MetaC 1.0

David McAllester

September 11, 2018

Abstract

MetaC provides a read-eval-print loop (a REPL) and notebook inter-
active development environment (a NIDE) for C programming. MetaC
can also be described as a Lisp-inspired programming environment for C.
The REPL and the NIDE are capable of incrementally compiling and exe-
cuting C statements and incremental procedure definitions in a persistent
C process. This is done by compiling and loading dynamic load libraries.

MetaC also extends C with Lisp-like features. More specifically, MetaC
provides a C-like universal syntax, computed macros, backquote [1], and
pattern-matching. The implementation is bootstrapped — it is imple-
mented in itself. These C extensions are intended to support the de-
velopment of high level frameworks with notebook interfaces as direct
extensions of C. This is in contrast to scripting-C hybrids such as Matlab,
Numpy, TensorFlow or PyTorch.

The NIDE is implemented in Emacs piped to a MetaC REPL. Pre-
sumably notebook IDEs for C or C++4 could also be implemented as
extensions of Atom or Visual Studio Code piped to a persistent process.

Dynamic linking is difficult to implement robustly. MetaC release 1.0
runs under both Ubuntu 18.04.1 / gec 7.3.0 and MAC OSX 10.11.4 / gee
Apple LLVM version 7.3.0 (clang-703.0.31).

Acknowledgement: I would like to thank Bob Givan for his aid in exercising
and polishing MetaC and his continuing efforts on MathZero.

Contents

1 Introduction and Overview
1.1 Installation

1.2 HelloWorld

1.3 C Statements and C Expressions

1.4 Definitions of Types and Proce

dures

1.5 The Global Variable Array Restriction

1.6 The Single Symbol Type Restriction

1.7 Backquote and Universal Syntax

1.8 Pattern Matching
1.9 Gensym and Macro Definitions

1.10 The Notebook IDE

2 Universal Syntax

2.1 Universal Expressions: cons-car-cdr

2.2 Universal Expressions: Phantom Brackets

2.3 The Reader Specification . .

2.4 Backquote and Pattern Matching Revisited

3 Miscellaneous Features

3.1 Interning and Expression Properties

3.2 Memory Frames.

3.3 Undo Frames

3.4 Bootstrapping and File Expansion

3.5 Macro Effects

3.6 Macro Preliminary Definitions

4 List of MetaC Primitives

10

11

13
13
14
15
19

20
20
21
21
22
23

23

23

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Expressions 24

Properties oL 24
Errors and Breakpoints 0oL 25
Reading and Printing 0oL 25
Macro Expansion L oo o 25
List Processingo Lo 26
Memory Frames oo 26
Undo Frames 26
Bootstrapping and File Expansion 26

1 Introduction and Overview

1.1

Installation

To install the REPL:

1.
2.
3.

Clone the MetaC repository in a local MetaC directory.
From a shell running in your MetaC directory type make MC.

From the same shell type MC to get the command line prompt MC>.

To install the NIDE:

1.
2.
3.
4.

Clone the repository into a repository directory.
From a shell running in your MetaC directory type make NIDE.
Add (load "<MetaC directory>/mc.el") to your .emacs file.

Edit the first line of mc.el to give the path to your gdb executable (the
Gnu debugger).

Edit the second line of mc.el to give the path to your MetaC directory.

Start or restart Emacs. The file mc.el adds hooks such that it is safest to
restart Emacs rather than load em.el into a running Emacs.

The NIDE can be run on any file with extension .mc in any directory. To
experiment with the NIDE use Emacs to visit the file NIDE-examples.mc from
the MetaC repository. Type C-M-s (control-meta-s) to start (or restart) the
C kernel. Typing C-c C-c will run the cell containing the cursor and print the
result in a C comment at the bottom of the cell. This is substantially equivalent
to typing the cell contents into the REPL. More Emacs key bindings and other
features of the NIDE are described in section 1.10.

The following examples use the REPL. However, all of these examples can be
run as cells in the NIDE.

1.2

Hello World

bash$ make MC

bash$ MC
MC> ‘{hello world}
hello world

MC>

In the above example the backquote expression given to the REPL macro-
expands to a C expression which evaluates to the expression “hello world”.
Backquote is described in more detail below.

1.3 C Statements and C Expressions

We can also declare global variables and execute statements from the REPL.

MC> int x[10];
done
MC> for(int i = 0; i < 10; i++)x[i] = i;

done

MC> for(int i = 0; i < 10; i++)fprintf(stdout,"%d",x[i]);
0123456789done

MC>int_exp(x[5])

5

MC>

In C syntax one distinguishes C expressions from C statements. A C statement
is executed for effect while a C expression is evaluated for value. The REPL
can be given either a statement or an expression. When given a C statement,
the REPL simply prints “done” after executing the statement. When given a C
expression the REPL computes and prints the value. The REPL assumes that
the value of a C expression is a universal syntax tree (also called an expression,
giving a second, and confusing, sense of the term “expression”). The procedure
int_exp above converts an integer to a universal syntax expression. Universal

syntax expressions are abstract syntax trees but can viewed as representations
of strings.

If a C statement executes a return outside of any procedure then that value
is returned to the REPL and printed. For example, the above session can be
extended with the following.

MC>{int sum = O; for(int i = 0; i < 10; i++)sum += x[i]; return int_exp(sum);}
45

MC>

1.4 Definitions of Types and Procedures

One can also define new data types and procedures from the REPL.

MC>typedef struct myexpstruct{
char * label;
struct myexpstruct * car;
struct myexpstruct * cdr;} myexpstruct, *myexp;

done

MC> myexp mycons (char*s,myexp x,myexp y){
myexp cell=malloc(sizeof (myexpstruct));
cell->label=s;
cell->car=x;
cell->cdr=y;
return cell;}

done

MC> expptr myexp_exp(myexp x){
if (x==NULL)return string_atom("nil");
return
‘{${string_atom(x->label)}
${myexp_exp(x->car)}
${myexp_exp(x->cdr)}};

done

MC> myexp_exp(mycons("foo" ,mycons("bar",NULL,NULL) ,NULL))

foo bar nil nil nil
MC>

Procedures can also be redefined at the REPL provided that the signature (argu-
ment types and return type) remains the same. Changing a procedure signature
requires restarting the MetaC REPL. This restricting ensures meaningful C type
checking in the presence of dynamic linking.

1.5 The Global Variable Array Restriction

To simplify dynamaic linking, all global data variables must be arrays. One can
always use single element arrays to represent non-array variables. To make this
more convenient we allow single element arrays to be declared with an initial
value in a manner similar to non-array data variables. For example, we can
declare and assign a variable y as follows.

MC> int y[0] = 2;
done

MC> y[0] += 1;
done

MC> int_exp(y[0])
3

MC>

Here assignments to y[0] are allowed but assignments to y are not — assignment
to array variables are not allowed in C. As noted above, this restriction greatly
simplifies dynamic linking of data variables.

1.6 The Single Symbol Type Restriction

To simplify the implementation of MetaC all type expressions appearing in
procedure signatures and global array declarations must be single symbols. Ar-
bitrary types can be given single symbol names using typedef.

1.7 Backquote and Universal Syntax

We now consider backquote and universal syntax in more detail. Backquote can
be used in a manner analogous to string formatting.

MC> expptr friend[0] = ‘{Bob Givan};

done

MC> int height[0] = 6;

done

MC> ‘{My friend ${friend[0]} is ${int_exp(height[0])} feet tall.}
My friend Bob Givan is 6 feet tall.

MC>

While universal syntax expressions can be viewed as representations of strings,
universal syntax expressions are actually abstract syntax trees. The tree struc-
ture plays an important role in pattern matching. The tree structure is more
apparent in the following example.

MC> expptr e[0] = ‘{at+b};
done

MC> ‘{bar(${e[0]1})}

bar (a+b)

MC>

As described in the next section, the pattern foo($x) will match the expression
foo(a+b) with x bound to the expression (tree) a+b.

1.8 Pattern Matching

MetaC provides a pattern matching case construct ucase (universal case). The
general form of the case construct is

ucase{e;
{<patterni1>}:{<body1>}

{<patternn>}:{<bodyn>1}}

Variables are marked in patterns by the prefix $.

MC>int numeralp(expptr x)
{if ('atomp(x))return O;
char*s=atom_string(x);
for(int i=0;s[i]!'=’\0’;i++){if(s[i]1<’0’||s[i]>’9’)return 0;}
return 1;

done

MC> int value(expptr e)
{ucase

{e;
{$x+$y}:{return value(x)+value(y);?}
{$x*$y}:{return value(x)*value(y);?}
{($x)}:{return value(x);7}
{$z}. (numeralp(z)) :{return atoi(atom_string(z));}

}

return 0; //this dead code convinces the compiler there is a return value.
}

done

MC>int_exp(value(‘{5+2%103}))

25

MC>int_exp(value(‘{fool}))
match error: the value

foo
does not match any of

{$z}. (numeralp(z)) {($x) H$x*$y H{$x+$y}

MC>

In many situations the choice of the particular tree structure imposed by the
MetaC reader is not important as long as the same conventions are used in
both the patterns and the expressions they are matching. For example, the
expression a+b+c will match the pattern $x+$y+$z independent of whether + is
left associative or right associative. But the tree structure does matter in other
cases. The pattern $x*$y will not match the expression at+b*c because the
reader brackets a+b*c as (a +(b* c)). The pattern $x*$y does match (a+b)*c.
The variable $any is special. It acts as a wild card and is not bound to a value.

When a ucase is executed the patterns are tried sequentially and stops after the
first match. If no pattern matches an error is generated. One can always add a
final pattern of {$any} to provide a default catch-all case if that is desired.

In release 1.0 repeated variables, such as in the pattern {$x + $x}, are not
supported (and not checked for). If a variable is repeated it will be matched at
its last occurrences under depth-first left to right traversal.

1.9 Gensym and Macro Definitions

MetaC supports computed macros. Pattern matching and backquote greatly
facilitate the writing of computed macros. Backquote and ucase are both im-
plemented as computed macros in the bootstrapped implementation. As a very
simple example we can define a dolist macro at the REPL.

MC>umacro{dolist ($x,$L) {$body}}{
expptr rest=gensym("rest");
return
‘{for(expptr $rest = $L; cellp($rest); $rest = cdr($rest);){
expptr $x=car($rest);
$bodyl}};

done
MC>macroexpand (‘{dolist(item,list){f(item);}})
for

(expptr _genrest33=list;

cellp(_genrest33);
_genrest33=cdr(_genrest33) ;

10

){expptr item=car(_genrest33);f(item);}

MC>

The general form of a macro definition is
umacro{<pattern>}{<body>}

where instances of <pattern> in MetaC code are to be replaced by the value
returned by <body> under the variable bindings determined by the match. The
pattern is restricted so as to have an identifiable head symbol to which the
macro is attached. The procedure macroexpand(exptr e) takes a universal
syntax expression and returns the result of repeatedly expanding outermost
macros until no further macro expansion is possible.

The macro expansion of the above definition of dolist defines a procedure to
compute the macro expansion and installs that procedure on a macro property
of the symbol dolist. A typical macro pattern is a symbol followed by one or
more parenthesis expressions in which case the macro is attached to the initial
symbol. The pattern can also be a binary connective expressions such as z. >y.
In this case the macro is attached to the connective.

1.10 The Notebook IDE

Starting the kernel with the key C-M-s creates a running C process. When a cell
is executed with the command C-c¢ C-c the text of the cell is (invisibly) passed
to C' process and a value returned y the process is printed inside a comment
below the cell. If a comment already occurs directly below the cell this comment
is replaced by a new comment containing the response of the REPL. As in a
Jupyter notebook, the values returned from the REPL are numbered so that
one can see when the cell was executed relative to other cell execution in the
notebook. If C-M-s is run when a kernel is already running the kernel process
is killed and a new one started (as in a Jupyter notebook). When the kernel is
restarted the execution numbering is reset to start with 1. Changing a procedure
signature (argument and return types) requires restarting the kernel.

Cell Boundaries. A cell begins at any nonempty line whose first character
is other than white space (space or tab), a close character ’)’, ’}’, or '], or a
slash ’/’. The cell ends at the begging of the next non-empty line whose first
character is other than white space or a a close character. Note that a comment
starting at the beginning of a line terminates a cell.

Compile-Time Errors. If an error occurs while attempting to read or compile
the cell expression an error statement is displayed — typically the output of the

11

C compiler — and an error message is printed in the code buffer as the value of
cell.

Run Time Errors and Breakpoints. The MetaC procedure berror (char
*) enters the gdb debugger. Typing the continue command to gdb will return to
the NIDE (or REPL) with the C process intact. MetaC primitives call berror
when safety checks fail. The MetaC procedure breakpt (char *) can be used
for breakpoints from which execution can be continued. When this procedure is
called gdb will be entered. Giving the continue command to gdb will continue
from the breakpoint.

Segmentation Faults. Segmentation faults, and other types of errors, are
trapped by gdb directly. In this case the NIDE will enter the gdb debugger.
However, in this case the normal gdb continue command will not return to the
code buffer. To recover one types print return to NIDE(Q) to gdb which will
typically return to the code buffer with the persistent C process intact. When
memory corruption is a possibility it is safest to restart the C process.

Printing. The procedure mcprint is like fprintf but omitting the file argu-
ment. The expression mcprint("x = %s\n",s) will print to the *Messages™
buffer in Emacs. The expression mcpprint (e) will pretty-print the expression
e to the *Messages™ buffer.

Key Bindings. mc.el provides the following key bindings.

C-M-s starts or restarts the persistent C process.
C-c C-c executes the cell containing the cursor.

C-c C-r executes all cells in the current region sequentially with a different execu-
tion number for each cell execution.

C-M-a moves to the begging of the current cell.
C-M-p moves to the beginning of the preceding cell.
C-M-n moves to the beginning of the next cell.

C-M-c removes all cell values. This is useful before a git commit as it can reduce
or eliminate differences in files between commits.

Include Statements. A cell in a code file containing #include (<filename>)
(with no semicolon) will load the cells of the named file into the persistent C
process. The extension ”.mc” will be automatically added and should not be
explicitly given.

12

2 Universal Syntax

It is not obvious how to implement light weight expression quotation and ex-
pression pattern matching for C expressions. The syntax of C is complex. We
bypass this complexity by introducing a syntax with the following three “uni-
versal” properties.

1. Universal syntax trees are semantics-free. They are simply trees viewed
as representations of character strings.

2. The universal syntax reader can read any parenthesis-balanced charac-
ter string. Here parenthesis-balanced means that every open parenthesis,
brace or bracket has a matching closing character and that string quota-
tions are properly closed.

3. The printer inverts the reader. If we read a string s into a universal syntax
expression e and then print e back into a string s’ we have that s and s’
are equivalent in a strong sense. Here we want s and s’ to be “whitespace
equivalent” so as to be treated equivalently by the C lexer.

The emphasis here is on the representation of strings. The reader does not
always invert the printer — the expression ((one two) three) prints as one
two three which reads as (one (two three)). But the represented string is
preserved. This is fundamentally different from most programming languages
supporting symbolic computation (such as Lisp) where it is assumed that the
tree structure, rather than the represented string, is fundamental and hence
that the reader should invert the printer.

The above universality properties allow one to assign semantics to universal
syntax expressions based on the strings that they represent. We can assign C
semantics to an expression by printing the expression and passing the resulting
string to a C compiler. This string-based semantics is not always compositional
with respect to the universal syntax tree structure. However, the tree structure
imposed by the reader is designed to approximate the compositional structure
of C syntax. In most cases pattern matching on universal syntax expressions
recovers substructure that is semantically compositional under C semantics.
Parentheses and semicolons can be helpful in aligning universal syntax trees
with C semantics. For languages and frameworks implemented as macro pack-
ages in MetaC one can guarantee that the universal syntax tree structure has
compositional semantics.

2.1 Universal Expressions: cons-car-cdr

A universal syntax expression is either an atom (a wrapper around a string), a
pair (ejes) where e; and ey are expressions, or a “parenthesis expression” the

13

form (e), {e}, or [e] where e is an expression. All three of these datatypes have
the same C type expptr (Expression Pointer). For each of the types atom, pair
and parenthesis expression there is a constructor procedure, a predicate, and
accessor functions as follows.

expptr string_atom(char *);
int atomp(expptr);
char * atom_string(expptr); //the argument must be an atom.

expptr cons(expptr,expptr) ;

int cellp(expptr);

expptr car(expptr); //the argument must be a cell. returns the first component.
expptr cdr(expptr); //the argument must be a cell. returns the second component.

expptr intern_paren(char,expptr); // the char must be one of *(’, ’{’> or ’[’
int parenp(expptr);
expptr paren_inside(expptr);

2.2 Universal Expressions: Phantom Brackets

The MetaC reader maps a character string to a universal syntax expression. A
specification of the reader is given in section 2.3. The expression produced by
the reader can be represented by “phantom brackets” around the given string
where there is a pair of brackets for each cons cell. For example the expression
{one two three} reads as {(one (two three))}. Examples of strings and the
phantom bracking imposed by the reading those strings is given in figure 1.
The printer simply removes the phantom brackets and prints the string that the
expression represents.

To reduce the clutter of brackets we will adopt two conventions for supress-
ing brackets when exhibiting phantom brackets. The first convention is the
Lisp right-branching convention of not showing all the cell brackets for right-
associative (right-branching) sequences. For example (zero (one (two three))).
will be written as (zero one two three). Note that these “lists” are atom-
terminated rather than the Lisp convention of nil termination.

The second convention is that we will sometimes write ((a1 0) az) where o is a
connective atom as the left-branching structure (a1 o a2). For example, the ex-
pression {a + b} reads as {((a +) b)} which is then abbreviated as {{(a + b)}.
Left-branching for binary connectives gives a C-consistent treatment of semi-
colon as a binary connective while also supporting the interpretation of semi-
colon as a statement terminator. This is discussed in more detail below.

It will generally be clear from context whether we using the Lisp right-branching
list convention or the left-branching connective convention. A set of examples

14

Hello World = (Hello World)
one two three = (one (two three))
= (one two three)
x+y = (x+)y
= &+
x+y*xz = (x+ (y*z))
x+y)xz = (& +y)*2)
foo(int x) = (foo (<1nt x)))
foo(int x, float y) = (foo ({{int x), (floaty))))

Figure 1: Examples of Reader Bracketings. Bracketings are shown for the
expression that results form reading the given strings. A complete bracketing
shows a pair of brackets for every expression pair (cons cell). The second and
third example show two somewhat informal conventions for dropping some of
the brackets — general sequences are assumed to be right-associative and binary
connective applications are assumed to be left-associative. These conventions
are used in other examples. Expressions are printed without the brackets — the
brackets are “phantoms” that show the tree structure. The bracketing (parsing)
done by the reader is specified formally in section 2.3. Since the bracketing does
not affect the represented string, the precise bracketing is often unimportant.

of strings and the phantom brackets generated by the reader is given in figure 1.

To emphasize the significance of left-branching binary connectives we note that
the MetaC reader bracketing of

{e1; ea; es; eq}

can be written using either the left-braching binary connective convention as

{{e1; (e2; (es; eq)))}

or the right-braching sequence convention as

{((ex;) (e2s) (es) ea)},

both of which abbreviate the same full bracketing

{({ex;) ((eas) ({es5) ea)))}-

2.3 The Reader Specification

The MetaC reader can be described in three phases — preprocessing, lexical-
ization, and parsing.

15

The MetaC preprocessor replaces each C-style comment with a space char-
acter. When processing an entire file, as is done in the MetaC procedure
file expressions described in section 3.4, the preprocessor divides the file
in cells using the same conventions as is used in the NIDE. A file must be
parenthesis-balanced within each cell.

Lexicalization segments a pre-processed character sting into to a sequence of
atoms. The MetaC lexer preserves all non-white characters. For the MetaC
lexer each atom is one of the following.

e Symbols. A symbol is a character string consisting of only alpha-numeric
characters — upper and lower case letters of the alphabet, plus the decimal
numerals, plus underbar. For example foo_barl.

e Connectives. A connective is a character string consisting of only “connec-
tive characters” — the connective characters consist of all non-alphanumeric,
non-white, non-parenthesis, characters other than the three special char-
acters $, ¢ and \.

e Quoted strings. A character string starting and ending with the same
string quotation character. For example "foo bar", "!:&7;" or ’a’.

e Special character atoms. These are atoms whose strings are one character
long where that character is one of the special characters ¢, $, and \.

Two strings will be called whitespace-equivalent if they lexicalize to the same
sequence of atoms.

The reader is specified by a the grammar shown in figure 2. To simplify the
specification of the reader we enclose the given string in parentheses so that,
without loss of generality, the input is assumed to be of the form {s} where s is
the lexical sequence to be read. The grammar has a nonterminal P for paren-
thesis expression which we take as the top level nonterminal. The nonterminals
SYM and QUOTE range over alpha-numeric string atoms and quoted string
atoms respectively. For each positive integer p we have a nonterminal CONN,,
ranging over connective atoms of precedence p. We have a nonterminal E,, for
expressions formed with connectives of precedence p. We also has a nonterminal
F for expressions that are formed at higher precedence than any connective
expression. The precedence levels are divided into a set L of left-associative
precedence levels and a set R of right associative precedence levels. There is a
special precedence level 3 for combining expressions with the “null connective”.
The null connective is left-associative. The null connective is higher precedence
that semicolon and comma but lower precedence than all other connectives. The
nonterminal F, includes an epsilon production allowing null arguments.

The nonterminal S ranges over symbols or variables where VAR ranges over
variables. Variables are handles specially in pattern matching (ucase) and pat-

16

P ou= (Ep) [{Ep} | [E)
E, = ((E,CONN,) E,) peR,{>p, r>p
E, == ((E,CONN,) E,) peL, L>p r>p
By w= (EE) (>3, r>3
Ex == QUOTE|(S P")|(‘P)|P|e|JUNK
S == SYM| VAR
VAR == ($SYM)|($P)|(\ VAR)
P = €| (PPY)
JUNK == ¢|SJUNK
SJUNK == $|\ | (\ SJUNK)

Figure 2: The grammar defining the MetaC reader. The input string is
assumed to be of the form (s) so that endpoints are explicitly labeled. The non-
terminal SYM generates non-empty alpha-numeric strings; CONN,, generates
non-empty connective strings of precedence p; and QUOTE generates string
quotations. R is a set of right-associative precedence levels and L is a set of
left-associative levels. Only the largest finite precedence level is left-associative.
MetaC classifies all printable ASCII characters as being either alpha-numeric,
connective, string quotations, parenthesis characters or one of the three special
characters ¢, § or \. The reader will accept any parenthesis-balanced string. e
denotes the empty string. Generated cells of the form (w €) or (¢ w) are re-
placed by w. Although the grammar is ambiguous, the reader is deterministic
as specified by the constraints that F., expressions must be maximal and that
the use of the e production for E, must be minimized. See the text for details.

17

tern instantiation (backquote). Expression of the form (S P*) include foo,
foo(x), foo(int x){return x;}, $x, $f(x), and ${f (x)}.

The above grammar is ambiguous. For example the string {foo (a) (b)} can
be parsed as either the left-branching structure {((SYM P*) P)} or the right-
branching structure {(SYM P*)}. The reader is of course deterministic — {foo
(a) (©)} is read as right-branching. While a deterministic grammar for the
reader can be given, it is simpler to specify a deterministic parsing process
for the above ambiguous grammar. The implementation runs a deterministic
left-to-right shift-reduce process. However, the parser is easier to specify as
operating in global stages. In the first stage one identifies all maximal E.,
substrings. The maximal requirement implies that {foo (a) (b)} is parsed
as the single (right-branching) F., expression (foo (a) (b)). The maximil
requirement also implies that the string {$ foo (a) (b)} is read as the single
E expression (($ foo) (a) (b)).

After identifying maximal F., expressions we are left with a sequence of argu-
ments (the E,, expressions) and connectives. However, it is possible that this
sequence contains multiple consecutive connectives or multiple consecutive ar-
guments. We then place an argument between any two consecutive connectives
using the e production for F., and also add an € term at the beginning of the
sequence if the sequence starts with a connective and an epsilon argument at
the end if the sequence ends in a connective. We now have a sequence of ar-
guments and connectives starting and ending with arguments and where there
are no two consecutive connectives. Next set k to be the largest precedence of
any connective and form all the Ej substrings. We then repeatedly decrement
k and identify all the Ej substrings until we have identifies all E, substrings
for all p. At this point the entire string must be parsed as E, where p is the
smallest precedence of the connectives where we think of adjacent arguments as
having an implicit precedence 4 connetive between them.

This process can parse any parenthesis-balanced string.

The above specification of the reader can result in cells of the form (e €) or (€ e).
The implementation avoids producing such cells and the reader can be viewed
as replacing (e €) or (e e) by e so that all cells are of the form (e; e3) where e;
and ey are expressions representing non-empty strings. An empty parenthesis
string () is read as a parenthesis expression containing an atom for the empty
string.

Grouped by precedence, the binary connective characters are
GrOH{Hag{e 7 = < >3 073 000 {0 #)

The precedence of a binary connective is determined by its first character. The
characters have low to high (outer to inner) precedence in the order given with
symbols in the same group having the same precedence. Here € represents the
null connective at precedence level 4 The precedence can be summarized in

18

outer to inner order as semicolon, comma, bar, the null connective, Boolean
connectives, binary predicates, three levels of binary functions, and innermost
connectives which can be viewed as providing a way of building structured
atoms. This universal syntax precedence conventions has various divergences
with C syntax. However, when writing a macro package in MetaC one can
simply adopt the MetaC precedence conventions for the source code and use
parentheses where necessary in the generated C code.

2.4 Backquote and Pattern Matching Revisited

The semantics of backquote is defined in terms of cons-car-cdr view of expres-
sions independent of the MetaC reader. In the typical case, the C value of a
backquote expression (¢ {e}) is the expression (tree) e with subexpressions (sub-
trees) of the form (8§), where z is a symbol, replaced by the C value of x and
subexpressions (subtrees) of the form ($ {w}) replaced by the expression which
is the C value of the string represented by the expression w.

Unfortunately this evaluation rule for backquote expressions is incomplete. One
of the most confusing situations is where the expansion of a macro contains a
backquote. Writing such a macro typically involves nested backquotes. While
nested backquotes are confusing, and should be avoided when possible, MetaC
supports nested backquotes. We consider a series of backquote expressions each
of which evaluates to the previous one.

First we have

a4+ b+ ${z}} (1)

If the value of variable z is the expression c then the value of expression (1) is
the expression a+b+c. The symbol $ can be included in the value of a backquote
expression by quoting it. This gives our second expression.

{Ha+3{y} +\8{z}}} (2)

If the value of variable y is the expression b then the value expression of (2) is
expression (1). We can even have multiple layers of quotation as in the following.

L8t +\8{y} + \\${z}}}} (3)

If the value of variable x is the expression a then the value of expression (3) is
expression (2).

As with backquote, pattern matching is defined in terms of the cons-car-cdr
view of expressions independent of the MetaC reader. We define a substitution
to be a mapping from symbol atoms to expressions. For a substitution ¢ and
a pattern {e} we define the expressions o(e) to be the result of replacing each

19

subexpression (subtree) of e of the form ($ z) where z is a symbol atom with
o(x). A pattern expression (tree) {e} matches an expression (tree) w with
substitution o if o(e) = w. An exception to this is the case where a variable
occurs multiple times in the pattern. In release 1.0 multiple occurrences of a
variable in a pattern is not supported.

3 Miscellaneous Features

3.1 Interning and Expression Properties

In MetaC expressions are interned and have property lists. Interning means that
two expressions which have the same tree structure and sequence of leaves —
that are “equal” in Lisp terminology — represented by the same data structure
with the same memory address — are “eq”. Hence we have

MC> int_exp(‘{foo(a)} == ‘{foo(a)})
1

Interned expressions with properties provide the functionality of dictionary data
structures such as C++ hashmaps or Python dictionaries. Interning also facili-
tates the implementation of forward chaining inference algorithms — we do not
want to waste noticing the same consequence over and over again. Interned
expressions with property lists can be viewed as a form of no-SQL database. In-
terning also allows directed acyclic graphs (dags) to be represented compactly as
expressions. This is very convenient for the representation of machine-generated
justifications (proofs).

The procedure setprop(expptr exp, expptr prop, void * value) sets the
given property of the given expression to the given value. The procedure
getprop (expptr exp, expptr prop, void * default) the given property of
the given value or the default value if no property value has been assigned.
MetaC also provides the procedures setprop_int(expptr e, expptr p, int
n) and getprop_int(expptr e, expptr p, int default). It is not difficult
to define polymorphic macros for setting and extracting properties where the
type of the property is passed as an argument. It is also not difficult to as-
sign types to particular properties so that the type argument is not needed in
polymorphic property setting and retrieving. However, these features are not
present in release 1.0.

20

3.2 Memory Frames

A memory frame is analogous to a stack frame but is independent of the C stack.
The procedure push _memory_frame() pushes a memory frame. The procedure
stack_alloc(int nbytes) returns a pointer to a block of the given size allo-
cated from the current memory frame. The procedure pop_memory_frame ()
pops the current memory-management frame by resetting a free pointer (a
“stack pointer”) so as to free all allocation done in that frame. MetaC pre-
allocates the heap (stack space) used for memory frames.

3.3 Undo Frames

Undo frames are similar to memory frames but with the added feature of undoing
effects tied to the frame. The procedure push_undo_frame () enters a new undo
frame. Memory is allocated from the current undo frame with the procedure
undo_alloc(int nbytes). Effect are tied to the current undo frame with the
C preprocessor macro undo_set (void * loc, void * val). On exit from an
undo frame all memory locations assigned by undo_set are restored to the values
they had before entry to the frame.

In MetaC all expression allocation and property assignments are tied to the
current undo frame. On exit from the undo frame the database represented by
expression properties is restored to the state that existing on frame entry.

The procedure exp_from_undo (expptr exp) pops the current undo frame copyng
the given expression into the parent frame and returning the parent-frame copy

as a value. This is used for returning the “value” or “result” of a large compu-

tation while freeing the allocation and undoing the effects of the computation.

This can be implemented as follows.

exptr exp_from_undo_frame (expptr e){
push_memory_frame() ;
expptr temp = copy_exp_to_stack(e);
pop_undo_frame() ;
expptr result = copy_exp_from_stack(e);
pop_memory_frame() ;
return result;

The procedure clean_undo_frame (expptr e) issimilar to exp_from_undo_frame
but replaces the current undo frame with a fresh one into which the given ex-
pression is placed. In this case there is no effect on the parent frame.

exptr clean_undo_frame (expptr e){

21

push_memory_frame() ;

expptr temp = copy_exp_to_stack();
pop_undo_frame() ;
push_undo_frame() ;

result = copy_exp_from_stack(temp);
pop_momory_frame() ;

return result;

The procedure clean undo_frame (expptr e) can be used for garbage collection
as in (install_live_stuff (clean_undo_frame(compute_live_stuff()))).

The procedures exp_from_undo_frame and clean undo_frame both run in time
proportional to the dag size of the given expression. The dag size can be expo-
nentially smaller than the tree size.

3.4 Bootstrapping and File Expansion
MetaC is bootstrapped. The makefile for MetaC includes the following.

mcB.c : expandA mcB.mc
./expandA mcB.mc mcB.c

The executable expandA is implemented entirely in C' but implements the back-
quote macro. The executable expandA expands backquote expressions appearing
in the input file. The file mcB.mc implements ucase using backquote and the
excutable expandB expands both backquote expressions and ucase statements.
The makefile also includes.

mcC.c : expandB mcC.mc
./expandB mcC.mc mcC.c

Here the file mcC.mc implements additional macros using both backquote and
ucase. In the MetaC makefile this is continued up to mcE.mc and expandE.
MetaC provides the procedure mcexpand(char * f1, char * f£2) which is
used in the code for the expand commands. This procedure macro-expands
the file 1 and writes the result to file £2. This macro-expansion is done using
whatever procedures and operators currently have macro expansion procedure
pointers on their property lists, i.e., the expansion is done using whatever macros
are defined in the current state.

The procedure mcexpand(char * f1, char * f2) is implemented using the
MetaC procedure file_expressions(char * f). This procedure takes a file
name and returns a list of the expressions contained in the cells of that file.

22

3.5 Macro Effects

Macros expansion can have effects. The macro umacro expands to a procedure
definition of the macro expansion code but also generates a statement which
installs that procedure pointer in the macro property of the head symbol. During
macro expansion the MetaC primitive add_init _form(expptr statement) is
called with a statement that installs the procedure pointer on the appropriate
property list.

In file expansion the initialization forms generated during macro expansion are
incorporated into an initialization procedure. The macro init_fun(<fname>)
macro expands to a definition of the given procedure name with no arguments
but with the sequence of initialization forms in its body. In the REPL and IDE
the initialization forms are run before the macro expansion of the input or cell
is run.

3.6 Macro Preliminary Definitions

Macro expansion can also generate preliminary definitions. It is possible to
implement syntactic closures (lambda) as a macro. A closure consists of a pro-
cedure pointer together with values for the free variables in the body of the
lambda expression. The lambda macro must first create the procedure that ex-
ecutes the body of the lambda expression and then incorporate that procedure
pointer into the expansion of lambda macro. The construction of the procedure
definition is a “preamble” to the macro expansion. MetaC provides the primi-
tive add_preamble (expptr definition) for creating preambles during macro
expansion. In file expansion these preamble definitions are inserted into the
output file before the expression generated by the macro. In the REPL and
NIDE these preamble definitions are installed along with the expression created
by the macro. MetaC 1.0 supports preambles but does not provide a macro for
lambda expressions.

4 List of MetaC Primitives

We now give a list of the MetaC primitives and pre-installed type definitions.
The macros backquote, ucase, and umacro expand to code built on these prim-
itves. We start with type definitions needed for the single atom type restriction
needed for the limiting type parsing abilities of MetaC.

typedef char * charptr;
typedef void * voidptr;
typedef FILE * FILEptr;

23

typedef struct expstruct{...} * expptr;

4.1 Expressions

The macros backquote and ucase expand into C code using these procedures.

expptr string_atom(charptr s);

int atomp(expptr e);

charptr atom_string(expptr a);

expptr cons(expptr x, expptr y);

int cellp(expptr e);

expptr car(expptr x);

expptr cdr(expptr x);

expptr intern_paren(char openchar, expptr arg); \\ openchar must be one of ’(’, ’{’> or ’[’.
int parenp(expptr e);

expptr paren_inside(expptr e);

char constructor(expptr e); //used for paren expressions.

We also have integer-expression conversions. The REPL and NIDE require that
inputs and cells respectively are expression-valued.

expptr int_exp(int i);

int exp_int(expptr s);

4.2 Properties

The macro umacro expands to code that sets the macro property of some atom
to a procedure pointer.

void setprop(expptr e, expptr key, voidptr val);

24

expptr getprop(expptr e, expptr key, expptr defaultval);

expptr gensym(charptr s);

4.3 Errors and Breakpoints

void berror(charptr s);
void breakpt(charptr s);

void return_to_NIDE();

4.4 Reading and Printing

The procedure file expressions takes a file name and returns a list of the
expressions (in universal syntax) contained in the cells of the file. The last two
print to the emacs *Messages* buffer in the NIDE. The last expressions is a
macro.

expptr file_expressions(charptr name);
void pprint(expptr e, FILEptr f, int indent); //indent is typically O
void mcpprint(epptr e);

void mcprint(...)

4.5 Macro Expansion

expptr macroexpand(expptr e);
expptr macroexpandl(expptr e); //this result may contain unexpanded macros
void add_init_form(expptr statement);

void add_preamble(expptr aux_definition);

25

4.6 List Processing

expptr append(expptr 11, expptr 12);
expptr reverse(expptr 1);

typedef expptr exp_to_exp(expptr);
typedef void exp_to_void(expptr);

expptr mapcar (exp_to_exp f, expptr 1);
void mapc(exp_to_void f, expptr 1);

int length(expptr 1);

4.7 Memory Frames

push_memory_frame() ;
voidptr stack_alloc(int nbytes);

pop_memory_frame() ;

4.8 Undo Frames

void push_undo_frame();

voidptr undo_alloc(int nbytes);

void undo_set(voidptr loc, voidptr val);
void exp_from_undo_frame (expptr e);

void clean_undo_frame(expptr e);

4.9 Bootstrapping and File Expansion

file_expressions(char * fname);
mcexpand (char * fnamel, char * fname2);

init_fun(fname)

26

References

[1] A. Bawden. Quasiquotation in lisp. In Proceedings of the 1999 ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-Based Program Ma-

nipulation, San Antonio, Texas, USA, January 22-23, 1999. Technical report
BRICS-NS-99-1, pages 4-12, 1999.

27

