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Abstract. This document covers a library for fast similarity (k-NN)
search. It describes only search methods and distances (spaces). Details
about building, installing, Python bindings can be found online:
https://github.com/searchivarius/nmslib/tree/v1.8/. Even though
the library contains a variety of exact metric-space access methods, our
main focus is on more generic and approximate search methods, in par-
ticular, on methods for non-metric spaces. NMSLIB is possibly the first
library with a principled support for non-metric space searching.

1 Objectives and History

Non-Metric Space Library (NMSLIB) is an efficient and extendable cross-
platform similarity search library and a toolkit for evaluation of similarity search
methods. The core-library does not have any third-party dependencies.

The goal of the project is to create an effective and comprehensive toolkit
for searching in generic metric and non-metric spaces. Even though the
library contains a variety of metric-space access methods, our main focus is on
generic and approximate search methods, in particular, on methods for non-
metric spaces. NMSLIB is possibly the first library with a principled support for
non-metric space searching.

NMSLIB is an extendible library, which means that is possible to add new
search methods and distance functions. NMSLIB can be used directly in C++
and Python (via Python bindings). In addition, it is also possible to build a
query server, which can be used from Java (or other languages supported by
Apache Thrift). Java has a native client, i.e., it works on many platforms without
requiring a C++ library to be installed.

NMSLIB started as a personal project of Bilegsaikhan Naidan, who created
the initial code base, the Python bindings, and participated in earlier evalua-
tions. The most successful class of methods–neighborhood/proximity graphs–is
represented by the Hierarchical Navigable Small World Graph (HNSW) due to
Malkov and Yashunin [33]. Other most useful methods, include a modification
of the Vantage-Point Tree (VP-tree) [6], a Neighborhood APProximation index
(NAPP) [43], which was improved by David Novak, as well as a vanilla uncom-
pressed inverted file.

The current version of the manual focuses solely on the description of:

https://github.com/searchivarius/nmslib/tree/v1.8/
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– search spaces and distances (see § 3);
– search methods (see § 4).

Details about building/installing, benchmarking, extending the code, as well
as basic tuning guidelines, can be found online:
https://github.com/nmslib/nmslib/tree/v1.8/manual/README.md.

2 Terminology and Problem Formulation

Similarity search is an essential part of many applications, which include, among
others, content-based retrieval of multimedia and statistical machine learning.
The search is carried out in a finite database of objects {oi}, using a search query
q and a dissimilarity measure (the term data point or simply a point is often
used a synonym to denote either a data object or a query). The dissimilarity
measure is typically represented by a distance function d(oi, q). The ultimate
goal is to answer a query by retrieving a subset of database objects sufficiently
similar to the query q. These objects will be called answers. A combination of
data points and the distance function is called a search space, or simply a space.

Note that we use the terms distance and the distance function in a broader
sense than some of the textbooks: We do not assume that the distance is a
true metric distance. The distance function can disobey the triangle inequality
and/or be even non-symmetric.

Two retrieval tasks are typically considered: a nearest neighbor and a range
search. The nearest neighbor search aims to find the least dissimilar object, i.e.,
the object at the smallest distance from the query. Its direct generalization is
the k-nearest neighbor search (the k-NN search), which looks for the k closest
objects. Given a radius r, the range query retrieves all objects within a query
ball (centered at the query object q) with the radius r, or, formally, all the ob-
jects {oi} such that d(oi, q) ≤ r. In generic spaces, the distance is not necessarily
symmetric. Thus, two types of queries can be considered. In a left query, the ob-
ject is the left argument of the distance function, while the query is the right
argument. In a right query, q is the first argument and the object is the second,
i.e., the right, argument.

The queries can be answered either exactly, i.e., by returning a complete
result set that does not contain erroneous elements, or, approximately, e.g.,
by finding only some answers. Thus, the methods are evaluated in terms of
efficiency-effectiveness trade-offs rather than merely in terms of their efficiency.
One common effectiveness metric is recall. In the case of the nearest neighbor
search, it is computed as an average fraction of true neighbors returned by the
method with ties broken arbitrarily.

3 Spaces

Currently we provide implementations mostly for vector spaces. Vector-space
input files can come in either regular, i.e., dense, or sparse variant. A detailed list
of spaces, their parameters, and performance characteristics is given in Table 1.

https://github.com/nmslib/nmslib/tree/v1.8/manual/README.md
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The mnemonic name of the space is passed to python bindings function as
well as to the benchmarking utility see:
https://github.com/nmslib/nmslib/tree/v1.8/manual/benchmarking.md.
There can be more than one version of a distance function, which have different
space-performance trade-off. In particular, for distances that require computa-
tion of logarithms we can achieve an order of magnitude improvement (e.g., for
the GNU C++ and Clang) by pre-computing logarithms at index time. This
comes at a price of extra storage. In the case of Jensen-Shannon distance func-
tions, we can pre-compute some of the logarithms and accurately approximate
those we cannot pre-compute. The details are explained in § 3.2-3.6.

Straightforward slow implementations of the distance functions may have
the substring slow in their names, while faster versions contain the substring
fast. Fast functions that involve approximate computations contain additionally
the substring approx. For non-symmetric distance function, a space may have
two variants: one variant is for left queries (the data object is the first, i.e., left,
argument of the distance function while the query object is the second argument)
and another is for right queries (the data object is the second argument and the
query object is the first argument). In the latter case the name of the space ends
on rq. Separating spaces by query types, might not be the best approach. Yet,
it seems to be unavoidable, because, in many cases, we need separate indices to
support left and right queries [10]. If you know a better approach, feel free, to
tell us.

3.1 Details of Distance Efficiency Evaluation

Distance computation efficiency was evaluated on a Core i7 laptop (3.4 Ghz peak
frequency) in a single-threaded mode by the utility:
bench distfunc. It is measured in millions of computations per second for single-
precision floating pointer numbers (double precision computations are, of course,
more costly). The code was compiled using the GNU compiler. All data sets were
small enough to fit in a CPU cache, which may have resulted in slightly more
optimistic performance numbers for cheap distances such as L2.

Somewhat higher efficiency numbers can be obtained by using the Intel com-
piler or the Visual Studio (Clang seems to be equally efficient to the GNU com-
piler). In fact, performance is much better for distances relying on “heavy” math
functions: slow versions of KL- and Jensen-Shannon divergences and Jensen-
Shannon metrics, as well as for Lp spaces, where p 6∈ {1, 2,∞}.

In the efficiency test, all dense vectors have 128 elements. For all dense-vector
distances except the Jensen-Shannon divergence, their elements were generated
randomly and uniformly. For the Jensen-Shannon divergence, we first generate
elements randomly, and next we randomly select elements that are set to zero
(approximately half of all elements). Additionally, for KL-divergences and the
JS-divergence, we normalize vector elements so that they correspond a true
discrete probability distribution.

https://github.com/nmslib/nmslib/tree/v1.8/manual/benchmarking.md
https://github.com/searchivarius/nmslib/blob/v1.8/similarity_search/test/bench_distfunc.cc
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Sparse space distances were tested using sparse vectors from two sample files
in the sample data directory. Sparse vectors in the first and the second file on
average contain about 100 and 600 non-zero elements, respectively.

String distances were tested using DNA sequences sampled from a human
genome.1 The length of each string was sampled from a normal distribution
N (32, 4).

The Signature Quadratic Form Distance (SQFD) [3,2] was tested using signa-
tures extracted from LSVRC-2014 data set [38], which contains 1.2 million high
resolution images. We implemented our own code to extract signatures following
the method of Beecks [2]. For each image, we selected 104 pixels randomly and
mapped them into 7-dimensional feature space: three color, two position, and
two texture dimensions. The features were clustered by the standard k-means al-
gorithm with 20 clusters. Then, each cluster was represented by an 8-dimensional
vector, which included a 7-dimensional centroid and a cluster weight (the number
of cluster points divided by 104).

3.2 Lp-norms and the Hamming Distance

The Lp distance between vectors x and y are given by the formula:

Lp(x, y) =

(
n∑
i=1

|xi − yi|p
)1/p

(1)

In the limit (p→∞), the Lp distance becomes the Maximum metric, also known
as the Chebyshev distance:

L∞(x, y) =
n

max
i=1
|xi − yi| (2)

L∞ and all spaces Lp for p ≥ 1 are true metrics. They are symmetric, equal
to zero only for identical elements, and, most importantly, satisfy the triangle
inequality. However, the Lp norm is not a metric if p < 1.

In the case of dense vectors, we have reasonably efficient implementations
for Lp distances where p is either integer or infinity. The most efficient imple-
mentations are for L1 (Manhattan), L2 (Euclidean), and L∞ (Chebyshev). As
explained in the author’s blog, we compute exponents through square rooting.
This works best when the number of digits (after the binary digit) is small, e.g.,
if p = 0.125.

Any Lp space can have a dense and a sparse variant. Sparse vector spaces
have their own mnemonic names, which are different from dense-space mnemonic
names in that they contain a suffix sparse (see also Table 1). For instance l1

and l1 sparse are both L1 spaces, but the former is dense and the latter is
sparse. The mnemonic names of L1, L2, and L∞ spaces (passed to the bench-
marking utility) are l1, l2, and linf, respectively. Other generic Lp have the

1 http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/

https://github.com/searchivarius/nmslib/blob/v1.8/sample_data
https://github.com/searchivarius/nmslib/blob/v1.8/sample_data/sparse_5K.txt
https://github.com/searchivarius/nmslib/blob/v1.8/sample_data/sparse_wiki_5K.txt
https://github.com/searchivarius/nmslib/blob/v1.8/sample_data/dna32_4_5K.txt
https://github.com/searchivarius/nmslib/blob/v1.8/data/data_conv/sqfd
http://searchivarius.org/blog/efficient-exponentiation-square-rooting
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/
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Table 1: Description of implemented spaces

Space Mnemonic Name & Formula Efficiency

(million op/sec)

Metric Spaces

Hamming bit hamming
∑n
i=1 |xi − yi| 50-400

Jaccard bit jaccard, jaccard sparse
∑n
i=1 min(xi, yi)/

∑n
i=1 max(xi, yi) 500-200, 2

L1 l1, l1 sparse
∑n
i=1 |xi − yi| 35, 1.6

L2 l2, l2 sparse
√∑n

i=1 |xi − yi|2 30, 1.6

L∞ linf, linf sparse maxni=1 |xi − yi| 34 , 1.6

Lp (generic p ≥ 1) lp:p=..., lp sparse:p=...
(∑n

i=1 |xi − yi|
p
)1/p

0.1-3, 0.1-1.2

Angular distance angulardist, angulardist sparse, angulardist sparse fast 13, 1.4, 3.5

arccos

( ∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

)
Jensen-Shan. metr. jsmetrslow, jsmetrfast, jsmetrfastapprox 0.3, 1.9, 4.8√

1
2

∑n
i=1

[
xi log xi + yi log yi − (xi + yi) log xi+yi

2

]
Levenshtein leven (see § 3.8 for details) 0.2

SQFD sqfd minus func, sqfd heuristic func:alpha=..., 0.05, 0.05, 0.03

sqfd gaussian func:alpha=... (see § 3.9 for details)

Non-metric spaces (symmetric distance)

Lp (generic p < 1) lp:p=..., lp sparse:p=...
(∑n

i=1 |xi − yi|
p
)1/p

0.1-3, 0.1-1

Jensen-Shan. div. jsdivslow, jsdivfast, jsdivfastapprox 0.3, 1.9, 4.8
1
2

∑n
i=1

[
xi log xi + yi log yi − (xi + yi) log xi+yi

2

]
Cosine distance cosinesimil, cosinesimil sparse, cosinesimil sparse fast 13, 1.4, 3.5

1−
∑n

i=1 xiyi√∑n
i=1 x

2
i

√∑n
i=1 y

2
i

Norm. Levenshtein normleven, see § 3.8 for details 0.2

Non-metric spaces (non-symmetric distance)

Regular KL-div. left queries: kldivfast 0.5, 27

right queries: kldivfastrq∑n
i=1 xi log xi

yi

Generalized KL-div. left queries: kldivgenslow, kldivgenfast 0.5, 27

right queries: kldivgenfastrq 27∑n
i=1

[
xi log xi

yi
− xi + yi

]
Itakura-Saito left queries: itakurasaitoslow, itakurasaitofast 0.2, 3, 14

right queries: itakurasaitofastrq 14∑n
i=1

[
xi
yi
− log xi

yi
− 1
]

Rényi divergence renyidiv slow, renyidiv fast 1
α−1

log

[
m∑
i=1

xαi y
1−α
i

]
0.4, 0.5-1.5
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name lp, which is used in combination with a parameter. For instance, L3 is
denoted as lp:p=3.

Distance functions for sparse-vector spaces are far less efficient, due to a
costly, branch-heavy, operation of matching sparse vector indices (between two
sparse vectors).

In the special case of L1 for binary vectors, the L1 distance becomes the
Hamming distance. This case is represented by the bit hamming space, where
data points are stored as compact bit vectors.

3.3 Scalar-product Related Distances

We have two distance function whose formulas include normalized scalar prod-
uct. One is the cosine distance, which is equal to:

d(x, y) = 1−
∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

The cosine distance is not a true metric, but it can be converted into one by
applying a monotonic transformation (i.e.., subtracting the cosine distance from
one and taking an inverse cosine). The resulting distance function is a true
metric, which is called the angular distance. The angular distance is computed
using the following formula:

d(x, y) = arccos

( ∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

)
In the case of sparse spaces, to compute the scalar product, we need to ob-

tain an intersection of vector element ids corresponding to non-zero elements.
A classic text-book intersection algorithm (akin to a merge-sort) is not particu-
larly efficient, apparently, due to frequent branching. For single-precision floating
point vector elements, we provide a more efficient implementation that relies on
the all-against-all comparison SIMD instruction mm cmpistrm. This implemen-
tation (inspired by the set intersection algorithm of Schlegel et al. [41]) is about
2.5-3 times faster than a pure C++ implementation based on the merge-sort
approach.

3.4 Jaccard Distance

The Jaccard distance is true metric. Given two binary vectors x and y, the
Jaccard distance (also called the index) is computed using the following formula:∑n

i=1 min(xi, yi)∑n
i=1 max(xi, yi)

For the Jaccard distance, there are two ways to represent data:

– A sparse set of dimensions (space jaccard sparse);
– A dense binary bit vector (space bit jaccard).
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3.5 Jensen-Shannon Divergence

Jensen-Shannon divergence is a symmetrized and smoothed KL-divergence:

1

2

n∑
i=1

[
xi log xi + yi log yi − (xi + yi) log

xi + yi
2

]
(3)

This divergence is symmetric, but it is not a metric function. However, the square
root of the Jensen-Shannon divergence is a proper a metric [19], which we call
the Jensen-Shannon metric.

A straightforward implementation of Eq. 3 is inefficient for two reasons (at
least when one uses the GNU C++ compiler) (1) computation of logarithms is a
slow operation (2) the case of zero xi and/or yi requires conditional processing,
i.e., costly branches.

A better method is to pre-compute logarithms of data at index time. It is also
necessary to compute logarithms of a query vector. However, this operation has
a little cost since it is carried out once for each nearest neighbor or range query.
Pre-computation leads to a 3-10 fold improvement depending on the sparsity of
vectors, albeit at the expense of requiring twice as much space. Unfortunately,
it is not possible to avoid computation of the third logarithm: it needs to be
computed in points that are not known until we see the query vector.

However, it is possible to approximate it with a very good precision, which
should be sufficient for the purpose of approximate searching. Let us rewrite
Equation 3 as follows:

1

2

n∑
i=1

[
xi log xi + yi log yi − (xi + yi) log

xi + yi
2

]
=

=
1

2

n∑
i=1

[xi log xi + yi log yi]−
n∑
i=1

[
(xi + yi)

2
log

xi + yi
2

]
=

=
1

2

n∑
i=1

xi log xi + yi log yi−

n∑
i=1

(xi + yi)

2

[
log

1

2
+ log max(xi, yi) + log

(
1 +

min(xi, yi)

max(xi, yi)

)]
(4)

We can pre-compute all the logarithms in Eq. 4 except for log
(

1 + min(xi,yi)
max(xi,yi)

)
.

However, its argument value is in a small range: from one to two. We can dis-
cretize the range, compute logarithms in many intermediate points and save the
computed values in a table. Finally, we employ the SIMD instructions to im-
plement this approach. This is a very efficient approach, which results in a very
little (around 10−6 on average) relative error for the value of the Jensen-Shannon
divergence.

Another possible approach is to use an efficient approximation for logarithm
computation. As our tests show, this method is about 1.5x times faster (1.5 vs

http://fastapprox.googlecode.com/svn/trunk/fastapprox/src/fastonebigheader.h
http://fastapprox.googlecode.com/svn/trunk/fastapprox/src/fastonebigheader.h
https://github.com/searchivarius/BlogCode/tree/master/2013/12/26
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1.0 billions of logarithms per second), but for the logarithms in the range [1, 2],
the relative error is one order magnitude higher (for a single logarithm) than for
the table-based discretization approach.

3.6 Bregman Divergences

Bregman divergences are typically non-metric distance functions, which are equal
to a difference between some convex differentiable function f and its first-order
Taylor expansion [8,10]. More formally, given the convex and differentiable func-
tion f (of many variables), its corresponding Bregman divergence df (x, y) is
equal to:

df (x, y) = f(x)− f(y)− (f(y) · (x− y))

where x · y denotes the scalar product of vectors x and y. In this library, we im-
plement the generalized KL-divergence and the Itakura-Saito divergence, which
correspond to functions f =

∑
xi log xi −

∑
xi and f = −

∑
log xi. The gener-

alized KL-divergence is equal to:

n∑
i=1

[
xi log

xi
yi
− xi + yi

]
,

while the Itakura-Saito divergence is equal to:

n∑
i=1

[
xi
yi
− log

xi
yi
− 1

]
.

If vectors x and y are proper probability distributions,
∑
xi =

∑
yi = 1. In this

case, the generalized KL-divergence becomes a regular KL-divergence:

n∑
i=1

[
xi log

xi
yi

]
.

Computing logarithms is costly: We can considerably improve efficiency of
Itakura-Saito divergence and KL-divergence by pre-computing logarithms at in-
dex time. The spaces that implement this functionality contain the substring
fast in their mnemonic names (see also Table 1).

3.7 Rényi Divergence

The Rényi divergence is a family of generally non-symmetric distances computed
by the formula:

1

α− 1
log

[
m∑
i=1

xαi y
1−α
i

]
The value of the parameter α should be greater than zero. For all values except
α = 0.5 these distances are non-symmetric. There are two variants of each
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space: renyidiv slow and renyidiv fast. They have a parameter alpha. The
slower variant computes the exponents using a standard function pow. For the
fast variant, as explained in the author’s blog, we compute exponents through
square rooting. This works best when the number of digits (after the binary
digit) is small, e.g., if p = 0.125. The slow variant can actually be faster, if the
compiler, e.g., MS Visual Studio or the Intel Compiler, implements an efficient
approximate variant of the pow function.

3.8 String Distances

We currently provide implementations for the Levenshtein distance and its length-
normalized variant. The original Levenshtein distance is equal to the minimum
number of insertions, deletions, and substitutions (but not transpositions) re-
quired to obtain one string from another [27]. The distance between strings p
and s is computed using the classic O(m × n) dynamic programming solution,
where m and n are lengths of strings p and s, respectively. The normalized Lev-
enshtein distance is obtained by dividing the original Levenshtein distance by
the maximum of string lengths. If both strings are empty, the distance is equal
to zero.

While the original Levenshtein distance is a metric distance, the normalized
Levenshtein function is not, because the triangle inequality may not hold. In
practice, when there is little variance in string length, the violation of the tri-
angle inequality is infrequent and, thus, the normalized Levenshtein distance is
approximately metric for many real data sets.

Technically, the classic Levenshtein distance is equal to Cn,m, where Ci,j is
computed via the classic recursion:

Ci,j = min


0, if i = j = 0

Ci−1,j + 1, if i > 0

Ci,j−1 + 1, if j > 0

Ci−1,j−1 + [pi 6= sj ], if i, j > 0

(5)

Because computation time is proportional to both strings’ length, this can be
a costly operation: for the sample data set described in § 3.1, it is possible to
compute only about 200K distances per second.

The classic algorithm to compute the Levenshtein distance was independently
discovered by several researchers in various contexts, including speech recogni-
tion [47,46,39] and computational biology [36] (see Sankoff [40] for a historical
perspective). Despite the early discovery, the algorithm was generally unknown
before a publication by Wagner and Fischer [48] in a computer science journal.

3.9 Signature Quadratic Form Distance (SQFD)

Images can be compared using a family of metric functions called the Signature
Quadratic Form Distance (SQFD). During the preprocessing stage, each image

http://searchivarius.org/blog/efficient-exponentiation-square-rooting
http://searchivarius.org/blog/efficient-exponentiation-square-rooting
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is converted to a set of n signatures (the number of signatures n is a parameter).
To this end, a fixed number of pixels is randomly selected. Then, each pixel
is represented by a 7-dimensional vector with the following components: three
color, two position, and two texture elements. These 7-dimensional vectors are
clustered by the standard k-means algorithm with n centers. Finally, each cluster
is represented by an 8-dimensional vector, called signature. A signature includes
a 7-dimensional centroid and a cluster weight (the number of cluster points
divided by the total number of randomly selected pixels). Cluster weights form
a signature histogram.

The SQFD is computed as a quadratic form applied to a 2n-dimensional vec-
tor constructed by combining images’ signature histograms. The combination
vector includes n unmodified signature histogram values of the first image fol-
lowed by n negated signature histogram values of the second image. Unlike the
classic quadratic form distance, where the quadratic form matrix is fixed, in the
case of the SQFD, the matrix is re-computed for each pair of images. This can
be seen as computing the distance between infinite-dimensional vectors each of
which has only a finite number of non-zero elements.

To compute the quadratic form matrix, we introduce the new global enu-
meration of signatures, in which a signature k from the first image has number
k, while the signature k from the second image has number n + k. To obtain
a quadratic form matrix element in row i column j we first compute the Eu-
clidean distance d between the i-th and the j-th signature. Then, the value d is
transformed using one of the three functions: negation (the minus function −d),
a heuristic function 1

α+d , and the Gaussian function exp(−αd2). The larger is
the distance, the smaller is the coefficient in the matrix of the quadratic form.

Note that the SQFD is a family of distances parameterized by the choice of
the transformation function and α. For further details, please, see the thesis of
Beecks [2].

4 Search Methods

Implemented search methods can be broadly divided into the following cate-
gories:

– Space partitioning methods (including a specialized method bbtree for Breg-
man divergences) § 4.1;

– Locality Sensitive Hashing (LSH) methods § 4.2;
– Filter-and-refine methods based on projection to a lower-dimensional space

§ 4.3;
– Filtering methods based on permutations § 4.4;
– Methods that construct a proximity graph § 4.5;
– Miscellaneous methods § 4.6.

In the following subsections (§ 4.1-4.6), we describe implemented methods,
explain their parameters, and provide examples of their use via the benchmarking
utility experiment (experiment.exe on Windows). The details on building the
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utility experiment can be found online:
https://github.com/nmslib/nmslib/tree/v1.8/manual/README.md.

4.1 Space Partitioning Methods

Parameters of space partitioning methods are summarized in Table 2. Most of
these methods are hierarchical partitioning methods.

Hierarchical space partitioning methods create a hierarchical decomposition
of the space (often in a recursive fashion), which is best represented by a tree
(or a forest). There are two main partitioning approaches: pivoting and compact
partitioning schemes [14].

Pivoting methods rely on embedding into a vector space where vector ele-
ments are distances from the object to pivots. Partitioning is based on how far
(or close) the data points are located with respect to pivots. 2

Hierarchical partitions produced by pivoting methods lack locality: a single
partition can contain not-so-close data points. In contrast, compact partitioning
schemes exploit locality. They either divide the data into clusters or create,
possibly approximate, Voronoi partitions. In the latter case, for example, we can
select several centers/pivots πi and associate data points with the closest center.

If the current partition contains fewer than bucketSize (a method parame-
ter) elements, we stop partitioning of the space and place all elements belonging
to the current partition into a single bucket. If, in addition, the value of the
parameter chunkBucket is set to one, we allocate a new chunk of memory that
contains a copy of all bucket vectors. This method often halves retrieval time at
the expense of extra memory consumed by a testing utility (e.g., experiment)
as it does not deallocate memory occupied by the original vectors. 3

Classic hierarchical space partitioning methods for metric spaces are exact. It
is possible to make them approximate via an early termination technique, where
we terminate the search after exploring a pre-specified number of partitions. To
implement this strategy, we define an order of visiting partitions. In the case
of clustering methods, we first visit partitions that are closer to a query point.
In the case of hierarchical space partitioning methods such as the VP-tree, we
greedily explore partitions containing the query.

In NMSLIB, the early termination condition is defined in terms of the max-
imum number of buckets (parameter maxLeavesToVisit) to visit before termi-
nating the search procedure. By default, the parameter maxLeavesToVisit is
set to a large number (2147483647), which means that no early termination is
employed. The parameter maxLeavesToVisit is supported by many, but not all
space partitioning methods.

2 If the original space is metric, mapping an object to a vector of distances to pivots
defines the contractive embedding in the metric spaces with L∞ distance. That is,
the L∞ distance in the target vector space is a lower bound for the original distance.

3 Keeping original vectors simplifies the testing workflow. However, this is not nec-
essary for a real production system. Hence, storing bucket vectors at contiguous
memory locations does not have to result in a larger memory footprint.

https://github.com/nmslib/nmslib/tree/v1.8/manual/README.md
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4.1.1 VP-tree A VP-tree [45,50] (also known as a ball-tree) is a pivoting
method. During indexing, a (random) pivot is selected and a set of data objects
is divided into two parts based on the distance to the pivot. If the distance
is smaller than the median distance, the objects are placed into one (inner)
partition. If the distance is larger than the median, the objects are placed into
the other (outer) partition. If the distance is exactly equal to the median, the
placement can be arbitrary.

We attempt to select the pivot multiple times. Each time, we measure the
variance of distances to the pivot. Eventually, we use the pivot that corresponds
to the maximum variance. The number of attempts to select the pivot is con-
trolled by the index-time parameter selectPivotAttempts.

The VP-tree in metric spaces is an exact search method, which relies on the
triangle inequality. It can be made approximate by applying the early termina-
tion strategy (as described in the previous subsection). Another approximate-
search approach, which is currently implemented only for the VP-tree, is based
on the relaxed version of the triangle inequality.

Assume that π is the pivot in the VP-tree, q is the query with the radius
r, and R is the median distance from π to every other data point. Due to the
triangle inequality, pruning is possible only if r ≤ |R − d(π, q)|. If this latter
condition is true, we visit only one partition that contains the query point. If
r > |R−d(π, q)|, there is no guarantee that all answers are in the same partition
as q. Thus, to guarantee retrieval of all answers, we need to visit both partitions.

The pruning condition based on the triangle inequality can be overly pes-
simistic. By selecting some α > 1 and opting to prune when r ≤ α|R− d(π, q)|,
we can improve search performance at the expense of missing some valid an-
swers. The efficiency-effectiveness trade-off is affected by the choice of α: Note
that for some (especially low-dimensional) data sets, a modest loss in recall (e.g.,
by 1-5%) can lead to an order of magnitude faster retrieval. Not only the triangle
inequality can be overly pessimistic in metric spaces, but it often fails to capture
the geometry of non-metric spaces. As a result, if the metric space method is
applied to a non-metric space, the recall can be too low or retrieval time can be
too long.

Yet, in non-metric spaces, it is often possible to answer queries, when using α
possibly smaller than one [6,34]. More generally, we assume that there exists an
unknown decision/pruning function D(R, d(π, q)) and that pruning is done when
r ≤ D(R, d(π, q)). The decision function D(), which can be learned from data,
is called a search oracle. A pruning algorithm based on the triangle inequality is
a special case of the search oracle described by the formula:

Dπ,R(x) =

{
αleft|x−R|expleft , if x ≤ R
αright|x−R|expright , if x ≥ R

(6)

There are several ways to obtain/specify optimal parameters for the VP-tree:

– using the auto-tuning procedure fired before creation of the index;
– using the standalone tuning utility tune vptree (tune vptree.exe for Win-

dows);
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– fully manually.

It is, perhaps, easiest to initiate the tunning procedure during creation of
the index. To this end, one needs to specify parameters desiredRecall (the
minimum desired recall), bucketSize (the size of the bucket), tuneK or tuneR,
and (optionally) parameters tuneQty, minExp and maxExp. Parameters tuneK

and tuneR are used to specify the value of k for k-NN search, or the search
radius r for the range search.

The parameter tuneQty defines the maximum number of records in a subset
that is used for tuning. The tunning procedure will sample tuneQty records from
the main set to make a (potentially) smaller data test. Additional query sets will
be created by further random sampling of points from this smaller data set.

The tuning procedure considers all possible values for exponents between
minExp and maxExp with a restriction that expleft = expright. By default, minExp
= maxExp = 1, which is usually a good setting. For each value of the exponents,
the tunning procedure carries out a grid-like search procedure for parameters
αleft and αright with several random restarts. It creates several indices for the
tuning subset and runs a batch of mini-experiments to find parameters yield-
ing the desired recall value at the minimum cost. If it is necessary to produce
more accurate estimates, the tunning method may use automatically adjusted
values for parameters tuneQty, bucketSize, and desiredRecall. The tunning
algorithm cannot adjust the parameter maxLeavesToVisit: please, do not use
it with the auto-tunning procedure.

The disadvantage of automatic tuning is that it might fail to obtain param-
eters for a desired recall level. Another limitations is that a tunning procedure
cannot run on very small data sets (less than two thousand entries).

The standalone tuning utility tune vptree exploits an almost identical tun-
ing procedure. It differs from index-time auto-tuning in several ways:

– It can be used with other VP-tree based methods, in particular, with the
projection VP-tree (see § 4.3.2).

– It allows the user to specify a separate query set, which can be useful when
queries cannot be accurately modelled by a bootstrapping approach (sam-
pling queries from the main data set).

– Once the optimal values are computed, they can be further re-used without
the need to start the tunning procedure each time the index is created.

– However, the user is fully responsible for specifying the size of the test data
set and the value of the parameter desiredRecall: the system will not try
to change them for optimization purposes.

If automatic tunning fails, the user can restart the procedure with the smaller
value of desiredRecall. Alternatively, the user can manually specify values of
parameters: alphaLeft, alphaRight, expLeft, and expRight (by default expo-
nents are one).

The following is an example of testing the VP-tree with the benchmarking
utility experiment without the auto-tunning (note the separation into index-
and query-time parameters):
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release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method vptree \

--createIndex bucketSize=10,chunkBucket=1 \

--queryTimeParams alphaLeft=2.0,alphaRight=2.0,\

expLeft=1,expRight=1,\

maxLeavesToVisit=500

To initiate auto-tuning, one may use the following command line (note that
we do not use the parameter maxLeavesToVisit here):

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method vptree \

--createIndex tuneK=1,desiredRecall=0.9,\

bucketSize=10,chunkBucket=1

4.1.2 Multi-Vantage Point Tree It is possible to have more than one pivot
per tree level. In the binary version of the multi-vantage point tree (MVP-tree),
which is implemented in NMSLIB, there are two pivots. Thus, each partition
divides the space into four parts, which are similar to partitions created by two
levels of the VP-tree. The difference is that the VP-tree employs three pivots to
divide the space into four parts, while in the MVP-tree two pivots are used.

In addition, in the MVP-tree we memorize distances between a data object
and the first maxPathLen (method parameter) pivots on the path connecting the
root and the leaf that stores this data object. Because mapping an object to a
vector of distances (to maxPathLen pivots) defines the contractive embedding in
the metric spaces with L∞ distance, these values can be used to improve the
filtering capacity of the MVP-tree and, consequently to reduce the number of
distance computations.

The following is an example of testing the MVP-tree with the benchmarking
utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method mvptree \

--createIndex maxPathLen=4,bucketSize=10,chunkBucket=1 \

--queryTimeParams maxLeavesToVisit=500

Our implementation of the MVP-tree permits to answer queries both exactly
and approximately (by specifying the parameter maxLeavesToVisit). Yet, this
implementation should be used only with metric spaces.
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Table 2: Parameters of space partitioning methods

Common parameters

bucketSize A maximum number of elements in a bucket/leaf.

chunkBucket Indicates if bucket elements should be stored contiguously in
memory (1 by default).

maxLeavesToVisit An early termination parameter equal to the maximum num-
ber of buckets (tree leaves) visited by a search algorithm
(2147483647 by default).

VP-tree (vptree) [45,50]

Common parameters: bucketSize, chunkBucket, and
maxLeavesToVisit

selectPivotAttempts A number of pivot selection attempts (5 by default)

alphaLeft/alphaRight A stretching coefficient αleft/αright in Eq. (6)

expLeft/expRight The left/right exponent in Eq. (6)

tuneK The value of k used in the auto-tunning procedure (in the case
of k-NN search)

tuneR The value of the radius r used in the auto-tunning procedure
(in the case of the range search)

minExp/maxExp The minimum/maximum value of exponent used in the auto-
tunning procedure

Multi-Vantage Point Tree (mvptree) [7]

Common parameters: bucketSize, chunkBucket, and
maxLeavesToVisit

maxPathLen the maximum number of top-level pivots for which we memorize
distances to data objects in the leaves

GH-tree (ghtree) [45]

Common parameters: bucketSize, chunkBucket, and
maxLeavesToVisit

List of clusters (list clusters) [13]

Common parameters: bucketSize, chunkBucket, and
maxLeavesToVisit. Note maxLeavesToVisit is a query-
time parameter.

useBucketSize If equal to one, we use the parameter bucketSize to determine
the number of points in the cluster. Otherwise, the size of the
cluster is defined by the parameter radius.

radius The maximum radius of a cluster (used when useBucketSize

is set to zero).

strategy A cluster selection strategy. It is one of the follow-
ing: random, closestPrevCenter, farthestPrevCenter,
minSumDistPrevCenters, maxSumDistPrevCenters.

SA-tree (satree) [35]

No parameters

bbtree (bbtree) [10]

Common parameters: bucketSize, chunkBucket, and
maxLeavesToVisit

Note: mnemonic method names are given in round brackets.
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4.1.3 GH-Tree A GH-tree [45] is a binary tree. In each node the data set
is divided using two randomly selected pivots. Elements closer to one pivot are
placed into a left subtree, while elements closer to the second pivot are placed
into a right subtree.

The following is an example of testing the GH-tree with the benchmarking
utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method ghtree \

--createIndex bucketSize=10,chunkBucket=1 \

--queryTimeParams maxLeavesToVisit=10

Our implementation of the GH-tree permits to answer queries both exactly
and approximately (by specifying the parameter maxLeavesToVisit). Yet, this
implementation should be used only with metric spaces.

4.1.4 List of Clusters The list of clusters [13] is an exact search method for
metric spaces, which relies on flat (i.e., non-hierarchical) clustering. Clusters are
created sequentially starting by randomly selecting the first cluster center. Then,
close points are assigned to the cluster and the clustering procedure is applied
to the remaining points. Closeness is defined either in terms of the maximum
radius, or in terms of the maximum number (bucketSize) of points closest to
the center.

Next we select cluster centers according to one of the policies: random selec-
tion, a point closest to the previous center, a point farthest from the previous
center, a point that minimizes the sum of distances to the previous center, and
a point that maximizes the sum of distances to the previous center. In our ex-
perience, a random selection strategy (a default one) works well in most cases.

The search algorithm iterates over the constructed list of clusters and checks
if answers can potentially belong to the currently selected cluster (using the
triangle inequality). If the cluster can contain an answer, each cluster element
is compared directly against the query. Next, we use the triangle inequality to
verify if answers can be outside the current cluster. If this is not possible, the
search is terminated.

We modified this exact algorithm by introducing an early termination condi-
tion. The clusters are visited in the order of increasing distance from the query to
a cluster center. The search process stops after vising a maxLeavesToVisit clus-
ters. Our version is supposed to work for metric spaces (and symmetric distance
functions), but it can also be used with mildly-nonmetric symmetric distances
such as the cosine distance.
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An example of testing the list of clusters using the bucketSize as a parameter
to define the size of the cluster:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method list_clusters \

--createIndex useBucketSize=1,bucketSize=100,strategy=random \

--queryTimeParams maxLeavesToVisit=5

An example of testing the list of clusters using the radius as a parameter to
define the size of the cluster:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method list_clusters \

--createIndex useBucketSize=0,radius=0.2,strategy=random \

--queryTimeParams maxLeavesToVisit=5

4.1.5 SA-tree The Spatial Approximation tree (SA-tree) [35] aims to approx-
imate the Voronoi partitioning. A data set is recursively divided by selecting
several cluster centers in a greedy fashion. Then, all remaining data points are
assigned to the closest cluster center.

A cluster-selection procedure first randomly chooses the main center point
and arranges the remaining objects in the order of increasing distances to this
center. It then iteratively fills the set of clusters as follows: We start from the
empty cluster list. Then, we iterate over the set of data points and check if there
is a cluster center that is closer to this point than the main center point. If no
such cluster exists (i.e., the point is closer to the main center point than to any
of the already selected cluster centers), the point becomes a new cluster center
(and is added to the list of clusters). Otherwise, the point is added to the nearest
cluster from the list.

After the cluster centers are selected, each of them is indexed recursively
using the already described algorithm. Before this, however, we check if there
are points that need to be reassigned to a different cluster. Indeed, because the
list of clusters keeps growing, we may miss the nearest cluster not yet added to
the list. To fix this, we need to compute distances among every cluster point and
cluster centers that were not selected at the moment of the point’s assignment
to the cluster.

Currently, the SA-tree is an exact search method for metric spaces without
any parameters. The following is an example of testing the SA-tree with the
benchmarking utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \
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--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method satree

4.1.6 bbtree A Bregman ball tree (bbtree) is an exact search method for
Bregman divergences [10]. The bbtree divides data into two clusters (each cov-
ered by a Bregman ball) and recursively repeats this procedure for each cluster
until the number of data points in a cluster falls below bucketSize. Then, such
clusters are stored as a single bucket.

At search time, the method relies on properties of Bregman divergences to
compute the shortest distance to a covering ball. This is a rather expensive
iterative procedure that may require several computations of direct and inverse
gradients, as well as of several distances.

Additionally, Cayton [10] employed an early termination method: The algo-
rithm can be told to stop after processing a maxLeavesToVisit buckets. The
resulting method is an approximate search procedure.

Our implementation of the bbtree uses the same code to carry out the nearest-
neighbor and the range searching. Such an implementation of the range searching
is somewhat suboptimal and a better approach exists [11].

The following is an example of testing the bbtree with the benchmarking
utility experiment:

release/experiment \

--distType float --spaceType kldivgenfast \

--testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method bbtree \

--createIndex bucketSize=10 \

--queryTimeParams maxLeavesToVisit=20

4.2 Locality-sensitive Hashing Methods

Locality Sensitive Hashing (LSH) [25,26] is a class of methods employing hash
functions that tend to have the same hash values for close points and different
hash values for distant points. It is a probabilistic method in which the probabil-
ity of having the same hash value is a monotonically decreasing function of the
distance between two points (that we compare). A hash function that possesses
this property is called locality sensitive.

Our library embeds the LSHKIT which provides locality sensitive hash func-
tions in L1 and L2. It supports only the nearest-neighbor (but not the range)
search. Parameters of LSH methods are summarized in Table 3. The LSH meth-
ods are not available under Windows.

Random projections is a common approach to design locality sensitive hash
functions. These functions are composed from M binary hash functions hi(x). A
concatenation of the binary hash function values, i.e., h1(x)h2(x) . . . hM (x), is
interpreted as a binary representation of the hash function value h(x). Pointers
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Table 3: Parameters of LSH methods

Common parameters

W A width of the window [16].

M A number of atomic (binary hash functions), which are con-
catenated to produce an integer hash value.

H A size of the hash table.

L The number hash tables.

Multiprobe LSH: only for L2 (lsh multiprobe) [30,18,16]

Common parameters: W, M, H, and L

T a number of probes

desiredRecall a desired recall

numSamplePairs a number of samples (P in lshkit)

numSampleQueries a number of sample queries (Q in lshkit)

tuneK find optimal parameter for k-NN , search where k is defined by
this parameter

LSH Gaussian: only for L2 (lsh gaussian) [12]

Common parameters: W, M, H, and L

LSH Cauchy: only for L1 (lsh cauchy) [12]

Common parameters: W, M, H, and L

LSH thresholding: only for L1 (lsh threshold) [49,29]

Common parameters: M, H, and L (W is not used)

Note: mnemonic method names are given in round brackets.

to objects with equal hash values (modulo H) are stored in same cells of the
hash table (of the size H). If we used only one hash table, the probability of
collision for two similar objects would be too low. To increase the probability of
finding a similar object multiple hash tables are used. In that, we use a separate
(randomly selected) hash function for each hash table.

To generate binary hash functions we first select a parameter W (called a
width). Next, for every binary hash function, we draw a value ai from a p-stable
distribution [15], and a value bi from the uniform distribution with the support
[0,W ]. Finally, we define hi(x) as:

hi(x) =

⌊
ai · x+ bi

W

⌋
,
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where bxc is the floor function and x · y denotes the scalar product of x and y.
For the L2 a standard Guassian distribution is p-stable, while for L1 distance

one can generate hash functions using a Cauchy distribution [15]. For L1, the
LSHKIT defines another (“thresholding”) approach based on sampling. It is
supposed to work best for data points enclosed in a cube [a, b]d. We omit the
description here and refer the reader to the papers that introduced this method
[49,29].

One serious drawback of the LSH is that it is memory-greedy. To reduce
the number of hash tables while keeping the collision probability for similar
objects sufficiently high, it was proposed to “multi-probe” the same hash table
more than once. When we obtain the hash value h(x), we check (i.e., probe) not
only the contents of the hash table cell h(x) mod H, but also contents of cells
whose binary codes are “close” to h(x) (i.e, they may differ by a small number of
bits). The LSHKIT, which is embedded in our library, contains a state-of-the-art
implementation of the multi-probe LSH that can automatically select optimal
values for parameters M and W to achieve a desired recall (remaining parameters
still need to be chosen manually).

The following is an example of testing the multi-probe LSH with the bench-
marking utility experiment. We aim to achieve the recall value 0.25 (parameter
desiredRecall) for the 1-NN search (parameter tuneK):

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method lsh_multiprobe \

--createIndex desiredRecall=0.25,tuneK=1,\

T=5,L=25,H=16535

The classic version of the LSH for L2 can be tested as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method lsh_gaussian \

--createIndex W=2,L=5,M=40,H=16535

There are two ways to use LSH for L1. First, we can invoke the implemen-
tation based on the Cauchy distribution:

release/experiment \

--distType float --spaceType l1 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method lsh_cauchy \

--createIndex W=2,L=5,M=10,H=16535

Second, we can use L1 implementation based on thresholding. Note that it
does not use the width parameter W:
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release/experiment \

--distType float --spaceType l1 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method lsh_threshold \

--createIndex L=5,M=60,H=16535

4.3 Projection-based Filter-and-Refine Methods

Projection-based filter-and-refine methods operate by mapping data and query
points to a low(er) dimensional space (a projection space) with a simple, easy
to compute, distance function. The search procedure consists in generation of
candidate entries by searching in a low-dimensional projection space with sub-
sequent refinement, where candidate entries are directly compared against the
query using the original distance function.

The number of candidate records is an important method parameter, which
can be specified as a fraction of the total number of data base entries (parameter
dbScanFrac).

Different projection-based methods arise depending on: the type of a projec-
tion, the type of the projection space, and on the type of the search algorithm
for the projection space. A type of the projection can be specified via a method’s
parameter projType. A dimensionality of the projection space is specified via a
method’s parameter projDim.

We support four well-known types of projections:

– Classic random projections using random orthonormal vectors (mnemonic
name rand);

– Fastmap (mnemonic name fastmap);
– Distances to random reference points/pivots (mnemonic name randrefpt);
– Based on permutations perm;

All but the classic random projections are distance-based and can be applied to
an arbitrary space with the distance function. Random projections can be applied
only to vector spaces. A more detailed description of projection approaches is
given in § A

We provide two basic implementations to generate candidates. One is based
on brute-force searching in the projected space and another builds a VP-tree
over objects’ projections. In what follows, these methods are described in detail.

4.3.1 Brute-force projection search. In the brute-force approach, we scan
the list of projections and compute the distance between the projected query and
a projection of every data point. Then, we sort all data points in the order of
increasing distance to the projected query. A fraction (defined by dbScanFrac)
of data points is compared directly against the query. Top candidates (most clos-
est entries) are identified using either the priority queue or incremental sorting
([24]). Incremental sorting is a more efficient approach enabled by default. The
mnemonic code of this method is proj incsort.
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A choice of the distance in the projected space is governed by the parameter
useCosine. If it set to 1, the cosine distance is used (this makes most sense if we
use the cosine distance in the original space). By default useCosine = 0, which
forces the use of L2 in the projected space.

The following is an example of testing the brute-force search of projections
with the benchmarking utility experiment:

release/experiment \

--distType float --spaceType cosinesimil --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method proj_incsort \

--createIndex projType=rand,projDim=4 \

--queryTimeParams useCosine=1,dbScanFrac=0.01

4.3.2 Projection VP-tree. To avoid exhaustive search in the space of pro-
jections, it is possible to index projected vectors using a VP-tree. The method’s
mnemonic name is proj vptree. In that, one needs to specify both the param-
eters of the VP-tree (see § 4.1.1) and the projection parameters as in the case
of brute-force searching of projections (see § 4.3.1).

The major difference from the brute-force search over projections is that,
instead of choosing between L2 and cosine distance as the distance in the pro-
jected space, one uses a methods’ parameter projSpaceType to specify an ar-
bitrary one. Similar to the regular VP-tree implementation, optimal αleft and
αright are determined by the utility tune vptree via a grid search like procedure
(tune vptree.exe on Windows).

This method, unfortunately, tends to perform worse than the VP-tree ap-
plied to the original space. The only exception are spaces with high intrinsic
(and, perhaps, representational) dimensionality where VP-trees (even with an
approximate search algorithm) are useless unless dimensionality is reduced sub-
stantially. One example is Wikipedia tf-idf vectors see:
https://github.com/nmslib/nmslib/tree/v1.8/manual/datasets.md.

The following is an example of testing the VP-tree over projections with the
benchmarking utility experiment:

release/experiment \

--distType float --spaceType cosinesimil --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method proj_vptree \

--createIndex projType=rand,projDim=4,projSpaceType=cosinesimil \

--queryTimeParams alphaLeft=2,alphaRight=2,dbScanFrac=0.01

4.3.3 OMEDRANK. In OMEDRANK [21] there is a small set of voting
pivots, each of which ranks data points based on a somewhat imperfect notion
of the distance from points to the query (computed by a classic random pro-
jection or a projection of some different kind). While each individual ranking is

https://github.com/nmslib/nmslib/tree/v1.8/manual/datasets.md
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imperfect, a more accurate ranking can be achieved by rank aggregation. When
such a consolidating ranking is found, the most highly ranked objects from this
aggregate ranking can be used as answers to a nearest-neighbor query. Finding
the aggregate ranking is an NP-complete problem that Fagin et al. [21] solve
only heuristically.

Technically, during the index time, each point in the original space is pro-
jected into a (low)er dimensional vector space. The dimensionality of the projec-
tion is defined using a method’s parameter numPivot (note that this is different
from other projection methods). Then, for each dimension i in the projected
space, we sort data points in the order of increasing value of the i-th element of
its projection.

We also divide the index in chunks each accounting for at most chunkIndexSize
data points. The search algorithm processes one chunk at a time. The idea is to
make a chunk sufficiently small so that auxiliary data structures fit into L1 or
L2 cache.

The retrieval algorithm uses numPivot pointers lowi and numPivot pointers
highi (lowi ≤ highi), The i-th pair of pointers (lowi, highi) indicate a start
and an end position in the i-th list. For each data point, we allocate a zero-
initialized counter. We further create a projection of the query and use numPivot
binary searches to find numPivot data points that have the closest i-th projection
coordinates. In each of the i list, we make both highi and lowi point to the found
data entries. In addition, for each data point found, we increase its counter. Note
that a single data point may appear the closest with respect to more than one
projection coordinate!

After that, we run a series of iterations. In each iteration, we increase numPivot
pointers highi and decrease numPivot pointers lowi (unless we reached the be-
ginning or the end of a list). For each data entry at which the pointer points,
we increase the value of the counter. Obviously, when we complete traversal of
all numPivot lists, each counter will have the value numPivot (recall that each
data point appears exactly once in each of the lists). Thus, sooner or later the
value of a counter becomes equal to or larger than numPivot× minFreq, where
minFreq is a method’s parameter, e.g., 0.5.

The first point whose counter becomes equal to or larger than numPivot ×
minFreq, becomes the first candidate entry to be compared directly against the
query. The next point whose counter matches the threshold value numPivot ×
minFreq, becomes the second candidate and so on so forth. The total num-
ber of candidate entries is defined by the parameter dbScanFrac. Instead of
all numPivot lists, it its possible to use only numPivotSearch lists that cor-
respond to the smallest absolute value of query’s projection coordinates. In
this case, the counter threshold is numPivotSearch × minFreq. By default,
numPivot = numPivotSearch.

Note that parameters numPivotSearch and dbScanFrac were introduced by
us, they were not employed in the original version of OMEDRANK.



24 Naidan et al

The following is an example of testing OMEDRANK with the benchmarking
utility experiment:

release/experiment \

--distType float --spaceType cosinesimil --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method omedrank \

--createIndex projType=rand,numPivot=8 \

--queryTimeParams minFreq=0.5,dbScanFrac=0.02

4.4 Permutation-based Filtering Methods

Rather than relying on distance values directly, we can assess similarity of objects
based on their relative distances to reference points (i.e., pivots). For each data
point x, we can arrange pivots π in the order of increasing distances from x
(for simplicity we assume that there are no ties). This arrangement is called a
permutation. The permutation is essentially a pivot ranking. Technically, it is a
vector whose i-th element keeps an (ordinal) position of the i-th pivot (in the
set of pivots sorted by a distance from x).

Computation of the permutation is a mapping from a source space, which
may not have coordinates, to a target vector space with integer coordinates. In
our library, the distance between permutations is defined as either L1 or L2.
Values of the distance in the source space often correlates well with the distance
in the target space of permutations. This property is exploited in permutation
methods. An advantage of permutation methods is that they are not relying
on metric properties of the original distance and can be successfully applied to
non-metric spaces [6,34].

Note that there is no simple relationship between the distance in the target
space and the distance in the source space. In particular, the distance in the
target space is neither a lower nor an upper bound for the distance in the source
space. Thus, methods based on indexing permutations are filtering methods that
allow us to obtain only approximate solutions. In the first step, we retrieve a
certain number of candidate points whose permutations are sufficiently close to
the permutation of the query vector. For these candidate data points, we compute
an actual distance to the query, using the original distance function. For almost
all implemented permutation methods, the number of candidate objects can be
controlled by a parameter dbScanFrac or minCandidate.

Permutation methods differ in how they index and process permutations. In
the following subsections, we briefly review implemented variants. Parameters
of these methods are summarized in Tables 5-6.

4.4.1 Brute-force permutation search. In the brute-force approach, we
scan the list of permutation methods and compute the distance between the
permutation of the query and a permutation of every data point. Then, we sort
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Table 4: Parameters of projection-based filter-and-refine methods

Common parameters

projType A type of projection.

projDim Dimensionality of projection vectors.

intermDim An intermediate dimensionality used to reduce dimensionality
via the hashing trick (used only for sparse vector spaces).

dbScanFrac A number of candidate records obtained during the filtering
step.

Brute-force Projection Search (proj incsort)

Common parameters: projType, projDim, intermDim,
dbScanFrac

useCosine If set to one, we use the cosine distance in the projected space.
By default (value zero), L2 is used.

useQueue If set to one, we use the priority queue instead of incremental
sorting. By default is zero.

Projection VP-tree (proj vptree)

Common parameters: projType, projDim, intermDim,
dbScanFrac

projSpaceType Type of the space of projections

bucketSize A maximum number of elements in a bucket/leaf.

chunkBucket Indicates if bucket elements should be stored contiguously in
memory (1 by default).

maxLeavesToVisit An early termination parameter equal to the maximum num-
ber of buckets (tree leaves) visited by a search algorithm
(2147483647 by default).

alphaLeft/alphaRight A stretching coefficient αleft/αright in Eq. (6)

expLeft/expRight The left/right exponent in Eq. (6)

OMEDRANK [21] (omedrank)

Common parameters: projType, intermDim, dbScanFrac

numPivot Projection dimensionality

numPivotSearch Number of data point lists to be used in search

minFreq The threshold for being considered a candidate entry: whenever
a point’s counter becomes ≥ numPivotSearch × minFreq, this
point is compared directly to the query.

chunkIndexSize A number of documents in one index chunk.

Note: mnemonic method names are given in round brackets.
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all data points in the order of increasing distance to the query permutation and
a fraction (dbScanFrac) of data points is compared directly against the query.

In the current version of the library, the brute-force search over regular per-
mutations is a special case of the brute-force search over projections (see 4.3.1),
where the projection type is perm. There is also an additional brute-force filter-
ing method, which relies on the so-called binarized permutations. It is described
in 4.4.6.

4.4.2 Permutation Prefix Index (PP-Index). In a permutation prefix
index (PP-index), permutation are stored in a prefix tree of limited depth [20].
A parameter prefixLength defines the depth. The filtering phase aims to find
minCandidate candidate data points. To this end, it first retrieves the data
points whose prefix of the inverse pivot ranking is exactly the same as that of
the query. If we do not get enough candidate objects, we shorten the prefix and
repeat the procedure until we get a sufficient number of candidate entries. Note
that we do not the use the parameter dbScanFrac here.

The following is an example of testing the PP-index with the benchmarking
utility experiment.

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method pp-index \

--createIndex numPivot=4 \

--queryTimeParams prefixLength=4,minCandidate=100

4.4.3 VP-tree index over permutations. We can use a VP-tree to index
permutations. This approach is similar to that of Figueroa and Fredriksson [23].
We, however, rely on the approximate version of the VP-tree described in § 4.1.1,
while Figueroa and Fredriksson use an exact one. The “sloppiness” of the VP-
tree search is governed by the stretching coefficients alphaLeft and alphaRight

as well as by the exponents in Eq. (6). In NMSLIB, the VP-tree index over
permutations is a special case of the projection VP-tree (see § 4.3.2). There is
also an additional VP-tree based method that indexes binarized permutations.
It is described in § 4.4.6.

4.4.4 Metric Inverted File (MI-File) relies on the inverted index over
permutations [1]. We select (a potentially large) subset of pivots (parameter
numPivot). Using these pivots, we compute a permutation for every data point.
Then, numPivotIndex most closest pivots are memorized in a data file. If a
pivot number i is the pos-th most distant pivot for the object x, we add the
pair (pos, x) to the posting list number i. All posting lists are kept sorted in the
order of the increasing first element (equal to the ordinal position of the pivot
in a permutation).
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During searching, we compute the permutation of the query and select post-
ing lists corresponding to numPivotSearch most closest pivots. These posting
lists are processed as follows: Imagine that we selected posting list i and the po-
sition of pivot i in the permutation of the query is pos. Then, using the posting
list i, we retrieve all candidate records for which the position of the pivot i in
their respective permutations is from pos − maxPosDiff to pos + maxPosDiff.
This allows us to update the estimate for the L1 distance between retrieved can-
didate records’ permutations and the permutation of the query (see [1] for more
details).

Finally, we select at most dbScanFrac ·N objects (N is the total number of
indexed objects) with the smallest estimates for the L1 between their permu-
tations and the permutation of the query. These objects are compared directly
against the query. The filtering step of the MI-file is expensive. Therefore, this
method is efficient only for computationally-intensive distances.

An example of testing this method using the utility experiment is as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method mi-file \

--createIndex numPivot=128,numPivotIndex=16 \

--queryTimeParams numPivotSearch=4,dbScanFrac=0.01

4.4.5 Neighborhood APProximation Index (NAPP). Recently it was
proposed to index pivot neighborhoods: For each data point, we compute dis-
tances to numPivot points and select numPivotIndex (typically, much smaller
than numPivot) pivots that are closest to the data point. Then, we associate
these numPivotIndex closest pivots with the data point via an inverted file [43].
One can hope that for similar points two pivot neighborhoods will have a non-
zero intersection.

To exploit this observation, our implementation of the pivot neighborhood
indexing method retrieves all points that share at least numPivotSearch nearest
neighbor pivots (using an inverted file). Then, these candidates points can be
compared directly against the query, which works well for cheap distances like
L2.

For computationally expensive distances, one can add an additional filtering
step by setting the parameter useSort to one. If useSort is one, all candidate
entries are additionally sorted by the number of shared pivots (in the decreasing
order). Afterwards, a subset of candidates are compared directly against the
query. The size of the subset is defined by the parameter dbScanFrac. When
selecting the subset, we give priority to candidates sharing more common pivots
with the query. This secondary filtering may eliminate less promising entries,
but it incurs additional computational costs, which may outweigh the benefits
of additional filtering “power”, if the distance is cheap.

In many cases, good performance can be achieved by selecting pivots ran-
domly. However, we find that pivots can also be engineered (more information
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on this topic will be published soon). To load external pivots, the user should
specify an index-time parameter pivotFile. The pivots should be in the same
format as the data points.

Note that our implementation is different from that of Tellez [43] in several
ways. First, we do not use a succinct inverted index. Second, we use a simple
posting merging algorithm based on counting (a ScanCount algorithm). Before
a query is processed, we zero-initialize an array that keeps one counter for every
data point. As we traverse a posting list and encounter an entry corresponding
to object i, we increment a counter number i. The ScanCount is known to be
quite efficient [28].

We also divide the index in chunks each accounting for at most chunkIndexSize
data points. The search algorithm processes one chunk at a time. The idea is to
make a chunk sufficiently small so that counters fit into L1 or L2 cache.

An example of running NAPP without the additional filtering stage:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--cachePrefixGS napp_gold_standard \

--method napp \

--createIndex numPivot=32,numPivotIndex=8,chunkIndexSize=1024 \

--queryTimeParams numPivotSearch=8 \

--saveIndex napp_index

Note that NAPP is capable of saving/loading the meta index. However, in
the bootstrapping mode this is only possible if gold standard data is cached
(hence, the option --cachePrefixGS).

An example of running NAPP with the additional filtering stage:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method napp \

--createIndex numPivot=32,numPivotIndex=8,chunkIndexSize=1024 \

--queryTimeParams useSort=1,dbScanFrac=0.01,numPivotSearch=8

4.4.6 Binarized permutation methods. Instead of computing the L2 dis-
tance between two permutations, we can binarize permutations and compute
the Hamming distance between binarized permutations. To this end, we select
an adhoc binarization threshold binThreshold (the number of pivots divided
by two is usually a good setting). All integer values smaller than binThreshold

become zeros, and values larger than or equal to binThreshold become ones.
The Hamming distance between binarized permutations can be computed

much faster than L2 or L1 (see Table 1). This comes at a cost though, as the
Hamming distance appears to be a worse proxy for the original distance than L2

or L1 (for the same number of pivots). One can compensate in quality by using
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more pivots. In our experiments, it was usually sufficient to double the number
of pivots.

The binarized permutation can be searched sequentially. An example of test-
ing such a method using the utility experiment is as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method perm_incsort_bin \

--createIndex numPivot=32,binThreshold=16 \

--queryTimeParams dbScanFrac=0.05

Alternatively, binarized permutations can be indexed using the VP-tree. This
approach is usually more efficient than searching binarized permutations sequen-
tially, but one needs to tune additional parameters. An example of testing such
a method using the utility experiment is as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 --range 0.1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method perm_bin_vptree \

--createIndex numPivot=32 \

--queryTimeParams alphaLeft=2,alphaRight=2,dbScanFrac=0.05

4.5 Proximity/Neighborhood Graphs

One efficient and effective search approach relies on building a graph, where data
points are graph nodes and edges connect sufficiently close points. When edges
connect nearest neighbor points, such graph is called a k-NN graph (or a nearest
neighbor graph).

In a proximity-graph a search process is a series of greedy sub-searches. A
sub-search starts at some, e.g., random node and proceeds to expanding the
set of traversed nodes in a best-first fashion by following neighboring links. The
algorithm resembles a Dijkstra’s shortest-path algorithm in that, in each step,
it selects an unvisited point closest to the query.

There have been multiple stopping heuristics proposed. For example, we can
stop after visiting a certain number of nodes. In NMSLIB, the sub-search termi-
nates essentially when the candidate queue is exhausted. Specifically, the can-
didate queue is expanded only with points that are closer to the query than
the k′-th closest point already discovered by the sub-search (k′ is a search pa-
rameter). When we stop finding such points, the queue dwindles and eventually
becomes empty. We also terminate the sub-search when the queue contains only
points farther than the k′-th closest point already discovered by the sub-search.
Note that the greedy search is only approximate and does not necessarily return
all true nearest neighbors.

https://en.wikipedia.org/wiki/Nearest_neighbor_graph
https://en.wikipedia.org/wiki/Nearest_neighbor_graph
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Table 5: Parameters of permutation-based filtering methods

Common parameters

numPivot A number of pivots.

dbScanFrac A number of candidate records obtained during the filtering
step. It is specified as a fraction (not a percentage!) of the total
number of data points in the data set.

binThreshold Binarization threshold. If a value of an original permutation
vector is below this threshold, it becomes 0 in the binarized
permutation. If the value is above, the value is converted to 1.

Permutation Prefix Index (pp-index) [20]

numPivot A number of pivots.

minCandidate a minimum number of candidates to retrieve (note that we do
not use dbScanFrac here.

prefixLength a maximum length of the tree prefix that is used to retrieve
candidate records.

chunkBucket 1 if we want to store vectors having the same permutation prefix
in the same memory chunk (i.e., contiguously in memory)

Metric Inverted File (mi-file) [1]

Common parameters: numPivot and dbScanFrac.

numPivotIndex a number of (closest) pivots to index

numPivotSearch a number of (closest) pivots to use during searching

maxPosDiff the maximum position difference permitted for searching in the
inverted file

Neighborhood Approximation Index (napp) [43]

Common parameter numPivot.

invProcAlg An algorithm to merge posting lists. In practice, only scan

worked well.

chunkIndexSize A number of documents in one index chunk.

indexThreadQty A number of indexhing threads.

numPivotIndex A number of closest pivots to be indexed.

numPivotSearch A candidate entry should share this number of pivots with the
query. This is a query-time parameter.

Note: mnemonic method names are given in round brackets.
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Table 6: Parameters of permutation-based filtering methods (continued)

Brute-force search with incremental sorting for binarized permutations

(perm incsort bin) [42]

Common parameters: numPivot, dbScanFrac, binThreshold.

VP-tree index over binarized permutations (perm bin vptree)

Similar to [42], but uses an approximate search in the VP-tree.

Common parameters: numPivot, dbScanFrac, binThreshold.
Note that dbScanFrac is a query-time parameter.

alphaLeft A stretching coefficient αleft in Eq. (6)

alphaRight A stretching coefficient αright in Eq. (6)

Note: mnemonic method names are given in round brackets.

In our library we use several approaches to create proximity graphs, which
are described below. Parameters of these methods are summarized in Table 7.
Note that SW-graph and NN-descent have the parameter with the same name,
namely, NN. However, this parameter has a somewhat different interpretation
depending on the method. Also note that our proximity-graph methods support
only the nearest-neighbor, but not the range search.

4.5.1 Small World Graph (SW-graph). In the (Navigable) Small World
graph (SW-graph),4 indexing is a bottom-up procedure that relies on the pre-
viously described greedy search algorithm. The number of restarts, though, is
defined by a different parameter, i.e., initIndexAttempts. We insert points one
by one. For each data point, we find NN closest points using an already con-
structed index. Then, we create an undirected edge between a new graph node
(representing a new point) and nodes that represent NN closest points found by
the greedy search. Each sub-search starts from some, e.g., random node and
proceeds expanding the candidate queue with points that are closer than the
efConstruction-th closest point (efConstruction is an index-time parame-
ter). Similarly, the search procedure executes one or more sub-searches that
start from some node. The queue is expanded only with points that are closer
than the efSearch-th closest point. The number of sub-searches is defined by
the parameter initSearchAttempts.

Empirically, it was shown that this method often creates a navigable small
world graph, where most nodes are separated by only a few edges (roughly
logarithmic in terms of the overall number of objects) [31]. A simpler and less
efficient variant of this algorithm was presented at ICTA 2011 and SISAP 2012

4 SW-graph is also known as a Metrized Small-World (MSW) graph and a Navigable
Small World (NSW) graph.
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[37,31]. An improved variant appeared as an Information Systems publication
[32]. In the latter paper, however, the values of efSearch and efConstruction

are set equal to NN. The idea of using values of efSearch and efConstruction

potentially (much) larger than NN was proposed by Malkov and Yashunin [33].
The indexing algorithm is rather expensive and we accelerate it by running

parallel searches in multiple threads. The number of threads is defined by the
parameter indexThreadQty. By default, this parameter is equal to the number
of virtual cores. The graph updates are synchronized: If a thread needs to add
edges to a node or obtain the list of node edges, it first locks a node-specific
mutex. Because different threads rarely update and/or access the same node
simultaneously, such synchronization creates little contention and, consequently,
our parallelization approach is efficient. It is also necessary to synchronize up-
dates for the list of graph nodes, but this operation takes little time compared
to searching for NN neighboring points.

An example of testing this method using the utility experiment is as follows:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--cachePrefixGS sw-graph \

--method sw-graph \

--createIndex NN=3,initIndexAttempts=5,indexThreadQty=4 \

--queryTimeParams initSearchAttempts=1,efSearch=10 \

--saveIndex sw-graph_index

Note that SW-graph is capable of saving/loading the meta index. However,
in the bootstrapping mode this is only possible if gold standard data is cached
(hence, the option --cachePrefixGS).

4.5.2 Hierarchical Navigable Small World Graph (HNSW). The Hi-
erarchical Navigable Small World Graph (HNSW) [33] is a new search method,
a successor of the SW-graph. HNSW can be much faster (especially during in-
dexing) and is more robust. However, the current implementation is still exper-
imental and we will update it in the near future.

HNSW can be seen as a multi-layer and a multi-resolution variant of a prox-
imity graph. A ground (zero-level) layer includes all data points. The higher is
the layer, the fewer points it has. When a data point is added to HNSW, we
select the maximum level m randomly. In that, the probability of selecting level
m decreases exponentially with m.

Similarly to the SW-graph, the HNSW is constructed by inserting data
points, one by one. A new point is added to all layers starting from layer m down
to layer zero. This is done using a search-based algorithm similar to that of the
basic SW-graph. The quality is controlled by the parameter efConstruction.

Specifically, a search starts from the maximum-level layer and proceeds to
lower layers by searching one layer at a time. For all layers higher than the
ground layer, the search algorithm is a 1-NN search that greedily follows the
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closest neighbor (this is equivalent to having efConstruction=1). The closest
point found at the layer h+1 is used as a starting point for the search carried out
at the layer h. For the ground layer, we carry an M-NN search whose quality is
controlled by the parameter efConstruction. Note that the ground-layer search
relies one the same algorithm as we use for the SW-graph (yet, we use only a
single sub-search, which is equivalent to setting initIndexAttempts to one).

An outcome of a search in a layer is a set of data points that are close to the
new point. Using one of the heuristics described by Malkov and Yashunin [33],
we select points from this set to become neighbors of the new point (in the layer’s
graph). Note that unlike the older SW-graph, the new algorithm has a limit on
the maximum number of neighbors. If the limit is exceeded, the heuristics are
used to keep only the best neighbors. Specifically, the maximum number of neigh-
bors in all layers but the ground layer is maxM (an index-time parameter, which
is equal to M by default). The maximum number of neighbors for the ground
layer is maxM0 (an index-time parameter, which is equal to 2×M by default). The
choice of the heuristic is controlled by the parameter delaunay type. Specif-
ically, by default delaunay type is equal to 2. This default is generally quite
good. However, it maybe worth trying other viable options values: 0, 1, and 3.

A search algorithm is similar to the indexing algorithm. It starts from the
maximum-level layer and proceeds to lower-level layers by searching one layer
at a time. For all layers higher than the ground layer, the search algorithm is
a 1-NN search that greedily follows the closest neighbor (this is equivalent to
having efSearch=1). The closest point found at the layer h + 1 is used as a
starting point for the search carried out at the layer h. For the ground layer, we
carry an k-NN search whose quality is controlled by the parameter efSearch (in
the paper by Malkov and Yashunin [33] this parameter is denoted as ep). The
ground-layer search relies one the same algorithm as we use for the SW-graph,
but it does not carry out multiple sub-searches starting from different random
data points.

For L2 and the cosine similarity, HNSW has optimized implementations,
which are enabled by default. To enforce the use of the generic algorithm, set
the parameter skip optimized index to one.

Similar to SW-graph, the indexing algorithm can be expensive. It is, there-
fore, accelerated by running parallel searches in multiple threads. The number of
threads is defined by the parameter indexThreadQty. By default, this parameter
is equal to the number of virtual cores.

A sample command line to test HNSW using the utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method hnsw \

--createIndex M=10,efConstruction=20,indexThreadQty=4,searchMethod=0 \

--queryTimeParams efSearch=10

HNSW is capable of saving an index for optimized L2 and the cosine-similarity
implementations. Here is an example for L2:
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release/experiment \

--distType float --spaceType cosinesimil --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--cachePrefixGS hnsw \

--method hnsw \

--createIndex M=10,efConstruction=20,indexThreadQty=4,searchMethod=4 \

--queryTimeParams efSearch=10

--saveIndex hnsw_index

4.5.3 NN-Descent. The NN-descent is an iterative procedure initialized with
randomly selected nearest neighbors. In each iteration, a random sample of
queries is selected to participate in neighborhood propagation.

This process is governed by parameters rho and delta. Parameter rho defines
a fraction of the data set that is randomly sampled for neighborhood propaga-
tion. A good value that works in many cases is rho = 0.5. As the indexing
algorithm iterates, fewer and fewer neighborhoods change (when we attempt to
improve the local neighborhood structure via neighborhood propagation). The
parameter delta defines a stopping condition in terms of a fraction of modi-
fied edges in the k-NNgraph (the exact definition can be inferred from code). A
good default value is delta=0.001. The indexing algorithm is multi-threaded:
the method uses all available cores.

When NN-descent was incorporated into NMSLIB, there was no open-source
search algorithm released, only the code to construct a k-NNgraph. Therefore,
we use the same algorithm as for the SW-graph [31,32]. The new, open-source,
version of NN-descent (code-named kgraph), which does include the search al-
gorithm, can be found on GitHub.

Here is an example of testing this method using the utility experiment:

release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method nndes \

--createIndex NN=10,rho=0.5,delta=0.001 \

--queryTimeParams initSearchAttempts=3

4.6 Miscellaneous Methods

Currently our major miscellaneous methods do not have parameters.

4.6.1 Brute-force (sequential) searching. To verify how the speed of
brute-force searching scales with the number of threads, we provide a refer-
ence implementation of the sequential searching. For example, to benchmark
sequential searching using two threads, one can type the following command:

https://github.com/aaalgo/kgraph


NMSLIB Manual 35

Table 7: Parameters of proximity-graph based methods

Common parameters

efSearch The search depth: specifically, a sub-search is stopped, when it
cannot find a point closer than efSearch points (seen so far)
closest to the query.

SW-graph (sw-graph) [37,31,32]

NN For a newly added point find this number of most closest points
that make the initial neighborhood of the point. When more
points are added, this neighborhood may be expanded.

efConstruction The depth of the search that is used to find neighbors during
indexing. This parameter is analogous to efSearch.

initIndexAttempts The number of random search restarts carried out to add one
point.

indexThreadQty The number of indexing threads. The default value is equal to
the number of (logical) CPU cores.

initSearchAttempts A number of random search restarts.

Hierarchical Navigable SW-graph (hnsw) [32]

mult A scaling coefficient to determine the depth of a layered struc-
ture (see the paper by Malkov and Yashunin [32] for details).
A default value seems to be good enough.

skip optimized index Setting this parameter to one disables the use of the optimized
implementations (for L2 and the cosine similarity).

maxM The maximum number of neighbors in all layers but the ground
layer (the default value seems to be good enough).

maxM0 The maximum number of neighbors in the ground layer (the
default value seems to be good enough).

M The size of the initial set of potential neighbors for the indexing
phase. The set may be further pruned so that the overall num-
ber of neighbors does not exceed maxM0 (for the ground layer)
or maxM (for all layers but the ground one).

efConstruction The depth of the search that is used to find neighbors during in-
dexing (this parameter is used only for the search in the ground
layer).

delaunay type A type of the pruning heuristic: 0 indicates that we keep only
maxM (or maxM0 for the ground layer) neighbors, 1 activates a
heuristic described by Algorithm 4 [32]

NN-descent (nndes) [17,31,32]

NN For each point find this number of most closest points (neigh-
bors).

rho A fraction of the data set that is randomly sampled for neigh-
borhood propagation.

delta A stopping condition in terms of the fraction of updated edges
in the k-NNgraph.

initSearchAttempts A number of random search restarts.

Note: mnemonic method names are given in round brackets.
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release/experiment \

--distType float --spaceType l2 --testSetQty 5 --maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/final8_10K.txt --outFilePrefix result \

--method seq_search --threadTestQty 2

4.6.2 Term-Based Uncompressed Inverted File. For sparse data sets
(especially when queries are much sparser than documents), it can be useful to
employ the inverted file. The inverted file is a mapping from a set of dimensions
to their respective posting lists. The posting list of a dimension is a sorted list of
documents/vectors, where this dimension is non-zero. To answer queries, we use
a classic document-at-a-time (DAAT) processing algorithm [44] with a priority
queue (see Figure 5.3 in [9]), which is a part of NMSLIB. This algorithm is
implemented in Lucene 6.0 (and earlier versions). However, our implementation
is faster than Lucene (1.5-2× faster on compr and stack) for several reasons: our
implementation does not use compression, it does not explicitly compute BM25,
it is written in C++ rather than Java

release/experiment \

--distType float --spaceType negdotprod_sparse_fast --testSetQty 5 \

--maxNumQuery 100 \

--knn 1 \

--dataFile ../sample_data/sparse_wiki_5K.txt --outFilePrefix result \

--method simple_invindx --threadTestQty 2

5 Notes on Efficiency

5.1 Efficiency of Distance Functions

Note that improvement in efficiency and in the number of distance computations
obtained with slow distance functions can be overly optimistic. That is, when
a slow distance function is replaced with a more efficient version, the improve-
ments over sequential search may become far less impressive. In some cases, the
search method can become even slower than the brute-force comparison against
every data point. This is why we believe that optimizing computation of a dis-
tance function is equally important (and sometimes even more important) than
designing better search methods.

In this library, we optimized several distance functions, especially non-metric
functions that involve computations of logarithms. An order of magnitude im-
provement can be achieved by pre-computing logarithms at index time and by
approximating those logarithms that are not possible to pre-compute (see § 3.5
and § 3.6 for more details). Yet, this doubles the size of an index.

The Intel compiler has a powerful math library, which allows one to efficiently
compute several hard distance functions such as the KL-divergence, the Jensen-
Shanon divergence/metric, and the Lp spaces for non-integer values of p more
efficiently than in the case of GNU C++ and Clang. In the Visual Studio’s fast
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math mode (which is enabled in the provided project files) it is also possible to
compute some hard distances several times faster compared to GNU C++ and
Clang. Yet, our custom implementations are often much faster. For example, in
the case of the Intel compiler, the custom implementation of the KL-divergence
is 10 times faster than the standard one while the custom implementation of the
JS-divergence is two times faster. In the case of the Visual studio, the custom
KL-divergence is 7 times as fast as the standard one, while the custom JS-
divergence is 10 times faster. Therefore, doubling the size of the data set by
storing pre-computed logarithms seems to be worthwhile.

Efficient implementations of some other distance functions rely on SIMD
instructions. These instructions, available on most modern Intel and AMD pro-
cessors, operate on small vectors. Some C++ implementations can be efficiently
vectorized by both the GNU and Intel compilers. That is, instead of the scalar
operations the compiler would generate more efficient SIMD instructions. Yet,
the code is not always vectorized, e.g., by the Clang. And even the Intel com-
piler, fails to efficiently vectorize computation of the KL-divergence (with pre-
computed logarithms).

There are also situations when efficient automatic vectorization is hardly pos-
sible. For instance, we provide an efficient implementation of the scalar product
for sparse single-precision floating point vectors. It relies on the all-against-all
comparison SIMD instruction mm cmpistrm. However, it requires keeping the
data in a special format, which makes automatic vectorization impossible.

Intel SSE extensions that provide SIMD instructions are automatically de-
tected by all compilers but the Visual Studio. If some SSE extensions are not
available, the compilation process will produce warnings like the following one:

LInfNormSIMD: SSE2 is not available, defaulting to pure C++ implementation!

5.2 Cache-friendly Data Layout

In our previous report [5], we underestimated a cost of a random memory access.
A more careful analysis showed that, on a recent laptop (Core i7, DDR3), a truly
random access “costs” about 200 CPU cycles, which may be 2-3 times longer
than a computation of a cheap distance such as L2.

Many implemented methods use some form of bucketing. For example, in
the VP-tree or bbtree we recursively decompose the space until a partition con-
tains at most bucketSize elements. The buckets are searched sequentially, which
could be done much faster, if bucket objects were stored in contiguous memory
regions. Thus, to check elements in a bucket we would need only one random
memory access.

A number of methods support this optimized storage model. It is activated
by setting a parameter chunkBucket to 1. If chunkBucket is set to 1, indexing
is carried out in two stages. At the first stage, a method creates unoptimized
buckets, each of which is an array of pointers to data objects. Thus, objects are
not necessarily contiguous in memory. In the second stage, the method iterates
over buckets, allocates a contiguous chunk of memory, which is sufficiently large
to keep all bucket objects, and copies bucket objects to this new chunk.

http://searchivarius.org/blog/main-memory-similar-hard-drive
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Important note: Note that currently we do not delete old objects and do
not deallocate the memory they occupy. Thus, if chunkBucket is set to 1, the
memory usage is overestimated. In the future, we plan to address this issue.
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A Description of Projection Types

A.1 The classic random projections

The classic random projections work only for vector spaces (both sparse and
dense). At index time, we generate projDim vectors by sampling their elements
from the standard normal distribution N (0, 1) and orthonormalizing them. 5

Coordinates in the projection spaces are obtained by computing scalar products
between a given vector and each of the projDim randomly generated vectors.

In the case of sparse vector spaces, the dimensionality is first reduced via
the hashing trick: the value of the element i is equal to the sum of values for all
elements whose indices are hashed into number i. After hashing, classic random
projections are applied. The dimensionality of the intermediate space is defined
by a method’s parameter intermDim.

The hashing trick is used purely for efficiency reasons. However, for large
enough values of the intermediate dimensionality, it has virtually no adverse
affect on performance. For example, in the case of Wikipedia tf-idf vectors (see
https://github.com/nmslib/nmslib/tree/v1.8/manual/datasets.md), it is
safe to use the value intermDim=4096.

Random projections work best if both the source and the target space are
Euclidean, whereas the distance is either L2 or the cosine distance. In this case,
there are theoretical guarantees that the projection preserves well distances in
the original space (see e.g. [4]).

A.2 FastMap

FastMap introduced by Faloutsos and Lin [22] is also a type of the random-
projection method. At indexing time, we randomly select projDim pairs Ai and
Bi. The i-th coordinate of vector x is computed using the formula:

FastMapi(x) =
d(Ai, x)2 − d(Bi, xi)

2 + d(Ai, Bi)

2d(Ai, Bi)2
(7)

Given points A and B in the Euclidean space, Eq. 7 gives the length of the
orthogonal projection of x to the line connecting A and B. However, FastMap
can be used in non-Euclidean spaces as well.

A.3 Distances to the Random Reference Points

This method is a folklore projection approach, where the i-th coordinate of point
x in the projected space is computed as simply d(x, πi), where πi is a pivot in
the original space, i.e., a randomly selected reference point. Pivots are selected
once during indexing time.

5 If the dimensionality of the projection space is larger than the dimensionality of the
original space, only the first projDim vectors are orthonormalized. The remaining
are simply divided by their norms.

https://github.com/nmslib/nmslib/tree/v1.8/manual/datasets.md
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A.4 Permutation-based Projections.

In this approach, we also select projDim pivots at index time. However, instead
of using raw distances to the pivots, we rely on ordinal positions of pivots sorted
by their distance to a point. A more detailed description is given in § 4.4.
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