The GPML Toolbox version 4.2

Carl Edward Rasmussen & Hannes Nickisch

June 15, 2018

Abstract

The GPML toolbox is an Octave 3.2.x and Matlab 7.x implementation of inference and pre-
diction in Gaussian process (GP) models. It implements algorithms discussed in Rasmussen &
Williams: | Gaussian Processes for Machine Learning , the MIT press, 2006 and Nickisch &
Rasmussen: | Approximations for Binary Gaussian Process Classification |, JMLR, 2008.

The strength of the function lies in its flexibility, simplicity and extensibility. The function is
flexible as firstly it allows specification of the properties of the GP through definition of mean func-
tion and covariance functions. Secondly, it allows specification of different inference procedures,
such as e.g. exact inference and Expectation Propagation (EP). Thirdly it allows specification of
likelihood functions e.g. Gaussian or Laplace (for regression) and e.g. cumulative Logistic (for
classification). Simplicity is achieved through a single function and compact code. Extensibility is
ensured by modular design allowing for easy addition of extension for the already fairly extensive
libraries for inference methods, mean functions, covariance functions and likelihood functions.

This document is a technical manual for a developer containing many details. If you are not
yet familiar with the GPML toolbox, the | user documentation | and examples therein are a better
way to get started.

http://gaussianprocess.org/gpml/
http://www.jmlr.org/papers/volume9/nickisch08a/nickisch08a.pdf
http://gaussianprocess.org/gpml/code/

Contents

[1 Gaussian Process Training and Prediction| 3
2 The gp Function| 4
13__Inference Methodsl 9
3.1 Exact Inference with Gaussian likelthood| 10
[3.2 Laplace’s Approximation|. e e e e e e e e e 11
[3.3 Expectation Propagation| o o oo oo 11
[3.4 Kullback Leibler Divergence Minimisation| oo v v v v v .. 12
[3.5 Variational Bayes|o o 13
[3.6 Compatibility Between Inference Methods and Covariance Approximations|. 13
3.7 OSparse Covarlance ApproXimations|ttt 14
3.8 Grid-Based Covariance ApproxXimations| v v v v v v v v i e . 14
3.9 State Space Representation of GPS|. v v v v i it e e e 15
4__Likelihood Functions| 18
M1 Predictionl 18
M2 Tnterface o v o 19
4.3 Implemented Likelthood Functions| 21
4.4 Usage of Implemented Likelihood Functions| 22
[4.5 Compatibility Between Likelihoods and Inference Methods| 23
.6 Gaussian Likellhoodl oottt 23
[4.6.1 ExactlInferencel e 25

[4.6.2 Laplace’s Approximation|. e 25

[4.6.5 Expectation Propagation|.o o o000 oL 25

[4.6.4 Variational Bayes| 25

4.7 Warped Gaussian Likelihood|. oo o 000 26

‘ 27

27

‘] 30
{4.11 Cumulative Logistic Likelthood| 31
[4.12 GLM Likelihoods: Poisson, Negative Binomial, Weibull, Gamma, Exponential, In- [
[verseGaussianand Betal v . v it e e e e e 32
[4.12.1 Inverse Link Functions| 32

[4.12.2 Poisson Likelthood 34

[4.12.3 Weibull Likelithood| oo o 34

[4.12.4 Gamma Likelthoodl 34

[4.12.5 Exponential Likelthood| oo oo oL 35

[4.12.6 Inverse Gaussian Likelihood 35
[4.12.7 Beta Likelihoodlo oo 35

15 Mean Functions | 36
BaTnterfacel . . . o v oot 36
5.2 Implemented Mean Functions| 37
5.3 Usage of Implemented Mean Functions| 37

6 Covariance Functions| 39
61 Interfacel 39
[6.2 Implemented Covariance Functions| 43
[6.3 Usage of Implemented Covariance Functions| 44

7

Hyperpriors

[7.2 Implemented Hyperpriors|

[7.3 Usage of Implemented Hyperpriors|

............................

1 Gaussian Process Training and Prediction

The gpml toolbox contains a single user function gp described in section 2| In addition there are a
number of supporting structures and functions which the user needs to know about, as well as an
internal convention for representing the posterior distribution, which may not be of direct interest to
the casual user.

Inference Methods: An inference method is a function which computes the (approximate) poste-
rior, the (approximate) negative log marginal likelihood and its partial derivatives w.r.t.. the
hyperparameters, given a model specification (i.e., GP mean and covariance functions and a
likelihood function) and a data set. Inference methods are discussed in section |3} New in-
ference methods require a function providing the desired inference functionality and possibly
extra functionality in the likelihood functions applicable.

Hyperparameters: The hyperparameters is a struct controlling the properties of the model, i.e.. the
GP mean and covariance function and the likelihood function. The hyperparameters is a struct
with the three fields mean, cov and 1ik, each of which is a vector. The number of elements in
each field must agree with number of hyperparameters in the specification of the three functions
they control (below). If a field is either empty or non-existent it represents zero hyperparam-
eters. When working with FITC approximate inference, the inducing inputs xu can also be
treated as hyperparameters for some common stationary covariances.

Hyperparameter Prior Distributions: When optimising the marginal likelihood w.r.t. hyperparame-
ters, it is sometimes useful to softly constrain the hyperparameters by means of prior knowl-
edge. A prior is a probability distribution over individual or a group of hyperparameters,
section [7]

Likelihood Functions: The likelihood function specifies the form of the likelihood of the GP model
and computes terms needed for prediction and inference. For inference, the required properties
of the likelihood depend on the inference method, including properties necessary for hyperpa-
rameter learning, section

Mean Functions: The mean function is a cell array specifying the GP mean. It computes the mean
and its derivatives w.r.t.. the part of the hyperparameters pertaining to the mean. The cell array
allows flexible specification and composition of mean functions, discussed in section |5} The
default is the zero function.

Covariance Functions: The covariance function is a cell array specifying the GP covariance function.
It computes the covariance and its derivatives w.r.t.. the part of the hyperparameters pertaining
to the covariance function. The cell array allows flexible specification and composition of
covariance functions, discussed in section [6]

Inference methods, see section |3, compute (among other things) an approximation to the posterior
distribution of the latent variables f; associated with the training cases, i = 1,...,n. This approx-
imate posterior is assumed to be Gaussian, and is communicated via a struct post with the fields
post.alpha, post.sW and post.L. Often, starting from the Gaussian prior p(f) = N(f|m,K) the
approximate posterior admits the form

q(fiD) = N(qu:m+Koc, V= (K_lJrW)_l), where W diagonal with Wj; = % (1)

In such cases, the entire posterior can be computed from the two vectors post.alpha and post.sW;
the inference method may optionally also return L = chol(diag(s)K diag(s) + I).

If on the other hand the posterior doesn’t admit the above form, then post.L returns the matrix
L = —(K4+ W)~ (and post.sW is unused). In addition, a sparse representation of the posterior
may be used, in which case the non-zero elements of the post . alpha vector indicate the active entries.

4

2 The gp Function

The gp function is typically the only function the user would directly call.

(gp.m E

1 function [varargout] = gp(hyp, inf, mean, cov, lik, x, y, xs, ys)

2 (gp function help [4b)

3 (initializations[Sb)

4 (inference6d)

5 if nargin==7 % if no test cases are provided
6 varargout = {nlZ, dnlZ, post}; % report -log marg lik, derivatives and post
7 else
8 (compute test predictions @
9 end

It offers facilities for training the hyperparameters of a GP model as well as predictions at unseen
inputs as detailed in the following help.

(gp function help b)) = (4a)

1 % Gaussian Process inference and prediction. The gp function provides a
2 % flexible framework for Bayesian inference and prediction with Gaussian
3 % processes for scalar targets, i.e. both regression and binary
4 % classification. The prior is Gaussian process, defined through specification
5 % of its mean and covariance function. The likelihood function is also
6 % specified. Both the prior and the likelihood may have hyperparameters
7 % associated with them.

8 %

9 % Two modes are possible: training or prediction: if no test cases are

10 % supplied, then the negative log marginal likelihood and its partial

11 % derivatives w.r.t. the hyperparameters is computed; this mode is used to fit
12 % the hyperparameters. If test cases are given, then the test set predictive
13 % probabilities are returned. Usage:

14 7%

15 % training: [nlZ dnlZ] = gp(hyp, inf, mean, cov, lik, x, y);

16 % prediction: [ymu ys2 fmu fs2] = gp(hyp, inf, mean, cov, lik, x, y, xs);
17 % or: [ymu ys2 fmu fs2 1p] = gp(hyp, inf, mean, cov, lik, x, y, xs, ys);
18 %

19 % where:

20 %

21 % hyp struct of column vectors of mean/cov/lik hyperparameters

22 % inf function specifying the inference method

23 % mean prior mean function

24 % cov prior covariance function

25 % lik likelihood function

26 % X n by D matrix of training inputs

27 h y column vector of length n of training targets

28 % xs ns by D matrix of test inputs

29 % ys column vector of length nn of test targets

30 %

31 % nlZ returned value of the negative log marginal likelihood

32 % dnlZ struct of column vectors of partial derivatives of the negative
33 % log marginal likelihood w.r.t. mean/cov/lik hyperparameters
34 % ymu column vector (of length ns) of predictive output means

35 % ys2 column vector (of length ns) of predictive output variances

36 % fmu column vector (of length ns) of predictive latent means

37 h fs2 column vector (of length ns) of predictive latent variances

38 % 1p column vector (of length ns) of log predictive probabilities
39 %

40 % post struct representation of the (approximate) posterior

41 % 3rd output in training mode or 6th output in prediction mode
42 % can be reused in prediction mode gp(.., cov, lik, x, post, xs,..)
43 %

44 7 See also infMethods.m, meanFunctions.m, covFunctions.m, likFunctions.m.

45 %
46 (gpml copyright[Sa)

(gpml copyright |sa)= bjell1ojf1922]24a36]38]39]44f46]4)
1 % Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2018-06-15.
2% File automatically generated using noweb.

Depending on the number of input parameters, gp knows whether it is operated in training or in
prediction mode. The highlevel structure of the code is as follows. After some initialisations, we
perform inference and decide whether test set predictions are needed or only the result of the inference
is demanded.

(initializations Sb)= (4a)
1 (minimalist usage

2 (multivariate output by recursion

3 (process input arguments 6al)

4 {(check hyperparameters|6b)

If the number of input arguments is incorrect, we echo a minimalist usage and return.

(minimalist usage|Sd)= (Sb)

1 if nargin<7 || nargin>9

2 disp(’Usage: [nlZ dnlZ] = gp(hyp, inf, mean, cov, lik, x, y);’)

3 disp(’ or: [ymu ys2 fmu fs2 1 = gp(hyp, inf, mean, cov, lik, x, y, xs);’)

4 disp(’ or: [ymu ys2 fmu fs2 1p] = gp(hyp, inf, mean, cov, lik, x, y, xs, ys);’)
5 return

6 end

If there is more than a single output dimension in y, we call multiple instances of gp with shared
hyperparameters and settings each computing the corresponding result with scalar output.

(multivariate output by recursion [5d)= (Sb)

1 if size(y,2)>1 % deal with (independent) multivariate output y by recursing
2 d = size(y,2); varargout = cell(nargout,l1); out = cell(nargout,l); % allocate
3 for i=1:d

4 in = {hyp, inf, mean, cov, lik, x, y(:,i)};

5 if nargin>7, in = {in{:}, xs}; end

6 if nargin>8, in = {in{:}, ys(:,i)}; end

7 if i==1, [varargout{:}] = gp(in{:}); % perform inference for dimension

8 else [out{:}] = gp(in{:}); % .. number i in the output
9 if nargin==7, no = 2;

10 varargout{1} = varargout{1} + out{1}; % sum nlZ
11 if nargout>1 % sum dnlZ
12 varargout{2} = vec2any(hyp,any2vec(varargout{2})+any2vec (out{2}));

13 end

14 else no = 5; % concatenate ymu ys2 fmu fs2 1lp
15 for j=1:min(nargout,no), varargout{j} = [varargout{j},out{j}]; end

16 end

17 if nargout>no % concatenate post
18 if i==2, varargout{no+1} = {varargout{no+1},out{no+1}};

19 else varargout{no+1} = {varargout{no+1}{:},out{no+1}}; end
20 end
21 end
22 end, return % return to end the recursion
23 end

Next, we set some useful default values for empty arguments, and convert inf and 1ik to function
handles and mean and cov to cell arrays if necessary. Initialize variables.

(process input arguments [6a) = (Sb)
1 if isempty(mean), mean = {@meanZero}; end % set default mean
2 if ischar(mean) || isa(mean, ’function_handle’), mean = {mean}; end Y make cell
3 if isempty(cov), error(’Covariance function cannot be empty’); end 7’ no default
4 if ischar(cov) || isa(cov,’function_handle’), cov = {cov}; end % make cell
5 cstr = cov{1l}; if isa(cstr,’function_handle’), cstr = func2str(cstr); end
6 if (strcmp(cstr,’covFITC’) || strcmp(cstr,’apxSparse’)) && isfield(hyp,’xu’)
7 cov{3} = hyp.xu; %use hyp.xu
8 end
9 if isempty(inf), inf = {@infGaussLik}; end % set default inference method
10 if ischar(inf), inf = str2func(inf); end % convert into function handle
11 if ischar(inf) || isa(inf,’function_handle?’), inf = {inf}; end % make cell

12 istr = inf{1}; if isa(istr,’function_handle’), istr = func2str(istr); end
13 if strcmp(istr,’infPrior’)

14 istr = inf{2}; if isa(istr,’function_handle’), istr = func2str(istr); end

15 end

16 if isempty(lik), 1lik = {@likGauss}; end % set default 1lik
17 if ischar(lik) || isa(lik,’function_handle’), 1lik = {1lik}; end % make cell

18 1str = 1ik{1}; if isa(lstr,’function_handle’), 1lstr = func2str(lstr); end

19

20 D = size(x,2);

21 if strncmp(cstr,’covGrid’,7) || strcmp(cstr,’apxGrid’) % only some inf* possible
22 D = 0; xg = cov{3}; p = numel(xg); for i=1:p, D = D+size(xg{i},2); end ¥ dims
23 end

Check that the sizes of the hyperparameters supplied in hyp match the sizes expected. The three parts
hyp.mean, hyp.cov and hyp.1lik are checked separately, and define empty entries if they don’t exist.

(check hyperparameters [6b)= (Sb)

1 if "“isfield(hyp,’mean’), hyp.mean = []; end % check the hyp specification
2 if eval(feval(mean{:})) ~= numel (hyp.mean)

3 error (’Number of mean function hyperparameters disagree with mean function’)

4 end

5 if ~isfield(hyp,’cov’), hyp.cov = []; end

6 if eval(feval(cov{:})) ~= numel (hyp.cov)

7 error (’Number of cov function hyperparameters disagree with cov function’)
8 end

9 if ~isfield(hyp,’1lik’), hyp.lik = []; end

10 if eval(feval(lik{:})) ~= numel (hyp.1lik)

11 error (’Number of 1lik function hyperparameters disagree with 1lik function’)
12 end

Inference is performed by calling the desired inference method inf. In training mode, we accept a
failure of the inference method (and issue a warning), since during hyperparameter learning, hyper-
parameters causing a numerical failure may be attempted, but the minimize function may gracefully
recover from this. During prediction, failure of the inference method is an error.

(inferencel6d)= (4a)

1 try % call the inference method
2 % issue a warning if a classification likelihood is used in conjunction with

3 % labels different from +1 and -1

4 if strcemp(lstr,’likErf’) || strcmp(lstr,’likLogistic’)

S if “isstruct(y)

6 uy = unique(y);

7 if any(uy~=+1 & uy~=-1)

8 warning (’You try classification with labels different from {+1,-1}7)

7

9 end

10 end

11 end

12 if nargin>7 % compute marginal likelihood and its derivatives only if needed
13 if isstruct(y)

14 post = y; % reuse a previously computed posterior approximation
15 else

16 post = feval(inf{:}, hyp, mean, cov, lik, x, y);

17 end

18 else

19 if nargout<=1

20 [post nlZ] = feval(inf{:}, hyp, mean, cov, lik, x, y); dnlZ = {};

21 else

22 [post nlZ dnlZ] = feval(inf{:}, hyp, mean, cov, 1lik, x, y);

23 end

24 end

25 catch

26 msgstr = lasterr;

27 if nargin>7, error(’Inference method failed [%s]’, msgstr); else

28 warning (’Inference method failed [%s] .. attempting to continue’,msgstr)

29 varargout = {NaN, vec2any(hyp,zeros(numel (any2vec(hyp)),1))}; return % go on
30 end

31 end

We copy the already computed negative log marginal likelihood to the first output argument, and if
desired report its partial derivatives w.r.t. the hyperparameters if running in inference mode.

Predictions are computed in a loop over small batches to avoid memory problems for very large test
sets.

(compute test predictions @E (4a)

1 alpha = post.alpha; L = post.L; sW = post.sW;

2 if issparse(alpha) % handle things for sparse representations
3 nz = alpha "= 0; % determine nonzero indices
4 if issparse(L), L = full(L(nz,nz)); end % convert L and sW if necessary
S if issparse(sW), sW = full(sW(nz)); end

6 else nz = true(size(alpha,1),1); end % non-sparse representation
7 if isempty (L) % in case L is not provided, we compute it
8 K = feval(cov{:}, hyp.cov, x(nz,:));

9 L = chol(eye(sum(nz))+sWksW?’.*K) ;

10 end

11 Y%verify whether L contains valid Cholesky decomposition or something different
12 Lchol = isnumeric(L) && all(all(tril(L,-1)==0)&diag(L)’>0&isreal(diag(L))’);
13 ns = size(xs,1); % number of data points
14 if strncmp(cstr,’apxGrid’,7), xs = apxGrid(’idx2dat’,cov{3},xs); end ¥ expand
15 nperbatch = 1000; % number of data points per mini batch
16 nact = 0; % number of already processed test data points
17 ymu = zeros(ms,1); ys2 = ymu; fmu = ymu; fs2 = ymu; lp = ymu; % allocate mem
18 while nact<ns % process minibatches of test cases to save memory
19 id = (nact+1) :min(nact+nperbatch,ns); % data points to process
20 (make predictions

21 nact = id(end); % set counter to index of last processed data point
22 end

3 if nargin<9

24 varargout = {ymu, ys2, fmu, fs2, [], post}; % assign output arguments
25 else

26 varargout = {ymu, ys2, fmu, fs2, lp, post};

27 end

In every iteration of the above loop, we compute the predictions for all test points of the batch.

(make predictions|[8)= (7)

1 kss = feval(cov{:}, hyp.cov, xs(id,:), ’diag’); % self-variance
2 if strcmp(cstr,’covFITC’) || strcmp(cstr,’apxSparse’) % cross-covariances

3 Ks = feval(cov{:}, hyp.cov, x, xs(id,:)); Ks = Ks(nz,:); ' res indep. of x
4 else

5 Ks = feval(cov{:}, hyp.cov, x(nz,:), xs(id,:)); % avoid computation

6 end

7 ms = feval(mean{:}, hyp.mean, xs(id,:));

8 N = size(alpha,2); % number of alphas (usually 1; more in case of sampling)

9 Fmu = repmat(ms,1,N) + Ks’+full(alpha(nz,:)); % conditional mean fs|f
10 fmu(id) = sum(Fmu,2)/N; % predictive means
11 if Lchol % L contains chol decomp => use Cholesky parameters (alpha,sW,L)
12 V = L’\(repmat(sW,1,length(id)).*Ks);

3 £fs2(id) = kss - sum(V.*V,1)7; % predictive variances
14 else % L is not triangular => use alternative parametrisation
15 if isnumeric(L), LKs = L*Ks; else LKs = L(Ks); end % matrix or callback
16 £fs2(id) = kss + sum(Ks.*LKs,1)’; % predictive variances
17 end
18 fs2(id) = max(fs2(id),0); % remove numerical noise i.e. negative variances
19 Fs2 = repmat(£fs2(id),1,N); % we have multiple values in case of sampling
20 if nargin<9
21 [Lp, Ymu, Ys2] = feval(lik{:},hyp.1lik,[], Fmu(:),Fs2(:));

22 else
3 Ys = repmat (ys(id),1,N);
24 [Lp, Ymu, Ys2] = feval(lik{:},hyp.lik,Y¥s(:),Fmu(:),Fs2(:));
25 end
26 1p(id) = sum(reshape(Lp, []1,N),2)/N; % log probability; sample averaging
27 ymu(id) = sum(reshape(Ymu,[],N),2)/N; % predictive mean ysl|y and
28 ys2(id) = sum(reshape(Y¥Ys2,[],N),2)/N; % .. variance

3 Inference Methods

Inference methods are responsible for computing the (approximate) posterior post, the (approxi-
mate) negative log marginal likelihood n1Z and its partial derivatives dnlZ w.r.t. the hyperparame-
ters hyp. The arguments to the function are hyperparameters hyp, mean function mean, covariance
function cov, likelihood function 1ik and training data x and y. Several inference methods are
implemented and described this section.

(infMethods.m[9)=

1 % Inference methods: Compute the (approximate) posterior for a Gaussian process.
2 % Methods currently implemented include:

3%

4 % infGaussLik Exact inference (only possible with Gaussian likelihood)

S h infLaplace Laplace’s Approximation

6 % infEP Expectation Propagation

7 % infVB Variational Bayes Approximation

8 % infKL Kullback-Leibler optimal Approximation

9 %

10 % infMCMC Markov Chain Monte Carlo and Annealed Importance Sampling

11 % We offer two samplers.

12 % - hmc: Hybrid Monte Carlo

13 % - ess: Elliptical Slice Sampling

14 7% No derivatives w.r.t. to hyperparameters are provided.

15 %

16 % infL0O Leave-0One-0ut predictive probability and Least-Squares Approxim.
17 % infPrior Perform inference with hyperparameter prior.

18 %

19 % The interface to the approximation methods is the following:
20 %

21 % function [post nlZ dnlZ] = inf..(hyp, mean, cov, lik, x, y)
22 %

23 % where:

24 %

25 % hyp is a struct of hyperparameters

26 % mean is the name of the mean function (see meanFunctions.m)

27 % cov is the name of the covariance function (see covFunctions.m)

28 % lik is the name of the likelihood function (see likFunctions.m)

29 % X is a n by D matrix of training inputs

30 % y is a (column) vector (of size n) of targets

31 %

32 % nlZ is the returned value of the negative log marginal likelihood

33 % dnlZ is a (column) vector of partial derivatives of the negative

34 % log marginal likelihood w.r.t. each hyperparameter

35 % post struct representation of the (approximate) posterior containing

36 % alpha is a (sparse or full column vector) containing inv(K)*(mu-m),

37 % where K is the prior covariance matrix, m the prior mean,

38 % and mu the approx posterior mean

39 % sW is a (sparse or full column) vector containing diagonal of sqrt (W)
40 % the approximate posterior covariance matrix is inv(inv(K)+W)

41 % L is a (sparse or full) triangular matrix, L = chol(sWxK*sW+eye(n)),
42 % or a full matrix, L = -inv(XK+inv(W)),

43 7% or a function L(A) of a matrix A such that -(K+inv(W))*L(A) = A
44 %

45 % Usually, the approximate posterior to be returned admits the form

46 % N(mu=m+K*alpha, V=inv(inv(K)+W)), where alpha is a vector and W is diagonal.
47 %

48 % For more information on the individual approximation methods and their

10

49 7 implementations, see the separate inf?7.m files. See also gp.m.
50 %
51 (gpml copyright|[5a)

Not all inference methods are compatible with all likelihood functions, e.g.. exact inference is only
possible with Gaussian likelihood. In order to perform inference, each method needs various prop-
erties of the likelihood functions, section [4}

3.1 Exact Inference with Gaussian likelihood

For Gaussian likelihoods, GP inference reduces to computing mean and covariance of a multivariate
Gaussian which can be done exactly by simple matrix algebra. The program inf/infExact.m does
exactly this. If it is called with a likelihood function other than the Gaussian, it issues an error. The
Gaussian posterior q(f/D) = N(qu, V) is exact.

(inflinfGaussLik.m |10)=
1 function [post nlZ dnlZ] = infGaussLik(hyp, mean, cov, lik, x, y, opt)

% Exact inference for a GP with Gaussian likelihood.

% likelihood and its derivatives w.r.t. the hyperparameters. The function takes
% a specified covariance function (see covFunctions.m) and likelihood function

1
2
3
4
5 % Compute a parametrization of the posterior, the negative log marginal
6
7
8 % (see likFunctions.m), and is designed to be used with gp.m.

9

YA
10 (gpml copyright|[5a)
11 %
12 % See also INFMETHODS.M, APX.M.
13
14 if nargin<7, opt = []; end % make sure parameter exists

15 if iscell(lik), likstr = 1lik{1}; else likstr = lik; end
16 if ~“ischar(likstr), likstr = func2str(likstr); end

17 if “strcmp(likstr,’likGauss’) % NOTE: no explicit call to likGauss
18 error (’Exact inference only possible with Gaussian likelihood’);

19 end

20

21 [n, D] = size(x);

22 [m,dm] = feval(mean{:}, hyp.mean, x); % evaluate mean vector and deriv
3 sn2 = exp(2*%hyp.lik); W = ones(n,1)/sn2; % noise variance of likGauss

24 K = apx(hyp,cov,x,opt); % set up covariance approximation

25 [1dB2,so0lveKiW,dW,dhyp,post.L] = K.fun(W); J obtain functionality depending on W
26
27 alpha = solveKiW(y-m);

28 post.alpha = K.P(alpha); % return the posterior parameters
29 post.sW = sqrt(W); % sqrt of noise precision vector
30 if nargout>1 % do we want the marginal likelihood?
31 nlZ = (y-m)’*alpha/2 + 1dB2 + n*log(2*pi*sn2)/2; % -log marginal likelihood
32 if nargout>2 % do we want derivatives?
33 dnlZ = dhyp(alpha); dnlZ.mean = -dm(alpha);

34 dnlZ.1lik = -sn2x(alpha’*alpha) - 2*sum(dW)/sn2 + n;

35 end

36 end

11

3.2 Laplace’s Approximation

For differentiable likelihoods, Laplace’s approximation, approximates the posterior by a Gaussian
centered at its mode and matching its curvature inf/infLaplace.m.

More concretely, the mean of the posterior q(f|D) = N(fl u, V) is — defining {;(f;) = Inp(yilfi) and
0(f) = Y i~ ti(fi) — given by

u = argmin (f), where §(f) = %(f— m) "K' (f —m) — ¢(f) = —Inlp(H)p(ylf)], (2)

which we abbreviate by u < £(£). The curvature g% = K ! +W with W;; = —aa—é Inp(yilfi)

serves as precision for the Gaussian posterior approximation V = (K—! +W)~! and the marginal
likelihood Z = [p(f)p(ylf)df is approximated by Z ~ Z o = [¢(f)df where we use the 2nd order

Taylor expansion at the mode p given by ¢(f) = ¢p(u) + %(f— WV f—pu) ~ ¢(f).

Laplace’s approximation needs derivatives up to third order for the mode fitting procedure (Newton

method)
k

0
dk 6fk ng(y|)a O>) 33

and
Kk

0 0
dk 691 afk ng(y‘f)a k O’)

evaluated at the latent location f and observed value y. The likelihood calls (see section
e [d0, d1, d2, d3] = lik(hyp, y, £, [1, ’infLaplace’)

and
e [d0, di, d2] = lik(hyp, y, £, [J, ’infLaplace’, i)

return exactly these values.

3.3 Expectation Propagation

The basic idea of Expectation Propagation (EP) as implemented in inf/infEP.m. is to replace the
non-Gaussian likelihood terms p(yi|fi) by Gaussian functions t(fi; vi, Ti) = exp(vifi — %Tifiz) and
to adjust the natural parameters vi, T; such that the following identity holds:

1 1

[Peamstn wirvimdr = S [fq it -plusinds, k=12
Ly Ly

with the so-called cavity distributions q—(f) = N(flm, K) [T .; t(fj; vj, T5) o< N(flu, V) /t(fi; vi, i)
equal to the posterior divided by the ith Gaussian approximation function and the two normalisers
Zii = [q_i(f) - t(fi;vi,mi)df and Z, 5 = [q—i(f) - p(yilfi)df. The moment matching corresponds
to minimising the following local KL-divergence

vi, T = argmin KL{q i (F)p(yilfi)/ Zp illq—i (Ft(fi5 v, 1) /2,4

In order to apply the moment matching steps in a numerically safe way, EP requires the deriviatives
of the expectations w.r.t. the Gaussian mean parameter p
k

:)
& = o log [PUIAN(T c2)af, k=012

12

and the ith likelihood hyperparameter p;

d =

0
f)N(flp, 0*)df
2 log [Pyl %)

which can be obtained by the likelihood calls (see section [4)
e [d0, d1, d2] = lik(hyp, y, mu, s2, ’infEP’)

and

e d = lik(hyp, y, mu, s2, ’infEP’, i).

3.4 Kullback Leibler Divergence Minimisation

Another well known approach to approximate inference implemented inf/infKL.m in attempts to
directly find the closest Gaussian q(f|D) = N(flu, V) to the exact posterior p(f|D) w.r.t. to some
proximity measure or equivalently to maximise a lower bound Z(u, V) to the marginal likelihood
Z as described in Nickisch & Rasmussen Approximations for Binary Gaussian Process Classifica-
tion, JMLR, 2008. In particular, one minimises KL (N(f|u, V)||p(f/D)) which amounts to minimising
—InZ(u, V) as defined by:

f
iz = <t [pOp0i0d = In | qif0) T piyinar
e Jq(le)l q(f('f?)df Jq(le)lnp(ylf)df::—an(u,V)

= KL (N(flu, V)IN(flm,K)) — > JN(fdM,Vu) Inp(yilfi)dfi, vii = [Vl
i=1
1

- —(tr(VK’l 1) —In VK~ 1|)

P (u m)TK ZQK H-uvn

2

where €¥U (i) = [N(filpi, vii)€i(fi)df; is the convolution of the log likelihood ¢; with the Gaus-
sian N and v = dg(V). Equivalently, one can view {X as a smoothed version of £ with univariate
smoothing kernel N.

From Challis & Barber Concave Gaussian Variational Approximations for Inference in Large Scale
Bayesian Linear Models, AISTATS, 2011 we know that the mapping (u,L) — —InZ(u,LTL) is
jointly convex whenever the likelihoods f; — P(y;|f;) are log concave. In particular, this implies that
every (Wi, si) — —% (g, s%) is jointly convex.

We use an optimisation algorithm similar to EP (section where we minimise the local KL-
divergence the other way round pi,s; = argmin, s KLIN(flp, s2)llq—i (f)p(yilfi)/Zp). This view
was brought forward by Tom Minka Convex Divergence measures and message passing, MSR-
TR, 2005. The KL minimisation constitutes a jointly convex 2d optimisation problem solved by
klmin using a scaled Newton approach which is included as a sub function in inf/infKL.m. The
smoothed likelihood €¥F(pi,vii) is implemented as a meta likelihood in 1ikKL; it uses Gaussian-
Hermite quadrature to compute the required integrals. Note that — as opposed to EP — Gaussian-
Hermite quadrature is appropriate since we integrate against the InP(y;|f;) (which can be well ap-
proximated by a polynomial) instead of P(y;|f;) itself. The algorithm is — again unlike EP — prov-
ably convergent for log-concave likelihoods (e.g. 1ikGauss, likLaplace, likSech2, likLogistic,
likPoisson) since it can be regarded as coordinate descent with guaranteed decrease in the objective
in every step. Due to the complex update computations, infKL can be quite slow although it has the
same O(n?) asymptotic complexity as EP and Laplace.

13

http://www.jmlr.org/papers/volume9/nickisch08a/nickisch08a.pdf
http://www.jmlr.org/papers/volume9/nickisch08a/nickisch08a.pdf
http://jmlr.org/proceedings/papers/v15/challis11a/challis11a.pdf
http://jmlr.org/proceedings/papers/v15/challis11a/challis11a.pdf
ftp://ftp.research.microsoft.com/pub/tr/TR-2005-173.pdf

3.5 Variational Bayes

One can drive the bounding even further by means of local quadratic lower bounds to the log like-
lihood £(f) = Inp(yl|f). Suppose that we use a super-Gaussian likelihood p(ylf) i.e. likelihoods
that can be lower bounded by Gaussians of any width w (e.g. likLaplace, 1ikT, likLogistic,
likSech?2). Formally, that means that there are b,z € R such that

p(f) =Inp(ylf —z) — bf

is symmetric and v/f — p(f) is a convex function for all f > 0. As a result, we obtain the following
exact representation of the likelihood
wf? 1

(N = Inplylf) = max <(b Py M zhm> :

which can be derived by convex duality and assuming the likelihoods to be super-Gaussian. Details
can be found in papers by Palmer et al. Variational EM Algorithms for Non-Gaussian Latent Variable
Models, NIPS, 2006 and Nickisch & Seeger Convex Variational Bayesian Inference for Large Scale
Generalized Linear Models, ICML, 2009.

The bottom line is that we can treat the variational bounding as a sequence of Laplace approxima-
tions with the “variational Bayes” log likelihood

tVB(f;) = 0(gi) + bilfi —gi), g=sgn(f—2) ©\/(f—2)2 +v+z

instead of the usual likelihood ¢(f;) = Inp(yilfi) i.e. we solve u < L£(£Y®) instead of u < £({). See
section [3.2] In the code of inf/infVB.m, the likelihood is implemented in the function 1ikVB.

At the end, the optimal value of W can be obtained analytically via w; = |[by — €'(g1)|/|gi — zil.

For the minimisation in inf/infVB.m, we use a provably convergent double loop algorithm, where in
the inner loop a nonlinear least squares problem (convex for log-concave likelihoods) is solved using
inf/infLaplace.m such that p < £(£Y®) and in the outer loop, we compute v < dg((K—! +W)~1).
The only requirement to the likelihood function is that it returns the values z and b required by the
bound which are delivered by the call (see section

e [b,z] = lik(hyp, y, [1, ga, ’>infVB’)

The negative marginal likelihood upper bound —In Zyg is obtained by integrating the prior times
the exact representation of the likelihood

_ _ hiy) ¥ 1
plylf) = glggq(ylf,v), qylf,v) = N(flv,v) exp (2 my, Y=, v=by+z
w.r.t. the latent variables f yielding
~InZyve = ~In | Nm,) T auluilfi vo)df
i=1

= —InNmlv,K+T)+ % (h(y) —w'vZ?—=1"1n 27[1/) .

3.6 Compatibility Between Inference Methods and Covariance Approximations

Another kind of approximation is needed to render an inference method scalable. We have two ap-
proximation schemes which in fact approximate the covariance to make it amenable to large number
of training data points. The following table shows the compatibility between some inference methods
and two major groups of covariance approximations we will discuss in the next two sections.

14

http://books.nips.cc/papers/files/nips18/NIPS2005_0803.pdf
http://books.nips.cc/papers/files/nips18/NIPS2005_0803.pdf
http://www.machinelearning.org/archive/icml2009/papers/296.pdf
http://www.machinelearning.org/archive/icml2009/papers/296.pdf

Exact Laplace VB EP KL, MCMC, LOO

Impl. tati
infGaussLik| infLaplace | infVB | infEP | inf{KL,MCMC,LOOF | P crmentation

Approximation \ Inference

variational free energy (VFE) v v v apxSparse, opt.s=0.0
fully independent training conditionals (FITC) v v v v apxSparse, opt.s=1.0
hybrid between VFE and FITC, s, € [0, 1] v v v apxSparse, opt.s=s0
| Kronecker/Toeplitz/BTTB grid (KISS-GP) ‘ v ‘ v | v] ‘ | apxGrid |
| State space representation ‘ v ‘ v | v [(/,ADF)] | apxState |

3.7 Sparse Covariance Approximations

One of the main problems with GP models is the high computational load for inference computations.
In a setting with n training points x, exact inference with Gaussian likelihood requires O(n?) effort;
approximations like Laplace or EP consist of a sequence of O(n?) operations.

There is a line of research with the goal to alleviate this burden by using approximate covariance
functions k instead of k. A review is given by Candela and Rasmusse One basic idea in those
approximations is to work with a set of m inducing inputs u with a reduced computational load
of O(nm?). In the following, we will provide a rough idea of the FITC approximation used in the
toolbox. Let K denote the n x n covariance matrix between the training points x, Ky the m x n
covariance matrix between the n training points and the m inducing points, and Ky, the m x m
covariance matrix between the m inducing points. The FITC approximation to the covariance is
given by

K~K=Q+G, G = diag(g), g = diag(K — Q), Q = K, Qu/ Ku, Quu = Kuu + 021,

where o, is the noise from the inducing inputs. Note that K and K have the same diagonal elements
diag(K) = diag(K); all off-diagonal elements are the same as for Q. Internally, the necessary covari-
ance evaluations are performed by a meta covariance function cov/apxSparse.m. The toolbox offers
FITC versions for regression with Gaussian likelihood inf/infGaussLik.m, as well as for Laplace’s
approximation inf/infLaplace.m.

The user can decide whether to treat the inducing inputs u as fixed or as hyperparameters. The latter

allows to adjust the inducing inputs u w.r.t. the marginal likelihood. As detailed in the documentation

of inf/apx.m, u is treated as fixed if it is passed as the 2nd parameter of apxSparse(cov,xu,..). If

the hyperparameter structure hyp contains a field hyp . xu in inference method calls such as infGaussLik (hyp, . .)
or inference/prediction calls like gp (hyp,@infGaussLik, ..) the inducing inputs u are treated as hy-
perparameters and can be optimised. See doc/demoSparse.m for an illustration.

3.8 Grid-Based Covariance Approximations

Another way to bring down computational costs is to take advantage of grid structure x. For exam-
ple, in geostatistics or image processing, the training data x € R™*P could be a complete 2d lattice
of size ny; x n, as given by the axes g € R™, g, € R™ so thatn = N =nq -ny, D = 2 and
X = [Vec(gllT),Vec(lng)]. In general, a p-dimensional grid U € RNXP is specified by a set of axis
matrices {g; € RniXDi’}i:1“p so that N =]_[Ll niand D = Zzzl D; where the axes do not need
to be 1d nor do their components need to be sorted. As a consequence, U represents a Cartesian
product of its axes U = g; X g x .. x gp. The cov/apxGrid.m covariance function represents a
Kronecker product covariance matrix

KU,U:Kp®--®K2®K1

whose factorisation structure is given by the grid x4. The gain in computationial efficiency is due to

the fact that matrix-vector product, determinant, inverse and eigenvalue computations decompose

so that many operations with an overall cost of O(N3) now only cost (‘)(Zzzl nf).

A Unifying View of Sparse Approximate Gaussian Process Regression, JMLR, 2005

15

http://www.jmlr.org/papers/volume6/quinonero-candela05a/quinonero-candela05a.pdf

For off-grid data points, we can still take advantage of the computational properties of a grid-based
covariance matrix Ky y via the structured kernel interpolation (SKI) framework aka KISS-GP by
Wilson and Nickisch?| with extensions’} Here, the n x n covariance K is obtained from the N x N
grid covariance Ky y by interpolation K ~ WXKU,UW)T(, where Ky y is a covariance matrix formed
by evaluating the user-specified kernel over a set of latent inducing inputs U, with locations that
have been chosen to create algebraic structure in Ky,y that we can exploit for efficiency. Here, the
interpolation matrix Wy € R™*N is extremely sparse; i.e., for local cubic interpolation Wx contains
only 4P nonzeros per row, where D is the diata dimension. In addition Wx is row-normalised
1, = Wx1y. The structure in Ky y alongside the sparsity of Wx, allows for very fast MVMs with
the SKI approximate covariance matrix K over the inputs x enabling fast inference and prediction.

Internally, we use a meta covariance function cov/apxGrid.m to represent the Kronecker covariance
matrix and a Gaussian regression inference method inf/infGaussLik.m. We also support incomplete
grids where n < N. A good starting point is Yunus Saatgi’s PhD thesi For incomplete grids, we use
the interpolation-based extensions by Wilson et al where conjugate gradients and a determinant
approximations are used. See doc/demoGridid.m and doc/demoGrid2d.m for an illustration. We
also offer non-Gaussian likelihoods as described by Seth Flaxman®|so that inf/infLaplace.m can
be used.

3.9 State Space Representation of GPs

GP models with covariance functions with a Markovian structure can be transformed into equivalent
discrete state space models where inference can be done in linear time O(n). Exact models can be
derived for sum, product, linear, noise, constant, Matérn (half-integer), Ornstein—-Uhlenbeck, and
Wiener covariance functions. Other common covariance functions can be approximated by their
Markovian counterparts, including squared exponential, rational quadratic, and periodic covariance
functions.

A state space model describes the evolution of a dynamical system at different time instances t;, i =
1,2,... by
fi ~ P(filfi1), yi ~Plyilfi),

where f; := f(t;) € R¢ and fy, ~ P(fy) with f; being the latent (hidden/unobserved) variable and y;
being the observed variable. In continuous time, a simple dynamical system able to represent many
covariance functions is given by the following linear time-invariant stochastic differential equation:

f(t) =Ff(t) + Lw(t), yi=HIf(ti) + ey,

where w(t) is an s-dimensional white noise process, the measurement noise €; ~ N(0, 02,) is Gaus-
sian, and F € R4*4 L € R4%s H € R4 are the feedback, noise effect, and measurement matrices,
respectively. The initial state is distributed according to fo ~ N(0,Py).

The latent GP is recovered by f(t) = Hf(t) and w(t) € R® is a multivariate white noise process with
spectral density matrix Q. € R***, For discrete values, this translates into

fi ~N(A_1fi-1,Qi-1), yi ~P(yiHLEy),

ZKernel Interpolation for Scalable Structured Gaussian Processes, ICML, 2015

3Thoughts on Massively Scalable Gaussian Processes, TR, 2015.

4Scalable Inference for Structured Gaussian Process Models, University of Cambridge, 2011
SFast Kernel Learning for Multidimensional Pattern Extrapolation, NIPS, 2014

®Fast Kronecker inference in Gaussian processes with non-Gaussian likelihoods, ICML, 2015

16

http://jmlr.org/proceedings/papers/v37/wilson15.pdf
https://arxiv.org/abs/1511.01870
http://mlg.eng.cam.ac.uk/pub/pdf/Saa11.pdf
http://papers.nips.cc/paper/5372-fast-kernel-learning-for-multidimensional-pattern-extrapolation.pdf
http://www.cs.cmu.edu/~andrewgw/pattern/index.html#Poisson

Algorithm 1 Kalman (forward) filtering.

Input: {ti},y
{Ai}, {Qi}, H, P
W.b
fori=1tondo
if i == 1 then
my < 0; Pi — P()
else
m; < Aymi_q; Py «+ AP AT +Q;
end if
if has label y; then
e < Hmi; u<+ P;HT; cr% + Hu
Zi Wﬁ()'% +1
ki — Wiiu/zi; P; + Py — kiuT
ci «+ Wiins — bi; my < my —uci/z;
end if
end for
log det(I + W2KW2) > ilogz;

training inputs and targets

state space model

likelihood eff. precision and location
init

predict

latent

variance
mean

Algorithm 2 Rauch-Tung-Striebel (backward) smoothing.

Input: {m}, {Pi}
{Ai}, {Qi}
for i = n down to 2 do
m < Aimi,“ P+ AiPiflAiT + Qi
G; « Pi_lAIP*% Am;_q + Gi{(m; —m)
P 1+ P 1+G(P;— P)G;r
mi 1 < my 1 +Am;
end for

Kalman filter output
state space model

predict

variance
mean

with fg ~ N(0,Pg). The discrete-time matrices are

A; = A[AY] = eAHF

Aty
Qi _ J' e(Atk—T)FLQC LTe(
0

where Aty =t;,1 —t; > 0.

_\ET
Ati—71)F dT,

For stationary covariances k(t,t’) = k(t — t’), the stationary state is distributed by f,, ~ N(0,Ps)
and the stationary covariance can be found by solving the Lyapunov equation

Po =FPy +P F' +LQ.L" =0,

which leads to the identity Q; = Ps, — A Poo AI .

In practice, the evaluation of the n discrete-time transition matrices A; = e

AtF and the noise co-

variance matrices Q; (in the stationary case) for different values of At; is a computational challenge.
Since the matrix exponential \ : s — eX is smooth, its evaluation can be accurately approximated
by convolution interpolation.

From the discrete set of matrices, all the necessary computations can be done using Kalman filtering
and Kalman smoothing as detailed in Algorithms|1|and

Internally, we use a meta covariance function cov/apxState.m to represent the state space represen-

17

tation. A good starting point is Arno Solin’s PhD thesi See doc/demoState.m for an illustration.
We also offer non-Gaussian likelihoods Iﬂ so that inf/inflLaplace.m and inf/infVB.m can be used.
EP is not fully functional; we offer single-sweep EP aka assumed density filtering (ADF).

7Stochastic Differential Equation Methods for Spatio-Temporal Gaussian Process Regression, Aalto University, 2016
8State Space Gaussian Processes with Non-Gaussian Likelihood, ICML, 2018

18

https://aaltodoc.aalto.fi/handle/123456789/19842
https://arxiv.org/abs/1802.04846

4 Likelihood Functions

A likelihood function p,(ylf) (with hyperparameters p) is a conditional density [p,(ylf)dy = 1
defined for scalar latent function values f and outputs y. In the GPML toolbox, we use iid. likelihoods
Po(ylf) = [TiL, P (yilfi). The approximate inference engine does not explicitly distinguish between
classification and regression likelihoods: it is fully generic in the likelihood allowing to use a single
code in the inference step.

Likelihood functionality is needed both during inference and while predicting.

4.1 Prediction

A prediction at x, conditioned on the data D = (X,y) (as implemented in gp.m) consists of the

predictive mean p,,, and variance Gi* which are computed from the the latent marginal moments
2

ir,, 0f i.e. the Gaussian marginal approximation N(f.|u,, 0'%*) via
PIDx) = [Pyt Ip(EID xR ~ [Pl If N lur., o,)df.. 3)

The moments are given by py, = [y.p(y«|D,x,)dy. and U%J* = [(y+ — 1y,)*p(y«D,x,)dy.. The
likelihood call

* [1p,ymu,ys2] = lik(hyp, [1, fmu, £s2)
does exactly this. Evaluation of the logarithm of py, = p(y«|D, x,) for values y. can be done via
e [1p,ymu,ys2] = lik(hyp, y, fmu, fs2)

where 1p contains the number Inp,,.

Using the moments of the likelihood 1(f.) = [Yup(y«lfi)dy« and 02 (f.) = [(yu—p(f:))*p(ylfi)dy.
we obtain for the predictive moments the following (exact) expressions

ty. = [W(EIPIEID,x.)dr., and

oy, = J [Uz(f*) + (r(fs) — Hy*)z] P(filD,x,)df..

1. The binary case is simple since y, € {—1,+1}and 1 =py, + p_y,. Using 7, =p1, we find

Tk Y« :+1
Py. =
1—m, y.,=-1

by, = Y uplDix)=2-m —1el-11), and
y.==1

oy, = > e =y)?pyudD,x) =4 (1 —m) € (0,1,
y.==1

2. The continuous case for homoscedastic likelihoods depending on 1. =y, — f, only and having
noise variance o2(f,) = o2 is also simple since the identity p(y.|f.) = p(y« — f+|0) allows to
substitute Yy, < Y. +T, yielding u(f.) = f.+ [y.p(y«0)dy. and assuming [y.p(y./0)dy. =0
we arrive at

My, = MKr,, and
2 _ 2
oy, = O0f + cr%1

19

3. The generalised linear model (GLM) case is also feasible. Evaluation of the predictive distribu-

Py.

}‘Ly *

2
O'y*

tion is done by quadrature

— | Pyl IP(E D XA = [ply N s, o2,).

For GLMs the mean is given by u(f.) = g(f.) and the variance is usually given by a simple
function of the mean o?(f,) = v(g(f.)), hence we use Gaussian-Hermite quadrature with
N(fulpe,, cr%*) ~ p(f«|D,x,) to compute

_ Jg(f*)p(f*w,x*)df*, and

= | [A9150) + (9(7) = 1y 2] PUEID, x)aEs Vi,).

Finally the warped Gaussian likelihood predicitive distribution with strictly monotonically in-
creasing warping function g is given by the expression

P(y.ID,x.) = oy IN (glyolur., o + 2,

so that the predictive moments can be computed by Gaussian-Hermite quadrature.

In the following, we will detail how and which likelihood functions are implemented in the GPML
toolbox. Further, we will mention dependencies between likelihoods and inference methods and
provide some analytical expressions in addition to some likelihood implementations.

4.2 Interface

The likelihoods are in fact the most challenging object in our implementation. Different inference
algorithms require different aspects of the likelihood to be computed, therefore the interface is rather
involved as detailed below.

(likFunctions.m[19)=

% likelihood functions are provided to be used by the gp.m function:

1
2
3
4
S
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

likErf
likLogistic
1ikUni

likGauss

likGaussWarp

1likGumbel
likLaplace
likSech2
1ikT

likPoisson
likNegBinom
1likGamma
1ikExp
1likInvGauss
likBeta

1ikMix

(Error function, classification, probit regression)
(Logistic, classification, logit regression)
(Uniform likelihood, classification)

(Gaussian, regression)

(Warped Gaussian, regression)

(Gumbel likelihood for extremal values)
(Laplacian or double exponential, regression)
(Sech-square, regression)

(Student’s t, regression)

(Poisson regression, count data)

(Negativ binomial regression, count data)
(Nonnegative regression, positive data)
(Nonnegative regression, positive data)
(Nonnegative regression, positive data)
(Beta regression, interval data)

(Mixture of individual likelihood functions)

20

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

A
YA
A
b
b
A
YA
YA
YA
b
%
A
YA
b
b
)
%
YA
YA
b
)
%
A
YA
b
b
%
%
YA
YA
b
b
%
A
YA
b
)
%
A
A
YA
b
%
A
A
YA
A
b
%
YA
YA
YA
b
%
YA
pA
yA
Y.

The likelihood functions have three possible modes, the mode being selected
as follows (where "lik" stands for any likelihood function in "1lik/lik*.m".):

1) With one or no input arguments: [REPORT NUMBER OF HYPERPARAMETERS]
s = lik OR s = lik(hyp)

The likelihood function returns a string telling how many hyperparameters it
expects, using the convention that "D" is the dimension of the input space.
For example, calling "likLogistic" returns the string ’0°.

2) With three or four input arguments: [PREDICTION MODE]
lp = lik(hyp, y, mu) OR [lp, ymu, ys2] = lik(hyp, y, mu, s2)

This allows to evaluate the predictive distribution. Let p(y_*|f_x*) be the
likelihood of a test point and N(f_*|mu,s2) an approximation to the posterior
marginal p(f_*|x_*,x,y) as returned by an inference method. The predictive
distribution p(y_*|x_*,x,y) is approximated by.

q(y_*) = \int N(f_*|mu,s2) p(y_*x|£f_*) df_x

lp = log(q(y)) for a particular value of y, if s2 is [] or 0, this
corresponds to log(p(ylmu))
ymu and ys2 the mean and variance of the predictive marginal q(y)
note that these two numbers do not depend on a particular
value of y
All vectors have the same size.

3) With five or six input arguments, the fifth being a string [INFERENCE MODE]

[varargout] = lik(hyp, y, mu, s2, inf) OR
[varargout] lik (hyp, y, mu, s2, inf, i)

There are three cases for inf, namely a) infLaplace, b) infEP and c) infVB.
The last input i, refers to derivatives w.r.t. the ith hyperparameter.

al) [1lp,dlp,d21lp,d3lp] = lik(hyp, y, £, [], ’infLaplace’)
lp, dlp, d2lp and d3lp correspond to derivatives of the log likelihood
log(p(ylf)) w.r.t. to the latent location f.
1p log(p(ylf))
dlp = d log(p(ylf)) / df
d21p = d~2 log(p(ylf)) / df~2
d31lp = d~3 log(p(ylf)) / df-3

a2) [lp_dhyp,dlp_dhyp,d2lp_dhyp] = lik(hyp, y, f, [], ’infLaplace’, i)
returns derivatives w.r.t. to the ith hyperparameter
lp_dhyp = d log(p(ylf)) / (dhyp_i)
dlp_dhyp = d°2 log(p(ylf)) / (df dhyp_i)
d21p_dhyp d~3 log(p(ylf)) / (df~2 dhyp_i)

b1) [1Z,d1Z,d21Z] = lik(hyp, y, mu, s2, ’infEP’)
let Z = \int p(ylf) N(flmu,s2) df then
1Z = log(Z)
dlz = d log(Z) / dmu
d21Z = d°2 log(Z) / dmu~2

21

81
82

~
J

84
85
86
87
88
89
90
91
92

-
J

94
95
96
97
98
99
100
101
102

b2) [dlZhyp]l =
returns derivatives w.r.t.
dlZhyp = d log(Z) / dhyp_i

lik (hyp, y, mu, s2, ’infEP’, i)
to the ith hyperparameter

c1) [b,z] = lik(hyp, y, [1, ga, ’infVB’)

ga is the variance of a Gaussian lower bound to the likelihood p(ylf).
p(ylf) \ge exp(bx(f+z) - (f+z)."2/(2*xga) - h(ga)/2) \propto N(f|b*ga-z,ga)

The function returns the linear part b and z.

Therefore,

Cumulative likelihoods are designed for binary classification. they

only look at the sign of the targets y; zero values are treated as +1.

Some examples for valid likelihood functions:

yA lik = @likLogistic;
% lik = {’1ikMix’,{’1ikUni’,@likErf}}
% lik = {@likPoisson,’logistic’};

See the help for the individual likelihood for the computations specific to
each likelihood function.

103 <gpml copyright|[5a)

4.3 Implemented Likelihood Functions

The following table enumerates all (currently) implemented likelihood functions that can be found
at 1ik/1ik<NAME>.m and their respective set of hyperparameters p.

1ik<NAME> | regression yi € R Po(yilfi) = p=
Gauss Gaussian N(yilfi, 02) = \/17:0 exp (y‘z?;i)z) {ln o}
GaussWarp Warped Gaussian N(ge,(yi)lfi, o)gé(i) {61,..,0n,,In0}
7T . — s-mt(yi—fi)
Gumbel Gumbel aiw€(a ez);—y+ 3 ,Isl=1 | {lno}
Sech?2 Sech-squared e R’ Ve {ln o}
Laplace Laplacian % exp —‘y‘b%f"l b= {ln o}
, re) (i) T
T Student’s t r(%) AT (1 +) {In(v —1),In o}
1ik<NAME> classification y; € {1} oyilfi) = p=
Erf Error function fy‘oi‘ N(t)d 0
Logistic Logistic function 1+exp(]—y-lf-l) 0
Uni Label noise 5 0
1ik<NAME> count datay; € N Pol(yilfi) = where 1 = g(fi) p=
Poisson Poisson pYie M /y;! 0
NegBinom Negative Binomial (y";r;])rr pYi/(r 4 p)rti {InT}
1ik<NAME> | nonnegative data yi € R \{0} | pp(yilfi) = where p = g(f;) p=
Weibull Weibull, vy = T(1+1/k) | ky1/p (yive/m)* " exp (—(yivi/w)*) {In «}
Gamma Gamma a??&) w%exp (—%‘X {In o}
Exp Exponential uexp (f%f) 0
InvGauss Inverse Gaussian 1/Zéf,exp (‘4%3%323) {In A}
1ik<NAME> | interval data y; € [0, 1] Polyilfi) = where 1 = g(fi) p=
Beta Beta r(uqml:((((b) y{“b ' —yq) It {In ¢}
Composite likelihood functions [p1(yilfi), p1(yilfi), . — pp(yllfl)
Mix Mixture ‘ > %p; (yilfi) {Inq,Inay,..}

22

22

4.4 Usage of Implemented Likelihood Functions

Some code examples taken from doc/usageLik.m illustrate how to use simple and composite likeli-
hood functions to specify a GP model.

Syntactically, a likelihood function 1£ is defined by
1k := ’func’ | @func // simple

1f := {1k} | {param, 1k} | {1k, {1k, .., 1k}} // composite
i.e., it is either a string containing the name of a likelihood function, a pointer to a likelihood function
or one of the former in combination with a cell array of likelihood functions and an additional list
of parameters.

(doclusageLik.m2)=
1 % demonstrate usage of likelihood functions

2%

3 % See also likFunctions.m.

)

(gpml copyright|[sa)

6 clear all, close all

7n =5; f = randn(n,1); % create random latent function values
8

9 % set up simple classification likelihood functions

10 yc = sign(£);

[SL RN

11 1c0 = {’1ikErf’}; hypcO = []; % no hyperparameters are needed
12 1c1 = {@likLogistic}; hypcl = []; % also function handles are 0K
13 1c2 = {’1ikUni’}; hypc2 = [1;

14 1c3 = {’1ikMix’,{’1ikUni’ ,Q@likErf}}; hypc3 = log([1;2]); Ymixture
15

16 % set up simple regression likelihood functions
17 yr = £ + randn(n,1)/20;
18 sn = 0.1; % noise standard deviation

19 1r0 = {’1likGauss’}; hyprO = log(sn);

20 1r1 = {’likLaplace’}; hyprl = log(sn);

21 1r2 = {’1ikSech2’}; hypr2 = log(sn);

22 nu = 4; % number of degrees of freedom
3 1r3 = {’1ikT’}; hypr3 = [log(nu-1); log(sn)];

24 1r4 = {’1ikMix’,{1r0,1r1}}; hypr4 = [log([1,2]);hyprO;hypril;
25

26 a = 1; % set up warped Gaussian with g(y) = y + a*sign(y).*y." 2

27 1rb = {’likGaussWarp’,[’poly2’]}; hypr5 = log(la;snl);

28 1r6 = {’1likGumbel’,’+’}; hypr6 = log(sn);

29

G
o

% set up Poisson/negative binomial regression
yp = fix(abs(f)) + 1;

[OV)
—_

32 1p0 = {@likPoisson,’logistic’}; hyppO = [1;

33 1p1 = {@likPoisson,{’logistic2’,0.1}}; hyppl = [];

34 1p2 = {@likPoisson,’exp’}; hypp2 = [];

35 1nl = {@likNegBinom,’logistic2’}; hypnl = [];

36

37 % set up other GLM likelihoods for positive or interval regression

38 1gl = {@likGamma,’logistic’}; al = 2; hyp.lik = log(al);
39 1g2 = {@likInvGauss,’exp’}; lam = 1.1; hyp.lik = log(lam);
40 1g3 = {@likBeta,’expexp’}; phi = 2.1; hyp.lik = log(phi);
41 1g4 = {@likBeta,’logit’}; phi = 4.7; hyp.lik = log(phi);
42 1gb = {@likWeibull,{’logistic2’,0.01}}; ka = 0.5; hyp.lik = log(ka);

(O8]

44 % 0) specify the likelihood function

23

45 1ik = 1c0; hyp = hypcO; y = yc;
46 % 1lik = 1lr4; hyp = hyprd; y = yr;
47 % lik = 1pl; hyp = hyppl; y = yp;
48
49 % 1) query the number of parameters
50 feval(lik{:})
51
52 % 2) evaluate the likelihood function on f
53 exp(feval (1ik{:},hyp,y,f))
54
55 % 3a) evaluate derivatives of the likelihood
56 [1p,dlp,d21p,d3lp] = feval(lik{:}, hyp, y, £, [], ’inflLaplace’);
57
58 % 3b) compute Gaussian integrals w.r.t. likelihood
59 mu = £f; s2 = rand(n,1);
60 [1Z,d1Z,d21Z] = feval(lik{:}, hyp, y, mu, s2, ’infEP’);
61
62 % 3c) obtain lower bound on likelihood
3 ga = rand(n,1);
64 [b,z] = feval(lik{:}, hyp, y, [1, ga, ’infVB’);

4.5 Compatibility Between Likelihoods and Inference Methods

The following table lists all possible combinations of likelihood function and inference methods.

Likelihood \ Inference Gau§51an Laplace | VB EP | KL | MCMC LOO Type, Output Domain | Alternative Names
Likelihood
approx. cov. possible, Tabld3.6]| no approx. cov. possible, Tabld3.6|
Gaussian v v v v v v v regression, R
Warped Gaussian v v v v v v regression, R
Gumbel v v v v regression, R
Sech-squared v v v v v v regression, R logistic distribution
Laplacian v v v v v v regression, R double exponential
Student’s t v v v v v regression, R
‘ Mixture ‘ v ‘ ‘ v ‘ v ‘ v ‘ v ‘ ‘ mixing meta likelihood ‘
Error function v v v v v classification, {1} probit regression
Logistic function v v v v v v classification, {1} logit regression
Uniform v v v v v v classification, {+-1} label noise
Weibull v v v positive data, R4 \{0} | nonnegative regression
Gamma v v v positive data, R \{0} | nonnegative regression
Exp v v v positive data, R;\{0} | nonnegative regression
Inverse Gaussian v v v positive data, R4 \{0} | nonnegative regression
Poisson v V)| v v v count data, N Poisson regression
Negative Binomial v v v count data, N negative binomial regression
Beta v v v interval data, [0, 1] beta regression

(v')* EP might not converge in some cases since quadrature is used.

Exact inference is only tractable for Gaussian likelihoods. Expectation propagation together with
Student’s t likelihood is inherently unstable due to non-log-concavity. Laplace’s approximation for
Laplace likelihoods is not sensible because at the mode the curvature and the gradient is undefined
due to the non-differentiable peak of the Laplace distribution. Special care has been taken for the
non-convex optimisation problem imposed by the combination Student’s t likelihood and Laplace’s
approximation.

4.6 Gaussian Likelihood

The Gaussian likelihood is the simplest likelihood because the posterior distribution is not only
Gaussian but can be computed analytically. In principle, the Gaussian likelihood would only be

24

operated in conjunction with the exact inference method but we chose to provide compatibility with
all other inference algorithms as well because it enables code testing and allows to switch between
different regression likelihoods very easily.

(lik/lik Gauss.m p4a)=

1 function [varargout] = likGauss(hyp, y, mu, s2, inf, i)

2

3 % likGauss - Gaussian likelihood function for regression. The expression for the
4 % likelihood is

S h likGauss(t) = exp(-(t-y)~2/2*sn"~2) / sqrt(2%pi*sn~2),

6 % where y is the mean and sn is the standard deviation.

7 h

8 % The hyperparameters are:

9 %

10 % hyp = [log(sn)]

11 %

12 % Several modes are provided, for computing likelihoods, derivatives and moments
13 % respectively, see likFunctions.m for the details. In general, care is taken

14 % to avoid numerical issues when the arguments are extreme.

15 %

16 (gpml copyright|[sa)

17 %

18 % See also LIKFUNCTIONS.M.

19
20 if nargin<3, varargout = {’1’}; return; end % report number of hyperparameters
21
22 sn2 = exp(2xhyp);
23
24 if nargin<5b % prediction mode if inf is not present
25 (Prediction with Gaussian likelibood [24b)
26 else
27 switch inf
28 case ’inflLaplace’
29 (Laplace’s method with Gaussian likelihood

30 case ’infEP’

31 (EP inference with Gaussian likelibood [25b)

32 case ’infVB’

33 (Variational Bayes inference with Gaussian likelibood

34 end

35 end

(Prediction with Gaussian likelibood p4b)=

@i N W~

SR O

11
12
13
14
15

if isempty(y), y = zeros(size(mu)); end

s2zero = 1; if nargin>3&&numel (s2)>0&&norm(s2)>eps,

if s2zero
lp = -(y-mu)."2./sn2/2-log(2*pi*sn2)/2; s2 = 0;
else
lp = likGauss(hyp, y, mu, s2, ’infEP’);
end
ymu = {}; ys2 = {};
if nargout>1

ymu = mu;
if nargout>2
ys2 = 82 + sn2;
end
end
varargout = {lp,ymu,ys2};

25

(24a)

s2zero = 0; end Y s2==0 7

% log probability

% prediction

% first y moment

% second y moment

The Gaussian likelihood function has a single hyperparameter p, the log of the noise standard devia-
tion Op.

4.6.1 Exact Inference

Exact inference doesn’t require any specific likelihood related code; all computations are done directly

by the inference method, section 3.1}

4.6.2 Laplace’s Approximation

23d (Laplace’s method with Gaussian likelihood p5a)= (24a)
1 if nargin<6 % no derivative mode
2 if isempty(y), y=0; end
3 ymmu = y-mu; dlp = {}; d2lp = {}; d31lp = {};
4 1p = -ymmu."2/(2*sn2) - log(2*pi*sn2)/2;
S if nargout>1
6 dlp = ymmu/sn2; % dlp, derivative of log likelihood
7 if nargout>2 % d21p, 2nd derivative of log likelihood
8 d21p = -ones(size(ymmu))/sn2;
9 if nargout>3 % d3lp, 3rd derivative of log likelihood
10 d31lp = zeros(size(ymmu));
11 end
12 end
13 end
14 varargout = {lp,dlp,d2lp,d3lp};
15 else % derivative mode
16 1lp_dhyp = (y-mu)."2/sn2 - 1; 7% derivative of log likelihood w.r.t. hypers
17 dlp_dhyp = 2*(mu-y)/sn2; % first derivative,
18 d2lp_dhyp = 2*ones(size(mu))/sn2; % and also of the second mu derivative
19 varargout = {lp_dhyp,dlp_dhyp,d2lp_dhyp};
20 end

4.6.3 Expectation Propagation

230 (EP inference with Gaussian likelihood 25b)= (24a)
1 if nargin<6 % no derivative mode
2 1Z = -(y-mu)."~2./(sn2+s2)/2 - log(2*pix*(sn2+s2))/2; % log part function
3 dlz = {}; d21Z = {};
4 if nargout>1
S dlZ = (y-mu)./(sn2+s2); % 1lst derivative w.r.t. mean
6 if nargout>2
7 d21Z = -1./(sn2+s2); % 2nd derivative w.r.t. mean
8 end
9 end
10 varargout = {1Z,d1Z,d21Z};
11 else % derivative mode
12 dlZhyp = ((y-mu).~2./(sn2+s2)-1) ./ (1+s2./sn2); % deriv. w.r.t. hyp.lik
13 varargout = {dlZhyp};

14 end

4.6.4 Variational Bayes
25d (Variational Bayes inference with Gaussian likelihood 25d)= (24a)

26

% variational lower site bound

% t(s) = exp(-(y-s)~2/2sn2)/sqrt(2*pi*sn2)

% the bound has the form: (b+z/ga)*f - £.72/(2*xga) - h(ga)/2
n = numel(s2); b = zeros(n,1); y = y.*ones(n,1); z = y;
varargout = {b,z};

@DV AWM =

4.7 Warped Gaussian Likelihood

Starting from the likelihood p(y|f) we are sometimes facing the situation where the datay € Y C R
is not distributed according to p(y|f) but some nonlinear transformation of the data g(y) = z so
that z ~ p(z|f). Here, the warping function g : Y — R needs to be strictly monotonically increasing
i.e. g’(y) > 0. Formally, we start from the fact that p(z|f) integrates to one and use the derivative
dz = ¢g’(y)dy to substitute

JP(ZIf)dz =1= Jpg(ylf)dy, Peylf) =plg(y)ifig’(y)

where we have defined the log warped likelihood Inpg(ylf) = Inp(g(y)If) +1In g’(y). The interesting
bit is that approximate inference methods such as infExact, infLaplace, infEP, infVB, infKL re-
main fully feasible; only prediction and derivatives become more involved. The usual GP inference is
recovered by using the identity warping function g : y — y. The construction works in princple for
any likelihood but our implementation in 1ikGaussWarp is limited to the Gaussian likelihood.

Hyperparameter derivatives

Hyperparameter derivatives for infLaplace are obtained as follows

o . ok d . ok d ok
%lnﬁpg(ylf) = %lngp(g(y)lfH%ﬁlng’(U),k=0,1,2

Similarly for infEP the derivatives are given by

0 0

510 [PalnN (i, o2)dr = in [ploly)iNIN(TIa, o2)df +) Ing(y)

6}

0
_ —aulnjp(g(yﬂf)?\f(fu, 0?)df~-g(y) + = Ing'(y).

0
fi

207
This trick above works for any homoscedastic likelihood where p(y|f) = p(y + BIf + B) such as
1likGauss, likLaplace, 1ikSech2 and 1ikT.

Predictive moments
As detailed in {4} the predictive distribution is — for Gaussian likelihood — given by

PEIDx) = | plafp(fID,x)df, = [Nlzulf AN lur., o)df.

= N(zylus,, 0% + cr%*), where z, = g(y.)

P(y*m,x*) = gl(y*)N(g(y*”Mf*s 0-%1 + 012‘*)'

27

Hence, the predictive moments are obtained by the 1d integrals
My, = | Y«g (UIN(glys)lns,, 07 + 0F,)dy.

= gil(z*)N(Z*”Lf*a 0_%1 + U%*)dl*, and

op, = |(s —1y)?9" (W IN(g(y)lns,, of + 07,)dy.

= (9—1(Z*) o Uy*)ZN(Z*mf*; 0-%1 + O']Zc*)dz,*.

4.8 Gumbel Likelihood

Distributions of extrema are well captured by the Gumbel distribution

ply) = éexp (—z— e*Z) ,zZ= s?, s € {£1}

with mean u = n + By and variance 02 = m2p2/6 where vy = 0.57721566490153 denotes Eu-
ler—-Mascheroni’s constant. Skewness is approximately given by 1.1395s where s is a sign switching

between left and right skewness and kurtosis is 12/5. The final expression for the Gumbel likelihood
is

n —zy Ty —
p(ylf)—r\@eXp(—z—e),Z—v+sm/g(y f), s € {£1).

4.9 Laplace Likelihood
Laplace’s Approximation

The following derivatives are needed:

Inplylf) = —In(2p) =Y
dlnp sign(f —y)
of b
?mlnp lnp o3 Inp 0
(0f)2 (0f)3 (0lnoyn)(0f)?
dlnp |f—yl
dlne, = b

Expectation Propagation

Expectation propagation requires integration against a Gaussian measure for moment matching.

We need to evaluate InZ = In [L(ylf, 02)N(flu, 0?)df as well as the derivatives aénuz and agl}szz

where N(fly, 0?) = \/ﬁexp (—”2_;)2), L(ylf, 0%) = 5% exp (_be%ﬂ), and b = % As a first

28

step, we reduce the number of parameters by means of the substitution f = yleldmg
Z = | elyit, RN, o?)dr
1 V2 (f — w? [f—yl
_ _ —V2 df
V2mo20n JCXP (20° =P \/> On
V2 (O—n]z +y— H)z :
_ _onTHY — W —V2If)) df
20V2m Jexp (20? > P (V2 |>

2

2 (f_ By

= GnJexp —Gn <f o) £(f]0, 1)df
oon V2T 202

= ;Jﬁ(flo,l)N(flﬁ,Gz)df

n

mz — an—lnGn:anL(fIO,l) (Flit, 52)df — In oy,

with fi = ¥-% and & = . Thus, we concentrate on the simpler quantity In Z.

C

A N
InZ = In exp(—(fztL flf)df—lncr\ﬁ Inv20n

0 = 0 i
= In exp(—(f) —i—ff)df—i—J' exp (f \Ff df| +C

J—oo 262

B m_
-0 2 a(rm2 ~2 ~2
= In exp (f 2+ VI + df+ exp (Zgzﬁ)f—i_ a) df| +C
0 2 2 ~2
(f—m_) m f—my)
Joo exp (—202 df + eXp 52 exp 262+ df| — 752 +C

m-
= In |exp 752
m 0 0 i2
= In exp< _) N(flm_, &)df+exp< > (Nf|m+,~2)df>] 262_111\66“
0

2
m_ mi
(D< 6)—exp<262>® +exp<2 2)} —Inv20,
Here, ®(z f N(f|0, 1)df denotes the cumulative Gaussian distribution. Finally, we have
_ e 52 _
Inz = ln[exp(fu) ()—i—exp(\ﬁu) < 6)}4—0 In V20,
= Inlexp | In®(—zy) + V2| +exp | In®(z_) — V2 | | + 6> —InV20n

at a_

= In(e®™ +e%)+ —InV20n

wherez, = & +5v2 =14 4 © ﬁzf—% V2=t - C\Dand i=EY 5= 2.
Now, using o In®@(z) = @%z) d%CD(z) % g—g we tackle first derivative

29

eq+ aaClP:r + eq7 oa_

aai
op

as well as the second derivative

2InZ
op?

i eaiaai

ou ou
62a+
op?

o%a_

62 a+
op?

which can be simplified to

9%Inz

op
et 4 ea-

iln(D(—z+)+Q
ou On

N(—z4) V2 qr , V2
e Lin A
o®(—z,) on o On
il @(Z_)—Q
op On

Nez) V2 4 V2
o®(z.) on © On
4x, V2

o On

(e 8) (%) (o

1 N(—z4)D(—z4)

ed+ 4 e op

et oayt 2 4 azai
ou op?

%N(*ZH(D(*ZH - a%L(D(*ZJr)N(*ZH
D2 (—z4)

0—22/2 o9—
22 N2 (—z,) 05
D2 (—z4)

1Nz () 222 — N2(z) %

N(—z4)) O(—zy)zy —N(—zy) _q%r — g4z
0?2 D2 (—z) B o2
%N(Z_)Q(Z_) — a%td)(z_)N(z_)
D2 (z_)

op

D2 (z_)

N(z_) —®(z)z —N(z_) B Q> +q.z_

02 D2(z_) N o2

ebi+e% b (dInZ\?
e+ + e op

30

using

We also need

0lnz o ea+alncn+eaialncn_270—2_1
dlno, ed+ + ed- o2 '
Variational Bayes
We need h(vy) and its derivatives as well as B(y):
2 2 2. 1
hy) = Sv+In2oy) +y°y
O—Tl
2 _
hWiy) = 5 —yiy?
O—TL
Ry = 2ty
Bly) = yy!

4.10 Student’s t Likelihood

The likelihood has two hyperparameters (both represented in the log domain to ensure positivity):

the degrees of freedom v and the scale o, with mean y (for v > 1) and variance *5 02 (for v > 2).

v+1

(f—y)2\~ 7= r(4)
p(y|f)=2-<1+) , 2=z
r(3)

Vo

31

Laplace’s Approximation

For the mode fitting procedure, we need derivatives up to third order; the hyperparameter derivatives
at the mode require some mixed derivatives. All in all, using r =y — f, we have

_ v+1 v 1 , v+1 T2
Inp(ylf) = lnF(3 >—lnr<)—21nv7wn— 3 ln<1+)

2 Vo2
Olnp T
or ~ Ut
9 In 2 —vo?
(af)zp = v+ 1)(27;12
124+ v0%)
o3 Inp 3 — 3rvo?
= 2)=
(0)? VDS eny
olnp 0Z CYim(1s r? +v+1' r?
dlnv ~ dlnv 2 Vo 2 rt4vod
0z _ vdlnP(*33) vdl(3) 1
dlnv 2 dlnv 2 dlnv 2
03 Inp B Vrz(r2—3(v+1)crn2)+vcf$1
(@lnv)(af)2 (r2+voz)3
Olnp 2
dlno, (V+1)r2+vczn B
3 Inp voZ — 3r?

= 2\/0%1(\/ +1)

(dIn oy)(0F)2 (1”2 +vo2)3

4.11 Cumulative Logistic Likelihood

The likelihood has one hyperparameter (represented in the log domain), namely the standard devia-
tion op,

f) = Z-cosh™2 (t(f — - _z-_T
plylf) cosh™“ (t(f—y)), 0.3 403

Laplace’s Approximation

The following derivatives are needed where ¢(x) = In(cosh(x))

Inp(ylf) = In(n) —In(40,V3) —2¢ (t(f—y))

L
a(zalfr;zp = 200" (t(f —y))
6(3611:;3? = 209" (x(f—y))
m = 27 (29" (x(f —y)) +T(f —y)d" (t(f —y)))
SIP~ aelf -y (alf —y)) 1

32

4.12 GLM Likelihoods: Poisson, Negative Binomial, Weibull, Gamma, Exponential, In-
verse Gaussian and Beta

Data y from a space other than R e.g. N, R, or [0, 1] can be modeled using generalised linear model
likelihoods p(yl|f) where the expected value E[y] = p is related to the underlying Gaussian process
f by means of an inverse link function p = g(f). Typically, the likelihoods are from an exponential
family, hence the variance V[y] = v(u), is a simple function of the mean p as well as higher order
moments such as skewness S[y] = s(it) and kurtosis K[y] = k(u).

Here, we directly specify the inverse link function p = ¢(f) defining the mapping from the GP f
to the mean intensity w. For numerical reasons, we work with the log of the inverse link function
h(f) = In g(f) and use its derivatives h’, h” and h'”’ for subsequent computations. In the table below,
we have summarised the GLM likelihood expressions, the moments, the range of their variables and
the applicable inverse link functions.

Likelihood p= () = s(p) = k(p) = pylf) = ye ne Inverse Links

Poisson 0 o 1/yn 1/u wY exp(—u)/y! N Ry exp, logistic*

Neg. Binomial | {Inv} | u(u/r+1) \/M’ril‘j‘] RV Amme= S+ =] (”*J’l)r*u‘i/(r +)ty N Ry exp, logistick

- F v, N N z F =
Weibull (nk) | Rlvay3—1) | B YV | ey fu(yya /W) exp (—(yvi/wS) | RO} | Ri\{O} | exp, logistick
1 1’

Gamma {Inod | p?/a 2/« 6/ %p’“ exp (—%}ﬁ) R+ \{0} | R:\{0} | exp, logistic*

Exponential 0 w2 2 6 pexp (7% R \{0} | R{\{0} | exp, logistic*

Inv. Gauss {InA} | w3/A 3V/W/A 15u/A \/ o exp (J‘;};;‘)’) R, \{0} | R, \{0} | exp, logistick
Q-4 (1+d) (d+1)"—v() (Sp+6) T($) -1 1—p)p—1 i

Beta {In e} | w1 —w/(1+¢) | Z=tr 8 6 Tt Mgy e T (= y) 7= 10,11 | [0,1] | expexp, logit

4.12.1 Inverse Link Functions

Possible inverse link functions and their properties (U convex, N concave, T monotone) are sum-
marised below:

’ util/glm_invlink_x ‘ g(f)=pn= ‘ g:R— ‘ gis ‘ h(f) =lnu= ‘ his ‘
exp ef R, ut | f u,N,t
logistic ((f)=In(1+¢€") | Ry U,t | In(In(1 +e")) N,
logistic2 £(f + afl(f)) R 0 In(€ (f + afe(f))) | NI
expexp exp(—e~) [0,1] T —e T u,t
logit 1/(1+e N [0,1] 1 —In(1+e 1 u,t

Please see doc/usageLik.m for how to specify the pair likelihood function and link function in
GPML.

Exponential inverse link: exp

For g(f) = e things are simple since h(f) = f, h'/(f) = 1 and h"(f) = h'"'(f) = 0.

33

Logistic inverse link: logistic
For g(f) = In(1 + ef) the derivatives of h(f) are given by

h(f) = In(In(1+e")

, 1 1 , —ef
hi(f) = ms(—f); (f) = ma s'(f) = m = —s(—f)s(f)
1 e f 1 ef 1

In(1+ef)(1+e N2 In(14ef)l+efl+e
= h'(f) [s(f) = h'(f)]

_ef
= h"(f) [s(f) — 2R/(f)] — h/(f)s(f)s(—F).

h"(f) = h"(f) [s(f) = h/(f)] + h/(f) [- h”(f)}

Note that g(f) = e"(f) = In(1 + ef) is convex and h(f) = In(In(1 + e")) with

R = (1o e’ L L <o
~ In(1+ef) In(1+ef)) 1+efl+e ™

is concave since ef > In(1 + ef) for all f € R.

Twice logistic inverse link: logistic2

Note that h(f) = In(€ (f + aff(f))) is — according to Seeger et alﬂ — concave.

Double negative exponential inverse link: expexp

For g(f) = exp(—e~T) the derivatives of h(f) are given by

h(f) = —e
h(f) = —h(f)
h(f) = hif)
h'" () —h(f)

Logit regression inverse link: logit

For g(f) = 1/(1+e~ ") the derivatives of h(f) can be computed using the logistic inverse link function
he(f) since h(f) = f —exp(h¢(f))

) = f—enl

) = 1—eMIhy(f)

) = —e™ I hy(f)? +h{ ()] =™ Dsy(—f)sg(f)

h(f) = —e™Dhy(f)? + 3h{ (Hhe(f) + ' (£)]

Bayesian Intermittent Demand Forecasting, NIPS, 2016

34

https://nips.cc/Conferences/2016/AcceptedPapers

4,12.2 Poisson Likelihood

Count data y € N™ can be modeled in the GP framework using the Poisson distribution p(y) =
pwYe M /y! with mean/variance Ely] = V[y] = p, skewness S[y] = 1/,/p and kurtosis K[y] = 1/p
leading to the likelihood

pylf) = wexp(—w)/y!, n=g(f)
& Inpylf) = y-Ing(f) —g(f) —InT(y +1).

For Laplace’s method to work, we need the first three derivatives of the log likelihood In p(y|f), where
h(f) =Ing(f)

Inp(yif) = y-h(f)— exp(hif) ~InTy +1)
Sinplyln) = W(1)fy—exp(n(r))]
02
671:2
o3

3 NPl = () [y —exp(h(f))] = 3n'(f) - h"(f) exp(h(f)) — [/ ()] exp(h(f))

Inp(ylf) = h"(f) [y —exp(h(f))] — [h'()]* exp(h(f))

h"(f) [y — exp(h(f))] — h/(f)['(f)* + 3h" (f)] exp(h(f)).

Note that if Inp = h(f) is concave and p = ¢(f) is convex then the Poisson likelihood p(ylf) is
log-concave in f which is the case for both exp and logistic.

4.12.3 Weibull Likelihood

Nonnegative data y € R, such as time-to-failure can be modeled in the GP framework using the
Weibull distribution p(y) = «/A(y/A)< 'e~(Y/M" with shape parameter k > 0, scale parameter
A > 0, mean E[y] = Ay; = pu where y; = I'(1 + j/k), variance V[y] = Aly; — 2 = uz(yz/y% —1),
skewness Slyl = (v3—3v1v2+2v}1)/(v2—v})?/? and kurtosis K[yl = (v4—4y1v3+12yTy, —3v3 —
6}/‘1‘)/(1/2 - y%)z. Using the substitution u = Ay < 1/A = vy1/u, we obtain

k—1 K
p(ylf) Ylg (wﬁ) exp < <vlﬁ>) n=g(f) >0

sty = I (v S) -1 (vid) - ()
m m m

Note that the Weibull likelihood p(y|f) is log-concave in f neither for the exp nor for the logistic
inverse link.

4.12.4 Gamma Likelihood

Nonnegative data y € R, can be modeled in the GP framework using the Gamma distribution
ply) = 07%/T(a)y* e Y/ with shape parameter & > 0, scale parameter 8 > 0, mean E[y] =
«® = u, variance V[y] = 8% = p?/«x, skewness S[y] = 2/,/« and kurtosis K[y] = 6/x. Using the
substitution © = 0 < o/u = 1/6, we obtain

_ (xocyocfl . yo _
plylf) = Fa) M &P <_u>’ p=g(f) >0
< lnpylf) = —« <lnu+ i) —InZy(y), nZy(y) =InT () — xlnax+ (1 — &) Iny.

35

Note that if Inp = h(f) was convex and p = ¢(f) was concave then the Gamma likelihood p(y|f)
would be log-concave in f which is not the case for both exp and logistic.

4.12.5 Exponential Likelihood

Nonnegative data y € R, can be modeled in the GP framework using the Exponential distribution
ply) = 67 1e7Y/9 with scale parameter > 0, mean E[y] = 6 = p, variance V[y] = u?, skewness
Sly] = 2 and kurtosis K[y] = 6. We obtain

plylf) = n'lexp (—ﬁ) nu=g(f)>0

Slnpylf) = —lnp— %

Note that for exp (but not for logistic) the likelihood is log-concave. The exponential distribution
corresponds to the Gamma distribution with & = 1 and the Weibull distribution with k = 1.

4.12.6 Inverse Gaussian Likelihood

Nonnegative data y € R can be modeled in the GP framework using the Inverse Gaussian distri-

bution p(y) = /A/(2my3) exp(—A(y — n)?/(2u?y)) with shape parameter A > 0, mean parameter
1 > 0, mean E[y] = p, variance V[y] = u?/A, skewness S[y] = 31/u/A and kurtosis K[y] = 15u/A.

We obtain
A Ay —n)? B
plylf) = s P (ady M7 g(f) >0

Y
o lnpyl) = —m—lnza(m, In Za(y) = —3 (InA — In 2my”).

The inverse Gaussian likelihood is in general not log-concace in f for both exp and logistic.

4.12.7 Beta Likelihood

Interval data y € [0,1]™ can be modeled in the GP framework using the Beta distribution p(y) =
y*1(1 —y)P~1/B(«, B) with shape parameters «, 3 > 0, mean E[y] = «/(x + B) and variance
Viy] = ap/l(x+ B)*(x+ B + 1)] and 1/B(e, B) = T'(x + B)/[M(x)T(B)]. Reparametrising using
the mean parameter © = E[y] = «/(x + B) , the shape parameter ¢ = « + B, the variance V[y] =
w(l—w)/(1+ ¢) and hence

plulf) = ro)
M) (1= 1)
olnpylf) = InF(e) — InFu) — InT((1— W) + (1 — 1) Iny + (1 — W — 1) In(1 —y).

yHel (1)l —g(f) > 0

The Beta likelihood is in general not log-concace in f for both exp and logistic.

36

5 Mean Functions

A mean function m¢, : X — R (with hyperparameters ¢) of a GP f is a scalar function defined over
the whole domain X that computes the expected value m(x) = E[f(x)] of f for the input x.

5.1 Interface

In the GPML toolbox, a mean function m : X — R needs to implement evaluation m = mg, (X) and
first derivatives m; = a%),m with respect to the components i of the parameter ¢ € @ as detailed
below.

(meanFunctions.m[36)=

% Mean functions to be use by Gaussian process functions. There are two
% different kinds of mean functions: simple and composite:

0,

/A

% Simple mean functiomns:

—_
SOOI LW
==

b
meanZero - zero mean function

% meanOne - one mean function

% meanConst - constant mean function

pA meanlLinear - linear mean function

pA meanPoly - polynomial mean function
11 % meanDiscrete - precomputed mean for discrete data
12 % meanGP - predictive mean of another GP
13 % meanGPexact - predictive mean of a regression GP
14 % meanNN - nearest neighbor mean function
15 % meanWSPC - weighted sum of projected cosines
16 %
17 % Composite mean functions (see explanation at the bottom):
18 %
19 % meanScale - scaled version of a mean function
20 % meanSum - sum of mean functions
21 % meanProd - product of mean functions
22 % meanPow - power of a mean function
23 % meanMask - mask some dimensions of the data
24 % meanPref - difference mean for preference learning
25 % meanWarp - warped mean function
26 %
27 % Naming convention: all mean functions are named "mean/mean*.m".
28 %
29 %
30 % 1) With no or only a single input argument:
31 %
32 % s = meanNAME or s = meanNAME (hyp)
33 %

34 % The mean function returns a string s telling how many hyperparameters hyp it
35 % expects, using the convention that "D" is the dimension of the input space.
36 % For example, calling "meanLinear" returns the string ’D’.

37 %

38 % 2) With two input arguments and one output argument:

39 %

40 % m = meanNAME (hyp, x)

41 %

42 % The function computes and returns the mean vector m with components

43 % m(i) = m(x(i,:)) where hyp are the hyperparameters and x is an n by D matrix

44 7 of data, where D is the dimension of the input space. The returned mean

37

45 % vector m is of size n by 1.

46 7%

47 % 3) With two input arguments and two output arguments:

48 %

49 % [m,dm] = meanNAME (hyp, x)

50 %

51 % The function computes and returns the mean vector m as in 2) above.

D

% In addition to that, the (linear) directional derivative function dm is

% returned. The call dhyp = dm(q) for a direction vector q of size n by 1

% returns a vector of directional derivatives dhyp = d (q’*m(x)) / d hyp of
% the same size as the hyperparameter vector hyp. The components of dhyp are
defined as follows: dhyp(i) = q’*(d m(x) / d hyp(i)).

L L »n

 C

(9, D 1
O 00 IO\ LN Wi -
=

% See also doc/usageMean.m.

i

60 (gpml copyright|[Sa)

5.2 Implemented Mean Functions

We offer simple and composite mean functions producing new mean functions m(x) from existing
mean functions pj(x). All code files are named according to the pattern mean/mean<NAME>.m for
simple identification. This modular specification allows to define affine mean functions m(x) =
¢ 4+ a'x or polynomial mean functions m(x) = (c +a'x)?. All currently available mean functions
are summarised in the following table.

Simple mean functions m(x)

<NAME> Mmeaning m(x) = ()

Zero mean vanishes always 0 0

One mean equals 1 1 0
Const mean equals a constant c ceR
Linear mean linearly depends on x € X C RP a'x acRP
Poly mean polynomially depends on x € X C RP > gagxd acRPxd
Discrete | precomputed mean for discrete datax € X C N Hx peRs
GP predictive mean of another GP Jy-plylD,x)dy 0
GPexact | predictive mean of a regression GP Jy - plylD,x)dy P, b, 0n
NN nearest neighbor for a set (zj, m;) € X x R my, i =argmin; d(x,z;) | 0

WSPC weighted sum of d projected cosines x € X C RP a' cos(Wx +b) W e RIXD 3 bec R4
Composite mean functions [y (x), pa (x),..] — m(x)

<NAME> meaning m(x) = b
Scale scale a mean o (x) xeR
Sum add up mean functions 25 H(x))

Prod multiply mean functions H]- 1 (x) 0

Pow raise a mean to a power u(x)d 0

Mask act on components I C [1,2,..,D] of x € X C RP only | u(xg) 1]

Pref preference learning mean x = [x1;x], x; C RP/? w(xq) — u(xz) 0

Warp warped mean gln(x)] 0

5.3 Usage of Implemented Mean Functions

Some code examples taken from doc/usageMean.m illustrate how to use simple and composite mean
functions to specify a GP model.

Syntactically, a mean function mf is defined by

mn := ’func’ | @func // simple

38

mf := {mn} | {mn, {param, mf}} | {mn, {wf, .., mf}} // composite
i.e., it is either a string containing the name of a mean function, a pointer to a mean function or one
of the former in combination with a cell array of mean functions and an additional list of parameters.

(doc/usageMean.m [38)=

1 % demonstrate usage of mean functions

2%

3 % See also meanFunctions.m.

4%

5 (gpml copyright|[sa)

6 clear all, close all

7mn =5; D=2; x = randn(n,D); % create a random data set
8

9 % set up simple mean functions

10 m0 = {’meanZero’}; hypO = []; % no hyperparameters are needed
11T m1 = {’meanOne’}; hypl = []; % no hyperparameters are needed
12 mc = {@meanConst}; hypc = 2; 7 also function handles are possible
13 m1 = {@meanLinear}; hypl = [2;3]; % m(x) = 2*%x1 + 3*x2
14 mp = {@meanPoly,2}; hypp = [1;1;2;3]; % m(x) = x1+x2+2%x172+3*x2"2
15 mn = {@meanNN,[1,0; 0,1],[0.9,0.5]}; hypn = []; J nearest neighbor
16 s = 12; hypd = randn(s,1); % discrete mean with 12 hypers
17 md = {’meanDiscrete’,s};

18 hyp.cov = [0;0]; hypg = []; % GP predictive mean
19 xt = randn(2*n,D); yt = sign(xt(:,1)-xt(:,2)); % training data
20 mg = {@meanGP,hyp,@infEP,@meanZero,@covSEiso,@likErf ,xt,yt};
21 hype = [0;0; log(0.1)]1; % regression GP predictive mean
22 xt = randn(2*n,D); yt = xt(:,1).*xt(:,2); % training data
23 me = {OmeanGPexact,@meanZero,@covSEiso,xt,yt};
24
25 % set up composite mean functions
26 msc = {’meanScale’,{m1}}; hypsc = [3; hypll; % scale by 3
27 msu = {’meanSum’,{m0,mc,ml}}; hypsu = [hypO; hypc; hypll; % sum
28 mpr = {@meanProd,{mc,ml}}; hyppr = [hypc; hypll; % product
29 mpo = {’meanPow’,3,msul}; hyppo = hypsu; % third power
30 mask = [false,truel; % mask excluding all but the 2nd component
31 mma = {’meanMask’,mask,ml}; hypma = hypl(mask);

32 mpf = {@meanPref ,ml}; hyppf = 2; 7’ linear pref with slope
33 mwp = {@meanWarp,ml,@sin,@cos};hypwp = 2; % sin of linear
34

35 % 0) specify mean function

36 % mean = md; hyp = hypd; x = randi([1,s],n,1);

37 % mean = mn; hyp = hypn;

38 % mean = mg; hyp = hypg;

39 mean = me; hyp = hype;
40 % mean = mO; hyp = hypO;
41 % mean = msu; hyp = hypsu;
42 % mean = mpr; hyp = hyppr;

3 % mean = mpo; hyp = hyppo;
44 7 mean = mpf; hyp = hyppf;
45
46 % 1) query the number of parameters
47 feval(mean{:})
48
49 % 2) evaluate the function on x

50
51
52
53

feval (mean{:},hyp,x)

% 3) compute the derivatives w.r.t.
i 2; feval(mean{:},hyp,x,1i)

to hyperparameter i

39

39

6 Covariance Functions

A covariance function ky, : X x X — R (with hyperparameters) of a GP f is a scalar function
defined over the whole domain X? that computes the covariance k(x,z) = V[f(x), f(z)] = E[(f(x) —
m(x))(f(z) — m(z))] of f between the inputs x and z.

6.1 Interface

Again, the interface is simple since only evaluation of the full covariance matrix K = ky,(X) and its
derivatives K; = aimpiK as well as cross terms k., = ky, (X, x,) and K.« = Ky, (X4, X,) for prediction
are required.

(covFunctions.m E

1 % Covariance functions to be use by Gaussian process functions. There are two
2 % different kinds of covariance functions: simple and composite:
3%
4 % 1) Elementary and standalone covariance functions:
y
5% covZero - zero covariance function
6 % covEye - unit covariance function
7 % covOne - unit constant covariance function
8 % covDiscrete - precomputed covariance for discrete data
9 %
10 % 2) Composite covariance functions:
11 % covScale - scaled version of a covariance function
12 % covSum - sums of covariance functions
13 % covProd - products of covariance functions
A covMas - mask some dimensions o e data
14 7% Mask k di i f the dat
A covPre - difference covariance for preference learnin
15 % Pref diff ’ for pref 1 ing
16 % covPER - make stationary covariance periodic
17 % covADD - additive covariance function
18 % covWarp - warp input to a covariance function
19 %
A ahalanobis distance based covariances an eir modes
20 % 3) Mahal bis dist b d i d thei d
21 % covMaha - generic "mother" covariance
22 % * eye - unit length scale
23 % * iso - isotropic length scale
24 % * ard - automatic relevance determination
25 % *x prot - (low-rank) projection in input space
A x fac - factor analysis covariance
26 Y fact fact lysi i
27 h * vlen - spatially varying length scale
28 % covGE - Gamma exponential covariance
29 % covMatern - Matern covariance function with nu=1/2, 3/2 or 5/2
30 % covPP - piecewise polynomial covariance function (compact support)
31 % covRQ - rational quadratic covariance function
32 % covSE - squared exponential covariance function
33 %
34 % 4) Dot product based covariances and their modes
35 % covDot - generic "mother" covariance
36 % x eye - unit length scale
37 % * iso - isotropic length scale
38 % * ard - automatic relevance determination
39 % * pro - (low-rank) projection in input space
40 % *x fac - factor analysis covariance
41 % covLIN - linear covariance function
42 % covPoly - polynomial covariance function
43 %

40

44 % 5) Time series covariance functions on the positive real line

45 % covFBM - fractional Brownian motion covariance

46 % covULL - underdamped linear Langevin process covariance

47 % covW - i-times integrated Wiener process covariance

48 % cov0OU - i-times integrated Ornstein-Uhlenbeck process covariance
49 %

50 % 6) Standalone covariances

ST % covNNone - neural network covariance function

52 % covLINone - linear covariance function with bias

53 % covPeriodic - smooth periodic covariance function (1d)

54 % covPeriodicNoDC - as above but with zero DC component and properly scaled
55 % covCos - sine periodic covariance function (1d) with unit period

56 % covGabor - Gabor covariance function

57 %

58 % 7) Shortcut covariances assembled from library

59 % covConst - covariance for constant functions

60 % covNoise - independent covariance function (i.e. white noise)

61 % covPERiso - make isotropic stationary covariance periodic

62 % covPERard - make ARD stationary covariance periodic

63 % covMaterniso - Matern covariance function with nu=1/2, 3/2 or 5/2

64 % covMaternard - Matern covariance function with nu=1/2, 3/2 or 5/2 with ARD
65 % covPPiso - piecewise polynomial covariance function (compact support)
66 % covPPard - piecewise polynomial covariance function (compact support)
67 % covRQiso - isotropic rational quadratic covariance function

68 % covRQard - rational quadratic covariance function with ARD

69 % covSEiso - isotropic squared exponential covariance function

70 % covSEisoU - same as above but without latent scale

71 % covSEard - squared exponential covariance function with ARD

72 % covSEvlen - spatially varying lengthscale squared exponential

73 % covSEproj - projection squared exponential covariance function

74 % covLINiso - linear covariance function

75 % covLINard - linear covariance function with ARD

76 % covGaborard - Gabor covariance function with ARD

77 % covGaborsio - isotropic Gabor covariance function

78 % covSM - spectral mixture covariance function

79 %

80 % 8) Special purpose (approximation) covariance functions

81 % apxSparse - sparse approximation: to be used for large scale inference
82 % problems with inducing points aka FITC

83 % apxGrid - grid interpolation: to be used for large scale inference
84 % problems with Kronecker/Toeplitz/BTTB covariance matrix

85 %

86 % The covariance functions are written according to a special convention where
87 % the exact behaviour depends on the number of input and output arguments

88 % passed to the function. If you want to add new covariance functions, you

89 % should follow this convention if you want them to work with the function gp.
90 % There are four different ways of calling the covariance functions:

91 %

92 % 1) With no (or one) input argument(s):

93 %

94 % s = cov

95 %

96 % The covariance function returns a string s telling how many hyperparameters it
97 % expects, using the convention that "D" is the dimension of the input space.
98 % For example, calling "covRQard" returns the string ’(D+2)°.

99 %

100 % 2) With two input arguments and one output argument:

101 %

41

102
103
104
10$
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

A
YA
A
b
b
A
YA
YA
YA
b
%
A
YA
b
b
)
%
YA
YA
b
)
%
A
YA
b
b
%
%
YA
YA
b
b
%
A
YA
b
)
%
A
A
YA
b
%
A
A
YA
A
b
%
YA
YA
YA
b
%
YA
pA
yA
Y.

K = cov(hyp, x) equivalent to K = cov(hyp, x, [1)

The function computes and returns the covariance matrix where hyp are

the hyperparameters and x is an n by D matrix of cases, where

D is the dimension of the input space. The returned covariance matrix is of
size n by n.

3) With three input arguments and one output argument:

Kz = cov(hyp, x, z)
kx cov(hyp, x, ’diag?’)

The function computes test set covariances; kx is a vector of self covariances
for the test cases in x (of length n) and Kz is an (n by nz) matrix of cross
covariances between training cases x and test cases z.

4) With two output arguments:
[K,dK] = cov(hyp, x) equivalent to [K,dK] = cov(hyp, x, [])

[K,dK] = cov(hyp, x, 2z)
[K,dK] cov(hyp, x, ’diag?’)

The function computes and returns the covariances K as in 3) above.

In addition to that, the (linear) directional derivative function dK is
returned. The two possible calls dhyp = dK(Q) and [dhyp,dx] = dK(Q) for a
direction Q of the same size as K are possible. The return arguments dhyp
and dx are the directional derivatives dhyp = d trace(Q’*K) / d hyp and
dx = d trace(Q’*K) / d x are of the same size as the hyperparameter
vector hyp and the input data x, respectively. The components of dhyp and
dx are defined as follows: dhyp(i) = trace(Q’*(d K / d hyp(i)))

and dx(i,j) = trace(Q’*(d K / d x(i,j))).

Covariance functions can be specified in two ways: either as a string
containing the name of the covariance function or using a cell array. For
example:

cov = ’covRQard’;
cov = {’covRQard’};
cov = {Q@covRQard};

are supported. Only the second and third form using the cell array can be used
for specifying composite covariance functions, made up of several
contributions. For example:

cov = {’covScale’, {’covRQiso’}};

cov = {’covSum’, {’covRQiso’,’covSEard’,’covNoise’}};
cov = {’covProd’,{’covRQiso’,’covSEard’,’covNoise’}};
cov = {’covMask’,{mask,’covSEiso’}}

1; cov = {’covPPiso’,q};
=3; cov = {’covPoly’,d};
cov = {’covADD’,{[1,2],°covSEiso’}};
cov = {@apxSparse, {Q@covSEiso}, u}; where u are the inducing inputs

specifies a covariance function which is the sum of three contributions. To
find out how many hyperparameters this covariance function requires, we do:

feval (cov{:})

42

160 % which returns the string ’3+(D+1)+1’ (i.e. the ’covRQiso’ contribution uses
161 % 3 parameters, the ’covSEard’ uses D+1 and ’covNoise’ a single parameter).
162 %

163 7 See also doc/usageCov.m.

164 7

165 (gpml copyright[Sa)

43

6.2 Implemented Covariance Functions

Similarly to the mean functions, we provide a whole algebra of covariance functions k: X x X — R
with the same generic name pattern cov/cov<NAME>.m as before.

Besides a long list of simple covariance functions, we also offer a variety of composite covariance
functions as shown in the following table.

1) Elementary and standalone covariance functions k(x, x’)

<NAME> meaning k(x,z) = P

Zero covariance vanishes always 0 0

Eye unit additive measurement noise S(x—1z) 0

One unit constant 1 0
[Discrete | precomputed covariance for discrete datax € X C N [kxx' where K= LTL is Cholesky decomposition, L € RS L

2) Composite covariance functions [k (x, z), k2(x,2), ..] = k(x,z)

<NAME> meaning k(x,z) = P

Scale modulate covariance function by a scalar G%K(x, z) Inoy

Scale modulate covariance function depending on input or(x)k(x,2)0¢(z) o
[Sum [add up covariance functions [3xi(x2) [0 |
‘ Prod ‘ multiply covariance functions ‘ I1; ki (x,2) ‘ 0 ‘

Mask act on components I C [1,2,..,D] of x € X C RP only K(x1,21) 0

Pref preference learning covariance x = [x1;X,], x; C RP/2 K(x1,21) + K(X2,22) — K(X1,22) — K(X2,21) 0

. x eye
PER turn covariance into a periodic, X C RP k(u(x),u(z)) ,u(x) = [sin 2rex,], Xp ={X/p iso Py
€os 27X,
x/p ard

ADD additive, X C RP, index degree set D = {1,.., D} D dep O'%d Zm—d TTicr k(xi,zis 1) {¥1,., ¥p,Inog,..,In Ufu)‘}

Warp warp inputs to a covariance function «(p(x),p(z)), where p : RP — RP»
‘ 3) Covariance functions based on Mahalanobis distances k(x,z) = k(r), 17 = (x —2) 'P~1(x — z), where x,z € X C RP ‘
| Maha [shared generic “mother” covariance function [k(r) = [0 |

GE gamma exponential exp (—|r[Y), v € (0,2] In(v/(2—7v))

Matern Matérn, f1(t) =1, f3(t) = 1+, fs(t) = f3(t) + & fa(Vdr) exp(—Vdr) 0

PP compact support, piecewise polynomial f, (1) max(0, 1 — 1)V f,(1) 0

RQ rational quadratic (1+2/a) " In o

SE squared exponential exp (—17/2) 0

Allowable mode parameter values for Mahalanibis distance covariances

‘eye’ unit lengthscale P=1 0

’iso’ isotropic lengthscale P=0CI, (eR, Int

Jard’ automatic relevance determination P=AZ, A =diag(A), A€ RE InA

’proj’ (low-rank) projection in input space P T=L"L LeRIXP L

fact? factor analysis P T=LTL + diag(f), f ¢ RP, L € RIXP {L,Inf}

>vlen’ spatially varying lengthscale, ke(x,z) = (%) e k (ﬁ) 12 (x,z) = w Y
‘ 4) Covariance functions based on Euclidean dot products k(x,z) = k(s), s = x| P~ 'z, where x,z € X C RP ‘
[Dot | shared generic “mother” covariance function [K([0 |
[LIN [linear covariance function [s [0 |
[Poly | polynomial covariance [oF(s+ o) [Inc |

Allowable mode parameter values for Euclidean dot product covariances

reye’ unit lengthscale P= 0

’iso’ isotropic lengthscale P={1, teRy Int

’ard’ automatic relevance determination P =A%, A=diag(A), AcRP InA

’proj’ (low-rank) projection in input space P = LTL, L € RXD L

‘fact’ factor analysis P T=LTL }diag(f), f € RP, L € RTXP {L,Inf}

5) Time series c

ovariance functions k(x,z) = k(x, z), where x,z € X =R

<NAME> meaning k(x,z) = P

FBM fractional Brownian motion covariance with Hurst index h %U% [\x\z}‘ —x—zP" 4+ \z\z"} {Inof,—In(1/h—1)}
ULL underdamped linear Langevin process covariance k(t) = aZe Mt M %) ,t=x—2z {Iny,Inw,Ina}

W i-times integrated Wiener process covariance, i € {—1,..,3} Ko(x,2) :0‘% min(x), Ki(x,z)= IO IO Ki(X,Z)dxdzZ Inoy

ou i-times integrated Ornstein-Uhlenbeck process covariance, i € {0,1} | ko(x,z) :U% exp(—] + (0%0 — U%) exp(— ‘XJ{Z‘) {In¢,In oy, Inog,}

6) Standalone ¢

ovariance functions

<NAME> meaning k(x,z) = P
NNone neural net, X € RP o2 sin~! (XTZ/ (2 +xTx) (2 + ZTZ)) {In¢,Ino¢}
LINone linear with bias, X C RP (xTz+ 1]/tZ Int
Periodic periodic, X C R crf exp (% sin 2[n(x — z)/p]) {In¢,Inp,Ino¢}
PeriodicNoDC | periodic, rescaled, DC component removed, X C R 0‘%%, K(x —z) = exp (*é sin?[r(x — z)/‘p]) {In¢,Inp,In o¢}
Cos periodic cosine, X C R cr% cos (7t(x i z)/p) {Inp,Inoy}

t eye
Gabor Gabor function, X C RP, A,p € RY exp (*%J/\’Zt) cos (Zﬂt;,rl), tp=qt/p iso,t=x—1z {In A,)

t/p ard

44

7) Shortcut covariance functions assembled from library k(x, z)
<NAME> Meaning k(x, z) = VP
Const covariance equals a constant 0‘f Inoy
Noise additive measurement noise 028(x —27) In oy
‘ PERiso ‘ turn covariance into a periodic, X C RP ‘ K(u(x),u(z)) , u(x) = [sinxp, cos xpl, xp = 27x/p ‘ Inp ‘
‘ PERard ‘ turn covariance into a periodic, X C RP ‘ K(u(x),u(z)) , u(x) = [sinxp, cos xpl, xp = 27x/p ‘ {Inp1,.,Inpp} ‘
Materniso | Matérn, X C RP, fi(t) =1, f3(t) = 1+ t, f5(t) = f3(t) + % o%fq(rq) exp(—rq), Ta = \/d (x—2)T(x—2) {In¢,In o}
Maternard | Matérn, X C RP, fi(t) =1, f3(t) =1+, f5(t):f3(t)+§ 02fa(ra) exp(—ra), Ta = Vd(x—2) TAZ(x — {InAq,..,InAp,Inos}
PPiso compact support, piecewise polynomial f,,(r) 0‘; max(0,1 — 7). f,(r), r = HX ZH j L%J + v+1 {In¢,In o¢}
PPard compact support, piecewise polynomial f,(r) oZ max[O, 11— £, % = (x - Z]T/\ 2(x —2) {InAq,..,InAp,Ino¢}
RQiso rational quadratic, X C RP o2 (1+ Zcle (x—z) (x—z)~ * {In¢,Ino¢,In o
RQard rational quadratic, X C RP 0'% (1 + 210([x —2)TA 2 (x— z)) « {InAy,.,InAp,Inog,In o}
SEiso diagonal squared exponential, X C RP 0% exp ((x —2)T (x — z)) {In¢,In oy}
SEisoU squared exponential, X C RP exp (— ul [x —z)" (x— z)) In¢
SEard automatic relevence determination squared exponential oZexp gf%(x - Z)T/\jz(x —1)) {InAq,..,InAp,Ino¢}
SEvlen spatially varying lengthscale squared exponential o (%) 2 exp (M) a=20(x)0(z), b = (x) + 2(z) {de,Inoe}
SEproj factor analysis squared exponential oZexp (— %(x —2)'LTL(x—z)), L € R™*P {L,In oy}
‘ LINard ‘ linear with diagonal weighting ‘ x A%z ‘ {lnAq,..,InAp} ‘
‘ LINiso ‘ linear with isotropic weighting ‘ x'z/0* ‘ Int ‘
Gaborard | anisotropic Gabor function, X C RP, A,p € RP exp (— Zg 1 2‘;‘7) cos (Zﬂzg 1 td/pd), tq =Xa —za {lnA,Inp}
Gaboriso | isotropic Gabor function, X C RP, ¢,p € R, exp(—5)cos(ZmTl/p] t=x—1z {In¢,Inp}
- spectral mixture, X C RP, w € JR?, M, Ve]RDXQ wl (exp(—fv—rtz] ©cos(MTt)) t=2m(x—2z) {lnw,In M, InV}
spectral mixture product, X C RP, W]RUXQ, M, Ve REXQ Hd:l Wd (exp(f—vdt)© cos(mdtd)), tg =2m(xq —zq) | {InW,InM,InV}

The spectral mixture covariance covSM was introduced by Wilson & Adams Gaussian Process Ker-
nels for Pattern Discovery and Extrapolation, ICML, 2013.

The periodic covariance function covPER starts from a stationary covariance function that depends
on the data only through a distance > = (x — x’) TA2(x — x’) such as covMatern, covPP, covRQ,
covSE and turns them into a periodic covariance function by embedding the data x € RP into a
periodic high-dimensional space x,, = u(x) € R?P by a function u(x) = 2ndiag(p—!)x.

The additive covariance function covADD starts from a one-dimensional covariance function k(xi, x/, ;)
acting on a single component i € [1, .., D] of x. From that, we define covariance functions Ky (xy, x1) =

[Ticr k(xi,x{, ;) acting on vector-valued inputs x;. The sums of exponential size can efficiently be
computed using the Newton-Girard formulae. Samples functions drawn from a GP with additive co-
variance are additive functions. The number of interacting variables |I| is a measure of how complex
the additive functions are.

6.3 Usage of Implemented Covariance Functions

Some code examples taken from doc/usageCov.m illustrate how to use simple and composite covari-
ance functions to specify a GP model.

Syntactically, a covariance function cf is defined by

cv >func’ | @func // simple

cf {cv} | {cv, {param, cf}} | {cv, {cf, .., cf}} // composite
i.e., it is either a string containing the name of a covariance function, a pointer to a covariance func-
tion or one of the former in combination with a cell array of covariance functions and an additional
list of parameters.

(doc/usageCov.m [44) =

1 % demonstrate usage of covariance functions

2%

3 % See also covFunctions.m.

4 9

5 (gpml copyright|[Sa)

6 clear all, close all

7n =5; D=3; x = randn(n,D); xs = randn(3,D); 7 create a data set
8

45

http://jmlr.org/proceedings/papers/v28/wilson13.pdf
http://jmlr.org/proceedings/papers/v28/wilson13.pdf

10
11
12

12
J

14
15
16
17
18
19
20
21
22
23

J

50

55
56
57
58
59
60
61
62

-
J

64
65
66

% set up simple covariance functions

cn = {’covNoise’}; sn = .1; hypn = log(sn); J) one hyperparameter
cc = {@covConst}; sf = 2; hypc = log(sf); % function handles 0K
ce = {Q@covEye}l; hype = []; % identity
cl = {@covLIN}; hypl = [1; % linear is parameter-free
cla = {’covLINard’}; L = rand(D,1); hypla = log(L); % linear (ARD)
cli = {’covLINiso’}; 1 = rand(1); hypli = log(1l); % linear iso
clo = {@covLINone}; ell = .9; hyplo = log(ell); % linear with bias
cp = {@covPoly,3}; c¢c = 2; hypp = log(lc;sfl); % third order poly
cga = {@covSEard}; hypga = log([L;sf]); % Gaussian with ARD
cgi = {’covSEiso’}; hypgi = log(l[ell;sf]); % isotropic Gaussian
cgu = {’covSEisoU’}; hypgu = log(ell); % isotropic Gauss no scale
cra = {’covRQard’}; al = 2; hypra = log([L;sf;all); % ration. quad.
cri = {@covRQiso}; hypri = log([ell;sf;all); 7 isotropic
cma = {@covMaternard,5}; hypma = log([ell;sf]l); % Matern class d=5
cmi = {’covMaterniso’,3}; hypmi = log([ell;sf]l); % Matern class d=3
cnn = {’covNNone’}; hypnn = log([L;sfl); % neural network
cpe = {’covPeriodic’}; p = 2; hyppe = log(lell;p;sfl); % periodic
cpn = {’covPeriodicNoDC’}; p = 2; hyppe = log(l[ell;p;sfl); % w/o DC
cpc = {’covCos’}; p = 2; hypcpc = log(lp;sfl); % cosine cov
cca = {’covPPard’,3}; hypcc = hypgu;’), compact support poly degree 3
cci = {’covPPiso’,2}; hypcc = hypgi;’) compact support poly degree 2
cgb = {@covGaborisol}; ell = 1; p = 1.2; hypgb=log(lell;pl); % Gabor
Q = 2; w=ones(Q,1)/Q; m = rand(D,Q); v = rand(D,Q);

csm = {Q@covSM,Q}; hypsm = log(l[w;m(:);v(:)]); % Spectral Mixture
cvl = {@covSEvlen,{@meanLinear}}; hypvl = [1;2;1; 0]; % var lenscal
s = 12; cds = {@covDiscrete,s}; % discrete covariance function
L = randn(s); L = chol(L’*L); L(1:(s+1):end) = log(diag(L));

hypds = L(triu(true(s))); xd = randi([1l,s],[n,1]); xsd = [1;3;6];
cfa = {QcovSEfact,2}; hypfa = randn(D*2,1); % factor analysis
% set up composite i.e. meta covariance functions

csc = {’covScale’,{cgul}; hypsc = [log(3); hypgul; % scale by 9
csu = {’covSum’,{cn,cc,cl}}; hypsu = [hypn; hypc; hypl]; % sum
cpr = {@covProd,{cc,ccil}t}; hyppr = [hypc; hypccl; % product
mask = [0,1,0]; % binary mask excluding all but the 2nd component
cma = {’covMask’,{mask,cgi{:}}}; hypma = hypgi;

% isotropic periodic rational quadratic

cpi = {’covPERiso’,{@covRQiso}};

% periodic Matern with ARD

cpa = {’covPERard’,{@covMaternard,3}};

% additive based on SEiso using unary and pairwis
cad {’covADD’ ,{[1,2],’covSEiso’}};

% preference covariance with squared exponential
cpr = {’covPref’,{’covSEiso’}}; hyppr = [0;0];

xp = randn(n,2*D); xsp = randn(3,2%*D);

% 0) specify a covariance function

% cov = cma; hyp = hypma;

% cov = cci; hyp = hypcc;

% cov = csm; hyp = hypsm;

cov = cds; hyp = hypds; x = xd; xs = xsd;

% cov = cfa; hyp = hypfa;

% cov = cvl; hyp = hypvl;

% cov = cpr; hyp = hyppr; x = xp; XS = Xsp;
% 1) query the number of parameters

feval(cov{:})

46

e interactions

base covariance

46)

67

68 % 2) evaluate the function on x

69 [K,dK] = feval(cov{:},hyp,x)

70

71 % 3) evaluate the function on x and xs to get cross-terms
72 [kss,dkss] = feval(cov{:},hyp,xs,’diag’)

73 [Ks, dKs] = feval(cov{:},hyp,x,xs)

7 Hyperpriors

A hyperprior p(0) with © = [p, &,] is a joint probability distribution over the likelihood hyper-
parameters p, the mean hyperparameters ¢ and the covariance hyperparameters . We concentrate
on factorial priors p(0) = [[; p;(0;). Hyperpriors can be used to regularise the optimisation of the
hyperparameters via the marginal likelihood Z(0) so that p(0)Z(0) is maximised instead. As we
wish to perform unconstrained optimisation, we require (mainly) smooth hyperpriors with infinite
support.

7.1 Interface

In the GPML toolbox, a prior distribution p(0) needs to implement the evaluation of the log density
Inp(0) and its first derivative - Inp(0). In addition, we require sampling capabilities i.e. the
generation of © ~ p(0).

(priorDistributions.m [4¢)=
% prior distributions to be used for hyperparameters of Gaussian processes
% using infPrior.
% There are two different kinds of prior distributions: simple and composite:

1
2
3
4
S5 % simple prior distributions:
6
7
8
9

YA

yA priorGauss - univariate Gaussian

% priorLaplace - univariate Laplace

yA priorT - univariate Student’s t
10 %
11 % priorSmoothBox1 - univariate interval (linear decay in log domain)
12 % priorSmoothBox2 - univariate interval (quadr. decay in log domain)
13 %
14 % priorGamma - univariate Gamma, IR+
15 % priorWeibull - univariate Weibull, IR+
16 9% priorInvGauss - univariate Inverse Gaussian, IR+
17 % priorLogNormal - univariate Log-normal, IR+
18 %
19 % priorClamped or - fix hyperparameter to its current value by setting
20 % priorDelta derivatives to zero, no effect on marginal likelihood
21 %
22 % priorGaussMulti - multivariate Gauss
23 % priorLaplaceMulti - multivariate Laplace
24 % priorTMulti - multivariate Student’s t
25 %
26 % priorClampedMulti or - fix hyperparameter to its current value by setting
27 h priorDeltaMulti derivatives to zero, no effect on marginal likelihood
28 %
29 % priorEqualMulti or - make several hyperparameters have the same value by
30 % priorSameMulti same derivative, no effect on marginal likelihood

47

31 %
32 % composite prior distributions (see explanation at the bottom):

33 %

34 % priorMix - nonnegative mixture of priors
35 % priorTransform - prior on g(t) rather than t
36 %

37 % Naming convention: all prior distributions are named "prior/prior*.m".

38 %

39 %

40 % 1) With only a fixed input arguments:
41 %

42 % r = priorNAME (parl,par2,parN)

43 %

44 %, The function returns a random sample from the distribution for e.g.
45 % random restarts, simulations or optimisation initialisation.

46 %

47 % 2) With one additional input arguments:

48 %

49 % [1p,dlp] = priorNAME(parl,par2,parN, t)

50 %

51 % The function returns the log density at location t along with its first
52 % derivative.

53 %

54 % See also doc/usagePrior.m, inf/infPrior.m.

55 %

56 (gpml copyright|[5a)

48

7.2 Implemented Hyperpriors

All code files are named according to the pattern prior/prior<NAME>.m for simple identification. All
currently available hyperpriors are summarised in the following table.

Simple hyperpriors p(0)
Univariate hyperpriors defined over the whole reals with mean p and variace o

2

<NAME> Meaning p(6) = T
Gauss normally distributed hyperparameter 6 € R = 127[exp (7 (62;};]_) neR, o> cRy
Laplace double exponentially hyperparameter 6 € R | 5% exp (7@), b=0/V2 neR, o> Ry
T Student’s t distributed hyperparameter 6 € R res) 1 (1 4 fo-np)7%1 peR, o2, veER
r(y) \/(V*Z]T{O‘ (v=2)0? > T +
Univariate hyperpriors with effective bounded support but defined over the whole real line
- T—exp(n(a—b)] 1 K 1
SmoothBox1 interval hyperparameter 8 € R i.e. 0 € [a, b] :;s) H‘”‘S\f;”(ejiigz/glz+exP(”(Sv;b]) a<beRneRy
=250 =1 p2g9) 12 ’ng’Wz‘a_b‘
N(0]a, qub) t<a
1 b—a
. . ~ T § 1 t e la,bl, Oqb =
SmoothBox2 localised hyperparameter 6 € Ri.e. 0 € [a,b] | (I/nFD(b=a) 5 [ab = 5Van a<beRnelRy
N(Bla,0%,) b<t
=9 ol = %7n3/3+”;;“jnz/"+z/", w=|a—b|
Univariate hyperpriors supported only over the positive reals
Gamma Gamma hyperparameter 6 € R W exp[%]ﬁk’1 keR,teRy
: - =T
Weibull Weibull hyperparameter 6 € Ry % (9) exp (7(%)]‘) keR,AeR,
. . 1 A(O—p)*
InverseGauss | inverse Gaussian hyperparameter 6 € R NeE exp (=576) keR,AeR,
Ino—
LogNormal log-normal hyperparameter 6 € R . N(B|u, 02) = ﬁ exp (7%) peR, o2 eRy
Multivariate hyperpriors supported all over RP with mean w and covariance Z
GaussMulti multivariate normal distribution 6 € RP 2nz|—z exp (7%(9 —w'z e - n)) p€RP, L c RPXD
LaplaceMulti | multivariate Laplace distribution 8 € RP V2Z|"2 exp (7\@ HL’l(e —u) H1)’ L'L=x p€RP, T c RPXD
v+D T —¥30
TMulti multivariate Student’s t distribution 6 € RP | |(v — Z)NZI*% r(ré]) (1 + [67")(1,{21)[67")) : ueRP, ZeRP*P v eR
Improper hyperpriors used to fix the value of a particular hyperparameter
Delta
Clamped clamped hyperparameter 6 = 0y € R 5(6 —069) 0
DeltaMulti R - D -
ClampedMutti | clamped hyperparameter © = 6y € R 5(0 —09) 0
SameMulti - D D A)
EqualMulti | same hyperparameter © = 61 € R 5 (Hizl(eg 64) 0
Composite hyperpriors [(0),7,(0),..] — p(0)
Transform prior distribution on g(0) instead of & mn(g(0)) {g}
Mix mixture distribution > wim(0) {w}

The priorSmoothBox2 is a Gauss-uniform sandwich obtained by complementing a uniform distribu-
tion on [a, b] with two Gaussian halves at each side. The parameter 1 balances the probability mass
between the constituents so that 1/(n + 1) is used for the box and 1/(1 + 1) for the Gaussian sides.
Its brother priorSmoothBox1 is the product of two sigmoidal functions.

The priorDelta or equivalently priorClamped can be used to exclude some hyperparameters from
the optimisation. Their values are clamped to 6y and the derivative vanishes. There are also multi-
variate counterparts priorDeltaMulti and priorClampedMulti.

7.3 Usage of Implemented Hyperpriors

Some code examples taken from doc/usagePrior.m illustrate how to use univariate, multivariate
and composite priors on hyperparameters. Syntactically, a hyperprior hp is defined by

func := Dist // prior distributions in prior/
| Clamped | Delta // predefined for fixing the hyperparameter

pr := ’func’ | @func // univariate hyperprior

49

| ’funcMulti’ | @funcMulti // multivariate hyperprior

hp := {pr} | {pr, {param, hp}} | {pr, {hp, .., hp}} // composite

i.e., it is either a string containing the name of a hyperprior function, a pointer to a hyperprior
function or one of the former in combination with a cell array of hyperprior functions and an addi-
tional list of parameters. Furthermore, we have multivariate hyperprior variants and 2 (equivalent)
predefined hyperpriors allowing to exclude variables from optimisation.

(doclusagePrior.m [49)=

% demonstrate usage of prior distributions
b

% See also priorDistributions.m.

YA

(gpml copyright|[5a)

clear all, close all

% 1) specify some priors

% a) univariate priors

mu = 1.0; s2 = 0.0172; nu = 3;

11 pg = {@priorGauss,mu,s2}; % Gaussian prior
12 p1 = {’priorLaplace’,mu,s2}; % Laplace prior
13 pt = {@priorT,mu,s2,nult; % Student’s t prior
14 p1 = {@priorSmoothBox1,0,3,15}; 7 smooth box constraints lin decay
15 p2 = {@priorSmoothBox2,0,2,15}; 7 smooth box constraints qua decay

[N
SOOI Li AW =

16 pd = {’priorDelta’}; % fix value of prior exclude from optimisation
17 pc = {@priorClamped}; % equivalent to above
18 lam = 1.05; k = 2.5;

19 pw = {@priorWeibull,lam,k}; % Weibull prior

20

21 % b) meta priors

22 pmx = {@priorMix,[0.5,0.5],{pg,pll}}; % mixture of two priors
3 g = Qexp; dg = Qexp; ig = @log;

24 ptr = {@priorTransform,g,dg,ig,pglt; % Gaussian in the exp domain

25

26 % c) multivariate priors
27 m = [1;2]; V = [2,1;1,2];

28 pG = {@priorGaussMulti,m,V}; % 2d Gaussian prior
29 pD = {’priorDeltaMulti’}; % fix value of prior exclude from optim
30 pC = {@priorClampedMulti}; % equivalent to above
J

32 % 2) evaluation

33 % pri = pt; hp = randn(1,3);

34 % pri = pmx; hp = randn(1,3);

35 % pri = ptr; hp = randn(1,3);

36 pri = pG; hp = randn(2,3);

37

38 % a) draw a sample from the prior

39 feval(pri{:})

41 % b) evaluate prior and derivative if requires
42 [1p,dlp] = feval(pri{:},hp)

44 % 3) comprehensive example

45 x = (0:0.1:10)?; y = 2*x+randn(size(x)); % generate training data
46 mean = {@meanSum,{@meanConst,@meanlinear}}; % specify mean function
47 cov = {@covSEiso}; lik = {@likGauss}; % specify covariance and lik
48 hyp.cov = [log(1l);log(1.2)]; hyp.lik = 1log(0.9); hyp.mean = [2;3];

50

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

par = {mean,cov,lik,x,y}; mfun = Ominimize; % input for GP function

% a) plain marginal likelihood optimisation (maximum likelihood)

im = @infExact; % inference method
hyp_plain = feval(mfun, hyp, @gp, -10, im, par{:}); % optimise
% b) regularised optimisation (maximum a posteriori) with 1d priors

prior.mean = {pg;pc}; % Gaussian prior for first, clamp second par
prior.cov = {p1;[]}; % box prior for first, nothing for second par
im = {@infPrior,@infExact,prior}; % inference method
hyp_pl = feval(mfun, hyp, @gp, -10, im, par{:}); % optimise

% c) regularised optimisation (maximum a posteriori) with Nd priors
prior = []; % clear the structure
% multivariate Student’s t prior on the first and second mean hyper
prior.multi{1} = {@priorTMulti, [mu;mu],diag([s2,s2]),nu,...

struct (’mean’,[1,2])}; % use hyper struct
% Equivalent shortcut (same mu and s2 for all dimensions)
prior .multi{1} = {@priorTMulti,mu,s2,nu,struct(’mean’,[1,2])};
% multivariate Gaussian prior jointly on 1st and 3rd hyper
prior.multi{2} = {@priorGaussMulti, [mu;mu],diag([s2,s2]),...

[1,31}; % use unwrapped hyper vector
% Equivalent shortcut (same mu and s2 for all dimensions)
prior .multi{2} = {@priorGaussMulti,mu,s2,[1,3]};

im = {@infPrior,@infExact,prior}; % inference method
hyp_pN = feval(mfun, hyp, @gp, -10, im, par{:}); % optimise
[any2vec (hyp), any2vec(hyp_plain), any2vec(hyp_pl), any2vec (hyp_pN)]

51

	Gaussian Process Training and Prediction
	The gp Function
	Inference Methods
	Exact Inference with Gaussian likelihood
	Laplace's Approximation
	Expectation Propagation
	Kullback Leibler Divergence Minimisation
	Variational Bayes
	Compatibility Between Inference Methods and Covariance Approximations
	Sparse Covariance Approximations
	Grid-Based Covariance Approximations
	State Space Representation of GPs

	Likelihood Functions
	Prediction
	Interface
	Implemented Likelihood Functions
	Usage of Implemented Likelihood Functions
	Compatibility Between Likelihoods and Inference Methods
	Gaussian Likelihood
	Exact Inference
	Laplace's Approximation
	Expectation Propagation
	Variational Bayes

	Warped Gaussian Likelihood
	Gumbel Likelihood
	Laplace Likelihood
	Student's t Likelihood
	Cumulative Logistic Likelihood
	GLM Likelihoods: Poisson, Negative Binomial, Weibull, Gamma, Exponential, Inverse Gaussian and Beta
	Inverse Link Functions
	Poisson Likelihood
	Weibull Likelihood
	Gamma Likelihood
	Exponential Likelihood
	Inverse Gaussian Likelihood
	Beta Likelihood

	Mean Functions
	Interface
	Implemented Mean Functions
	Usage of Implemented Mean Functions

	Covariance Functions
	Interface
	Implemented Covariance Functions
	Usage of Implemented Covariance Functions

	Hyperpriors
	Interface
	Implemented Hyperpriors
	Usage of Implemented Hyperpriors

