
cPCG: Efficient and Customized
Preconditioned Conjugate Gradient Method

November 25, 2018

cPCG-package Efficient and Customized Preconditioned Conjugate Gradient Method
for Solving System of Linear Equations

Description

Solves system of linear equations using (preconditioned) conjugate gradient algorithm, with im-
proved efficiency using Armadillo templated C++ linear algebra library, and flexibility for user-
specified preconditioning method. Please check <https://github.com/styvon/cPCG> for latest up-
dates.

Details

Functions in this package serve the purpose of solving for x in Ax = b, where A is a symmetric and
positive definite matrix, b is a column vector.

To improve scalability of conjugate gradient methods for larger matrices, the Armadillo templated
C++ linear algebra library is used for the implementation. The package also provides flexibility to
have user-specified preconditioner options to cater for different optimization needs.

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Yongwen Zhuang

References

[1] Reeves Fletcher and Colin M Reeves. “Function minimization by conjugate gradients”. In: The
computer journal 7.2 (1964), pp. 149–154.

[2] David S Kershaw. “The incomplete Cholesky—conjugate gradient method for the iter- ative
solution of systems of linear equations”. In: Journal of computational physics 26.1 (1978), pp.
43–65.

[3] Yousef Saad. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.

[4] David Young. “Iterative methods for solving partial difference equations of elliptic type”. In:
Transactions of the American Mathematical Society 76.1 (1954), pp. 92–111.

1

2 cgsolve

Examples

generate test data
test_A <- matrix(c(4,1,1,3), ncol = 2)
test_b <- matrix(1:2, ncol = 1)

conjugate gradient method solver
cgsolve(test_A, test_b, 1e-6, 1000)

preconditioned conjugate gradient method solver,
with incomplete Cholesky factorization as preconditioner
pcgsolve(test_A, test_b, "ICC")

cgsolve Conjugate gradient method

Description

Conjugate gradient method for solving system of linear equations Ax = b, where A is symmetric
and positive definite, b is a column vector.

Usage

cgsolve(A, b, float tol = 1e-6, int maxIter = 1000)

Arguments

A matrix, symmetric and positive definite.

b vector, with same dimension as number of rows of A.

tol numeric, threshold for convergence, default is 1e-6.

maxIter numeric, maximum iteration, default is 1000.

Details

The idea of conjugate gradient method is to find a set of mutually conjugate directions for the
unconstrained problem

argminxf(x)

where f(x) = 0.5bTAb− bx+ z and z is a constant. The problem is equivalent to solving Ax = b.

This function implements an iterative procedure to reduce the number of matrix-vector multiplica-
tions [1]. The conjugate gradient method improves memory efficiency and computational complex-
ity, especially when A is relatively sparse.

Value

Returns a vector representing solution x.

Warning

Users need to check that input matrix A is symmetric and positive definite before applying the
function.

pcgsolve 3

References

[1] Yousef Saad. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.

See Also

pcgsolve

Examples

Not run:
test_A <- matrix(c(4,1,1,3), ncol = 2)
test_b <- matrix(1:2, ncol = 1)
cgsolve(test_A, test_b, 1e-6, 1000)

End(Not run)

pcgsolve Preconditioned conjugate gradient method

Description

Preconditioned conjugate gradient method for solving system of linear equations Ax = b, where A
is symmetric and positive definite, b is a column vector.

Usage

pcgsolve(A, b, preconditioner = "Jacobi", float tol = 1e-6, int maxIter = 1000)

Arguments

A matrix, symmetric and positive definite.

b vector, with same dimension as number of rows of A.

preconditioner string, method for preconditioning: "Jacobi" (default), "SSOR", or "ICC".

tol numeric, threshold for convergence, default is 1e-6.

maxIter numeric, maximum iteration, default is 1000.

Details

When the condition number for A is large, the conjugate gradient (CG) method may fail to converge
in a reasonable number of iterations. The Preconditioned Conjugate Gradient (PCG) Method applies
a precondition matrix C and approaches the problem by solving:

C−1Ax = C−1b

where the symmetric and positive-definite matrix C approximates A and C−1A improves the con-
dition number of A.

Common choices for the preconditioner include: Jacobi preconditioning, symmetric successive
over-relaxation (SSOR), and incomplete Cholesky factorization [2].

Value

Returns a vector representing solution x.

4 pcgsolve

Preconditioners

Jacobi: The Jacobi preconditioner is the diagonal of the matrix A, with an assumption that all
diagonal elements are non-zero.

SSOR: The symmetric successive over-relaxation preconditioner, implemented as M = (D+L)D−1(D+
L)T . [1]

ICC: The incomplete Cholesky factorization preconditioner. [2]

Warning

Users need to check that input matrix A is symmetric and positive definite before applying the
function.

References

[1] David Young. “Iterative methods for solving partial difference equations of elliptic type”. In:
Transactions of the American Mathematical Society 76.1 (1954), pp. 92–111.

[2] David S Kershaw. “The incomplete Cholesky—conjugate gradient method for the iter- ative
solution of systems of linear equations”. In: Journal of computational physics 26.1 (1978), pp.
43–65.

See Also

cgsolve

Examples

Not run:
test_A <- matrix(c(4,1,1,3), ncol = 2)
test_b <- matrix(1:2, ncol = 1)
pcgsolve(test_A, test_b, "ICC")

End(Not run)

Index

∗Topic methods
cgsolve, 2
pcgsolve, 3

∗Topic optimize
cgsolve, 2
pcgsolve, 3

∗Topic package
cPCG-package, 1

cgsolve, 2, 4
cPCG (cPCG-package), 1
cPCG-package, 1

pcgsolve, 3, 3
preconditioner (pcgsolve), 3

5

	cPCG-package
	cgsolve
	pcgsolve
	Index

