
APFEL v2.6.1: A PDF Evolution Library with QED
corrections

Valerio Bertone1,2, Stefano Carrazza2 and Juan Rojo1

1 Rudolf Peierls Centre for Theoretical Physics,
1 Keble Road, University of Oxford, OX1 3NP, Oxford, UK

2 PH Department, TH Unit, CERN, CH-1211 Geneva 23, Switzerland

Abstract

In this document we present the user manual for the APFEL library. Written in For-
tran 77, all the functionalities can also be accessed via the C/C++ and Python interfaces.
For simplicity, we will restrict ourselves to the description of the C/C++ interface, but the
usage of the Fortran 77 and Python interfaces is very similar and examples of their use
are provided in the examples folder of the APFEL source code. First of all, we will discuss
how to install APFEL and how to execute the basic example programs. After that, we will
list the various customization options that can be accessed by the user for both the PDF
evolution and the DIS structure functions modules.

Contents

1 Installation 1

2 The PDF evolution module 2
2.1 Customization of the PDF evolution . 4

2.1.1 Setting functions . 5

3 The DIS module 18

1 Installation

The APFEL library is available from its HepForge website:

http://apfel.hepforge.org/

and from the GitHub webpage:

https://github.com/scarrazza/apfel

It can also be accessed directly from the git repository. The last development version can
be downloaded by giving:

1 git clone https:// github.com/scarrazza/apfel.git

For the tagged versions one can use the git tag commands:

1

http://apfel.hepforge.org/
https://github.com/scarrazza/apfel

1 git tag -l

2 git checkout tags/tag_name

to switch to any of the past releases. We strongly recommend to use the latest stables
release.

The installation of the APFEL library can be easily done following the standard autotools

sequence:

1 ./ configure

2 make

3 make install

which automatically installs APFEL in /usr/local/. Note that by default the APFEL

library requires an installation of the LHAPDF PDF library1. However, an LHAPDF-less
installation is also supported by giving:

1 ./ configure --disable -lhapdf

To use a different installation path, one simply needs to use the option:

1 ./ configure --prefix =/path/to/the/installation/folder

In this case, the APFEL installation path should be included to the environmental variable
LD LIBRARY PATH. This can be done adding to the local .bashrc file (or .profile file on
Mac) the string:

1 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :/path/to/the/installation/←↩
folder/lib

Once APFEL has been properly compiled and installed, the configuration script apfel-config
should automatically be present. Such script is useful to determine the compiler flags.
Type:

1 apfel -config --help

in a shell to see all the possible options. Particularly useful is the --list-funcs flag
that lists all the functions available in APFEL along with a short explanation. In addition,
also the shell script apfel is provided which starts an interactive console session of APFEL
providing a prompt tool to use the library without coding.

In the following we will list and illustrate all the functionalities of APFEL and explaining
how they can be accessed by the user. The most recent version of APFEL provide also an
additional module to compute DIS (and SIA) structure functions in different mass scheme.
Such module is dependent of the original PDF evolution module as it inherits from it many
of the setting functions that we will describe in the next section. We will start describing

1The current release of APFEL assumes that LHAPDF version 6 has been previously installed as version 5
is no longer supported.

2

the functions of the PDF evolution module and we will devote the following section to a
thourough description of the DIS module.

2 The PDF evolution module

The basic usage of the PDF evolution module of APFEL requires only two steps to have
the complete set of evolved PDFs. The first step is the initialization of APFEL through the
call of the following function:

1 APFEL :: InitializeAPFEL ();

This will precompute all the needed evolution operators that enter the discretized DGLAP
equation. Let us recall that once the general settings of the evolution have been defined
(perturbative order, heavy quark masses, reference value of αs, and so on), the initializa-
tion needs to be performed only once, irrespective of the scales that are used in the PDF
evolution. The second step consists in performing the actual PDF evolution between the
initial scale Q0 and the final scale Q (in GeV). This can be achieved using the function:

1 APFEL :: EvolveAPFEL(Q0 ,Q);

Calling this function APFEL solves the discretized DGLAP equations using the evolution
operators precomputed in the initialization step.

Now the user can access the evolved PDFs at the scale Q via the use of the functions:

1 APFEL::xPDF(i,x);

2 APFEL:: xgamma(x);

where the real variable x is the desired value of Bjorken-x while the integer variable i

in the function xPDF, which runs from −6 to 6, corresponds to the quark flavor index
according to the following convention: Note that in APFEL we have explicitly separated

i : −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
xPDF : t̄ b̄ c̄ s̄ ū d̄ g d u s c b t

the access to the quark and gluon PDFs (via xPDF) and from that to the photon PDF (via
xgamma). Note also that the functions xPDF and xgamma return x times the PDFs (i.e. the
momentum fractions).

The basic information given above is enough to write a simple and yet complete pro-
gram that performs PDF evolution using APFEL. As an illustration, a C/C++ program that
computes and tabulates PDFs to be compared with the Les Houches PDF benchmark
evolution tables would be the following:

1 #include <iostream >

2 #include <iomanip >

3 #include <cmath >

4 #include "APFEL/APFEL.h"

3

5 using namespace std;

6

7 int main()

8 {

9 // Define grid in x

10 double xlha [11] = {1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2,

11 1e-1, 3e-1, 5e-1, 7e-1, 9e-1};

12

13 // Precomputes evolution operators on the grid

14 APFEL :: InitializeAPFEL ();

15

16 // Perform evolution

17 double Q0 = sqrt (2);

18 double Q = sqrt (10000);

19 APFEL :: EvolveAPFEL(Q0 ,Q);

20

21 cout << scientific << setprecision (5) << endl;

22 cout << " x "

23 << setw (11) << " u-ubar "

24 << setw (11) << " d-dbar "

25 << setw (11) << " 2(ubr+dbr) "

26 << setw (11) << " c+cbar "

27 << setw (11) << " gluon "

28 << setw (11) << " photon " << endl;

29

30 cout << scientific;

31 // Tabulate PDFs for the LHA x values

32 for (int i = 0; i < 11; i++)

33 cout << xlha[i] << "\t"

34 << APFEL::xPDF(2,xlha[i]) - APFEL ::xPDF(-2,xlha[i]) << "\t"

35 << APFEL::xPDF(1,xlha[i]) - APFEL ::xPDF(-1,xlha[i]) << "\t"

36 << 2*(APFEL::xPDF(-1,xlha[i]) + APFEL ::xPDF(-2,xlha[i])) << "\t"

37 << APFEL::xPDF(4,xlha[i]) + APFEL ::xPDF(-4,xlha[i]) << "\t"

38 << APFEL::xPDF(0,xlha[i]) << "\t"

39 << APFEL:: xgamma(xlha[i]) << "\t"

40 << endl;

41

42 return 0;

43 }

It should be noticed that this example code uses the default settings of APFEL for the
evolution parameters such as: initial scale PDFs, perturbative order, heavy quark masses,
values of the couplings, etc. In the following we will discuss how the user can customize
the settings for the PDF evolution in APFEL.

2.1 Customization of the PDF evolution

The customization of the PDF evolution with APFEL can be achieved using a number
of dedicated functions, to be called before the initialization stage, that is before calling
InitializeAPFEL2. We will subdivide the available functions into three cathegories:

2This is not entirely precise because there is a number of customization functions that are effective only
at the evolution level and thus can be called also after InitializeAPFEL but before EvolveAPFEL. We will
discuss this feature case by case when going through all functions available in APFEL.

4

• the setting functions which provide the real costumization tools. These functions
allow the user to change the way how the initialization and the output (see next
items) functions behave.

• The initialization functions which are resposible to perform the “main” operations,
like initializing the evolution factor and evolving PDFs.

• The output functions which finally return the result of a given set of setting and
initialization functions.

In the following we will list and comment all the functions belonging to each of the
cathegories above. Finally, we remind the reader that running the configuration script
apfel-config with the --list-funcs flag will list all the functions available in APFEL

along with a short explanation.

2.1.1 Setting functions

Bofore going through the various setting functions, the user should be aware of the fact
that APFEL has a set of default settings that are used if the user does not intervene to
change any of them. This is why the example described above needs only a very limited
number of steps. However, while each time that APFEL is run a banner with a list of the
main settings is displayed, it is usefull to report here the default settings of APFEL. We will
first go through all the setting functions and only at the end we will report the default
settings so that the meaning of all of them should be clear to the reader who went through
this section.

Bofore proceeding with the descitpion of the setting functions of the evolution module,
it is useful to notice that in the following we will use the identifiers int, double, bool and
string to specify the type of entry expected by each of the fuctions described below.

1 APFEL :: SetPerturbativeOrder(int pto);

This function sets the perturbative order of the PDF evolution to pto. The integer pto

can take the values 0, 1 ot 2 according to whether the PDF evolution is performed at
O(αs), O(α2

s), or O(α3
s), that is LO, NLO and NNLO, respectively. This function also

sets the perturbative order of the evolution of the couplings αs and α and possibly of the
heavy quark masses. The default for pto is 2.

1 APFEL :: SetTheory(string theory);

This function sets the theory to be used in the evolution. The alternatives for theory are:

• "QCD": the PDF evolution is done solving the pure QCD DGLAP equations,

• "QED": the PDF evolution is done solving the pure QED DGLAP equations,

• "QUniD": the PDF evolution is done solving the coupled QCD+QED DGLAP equa-
tions as explained above.

5

There are more options available that access more “exotic” (and obsolete) solutions of the
coupled QCD+QED DGLAP equations. They are:

• "QCEDP" for QCD+QED in parallel,

• "QCEDS" for QCD+QED in series,

• "QECDP" for QED+QCD in parallel,

• "QECDS" for QED+QCD in series,

• "QavDP" for the averaged solution in parallel,

• "QavDS" for the averaged solution in series,

and they refer to different combinations of the separate QCD and QED evolutions. The
reader can refer to the original APFEL publication for a detailed explanation. However, the
use of these solution is discouraged unless the user is well aware of their meaning. The
default is "QCD".

1 APFEL :: SetVFNS ();

This function sets the Variable-Flavour Number Scheme (VFNS) for the PDF, αs, and α3

evolution. In practice this means that, if any heavy quark threshold is encountered during
the evolution, the solutions of the DGLAP equation below and above the threshold itself
will be properly matched. This option is used as a default.

1 APFEL :: SetFFNS(int nfl);

This function, as opposed to SetVFNS, sets the Fixed-Flavour Number Scheme (FFNS)
with nfl active flavours for the PDF, αs and α (and MS) evolution. This function forces
the evolution to be done with nfl active flavours in any evolution range. The allowed
values are nfl = 3, 4, 5 and 6.

1 APFEL :: SetAlphaQCDRef(double alpharef , double Qref);

This function sets the reference values of the strong coupling αs at the scale Qref in GeV
to alpharef. The default is alpharef = 0.35 at Qref =

√
2 GeV.

1 APFEL :: SetAlphaQEDRef(double alpharef , double Qref);

This function sets the reference values of the QED coupling α at the scale Qref in GeV
to alpharef. The default is alpharef = 7.496252·10−3 at Qref = 1.777 GeV.

1 APFEL :: SetLambdaQCDRef(double lambdaref , int nref);

3In case the MS definition for the heavy quark masses is used (see below) and the running of the masses
has been enabled, this function sets the VFNS also for the running of the heavy quark masses.

6

This function sets the value of ΛQCD in GeV with nref flavours to lambdaref. This
value is used only if the lambda solution of the β-function equation (see below) is used to
compute the running of αs. The default is lambdaref = 0.220 GeV with nref = 5.

1 APFEL :: SetPoleMasses(double mc , double mb , double mt);

This function sets the values of the heavy quark thresholds in GeV and sets the pole-mass
scheme as a renormalization scheme for the heavy quark masses. This function is used as
a default with mc =

√
2 GeV, mb = 4.5 GeV, mt = 175 GeV.

1 APFEL :: SetMSbarMasses(double mc , double mb , double mt);

2 sets the values of the heavy quark thresholds

3 in GeV in the MSbar scheme.

This function, as opposed to SetPoleMasses, sets the values of the heavy quark masses in
GeV and sets the MS scheme as a renormalization scheme for the heavy quark masses. The
reference scales at which the masses are defined can be specified using the SetMassScaleReference
function (see below).

1 APFEL :: SetMassScaleReference(double Qc , double Qb , double Qt);

This function sets the reference scales in GeV at which heavy quark masses are given.
This function is effective only if the MS definition for the heavy quark masses is used
and has no effect if the pole masses are used. If this function is not called, APFEL will
assume that the mass reference scales are equal to the masses themselves. In other words,
in the absence of a call to this function when using the MS definition for the heavy quark
masses, the SetMSbarMasses function will define mc(mc), mb(mb) and mt(mt). If instead
this function is called and the reference scales are found to be different from the masses
themselves, the values of mc(mc), mb(mb) and mt(mt) are also evaluated by applying the
RG evolution as they are needed as thresholds for the VFNS evolution when using the MS
definition for the heavy quark masses.

1 APFEL :: EnableMassRunning(bool);

This function enables or disables the running of the MS masses. This is effective only if
the SetMSbarMasses is also called and in practice switches on and off the solution RG
equation of the heavy quark masses. The default is true.

1 APFEL :: SetTauMass(double mtau);

This function sets the values of the τ lepton in GeV to mtau. This function is effective
only if the evolution of the lepton PDFs is enabled (see below). The default is mtau =
1.777 GeV.

1 APFEL :: SetMaxFlavourAlpha(int nf);

7

This function sets the maximum number of active flavours in the evolution of the couplings
αs and α (and the masses) to nf. In practice, this function forces the code not to match the
solution of the β-function and γ-function equations at a given threshold if that threshold
is above the maximum number allowed nf. The default is nf = 6.

1 APFEL :: SetMaxFlavourPDFs(int nf);

This function sets the maximum number of active flavours in the evolution of PDFs to
nf. In practice, this function forces the code not to match the solution of the DGLAP
equation at a given threshold if that threshold is above the maximum number allowed nf.
The default is nf = 6.

1 APFEL :: SetRenFacRatio(double ratio);

This function sets the ratio between factorization scale µF (entering PDFs) and renormal-
ization scale µR (entering the couplings and possibly the heavy quark masses) to ratio.
If ratio is different from one, APFEL will assume that µR = µF / ratio and, as explained
above, this gives rise to additional terms in the higher order splitting functions. The
default is ratio = 1.

1 APFEL :: SetTimeLikeEvolution(bool);

This function enables or disables the time-like evolution. This evolution, as opposed to
the space-like evolution used for PDFs, is used to evolve fragmentation functions (FFs).
The default is false.

1 APFEL :: SetSmallxResummation(bool , string la);

This function enables or disables the small-x resummation in the evolution and set the
logarithmic accuracy of the resummation to la. The possible options for la are "LL" and
"NLL". The small-x resummation of the evolution relies on an external code called HELL

that returns the difference between the fixed-order and the resummed splitting functions
as explained above. By default, the small-x resummation is disabled.

1 APFEL :: SetAlphaEvolution(string evol);

This function sets the solution of the β-function equations for the running couplings to
evol. The variable evol can take the following strings:

• "exact": the β-function equations are solved numerically in an exact way using the
Runge-Kutta method. The boundary condition is given by the reference values of
the coupling at the reference scales.

• "expanded": the β-function equations are solved analytically by expanding the in-
verse of the β-function when computing the solution of the RG equation. See above
for more details. The boundary condition is given by the reference values of the
coupling at the reference scales.

8

• "lambda": the β-function equations are solved in an analytical way in terms of the
Landau pole ΛQCD. See above for more details.

It should be noticed that a different choice of evol only affects the running of αs beyond
LO while the running of α, being computed always at LO, is left unchanged. The default
is evol = "exact".

1 APFEL :: SetPDFEvolution(string evolp);

This function sets the solution of the DGLAP equations for the evolution of PDFs to
evolp. The variable evolp can take the following strings:

• "exactmu": the DGLAP equation differential in the factorization scale µF is solved
numerically in an exact way using the Runge-Kutta method.

• "exactalpha": the DGLAP equation differential in the coupling αs is solved numer-
ically in an exact way using the Runge-Kutta method. This solution is completely
equivalent to exactmu.

• "expandalpha": the DGLAP equation differential in the coupling αs is solved an-
alytically by expanding the ratio between splitting functions and β-function. See
above for more details.

• "truncated": this solution mimics the N -space truncated solution and its imple-
mentation requires the numerical derivatives of the expandalpha solution. A detailed
explanantion of the implementation of thsi particular solution is given above.

In all cases the boundary conditions are given by the input initial scale PDFs. The default
is evolp = "exactmu".

1 APFEL :: SetEpsilonTruncation(double eps);

If the truncated evolution for PDFs has been chosen by calling the SetPDFEvolution

function, the SetEpsilonTruncation function sets the truncation parameter ε used to
compute the numerical dericatives to eps.

1 APFEL :: SetPDFSet(string name);

This function sets the PDF set to be evolved to name. The string variable name can be
the name of an LHAPDF set. This is needed to distinguish the LHAPDF sets from the
other possible options available. Other possible options for name are:

• "ToyLH": this option returns the so-called toy LH PDFs that have been conceived
for benchmark purposes. Details can be found in Ref. ???.

• "external": this option is useful to evolve an “external” set of PDFs provided by the
user. If this option is chosen, APFEL will look for a routine called ExternalSetAPFEL

whose structure is the following:

9

subroutine ExternalSetAPFEL(x,Q0,xf)

where x and Q0 are the input values of the Bjorken variable and the scale in GeV,
while xf(-6:7) is the output array whose entries from −6 to 6 are the usual quark
and gluon distributions (times x) and the 7-th entry corresponds instead to the
photon PDF.

• "external1": This option is completely analogous to external with the only differ-
ence that the name of the routined expected is now ExternalSetAPFEL1. A second
slot for an external set might be useful in some cases if the user want to evolve a
second PDF set in the same code.

• "repexternal": This option is an extension of the previous two and the only dif-
ference is that the code expects a soubroutine called ExternalSetAPFELRep whose
structure is:

subroutine ExternalSetAPFELRep(x,Q0,irep,xf)

where, in addition to the entries discussed above, there is the integer irep that
identifies the irep-th replica of the input set. This option might be useful is the
input set has more than one replica but it’s not directly an LHAPDF set.

• "leptexternal": This option is a further extension of the original external option
in that it also provides as an output the lepton PDFs. In particular, if this op-
tion is chosen, the code looks for a subroutine called ExternalSetAPFELLept whose
structure is the following:

subroutine ExternalSetAPFELLept(x,Q0,irep,xf,xl)

where there is the additional output array xl(-3:3) whose entries correspond to:

xl(-3) = xτ+(x,Q0),
xl(-2) = xµ+(x,Q0),
xl(-1) = xe+(x,Q0),
xl(0) = xγ(x,Q0),
xl(1) = xe−(x,Q0),
xl(2) = xµ−(x,Q0),
xl(3) = xτ−(x,Q0).

In addition, as compared to the options above, the index of the array xf now runs
from -6 to 6 (and no longer to 7) as the photon PDF is now the 0-th entry of the
array xl.

• "pretabulated": This option is mainly conceived for an internal purposes but the
user the expert user might want to exploit it becuase it allows one to evolve PDF
sets whose functional form is not know as it makes possible to evolve PDFs starting
from their value in a finite number of points. However, it is necessary to know
the full structure of the internal grids used by APFEL. This information is anyway

10

(partially) accessible using some ad hoc functions of APFEL.In particular, if this
option is chosen, the codes looks for a subroutine called pretabulatedPDFs with the
following structure:

pretabulatedPDFs(igrid,alpha,xf,xl)

where the integer igrid identifies the subgrid and the integer alpha runs over the
nodes of the igrid-th grid. Again, xf(-6:6) and xl(-3:3) are the quark and gluon,
and the lepton and photon PDFs.

• "pretabulated1": This option is a copy of pretabulated and the only difference
is that in this case the code looks for a subroutine called pretabulatedPDFs1 have
the very same structure of that shown above.

• "apfel": This option is again conceived for internal purposes but it might turn out
to be useful if a higher performance of the evolution is required. If the apfel option
is chosen, the code will use as initial PDFs the PDFs evolved from a previous call
of the function EvolveAPFEL. Of course, this requires that a previous evolution with
a PDF set different from apfel exists. This might be convenient when one want to
tabulate PDFs over a grid in Q in a faster way. In fact, using the apfel option allows
one to split a wide range in Q into small sequential steps without the need to do
every single evolution starting from the same initial scale. This is convenient because
the execution time is proportional to the wideness of the energy range covered by
the evolution.

There are other options that are strictly used for internal purposes and thus there is no
need to list them here. The default is name = "ToyLH".

1 APFEL :: SetReplica(int nr);

This function selects the member or replica of the PDF set to be evolved to nr. This
function is effective only if an LHAPDF set is used and, of course, the integer nr must
be within zero and the maximum number of members/replicas contained in the LHAPDF
set in use. The default is default nr = 0, that is, according to the LHAPDF convention,
the central member.

1 APFEL :: SetQLimits(double Qmin , double Qmax);

This function sets the energy range in GeV within which the evolution is allowed. In
practice, for a given pair of Qmin and Qmax, the initial scale Q0 and the final scale Q of any
evolution must be such that Qmin < Q0, Q < Qmax. The default is Qmin = 0.5 GeV and
Qmax = 100000 GeV.

1 APFEL :: SetNumberOfGrids(int ng);

This function sets the number of internal x-space subgrids to be used by APFEL to ng. The
parameters of the single grids must be specified grid by grid using the SetGridParameters
function discussed below. The default is ng = 3.

11

1 APFEL :: SetGridParameters(int i, int n, int deg , double x);

This function must always be associated with one call to the SetNumberOfGrids function
described above. It sets the parameter of the i-th subgrid where i must run from 1 to
ng and thus there must be exactly ng calls to SetGridParameters. n corresponds to the
number intervals (not nodes) of the i-th subgrid, deg identifies the degree of the lagrange
polynomials and thus it is bound to be bigger than zero, and finally x is lower bound of
the grid being the upper bound always assumed to be 1. It is necessary that the value
of x is increasingly bigger as the index igrid increases. In practice this mean that the
lower bound of the igrid-th subgrid must be in the range covered by the (igrid - 1)-th
subgrid.

1 APFEL :: SetExternalGrid(int i, int np , int deg , double *x);

2 sets the external grid in the position i with

3 np intervals , interpolation degree deg. x

4 must be a one -dimentional array with upper bound

5 in 1 (there cannot be more than 1 external grid).

1 APFEL :: SetFastEvolution(bool);

2 sets the fast PDF evolution (default true).

1 APFEL :: GetVersion ();

2 returns the APFEL version in use.

1 APFEL :: EnableWelcomeMessage(bool);

2 enables the printing of the welcome message with

3 the APFEL banner and the report of the evolution

4 parameters (default true).

1 APFEL :: EnableEvolutionOperator(bool);

2 enables the computation of the external evolution

3 parameters (default false).

1 APFEL :: EnableLeptonEvolution(bool);

2 enables the evolution of the lepton PDFs when the

3 fast QUniD is used (default false).

1 APFEL :: LockGrids(bool);

2 locks the subgrids (default false).

1 APFEL :: CleanUp ();

12

2 resets all the evolution parameters to the

3 default settings.

1 APFEL :: SetLHgridParameters(int nx , int nxm , double xmin , double xm , ←↩
double xmax , int nq2 , double q2min , double q2max);

2 sets the parameters of the grid over which PDFs

3 will be tabulated in the LHAPDF format.

1 APFEL :: ListFunctions ();

2 lists all the functions available in APFEL.

1 Initialization functions:

2 APFEL :: InitializeAPFEL ();

3 initializes the APFEL library. If no settings has

4 been specified , it uses the default ones.

5 APFEL :: EvolveAPFEL(double Q0 , double Q);

6 evolves PDFs on the grid to the scale Q [GeV]

7 starting from the scale Q0 [GeV].

8 APFEL :: DeriveAPFEL(double Q);

9 computes the logarithmic derivative with respect

10 of Q of PDFs at the scale Q [GeV].

1 Output functions:

2 APFEL ::xPDF(int i, double x) and xgamma(double x);

3 return "x" times the i-th and the photon PDF

4 in "x" at the final scale "Q" [GeV] defined in

5 "EvolveAPFEL".

6 APFEL :: xPDFall(double x, double *xf);

7 returns at once "x" times all the PDF in the

8 array xf[-6:6] computed in "x" at the final scale

9 "Q" [GeV] defined in "EvolveAPFEL".

10 APFEL ::xPDFj(int i, double x) and xgammaj(double x);

11 return "x" times the i-th and the photon PDF

12 in "x" at the final scale "Q" [GeV] defined in

13 "EvolveAPFEL" interpolated on the joint grid.

14 APFEL ::dxPDF(int i, double x) and dxgamma(double x);

15 return "x" times the derivative in ln(Q^2) of

16 the i-th and the photon PDF in "x" at the scale

17 "Q" [GeV] defined in "DeriveAPFEL".

18 APFEL ::NPDF(int i, int N) and Ngamma(int N);

19 return the N-th moment of the i-th and the

20 photon PDF the final scale "Q" [GeV] defined in

21 "EvolveAPFEL".

22 APFEL ::LUMI(int i, int j, double S);

23 returns the partonic luminosity of the i-th and

24 j-th partons for the CoM energy S [GeV ^2] for the

25 final invariant mass Mx = Q [GeV] defined in

26 "EvolveAPFEL".

27 APFEL :: AlphaQCD(double Q);

28 returns the QCD strong coupling alpha_s at the

13

29 scale "Q" [GeV].

30 APFEL :: AlphaQED(double Q);

31 returns the QED coupling alpha at the scale

32 "Q" [GeV].

33 APFEL :: HeavyQuarkMass(int i,double Q);

34 returns the mass of the i-th heavy quark

35 (i = 4,5,6) scale "Q" [GeV] (the masses run only

36 when using the MSbar scheme).

37 APFEL :: nIntervals ();

38 returns the number of intervals of the joint

39 grid.

40 APFEL ::xGrid(int alpha);

41 returns the value of "x" on the alpha -th node of

42 the joint grid.

43 APFEL :: GetPerturbativeOrder ();

44 returns the perturbative order set for the

45 evolution

46 APFEL :: ExternalEvolutionOperator(string fname , int i, int j, double x, ←↩
int beta);

47 returns the PDF evolution operator.

48 APFEL :: LHAPDFgrid(int Nrep , double Qin , string fname);

49 produces a PDF interpolation grid in the LHAPDF

50 format.

51 APFEL :: LHAPDFgridDerivative(int Nrep , string fname);

52 produces an interpolation grid in the LHAPDF

53 format for the derived PDFs.

1 ---- Functions of the DIS module ----

2

3 Initialization functions:

4

5 APFEL :: InitializeAPFEL_DIS ();

6 initializes the DIS module. If no settings has

7 been specified , it uses the default ones.

8 APFEL :: ComputeStructureFunctionsAPFEL(double Q0 , double Q);

9 computes the DIS structure functions on the grid

10 at the scale "Q" [GeV] applying also the PDF

11 evolution from the initial scale "Q0" [GeV].

12

13 Setting functions:

14

15 APFEL :: SetMassScheme(string ms);

16 sets the mass scheme to be used to compute the

17 structure functions ("ms" = "ZM -VFNS", "FFNS",

18 "FONLL -A", "FONLL -B", "FONLL -C", default "ms" =

19 "ZM -VFNS").

20 APFEL :: SetPolarizationDIS(double pol);

21 sets the beam polarization (default "pol" = 0).

22 APFEL :: SetProcessDIS(string pr);

23 sets process ("pr" = "EM", "NC", "CC", default

24 "pr" = "EM").

25 APFEL :: SetProjectileDIS(string lept);

26 sets the projectile ("lept" = "electron",

27 "positron", "neutrino", "antineutrino", default

28 "lept" = "electron").

14

29 APFEL :: SetTargetDIS(string tar);

30 sets the target ("tar" = "proton", "neutron",

31 "isoscalar", "iron", default "tar" = "proton")

32 APFEL :: SetZMass(double massz);

33 sets the value of the mass of the Z boson

34 (default "massz" = 91.1876 GeV).

35 APFEL :: SetWMass(double massw);

36 sets the value of the mass of the W boson

37 (default "massw" = 80.385 GeV).

38 APFEL :: SetProtonMass(double massp);

39 sets the value of the mass of the proton

40 (default "massp" = 0.938272046 GeV).

41 APFEL :: SetSin2ThetaW(double sw);

42 sets the value of sin ^2(theta_W)

43 (default "sw" = 0.23126).

44 APFEL :: SetGFermi(double gf);

45 sets the value of Fermi constant

46 (default "gf" = 1.1663787e-5).

47 APFEL :: SetCKM(double vud , double vus , double vub ,

48 double vcd , double vcs , double vcb ,

49 double vtd , double vts , double vtb);

50 sets the absolute value of the entries of the

51 CKM matrix

52 (default: 0.97427d0 , 0.22536d0 , 0.00355d0 ,

53 0.22522d0 , 0.97343d0 , 0.04140d0 ,

54 0.00886d0 , 0.04050d0 , 0.99914 d0).

55 APFEL :: SetRenQRatio(double ratio);

56 sets the ratio muR / Q (default 1)

57 APFEL :: SetFacQRatio(double ratio);

58 sets the ratio muF / Q (default 1)

59 APFEL :: EnableDynamicalScaleVariations(bool);

60 enables or disables the possibility to perform

61 fact/ren scale variations point by point without

62 requiring the ratio \mu_{R,F} / Q to be constant.

63 Limitations: \mu_F = \mu_R and slower code.

64 APFEL :: EnableTargetMassCorrections(bool);

65 enables or disables the target mass corrections

66 to the DIS structure functions due to the finite

67 mass of the proton.

68 APFEL :: EnableDampingFONLL(bool);

69 enables or disables the damping factor when the

70 FONLL structure functions are computed.

71 APFEL :: SelectCharge(string selch);

72 selects one particular charge in the NC structure

73 functions ("selch" = "down", "up", "strange",

74 "charm", "bottom", "top", "all", default

75 "selch" = "all")

76 APFEL :: SetPropagatorCorrection(double dr);

77 sets the correction to the Z propagator involved

78 in the NC DIS structure functions

79 (default "dr" = 0).

80 APFEL :: SetEWCouplings(double vd , double vu , double ad , double au);

81 sets the vector and axial couplings of the up-

82 and down -type quarks. If they are not set by the

83 user the standard couplinglings are used.

84

15

85 Output functions:

86

87 APFEL :: F2light(double x), F2charm(double x), F2bottom(double x),

88 F2top(double x), F2total(double x);

89 APFEL :: FLlight(double x), FLcharm(double x), FLbottom(double x),

90 FLtop(double x), FLtotal(double x);

91 APFEL :: F3light(double x), F3charm(double x), F3bottom(double x),

92 F3top(double x), F3total(double x);

93 return the F2, FL and xF3 struncture functions in

94 "x" at the final scale "Q" [GeV] defined in

95 "ComputeStructureFunctionsAPFEL".

96 APFEL :: GetZMass ();

97 returns the value of the mass of the Z boson

98 APFEL :: GetWMass ();

99 returns the value of the mass of the W boson

100 APFEL :: GetProtonMass ();

101 returns the value of the mass of the proton

102 APFEL :: GetSin2ThetaW ();

103 returns the value of sin ^2(theta_W)

104 APFEL :: GetGFermi ();

105 returns the value of Fermi constant

106 APFEL :: GetCKM(int u, int d);

107 returns the absolute value of the (u,d) entry

108 of the CKM matrix

109 APFEL :: GetSIATotalCrossSection(int pto , double Q);

110 returns the SIA total cross section in natural

111 units at the perturbative order "pto" and at the

112 scale "Q" in GeV (only for time -like evolution).

113 APFEL :: ExternalDISOperator(string SF , int ihq , int i, double x, int ←↩
beta);

114 returns the DIS operators.

115

116 Special functions for the production of FK tables:

117

118 APFEL :: SetFKObservable(string obs);

119 APFEL :: GetFKObservable ();

120 APFEL :: FKSimulator(string obs , double x, double q, double y, int i, int←↩
beta);

121 APFEL :: FKObservables(string obs , double x, double q, double y);

122 APFEL :: ComputeHardCrossSectionsDY(string inputfile , string outputfile);

123 APFEL :: ComputeFKTables(string inputfile , double Q0 , int flmap [196]);

Using the dafualt settings of APFEL this is how the evolution banner would look like:

1 Welcome to

2 _/_/_/ _/_/_/_/ _/_/_/_/ _/_/_/_/ _/

3 _/ _/ _/ _/ _/ _/ _/

4 _/_/_/_/ _/_/_/_/ _/_/_/ _/_/_/ _/

5 _/ _/ _/ _/ _/ _/

6 _/ _/ _/ _/ _/_/_/_/ _/_/_/_/

7 _____v2 .6.1 A PDF Evolution Library , arXiv :1310.1394

8 Authors: V. Bertone , S. Carrazza , J. Rojo

9

10 Report of the evolution parameters:

11

12 QCD evolution

16

13 Space -like evolution (PDFs)

14 Evolution scheme: VFNS at N2LO

15 Solution of the DGLAP equation: "exactmu" with maximum 6 active flavours

16 Solution of the coupling equations: "exact" with maximum 6 active ←↩
flavours

17 Coupling reference value:

18 - AlphaQCD(1.4142 GeV) = 0.350000

19 Pole heavy quark thresholds:

20 - Mc = 1.414 GeV

21 - Mb = 4.500 GeV

22 - Mt = 175.000 GeV

23 muR / muF = 1.0000

24

25 Allowed evolution range [0.50 : 100000.00] GeV

26 Fast evolution enabled

As clear, the most important settings are reported in the banner and we recommand to
consult the banner every time that APFEL is run to make sure that the desired setting are
actually used.

Here is the complete set of default settings used by APFEL:

1 APFEL :: EnableWelcomeMessage(true);

2 APFEL :: SetQLimits (0.5 ,100000);

3 APFEL :: SetPerturbativeOrder (2);

4 APFEL :: SetVFNS

5 APFEL :: SetTheory("QCD");

6 APFEL :: SetFastEvolution(true);

7 APFEL :: SetTimeLikeEvolution(false);

8 APFEL :: SetSmallxResummation(false ,"NLL");

9 APFEL :: SetAlphaQCDRef (0.35 , sqrt (2););

10 APFEL :: SetAlphaQEDRef (7.496252e-3 ,1.777);

11 APFEL :: SetLambdaQCDRef (0.220 ,5);

12 APFEL :: SetEpsilonTruncation (1e-5);

13 APFEL :: SetAlphaEvolution("exact");

14 APFEL :: SetPDFEvolution("exactmu");

15 APFEL :: SetRenFacRatio (1);

16 APFEL :: SetPoleMasses(sqrt (2) ,4.5 ,175);

17 APFEL :: SetMassScaleReference(sqrt (2) ,4.5 ,175);

18 APFEL :: SetTauMass (1.777);

19 APFEL :: EnableMassRunning(true);

20 APFEL :: SetMaxFlavourPDFs (6);

21 APFEL :: SetMaxFlavourAlpha (6);

22 APFEL :: SetPDFset("ToyLH");

23 APFEL :: SetReplica (0);

24 APFEL :: EnableEvolutionOperator(false);

25 APFEL :: EnableLeptonEvolution(false);

26 APFEL :: LockGrids(false);

27 APFEL :: SetLHgridParameters (100 ,50 ,1e-9,1e-1,1,50,1,1e10);

28 APFEL :: SetNumberOfGrids (3);

29 APFEL :: SetGridParameters (1,80,3,1e-5);

30 APFEL :: SetGridParameters (2,50,5,1e-1);

31 APFEL :: SetGridParameters (3,40,5,8e-1);

As an illustration, if the user wants to perform the QCD evolution at NLO instead of
the default NNLO, she/he needs to add to the code above, before the initialization routine

17

InitializeAPFEL, a call to the corresponding function, that is:

1 APFEL :: SetPerturbativeOrder (1);

or if the user wants to use as a boundary condition for the PDF evolution a particular
set available through the LHAPDF interface, say NNPDF23 nlo as 0118 qed.LHgrid, she/he
needs to call before the initialization the following function:

1 APFEL :: SetPDFSet("NNPDF23_nlo_as_0118_qed.LHgrid");

By default, APFEL will use the central replica of the selected PDF set. Varying any other
setting is similar, various example programs have been collected in the examples folder in
the APFEL source folder.

When modifying the default settings, particular care must be taken with the number
of interpolation grids, the number of points in each grid and the order of the interpolation.
The default settings in APFEL use three grids whose ranges and number of points have been
tuned to give accurate and fast results over a wide range of x. If the default parameters
are modified, the user should check that the accuracy is still good enough, by comparing
for instance with another run of APFEL with the default interpolation parameters.

The folder examples in the APFEL source directory contains several examples that
further illustrate the functionalities of the code, and that can be used by the user as a
starting point towards a program that suits her/his particular physics needs. All these
examples are available in the three possible interfaces to APFEL: Fortran 77, C/C++ and
Python.

3 The DIS module

18

	Installation
	The PDF evolution module
	Customization of the PDF evolution
	Setting functions

	The DIS module

