NICOLE
Non-LTE Inversion COde using
the Lorien Engine

Hector Socas-Navarro, Jaime de la Cruz R. & Andrés Asensio Ramos
e-mail: hsocas@iac.es; jaime@astro.su.se; aasensio@iac.es

Version 18.06

Contents

1 Introduction
1.1 What is NICOLE?
1.2 Requirements oL
1.3 Featureso oo

1.4 Credits

2 Note for users of previous versions
2.1 For users of versions prior to 18.06
2.2 For users of versions prior to 2.6
2.3 For users of versions prior to 2.0

3 Quick start
3.1 The synthesismode

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6
3.1.7
3.1.8

The ATOM file
The LINESfile
The NICOLE.input file
The model atmosphere file.
The instrumental profile file (optional)
The departure coefficients file (optional)
Running NICOLE in synthesis mode
The profile file

3.2 Theinversionmode

3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.2.6
3.2.7
3.2.8

Setting the input parameters
Running NICOLE in inversion mode
Inversion weights
Changing the default number of nodes
Monitoring the inversion
The errorbars L.
The file maskinvert.dat
Tips for successful inversions

1

CUk = W W

o 00

3.2.9 Restarting an inversion
3.2.10 Debugging and profiling

Compiling NICOLE

4.1 Creating the makefile.
4.2 Compiler notes
4.2.1 Mac and GNU Fortran.
4.2.2 Linux and GNU Fortran
4.2.3 Intel Fortran
4.3 MPIwversion
4.4 Testing thecode

4.4.1 'Testing in non-interactive mode

4.5 Compiling in double precision
4.6 Supported platforms

The source code

5.1 The dependency tree

Geometry of the magnetic field
Troubleshooting
Version history

Bibliography

CONTENTS

51

........ 52

77

79

83

85

Chapter 1

Introduction

1.1 What is NICOLE?

NICOLE is a general-purpose synthesis and inversion code for the Stokes
profiles emergent from solar/stellar atmospheres. Solar instrumentation is
becoming more sophisticated every day and the data sets which are cur-
rently available (as well as those expected for the near future) demand the
use of modern diagnostic tools in order to retrieve as much information
as possible from the observations. The algorithm is described in Socas-
Navarro et al (2012, in preparation; see also Socas-Navarro, Trujillo Bueno
and Ruiz Cobo 2000). It seeks for the model atmosphere that provides the
best fit to the profiles (in a least-squares sense) of an arbitrary number of
simultaneously-observed spectral lines. The underlying hypotheses are:

e Atomic level populations in statistical equilibrium (NLTE), assuming
complete angle and frequency redistribution.

e No sub-pixel atmospheric structure is considered, except for a filling
factor and a prescribed external atmosphere.

e The observed Stokes profiles are induced by the Zeeman effect in
transitions where L-S coupling is a valid approximation (with the
exception of the infrared Fel line at 1565.28nm, which has an ad-hoc
treatment).

e The hydrostatic equilibrium equation is used to calculate the gas den-
sity and the height scale in the atmosphere. This is optional in syn-
thesis mode (in that case, the gas pressure/density would be read
from the input model) and mandatory in inversion mode

3

4 CHAPTER 1. INTRODUCTION

e Undocumented feature for hyperfine structure calculations (please,
check with the author for information)

The inversion core used for the development of NICOLE is the LORIEN
engine (the Lovely Reusable Inversion ENgine, also publicly available for
download from the C.I.C. web page), which combines the SVD technique
with the Levenberg-Marquardt minimization method to solve the inverse
problem (see Press et al. 1990).

I would like to hear comments about people using NICOLE, where you
are, what your research is about and what your overall experience with the
code is. Please, drop me a line at hsocas@iac.es. If you have complains,
criticism or generally speaking have negative things to say, please include
the word “cialis” in your message subject ;)

1.2 Requirements

1. A Fortran 90 compiler, or above (e.g., F95, 2000, 2003...). Strictly
speaking, NICOLE uses F2003 but it uses only a very small subset
of the 2003 standard which is supported by most F90 compilers. So
your F90 compiler should work.

2. Python, recommended version 2.6.4 or above (although limited test-
ing has shown that it works on 2.4 as well)

3. Some routines (see section 4.1) from the Numerical Recipes (Press et
al. 1990.) book. You can type them directly from the book, obtain
the distribution on a CD-ROM or download them from their website
http://www.nr.com.

1.3 Features

Features of this code:

1. Written entirely in Fortran 90, taking advantage of the advanced ca-
pabilities provided by this programming language. The code is strictly
compliant with the Fortran 2003 ANSI standard. It makes use of a
very widely implemented extension to F90, namely allocatable arrays
in derived data types. While this is not strictly standard in F90,
most compilers are supporting it anyway. What all of this means in
practice is that there is a slim chance that a particular F90 or F95
compiler will not compile NICOLE, but this would be a rare occur-
rence. Any compiler that is compatible with Fortran 2003 (or higher)

1.4. CREDITS 5

should be able to compile NICOLE without a problem since the code
is strictly FO3 compliant.

2. Dynamic memory management. NICOLE makes use of the heap
storage capabilities of Fortran 90 to dynamically allocate and deallo-
cate memory during the program execution. This means that you no
longer have to worry about the array dimensions, as in old F77 code,
where you had to recompile your code every time you changed the
dimensionality of the problem. Instead, NICOLE will allocate and
use the required memory during run time.

3. Modular, top-to-bottom design. There are no common blocks in
NICOLE (almost) and the source code is clear and straightforward
to understand and modify. Most of the program building blocks are
encapsulated in modules so it is possible to take bits and pieces of
NICOLE to use in your own code.

4. Easy to use. You don’t even need to compile it. Pre-compiled exe-
cutable files will be distributed for the most popular hardware plat-
forms. Just download it and run it on your data.

5. Cross-platform. A Python script is included that analyzes the system
it is running on and produces a suitable makefile for that platform
(see compiling information below). Byte-endianness is taken into ac-
count to allow the code to use files written both in big-endian and
little-endian machines (the code will always write little-endian files,
regardless of the platform) in a way that is completely transparent to
the user.

6. Distributed under the GPL license version 3 (except for the Numerical
Recipes routines). The full license is at:

http://www.gnu.org/copyleft/gpl.html
Basically this means that NICOLE is free and open source. You can
copy, edit, share or distribute it. We only ask that you give the

authors proper credit. There is a paper currently in preparation.
Please, cite us!

1.4 Credits

This code borrows significantly from previous efforts. Most of the actual
code has been redesigned and rewritten, but not all. The inversion part of

6 CHAPTER 1. INTRODUCTION

NICOLE is based on the concept of the SIR code, written by Dr. B. Ruiz
Cobo (Ruiz Cobo and del Toro Iniesta 1992).

The synthesis part involves the computation of NLTE populations. The
package of routines that does this (in the forward/NLTE/ directory) em-
ploys a design that is similar to that of Carlsson’s MULTI v2.2 (Scharmer
& Carlsson 1985). By this I mean that the organization of loops and the
order in which physical quantities are calculated and used is the same as in
MULTTI. Studying MULTI has been a great help since figuring out an effi-
cient design is what took most of the actual work for this module. Most vari-
able names have been maintained to facilitate code readability for users who
are familiar with MULTI. Some routines (listed below) have been adapted
directly from MULTT for compatibility with its model atom files. Examples
are the routines for calculation of collisional rates. However, the core of the
iterative algorithm is different from that implemented in MULTT. Instead of
using the linearization scheme, NICOLE implements preconditioning with
a local operator (Rybicki & Hummer 1991), as discussed in Socas-Navarro
& Trujillo Bueno (1998). The solution of the radiative transfer equation is
also different. NICOLE uses the short characteristics method.

Other routines that have been contributed to the project by various
scientists around the world are the following:

e A few routines have been taken from the Numerical Recipes book
(Press et al. 1986). These are detailed in section 4.1 below. Note
that T am not allowed to include the source code of the Numerical
Recipes routines in the NICOLE distribution.

e The Zeeman splitting is computed by an old routine that I inherited
at some point. I'm not entirely sure of this but I believe that this
routine was originally written by A. Wittmann. If someone could
confirm this, I'd appreciate it.

e The following routines have been adapted from M. Carlsson’s MULTT:
CA2COL, GENCOL, ENEQ & NGFUNC (and their dependencies).

Disclaimer: This software is distributed “as is” and the authors take no
responsibility for any consequence derived from its use.

Chapter 2

Note for users of previous
versions

2.1 For users of versions prior to 18.06

A new mode has been introduced in this section where the chromospheric
temperature is treated as a step-function temperature increase. This is
useful in two situations: a) To simulate the effects of a shock in the chro-
mosphere; b) To parameterize a hot chromosphere with only two free pa-
rameters in situations when we don’t have enough information for a full
depth-dependent inferrence with multiple nodes. This last scenario has be-
come very frequent, typically with observations of Call 8542 acquired with
a Fabry-Perot instrument in low spectral resolution.

In the new mode we have two new free parameters, S; and S,, that
parameterize the position of the temperature discontinuity (S, in units of
log(tausooo)) and the increase (S, in Kelvin). If S, is not zero, then its
value is added to the temperature stratification above S,. This is true both
in synthesis and inversion mode. In inversion mode, the nodes in temper-
ature are placed below log(7s000) = —3. It may be somewhat confusing
that the model temperature is not simply the stratification provided in the
temperature array of the model. One needs to remember that S, will be
added to all grid points above S,.

8 CHAPTER 2. NOTE FOR USERS OF PREVIOUS VERSIONS

2.2 For users of versions prior to 2.6

If you have never used NICOLE before or if you plan to read this man-
ual before working with the code, feel free to skip this chapter altogether.
There are two important changes over previous versions. Starting with this
version, the native (binary) model file format has changed to accomodate
chemical abundances as part of the model. This has been implemented to
allow for the new feature of abundance inversions. This means that file for-
mats prior to 2.6 will be converted by the Python wrapper (run-nicole.py)
into the new format, using the abundances specified in the NICOLE.input
files (or selecting the default option of Grevesse & Sauval 1998). The other
big change has to do with the code structure. The loop in inversion cycles
has been moved to the outmost level of the main program and redefined
to something much more general. Previously, inversion cycles were suc-
cessive inversion runs varying the number of nodes. Now, the user can
change not only the nodes but virtually every other parameter from one
cycle to the next. This is done by defining several NICOLE.input files, each
one with a suffix corresponding to a different cycle (e.g., NICOLE.input_1,
NICOLE.input_2, ... etc). It is then possible to do things like keeping the
intermediate inversion models resulting from each cycle, or using the syn-
thetic profiles from a cycle as an input to the next, etc. This flexibility
allows the user to do in one run of the Fortran code (thus needing only
one job submission in a supercomputer) tasks that otherwise would require
several separate runs. The nodes.dat file has been removed. The number
of nodes is now specified in each one of the NICOLE.input file in a new
section called (of course) [nodes].

Additionally, there are some other smaller changes as well. It is now
possible to introduce in the input model certain variables such as electron
pressure, gas pressure, density, Hydrogen number density (nH), other forms
of Hydrogen (nHminus, nHplus, nH2, nH2plus) and tell the code to observe
those values (the default behavior is to solve the ionization equilibrium
and the chemical equilibrium and compute the variables from one of them,
typically electron pressure, overwritting all other variables). Obviously
this only makes sense in the synthesis or conversion modes but not in the
inversion mode in which the model atmosphere is modified in succesive
iterations.

2.3 For users of versions prior to 2.0

If you have never used NICOLE before or if you plan to read this manual
before working with the code, feel free to skip this chapter altogether. Two

2.3. FOR USERS OF VERSIONS PRIOR TO 2.0 9

things work very differently in the current version of NICOLE with respect
to those prior to 2.0. The first one has to do with the code compilation.
In order to maximize portability and also to make life easier for the casual
user, an automated tool written in Python has been included that works
similarly to the popular autoconf tool in Linux. The user simply needs to
run this Python program (create_makefile.py) and it will automatically scan
the system for compilers, look for the suitable options (record length and
byte-endianness for binary files) and even make some slight changes to the
code to ensure compatibility of data written in multiple platforms. It will
also produce either the serial version (default) or the MPI parallel version
(when run with the —mpi flag). The tool recognizes the most popular F90
compilers and sets the appropriate flags. If none of them is found in the
system, the user will have to specify manually the compiler and its options.
Currently supported compilers include those from GNU, Intel, IBM or the
Portland Group. See section 4.1 for information on compiling this version.
A battery of tests has also been included to verify that the code works
properly (section 4.1).

The other important change has to do with the handling of input/output
files. The whole process has been restructured and simplified. The actual
Fortran code now works only with a very specific fixed binary file format,
both for inputs and outputs. A Python program (run_nicole.py) now does
all the parsing of human readable files and creates the fixed-format file
that the Fortran code will use. The input files with model atmospheres or
observations can now be given in many different and convenient formats,
which will then be transformed by the Python wrapper into NICOLE’s own
native binary format. This means that the user can now supply data in
formats that include ASCII (same as in previous versions), IDL savefile
or NICOLE’s native format. The plan is to include in the near future
also support for FITS files (e.g., to invert directly data from Hinode) or
some numerical simulation codes. The input files containing the basic run
parameters, spectral grid to use or spectral line data, abundances, etc have
now been merged into one single file using a popular parsing standard.
The format of this input file is now much more flexible and the user can
easily track all of the run parameters. The price to pay for this increased
flexibility and convenience is that NICOLE must now be run through the
Python wrapper. The user is NOT supposed to run the Fortran executable
directly. See section 3 for more information.

The following input files have become obsolete and have been removed
(most of their functionality has been incorporated in NICOLE.input): the
wavelength grid, ABUND and NLTE_lines. There is now no difference be-
tween inversion and multiple inversion modes (and similarly between syn-
tehsis and multiple synthesis). A single inversion or synthesis is simply one

10 CHAPTER 2. NOTE FOR USERS OF PREVIOUS VERSIONS

where npix=1.

A minor change is that the magnetic field is now given in terms of its
components instead of its modulus and angles as in previous versions. This
makes the inversion better conditioned.

Chapter 3

Quick start

This chapter is for the impatient type. The first step is obviously to un-
compress and unpack the distribution. Under UNIX, do:

tar zxf nicolex.tar.gz

then copy the relevant Numerical Recipes routines to the numerical recipes/
directory. The files to be copied are: convlv.f90, fourl.f90, fourrow.f90,
nr.f90, nrtype.f90, nrutil.f90, pythag.f90, realft.f90, ludcmp.f90, lubksb.f90,
svbksb.f90, svdemp.f90, tqli.f90 and twofft.f90. Once you have done this,
go to the main/ directory to create the makefile and compile with

./create_makefile.py
make clean
make nicole

If you get any errors after running create_makefile, refer to chapter 4.1
for instructions on how to manually configure it. If you wish to include
compiler options, e.g. to specify optimization parameters, you may do so
with the —otherflags switch. For instance:

./create_makefile.py --otherflags=’-fast -03’

If the code compiled successfully you may run the included tests to make
sure it works properly:

cd ../test
./run_tests.py

To run the tests in non-interactive mode, e.g. on platforms where jobs need
to be submitted to a queue system (typically supercomputers), refer to the
procedure described in section 4.1 below.

11

12 CHAPTER 3. QUICK START

Note: Often times you may want to create a new makefile using the same
options as the last time. This is particularly useful e.g. when you update
the source code distribution with a new release of the code. If the source
code structure hasn’t changed then you don’t need to run creat_makefile.py
at all. However, there are times when a new version of NICOLE includes
new source files or perhaps some files no longer exist or have been moved.
Thus, it is always recommended to run create_makefile.py again every time
you install a new version of NICOLE. To save you some hassle, you can use
the —keepflags option to instruct create_makefile.py to use exactly the same
command-line arguments that you used the last time. These arguments
are saved as comments in the makefile so they can be read and reused by
create_makefile.py at a later time.

If everything went smoothly, go into the run/ directory.

Note: NICOLE works internally with binary files (the format is de-
scribed below). Binary files can be written in two different ways, usually
called big-endian and little-endian style. Some hardware platforms, such as
PCs (generally speaking, machines based on the Intel processor architec-
ture), use the little-endian format whereas others (e.g., Motorola or Pow-
erPC architectures) use big-endian. In order to ensure compatibility among
files created in different machines, NICOLE will always read and write files
consistently using the little-endian form even when it runs on big-endian
machines. This process should be completely transparent to the user except
that some file transfer clients (typically some ftp programs) are too smart
and will modify binary files (swap bytes) when transferring between ma-
chines with different endianness in an attempt to make the file compatible
with the target machine. Such modification is not necessary for NICOLE
files and in fact would result in file corruption. If you experience trouble
running the code after transferring model or profile files via ftp, this is
probably the reason.

3.1 The synthesis mode

In this mode you will be computing synthetic spectra from one or more
prescribed model atmospheres. You will need the following files:

3.1.1 The ATOM file

This file is necessary only when we are computing NLTE lines. If you are
working in LTE only, you don’t need to read this. The ATOM file resides
in the directory where NICOLE is executed. It has the same format as the
model atoms used in MULTI, except that comments are signaled by an

3.1. THE SYNTHESIS MODE 13

exclamation mark (!) instead of an asterisk (*). If the ionization stage is
in roman numbers, you might have to change that too (i.e., replace “Ca II”
with “Ca 2”). So if you got your ATOM file from MULTI, make sure to edit
it and replace the asterisks with exclamation marks. Some model atoms
have a GENCOL section at the end, which supplies the parameters for the
collisional routine GENCOL. That section contains a grid of temperatures
under the key TEMP, which specifies the number of temperatures in the grid
(ntemp), and then the temperature grid itself, T(1:ntemp). Unlike MULTTI,
NICOLE requires that ntemp and the temperature grid T(1:ntemp) be all
in one line, without any line breaks. Keep in mind that each line in the
model atom is limited to a maximum of 500 characters (this limit can be
changed in the declaration of array ColStr in forward/NLTE.f90). Similarly,
the rest of the temperature dependent data in the GENCOL section must
be in one line.

There are some MULTT features that are not supported in the current
NICOLE version. For example, you cannot have bound-bound transitions
with IW=1. ITRAD=4 is not supported either. Everything else should
work as in MULTI, although we have only tested the code with a 6-level
Ca and a 14-level O atom. If you find it to run (or not) with other atoms,
please let us know.

Only one ATOM file may be used in a given run. This means that you
are limited to the calculation of NLTE lines (as many as desired) existing
in the model atom employed plus an arbitrary number of lines from any
other element(s) treated in LTE.

Blends are treated consistently by NICOLE and computing blended
lines does not require any additional configuration by the user. How-
ever, the departure coefficients for the NLTE lines are computed neglecting
blends (usually a good approximation unless such blends produce significant
distortions of a NLTE line core).

Note: The calculation of the magnetic field inclination and azimuth in
the line-of-sight coordinates has a singularity when both components are
zero. To avoid numerical accuracy issues, a magnetic field component is con-
sidered zero by the code when it is below a threshold of 10~6 G. This thresh-
old is defined as a parameter (ZeroFieldThreshold) in forward/profiles.f90.

3.1.2 The LINES file

NICOLE needs to know the atomic line data of the transitions you want
to synthesize or invert. This is a configuration ASCII file in the ConfigObj
standard format. Comments are marked by the # character. Everything
following a # will be ignored. The file is divided in different sections.
The beginning of a new section is marked by a string enclosed in square

14 CHAPTER 3. QUICK START

brackets ([]). In the case of the LINES file each section corresponds to a
spectral line. Inside a section we can have different parameters that define
the spectral line. Each parameter goes in a separate line and the symbol =
is used to separate the field from its value. For example, a section defining
a spectral line would look like this.

[FeI 6301.5]
Element=Fe
Ionization stage=1
Wavelength=6301.5080
Excitation potential= 29440.17 cm-1 # 3.65 eV
Log(gf)=-0.59
Term (lower)=5P2.0
Term (upper)=5D2.0
Collisions=Unsold
Width=2

The parsing is insensitive to case and indentation. The various sections
and the lines within each section can appear in any order. Some fields
are mandatory (wavelength, ionization stage, etc) and others are optional
(collisions, width, etc) and have default values. Allowed fields in specifying
a spectral line are the following (mandatory unless noted otherwise):

e Element: Atomic element symbol (two characters). Case insensitive

e Jonization stage: 1 for neutral, 2 for singly ionized or 3 for doubly
ionized. Higher ionization stages are not supported

e Wavelength: Central wavelength in A

e Excitation potential: Can be given in units of eV (default) or cm™!.

To specify units, follow the numeric value with either eV or cm-1 (see
example above)

e Log(gf): Self-explanatory

e Term (lower): A string of the form 2D1.5 (see also the example above).
The first character must be a number with the lower level multiplicity
(2s41). The second character represents the orbital angular momen-
tum. From the third character to the end of the string we specify the
total angular momentum J (may be non-integer)

e Term (upper): Same as above for the upper level

3.1.

THE SYNTHESIS MODE 15

Collisions: (Optional, default=1). This is a flag indicating the treat-
ment for collisional line broadening. Use 1 or the string Unsold to use
the Unsold formalism (Unsold 1955). Set it to 2 or the string Barklem
to use the approach of Barklem, Anstee and O’Mara (1998). This is
the preferred option since it is more realistic, but it requires setting
also the fields Damping sigma or Damping alpha which are line depen-
dent. Note, however, that in this version of NICOLE collisions with
neutral Helium are neglected compared to collisions with neutral Hy-
drogen. Normally this is a good approximation. Option 3 allows you
to introduce manually the values of the radiative, Stark and van der
Waals damping constants (i, VStark, Yvaw). In this mode you can
specify the additional fields Gamma Radiative, Gamma Stark
and Gamma van der Waals (see below).

Damping sigma: (Optional, but mandatory if Collisions is set to 2
or Barklem). Sigma parameter (o) when using the Barklem et al
formalism, in units of Bohr radius squared.

Damping alpha: (Optional, but mandatory if Collisions is set to 2
or Barklem). Alpha parameter (o) when using the Barklem et al
formalism. This parameter is dimensionless

Gamma Radiative: If Collisions is set to 3, this sets the value of the
damping constant 7, in units of 10® rad/s. The default would be the
value obtained with Collisions = 1 (i.e., using the Unsold formula).

Gamma Stark: If Collisions is set to 3, this sets the value of the
damping constant ysa,, in units of 10® rad/s per 1012 perturbers per
cm ™ at T=10,000 K. The code assumes a temperature dependence
of T917, The default would be the value obtained with Collisions

= 1 (i.e., using the Unsold formula).

Gamma van der Waals: If Collisions is set to 3, this sets the value
of the damping constant ysier4 in units of 10% rad/s per 10¢ per-
turbers per ecm™2 at T=10,000 K. The code assumes a temperature
dependence of T3, The default would be the value obtained with
Collisions = 1 (i.e., using the Unsold formula).

Damping enhancement: (Optional, default=1). Additional multi-
plicative factor to apply to the collisional damping

Width: (Optional, default=2). Distance in A from line center at
which the line has a significant opacity. This is used to speed up
the calculation when a wide wavelength range is used. To be on the

16 CHAPTER 3. QUICK START

safe side this parameter should be set to a large value. For most
photospheric lines, a value of 1 A is sufficient but for some strong
chromospheric lines larger values are needed.

e Mode: (Optional, default=LTE). Can be either LTE or NLTE. If the
line is NLTE then some additional parameters are needed (see below).

e Transition index in model atom: (Optinal, but needed if Mode is
NLTE). Index of the transition in the model atom that corresponds
with this line. For example if this line is the first transition in the
model atom, set this value to 1.

e Lower level population ratio: (Optional, default=1, used only when
Mode is NLTE). Sometimes, the transition being referenced in the
model atom is actually a multiplet and we are defining one of the
lines of that multiplet. This parameter specifies the fraction -+ for
the lower level, where n; is the population of the sublevel for the line
we are defining and n is the population of the level defined in the

model atom.

e Upper level population ratio: (Optional, default=1, used only when
Mode is NLTE). Same as above for the upper level.

The values in the LINES file can be overriden by the NICOLE.input file, as
explained below. This is done so that one can have a centralized database
of spectral information and be able to make temporary adjustments to
the atomic parameters for the current run without having to modify the
central database. There is a sample LINES file in the run/ directory of
your distribution.

In case of conflict between parameters specified in the ATOM and
LINES (see below) files (e.g., the log(gf) in LINES is not compatible with
the g and F parameters in ATOM), then the NLTE iteration is done using
the values in ATOM and the atomic populations obtained are used for a
final Stokes formal solution with the parameters in LINES.

3.1.3 The NICOLE.input file

There is a sample NICOLE.input file in your distribution. This is where
we tell NICOLE exactly what we want to do. It is a configuration ASCII
file in the ConfigObj standard format. Comments are marked by the #
character. Everything following a # will be ignored. The file may contain
sections. The beginning of a new section is marked by a string enclosed in
square brackets ([]).

3.1. THE SYNTHESIS MODE 17

In each line the field label is separated from the value by the symbol =
(e.g., Mode=Synthesis). The parsing is insensitive to case and indentation.
If you don’t remember exactly the field label, just write your best guess.
The Python wrapper run_nicole.py will produce an error if it encounters an
incorrect line and will show one or more helpful suggestions.

The various sections and the lines within each section can appear in
any order. The main body of the file (before the beginning of any sections)
has the main parameters that control the behavior of the code. Some of
them are optional and have default values. The following is a list of these
parameters (mandatory unless noted otherwise):

e Command: (Optional, default=../main/nicole). Starting in v2.0, the
Fortran executable is not launched directly by the user. Instead, it
is spanned by the Python script run_nicole.py. Here you can specify
what that command is. This is important because typically you need
a more complicated form in order to launch the parallel version. For
instance, using mpich2 to run on 8 processors, the command could

look like this:

mpirun -n 8 ./nicole

In that case, we would specify:
Command=mpirun -n 8 ./nicole

When supplying a string argument, as shown in this example, it is
generally a good idea to enclose it within quotes to make sure that
the parser interprets it as a single value. Otherwise, if we had for
instance commas in the expression, it could be broken into a list of
arguments.

Command=’mpirun -n 8 ./nicole’

e Cycles: Number of cycles in the run (Optional, default=1). This
needs to be specified either in NICOLE.input or NICOLE.input_1.
Each cycle is governed by a separate NICOLE.input file with the
suffix _n (where n is the cycle number). If the file corresponding
to a given cycle doesn’t exist, NICOLE will try to use the values in
NICOLE.input. Typically, if we wish to have a run of 3 cycles one sets
Cycles=3 in NICOLE.input (or NICOLE.input_1) and then create the
files NICOLE.input_2 and NICOLE.input_3 with the parameters of
the second and third cycles, respectively. Important: Because of

18

CHAPTER 3. QUICK START

how the code is structured, all the input files required in any given
cycle need to exist at the beginning of the run. So even if you use
the output of one cycle to feed the input of another, or even if you
use a file to serve simultaneously as input and output (both of which
are legitimate strategies), you need to have at least a dummy file that
exists and contains the right dimensions before you start the run.
Also, all input files for cycles two and above must be in NICOLE’s
native format. This is because the format conversion is performed
by the Python wrapper run_nicole.py and it only works on the first
cycle.

Start cycle (Optional, default=1): You may want to skip one or more
cycles. For instance, assume that your run was terminated halfway
during the second cycle and you wish to resume it. You would need
to use the Restart option (see below) and skip the first cycle when
you rerun the code. Use this field to specify in which cycle you
wish to begin execution. This field is only read in NICOLE.input
or NICOLE.input_1.

Mode: Can be the word Synthesis, Inversion or Convert (actually,
only the first character is checked). Synthesis and inversion are self-
explanatory. The third mode, convert is used to convert the geo-
metrical height scale in a model to optical depth, or vice-versa. In
this mode the code will take one of them (depending on the value of
Height Scale described below), compute the other, write the output
model file to disk and exit.

Input model: Name of the file containing the input model atmosphere.
In synthesis mode, this is the atmosphere for which the spectral pro-
files are computed. In inversion mode this is the starting guess for
the model. The file may contain one or many models. In synthesis
mode, one set of Stokes I, Q, U and V is produced for each model. In
inversion mode, if the number of models is smaller than the number
of profiles then the last model is repeated to pad the calculation and
ensure that all of the profiles are inverted. If the number of models
is larger than the number of profiles, then the last models are ig-
nored. For more information on the possible formats for this file, see
section 3.1.4

Input model 2: Same as above but for the second component in case
of a 2-component run. The filling factor, macroturbulence and stray
light parameters in this model will be ignored. They are taken from
the first model.

3.1.

THE SYNTHESIS MODE 19

Output profiles: Name of the file that will be written by NICOLE
with the output profiles. In synthesis mode this is the final result of
the calculation. In inversion mode it contains the fits produced. For
more information on the format of this file, see section 3.1.8.

Heliocentric angle: (Optional, default=1). Cosine of the heliocentric
angle (usually denoted as p in the literature).

Observed profiles (Optional, but mandatory if Mode is Inversion):
Name of the file with the input observed profiles to invert. For more
information on the format of this file, see section 3.1.8.

Restart: (Optional, deafult=0) Set to 1 to resume a previous run
that was interrupted. See section 3.2.9. A value of -1 means to
remove output files and then do normal run (not restarting previous
calculation). Use this to make sure you don’t accidentally mix older
preexisting files with new results.

Output model: (Optional, but mandatory if Mode is Inversion). Name
of the file with the output model atmosphere resulting from the inver-
sion. In synthesis mode, the full model including gas pressure, density,
electron pressure and optical depth scale (which might have been cal-
culated internally by NICOLE) is written. For more information on
the possible formats for this file, see section 3.1.4

Output model 2: Same as above but for the second component in
case of a 2-component run.

Formal solution method: (Optional, default=0). There are several
formal solution methods for the Stokes radiative transfer equation
currently implemented in NICOLE, including the Hermitian method
of Bellot Rubio, Ruiz Cobo and Collados Vera (1998), the Weakly
Polarizing Media (WPM) approximation described in Trujillo Bueno
& Sanchez Almeida (1999), DELO (Rees et al 1989), Bezier splines
(De la Cruz Rodriguez and Piskunov 2013) and short characteristics
(Kunasz and Auer 1987). See the comments in the header of subrou-
tine formal_solution in forward/forward.fo0 for details. The WPM
approximation is faster, but not always applicable, while the Hermi-
tian, DELO and Bezier methods are of general validity (provided, of
course, that the spatial grid in the model atmosphere is fine enough).
There is an automatic formal solver selector implemented in NICOLE,
which will check at each wavelength whether WPM is suitable or not.
If it is, it will be used. Otherwise, the cubic Bezier method is chosen.

20

CHAPTER 3. QUICK START

We strongly recommend you to leave this value set to 0 (auto). Oth-
erwise: 1-Cubic DeloBezier, 2-Cuadratic DeloBezier, 3-Bezier scalar,
4-Hermitian, 5-WPM, 6-DeloLinear, 7-DeloParabolic, 8-SC.

Stray light file: (Optional). In real observations, especially when ob-
serving relatively dark structures such as sunspots, one normally has
some amount of scattered light from the surrounding regions con-
taminating the observed signal. This stray light might come from
scattering in the Earth atmosphere, from internal reflections in the
telescope/instrument system, etc. If you would like to contaminate
your synthetic spectrum with stray light, you must enter the stray
light fraction in the model atmosphere file (see section 3.1.4 below)
and give here the name of a file with the stray light profile. Leaving
this field blank is equivalent to setting the amount of stray light to 0
in the model atmosphere and will result in no contamination of the
synthetic profile. This profile can also be used as a prescribed external
atmosphere that coexists within the spatial resolution element with
the atmosphere undergoing synthesis or inversion. The stray light
profile must be in units of the quiet Sun continuum at disk center.

Printout detail: (Optional, default=1). This switch controls how
much information is printed out to screen during normal operation.
Higher values correspond to more detailed information (and more
cluttering). A value of 1 is normally a good choice.

Noise: (Optional, default=1e-3). Estimation of the noise in the ob-
servations (relative to the average disk center quiet Sun continuum
intensity). This is used to compute the inversion weights so that a
value of x2=1 corresponds to a fit at the noise level. If the weights
are supplied manually using a Weights.pro file, then this value has no
effect.

Acceptable Chi-square: (Optional, default=0). This parameter is
used to avoid (or at least minimize) the effects of local minima. If the
inversion results in a y? value worse than this parameter, the code
will discard this result and run again with a randomized initialization.

Maximum number of inversions: (Optional, default=5). How many
inversions will be tried to reach the acceptable x? before giving up
and picking the best result of the multiple inversion attempts.

Maximum inversion iterations: (Optional, default=25). Upper limit
to how many iterations will be performed in an inversion cycle.

3.1.

THE SYNTHESIS MODE 21

Always compute derivatives: (Optional, default=Yes). If set to No,
then the derivatives for the response functions are not recomputed
after successful iteration steps. Only when an inversion step fails to
improve the y? then the derivatives are recalculated. This will save
some time and often works almost as good as when recalculating the
derivatives.

Centered derivatives: (Optional, default=0). If set to 1, the code will
compute response functions using centered derivatives with respect
to each parameter. It is more accurate, but the inversion becomes
almost a factor x2 slower.

Gravity: (Optional, default= 2.7414e+4). Surface gravity (in cm s~2).
If not specified, the solar value is adopted.

Regularization: (Optional, default=1.0). During inversion opera-
tions, a regularization term is added to the x? function when the
model has fluctuations or other generally undesirable behavior. In
this manner, we establish a preference for well-behaved (e.g., smooth)
models. This factor weights the regularization term. Setting it to 0
means no regularization at all. Higher values make the code care
more about model smoothness than quality of the fit.

Update opacities every: (Optional, default=10). Background opac-
ities don’t change significantly over the narrow wavelength range
spanned by a spectral line. This parameter specifies the wavelength
intervals (in A) at which the background opacities will be recom-
puted. Setting this to 0 makes the code recompute opacities for each
wavelength point. Larger values avoid too frequent recalculations and
therefore save some time.

Negligible opacity: (Optional, default=0.0). Opacity threshold to
avoid wasting time computing lines that are too weak to contribute
to the spectrum. If the ratio of line opacity to continuum opacity
at 500 nm is smaller than this threshold, the line is neglected. This
condition is tested at each depth-point and wavelength.

Continuum reference: (Optional, default=1). Switch to control the
normalization of the spectral profiles. Select 0 for no normalization
(output will be in 10'* c.g.s. units, e.g. erg ecm™2 s7 cm~! for flux
and the same per strad for intensity). If you use this mode for in-
versions, make sure to normalize your input observed profiles to 104
first; 1 for HSRA continuum intensity at disk center at a wavelength

in the middle of each spectral range (default); 2 for normalization to

22

CHAPTER 3. QUICK START

HSRA continuum intensity at disk center at 5000 A; 3 for normal-
ization to HSRA continuum intensity at a wavelength in the middle of
each spectral range and at the heliocentric angle of the observations
(spcified above); 4 for local normalization to the first point of each
region (useful to normalize to the local continuum) but note that this
option eliminates all information on absolute photometry. Therefore
the temperature scale retrieved is not physical.

Continuum value: (Optional, default=1). This is simply a normaliza-
tion factor that will be applied to the input profiles. This is useful for
instance if you are using data directly from an instrument in units of
counts. You may want to divide by the number of counts of the aver-
age quiet Sun intensity to have a proper normalization (but it needs
to be consistent with the Continuum reference parameter above).

Impose hydrostatic equilibrium: (Optional, default=Yes). If set to
Yes, the electron pressure, gas pressure and density of the input model
are re-evaluated to put the model in hydrostatic equilibrium. If No,
then the values in the input model are used. In inversion mode,
the model is always put in hydrostatic equilibrium. The hydrostatic
equilibrium uses the electron pressure at the top of the atmosphere as
a boundary condition, so at least that one value needs to be properly
set. However, the stratification obtained is nearly insensitive to the
boundary condition except at the higher layers.

Input density: (Optinal, default=Pel). The electron pressure, elec-
tron number density, gas pressure and gas density are related vari-
ables. Given one of them, the others can be determined univocally.
This switch defines which one of the four is provided as input. The
other two will be comptued by the code. Possible values for this field
are Pel, Nel, Pgas or Dens.

Height scale: (Optinal, default=Tau). The depth scale can be speci-
fied either as a geometrical scale (z in km) or as the continuum optical
depth at 500 nm. Set this variable to either z or tau to use either
scale. The other will be computed automatically by NICOLE from
the temperature plus density or pressure (electron or gas).

Keep parameter (Optional, default=0): Certain model parameters
are computed internally by NICOLE by solving the equation of state,
the ionization equilibrium and/or the molecular chemical equilibrium.
It is possible to supply such parameters in the input model and in-
struct NICOLE to use those values instead of overriding them with
its calculations. To do this set this field to 1 (this line can appear

3.1.

THE SYNTHESIS MODE 23

multiple times with different parameters). Possible accepted values
for parameter are: Gas_p, Rho, nH, nHminus, nHplus, nH2, nH2plus.

Eq of state (Optional, default=nicole): This is a switch to specify how
to compute the electron pressure Pe from T and Pg, and conversely
the gas pressure Pg from T and Pe. NICOLE has three different
methods implemented (see Socas-Navarro et al 2014). Possible val-
ues are: a)NICOLE to use our own method described in the paper
above. This is probably the best compromise between speed, accu-
racy and stability; b)ANN to use artificial neural networks trained
with precomputed values of (T,Pg,Pe). This is the fastest method
but not as accurate as the others. ¢c) WITTMANN to use the method
described in Wittmann (1974), which in turn is an improvement over
the procedure described by Mihalas (1967).

Eq of state for H (Optional, default=nicole): For the calculation of
background opacities and some other quantities such as collisional
rates, the code needs the relative distribution of some H states both
in atomic and molecular form (the H ions H, H* and H™ and the
molecules Hy and HJ). There are several options for this switch:
a)NICOLE to use the native method described in Socas-Navarro et
al (2014). This is the default option and is probably the best com-
promise between speed, accuracy and stability; b)ASENSIO2 to use
the chemical equilibrium method of Asensio Ramos (Asensio Ramos
2003) but restricted to only two molecules in the chemical equilib-
rium; ¢)ASENSIO273 to use the same method with the full list of 273
possible molecules; d)WITTMANN to solve for the H populations
as in Wittmann (1974), which in turn is an improvement over the
procedure described by Mihalas (1967).

Pe consistency (Optional, default=1e-3): Depending on how the equa-
tion of state is solved, it could be that the Pe, Pg values are not
consistent due to the approximations employed. This means that if
we take a pair (T,Pe) to compute Pg and later recompute Pe from
this (T,Pg), the new Pg obtained will in general differ from the orig-
inal one. If Pe consistency is set to a value lower than 10, the Pe
value obtained will be iterated until Pe and Pg are consistent within
that tolerance. In principle this could slow down the procedure but
in practice the difference in computing time should be negligible in
almost all situations.

Opacity Package (Optional, default=Asensio): Package to use for the
computation of background continuum opacities from most common

24

CHAPTER 3. QUICK START

contributors in the visible and infrared. Possible values: a)ASENSIO,
b)WITTMANN, ¢)SOPA . This last option is hidden in the normal
distribution because we haven’t been able to adapt the original rou-
tines to conform with the standards. As such, it might cause problems
with compilation and other issues. If there is any powerful reason why
you feel that you’d need to use this package, please contact the au-
thors for a SOPA-enabled version.

Opacity Package UV (Optional, default=TOP): Package to use for
the computation of background continuum opacities from the most
common contributors in the UV. Possible values: a)TOP, b)DM. The
first option (TOP) will make use of photoionization cross-sections
tabulated by The Opacity Project/The Iron Project for most neutral
and singly ionized elements between Z=1 and Z=26. For Fe we use the
data provided by Bautista (1997, A&AS 122, 166) and by Nahar and
Pradhan (1994, J. Phys. B 27, 429), using the smoothing technique
of Allende Prieto (2008, Phys Scr 133). The second option (DM) uses
the approximation of Dragon and Mutschlecner (1980, Apj 239, 104).
These contributions are considered only at wavelenghts below 4000 A.

Start X position: (Optional, default=1). The model atmosphere and
the observed profile files may contain many models or profiles. This
parameter specifies at which position to start the calculation. It can
be useful when resuming a previous run that was aborted for some
reason. When working with a 3D cube you can specify a smaller field
by specifying also End X position, Start Y position and End
Y position. Pixel positions go from 1 to n, and/or n,. Note that
setting these values specifies a range of pixels to compute. If you
don’t want a smaller subfield but rather to restart the computation
from a given point onwards, then use the Start irec field explained
below.

Start irec: (Optional, default=1). If a computation is interrupted for
some reason and you wish to restart it at a given position, set this
field to the restart pixel. If you are working with a datacube, keep in
mind that irec=(x-1) xn,+y.

Debug mode: (Optional, default=0). Set this to a non-zero integer to
switch on debug mode. In this mode, NICOLE will produce a core file
with debugging information, useful to trace back any possible crash.
One file is created by each process (in case of parallel run) at the
start of each synthesis or inversion cycle. Upon completion, the file
is removed. Therefore, if a crash should occur you will end up with a

3.1. THE SYNTHESIS MODE 25

file named core_0.txt in your directory. In the case of the MPI version
you’ll get core_1.txt, core_2.txt ..., one for each process. To find out
which process crashed, search for the string ABORTING in the core
files (for example, in Unix use grep ABORTING...core*txt. Debug
mode will slow down code execution slightly but not dramatically.
You can use the procedure read_-debug in the idl/ directory to read
the debug information. Some debug levels will make the code crash
upon errors or warnings, others will make NICOLE reject the current
iteration and try to recover. The precise meaning of each level can
be found in the header of the main/debug.f90 source file.

e Height scale: (Optional, default=tau). Set to z or tau to specify the
height scale for the input model.

e Optimize grid: Only for synthesis mode! If this switch is set, the
model is reinterpolated to have a better vertical sampling (but keeping
the same number of grid points) before solving the radiative transfer.

NICOLE.input can have an arbitrary number of sections defining the
various wavelength ranges that we want to operate on (whether in synthesis
or inversion mode). Each section starts with the label [Region 1], [Region
2]... etc. Inside each region we define the following parameters:

e First wavelength: Starting wavelength of the range in A.

e Wavelength step: This is the sampling, can be given in A(default) or
in mA. For the latter, simply follow the number with the string mA.

e Number of wavelengths: Self-explanatory

e Macroturbulent enhancement: (Optional, default=1). Macroturbu-
lence is specified as a velocity and therefore it scales linearly with
wavelength. However, the spectral resolution delivered by a spectro-
graph instrument may vary from one region to another depending on
the order employed and other specifics of the configuration. This pa-
rameter multiplies the width of the macroturbulence Gaussian in the
current region.

At least one region must be defined. NICOLE.input also contains def-
initions of the lines to synthesize/invert. These are specified in separate
sections. Each one of these sections start with the label [Line 1], [Line 2],

. etc. Inside each one of these sections we specify the parameter Line with
the identification of the line in the LINES database file. For instance:

Line=Fel 6301.5

26 CHAPTER 3. QUICK START

The line must be defined in LINES. In this section we can also override
the values given in LINES simply by specifying again the parameter with a
different value. At least one line must be defined (for continua calculation,
set the Log(gf) to a very small value)

When doing inversions, the number of nodes to be used must be specified
in a section of the configuration file. It starts with the line:

[Nodes]

In this section we specify the number of nodes. Valid tokens are: Tem-
perature, T, Velocity, Microturbulence, Macroturbulence, Bz, Bx, By, Stray
light, Filling factor, Abundances, Sx, Sy. Here is an example of the nodes
section:

[Nodes]

Nodes for first atmospheric component

Commented in parenthesis are default values for different cycles
Temperature=4 # (4, 8, 10)

Velocity=1 # (1, 4, 6)
Bz=1 # (1, 4, 4)
Bx=1 # (1, 2, 2)
By=1 # (1, 2, 2)
Microturbulence=0 # (0, 2, 2)
Macroturbulence=0 # (0, 1, 1)
Abundances=0 # (0, 0, 0)
Stray Light=0 # (0, 1, 1)
Filling Factor=0 # (0, 0, 0)

By default NICOLE will set the nodes equispaced through the atmo-
sphere. You may override this and explicitly set the location of the nodes
by supplying a comma-separated list of heights. The whole list must be
enclosed within quotes (). For instance:

[Nodes]
Temperature=" -5.5 , -4 , -3.5 , -2 , 0, 2"

For NLTE calculations we can include a section to override the default
parameters that control the NLTE iteration, convergence, etc:

e Elim: (Optional, default=1E-3 for synthesis, 1E-4 for inversions).
The NLTE iteration will stop when the maximum relative change
in the atomic level populations, considering all levels and all depth-
points, is below this value.

3.1.

THE SYNTHESIS MODE 27

isum: (Optional, default=1). Which statistical equilibrium equation
will be replaced by the particle conservation equation to close the
system.

istart: (Optional, default=1). Switch to control the initial guess for
the atomic level populations. 0: Initialize the solution of the statisti-
cal equilibrium for zero radiation field; 1: Start with LTE populations.

CPER: (Optional, default=1.0). Artificially enhance collisional rates
by this factor.

Use collisional switching: (Optional, default="n’). If set to ’yes’
use the collisional switching scheme, in which the NLTE iteration is
started with a high value for CPER which is then gradually decreased
as the iteration progresses until it finally becomes unity.

NMU: (Optional, default=3). Number of points in the angular quadra-
ture.

QNORM: (Optional, default=10). Wavelength normalization value
in km/s.

Formal Solution: (Optional, default=1). Switch to control the formal
solution routine to be employed. Set to 1 to use Delo bezier splines
or 2 for short characteristics.

Linear formal solution: (Optional, default=0). If set to 1 forces the
solution of the radiative transfer in the NLTE module to use the
linear approximation. This is usually more stable but somewhat less
accurate than the default.

Optically thin: (Optional, default=1e-3). Monochromatic optical
depth above which we consider the atmosphere to be transparent.

Optically thick: (Optional, default=1e3). Monochromatic optical
depth below which we consider the atmosphere to be thick and use the
diffusion approximation (but neglecting the source function gradient)

Vel Free: (Optional, default="y’). Whether or not to use the velocity
free approximation.

NGACC: (Optional, default="y’). Whether or not to use NG accel-
eration.

Max Tters: (Optional, default=500). Maximum number of allowed
interations in the NLTE computation.

28 CHAPTER 3. QUICK START

e Lambda Iterations: (Optional, default=3). Number of lambda itera-
tions to perform at the beginning of the NLTE computation.

e Ltepop: (Optional, default="nicole’). Set to either 'multi’ or 'nicole’
to switch between two different approaches in the calculation of the
LTE populations. In the MULTI approach, the sum of statistical
weights that appears in the Saha equation is done over the finite num-
ber of levels considered in the model atom. In the NICOLE approach,
tabulated partition functions are used to determine an approximate
sum over an infinite number of levels.

e Elements to ignore in backgroudn opacities: (Optional, default=").
If the NLTE calculation includes the bound-free transitions treated
in detail, we might want to exclude that element in the calculation
of background opacities. A typical example is the H atom. All back-
ground opacity packages in NICOLE consider the opacity produced
by bound-free transitions of neutral hydrogen. If we are computing
a H atom that includes those transitions then it’s a good idea to put
H in this field. The background opacity package would then skip the
computation of opacities due to neutral H bound-free transitions.

Finally, we can optionally have a section about abundances in NICOLE.input.
It is defined in its own section, which starts with the line:

[Abundances|

This section can have the following optional parameters:

e Abundance set: (Optional, default=grevesse_sauval 1998). NICOLE
has several abundance sets preset in the code (actually, they are in
the Python wrapper). Current options are: Grevesse_Sauval 1998,
Asplund_et_al_2009, Thevenin_1989, or Grevesse_1984

e Abundance file: (Optional). If present this is the name of an ASCII
file containing the abundances for the 92 first elements. Each line
has an element, defined by its two-letter symbol followed by the =
sign and its abundance on the usual log scale that has H as 12. For
instance

H=12

Inside this Abundances section we can have a subsection named [[Over-
ride]] in which we can specify a discrete set of elements for which we want

3.1. THE SYNTHESIS MODE 29

to override the default values (whether from the hardwired databases or
from the external file). This is done simply by including the element to
override in this subsection. A full example would be:

[Abundances]

Abundance set=Thevenin_1989
[[Override]]

0=600 ppm

He=0.095

In the override subsection, the abundances can be specified also in parts
per million simply by following the number with the ppm string. Note
that, if you have defined abundances in the model atmosphere, those will
have precedence and will not be overridden by the values in this section.
The abundances specified in NICOLE.input will be used only if the model
atmosphere file has zeros in the abundance array.

3.1.4 The model atmosphere file

This file contains one or more model atmospheres for which the synthetic
spectrum will be computed. Units for the various physical variables are
c.g.s. (K for temperature, g cm™2 for density, dyn cm~2 for pressure, cm
s~ ! for velocity, G for field strength and degrees for field inclination and
azimuth) except for z which is height in km (positive values correspond
to higher layers). The line-of-sight velocity sign follows the Astrophysi-
cal convention where positive values represent downflows (redshift). The
magnetic field in this version is defined primarily by its components with
respect to the line of sight. B_long represents the longitudinal (along the
line of sight) component, whereas B_x and B_y are the two components on
the plane of the sky. The coordinates x and y are arbitrary but they define
the reference frame for the linear polarization Stokes Q and U. The “local”
variables refer to the solar reference frame. The inclination is defined with
respect to the vertical, so 0 is field pointing up, 90 is horizontal and 180
is pointing down. The azimuth reference is arbitrary but the absorption
profile for linear polarization is such that Q is positive and U is zero when
the azimuth is 0 or 180.
The file can be in one of several formats:

ASCII

This is the same format used in versions prior to 1.6. Have a look at the
HSRA.model file included in your distribution. Any line starting with a !

30 CHAPTER 3. QUICK START

symbol is a comment and will be ignored. The first non-comment line in
this file must be the string:

Format version: 1.0

This is an internal identifier which is used for backwards compatibility.
Don’t change that line or NICOLE will complain about it and refuse to
work. The second non-comment line contains two or three real numbers.
The first one is the macroturbulent velocity, in cm/s. After computing the
synthetic profile, it will be convolved with a Gaussian whose half-width
is this value. However, note that if a file named Instrumental_profile.dat
exists in the running directory, then the macroturbulence will be ignored
(see 3.1.5 below). The second number in this line is the fraction of stray
light that will be added to the synthetic profile. It must be in the range
[0,1]. Note that the stray light parameter may also be used to account for
a magnetic filling factor.

The following lines describe the depth-dependence of the model. NICOLE
will read eight columns, which stand for log(7s000), temperature (in K),
electron pressure (in dyn/cm?), microturbulence (in cm/s), longitudinal
magnetic field (in Gauss), line-of-sight velocity (in cm/s), transverse field
(i.e., on the plane of the sky) on the x direction (in Gauss) and transverse
field on the y direction (in Gauss), respectively. The log(7s000) scale does
not need to be equispaced and it may be either increasing or decreasing,
but it must be monotonic. Instead of electron pressure, the third column
may be electron number density, gas pressure or density (all in c.g.s units),
depending on what has been specified in the parameter Input Density in
NICOLE.input

IDL savefile

We can use an IDL savefile as inputs. The file may contain the follow-
ing variables: z, tau, t, el_p, gas_p, rho, v_los, v_mic, b_losx, b_los_y,
blosz, bx, b_y, bz, nH, nH~, nHT, nH?, nH?t as arrays with dimen-
sions (nx, ny, nz). Additionally, the following (nx,ny) arrays might ex-
ist: keep_el_p, keep_gas_p, keep_rho, keep_.nH, keep_nHminus, keep_nHplus,
keep-nH2, keep_nH2plus, v_mac, stray_frac, ffactor. Finally, the array
abundance (nx,ny,92) can be used to specify the chemical composition of
the atmosphere, in Astrophysical logarithmic units. All variables are in
c.g.s. units (tau actually refers to the base-10 logarithm of the optical
depth at 500nm). The keep_xxx variables are actually flags (even though
they are defined as real*8 numbers to maintain the same datatype in the
entire model). Each flags specifies whether NICOLE should compute that

3.1. THE SYNTHESIS MODE 31

variable internally (keep_xxx=0, the default behavior) or use the value sup-
plied in the model (keep_xxx=1).

Sometimes, when creating or manipulating arrays where one of the di-
mensions has only 1 element, IDL will supress such dimension. Before you
write the IDL savefile with the data, please make sure that the model vari-
ables have three dimensions (or two in the case of v_mac, stray_frac, ffactor,
and the keep flags). If you are having trouble with the array dimensions
you can also include nx, ny and nz in the IDL savefile and NICOLE will use
them to interpret the arrays correctly. As a last resort, if the arrays are not
three-dimensional and nx, ny or nz are not properly specified, NICOLE will
try to interpret the missing dimensions as being 1 (starting with z, then y
and finally x).

NICOLE native format

NICOLE works internally with binary direct-access little-endian files. This
is true even if you are running on a big-endian machine. NICOLE recognizes
the endianness of the machine and, if running on big endian, will do byte
swapping before reading and writing to disk. Output models produced by
the code are in this format.

The record size for model files is 22*nz+11+92 real numbers of kind
8 (meaning, 8 bytes per number). Each record corresponds to one model
atmosphere and has all variables stored sequentially in the following or-
der: z(1:nz), log tau_-500(1:nz), t(1:nz), gas_p(l:nz), rho(l:nz), el.p(1:nz),
vos(1:nz), v_mic(1:nz), b_long(1:nz), b_x(1:nz), b_y(1:nz), b_local x(1:nz),
b_local_y(1:nz), b_local_z(1:nz), v_local x(1:nz), v_local_y(1:nz), v_local z(1:nz),
nH(1:nz), nHminus(1:nz), nHplus(1:nz), nH2(1:nz), nH2plus(1:nz), v_mac,
stray_frac, ffactor, keep_el_p, keep_gas_p, keep_rho, keep_nH, keep_nHminus,
keep_nHplus, keep_-nH2, keep_nH2plus, abund(1:92). The “local” b and v
represent the magnetic field and velocity vectors in the local solar frame of
reference. These parameters are not used by NICOLE directly. They are
used by the incline.py program to pre-process a 3D model cube, transform-
ing it from vertical to an inclined line-of-sight. During this transformation,
the local b and v are used to compute b_long, b_x, b_y and v_los, which are
the variables needed by NICOLE. In summary, if you use incline.py, then
b_local and v_local are used but v_los, b_long, b_x and b_y are ignored. If
you don’t use incline.py then it’s the other way around.

The keep_xxx variables are actually flags (even though they are defined
as real*8 numbers to maintain the same datatype in the entire model). Each
flags specifies whether NICOLE should compute that variable internally
(keep_xxx=0, the default behavior) or use the value supplied in the model
(keepxxx=1).

32 CHAPTER 3. QUICK START

The model file contains npix+1 records (npix being the number of mod-
els in the file, equal to nxxny). The first record is actually a signature
to allow the code to recognize the file and also to provide the nx, ny and
nz parameters needed to dimension the variables. This signature has the
following format. The first 11 bytes contain the string nicole2.3bm. The
following 5 bytes are 0s, and then come two 32-bit integers representing nx
and ny and one 64-bit integer with nz. From there on the record is padded
with zeros.

3.1.5 The instrumental profile file (optional)

The instrumental profile is the response of the instrument to a monochro-
matic beam. Often this is modeled with the macroturbulence assuming
that the instrumental profile is a Gaussian but sometimes this approach
does not suffice. If we know the instrumental profile of our instrument
(e.g., from theoretical considerations or by measuring the spectrum pro-
duced when the system is illuminated by a laser beam) we can specify it
by including a file in the running directory named Instrumental_profile.dat.
One can also use the suffix _1, -2, etc to have a different file for each cycle
of the run. If the file exists, NICOLE will read and use it. Make sure you
have spelled the name correctly, though. If the Printout Detail parameter
in NICOLE.input is 1 or higher, NICOLE will print the following message:

Reading Instrumental_profile.dat

This is a binary file with as many records as pixels in the field of view
(i.e., nz X ny) plus one. This has changed from versions prior to 2.6 to
allow for an instrumental profile that varies over the field of view, as is the
case with some instruments. Note that each profile might contain different
spectral regions. We then need to include the appropriate profile for each
region in each profile. The instrumental profile needs to have its peak at
the first point, then have the right-hand side of the profile function run
through half of the region profile and, finally, from the midpoint to the last
we have the left side of the profile. Each record has nA 8-byte numbers.
The first record contains some metadata. The first number specifies the
number of points in the instrumental profile for the first spectral region. If
there are more regions, then the second number has the number of points
in the instrumental profile for the second region, and so on. The number
of regions must match what has been specified in NICOLE.input. The user
is responsible to ensure that this file is consistent with the rest of inputs.
No sanity checks are performed by the code. After this first record with
metadata, we have all other records with the instrumental profile(s) for
each pixel. Each record contains the instrumental profile, starting with

3.1. THE SYNTHESIS MODE 33

the peak, with the same wavelength sampling as the spectral region and
normalized so that the total area is unity (otherwise the synthetic profile
normaliazation is affected by the profile area). Obviously, the number of
points in all of the instrumental profiles together must not exceed the total
number of wavelengths being computed.

If the instrumental profile is specified, macroturbulence is ignored. It is
recommended to test this option with a simple synthesis of a narrow line
(without micro- or macroturbulence), observing the broadening produced
when the instrumental profile is used.

3.1.6 The departure coefficients file (optional)

Unless you really know what you are doing, you can (and probably should)
skip this section. We can specify departure coefficients that will be applied
by multiplying the opacity (lower level departure coefficient) and emissivity
(upper level departure coeflicient) of the lines computed by NICOLE. This
could be potentially useful to apply ad-hoc NLTE corrections to the lines.
To do so you need to have a file named depcoef.dat. The file is in binary
format with a record length of 2 x nl x nz reals of kind=8, where nl is
the number of lines and nz the number of vertical grid points in the model
atmosphere. For each x pixel the file has a record that contains for each
line the departure coefficients for the lower level at all depth-points and
then similarly for the upper level.

Note that the departure coefficients need to be in the same grid as the
model atmosphere. Also, it is assumed that the coefficients are ordered
starting at the top of the atmosphere. If this file is read and the departure
coefficients are used, NICOLE will print the following message (assuming
that Printout Detail in NICOLE.input is 1 or higher):

Reading depcoef.dat

There is an alternative use of the depcoef.dat file in which you can
supply actual populations directly (actually, one introduces the ratio n/g
which is what the code will use internally). To do this, introduce the
following line in NICOLE.input:

Depcoef behavior= 2

and for each level write the populations divided by the statistical weight (g)
as explained above (remember: starting from the top of the atmosphere).

3.1.7 Running NICOLE in synthesis mode

Ok, so now that we know all the input files, what they do and how they
are written, we only have to run the Python wrapper:

34 CHAPTER 3. QUICK START

./run_nicole.py

at your command prompt. This program, more than a wrapper, is
almost an entire code by itself. It creates the input files for the Fortran code
and runs it. The input files created by run_nicole.py start with a double
underscore (e.g., —_inputmodel.bin). To avoid accidentally overwriting your
own files, it is strongly recommended that you do not use any files starting
with a double underscore and leave this prefix for NICOLE and its support
programs.

You have to be aware that, if the output files already exist, NICOLE
will not replace those files. Instead, it will overwrite the records that it
has computed in the present run. Other preexisting records in the file
will be preserved. This can be good in some situations but bad in others.
For example, NICOLE has a “Restart” mode in which it is possible to
resume a run that was interrupted before completion. Or sometimes one
uses the input model file with the guess model atmosphere to contain also
the atmospheres produced by the inversion. In these situations it is good
to have the ability to use existing output files. However, there may also be
situations in which one inadvertently overwrites parts of a preexisting files
and ends up with unexpected results. If a given output file exists before
the run, NICOLE will issue a warning but proceed anyway. If you want
to make sure that your run is fresh new, set Restart to -1 (see Section ??
above) and the output files will be removed at the beginning of the run.

When you run the code you may get some warning messages about the
line not being optically thin at the surface. This is because the model does
not extend high enough. In any case, the values for 7,, that NICOLE is
reporting are ~ 1072, which is good enough for our purposes here, so don’t
worry too much about it. Ok, so everything worked fine and now you have
a new file in your directory with the synthetic data. Congratulations! You
have run your first calculation with NICOLE!

If you specified an output model file in NICOLE.input, NICOLE will
output the actual model that it used to do the synthesis. This might not
coincide exactly with the model you supplied due to a number of reasons.
First of all, if you have the optimize grid option set, NICOLE has rein-
terpolated your model to a more suitable grid. Moreover, some of the
variables defining the plasma state are computed by NICOLE’s equation
of state routines, possibly overriding any values you might have supplied.
For instance, if you set input density to electron pressure, all variables will
be recomputed from T and Pe: density, gas pressure and number densities
of neutral hydrogen, ionized hydrogen, negative hydrogen ion, hydrogen
molecule and singly ionized hydrogen molecule. You can instruct NICOLE
to retain the original values you supplied in the input model for any of these

3.1. THE SYNTHESIS MODE 35

parameters by setting the various keep flags, as explained in section 3.1.3.
So, for instance, if you wish to use the gas density, gas pressure and neutral
hydrogen density provided in your input file, you would need to set Keep
Rho, Keep Gas_p and Keep nH to 1 in NICOLE.input (see section 3.1.3).

If the NLTE inversion does not converge (to see this you may need
to have the printout parameter set to 3 or greater in NICOLE.input) try
playing around with the parameters in the NLTE section of NICOLE.input.
The first thing to try would be to use linear interpolation by setting linear
formal solution to 1. You can then try changing the formal solution from
1 to 2 or viceversa.

The format of the file that you have just obtained, HSRA.pro, is ex-
plained in section 3.1.8 below. You can read it in IDL with the read_profile.pro
procedure. On exit, NICOLE produces a file with profiling information,
named profiling__n.txt, where n is the process number. In case of the serial
build there is only one file but the parallel build produces one file per pro-
cess. This file shows the code execution time and also breaks down how this
time is spent inside the most time-consuming routines. Note that some of
the routines profiled are actually called by others. For example, solvestat is
called by forward, which in turn is called by compute_dchisq_dx. Because
of this the percentages don’t add up to 100%.

3.1.8 The profile file

This file contains one or more spectral profiles (observed or synthetic). The
file can be in one of several formats:

ASCII

This file is arranged in five columns and has as many rows as wavelengths
in your spectrum. The first column contains the wavelength in A. Columns
two through five contain the Stokes I, Q, U and V parameters, respectively.
The Stokes parameters are normalized according to the corresponding set-
ting in NICOLE.input

IDL savefile

We can use an IDL savefile as inputs. The file must contain the following
variables defined: stki, stkq, stku and stkv. They must be arrays of 3
dimensions: nx, ny and nA (where n) is the number of wavelengths in the
wavelength grid). If several regions are defined then the profiles for different
regions are listed sequentially for each x, y point.

36 CHAPTER 3. QUICK START

Sometimes, when creating or manipulating arrays where one of the di-
mensions has only 1 element, IDL will supress such dimension. Before you
write the IDL savefile with the data, please make sure that all stki, stkq,
stku and stkv have three dimensions. If you are having trouble with the
array dimensions you can also include nx, ny and nA in the IDL savefile and
NICOLE will use them to interpret the arrays correctly. As a last resort,
if the arrays are not three-dimensional and nx, ny or nz are not properly
specified, NICOLE will try to interpret the missing dimensions as being 1
(starting with n), then y and finally x).

NICOLE native format

NICOLE works internally with binary direct-access little-endian files. This
is true even if you are running on a big-endian machine. NICOLE recognizes
the endianness of the machine and, if running on big endian, will do byte
swapping before reading and writing to disk. Output models produced by
the code are in this format.

The record size for profile files is 4*nA real numbers of kind 8 (meaning,
8 bytes per number). Each record corresponds to one set of the 4 Stokes
profiles and has all variables stored sequentially in the following order:
I()‘l)a Q()‘l)v U()‘l)v V()‘l)a I()‘Q)v Q()‘Q)a U()‘Q)v V()‘Q)a ,I()\n)\), Q()‘nk)z
U()\nk); V()\n)\)

The file contains npix+1 records (npix being the number of profiles in
the file, equal to nxxny). The first record is actually a signature to allow
the code to recognize the file and also to provide the nx, ny, n\ parameters
needed to dimension the variables. This signature has the following format.
The first 11 bytes contain the string nicole2.3bp, followed by 5 bytes with
0s. Then come two 32-bit integers representing nx and ny, and one 64-bit
integer with nA. From there on the record is padded with zeros.

3.2 The inversion mode

3.2.1 Setting the input parameters

At this point you already know almost everything you need to run NICOLE.
In this section you will learn how to use the code in inversion mode. First,
we have to change the operation mode in the NICOLE.input file. Edit
this file and set Mode to “Inversion”. Now the meaning of the fields Input
Model and Synthetic Profiles is different. The input model is a starting
guess model, and the synthetic profiles are the profiles emergent from the
retrieved model that we will obtain as a result of the inversion. So set input
model to “guess.mod” and synthetic profiles to “modelout.pro”.

3.2. THE INVERSION MODE 37

In addition, there are two new fields that we must complete in inversion
mode. The Observed Profiles field must be set to the name of a file with
the observed profiles that we wish to invert. Let us test the code by us-
ing the HSRA.pro profiles that we synthesized above as observed profiles.
This way we can check whether or not the retrieved model is similar to
the HSRA.model. The other field that we must complete is Output Model
which should be set to the name of the file that will contain the model
obtained as a result of the inversion. In this example, set it to “mode-
lout.mod”.

3.2.2 Running NICOLE in inversion mode

That’s all we need to do. Now run NICOLE exactly as in section 3.1 and
you will notice some differences. She will take a little longer to run now
and will display messages like this:

iter=1 Lambda=10. Chisq=3941.23901

Each time you see one of these messages, NICOLE has performed a suc-
cessful inversion iteration step. The numbers in this line have the following
meaning. First we have an integer number, iter, which shows how many
iterations have been performed so far. Then we have the diagonal element
A, which is a parameter used in the Levenberg-Marquardt algorithm (you
don’t need to worry about that for the moment). Finally, Chisq is the merit
function y?, which measures the quality of the fit. A nice fit is obtained
when y? is around or below one. Obviously, the fit is still poor in the first
iteration. But no sweat. It will improve quickly. However, the actual values
of x? depend on the weights employed.

Instead of the message above, you may read something like this from
time to time:

REJECTED:— iter=9 Lambda=0.100000001 Chisq=0.607707798

This means that the model proposed by NICOLE in this iteration does
not yield an improvement to the current value of x2, and therefore it has
been rejected. After three successive failed attempts, NICOLE will quit. If,
at this point, the fit is not yet satisfactory, NICOLE will add more degrees
of freedom to the model (e.g., will allow for gradients in the magnetic
field strength and orientation, more complicated velocity and temperature
stratifications, etc.) and restart a new set of iterations from the current
guess model.

38 CHAPTER 3. QUICK START

Another warning message that you might occasionally get is the follow-
ing:

Clipping temperature

This means that the model proposed by NICOLE has exceeded the al-
lowed temperature range at one or more depth-points. When that happens,
she will bring the model back within range by performing a linear trans-
formation. Normally this will not represent any problem, and it is not
something you should worry about. The other atmospheric parameters are
also monitored and clipped when they get out of range, so you might get
similar warnings regarding the magnetic field, the fraction of stray light,
ete.

Once the inversion is finished you can check how good it was by reading
the profiles and models with the read_profile.pro and read_model.pro IDL
procedures.

Congratulations! You have successfully inverted your first spectrum
with NICOLE.

3.2.3 Inversion weights

It is often useful to give different weights to the different Stokes profiles,
because the amplitudes of I, Q, U and V typically differ in one or two orders
of magnitude. NICOLE uses an automatic weighting scheme defined in
the compute_weights routine (which can be found in the misc/ directory of
your source code distribution). This scheme takes into account the different
amplitudes of the profiles and the noise of the observations. However, one
may want to fine tune or customize this scheme. Another reason to weight
the profiles is to discard telluric lines or any other contamination that may
be present in the observations.

The default weights can be overridden by creating a file named Weights.pro
in the working directory. This file must have the same format as a regular
ASCII profile file (see section 3.1.8), but contains the o2 values for I, Q,
U and V at each wavelength point. The actual weight is inversely propor-
tional to o, so for instance if one wants to ignore a given wavelength range,
we just set o2 to a very large value in this file. Another way to override
weights is to set some points in the input value to negative values beyond
-10 (meaning larger absolute values).

Whether one uses default or custom weights, NICOLE will produce an
output file Weights_used.pro with the weights it has used in ASCII format.

3.2. THE INVERSION MODE 39

3.2.4 Changing the default number of nodes

Advanced users may want to change the way NICOLE selects nodes for the
inversion. This is done in the NICOLE.input.n files (see section 3.1.3).

3.2.5 Monitoring the inversion

After each successful iteration, NICOLE will output the current guess
model and the emergent profiles in the files tmp.mod and tmp.pro. If
you would like to monitor the progress of the inversion in real time you can
plot these files at any time. A tmp.err file with the error bars is also output
at each iteration (see section 3.2.6 below).

3.2.6 The error bars

NICOLE will output the error bars for the current guess model as tmp.err,
and for the final model in a file named as the output file, but with extension
“.err”. Basically, the errors file has the same format as a model atmosphere
file. All the physical variables are set to —1 at all the depth-points, except
at those points where we have “nodes” of the inversion, where the corre-
sponding errors are given.

The error bars must be interpreted with care. First of all, they are ab-
solutely meaningless until the minimum of x? is reached, which means that
one shouldn’t take the error bars seriously until the inversion is done, and
only when a minimum has been reached. Moreover, you must understand
that these bars provide the uncertainties on the retrieved free parameters,
so they should be interpreted in the following manner. NICOLE will assume
that the model sought can be constructed from the starting guess model
plus a correction to be determined during the inversion. This correction
may be a constant value, a straight line, a parabola, or a higher-degree
polynomial, depending on how much freedom is given to a particular phys-
ical parameter. For example, NICOLE will start considering a parabolic
correction to the temperature (which means three inversion nodes), a lin-
ear correction to the l.o.s. velocity (two inversion nodes), and a constant
(depth-independent) correction to the magnetic field vector and to the mi-
croturbulence (only one node). Then, for example, the three error bars that
we will obtain for the temperature define the range of parabolas that are
compatible with the observations.

3.2.7 The file maskinvert.dat

This file is optional. If it exists, it specifies which points should be inverted
and which ones should not. There is one real number per record. A value

40 CHAPTER 3. QUICK START

of zero signals the code to ignore this (ix, iy) profile. A value of one signals
the code to perform the inversion.

3.2.8 Tips for successful inversions

e Initialize with physically sensible models. Since NICOLE will start
with constant corrections to the magnetic field vector and microtur-
bulence, and with linear corrections to the l.o.s. velocity, it is a good
idea to initialize with models having a constant magnetic field and a
constant or linear l.o.s. velocity.

e If it doesn’t work the first time, try with a different initialization. If
you see clipping warnings before and in between the rejected itera-
tions, that might be signaling that NICOLE needs to perform cor-
rections that are pushing the model out of the allowed range. Take
the tmp.mod model, simplify the depth-dependence of the clipped
quantity and use it as a new initialization.

e Sometimes it is a good idea to take the result of an inversion, perturb
some of the physical variables, and use it as initialization for a new
inversion. You may obtain better fits.

e If you are having problems, check the troubleshooting chapter. You
may find useful information there. If everything else fails or you think
you have found a bug in the code, please send email to hsocasQiac.es.

3.2.9 Restarting an inversion

If you're running an inversion with many points and your computation is
interrupted, you can set the Restart option to Y’ in NICOLE.input and
then simply restart the code. It will look at the output files (Chisq.dat, as
well as profile and model output) and skip those points with a x? value that
is better than the Acceptable Chi-square field in NICOLE.input. If your
computer uses a disk cache (and nowadays pretty much they all do), you
will lose whatever results were not physically written to file. One way to
avoid this is to include Flush statements to make sure the files get written
after each inversion. Unfortunately, Flush is not part of the Fortran 90
standard. When creating the makefile, the create_makefile.py script (see
next section) will check if Flush is available in your platform and include
it in the source code if/where appropriate.

In order to restart an inversion using the previous data, you simply need
to include the following option in your NICOLE.input file.

Restart= Yes

3.2. THE INVERSION MODE 41

You may also want to set one of Start irec, Start X position or Start Y
position.

3.2.10 Debugging and profiling

NICOLE includes a set of tools to help identify and fix problems. We can
activate debug mode in NICOLE.input simply by including this line:

Debug mode=1

Two things happen in this mode. First, a number of files are created
with information that allows one to trace back the causes of a problem,
especially a crash. One file is created for each parallel process. They are
named core_n.txt (where n identifies the process that created it). These
files are simply ASCII text files with debug information. For each pixel,
after successfully completing a synthesis or an inversion cycle, the file is
destroyed. When a crash happens, the core files are left behind with the
current code status. Make a note of what process caused the crash (this
is usually printed out by the OS) so you know which core file you need to
analyze. The second thing that happens in debug mode is that a number of
runtime checks are performed to verify the sanity of the current run. When
debug mode=1, an abnormal condition results in a wealth of information
printed out to the console but the code will continue executing, hoping to
recover from this condition. Setting debug mode to a value larger than
1 signals the code to stop upon encountering such abnormal situations
so that you can then inspect the core files produced. The idl directory
contains a procedure (read-debug.pro) that can be useful to inspect core
files. If you have multiple processes, and therefore multiple core files, you’ll
need to specify which one to read upon invocation of read_debug.pro. The
procedure returns a structure with the most interesting variables at the
time of the crash and the current model atmosphere being used by the
code.

In addition to the debug mode, we can set a number of other flags in
NICOLE.input to output some further information. Do NOT use these
options in MPI mode:

e Output populations: At the end of each synthesis, create a binary
file named Populations.dat. This file is overwritten after each synthe-
sis, including those that are part of the inversion process. It doesn’t
work in parallel mode, as all processes would be writing concurrently
in the same file. The file has binary format and has record length nz.
If you are doing a NLTE calculation the file contains the populations
of all the atomic levels (one record corresponds to one level). After

42 CHAPTER 3. QUICK START

the converged level populations it contains the LTE populations used
as starting guess. In LTE mode, however, the structure of the file is
different. The record length is still nz but now there are only two
records. The first one contains n/g for the line lower level and then
the same for the upper level. If multiple lines are being computed,
only the level populations corresponding to the last line is written.

e Output continuum opacity: At the end of each synthesis, create a
binary file named Cont_opacity.dat. This file is overwritten after each
synthesis, including those part of the inversion process. It doesn’t
work in parallel mode, as all processes would be writing concurrently
in the same file. The file has binary format and has two records of
length nz. The first record contains the continuum opacity at the
wavelength of the last transition. The second record contains the
reference continuum opacity at 500 nm.

e Output NLTE source function: At the end of each synthesis,
create a binary file named NLTE_sf.dat. This file is overwritten af-
ter each synthesis, including those part of the inversion process. It
doesn’t work in parallel mode, as all processes would be writing con-
currently in the same file. The file has binary format and has record
length nz. The records are arranged nested first in transitions (in-
cluding bound-bound and bound-free transitions treated in detail),
then an internal loop in frequencies from 1 to the number of wave-
lengths NQ specified in the model atom for that transition. Each
record contains the source function used in the NLTE calculation for
that transition and frequency.

Profiling is enabled in NICOLE by default. If for some reason you
wish to change this, edit the profiling.f0 file in time_code and change the
following line near the beginning:

Logical, Save :: Do_profile=.True.
to
Logical, Save :: Do_profile=.False.

It is not recommended to disable profiling because it doesn’t have any
noticeable impact on performance and it produces valuable information
that can be used to optimize NICOLE and diagnose possible bottlenecks
in code execution. At the end of the run NICOLE produces an ASCII
file named profiling-_0.txt (in the case of a parallel run there will be one
file for each process, each one with the process number n in the file name,

3.2. THE INVERSION MODE 43

e.g. profiling_4.txt). The contents of this file are self-explanatory, with
the total execution time as well as detailed information for each one of the
major routines showing the number of times it has been called, the time
spent inside it and what percentage of the total execution time it makes up
for.

44

CHAPTER 3. QUICK START

Chapter 4

Compiling NICOLE

4.1 Creating the makefile

NICOLE uses a few routines from the Numerical Recipes book (Press et
al. 1986). Unfortunately, due to licensing and copyright issues I am not
allowed to include the source code of these routines in the distributions,
so you will have to obtain them by yourself. You can type the routines
directly from the book, obtain the distribution on a CD-ROM or download
them from their website http://www.nr.com.

You must place the following routines in the numerical recipes/ di-
rectory: convlv.f90, fourl.f90, fourrow.f90, nr.f90, nrtype.f90, nrutil.f90,
pythag.f90, realft.f90, svbksb.f90, svdcmp.f90 and twofft.f90.

New in v2.0 NICOLE has a system analyzer written in Python that will
examine your system and automatically create a makefile, similarly to the
popular autoconf tool for Linux. Go to the main/ directory and try the
following:

./create_makefile.py

This program will analyze your system and make some slight modifica-
tions to the source files to adapt it to your architecture. If everything goes
well it will prompt you for authorization to create a new makefile overwrit-
ing the old one. If you your compiler was not automatically detected or if
you wish to specify a different compiler, use the -h command line flag:

./create_makefile.py -h

If you wish, you can include optimization and debugging flags by using
—otherflags. For instance:

45

46 CHAPTER 4. COMPILING NICOLE

./create_makefile.py --otherflags=’-g -03’
Once you have the makefile, simply type:

make clean
make nicole

If everything goes well, you will end up with a fresh new executable
nicole file in this directory. If you make any modifications to the files with
extension .presource, you will need to run create_makefile.py again before
you can recompile with make nicole.

4.2 Compiler notes

4.2.1 Mac and GNU Fortran

The Mac versions of GNU fortran prior to 4.4.x have a bug that make
NICOLE crash during the tests 2 to 6 (the first test runs satisfactorily).
Please, make sure that you are using a recent version of gfortran for Mac
(at least 4.4.x) to avoid this bug. Use gfortran —version to find out your
compiler version.

4.2.2 Linux and GNU Fortran

GNU fortran versions 4.4.x in Linux produce a NICOLE executable with
two problems: 1)the output is buffered so once you launch the code you
may not see anything at all until the excution finishes or the buffer is full.
Then all the output is flushed to the terminal at the same time. 2) In
inversion mode, the output model file will contain random empty records
(records filled with 0s). These problems do not appear with versions 4.6.x.

4.2.3 Intel Fortran

The Intel fortran compiler ifort currently has a bug that makes it place all
array temporaries on the stack, regardless of their size. An example may
be found here:

http://stackoverflow.com/questions/12167549/
program-crash-for-array-copy-with-ifort

This can make NICOLE crash under some circumstances. A simple workaround
is to use the -heap-arrays flag to specify the maximum array size that may
be placed on the stack, i.e.:

./create_makefile.py --otherflags=’-fast -03 -heap-arrays 1600’

4.3. MPI VERSION 47

4.3 MPI version

In order to compile the MPI version for parallel computers, use the —mpi
command line switch for create_makefile:

./create_makefile.py --mpi

You can also specify optimization flags with —otherflags as before. Then,
compile as usual:

make clean
make nicole

4.4 Testing the code

Once you have successfully built the code, you can test it with a battery of
standard problems:

cd ../test
./run_tests.py

This will launch the code on several different problems, make sure it runs

without crashes and analyze the results to ensure that they are correct.
For the parallel MPI build, you will have to use the —nicolecommand

switch to specify how the code is executed. The following is an example:

cd ../test
./run_tests.py —-nicolecommand=’mpirun -n 8 ../../main/nicole’

4.4.1 Testing in non-interactive mode

This simple script will not work in situations where the code is not run
interactively. This is typically the case when one runs in parallel and/or
using a queue system. In that case the procedure is slightly more manual
(but still manageable).

Start by cleaning out any previously existing results in the test subdi-
rectories by running ./run_tests.py —clean. Then go into synl/ and execute
the Python launcher. Use the —nicolecommand option to specify how to
launch a program in that system. For example, to run on two processors
using mpich2 on my dual-core laptop I would do:

./run_nicole.py --clean
cd synl/
./run_nicole.py --nicolecommand=’mpirun -n 2 ../../main/nicole’

48 CHAPTER 4. COMPILING NICOLE

If for some reason this procedure doesn’t work, just do a dry run with the
Python launcher to prepare the input files and then run nicole manually,
like this:

./run_nicole.py --clean

cd synl/

./run_nicole.py --nicolecommand=’date’
mpirun -n 2 ../../main/nicole

Repeat this in each one of the subdirectories under test/ (synl, syn2,
..., inv3). Then back to test/ and execute run_test with the —check-only
switch. This switch is used to preserve the files in the directory (created
with your manual runs before) and check the results in those files.

cd ..
./run_tests.py --check-only

Just to show another example, this is how we would run the tests on
the LaPalma supercomputer of the Instituto de Astrofisica de Canarias:

cd test/
./run_tests.py --clear
cd synl/
./run_nicole.py --nicolecommand=’mnsubmit ../jobscript.bash’
cd ../syn2
(...repeat for each directory)
cd ../inv3
./run_nicole.py --nicolecommand=’mnsubmit ../jobscript.bash’

cd ..
./run_tests.py --check-only

4.5 Compiling in double precision

It is strongly recommended that you run NICOLE in double precision,
especially for inversions or in complex NLTE syntheses.

There are plans to support a switch to select the desired precision at
compilation time but unfortunately this is not yet possible in the current
NICOLE version. However, there is a quick-and-dirty workaround using
flags that most compilers incorporate to select the kind of implicit types.
For example, the Intel compiler uses the flag -r8 to signal the compiler
that all implicit reals should be of kind=8 (i.e., double precision). We
can use this flag alongside a small modification to one of the Numerical

4.6. SUPPORTED PLATFORMS 49

Recipes routines to compile NICOLE in double precision. In the directory
numerical_recipes, edit the nrtype.fo0 file and change the following section:

INTEGER, PARAMETER :: SP = KIND(1.0)

INTEGER, PARAMETER :: DP = KIND(1.0DO)

INTEGER, PARAMETER :: SPC = KIND((1.0,1.0))
INTEGER, PARAMETER :: DPC = KIND((1.0D0,1.0D0))

to:

INTEGER, PARAMETER :: SP = 8
INTEGER, PARAMETER :: DP = 4
INTEGER, PARAMETER :: SPC = 8
INTEGER, PARAMETER :: DPC = 4

To compile with the -r8 (or whatever your compiler uses) flag, use the
—otherflags switch when creating the makefile (see Section 4.1). In our
example:

./create_makefile.py --compiler=ifort --otherflags=’-fast -r8’

For gfortran, the equivalent to -r8 would be -fdefault-real-8 -fdefault-double-
8

4.6 Supported platforms

NICOLE has been tested on a number of different platforms, including the
following:

e PC Linux (i686), 32 bit with gfortran, ifort and pgf90 compilers
e PC Linux (i686), 64 bit with gfortran, ifort and pgf90 compilers
e Mac OS, Intel 32 bit with gfortran and ifort compilers
e Mac OS, Intel 64 bit with gfortran and ifort compilers

e PowerPC Linux 64 bit with x1f90 compiler

If you have had success compiling and running the code on other plat-
forms, please let me know the details (and whether you had to work around
any problems) by sending email to hsocas@iac.es

50

CHAPTER 4. COMPILING NICOLE

Chapter 5

The source code

In the full distribution you will find the following subdirectories:

main: This is where you will find the main program nicole.f90, some
relevant subroutines and the makefile. The executable file will be
placed here when you compile NICOLE.

lorien: This contains the LORIEN kernel, consisting of the lorien
module (in the lorien.f90 source file) and all the required subroutines.
Check the LORIEN documentation included in its distribution (that
you can obtain at the C.I.C, homepage) for detailed information on
these subroutines.

forward: You can find here the module needed for solving the forward
problem, i.e. given a model atmosphere, synthesize the emergent
profiles. The main routine is forward, in the forward.f90 source file.

compex: Here reside the compress and expand routines (in the com-
press.f90 and expand.f90 source files), and their associated subrou-
tines. These routines are used to compress a model atmosphere onto
a vector of dimensionless free parameters, and vice versa, i.e. to ex-
pand this free parameters vector to a model atmosphere.

time_code: Routines to profile the code (determine where most of the
time is spent)

misc: These are miscellaneous routines used to print out information,
read and write models, profiles, etc.

run: This is the directory where you can run the examples described in
this manual. You will find here the input files referenced in chapter 2

o1

52 CHAPTER 5. THE SOURCE CODE

e test: After compiling the code, try running the tests in this directory.
Simply run the Python script run_tests.py

e numerical_recipes: Place here the source files from the Numerical
Recipes book

e idl: Some useful IDL procedures to read/write files in various formats

5.1 The dependency tree

The following diagram illustrates the NICOLE dependency tree fully ex-
panded, showing all the dependencies required by a given file. This can be
obtained by running the following command in the main/ directory:

./create_makefile.py --showtree

File: ../compex/model_struct.f90

...... /main/param_struct.f90

.......... /main/phys_constants.f90

File: ../compex/select_number_of_nodes.f90
...... /compex/nodes_info.f90

.......... /compex/model_struct.f90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
...... /main/param_struct.f90

.......... /main/phys_constants.f90

...... /compex/model_struct.f90

.......... /main/param_struct.f90
.............. /main/phys_constants.f90
File: ../compex/compex.f90

...... /main/param_struct.f90

.......... /main/phys_constants.f90

...... /compex/model_struct.f90

.......... /main/param_struct.f90
.............. /main/phys_constants.f90
...... /compex/nodes_info.£90

.......... /compex/model_struct.f90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
...... /forward/bezier.£90

File: ../compex/compress_variable.f90
File: ../compex/randomize_model.f90

5.1. THE DEPENDENCY TREE

...... /main/param_struct.f90
.......... /main/phys_constants.f90
...... /compex/nodes_info.£90
.......... /compex/model_struct.£90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
...... /compex/model_struct.f90
.......... /main/param_struct.f90
.............. /main/phys_constants.f90
File: ../compex/record_to_model.f90
...... /compex/model_struct.f90
.......... /main/param_struct.f90
.............. /main/phys_constants.f90
File: ../compex/nodes_info.f90

...... /compex/model_struct.f90
.......... /main/param_struct.f90
.............. /main/phys_constants.f90
File: ../forward/atomic_data.f90
File: ../forward/eq_state.f90

...... /time_code/profiling.£90

...... /numerical_recipes/nrtype.f90
...... /main/param_struct.f90
.......... /main/phys_constants.f90
...... /forward/atomic_data.f90

...... /main/debug.£90

...... /forward/1te.£90

.......... /main/param_struct.f90
.............. /main/phys_constants.f90
.......... /compex/model_struct.£90
.............. /main/param_struct.£90
.................. /main/phys_constants.f90
.......... /forward/line_data_struct.f90
.......... /forward/atomic_data.f90
File: ../forward/lte.f90

...... /main/param_struct.£90
.......... /main/phys_constants.f90
...... /compex/model_struct.f90
.......... /main/param_struct.f90
.............. /main/phys_constants.f90
...... /forward/line_data_struct.f90
...... /forward/atomic_data.f90

File: ../forward/line_data_struct.f90

93

54 CHAPTER 5. THE SOURCE CODE

File: ../forward/zeeman_splitting.f90

File: ../forward/forward.f90

...... /forward/forward_supp.£90

.......... /main/phys_constants.f90
.......... /forward/atomic_data.f90
.......... /forward/line_data_struct.f90
.......... /forward/eq_state.f90
.............. /time_code/profiling.£90
.............. /numerical_recipes/nrtype.£90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /forward/atomic_data.f90
.............. /main/debug.£90

.............. /forward/lte.£90
.................. /main/param_struct.f90
...................... /main/phys_constants.f90
.................. /compex/model_struct.f90
...................... /main/param_struct.f£90
.......................... /main/phys_constants.f90
.................. /forward/line_data_struct.f90
.................. /forward/atomic_data.f90
.......... /main/debug.f90

...... /main/param_struct.£90

.......... /main/phys_constants.f90

...... /compex/model_struct.£90

.......... /main/param_struct.f90
.............. /main/phys_constants.f90
...... /forward/eq_state.f90

.......... /time_code/profiling.£90
.......... /numerical_recipes/nrtype.f90
.......... /main/param_struct.f90
.............. /main/phys_constants.f90
.......... /forward/atomic_data.f90
.......... /main/debug.£90

.......... /forward/1lte.£90

.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /compex/model_struct.f90
.................. /main/param_struct.f£90
...................... /main/phys_constants.f90
.............. /forward/line_data_struct.f90
.............. /forward/atomic_data.f90

5.1. THE DEPENDENCY TREE

...... /forward/zeeman_splitting.f90

...... /forward/1lte.£90

.......... /main/param_struct.f90

.............. /main/phys_constants.f90
.......... /compex/model_struct.f90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.......... /forward/line_data_struct.f90
.......... /forward/atomic_data.f90

...... /forward/NLTE/NLTE.£90

.......... /misc/file_ops.£f90

.......... /main/param_struct.f90

.............. /main/phys_constants.f90
.......... /compex/model_struct.£90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.......... /forward/line_data_struct.f90
.......... /forward/forward_supp.£f90
.............. /main/phys_constants.f90
.............. /forward/atomic_data.f90
.............. /forward/line_data_struct.f90
.............. /forward/eq_state.f90
.................. /time_code/profiling.f90
.................. /numerical_recipes/nrtype.f90
.................. /main/param_struct.f£90
...................... /main/phys_constants.f90
.................. /forward/atomic_data.f90
.................. /main/debug.f90
.................. /forward/lte.f90
...................... /main/param_struct.f£90
.......................... /main/phys_constants.f90
...................... /compex/model_struct.f90
.......................... /main/param_struct.f90
.............................. /main/phys_constants.f90
...................... /forward/line_data_struct.f90
...................... /forward/atomic_data.f90
.............. /main/debug.£90

.......... /forward/gauss_quad.f90

.......... /forward/1te.£90

.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /compex/model_struct.f90

95

56 CHAPTER 5. THE SOURCE CODE

.................. /main/param_struct.f90
...................... /main/phys_constants.f90
.............. /forward/line_data_struct.f90
.............. /forward/atomic_data.f90
.......... /forward/eq_state.f90
.............. /time_code/profiling.£f90
.............. /numerical_recipes/nrtype.£90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /forward/atomic_data.f90
.............. /main/debug.£90

.............. /forward/lte.£90
.................. /main/param_struct.f£90
...................... /main/phys_constants.f90
.................. /compex/model_struct.f90
...................... /main/param_struct.f90
.......................... /main/phys_constants.f90
.................. /forward/line_data_struct.f90
.................. /forward/atomic_data.f90
.......... /forward/background.f90
.............. /forward/atomic_data.f90
.............. /main/debug.£90

.......... /forward/zeeman_splitting.£f90
.......... /forward/bezier.£90

.......... /main/debug.£90

.......... /time_code/profiling.f90
.......... /main/phys_constants.f90

...... /forward/atomic_data.f90

...... /forward/gauss_quad.f90

...... /forward/line_data_struct.f90

...... /forward/bezier.£90

...... /forward/background.f90

.......... /forward/atomic_data.f90
.......... /main/debug.£90

...... /numerical_recipes/nr.£90

.......... /numerical_recipes/nrtype.f90
...... /misc/file_ops.£90

...... /time_code/profiling.£90

...... /main/debug.£90

File: ../forward/gauss_quad.f90

File: ../forward/hydrostatic.f90

...... /main/param_struct.f90

5.1. THE DEPENDENCY TREE

.......... /main/phys_constants.f90
...... /compex/model_struct.f90
.......... /main/param_struct.f90
.............. /main/phys_constants.f90
...... /forward/eq_state.f90

.......... /time_code/profiling.f90
.......... /numerical_recipes/nrtype.f90
.......... /main/param_struct.f90
.............. /main/phys_constants.f90
.......... /forward/atomic_data.f90
.......... /main/debug.f90

.......... /forward/1lte.£90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /compex/model_struct.f90
.................. /main/param_struct.f90
...................... /main/phys_constants.f90
.............. /forward/line_data_struct.f90
.............. /forward/atomic_data.f90
...... /forward/atomic_data.f90

...... /forward/background.f90

.......... /forward/atomic_data.f90
.......... /main/debug.£90

...... /main/debug.£90

...... /time_code/profiling.£90

File: ../forward/background.f90

...... /forward/atomic_data.f90

...... /main/debug.£90

File: ../forward/forward_supp.f90
...... /main/phys_constants.f90

...... /forward/atomic_data.f90

...... /forward/line_data_struct.f90
...... /forward/eq_state.f90

.......... /time_code/profiling.£90
.......... /numerical_recipes/nrtype.f90
.......... /main/param_struct.f90
.............. /main/phys_constants.f90
.......... /forward/atomic_data.f90
.......... /main/debug.£90

.......... /forward/1te.£90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90

o7

58 CHAPTER 5. THE SOURCE CODE

.............. /compex/model_struct.f90
.................. /main/param_struct.f£90
...................... /main/phys_constants.f90
.............. /forward/line_data_struct.f90
.............. /forward/atomic_data.f90

...... /main/debug.£90

File: ../forward/bezier.f90

File: ../forward/ann/ann_pefrompg.f90

...... /forward/ann/ann_pefrompg_data.f90
...... /main/debug.£90

File: ../forward/ann/ann_nh2frompe_data.f90
File: ../forward/ann/ann_background_opacity.f90
...... /forward/ann/ann_background_opacity_data.f90
...... /time_code/profiling.£90

...... /main/debug.£90

...... /forward/background.f90

.......... /forward/atomic_data.f90

.......... /main/debug.£90

File: ../forward/ann/ann_nh2frompe.f90

...... /forward/ann/ann_nh2frompe_data.f90
...... /main/debug.£90

File: ../forward/ann/ann_nhfrompe.f90

...... /forward/ann/ann_nhfrompe_data.f90
...... /main/debug.£90

File: ../forward/ann/ann_pgfrompe.f90

...... /forward/ann/ann_pgfrompe_data.f90
...... /main/debug.£90

File: ../forward/ann/ann_pgfrompe_data.f90

File: ../forward/ann/ann_nhfrompe_data.f90

File: ../forward/ann/ann_background_opacity_data.f90
File: ../forward/ann/ann_pefrompg_data.f90

File: ../forward/ann/ANN_forward.f90

File: ./forward/hyperfine/zeeman_hyperfine.f90

...... /forward/line_data_struct.f90

...... /forward/hyperfine/hyperfine.f90
.......... /numerical_recipes/nr.£90
.............. /numerical_recipes/nrtype.f90
.......... /main/param_struct.f90
.............. /main/phys_constants.f90
...... /main/param_struct.£90

.......... /main/phys_constants.f90

...... /time_code/profiling.£90

5.1. THE DEPENDENCY TREE

File: ../forward/hyperfine/hyperfine.f90
...... /numerical_recipes/nr.£90

.......... /numerical_recipes/nrtype.f90
...... /main/param_struct.£90

.......... /main/phys_constants.f90

File: ../forward/sopa/sopa.f90

File: ../forward/NLTE/NLTE.f90

...... /misc/file_ops.£90

...... /main/param_struct.£90

.......... /main/phys_constants.f90

...... /compex/model_struct.f90

.......... /main/param_struct.f90
.............. /main/phys_constants.f90
...... /forward/line_data_struct.f90

...... /forward/forward_supp.£f90

.......... /main/phys_constants.f90
.......... /forward/atomic_data.f90
.......... /forward/line_data_struct.f90
.......... /forward/eq_state.f90
.............. /time_code/profiling.£90
.............. /numerical_recipes/nrtype.£90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /forward/atomic_data.f90
.............. /main/debug.£90
.............. /forward/lte.£90
.................. /main/param_struct.f90
...................... /main/phys_constants.f90
.................. /compex/model_struct.f90
...................... /main/param_struct.f£90
.......................... /main/phys_constants.f90
.................. /forward/line_data_struct.f90
.................. /forward/atomic_data.f90
.......... /main/debug.£90

...... /forward/gauss_quad.f90

...... /forward/1lte.£90

.......... /main/param_struct.f90
.............. /main/phys_constants.f90
.......... /compex/model_struct.£90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.......... /forward/line_data_struct.f90

99

60 CHAPTER 5. THE SOURCE CODE

.......... /forward/atomic_data.f90

...... /forward/eq_state.f90

.......... /time_code/profiling.£90
.......... /numerical_recipes/nrtype.f90
.......... /main/param_struct.f90
.............. /main/phys_constants.f90
.......... /forward/atomic_data.f90
.......... /main/debug.£90

.......... /forward/1lte.£90

.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /compex/model_struct.f90
.................. /main/param_struct.f£90
...................... /main/phys_constants.f90
.............. /forward/line_data_struct.f90
.............. /forward/atomic_data.f90
...... /forward/background.f90

.......... /forward/atomic_data.f90
.......... /main/debug.£90

...... /forward/zeeman_splitting.£90

...... /forward/bezier.£90

...... /main/debug.£90

...... /time_code/profiling.£90

...... /main/phys_constants.f90

File: ../main/phys_constants.f90
File: ../main/param_struct.f90
...... /main/phys_constants.f90
File: ../main/nicole.f90

...... /main/param_struct.£90

.......... /main/phys_constants.f90

...... /forward/line_data_struct.f90

...... /misc/nicole_input.f90

...... /compex/compex .£90

.......... /main/param_struct.f90
.............. /main/phys_constants.f90
.......... /compex/model_struct.£90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.......... /compex/nodes_info.£90
.............. /compex/model_struct.£90
.................. /main/param_struct.f£90
...................... /main/phys_constants.f90

5.1. THE DEPENDENCY TREE

.......... /forward/bezier.£90

...... /compex/model_struct.f90

.......... /main/param_struct.f90

.............. /main/phys_constants.f90

...... /lorien/lorien.£90

.......... /main/param_struct.f90

.............. /main/phys_constants.f90

.......... /compex/compex.f£90

.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /compex/model_struct.f90
.................. /main/param_struct.f90
...................... /main/phys_constants.f90
.............. /compex/nodes_info.£90
.................. /compex/model_struct.f90
...................... /main/param_struct.f90
.......................... /main/phys_constants.f90
.............. /forward/bezier.£90

.......... /forward/forward.£90

.............. /forward/forward_supp.f90
.................. /main/phys_constants.f90
.................. /forward/atomic_data.f90
.................. /forward/line_data_struct.f90
.................. /forward/eq_state.f90
...................... /time_code/profiling.f90
...................... /numerical _recipes/nrtype.f90
...................... /main/param_struct.f90
.......................... /main/phys_constants.f90
...................... /forward/atomic_data.f90
...................... /main/debug.f90
...................... /forward/lte.f90
.......................... /main/param_struct.f90
.............................. /main/phys_constants.f90
.......................... /compex/model_struct.£90
.............................. /main/param_struct.f90
.................................. /main/phys_constants.f90
.......................... /forward/line_data_struct.f90
.......................... /forward/atomic_data.f90
.................. /main/debug.f90

.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /compex/model_struct.f90

61

CHAPTER 5. THE SOURCE CODE

.................. /main/param_struct.f90
...................... /main/phys_constants.f90

.............. /forward/eq_

state.f90

.................. /time_code/profiling.£90
.................. /numerical_recipes/nrtype.f90
.................. /main/param_struct.f90
...................... /main/phys_constants.f90
.................. /forward/atomic_data.f90
.................. /main/debug.f90
.................. /forward/lte.£90
...................... /main/param_struct.f90

/main/phys_constants.f90

...................... /compex/model_struct.f90

/main/param_struct.f90
..../main/phys_constants.f90

...................... /forward/line_data_struct.f90
...................... /forward/atomic_data.f90
.............. /forward/zeeman_splitting.f90
.............. /forward/lte.£90

.................. /main/param_struct.f£90
...................... /main/phys_constants.f90
.................. /compex/model_struct.f90
...................... /main/param_struct.f£90

/main/phys_constants.f90

.................. /forward/line_data_struct.f90
.................. /forward/atomic_data.f90
.............. /forward/NLTE/NLTE.£90
.................. /misc/file_ops.£90
.................. /main/param_struct.f£90
...................... /main/phys_constants.f90
.................. /compex/model_struct.f90
...................... /main/param_struct.f90

/main/phys_constants.f90

.................. /forward/line_data_struct.f90
.................. /forward/forward_supp.£90
...................... /main/phys_constants.f90
...................... /forward/atomic_data.f90
...................... /forward/line_data_struct.f90
...................... /forward/eq_state.f90

/time_code/profiling.£90
/numerical_recipes/nrtype.f90
/main/param_struct.f90

5.1. THE DEPENDENCY TREE 63

.............................. /main/phys_constants.f90
/forward/atomic_data.f90
/main/debug.f90
/forward/lte.£90
/main/param_struct.f90
.................................. /main/phys_constants.f90
/compex/model_struct.f90
/main/param_struct.f90
...................................... /main/phys_constants.f90
/forward/line_data_struct.f90
.............................. /forward/atomic_data.f90
...................... /main/debug.f90

.................. /forward/gauss_quad.f90
.................. /forward/lte.f90
/main/param_struct.f90
.......................... /main/phys_constants.f90
/compex/model_struct.f90
/main/param_struct.f90
.............................. /main/phys_constants.f90
/forward/line_data_struct.f90
...................... /forward/atomic_data.f90
/forward/eq_state.f90
/time_code/profiling.£90
/numerical _recipes/nrtype.f90
/main/param_struct.f90
.......................... /main/phys_constants.f90
/forward/atomic_data.f90
/main/debug.f90

/forward/lte.£90
/main/param_struct.f90
.............................. /main/phys_constants.f90
/compex/model_struct.f90
/main/param_struct.f90
.................................. /main/phys_constants.f90
/forward/line_data_struct.£90
.......................... /forward/atomic_data.f90
/forward/background.f90
...................... /forward/atomic_data.f90
...................... /main/debug.f90
/forward/zeeman_splitting.f90
/forward/bezier.f90

/main/debug.f90

CHAPTER 5. THE SOURCE CODE

.................. /time_code/profiling.f90
.................. /main/phys_constants.f90
.............. /forward/atomic_data.f90
.............. /forward/gauss_quad.f90
.............. /forward/line_data_struct.f90

.............. /forward/bezier.

£90

.............. /forward/background.f90
.................. /forward/atomic_data.f90

.................. /main/debug.

£90

.............. /numerical_recipes/nr.f£90
.................. /numerical_recipes/nrtype.f90
.............. /misc/file_ops.£90

.............. /time_code/profiling.£90

.............. /main/debug.£90

.......... /compex/model_struct.f90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.......... /forward/line_data_struct.f90
.......... /compex/nodes_info.£90
.............. /compex/model_struct.£90
.................. /main/param_struct.f90
...................... /main/phys_constants.f90
.......... /time_code/profiling.f90

.......... /main/debug.£90
...... /forward/forward.f90

.......... /forward/forward_supp.£f90
.............. /main/phys_constants.f90
.............. /forward/atomic_data.f90
.............. /forward/line_data_struct.f90
.............. /forward/eq_state.f90
.................. /time_code/profiling.f90
.................. /numerical_recipes/nrtype.£90
.................. /main/param_struct.f90
...................... /main/phys_constants.f90
.................. /forward/atomic_data.f90

.................. /main/debug.

£90

.................. /forward/lte.£90
...................... /main/param_struct.f90
.......................... /main/phys_constants.f90
...................... /compex/model_struct.f90
.......................... /main/param_struct.f£90

/main/phys_constants.f90

5.1. THE DEPENDENCY TREE

/forward/line_data_struct.f90
/forward/atomic_data.f90

.............. /main/debug.£90

.......... /main/param_

struct.f90

.............. /main/phys_constants.f90
.......... /compex/model_struct.f90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90

.......... /forward/eq_

state.f90

.............. /time_code/profiling.£f90
.............. /numerical_recipes/nrtype.f90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /forward/atomic_data.f90
.............. /main/debug.£90
.............. /forward/lte.£90
.................. /main/param_struct.f90

/main/phys_constants.f90

.................. /compex/model_struct.f90

/main/param_struct.f90
..../main/phys_constants.f90

.................. /forward/line_data_struct.f90
.................. /forward/atomic_data.f90
.......... /forward/zeeman_splitting.f90
.......... /forward/1te.£90

.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /compex/model_struct.f90
.................. /main/param_struct.f£90

/main/phys_constants.f90

.............. /forward/line_data_struct.f90
.............. /forward/atomic_data.f90
.......... /forward/NLTE/NLTE.£90
.............. /misc/file_ops.£90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /compex/model_struct.f90
.................. /main/param_struct.f90

/main/phys_constants.f90

.............. /forward/line_data_struct.f90
.............. /forward/forward_supp.f90
.................. /main/phys_constants.f90

65

CHAPTER 5. THE SOURCE CODE

.................. /forward/atomic_data.f90
.................. /forward/line_data_struct.f90
.................. /forward/eq_state.f90
...................... /time_code/profiling.f90
...................... /numerical _recipes/nrtype.f90
...................... /main/param_struct.f90
.......................... /main/phys_constants.f90
...................... /forward/atomic_data.f90
...................... /main/debug.f90
...................... /forward/lte.f90
.......................... /main/param_struct.f90

/main/phys_constants.f90

.......................... /compex/model_struct.f90

/main/param_struct.f90
..../main/phys_constants.f90

.......................... /forward/line_data_struct.f90
.......................... /forward/atomic_data.f90

.................. /main/debug.

£90

.............. /forward/gauss_quad.f90
.............. /forward/lte.£90
.................. /main/param_struct.f90
...................... /main/phys_constants.f90
.................. /compex/model_struct.f90
...................... /main/param_struct.f£90
.......................... /main/phys_constants.f90
.................. /forward/line_data_struct.f90
.................. /forward/atomic_data.f90
.............. /forward/eq_state.f90
.................. /time_code/profiling.£90
.................. /numerical_recipes/nrtype.f90
.................. /main/param_struct.f90
...................... /main/phys_constants.f90
.................. /forward/atomic_data.f90

.................. /main/debug.

£90

.................. /forward/lte.f90
...................... /main/param_struct.f£90
.......................... /main/phys_constants.f90
...................... /compex/model_struct.f90
.......................... /main/param_struct.f£90

/main/phys_constants.f90

...................... /forward/line_data_struct.f90
...................... /forward/atomic_data.f90

5.1. THE DEPENDENCY TREE

.............. /forward/background.f90
.................. /forward/atomic_data.f90
.................. /main/debug.f90
.............. /forward/zeeman_splitting.f90
.............. /forward/bezier.f90
.............. /main/debug.£90
.............. /time_code/profiling.£90
.............. /main/phys_constants.f90
.......... /forward/atomic_data.f90
.......... /forward/gauss_quad.f90
.......... /forward/line_data_struct.f90
.......... /forward/bezier.£90

.......... /forward/background.f90
.............. /forward/atomic_data.f90
.............. /main/debug.£90

.......... /numerical_recipes/nr.£90
.............. /numerical_recipes/nrtype.£90
.......... /misc/file_ops.£90

.......... /time_code/profiling.£90
.......... /main/debug.f£90

...... /compex/nodes_info.f90

.......... /compex/model_struct.f90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
...... /forward/atomic_data.f90

...... /misc/file_ops.£90

...... /main/debug.£90

...... /time_code/profiling.£90

...... /forward/background.f90

.......... /forward/atomic_data.f90
.......... /main/debug.f90

File: ../main/debug.f90

File: ../time_code/profiling.f90
File: ../misc/checknan.f90

File: ../misc/tolower.f90

File: ../misc/parab_interp.f90
File: ../misc/get_lun.f90

File: ../misc/myflush.f90

File: ../misc/roman_to_int.f90
File: ./misc/set_params.f90

...... /misc/nicole_input.f90
...... /main/param_struct.f90

67

CHAPTER 5. THE SOURCE CODE

..../main/phys_constants.f90
../misc/tau_to_z.£90
/main/param_struct.f90
..../main/phys_constants.f90
/compex/model_struct.f90
..../main/param_struct.f90
........ /main/phys_constants.f90
/forward/background.f90
..../forward/atomic_data.f90
..../main/debug.£90
../misc/write_profile.f90
/main/param_struct.f90
..../main/phys_constants.f90
/forward/line_data_struct.f90
../misc/read_weights.f90
/main/param_struct.f90
..../main/phys_constants.f90
../misc/write_direct.£90
../misc/z_to_tau.f90
/main/param_struct.f90
..../main/phys_constants.f90
/forward/eq_state.f90
..../time_code/profiling.£90
..../numerical_recipes/nrtype.f90
..../main/param_struct.£90
........ /main/phys_constants.f90
..../forward/atomic_data.f90
..../main/debug.£90
..../forward/1te.£90
........ /main/param_struct.f90
............ /main/phys_constants.f90
........ /compex/model_struct.f90
............ /main/param_struct.f90
................ /main/phys_constants.f90
........ /forward/line_data_struct.f90
........ /forward/atomic_data.f90
/compex/model_struct.f90
..../main/param_struct.f90
........ /main/phys_constants.f90
/forward/atomic_data.f90
/forward/background.f90
..../forward/atomic_data.f90

5.1. THE DEPENDENCY TREE 69

.......... /main/debug.f90

...... /main/debug.£90

File: ../misc/file_ops.f90

File: ../misc/printout.f90

...... /main/param_struct.f90
.......... /main/phys_constants.f90
...... /compex/model_struct.f90
.......... /main/param_struct.f90
.............. /main/phys_constants.f90
...... /forward/line_data_struct.f90

File: ../misc/cubic_interp.f90

File: ../misc/los_to_local.f90

File: ../misc/smoothed_lines.f90
File: ../misc/local_to_los.f90

File: ../misc/read_next_nocomment.f90
File: ../misc/nicole_input.f90

File: ./misc/read_profile.f90

...... /main/param_struct.£90
.......... /main/phys_constants.f90
File: ../misc/compute_weights.f90
...... /main/param_struct.f90
.......... /main/phys_constants.f90
File: ../misc/los_to_local_errors.f90
File: ../misc/write_model.f90

...... /main/param_struct.f90
.......... /main/phys_constants.f90
...... /compex/model_struct.f90
.......... /main/param_struct.f90
.............. /main/phys_constants.f90
...... /misc/file_ops.£90

...... /forward/line_data_struct.f90
File: ../misc/toupper.f90

File: ../numerical_recipes/twofft.f90
...... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nrutil.f90
.......... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nr.f£90
.......... /numerical_recipes/nrtype.f90

File: ../numerical_recipes/added.f90
...... /numerical_recipes/nrtype.f90
File: ../numerical_recipes/lubksb.f90

...... /numerical_recipes/nrtype.f90

70 CHAPTER 5. THE SOURCE CODE

...... /numerical_recipes/nrutil.f90
.......... /numerical_recipes/nrtype.f90
File: ../numerical_recipes/lubksb_dp.f90
...... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nrutil.f90
.......... /numerical_recipes/nrtype.f90
File: ../numerical_recipes/svbksb.f90
...... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nrutil.f90
.......... /numerical_recipes/nrtype.f90
File: ../numerical_recipes/realft.f90
...... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nrutil.f90
.......... /numerical_recipes/nrtype.£90
...... /numerical_recipes/nr.f£90
.......... /numerical_recipes/nrtype.f90
File: ../numerical_recipes/svdcmp.f90
...... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nrutil.f90
.......... /numerical_recipes/nrtype.f90
...... /main/debug.£90

...... /numerical_recipes/nr.£90
.......... /numerical_recipes/nrtype.£90

File: ../numerical_recipes/nr.f90

...... /numerical_recipes/nrtype.f90

File: ../numerical_recipes/pythag.f90
...... /numerical_recipes/nrtype.f90

File: ../numerical_recipes/ludcmp_dp.f90

...... /numerical_recipes/nrtype.f90
...... /main/debug.£90

...... /numerical_recipes/added.f90
.......... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nrutil.f90
.......... /numerical_recipes/nrtype.f90
File: ../numerical_recipes/fourl.£90
...... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nrutil.f90
.......... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nr.£90
.......... /numerical_recipes/nrtype.£90
File: ../numerical_recipes/convlv.f90
...... /numerical_recipes/nrtype.f90

5.1. THE DEPENDENCY TREE

...... /numerical_recipes/nrutil.f90
.......... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nr.£90
.......... /numerical_recipes/nrtype.f90
File: ../numerical_recipes/fourrow.f90
...... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nrutil.f90
.......... /numerical_recipes/nrtype.f90
File: ../numerical_recipes/tqli.f90
...... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nrutil.f90
.......... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nr.£90
.......... /numerical_recipes/nrtype.f90

File: ../numerical_recipes/nrtype.f90
File: ../numerical_recipes/nrutil.f90
...... /numerical_recipes/nrtype.f90

File: ../numerical_recipes/ludcmp.f90

...... /numerical_recipes/nrtype.f90
...... /numerical_recipes/nrutil.f90
.......... /numerical_recipes/nrtype.f90
File: ../lorien/SVD_solve.f90

...... /numerical_recipes/nr.£90
.......... /numerical_recipes/nrtype.f90
...... /main/debug.£90

File: ../lorien/lorien.f90

...... /main/param_struct.f90

.......... /main/phys_constants.f90
...... /compex/compex.£90

.......... /main/param_struct.f90
.............. /main/phys_constants.f90
.......... /compex/model_struct.f90
.............. /main/param_struct.f90

.................. /main/phys_constants.f90

.......... /compex/nodes_info.£90
.............. /compex/model_struct.f90
.................. /main/param_struct.f90

...................... /main/phys_constants.f90

.......... /forward/bezier.£90

...... /forward/forward.f90

.......... /forward/forward_supp.£f90
.............. /main/phys_constants.f90

71

72 CHAPTER 5. THE SOURCE CODE

.............. /forward/atomic_data.f90
.............. /forward/line_data_struct.f90
.............. /forward/eq_state.f90
.................. /time_code/profiling.f90
.................. /numerical_recipes/nrtype.f90
.................. /main/param_struct.f90
...................... /main/phys_constants.f90
.................. /forward/atomic_data.f90
.................. /main/debug.f90
.................. /forward/lte.£90
...................... /main/param_struct.f90
.......................... /main/phys_constants.f90
...................... /compex/model_struct.f90
.......................... /main/param_struct.f£90
.............................. /main/phys_constants.f90
...................... /forward/line_data_struct.f90
...................... /forward/atomic_data.f90
.............. /main/debug.£90

.......... /main/param_struct.f90

.............. /main/phys_constants.f90
.......... /compex/model_struct.f90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.......... /forward/eq_state.f90

.............. /time_code/profiling.£90
.............. /numerical_recipes/nrtype.f90
.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /forward/atomic_data.f90
.............. /main/debug.£90

.............. /forward/lte.£90
.................. /main/param_struct.f90
...................... /main/phys_constants.f90
.................. /compex/model_struct.f90
...................... /main/param_struct.f£90
.......................... /main/phys_constants.f90
.................. /forward/line_data_struct.f90
.................. /forward/atomic_data.f90
.......... /forward/zeeman_splitting.f90
.......... /forward/1te.£90

.............. /main/param_struct.f90
.................. /main/phys_constants.f90

5.1. THE DEPENDENCY TREE

.............. /compex/model_struct.f90
.................. /main/param_struct.f£90
...................... /main/phys_constants.f90
.............. /forward/line_data_struct.f90
.............. /forward/atomic_data.f90

.......... /forward/NLTE/NLTE.£90

.............. /misc/file_ops.£90

.............. /main/param_struct.f90
.................. /main/phys_constants.f90
.............. /compex/model_struct.f90
.................. /main/param_struct.f90
...................... /main/phys_constants.f90
.............. /forward/line_data_struct.f90
.............. /forward/forward_supp.f90
.................. /main/phys_constants.f90
.................. /forward/atomic_data.f90
.................. /forward/line_data_struct.f90
.................. /forward/eq_state.f90
...................... /time_code/profiling.f90
...................... /numerical _recipes/nrtype.f90
...................... /main/param_struct.f90
.......................... /main/phys_constants.f90
...................... /forward/atomic_data.f90
...................... /main/debug.f90
...................... /forward/lte.£90
.......................... /main/param_struct.f90
.............................. /main/phys_constants.f90
.......................... /compex/model_struct.f90
.............................. /main/param_struct.£90
.................................. /main/phys_constants.f90
.......................... /forward/line_data_struct.f90
.......................... /forward/atomic_data.f90
.................. /main/debug.f90

.............. /forward/gauss_quad.f90
.............. /forward/lte.£90

.................. /main/param_struct.f£90
...................... /main/phys_constants.f90
.................. /compex/model_struct.f90
...................... /main/param_struct.f£90
.......................... /main/phys_constants.f90
.................. /forward/line_data_struct.f90
.................. /forward/atomic_data.f90

73

CHAPTER 5. THE SOURCE CODE

.............. /forward/eq_state.f90
.................. /time_code/profiling.f90
.................. /numerical_recipes/nrtype.f90
.................. /main/param_struct.f£90

/main/phys_constants.f90

.................. /forward/atomic_data.f90
.................. /main/debug.f90
.................. /forward/lte.f90

/main/param_struct.f90
..../main/phys_constants.f90
/compex/model_struct.f90
..../main/param_struct.f90
........ /main/phys_constants.f90
/forward/line_data_struct.f90
/forward/atomic_data.f90

.............. /forward/background.f90
.................. /forward/atomic_data.f90
.................. /main/debug.f90
.............. /forward/zeeman_splitting.f90
.............. /forward/bezier.f90
.............. /main/debug.£90
.............. /time_code/profiling.£f90
.............. /main/phys_constants.f90
.......... /forward/atomic_data.f90
.......... /forward/gauss_quad.f90
.......... /forward/line_data_struct.f90
.......... /forward/bezier.f£90

.......... /forward/background.f90
.............. /forward/atomic_data.f90
.............. /main/debug.£90

.......... /numerical_recipes/nr.£90
.............. /numerical_recipes/nrtype.£90
.......... /misc/file_ops.f90

.......... /time_code/profiling.f90

.......... /main/debug.

£90

...... /compex/model_struct.f90

.......... /main/param_

struct.£90

.............. /main/phys_constants.f90
...... /forward/line_data_struct.f90
...... /compex/nodes_info.£90
.......... /compex/model_struct.£90
.............. /main/param_struct.f90

5.1.

File:

THE DEPENDENCY TREE

............. /main/phys_constants.f90

./time_code/profiling.£90

./main/debug.£90
../lorien/adjust_wave_grid.f90

./main/param_struct.f90

..... /main/phys_constants.f90

(0]

76

CHAPTER 5. THE SOURCE CODE

Chapter 6

Geometry of the magnetic

field

The inclination and azimuth given in the atmospheric models as B_local_inc
and B_local_azi refer to the local solar frame. This means that the inclina-
tion is given with respect to the solar vertical and the azimuth is given with
respect to the local E-W solar direction (measured counterclock-wise from
the West). When you specify a heliocentric observation angle, NICOLE
will use appropriate coordinates conversions to calculate the apparent in-
clination and azimuth (the inclination and azimuth with respect to the line
of sight) so that the emergent profiles obtained are those that one would
actually observe.

Unfortunately, a fully detailed calculation would be very complex, and
would require the user to introduce information such as the solar pitch
angle, which is not always available. Therefore, for a sake of simplicity and
convenience, I have decided to assume that the observed spot lies on the E-
W line that passes through the center of the solar disk. In this manner, only
the heliocentric angle needs to be specified and the coordinates conversion
equations simplify to:

cos~y = siny’ cos x'sind + cos'cosb, (6.1)

x=x
where v and x are the local inclination and azimuth, 4" and x’ are the
line-of-sight inclination and azimuth, and 6 is the heliocentric angle of the

observations. Simple expressions are also obtained for the conversion of the
errors in these quantities.

7

78 CHAPTER 6. GEOMETRY OF THE MAGNETIC FIELD

d(cosy) = —sinydy = cosy’ cos x’ sin 06+ —sin+’ sin y’ sin 5’ —sin~y’ cos 05" .
(6.3)
The above-mentioned approximation has no effect on the inferred mag-
netic inclination, but the magnetic azimuth resulting from an inversion will
be correct only if we are observing a location on the solar disk equator.
If this is not the case, there will be a constant offset in the azimuth that
can be corrected a posteriori. As a first-order correction, you may want to
add the heliocentric azimuth (i.e., the azimuth of the observed spot mea-
sured counterclock-wise from the West direction of the disk equator) to the
inferred azimuth.

Chapter 7

Troubleshooting

Below are some problems that you might run into from time to time:

e I have problem compiling file with MPI. The current version of
the code does not work with OpenMPI. If OpenMPI is the only MPI
version available on your machine, you have to install mpich or Intel-
MPI locally in your home directory. to be sure that create_makefile.py
is using the correct version of the code, do the following: Execute

which mpif90

If the result is not the correct MPI version, to fix that set the path
to it in your .bashrc file and execute

source .bashrc.
Create make file with:

./create_makefile --compiler=’/absolutepathtoyourmpi/bin/mpif90

Be sure that the —-mpi flag is NOT specified in this case.

e I get an error about an incorrect magic number in a python
script. Remove all the .pyc files in your directory. These are compiled
binaries that Python creates to speed things up. Perhaps the .pyc file
it tried to read was created by a different machine.

79

80

CHAPTER 7. TROUBLESHOOTING

The code crashes on startup. This is probably caused by an
incorrect format of one of the input files. Try replacing your input
files, one by one, with the examples included in your distribution.
This way you can track down which file is causing the problem. Then,
edit the file and check with the corresponding section in this manual
to make sure that the format is exactly the one expected by NICOLE.

The NLTE iteration doesn’t converge. Try playing around with
the parameters in the NLTE section of NICOLE.input. The first thing
to try would be to use linear formal solution. If that doesn’t work,
try changing the formal solution.

My synthesis doesn’t produce the results I expect. Perhaps
NICOLE is modifying some of the model parameters that you are
supplying in the model (pressure, density, Hydrogen level populations,
etc). Check the discussion at the end of section 3.1.7.

I can’t get a good fit to my profiles. Check the tips on sec-
tion 3.2.8. If that doesn’t help, make sure that your profiles are
properly normalized.

Something’s weird with my inversions Do you have a leftover
Restart=Yes field in your NICOLE.input?

I get “line not optically thin at the surface” errors during
my inversions. This error means that your model does not extend
high enough. You should add more layers on top of it. For Fe I 6301
and 6302 you should go up to about log(75000)=—4.5.

I get “line not optically thick at the bottom” errors during
my inversions. This error means that your model does not extend
low enough. You should add more layers underneath it. Normally
you should be fine if you go below log(75000)=2.

I get “hydrostatic inaccuracy” errors during my inversions.
This usually happens when temperatures go very low (or there is a
steep temperature drop) in the upper layers. Your lines are normally
quite insensitive to these upper layers and that is why they do weird
things from time to time. But if you cut them out, you may start
getting the “not optically thin” errors mentioned above. My advice
is that you start iterating with this model, even if the lines are not
getting optically thin at the surface. This means that your final result
will not be accurate, but it will probably be close enough. Now add
the extra layers on top of your model and invert again. That should
get rid of the hydrostatic inaccuracy problem.

81

¢ I made a synthesis using a quiet Sun simulation cube from
my favorite MHD code and the average continuum is not
at 1. NICOLE uses a set of opacities that are, in general, different
from those in the MHD code used to produce the simulation. This
means that the 7 = 1 level is not the same (assuming that you're
using a geometrical height scale) and therefore one is seeing a slightly
different layer. This is not really an error, it’s just the result of
combining results from two different codes and we need a different
interpretation. Instead of relying on the NICOLE normalization it
would be better to compute intensities from a quiet Sun snapshot
and use its average value as the normalization reference.

¢ I modified the source code and now something is going wrong.
Try using the make clean command before compiling.

e I have read through this manual and the troubleshooting
section, and I still can’t find a solution for my problem. Ok,
if you can’t figure it out send an e-mail at hsocas@iac.es.

82

CHAPTER 7. TROUBLESHOOTING

Chapter 8

Version history

e v0.9 Original version, based on LILIA v4.1

e v1.1 Departure coefficients, instrumental profile, multiple synthesis
mode

.. and at that point I stopped keeping track. Using GIT since v2.70 for
version control

After v2.72, the version numbering scheme has changed to the format
YY.MM which represents the release year and month. The first such release
was 13.12 in December 2013.

83

84

CHAPTER 8. VERSION HISTORY

Chapter 9
Bibliography

e Asensio Ramos, A., Trujillo Bueno, J., Carlsson, M., Cernicharo, J.
ApJ 2003, 588, L61

e Bellot Rubio, L.R., Ruiz Cabo, B., and Collados Vera, M. A&A 1998,
506, 805.

e Barkelm, P. S.; Piskunov, N., and O’Mara, B. J. AAS 2000, 142, 467.

e Kostik, R. I., Shchukina, N. G., and Rutten, R. J. 1996, A&A, 305,
325.

e Mihalas, D. in Methods in Computational Physics, Vol. 7, Alder, B.
(ed.), New York; London; Academic Press 1967

e Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W.
T. 1986, Numerical Recipes (Cambridge: Cambridge U niv. Press)

e Ruiz Cabo, B., and del Taro Iniesta, J. C. 1992, ApJ, 398, 375.

e Rybicki, G. B., & Hummer, D. G. 1991, A&A, 245, 171.

e Sanchez Almeida, J., and Trujillo Bueno, J. 1999, ApJ, 526, 1013.
e Scharmer, G. B., and Carlsson, M. 1985, J. Comput. Phys., 50, 56.

e Socas-Navarro, H., de la Cruz Rodriguez, J., Asensio Ramos, A.,
Trujillo Bueno, J. and Ruiz Cobo, B. 2014, A&A, in preparation.

e Socas-Navarro, H. and Trujillo Bueno, J. 1998, ApJ, 490, 383.
e Unsold 1955, Physik der Sternatmospharen, 2nd ed

85

