
The COCO2P
Package

Version 0.17

Mikhail Klin
Christian Pech
Sven Reichard

Mikhail Klin Email: klin@math.bgu.ac.il

Christian Pech Email: christian.pech@tu-dresden.de

Sven Reichard Email: sven.reichard@tu-dresden.de

mailto://klin@math.bgu.ac.il
mailto://christian.pech@tu-dresden.de
mailto://sven.reichard@tu-dresden.de

The COCO2P Package 2

Copyright
© 2012, 2014, 2018 by the authors

This package may be distributed under the terms and conditions of the GNU Public License Version 2 or
higher.

Contents

1 Color Graphs 4
1.1 Theory . 4
1.2 On the representation of color graphs in COCO2P 4
1.3 Functions for the construction of color graphs . 4
1.4 Functions for the inspection of color graphs . 10
1.5 Creating new (color) graphs from given color graphs 15
1.6 Testing properties of color graphs . 18
1.7 Symmetries of color graphs . 20

2 Structure Constants Tensors 23
2.1 Introduction . 23
2.2 Functions for the construction of tensors . 23
2.3 Functions for the inspection of tensors . 24
2.4 Testing properties of tensors . 26
2.5 Symmetries of tensors . 27
2.6 Character tables of structure constants tensors . 28

3 WL-Stable Fusions Color Graphs 29
3.1 Introduction . 29
3.2 Good sets . 29
3.3 Orbits of good sets . 30
3.4 Fusions . 32
3.5 Orbits of fusions . 33

4 Partially ordered sets 36
4.1 Introduction . 36
4.2 General functions for COCO2P-posets . 36
4.3 Posets of color graphs . 38

5 Color Semirings 40
5.1 Introduction . 40

References 43

Index 44

3

Chapter 1

Color Graphs

1.1 Theory

A color graph (cgr) in COCO2P is a triple (V,C, f), where V is a set of vertices, C is set of colors,
and f : V ×V →C assigns to every arc its color. COCO2P does not know the concept of non-arcs.
However, this is not an essential restriction, since non-arcs may be simulated by introducing a special
distinguished color.

Of special interrest in COCO2P are WL-stable color graphs (that is cgrs that are stable under the
Weisfeiler-Leman algorithm [WL68], [Wei76]). In the frames of COCO2P the maximal monochro-
matic sets of arcs of a WL-stable color graph will always form a coherent configuration. On the
other hand, from every coherent configuration we can obtain a WL-stable cgr (every pair of vertices
is colored by the relation it belongs to).

For historical reasons, COCO2P uses the nomenclature of color graphs. However, this is only
of importance for concepts like automorphisms and isomorphisms. While both, automorphisms and
isomorphisms have to preserve colors (as it is expected for color graphs), color-automorphisms, and
color-isomorphisms only have to respect color classes, that is, they may map arcs of one color to arcs
of another color.

1.2 On the representation of color graphs in COCO2P

For a color graph, the set of vertices as well as the set of colors may be any finite set representable in
GAP. For performance reasons, COCO2P does not use these sets inside its algorithms (except when
constructing color graphs). Instead, COCO2P refers to vertices and colors by their position in the
vertex-set and color-set, respectively. In fact vertices and colors are identified with these indices. In
order not to loose information, every color graph in COCO2P keeps a list of names of vertices and a
list of names of colors. The set of vertex-names is equal to the original set of vertices, and the set of
color names is equal to the original set of colors.

1.3 Functions for the construction of color graphs

1.3.1 ColorGraphByOrbitals

. ColorGraphByOrbitals(grp[, domain[, Action[, completeDom]]]) (function)

4

The COCO2P Package 5

This function constructs the color graph of orbitals color graphs from a group action by mapping
each arc to a representative of its orbital of the given group action.

In its first form, the function returns the color graph of orbitals of the permutation group grp in
its natural action (i.e. on {1, . . . ,n}, where n is the largest moved point of grp).

Example
gap> d7 := Group((1,2,3,4,5,6,7), (1,7)(2,6)(3,5));;
gap> cgr := ColorGraphByOrbitals(d7);
<color graph of order 7 and rank 4>

In the second form the function returns the color graph of orbitals of grp acting on domain
OnPoints. If domain is not invariant under grp , then the smallest invariant extension of domain is
taken as acting domain.

Example
gap> d7 := Group((1,2,3,4,5,6,7), (1,7)(2,6)(3,5));;
gap> cgr := ColorGraph(d7, [1]);
<color graph of order 7 and rank 4>

In the third variant of ColorGraphByOrbitals an action can be given:
Example

gap> cgr:=ColorGraph(SymmetricGroup(5), Combinations([1..5],2), OnSets);
<color graph of order 10 and rank 3>

The optional fourth argument completeDom is a boolean. If it is True, then the function assumes
that domain is closed under action of grp . This has the effect, that the function dows not try to
complete it. The effect is that in the resulting color graph it is guaranteed that the vertex with number
i corresponds exactly to domain[i].

1.3.2 ColorGraph

. ColorGraph(grp[, domain[, action[, completeDom[, coloring]]]]) (function)

This is the most general function for the construction of color graphs. When called with less than
5 arguments, it is identical with the function ColorGraphByOrbitals (1.3.1)

The optional fifth argument coloring is a coloring-function. It takes as input two vertices (ele-
ments of the acting domain) u,v, and it has to return the color of the arc (u,v). In principle, the color
can be any GAP object. However, it should be possible to compare colors and to form sets of them.

Example
gap> cgr:=ColorGraph(SymmetricGroup(8),
> Combinations([1..8],4), OnSets, true,
> function(u,v) return
> Length(Intersection(u,v));end);
<color graph of order 70 and rank 5>

It is supposed that coloring is invariant under the given action (this is not checked!).

The COCO2P Package 6

1.3.3 ColorGraphByMatrix

. ColorGraphByMatrix(mat) (function)

This function constructs a color graph from its adjacency matrix. The argument mat is a list of
n lists of length n. The vertex-set of the resulting color graph is {1, . . . ,n}, while the color of the arc
(i, j) is mat[i][j]. The entries can be any kind of GAP-objects that can be compared and that can
be organized in a set.

Example
gap> m:=[["black","red" ,"blue" ,"blue" ,"blue"],
> ["blue" ,"black","red" ,"blue" ,"blue"],
> ["blue" ,"blue", "black","red" ,"blue"],
> ["blue" ,"blue", "blue" ,"black","red"],
> ["red" ,"blue", "blue" ,"blue" ,"black"]];;
gap> cgr:=ColorGraphByMatrix(m);
<color graph of order 5 and rank 3>

1.3.4 ColorGraphByWLStabilization

. ColorGraphByWLStabilization(cgr) (function)

If cgr is WL-stable then the function returns cgr . Otherwise, the WL-stabilization of cgr is
returned. The colors of the stabilization have names of the shape [c,i] where c is a color of cgr and
i is the index of a fragment of color c.

This function does not really implement the Weisfeiler-Leman algorithm. Rather it does a stabi-
lization inside of a Schurian WL-stable fission of cgr . The performance depends mainly on the order
of the group of known automorphisms of cgr (cf KnownGroupOfAutomorphisms (1.7.1)).

1.3.5 WLStableColorGraphByMatrix

. WLStableColorGraphByMatrix(mat) (function)

This function gets as input a square matrix mat and returns the color graph of the Weisfeiler-
Leman- stabilization of Mat . The entries of mat can be any kind of GAP-objects that can be compared
and that can be organized in a set. The vertex-set of the resulting color graph is {1, . . . ,n}, while the
color of the arc (i, j) is [mat[i][j],k], where k is a positive integer.

This constructor works usually much faster then the combination of ColorGraphByMatrix (1.3.3)
and ColorGraphByWLStabilization (1.3.4).

Example
gap> c:=AllAssociationSchemes(10)[3];
AS(10,3)
gap> a:=AdjacencyMatrix(c);;
gap> Display(a);
[[1, 2, 2, 2, 3, 3, 3, 3, 3, 3],

[2, 1, 3, 3, 2, 2, 3, 3, 3, 3],
[2, 3, 1, 3, 3, 3, 2, 2, 3, 3],
[2, 3, 3, 1, 3, 3, 3, 3, 2, 2],
[3, 2, 3, 3, 1, 3, 2, 3, 2, 3],
[3, 2, 3, 3, 3, 1, 3, 2, 3, 2],

The COCO2P Package 7

[3, 3, 2, 3, 2, 3, 1, 3, 3, 2],
[3, 3, 2, 3, 3, 2, 3, 1, 2, 3],
[3, 3, 3, 2, 2, 3, 3, 2, 1, 3],
[3, 3, 3, 2, 3, 2, 2, 3, 3, 1]]

gap> a[1][1]:=4;;
gap> c1:=ColorGraphByMatrix(a);
<color graph of order 10 and rank 4>
gap> c2:=WLStableColorGraphByMatrix(a);
<color graph of order 10 and rank 15>
gap> Display(c1);
[[4, 2, 2, 2, 3, 3, 3, 3, 3, 3],

[2, 1, 3, 3, 2, 2, 3, 3, 3, 3],
[2, 3, 1, 3, 3, 3, 2, 2, 3, 3],
[2, 3, 3, 1, 3, 3, 3, 3, 2, 2],
[3, 2, 3, 3, 1, 3, 2, 3, 2, 3],
[3, 2, 3, 3, 3, 1, 3, 2, 3, 2],
[3, 3, 2, 3, 2, 3, 1, 3, 3, 2],
[3, 3, 2, 3, 3, 2, 3, 1, 2, 3],
[3, 3, 3, 2, 2, 3, 3, 2, 1, 3],
[3, 3, 3, 2, 3, 2, 2, 3, 3, 1]]

gap> Display(c2);
[[[4,1],[2,1],[2,1],[2,1],[3,1],[3,1],[3,1],[3,1],[3,1],[3,1]],
[[2,2],[1,2],[3,4],[3,4],[2,5],[2,5],[3,6],[3,6],[3,6],[3,6]],
[[2,2],[3,4],[1,2],[3,4],[3,6],[3,6],[2,5],[2,5],[3,6],[3,6]],
[[2,2],[3,4],[3,4],[1,2],[3,6],[3,6],[3,6],[3,6],[2,5],[2,5]],
[[3,2],[2,4],[3,5],[3,5],[1,1],[3,3],[2,3],[3,7],[2,3],[3,7]],
[[3,2],[2,4],[3,5],[3,5],[3,3],[1,1],[3,7],[2,3],[3,7],[2,3]],
[[3,2],[3,5],[2,4],[3,5],[2,3],[3,7],[1,1],[3,3],[3,7],[2,3]],
[[3,2],[3,5],[2,4],[3,5],[3,7],[2,3],[3,3],[1,1],[2,3],[3,7]],
[[3,2],[3,5],[3,5],[2,4],[2,3],[3,7],[3,7],[2,3],[1,1],[3,3]],
[[3,2],[3,5],[3,5],[2,4],[3,7],[2,3],[2,3],[3,7],[3,3],[1,1]]]

1.3.6 ClassicalCompleteAffineScheme

. ClassicalCompleteAffineScheme(q) (function)

The classical complete affine scheme is a WL-stable, Schurian, amorphic color graph defined on
the set of points of the affine plane over GF(q). The reflexive closure of every irreflexive color class is
an equivalence relation whose equivalence classes form a complete parallel class of lines. Moreover,
to every parallel class there corresponds a color class.

This function returns the classical complete affine scheme over GF(q).

1.3.7 JohnsonScheme

. JohnsonScheme(n, k) (function)

The Johnson scheme J(n,k) is a WL-stable, Schurian color graph. Its vertices are the k -element
subsets of {1, . . . ,n}. The colors are elements of {0, . . . ,k}. The color of an arc (M,N) is the cardi-
nality of the intersection of M and N.

The COCO2P Package 8

This function returns the Johnson scheme J(n,k).

1.3.8 CyclotomicColorGraph

. CyclotomicColorGraph(p, n, d) (function)

Let p be a prime, n, d be positive integers, such that d divides (pn−1). Let q := pn, and let r be a
primitive element of GF(q). Let C be the set of all powers of rd in GF(q) the cyclotomic colored graph
Cyc(p,n,d) has as vertices the elements of GF(q). The set of colors is given by {∗,0,1, ...,d− 1}.
A pair (x,y) of vertices has color ∗ in Cyc(p,n,d) if x = y. It has color i if (x− y) is an element of
C · (ri).

This function returns the Cyclotomic scheme Cyc(p,n,d).

1.3.9 BIKColorGraph

. BIKColorGraph(m) (function)

This function generates the color graphs described in the paper [BIK89]. These color graphs
are interesting because they may be used to construct 3-isoregular strongly regular graphs with the
5-vertex condition. The vertex set of BIKColorGraph(m) is V = GF(2)2m. For the description of
colors of the arcs consider a quadratic form q of Witt-index m on V . Let Q be the quadric defined by
q, and let S be a maximal singular subspace of q. A pair of vectors (v,w) is colored by

"=":
if v = w,

"Q+S+":
if v+w ∈ S,

"Q+S-":
if v+w ∈ Q\S,

"Q-":
if v+w /∈ Q.

The following code constructs the Ivanov-graph on 256 vertices. This was historically the first strongly
regular graph to be found that is non-rank-3 and that satisfies the 5-vertex condition (cf. [Iva89]).

Example
gap> cgr:=BIKColorGraph(4);
<color graph of order 256 and rank 4>
gap> ColorNames(cgr);
["=", "Q+S+", "Q+S-", "Q-"]
gap> gamma:=BaseGraphOfColorGraph(cgr,3);;
gap> IsStronglyRegular(gamma);
true
gap> gamma.srg;
rec(k := 120, lambda := 56, mu := 56, r := 8, s := -8, v := 256)

The COCO2P Package 9

1.3.10 IvanovColorGraph

. IvanovColorGraph(m) (function)

This function generates a series of color graphs described in [Iva94]. These color graphs may be
used to construct 3-isoregular strongly regular graphs with the 5-vertex condition. These color graphs
are interesting because they may be used to construct 3-isoregular strongly regular graphs with the
5-vertex condition. The vertex set of IvanovColorGraph(m) is V = GF(2)2m. For the description of
colors of the arcs consider a quadratic form q of Witt-index m−1 on V . Let Q be the quadric defined
by q, let S be a maximal singular subspace of q, and let O be the orthogonal complement of S. A pair
of vectors (v,w) is colored by

"=":
if v = w,

"Q+S+":
if v+w ∈ S,

"Q+S-":
if v+w ∈ Q\S,

"Q-O+":
if v+w ∈ O.

"Q-O-":
if v+w /∈ O∪Q.

Example
gap> cgr:=IvanovColorGraph(5);
<color graph of order 1024 and rank 5>
gap> ColorNames(cgr);
["=", "Q+S+", "Q+S-", "Q-O+", "Q-O-"]
gap> gamma:=BaseGraphOfColorGraph(cgr,[2,5]);;
gap> IsStronglyRegular(gamma);;
gap> gamma.srg;
rec(k := 495, lambda := 238, mu := 240, r := 15, s := -17, v := 1024)

1.3.11 AllAssociationSchemes

. AllAssociationSchemes(n) (function)

This function creates an interface to the database of small association schemes by Akihide Hanaki
and Izumi Miyamoto from http://math.shinshu-u.ac.jp/~hanaki/as/ (further refered to as
the Japanese catalogue)

This function downloads the list of small association schemes of order n . Then it converts them
to the internal format of COCO2P and returns the resulting list. Every color graph has a name of the
shape AS(n,k) where k is the index of the scheme in the list of schemes of order n in the Japanese
catalogue.

http://math.shinshu-u.ac.jp/~hanaki/as/

The COCO2P Package 10

1.3.12 AllCoherentConfigurations

. AllCoherentConfigurations(n) (function)

This function creates an interface to the database of small coherent configurations on at most 15
vertices by Matan Ziv-Av This function downloads the list of small coherent configurations of order
n . Then it converts them to the internal format of COCO2P and returns the resulting list. Every color
graph has a name of the shape CC(n,k) where k is the index of the scheme in the list of schemes of
order n in Matan’s catalogue.

1.4 Functions for the inspection of color graphs

1.4.1 OrderOfColorGraph

. OrderOfColorGraph(cgr) (attribute)

. OrderOfCocoObject(cgr) (attribute)

. Order(cgr) (attribute)

Returns the number of vertices of cgr .

1.4.2 RankOfColorGraph

. RankOfColorGraph(cgr) (attribute)

. Rank(cgr) (method)

Returns the number of colors of cgr .

1.4.3 VertexNamesOfCocoObject (for color graphs)

. VertexNamesOfCocoObject(cgr) (operation)

. VertexNamesOfColorGraph(cgr) (operation)

Returns the list of names of the vertices of cgr . Unfortunately, the more elegant name
VertexNames is used in Grape as the name of a global function and can not be overloaded.

Example
gap> cgr:=JohnsonScheme(5,2);;
gap> VertexNamesOfCocoObject(cgr);
[[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5],
[3, 4], [3, 5], [4, 5]]

1.4.4 ColorNames

. ColorNames(cgr) (operation)

Returns the list of names of the colors of cgr . In the following example, the color names of
the Johnson scheme are the possible cardinalities of the intersection of two 2-element subsets of
{1,2,3,4,5}. Thus loobs will get colored by 1, since the intersection of a 2-element set with itself
will have cardinality 2.

The COCO2P Package 11

Example
gap> cgr:=JohnsonScheme(5,2);;
gap> ColorNames(cgr);
[2, 1, 0]

1.4.5 ArcColorOfColorGraph (first variant)

. ArcColorOfColorGraph(cgr, u, v) (method)

. ArcColorOfColorGraph(cgr, arc) (method)

Returns the color of the arc (u,v). In the second form, the arc is arc is given as an ordered pair
[u,v].

Example
gap> cgr:=JohnsonScheme(5,2);;
gap> ColorNames(cgr);
[2, 1, 0]
gap> VertexNamesOfCocoObject(cgr);
[[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5],
[3, 4], [3, 5], [4, 5]]
gap> ArcColorOfColorGraph(cgr,1,10);
3
gap> ArcColorOfColorGraph(cgr,[2,9]);
2

1.4.6 ColorRepresentative

. ColorRepresentative(cgr, i) (operation)

Returns any arc of color i of cgr .

1.4.7 Neighbors (first variant)

. Neighbors(cgr, vertices, colors) (method)

. Neighbors(cgr, v, colors) (method)

. Neighbors(cgr, vertices, color) (method)

. Neighbors(cgr, v, color) (method)

The first variant returns the set of all vertices w of cgr such that the color of the arc (v,w) is an
element of the set colors , for all v in vertices .

The second variant gets as the second argument a single vertex of cgr , the third gets a single color
and the fourth variant gets both, a single vertex and a single color..

Example
gap> cgr:=JohnsonScheme(5,2);;
gap> ColorNames(cgr);
[2, 1, 0]
gap> VertexNamesOfCocoObject(cgr);
[[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5],

The COCO2P Package 12

[3, 4], [3, 5], [4, 5]]
gap> Neighbors(cgr,1,3);
[8, 9, 10]
gap> Neighbors(cgr,1,[1,2]);
[1, 2, 3, 4, 5, 6, 7]

1.4.8 AdjacencyMatrix (first variant)

. AdjacencyMatrix(cgr) (method)

. AdjacencyMatrix(cgr, colors) (method)

Returns the adjacency matrix of cgr . If A is the adjacency matrix of cgr , then A(i, j) is equal to
the color (not to the color name!) of the arc (i, j).

Example
gap> m:=[["black","red" ,"blue" ,"blue" ,"blue"],
> ["blue" ,"black","red" ,"blue" ,"blue"],
> ["blue" ,"blue", "black","red" ,"blue"],
> ["blue" ,"blue", "blue" ,"black","red"],
> ["red" ,"blue", "blue" ,"blue" ,"black"]];;
gap> cgr:=ColorGraphByMatrix(m);
<color graph of order 5 and rank 3>
gap> Display(AdjacencyMatrix(cgr));
[[1, 3, 2, 2, 2],

[2, 1, 3, 2, 2],
[2, 2, 1, 3, 2],
[2, 2, 2, 1, 3],
[3, 2, 2, 2, 1]]

gap> ColorNames(cgr)
["black", "blue", "red"]

In the second form AdjacencyMatrix(cgr,colors) returns a 0/1-matrix A(i, j), that has entry 1 at
(i, j) iff the entry of AdjacencyMatrix(cgr) at (i, j) is an element of the list colors .

Example
gap> Display(AdjacencyMatrix(cgr, [1,3]));
[[1, 1, 0, 0, 0],

[0, 1, 1, 0, 0],
[0, 0, 1, 1, 0],
[0, 0, 0, 1, 1],
[1, 0, 0, 0, 1]]

1.4.9 RowOfColorGraph

. RowOfColorGraph(cgr, i) (operation)

Returns the i-th row of the adjacency matrix of cgr (AdjacencyMatrix (1.4.8)).

The COCO2P Package 13

1.4.10 ColumnOfColorGraph

. ColumnOfColorGraph(cgr, j) (operation)

Returns the j-th column of the adjacency matrix of cgr (AdjacencyMatrix (1.4.8)).

1.4.11 Fibres

. Fibres(cgr) (operation)

The Fibres of a color graph are the maximal sets of vertices whose corresponding loops all have
the same color.

Example
gap> cgr:=ColorGraph(SymmetricGroup(4), Combinations([1..4]), OnSets,
> true, functions(m1,m2) return Length(Intersection(m1,m2));end);
<color graph of order 16 and rank 5>
gap> Fibres(cgr);
[[1], [2, 10, 14, 16], [3, 7, 9, 11, 13, 15], [4, 6, 8, 12], [5]]
gap> VertexNamesOfCocoObject(cgr);
[[], [1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 4],
[1, 3], [1, 3, 4], [1, 4], [2], [2, 3], [2, 3, 4],
[2, 4], [3], [3, 4], [4]]

1.4.12 NumberOfFibres

. NumberOfFibres(cgr) (attribute)

Returns the number of different colors of loops of cgr (cf. Fibres (1.4.11)).

1.4.13 LocalIntersectionArray

. LocalIntersectionArray(cgr, v, w) (method)

. LocalIntersectionArray(cgr, arc) (method)

The input to this operation is a color graph cgr and an arc. In the first version this arc is given as
two parameters v , and w . In the second form the arc is given as ordered pair arc . We will assume in
the following that arc=[v,w]. The local intersection array of the arc (v,w) is the square matrix A of
order RankOfColorGraph(cgr) where A(i, j) is equal to the number of vertices u of cgr such that
the arc (v,u) has color i and the arc (u,w) has color j.

Example
gap> cgr:=JohnsonScheme(5,2);
<color graph of order 10 and rank 3>
gap> ColorRepresentative(cgr,1);
[1, 1]
gap> ColorRepresentative(cgr,2);
[1, 2]
gap> ColorRepresentative(cgr,3);
[1, 8]
gap> Display(LocalIntersectionArray(cgr,1,1));

The COCO2P Package 14

[[1, 0, 0],
[0, 6, 0],
[0, 0, 3]]

gap> Display(LocalIntersectionArray(cgr,1,2));
[[0, 1, 0],

[1, 3, 2],
[0, 2, 1]]

gap> Display(LocalIntersectionArray(cgr,1,8));
[[0, 0, 1],

[0, 4, 2],
[1, 2, 0]]

1.4.14 ColorMates

. ColorMates(cgr) (attribute)

In a WL-stable color graph for every color i there exists a color i′ such that whenever an arc (u,v)
has color i, then the opposite arc (v,u) has color i′. The mapping from i to i′ is a permutation of the
colors. The function ColorMates returns this permutation.

Example
gap> cgr:=ColorGraph(Group((1,2,3,4,5)));;
gap> Display(AdjacencyMatrix(cgr));
[[1, 2, 3, 4, 5],

[5, 1, 2, 3, 4],
[4, 5, 1, 2, 3],
[3, 4, 5, 1, 2],
[2, 3, 4, 5, 1]]

gap> ColorMates(cgr);
(2,5)(3,4)

1.4.15 OutValencies (for WL-stable color graphs)

. OutValencies(cgr) (method)

Let i and a color of cgr . Then there is a number d(i) such that for every vertex v of cgr there is
either no arc, or there are exactly d(i) arcs leaving v. The number d(i) is called the subdegree of the
color i.

The function OutValencies returns a the list [d(1),d(2),...,d(RankOfColorGraph(cgr))]

1.4.16 ReflexiveColors (for WL-stable color graphs)

. ReflexiveColors(cgr) (method)

This function returns the list of all reflexive colors of the WL-stable color graph cgr .

The COCO2P Package 15

1.5 Creating new (color) graphs from given color graphs

1.5.1 ColorGraphByFusion

. ColorGraphByFusion(cgr, fusion) (operation)

The function takes as arguments a color graph cgr and a fusion. The fusion can be either a
list of sets of colors, or it belongs to the category IsFusionOfTensor and more concretely to the
family FusionFamily(StructureConstantsOfColorGraph(cgr)). In the latter case, cgr has to
be WL-stable.

The fusion-color graph has the same order like cgr . The color of an arc (i, j) in the fusion color
graph is the list of all classes of fusion to which ArcColorOfColorGraph(cgr,i,j) belongs. If
fusion is a partition, then the effect is that all colors in one class are fused into the same new color.
If fusion is not a partition, then the resulting color graph will be color-isomorphic to the fusion color
graph of cgr with respect to the coarsest partition that allows to obtain every element of fusion as a
union of classes.

Example
gap> cgr:=ColorGraph(Group((1,2,3,4,5)));
<color graph of order 5 and rank 5>
gap> cgr2:=ColorGraphByFusion(cgr,[[1],[2,3],[4],[5]]);
<color graph of order 5 and rank 4>
gap> Display(AdjacencyMatrix(cgr));
[[1, 2, 3, 4, 5],

[5, 1, 2, 3, 4],
[4, 5, 1, 2, 3],
[3, 4, 5, 1, 2],
[2, 3, 4, 5, 1]]

gap> Display(AdjacencyMatrix(cgr2));
[[1, 2, 2, 3, 4],

[4, 1, 2, 2, 3],
[3, 4, 1, 2, 2],
[2, 3, 4, 1, 2],
[2, 2, 3, 4, 1]]

gap> ColorNames(cgr2);
[[[1]], [[2, 3]], [[4]], [[5]]]

1.5.2 QuotientColorGraph

. QuotientColorGraph(cgr, part) (operation)

part is a partition of the vertex set of the color graph cgr (it has to be a set of sets of vertices).
The quotient graph of cgr with respect to part has as vertex set the classes of part . the color of the
arc ([u], [v]) the quotient graph is the set of all colors i of cgr such that there are vertices u′ ∈ [u] and
v′ ∈ [v] such that the arc (u′,v′) has color i.

The above described color graph is also well-defined, if part is not a partition but any set of sets
of vertices of cgr . In fact, QuotientColorGraph does not check, whether part is indeed a partition.

Example
gap> s5:=SymmetricGroup(5);;
gap> cgr:=ColorGraph(s5, Arrangements([1..5],2), OnPairs,true);

The COCO2P Package 16

<color graph of order 20 and rank 7>
gap> part:=Set(Orbit(s5, [[1,2],[2,1]], OnSetsTuples));;
gap> part:=Set(part, x->Set(x, y->Position(VertexNamesOfCocoObject(cgr),y)));
[[1, 5], [2, 9], [3, 13], [4, 17], [6, 10], [7, 14],
[8, 18], [11, 15], [12, 19], [16, 20]]
gap> cgr2:=QuotientColorGraph(cgr,part);
<color graph of order 10 and rank 3>
gap> ColorNames(cgr2);
[[1, 3], [2, 4, 5, 6], [7]]
gap> VertexNamesOfCocoObject(cgr2);
[[1, 5], [2, 9], [3, 13], [4, 17], [6, 10], [7, 14],
[8, 18], [11, 15], [12, 19], [16, 20]]

1.5.3 InducedSubColorGraph

. InducedSubColorGraph(cgr, set) (operation)

This function returns a color graph that is isomorphic to the sub color graph induced by set . The
function that maps i to set[i] is an embedding of the induced subgraph into cgr .

Example
gap> cgr:=ColorGraph(SymmetricGroup(5), Combinations([1..5]), OnSets, true);
<color graph of order 32 and rank 56>
gap> vn:=VertexNamesOfCocoObject(cgr);;
gap> fibre:=Filtered([1..Length(vn)], i->Length(vn[i])=2);
[3, 11, 15, 17, 19, 23, 25, 27, 29, 31]
gap> cgr2:=InducedSubColorGraph(cgr,fibre);
<color graph of order 10 and rank 3>
gap> VertexNamesOfCocoObject(cgr2);
[3, 11, 15, 17, 19, 23, 25, 27, 29, 31]

1.5.4 DirectProductColorGraphs

. DirectProductColorGraphs(cgr1, cgr2) (operation)

Suppose, cgr1 is the color graph (V1,C1, f1), and cgr2 is the color graph (V2,C2, f2). Then the
direct product of cgr1 with cgr2 has vertex set V1×V2, and color set C1×C2. The coloring function
is f1× f2. Here f1× f2 acts coordinate wise.

The operation DirectProductColorGraphs returns the direct product of cgr1 with cgr2 .

1.5.5 WreathProductColorGraphs

. WreathProductColorGraphs(cgr1, cgr2) (operation)

Suppose, cgr1 is the color graph (V1,C1, f1), and cgr2 is the color graph (V2,C2, f2). Suppose,
D1 is the set of all those colors of cgr1 whose color class contains reflexive tuples. Then the wreath
product of cgr1 with cgr2 has vertex set V1×V2. The set of colors is the union of C1×{∗} with

The COCO2P Package 17

D1×C2. The coloring function maps pairs ((a1,a2),(a1,b2)) to (f1(a1,a1), f2(b1,b2)), and other pairs
((a1,a2),(b1,b2)) to (f1(a1,a2),∗).

The operation WreathProductColorGraphs returns the wreath product of cgr1 with cgr2 .

1.5.6 ClosedSets (for homogeneous WL-stable color graphs)

. ClosedSets(cgr) (attribute)

A set cset of colors of cgr is closed if the collections of all arcs whose color is from cset forms
an equivalence relation. This function returns a list of all closed sets of colors of cgr .

1.5.7 PartitionClosedSet (for homogeneous WL-stable color graphs)

. PartitionClosedSet(cgr, cset) (operation)

A set cset of colors of cgr is closed if the collections of all arcs whose color is from cset forms
an equivalence relation. This function returns the vertex-partition corresponding to this equivalence
relation. It is not tested, whether cset is indeed closed. It is required that cgr is a homogeneous
WL-stable color graph.

Example
gap> s5:=SymmetricGroup(5);;
gap> d6:=Subgroup(s5, [(1,2),(1,2,3)(4,5)]);;
gap> cgr:=ColorGraph(s5,s5,OnRight,true, function(a,b) return a*b;end);
<color graph of order 120 and rank 120>
gap> cset:=Set(d6, x->Position(ColorNames(cgr),x));
[1, 8, 13, 24, 29, 31, 61, 68, 73, 84, 89, 91]
gap> IsWLStableColorGraph(cgr);
true
gap> IsHomogeneous(cgr);
true
gap> part:=PartitionClosedSet(cgr,cset);;
gap> cgr2:=QuotientColorGraph(cgr,part);
<color graph of order 10 and rank 3>

1.5.8 BaseGraphOfColorGraph (first variant)

. BaseGraphOfColorGraph(cgr, color) (method)

. BaseGraphOfColorGraph(cgr, cset) (method)

This function extracts graphs from a color graph. In the first variant, the second argument is one
color. In this case the digraph with vertex set [1..OrderOfColorGraph(cgr)] and with all arcs of
color color from cgr .

In the second case the arc-set of the result consists of all arcs with color from cset of cgr .
This function is available only if Grape is loaded.

Example
gap> cgr:=JohnsonScheme(5,2);
<color graph of order 10 and rank 3>
gap> OutValencies(cgr);

The COCO2P Package 18

[1, 6, 3]
gap> gamma:=BaseGraphOfColorGraph(cgr,3);;
gap> IsDistanceRegular(gamma);
true
gap> GlobalParameters(gamma);
[[0, 0, 3], [1, 0, 2], [1, 2, 0]]

1.6 Testing properties of color graphs

1.6.1 IsUndirectedColorGraph

. IsUndirectedColorGraph(cgr) (property)

A color graph is called undirected if for all vertices u and v the arc (u,v) has the same color as the
arc (v,u). The function tests this property for cgr .

Example
gap> cgr:=ColorGraph(Group((1,2,3,4,5)));
<color graph of order 5 and rank 5>
gap> IsUndirectedColorGraph(cgr);
false
gap> ArcColorOfColorGraph(cgr,[1,2]);
2
gap> ArcColorOfColorGraph(cgr,[2,1]);
5
gap> cgr2:=ColorGraphByFusion(cgr, [[1],[2,5],[3,4]]);
<color graph of order 5 and rank 3>
gap> IsUndirectedColorGraph(cgr2);
true

1.6.2 IsHomogeneous

. IsHomogeneous(cgr) (property)

A color graph is homogeneous if it has just one fibre. For a WL-stable color graph this means
that it has just one reflexive color. For a WL-stable color graph this means that it correspond to an
association scheme.

Example
gap> e8:=ElementaryAbelianGroup(8);
<pc group of size 8 with 3 generators>
gap> e8:=Action(e8,AsList(e8), OnRight);
Group([(1,2)(3,5)(4,6)(7,8), (1,3)(2,5)(4,7)(6,8), (1,4)(2,6)(3,7)(5,8)])
gap> cgr:=ColorGraph(e8,Combinations([1..DegreeAction(g)],2), OnSets);
<color graph of order 28 and rank 112>
gap> IsHomogeneous(cgr);
false

The COCO2P Package 19

1.6.3 IsWLStableColorGraph

. IsWLStableColorGraph(cgr) (property)

This function returns true if cgr is stable under the Weisfeiler-Leman algorithm, that is, whether
it is the color graph of a coherent configuration.

Example
gap> cgr:=ColorGraph(Center(GL(2,7)), GF(7)^2, OnRight, true,
> function(a,b) return NormedRowVector(a-b);end);
<color graph of order 49 and rank 9>
gap> IsWLStableColorGraph(cgr);
true

1.6.4 IsSchurian

. IsSchurian(cgr) (property)

A color graph is called Schurian if it is color isomorphic to the color graph of orbitals of its
automorphism group.

Example
gap> lcgr:=AllAssociationSchemes(15);;
gap> lcgr:=Filtered(lcgr, x->not IsSchurian(x));
[AS(15,5)]

1.6.5 IsPrimitive (for WL-stable color graphs)

. IsPrimitive(cgr) (property)

A WL-stable color graph is primitive if all its loopless base graphs are strongly connected (cf.
BaseGraphOfColorGraph (1.5.8)). This function tests, whether cgr is primitive or not.

Example
gap> cgr:=ColorGraph(Group((1,2,3,4)));
<color graph of order 4 and rank 4>
gap> IsPrimitive(cgr);
false
gap> ReflexiveColors(cgr);
[1]
gap> IsConnectedGraph(BaseGraphOfColorGraph(cgr,2));
true
gap> IsConnectedGraph(BaseGraphOfColorGraph(cgr,3));
false
gap> IsConnectedGraph(BaseGraphOfColorGraph(cgr,4));
true

The COCO2P Package 20

1.7 Symmetries of color graphs

1.7.1 KnownGroupOfAutomorphisms (for color graphs)

. KnownGroupOfAutomorphisms(cgr) (operation)

This function returns the group of all automorphisms of cgr that COCO2P knows at the given
moment.

1.7.2 AutGroupOfCocoObject (for color graphs)

. AutGroupOfCocoObject(cgr) (attribute)

. AutomorphismGroup(cgr) (method)

Returns the group of all permutations of the vertices of cgr that preserve the color of all arcs.

1.7.3 IsAutomorphismOfObject (for color graphs)

. IsAutomorphismOfObject(cgr, perm) (operation)

. IsAutomorphismOfColorGraph(cgr, perm) (operation)

Returns true, if perm is an automorphism of cgr . In that case COCO2P adds perm to the
known automorphisms of cgr .

1.7.4 IsomorphismCocoObjects (for color graphs)

. IsomorphismCocoObjects(cgr1, cgr2) (operation)

. IsomorphismColorGraphs(cgr1, cgr2) (operation)

An isomorphism from cgr1 to cgr2 is a bijection between the vertex sets that preserves the color
of arcs (including the names of colors).

This operation returns an isomorphism from cgr1 to cgr2 if it exists, and fail if it does not
exists.

1.7.5 IsIsomorphicCocoObject (for color graphs)

. IsIsomorphicCocoObject(cgr1, cgr2) (operation)

. IsIsomorphicColorGraph(cgr1, cgr2) (operation)

Returns true if cgr1 and cgr2 are isomorphic, and false otherwise (cf.
IsomorphismCocoObjects (1.7.4))

1.7.6 IsIsomorphismOfObjects (for color graphs)

. IsIsomorphismOfObjects(cgr1, cgr2, g) (operation)

. IsIsomorphismOfColorGraphs(cgr1, cgr2, g) (operation)

Returns true if g is an isomorphism fro cgr1 to cgr2 , and false otherwise (cf.
IsomorphismCocoObjects (1.7.4)).

The COCO2P Package 21

1.7.7 KnownGroupOfColorAutomorphisms

. KnownGroupOfColorAutomorphisms(cgr) (operation)

This function returns the group of all color automorphisms of cgr that COCO2P knows at the
given moment.

1.7.8 LiftToColorAutomorphism

. LiftToColorAutomorphism(cgr, perm) (operation)

cgr is a color graph and perm is a permutation of its colors. The function constructs a color
automorphism of cgr that acts like perm on the colors. If such a color automorphism does not exist,
then fail is returned.

If perm is liftable, then the result of the lifting is added to the known group of color automorphisms
of cgr .

1.7.9 LiftToColorIsomorphism

. LiftToColorIsomorphism(cgr1, cgr2, ciso) (operation)

cgr1 and cgr2 are color graphs of the same rank, and ciso is a bijection from the colors of cgr1
to the colors of cgr2 . The function constructs a color isomorphism from cgr1 to cgr2 that acts like
ciso on the colors. If such a color isomorphism does not exist, then fail is returned.

1.7.10 ColorIsomorphismColorGraphs

. ColorIsomorphismColorGraphs(cgr1, cgr2) (operation)

This operation returns a color isomorphism from cgr1 to cgr2 , and fail otherwise.
At the moment, this operation is implemented only from WL-stable color graphs.

1.7.11 IsColorIsomorphicColorGraph

. IsColorIsomorphicColorGraph(cgr1, cgr2) (operation)

This operation returns true if cgr1 and cgr2 are color isomorphic, and false otherwise.
At the moment, this operation is implemented only from WL-stable color graphs.

1.7.12 ColorAutomorphismGroup

. ColorAutomorphismGroup(cgr) (attribute)

This function computes and returns the color automorphism group of cgr . This group consists of
all permutations of the vertices of the color graph, that map arcs of the same color to arcs of the same
color. In particular, it may act non-trivially on the colors of cgr .

The COCO2P Package 22

If cgr is a Schurian WL-stable color graph, then its color automorphism group is equal to the
normalizer of its automorphism group in the full symmetric group of the vertices of cgr . In some
(rare) cases, this way to compute normalizers can be quicker than the built-in gap-functions.

At the moment, this function is implemented only for WL-stable color graphs.

1.7.13 ColorAutomorphismGroupOnColors

. ColorAutomorphismGroupOnColors(cgr) (attribute)

The color automorphism of cgr acts on the colors of cgr with the automorphism group of cgr
as kernel. This function computes and returns this action.

At the moment, this function is implemented only for WL-stable color graphs.

1.7.14 KnownGroupOfAlgebraicAutomorphisms

. KnownGroupOfAlgebraicAutomorphisms(cgr) (operation)

This function returns the group of all algebraic automorphisms of cgr that COCO2P knows at
the given moment.

1.7.15 AlgebraicAutomorphismGroup

. AlgebraicAutomorphismGroup(cgr) (attribute)

The algebraic automorphism group of a WL-stable color graph is nothing but the automorphism
group of its tensor of structure constants. The color automorphism group in its action on colors
embeds naturally into the algebraic automorphism group.

Chapter 2

Structure Constants Tensors

2.1 Introduction

COCO2P introduces its own data-type for structure constants tensors of coherent algebras. The
methods provided by COCO2P are tailored for this use. The emphasis lies on symmetries, quotients
(by closed sets) and mergings (fusions).

2.2 Functions for the construction of tensors

2.2.1 StructureConstantsOfColorGraph

. StructureConstantsOfColorGraph(cgr) (attribute)

This function expects a WL-stable color graph cgr , and computes its tensor of structure constants.
The result is the structure constants tensor T of cgr . This object encodes a third-order tensor. For
every color k of cgr , the matrix T (i, j,k) is equal to the LocalIntersectionArray (1.4.13) of any
arc of color k in cgr .

2.2.2 DenseTensorFromEntries

. DenseTensorFromEntries(entries) (function)

The argument entries is a list of lists of lists of integers. There has to be a number n such that
Length(entries)=n, for all 1≤ i, j≤ n Length(entries[i])=n, and Length(entries[i][j]=n.
Otherwise there are no restrictions.

The function returns the tensor-object for entries .
Note that this function does not check, whether the entries are integers or even numbers. One can

also view the datatype of tensors as a type that encodes complete colored hyper-graphs with hyper-
arcs of length 3. Even though there is not much infrastructure implemented in COCO2P for such
objects, at least it is possible to check isomorphism and to compute automorphism groups.

23

The COCO2P Package 24

2.3 Functions for the inspection of tensors

2.3.1 OrderOfTensor

. OrderOfTensor(tensor) (attribute)

. OrderOfCocoObject(tensor) (attribute)

. Order(tensor) (attribute)

Returns the order of the tensor. If it is equal to n then this means that tensor is an n×n×n-array.

2.3.2 VertexNamesOfCocoObject (for tensors)

. VertexNamesOfCocoObject(tensor) (operation)

. VertexNamesOfTensor(tensor) (operation)

Returns the list of names of the vertices of tensor .

2.3.3 EntryOfTensor

. EntryOfTensor(tensor, i, j, k) (operation)

Returns the entry at index (i, j,k) of tensor .

2.3.4 ReflexiveColors (for structure constants tensors)

. ReflexiveColors(tensor) (attribute)

If tensor is the structure constants tensor of the WL-stable color graph cgr, then
ReflexiveColors(tensor) return the list of all reflexive colors of cgr.

Example
gap> e8:=Action(e8,AsList(e8), OnRight);
Group([(1,2)(3,5)(4,6)(7,8), (1,3)(2,5)(4,7)(6,8), (1,4)(2,6)(3,7)(5,8)])
gap> cgr:=ColorGraph(e8,Combinations([1..DegreeAction(g)],2), OnSets);
<color graph of order 28 and rank 112>
gap> T:=StructureConstantsOfColorGraph(cgr);
<Tensor of order 112>
gap> ReflexiveColors(T);
[1, 18, 35, 52, 69, 86, 103]

2.3.5 NumberOfFibres (for structure constants tensors)

. NumberOfFibres(tensor) (attribute)

Returns the number of reflexive colors of tensor .

The COCO2P Package 25

2.3.6 FibreLengths (for structure constants tensors)

. FibreLengths(tensor) (attribute)

If tensor is the structure constants tensor of the WL-stable color graph cgr, then
FibreLengths(tensor) returns the list of lengths of all fibres of cgr. The order corresponds to
the result of ReflexiveColors(T).

Example
gap> a5:=AlternatingGroup(5);
Alt([1 .. 5])
gap> g:=Action(a5, Combinations([1..5],2), OnSets);
Group([(1,5,8,10,4)(2,6,9,3,7), (2,3,4)(5,6,7)(8,10,9)])
gap> g:=Stabilizer(g,1);
Group([(2,3,4)(5,6,7)(8,10,9), (2,6)(3,5)(4,7)(9,10)])
gap> cgr:=ColorGraph(g);
<color graph of order 10 and rank 19>
gap> T:=StructureConstantsOfColorGraph(cgr);
<Tensor of order 19>
gap> ReflexiveColors(T);
[1, 5, 18]
gap> FibreLengths(T);
[1, 6, 3]
gap> Fibres(cgr);
[[1], [2, 3, 4, 5, 6, 7], [8, 9, 10]]

2.3.7 OutValencies (for structure constants tensors)

. OutValencies(tensor) (attribute)

If tensor is the structure constants tensor of the WL-stable color graph cgr, then
OutValencies(tensor) returns the OutValencies (1.4.15) of cgr .

2.3.8 Mates (for structure constants tensors)

. Mates(tensor) (attribute)

If tensor is the structure constants tensor of the WL-stable color graph cgr, then
OutValencies(tensor) returns the permutation ColorMates(cgr) (ColorMates (1.4.14)).

2.3.9 StartBlock (for structure constants tensors)

. StartBlock(tensor, i) (operation)

If tensor is the structure constants tensor of the WL-stable color graph cgr, then in particular,
the vertices of tensor are the colors of cgr. All arcs of color i have their starting vertex in the same
fibre of cgr. Moreover, the loops over the vertices of one fibre all have the same color.

This function returns the index j into ReflexiveColors(T) (cf. ReflexiveColors (2.3.4)) such
that at the start of every arc of color i there is a loop to color ReflexiveColors(T)[j].

The COCO2P Package 26

2.3.10 FinishBlock (for structure constants tensors)

. FinishBlock(tensor, i) (operation)

If tensor is the structure constants tensor of the WL-stable color graph cgr, then in particular,
the vertices of tensor are the colors of cgr. All arcs of color i have their finishing vertex in the
same fibre of cgr. Moreover, the loops over the vertices of one fibre all have the same color.

This function returns the index j into ReflexiveColors(T) (cf. ReflexiveColors (2.3.4)) such
that at the end of every arc of color i there is a loop to color ReflexiveColors(T)[j].

2.3.11 ClosedSets

. ClosedSets(tensor) (operation)

A set M of vertices of tensor is called closed if whenever i, j are in M, then also all such k are in
M for which EntryOfTensor(tensor,i,j,k) is non-zero.

This function returns all closed sets of tensor .

2.3.12 ComplexProduct (for structure constants tensors)

. ComplexProduct(tensor, set1, set2) (operation)

Suppose that tensor is the structure constants tensor of the WL-stale color graph cgr. the colors
of cgr canonically correspond to the standard-basis elements of the coherent algebra W that is asso-
ciated with cgr . The elements of W can naturally be encoded as vectors of length Rank(cgr). The
arguments set1 and set2 are sets of colors of cgr (i.e. vertices of tensor). Their characteristic
vectors, can hence be understood as elements of W .

The operation ComplexProduct returns the coefficient-vector of the product of the characteristic
vector of set1 with the characteristic vector of set2 in W .

2.3.13 ClosureSet

. ClosureSet(tensor, set) (function)

set is a set of vertices of tensor . The function returns the smallest closed set of tensor that
contains set (cf. ClosedSets (2.3.11))

2.4 Testing properties of tensors

2.4.1 IsTensorOfCC

. IsTensorOfCC(tensor) (property)

If tensor has this property, then this means that COCO2P knows, that it is the structure constants
tensor of a WL-stable color graph. There is no method installed for this property, as it is in general
hard to prove that a given tensor belongs to a WL-stable color graph. The property is set by the
constructor that created tensor .

The COCO2P Package 27

2.4.2 IsCommutativeTensor

. IsCommutativeTensor(tensor) (property)

tensor has this property, if for all i, j,k holds EntryOfTensor(tensor,i,j,k)=
EntryOfTensor(tensor,j,i,k).

2.4.3 IsHomogeneous (for structure constants tensors)

. IsHomogeneous(tensor) (property)

Returns whether tensor has just one reflexive color.

2.4.4 IsPrimitive (for structure constants tensors)

. IsPrimitive(tensor) (property)

A structure constants tensor is primitive if it is homogeneous and if it has only the trivial closed
sets (i.e. the singleton of the unique reflexive color and the set of all colors).

If tensor is the structure constants tensor of the color graph cgr, then tensor is primitive if and
only if cgr is primitive (cf. IsPrimitive (1.6.5)).

2.5 Symmetries of tensors

2.5.1 KnownGroupOfAutomorphisms (for tensors)

. KnownGroupOfAutomorphisms(tensor) (operation)

This function returns the group of all automorphisms of tensor that COCO2P knows at the
given moment.

2.5.2 AutGroupOfCocoObject (for tensors)

. AutGroupOfCocoObject(tensor) (attribute)

. AutomorphismGroup(tensor) (method)

Returns the group of all automorphisms of tensor .

2.5.3 IsAutomorphismOfObject (for tensors)

. IsAutomorphismOfObject(tensor, perm) (operation)

. IsAutomorphismOfTensor(tensor, perm) (operation)

Returns true, if perm is an automorphism of tensor . In that case COCO2P adds perm to the
known automorphisms of tensor .

The COCO2P Package 28

2.5.4 IsomorphismCocoObjects (for tensors)

. IsomorphismCocoObjects(tensor1, tensor2) (operation)

. IsomorphismTensors(tensor1, tensor2) (operation)

This operation returns an isomorphism from tensor1 to tensor2 if it exists, and fail if it does
not exists.

2.5.5 IsIsomorphicCocoObject (for tensors)

. IsIsomorphicCocoObject(tensor1, tensor2) (operation)

. IsIsomorphicTensor(tensor1, tensor2) (operation)

Returns true if tensor1 and tensor2 are isomorphic, and false otherwise.

2.5.6 IsIsomorphismOfObjects (for tensors)

. IsIsomorphismOfObjects(tensor1, tensor2, g) (operation)

. IsIsomorphismOfTensors(tensor1, tensor2, g) (operation)

Returns true if g is an isomorphism fro tensor1 to tensor2 , and false otherwise.

2.6 Character tables of structure constants tensors

The structure constants tensor of a WL-stable color graph encodes the structure of the associated
coherent algebra. If this algebra is commutative, then COCO2P is able to compute its character
table provided, the irrationalities occuring are representable in GAP. The algorithm that computes the
character tables involves Gröbner-bases. The computation of the Gröbner bases defines the overall
performance of the algorithm for the computation of character tables.

2.6.1 CharacterTableOfTensor (for commutative structure constants tensors)

. CharacterTableOfTensor(tensor) (attribute)

This function returns a record with two components: characters and multiplicities. If
ct is the character table of tensor , then ct.characters[i][j] is the value of the i-th irre-
ducible character of the standard-basis element corresponding to color j of tensor . Moreover,
ct.multiplicities[i] is the multiplicity of the i-th irreducible character.

Example
gap> cgr:=JohnsonScheme(6,3);
<color graph of order 20 and rank 4>
gap> T:=StructureConstantsOfColorGraph(cgr);
<Tensor of order 4>
gap> IsCommutativeTensor(T);
true
gap> CharacterTable(T);
rec(characters := [[1, 9, 9, 1], [1, -1, -1, 1], [1, -3, 3, -1],

[1, 3, -3, -1]], multiplicities := [1, 9, 5, 5])

Chapter 3

WL-Stable Fusions Color Graphs

3.1 Introduction

One of the fundamental methods how to derive new color graphs from a color graph Γ, is to fuse
(i.e identify) colors. Color graphs that are derived from Γ in this way are called fusion color graphs.
Every fusion color graph ∆ of Γ defines a partition on the colors of Γ. This partition is called the
fusion associated with the fusion color graph ∆ of Γ. If ∆ is WL-stable, then its fusion is called a
stable fusion.

One of the fundamental algorithmical problems in algebraic combinatorics is to enumerate all
WL-stable fusion color graphs of a given color graph. At the moment COCO2P can solve a part
of this problem – namely starting from any WL-stable color graph Γ it can enumerate (orbits of)
stable fusions that lead to homogeneous WL-stable fusion color graphs. Such fusions we will call
homogeneous.

Computing stable fusions, in COCO2P is a two-stages process:

1. Computation of good sets of colors,

2. Fitting together good sets to stable fusions.

Good sets are the building blocks of stable fusions. A set of colors of a WL-stable color graph is
called a good set if there exists a stable fusion of the cgr in which the set appears as a class. It is called
a homogeneous good set if it is part of a homogeneous stable fusion. Note that the property to be a
(homogeneous) good set does only depend on the structure constants of the color graph.

3.2 Good sets

3.2.1 BuildGoodSet

. BuildGoodSet(tensor, set[, part]) (function)

tensor is the structure constants tensor of a WL-stable color graph cgr. set is a set of colors
of cgr (i.e. of vertices of tensor). part is supposed to be the coarsest stable partition of the colors
of cgr that contains set as a class (the stability is not checked by the function). The function returns
the corresponding good-set object.

If part is not given, then it is computed. If this computation fails (because set is not a good set),
then fail is returned.

29

The COCO2P Package 30

3.2.2 AsSet (for good sets)

. AsSet(gs) (operation)

Converts the good set object gs into a usual set.

3.2.3 TensorOfGoodSet

. TensorOfGoodSet(gs) (operation)

Returns the structure constants tensor over which the good set gs is “good”.

3.2.4 PartitionOfGoodSet

. PartitionOfGoodSet(gs) (operation)

This function returns the coarsest stable fusion (as a partition, i.e. a set of sets of colors), that
contains gs as a class.

3.3 Orbits of good sets

COCO2P implements a datatype for orbits of combinatorial objects. This section describes the func-
tions that deal with orbits of good sets. For every orbit of good sets, only the lexicographically smallest
representative and its set-wise stabilizer is saved. This allows to deal with good sets of color graphs
of comparatively high rank, provided they have many algebraic automorphisms.

3.3.1 HomogeneousGoodSetOrbits (for structure constants tensors)

. HomogeneousGoodSetOrbits(tensor) (attribute)

. HomogeneousGoodSetOrbits(group, tensor[, mode]) (method)

group is supposed to consist only of automorphisms of tensor . COCO2P learns new automor-
phisms by checking this property. If group is not given, then the full automorphism group of tensor
is taken for group .

This function returns all group -orbits of homogeneous good sets.
If mode is equal to "s", then only orbits of symmetric good sets are returned. If mode is equal to

"a", then only orbits of asymmetric good sets are returned.

3.3.2 GoodSetOrbit

. GoodSetOrbit(group, gs[, stab]) (operation)

gs is a good set. group has to be a subgroup of the automorphism group of
TensorOfGoodSet(gs). stab (if given) has to be the full set-wise stabilizer of gs in group .

The function constructs a COCO2P-orbit object of the setwise orbit of gs under group .

The COCO2P Package 31

3.3.3 CanonicalRepresentativeOfCocoOrbit (for orbits of good sets)

. CanonicalRepresentativeOfCocoOrbit(gsorb) (operation)

This function returns the lexicographically smallest element of the orbit of good sets gsorb .

3.3.4 Representative (for orbits of good sets)

. Representative(gsorb) (operation)

This function returns any element of the orbit of good sets gsorb . At the moment it in fact returns
the lexicographically smallest element.

3.3.5 UnderlyingGroupOfCocoOrbit (for orbits of good sets)

. UnderlyingGroupOfCocoOrbit(gsorb) (operation)

This function returns the group under which gsorb is an orbit.

3.3.6 StabilizerOfCanonicalRepresentative (for orbits of good sets)

. StabilizerOfCanonicalRepresentative(gsorb) (operation)

This function returns the setwise stabilizer of CanonicalRepresentativeOfCocoOrbit(gsorb)
in UnderlyingGroupOfCocoOrbit(gsorb).

3.3.7 Size (for orbits of good sets)

. Size(gsorb) (method)

returns the size of gsorb .

3.3.8 AsList (for orbits of good sets)

. AsList(gsorb) (method)

expands the COCO2P-orbit object gsorb into a list of good sets.

3.3.9 AsSet (for orbits of good sets)

. AsSet(gsorb) (method)

expands the COCO2P-orbit object gsorb into a set of good sets.

The COCO2P Package 32

3.3.10 SubOrbitsOfCocoOrbit (for orbits of good sets)

. SubOrbitsOfCocoOrbit(group, gsorb) (operation)

group is a subgroup of the underlying group of the orbit of good sets gsorb . The given orbit
splits into suborbits under this group. The function returns a list of these suborbits.

3.3.11 SubOrbitsWithInvariantPropertyOfCocoOrbit (for orbits of good sets)

. SubOrbitsWithInvariantPropertyOfCocoOrbit(group, gsorb, prop) (operation)

prop is a function that takes a single good set as argument and returns true or false. It has to be
invariant under the set-wise action of group . Note that this property is not checked by the function.

This function does the same as

Filtered(SubOrbitsOfCocoOrbit(group,gsorb), x->prop(Representative(x)));

However, the former code is generally much less efficient than calling

SubOrbitsWithInvariantPropertyOfCocoOrbit(group,gsorb,prop);

3.4 Fusions

3.4.1 FusionFromPartition (for structure constant tensors)

. FusionFromPartition(tensor, part) (function)

if tensor is the structure constants tensor of the WL-stable color graph cgr, and if part is a
partition of the colors of cgr (a set of sets of colors), then this function returns a fusion-object, or
fail if part is not a fusion of cgr.

3.4.2 AsPartition

. AsPartition(fusion) (attribute)

Converts the fusion-object fusion into a set of sets of colors.

3.4.3 PartitionOfFusion

. PartitionOfFusion(fusion) (operation)

Converts the fusion object fusion into a list of sets. In contrast to te result of
AsPartition(fusion), the resulting list of classes is sorted in short-lex order. This means that first
it is sorted by cardinality of classes, and then the classes of equal size are sorted lexicographically.

The COCO2P Package 33

3.4.4 TensorOfFusion

. TensorOfFusion(fusion) (operation)

returns the structure constants tensor, over which the fusion fusion is a stable fusion.

3.4.5 BaseOfFusion

. BaseOfFusion(fusion) (attribute)

The base of a fusion is the smallest list of classes of fusion (in the short lex order) that generates
fusion in the sense that there is no coarser stable fusion that contains the classes of the base.

This function returns the base of fusion if COCO2P knows it. At the moment there is no method
for computing the base.

3.4.6 RankOfFusion

. RankOfFusion(fusion) (attribute)

returns the number of classes of fusion .

3.5 Orbits of fusions

COCO2P implements a datatype for orbits of combinatorial objects. This section describes the func-
tions that deal with orbits of stable fusion. For every orbit of fusions, only the smallest representative
in the short-lex order and its partition-wise stabilizer is saved. This allows to deal with fusions of
color graphs of comparatively high rank.

3.5.1 HomogeneousFusionOrbits (for structure constants tensors)

. HomogeneousFusionOrbits(tensor) (attribute)

. HomogeneousFusionOrbits(group, tensor) (method)

group is supposed to consist only of automorphisms of tensor . COCO2P learns new automor-
phisms by checking this property. If group is not given, then the full automorphism group of tensor
is taken for group .

This function returns all group -orbits of homogeneous stable fusions.

3.5.2 FusionOrbit

. FusionOrbit(group, fusion[, stab]) (operation)

fusion is a fusion object. group has to be a subgroup of the automorphism group of
TensorOfFusion(fusion). stab (if given) has to be the full partition-wise stabilizer of fusion
in group .

The function constructs a COCO2P-orbit object of the partition-wise orbit of fusion under
group .

The COCO2P Package 34

3.5.3 CanonicalRepresentativeOfCocoOrbit (for orbits of fusions)

. CanonicalRepresentativeOfCocoOrbit(fusionorb) (operation)

This function returns the smallest element (in the short-lex order) of the orbit of fusions
fusionorb .

3.5.4 Representative (for orbits of fusions)

. Representative(fusionorb) (operation)

This function returns any element of the orbit of fusions sets fusionorb . At the moment it in fact
returns the canonical representative.

3.5.5 UnderlyingGroupOfCocoOrbit (for orbits of fusions)

. UnderlyingGroupOfCocoOrbit(fusionorb) (operation)

This function returns the group under which fusionorb is an orbit.

3.5.6 StabilizerOfCanonicalRepresentative (for orbits of fusions)

. StabilizerOfCanonicalRepresentative(fusion) (operation)

This function returns the partition-wise stabilizer of CanonicalRepresentativeOfCocoOrbit(fusionorb)
in UnderlyingGroupOfCocoOrbit(fusionorb).

3.5.7 Size (for orbits of fusions)

. Size(fusionorb) (method)

returns the size of fusionorb .

3.5.8 AsList (for orbits of fusions)

. AsList(fusionorb) (method)

s expands the COCO2P-orbit object fusionorb into a list of fusions.

3.5.9 AsSet (for orbits of fusions)

. AsSet(fusionorb) (method)

expands the COCO2P-orbit object fusionorb into a set of fusions.

The COCO2P Package 35

3.5.10 SubOrbitsOfCocoOrbit (for orbits of fusions)

. SubOrbitsOfCocoOrbit(group, fusion) (operation)

group is a subgroup of the underlying group of the orbit of fusions fusionorb . The given orbit
splits into suborbits under this group. The function returns a list of these suborbits.

3.5.11 SubOrbitsWithInvariantPropertyOfCocoOrbit (for orbits of fusions)

. SubOrbitsWithInvariantPropertyOfCocoOrbit(group, fusionorb, prop) (operation)

prop is a function that takes a single fusion as argument and returns true or false. It has to
be invariant under the partition-wise action of group . Note that the invariance is not checked by the
function.

This function does the same as

Filtered(SubOrbitsOfCocoOrbit(group,fusionorb), x->prop(Representative(x)));

However, the former code is generally much less efficient than calling

SubOrbitsWithInvariantPropertyOfCocoOrbit(group,fusion,prop);

Chapter 4

Partially ordered sets

4.1 Introduction

COCO2P implements a data-type for partially ordered sets. The reason is, that for the posets of
interest in COCO2P the test whether two elements are in order-relation is rather expensive, and
COCO2P takes care to minimize the necessary tests. The other reason is, that this approach allows a
nice and unified interface to XGAP for all kinds of posets that are introduced in COCO2P (i.e. posets
of color graphs, posets of fusion orbits, lattices of fusions, lattices of closed sets, for now).

Like for combinatorial objects, COCO2P internally does not work directly with the elements of
a poset, but instead uses indices into a list of elements (cf.). Only two functions refer directly to the
elements: CocoPosetByFunctions (4.2.1) and ElementsOfCocoPoset (4.2.2). Therefore, in the
following, we will identify the index to an element with the element.

4.2 General functions for COCO2P-posets

4.2.1 CocoPosetByFunctions

. CocoPosetByFunctions(elements, order, linpreorder) (function)

This is the main constructor for posets in COCO2P. All other constructors, behind the scenes,
use this function.

elements is the underlying set of the poset.
order is a binary boolean function on elements that returns true on an input pair (x,y) is x is

less than or equal y in the poset to be constructed. Otherwise it has to return false. The function
order may be algorithmically difficult.

linpreorder is a binary boolean function that defines a linear preorder (reflexive, transitive, total
relation) on elements , that extends the partial order relation defined by order such that the strict
order of elements is preserved. That is, if y is strictly above x in order , then so it is in linpreorder .

The function linpreorder is used to speed up the computations of the successor-relation of the
goal poset. It should be much quicker than order in order to really lead to a speedup. E.g., when
computing a poset of sets, order may be the inclusion order, and linpreorder may be the function
that compares cardinalities.

The function returns a COCO2P-poset object that encodes the poset defined by order .

36

The COCO2P Package 37

4.2.2 ElementsOfCocoPoset

. ElementsOfCocoPoset(poset) (operation)

This function returns the list of elements of poset . Indices returned by other operations for
posets, will be relative to this list.

4.2.3 Size (for COCO-posets)

. Size(poset) (method)

This function returns the number of elements of poset .

4.2.4 SuccessorsInCocoPoset

. SuccessorsInCocoPoset(poset, i) (operation)

This functions returns the successors of i in poset .

4.2.5 PredecessorsInCocoPoset

. PredecessorsInCocoPoset(poset, i) (operation)

This functions returns the predecessors of i in poset .

4.2.6 IdealInCocoPoset

. IdealInCocoPoset(poset, set) (operation)

. IdealInCocoPoset(poset, i) (operation)

This function returns the order ideal (a.k.a. downset) generated by set in poset .
In the second form, the principal order ideal generated by i in poset is returned.

4.2.7 FilterInCocoPoset

. FilterInCocoPoset(poset, set) (operation)

. FilterInCocoPoset(poset, i) (operation)

This function returns the order filter (a.k.a. upset) generated by set in poset .
In the second form, the principal order filter generated by i in poset is returned.

4.2.8 MinimalElementsInCocoPoset

. MinimalElementsInCocoPoset(poset, set) (operation)

This function returns the minimal elements of set in poset .

The COCO2P Package 38

4.2.9 MaximalElementsInCocoPoset

. MaximalElementsInCocoPoset(poset, set) (operation)

This function returns the maximal elements of set in poset .

4.2.10 InducedCocoPoset

. InducedCocoPoset(poset, set) (function)

This function returns the subposet of poset that is induced by set

4.2.11 GraphicCocoPoset

. GraphicCocoPoset(poset) (operation)

This function creates a graphical representation of poset using XGAP.

4.3 Posets of color graphs

The class of color graphs of order n can be endowed with a preorder relation (i.e. a reflexive, transitive
relation): We say that a color graph cgr1 is sub color isomorphic to another color graph cgr2 if there
is a fusion color graph cgr3 of cgr2 that is color isomorphic to cgr1.

Restricted to a set of mutually non color isomorphic color graphs, the relation of sub color isomor-
phism induces a partial order. COCO2P is able to compute this induced order for lists of WL-stable
color graphs.

4.3.1 ColorIsomorphicFusions

. ColorIsomorphicFusions(cgr1, cgr2) (function)

This function returns a list of all fusion orbits under the color automorphism group of cgr1 whose
representatives induce a color graph that is color isomorphic to cgr2 .

At the moment this function is implemented only for WL-stable color graphs cgr1 and cgr2 .

4.3.2 SubColorIsomorphismPoset

. SubColorIsomorphismPoset(cgrlist) (function)

cgrlist is a list of WL-stable color graphs all of the same order and no two of them color
isomorphic. The function returns a COCO2P-poset of cgrlist ordered by sub color isomorphism.

4.3.3 GraphicCocoPoset (for posets of color graphs)

. GraphicCocoPoset(poset) (method)

poset is a COCO2P-poset of colored graphs. This function creates a graphical representation of
this poset. The labels of the nodes of the graphical poset correspond to the indices in the given poset.

The COCO2P Package 39

The context-menu of each node gives additional information about the node. If for some node it is
known whether the underlying color graph is surian or not, then this is made visible in the graphical
poset. Nodes for which it is not known whether the cgr is Schurian, are represented by squares.
Schurian nodes are represented by circles, and non-Schurian nodes are represented by diamonds.

This function is available only from XGAP.
Example

gap> lcgr:=AllAssociationSchemes(15);
[AS(15,1), AS(15,2), AS(15,3), AS(15,4), AS(15,5), AS(15,6), AS(15,7),

AS(15,8), AS(15,9), AS(15,10), AS(15,11), AS(15,12), AS(15,13), AS(15,14),
AS(15,15), AS(15,16), AS(15,17), AS(15,18), AS(15,19), AS(15,20), AS(15,21),
AS(15,22), AS(15,23), AS(15,24)]

gap> Apply(lcgr, IsSchurian);
gap> pos:=SubColorIsomorphismPoset(lcgr);;
gap> GraphicCocoPoset(pos);
<graphic poset "Iso-poset of color graphs">
gap>

Chapter 5

Color Semirings

5.1 Introduction

Color semirings are an experimental feature that give an alternate interface to WL-stable color graphs,
in the style of [Zie96] and [Zie05].

In the center stands the observation that the complexes (i.e., subsets of colors) of WL-stable color
graphs can be endowed with a multiplication: Let Γ = (V,C, f) be a WL-stable color graph with
structure constants tensor T , and let M,N be subsets of the color set C. Then the product M ·N is
defined as the set of all colors k such that there exists i ∈M, and j ∈ N such that T (i, j,k) > 0. It is
not hard to see that this operation is associative and that the set I of all reflexive colors is a neutral
element. Moreover, this product-operation is distributive over the operation of union of complexes.
Thus (P(C),∪, ·, /0, I) forms a so-called semiring (cf. [Gol99], [Wik11]).

The color semiring of Γ acts naturally on the powerset P(V) of the vertex set of Γ from the left
and from the right. Let C be an element of the color semiring, and let M be a set of vertices of Γ. Then

C ·M := {v ∈V | ∃w ∈M : f (v,w) ∈C},

M ·C := {w ∈V | ∃v ∈M : f (v,w) ∈C}.

GAP has one operation symbold + for addition-like operations and one operation symbol * for
multiplication-like operations. Thus in color semirings, the operation of union of complexes is de-
noted by +, and the operation of the product of complexes is denoted by *.

Since in COCO2P both, colors and vertices of a color graph are represented by positive in-
tegers, in order to distinguish complexes of colors and subsets of vertices, one of the two has to
get its own type. The elements of color semirings (i.e., complexes of colors) all belong to the cat-
egory IsElementOfColorSemiring. On the other hand, sets of vertices are simple sets of pos-
itive integers (no special category is created for them). In the GAP-output, complexes are de-
noted like <[a,b,c]>. The conversion of sets of colors to complexes is handled by the function
AsElementOfColorSemiring (5.1.3), while the conversion of a complex to a set is done by the
function AsSet (Reference: AsSet).

Example
gap> cgr:=JohnsonScheme(6,3);
<color graph of order 20 and rank 4>
gap> T:=StructureConstantsOfColorGraph(cgr);
<Tensor of order 4>

40

The COCO2P Package 41

gap> sr:=ColorSemiring(cgr);
<ColorSemiring>
gap> s2:=AsElementOfColorSemiring(sr,[2]);
<[2]>
gap> s3:=AsElementOfColorSemiring(sr,[3]);
<[3]>
gap> s2*s3;
<[2, 3, 4]>
gap> ComplexProduct(T,[2],[3]);
[0, 4, 4, 9]
gap> 1*s2;
[2, 3, 4, 5, 6, 7, 11, 12, 13]
gap> Neighbors(cgr,1,2);
[2, 3, 4, 5, 6, 7, 11, 12, 13]
gap> Neighbors(cgr,1,3);
[8, 9, 10, 14, 15, 16, 17, 18, 19]
gap> 1*(s2+s3);
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Example
gap> g:=DihedralGroup(IsPermGroup,10);
Group([(1,2,3,4,5), (2,5)(3,4)])
gap> cgr:=ColorGraph(g, Combinations([1..5],2), OnSets,true);
<color graph of order 10 and rank 12>
gap> ColorMates(cgr);
(2,7)(3,10)(6,12)
gap> csr:=ColorSemiring(cgr);
<ColorSemiring>
gap> s2:=AsElementOfColorSemiring(csr,[2]);
<[2]>
gap> s3:=AsElementOfColorSemiring(csr,[3]);
<[3]>
gap> 1*(s2+s3);
[2, 3, 6, 7]
gap> Neighbors(cgr,1,[2,3]);
[2, 3, 6, 7]
gap> (s2+s3)*[2,3,6,7];
[1, 4, 5, 8, 10]

Many standard functions of GAP are applicable to color semirings, as a color semiring is just a
structure, that is at the same time an additive magma with zero and a magma with one, such that mul-
tiplication and addition are associative and where the multiplication is distributive over the addition.

5.1.1 ColorSemiring

. ColorSemiring(cgr) (function)

cgr is a WL-stable color graph. The function returns an object, representing the color semiring
of cgr

The COCO2P Package 42

Example
gap> cgr:=JohnsonScheme(6,3);
<color graph of order 20 and rank 4>
gap> sr:=ColorSemiring(cgr);
<ColorSemiring>
gap> Elements(sr);
[<[]>, <[1]>, <[1, 2]>, <[1, 2, 3]>, <[1, 2, 3, 4]>,

<[1, 2, 4]>, <[1, 3]>, <[1, 3, 4]>, <[1, 4]>, <[2]>, <[2, 3]>,
<[2, 3, 4]>, <[2, 4]>, <[3]>, <[3, 4]>, <[4]>]

gap> List(last,AsSet);
[[], [1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 4], [1, 3],

[1, 3, 4], [1, 4], [2], [2, 3], [2, 3, 4], [2, 4], [3],
[3, 4], [4]]

5.1.2 GeneratorsOfColorSemiring

. GeneratorsOfColorSemiring(csr) (attribute)

This function returns a list of additive generators of the color semiring csr .
Example

gap> cgr:=JohnsonScheme(6,3);
<color graph of order 20 and rank 4>
gap> sr:=ColorSemiring(cgr);
<ColorSemiring>
gap> gens:=GeneratorsOfColorSemiring(sr);
[<[1]>, <[2]>, <[3]>, <[4]>]

5.1.3 AsElementOfColorSemiring

. AsElementOfColorSemiring(csr, cset) (function)

This function takes as input a color semiring csr and a set of colors cset . It returns the element
of csr that corresponds to cset .

Example
gap> cgr:=JohnsonScheme(6,3);
<color graph of order 20 and rank 4>
gap> sr:=ColorSemiring(cgr);
<ColorSemiring>
gap> s2:=AsElementOfColorSemiring(sr,[2]);
<[2]>
gap> s3:=AsElementOfColorSemiring(sr,[3]);
<[3]>
gap> s2*s3;
<[2, 3, 4]>

References

[BIK89] A. E. Brouwer, A. V. Ivanov, and M. H. Klin. Some new strongly regular graphs. Combina-
torica, 9(4):339–344, 1989. 8

[Gol99] Jonathan S. Golan. Semirings and their applications. Kluwer Academic Publishers, Dor-
drecht, 1999. 40

[Iva89] A. V. Ivanov. Non-rank-3 strongly regular graphs with the 5-vertex condition. Combinator-
ica, 9(3):255–260, 1989. 8

[Iva94] A. V. Ivanov. Two families of strongly regular graphs with the 4-vertex condition. Discrete
Math., 127(1-3):221–242, 1994. 9

[Wei76] B. Weisfeiler. On construction and identification of graphs, volume 558 of Lecture Notes in
Math. Springer, Berlin, 1976. 4

[Wik11] Wikipedia. Semiring — wikipedia, the free encyclopedia, 2011. [Online; accessed 5-April-
2011]. 40

[WL68] B. J. Weisfeiler and A. A. Leman. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno - Technicheskaja Informatsia, 9(Seria 2):12–16,
1968. (Russian). 4

[Zie96] Paul-Hermann Zieschang. An algebraic approach to association schemes, volume 1628 of
Lecture Notes in Mathematics. Springer, Berlin, 1996. 40

[Zie05] Paul-Hermann Zieschang. Theory of association schemes. Monographs in Mathematics.
Springer, Berlin, 2005. 40

43

Index

AdjacencyMatrix
first variant, 12
second variant, 12

AlgebraicAutomorphismGroup, 22
AllAssociationSchemes, 9
AllCoherentConfigurations, 10
ArcColorOfColorGraph

first variant, 11
second variant, 11

AsElementOfColorSemiring, 42
AsList

for orbits of fusions, 34
for orbits of good sets, 31

AsPartition, 32
AsSet

for good sets, 30
for orbits of fusions, 34
for orbits of good sets, 31

AutGroupOfCocoObject
for color graphs, 20
for tensors, 27

AutomorphismGroup
for color graphs, 20
for tensors, 27

BaseGraphOfColorGraph
first variant, 17
second variant, 17

BaseOfFusion, 33
BIKColorGraph, 8
BuildGoodSet, 29

CanonicalRepresentativeOfCocoOrbit
for orbits of fusions, 34
for orbits of good sets, 31

CharacterTableOfTensor
for commutative structure constants tensors,

28
ClassicalCompleteAffineScheme, 7

ClosedSets, 26
for homogeneous WL-stable color graphs, 17

ClosureSet, 26
CocoPosetByFunctions, 36
ColorAutomorphismGroup, 21
ColorAutomorphismGroupOnColors, 22
ColorGraph, 5
ColorGraphByFusion, 15
ColorGraphByMatrix, 6
ColorGraphByOrbitals, 4
ColorGraphByWLStabilization, 6
ColorIsomorphicFusions, 38
ColorIsomorphismColorGraphs, 21
ColorMates, 14
ColorNames, 10
ColorRepresentative, 11
ColorSemiring, 41
ColumnOfColorGraph, 13
ComplexProduct

for structure constants tensors, 26
CyclotomicColorGraph, 8

DenseTensorFromEntries, 23
DirectProductColorGraphs, 16

ElementsOfCocoPoset, 37
EntryOfTensor, 24

FibreLengths
for structure constants tensors, 25

Fibres, 13
FilterInCocoPoset, 37

for principal filters, 37
FinishBlock

for structure constants tensors, 26
FusionFromPartition

for structure constant tensors, 32
FusionOrbit, 33

GeneratorsOfColorSemiring, 42

44

The COCO2P Package 45

GoodSetOrbit, 30
GraphicCocoPoset, 38

for posets of color graphs, 38

HomogeneousFusionOrbits
for structure constants tensors, 33
for structure constants tensors, alternative, 33

HomogeneousGoodSetOrbits
for structure constants tensors, 30
for structure constants tensors, alternative, 30

IdealInCocoPoset, 37
for principal ideals, 37

InducedCocoPoset, 38
InducedSubColorGraph, 16
IsAutomorphismOfColorGraph

for color graphs, 20
IsAutomorphismOfObject

for color graphs, 20
for tensors, 27

IsAutomorphismOfTensor
for tensors, 27

IsColorIsomorphicColorGraph, 21
IsCommutativeTensor, 27
IsHomogeneous, 18

for structure constants tensors, 27
IsIsomorphicCocoObject

for color graphs, 20
for tensors, 28

IsIsomorphicColorGraph
for color graphs, 20

IsIsomorphicTensor
for tensors, 28

IsIsomorphismOfColorGraphs
for color graphs, 20

IsIsomorphismOfObjects
for color graphs, 20
for tensors, 28

IsIsomorphismOfTensors
for tensors, 28

IsomorphismCocoObjects
for color graphs, 20
for tensors, 28

IsomorphismColorGraphs
for color graphs, 20

IsomorphismTensors
for tensors, 28

IsPrimitive
for structure constants tensors, 27
for WL-stable color graphs, 19

IsSchurian, 19
IsTensorOfCC, 26
IsUndirectedColorGraph, 18
IsWLStableColorGraph, 19
IvanovColorGraph, 9

JohnsonScheme, 7

KnownGroupOfAlgebraicAutomorphisms, 22
KnownGroupOfAutomorphisms

for color graphs, 20
for tensors, 27

KnownGroupOfColorAutomorphisms, 21

LiftToColorAutomorphism, 21
LiftToColorIsomorphism, 21
LocalIntersectionArray, 13

alternative, 13

Mates
for structure constants tensors, 25

MaximalElementsInCocoPoset, 38
MinimalElementsInCocoPoset, 37

Neighbors
first variant, 11
fourth variant, 11
second variant, 11
third variant, 11

NumberOfFibres, 13
for structure constants tensors, 24

Order
for color graphs, 10
for tensors, 24

OrderOfCocoObject
for color graphs, 10
for tensors, 24

OrderOfColorGraph, 10
OrderOfTensor, 24
OutValencies

for structure constants tensors, 25
for WL-stable color graphs, 14

PartitionClosedSet
for homogeneous WL-stable color graphs, 17

The COCO2P Package 46

PartitionOfFusion, 32
PartitionOfGoodSet, 30
PredecessorsInCocoPoset, 37

QuotientColorGraph, 15

Rank
for color graphs, 10

RankOfColorGraph, 10
RankOfFusion, 33
ReflexiveColors

for structure constants tensors, 24
for WL-stable color graphs, 14

Representative
for orbits of fusions, 34
for orbits of good sets, 31

RowOfColorGraph, 12

Size
for COCO-posets, 37
for orbits of fusions, 34
for orbits of good sets, 31

StabilizerOfCanonicalRepresentative
for orbits of fusions, 34
for orbits of good sets, 31

StartBlock
for structure constants tensors, 25

StructureConstantsOfColorGraph, 23
SubColorIsomorphismPoset, 38
SubOrbitsOfCocoOrbit

for orbits of fusions, 35
for orbits of good sets, 32

SubOrbitsWithInvariantPropertyOfCoco-
Orbit

for orbits of fusions, 35
for orbits of good sets, 32

SuccessorsInCocoPoset, 37

TensorOfFusion, 33
TensorOfGoodSet, 30

UnderlyingGroupOfCocoOrbit
for orbits of fusions, 34
for orbits of good sets, 31

VertexNamesOfCocoObject
for color graphs, 10
for tensors, 24

VertexNamesOfColorGraph
for color graphs, 10

VertexNamesOfTensor
for tensors, 24

WLStableColorGraphByMatrix, 6
WreathProductColorGraphs, 16

	Color Graphs
	Theory
	 On the representation of color graphs in COCO2P
	Functions for the construction of color graphs
	Functions for the inspection of color graphs
	 Creating new (color) graphs from given color graphs
	 Testing properties of color graphs
	Symmetries of color graphs

	Structure Constants Tensors
	Introduction
	 Functions for the construction of tensors
	Functions for the inspection of tensors
	 Testing properties of tensors
	Symmetries of tensors
	Character tables of structure constants tensors

	WL-Stable Fusions Color Graphs
	Introduction
	Good sets
	Orbits of good sets
	Fusions
	 Orbits of fusions

	Partially ordered sets
	Introduction
	General functions for COCO2P-posets
	Posets of color graphs

	Color Semirings
	Introduction

	References
	Index

