
GADMA user manual
Corresponding to version 1.0.0

Ekaterina Noskova

Contents

1 Introduction 3

2 Getting help 3

3 Hands on 3

4 Input data 5
4.1 VCF data format . 6
4.2 Frequency spectrum file format . 7
4.3 SNP data format . 7

5 Specifying scheme 8

6 Specifying a model 8
6.1 Dynamics of population size change . 8
6.2 Specifying structure of the model . 9

6.2.1 Initial structure . 10
6.2.2 Final structure . 10

6.3 Specifying model in details . 11

7 Several repeats and parallel computing 12

8 Output 12
8.1 Stdout and log file . 13
8.2 Model representation . 13
8.3 Output directory content . 15
8.4 Generated code of models . 15

9 Plotting model 16
9.1 Time units on model’s plot . 16
9.2 Plotting after GADMA finished . 17

1

10 Usefull options 17
10.1 Time for generation . 17
10.2 Theta0 . 18

10.2.1 Estimating Theta0 . 18
10.2.2 Changing Theta0 . 18

10.3 Examples of Theta0 and time for generation 19
10.4 Relative to NA parameters . 19
10.5 Disable migrations . 19
10.6 Upper bound for time split . 19
10.7 Resume launch . 20

10.7.1 Only models . 20

11 Extra parameters file 20

12 Units 20

13 Decreasing number of model’s parameters 20

14 Dependencies 22

15 Installation 22
15.1 ∂a∂i . 22
15.2 moments . 22
15.3 Pillow . 23
15.4 GADMA . 23

15.4.1 Verifying installation . 23

Appendices 24

A Example of full parameters file 24

B Example of generated code 30

2

1 Introduction

Welcome to GADMA!

GADMA implements methods for automatic inferring joint demographic history of mul-
tiple populations from the genetic data.

GADMA is based on two open source packages: the ∂a∂i developed by Ryan Gutenkunst
[https://bitbucket.org/gutenkunstlab/dadi/] and the moments developed by Simon
Gravel [https://bitbucket.org/simongravel/moments/].

In contrast, GADMA is a command-line tool. It presents a series of launches of the
genetic algorithm and infer demographic history from Allele Frequency Spectrum of multiple
populations (up to three).

2 Getting help

Please don’t be afraid to contact me for different problems and offers via email ekate-
rina.e.noskova@gmail.com. I will be glad to answer all questions.

3 Hands on

Test case
GADMA has test case for simple demographic model for 1 population: just constant size of
10000 individuals in population. To run test case type:

$ gadma --test

Example 2
Suppose we have SNP data for two populations. Data is in ∂a∂i’s SNP format in file
snp_data.txt. Suppose we want to get all output in some gadma_output directory:

$ gadma -i snp_data.txt -o gadma_output

Example 3
We didn’t specify AFS size or labels for populations, they are taken automaticaly from the
input file.We can see parameters file of our run in gadma_output/params file. We see that
there are

gadma_output/params

...

Population labels : pop_name_1 , pop_name_2

Projections: 18, 20

...

But we know that spectrum should be 20 × 20! To specify size of AFS we need to create
parameters file and set Projections:

3

https://bitbucket.org/gutenkunstlab/dadi/
https://bitbucket.org/simongravel/moments/

params_file

Projections : 20,20

Also we can change order of populations. We should add:

params_file

Projections : 20,20

Population labels : pop_name_2 , pop_name_1

If we want to rename populations, we should change names in snp_data.txt file.
Now assume we want to get the simplest demographic model that we can as faster as we

can. We will tell GADMA that we don’t need no other dynamics of population sizes except
sudden (constant) population size change and that we want to use moments library.

We add corresponding string to parameters file and now it looks like:

params_file

Projections : 20,20

Population labels : pop_name_2 , pop_name_1

Only sudden : True

Use moments or dadi : moments

To run GADMA we need to specify -p/--params command-line option in cmd:

$ gadma -i snp_data.txt -o gadma_output -p params_file

Example 4
Consider some AFS file fs_data.fs. There is spectrum for three populations: YRI, CEU,
CHB. However axes are mixed up: CHB, YRI, CEU. To run GADMA we should order them
from most ancient to last formed:

params_file

Population labels : YRI , CEU , CHB

We want to allow exponential growth (it is default behaviour) and have some extra change
in size of the ancient population. To do so we should specify Initial structure. It is list
of three numbers: first — number of time intervals before first split (we want here 2); second
— number of time periods betseen forst and second split events (at least 1); third — number
of time periods after second split.

params_file

Population labels : YRI , CEU , CHB

Initial structure : 2,1,1

Also we can put information about input file and output directory to our parameters file:

params_file

Input file : fs_data.fs

Output directory : gadma_output

Population labels : YRI , CEU , CHB

Initial structure : 2,1,1

Now we can run GADMA the following way:

4

$ gadma -p params

Example 5
We have our GADMA launch interrupted for some reason. We want to resume it:

$ gadma --resume gadma_output

where gadma_output is output directory of previous run. We can find resumed run in
gadma_output_resumed

Example 6
Our launch was finished, we used ∂a∂i with default grid size which GADMA determines
automatically if it is not specify by user. We found out that it would be better to find some
models using greater number of grid points in ∂a∂i scheme, but we want to take final models
from previous run:

params_file

Pts : 40, 50, 60 #Greater value of grid size than it was

And run GADMA:

$ gadma --resume gadma_output --only_models -p params

--only_models tell GADMA to take from gadma_output final models only.

There is another way to do the same:

params_file

Resume from : gadma_output

Only models : True

Pts : 40, 50, 60 #Greater value of grid size than it was

And run GADMA the following way:

$ gadma -p params

Example YRI, CEU
GADMA has example of full parameters file example_params, which is preseted here too at
the end of the manual. To run GADMA with this parameters one should just run from the
GADMA’s home directory:

$ gadma -p example_params

4 Input data

GADMA handles two formats of input files:

• Frequency spectrum file format (.fs or .sfs),

5

• SNP data format (.txt).

These data formats should be familiar to one who was used ∂a∂i or moments .
Input file can be specified to GADMA with two ways:

1. Through command-line option -i/--input:

$ gadma -i fs_file.fs -o out_dir

or

$ gadma --input snp_file.txt -o out_dir

2. In parameters file params_file:

params_file

Input file path

Input file : fs_file.fs

...

Extra information about input AFS can also be put in parameters file. For example,
AFS can be projected to smaller size with Projections option, populations can be
named or their order can be changed with Population labels option. If parameters
file does not contain some options, they are automaticaly pulled out from the input
file.

params_file

Input file path

Input file : fs_file.fs

(New) size of the AFS

Projections : 20,20

Labels of populations

Population labels : CEU , YRI

...

GADMA can be launched with parameters file the following way:

$ gadma -p params_file -o out_dir

4.1 VCF data format

If one have .vcf file, it can be converted it into .sfs file using https://github.com/isaacovercast/
easySFS.

6

https://github.com/isaacovercast/easySFS
https://github.com/isaacovercast/easySFS

4.2 Frequency spectrum file format

Each file begins with any number of comment lines beginning with #. The first non-comment
line contains P integers giving the dimensions of the FS array, where P is the number of
populations represented. For a FS representing data from 4x4x2 samples, this would be
5 5 3. (Each dimension is one larger than the number of samples, because the number of
observations can range, for example, from 0 to 4 if there are 4 samples, for a total of 5
possibilities.) On the same line, the string folded or unfolded denoting whether or not the
stored FS is folded.

The actual data is stored in a single line listing all the FS elements separated by spaces,
in the order fs[0,0,0] fs[0,0,1] fs[0,0,2]. . . fs[0,1,0] fs[0,1,1]. . . . This is followed by a single line
giving the elements of the mask in the same order as the data, with 1 indicating masked and
0 indicating unmasked.

4.3 SNP data format

Human Chimp Allele1 YRI CEU Allele2 YRI CEU Gene Position

ACG ATG C 29 24 T 1 0 abcb1 289

CCT CCT C 29 23 G 3 2 abcb1 345

Listing 1: Example of SNP file format

The data file begins with any number of comment lines that being with #. The first
parsed line is a column header line. Whitespace is used to separate entries within the table,
so no spaces are allowed within any entry. Individual rows make be commented out using #.

The first column contains the in-group reference sequence at that SNP, including the
flanking bases. If the flanking bases are unknown, they can be denoted by -. The header
label is arbitrary.

The second column contains the aligned outgroup reference sequence at that SNP, in-
cluding the flanking bases. Unknown entries can be denoted by -. The header label is
arbitrary.

The third column gives the first segregating allele. The column header must be exactly
Allele1.

Then follows an arbitrary number of columns, one for each population, each giving the
number of times Allele1 was observed in that population. The header for each column should
be the population identifier.

The next column gives the second segregating allele. The column header must be exactly
Allele2.

Then follows one column for each population, each giving the number of times Allele2
was observed in that population. The header for each column should be the population
identifier, and the columns should be in the same order as for the Allele1 entries.

Then follows an arbitrary number of columns which will be concatenated with _ to assign
a label for each SNP.

The Allele1 and Allele2 headers must be exactly those values because the number of

7

columns between those two is used to infer the number of populations in the file.

5 Specifying scheme

GADMA use either ∂a∂i or moments to simulate expected AFS from the demographic model.
By default ∂a∂i is used. To use ∂a∂i it is recommended to check value of the Pts option in
parameters file. Pts is sequence of three numbers, each of which is equal to the number of
points in grid size. The greater numbers are, the more accurate ∂a∂i numerical solution of
partial differential equation is, however, it would take more time. By default, GADMA takes
Pts : n, n + 10, n + 20, where n — is the maximum sample size among populations of
interest.

moments library does not need Pts to be specified. To change ∂a∂i to moments scheme,
specify option in parameters file:

params file

...

Use moments or dadi : moments

...

6 Specifying a model

6.1 Dynamics of population size change

Sudden

Figure 1: Three main demographic dynamics of population size change.

In GADMA size of population can be changed due to one of three dynamics: sudden
change, linear change and exponential change of the effective population size (Figure 1).

In order to infer demographic model with sudden changes of populations sizes only, option
Only sudden in parameters file should be set to True:

params_file

...

Only sudden : True

...

By default, this option is set to False and dynamics are found like other parameters of the
demographic model.

8

6.2 Specifying structure of the model

GADMA infers a demographic model from an AFS with nothing required from the user,
except simple information, that determines how much the detailed model is required — the
structure of the model.

Assume a division of one population into two new subpopulations and fixed temporal
order of the populations: from the ancient to the most recently formed population.

We can divide time of our model into splits events and time intervals, during which a
certain dynamics of change of effective size is maintained for each population and migration
rates are constant. The number of split events is one less than the number of populations
under consideration. Now we can define the concept of the structure of the demographic
model:

Structure of the demographic model is:

• the number of time intervals in case of one population;

• the number of time intervals as those that occur before and after a single split, in the
case of two populations;

• the number of time intervals prior to the first split, those between the first and second
split, and the ones after the second split, in the case of three populations.

For example, we can divide time of the model on the Figure 2 to 4 time intervals: T1,
T2, T3 and T4, and two populations’ splits: S1 and S2. The structure of this model is 2, 1, 1,
because two intervals (T1 as T2) before first split S1, one interval (T3) between first and
second splits and one interval (T4) after second split S2.

Figure 2: Example of representation of demographic model. Time is on the axis of abscissa
and population size is on the axis of ordinates. The structure of that model is (2,1,1). Here
colors are just a formality and are used for highlighting different demographic dynamics.

9

6.2.1 Initial structure

To specify Structure of the inferred model one should set Initial structure in the param-
eters file:

params file

...

Initial structure : 2

...

or

params file

...

Initial structure : 2,1

...

or

params file

...

Initial structure : 2,1,1

...

By default the simplest structure is used (1 or 1,1 or 1,1,1).

6.2.2 Final structure

It is also possible to start with more simple structure in order to get more complex. To do
so one should specify option Final structure in the parameters file. For example:

params file

Input file : some_2d_fs.fs

Initial structure : 1,1

Final structure : 2,1

...

During this parameters file GADMA will find parameters for demographic model with 1,1
structure, then increase structure for 2,1 and find parameters for the model with this struc-
ture. Found parameters for more simple structure (in this case it is 1,1) are used in search
of the parameters of more complex structure (2,1).

Note: Structure increases random, so if one specify initial structure to 1,1 and final to
2,2, it is not garanteed to finad optimal parameters for demographic models with structures
between 1,1 and 2,2, i.e. intermediate state can be either 1,2 or 2,1.

Recommendation: Use scheme with increase of the structure, as it produce more
stable solutions.

Recommendation: Choose not very large values for model’s structure. Final structure
is recommended to be differ by one element from initial structure, for example, 1,1 and 2,1;
1,2,1 and 2,2,1.

10

6.3 Specifying model in details

It is also possible to use Genetic algorithm from GADMA to a proposed model that is defined
as Python function using ∂a∂i or moments . It is the way that ∂a∂i and moments work with
demographic models inference. To understand how to specify model like that one can read
manuals to the packages.

For example, consider simple bottleneck model for one population: at time TF + TB in
the past, an equilibrium population goes through a bottleneck of depth nuB, recovering to
relative size nuF:

def bottleneck(params , ns, pts):

nuB , nuF , TB , TF = params

xx = dadi.Numerics.default_grid(pts)

phi = dadi.PhiManip.phi_1D(xx)

phi = dadi.Integration.one_pop(phi , xx, TB , nuB)

phi = Integration.one_pop(phi , xx, TF, nuF)

fs = dadi.Spectrum.from_phi(phi , ns, (xx ,))

return fs

To run optimization from GADMA one need to run optimization function just like in
∂a∂i and moments :

Import GADMA ’s optimization function:

import gadma

Specify input data and its parameters:

data = dadi.Spectrum.from_file("fs_filename.fs")

ns = data.sample_sizes # size of AFS

pts = [40 ,50 ,60] # grid size for dadi

Wrap our bottleneck function:

func_ex = dadi.Numerics.make_extrap_log_func(bottleneck)

Specify upper and lower bounds for parameters:

upper_bound = [100, 100, 3, 3]

lower_bound = [1e-2, 1e-2, 0, 0]

Run optimizations:

Beginning GADMA optimization

popt = gadma.Inference.optimize_ga (4, data , func_ex , pts_l ,

lower_bound=lower_bound ,

upper_bound=upper_bound)

Beginning local optimization from dadi

popt = dadi.Inference.optimize_log(popt , data , func_ex , pts_l ,

lower_bound=lower_bound ,

11

upper_bound=upper_bound ,

verbose=len(p0), maxiter =3)

print(’Found parameters: {0}’. format(popt))

Note: No initial parameters p0 are set in gadma.Inference.optimize_ga function as
GADMA optimization is global search algorithm. However it is possible to specify p0:

Initial parameters can be set too:

p0 = [0.01, 1.5, 0.2, 0.2]

Beginning GADMA optimization

popt = gadma.Inference.optimize_ga (4, data , func_ex , pts_l , p0=p0

lower_bound=lower_bound ,

upper_bound=upper_bound)

If one want to find other parameters fo gadma.Inference.optimize_ga function:

>>> import gadma

>>> help(gadma.Inference.optimize_ga)

7 Several repeats and parallel computing

By default GADMA run optimization that uses Genetic algorithm once. However it is
recomended to run optimization several times and get best model among the result ones.
Option Number of repeats in parameters file tell GADMA to execute optimization the
necessary number of times. Moreover there are another option Number of processes allows
GADMA to parallelize those runs.

Note: GADMA parallelize exactly several runs, not every of them. So if one ask to
repeat optimization 2 times and parallelize in more than 2 processes, only two processes will
be used eventually.

Recomendation: Number of processes should be lesser than Number of repeats

and it will be better if it is aliquot to the Number of repeats.
Note: Number of processes shouldn’t be greater than number of kernels on one’s

computer. Otherwise there will be no sence in parallelization.

params file

...

Number of repeats : 6

Number of processes : 2 # or 3 or 6

...

8 Output

GADMA put all files to the directory that user set through -o/--output command-line
option:

12

$ gadma -o output_dir -i input_fs.fs

or through Output directory option in parameters file:

params file

Output directory : output_dir

...

8.1 Stdout and log file

GADMA prints its progress about every minute in stdout and in output_dir/GADMA.log

file:

[hhh:mm:ss]

All best logLL models:

GA number logLL BIC Model

All best BIC models:

GA number logLL BIC Model

--Best model by log likelihood --

Log likelihood: Best logLL

with BIC score: BIC_score

Model: representation of best logLL model

--Best model by BIC score --

Log likelihood: logLL

with BIC score: Best BIC score

Model: representation of best BIC model

Note: One can set Silence option in parameters file to True to disable output in
stdout, file output_dir/GADMA.log will still have it.

8.2 Model representation

Every model is printed as a line of parameters. All model parameters, except mutation rates,
have precision equals to 2.

Consider designations:

• T — time,

• P — percent of split,

• Ni — size of population number i,

• di — dynamic of changing of the size of population number i,

• mij — mutation rate from population i to population j.

13

Dynamic of population size change has numerical values:

• di = 0 — sudden change of size for population number i;

• di = 1 — linear change of size for population number i;

• di = 2 — exponential change of size for population number i;

Model is printed as sequence of time intervals and splits that are represented the following
way:

• First period (NA — size of ancestry population):

[NA]

• Split:

– If there are one population before split event, so there will be two populations
after it:

[P%, [N1, N2]]

– If there are two population before split event, so last formed population is divided
and there will be three populations after it:

[P%, [N1, N2, N3]]

• Usual time period:

– If there is one population:

[T, [N1], [d1]]

– If there are two populations:

[T, [N1, N2], [d1, d2], [[None, m12], [m21, None]]]

– If there are three populations:

[T, [N1, N2, N3], [d1, d2, d3],

[[None, m12, m13], [m21, None, m23], [m31, m32, None]]]

At the end of the string, that corresponds to the model, there is information about
model’s ancestry in the genetic algorithm:

• c — for model, that is child of crossover,

• r — if it was formed random way,

• m — if it was mutated,

• f — final model of genetic algorithm.

Note: m is added as many times as model was mutated.
Example of the demographic model for two populations:

[[144.38]][16.00%, [23.10, 121.28]][375.77, [143.31, 30.07],

[2, 2], [[None, 3.33e-03][7.53e-04, None]]]

14

8.3 Output directory content

For every repeat of Genetic algorithm GADMA create new folder in output directory with
correspond number.

In every folder there is GADMA_GA.log, where every iteration of algorithm is saved, folders
pictures and python_code.

When genetic algorithm finishes GADMA saves picture and python code of result model
in the corresponding folder.

When all GA finishes picture and code of best model among them are saved in root
directory.

- <output_dir >

- 1

GADMA_GA.log

- pictures

- python_code

- dadi

- moments

result_model.png

result_model_code.py

- 2

GADMA_GA.log

- pictures

- python_code

- dadi

- moments

result_model.png

result_model_code.py

params

extra_params

GADMA.log

best_logLL_model.png

best_logLL_model_dadi_code.py

best_logLL_model_moments_code.py

best_bic_model.png

best_bic_model_dadi_code.py

best_bic_model_moments_code.py

8.4 Generated code of models

By default GADMA generates python code only for final models both for ∂a∂i and moments .
However it can do it every N iteration of genetic algorithm also. In this case option should be
set in the parameters file. GADMA save files with code to the output_dir/<GA_number>/python_code
directory. Both ∂a∂i and moments code are generated and saved in different folders there.

Each code contain function of the model, which takes values of the parameters as input,
and strings that load observed AFS, simulate expected AFS from the model’s function and

15

calculate log likelihood between two AFS’. The result log likelihood is printed to stdout. For
the moments code picture is also draw.

All code can be run the following way:

$ python file_with_code.py

Example of generated code one can find at the end of this manual in the corresponding
section.

9 Plotting model

Figure 3: Exaple of demographic model plot that GADMA draw during run.

GADMA always draws final best models during genetic algorithms search for best solu-
tions.

However models can be drawing during the pipeline every N ’s iteration of each genetic al-
gorithm. N is equal to the value of Draw models every N iteration option in parameters
file. So to enable drawing one should set this option in file.

Recommendation: Don’t draw models very often, because changes are usually not
very significant and drawing takes some time, so optimization will be slower.

Note: One can disable drawing by setting Draw models every N iteration : 0 in
the parameters file. This is also default behaviour.

Models are drawn with moments library, so it should be installed if one want to have
pictures. In the top left corner there is size of ancestry population. Other parameters one
can find in string representation of the model in the log files.

9.1 Time units on model’s plot

Time on the demographic model’s plot can be drawn in units of years, thousand years
or in genetic units. By default choice depends on the Time for generation option in the
parameters file: if it is set to some value (in years) then time will be shown in years, otherwise
it will be in genetic units.

But, of course, it is possible to tell GADMA what units are preferable. For example, if
one wants time to be in thousand of years on the pictures, as it is big values in years:

16

params file

...

Units of time in drawing : thousand years

...

9.2 Plotting after GADMA finished

Figure 4: Example of model’s plot that was drawn with generated python script.

Sometimes final pictures aren’t satisfying or one didn’t draw for some reasons (don’t want
to install moments , want fast launch) it is possible to plot demographic model (and only it)
again.

To do it one should run corresponding generated python script for the model. For exam-
ple, final model can be draw again the following way:

$ python best_logll_model_moments_code.py

Note: Again it’s possible only if one have moments installed.
Note: One can change code inside file and draw again if picture isn’t satisfying.

10 Usefull options

10.1 Time for generation

Option Time for generation in parameters file is corresponding to the time per one gener-
ation in Wright-Fisher model. It is responsible basically for one thing: time on the model’s
plots. If it is specified, then time on the pictures will be converted from genetic units by
scaling with this value. Otherwise, if it is not set, time will be shown in genetic units.

Note: If Time for generation is specified, it should be consistent with another option:
Theta0, which is described in the corresponding section.

17

10.2 Theta0

Theta0 is equal to the expected number of mutation that occur in one chromosome in one
generation in the infinite-sited model. GADMA can scale all values of demographic model
parameters due to known value of Theta0. However, it is not always possible to find it.
There is a way to solve this problem: one can to set Theta0 to None or just not to specify
it at all, so GADMA will take it as 1.0 and after launch one can scale result values due to
found Theta0 (how to do it is described in the corresponding section).

10.2.1 Estimating Theta0

If µ — is the neutral mutation rate per site per generation and L — length of the sequence,
then:

θ0 = 4 ∗ µ ∗ L

Note: L is the effective sequenced length, which accounts for losses in alignment and
missed calls.

Note: µ should be estimated based on generation time. One can leave Time per generation

option in parameters file unspecified (then time on the model’s plots will be in the genetic
units), but don’t forget to recalculate µ!

For example (Gutenkunst et al, 2009 [1]):

We estimate the neutral mutation rate µ using the divergence between human and
chimp. Comparing aligned sequences in our data, we estimate the divergence to
be 1.13%. Assuming a divergence time of 6 million years and a mean generation
time for human and chimp over this interval of 25 years, we have

µ = 0.0113 · 25/(2 · 6 · 106) = 2.35 × 10−8 per generation.

10.2.2 Changing Theta0

If GADMA was launched with one Theta0 and now one want to use another or if it was
launched with default Theta0 = 1.0 and now one have estimated its real value, model’s
parameters can be simply scaled:

Let a =
θNEW
0

θOLD
0

,

• Size of population /a,

• Time /a,

• Migration rates ∗a,

• Split percent stay the same.

18

10.3 Examples of Theta0 and time for generation

The following tables produces different possible values for the demographic model inference
for three populations of modern people: YRI, CEU, CHB.

FS filename Gen. time µ L Theta0

(years) (per site per gen.) (base pair) (per chr. per gen.)
YRI CEU CHB.fs 25 [1] 2.35 · 10−8 [1] 4.04 · 106 [1] 0.37976
YRI CEU CHB.fs 24 [3] 2.26 · 10−8 [1] 4.04 · 106 [1] 0.36521
YRI CEU CHB.fs 29 [2] 1.44 · 10−8 [2] 4.04 · 106 [1] 0.23270
YRI CEU CHB.fs 24 [3] 1.2 · 10−8 [2] 4.04 · 106 [1] 0.19392

Table 1: Examples of different values of generation time and its influence on µ and Theta0

In Gutenkunst et al. [1] generation time for human populations was equal to 25 years and
mutation rate µ was estimated as 2.35 · 10−8. If one want to change time for one generation
to 24 years, one need to scale µ: µ/25 · 24 = 2.26 · 10−8.

In Jouganous et al. [2] generation time was grater — 29 years and mutation rate was
equal to 1.44 · 10−8. To change generation time to 24, one need to change value of mutation
rate: µNEW = µ/29 · 24 = 1.2 · 10−8. Theta0 is calculated then by the formula above.

Note: One can find FS files in fs_examples directory.

10.4 Relative to NA parameters

Sometimes it is more important to see parameters scaled to Nref = NA. To tell GADMA
show models with scaled parameters, option Relative parameters should be set to True.
By default, it is False. It is conveniently when Theta0 is unknown.

10.5 Disable migrations

GADMA can to exclude migrations rates from optimization and consider them be equal to
zero. In that case all migrations are disabled. One should set option No migrations to True

in the parameters file.

10.6 Upper bound for time split

To limit time of some split one should specify option in parameters file. Splits are numerated
from the most ancient. So split 1 is split that occurred with ancient population and split
2 is next division of second population (exist only for three populations). There are two
appropriate options: Upper bound of first split and Upper bound of second split.

One should translate time from years into genetic units, therefore divide it by 2 · Tg,
where Tg is time (in years) for one generation. For example, one want to limit last split with
2000 years. Time for one generation is estimated as 24 years, then one should specify in
parameters file:

19

...

Upper bound of second split : 83.333

...

10.7 Resume launch

To resume interrupted launch one can use --resume command-line option or set Resume from

in the parmeters file. One need to set output directory of previous run.
If neither Output directory or -o/--output aren’t specified, GADMA will continue

evaluation in the directory: <previous_output_dir>_resumed.

10.7.1 Only models

GADMA can resume launch taking final models only from previous run. This means, that
it is not resumption, but run from some initial values. It is usufull, for example, when one
have run GADMA with some small grid size for dadi and then want to restart it with greater
number of grid points. To do so, one should set command-line option --only_models with
--resume or specify Only models option in parameters file to True.

11 Extra parameters file

GADMA take extra parameters file as input. However one probably do not need
them. Nevertheless, if one is interested, extra_params_template with all options and their
descriptions can be found in gadma folder.

12 Units

GADMA shows model parameters in genetic units. To scale them from one should multiply
migration rates by 2 only. Other units are as usual. In case when option Relative parameters

is set to True one should first rescale from units of Nref : sizes of populations and time —
multiply by NA, migration rates — divide by NA.

13 Decreasing number of model’s parameters

There are several ways to decrease number of demographic model’s parameters in GADMA.
Firstly, as it was discussed above, one can consider only sudden dynamics of population size
changes (Only sudden : True). Second way to decrease number of parameters is so-called
multinom scheme: when at every step NA is chosen to fit the observed data best. This
scheme leads to faster work of GADMA, however it is more possible to get stuck in local
optima. To use it one should set option Multinom to True in parameters file. Third way is
to disable migration by setting No migrations to True in parameters file.

20

The last and more reliable way to decrease number of model’s parameters is to use
GADMA optimization on the custom model written with ∂a∂i or moments (section Speci-
fying model in details). However it requires some extra work for user.

21

14 Dependencies

The absolute dependencies for GADMA are:

• Python (2.5, 2.6, 2.7)

• NumPy (≥ 1.2.0)

• Scipy (≥ 0.6.0)

• ∂a∂i (≥ 1.7.0) or moments (≥ 1.0.0)

To draw demographic models install:

• matplotlib (≥ 0.98.1)

• Pillow (≥ 4.2.1)

• moments (≥ 1.0.0)

15 Installation

Before GADMA installation one need either ∂a∂i or moments been installed.

15.1 ∂a∂i

To install ∂a∂i, go to the work directory and run:

$ git clone https :// bitbucket.org/gutenkunstlab/dadi/

Then go to the dadi directory and install package:

$ cd dadi

$ python setup.py install

To check ∂a∂i’s installation, type in python interpreter:

$ python

>>> import dadi

15.2 moments

To install moments , go to the work directory and run:

$ git clone https :// bitbucket.org/simongravel/moments/

Check that Cython is installed:

$ python -m pip install --upgrade Cython

Then go to the moments directory and install package:

22

$ cd moments

$ python setup.py install

To check moments ’s installation, run in python interpreter:

$ python

>>> import moments

15.3 Pillow

Install Pillow throgh pip:

$ python -m pip install Pillow

To check Pillow’s installation, type in python interpreter:

$ python

>>> import PIL

15.4 GADMA

To download GADMA, go to the work directory and run:

$ git clone https :// github.com/ctlab/GADMA

Then go to the GADMA directory and install GADMA:

$ cd GADMA

$ python setup.py install

Now one can run it like this:

$ gadma --help

15.4.1 Verifying installation

To verify installation run test:

$ gadma --test

If the installation is successful, one will find the following information at the end:

--Finish pipeline --

--Test passed correctly --

Thank you for using GADMA!

23

Appendices

A Example of full parameters file

It is parameters file for GADMA software.

Lines started from # are ignored.

Also comments at the end of a line are ignored too.

Every line contains: Identificator of parameter : value.

If one want to change some default parameters , one need to

remove # at the begining of line and change corresponding

parameter.

Output directory to write all GADMA out.

One need to set it to not existing or empty directory.

If it is resumed from other directory and output directory

isn ’t set , GADMA will add ’_resumed ’ for previous output

directory.

Output directory : my_example_run

One can resume from some other launch of GADMA by setting

output directory of it to ’Resume from ’ parameter.

You can set again new parameters of resumed launch.

#Resume from : another_output_dir

#

If you want to take only models from previous run set this

flag. Then iterations of GA will start from 0 and values of

mutation rate and strength will be initial.

Default: None

#Only models : None

Input file can be sfs file (should end with .fs) or

file of SNP ’s in dadi format (should end with .txt).

Input file : fs_examples/YRI_CEU.fs

’Population labels ’ is sequence of population names (the same

names as in input file)

If .fs file is in old format then it would rename population

labels that are absent.

It is necessary to put them in order from most ancient to less.

24

(In case of more than two populations)

It is important , because the last of formed populations take

part in next split.

For example , if we have YRI - African population ,

CEU - European population and CHB - Chineese populaion ,

then we can write YRI , CEU, CHB or YRI, CHB , CEU

(YRI must be at the first place)

Default: from input file

Population labels : CEU , YRI # we change populations order

(in input file YRI is first)

Also one can project your spectrum to less size.

For example , we have 80 individuals in each of three

populations , then spectrum will be 81x81x81 and one can

project it to 21x21x21 by set ’Projections ’ parameter

to 20, 20, 20.

Default: from input file

Projections : None # will be 20, 20

Now all main parameters:

#

Total mutation flux - theta.

It is equal to:

theta = 4 * mu * L

where mu - mutation rate per site per generation and

L - effective sequenced length , which accounts for losses

in alignment and missed calls.

Note: one should estimate mu based on generation time.

Default: 1.0

Theta0 : 0.37976 # the same as in Gutenkunst et al 2009

Time (years) for one generation. Can be float.

Is important for drawing models. If one don ’t want to draw ,

one can pass it.

Default: 1.0

Time for generation : 25 # the same as in Gutenkunst et al 2009

Parameters for demographic models:

#

Use moments or dadi

Default: dadi

25

Use moments or dadi : moments

Use multinom scheme: N_A is not parameter for search ,

it is calculated through optimal_sfs_scaling.

Multinom scheme decrease number of parameter by one and

is usually faster , however non multinom scheme usually

finds better solutions.

Default: False

Multinom : False

If you choose to use dadi , please set pts parameter - number

of points in grid

Default: Let n = max number of individuals in one population ,

then pts = n, n+10, n+20

#Pts : 20, 30, 40

Structure of model for one population - number of time periods

(e.g. 5).

Structure of model for two populations - number of time periods

before split of ancestral population and after it (e.g. 2,2).

Structure of model for three populations - number of time periods

before first split , between first and second splits and after

second split (e.g. 2,1,2).

#

Structure of initial model:

Default: all is ones - 1 or 1,1 or 1,1,1

Initial structure : 2,1

Structure of final model:

Default: equals to initial structure

#Final structure : 2,2

It is possible to limit time of splits.

Split 1 is the most ancient split.

!Note that time is in genetic units (2 * time for 1 generation):

e.g. we want to limit by 150 kya, time for one generation is

25 years , then bound will be 150000 / (2*25) = 3000.

#

Upper bound for split 1 (in case of 2 or 3 populations).

Default: None

#Upper bound of first split : None

Upper bound for split 2 (in case of 3 populations).

Default: None

#Upper bound of second split : None

26

Print parameters of model in units of N_ref = N_A.

N_A will be placed in brackets at the end of string.

Default: False

Relative parameters : False

Disable migrations in demographic models.

Default: False

No migrations : false

Parameters for Genetic Algorithm.

#

Size of population of demographic models in GA:

Default: 10

Size of population in GA : 10

Fractions of current models , mutated models and crossed models

to be taken to new population.

Sum of fractions should be <= 1, the remaining fraction is

fraction of random models.

Default: 0.2,0.3,0.3

#Fractions in GA : 0.2,0.3,0.3

Mutation strength - fraction of parameters in model to mutate

during global mutation process of model.

Number of parameters to mutate is sampled from binomial

distribution , so we need to set mean.

Default: 0.2

Mean mutation strength : 0.3

#

Mutation strength can be adaptive: if mutation is good ,

i.e. has the best fitness function (log likelihood),

then mutation strength is increased multiplying by const

otherwise it decreases dividing by (1/4)^const.

When const is 1.0 it is not adaptive.

Default: 1.0

Const for mutation strength : 1.05

Mutation rate - fraction of any parameter to change during

its mutation.

Mutation rate is sampled from truncated normal distribution ,

so we need mean (std can be specified in extra params).

27

Default 0.2

Mean mutation rate : 0.1

#

Mutation rate also can be adaptive as mutation strength.

Default: 1.02

Const for mutation rate : 1.01 #very small changes

Genetic algorithm stops when it couldn ’t improve model by

more that epsilon in logLL

Default: 1e-2

Epsilon : 1e-2

#

and it happens during N iterations:

Default: 100

Stop iteration : 50

Local optimization.

#

Choice of local optimization , that is launched after

each genetic algorithm.

Choices:

#

* optimize (BFGS method)

#

* optimiza_log (BFGS method)

#

* optimize_powell (Powell ’s conjugate direction method)

(Note: is implemented in moments: one need to have moments

installed.)

#

(If optimizations are often hitting the parameter bounds ,

try using these methods:)

* optimize_lbfgsb

* optimize_log_lbfgsb

(Note that it is probably best to start with the vanilla BFGS

methods , because the L-BFGS -B methods will always try parameter

values at the bounds during the search.

This can dramatically slow model fitting.)

#

* optimize_log_fmin (simplex (a.k.a. amoeba) method)

#

* hill_climbing

#

Default: optimize_powell

28

Name of local optimization : optimize_log

Parameters of pipeline

#

One can automatically draw models every N iteration.

If 0 then never.

Pictures are saved in GA’s directory in picture folder.

Default: 0

Draw models every N iteration : 100

One can automatically generate dadi and moments code for models.

If 0 then only current best model will be printed in GA’s

working directory.

Also result model will be saved there.

If specified (not 0) then every N iteration model will be saved

in python code folder.

Default: 0

Print models ’ code every N iteration : 100

One can choose time units in models ’ plots: years or thousand

years (kya, KYA). If time for one generation isn’t specified

then time is in genetic units.

Default: years

Units of time in drawing : thousand years

No std output.

Default: False

Silence : False

How many times launch GADMA with this parameters.

Default: 1

Number of repeats : 3

How many processes to use for this repeats.

Note that one repeat isn’t parallelized , so increasing number

of processes doesn ’t effect on time of one repeat.

It is desirable that the number of repeats is a multiple of

the number of processes.

Default: 1

Number of processes : 3

29

B Example of generated code

For example, moments generated code for 2d AFS for YRI, CEU populations from [1]:

#current best params = [7194.792822462478 , 13410.251542201073 , 0.9582544565961783 , 13542.979276844108 , 12114.968575519626 , 2683.3787253409746 , 846.6668954957415 , 0.00014172779289593632 , 0.00012195685425105608]

import matplotlib

matplotlib.use("Agg")

import moments

import numpy as np

def generated_model(params , ns):

Ns = params [:5]

Ts = params [5:7]

Ms = params [7:]

theta1 = 0.37976

sts = moments.LinearSystem_1D.steady_state_1D(sum(ns),

theta=theta1 , N=Ns[0])

fs = moments.Spectrum(sts)

before = [Ns[0]]

T = Ts[0]

after = Ns[1:2]

growth_funcs = [lambda t: after [0]]

list_growth_funcs = lambda t: [f(t) for f in growth_funcs]

fs.integrate(Npop=list_growth_funcs , tf=T, dt_fac =0.1,

theta=theta1)

before = after

fs = moments.Manips.split_1D_to_2D(fs , ns[0], sum(ns [1:]))

before.append ((1 - Ns[2]) * before [-1])

before [-2] *= Ns[2]

T = Ts[1]

after = Ns[3:5]

growth_funcs = [lambda t: after[0],

lambda t: before [1] * (after [1] / before [1]) ** (t / T)]

list_growth_funcs = lambda t: [f(t) for f in growth_funcs]

m = np.array ([[0, params [7]],[params [8], 0]])

fs.integrate(Npop=list_growth_funcs , tf=T, m=m, dt_fac =0.1,

theta=theta1)

before = after

return fs

data = moments.Spectrum.from_file(’data/YRI_CEU.fs’)

popt = [7194.792822462478 , 13410.251542201073 , 0.9582544565961783 ,

30

13542.979276844108 , 12114.968575519626 , 2683.3787253409746 ,

846.6668954957415 , 0.00014172779289593632 , 0.00012195685425105608]

ns = [20, 20]

model = generated_model(popt , ns)

ll_model = moments.Inference.ll(model , data)

print(’Model log likelihood (LL(model , data)): {0}’.format(ll_model))

#now we need to norm vector of params so that first value is 1:

popt_norm = [1.0, 1.8638829321580523 , 0.9582544565961783 ,

1.8823306815120924 , 1.6838523185401713 , 0.3729612223111333 ,

0.1176777311575127 , 1.0197021070711312 , 0.8774542996156008]

print(’Drawing model to model_from_GADMA_from_simple.png’)

model = moments.ModelPlot.generate_model(generated_model , popt_norm , ns)

moments.ModelPlot.plot_model(model ,

save_file=’model_from_GADMA_from_simple.png’,

fig_title=’’,

pop_labels =[’YRI’, ’CEU’],

nref =7194 ,

draw_scale=True ,

gen_time =0.025 ,

gen_time_units="Thousand years",

reverse_timeline=True)

References

[1] Ryan N Gutenkunst, Ryan D Hernandez, Scott H Williamson, and Carlos D Bustamante,
Inferring the joint demographic history of multiple populations from multidimensional snp
frequency data, PLoS genetics 5 (2009), no. 10, e1000695.

[2] Julien Jouganous, Will Long, Aaron P. Ragsdale, and Simon Gravel, Inferring the joint
demographic history of multiple populations: Beyond the diffusion approximation, Genet-
ics 206 (2017), no. 3, 1549–1567.

[3] Marguerite Lapierre, Amaury Lambert, and Guillaume Achaz, Accuracy of demographic
inferences from the site frequency spectrum: the case of the yoruba population, Genetics
(2017), genetics–116.

31

	Introduction
	Getting help
	Hands on
	Input data
	VCF data format
	Frequency spectrum file format
	SNP data format

	Specifying scheme
	Specifying a model
	Dynamics of population size change
	Specifying structure of the model
	Initial structure
	Final structure

	Specifying model in details

	Several repeats and parallel computing
	Output
	Stdout and log file
	Model representation
	Output directory content
	Generated code of models

	Plotting model
	Time units on model's plot
	Plotting after GADMA finished

	Usefull options
	Time for generation
	[language=Python, showstringspaces=False]@Theta0@
	Estimating [language=Python, showstringspaces=False]@Theta0@
	Changing [language=Python, showstringspaces=False]@Theta0@

	Examples of [language=Python, showstringspaces=False]@Theta0@ and time for generation
	Relative to NA parameters
	Disable migrations
	Upper bound for time split
	Resume launch
	Only models

	Extra parameters file
	Units
	Decreasing number of model's parameters
	Dependencies
	Installation
	ai
	moments
	Pillow
	GADMA
	Verifying installation

	Appendices
	Example of full parameters file
	Example of generated code

