), +-*/, square root (sqrt), exponential (exp) and power (pow).

All the items except name are optional; however some contexts may require more than
just a name. For example, it may be necessary to include a value or equation on the
right-hand-side. See §5.8 for examples of valid parameter definitions.

The parameter name is case sensitive: vtas, Vtas, and VTAS are all different parameters.
This implies that any parameter names in the right-hand-side equation are also case
sensitive. The description and conversion units are only used for presentation purposes
and are not case sensitive.

5.2 Parameter Units

Parameter units are determined by the <conversion> portion of a parameter defini-
tion, which in general consists of a factor a string describing the external (or presen-
tation) units followed by a slash (/), followed by a string describing the internal (or
computational) units. The factor is a floating-point number which when multiplied by
a number in internal units yields a number in external units. The general format of a
conversion is

<factor (external units)/(internal units)>

The strings describing the internal and external units should be enclosed in parentheses
if the string contains a slash. These units descriptions are used in printout and plot
files for information only; no magic here.

All computations are done in internal units, and parameter values are converted to
external units by multiplying by the conversion factor for printed output and plotfiles.

Some examples of valid conversion factors:

<144 psf/psi>

<0.159154943 Hz/(rad/sec)>

<20736 (sl/ft^3)/(lbf-sec^2/in^4)>

Standard Flaps constants (§2.5) may be used as conversion factors, with the added
convenience that default units descriptions will be used. For example the default defi-
nition of frequency is

50 CHAPTER 5. PARAMETERS

5.4

freq(Frequency)[.01:50]<HZPRS> = 0

which uses the built-in conversion HZPRS (Hz per radian/second).

5.2.1 Changing Units

The units associated with either the built-in standard parameters (§5.5) or user-defined
parameters can be changed by redefining the parameter (anything but the name that
is). External units can be changed to anything, but the internal units must remain
compatible with the other parameters used in an analysis. For example, to change the
external units for vtas from the default (knots) to furlongs/fortnight:

vtas(VelTAS)[0:3e+6]<152.727272 (furlong/fortnight)/(in/sec)>

Note that the limits, being in external units, have also been adjusted to give approxi-
mately 0 to 1000 knots, and the internal units have not been changed.

5.3 Parameter State

Active parameters are the independent variables in an analysis; for example, in a stabil-
ity analysis velocity, frequency and growth rate might be active, while in a frequency-
response analysis the frequency is active.

Fixed parameters have a value assigned by the user, usually in the options to the
module. For example, including the option mach=0.6 in a stab run sets the Mach
number to 0.6.

All other parameters are derived from the active and fixed parameters. The user is
responsible for ensuring that the combination of fixed and active parameters is such
that there is an equation for each derived parameter. For example, in a stability analysis
if vtas, freq, and growth are active, then alt must be fixed in order to use the equation
for mach M = Vt/a(z). Currently available equations for the standard parameters are
listed in section 5.5.1.

5.4 Parameter Equations

To the right of the equals sign in an equation definition is the parameter equation.
A parameter equation can be as simple as a value (which makes the parameter state
fixed), multiple values separated by commas and enclosed in parentheses, for example

gain = (1,2,3,4)

5.3. PARAMETER STATE 51

5.4

(which makes the parameter state multiple-valued fixed), or it can be a fairly arbitrary
function of scalars, other parameters, builtin functions, and matrix elements, making
the parameter state derived .

All of the pre-defined standard parameters (§5.5) have builtin equations, most have
more than one. When an Flaps processor is run with some of the standard parameters
declared fixed, independent (active) or derived, the builtin equations are searched for
compatibility with the declared parameters. It is an error if no compatible equation
can be found.

User-defined equations may contain scalars, operators, other parameters, builtin func-
tions, or matrix elements as detailed in sections 5.4.1-5.4.6. As usual, if an equation
contains commas the equation must be quoted to protect the commas.

Equations, as all elements of parameter definitions, are persistent : after a parameter
is given an equation, that equation will be used in subsequent processors until given
another equation.

The ability to define parameter equations makes it possible to do nonlinear stability
analyses using the describing function technique (appendix G)[30][45].

Parameter equations are made up of other parameters, matrix elements, scalars, oper-
ators, and functions, as described below.

5.4.1 Scalars

Scalars can be either real (e.g. 2.0 or 4e-5) or complex, as in (4.1 + i5.3) (§2.4). A
complex scalar makes the resulting equation, and it’s parameter complex.

Any of the pre-defined constants (§2.5) may be used; for example

sc = G*sin(PI/2)

5.4.2 Operators

The usual arithmetic operators can be used: * (multiply), / (divide), + (add) and -
(subtract).

5.4.3 Other Parameters

Parameters are included in the equation by giving the parameter name. When the
equation is evaluated the current values of any parameters are used, so they may in
turn be functions of other parameters.

Derivatives of parameters may be used in equations by enclosing parameter names in
d(); for example

52 CHAPTER 5. PARAMETERS

5.4

dg = d(growth)/d(vtas)

defines a parameter (dg) as the derivative of growth with respect to vtas. Because there
is in general no equation relating growth to vtas, the only place this has meaning is
in the stab command where growth and vtas are related by the curve being traced. In
this case dg gives the tangent to the growth-vtas curve at each solution point.

It is important to note that the value of a parameter used in an equation is
always in external units. The reason is that if you specify a value for a parameter,
the value is always assumed to be in external units; but because a value is merely the
simplest form of equation, then the result of evaluating an equation must also be in
external units.

5.4.4 Built-in Standard Functions

Several functions may be used in equations, including the standard trigonometric func-
tions, logarithmic and exponential, and a few describing-functions which can be used to
approximate nonlinearities. In the following table x and y are real or complex scalars
or scalar expressions, with the exception of min and max which only take real scalars
or scalar expressions.

abs(x) Absolute value of x

acos(x) arc cosine of x

asin(x) arc sine of x

atan(x) arc tangent of x

cos(x) cosine of x

exp(x) exponential of x: ex.

log(x) natural logarithm of x

log10(x) base 10 logarithm of x

max(x,y) maximum of x and y; x and y must be real

min(x,y) minimum of x and y; x and y must be real

pow(x,y) x raised to the y power: xy.

sign(x) sign of x: +1 if x is positive or -1 if negative

sin(x) sine of x

sqrt(x) Square root of x

tan(x) tangent of x

tanh(x) hyperbolic tangent of x. Tanh is sometimes used as an alternative to
the sign(x) function because it does not have the discontinuity at zero
that sign has, making it more suitable for time-integration.

5.4. PARAMETER EQUATIONS 53

5.4

5.4.5 Built-in Special Functions

A few functions are available to aid defining nonlinearities; these are all prefixed with
ax:: (see appendix G):

ax::gap(fp, gc) given the size of a gap and the current value of a generalized-coordinate,
returns a number between 0 and 1 which when multiplied by a stiffness
value gives the equivalent stiffness accounting for the gap.

ax::gapdf(fp, gc) given the size of a gap (fp) and the current magnitude of a generalized-
coordinate (gc), returns a number between 0 and 1 which when mul-
tiplied by a stiffness value gives the equivalent stiffness accounting for
the gap using the describing-function technique.

ax::ffnasdf(h, gc) given the value of a static displacement (h) and the current magnitude
of a generalized-coordinate (gc), returns a number between 0 and 1
which when multiplied by a stiffness value gives the equivalent stiffness
for a failed mechanism.

ax::ffwpdf(fp, gc) given the size of a gap (fp) and the current magnitude of a generalized-
coordinate (gc), returns a number between 0 and 1 which when mul-
tiplied by a stiffness value gives the equivalent stiffness accounting for
the gap using the describing-function technique.

5.4.6 Matrix Elements

Matrix elements may be included in an equation by specifying the matrix id (§2.3)
followed by the row and column enclosed in square brackets, for example "gaf[3,5]".
The matrix can be a function of parameters; it will be evaluated prior to using the
element value. As usual, if the matrix id contains commas it must be enclosed in single
or double quotes. For example

el = "AEMHH,MASSID=OEW"[6,6]

5.4.7 Evaluation

When the value of a parameter is needed, if it has an equation, the equation is eval-
uated; if the equation contains references to other parameters, those parameters are
evaluated first. Likewise if matrix elements are included in the equation those matrices
are evaluated and the relevant elements extracted and used in the equation. In either
case the current value is used so the parameter or matrix element can themselves be
variable.

54 CHAPTER 5. PARAMETERS

5.5

5.4.8 Examples

Some examples of parameter definitions with equations:

eler = "2.0*elel*gaf[65,65]"

k = 378*freq2*freq2

dp = "sqrt(5.65e-5*vcas)/(pow(mach,0.02)*17.34)"

vc = exp(2*PI)*eler*DPR

Other examples are the equations available for the pre-defined standard parameters
(§5.5.1).

5.5 Standard Parameters

In the standard presentation format (§5.1) the predefined parameters are

alt(Altitude)[-10000:250000]<ft> = 0

cdpress(Calib Dyn Press)[0:13000]<144 psf/psi> = 0

dpress(Dynamic Pressure)[0:13000]<144 psf/psi> = 0

freq(Frequency)[.01:50]<HZPRS> = 0

growth(Growth Rate) = 0

mach(Mach Number)[0:1] = 0

rfi(Reduced Frequency)[0:100] = 0

rfr(Real Part of p) = 0

rho(Std Atm Density)[0:1]<20736 (sl/ft^3)/(lbf-sec^2/in^4)> = 0

s(Characteristic Exponent) = 0

sdamp(Structural Damping) = 0

sigma(Real(Char. Exp)) = 0

spress(Static Pressure)[0:13000]<144 psf/psi> = 0

temp(Static Temperature)[0:660]<1 (deg K)/(deg K)> = 0

tpress(Stagnation Pressure)[0:13000]<144 psf/psi> = 0

vcas(Velocity (CAS))[0:1000]<KPIPS> = 0

veas(Velocity (EAS))[0:1000]<KPIPS> = 0

vsound(Sonic Velocity)[0:1000]<KPIPS> = 0

vtas(Velocity (TAS))[0:1000]<KPIPS> = 0

where HZPRS and KPIPS are among a number of predefined conversions (§2.5) usable
anywhere you define a parameter.

5.5. STANDARD PARAMETERS 55

5.5

Table 5.1 lists all the predefined parameters with their mathematical symbol and default
units.

Default Units
Name Symbol Description internal external

alt z altitude ft ft
cdpress qc calib. dynamic pressure lbf/in

2 lbf/ft
2

dpress q dynamic pressure lbf/in
2 lbf/ft

2

freq ω frequency rad/sec Hz
growth γ growth rate - -
mach M Mach number - -
p p complex reduced frequency - -
rfi k imaginary part of p - -
rfr g real part of p - -
rho ρ fluid density lbfsec

2/in4 slug/ft3

s s characteristic exponent - -
sdamp d structural damping coeff - -
sigma σ real part of s rad/sec Hz
spin Ω rotation rate rad/sec rad/sec
spress P static pressure lbf/in

2 lbf/ft
2

temp T static temperature degK degK
tpress Pt total pressure lbf/in

2 lbf/ft
2

vcas Vc calibrated airspeed in/sec knots
veas Ve equivalent airspeed in/sec knots
vsound a sonic velocity in/sec knots
vtas Vt true airspeed in/sec knots
- dimensionless

Table 5.1: Standard Parameters

5.5.1 Standard Parameter Equations

Each of the standard parameters has one or more equations for calculating its value in
terms of the other standard parameters when it is derived. Here we list the currently
available equations; which equation is used depends on which parameters are active or
fixed. Normally the user specifies which parameters are active or fixed and the program
decides which equation to use.

Some parameters have default equations taken from the U.S. Standard Atmosphere
as described in [7]. Properties of the standard atmosphere can be explored using the
atmos option to the apex command (§10.6).

alt (Altitude)

reverse lookup on rho in tables of standard atmosphere properties

z = z(ρ) (5.1)

56 CHAPTER 5. PARAMETERS

5.5

dpress (Dynamic Pressure)

q =
1

2
ρV 2

t (5.2)

q =
1

2
ρ(0)V 2

e (5.3)

freq (Frequency)

ω = kVt (5.4)

ω = 2
σ

γ
(5.5)

growth (Growth Rate)

γ = 2
σ

ω
(5.6)

mach (Mach Number)

M =
Vt
a

(5.7)

M =

√√√√√5

[[

V 2
c

8.97108
+ 1

]3.5
− 1

].285714
− 1

 (5.8)

p (Complex Reduced Frequency)

p =
s

Vt
= g + ik

(5.9)

rfi (Reduced Frequency)

k =
ω

Vt
(5.10)

5.5. STANDARD PARAMETERS 57

5.5

rho (Density)

table lookup in standard atmosphere tables.

ρ = ρ(z) (5.11)

s (Characteristic Exponent)

s = σ + iω (5.12)

sigma (Real Part of s)

σ =
1

2
γω (5.13)

σ = Re(s) (5.14)

spress (Static Pressure)

Also known as ambient or freestream pressure. Table lookup in standard atmosphere
tables:

P = P (z) (5.15)

tpress (Total Pressure)

Also known as stagnation pressure. Sum of dynamic and static pressure:

Pt = P + q (5.16)

vcas (Calibrated Airspeed)

Vc = 12

√√√√γP (0)

ρ(0)

2

γ − 1

[[
q

P (0)
+ 1

] γ−1
γ

− 1

]
(5.17)

veas (Equivalent Airspeed)

Ve = Vt

√
ρ(z)

ρ(0)
(5.18)

Ve =

√
2q

ρ(0)
(5.19)

58 CHAPTER 5. PARAMETERS

5.6

vsound (Sonic Velocity)

table lookup in standard atmosphere tables.

a = a(z) (5.20)

vtas (True Airspeed)

Vt =
M

a(z)
(5.21)

Vt =
ω

k
(5.22)

Vt =

√
2q

ρ(z)
(5.23)

Vt = Ve

√
ρ(0)

ρ(z)
(5.24)

5.6 Defining New Parameters

In addition to the standard parameters available automatically, new parameters can
be defined and used just like the standard parameters. There a several places in Flaps
where new parameters can be defined:

• in the alge processor, when a new matrix is created, it may have new parameters
associated with it

• in the param processor, when a new matrix is created, it may have new parameters
associated with it

• parameter definitions with equations defined in terms of existing parameters can
be included in stab, fresp, or tresp.

The syntax used to define new parameters is the same as that used for standard pa-
rameters (§5.1). These user-defined parameters can be defined with arbitrary equations
in terms of existing standard and user-defined parameters.

New parameters are created in the param processor where they are associated with pa-
rameterized matrices, although they are also created anywhere a parameter is expected.
For example in the stab command the option

stab { ..., pratio(Press Ratio) = "pow(1.0 + 0.2*mach*mach, 3.5)", ... }

5.6. DEFINING NEW PARAMETERS 59

5.7

will create a new parameter called pratio and define it as the ratio of total pressure to
freestream pressure, using a basic equation of compressible flow. This new parameter
could then be included in the plot file output by stab, where it will have the plot title
”Press Ratio”. Note the equation was enclosed in quotes to protect the comma from
being interpreted as an option-separator.

Parameters in Flaps are persistent in the sense that once defined they can be referenced
by name in subsequent commands; the parameter’s description, limits, conversion, and
value are preserved until reset.

5.7 Output Transformation Parameters

Dynamic stability and response problems are usually done in terms of generalized
coordinates, commonly represented by vibration modes. Often it is necessary to post-
process these generalized coordinates, for example to visualize motion of the represented
structure, or to compute strain energy. A special type of parameter, known as an output
transformation or ot parameter is useful in these situations. The difference between an
ot parameter and an ordinary parameter is that an ot parameter is a function of the
generalized coordinates (and possibly other parameters). The function might be as
simple as extracting one element of the generalized-coordinate vector or multiplying
the vector by a row of the modes matrix associated with the generalized coordinates
to get motion at a particular nodal degree-of-freedom.

An ot parameter is defined the same as any other parameter (§5.1) except that the
equation contains a special parameter, the generalized coordinates, denoted by its name
gc. For example, to define a parameters which are the velocity and acceleration at a
particular nodal degree-of-freedom you could use

stab { ...,

n7tzvel(Node 7 TZ Vel) = "s*n7tz*gc"

n7tzacc(Node 7 TZ Accel) = "s*s*n7tz*gc"

... }

where n7tz is the name of a matrix with one row which is the row of the modes matrix
corresponding to the tz freedom of node 7, possibly created with the extract command:

extract { n7tz = "modes,set=11"{row=7/tz} }

For convenience two more vectors are available which are the velocity and acceleration
corresponding to gc, called gcdot and gcdotdot. With these vectors the above example
could be written as

stab { ...,

n7tzvel(Node 7 TZ Vel) = "n7tz*gcdot"

n7tzacc(Node 7 TZ Accel) = "n7tz*gcdotdot"

... }

60 CHAPTER 5. PARAMETERS

5.8

In a time-domain analysis in tresp the generalized-coordinates, velocities and acceler-
ations have the same names, gc, gcdot, and gcdotdot, but in this case they are real
vectors. The previous example in the time-domain would be

tresp { ...,

n7tzvel(Node 7 TZ Vel) = "n7tz*gcdot"

n7tzacc(Node 7 TZ Accel) = "n7tz*gcdotdot"

... }

5.8 Examples

A bewildering number of possibilities exist for defining parameters and re-defining
existing parameters. Here we can only give a limited number of examples; hopefully
these will inspire you to try others.

It is important to remember that parameters using in equations are evaluated in their
external units, so to re-define reduced frequency it is necessary to convert frequency
and velocity to computational (internal) units:

rfi(My Reduced Freq) = "(freq/HZPRS)*2/(vtas/KPIPS)"

which uses the built-in conversion factors HZPRS (Hz per radian/second) and KPIPS
(knots per inch/second) (§2.5).

Multiple values can be specified for a parameter by enclosing the values in parenthe-
ses, just as you would any multi-valued right-hand-side. For example to specify that
dynamic pressure is to have three constant values in a stab run you would include

..., dpress=(2,3,4.1), ...

but you could also use

..., dpress<6894.75 (N/m^2)/psi>=(2,3,4.1), ...

to change the units at the same time.

More examples of valid parameter definitions:

Ail(Aileron Freq)[0:10]<HZPRS> = 12345

fuel(Percent Fuel)[0:100]

gain = 1.3E-2

s = (3.14 + i6.28)

n7acc <.259007e-2 g/(in/s**2)> = -.2d-3

dpress = rho*pow(vtas,2)/2

For more examples of valid parameter definitions see section 5.5.

5.8. EXAMPLES 61

5.8

62 CHAPTER 5. PARAMETERS

Chapter 6

Parameterizing Matrices

The process of creating a matrix which is a function of one or more parameters, known
as parameterization, or p14n for short, is the role of the Flaps param command.
Matrices can be created which are functions of standard parameters (§5.1) or user-
defined parameters (§5.6). These matrices may be used like ordinary matrices in other
Flaps commands, or they may be used in parameter studies in stab, fresp, or tresp.
Most everywhere in Flaps you can specify particular values for a parameterized matrix
using the syntax

"mid"{param1=value1, param2=value2, ...}

that is, give the matrix id (name and attributes, §2.3) enclosed in quotes if it contains
commas, followed by the parameter values enclosed in curly braces. For example,

print { Stif{ail = 10.3, elev=30.2} }

will print the matrix Stif with the parameter ail set to 10.3 and the parameter elev

set to 30.2. If the matrix id contains commas it must be enclosed in quotes, for example

print { "AEMHH,MASSID=35"{center = 0, ob=50} }

will print the matrix AEMHH,MASSID=35 with center set to 0, and ob set to 50.

The same syntax is used for associating new or existing parameters with a matrix as
for specifying the parameter values when a matrix is to be evaluated: the matrix id
followed by parameters enclosed in curly braces. The difference is that when associating
parameters with a matrix it is necessary to specify how they are to be associated,
whether they are to replace or scale certain elements, or if they represent branch mode
frequencies. This is done with options enclosed in curly braces following the parameter
definition.

Several types of parameterization are available:

63

6.1

• Matrices may be interpolated or approximated with respect to any number of
parameters using splines of any order.

• Unsteady aerodynamic matrices may be approximated as a function of complex
reduced frequency using a least-squares fit to a rational polynomial.

• Control-law matrices may be created using data from Matlab describing the A,

B, C and D matrices from a Simulink control-law simulation (§C).

• User-written subroutines may be associated with a matrix to create arbitrary
parameterizations of the matrix. Each time the matrix is evaluated the subroutine
is called, where the matrix is created or modified.

• Individual elements of matrices may be made functions of parameters by either
replacing or multiplying it by a parameter, which in turn may be defined in
terms of other parameters using a parameter equation (§5.1). If the matrix is a
stiffness matrix the parameter may represent a branch mode frequency (§H.2.2)
or structural damping.

6.1 Interpolation and Approximation

Both interpolation and approximation are used in Flaps to parameterize matrices and
it is important to understand the difference between the two.

Interpolation forces a function (for example a polynomial) to pass through a given set
of data. The resulting function exactly matches the data at least at the interpolation
points; in between these points the accuracy is dependent on the type of functions used
to interpolate.

Approximation, on the other hand does not require the function to pass through the
data so in general the resulting function matches the data nowhere. It may however
provide a better overall fit to the data in the sense that the largest error over the
range of approximation may be less than with interpolation. Another advantage to ap-
proximation is that the resulting function may be smoother which may have important
consequences for algorithms which depend on smoothness like the continuation method
used in the Flaps stab processor.

Figure 6.1 shows an example of the difference between approximated and interpolated
data and why an approximation can be more accurate and smoother. It also illustrates
a major drawback of approximation: there are an infinite number of approximations
to a set of data depending on just how smooth the function is forced to be and this
must be decided on a case-by-case basis.

6.1.1 Splines

Splines are a set of polynomials (piecewise polynomials) that are continuous at data
points known as knots or breakpoints. The term comes from the draftsman’s tool used
to draw smooth curves. In fact the most commonly used polynomial spline, a natural

64 CHAPTER 6. PARAMETERIZING MATRICES

6.1

cubic spline, exactly models the draftsman’s tool where the breakpoints correspond to
the points where the draftsman places the weights (known as ducks). The term natural
spline refers to a spline with zero second derivative at the ends, modeling the zero mo-
ment at the endpoints of the draftsman’s spline. Generalization of mathematical splines
are possible: fifth order polynomials (quintic splines) are sometimes used, various end
and knot conditions are possible.

Splines can be used to either interpolate or approximate data. An interpolating spline is
forced to pass through all the data points, sometimes resulting in a lack of smoothness
in the curve. A smoothing spline is an approximation which relaxes the requirement
to pass through the data points in order to give a smoother curve. Figure 6.1 shows
a set of data points interpolated with a cubic spline and approximated with cubic
splines using various levels of smoothing. The smoothing option in the param processor
uses values ranging from 0 to infinity where 0 gives interpolation and the approxima-
tion approaches a straight line (linear least-squares approximation) as the smoothing
parameter approaches infinity.

6.1.2 Interpolation

Matrices can be interpolated with respect to any number of parameters. Parameters
may be defined in the param option list or (by default) taken from the attributes of
the matrix. For example, unsteady aero matrices from BAP have the name AEQHH with
attributes rfi and mach. Including the name AEQHH in the param option list causes param
to interpolate all AEQHH matrices with respect to rfi, and if the AEQHH matrices were
created at multiple values of mach, the interpolation with be with respect to the two
parameters rfi and mach. Flutter analyses done with such a two-way interpolation will
be more accurate than with just rfi-interpolated matrices.

Likewise, unsteady aerodynamic matrices created with the ATLAS/Flaps doublet-
lattice processor have the name genforce with attributes rfi, mach, and rfr, so even
more accurate flutter solutions are possible using a three-way interpolation. See demon-
stration problem stab3.ax for a comparison of different interpolation and approximation
techniques.

Similarly a set of mass matrices can be interpolated based on a parameter that varies
between each mass matrix. Given several mass matrices that correspond to the cg
position of a control surface balance weight, a set of interpolation coefficients can be
created with the param command.

There are times when it is necessary to interpolate matrices which are known to be
discontinuous in slope with respect to the interpolation parameter. For example, on an
airplane with multiple fuel tanks terms of the mass matrix will have slope discontinuities
with respect to the fuel loading parameter at the point where one tank is emptied and
fuel is taken from another tank.

6.1. INTERPOLATION AND APPROXIMATION 65

6.1

original data

interpolation

smooth=10

smooth=1

discontinuous spline

Figure 6.1: Interpolated and Approximated Data

66 CHAPTER 6. PARAMETERIZING MATRICES

6.2

6.1.3 Approximation

Interpolation results in a function which matches the original data exactly and approx-
imates the data in-between the original data points; approximation on the other hand
matches the original data nowhere in general, but may give an overall better approx-
imation. A very important aspect of either interpolation or approximation is the type
of function used. Interpolation in the param processor uses cubic-spline functions by
default, so-called because they match the interpolation you would get with a drafter’s
spline. Interpolation constrains the function more than approximation so it is necessary
to use functions that are less continuous; splines are continuous only up to the second
derivative. With approximation you can use functions that are everywhere continuous
or analytic over the complex plane. This is necessary for some applications, for example
when integrating equations of motion which include unsteady aerodynamics (chap. ??).

The param command approximates with splines when the smooth option is included, as
discussed above. In addition the param command does one very specific type of approx-
imation that is analytic: a least-squares fit of a rational polynomial due to Roger[42].
This type of approximation, also known as a rational-function approximation (RFA)
or an s-plane approximation, is only available for unsteady aerodynamic matrices.

Even though it is often referred to as an s-plane approximation, the least-squares fit is
done with respect to complex reduced frequency. Appendix E contains details of this
approximation.

The resulting approximation is

Q ≈ R0 + pR1 + p2R2 +
m∑
i=1

p

p+ βi
Ri+2 (6.1)

where p = s
Vt

is the complex reduced-frequency (§5.5.1).

6.2 ABCD Control-Laws

Controls equations developed in Matlab/Simulink [23] can be exported from Matlab in
the form of four matrices: A, B, C, and D. These matrices are exported to an ASCII
file which can be processed by the param command to create a control-law matrix which
may be used in stab or fresp. Appendix C details the way these state-space matrices
are combined with the characteristic equations of motion (eqn. 3.41), and appendix D
gives the format of the file containing the ABCD matrices.

In addition to the Matlab file the user must provide two matrices which represent input
to and output from the control law: a psi matrix (represented by Ψ in appendix C)
and either a E matrix or a KE matrix (represented by E and KE in appendix C)

The psi matrix relates the structural generalized-coordinates to physical displacements
at the control-law sensors. It has a row for each control-law input and the same number
of columns as generalized-coordinates, and is usually created from rows of the modes
matrix associated with the generalized mass and stiffness matrices (see eqn. 3.12).

6.2. ABCD CONTROL-LAWS 67

6.3

The E or KE matrix relates the control-law outputs to generalized forces on the structure.
The number of rows is the same as the number of structural generalized-coordinates,
and the number of columns is the number of control-law outputs. Typically the KE

matrix consists of columns of the generalized stiffness matrix, possibly with sign and
units changes to account for flight controls conventions. The E matrix is multiplied
internally by the stiffness matrix to produce the KE matrix; it is important to understand
the difference between using a KE matrix and using a E matrix. The two approaches
are equivalent if the stiffness matrix K is constant; it is when elements of the stiffness
matrix that contribute to the product KE are not constant that it is necessary to use
the E matrix instead of the KE matrix. For example, if an output is to a control surface
represented by generalized-coordinate 150, the KE matrix would be column 150 of the
stiffness matrix; but if that coordinate has been parameterized so that it is a function of
a branch mode frequency parameter and you want to do a parameter variation on that
parameter, then you must supply an E matrix consisting of column 150 of the identity
matrix, which will then multiply the stiffness matrix, which contains the correct value
of the frequency parameter.

6.2.1 A-Matrix Interpolation

The A matrix is, in general a function of dynamic pressure, or an equivalent parameter
such as altitude for a constant-Mach analysis or true airspeed for a constant-altitude
analysis. This relationship is passed in ABCD files from Matlab/Simulink by a set of
cubic-spline interpolation coefficients. A typical element of an A matrix is shown in
figure 6.2

In theory, cubic splines satisfy the continuity requirements of the Flaps flutter solution
technique (§??) but it is possible to create splines that are so nearly discontinuous in
the first derivative that they can cause tracking problems. For example, figure 6.3 shows
the derivative with respect to altitude of this element and a point where a mode failed
to track.

Smoothing the spline interpolations [27] can cure tracking problems and speed up the
tracking process. The param processor includes an option, smooth which modifies the
spline from Matlab/Simulink to make it smoother. This option specifies a smoothing
factor which determines how much the spline is straightened out: zero results in the
original spline, while the curve approaches a straight line as the smoothing factor
approaches infinity. Values between 1 and 10 result in reasonably smooth curves while
not changing the original values too much. Figure 6.4 shows the results of two values
of the smoothing factor, and figure 6.5 shows the derivative of the smoothed splines.

Smoothing the splines has the additional benefit of speeding up the mode-tracking
process. The algorithm used in stab to determine stepsize uses estimates of the curvature
of the curve being traced; kinks in the curve cause the algorithm to take small steps,
slowing the process down. Figure 6.6 shows how a mode with a slope discontinuity is
smoothed out using various levels of smoothing. None of the smoothing levels make
noticeable changes in the curve without zooming in.

68 CHAPTER 6. PARAMETERIZING MATRICES

6.3

Altitude (z)

A
[4

4
,1

9
]

70000−5000

Figure 6.2: Typical Element Variation with Altitude

tracking failure

d
A

/d
z

Altitude (z)

Figure 6.3: Spline Derivative

6.2. ABCD CONTROL-LAWS 69

6.3

original spline

smooth = 5

smooth = 10000

A
[4

4
,1

9
]

Altitude (z)

Figure 6.4: Smoothed Spline

smooth = 100000

original spline

smooth = 5

Altitude (z)

d
A

/d
z

Figure 6.5: Smoothed Spline Derivative

70 CHAPTER 6. PARAMETERIZING MATRICES

6.3

Veas

g
ro

w
th

 r
at

e

smooth = 1

smooth = 10

original

smooth = 5

Figure 6.6: Aeroelastic Mode with Smoothing

6.2. ABCD CONTROL-LAWS 71

6.3

6.3 Matrix Elements

Individual matrix elements may be parameterized by giving them an equation, using
the same syntax, scalars, operators, other parameters, and functions as the equations
used to define parameters (§5.4). The parameterized matrix element is specified by a
pair of square brackets enclosing the row and column numbers, for example to set row
3, column 5 to 4.0:

[3,5] = 4.0

Giving a matrix element an equation creates a new parameter which is then known to
all subsequent Flaps commands by a name formed from the matrix name and element
indices; for example, giving the above equation to a matrix called AEKHH creates a new
parameter named AEKHH[3,5].

One additional syntactic element is used to refer to the original value of the matrix
element. A pair of square brackets, used anywhere in an equation, will be replaced by
the value of the matrix element. For example to scale row 3, column 5 by 4.0:

[3,5] = 4.0*[]

What follows are some examples of how this capability can be used.

6.3.1 Branch Mode Frequencies

Branch Modes (appendix H) is a dynamic substructuring technique in which a structure
is split into components, then assembled in such a way that the individual components
exhibit the branch mode property (§H.2.2): there is mass coupling but no stiffness
coupling between components; as a consequence, scaling diagonal elements is the same
as scaling the cantilevered natural frequencies of the component. This property is often
used to set diagonal elements of stiffness matrices to branch mode frequencies: diagonal
elements of the resulting generalized stiffness matrix are directly proportional to the
square of the natural frequencies of the component if it were cantilevered at the interface
between it and neighboring components.

To replace an element of a stiffness matrix with a function of a branch mode frequency,
you could use the relation

ωij =

√
Kjj

Mjj
(6.2)

For example the command

param {

i = AEKHH

freq77(G.C. 77 Freq)<HZPRS>

[7,7] = "freq77*freq77*AEMHH[7,7]"

}

72 CHAPTER 6. PARAMETERIZING MATRICES

6.3

creates a new parameter (freq77) with a built-in conversion factor (HZPRS) and uses it
in an equation which sets the (7,7) diagonal element of the stiffness matrix AEKHH to a
value that gives a branch mode frequency of freq77. A more straightforward method
is to use the bmfgc option in the param command (§10.15.3).

6.3.2 Structural Damping

There are two ways to include structural damping in an analysis: by specifying the
value of d in equation 3.23 with the sdamp parameter (§5.5), giving the same structural
damping coefficient to all degrees of freedom.

Alternatively each degree of freedom may be given a different structural damping co-
efficient by defining a structural damping parameterization (sdp14n) in which one or
more degrees of freedom are given a structural damping coefficient specified by a new
parameter; this type of parameterization is defined with the param command.

A few cautionary notes regarding structural damping:

• if sdamp and sdp14n are both used the stiffness matrix is first multiplied by the
sdp14n and then by sdamp so some elements will be multiplied twice.

• with sdp14n entire rows and columns for each generalized coordinate are multi-
plied by 1 + idk; more precisely each element in the row or column is replaced by
the real part of the element times 1 + idk. This means that coupling terms have
structural damping applied once, but it also means that if multiple sdp14n are
defined and there is coupling between the generalized coordinates in them, the
coupling terms will have the structural damping of the last defined sdp14n.

6.3.3 Nonlinear Analyses

Equations describing matrix elements may be nonlinear functions of other parameters,
built-in functions, and generalized-coordinates. If the equation contains (implicitly or
explicitly) time or generalized coordinates, analyses with this matrix are nonlinear and
generally require more work than linear equations.

For example, if generalized-coordinate 33 represents rotation of a control surface, and
the control surface has 0.1 radian freeplay, the stiffness matrix can be parameterized
in one of two ways depending upon whether it is to be used in frequency-domain or
time-domain analyses.

In the time domain the stiffness element can be replaced with the exact function of
displacement:

param {

i=AEKHH, o=Stif

fp(G.C. 33 Freeplay) = 0.1

gc33(G.C. 33 Disp) = gc[33]

[33,33] = []*gap(fp,gc33)

}

6.3. MATRIX ELEMENTS 73

6.3

where gap is one of the built-in functions (§5.4.5) which takes two arguments, the
gap size and the current value of the generalized coordinate. Two new parameters are
defined to set the value of the gap (fp) and the current value of generalized-coordinate
33 (gc33), using the built-in function gc to get the value at any point in the solution
process. It is necessary to use the built-in function gap because the equation for the
scale factor it returns is too complicated for a single equation (the real problem is that
the Flaps equation capability does not allow logic statements such as if):

Real

gap(Real fp, Real gc) {

Real factor;

if (gc33 > gap) {

factor = (gc33 - gap)/gc33;

} else if (gc33 < -gap) {

factor = (gc33 + gap)/gc33;

} else {

factor = 0.0;

}

return factor;

}

For analyses in the frequency domain it is necessary to approximate the nonlinearity
using a describing function (appendix G):

param {

i=AEKHH, o=Stif

gap(G.C. 33 Freeplay) = 0.1

gc33(G.C. 33 Magn) = 1

[33,33] = "[]*((PI - 2*asin(gap/gc33) - sin(2*asin(gap/gc33)))/PI)"

}

for example, setting a stiffness term with

[3,5] = 4.0*[]

A few describing functions are available for approximating nonlinear behavior of indi-
vidual generalized coordinates.

6.3.4 Nodal Matrix Elements

Sometimes it is desirable to modify a generalized matrix to reflect changes in the
underlying nodal matrix without re-doing the matrix triple-product in equation 3.11.
This can be done for a single nodal degree-of-freedom provided there is no coupling
between it and any other nodal degrees-of-freedom.

Assuming the nodal matrix has the form

A =

[
A11 A1j

Aj1 Ajj

]
(6.3)

74 CHAPTER 6. PARAMETERIZING MATRICES

6.4

where the jth degree-of-freedom is to be modified, and Ajj , A1j , and Aj1 are the rows
and columns to be modified. The modes matrix has the form

Φ =

[
Φ1

Φj

]
(6.4)

where Φj . is the row of the modes matrix corresponding to the element to be modified.
The generalized matrix is

Ā = ΦtAΦ

= Φt
1A11Φ1 + Φt

jAjjΦj + Φt
1A1jΦj + Φt

jAj1Φ1
(6.5)

which, because Ajj is just a scalar can be written for any value as

Ā(γ) = Ā
0

+
(
Ajj(γ)−A0

jj

)
Φt
jΦj (6.6)

where Ā
0

is the original generalized matrix, A0
jj is the original value of the element

to be modified, and the modified value Ajj(γ) is a function of some parameter γ.
Modifications to degree-of-freedom j in the nodal matrix can therefore be reflected in
the generalized matrix simply by modifying Ajj , subtract the original Ajj , multiply it
by the matrix Φt

jΦj , and add it to the generalized matrix.

For example, to represent freeplay in the jth nodal degree-of-freedom with a describing
function c(γ),

K(γ) = K̄ + (c(γ)− 1)KjjΦ
t
jΦj (6.7)

6.4 User-Subroutine Parameterization

The most general parameterization, a Fortran or C subroutine is used to create (or
modify) a matrix. The subroutine can have any name but must have a very specific
set of calling arguments:

subroutine anyname (nr, a)

where nr is the row dimension of the matrix, and a is the matrix itself. Moreover, the
matrix must be declared real or complex as it is in the param command:

subroutine anyname (nr, a)

real a(nr,*)

or

subroutine anyname (nr, a)

complex a(nr,*)

6.4. USER-SUBROUTINE PARAMETERIZATION 75

6.4

Subroutines written in Fortran must conform to the Fortran77 standard even though
more modern versions of Fortran are available; this is due to the fact that in the
stab command it is necessary to take derivatives of all matrices. A technique called
automatic differentiation (appendix K) is used to do this with no extra effort on the
part of the user, but the current implementation uses a Fortran77-to-C++ translator
(§K.2), hence the restriction to standard Fortran77.

In addition to the standard Fortran functions and subroutine calls, several Flaps-
specific subroutines are available (see appendix B for more detail).

parval any parameter, standard (§5.1) or user-defined (§5.6) are accessed in
internal units using the parval function call:

subroutine anyname (nr, nc, a)

complex a(nr,nc)

complex s

s = cmplx(parval(’sigma’), parval(’freq’))

getpar similar to parval except it returns current parameter values in external
units.

subroutine anyname (nr, nc, a)

complex a(nr,nc)

real vtas

vtas = getpar(’vtas’)

setpar sets the value of a parameter (real parameters only); the value is given
in external units and is converted to internal units by setpar.

subroutine anyname (nr, nc, a)

complex a(nr,nc)

real vtas

vtas = 400

call setpar(’vtas’, vtas)

matvij Elements of matrices are available with the matvij subroutine; for ex-
ample to get the (3,3) term of the mass matrix:

complex mij

call matvij(’mass’, 3, 3, mij)

fetch Entire Flaps matrices can be read using the fetch subroutine, but it’s
a bit more complicated. The array is placed in memory in a location
relative to an input array with an index returned in the fifth argument;
for example

real mat(1)

character*8 dtype

call fetch(’ADIRU’, m, n, mat, ip, dtype, iprint, irr)

c get the (4,5) term:

i = 4

j = 5

a45 = mat(ip-1+i+m*(j-1))

76 CHAPTER 6. PARAMETERIZING MATRICES

6.4

Sometimes it is desirable to plot quantities that are computed within user-written
subroutines. This is done by defining a parameter which will hold values in the Flaps
command which uses the subroutine; then every time the subroutine is called the
current value is set by calling setpar, for example

c(5,5) = tf1*tf2*tf3

call setpar(cabs(c(5,5)), ’c55’)

will set the value of a parameter called c55 to the current absolute value of the (5,5)

element of the matrix c. The parameter must be defined either in the param statement
that creates the user-subroutine parameterized matrix, as in

param {..., c55(C diagonal 5)=0, ... }

or in the stab, fresp, or tresp statement that uses the parameterized matrix, for example

stab {..., c55(C diagonal 5)=0, ... }

When the matrix is evaluated, the nominal matrix (which may consist of all zeros) is
passed to the subroutine where terms of the matrix are set or modified according to
the current values of the parameters. Demo problems alge3.ax and stab4.ax create new
matrices using a user-subroutine; stab2.ax and stab12.ax evaluate complex matrices
representing controls equations, and stab6.ax modifies an existing matrix using a user-
written subroutine.

6.4. USER-SUBROUTINE PARAMETERIZATION 77

6.4

78 CHAPTER 6. PARAMETERIZING MATRICES

Chapter 7

Flutter

Flutter equations are called linear if they are linear in the generalized coordinates;
that is, if the dynamic matrix (eqn. 3.42) is not a function of the generalized coordi-
nates. Even though these equations are nonlinear functions of system and user-defined
parameters such as velocity, frequency, and growth-rate, they are called nonlinear only
if the dynamic matrix is a function of the generalized coordinates.

The term nonlinear Flutter equations refers to equations where the dynamic matrix
(usually just the structural stiffness or aerodynamic matrices) are functions of the gen-
eralized coordinates. In such cases the basic assumption of harmonic motion (eqn. 3.15)
no longer holds and in general nonlinear problems must be solved in the time domain.
Often, nonlinear equations can be solved in the frequency domain by approximating
the nonlinearities under the assumption of harmonic motion; this technique, known as
describing functions [30][45], replaces matrix terms which are nonlinear functions of the
generalized coordinates with the equivalent function obtained by assuming harmonic
motion. There is a huge computational advantage to solving flutter equations in the
frequency domain: a solution in the frequency domain determines stability directly but
in the time domain it is necessary to integrate the equations of motion until steady state
is reached. Determining the exact conditions for neutral stability in the time domain
is very time-consuming, whereas in the frequency domain it is relatively easy.

As discussed in section 3.3 the stability of a linear system is determined by the real
part of the characteristic exponent s = σ + iω. Positive values indicate an unstable
structure, negative values a stable one, and zero values indicate neutral-stability. The
imaginary part determines the frequency of oscillation.

The Flaps flut command solves the flutter equation in a continuous fashion between
the limits of the parameters. Continuity of solutions is what distinguishes the solution
technique from more traditional techniques [20] [5] [12]. When the flutter equation is
solved in a continuous fashion it becomes possible to solve not only for neutral-stability
points as the traditional techniques do, but to do parameter variations, studying the
influence of various parameters. Continuity is important when solving the flutter equa-
tion because often it is very difficult to distinguish aeroelastic modes without some
mathematical assurance that points on a plot are connected.

79

7.1

The flutter equation may contain user-defined parameters and arbitrary auxiliary equa-
tions typically used to model the effects of active controls. When used together with
the param module, the user has great flexibility in defining matrices to be arbitrary
functions of standard parameters (§5.5) or user-defined parameters (§5.6).

Often the interest in flutter equations is in solving for neutral-stability , the boundary
between stability and instability where small oscillations in the structure neither grow
nor decay with time. We use the term growth rate as a measure of the rate at which
oscillations are growing. This term is preferred over the more traditional term decay
rate because a positive value of growth rate indicates growing oscillations. The term
flutter crossing or flutter speed refers to a velocity at which the growth rate has a
specified value; neutral-stability is therefore a zero flutter crossing, and an “oh-three
crossing” is where the growth rate equals 0.03.

Neutral-stability calculations are usually just a necessary first step leading to a number
of parameter variations where, starting from a flutter crossing a parameter is varied,
resulting in a stability boundary . The parameter varied can be any system parameter
(§5.1) or user-defined parameters (§5.6). Two parameters can be varied to give contours
of flutter speed; and multiple parameters can be varied to give a type of optimization
which we call continuation optimization.

7.1 Flutter Equation

Linear stability of a structure is determined by computing roots of the homogeneous
(no forcing function) characteristic equation (see chapter 3 and equation 3.41):

Dq =
[
s2M + sG+ sV + (1 + id)K − qQ(p,M) + T

]
q = 0 (7.1)

A root or eigenpair of this equation is a pair (s, q) which satisfies equation 7.1, and is
more commonly referred to as an aeroelastic mode. In theory there are n aeroelastic
modes for an nth-order system of equations, but the interest is usually in low-frequency
aeroelastic modes which tend to be represented more accurately.

Scalar quantities used in these equations are listed in table 5.1, reproduced in table 7.1.
Matrices are listed in table 3.1. Not all quantities in table 7.1 appear explicitly in equa-
tion 7.1; for example, true airspeed appears only in the definitions of dynamic pressure,
reduced frequency, and Mach number. Also not explicit are user-defined parameters;
any of the matrices may be functions of standard and user-defined parameters (see
chap. 6).

A solution to equation 7.1 requires the dynamic matrix is singular, meaning the deter-
minant of the dynamic matrix is zero. The determinant is a complex number so we can
choose two real variables (e.g. freq and sigma) for a system of two real equations (real
and imaginary parts of the determinant) in two unknowns. Adding an third unknown
allows us to trace a curve; adding a fourth unknown yields a surface, and so on. The
unknowns, which we call active parameters, determine the type of solution. For ex-
ample, the traditional k method [20] (also known as the V-g method) uses vtas, freq,

80 CHAPTER 7. FLUTTER

7.1

Default Units
Name Symbol Description internal external

alt z altitude ft ft
cdpress qc calib. dynamic pressure lbf/in

2 lbf/ft
2

dpress q dynamic pressure lbf/in
2 lbf/ft

2

freq ω frequency rad/sec Hz
growth γ growth rate - -
mach M Mach number - -
p p complex reduced frequency - -
rfi k imaginary part of p - -
rfr g real part of p - -
rho ρ fluid density lbfsec

2/in4 slug/ft3

s s characteristic exponent - -
sdamp d structural damping coeff - -
sigma σ real part of s rad/sec Hz
spin Ω rotation rate rad/sec rad/sec
spress P static pressure lbf/in

2 lbf/ft
2

temp T static temperature degK degK
tpress Pt total pressure lbf/in

2 lbf/ft
2

vcas Vc calibrated airspeed in/sec knots
veas Ve equivalent airspeed in/sec knots
vsound a sonic velocity in/sec knots
vtas Vt true airspeed in/sec knots
- dimensionless

Table 7.1: Flutter Equation Parameters

and sdamp; setting vtas, freq, and sigma active results in the so-called p method if the
aerodynamic matrix is a function of real and imaginary reduced-frequency, or the p-k
method if it is only a function of reduced-frequency.

Most of these formulations have associated solution techniques and there is often no ef-
fort to distinguish between the formulation and solution technique; for example, the V-g
method casts the flutter equation into a complex generalized eigenvalue problem, for
which there are stable and reliable solution techniques and the term V-g method usu-
ally refers to both the formulation and the eigenvalue solution. The solution technique
presented here is capable of solving virtually any formulation of the flutter equation;
for example you can solve the V-g form of the equations by using structural damping
as an active parameter. The difference is that in flut the equations can include non-
linearities, control-laws, gyro, unsteady aerodynamics that are functions of Mach and
complex reduced frequency, and can do parameter variations.

A few combinations of active and fixed parameters are listed in table 7.2; others are pos-
sible as long as they result in a consistent set of equations for evaluating all parameters
(see §5.5.1 for available equations).

The flut command requires the user to declare three parameters to be active; in addition,
some parameters must be declared fixed or multiple-valued fixed (§5.4) parameters. The
remainder are derived parameters, evaluated using one of the equations in section 5.5.1.
It is the user’s responsibility to ensure that the chosen active and fixed parameters

7.1. FLUTTER EQUATION 81

7.1

result in a consistent set of parameter equations. Table 7.2 shows fixed parameters
which result in consistent parameter equations for a few common situations.

Name(s) Actives Fixed Description

cmcd vtas alt Constant-Mach-constant-density p-k
p-k method freq flutter solution
p method growth Aero not a function of Mach
k method vtas alt To simulate a traditional k-method
v-g method freq growth flutter solution. See demo

sdamp problem stab10.ax.
cmvd alt or veas mach Constant-Mach-variable-density

freq p-k flutter solution
growth

parameter alt, veas, or vtas growth Parameter variation where p1 is,
variation freq e.g. fuel-loading, nacelle frequency,

p1 † control-law gain
flutter p1 growth Usually done at multiple alt, veas, or vtas
speed p2 alt or vtas to represent a 3D surface of flutter
contours freq speed as a function of two parameters
optimization p1 growth The resulting curves move in the direction

p2 of greatest increase and decrease of
... the parameter specified with the
freq optimize option

† p1, p2, etc can be any parameter

Table 7.2: Common Flutter Solution Parameters

7.1.1 V-g Formulation

A simplification of equation 7.1, known as the V-g formulation is obtained by neglecting
viscous damping, gyroscopics, and control-systems, and assuming harmonic motion
(σ = 0):

[
−ω2M + (1 + id)K − qQ(k)

]
q = 0 (7.2)

which can be written in the form of a generalized eigenvalue problem (§??):

Aq = λBq

A = K

B = M +
ρ

2k2
Q

λ = ω2

1+id = λr + iλi

(7.3)

from which

d = −λi
λr

ω =
√

1 + d2λr

(7.4)

82 CHAPTER 7. FLUTTER

7.1

Because there are robust methods for solving the generalized eigenvalue problem, the V-
g formulation has been widely used for many years to solve for aeroelastic stability. Note
that instead of solving for the characteristic exponent s this eigenvalue problem gives
the structural damping necessary to result in undamped motion; traditionally it has
been referred to as added structural damping because positive values are necessary to
cause an unstable structure to move sinusoidally (neutrally-stable), and negative values
to make a stable structure neutrally-stable - physically improbable but the values are
close to the values of growth rate obtained from equation 7.1 (see eqn. 3.29).

A drawback with the V-g formulation is that it is not able to track the evolution of
rigid-body modes with increasing speed; at any speed rigid-body modes result in zero
eigenvalues of equation 7.3 which does not reflect the actual motion of an airplane.
Rigid-body modes usually have aerodynamic forces on them which generally increase
the frequency with increasing speed, a fact that is missing from the V-g formulation.
The basic assumption in the V-g formulation is that it is possible to add structural
damping (positive or negative) to a structure which will result in harmonic motion;
this assumption breaks down with rigid-body modes because there is no structural
deformation, hence structural damping has no influence. This is probably the reason
the V-g formulation is able to predict the correct divergence speed (§3.5.3).

7.1.2 Divergence

Another simplification of equation 7.1 is to set the frequency to zero and search for
conditions where σ is also zero. Like the flutter equation this condition is the boundary
between stability (σ < 0) and instability (σ > 0); unlike the flutter equation this is
a static condition and the speed where it occurs is known as the divergence speed.
Equation 3.41 reduces to

[(1 + id)K − qQ(0,M) + T (0, q)] q = 0 (7.5)

which is a nonlinear eigenvalue problem (§??) with eigenvalues q and eigenvectors q.
Methods for solving this equation are in §7.7.

If the unsteady aerodynamic matrix is not a function of Mach number this equation
can be solved by computing, for each in a series of m dynamic pressures spanning the
flight conditions of interest, the ordinary eigenvalue problems

[(1 + id)K − qiQ(0) + T (0, qi)] q = λI (i = 1,m) (7.6)

for eigenpair (λ, q) and watch for λ = 0.

Without controls equations and with an unsteady aerodynamic matrix that is not a
function of Mach number the equation is further simplified to

[(1 + id)K − qQ(0)] q = 0 (7.7)

which is a generalized eigenvalue problem (§??) for eigenpair (q, q) and now it is simply
a matter of picking the smallest (real) q.

7.1. FLUTTER EQUATION 83

7.2

7.1.3 Continuation Optimization

A limited type of optimization may be performed in flut by declaring four or more
active parameters and declaring a parameter to be optimized with the optimize option.
Because there are more than three active parameters, there are an infinite number of
directions the solution curve can go; at each step we choose the direction which results
in the greatest change in the optimize parameter. Demo problem stab8.ax shows an
example of optimizing flutter speed with respect to nacelle frequencies.

7.2 Solution Technique

The method used to solve the flutter equation was developed at Boeing to solve the
problem of tracking aeroelastic modes in a continuous fashion. Traditional flutter solu-
tion techniques ([12] [5]) required the user to join discrete solution points, often guessing
which points connect. In addition, the new flutter solution technique is able to trace
parameter variations using the same method as the basic flutter solution. More details
can be found in [33].

Equation 7.1 is a system of algebraic equations linear in the generalized-coordinates
and nonlinear in most other variables listed in table 7.1. From this set of n complex
equations an equivalent set of 2n real equations can be derived by considering the
real and imaginary parts of the residual vector r = Dq as separate real variables.
Because equation 7.1 is homogeneous in the generalized coordinates it is necessary to
add a constraint to eliminate the trivial solution q = 0. Here we add a normalization
condition

q∗q = 1

Im(uk) = 0

The resulting set of 2n+ 2 nonlinear real equations to be solved are

f(x) =

Re(r1)
Im(r1)

...
Re(rn)
Im(rn)
q∗q − 1
Im(uk)

= 0 (7.8)

where Re and Im indicate the real and imaginary parts, respectively, f is a real vector
of length 2n+ 2, and x is a vector comprising active parameters from table 7.1 and the
real and imaginary parts of the generalized-coordinate amplitudes (q). The number of
elements in x is 2n (real and imaginary parts of the generalized-coordinates) plus the
number of active parameters. The number of active parameters determines the nature
of the solution: 2 results in a point because 2n+ 2 equations in 2n+ 2 unknowns has a
unique solution; 3 active parameters result in a curve, and 4 results in a surface. Table

84 CHAPTER 7. FLUTTER

7.3

7.2 shows a few combinations of active and fixed parameters. With the exception of
optimization, all these combinations consist of 3 actives, so the solutions are curves.

Equation 7.8 with the dimension of x greater than f can be solved using a continuation
method . [4]. A continuation method works much like an ordinary differential equation
solver: starting from a known solution and using derivatives of the independent vari-
ables a new solution at new values of the independent variables is predicted, then the
new solution is solved for using a correction scheme such as Newton’s method. The
stab module uses a modified version of a general-purpose package [40][38][39] called
PITCON for solving continuation problems which have one more independent variable
than dependent variables. In our case this code solves the problem where the number
of unknowns in x is 2n + 3; that is, three variables can be chosen in addition to the
generalized-coordinates. This is the reason for the requirement discussed in section 7.1
to declare three active parameters. This is the basic technique for solving all types of
problems in stab involving three variables.

7.2.1 Optimization Technique

With more than three active parameters in x there is additional freedom to choose the
direction in which a curve is traced. Forcing the curve to proceed in the direction of
greatest (positive or negative) change in some parameter results in a kind of optimiza-
tion; because these solutions are obtained using the same continuation method used for
all other types of flutter solutions, we refer to it as continuation optimization. Figure
7.1 shows an optimization curve where the optimization parameters are percent center
and main fuel and the curve traces the path of greatest change in vtas.

7.3 Start Points

The technique used to track aeroelastic modes requires start points; finding start points
is a common source of problems when using the Flaps stab processor. In this section
some of the problems associated with start points are explained, with some advice for
mitigating these problems.

The process for obtaining start points depends on whether or not the analysis starts
from previous solutions. Analyses that start from a previous solution are those which
include the source option to specify the previous solution. Analyses that do not include
the source option are usually (but not necessarily) neutral stability (or pk) solutions;
parameter-variation (or pv) solutions usually (but not necessarily) include the source
option. A common chain of analyses is a pk solution followed by one or more pv
solutions using the pk solution as the source, although other scenarios are possible,
such as a pv solution starting from another pv solution varying different parameters, or
a pk solution starting from a pv solution. Combinations like these are possible because
Flaps treats all parameters the same: a pk solution is really just a pv solution with
velocity, frequency, and damping as parameters.

When tracking from previous solutions, that is when using the source option, start

7.3. START POINTS 85

7.3

center fuel

vtas=604
605

602

603

590

595

600

optimization

100

0
0 100

m
a

in
 f

u
e

l

Figure 7.1: Fuel Optimization and Contours

points are obtained by straightforward interpolations of the previous solutions; this does
not mean that the process is foolproof, as shown below in the discussion of parameter
cuts.

Obtaining start points when the source option is not included can be much more difficult
and less robust. The general solution technique for solutions which do not start from
previous solutions involves a nonlinear eigenvalue problem (§??). Unfortunately there
is no known method for guaranteeing we have found all eigenvalues within a region
with nonlinear eigenvalue problems. The best we can do is narrow the frequency range
where we look for start points (see the startregion option in section ??).

Generally, analyses without control-law matrices (so-called open-loop problems) do not
have a problem with start points because they are not highly nonlinear as closed-loop
analyses often are. In fact open-loop problems are polynomial eigenvalue problems,
quadratic in the characteristic exponent, for which robust solution techniques are avail-
able.

It is really only closed-loop analyses for which we have no reliable techniques for com-
puting start points yet, though this is an active research topic.

86 CHAPTER 7. FLUTTER

7.3

0 10062.5

fl
u

tt
e

r
s
p

e
e

d

Fuel Loading (percent)

Figure 7.2: Fuel Variation

7.3.1 Parameter Variation Cuts

When the source option is included, finding start points is easy; the problem is that
the start points (and the source analysis) may not be at values of the parameters which
yield all parameter-variation curves of interest. Generally, the source analysis must be
done at multiple values of the parameter (or parameters) which are to be varied in the
parameter-variation analysis. Analyses done at multiple parameter values are known
as cuts for reasons that should be clear with an example.

Figure 7.2 shows a typical parameter variation: the variation in flutter speed (where
growth rate is zero) with percent fuel.

If the pk solution was done at a value of fuel between 0 and 62, the pk curve would be
as in figure 7.3, with one place where growth rate is zero.

However, the C shaped curve does not show up in the pk solution at values of fuel
between 0 and 62.5; above 62.5 the pk solution would look more like figure 7.4.

In order to get a start point for the C-shaped curve it is necessary to do a pk solution
with fuel somewhere between 62.5 and 100. For this reason it is necessary to do pk
solutions at a number of values of the parameter (fuel in this case). This is done by
specifying multiple values of the parameter in the pk solution; for example

stab { ..., fuel=(0,10,40,80,100), ... }

Unfortunately, the best way to ensure that a parameter variation curve is not missed is

7.3. START POINTS 87

7.3

velocity

g
ro

w
th

 r
a

te

Figure 7.3: Flutter Solution at fuel=0

g
ro

w
th

 r
a

te

velocity

Figure 7.4: Flutter Solution at fuel=100

88 CHAPTER 7. FLUTTER

7.3

fr
eq

2

cg

optimization curve

constant velocity contours

Figure 7.5: Contours From an Optimization Curve

to include enough parameter values (”cuts”) in the pk solution; this can be expensive
and time-consuming but it is the best method at this point.

7.3.2 Contours

Parameter variations involving two parameters result in parameter contours. Start
points for contours can be obtained by doing parameter cuts as with single param-
eter variations, but a safer and more effective technique is to use the continuation
optimization method (§7.2.1).

Figure 7.5 shows an example of the technique taken from demo problem stab1.ax where
a curve of vtas optimized against cg and freq2 is used to get start points for a series of
contours of cg vs freq2 at various values of vtas. Viewed in 3 dimensions, the contours
would outline a cone-shaped surface of flutter speed (vtas) versus cg and freq2.

To see why optimization works better than a simple parameter variation to get start
points for tracking contours, consider what happens if a single-parameter variation is

7.3. START POINTS 89

7.4

fr
eq

2

freq2 variation

cg

fr
eq

2

vtas

unreachable contours

Figure 7.6: Contours From a freq2 Variation

used to get start points for the above example. Figure 7.6 shows a slice through the
cone at a fixed value of cg: a freq2 parameter variation. Clearly the values of vtas in this
parameter variation do not extend as far as the optimization curve; thus the resulting
cone would be truncated.

7.4 Fluid Properties

Several of the variables in table 7.1 are properties of the fluid. This section describes
some of the possibilities for controlling these properties.

7.4.1 Standard Atmosphere

By default, analyses in the stab module use the standard atmosphere as defined in [7].
In the standard atmosphere the sonic velocity, density, and static pressure are functions
only of altitude; thus two types of analyses possible in the standard atmosphere are
constant-altitude and variable-altitude.

In a constant-altitude analysis the altitude is specified by the user, thus fixing a, ρ, and
P . If the unsteady aerodynamics are defined for a single Mach number (the aero Mach
number), the true Mach number M = Vt/a will not match the aero Mach number. In
other words, a constant-Mach constant-altitude (cmcd) analysis assumes the aerody-
namics are not a function of Mach number. If, on the other hand, the unsteady aero
matrices are functions of Mach number, the aero Mach number will match the true
Mach number (see demo problem stab3.ax). Unsteady aero matrices that are functions

90 CHAPTER 7. FLUTTER

7.6

of Mach number are created by parameterizing sets of matrices at more than one Mach
number.

Variable-altitude analyses hold the Mach number constant and vary the altitude, effec-
tively varying the density and sonic velocity, and therefore the true airspeed Vt = Ma

and equivalent airspeed Ve = Vt

√
ρ(z)
ρ(0)

7.4.2 Simulating a Wind Tunnel

In a wind tunnel the static temperature, static pressure, and Mach number are nearly
constant; if it is assumed that the gas is a perfect gas, then the speed of sound is also
constant. Setting these parameters to “fixed” and setting veas, freq, and growth to
“active” in a stab run gives an approximation to conditions in a wind tunnel.

7.5 Unsteady Aerodynamics

The Doublet-Lattice Method (DLM) [2] is the most widely used method for generat-
ing matrices of unsteady aerodynamic forces in subsonic flow. The DLM will generate
aerodynamic matrices at specified values of Mach number and reduced frequency k or,
with modification, complex reduced frequency (p). For a flutter solution it is necessary
to be able to evaluate the unsteady aerodynamic matrix at any value of Mach num-
ber and complex reduced frequency. Generating aero matrices is a relatively expensive
operation so the usual technique is to generate unsteady aerodynamic matrices at spe-
cific values and estimate at intermediate values using interpolation or approximation.
Sections 6.1.3 and 6.1.2 discuss how to do this in Flaps. The current approximation
method in Flaps is not as accurate as interpolation methods, so interpolation is the
preferred technique for flutter analyses.

The most general way to treat unsteady aerodynamic matrices is to generate a number
of them at various values of complex reduced frequency and Mach number and interpo-
late with respect to the three (real) parameters, rfr, rfi, and mach. This requires many
more generated matrices than if the interpolation is done with respect to rfi only, or rfi
and mach. The decision depends largely on the type of flutter solution to be done. If
the interest is in finding flutter points (where growth and rfr are zero) and tracing the
flutter boundary with parameters it is probably not necessary to interpolate with re-
spect to rfr. If the interest is more with subcritical (where oscillations decay) behavior,
interpolating with respect to rfr would be more accurate. Similarly, interpolating with
respect to mach gives more accurate results for solutions at a constant altitude, but is
unnecessary for solutions at a constant Mach number.

There have been attempts to approximate unsteady aerodynamics for non-zero values
of rfr. Two of these are available in the stab command using the nastran and gmethod
options. Details of these two methods are in section 3.5.2.

7.5. UNSTEADY AERODYNAMICS 91

7.6

7.6 Nonlinear Stability

If the matrices in the flutter equation (7.1) are functions of time or the generalized-
coordinates the flutter equation is nonlinear and must be solved using time-integration.
In certain cases generalized-coordinate nonlinearities can be approximated using the
describing-function technique (appendix G). Nonlinear stiffnesses associated with branch
mode generalized coordinates (appendix H) can be given a describing-function equation
in the param processor. Branch mode generalized coordinates are characterized by mass
coupling but a lack of stiffness coupling between it and other generalized coordinates.
This makes it possible to replace the single stiffness term associated with that general-
ized coordinate with a describing function equation. The equation can be an arbitrary
function of other parameters, built-in functions, or generalized-coordinate amplitudes
(§5.4).

For example, if generalized-coordinate 33 represents rotation of a control surface, and
the control surface has 0.1 radian freeplay, the stiffness matrix can be parameterized
in one of two ways depending upon whether it is to be used in frequency-domain or
time-domain analyses.

In the time domain the stiffness element can be replaced with the exact function of
displacement:

param {

i=AEKHH, o=Stif

fp(G.C. 33 Freeplay) = 0.1

gc33(G.C. 33 Disp) = gc[33]

[33,33] = []*gap(fp,gc33)

}

where gap is one of the built-in functions (§5.4.5) which takes two arguments, the
gap size and the current value of the generalized coordinate. Two new parameters are
defined to set the value of the gap (fp) and the current value of generalized-coordinate
33 (gc33), using the built-in function gc to get the value at any point in the solution
process. It is necessary to use the built-in function gap because the equation for the
scale factor it returns is too complicated for a single equation (the real problem is that
the Flaps equation capability does not allow logic statements such as if):

gap(fp, gc) {

if (gc33 > gap) {

factor = (gc33 - gap)/gc33

} else if (gc33 < -gap) {

factor = (gc33 + gap)/gc33

} else {

factor = 0.0

}

return factor

}

and its rotational stiffness is specified with an equation that multiplies the nominal
stiffness by a gap describing function:

param {

92 CHAPTER 7. FLUTTER

7.7

i=AEKHH, o=Stif

gap(G.C. 33 Freeplay) = 0.1

gc33(G.C. 33 Magn) = 1

[33,33] = "[]*((PI - 2*asin(gap/gc33) - sin(2*asin(gap/gc33)))/PI)"

}

where gap is a parameter defined and given an initial value of 0.1, and gc33 is another
parameter which we will use in stab to force the generalized-coordinates to be normal-
ized to specific values. These new parameters can given values in a neutral-stability
analysis; the generalized-coordinate vector can be normalized to the current value of
gc33 using the norm option:

stab { ...,

gap = 0.02

gc33 = 1

norm{gc=33, val=gc33}

...

}

Equivalently, the built-in function gapdf (§5.4.5) can be used in the equation:

param {

i=AEKHH, o=Stif

gap(G.C. 33 Freeplay) = 0.1

gc33(G.C. 33 Magn) = 1

[33,33] = "[]*ax::gapdf(gap,gc33)"

}

The above stab command is for a particular value of displacement; usually the interest
is in studying the variation in flutter speed with the magnitude of displacement of the
nonlinear coordinate:

stab { ...,

active=(gc33[0.02:2],freq,vtas)

growth=0

gap = 0.02

...

norm{gc=33, value=gc33}

pstz = pstzmat*gc

}

which tracks the variation in flutter speed (growth=0) with g.c. 33 amplitude and
normalizes the generalized coordinates so that g.c. 33 has the value of gc33. This
normalization is necessary to give the proper output transformation in parameter pstz.

7.7 Divergence

Another type of instability occurs when the stiffnesses are not enough to overcome the
aerodynamic forces, resulting in potentially destructive deformations. This is a static
phenomenon: no oscillations are involved, the frequency is zero, no inertia forces are

7.7. DIVERGENCE 93

7.8

involved, and the mass is irrelevant. As with flutter the boundary between stability
and instability is when σ = 0 and the divergence equation is (§7.1.2)

[(1 + id)K − qQ(0,M) + T (0, q)] q = 0 (7.9)

Without controls equations the divergence equation is (§7.1.2)

[K − qQ(0,M)] q = 0 (7.10)

which is a generalized eigenvalue problem (§??) and the eigenvalues are the dynamic
pressures where divergence occurs. The unsteady aerodynamic matrix is evaluated at
zero reduced frequency; if it is also a function of Mach number the dynamic pressure
and Mach number will not, in general be consistent. In this case or if there are controls
equations a more complicated procedure is necessary. One technique is to consider the
dynamic matrix as a function of dynamic pressure

D(q) = [(1 + id)K − qQ(0,M) + T (0, q)] q = 0 (7.11)

and at each dynamic pressure in the range of interest compute the eigenvalues of
D. Speeds where the smallest eigenvalue is zero are divergence speeds. Both of these
techniques are available in the Flaps stab command.

7.8 Continuity

The solution technique used to track modes in stab was chosen because it (almost)
guarantees continuous solution curves, making it especially useful for parameter varia-
tions. No algorithm is perfect, however, and the tracking algorithm in stab can fail in
several ways:

• Start points. The most common failure in stab is in neutral-stability runs, where
the start points are found by solving a nonlinear eigenvalue problem at small or
zero dynamic pressure. Without controls equations the problem is much simpler
and less prone to failure; with controls the problem can be highly nonlinear and
difficult to guarantee that all start points have been found.

• Mode switching. Modes commonly cross other modes and in doing so if the values
of all parameters are nearly the same (including the generalized-coordinates) it
is conceivable that the modes could switch or both modes continue tracking the
same mode. The algorithm in stab considers the generalized coordinates the same
as ordinary parameters as it traces modes, making switching extremely unlikely.

• Mode reversal. It is possible when tracking a mode through a region where pa-
rameters are changing rapidly for the algorithm to reverse direction and continue
tracking the mode back the way it came. In neutral-stability runs this would
result in a message like

Finished tracking: max alt (250000) reached

94 CHAPTER 7. FLUTTER

7.8

g
ro

w
th

 r
a

te

model A

model B

Velocity

Figure 7.7: Suspected Mode Switching

for a constant-Mach solution, or

Finished tracking: min vtas (0) reached

for a constant-altitude solution, meaning the curve has reversed direction and
ended up back at the start point. The sign of the determinant of the Jacobian
matrix is used to safeguard against this, but it is not clear that this works in all
cases.

Unexpected behavior in mode tracking is often mistaken for mode switching or reversal;
on closer inspection it is almost always the case that the algorithm has performed as
it should, keeping continuity in the curve. For example, a “slight” modification in an
airplane flutter model caused the change shown in figure 7.7. The original model (model
A) has two modes that flutter: a hump mode and a hard flutter crossing; in the modified
model (model B) the two modes go unstable but in very different ways, and it appears
that the algorithm has tracked the two modes incorrectly.

However, closer inspection shows that this is not the case. Figure 7.8 shows the suspect
region zoomed in, where it is clear that the algorithm has kept continuity in the curve.

More revealing is a plot of growth rate against frequency in figure 7.9 where there is no

7.8. CONTINUITY 95

7.8

model A

model B

Velocity

g
ro

w
th

 r
a
te

Figure 7.8: Suspect Region Expanded

96 CHAPTER 7. FLUTTER

7.8

model A

Growth rate

model B

F
re

q
u

e
n

c
y

Figure 7.9: A More Revealing View

longer the spike in the modified model, the curves are smooth and well-behaved, with
no question of mode switching.

This example illustrates how seemingly small changes in a model can make dramatic
changes in the way aeroelastic modes evolve, even as the actual flutter speeds change
very little.

From this example we can glean a few rules for determining if there is mode switch-
ing. First, zoom in on the suspected region. This is usually enough to determine if
there is a problem, otherwise try plotting different combinations of parameters. For
neutral-stability runs plotting sigma or growth against freq is often very instructive.
Unfortunately neither task is as straightforward as it should be in pegasus; The Flaps
vis command 10.21 is much more conducive to exploring data, with the added advantage
of using color to distinguish different curves.

7.8.1 Controls Equations

Other problems are peculiar to models with added controls equations and the nonlin-
earities they introduce. We mention two such problems from the Flaps demonstration
problems (§9).

7.8. CONTINUITY 97

7.8

The first problem is demonstrated by stab12.ax which has a control law represented
by a user-written subroutine. Like most controls equations in user subroutine this one
contains several rational (ratios of two) polynomials in the characteristic exponent s.
The roots of the denominator polynomial are poles of the control equation, where the
term goes to infinity. If the value of s. approaches one of these roots numerical problems
will likely cause some sort of tracking problem, as it does in stab12.ax.

Another problem, extremely rare but potentially very serious is illustrated by demo
problem stab13.ax: a mode that does not appear under 100 knots thus does not appear
in an ordinary neutral-stability analysis. This example includes a control law, making
the flutter equation more nonlinear with respect to velocity and characteristic expo-
nent. It seems highly unlikely that this behavior could occur without the nonlinearities
introduced by the controls equations.

98 CHAPTER 7. FLUTTER

Chapter 8

Visualization

8.1 Introduction

Visualization capabilities include graphical presentation of matrices, 2D plots of flutter
and response results, matrix parameterizations, control-system eigenvalues, and 3D
animations of flutter, response and vibration modes.

8.2 Visualizing Matrices

Large (sometimes even not so large) matrices can be viewed very effectively using the
Flaps print command or the matview option to the apex command. These both use a
graphical program called MatView [22] developed at Oak Ridge National Labs. Figure
8.1 shows a typical MatView display.

Left-clicking on a matrix element displays the value of the element; a middle-click and
drag zooms in the swept area, and a right-click unzooms. There are many more options;
two of the more useful ones are a slider to change the color map and an option to view
absolute values.

8.3 2D Plots

Two dimensional plotting is the most common type of plotting with dynamic analyses
for good reason: visualizing more than two dimensions on two dimensional media like
a computer screen or paper is very difficult, even with good shaded, textured, colored
graphics. 2D plotting software is therefore very important. In Flaps you have two
choices: the Flaps command vis or the Boeing program pegasus [34]. pegasus is good
for creating documentation-quality plots with Boeing title blocks but it is lacking when
it comes to exploring data with color, zooming, or viewing multi-dimensional data.

Flaps processors stab, fresp, and tresp produce files which can be viewed using either

99

8.3

Figure 8.1: Matrix Image

PEGUSUS or vis; vis can be used to view results directly from an Flaps database. vis
can be used either in an Flaps control program or on the command line; for example,
to plot all matrix elements from the plot option in the param command:

$ apex vis gaf*.esa

or to view them one at a time:

$ for i in gaf*.esa;do $ apex vis gaf*.esa; done

A typical window from vis is shown in figure 8.2. The Hardcopy button allows for
printing, creating a PostScript file, or creating a fig file which can be used in the
drawing program xfig. Most figures in this manual were created using xfig to enhance
plots created with vis.

Left-clicking on a vis window and dragging the mouse creates a new window with the
swept area. This is how you zoom in vis. New windows created this way are independent;
you can close any window without effecting the others or zoom in the new window.

Middle-clicking on a vis window brings up a display of the values of all other parameters
at the point closest to the cursor. Figure 8.3 shows a typical display from a middle-click.

100 CHAPTER 8. VISUALIZATION

8.3

Figure 8.2: Typical neutral-stability plot

Figure 8.3: Parameter values from a middle-click

8.3. 2D PLOTS 101

8.4

The right mouse button is used to pick points at which you want to view 3D animations
of the motion of the structure. This feature is only available when vis is run from within
an Flaps control program, and if the necessary structural data is available: modes,
nodal data, and (optionally) nodal connectivity data. Both vis and amvis are available
as command line programs (§10.21.5).

8.4 3D Animated Modes

Motion of a structure can be visualized either by creating a file which can be used in
amvis on the command line, or by right-clicking on a 2D vis plot of data from stab,
fresp, or tresp at the point where the motion is to be visualized. The first method has
the advantage of producing a file which can be used over and over and transferred to
other platforms.

The second method is interactive in the sense that multiple points can be clicked on
to visualize motion at multiple points. Thus the first method is useful when you know
what conditions (e.g. veas, growth, or freq) you want to visualize beforehand, while
the second method is useful when you are unsure of the conditions.

8.4.1 Creating A Universal File: The amv Command

If you know beforehand the conditions where you want to visualize the motion, or
to visualize vibration modes the amv command (§??) can be used to either create a
Universal file ([25]) or to start the Flaps visualizer (amvis), or both. Creating plot files
is often more convenient when running in a batch environment. Visualizing vibration
modes requires nodal information in addition to the modes matrix; these are typically
specified by a set number which tags all the necessary data.

In addition to the modal and nodal data, visualizing motion from a flutter or response
solution requires the id of the solution and the values of enough parameters to uniquely
specify the flight condition(s). For example, the following command could be used to
create a Universal file of animated modes at flutter crossings from stab analysis pk:

amv { set=1, id=pk, o=pk.uf, growth=0 }

The resulting Universal file can be viewed with the Flaps amvis command (§10.21.5),
ufViewer, or X-Modal.

As another example the command

amv { set=1, id=pk, o=coupled.uf, veas=0 }

is one way to visualize so-called “coupled” modes (§3.8).

102 CHAPTER 8. VISUALIZATION

8.4

Figure 8.4: amvis with an aero grid

8.4.2 Visualizing Interactively

The parameter values where you want to visualize motion can be quickly and easily
chosen by right-clicking on a 2D plot from vis. Following a right mouse click, the
closest solution point is found and the corresponding generalized-coordinates are used
to compute the motion of the structure as a function of time, and fed to the Flaps 3D
animated visualization program, amvis. A screenshot of amvis is shown in figure 8.4. In
this way the motion of the structure at many different flight conditions may be viewed
very quickly. The important point about this capability is that it is interactive in the
sense that you can view motion at a flight condition, then based on what you learn
from that visualization, choose another flight condition to look at and get immediate
response. No files to transfer or programs to start up.

8.4.3 Visualization Transformation

Stability and response solutions are usually solved for in terms of generalized coordi-
nates (§3.2) which must be transformed to physical displacements before the motion
can be visualized. In addition, solutions done in the frequency domain (stab or fresp)
must be transformed to the time domain. This sections explains how this is done in
amvis or amv.

The stab and fresp processors compute, as part of every solution, a set of complex

8.4. 3D ANIMATED MODES 103

8.5

generalized-coordinate amplitudes q = qr + iqi The actual motion of the nodes of the
structure as a function of time (eqn. 3.15) is

x(t) = eσtΦ
(
qr cosωt− qi sinωt

)
(8.1)

where Φ is the set of modes used to reduce the number of degrees-of-freedom of the
structure. These modes are usually either free-vibration modes of the structure, branch
modes of the components of the structure, or a combination of component modes and
assumed modes.

The physical displacements are related to the nodes and degrees-of-freedom of the struc-
ture by two arrays of data: a set of nodes containing the location and node numbers of
each node, and an array of freedoms, one for each element of the physical displacement
vector with the associated node number. From this information the location of each
node can be computed at every instant in time.

An important aid to visualizing the motion is a set of lines connecting the nodes,
usually contained in an array of node numbers called a connectivity matrix. If this
array is available the lines are added to the picture connecting the displaced nodes.
Unfortunately there is currently no easy way to create the connectivity matrix, except
when the modes and nodes are for an aerodynamic grid.

Unsteady aerodynamic programs such as the doublet-lattice program used in BAP
usually compute aerodynamic forces for a set of mode shapes, the same modes used to
reduce the model to generalized coordinates. Doublet-lattice requires the motion at the
quarter-chord and three-quarter chord of each box in a regular rectangular grid, the
aero grid. The motion at the structural nodes is transformed to motion on the aero grid
through a variety of interpolation and extrapolation methods which are beyond this
discussion. It can be very useful to visualize the modes transformed to the aero grid for
two reasons: to check the validity of the interpolation scheme used, and because the
aero grid has a natural set of connectivities. Demo problem stab11.ax uses this grid for
visualization. exim2.ax will demonstrate the same for a BAP model when extraction
of the aero grid becomes possible.

8.5 The Future

Visualization, both 2D and 3D, is vital to the types of analyses we do. Effort put
into improving our visualization capabilities has the potential of large improvements in
productivity. Good visualization software should encourage you to explore the data;
it should be easy and quick enough to use that it fits well with existing processes.

Unfortunately we have not had the resources to make improvements in years. pegasus
is nearly twenty years old. It was written before X Windows became a standard for
workstations and it has never been upgraded to utilize windows in any meaningful way.
vis is an improvement in a number of areas but it has always been a sideline. X-Modal
is more than 15 years old and could quit working with the next AIX upgrade. The
replacement Flaps command amvis will hopefully fill this gap. Along with the rest of
Flaps, the future of visualization is uncertain; write your congressman.

104 CHAPTER 8. VISUALIZATION

Part II

Reference

105

Chapter 9

Demonstration Problems

9.1 Summary

This chapter describes a number of sample problems designed to illustrate the use of
Flaps commands. All of the problems are available in the demo directory; the easiest
way to access this directory is with the demo option to the apex command (§10.6).
The Flaps input files all have names ending in .ax, Flaps savefiles have the extension
.sf, NASTRAN OUTPUT4 files have the extension .op4, Elfini neutral files have the
extension .nf, and ATLAS jobs for creating Flaps savefiles have the extension .q.

You are encouraged to not only look at these sample input files but to copy them, run
them, and modify them to suit your needs.

Besides providing examples of Flaps commands, these files are run periodically to
catch bugs before they show up in your jobs. Most of them contain statements, usually
at the end of the control program meant to catch errors in the results. Many of the files
check that targets in stab, fresp, or tresp are met; to this end there are statements like

bool ok = true;

vector<Real> values;

values.push_back(24.238121);

values.push_back(187.99167);

ok = checkTarget("pk", "growth", "dpress", values, 2) && ok;

if (!ok)

exit(1);

These statement probably are unfamiliar; they are C++ statements which in a nutshell
create a vector of expected values (of dynamic pressure in this case) then call a built-in
function (checkTarget) to read the results from stab, fresp, or tresp (with id=pk in this
case) and check the targets against the expected values. If they are met the function
returns true, if not it returns false and the program exits with an exit code of 1 to signal
failure.

The currently available Flaps example input files are

alge1.ax Rayleigh quotient demonstrating matrix transposition, inverse, and

107

9.1

operations on diagonals.

alge2.ax Demonstrates matrix pseudo-inverse (inverse of a rectangular matrix),
scaling matrices, builtin constants.

alge3.ax Using a user-written subroutine parameterized matrix in alge. Interpo-
lation of a set of matrices as a function of two parameters. Inversion
of a parameterized (cubic-spline interpolated) matrix.

alge4.ax Matrix algebra on parameterized matrices. Does an eigensolution and
modal reduction of a set of generalized aerodynamic matrices.

Requires stab123.sf.

exim1.ax Creates a simple beam model in ATLAS, imports the data into Flaps
and does a basic flutter analysis.

• runs ATLAS from inside the Flaps control program

• creates an Flaps savefile containing mass, stiffness and aero ma-
trices

• restore the model from the savefile

• p-k flutter solution

• checks targets: flutter crossings

exim2.ax Creates a simple beam model in BAP, imports the data into Flaps
and does a basic flutter analysis.

• runs BAP from inside the Flaps control program

• imports mass, stiffness, aero matrices from the BAP databases

• imports model geometry from the BAP databases and runs the
Flaps dublat command to generate unsteady aero matrices for
comparison with BAP dublat.

• p-k flutter solutions using BAP aero and again using Flaps aero

• parameter variation using interpolated mass matrices

• checks targets: flutter crossings

exim3.ax Exports and imports data in Matlab, NASTRAN OUTPUT4, and
Matrix Market formats.

Requires stab123.sf.

merge1.ax Extract rows from a modes matrix, then merge them.

Requires stab123.sf.

modes1.ax Adds local coordinate systems to a modes matrix and the associated
nodes, and freedoms matrices.

Requires stab123.sf.

108 CHAPTER 9. DEMONSTRATION PROBLEMS

9.1

modes2.ax Creates rigid-body modes and visualizes them.

Requires stab123.sf.

fresp1.ax Frequency response with aerodynamics near a flutter point using a
constrained-displacement excitation and a force vector.

Requires stab123.sf.

fresp2.ax Constrained-displacement frequency sweep with ABCD control-law.

Requires stab123.sf.

fresp3.ax Demonstrates multiple Constrained-displacement frequency-response.

Requires stab123.sf.

fresp4.ax 787 p-beta ABCD frequency response.

Requires stab7.sf.

stab1.ax Basic flutter solution on 5-dof cantilevered beam wing.

Requires stab123.sf.

stab2.ax Flutter solution on 5-dof cantilevered beam wing with ABCD control-
law

Requires stab123.sf.

stab3.ax Flutter with various aerodynamic parameterization schemes: k-interpolation,
rational-function approximation, and p-M interpolation.

Requires stab123.sf.

stab4.ax User-written subroutine controls-equation on 5-dof cantilevered beam.

Requires stab123.sf.

stab5.ax Flutter solution using Elfini neutral file, and NASTRAN OUTPUT4
file.

Requires stab5.nf and stab5.op4.

stab6.ax Flutter solution including gyroscopic matrix and gyro spin-rate param-
eter variation.

Requires stab123.sf

stab7.ax ABCD control-law with internal time delays on 787.

Requires stab7.sf

stab8.ax 747 flutter, parameter variations, and optimization.

Requires stab8.sf, built using ATLAS job stab8.q.

stab9.ax Demonstrates the use of user-defined parameter equations, including
Mach number and true airspeed computed using alternative equations.

Requires stab123.sf

9.1. SUMMARY 109

9.2

stab10.ax NASTRAN example HA145b from the MSC/NASTRAN Test Problem
Library.

Requires stab10.op4

stab11.ax ATLAS beam model of the 757.

• Uses Flaps dublat to create p-value unsteady aero.

• Demonstrates a constant-mach V-g type solution.

• Nacelle frequency variation

• aeroelastic mode visualization on the aero grid

stab12.ax User-written control-law subroutine on an Elfini model of the 777. Two
modes in this example run into control-law singularities: places where
the denominator of a control-law term goes to zero.

Requires stab12.sf.

stab13.ax User-written control-law subroutine on 747 which demonstrates some
very unusual and dangerous behavior possible with control laws.

Requires stab13.sf.

stab14.ax Modal truncation convergence study starting with a 220 dof BAP
model and comparing flutter speeds at various smaller reductions.

Requires stab13.sf.

tresp1.ax Time-domain response with RFA aero.

Requires stab123.sf.

tresp2.ax time integration of a forced damped pendulum showing chaotic motion
[26].

tresp3.ax Time-domain response using Fourier transforms

Requires stab123.sf.

9.2 Details

Here we give details on some of the more complicated or unusual problems where the
results are often as interesting or educational as the setup.

9.2.1 Stab13

This 747 model has a mass matrix that is parameterized on fuel loading by interpolation
(§6.1) and a control law represented by a user-written subroutine (§6.4). Figure 9.1
shows a cmvd (table ??) flutter solution at 80 and 84 percent fuel.

There is something very wrong about this plot - there appears to be one curve on the
left but three on the right! The explanation of this plot is a cautionary tale of what

110 CHAPTER 9. DEMONSTRATION PROBLEMS

9.2

veas

sigma

Figure 9.1: Strange Flutter Solution Curves

9.2. DETAILS 111

9.2

veas

sigma

Figure 9.2: p-k at fuel = 80 and 84 percent

strange behavior can occur particularly with closed-loop systems, and what can be done
about it. It begins with a typical sequence of analyses, a p-k flutter solution followed
by a parameter (fuel) variation, only here we consider only one mode to simplify.

Figure 9.2 shows the mode at fuel loadings of 80 and 84 percent; at 84 percent the
mode goes unstable but at 80 percent it is stable, not an unusual situation.

However when we do a fuel variation starting from the flutter crossing we see that this
instability is insensitive to fuel (figure 9.3) so we would expect the mode at 80 to go
unstable. Not shown are a number of other modes at 80, none of which are unstable,
so the mystery is, what mode goes unstable at 80, since the parameter variation shows
that there is one. To find it we take advantage of the fact that the Flaps stab command
can start tracking a mode from any previous solution, so we can set the active variables
to (veas, freq, sigma), start at 80 on the fuel variation curve and track back to zero
airspeed.

112 CHAPTER 9. DEMONSTRATION PROBLEMS

9.2

0 100

0

0.25

Fuel Loading (percent)

V
el

o
ci

ty
 V

ar
ia

ti
o
n
 (

p
er

ce
n
t)

Figure 9.3: Variation of Flutter Speed with Fuel

9.2. DETAILS 113

9.2

veas

start tracking

si
g

m
a

Figure 9.4: Tracking the Missing Mode

114 CHAPTER 9. DEMONSTRATION PROBLEMS

9.2

This is where it gets interesting because when we do this the resulting curve, shown
in figure 9.4 does not go to zero, but instead turns toward increasing velocity. Had we
done a flutter solution only at 80 we never would have found the instability because
flutter solutions normally start at or near zero velocity. It was fortunately not a problem
in this case because the engineer doing the analysis noticed the missing mode but it
points out the need for guarantees on stability within specified flight conditions. In this
regard topological degree theory ([35]) holds promise.

9.2.2 Stab14

stab14.ax is a modal truncation study: what happens when you reduce the size of the
model using free-vibration modes? Starting with a BAP model with 220 component
modes (§3.2.1) a simple flutter solution is performed tracking only one aeroelastic mode
which goes unstable at a velocity we call V0. Then the model size is reduced by comput-
ing eigenvectors of the free-vibration problem using the mass matrix at a different fuel
condition (OEW). A triple-product reduces all matrices to the smaller size and the flut-
ter solution is repeated with 180, 140, 120, and 80 degrees of freedom. The results are
shown in figures 9.5 and 9.6. Two questions which might be asked about this study are
1) how many degrees of freedom need to be retained to get answers that are reasonably
close to the original, and 2) how much computing time does trunction save? Figure 9.1
is an attempt to answer these questions. As expected the time drops dramatically as
the size decreases; flutter solutions are dominated by numerical processes whose time
inreases with the cube of problem size so an upper limit on the exponent is 3 and values
less than 3 show how much of the solution process is consumed by bookkeeping.

highest
size ratio time ratio frequency flutter speed exponent

dof η τ Hz change log τ
log η

220 1 1 1406 1
180 0.82 0.64 39.7 1 2.2
160 0.73 0.47 32.2 +0.007% 2.4
140 0.64 0.33 26.5 +2.5% 2.5
120 0.54 0.21 21.1 -2.8% 2.5
80 0.36 0.07 15.5 +8.0% 2.6

Table 9.1: Modal Truncation Results

Modal truncation for this model below 160 dof is probably unacceptable at 140 dof
the flutter speed not only increases by 2.5 percent but the character of the mode
changes dramatically, going from a “crasher” to a “hump mode”. Looking at the highest
frequencies it is easy to see why modal truncation below 160 dof is unacceptable. At
140 dof the highest frequency has dropped to only 26 Hz, or only 2 to 3 times the flutter
frequency. Evidently there are modes above 26 Hz which are important to flutter.

Another surprising aspect of this model is the number of free-vibration modes there
are below 40 Hz. For comparison, stab8.ax is a beam model of a 747 which has only
52 modes below 20 Hz, while this finite-element model has 113! It would be very
interesting to look at how many modes in this model are irrelevant to flutter, and if

9.2. DETAILS 115

9.2

140

80

g
ro

w
th

veas

120

180

220 dof

160

Figure 9.5: Modal Truncation: v-g view

116 CHAPTER 9. DEMONSTRATION PROBLEMS

9.2

120

140
80

sigma

5

10

fr
eq

 (
H

z)

220 dof

160

180

Figure 9.6: Modal Truncation: s-plane view

9.2. DETAILS 117

9.2

beam models are capable of predicting flutter as accurately as finite-element models at
a fraction of the cost.

118 CHAPTER 9. DEMONSTRATION PROBLEMS

Chapter 10

Commands Reference

This chapter contains descriptions of all Flaps commands. Descriptions are intention-
ally brief; theory is in part 1 and the appendices.

10.1 Syntax

One of the design goals for Flaps has been to allow the user to write input files
that are concise, easy to understand, and pleasing to look at. Rather than requiring
strict formatting, Flaps allows a great deal of flexibility in how input files are written,
allowing the user to write in his or her favorite style. It is important to realize that
writing Flaps input files is “computer programming” and style does matter, for your
own sake and for the sake of others who may have to read your computer programs
later.

In general, the syntax of an Flaps command has the form

command { options }

where command is one of the commands listed in this chapter. All Flaps commands
are case-sensitive: there is no Alge, only alge.

options are a set of comma-separated options of the form

keyword = value

Features of the option syntax include:

• keywords are case-sensitive: Mass=AEMHH is different from mass=AEMHH.

• if a keyword contains a comma it must be enclosed in (single or double) quotes to
prevent the comma from being taken as an option-separator. The same is true of
values.

• Some options do not take a value

119

10.2

• Whitespace (space, tab, or newline) characters are ignored except when enclosed
in (double or single) quotes

• the comma separating options may be left off if an option is the last one on a
line.

• in many cases the value (and sometimes even the keyword) may be a list with one
of the following forms:

(i,j,..k) Explicit list

(i to j) Implicit list

(i to j by k) Implicit list with a stride

An implicit list with a stride is also known as a to-by list.

The value of an option may have one of the following datatypes:

string A character string of arbitrary length. If the string contains commas
it must be enclosed in single or double quotes so that the commas are
not taken as option-separators. As with the Unix shell, environment
variables are interpreted within double quotes, but not within single
quotes (see Examples below).

integer An integer

float A floating-point number, e.g. .7e+1, 7, 7.0 represent the same number

Each of these data types may be used in a list if the option allows; for example, here
are pairs of equivalent options:

• intlist

eset = (77 to 89 by 3)

eset = (77, 80, 83, 86, 89)

• floatlist

freq = (1.0 to 2.5 by 0.5)

freq = (1.0, 1.5, 2.0, 2.5)

• stringList

plot = (freq, x1 to x10 by 2)

plot = (freq, x1, x3, x5, x7, x9)

print { ("AEMHH,MASSID=AAA" to "AEMHH,MASSID=AEA" by 2) }

print { ("AEMHH,MASSID=AAA", "AEMHH,MASSID=ACA", "AEMHH,MASSID=AEA") }

120 CHAPTER 10. COMMANDS REFERENCE

10.3

10.2 Keyword and Value Options: Option-Options

In some cases the keyword or value may be followed by options enclosed in curly braces.
That is, options may themselves sometimes have options. For example

AEKHH{col=(33,34 to 40)}

node=9934{ orient=(0,0,1) }

hingegap=0.1{ nominal=6.28 }

Sometimes these options are one or more parameter definitions (§5.1), which may be
as simple as setting a parameter value. For example

sdgc=(14,16 to 20){fwdfus=0.02}

or with a more complete description of the parameter fwdfus:

sdgc=(14,16 to 20){fwdfus(Forward Fuselage)[0:10]<HZPRS>=0.02}

10.3 Examples

Here are a few examples of options; more can be found in the demonstration problems.

Note the use of quotes to protect the commas in the matrix name:

alge{ "mass,fuel=0" = "AEMHH,MASSCOND=111"

"mass,fuel=10" = "AEMHH,MASSCOND=112"

"mass,fuel=20" = "AEMHH,MASSCOND=113"

}

Options following a value:

param { i=gstif001

gc = 2{freq2(Second Mode Freq)[0:10]}

sdgc = 2{sdamp2(Second Mode damping)[0:0.2] = 0.01}

}

extract { irulty = "modes,set=11"{row=621010/ty} }

Lists of values:

stab { id=pk

active = (freq, vtas, growth)

fuel = (0, 10, 20)

rset = (1 to 50, 61, 62)

}

Environment variables are expanded when used in options; for example

10.2. KEYWORD AND VALUE OPTIONS: OPTION-OPTIONS 121

10.4

output{environment="massmatrix=fuelcnt"}

stab { ..., mass = $massmatrix, ... }

If it is necessary to enclose an environment variable in quotes, use double quotes if the
variable is to be expanded:

output{environment="fuel=9010"}

stab { ..., mass = "AEMHH,MASSID=$fuel", ... }

is equivalent to

stab { ..., mass = "AEMHH,MASSID=9010", ... }

but with single quotes

stab { ..., mass = ’AEMHH,MASSID=$fuel’, ... }

fuel is not replaced with 9010 because environment variables are not replaced within
single quotes, just like the Unix shell.

10.4 Printed Output

Printed output presents a dilemma in most structural-dynamics programs: too much
printout makes it difficult to find the important information; too little printout risks
missing the important points. Warning messages are often missed because of too much
printout.

Two techniques used in Flaps to reduce the amount of printout without sacrificing im-
portant details are graphic display of matrices, and a one-line summary of generalized-
coordinates and other vectors.

10.4.1 Matrix Display

Matrices are notoriously difficult to present in printed output. The approach taken
in Flaps is to present all but the smallest matrices graphically. The print command
(§10.16) will display a matrix in a separate window with colors indicating the size of
individual elements. Other Flaps programs write matrices to files with .mm extensions
([24]) which can be displayed by the matview option to the apex command (§10.6).
Figure 10.1 is an example of a matrix displayed in matview.

10.4.2 Generalized-Coordinate Summary

At various places in the printed output generalized-coordinates (or other vectors such
as energy) are summarized in a single line by showing which element has the largest

122 CHAPTER 10. COMMANDS REFERENCE

10.4

magnitude, followed by the second largest, and so on. Next to each element number is
a decimal fraction of the largest component in parentheses. A typical summary looks
like this:

28 20(0.39) 19(0.32) 24(0.25) 29(0.24) 41(0.16) 68(0.16) 7(0.13) 47(0.13) 67(0.12)

which means that generalized coordinate 28 has the largest (absolute) value, and that
value is 1.0. The next largest is 20 which has a magnitude of 0.39, followed by 19 with
a magnitude of 0.32, and so on. Occasionally you may see a summary like

[0.82383]28 20(0.39) 19(0.32) 24(0.25) 29(0.24) 41(0.16) 68(0.16) 7(0.13) 47(0.13) 67(0.12)

The extra number in square brackets [0.82383] means that the largest value in the
vector is not 1.0 but 0.82383. Note that the numbers in parentheses have not changed;
this is because these numbers are actually the magnitude of that generalized coordinate
relative to the largest, so for example the magnitude of generalized coordinate 20 is
0.82383 ∗ 0.39 = 0.32129.

10.4. PRINTED OUTPUT 123

10.5

10.5 alge

Performs various algebraic operations on matrices.

10.5.1 Syntax

alge { options }

10.5.2 Options

See §10.1 for the general syntax of options.

Options to alge consist of one or more equations, one per line. The left side of the
equation is the name of the output matrix; the right side is an expression with one or
more of the following elements; the expression must be enclosed in (double or single)
quotes if it contains commas:

scalar expression Scalar expressions can be as simple as a number (e.g. 1.3e-4)
or more complicated, using arithmetic operators (+-/*), square root
(sqrt), powers (pow), or exponential (exp). Numbers may be real (e.g.
1.e-3) or complex. Complex scalars must be enclosed in parentheses
and have an ’i’ or ’j’ before or after the imaginary part. For example
(1.2+3i), (1e-4+j6.3) and (3+i3) are legal complex scalars.

Pre-defined scalars (§2.5) include

HZPRS conversion factor from rad/sec to Hz (1/π)

KPIPS conversion factor from inches/second to knots

DPR conversion factor from radians to degrees (180/π)

RPD conversion factor from degrees to radians (π/180)

G acceleration of gravity in in/sec = 386.0885826

PI π = 3.14159265359....

Scalar expressions may be used to create a named temporary scalar
which may then be used in subsequent matrix expressions. For exam-
ple, to define a variable scale and use it you could include

alge { scale = 1/sqrt(37.4)

M = scale*AEMHH

}

matrix Name of an Flaps matrix, or the name (and possibly some of the
attributes) of a matrix or set of matrices with attributes (§2.3). Oper-
ations will be performed on all matrices with this name and attributes
(see Examples). The name may be followed by options enclosed in curly
braces:

124 CHAPTER 10. COMMANDS REFERENCE

10.5

row = intList Rows which are to be operated on; only used when
a matrix is multiplied by a scalar, for example in the
expression 3*GMASS{row=(3 to 10 by 2), col=(1,2)}
all elements that are in rows 3, 5, or 7 and columns 1
or 2 will be scaled; that is, only elements (3,1), (3,2),
(5,1), (5,2), (7,1), and (7,2).

Default: all rows

col = intList Columns which are to be operated on; see row option
for restrictions.

Default: all columns

parameter = value Specifies values for some or all of the parameters
the matrix is a function of. If the matrix is a function
of parameters and no values are specified, operations
on the matrix apply to the full range of all it’s val-
ues. For example, if a is a function of 2 parameters,
the equation b = a(-1) results in a matrix b which is
a function of the same two parameters, whereas the
equation c = a(-1){p1=1,p2=2} results in a matrix c
which is constant.

operators Operators on matrices include the arithmetic operators +, -, *, trans-
pose (t), inverse (-1), inverse-transpose (-t), and conjugate-transpose
(*). Transpose, conjugate-transpose, inverse, and inverse-transpose fol-
low the matrix name, e.g. GMASS(t). Scalars may be used to multiply
or divide each term in a matrix. A scalar multiplying a matrix can
pre- or post-multiply the matrix; a scalar divisor must appear after
the matrix. See Examples.

identity The identity matrix may be included using upper-case I. The size of
the identity is determined by the other matrices in the expression; e.g.
in the expression K - I, the size of I will be the same as the size of K.
Alternatively, the size may be specified by including the size option on
I, for example I{ size=10 } results in a (10,10) identity matrix. The
only time it is necessary (or recommended) to include the size option is
if there are no other matrices in the expression from which the size can
be deduced, for example in the expression A = 3*I{ size=5 } which
produces a (5,5) diagonal matrix of threes.

diagonal The word diag has a special meaning when followed by a matrix name
or expression in parentheses. If the matrix is a vector (i.e. an n by 1
matrix), a new diagonal matrix is created from the given matrix where
the diagonals of the new matrix are the elements of the vector. For
example

alge { a = diag (sqrt(2)*b) }

will create a diagonal matrix (a) with the elements of the square-root
of 2 times b on the diagonal.

10.5. ALGE 125

10.5

real The word real followed by a matrix name or expression in parentheses
will create a new real matrix from the real part of a complex matrix.
For example

alge { a = real (b+c) }

will create a real matrix (a) made from the real parts of the elements
of the sum of b and c.

imag The word imag followed by a matrix name or expression in parentheses
will create a new real matrix from the imaginary part of a complex
matrix. For example

alge { a = imag(b(*)*b) }

will create a real matrix (a) made from the imaginary parts of the
elements of b conjugate-transposed times b. Incidentally, a will be skew-
symmetric.

conj The word conj followed by a matrix name or expression in parentheses
will create a new matrix which is the conjugate of the existing matrix
or expression. For example

alge { a = conj((b-c)(-1)) }

will subtract c from b, invert the result, then put the conjugate into a.

MAC The word MAC followed by two matrix names or expressions separated
by a comma and contained in parentheses will create a new real matrix
which is the Modal Assurance Criteria of those two matrices. [3] For
example

alge { a = MAC(b{col=(1,3 to 10)}, c{col=(2,3 to 10)}) }

will create a real matrix (a) made from the Modal Assurance Criteria
of selected columns of existing matrices b and c. This matrix can then
be visualized using the print command:

print { a }

which will produce a window like figure 8.1.

10.5.3 Examples

Several demonstration problems use Flaps savefile stab123.sf which contains 45 matri-
ces with the name genforce and various values of attributes rfr, rfi, and mach. Specifying
some of the attributes means that the operation will be applied only to a limited subset
of the matrices; for example

126 CHAPTER 10. COMMANDS REFERENCE

10.5

alge { gf = 2*"genforce,rfr=0"{ col=(1 to 6 by 2) }

multiplies columns 1, 3, and 5 of all matrices with the name genforce and attribute
rfr=0 by 2.

alge { a = DPR*((x(t)*b(-1)*x) + c) }

will invert existing matrix b, pre-multiply by the transpose of existing matrix x, post-
multiply by x, add the result to c, convert it from radians to degrees, and write this
result out as matrix a.

alge { t = "PI*sqrt(1/3) * pow(3, .5)"

a = t*b

c = t*t*b

}

will create a temporary variable t (which reduces to π), multiply b by t to produce
a, and by t squared to produce c. Note the first expression is quoted to protect the
comma.

alge { a = (G + c)/@G }

adds two matrices and divides the result by the acceleration of gravity; note the use of
the @ character to prevent confusion with the matrix G.

Complex scalars can be used to create complex matrices out of real ones. For example

alge { modes = "(1+i0)*m1 + (0+i1)*m2" }

creates a complex matrix (modes) comprising m1 as the real part and m2 as the imag-
inary part.

10.5. ALGE 127

10.6

10.6 apex

Reads an Flaps control program consisting of one or more Flaps commands and
executes them. Commands may be in a file, from standard input, or may be entered
interactively.

10.6.1 Syntax

apex [-h] [-v version] [-rn] [filename | keyword]

10.6.2 Options

See §10.1 for the general syntax of options.

If there are no options on the command line, apex enters interactive mode where any
apex command may be typed and the command is executed as soon as it is entered. A
line containing only the word end or quit finishes the interactive session.

-h

Prints a short summary of the options for the flaps command; for more help
type apex help which displays the Flaps User’s Manual.

Default: none

filename

Name of a file containing the Flaps input file. See chapter 2 for the struc-
ture of this file.

Default: if no filename or keyword is given the behavior depends on
whether the flaps command is entered from the command line or within a
script (e.g. a qsub file): if the flaps command is entered from the command
line, apex enters interactive mode. If the flaps command is run from a script,
input is from standard input, for example from a Unix here document (§2)
(see example below).

Various utilities are available using the following keywords instead of a filename :

atmos

128 CHAPTER 10. COMMANDS REFERENCE

10.6

interactive program written by Boeing employees T.A.Monson, R.D.Johnson,
and R.J. Tushoski which calculates properties of the standard atmosphere.
Usage instructions are in the help menu accessed from the opening screen.

catalog file

list the matrices on Flaps savefile file .

clean [-r]

remove any Flaps temporary directories left from previous runs. Used with
-r this command cleans this and all directories below it (recursive clean)

demo

Change the current working directory to the Flaps demo directory where a
number of example jobs are kept along with savefiles necessary to run them.
Copy these to your own directory to run them yourself or modify them to
suit your purposes.

diff filea fileb

create a Matrix Market (.mm) file which is the relative difference between
the matrices contained in two .mm files.

dtree [-s] [path]

display on stdout the directory tree rooted at the current directory or path
if included. The -s option prints the directory size next to the directory
name and gives a summary of the largest directories.

dog

Works like the Unix cat command except that environment variables are
replaced

extract options

10.6. APEX 129

10.6

Extract matrices from an Elfini database. Typing apex extract (no options)
will list the usage instructions.

help

opens the Flaps User’s Manual in Adobe Acrobat Reader.

import

creates an Flaps savefile from a BAP or NASTRAN database. (provides
the same functionality as the obsolete program nastrap).

kill job-number

kills a running Flaps job with job-number given by the apex spy command.

matview file

Visualize a matrix in a file with a .mm extension. These files are usually
produced by the Flaps print command when matrices are too large to
include in stdout. A program called MatView is used to visualize the matrix.
MatView has a number of features which make examining the structure and
values of a matrix very easy, including color scaling, zooming, and viewing
individual matrix elements.

rename regular-expression replacement [file(s)]

Renames multiple files based on a regular-expression (appendix I) (§I), a
string to replace what the regular-expression matches, and an optional list
of files to consider (the default is all files in the current directory). For
example, if a directory contains

C8D3PLC2M070C000M75vG39_lgs070912_sd00_08.apx

C8D3PLC2M070C000M85vG39_lgs070912_sd00_08.apx

C8D3PLC2M070C000M95vG39_lgs070912_sd00_08.apx

you could change G39 to G40 with

apex rename G39 G40 *.apx

130 CHAPTER 10. COMMANDS REFERENCE

10.6

For an example requiring some knowledge of regular-expressions consider
how to rename files containing the strings M75, M85, and M95 to M70,
M80, and M90, respectively:

apex rename ’M\(.\)5’ ’M\10’ *.apx

Here the regular-expression is enclosed in single quotes, which is almost
always necessary to protect it from the shell interpreting it. Note that the
list of files must not be in quotes because we want the shell to expand it to all
files ending in .apx. The replacement string contains a backslash followed by
the number one, which means “replace with the first match in the regular-
expression”. Matches in the regular-expression are the parts enclosed in
parentheses (escaped with backslashes), in this case just a period, which
means “any character”. So this rename literally means “replace strings that
contain the letter M followed by any character followed by the number 5
with M followed by the same character as in the original, followed by the
number 0”.

spy

list the status of all processes for all of your currently running Flaps jobs

ufv filename

visualize animated modes using ufViewer

vis [options]

Run a simple 2D plotter (the Flaps vis command). See the vis reference
(§10.21.5) for details on usage.

amvis

visualize animated modes using data contained in the specified Universal
file ([25]).

The following options are used to specify alternative versions of Flaps such as pre-
release or obsolete versions:

-v version

10.6. APEX 131

10.6

Flaps version to use (prod, beta, or alpha). The default, prod, is the cur-
rent production release. beta is the upcoming release which is currently un-
dergoing beta testing, and alpha is the current development version, hence
the least stable version. See the discussion above for the difference between
an Flaps version and release

-rn

use Flaps release n , for example -r3.7. Note the difference between an
Flaps release and an Flaps version: version refers to a stage in the life-
cycle of an Flaps release, so for example release 3.7 began as the beta
version, and during this period -r3.7 and -v beta were identical. Later
when 3.7 became the production release -r3.7 had the same effect as the
default -v prod.

10.6.3 Input and Output

Input is either a file containing Flaps commands or a set of commands in the standard
Unix input stream stdin. If Flaps is run interactively by typing apex at the command
prompt, stdin is from what you type; if Flaps is run from within a script (perhaps in
batch mode) stdin is conveniently taken from a Unix here document . A here document

begins with the << operator followed by a string of characters of your choice; for
example

apex <<@

import{myfile}

@

Here documents are convenient because the input to Flaps can be placed in the script
without creating a separate file, and environment variables are substituted, so a script
like

export SAVEFILE=/home/me/myfile

apex <<@

import{$SAVEFILE/myfile}

@

is equivalent to

apex <<@

import{/home/me/myfile}

@

Output from command/apex/ is normally to the standard Unix output streams stdout
and stderr unless redirected or the output command is used to redirect stdout and/or
stderr. See any reference on the Unix operating system for more details, for example
[16], [1], [29], or [44].

132 CHAPTER 10. COMMANDS REFERENCE

10.6

10.6.4 Examples

To run Flaps from within a script, taking the input from the same script, use what is
known as a Unix here document [44]:

apex <<EOF

restore{savefile}

...

end

EOF

10.6. APEX 133

10.7

10.7 catalog

Prints a catalog of Flaps matrices matching specified conditions.

10.7.1 Syntax

catalog { options }

10.7.2 Options

See §10.1 for the general syntax of options.

By default, catalog prints a catalog of all Flaps matrices; the list may be limited
by specifying a list of matrix ids (see the explanation of matrix ids in section 2.3. or
regular-expressions (see section I).

10.7.3 Output

output consists of a list of the matrices matching the matrix ids specified, printed on
the standard output file.

10.7.4 Examples

To catalog all matrices:

catalog {}

To catalog all matrices with the mode=3 attribute:

catalog { mode=3 }

134 CHAPTER 10. COMMANDS REFERENCE

10.8

10.8 export

Writes Flaps matrices to files that can be imported by other programs. Currently
available formats are Matlab, Output4, and ESA. Universal files can be created with
the Flaps amv command, and Matrix Market formatted files can be created with the
Flaps print command.

10.8.1 Syntax

export { options }

10.8.2 Options

See §10.1 for the general syntax of options.

Options to export consist of the output file name, the format of the exported matrices,
and either a solution id from a previous execution of stab, fresp, or tresp, or one or
more matrix names to export.

o = string

Name of the file to receive the exported matrices. The filename extension
determines the default export format:

.esa ESA format, ([34]) a format created by Boeing for use in
the 2D plotting program Pegasus. The Flaps command
vis can also use ESA-formatted files. a format widely used
in the numerical analysis community for distributing test
matrices. Used for printing large matrices in Flaps and
viewing with matview (§10.6) [24].

.mat Matlab or Simulink [23] MAT-files are binary, hence not in
general portable across platforms.

.op4 OUTPUT4 (NASTRAN or BAP) [37]

id = string

name of a previously generated solution from stab, fresp, or tresp.

parameter-defn

10.8. EXPORT 135

10.8

(ESA files only) the name of a parameter in the solution associated with the
id option or a name to be given to data in a row of the specified matrix. This
option may be repeated to specify all parameters that are to be included in
the ESA file.

matrix-id

name of an Flaps matrix to be exported; any number of matrix names may
be included.

10.8.3 Examples

export { id = pk, vtas, freq, growth }

will create an ESA-formatted file named pk.esa of solution curves with the parameters
vtas, freq and growth

export { o = stif.mat, AEMHH, AEQHH, AEKHH }

will create a file containing AEMHH, AEKHH, and all the unsteady aero matrices, which
can be imported into matlab.

136 CHAPTER 10. COMMANDS REFERENCE

10.9

10.9 extract

Extracts rows, columns, or diagonals from an existing matrix, creating a new Flaps
matrix.

10.9.1 Syntax

extract { options }

10.9.2 Options

See §10.1 for the general syntax of options.

Options to extract consist of the input matrix name, the output matrix name, and
lists of rows, columns, or diagonals to extract or if the matrix is square the rows and
columns to retain or eliminate may be specified. Rows, columns, and diagonals may
be specified either as integers or node/freedom: a node number followed by a slash
followed by a freedom number in the range 1-6 or the corresponding text (tx, ty, tz, rx,
ry, or rz). If nodes/freedoms are used it is necessary to include the set option unless set
is an attribute in the matrix id.

Multiple extractions can be included, but to do so it is necessary to put those options
which are specific to each extraction in curly braces following the input matrix name
(see Examples).

In addition to the row, column, and diagonal element specification, curly braces fol-
lowing the input matrix name may contain parameter values. The input matrix will be
evaluated at those values prior to extracting the matrix elements (see Examples).

output-name = input-name { options }

The output matrix name (left-hand-side) and the input matrix name (right-
hand-side). The options which specify the elements to be extract follow the
input matrix name and are enclosed in curly braces; this allows multiple
extractions to be done in one extract statement. The extraction options are:

rows = stringList

a list of row numbers or node/freedom combinations. If a row
number is zero, the output matrix will have a row of zeros.

col = stringList

a list of column numbers or node/freedom combinations. If a col-
umn number is zero, the output matrix will have a column of

10.9. EXTRACT 137

10.9

zeros.

diag = stringList

a list of diagonal numbers or node/freedom combinations.

rset = stringList

a list of rows and columns to extract (square matrices only).

eset = stringList

a list of rows and columns to eliminate (square matrices only).

size = int

only relevant if the input matrix is the identity, this options spec-
ifies the order of the identity.

set = string

Nodal data set identifier; only necessary if the rows and/or columns
are specified as nodes and freedoms. Also known as a monset in
Elfini.

10.9.3 Examples

extract { a = AEKHH{ rows=(1 to 10 by 2), col=(1 to 10 by 2) } }

will create a (5,5) matrix consisting of row and columns 1, 3, 5, 7, and 9 of AEKHH;
A simpler way is to use the rset option:

extract { a = AEKHH{ rset=(1 to 10 by 2) }

extract { d = AEKHH{diag} }

will create a matrix of all the diagonals of AEKHH.

extract { a = "modes,set=33"{rows=(2021/tx, 2021/2, 3021/1, 3021/ty)} }

will create a matrix with four rows from a matrix named modes,set=33 (note the use
of quotes to protect the comma) corresponding to nodes 2031 and 3021 freedoms tx
and ty. The node and freedom information is from set 33.

138 CHAPTER 10. COMMANDS REFERENCE

10.9

extract { a = gaf{rfi=0.02, diag=(191 to 196)} }

will create a (6,1) matrix of the diagonals of matrix gaf evaluated at rfi=0.02.

extract {

a = identity{col=3, size=10}

b = I{col=4, size=10}

c = I{col=6, size = 10}

}

will create three (10,1) matrices which are zero except for a 1 in row 3, 4, and 6,
respectively. Note the placement of the column option inside curly braces following the
matrix name, and the common option size outside the braces.

10.9. EXTRACT 139

10.10

10.10 stab

Solves the aeroelastic stability (flutter) equation producing continuous curves of stan-
dard and user-defined parameters.

10.10.1 Syntax

stab { options }

10.10.2 Summary

A wide variety of solutions are possible depending on the choice of active (independent)
parameters. Solutions are generally classified as either neutral-stability or parameter
variation. The type of solution is controlled by the choice of active (independent) pa-
rameters.

Neutral-stability curves have for actives a parameter which increases dynamic pressure,
e.g. vtas, veas, or dynamic pressure itself; frequency; and a parameter that relates to
growth or decay of oscillations: sigma, growth rate, or sdamp.

Parameter variations start from a point on a neutral-stability curve and trace a curve
varying another parameter.

Chapter 5 lists predefined parameters and explains how to define new parameters;
section 7.1 discusses the flutter equation:

Dq =
[
s2M + sG+ sV + (1 + id)K − qQ(p,M) + T

]
q = 0 (10.1)

10.10.3 Options

See §10.1 for the general syntax of options.

Options are categorized as

• Identifying The Solution

• Equation Definition Options

• Which Aeroelastic Modes to Track

• Output

140 CHAPTER 10. COMMANDS REFERENCE

10.10

Identifying The Solution

id = string

Analysis identifier which is used to identify the solution results for sub-
sequent parameter variations (see the source option) and for the default
plotfile name. It may be arbitrarily long but should not contain spaces.

Default: combination of the active-parameter names, e.g. vtas-freq-growth

source = string

An id option that was used to tag the output of a previous flutter solution.
Including the source option has two main effects on this run: equation
definition options (matrices, parameters, rset, and eset, but not active or
aeromod) will be implicitly used, and the solutions from the previous run
will be used as start points for tracing aeroelastic modes in this run.

Equation Definition Options: Parameters

Exactly three active parameters must be specified (unless the optimize option is in-
cluded) and enough fixed parameters to allow all remaining parameters to be derived
from these.

In some rare situations it is necessary to declare parameters derived, meaning the
program is to find suitable equations in terms of the other parameters. The derived
option does this, and is necessary only when the source option is included, because
with the source option the default state (§5.3) for all parameters is the state used in
the source run; the default state can be changed with the active or derived options or
by specifying a value or values for the parameter (which sets the state to fixed). An
example of when the derived option is necessary is when a stab command uses a fixed
value for a parameter, followed by another stab command including the source option
but in the second command the parameter must not be fixed but derived from the
other parameters:

stab { id=pk, mach=0.8, ...}

stab { id=pv, source=pk, derived=mach, ...}

Without the derived option mach would have a fixed value of 0.8 in the second command.

active = stringList

10.10. STAB 141

10.10

A list of parameters defined to be active in the solution. These may be
standard or user defined parameters.

Default: In general three parameters must be defined as active; the only
exception is if the optimize parameter is included.

derived = stringList

A list of parameters defined to be derived in the solution. These may be
standard or user defined parameters. See the discussion above for an expla-
nation of when this option is necessary.

optimize = string

The name of a parameter to be optimized using the continuation optimiza-
tion technique (§7.1.3). When this option is included the number of active
parameters can be any number greater than or equal to three.

parameter-defn

Parameters are declared fixed by including at least the parameter name, an
equals sign, and one or more values (multiple values are enclosed in paren-
theses and separated by commas). Parameters may also be given equations
as detailed in §5.4 which make them derived .

Equation Definition Options: Matrices

The matrices used in equation10.1 are specified with the following options where string
is the name of an existing Flaps matrix. Most are optional; the exceptions are mass
and stif.

mass = string

the name of the matrix to be used as the mass matrix M

Default: fatal error

142 CHAPTER 10. COMMANDS REFERENCE

10.10

stif = string

the name of the matrix to be used as the stiffness matrix K

Default: fatal error

vdamp = string

the name of the matrix to be used as the viscous damping matrix V

gyro = string

the name of the matrix to be used as the gyroscopic matrix G

gaf = string

the name of the unsteady aerodynamics matrix Q

aeromod = string

modification of the generalized aerodynamic matrix by either the NAS-
TRAN method (§3.5.1) (aeromod=nastran) or the g-method (§3.5.2): aero-
mod=gmethod.

controls = string

name of the control-law matrix T

Rows and columns of the matrices may be removed prior to solving the equations by
specifying rows and columns to remove (eset) or rows and columns to retain (rset).
All references to generalized-coordinates, for example in printed summaries or output-
transformations, use the numbering of the full set of equations (prior to extracting rows
and columns). User-defined subroutines must behave as though no rows and columns
had been removed.

eset = intList

10.10. STAB 143

10.10

A list of one or more rows and columns to be removed from all matrices
prior to each solution.

rset = intList

A list of one or more degrees-of-freedom to be included in the solution.
Rows and columns of all matrices will be extracted in the same order as
specified and assembled into the dynamic matrix.

Default: all degrees-of-freedom are included

Which Aeroelastic Modes to Track

The method for choosing aeroelastic modes to track depends on whether this is a
neutral-stability or parameter-variation run. The startregion option is the most useful
way to select which modes to track. For neutral-stability runs modes can be selected by
frequency. Parameter-variation modes can be selected by any parameter that narrows
the range of modes; for example many parameter variation modes can be limited by
vtas. A second method depends on knowing the ordering of low-speed aeroelastic modes
by frequency; the modes options specified which low-speed aeroelastic modes ordered
by frequency are to be tracked.

startregion { options }

a list of active parameters with limits or values specifying the region in which
to search for start points. Limits are specified in the usual way (§5.1), for
example

stab { ..., startregion{freq[0:10]}, ...}

Specifying a value for a parameter is the same as specifying both limits the
same; for example

stab { ..., startregion{veas[10:10]}, ...}

is equivalent to

stab { ..., startregion{veas=10}, ...}

It is important to note that limits and values in the startregion option only
affect the start points; they have no influence on the aeroelastic modes
beyond the start points.

144 CHAPTER 10. COMMANDS REFERENCE

10.10

Default: the active parameter limits

modes = intList

a list of the aeroelastic modes to be tracked. The aeroelastic modes are
numbered according to increasing natural vibration frequency.

Default: all modes in the startregion are tracked

Output

Output from stab consists of printed output, plot files, and data stored in the Flaps
database.

Printed output is controlled by the print, target, goal, and energy options. The print
option specifies which parameters are printed; the default is to print the active pa-
rameters, multiple-valued fixed parameters, and a summary of either the generalized-
coordinates or energies. Most of the output is self-explanatory; section 10.4.2 explains
the generalized-coordinate (or energy) summary.

Plotted output is written to one or more ESA-formatted [34] files. Which parameters
are included is determined by the plot option (default is all the parameters), and the
file names are controlled by the plotfile, append, continuecuts, and nosplit options.

The continuecuts and nosplit options are mutually exclusive and need some explana-
tion. Multiple-valued parameters are often referred to as parameter cuts (§7.3.1); the
default behavior in stab is to output a different plotfile for each value of multiple-valued
parameters. Unique plotfile names are created from the name specified with the plotfile
option by adding an index. For example a stab run with three values of a parameter
p1:

stab { id=pk, p1=(22.3,22.4,22.5), ... }

would produce plotfiles named pk.1.esa, pk.2.esa and pk.3.esa.

It is sometimes convenient to have multiple stab commands create a series of plot files
with continuous cut numbers For example the two stab commands

stab { id=pk, p1=(22.3,22.4,22.5), plotfile=myplotfile, ... }

stab { id=pk2, p1=(32.3,32.4,32.5), plotfile=myplotfile, continuecuts, ... }

10.10. STAB 145

10.10

would produce plotfiles named pk.1.esa, pk.2.esa and pk.3.esa (from the first com-
mand) and pk.4.esa, pk.5.esa and pk.6.esa from the second command. The continue-
cuts option changes the numbering in the second stab command and prevents the first
three files from being overwritten. Alternatively, solutions from both stab commands
could be put into one file by including the nosplit and append options:

stab { id=pk, p1=(22.3,22.4,22.5), plotfile=myplotfile, nosplit, ... }

stab { id=pk2, p1=(32.3,32.4,32.5), plotfile=myplotfile, nosplit, append, ... }

The target option specifies certain criteria which if met prints the results at that point.
A related option, goal, specifies parameter values which, if not met result in a warning
message.

Output transformations (§5.7) are parameters defined with equations containing refer-
ences to the generalized-coordinates. For example

stab { ... n7tzvel(Node 7 TZ Vel) = s*n7tz*gc, ... }

where n7tz is the row of the modes matrix corresponding to the tz freedom of node 7.
The new parameter n7tzvel will be included in the plot file by default.

print = stringList

a list of parameter names to be included in the printed output. Certain
keywords in the list have special meanings unless there is also a parameter
by that name:

full print a one-line summary for each solution point on every
solution curve; the default is to print the first and last
points and any targets found.

nogc do not print a summary (§10.4.2) of the generalized-coordinates;
the default is to include the summary.

matrices print all the matrices used in the flutter equation.

target { options }

specifies one or more parameter values where results are to be printed and
saved; additional parameters with limits may be included to narrow the
window where targets are sought. For example,

stab { ... target{ growth=(0,0.03), vtas[200:300] }, ...

will print solutions between 200 and 300 knots tas where growth is either
zero or 0.03.

146 CHAPTER 10. COMMANDS REFERENCE

10.10

goal { options }

one or more parameters who’s minimum or maximum is expected to be
met. For example,

stab { ... goal{ vtas=max }, ...

will print a warning if the maximum vtas is not reached for any reason by
any aeroelastic modes which are tracked. Reasons for not reaching a goal
include reaching a limit in one of the active parameters before the goal is
reached, or a curve runs into numerical problems.

plot = stringList

a list of parameters to be included in the plot file. See section 5.5. for a list
of predefined parameters.

Default: all parameters.

plotfile = string

name of the file to receive the ESA-formatted plot data.

Default: the solution identifier specified with the id option with a .esa

extension

append

If there is an existing file with the plotfile name the results are appended
to the file, rather than the default behavior which is to delete the contents
before writing the new results.

Default: the contents of existing plotfiles are deleted

nosplit

Put the solutions for all parameter cuts into the same plot file (see discussion
above).

10.10. STAB 147

10.10

Default: results are written to plot files with multiple-valued parameter
indices included in the file name.

continuecuts

continue parameter cut indices from the highest index found in files with
the same base plotfile name on the current directory (see discussion above).

Default: if there are multiple-valued parameters declared, the parameter
value indices are included in the plotfiles names starting with 1.

energy

print summaries of the generalized-coordinate energies instead of the g.c.
magnitudes any place where g.c. magnitudes are normally printed.

Miscellaneous Options

nrbm = int

the number of rigid-body modes in the model. Including this option causes
the first nrbm rows and column of the stiffness to be zeroed. This option is to
compensate for generalized stiffness matrices which should have zeros in the
first nrbm rows and columns, but due to inaccuracies in eigensolutions have
non-zeros in those rows and columns, sometimes large enough to change a
flutter solution.

minstep = int

the minimum number of steps to take when tracking each mode. This option
is useful for creating smoother curves for plotting.

Default: 50

maxstep = int

148 CHAPTER 10. COMMANDS REFERENCE

10.10

the maximum number of steps to take when tracking each mode.

Default: 1000

10.10. STAB 149

10.11

10.11 gyro

Creates a gyro matrix suitable for use in flutter or response analyses. The output matrix
will be reduced to generalized coordinates if the modal or modes options are included;
otherwise it will be in nodal degrees-of-freedom associated with the specified set, ss, or
model. The units of the generalized coordinates associated with the output
gyro matrix are assumed to be radians; It is the user’s responsibility to
ensure that the output matrix is scaled properly if this is not the case.

10.11.1 Syntax

gyro { options }

10.11.2 Options

See §10.1 for the general syntax of options.

set = int

Identifier for the nodal data; ATLAS uses integers Elfini uses strings (mon-
set), NASTRAN uses strings.

Default: fatal error

modal

The output matrix is transformed to the generalized-coordinates associated
with the modes matrix for the specified set by doing a triple-product.

Default: the output matrix is in nodal degrees-of-freedom unless the modes
option is included.

modes = string

The name of the matrix to use in transforming the output matrix to generalized-
coordinates with a triple-product. This is an alternative to the modal option
when a modes matrix other than the one associated with the specified set
is to be used.

150 CHAPTER 10. COMMANDS REFERENCE

10.11

Default: the output matrix is in nodal degrees-of-freedom unless the modal
option is included.

o = string

Name to be given to the output matrix.

Default: gyro

node = int {options}

The number of the node where the gyro forces are to act. This option may
be repeated as many times as necessary to define all the spinning parts
in the model. At least one node must be included. Options following the
node number specify the direction and value of the rotation rate and rotary
inertia:

inertia = float

Rotational inertia in lbf -in-sec2. Multiply inertia in lbm-in2 by
the conversion factor G = lbmin

lbf sec2
. (§2.5)

Default: 1 lbf -in-sec2

orient = floatList

Three floating-point numbers which specify the direction of the
spin vector relative to the node. The direction determines the
orientation of the spin axis and the direction of the rotation ac-
cording to the right-hand-rule.

Default: fatal error

spin = float

Spin rate (magnitude of the spin vector). Negative values indi-
cate the rotation direction is opposite that specified by the orient
option.

Default: 1.0 rad/sec

10.11. GYRO 151

10.11

10.11.3 Output

Output from this command consists of a skew-symmetric matrix which may be used in
the stab, fresp, or tresp commands by including the gyro option.

10.11.4 Examples

The following Flaps command will create a gyro matrix named ”G” in modal dof as-
sociated with ATLAS set 2, reduced to generalized coordinates associated with ATLAS
matrix "modes,set=2". The spin vector is in the negative y direction and it is spinning
at 5 rad/sec.

gyro {

set=2, modal, o=G,

node=112{orient=(0,1.0,0), spin=-5, inertia=3300}

}

152 CHAPTER 10. COMMANDS REFERENCE

10.12

10.12 import

Reads files in various formats and creates Flaps matrices from the contents.

10.12.1 Syntax

import { path }

10.12.2 Options

See §10.1 for the general syntax of options.

Options are categorized as

• General Options

• ESA Options

• NASTRAN/BAP Options

General Options

i = string

The path of the file to be imported; not relevant for BAP databases (see
dbmaster option).

format = string

The format of the data in the file. It is normally not necessary to specify the
format - it can be determined from the file extension if the default extension
is used, or by examining the data. Valid formats are

apex Flaps ASCII format created by the ATLAS export module.
No default extension.

output4 NASTRAN or BAP OUTPUT4 formatted ASCII file [37].
Default extension: .op4.

dmig NASTRAN or BAP DMIG formatted ASCII file [37]. De-
fault extension: .dmig.

10.12. IMPORT 153

10.12

bap BAP database files; it is unnecessary to specify this for-
mat option because the dbmaster option (required for read-
ing BAP database files) makes it redundant. See the NAS-
TRAN/BAP options below.

elfini Elfini Neutral file (ASCII) Default extension: .nf .

esa The ASCII form of Boeing Engineering Scientific Data (ESD)
[15]. The binary form of ESD, known as ESB, is commonly
used for plotting data in pegasus ([34]). Default extension:
.esa.

matlab A MAT-file from Matlab or Simulink. These files are binary
but unlike Flaps binary savefiles they are not in general
portable across platforms [23]. Default extension: .mat.

matrix market An ASCII format widely used in the numerical analysis
community for distributing test matrices. Used for printing
large matrices in Flaps and viewing with matview (§10.6)
[24]. Default extension: .mm.

universal An ASCII format originally from SDRC, widely used to
transfer data to laboratory test software. Only formats 15
(nodal), 55 (modes) and 82 (connectivity) are allowed (for-
mat 164 (units) is ignored). The formats are documented
at [25]. Default extension: .uf .

Default: the format will be determined from the file extension or by looking
at the data.

ESA Options

runid = stringList

a list of runids or regular-expressions (§I) to be imported; only applicable
when format=esa.

param = stringList

a list of parameters or regular-expressions (§I) to be imported; only ap-
plicable when format=esa.

154 CHAPTER 10. COMMANDS REFERENCE

10.12

NASTRAN/BAP Options

Importing data from NASTRAN or BAP databases is more complicated than simply
specifying a file name. Access to these databases is through a toolkit provided by the
vendor (MSC); this toolkit requires that NASTRAN be run even though all we want
to do is read data. For this reason it is only possible to import from NASTRAN/BAP
databases on platforms which also have NASTRAN/BAP and the necessary licenses.
It also means that the options necessary to import are arcane.

dbmaster = string

path of a NASTRAN master database

Default: fatal error if the master database is not specified

fetch = stringList

a list of the matrix names to fetch from the NASTRAN database. The
matrices are stored in the Flaps database; to create an Flaps savefile use
the save command (§10.20).

Default: not much point in using the import command unless this option is
included :-)

dball = string

path name of the (optional) NASTRAN DBALL database

adb = string

path of a NASTRAN adb database.

sdb = string

path of a NASTRAN sdb database.

bapversion = string

10.12. IMPORT 155

10.12

either a number specifying the version of BAP to use or the path of the
BAP executable to use.

dbproject = string

the project identifier

Default: any project

dbversion = string

the database version identifier

Default: any version

buffersize = int

the buffersize of the databases; necessary if the databases use a buffersize
other than the BAP default (8192). Why NASTRAN/BAP requires this is
a mystery.

10.12.3 Command-line Usage

import can also be used on the command-line to read NASTRAN/BAP databases and
create an Flaps savefile. Although the import command can be used directly on the
command-line if you have it in your path, it is more convenient to call it from the apex
script:

$ apex import ...

The only command-line options are a list of the matrix names (see example below).
All other options are specified with environment variables which must be set prior to
executing import.

NASTRAN DB MASTER (required) path to a NASTRAN/BAP master database.

NASTRAN DB ALL path to a NASTRAN/BAP DBALL database if present.

BAP VERS path to BAP executables.

NASTRAN BUFFSIZE buffer size - required for databases that have a buffer size that is
larger than the default value (8192).

DEBUG (optional) debug level from 1 to 4.

156 CHAPTER 10. COMMANDS REFERENCE

10.12

Example

The following commands (which you would probably want to put in a script) extracts
several matrices from BAP databases and creates three Flaps savefiles:

export NASTRAN_DB_MASTER=/787-8/Prel/R803/BAP/Merge/R803_ips_sdb.MASTER

export BAP_VERS=/sd/core/bap/bap2d13

export NASTRAN_BUFFSIZE=32769

apex import AEMHH,MASSID=0 AEKHH

mv savefile R803_model.sf

export NASTRAN_DB_MASTER=/787-8/Prel/R803/BAP/Merge/R803_ips_adbm.MASTER

apex import modes,set=101 freqs

mv savefile R803_modes.sf

export NASTRAN_DB_MASTER=/787-8/Prel/R803/BAP/Merge/R803_ips_adbd.MASTER

apex import AEQHH

mv savefile R803_theo_gaf.sf

The example runs import 3 times. Prior to each execution the NASTRAN DB MASTER
environment variable is modified for a new database. The first run extracts general-
ize stiffness (AEKHH) and generalized mass (AEMHH) matrices. MASSID=0 is the
qualifier/value pair that specifies the base mass case for an SDBmgr database.

The second import run extracts modes and frequencies for a set of nodes defined in
a NASTRAN case control SET entry. ”modes,set=101” refers to three matrices that
are created from data in the the ADBmgr m database. import returns matrices ”free-
doms,set=101”, ”modes,set=101”, and ”nodes,set=101”. In addition to the modes a
vector of frequencies is extracted from the AELAMA table and store in ”freqs”.

The third run extracts the generalized airforces from the AEQHH datablock. This
example will extract all of the unique matrices ”AEQHH,mach=x,rfi=y” where x and
y are the Mach numbers and reduced frequencies. The attribute names Mach and rfi are
different from the qualifier names IMACHNO and IKBAR from the NASTRAN/BAP
database. These were change because Mach and rfi are standard names used in Flaps.

Matrix Names

In NASTRAN matrices and tables are stored in the database in datablocks. Each
datablock has a ”path” of qualifier/value pairs that are used to locate a unique matrix
or table. In general any single matrix in a NASTRAN database can be extracted by
specifying its datablock name followed by a series of qualifiers that uniquely defines the
matrix. For example:

apex import AEMHH,MASSID=100

extracts all matrices in database (BAP) with a DATABLOCK name of AEMHH and
qualifier MASSID equal to 100. This example specifies one matrix so only one matrix
will be saved in the Flaps savefile format.

10.12. IMPORT 157

10.12

apex import AEMHH

Does not uniquely specify a DATABLOCK name, so the number of matrices returned
will equal the number of unique MASSID values.

Debugging

import launches NASTRAN through the toolkit when accessing a database. For that
reason debugging problems may be problematic. The toolkit itself has very limited
error reporting, that is of little use to a import user. To aid in debugging problems the
user can set the DEBUG flag to get additional information. The DEBUG flag can be
set to values from 1 to 4, however setting values above 2 will generate a considerable
amount of output.

If import is run with the DEBUG environment variable set two things happen the output
written to the screen is greatly increased and some temporary files are left behind. The
temporary files begin with DBATTACH, the most important of which is DBATTACHf06

output. This file contains the NASTRAN output of the toolkit job that connects to the
database specified by the NASTRAN DB MASTER environment variable. If modes extraction
is requested this file also contains output from a DMAP program that partitions the
”g-set” modes matrix.

Known Bugs

When extracting generalized air force matrices from a BAP database, all AEQHH
matrices are extracted. This means that if you have an ADBD database with GAF
matrices for two Mach numbers (x and y) both Mach numbers will be extracted even
if one (IMACHNO=x) is specified.

If any nodes have local coordinate definitions there displacements will be output in the
local reference frame. This issue is being worked.

158 CHAPTER 10. COMMANDS REFERENCE

10.13

10.13 merge

Merge one or more Flaps matrices, creating a new Flaps matrix.

10.13.1 Syntax

merge { options }

10.13.2 Options

See §10.1 for the general syntax of options.

Options to merge consist of the output matrix name, and a set of input matrix names.
The input matrices are stacked rowwise or columnwise according to whether the input
matrix list is specified using the row or col option. You may not include both row and
col in the same merge statement.

Not all datatypes can be merged; real and complex matrices may be merged either
rowwise or columnwise. Nodes, freedoms, and subsets may be merged with the row
command but not the col command.

output-name { options }

Output matrix name. The merge options are:

rows = stringList

Matrix names which are to be merged as block rows of the output
matrix. A matrix name 0 means to insert a zero row at that
position.

Default: none

col = stringList

Matrix names which are to be merged as block columns of the
output matrix. A matrix name 0 means to insert a zero column
at that position.

Default: none

10.13. MERGE 159

10.13

10.13.3 Examples

To merge the (1,193) matrix tya, the (1,193) matrix rza, and the (2,193) matrix rxa to
form a (4,193) matrix psi:

merge {psi{rows=(tya, rza, rxa, rxa)}}

160 CHAPTER 10. COMMANDS REFERENCE

10.14

10.14 output

Set options controlling the output from subsequent commands.

10.14.1 Syntax

output { options }

10.14.2 Options

See §10.1 for the general syntax of options.

out = string

file name where standard output is to be redirected

Default: none

err = string

file name where standard error is to be redirected

Default: none

environment = string

environment variable to be set for subsequent commands. The right-hand-
side must be a quoted string. Double quotes and single quotes behave dif-
ferently in the way that environment variables are handled: if the right-
hand-side is enclosed in double quotes any environment variables in the
quotes are expanded when the control program starts. Single quotes delay
the expansion until the output command is executed. This would make a
difference if an environment variable is changed in the control program and
later referenced; see Examples.

Default: none

pagewidth = int

10.14. OUTPUT 161

10.14

maximum number of characters per line of printed output. Setting the en-
vironment variable PAGEWIDTH has the same effect. Most printout from
Flaps commands is limited to approximately 130 character lines, so in-
creasing the pagewidth will mostly have no effect; two places where it will
are in the tracking summary in stab where the number of generalized co-
ordinates printed is limited by the pagewidth. The other effect increased
pagewidth will have is in the output from the print command, which prints
matrices to a .mm file ([24]) for visualization in MatView if the matrix is
too large for printed output; increasing the pagewidth enough will result in
the matrix being printed to the output file instead of a .mm file.

Default: 130

timer = int

change the amount of timing information. Some Flaps commands write a
table of times spent for various parts of the command to stderr; setting the
level of print to zero means the table will not be written. Setting the level
to 1, 2, or 3 gives more detailed timing information.

Default: 1

10.14.3 Examples

To write subsequent output to a file named junk on the home directory, and to discard
standard error:

output { out=$HOME/junk, err=/dev/null }

HOME is an environment variable which is set automatically to the user’s home direc-
tory. The file /dev/null is the standard Unix trashcan (anything written to this file is
discarded).

As an example of setting environment variables from within an Flaps control program
consider

export Lnv=lnv

apex << @

output { env="Lnv=${Lnv}a" }

...

output { env=’Lnv=${Lnv}b’ }

...

output { env="Lnv=${Lnv}c" }

After the first output statement environment variable Lnv is lnva, after the second it
is lnvab, but after the third it is lnvc due to the use of double quotes instead of single

162 CHAPTER 10. COMMANDS REFERENCE

10.14

quotes; double quotes mean the environment variable is replaced when the control
program is read by Flaps, whereas an environment variable in single quotes does not
get replaced until it is used - in this case when the output statement is executed.

Environment variables can be used to streamline control programs; for example to
create and use an identifier for a job

output { env="id=pk85" }

...

stab { id = $id, plotfile = $id.esa, ... }

...

vis { id = $id, o = $id.uf, ... }

10.14. OUTPUT 163

10.15

10.15 param

The param command is used to create matrices that are functions of arbitrary param-
eters.

10.15.1 Syntax

param { options }

10.15.2 Summary

Several types of parameterizations are available; in roughly decreasing order of gener-
ality they are

user subroutine associates a user-written subroutine with a new or existing matrix;
the matrix is passed to the subroutine where it can be arbitrarily mod-
ified

matrix element assign an equation to a matrix element

interpolation general interpolation in any number of variables

rational function approximation approximate a set of generalized aerodynamic
matrices as a function of complex reduced frequency

branch mode frequencies make a diagonal element of a stiffness matrix a function
of a function of a so-called branch-mode frequency.

structural damping make specified rows and columns of a stiffness matrix a function
of a parameter representing the structural damping on those elements.

ABCD control-laws create a matrix representing a control-law using data from Mat-
lab/Simulink

Some are for specific types of matrices. For example, branch mode frequencies and
structural damping parameterizations are only for stiffness matrices, RFA parameter-
ization is only for unsteady aerodynamics matrices, and ABCD parameterizations are
only for representing controls equations.

Multiple parameterizations can sometimes be associated with a matrix. For example,
a stiffness matrix could be parameterized with branch mode frequencies, structural
damping, matrix element equations, interpolation, and a user-subroutine, all acting on
the same matrix. The param processor arranges for the parameterizations to take place
in the following order: first the interpolation, then the diagonals associated with the
frequencies, structural damping, and matrix-element equations would be applied, then
the user-subroutine would be called with the resulting matrix. Not all combinations
make sense; interpolation and RFA cannot be used on the same matrix, nor can RFA

164 CHAPTER 10. COMMANDS REFERENCE

10.15

and ABCD. User-subroutines are the most general type of parameterization, and can
be used with virtually any matrix and any other parameterization.

10.15.3 Options

See §10.1 for the general syntax of options.

Options are categorized as

• General Options

• Plot Options

• Matrix element

• Branch mode frequency parameterization

• Structural damping

• Interpolation

• Rational function approximation

• ABCD control-laws

• User-subroutine parameterizations

General Options

Input matrices may be specified either by just including the name or as the right-hand-
side of the i option. The right-hand-side of the i option may also be list of matrix names
enclosed in parentheses. So, for example

param { genforce }

and

param { i = genforce }

are equivalent. Matrix attributes (§2.3) may be left off; if they are, all matrices with
the missing attributes will be used. For example,

param { i = genforce }

10.15. PARAM 165

10.15

is equivalent to (assuming these are all the genforce matrices in the database):

param {

"genforce,aerocase=3,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=3,aerocond=2,rfr=0,rfi=0.04,mach=0.8"

"genforce,aerocase=4,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=4,aerocond=2,rfr=0,rfi=0.04,mach=0.8"

"genforce,aerocase=5,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=5,aerocond=2,rfr=0,rfi=0.04,mach=0.8"

"genforce,aerocase=6,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=6,aerocond=2,rfr=0,rfi=0.04,mach=0.8"

"genforce,aerocase=7,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=7,aerocond=2,rfr=0,rfi=0.04,mach=0.8"

}

whereas

param {

"genforce,aerocase=3,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=4,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=5,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=6,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

"genforce,aerocase=7,aerocond=2,rfr=0,rfi=0.02,mach=0.8"

}

is equivalent to

param { i = "genforce,rfi=0.02" }

Parameters are associated with matrices in two ways: by the attributes which are part
of the name or by parameter definitions enclosed in curly braces following the name.
In the example above, the statement

param { i=genforce, o=gaf }

will interpolate with respect to rfi, the only floating-point attribute that varies among
the input matrices. As an example of the second type of parameter association, the
statement

param {

i = (gm1{fuel=0},gm2{fuel=25},gm3{fuel=50},gm4{fuel=75},gm5{fuel=100})

o = Mass

}

interpolates 5 mass matrices with respect to a new parameter called fuel, creating a
new matrix called Mass. The matrix does not have to have been parameterized with
respect to the parameter in curly braces; if it has it will be evaluated at the parameter
value, otherwise it will simply be taken as the matrix at that value of the parameter
for interpolation with respect to that parameter. So, for example the statement

166 CHAPTER 10. COMMANDS REFERENCE

10.15

param {

i = Mass{fuel=0}

i = Mass{fuel=100}

o = LMass

}

will create a new matrix LMass which is a linear interpolation between gm1 and gm5.

i = stringList

The name of the input matrix or a list of names enclosed in parentheses.

Default: None.

o = string

The name given to the output matrix.

Default: Name of the input matrix if there is only one, fatal error otherwise.

parameter-defn { options }

parameter-defn is a parameter definition as detailed in section 5.1. The
options link the parameter to the input matrix as detailed below.

datatype = string

The data type to be given to the output matrix. Valid types are real and
complex.

Default: The output matrix usually has the same datatype as the input
matrix unless the parameterization requires casting the matrix to a different
datatype; for example applying a structural damping parameterization to
a (real) stiffness matrix requires the output matrix be complex.

10.15. PARAM 167

10.15

Plot Options

It is sometimes useful to plot elements of parameterized matrices to check the param-
eterization.

plot { options }

Create plot files of selected elements of the output matrix versus one or two
parameters. The active option specifies the parameter(s) to be varied and
their limits; other parameters may be set constant by listing them with with
a value on the right-hand-side. Declaring one active parameter means an
ESA-formatted plot file will be created; two active parameters results in a
Universal file which can be visualized using amvis. The data for each element
plotted is written to a separate file with a name like output[row,col].esa

where output is the name given to the output matrix, and row and col are
the row and column numbers. The options are:

active = stringList

a list of one or two parameters to be varied for plotting; one
active parameter produces an ESA-formatted plot file, two actives
produces a Universal file. For example

plot{ active=vtas, ... }

Default: all parameters the output matrix is a function of, except
parameters declared fixed.

parameter-defn

Parameters are declared fixed by including at least the parameter
name, an equals sign, and one or more values (multiple values are
enclosed in parentheses and separated by commas). Parameters
may also be given equations as detailed in §5.4 which make them
derived .

diag

plot all the diagonal elements

diag = intList

a list of diagonal elements, e.g.

168 CHAPTER 10. COMMANDS REFERENCE

10.15

plot{diag=(1 to 30 by 4)}

row = intList

a list of rows to plot; if the col option is also included, the elements
will also be limited to those columns.

col = intList

a list of columns to plot; if the row option is also included, the
elements will also be limited to those rows.

[i,j] = string

Plot the element in row i , column j . This option may be repeated
as many times as necessary; e.g.

plot{ [1,3], [3,1], [4,6] }

Parameterizing Matrix Elements

Individual elements of the output matrix may be given equations by specifying the row
and column numbers in square brackets on the left and the equation on the right side
of the equal sign:

[row,col] = string

the row and column number enclosed in square brackets on the left side of
the equal sign, and a parameter equation (as detailed in section 5.4) on the
right side.

For example

[27,25] = 3.2*lnvb*log10(alt)*sqrt(Mass[27,27])

sets the (27,25) term of the output matrix to an equation involving a user-defined
parameter (lnvb), standard parameter alt, and the (27,27) element of a matrix called
Mass.

10.15. PARAM 169

10.15

Branch Mode Frequencies

If the input matrix is a stiffness matrix associated with a structure in which some
generalized coordinates exhibit the branch-mode property (§6.3.1 and appendix H), it
can be parameterized by the frequencies of specified generalized coordinates by includ-
ing the bmfgc and mass options; a parameter definition may be associated with the
generalized coordinate by following it enclosed in curly braces:

bmfgc = int {parameter-defn}

A generalized-coordinate number There should be no coupling between this
generalized coordinate and others in the stiffness matrix. Following the co-
ordinate number may be a parameter-defn enclosed in curly braces. The
values of this parameter are used to set the diagonal element of the stiffness

matrix according to the single-dof formula ω =
√

Kii
M ii

mass = string

Name of the generalized mass matrix associated with the input generalized
stiffness matrix.

Default: the last specified mass matrix; fatal error if none

Structural Damping Parameterizations

If the input matrix is a generalized stiffness matrix it can be parameterized by applying
structural damping to one or more generalized coordinates; structural damping param-
eterization uses a syntax similar to branch mode frequency parameterization: the word
sdgc on the left-hand side of the equals sign, a list of one or more generalized-coordinate
numbers follow by a parameter definition (5.1) enclosed in curly braces.

sdgc = intList {parameter-defn}

A list (§10.1) of one or more generalized-coordinate numbers; the structural
damping is applied by replacing each element in these rows with the real
part of the element times the complex number (1+idk) where dk is the value
of the parameter. parameter-defn is a parameter definition as detailed in
section 5.1. This multiplication takes place prior to multiplying the entire
matrix by (1+ id) where d is the value of the structural damping parameter
sdamp (§5.5). See the caution regarding the use of both in §6.3.2.

170 CHAPTER 10. COMMANDS REFERENCE

10.15

Interpolation

If there is more than one input matrix, and the beta option is not included, the matrices
are fitted with a tensor product spline (see [28] chapter 4) which is a spline interpo-
lation with any number of independent variables. For example, unsteady aerodynamic
matrices which are functions of reduced frequency and Mach number are interpolated
with respect to both reduced frequency and Mach number (a surface). The degree of
the splines can be specified, and defaults to 3: cubic splines.

If in the list of input matrices some of the names appear twice, and there is only one in-
dependent parameter, a separate spline is fitted on either side of the two matrices. This
allows for matrices which have slope discontinuities with respect to the interpolation
parameter.

Parameters are associated with an input matrix in two ways: as attributes which
are part of the name (e.g. "genforce,rfi=0.1,mach=0.4"), or as explicit parameter
definitions enclosed in curly braces following the name, for example

i = gm1{fuel=0}

degree = int

The spline degree for the interpolation.

Default: 3 (cubic spline)

degree { options }

The spline degree for the interpolation may be specified for each parameter
by giving the degree for any of the interpolation parameters; for example to
interpolate a set of aero matrices with respect to rfi and mach with linear
interpolation on mach and cubic interpolation on rfi:

param { ..., degree{mach=1}, ... }

because rfi is not included its degree is 3 (the default).

Approximation

Approximation of a set of unsteady aerodynamic matrices by a rational-function ap-
proximation (appendix E) is triggered by including the beta option. The input matrices
must be functions of rfi (§5.5.1)

10.15. PARAM 171

10.15

beta = floatList

Values of β used in the rational-function approximation.

ABCD Control-Laws

The abcd option specifies a file containing a description of a control-law in the ABCD
form (see appendix C) produced by Matlab/Simulink [23]. The format of this file is
detailed in appendix D.

abcd = string {options}

path of the file containing the ABCD matrices followed by options. Output
from the control-law is determined by one (and only one) of the options ke
or e. It is important to be aware of the difference between the two. If the
stiffness matrix K has been parameterized in a way that the product KE
is not constant, then it is necessary to use the e option, so that the product
is formed using the modified stiffness matrix.

psi = string

name of the control-law input matrix. The number of rows in
this matrix must match the number of control-law inputs in the
ABCD file. The extract command (§10.9) can be used to create
this matrix; see Examples.

Default: psi

ke = string

name of the control-law output matrix. The number of columns
in this matrix must match the number of control-law outputs in
the ABCD file. This option is an alternative to the e option. It
is important to be aware of the distinction between this option
and the e option as discussed above. The extract, merge, and
alge commands (§10.9, 10.13 and 10.5) can be used to create this
matrix; see Examples.

Default: fatal error unless the e option is included

e = string

172 CHAPTER 10. COMMANDS REFERENCE

10.15

name of a matrix (E in appendix C) which relates the control-law
output to the generalized coordinates. The number of columns in
this matrix must match the number of control-law outputs in the
ABCD file. It is important to be aware of the distinction between
this option and the ke option as discussed above.

Default: fatal error unless the ke option is included

igain { parameter-defn, ... }

list of parameter definitions for the control-law input gains; either
one definition for all inputs or one for each input (row of the psi
matrix).

Default: igain=1

iphase { parameter-defn, ... }

list of parameter definitions for the control-law input phases; ei-
ther one definition for all inputs or one for each input (row of the
psi matrix).

Default: iphase=0

ogain { parameter-defn, ... }

list of parameter definitions for the control-law output gains; ei-
ther one definition for all outputs or one for each output (column
of the KE matrix).

Default: ogain=1

ophase { parameter-defn, ... }

list of parameter definitions for the control-law output phases;
either one definition for all outputs or one for each output (column
of the KE matrix).

Default: ophase=0

10.15. PARAM 173

10.15

User-Subroutine Parameterization Options

User-subroutine parameterization can be used to modify an existing matrix or to create
a new matrix. If one (and only one) input matrix is specified it will be passed to the
subroutine whenever the matrix is to be evaluated; otherwise a matrix of zeros will be
passed to the subroutine. Section 6.4 has guidelines for writing a subroutine.

code = string

Name of a file (or a block in the Flaps submit file) containing a Fortran
subroutine which modifies the input matrix. The datatype of the output
matrix is determined by the declaration of the matrix in the subroutine; for
example the code

subroutine usrtf (n, k)

real k(n,n)

...

will result in a real output matrix, and

subroutine usrtf (n, t)

integer n

complex t(n,n)

...

will produce a complex output matrix.

The dimensions of the output matrix are determined by the dimensions of the input
matrix and optionally extra rows and columns specified with the extra option, or if
there is no input matrix by the size option.

size = stringList

The dimensions of the output matrix; the list can of one or two strings:
the first specifies the row dimension and the second the column dimension.
Specifying only one string yields a square matrix. The strings can be either
integers or the name of an existing matrix. If a matrix name is specified the
corresponding row or column dimension will be taken from the matrix. For
example, if Sensor is an existing (3,5) matrix and AEKHH is an existing (5,5)
matrix

size = (3,5)

size = (Sensor,5)

size = (3, Sensor)

size = (Sensor, AEKHH)

all produce the same size matrix, and

174 CHAPTER 10. COMMANDS REFERENCE

10.15

size = (5,5)

size = 5

size = AEKHH

all produce a (5,5) matrix.

extra = int

The number of extra degrees of freedom to include in the output matrix.
Extra rows and columns are appended to the bottom and right of existing
matrices.

10.15.4 Examples

The following Flaps command examples are taken from sample problem stab1. The
first command creates a interpolation matrix named ’Mass’ that has the parameter
’cg’. Four generalized mass matricies are used which have cg’s between -4.0 and 24.0

param {

GM1{cg(Center Of Gravity)=-4.0}

GM2{cg=8.0}

GM3{cg=16.0}

GM4{cg=24.0}

o=Mass

}

The next example creates a parameterized stiffness matrix for a user specified general-
ized coordinate. The parameter name is ’freq2’ and the minimum and maximum values
for the parameter are 0.0 and 10.0. The (2,2) diagonal element of mass matrix GM2 is
used to compute the frequencies for the generalized coordinate.

param {

i = GSTIF001

o = Stif

mass=GM2

gc=2{freq2(Second Mode Freq)[0:10]}

}

The output matricies from these parameterizations can be used in the stab command
for parameter variation analyses.

User-written subroutine parameterizations are in demo files alge3.ax, fresp2.ax, stab6.ax,
and stab12.ax. This type of parameterization is most often used to model control-laws,
as in this example from stab12.ax:

param {

code=usrtf

size="stif,set=F002"

extra=18

10.15. PARAM 175

10.15

o=Cont {

gain(Control-Law Gain)[0:10] = 1

phase(Control-Law Phase)[-60:60]<RPD> = 20

}

}

Other uses are possible as this example from stab2.ax shows:

param { o=psip, size=(2,adiru), code=makepsi, datatype=real }

alge { psi = psip{ } }

which creates a matrix called psip with 2 rows and the same number of columns as
a matrix called adiru. The Fortran subroutine is in a data block named makepsi and
the output matrix is forced to be real with the datatype option. The alge command
creates a new matrix, psi, which is psip evaluated; because psip is not a function of
any parameters, the empty curly braces serve to force an evaluation of psip, creating
a matrix which is not parameterized.

ABCD control-laws are demonstrated in stab2.ax, stab7.ax, fresp2.ax and fresp4.ax.
The difference between using the ke and e options is illustrated in stab2.ax:

extract { ke = gstif001{col=(1,2,3)} }

extract { E = I{col=(1,2,3), size=gstif001} }

Create the control-law matrix with psi and ke

and ABCD data in spline.dat...

param {

abcd = spline.dat {

psi=psi

ke=ke

igain{igain(Input Gain)[0:5] = 1.0}

}

o=abcd

plot{ [1,1] }

}

...and another using the E matrix instead of ke

param {

abcd = spline.dat {

psi=psi

e = E

igain{igain(Input Gain)[0:5] = 1.0}

}

o=abcdE

plot{ [1,1] }

}

176 CHAPTER 10. COMMANDS REFERENCE

10.16

10.16 print

Prints Flaps matrices to stdout, to a specified output file, or displays the matrix
graphically.

10.16.1 Syntax

print { options }

10.16.2 Options

See §10.1 for the general syntax of options.

matrix id { options }

A list of one or more matrix ids to be printed (§2.3 for information about
matrix ids). A matrix id may be either a simple string if the matrix has no
attributes or a string of the form

"name,attribute1=value1,attribute2=value2,..."

(in quotes to keep the commas from being interpreted as option-separators)
if the matrix has attributes. The optional trailing ellipsis (three dots) means
any additional attributes. The matrix id may be followed by parameter
values (in curly braces) at which the matrix is to be evaluated if it has been
parameterized (§10.15); for example

print { Mass{center=50, main=10} }

will print a matrix named Mass evaluated at two parameters (center and
main).

attribute = string

a matrix attribute and value to be used in identifying matrices to print. If
no matrix names are also included (see above option) all matrices with this
attribute will be printed. For example the command

print { set=10 }

will print all matrices with set=10: typically modes,set=10, nodes,set=10,
and freedoms,set=10.

10.16. PRINT 177

10.16

o = string

the name of a file where the output from this command is to be written.

Default: the standard output or a graphical window depending on the size
of the matrix

matview

display the matrix graphically as in figure 10.1. (only for numeric arrays)

parameters

display the current set of parameters used by all Flaps programs.

10.16.3 Output

The rules for where and how a matrix is displayed are arcane; they depend on if the
matrix is numeric (real or complex) or some other data array (nodes, freedoms, etc),
the size of the matrix, and the name of the output file.

Numeric Arrays

Real and complex matrices are printed on the output file (the file specified with the
o option if included, the stdout file otherwise). The format it is printed with depends
on the number of columns in the matrix, the value of the pagewidth (§10.14), and the
name of the output file.

If the output file name does not end in .mm the matrix is printed in human-readable
form provided an entire row will fit within the current pagewidth. The default value
of pagewidth is 130 characters, so for example a real (100,5) array would get printed
in human-readable form but a (100,20) would be printed in Matrix Market (§1.1.1)
format for viewing in MatView. If the pagewidth were increased to say, 500 it would
be printed in human-readable format.

If an output file name is specified which ends in .mm the matrix will be printed to the
file in Matrix Market (§1.1.1) format regardless of its size.

Non-Numeric Arrays

Non-numeric arrays such as nodal data (e.g. nodes,set=1 or freedoms,set=1) or the
list of defined parameters (see the parameters option above) are always printed on the
specified output file in a human-readable format.

178 CHAPTER 10. COMMANDS REFERENCE

10.16

Graphical Display

If the matview option is included the matrix is displayed graphically (see figure 10.1).
Alternatively if the output file ends in .mm the matrix will be written in Matrix Market
format and it can be visualized from the command line using the matview option to
the apex command (§10.6).

Clicking on an element of the matrix with the left mouse button displays the value of
the element. Middle-clicking and dragging the mouse selects a region to zoom-in on,
and right-clicking restores the unzoomed view.

Matrix elements are colored to indicate values according to the color map above the
matrix. A slider above the color map distorts the color map; this is usually necessary
to make all the non-zero elements visible.

10.16.4 Examples

The following Flaps command from demo problem stab12.ax displays all the original
generalized-aero matrices followed by the interpolated matrix evaluated at a reduced-
frequency of 0.0025: in figure 10.1:

print { "gaf,..." }

print { pgaf{rfi=0.0025} }

The following Flaps command from demo problem merge1.ax prints the nodal data
and retained freedom data to stdout:

print{set=1, nodes, freedoms}

Output from this command is:

------------ Apex Command /home/eem2314/ax/r5/bin/print -----------------

print {

set=1, nodes, freedoms

--

print Version: Thu Jan 25 09:35:52 PST 2007

Run on Thu Jan 25 09:36:06 2007

nodes,set=1 14 by 1 Node {

1) 1/1 (0,0,0)

2) 2/3 (0,100,0)

3) 3/5 (0,200,0)

4) 4/7 (0,300,0)

5) 5/9 (0,400,0)

6) 6/11 (0,500,0)

7) 7/13 (0,600,0)

8) 101/2 (8,0,0)

9) 102/4 (8,100,0)

10) 103/6 (8,200,0)

11) 104/8 (8,300,0)

10.16. PRINT 179

10.16

Figure 10.1: Matrix Image

12) 105/10 (8,400,0)

13) 106/12 (8,500,0)

14) 107/14 (8,600,0)

}

freedoms,set=1 18 by 1 Freedom {

1) 2/tz internal node 3

2) 2/rx internal node 3

3) 2/ry internal node 3

4) 3/tz internal node 5

5) 3/rx internal node 5

6) 3/ry internal node 5

7) 4/tz internal node 7

8) 4/rx internal node 7

9) 4/ry internal node 7

10) 5/tz internal node 9

11) 5/rx internal node 9

12) 5/ry internal node 9

13) 6/tz internal node 11

14) 6/rx internal node 11

15) 6/ry internal node 11

16) 7/tz internal node 13

17) 7/rx internal node 13

18) 7/ry internal node 13

}

} ------------------ Apex command "print" finished: 0.01 sec

180 CHAPTER 10. COMMANDS REFERENCE

10.17

10.17 purge

Removes matrices from the Flaps database

10.17.1 Syntax

purge { matrix-name }

10.17.2 Options

See §10.1 for the general syntax of options.

The only option is one or more matrix ids (names plus attributes); matrix ids must be
in quotes (double or single) if they contain commas. Multiple matrix names must be
separated by commas or newlines. Matrix ids may contain a trailing ellipsis to indicate
any set of attributes. See section 2.3 for more information about matrix ids.

10.17.3 Examples

If the Flaps database contains

genforce,aerocase=3,aerocond=2,rfr=0,rfi=0.02,mach=0.8

genforce,aerocase=3,aerocond=2,rfr=0,rfi=0.04,mach=0.8

genforce,aerocase=4,aerocond=2,rfr=0,rfi=0.02,mach=0.8

genforce,aerocase=4,aerocond=2,rfr=0,rfi=0.04,mach=0.8

genforce,aerocase=5,aerocond=2,rfr=0,rfi=0.02,mach=0.8

genforce,aerocase=5,aerocond=2,rfr=0,rfi=0.04,mach=0.8

genforce,aerocase=6,aerocond=2,rfr=0,rfi=0.02,mach=0.8

genforce,aerocase=6,aerocond=2,rfr=0,rfi=0.04,mach=0.8

genforce,aerocase=7,aerocond=2,rfr=0,rfi=0.02,mach=0.8

genforce,aerocase=7,aerocond=2,rfr=0,rfi=0.04,mach=0.8

the command

purge {"genforce,..."}

will purge all Flaps matrices. The command

purge {"genforce,rfi=0.02..."}

will leave

genforce,aerocase=3,aerocond=2,rfr=0,rfi=0.04,mach=0.8

genforce,aerocase=4,aerocond=2,rfr=0,rfi=0.04,mach=0.8

genforce,aerocase=5,aerocond=2,rfr=0,rfi=0.04,mach=0.8

genforce,aerocase=6,aerocond=2,rfr=0,rfi=0.04,mach=0.8

genforce,aerocase=7,aerocond=2,rfr=0,rfi=0.04,mach=0.8

10.17. PURGE 181

10.17

in the database, as will the command

purge {rfi=0.02}

10.17.4 See Also

Matrix ids in section 2.3

182 CHAPTER 10. COMMANDS REFERENCE

10.18

10.18 rename

Rename an Flaps matrix or matrices; more generally, changes all or part of an Flaps
matrix id (§2.3). This command allows you to change the names of matrices, the names
of attributes of matrices, or the values of attributes.

10.18.1 Syntax

rename { old to new }

10.18.2 Options

See §10.1 for the general syntax of options.

old

All or part of an existing matrix id that is to be replaced.

new

Replacement for all or part of the existing matrix id.

old and new may be the name, one or more attributes, or both. For example, to replace
only the name of each matrix in a collection of unsteady aero matrices

rename { AEQHH to gaf }

will change a typical matrix id like AEQHH,rfi=0.01,rfr=0,mach=0.8 to gaf,rfi=0.01,rfr=0,mach=0.8
and likewise for all matrices with the name AEQHH.

Attributes can be renamed in the same way; for example

rename { rfi to kval }

will change the name of the attribute rfi to kval for every matrix with a matrix id con-
taining the rfi attribute; the previous example would become AEQHH,kval=0.01,rfr=0,mach=0.8.
If the value of an attribute is not specified, the existing value is used; if it is specified
only matrices with that attribute/value combination will be renamed. Continuing with
the previous example the command

rename { rfi=1e-2 to kval=0.22 }

10.18. RENAME 183

10.18

will change any matrices with the attribute rfi=1e-2; the previous matrix becomes AE-
QHH,kval=0.22,rfr=0,mach=0.8. Note that numerical values are compared as numbers,
not strings, so rfi=1e-2 is equivalent to rfi=0.01 or rfi=0.010000.

Attributes can also be removed from matrix ids by leaving them out of the new string.
For example

rename { AEQHH,mach=0.8,rfr=0 to gf }

will rename all AEQHH matrices with mach=0.8, and the previous example becomes
gf,rfi=0.01.

184 CHAPTER 10. COMMANDS REFERENCE

10.19

10.19 restore

Restores all Flaps matrices previously saved using the save command.

10.19.1 Syntax

restore { options }

10.19.2 Options

See §10.1 for the general syntax of options.

path

file name, path or network path of a savefile previously created with the
save command which contains the matrices to be restored. If the savefile is
on a remote host the path is specified as with the rcp command, for example

restore { elgar:/acct/eem2314/ax/r5/demo/stab1.sf }

Default: savefile

10.19.3 Examples

the command

restore {$HOME/Apex/savefile}

restores all Flaps matrices in subdirectory Apex/savefile below the HOME directory.

10.19.4 See Also

The save command in section 10.20

10.19. RESTORE 185

10.20

10.20 save

Writes Flaps matrices to a savefile which is portable in the sense that it may be
transferred to any other platform and read with the restore command.

10.20.1 Syntax

save { options }

10.20.2 Options

See §10.1 for the general syntax of options.

o = string

file name or path where the matrices are to be saved.

Default: savefile

matrix-id

The name of a matrix to be saved; some or all attributes may be replaced
with an ellipsis. An attribute/value pair may be used to save all matrices
whose name contains this attribute/value (see Examples). This option may
be repeated to list all the matrices to be saved.

Default: all matrices

10.20.3 Examples

If the Flaps database contains

nodes,iset=1 26 by 1 Node

freedoms,iset=1 2 by 78 int

modes,iset=1 78 by 5 Real

freqs,iset=1 5 by 5 Real

subset,iset=1,id=on1 60 by 1 int

gm1 5 by 5 Real

gm2 5 by 5 Real

gm3 5 by 5 Real

gm4 5 by 5 Real

gmass001 5 by 5 Real

gstif001 5 by 5 Real

modes001 18 by 5 Real

186 CHAPTER 10. COMMANDS REFERENCE

10.20

freqs001 5 by 5 Real

nodes,set=1 14 by 1 Node

freedoms,set=1,stage=1 2 by 18 int

coordsys,set=1 3 by 1 CoordSys

subset,set=1,id=n1 6 by 1 int

subset,set=1,id=on2 6 by 1 int

gaf,rfi=0 5 by 5 Complex

gaf,rfi=0.001 5 by 5 Complex

gaf,rfi=0.002 5 by 5 Complex

gaf,rfi=0.005 5 by 5 Complex

gaf,rfi=0.01 5 by 5 Complex

genforce,aerocase=1,aerocond=2,rfr=-0.01,rfi=0.001,mach=0 5 by 5 Complex

genforce,aerocase=1,aerocond=2,rfr=0,rfi=0.001,mach=0 5 by 5 Complex

genforce,aerocase=1,aerocond=2,rfr=0.01,rfi=0.001,mach=0 5 by 5 Complex

genforce,aerocase=1,aerocond=2,rfr=-0.01,rfi=0.002,mach=0 5 by 5 Complex

genforce,aerocase=1,aerocond=2,rfr=0,rfi=0.002,mach=0 5 by 5 Complex

genforce,aerocase=1,aerocond=2,rfr=0.01,rfi=0.002,mach=0 5 by 5 Complex

genforce,aerocase=1,aerocond=2,rfr=-0.01,rfi=0.005,mach=0 5 by 5 Complex

genforce,aerocase=1,aerocond=2,rfr=0,rfi=0.005,mach=0 5 by 5 Complex

genforce,aerocase=1,aerocond=2,rfr=0.01,rfi=0.005,mach=0 5 by 5 Complex

genforce,aerocase=2,aerocond=2,rfr=-0.01,rfi=0.001,mach=0.51 5 by 5 Complex

genforce,aerocase=2,aerocond=2,rfr=0,rfi=0.001,mach=0.51 5 by 5 Complex

genforce,aerocase=2,aerocond=2,rfr=0.01,rfi=0.001,mach=0.51 5 by 5 Complex

genforce,aerocase=2,aerocond=2,rfr=-0.01,rfi=0.002,mach=0.51 5 by 5 Complex

genforce,aerocase=2,aerocond=2,rfr=0,rfi=0.002,mach=0.51 5 by 5 Complex

genforce,aerocase=2,aerocond=2,rfr=0.01,rfi=0.002,mach=0.51 5 by 5 Complex

genforce,aerocase=2,aerocond=2,rfr=-0.01,rfi=0.005,mach=0.51 5 by 5 Complex

genforce,aerocase=2,aerocond=2,rfr=0,rfi=0.005,mach=0.51 5 by 5 Complex

genforce,aerocase=2,aerocond=2,rfr=0.01,rfi=0.005,mach=0.51 5 by 5 Complex

the command

save {o=$HOME/Apex/savefile}

saves all Apex matrices in subdirectory Apex/savefile below the HOME directory. The
command

save { rfi=0.002 }

saves the following Flaps matrices on a file called savefile:

gaf,rfi=0.002 5 by 5 Complex

genforce,aerocase=1,aerocond=2,rfr=-0.01,rfi=0.002,mach=0 5 by 5 Complex

genforce,aerocase=1,aerocond=2,rfr=0,rfi=0.002,mach=0 5 by 5 Complex

genforce,aerocase=1,aerocond=2,rfr=0.01,rfi=0.002,mach=0 5 by 5 Complex

genforce,aerocase=2,aerocond=2,rfr=-0.01,rfi=0.002,mach=0.51 5 by 5 Complex

genforce,aerocase=2,aerocond=2,rfr=0,rfi=0.002,mach=0.51 5 by 5 Complex

genforce,aerocase=2,aerocond=2,rfr=0.01,rfi=0.002,mach=0.51 5 by 5 Complex

and the command

save { "freedoms,..." }

will save the following on savefile:

10.20. SAVE 187

10.20

freedoms,iset=1 2 by 78 int

freedoms,set=1,stage=1 2 by 18 int

Results from a previous stab command can be saved using the id option:

save {id=pk}

saves all results from the stab run which had id=pk. If you want to save only the targets,
add to the id:

save { "target,id=pk" }

10.20.4 See Also

The restore command in section 10.19

188 CHAPTER 10. COMMANDS REFERENCE

10.21

10.21 vis

A system for viewing results from various Flaps commands and optionally viewing
animated plots of aeroelastic modes selected interactively from points on the 2-D plots.
Also useful for plotting data in ESA-formatted files [15] either in an Flaps control
program or from the command line.

10.21.1 Syntax

vis { options }

10.21.2 Options

See §10.1 for the general syntax of options.

General Options

The source of the data to be plotted is specified using either the id option, or the esa
option, or both. Either option can take multiple right-hand-sides.

id = stringList

Analysis id(s) from a previous execution of stab, nls, fresp, or tresp.

esa = stringList

ESA-formatted [34] plot file(s)

x = stringList

the name of a parameter (chap. 5) to be used as the independent-variable
in the 2-D plot. If the word log is included in the list a logarithmic scale is
used.

Default: fatal error

y = stringList

10.21. VIS 189

10.21

the name(s) of parameter(s) (chap. 5) to be used as the dependent-variable
in the 2-D plot. If the word log is included in the list a logarithmic scale is
used.

Default: fatal error

xmin = float

Minimum x-axis value. If this option is included xmax must also be included.

Default: minimum value in the x parameter data

xmax = float

Maximum x-axis value. If this option is included xmin must also be included.

Default: maximum value in the x parameter data

ymin = float

Minimum y-axis value. If this option is included ymax must also be included.

Default: minimum value in the y parameter data

ymax = float

Maximum y-axis value. If this option is included ymin must also be included.

Default: maximum value in the y parameter data

190 CHAPTER 10. COMMANDS REFERENCE

10.21

Animated Mode Visualization

If you want to view animated modes it is necessary to specify the source of the modal
data associated with the generalized-coordinates used in the analysis given by the id
option, which is also required. Modal data includes a modes matrix, a nodes matrix, a
matrix of freedoms, and possibly a matrix of local coordinate systems. When a point is
picked with a right-click the closest solution point is found, the generalized-coordinates
at that point are multiplied by the modes matrix, then the resulting vector along with
the nodes, freedoms and coordinate systems are either passed to the built-in visualizer
or written to a Universal file ([25]) for subsequent visualization in amvis, ufViewer or
X-Modal.

Alternatively, animated modes can be visualized in PATRAN by specifying an output
file with a .op4 extension (the set, vset or iset options are not necessary). In this
case a right-click creates the output file containing only the generalized-coordinates
in NASTRAN OUTPUT4 format [37] which can then be imported into PATRAN for
visualization.

set = string

nodal data set which identifies the modes matrix to be used to transform
generalized-coordinates to physical dof for visualizing animated modes. If
the data is from ATLAS or NASTRAN, this is an integer; if the data is
from Elfini, this is the monset name.

subset = string

the name of a matrix consisting of a set of integer node numbers to be
used in creating animated modes; only these nodes will be included in the
visualization or plot file.

Default: all nodes are included

iset = int

Interpolation set number which was used in the ATLAS INTERP statements
used to interpolate the vibration modes to the visualization grid.

vset = int

ATLAS vibration set number which was used in producing the data being
visualized.

10.21. VIS 191

10.21

gc = string

The name of a matrix containing generalized-coordinates corresponding to
the X-Y data being plotted. This option is necessary only if the data is from
an ESA-formatted file, e.g. when viewing data from a response solution. It
is not necessary when the fmeth or id options are included. If the X-Y data
is from a response solution it is necessary to create a matrix of generalized
coordinates in the fresp execution by including the option otid=gc where gc
is any name you choose; then include in the vis options gc=gc

Default: generalized-coordinates are gotten from the solutions associated
with the id option.

conn = string

Either the name of a file containing connectivity data, or the name of an
ATLAS ordered nodal subset (e.g. ON90) of the visualization grid nodes.
The visualization grid will be produced by drawing lines between consecu-
tive nodes of this subset; a node number of zero means ”pen-lift”. If it is
the name of a file, the name must be a full path name if the file is not on
the current working directory or if the file is not a submit-file block.

o = stringList

name of a file or files where animated-mode data is to be written. The format
it is written in is determined by the file extension: .op4 is OUTPUT4 format
[37], .uf is Universal-file format [25], and .nf is Elfini neutral-file format.

10.21.3 Output

This command will display the requested data in a new window. Once the window is
open and the data displayed the mouse buttons can be used to zoom in on portions of
the data, display the values of other parameters, or to visualize aeroelastic modes:

left press the left button and sweep a region of the plot. When the button is
released a new window will be created containing the outlined portion
of the plot.

middle pressing the middle button will display a list of all parameter values
at the point closest to the cursor; in addition, a file named .vis will be
created which lists all parameter values. This file will be overwritten
each time the middle mouse button is clicked.

192 CHAPTER 10. COMMANDS REFERENCE

10.21

right press the right button near the data point of interest. The closest data
point will be highlighted and a new window will appear with the ani-
mated mode corresponding to that data point.

10.21.4 Discussion

The standard set of parameters which are part of all solutions in stab, fresp, or tresp
are listed in table 5.1.

In addition, user-defined parameters (chap 5) may be plotted by referring to the pa-
rameter name.

Before this command can be used to visualize animated modes the user is responsible
for exporting certain ATLAS, Elfini, or NASTRAN matrices

nodal data describing the visualization geometry. The SET number may be any
valid ATLAS nodal data set number but the user is responsible for
ensuring the SET keyword in the EXEC INTERP statements is the
same as this nodal data set.

nodal subset an ordered nodal subset of the visualization grid nodes must be in-
cluded in the ATLAS input data. The name of this subset is then
passed to vis using the grid keyword.

interp EXEC INTERP statements must be included in the ATLAS control
program to interpolate from the vibration modes to the visualization
grid.

10.21.5 Command Line Usage

Both vis and amvis can be used on the command line to visualize data in ESA-formatted
or Universal files, respectively. To avoid having to know the location of these commands
it is convenient to run them from the apex script, e.g.

$ apex vis ...

$ apex amvis ...

The options to vis are similar to the control-program version; the main difference is
that the syntax is like other Unix commands. For example, to plot growth against veas
from a file called pk.esa:

$ apex vis -x veas -y growth pk.esa

Not all options are available in the command-line version; animated-mode visualization
cannot be driven from the command-line version because the geometry data is not in
ESA files, so set, subset, iset, vset, gc, o, and conn are ignored.

10.21. VIS 193

10.21

Multiple file may be specified; the number of files is only limited by computer memory
and the number of arguments allowed on a command-line by the operating system
(hundreds).

Here is a synopsis of the command-line version of vis:

apex vis -x xpar -y ypar [options] file(s)

-x xpar xpar is the name of the x-variable

-y list the name(s) of the y-variable(s). Multiple runs can be specified

using an Apex to-by list enclosed in quotes. For example

-y ’(x1 to x12 by 2)’

-xmin n n is the minimum x-value

-xmax n n is the maximum x-value

-ymin n n is the minimum y-value

-ymax n n is the maximum y-value

-color give all curves from a file the same color. Useful

when plotting multiple files.

-x log plot the x-axis on a log scale

-y log plot the y-axis on a log scale

-r list runid(s) to plot. Multiple runs can be specified

using an Apex to-by list enclosed in quotes. For example

-r ’(mode_3 to mode_12 by 2)’

There is only one option to amvis: the name (or more precisely the path) of the Universal
file. If the name of the file ends in .uf it is not necessary to include the extension, so

apex amvis myfile.uf

and

apex amvis myfile

are equivalent.

10.21.6 Examples

The command

vis { id=pk, x=vtas, y=growth, set=1 }

in an Flaps control program will produce a plot from a previous stab run; clicking on
the curves will produce animated modes base on set 1 data from BAP or ATLAS.

To plot on a log scale, include the word log in the list of x or y parameters:

vis { id=frf, x=(freq,log), y=(pilot,log) }

194 CHAPTER 10. COMMANDS REFERENCE

10.21

10.21.7 See Also

• Flaps command stab (10.10)

• Flaps command fresp (??)

• Flaps command tresp (??)

10.21. VIS 195

10.21

196 CHAPTER 10. COMMANDS REFERENCE

Part III

Appendices

197

Appendix A

Creating Flaps Savefiles

This appendix contains instructions for creating Flaps savefiles from Elfini or AT-
LAS; Flaps savefiles can be created from BAP databases with the import option to
the apex command (§10.12.3) or BAP data can be imported directly into an Flaps
control program using the import command (§10.12). Savefiles created using any of
these techniques are portable in the sense that they can be transferred to any platform
and used in Flaps.

Binary files created on one type of computer are generally not usable on different types
of computer. Computers are classified according to their architecture or the type of
CPU. For example, an IBM RS/6000 uses a PowerPC CPU, and the Linux clusters use
AMD CPUs. Both these architectures use a format for storing floating-point numbers
which adhere to the IEEE standard [6], but binary files created on one are not usable
on the other because the bytes which make up a floating-point number are ordered
differently on these two architectures [48].

The External Data Representation Standard [46] [49] (XDR) was created to allow pro-
grams to transmit data across the network between different platforms. This standard
consists of rules for encoding various types of data (floating point, double precision,
integer, etc) and for decoding data. Flaps uses XDR for transmitting data between
programs, for storing data in its database, and in its savefiles. This is why Flaps save-
files are portable across architectures and why Flaps commands running on different
architectures can communicate with each other. Another consequence of this design is
that Flaps databases consist of a directory containing all the data, each array in a
separate file, and each of these files is an Flaps savefile containing only one array.

A.1 Elfini

An Flaps savefile can be created from an existing Elfini database with the extract
option to the apex command. Input to this command is from stdin, which in a script is
conveniently provided using a “here document” (see chapter 2). Input to this command
is a set of options similar to other Flaps commands. The options are

199

A.1

f30 = string path of the Elfini database

model = string Elfini model name

monset = string monset to include in the savefile; node and freedom information
are also included.

stif include the generalized stiffness matrix associated with each specified
monset

mass = string include the generalized mass matrix associated with this mass case

A.1.1 Example

apex -v alpha extract <<@

f30 = /sd/catel/elf_file

model=B002

stif

monset=(AS01,CLAW)

BASIC OEW AND PAYLOAD MASS CASES

mass=(PLO1 # 777 FREIGHTER WITH NOMINAL BODY DESIGN OEW AND NO PAYLOAD

PLO3 # 777 FREIGHTER LIGHT-WEIGHT BODY OEW AND NO PAYLOAD

PLA1 # A1 End Loaded Forward C.G. Payload

PLB1 # B1 Center Loaded Forward C.G. Payload

PLC1 # C1 End Loaded Aft C.G. Payload

PLP1 # P1 Fatigue Payload

CENTER FUEL CASES

C020 # 20% CENTER TANK FUEL (7.1 lb/gal DENSITY)

C040 # 40% CENTER TANK FUEL (7.1 lb/gal DENSITY)

C060 # 60% CENTER TANK FUEL (7.1 lb/gal DENSITY)

C080 # 80% CENTER TANK FUEL (7.1 lb/gal DENSITY)

C100 #100% CENTER TANK FUEL (7.1 lb/gal DENSITY)

MAIN (WING) FUEL CASES

M005 # 5% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M010 # 10% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M015 # 15% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M020 # 20% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M025 # 25% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M030 # 30% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M035 # 35% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M040 # 40% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M045 # 45% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M050 # 50% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M055 # 55% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M060 # 60% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M065 # 65% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M070 # 70% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M075 # 75% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M080 # 80% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M085 # 85% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M090 # 90% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M095 # 95% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

M100 #100% MAIN (WING) TANK FUEL (7.1 lb/gal DENSITY)

CONTROL SURFACE PAINT & REPAIR CASES

200 APPENDIX A. CREATING FLAPS SAVEFILES

A.2

PXLA # LEFT AILERON REPAINT (OSML)

PXRA # RIGHT AILERON REPAINT (OSML)

LAAW # LEFT AILERON ADJUST WEIGHTS

RAAW # RIGHT AILERON ADJUST WEIGHTS

LATW # LEFT AILERON TIP REPAIR POINT MASS AT TE

RATW # RIGHT AILERON TIP REPAIR POINT MASS AT TE

LARW # LEFT AILERON ROOT REPAIR POINT MASS AT TE

RARW # RIGHT AILERON ROOT REPAIR POINT MASS AT TE

PALA # LEFT AILERON DISTR. PAINT AND REPAIR + ADJUST WEIGHTS (OSML)

PARA # RIGHT AILERON DISTR. PAINT AND REPAIR + ADJUST WEIGHTS (OSML)

PALE # LEFT ELEVATOR DISTR. PAINT AND REPAIR (OSML)

PARE # RIGHT ELEVATOR DISTR. PAINT AND REPAIR (OSML)

PTLE # LEFT ELEVATOR DISTR. PAINT AND REPAIR + TIP REPAIR (OSML)

PTRE # RIGHT ELEVATOR DISTR. PAINT AND REPAIR + TIP REPAIR (OSML)

PARX # RUDDER DISTRIBUTED PAINT AND REPAIR (OSML)

PARY # RUDDER DISTRIBUTED PAINT AND REPAIR + TIP REPAIR (OSML)

PART # TAB DISTRIBUTED PAINT AND REPAIR (OSML)

F10L # 10% LEFT FLAPERON MASS

F10R # 10% RIGHT FLAPERON MASS

777 FREIGHTER WITH LIGHT-WEIGHT BODY OEW AND 80% MAIN TANK FUEL

--

DICK

DUMMY CASE WITH MASS ON FRONTIER NODES

FDUM

ICE CASES

WICE # WING ICE

HICE # HORIZ. STAB ICE

FICE # FIN ICE

)

@

A.2 ATLAS

To create a savefile from ATLAS data include an ATLAS CALL SAVE statement in an
ATLAS control program. In order to use this command it is necessary to use a special
version of the ATLAS script on /acct/eem2314/bin. Demo problem stab123.q is an
ATLAS job that creates an Flaps savefile from a simple ATLAS beam model.

The following documentation is from the source file for the ATLAS SAVE subroutine;
the current version is kept in $AXROOT/src/lib/libatlas.

ROUTINE: SAVE

AUTHOR: Ed Meyer

DATE: March 2005

PURPOSE: To write one or more atlas matrices to a

A.2. ATLAS 201

A.2

Apex binary file which may be transferred

between computers.

USAGE: ATLAS CALL SAVE (PLIST)

The plist consists of the following order-

independent keywords. only the first four

characters need be included.

PARAMETERS: I N P U T

GAF=(A,B,C) - Aero matrix or interpolation coefficient

identifier. A is the name of an aerodynamic

module (e.g. AF1 or DUBLAT), B is the aero

case number, and C is the aero condition number.

If B and C are not included, A is assumed to be

the name of a set of ADDINT interpolation

coefficients. In this case only the original

gaf matrices are saved.

Default: no aero matrices are included

ISET=N - ATLAS interpolation set number. If this keyword

is included, the ISET modes, nodal data, and

freedom data will be included, which are

necessary for visualizing flutter modes.

Default: no interpolation data is included.

NAME - The name of an ATLAS user matrix.

If the matrix has attributes

the attributes/value pairs must

follow immediately after the name.

For example, to read the KRFV for

SET 3, STAGE 5, include

ATLAS CALL SAVE (..,KRFV,SET=3,STAGE=5,..)

O=file - The name of the file to receive data

Default: o=savefile

SET=N - ATLAS nodal data set number. If this keyword

is included, nodal data matrices will be

included, which are necessary for running

Apex dublat, or for visualizing flutter modes.

Default: no nodal data is included.

SS=N - Substructure number. As an alternative to

specifying SET/STAGE, if SS is included, nodal

data for this substructure will be included.

Default: SS=0

STAGE=N - BC stage number.

Default: STAGE=1 if SET keyword is included,

STAGE=0 otherwise.

VSET=N - Vibration set number. If vset is included,

GMASS, GSTIF, FREQS and MODES are saved.

Default: VSET matrices are not saved

O U T P U T

Output consists of a binary file with the name given by the

’O’ option. This file is "portable": it may be copied to other

platforms and imported into Apex.

202 APPENDIX A. CREATING FLAPS SAVEFILES

A.2

FILES: binary file with the name given by

the ’O’ plist keyword. This file is in XDR format

so it is portable across platforms.

SUBROUTINES: GETSET, GFCIN, NODAT, RDSPUM, CHECKP, GETIND (ALIB)

AVLUN, MATIND, UMINF (ALIB)

DOEXP (CLIB)

LANGUAGE: ATLAS CONTROL SUBROUTINE

EXAMPLE: The ATLAS control program statement

ATLAS CALL SAVE (VSET=10,FMAT,GMAT,

* O=JUNK,GAF=(DUBL,1,2))

will create a file named ’JUNK’ containing

GMASS010, GSTIF010, FREQS010, MODES010, user matrices

GMAT and FMAT, and generalized aero matrices from DUBLAT

CASE=1, COND=2. These aero matrices will have names like

GENFORCE,AEROCASE=1,AEROCOND=2,MACH=0,PVALR=0,PVALI=0.063

They are typically passed to the Apex param processor to create

interpolation coefficients for use in the stab flutter solver:

param { genforce, o=gaf }

A.2. ATLAS 203

A.2

204 APPENDIX A. CREATING FLAPS SAVEFILES

Appendix B

User-Written Subroutines

This appendix documents subroutines supplied by Flaps which are callable from user-
written Fortran subroutines.

B.1 Fortran Subroutines

B.1.1 fetch

Fetch a matrix from the Flaps data manager.

Syntax

character*8 dtype

integer nr, nc, offset, irr

real a(1)

call fetch (’name’, nr, nc, a, offset, dtype, iprint, irr)

if (irr .ne. 0) then

call feterr

...

endif

Input

name (character string) matrix name

a a real array dimensioned at least 1.

iprint debug option; if iprint is greater than zero the matrix will be printed.

Output

nr number of rows in the matrix

205

B.1

nc number of columns in the matrix

offset the index in array a of the start of the matrix. If the matrix is real the
(1,1) element is in a(offset), followed by the (2,1) element in a(offset+1)
(standard Fortran storage). If the matrix is complex the real part of the
(1,1) element is in a(offset) followed by the imaginary part of the (1,1)
element in a(offset+1), followed by the real part of the (2,1) element in
a(offset+2), and the imaginary part of the (2,1) element in a(offset+3),
etc.

dtype (character*1) datatype of the output matrix: ’R’ for real matrix, ’C’
for complex.

irr error flag; if irr is not zero the matrix could not be read.

Discussion

Because Fortran does not have dynamic memory allocation, and to avoid having to
pass a fixed-size array to fetch, all that is passed is the name of a real or complex array
of length one. Memory is allocated in fetch, which is written in C, then an offset relative
to the input array is returned, allowing the actual memory to be accessed using the
input array. For example, if you know the matrix is real, you can write

real a(1)

integer offset

...

call fetch (’sensor’,nr,nc,a,offset,dtype,iprint,irr)

then you can access the first element of the array with, for example

a11 = a(offset)

and the (i,j) element with, for example

ij = i + nr*(j-1)

aij = a(offset-1+ij)

where ij reflects the way memory is layed out in Fortran (by columns).

If you are uncertain of the datatype of the matrix you can force a real and a complex
array to have the same memory location with an equivalence statement as in

real ra(1)

complex ca(1)

equivalence (ra(1),ca(1))

call fetch (’sensor’, nr, nc, ra, offset, dtype, iprint, irr)

then you can access the first element of the array with, for example

206 APPENDIX B. USER-WRITTEN SUBROUTINES

B.1

if (dtype(1:1) .eq. ’r’) then

a11 = ra(offset)

else

a11 = ca(offset)

endif

Subroutine feterr can be called to print a message giving more details about why the
fetch was not successful. It takes no arguments and only prints (on stdout) a message
then returns.

B.1.2 parval

The current value in internal units of any user-defined (§5.6) or standard parameter
(§5.1) can be retrieved with the parval subroutine.

Syntax

real value

value = parval(’name’)

Example

complex s

s = cmplx(parval(’sigma’), parval(’freq’))

sets the complex characteristic exponent s to it’s current value.

B.1.3 getpar

gets the value (in external units) of a user-defined or standard parameter.

Syntax

real value

value = getpar(’name’)

Example

real value

value = getpar(’vtas’)

gets the current value of vtas in knots.

B.1. FORTRAN SUBROUTINES 207

B.1

B.1.4 setpar

sets the value (in external units) of a user-defined or standard parameter.

Synopsis

real value

call setpar(value, ’name’)

Example

real value

value = 400.0

call setpar(value, ’vtas’)

sets the value of vtas to 400 knots.

B.1.5 denom2, denom3, denom4

These functions are intended to be used to find poles of controls equations consisting
of rational polynomials in the characteristic exponent s. A rational polynomial is a
polynomial (the numerator) divided by another polynomial (the denominator). If s ap-
proaches a root of the denominator polynomial, the denominator approaches zero and
the rational polynomial approaches infinity (known as a pole of the rational polyno-
mial), leading to severe numerical problems. While the chances of an aeroelastic root
coming close to a denominator root are slim, it is not impossible as demo problem
stab12.ax shows. If the denominator polynomials are evaluated using one of these func-
tions an ESA-formatted plot file named poles.esa will be created containing the zeros
of each polynomial evaluated using these functions. If the aeroelastic modes are plotted
freq against sigma together with poles.esa, it becomes immediately apparent if one of
the poles is causing problems.

Syntax

complex denom2, denom3, denom4

complex s, t

real a1, a2, a3, a4

t = denom2(a1,a2,s)

t = denom3(a1,a2,a3,s)

t = denom4(a1,a2,a3,a4,s)

Input

a1, a2, a3, a4 (real) coefficients of the denominator polynomial

208 APPENDIX B. USER-WRITTEN SUBROUTINES

B.1

Example

complex s

s = cmplx(parval(’sigma’),parval(’freq’))

complex denom2, denom3, denom4

tf2 = 1/denom2(2.0, 3.0, s)

tf3 = 1/denom3(2.0, 3.0, 4.0, s)

tf4 = 1/denom4(2.0, 3.0, 4.0, 5.0, s)

is equivalent to

complex s

s = cmplx(parval(’sigma’),parval(’freq’))

tf2 = 1/(2.0*s + 3.0)

tf3 = 1/(2.0*s*s + 3.0*s + 4.0)

tf4 = 1/(2.0*s*s*s + 3.0*s*s + 4.0*s + 5.0)

B.1. FORTRAN SUBROUTINES 209

B.1

210 APPENDIX B. USER-WRITTEN SUBROUTINES

Appendix C

ABCD Approach to ASE
Analysis

C.1 Controls Equations

The traditional form for controls equations is the set of state-space equations

ẋ = Ax+Bu (C.1)

y = Cx+Du (C.2)

where x is an ns -vector of states, u is an ni -vector of inputs, y is an no -vector of
outputs, and the matrices have dimensions:

A : (ns, ns)

B : (ns, ni)

C : (no, ns)

D : (no, ni)

If there are input and output time delays the controls equations can be written

ẋ = Ax+BGu (C.3)

y = HCx+HDGu (C.4)

where

G =

. . .

gie
−sti

. . .

 (C.5)

211

C.3

and

H =

. . .

hje
−stj

. . .

 (C.6)

are diagonal matrices, gi and ti are the (complex) gain and time delay associated with
the ith input channel, and hj and tj are the (complex) gain and time delay associated
with the jth output channel.

In addition to input and output time delays there may be internal time delays which
are represented by exponentials multiplying terms of the A matrix; each term may be
multiplied by multiple time delays and each time delay may multiply multiple elements:

A(s) =
[
Aije

−stij
]

tij =

mij∑
l=1

tkl
(C.7)

Moreover, the A matrix may be a function of altitude or true airspeed so in general A
is written A(s, z) or A(s, Vt).

C.2 Structural Equations

The characteristic equations for a discrete ne degree of freedom linear structure includ-
ing unsteady aerodynamic terms are usually written as

[
s2M + sV +K − qQ

]
q = f (C.8)

where q is a (complex) ne -vector of generalized coordinates, s is the complex character-
istic exponent, M ,V ,K, and Q are the (ne, ne) generalized mass, damping, stiffness,
and unsteady aerodynamic matrices, respectively, q is the dynamic pressure, and f is
a set of external forces.

C.3 Combining Structural and Controls Equations

In order to combine the control-law equations with the structural equations it is first
necessary to relate the input (u) and output (y) of the controls equations to structural
degrees of freedom.

The control-law input u is related to the generalized-coordinates q by

u = SΨq (C.9)

212 APPENDIX C. ABCD APPROACH TO ASE ANALYSIS

C.3

where Ψ is an (ni, ne) transformation matrix, usually consisting of rows of the modes
matrix (the basis for the generalized coordinates), and S is an (ni, ni) diagonal matrix
whose elements are either 1, s or s2 depending on whether the corresponding element
of u is a displacement, velocity or acceleration.

Substituting C.9 into C.1

BSΨq + (A− sI)x = 0 (C.10)

If the control-law output y is related kinematically to the generalized coordinates by
an (ne, no) matrix E then the external force applied to the structure due to y is

f = KEy (C.11)

Substituting equations C.2 and C.9

f = KE (Cx+Du) = KE (Cx+DSΨq) (C.12)

Combining C.8, C.10 and C.12

[
s2M + sV +K − qQ−KEDSΨ −KEC

BSΨ A− sI

]{
q
x

}
= 0 (C.13)

or, if input and output gains and time-delays are included

[
s2M + sV +K − qQ−KEHDGSΨ −KEHC

BGSΨ A− sI

]{
q
x

}
= 0 (C.14)

When the input gain (G) is zero, the second row of equation C.14 reduces to the
eigenvalue problem

Ax− sI = 0 (C.15)

and x is zero except when s is an eigenvalue of A; everywhere else the equations reduce
to the open-loop structural equations, as they should.

A more useful form is

[
s2M̄ + sV̄ + K̄ − qQ̄+ T̄

]
q̄ = 0 (C.16)

where

M̄ =

[
M 0
0 0

]
, V̄ =

[
V 0
0 0

]
, K̄ =

[
K 0
0 0

]
, Q̄ =

[
Q 0
0 0

]
, q̄ =

{
q
x

}
(C.17)

C.3. COMBINING STRUCTURAL AND CONTROLS EQUATIONS 213

C.3

and

T̄ =

[
−KEHDGSΨ −KEHC

BGSΨ A− sI

]
(C.18)

Equation C.16 is the form of the flutter equations used in Apex.

214 APPENDIX C. ABCD APPROACH TO ASE ANALYSIS

Appendix D

ABCD File Format

ABCD files are usually produced in Matlab/SIMULINK by the flight controls group.
They are ASCII files so you can edit them and move them across platforms; if you edit
them on a Windows machine you may have to run a program called dos2unix prior to
using it in Flaps.

Comment lines start with a number sign (#) and are ignored. The format is free-field:
numbers do not need to appear in specific columns of a line.

In the following description of the file format a number of variables are used:

ns the number of rows and columns in the A matrix, the number of rows
in B and the number of columns in C

ni the number of inputs; the number of columns in B and D.

no the number of outputs; the number of rows in C and D.

nb the number of breakpoints in the A matrix interpolant.

nix the number of elements of A which are interpolated

nin the number of elements of A which are constant

ntd the number of internal time delays

The file consists of blocks of data:

1 line 6 integers: ns ni no nb nix nin

1 line (string) Name of the parameter used to interpolate the A matrix (e.g.
alt or vcas)

nb lines (1 float per line) values of the variable used to interpolate A at the
breakpoints

215

D.0

nix lines (2 integers per line) row and column indices of the elements of A which
are interpolated

nin lines (2 integers per line) row and column indices of the elements of A which
are constant (seems redundant).

ni lines (1 float per line) input time delays

no lines (1 float per line) output time delays

ni lines (1 float per line) exponents of s in the S matrix (see C.9).

ns*ns lines (1 float per line) elements of the A matrix by rows

ns*ni lines (1 float per line) elements of the (ns,ni) B matrix by rows

no*ns lines (1 float per line) elements of the (no,ns) C matrix by rows

no*ni lines (1 float per line) elements of the (no,ni) D matrix by rows

(nb-1)*4*nix lines (1 float per line) coefficients for interpolating the A matrix: a
(nb-1, 4, nix) array stored as

(((coef(i,j,k), j=1,4), i=1,nb-1), k=1,nix)

1 line (1 integer) number of internal time delays (ntd). Following this line
will be ntd repetitions of the next 3 blocks

1 line (1 integer) number of elements of A affected by this time delay (ntdi)

ntdi lines (2 integers per line) row and column indices of the elements of A which
are affected by this time delay.

ntd lines (1 float per line) time delays

216 APPENDIX D. ABCD FILE FORMAT

Appendix E

Rational-Function
Approximation

The param command can approximate generalized unsteady aerodynamic matrices us-
ing a rational-function approximation often referred to as s-plane aerodynamics, even
though the approximation is done with respect to complex reduced-frequency p, not
s. This approximation, due to Roger [42], uses a least-squares fit of a certain rational-
polynomial to a set of complex matrices. Given a set of m unsteady aero matrices at
various values of complex reduced frequency p

Qk = Q(pk) k = 1,m (E.1)

where

p = s
vt

is the complex reduced-frequency, s is the Laplace variable, and vt is the true
airspeed, approximate Q with an analytic function of p. Roger’s approximation to the
aero matrix has the form

Q(p) ≈ R0 + pR1 + p2R2 +
∑̀
i=1

p

p+ βi
Ri+2 (E.2)

where the matrices Ri are real, and the βi are real.

To determine the matrices Ri, write m equations, one for each aero matrix Qk:

1 p1 p21

p1
p1+β1

. . . p1
p1+β`

1 p2 p22
p2

p2+β1
. . . p2

p2+β`
. . .

1 pm p2m
pm

pm+β1
. . . pm

pm+β`

r0,11 r0,21 . . . r0,nn
r1,11 r1,21 . . . r1,nn

. . .

r`+3,11 r`+3,21 . . . r`+3,nn

217

E.0

=

q0,11 q0,21 . . . q0,nn
q1,11 q1,21 . . . q1,nn

. . .

qm,11 qm,21 . . . qm,nn

 (E.3)

where rk,ij is the (i, j) element of the real (n, n) matrix Rk and qk,ij is the (i, j) element
of the complex (n, n) matrix Qk.

Expanding the complex terms into real and imaginary,

1 <(p1) <(p21) <(p1
p1+β1

) . . . <(p1
p1+β`

)

0 =(p1) =(p21) =(p1
p1+β1

) . . . =(p1
p1+β`

)

1 <(p2) <(p22) <(p2
p2+β1

) . . . <(p2
p2+β`

)

0 =(p2) =(p22) =(p2
p2+β1

) . . . =(p2
p2+β`

)
. . .

1 <(pm) <(p2m) <(pm
pm+β1

) . . . <(pm
pm+β`

)

0 =(pm) =(p2m) =(pm
pm+β1

) . . . =(pm
pm+β`

)

r0,11 r0,21 . . . r0,nn
r1,11 r1,21 . . . r1,nn

. . .

r`+3,11 r`+3,21 . . . r`+3,nn

=

<(q0,11) <(q0,21) . . . <(q0,nn)
=(q0,11) =(q0,21) . . . =(q0,nn)
<(q1,11) <(q1,21) . . . <(q1,nn)
=(q1,11) =(q1,21) . . . =(q1,nn)

. . .

<(qm,11) <(qm,21) . . . <(qm,nn)
=(qm,11) =(qm,21) . . . =(qm,nn)

(E.4)

Which is a set of real linear equations

AX = B (E.5)

where A is (2m, 3 + `), X is (3 + `, n2), and B is (2m,n2). These equations are
overdetermined if 2m > 3 + `, that is if the number of matrices Qk is greater than the
number of βi plus three divided by 2.

218 APPENDIX E. RATIONAL-FUNCTION APPROXIMATION

Appendix F

Interpolation Details

This appendix contains some details about the interpolation techniques used in Flaps.

F.1 Smoothing TPS Limits

Tensor Product Splines (TPS) are splines in one or more dimensions; for example if
unsteady aerodynamic matrices are available at multiple reduced frequencies and mul-
tiple Mach numbers they can be interpolated with respect to both reduced-frequency
and Mach number. There is no limit (except perhaps memory) on the number of di-
mensions possible in a TPS. In the simplest (and most common) case there is only one
dimension in the TPS and the resulting TPS is identical to an ordinary cubic spline.

F.1.1 Smoothing TPS Limits

At the boundaries of tensor-product spline (TPS) interpolations derivatives are set to
zero and the value is held constant outside the range of interpolation to avoid the unre-
alistically large values common with extrapolation. Unfortunately, unlike extrapolation
holding the derivative constant outside the limits of interpolation causes a discontinu-
ity in the derivative, which can cause problems in stab which depends on up to first
derivative continuity, so to remove this discontinuity the transition from in-range values
to out-of-range values is smoothed.

If you interpolate a set of matrices (A1,A2, ...An) at a set of breakpoints xi, i = 1, ...n
then we want to fit a cubic polynomial in the interval [x1−w, x1] and another between
[xn, xn+w]. Outside these intervals (x < x1−w or x > xn+wx) the spline is considered
constant. For a distance w outside the upper limit of the interpolation let t = x − xn
and assume an equation for the polynomial:

G(t) = t3G3 + t2G2 + tG1 + G0 (F.1)

The coefficient matrices Gi can be solved for by enforcing the conditions that the
function and it’s first derivative are continuous at t = 0, the value at t = w is a small

219

F.1

extrapolation of the spline,
G(w) = An + βA′n (F.2)

and the first derivative is zero at t = w. These conditions result in

G(0) = G0 = A(xn)

G′(0) = G1 = A′(xn)

G(w) = An + βA′n

= w3G3 + w2G2 + wG1 + G0

= w3G3 + w2G2 + wA′n + An

G′(w) = 0

= 3w2G3 + 2wG2 + G1

= 3w2G3 + 2wG2 + A′n

(F.3)

From which

G2 =

(
3β

w2
− 2

w

)
A′n

G3 =
1

3w3
(3w − 6β) A′n

(F.4)

and

G(t) =

[
t3
(

1

3w3
(3w − 6β)

)
+ t2

(
3β

w2
− 2

w

)
+ t

]
A′n + An

G′(t) =

[
t2
(

1

w3
(3w − 6β)

)
+ 2t

(
3β

w2
− 2

w

)
+ 1

]
A′n

(F.5)

If β = w equation F.5 simplifies to

G(t) =

(
− t3

w2
+
t2

w
+ t

)
A′n +An

G′(t) =

(
−3t2

w2
+

2t

w
+ 1

)
A′n

(F.6)

Figures F.1 and F.2 illustrate this smoothing polynomial at the upper limit of a typical
cubic-spline interpolation.

220 APPENDIX F. INTERPOLATION DETAILS

F.1

x1
xn

1

wA’n

−wA’

see upper limit figure

Figure F.1: Typical interpolation

F.1. SMOOTHING TPS LIMITS 221

F.1

wA’n

xn
x + wn

Figure F.2: Smoothed Transition at Upper Limit

222 APPENDIX F. INTERPOLATION DETAILS

Appendix G

Describing Functions

Flutter solutions in the stab module are linear in the generalized-coordinates, and in
general nonlinear in all other parameters. The describing function technique [45][30]
can be used to approximate flutter results for nonlinear generalized- coordinate dis-
placements. Assuming the nonlinearity affects only one element of the stiffness matrix,
that stiffness is replaced by a function of the displacement amplitude. This equivalent
stiffness is dependent on the type of nonlinearity. For example, for a gap (or freeplay or
dead zone), the force-displacement curve and it’s describing function approximation
are shown in figure G.1. The describing-function approximation to the force curve is
a sinusoidal with the same frequency as the displacement; thus there is a linear rela-
tionship between the input (displacement) and the output (force) and we can use a
linear flutter solution. That is the reason for choosing the describing-function to have
the same form (sinusoidal) as the displacement.

The criteria for fitting the sine function to the nonlinear force curve is minimizing the
least-squares error. This gives the same result as you would get if you did a Fourier
transform of the force function and took the first term. A least-squares fit of sinusoidals
requires evaluating an integral over one cycle. Another way of looking at this process is
the nonlinear force curve is projected onto the describing-function sinusoidal. To project
a vector onto another vector you do a dot-product or inner-product ; for example, the
projection of a vector y onto another vector x is xxt

xtxy. In the time domain inner
products are integrals and the projection of f(t) onto sinωt is

fδ(t) =
ω

π
sinωt

∫ 2π/ω

0
f(t) sinωtdt (G.1)

where the inner product of sinωt with itself is π
ω .

Continuing with the example of a gap δ in a stiffness element, the force over one cycle
of sinusoidal oscillation with displacement

x(t) = x0 sinωt (G.2)

223

G.0

displacement

force

DF force approximation

time

Figure G.1: Describing Function Approximation of Freeplay

is

f(t) =

0 0 ≤ t ≤ tδ
k(x− δ) tδ ≤ t ≤ π

ω − tδ
0 π

ω − tδ ≤ t ≤
π
ω + tδ

k(x+ δ) π
ω + tδ ≤ t ≤ 2πω − tδ

0 2πω − tδ ≤ t ≤ 2πω

(G.3)

Substituting (G.3) into (G.1), the approximate force (as illustrated in figure G.1) is

fδ(t) =
k

π

[
π − 2 sin−1

δ

x0
− sin

(
2 sin−1

δ

x0

)]
x0sinωt (G.4)

from which the equivalent stiffness is

kδ = kc (G.5)

where

c =
1

π

[
π − 2 sin−1

δ

x0
− sin

(
2 sin−1

δ

x0

)]
(G.6)

is the describing function for a structural gap; figure G.2 shows this describing function
as a function of the ratio δ/x0.

As another example of this technique consider a mechanism with a failure: a degree-of-
freedom has stiffness in one direction but not the other. In addition, the freedom has
preload - a static force acts upon it, giving it an initial displacement h:

x(t) = h+ x0 sinωt (G.7)

224 APPENDIX G. DESCRIBING FUNCTIONS

G.0

δ/u0

10

0

1

c

k

displacement

force

δ

Figure G.2: Describing Function for Freeplay

225

G.0

0
time

DF force approximation

force

h

c

0.5

1

1

displacement

force

k

h

u /h
0

displacement

Figure G.3: Describing Function Approximation of Failed Mechanism with Preload

The describing-function is

c =
1

2
+

1

π

sin−1
(
h

x0

)
+

h

x0

√
1−

(
h

x0

)2
 (G.8)

Figure G.3 illustrates this equation along with the force-displacement curve, the force,
equivalent-force and displacement-time curves, and the describing-function. This de-
scribing function is available as built-in function ffwp (sect. 5.4.4).

Next consider another failed mechanism with a static displacement on the failed (zero
stiffness side of the force-displacement curve (figure G.4). The describing function for
this force-displacement curve is almost the same as before:

c =
1

2
− 1

π

sin−1
(
h

x0

)
+

h

x0

√
1−

(
h

x0

)2
 (G.9)

226 APPENDIX G. DESCRIBING FUNCTIONS

G.0

time

DF force approximation

h

k

force

c

0.5

0

0 1

displacement

force

0
h

u /h0

displacement

Figure G.4: Describing Function: Failed Mechanism Not Against the Stop

227

G.1

This describing function is available as built-in function ffnas (sect. 5.4.4).

G.1 Using Describing Functions

Describing functions have been described as a quasi-linearization technique because the
stiffness is no longer a nonlinear function of time, but is still a function of the ampli-
tude of oscillation. The usual technique for applying describing functions to nonlinear
problems is to assume a displacement, then using the ratio of gap to displacement
compute the equivalent stiffness from the describing function. Applying the equivalent
stiffness to the structure and new set of displacements can be computed. This iteration
is repeated until it converges.

Once we have the displacement for the gap coordinate we scale the vector of generalized
coordinates to give the computed displacement at the nonlinear generalized coordinate:

q ← x

qk
q (G.10)

These generalized coordinates can then be used in output transformations to get dis-
placements at other points.

Then we create plots of flutter speed versus displacement at the gap coordinate for a
specified gap size.

228 APPENDIX G. DESCRIBING FUNCTIONS

Appendix H

Substructuring for Dynamic
Analyses

Substructures are, as the name implies, pieces of a finite-element model which are
assembled to form the structure being modeled. Depending on your point of view, the
equivalent term superelement might be preferable: a substructure is piece of a larger
structure or a superelement is a collection of finite-elements. Here we use the terms
interchangeably.

Substructures are used to break a large structure into smaller pieces to:

• allow the design and analysis of a structure to be split among different groups

• allow quick, easy and efficient modification of substructures, for example nacelle
natural frequency variations (chap. ??)

• make the solution more economical by reducing the size of the model and allowing
modifications to be carried out on only part of the model.

Superelements may be classified as static or dynamic depending on the type of coordi-
nate representation used. Coordinate representations are either physical or generalized
degrees-of-freedom (dof). Physical dof are also referred to as nodal dof. Generalized
dof, or generalized coordinates, are a set of independent quantities that represent all
possible motions of a structure. Nodal dof are generalized dof but not vice-versa. As-
sociated with each generalized dof is a basis function, and each generalized dof is said
to be based on it’s basis function. Generalized-coordinates are sometimes referred to
as participation factors because they are the amount each basis function participates
in the motion of the structure. A common example of generalized-coordinate basis
functions is free-vibration modes.

A static substructure is simply a piece of a structure represented in nodal dof (trans-
lations and rotations). A static substructure could consist of a single finite-element;
the process for assembling static substructures is identical to the assembly of finite
elements.

229

H.2

A dynamic superelement is created from a static superelement by replacing some or all
of the nodal dof with generalized dof, usually based on vibration modes, and usually
reducing the number of degrees of freedom in the process. Reducing the number of
degrees of freedom is often one of the primary reasons for using dynamic superelements;
equally important is the ability to modify parts of the structure easily.

H.1 Static Substructuring

Static superelements are merged by creating a matrix of the correct size and inserting
the matrix elements in the appropriate spot with overlapping elements accumulating.
For example if superelement A has stiffness matrix

A =

[
Aii Aib

Abi Abb

]
(H.1)

where the i subscripts refer to interior dof and the b subscripts refer to boundary dof,
and superelement B has

B =

[
Bbb Bbi

Bib Bii

]
(H.2)

then the merged substructure C will have

B =

 Aii Aib 0
Abi Abb +Bbb Bbi

0 Bib Bii

 (H.3)

A typical merged static superelement matrix is illustrated in figure H.1.

In general there is mass and stiffness coupling between the interior and boundary dof
of a static substructure, hence there is also mass and stiffness coupling between merged
substructures.

H.2 Dynamic Substructuring

Dynamic substructuring techniques transform some or all of the nodal coordinates to
a new basis computed using both the mass and stiffness matrices, usually with the
objective of reducing the size of the model. In this sense Guyan reduction (§3.1.1) is a
dynamic substructuring technique. At Boeing the most commonly used techniques are
Component Modal Synthesis (CMS) and Branch Modes.

230 APPENDIX H. SUBSTRUCTURING FOR DYNAMIC ANALYSES

H.2

bi

ii

ib

bi

ib

ii

x x

xx

x

x x

x

x x

xx

x

x x

x

x x

xx

x

x x

x

x x

xx

x

x x

x

x x

xx

x

x x

x

x x

xx

x

x x

x

x x

xx

x

x x

x

x x

xx

x

x x

x

x x

xx

x

x x

x

x x

xx

x

x x

x

x x

xx

x

x x

x

x x

xx

x

x x

x

x x

xx

x

x x

x

x

A

A

A

B

B

B

Figure H.1: Merged static superelements A and B

H.2.1 Component Mode Synthesis (CMS)

The terms Component Mode Synthesis or Modal Synthesis refer to a number of similar
methods; among these the method of Craig and Bampton [11] is the most straightfor-
ward and is available in ATLAS, Elfini, and NASTRAN.

In the Craig and Bampton [11] approach a dynamic superelement is a superelement that
has the same physical degrees-of-freedom on the boundary as a static superelement,
but the interior dof are replaced with generalized coordinates based on vibration modes
computed with the boundary freedoms supported. Typical mass and stiffness matrices
for a dynamic superelement are shown in figure H.2.

Two characteristics of this method make it particularly attractive for many structural-
dynamics analyses:

• They can be treated like static superelements. Because the boundary dof
are left untouched, the dynamic superelement can be merged with other (static
or dynamic) superelements as though it were a static superelement. For
example, if superelement A is a static superelement, while superelement B is a
dynamic superelement, the merged mass and stiffness matrices will appear as in
figure H.3.

• No stiffness coupling. The other important characteristic of Craig and Bamp-
ton CMS is that there is no stiffness coupling between the interior dof and the
boundary dof so when the substructure is merged with other substructures there
is no stiffness coupling between the interior dof and other substructures. Nor is
there stiffness coupling between interior dof (the interior portion of the stiffness
matrix is diagonal). This property makes it easy to do parameter studies of the
influence of stiffness of a substructure on, for example flutter speed.

H.2. DYNAMIC SUBSTRUCTURING 231

H.2

ii

bi

ib

bi

bb bb

ii

ib

x

xx

x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

xx

x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

K

K

K

M

M

M

M

K

Figure H.2: Dynamic superelement mass and stiffness

x
x

x

x
x

x
x

x
x

x
x

x
x

x

xx
x

x x x
x x x

x

x x
x x

x
x x

x
x

x
x

xxx

x
x

x

x

x

x

x
xx

xx

x

x

x

x

x

x

x x

x x

x

x
x

x
xx

xx

x

x x
x
x

x

x x

x
xx

x

stiffness

x
x

x
x

x
x

x
x

x
x

x
x

x

x
x

x
x x

x
x

x
x

xxx

x
x

x

x

x

x

x
xx

xx

x

x

x

x

x

x

x x

x x

x

x
x

x
xx

xx

x

x x
x
x

x

x x

x

B interior

boundary

A interior

mass

Figure H.3: Merged static (A) and dynamic (B) superelements

Once a structure comprising dynamic superelements is assembled the boundary dof are
no longer of interest and it would be desirable to eliminate them to reduce the size of
the problem for subsequent dynamic analyses; the Branch Modes method (§H.2.2) is a
way to do this.

Mathematical Details

A dynamic superelement is formed from a static superelement by the coordinate trans-
formation

K̄ = ΦTKΦ

M̄ = ΦTMΦ
(H.4)

where Φ is the (n, nk) dynamic superelement modes matrix, M and K are the (n, n)

232 APPENDIX H. SUBSTRUCTURING FOR DYNAMIC ANALYSES

H.2

static superelement mass and stiffness matrices, and M̄ and K̄ are the (nk, nk) dynamic
superelement generalized mass and stiffness matrices. The dynamic superelement modes
matrix consists of free-vibration modes with the boundary freedoms supported and
so-called constraint modes. Constraint modes are the displacement pattern resulting
from giving each boundary freedom in turn a unit displacement while the remaining
boundary freedoms are fixed. Mathematically this is equivalent to solving the linear
equations

KΦ =

[
Kii Kib

Kbi Kbb

] [
Φib

Ibb

]
=

[
0ib
F bb

]
(H.5)

where the stiffness matrix K has been partitioned into interior and boundary freedoms
denoted by i and b subscripts, respectively, and F bb are the forces necessary to produce
the unit displacements. These forces are of no interest so we simply need to solve

KiiΦib = −Kib (H.6)

for the constraint modes Φib; notice that this transformation is equivalent to the the
transformation used for static condensation (eqn 3.6).

Free-vibration modes are computed using the interior partitions of the mass and stiff-
ness matrices:

KiiΦik = M iiΦikΛkk (H.7)

where Λkk is an (nk, nk) diagonal matrix of eigenvalues, and the number of computed
modes 0 ≤ nk ≤ ni. The nk computed modes are a basis for the generalized coordinates
representing the interior degrees-of-freedom.

The assembled dynamic superelement modes matrix is

Φ =

[
Φik Φib

0 Ibb

]
(H.8)

Substituting H.5 and H.7 into H.4:

K̄ =

[
Φik Φib

0 Ibb

]T [
Kii Kib

Kbi Kbb

]T [
Φik Φib

0 Ibb

]
=

[
ΦT
ikKiiΦik symmetric

ΦT
ibKiiΦik +KbiΦik ΦT

ibKiiΦib +KbiΦib + ΦT
ibKib +Kbb

] (H.9)

Using the fact that Kbi = KT
ib (symmetry) and the definition of constraint modes (H.6)

ΦT
ibKiiΦik +KbiΦik = (KiiΦib +Kib)

T Φik = 0 (H.10)

H.2. DYNAMIC SUBSTRUCTURING 233

H.2

and

ΦT
ibKiiΦib = −KbiΦib = −ΦT

ibKib (H.11)

which explains one reason why constraint modes are defined the way they are: there
is no stiffness coupling between the boundary and interior freedoms. Fur-
thermore

K̄kk = ΦikKiiΦik (H.12)

is diagonal. Using these relations the generalized stiffness matrix K̄ can be written as

K̄ =

[
K̄kk 0

0 Kbb + 1
2

(
KT

ibΦib + ΦT
ibKib

)]
=

[
K̄kk 0

0 Kbb −ΦT
ibK

T
iiΦib

]
=

[
K̄kk 0

0 Kbb −KT
ibK

−1
ii Kib

] (H.13)

In the last of these three alternative forms the block Kbb −KT
ibK

−1
ii Kib is the static

condensation (§3.1.1) of the substructure stiffness matrix to the boundary dof. The
generalized mass matrix,

M̄ =[
ΦT
ikM iiΦik symmetric

ΦT
ibM iiΦik +M biΦik ΦT

ibM iiΦib +M biΦib + ΦT
ibM ib +M bb

]
(H.14)

shows that there is, in general, mass coupling between the boundary and interior gener-
alized coordinates. The lower-right block is recognized as the Guyan reduction (§3.1.1)
[18] of the mass matrix to the boundary dof.

If the coordinate transformation is applied to an arbitrary vector

v̄ =

[
v̄i
v̄b

]
(H.15)

where here again the k subscript refers to the ”kept” cantilevered vibration modes and
the b refers to the boundary dof, the resulting vector v is

v =

[
vi
vb

]
= Φv̄ =

[
Φik Φib

0 Ibb

] [
v̄k
v̄b

]
=

[
Φikv̄k + Φibv̄b

v̄b

]
(H.16)

234 APPENDIX H. SUBSTRUCTURING FOR DYNAMIC ANALYSES

H.2

which shows that the boundary coordinates are not affected by the transformation. In
particular if r is a rigid-body vector for the static superelement, then

r̄ =

{
0
rb

}
(H.17)

is a rigid-body vector for the dynamic superelement, because

Kr =

[
Kii Kib

Kbi Kbb

]{
Φibrb
rb

}
=

{
KiiΦibrb +Kibrb
KbiΦibrb +Kbbrb

}
=

{
−Kibrb +Kibrb

−ΦT
ibKiiΦ

T
ibrb +Kbbrb

}
=

{
0

Kbbrb −ΦT
ibKiiΦibrb

}
= 0

(H.18)

by definition, so that

K̄r̄ =

{
0

Kbbrb −ΦT
ibKiiΦibrb

}
= 0 (H.19)

also. Rigid body motion is therefore only a function of the boundary dof. This fact also
follows from the fact that the boundary portions of the generalized mass and stiffness
matrices are Guyan-reductions of the interior freedoms.

H.2.2 Branch Modes

The Branch Modes method [17] for substructured beam models has been used ex-
tensively at Boeing for several years. Among the reasons for its popularity is that it
produces generalized mass and stiffness matrices in which certain generalized coordi-
nates are based on clamped vibration modes of one of the substructures and there is
no stiffness coupling between these coordinates and any other coordinates. These two
conditions which, we call the Branch Mode property , make it easy to do parameter
studies with vibration frequencies of one of the substructures, since the frequency is
directly related to only one (diagonal) element of the generalized stiffness. Unlike CMS,
Branch Modes does not retain boundary freedoms so the resulting models have fewer
dof. Moreover, the resulting modes are often much better approximations to actual mo-
tions encountered in stability and response solutions. The disadvantage to the method
is added complexity in implementing it.

For a two-substructure problem (either static or dynamic substructures - fig. H.3) the
Branch Modes method can be briefly described as:

• choose one of the substructures (say A) to be the root substructure and the other
(B) to be the branch

H.2. DYNAMIC SUBSTRUCTURING 235

H.2

• compute vibration modes of A with B constrained to move rigidly with A

• compute vibration modes of B clamped at the A-B interface

• merge these two sets of modes and reduce the mass and stiffness using the result

Because B was constrained to move rigidly when modes of A were computed, there is
no stiffness coupling between modes of A and B. Furthermore, some of the generalized
coordinates are based on clamped vibration modes of B. These two conditions are the
Branch Mode property.

Constraining superelement B to move rigidly with A is equivalent to lumping the mass
of B onto the A-B boundary; more generally Guyan-reduce superelement B to the A-B
boundary and add the reduced mass and stiffness to the A boundary. If B is a CMS
dynamic superelement the boundary portions of the mass and stiffness matrices are
already Guyan-reductions.

The branch modes method as presented by Gladwell [17] works provided the interface
between A and B is statically determinate; otherwise it is unclear how to constrain B
to move rigidly without at the same time constraining the boundary freedoms relative
to each other. This requirement restricts the original method to beam models with
single-node boundaries between superelements. Here we present a generalization of the
original method which allows for statically indeterminate interfaces so it can be used
with FEM models.

As noted earlier the branch modes procedure is straightforward when applied to sub-
structured models with statically-determinate interfaces; with a statically-indeterminate
interface it is not clear how to constrain superelement B to move rigidly with A without
constraining the boundary freedoms relative to one another. This is where the use of a
dynamic superelement reduction of B can be used to advantage, since the motions of
the interior freedoms and boundary freedoms are separated in a natural way. Instead of
constraining the interior freedoms to move rigidly relative to the boundary freedoms,
we simply support (remove from the vibration analysis) the generalized coordinates
which represent the motion of the interior freedoms. This is almost the same as con-
straining the interior freedoms to move rigidly relative to the boundary freedoms: more
precisely, it corresponds to Guyan-reducing [18] B to the boundary freedoms between A
and B. Motion of the boundary freedoms will result in non-rigid motion of the interior
freedoms of B according to the definition of constraint modes. 1 This type of motion is
exactly what we want to prevent unnatural constraints on the vibration modes of A.

If the merged mass and stiffness matrices are reduced to generalized coordinates based
on the vibration modes of the merged structure the branch mode property is lost. What
is needed is a generalized-coordinate transformation based on modes which are capable
of representing the true vibration characteristics of the structure while retaining the
branch mode property. In this section we show how to reduce the merged static and
dynamic superelement matrices to generalized coordinates while retaining the branch
mode nature of the stiffness matrix.

1see section H.2.1

236 APPENDIX H. SUBSTRUCTURING FOR DYNAMIC ANALYSES

H.2

Mathematical Details

Assuming for the moment that we have available merged mass and stiffness matrices
for static superelement A and dynamic superelement B

K =

 K
A
ii KA

ib 0

KA
bi KA

bb + K̄
B
bb 0

0 0 K̄
B
kk

 (H.20)

M =

 M
A
ii MA

ib 0

MA
bi MA

bb + M̄
B
bb M̄

B
bi

0 M̄
B
ib M̄

B
kk

 (H.21)

The vibration problem for superelement A with rigid B amounts to solving

(
KA+

nn − ω2MA+
nn

)
φ = 0 (H.22)

where the subscript n represents all freedoms in A (i and b) and the + superscript
refers to the additional mass and stiffness terms from B on the boundary,

KA+
nn =

[
KA

ii KA
ib

KA
bi KA

bb + K̄
B
bb

]
(H.23)

and

MA+
nn =

[
MA

ii MA
ib

MA
bi MA

bb + M̄
B
bb

]
(H.24)

That is, solve the vibration problem for superelement A with superelement B Guyan-
reduced to the A-B boundary and added to the mass and stiffness matrices for A. If B is
a dynamic superelement the boundary mass and stiffness terms are Guyan reductions
of B.

including boundary terms from dynamic superelement B. As shown in appendix A,
this is equivalent to solving the vibration problem for A with superelement B Guyan-
reduced to the interface freedoms.

Solving eqn. H.22 for m modes

ΦA+
nm =

[
Φim

Φbm

]
(H.25)

Reduced to this basis, the generalized mass and stiffness for A are

H.2. DYNAMIC SUBSTRUCTURING 237

H.2

M̄
A+
mm =

(
ΦA+
nm

)T
MA+

nn ΦA+
nm

= ΦT
imM

A
iiΦim + ΦT

imM
A
ibΦbm

+ ΦT
bmM

A
biΦim + ΦT

bm

(
MA

bb +MB
bb

)
Φbm

(H.26)

and

K̄
A+
mm =

(
ΦA+
nm

)T
KA+

nn ΦA+
nm

= ΦT
imM

A
iiΦim + ΦT

imK
A
ibΦbm

+ ΦT
bmK

A
biΦim + ΦT

bm

(
KA

bb +KB
bb

)
Φbm

(H.27)

Now consider the transformation matrix

Φ =

[
ΦA+
nm 0
0 Ikk

]
=

 Φim 0
Φbm 0

0 Ikk

 (H.28)

which when used to reduce the merged superelement matrices results in

K̄ = ΦTKΦ =

[
K̄

A+
mm 0

0 K̄
B
kk

]
(H.29)

and

M̄ = ΦTMΦ =

[
M̄

A+
mm M̄mk

M̄km M̄
B
kk

]

where the mass coupling term

M̄km = M̄
T
mk = MB

kbΦbm

K̄ and M̄ represent the entire structure (A and B) in a modal basis with the following
characteristics:

• M̄B
kk and M̄

A+
mm are diagonal but M̄ is not, due to the mass coupling term M̄km

• K̄ is diagonal

• the last k generalized-coordinates are based on clamped vibration modes of B

The last two characteristics mean the branch mode property has been retained. Figure
H.4 illustrates the form of the generalized mass and stiffness.

238 APPENDIX H. SUBSTRUCTURING FOR DYNAMIC ANALYSES

H.2

x

x
x

x

x
x

x
x

x
x

x
x

x
x

x

x

x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x

x
x
x

x
x
x

x
x
x

x
x
x

x
x
x

x
x
x

x
x
x

x
x
x

x
x
x

x
x
x

x
x
x

x
x
x

x
x
x

mass stiffness

x

x
x

x

x
x

x
x

x
x

x
x

x
x

x

x

A

B

Figure H.4: Branch Mode generalized mass and stiffness

H.2.3 Example: Strut Frequency Variations

Flutter modes of an airplane are often sensitive to the fundamental frequencies of the
strut/engine/nacelle, so flutter groups study the variation of flutter speed with strut
frequencies. These variations have in the past been simplified by using the branch mode
technique. While branch modes will not work with finite element models, the technique
described above provides an analogous technique.

There are significant advantages to importing the strut/engine/nacelle from NASTRAN
as a dynamic superelement:

• the correct loadpaths are maintained between the wing and strut

• the dynamics of the strut/engine/nacelle can be represented to any desired accu-
racy by increasing the number of interior generalized coordinates.

• much less data needs to be transmitted between groups; a 30000 dof finite-element
engine model could be represented with a dynamic superelement with less than
a hundred dof with more accuracy than current beam representations.

• strut frequency parameter variations can be easily and accurately performed

H.2. DYNAMIC SUBSTRUCTURING 239

H.2

240 APPENDIX H. SUBSTRUCTURING FOR DYNAMIC ANALYSES

Appendix I

Regular Expressions

Regular expressions are a very important part of using Unix effectively. They are
used in a few places in Flaps, for example to print a catalog (10.7) of a set of Flaps
matrices.

A regular expression is a sequence of characters that describes in a very compact form,
how to match a pattern of characters. Like math symbols, certain characters have very
precise meaning in a regular expression. Learning the language of regular expressions
is not too difficult, but it does take some study and a bit of practice. With a good
understanding of regular expressions you can do some remarkable things to text files.

Unfortunately some characters have different meanings when interpreted by a pattern-
matching program such as sed or grep, and a file-handling program such a the shell.
For example, the asterisk (*) is interpreted by the shell to mean zero or more instances
of any character. When used in a regular expression, it means ”the previous character
repeated zero or more times”.

A regular expression is composed of three types of characters:

• anchor characters specify the positioning of the regular expression in a line of
text

• ordinary characters which match themselves

• modifiers specify how many times the previous character is to be repeated.

I.1 Anchor Characters

Anchor characters are the caret (ˆ) which means “beginning of the line”, and the dollar
sign ($) which means “end of line”. So, for example,

^S

matches a line beginning with S,

241

I.4

S$

matches a line ending with S, and

^$

matches an empty line.

I.2 Ordinary Characters

are all characters except the so-called metacharacters which have special meaning
in regular expressions. If you want to match a metacharacter it must be preceded
(escaped) by a backslash (\). A dot (.) matches any character; to match a dot itself,
escape the dot: ’\.’. A range of characters can be specified by enclosing the range in
square brackets ([]). A range may be simply an explicit set of characters or a hyphenated
range like a-z. A character set in square brackets can be negated by starting the range
with a caret (ˆ); thus

[^aeiou]

matches any character except lower-case vowels.

I.3 Modifiers

include the asterisk (*), which means “repeat the preceding character any number
of times (including zero)”. It is the “including zero” part that often causes confusion.
’BCAG*’ will match ’BCA’ and ’BCAGGG’. The asterisk may follow a character range,
as in

Q[^u][aeiou]*[a-z]

which matches a string consisting of Q followed by any character but u, followed by
any number of lower-case vowels, followed by any lower-case letter, as in Qeen, Qay,
Qayle and other misspellings.

To specify limits on the number of repetitions for a character, the syntax is ’\{lower,upper \}
’. For example the regular expression ([0-9]\{3,6\}) matches strings of 3, 4, 5, or 6
digit numbers.

I.4 Remembered Patterns

Often it is necessary to “remember” part of a pattern, either to repeat it later in
the pattern, or to use in the replacement pattern. Consider, for example the problem

242 APPENDIX I. REGULAR EXPRESSIONS

I.4

every instance on each line

followed by a)

any number of times

substitute

any character except)

left paren

with the 1st remembered string
in double quotes

remembered string enclosures

sed ’s/(\([^)]*\))/"\1"/g’

Figure I.1: A Regular Expression

of finding palindromes (words spelled the same forwards or backwards), words like
eye, dud, Anna, deed, noon, or level. To find a 5-letter palindrome the pattern must
“remember” the first two characters, then check that they match the 4th and 5th
characters. The syntax for remembering a regular-expression (single characters being
just a special case of a regular-expression) is ’\(string \)’. The entire pattern may
have up to 9 of these remembered regular-expressions. They are subsequently referred
to, later in the pattern or in the replacement pattern (sed only) as \1, \2, \3, etc. For
example, try typing

grep -i ’^\([a-z]\)\([a-z]\)[a-z]\2\1$’ /usr/share/dict/words

to see all 5-letter palindromes (words spelled the same forwards or backwards) in the
system’s dictionary. As an example of using a remembered string in a replacement
pattern consider the following command to transform strings enclosed in parentheses
to the same string enclosed in double quotes:

sed ’s/(\([^)]*\))/"\1"/g’ filename

Let’s analyze this command piece by piece. The pattern we are looking for is a left
parenthesis followed by any character except a right parenthesis, followed by a right
parenthesis. It may seem like all we really need is (.*) (left parenthesis followed by
any character any number of times followed by a right parenthesis). Unfortunately, this
pattern will not work on lines containing more than one string enclosed in parentheses.

I.4. REMEMBERED PATTERNS 243

I.4

To see why, it is necessary to understand that pattern matching programs like sed and
grep match the longest possible string, so a line like

(string one) (string two)

is matched by ’(.*)’, while only the first string is matched by

([^)]*)

.

244 APPENDIX I. REGULAR EXPRESSIONS

Appendix J

Interval Methods

Interval arithmetic is a technique for introducing uncertainty into calculations and for
bounding solutions under the influence of uncertainty. Some algorithms can be used
directly with interval arithmetic; others must be modified to get the most benefit from
intervals.

J.1 Interval Arithmetic

Interval arithmetic is conceptually simple: instead of dealing with floating-point num-
bers, each floating-point number is represented by two values, a lower and an upper
bound on the number:

x = [x, x] (J.1)

When an arithmetic operation is performed on two intervals the result is an interval
such that the operation on any number within each interval is contained in the resulting
interval. For example if two intervals are added:

x+ y = [x, x] +
[
y, y
]

=
[
x+ y, x+ y

] (J.2)

Likewise for the other basic arithmetic operations:

x− y =
[
x− y, x− y

]
x ∗ y =

[
min(xy, xy, xy, xy),max(xy, xy, xy, xy)

]
x/y =

[
min(x/y, x/y, x/y, x/y),max(x/y, x/y, x/y, x/y)

] (J.3)

245

J.1

246 APPENDIX J. INTERVAL METHODS

Appendix K

Automatic Differentiation

A common task in scientific computing is to compute derivatives of a function. Tradi-
tional methods for doing this are numerical differentiation and symbolic differentiation.
Both have significant disadvantages: numerical differentiation is prone to truncation
and roundoff errors and can be expensive; symbolic differentiation requires special
software to preprocess the function, such as Mathematica or Maple, and requires extra
effort by the user to learn and use the software. A third alternative, automatic differ-
entiation [36] is a programming technique that propagates derivatives along with the
evaluation of the function. It combines the advantages of the other two techniques: it
is not much more expensive than a simple evaluation of the function, does not require
explicit coding of derivatives, yet it yields exact derivatives.

Traditional implementations of automatic differentiation [19] require that the function
be coded in a modern programming language such as C++ or Fortran 90, using spe-
cial datatypes and coding techniques. Flaps uses a technique which allows functions
written in older Fortran (Fortran 77), with no special coding on the part of the user.

K.1 Traditional Implementation

Modern programming languages such as C++ and Fortran 90 allow you to create
your own datatype, called abstract datatypes. For purposes of illustration we define a
datatype we’ll call AD which will take the place of real variables. This new datatype
has, in addition to a real value, a derivative. That is, each variable of this type has
allocated two real values in memory: the value and the derivative which we denote here
by adding a value and deriv extension to the variable name; for example

AD a

a.value = 1.0

a.deriv = 2.0

declares that variable a has a value of 1 and it’s derivative is 2.

The other feature of modern programming languages that make automatic differenti-

247

K.2

ation possible is known as operator overloading . An overloaded operator like multipli-
cation allows you to write

c = a*b

where a, b, and c are variables of type AD. The implementor of an automatic differenti-
ation system, following the rules of differentiation, provides instructions to the compiler
to translate this statement into

c.value = a.value*b.value

c.deriv = a.deriv*b.value + a.value*b.deriv

Similarly for all the other arithmetic operators (+-/). Mathematical functions such as
exponentials are handled similarly, with overloaded functions, which have the same
names as the ordinary math functions, but are called by the compiler when the argu-
ment is type AD. For example

AD exp(AD a) {

b.value = exp(a.value)

b.deriv = a.value*a.deriv*exp(a.value)

return b

}

This and other overloaded math functions are also supplied by the implementor.

Now a programmer could use this automatic differentiation implementation to write
programs; for example

main() {

AD s

s.value = 10.0

s.deriv = 1.0

a = myfunc(s)

print "a = " a.value

print "derivative of a wrt s = " a.deriv

}

AD myfunc(AD s) {

return sqrt(3.0*s + s*s + s*s*s)

}

In this (stylized) program, s is the independent variable, so it’s derivative is always 1.0.
Compiling and running this little program yields

a = 2.23607

derivative of a wrt s = 1.78885

The only change to normal coding practice is the use of the AD datatype in place of
an floating-point datatype.

248 APPENDIX K. AUTOMATIC DIFFERENTIATION

K.2

K.2 Flaps Implementation

Derivatives are important in Flaps, in particular for maintaining continuity when
tracking aeroelastic modes in stab. Automatic differentiation is used in three ways in
Flaps: to compute derivatives of matrices parameterized by user-written subroutines
(§6.4), to compute derivatives of arbitrary user-defined parameter equations (§5.6),
and for computing first and second derivatives of ABCD control-law matrices (§6.2)
with respect to the characteristic exponent s. For ABCD control-law matrices a special
datatype is used which computes the first and second derivatives along with the matrix
value. The derivatives are only used for computing start points for neutral-stability
flutter calculations using the nonlinear eigenvalue solution technique in section ??.

User-written subroutines, written in Fortran, must be translated into C++ in order
to use automatic differentiation. This is done with a modified version of an open-
source Fortran-to-C/C++ translator (f2c). After translating to C++ an automatic-
differentiation datatype is substituted for real and complex variables with the active
parameters as the differentiation parameters; that is, now the deriv element of an AD
is an array. In most cases there are three active parameter, except for continuation
optimization where there are any number greater than three.

The values of all parameters in a user-written subroutine must be obtained by calling
an Flaps function, parval which returns an AD variable with the derivatives set ac-
cordingly. For example, if the actives are vtas, freq, and growth and the user writes in
the subroutine

freq = parval(’freq’)

sigma = parval(’sigma’)

s = cmplx(sigma, freq)

the parval(’freq’) call will return an AD object with deriv(1) set to 1.0 (since freq is an
active parameter), and the parval(’sigma’) call will return an AD object with the value
set according to the equation used in this case (σ = γω

2), deriv(1) set to the partial of

sigma with respect to freq (∂σ∂ω = γ
2), deriv(2) set to the partial of sigma with respect

to growth (∂σ∂γ = ω
2), and deriv(3) set to the partial of sigma with respect to vtas (0).

Then any arithmetic operations using these objects will propagate the derivatives with
respect to the active variables, and the resulting matrix which is returned will be a
matrix of AD objects with the correct derivatives.

K.2.1 Example

To compute the derivative of a matrix A with respect to a parameter w we compute the
derivatives of w with respect to each active parameter ai and sum the partial derivatives
of A with respect to each active, divided by the partial of w with respect to the active:

∂A

∂w
← β

∂A

∂w
+ α

∑ ∂A

∂ai

1
∂w
∂ai

(K.1)

K.2. FLAPS IMPLEMENTATION 249

K.2

250 APPENDIX K. AUTOMATIC DIFFERENTIATION

Appendix L

Debugging

Running a debugger to find problems in programs is normally a task for developers;
there are situations when users might need to know how. The most common situation
is when a user-written subroutine (§6.4) is suspected of causing a program to crash.
For this reason this appendix contains some basic usage instructions and some special
instructions for debugging user-written subroutines.

To run an Flaps command in the debugger, add an output statement just before the
command:

output{debugger=ddd}

stab { ... }

end

Then when the graphical debugger ddd starts, type cont in the command window to run
the program; when an error is encountered the debugger will tell you where the error oc-
curred. If you include this information in a bug report (http://apex.ca.boeing.com/bugs)
that will expedite resolution of the problem.

251

L.0

252 APPENDIX L. DEBUGGING

Appendix M

Calibrated Airspeed

M.1 The Bernoulli Equation

This appendix is due to Warren Weatherill who worked in the Boeing Flutter Research
group until his retirement in 2002.

Notation: P, ρ freestream (ambient or static) conditions; P0, ρ0 stagnation (total) con-
ditions; Psl, ρsl are ambient sea level conditions

Integration of the steady momentum equation along a streamline results in

V 2/2 +

∫
dp

ρ
= 0 (M.1)

M.2 Incompressible flow

The Bernoulli equation for steady incompressible flow is simply

ρV 2
TAS/2 = P0 − P (M.2)

VTAS =

√
2P (P0/P − 1)

ρ
(M.3)

Since ρVTAS
2 = ρslVEAS

2 then

VEAS =

√
2P (P0/P − 1)

ρsl
(M.4)

253

M.4

M.3 Compressible flow

The Bernoulli equation for steady compressible flow is

V 2/2 +
γ

γ − 1

P

ρ
=

γ

γ − 1

P0

ρ0
(M.5)

V 2/2 =
γ

γ − 1

(
P0

ρ0
− P

ρ

)
(M.6)

V 2/2 =
γ

γ − 1

P

ρ

(
P0/P

ρ0/ρ
− 1

)
(M.7)

For a perfect gas
P0

P
=

(
ρ0
ρ

)γ
(M.8)

V 2/2 =
γ

γ − 1

P

ρ

[(
P0

P

) γ−1
γ

− 1

]
(M.9)

Noting that γP/ρ = a2 and M = V 2/a2, there are two very useful equations that
follow:

(
P0

P

)
=

(
1 +

γ − 1

2
M2

) γ
γ−1

(M.10)

and

M2 =

(
VTAS
a

)2

=
2

γ − 1

((
P0

P

) γ−1
γ

− 1

)
(M.11)

or

VTAS =

√√√√γP

ρ

2

γ − 1

((
P0

P

) γ−1
γ

− 1

)
(M.12)

and

VEAS =

√√√√γP

ρsl

2

γ − 1

((
P0

P

) γ−1
γ

− 1

)
(M.13)

254 APPENDIX M. CALIBRATED AIRSPEED

M.5

M.4 Flaps Equation

VCAS = 29949.18

√{
P

Psl
[(1 + .2M2)3.5 − 1] + 1

}0.285714

− 1 (M.14)

Re-engineering of the Flaps equation

VCAS = 29949.18

√{
P

Psl

[
(1 +

γ − 1

2
M2)

γ
γ−1 − 1

]
+ 1

} γ−1
γ

− 1 (M.15)

29950.4 =

√
γ ∗ 2116.2

0.002378

2

γ − 1
∗ 12.0 =

√
γPsl
ρslρsl

2

γ − 1
∗ 12.0 (M.16)

VCAS =

√√√√γPsl
ρsl

2

γ − 1

{[
P

Psl

(
P0

P
− 1

)
+ 1

] γ−1
γ

− 1

}
(M.17)

VCAS =

√√√√γPsl
ρsl

2

γ − 1

{[
∆P

Psl
+ 1

] γ−1
γ

− 1

}
(M.18)

Equation M.18 matches the definition of calibrated airspeed discussed in section M.5.

M.5 Definition of Calibrated Airspeed

(From McCormack (reference1), equation (2.39); also the Boeing Flight Manual)

The ”calibrated airspeed,” which is the speed shown on the indicated airspeed dial is
defined by the following equation:

VCAS =

√√√√γPsl
ρsl

2

γ − 1

[(
∆P

Psl
+ 1

) γ−1
γ

− 1

]
(M.19)

where ∆P = P0 −P , the pressure difference that is measured by the pitot tube. Thus,
the calibrated airspeed is a function of the measured pressure difference and sea level
quantities. If the plane is flying at sea level, the calibrated airspeed (CAS) would be
equal to the true airspeed (TAS) and also the equivalent airspeed (EAS).

∆P

Psl
=
P0 − P
Psl

=
P

Psl

(
P0

Psl
− 1

)
(M.20)

so that

M.4. FLAPS EQUATION 255

Vcal =

√√√√√γPsl
ρsl

2

γ − 1

(
P

Psl

[
P0

Psl
− 1

) γ
γ−1

+ 1

] γ−1
γ

− 1

 (M.21)

and

Vcal =

√√√√√γPsl
ρsl

2

γ − 1

[
P

Psl

[(
1 +

γ − 1

2
M2

) γ
γ−1

− 1

)
+ 1

] γ−1
γ

− 1

 (M.22)

M.6 Dynamic Pressure

Dynamic pressure is defined as ρV 2/2 For incompressible flow, the dynamic pressure
is just the difference between the total pressure and the static pressure (see equation
(2)). For compressible flow, the relationship is more complicated.

From equation (9) and after moving ρ from the right to the left side of the equation,

ρV 2/2 =
γP

γ − 1

[(
P0

P

) γ−1
γ

− 1

]
(M.23)

A more common form for dynamic pressure in compressible flow is

ρV 2
TAS/2 =

ρ

2

γP

ρ

V 2
TAS

a2
= γPM2/2 (M.24)

256 APPENDIX M. CALIBRATED AIRSPEED

Bibliography

[1] P.W. Abrahams and B.R. Larson. UNIX for the Impatient. Addison-Wesley, New
York, 1992.

[2] E. Albano and W.P. Rodden. A Doublet-Lattice Method for Calculating Lift
Distributions on Oscillating Surfaces in Subsonic Flows. AIAA Journal, 7(2):279–
285, 1969.

[3] R.J. Allemang. The Modal Assurance Criteria (MAC): Twenty Years of Use and
Abuse. Sound and Vibration (http://www.sandv.com/downloads/0308alle.pdf),
pages 14–21, Aug 2003.

[4] E.L. Allgower and K. Georg. Numerical Continuation Methods. Springer Verlag,
New York, 1990.

[5] R.L. Bisplinghoff, H. Ashley, and R.L. Halfman. Aeroelasticity. Addison-Wesley,
Reading, MA, 1955.

[6] IEEE Standards Board. IEEE Standard for Binary Floating-Point Arithmetic.
Technical Report Std 754-1985, The Institute of Electrical and Electronics Engi-
neers, Inc, 1985.

[7] K.S.W. Champion, W.J. O’Sullivan, and S. Teweles. U.S. Standard Atmosphere.
U.S. Govt. Printing Office,, Washington, D.C., 1962.

[8] P.C. Chen. Damping Perturbation Method for Flutter Solution: The g-Method.
AIAA Journal, 38(9):1519–1524, Sept 2000.

[9] R.V. Churchill, J.W. Brown, and R.F. Verhey. Complex Variables and Applica-
tions. McGraw-Hill, 3rd edition, 1974.

[10] R.R. Craig. Fundamentals of Structural Dynamics. John Wiley & Sons, 2nd
edition, 2006.

[11] R.R. Craig and M.C. Bampton. Coupling of Substructures for Dynamic Analyses.
AIAA Journal, 6(7):1313–1319, July 1968.

[12] E.H. Dowell and et. al. A Modern Course in Aeroelasticity. Kluwer Academic
Publishers, Dordrecht, The Netherlands, fourth edition, 2004.

[13] J.W. Edwards. Unsteady Aerodynamic Modeling and Active Aeroelastic Control.
Technical Report SUDAAR 504, Stanfor Univ., 1977.

257

[14] J.W. Edwards. Applications of Laplace Transform Methods to Airfoil Motion and
Stability Calculations. In Proceedings of the 20th AIAA Structures, Structural
Dynamics, and Materials Conference, Paper 79-0772, St. Louis, MO, April 18-20
1979. AIAA.

[15] A.L. Gerth. Engineering Scientific Data (ESD) Data Format Specification. Tech-
nical Report D6-54881-200, BCAG, Seattle, WA, Jan 1991.

[16] D. Gilly. UNIX in a Nutshell. O’Reilly and Associates, Sebastopol, CA, 1992.

[17] G. M. L. Gladwell. Branch Mode Analysis of Vibrating Systems. Journal of Sound
and Vibration, 1:41–59, 1964.

[18] R. J. Guyan. Reduction of Stiffness and Mass Matrices. AIAA Journal, 3(2):380,
Feb 1965.

[19] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz. C++ Toolbox for Verified Com-
puting. Springer-Verlag, Berlin, 1995.

[20] H.J. Hassig. An Approximate True Damping Solution of the Flutter Equation by
Determinant Iteration. AIAA Journal of Aircraft, 8(11):885–889, Nov 1971.

[21] D.H. Hodges and G.A. Pierce. Introduction to Structural Dynamics and Aeroelas-
ticity. Cambridge University Press, Cambridge, U.K., 2002.

[22] http://www.csm.ornl.gov/ kohl/MatView. MatView Website, 2007.

[23] http://www.mathworks.com/access/helpdesk/help/helpdesk.html. Matlab User’s
Manual, 2007.

[24] http://www.nist.gov/MatrixMarket. Matrix Market Website, 2007.

[25] http://www.sdrl.uc.edu/universal-file-formats-for-modal-analysis-testing 1. Uni-
versal file formats, 2007.

[26] J.H. Hubbard. The forced damped pendulum: chaos, complication, and control.
Amer. Math. Monthly, 106:741–758, 1999.

[27] M.F. Hutchinson. A Fast Procedure for Calculating Minimum Cross-Validation
Cubic Smoothing Splines. ACM Transactions on Mathematical Software,
12(2):150–153, June 1986.

[28] Boeing ISS. BCSLIB Fortran 77 Version User’s Guide. Technical Report 20462-
0516-R15, Boeing ISS, 1997.

[29] B.W. Kernighan and R. Pike. The UNIX Programming Environment. Prentice-
Hall, Inc, Englewood Cliffs, NJ 07632, 1984.

[30] N. Krylov and N. Bogolyubov. Introduction to Nonlinear Mechanics. Princton
University Press, Princton, NJ, 1947.

[31] C. Lanczos. The Variational Principles of Mechanics. University of Toronto Press,
1970.

258 BIBLIOGRAPHY

[32] L. Meirovitch. Analytical Methods in Vibration. Prentice-Hall, Inc, New York,
1967.

[33] E.E. Meyer. Application of a New Continuation Method to Flutter Equations.
In Proceedings of the 29th AIAA Structures, Structural Dynamics, and Materi-
als Conference Paper 88-2350, Williamsburg, VA. (http://apex/doc/sdm88.pdf),
April 18-20 1988. AIAA.

[34] W.J. Mullock. PEGASUS User’s Guide. Technical Report D6-54718-600, BCAG,
Seattle, WA, Jan 1991.

[35] Donal O’Regan. Topological Degree Theory and Applications. CRC Press, 2006.

[36] L.B. Rall. Automatic Differentiation, Techniques and Applications. Lecture Notes
in Computer Science No. 120. Springer-Verlag, Berlin, 1981.

[37] M. Reymond. DMAP Programmer’s Guide. MSC, Santa Ana, CA, 2004.

[38] W.C. Rheinboldt. Numerical Analysis of Parameterized Nonlinear Equations.
John Wiley, New York, 1986.

[39] W.C. Rheinboldt. Methods for Solving Systems of Nonlinear Equations. SIAM,
Philadelphia, second edition, 1998.

[40] W.C. Rheinboldt and J.V. Burkardt. A Locally Parameterized Continuation Pro-
cess. ACM Trans. Math. Software, 9(2):215–235, 1983.

[41] W.P. Rodden, R.L. Harder, and E.D. Bellinger. Aeroelastic Addition to NAS-
TRAN. Technical Report CR 3094, NASA, 1979.

[42] K.L. Roger. Airplane Math Modeling Methods for Active Control Design. In
Proceedings of the 44th Meeting of the AGARD Structures and Material Panel,
pages 4.1–4.11. AGARD CP-228, April 1977.

[43] R.M. Rosenberg. “Analytical Dynamics of Discrete Systems”. Plenum Press, New
York, 1980.

[44] Bill Rosenblatt. “Learning the Korn Shell”. O’Reilly and Associates, Sebastopol,
CA, 1993.

[45] D. Siljak. Nonlinear Systems. John Wiley and Sons, Inc., New York, 1969.

[46] R. Srinivasan. XDR: External Data Representation Standard. Technical Report
1832, The Internet Engineering Task Force (IETF), 1995.

[47] Neal Stephenson. “In the Beginning... Was the Command Line”. Avon Books,
New York, 1999.

[48] W.R. Stevens. Unix Network Programming Vol 1. Prentice-Hall, Inc., New York,
1998.

[49] W.R. Stevens. Unix Network Programming Vol 2. Prentice-Hall, Inc., New York,
1999.

BIBLIOGRAPHY 259

[50] W.T. Thomson. Theory of Vibration with Applications. Prentice-Hall, Inc., En-
glewood Cliffs, N.J., 1981.

[51] M.J. Turner, R.W. Clough, H.C. Martin, and L.C. Topp. Stiffness and Deflection
Analysis of Complex Structures. Journal of the Aeronautical Sciences, 23:805–824,
1956.

260 BIBLIOGRAPHY

Index

Symbols
-h (option)

apex . 128
-rn (option)

apex . 132
-v version (option)

apex . 131
a (sonic velocity)56, 81
<> (conversion factor) 50
b reference length 35
[] (parameter limits) 49
d (structural damping) 33, 56, 81
δ (gap) . 223
g real part of p 36, 56, 81
γ (growth rate)33, 56, 81
k imag part of p 56, 81
{}

data blocks . 22
enclosing options 20, 119
environment variables 21
matrix parameter values 63
option-options 121

M (Mach number) 56, 81
Ω (rotation rate) 56, 81
ω (frequency) 31, 56, 81
p (complex reduced frequency) . . 56, 81
P0 (ref. static pressure) 56, 81
(comment) . 20
P (static pressure) 56, 81
q (dynamic pressure) 56, 81
ρ (density) 56, 81, 90
ρ0 (ref. density) 56, 81
s (characteristic exponent) 56, 81
σ (Real(p)) . 56, 81
Vc (calib. airspeed) 56, 81
Ve (equiv. airspeed) 56, 81
Vt (true airspeed) 56, 81
z (altitude) . 56, 81
[i,j] (option)

param. 169

[row,col] (option)

param. 169

attribute (option)

print . 177

filename (option)

apex . 128

matrix-id (option)

export .136

save . 186

new (option)

rename . 183

old (option)

rename . 183

output-name = input-name (option)

extract . 137

output-name (option)

merge . 159

parameter-defn (option)

export .135

param . 167, 168

stab . 142

path (option)

restore . 185

A

abcd (option)

param. 172

ABCD control-laws 67, 172

combining with structure 212

abs . 53

absolute value . 32

abstract datatypes 247

acos . 53

active (option)

param. 168

stab . 141

active parameters 80

common . 82

in startregion.144

adb (option)

261

import . 155
added structural damping.83
aerodynamics . 91

approximation.217
interpolation 91
modification 36, 143

aeroelastic mode 30, 38, 80
aeromod (option)

stab . 143
airspeed

calibrated 56, 81
equivalent 56, 81
true . 56, 81

AIX . 12
alge (command) 124
algebra

matrix . 124
altitude . 56, 81
amv . 102
amvis. .103

command line usage 193
amvis (option)

apex . 131
analysis identifier 141
animated mode visualization103
apex (command) 128
append (option)

stab . 147
approximation 67, 171

rational-function (RFA) 67
s-plane . 67

architecture (computer).199
asin . 53
atan . 53
atmos (option)

apex . 128
atmospheric properties 56, 129
automatic differentiation.247

B
BAP . 12
bapversion (option)

import . 155
basis

generalized coordinate 31
basis function . 229
beta (option)

param. 172

bmfgc (option)
param. 170

branch mode
frequencies 72, 169, 170
method. .235
property 72, 235

buffersize (option)
import . 156

built-in functions
nonlinear . 54
standard . 53

C
calibrated airspeed 56, 81
case sensitivity

commands. .119
matrix id . 24
options . 119
parameter names 50

catalog (command) 134
catalog file (option)

apex . 129
characteristic

equations . 32
exponent . 32

characteristic exponent 56, 81
clean [-r] (option)

apex . 129
closed-loop . 86
CMS (component mode synthesis) . 230
code (option)

param. 174
col (option)

merge . 159
extract . 137
param. 169

commas . 20
comments . 20
complex number 24, 124
complex reduced frequency 56, 81
Component Mode Synthesis (CMS) 230
conjugate

transpose . 41
conn (option)

vis . 192
constants

DPR . 24
G . 24

262 INDEX

HZPRS. .24
KPIPS . 24
PI . 24
pre-defined . 24
RPD . 24

continuation optimization 80
continuecuts (option)

stab . 148
continuity . 94
contours . 89
control laws

ABCD 37, 67, 172
coded . 37
user-subroutine 37

control program . 20
controls (option)

stab . 143
conversion factors

pounds-mass to pounds-force . . . 25
pre-defined . 50
unit . 50

cos . 53
coupled modes . 38

visualizing. .102
curly braces . 25
cuts, parameter 87, 145

D
damping . 33

structural 33, 73
viscous . 35

datatype (option)
param. 167

dball (option)
import . 155

dbmaster (option)
import . 155

dbproject (option)
import . 156

dbversion (option)
import . 156

dead zone . 223
debugging . 251
decay rate . 80
degree (option)

param. 171
degrees of freedom 27
degrees-of-freedom (dof)

generalized . 229
nodal. .229

demo (option)
apex . 129

demonstration problems 107
denom2,denom3,denom4 208
density. .56, 81

reference . 56, 81
derivatives

parameter . 53
derived (option)

stab . 142
derived parameter 141
describing function 52, 73, 223
/dev/null . 162
diag (option)

extract . 138
param. 168

diff filea fileb (option)
apex . 129

divergence . 83, 93
dof (degrees of freedom)

generalized . 30
nodal . 27

dof (see degrees-of-freedom) 229
dog (option)

apex . 129
domain

frequency. .33
Laplace. .33
time . 27

doublet-lattice . 91
DPR (pre-defined constant) 25, 124
dtree [-s] [path] (option)

apex . 129
dynamic pressure 56, 81

E
e (option)

param. 172
eigenpair . 80
eigenvalue problem

free-vibration 32
Elfini . 199
ellipsis . 23
energy

and work . 41
summary . 122

INDEX 263

energy (option)
stab . 148

environment (option)
output . 161

environment variable 120, 122, 162
setting . 161

equation
parameter 50, 51

equivalent airspeed 56, 81
equivalent stiffness223
err (option)

output . 161
ESA 15, 135, 147, 154, 168, 189
esa (option)

vis . 189
ESD. 154
eset

and source . 141
eset (option)

extract . 138
stab . 143

exp . 53
export (command) 135
extra (option)

param. 175
extract (command).137
extract matrix elements46
extract options (option)

apex . 129

F
factor

conversion . 50
fem . 27
fetch . 76, 205
fetch (option)

import . 155
ffnasdf (built-in function) 54
ffwpdf (built-in function) 54
finite element . 27
float (option value).120
fluid density . 56, 81
flut . 79
flutter

eigenvalue problem 37
flutter crossing. .80

hump mode . 95
oh-three . 80

flutter equation 37, 80
flutter speed . 80
force vector . 47
format (option)

import . 153
frequency . 56, 81
frequency domain 33

G
G (pre-defined constant) 25, 124
g-method . 36
gaf (option)

stab . 143
gap. 223
gap (built-in function) 54
gapdf (built-in function) 54
gc (option)

vis . 192
generalized

coordinates . 30
mass . 30
stiffness . 30

generalized coordinate
basis . 31
summary . 122

getpar . 76, 207
goal (option)

stab . 147
growth rate 33, 56, 80, 81

and log decrement 33
and structural damping 34

Guyan reduction .29
avoiding . 29
in CMS . 234

gyro (command) 150
gyro (option)

stab . 143
gyroscopic

matrices . 47

H
help (option)

apex . 130
here document 19, 25
HZPRS (pre-defined constant) . 25, 124

I
i (option)

import . 153

264 INDEX

param. 167
id

matrix. .22
id (option)

export .135
stab . 141
vis . 189

identifier
analysis . 141

identity matrix . 125
igain (option)

param. 173
import (command) 153
import (option)

apex . 130
inertia (option)

gyro . 151
integer (option value) 120
interpolation 65, 171
iphase (option)

param. 173
iset (option)

vis . 191

K
k method . 80
ke (option)

param. 172
kill job-number (option)

apex . 130
KPIPS (pre-defined constant) . . 25, 124

L
Laplace

domain . 33
variable . 32

line length (control program) 20
linear algebra . 124
Linux. .12
list

option . 120
to-by . 120

loads basis . 29
log . 53
log decrement. .33
log10 . 53

M
MAC . 126

Mach number 56, 81
mass (option)

param. 170
stab . 142

matlab 67, 135, 154, 172
matrix

addition . 125
algebra . 45, 124
combine . 159
conjugate-transpose 125
control-law . 37
creation . 75
deletion . 181
dynamic . 37
element parameterization 72
extracting elements 46
gyroscopic . 47
Hermitian . 41
id . 22
identity . 125
inverse . 125
market 154, 178
merge . 47
modifying . 75
multiplication 125
operators . 125
scaling . 125
skew-Hermitian 41
skew-symmetric 40
sparse . 40
symmetric . 40
transpose. .125
units . 39
unsteady aerodynamics 35
visualization . 16

matrix id (option)
print . 177

matview (option)
print . 178

matview file (option)
apex . 130

matvij . 76
max . 53
maxstep (option)

stab . 148
merge (command) 159
metacharacter . 242
mid. .22

INDEX 265

min. .53

minstep (option)

stab . 148

modal (option)

gyro . 150

Modal Assurance Criteria.126

Modal Synthesis 231

mode

aeroelastic30, 38, 80, 144

assumed . 31

branch . 31

component . 31

free-vibration 31

modal-synthesis 31

reversal .94

superelement 31

switching . 94

modes (option)

gyro . 150

stab . 145

modes of operation

batch . 19, 25

interactive 19, 25

interpretive 19, 25

monset . 138

N

NASTRAN

aero approximation 36

neutral stability . 80

neutral-stability 140

nodal dof . 27

node (option)

gyro . 151

nonlinear

eigenvalue problem 86

stability . 92

nonlinear analyses 73

nosplit (option)

stab . 147

nrbm (option)

stab . 148

O

o (option)

export .135

gyro . 151

param. 167

print . 178
save . 186
vis . 192

ogain (option)
param. 173

open-loop. .86
ophase (option)

param. 173
optimization . 85
optimize (option)

stab . 142
option values . 120
option-options . 121
orient (option)

gyro . 151
out (option)

output . 161
output (command) 161
output transformation

equation . 60
in stab . 146
parameters . 60
time-domain . 61

OUTPUT4 . 13, 109

P
p-k method . 81
p14n. .63
pagewidth (option)

output . 161
param (command) 164
param (option)

import . 154
parameter

active . 51, 80
conversion . 49
cuts . 87, 145
derived.51, 81, 141
description . 49
equation . 50, 51
fixed . 51, 81
format. .49
limits .49
multiple-valued 52
name . 49
output transformations 60
persistence 49, 60
standard (pre-defined) 55

266 INDEX

standard equations 56
state . 51
user-defined . 59

parameter variations 80, 140
parameter-defn .49
parameterization.63

ABCD. .67
interpolation 65
user-subroutine 75, 174

parameters (option)
print . 178

participation factor 30, 229
parval . 76, 207
pegasus 15, 97, 99, 104, 135
persistence

parameter 49, 52
phase angle . 32
PI (pre-defined constant) 25, 124
pk solution . 85
plot (option)

param. 168
stab . 147

plotfile (option)
stab . 147

pole . 208
pow . 53
pre-defined

constants . 24
conversions . 24

pressure
dynamic . 56, 81
static . 56, 81
static (ambient or freestream) . . 58
total (stagnation)58

print (command) 177
print (option)

stab . 146
print=full . 146
psi (option)

param. 172
purge (command) 181
pv solution . 85

Q
quotes

and environment variables . . 21, 26,
120, 161

and equations.52, 124

and matrix names.23, 54

and options 120

single vs. double 21

R

reduced frequency 56, 81

reference density 56, 81

reference length. .35

reference static pressure 56, 81

regular expressions 241

rename

files . 130

rename (command) 183

rename regular-expression replacement

[file(s)] (option)

apex . 130

restore (command) 185

RFA . 67, 171, 217

root . 80

rotation rate . 56, 81

row (option)

param. 169

rows (option)

merge . 159

extract . 137

RPD (pre-defined constant) 25, 124

rset

and source . 141

rset (option)

extract . 138

stab . 144

rtfm . 17

runid (option)

import . 154

S

s-plane . 67

s-plane approximation 171

sample problems.107

save (command) 186

savefile . 199

creating . 186

creating in ATLAS 201

creating in Elfini 199

portable . 199

restoring . 185

sdb (option)

import . 155

INDEX 267

sdgc (option)
param. 170

set (option)
extract . 138
gyro . 150
vis . 191

setpar . 76, 77, 208
sign function. .53
sin. .53
size (option)

extract . 138
param. 174

sonic velocity 56, 81
source (option)

stab . 141
spin (option)

gyro . 151
spline. .171
spy (option)

apex . 131
sqrt . 53
stab (command) 140
stability boundary 80
standard

(pre-defined) parameters 55
constants . 24
conversions . 24

start points . 86
startregion (option)

stab . 144
static pressure 56, 58, 81
stderr . 132
stdin . 132
stdout . 132
stif (option)

stab . 143
string (option value) 120
structural damping . 33, 56, 73, 81, 170

added . 83
subset (option)

vis . 191
substructure . 229
superelements . 38

T
tan . 53
tanh . 53
target (option)

stab . 146
time delays . 211
time domain . 27
timer (option)

output . 162
to-by list . 120
total pressure . 58
true airspeed . 56, 81
Turner, M.J. 27

U
ufv filename (option)

apex . 131
uncoupled modes 38
units

changing . 51
computational 50
conversion factors 50
equation . 53
external . 50
internal. .50
matrix. .39
parameter 50, 56
presentation . 50

user-subroutine 75, 174
control-laws . 37

V
V-g method . 80, 82
vdamp (option)

stab . 143
vis

command line usage 193
vis (command). .189
vis [options] (option)

apex . 131
viscous damping . 35
vset (option)

vis . 191

W
work

and energy . 41

X
x (option)

vis . 189
xmax (option)

vis . 190

268 INDEX

xmin (option)
vis . 190

Y
y (option)

vis . 189
ymax (option)

vis . 190
ymin (option)

vis . 190

INDEX 269

	I Theory
	Introduction
	Flaps Capabilities
	Typographic Conventions
	Getting Started
	Getting Help

	The Flaps Input File
	Control Program
	Data Blocks
	Matrix IDs
	What's in a Number?
	Pre-Defined Constants and Conversions
	Curly Braces
	Running Flaps

	Equations of Structural Dynamics
	Finite Elements
	Generalized Coordinates
	Frequency Domain: Characteristic Equations
	Damping
	Unsteady Aerodynamics
	Controls Equations
	Dynamic Matrix
	Further Reduction of Matrix Size
	Units
	Matrix Properties
	Work and Energy

	Creating and Manipulating Matrices
	Matrix Algebra
	Extracting Elements
	Merging Matrices
	Gyroscopic Matrices
	Force Vectors

	Parameters
	Parameter Format
	Parameter Units
	Parameter State
	Parameter Equations
	Standard Parameters
	Defining New Parameters
	Output Transformation Parameters
	Examples

	Parameterizing Matrices
	Interpolation and Approximation
	ABCD Control-Laws
	Matrix Elements
	User-Subroutine Parameterization

	Flutter
	Flutter Equation
	Solution Technique
	Start Points
	Fluid Properties
	Unsteady Aerodynamics
	Nonlinear Stability
	Divergence
	Continuity

	Visualization
	Introduction
	Visualizing Matrices
	2D Plots
	3D Animated Modes
	The Future

	II Reference
	Demonstration Problems
	Summary
	Details

	Commands Reference
	Syntax
	Keyword and Value Options: Option-Options
	Examples
	Printed Output
	 alge
	 apex
	 catalog
	 export
	 extract
	 stab
	 gyro
	 import
	 merge
	 output
	 param
	 print
	 purge
	 rename
	 restore
	 save
	 vis

	III Appendices
	Creating Flaps Savefiles
	Elfini
	ATLAS

	User-Written Subroutines
	Fortran Subroutines

	ABCD Approach to ASE Analysis
	Controls Equations
	Structural Equations
	Combining Structural and Controls Equations

	ABCD File Format
	Rational-Function Approximation
	Interpolation Details
	Smoothing TPS Limits

	Describing Functions
	Using Describing Functions

	Substructuring for Dynamic Analyses
	Static Substructuring
	Dynamic Substructuring

	Regular Expressions
	Anchor Characters
	Ordinary Characters
	Modifiers
	Remembered Patterns

	Interval Methods
	Interval Arithmetic

	Automatic Differentiation
	Traditional Implementation
	Flaps Implementation

	Debugging
	Calibrated Airspeed
	The Bernoulli Equation
	Incompressible flow
	Compressible flow
	Flaps Equation
	Definition of Calibrated Airspeed
	Dynamic Pressure

	Bibliography
	Index

