
Utilizing fit∂a∂i: a short how-to guide

Bernard Kim
bernard.kim@ucla.edu

Updated: November 8, 2018

1 Introduction

This short guide outlines how to utilize the code we have made available for inferring of the dis-
tribution of fitness effects (DFE). This code serves as an add-on module for the package ∂a∂i [1],
which is primarily used for demographic inference.

The code examples shown here are meant to work with the example dataset. For simplicity’s
sake, I have generated an example dataset with PReFerSIM [2]. Furthermore, we will work with
a relatively small sample size and simple demographic model so that the examples can be worked
through quickly on a laptop. Lastly, all the example code is provided in the example.py script as
well as in this document.

Another important thing to note: ∂a∂i characterizes genotype fitnesses as: 1, 1 + 2sh, and
1 + 2s, where 1 + 2sh is the fitness of the heterozygote. Furthermore, the DFEs inferred are scaled
in terms of the ancestral population size: γ = 2NAs. This means that the selection coefficients
must sometimes be rescaled, for instance when using the program SLiM [3].

If you have any additional questions, please feel free to email us: Bernard Kim
(bernard.kim@ucla.edu) or Kirk Lohmueller (klohmueller@ucla.edu).

2 Installation

∂a∂i can be downloaded from the Gutenkunst Lab’s BitBucket site. Once you have ∂a∂i, there
are two easy ways to utilize the fit∂a∂i module. The first method allows you to set up fit∂a∂i so
that it is installed with the ∂a∂i code. To do this, you copy Selection.py and init .py into
the dadi directory before installing ∂a∂i with python setup.py install. Note, it may be useful
to comment out the line import matplotlib in init .py if you are trying to use ∂a∂i on a
cluster. Alternately, you can import our code separately. To do this, you should install ∂a∂i in
the standard manner. Copy Selection.py into your working directory. Then, our module can be
loaded by including the line import Selection.py into your ∂a∂i/Python script.

The latter method is the way in which the example script is set up:

1 import numpy
2 import dadi
3 import S e l e c t i o n

Note that in order to run ∂a∂i with the example script you must also copy Selection.py into
the same directory as the example script.

1

mailto:bernard.kim@ucla.edu
https://github.com/LohmuellerLab/fit$\partial a\partial $i
mailto:bernard.kim@ucla.edu
mailto:klohmueller@ucla.edu
https://bitbucket.org/gutenkunstlab/dadi/

3 Example dataset

The example dataset used in the example script was generated with forward simulations under the
PRF model, with the simulation program PReFerSIM. Additionally, we will assume we know the
true underlying demographic model rather than trying to fit one.

This dataset is summarized with a site frequency spectrum, has sample size 2n = 250 (125
diploids), and is saved in the file sample.sfs file. It was generated with a single size change
demography and an underlying gamma DFE. Specifically, a population of size N = 10, 000 diploids
expands to 20, 000 diploids 1000 generations ago and the gamma DFE has shape parameter 0.186
and scale paramter 686.7. This is the same gamma DFE that we inferred from the 1000 Genomes
EUR dataset, but the scale parameter has been rescaled to the ancestral population size of 10,000
diploids. Finally, the amount of diversity in the sample dataset matches θNS = 4000 = 4NAµLNS .

4 Demographic inference

Because the usage of ∂a∂i for demographic inference is extensively documented, it will not be
discussed in detail here. In practice, we find that, as long as the demographic model that fits the
synonymous sites reasonably well also works well for inference of the DFE.

Briefly, we fit a demographic model to synonymous sites, which are assumed to be evolving
in a neutral or nearly neutral manner. We believe this accurately represents the effects of linked
selection and population structure, and condition upon this demographic model to fit the DFE.
However, note the assumption of neutral synonymous variants may not hold for species with large
population sizes, since this will increase the efficacy of selection on mutations with small fitness
effects.

Our sample dataset was generated with a two epoch (single size change) demography. Although
we are skipping the demographic inference, the following ∂a∂i function describes a two epoch
demographic model.

1 de f two epoch (params , ns , pts) :
2 nu , T = params
3 xx = dadi . Numerics . d e f a u l t g r i d (pts)
4 phi = dadi . PhiManip . phi 1D (xx)
5 phi = dadi . I n t e g r a t i on . one pop (phi , xx , T, nu)
6 f s = dadi . Spectrum . from phi (phi , ns , (xx ,))
7 re turn f s

We will assume we infer a 2-fold population expansion 0.05*2NA generations ago, where NA is
the ancestral population size. Therefore, the parameter vector is: [nu, T].

1 demog params = [2 , 0 . 0 5]

Again, we assume that the population scaled nonsynonymous mutation rate, θNS = 4, 000. In
practice, we compute the synonymous mutation rate, θS , by using the multinomial likelihood to fit
the demographic model. Because this method only fits the proportional SFS, θS is estimated with
the dadi.Inference.optimal sfs scaling method. Then, we multiply θS by 2.31 to get θNS ,
θS ∗ 2.31 = θNS . Remember that our sample size is 125 diploids (250 chromosomes).

1 the ta ns = 4000 .
2 ns = numpy . array ([2 5 0])

2

5 Pre-computing of the SFS for many γ

Next, we must generate frequency spectra for a range of gammas. The demographic function is
modified to allow for a single selection coefficient. Here, each selection coefficient is scaled with the
ancestral population size, γ = 2NAs. In other words, if s is constant, the same gamma should be
used throughout the demographic function. If gamma=0, this function is the same as the original
demographic function.

1 de f two epoch se l (params , ns , pts) :
2 nu , T, gamma = params
3 xx = dadi . Numerics . d e f a u l t g r i d (pts)
4 phi = dadi . PhiManip . phi 1D (xx , gamma=gamma)
5 phi = dadi . I n t e g r a t i on . one pop (phi , xx , T, nu , gamma=gamma)
6 f s = dadi . Spectrum . from phi (phi , ns , (xx ,))
7 re turn f s

Then, we generate the frequency spectra for a range of gammas. The following code generates
expected frequency spectra, conditional on the demographic model fit to synonymous sites, over
Npts log-spaced points over the range of int bounds. Additionally, the mp=True argument tells
fit∂a∂i whether it should utilize multiple cores/threads, which is convenient since this step takes
the longest. If the argument cpus is passed, it will utilize that many cores, but if mp=True and no
cpus argument is passed, it will use n-1 threads, where n is the number of threads available. If
mp=False, each SFS will be computed in serial. This step should take 1-10 minutes depending on
your CPU.

1 p t s l = [600 , 800 , 1000]
2 spec t ra = Se l e c t i o n . spec t ra (demog params , ns , two epoch se l , p t s l=p t s l ,
3 int bounds=(1e−5 ,500) , Npts=300 , echo=True ,
4 mp=True)

Another manner in which this can be done is multiple log-spaced grids over some predetermined
breaks. While this method is almost the same as the previous, this method is more appropriate
for discretely binned DFEs. For example, if we were to create discrete bins at the breaks γ =
[0.1, 1, 100], we would use the following command, importantly, passing a specific int breaks.

1 p t s l = [600 , 800 , 1000]
2 i n t b r e ak s = [1 e−4, 0 . 1 , 1 , 100 , 500]
3 spec t ra = Se l e c t i o n . spec t ra (demog params , ns , two epoch se l , p t s l=p t s l ,
4 i n t b r e ak s=in t br eaks , Npts=300 ,
5 echo=True , mp=True)

Note, one error message that will come up often with very negative selection coefficients is:

WARNING:Numerics:Extrapolation may have failed. Check resulting frequency spectrum

for unexpected results.

One way to fix this is by increasing the pts l grid sizes – this will need to increase as the
sample size increases and/or if the integration is done over a range which includes stronger selec-
tion coefficients. dadi.Numerics.make extrap func is used to extrapolate the frequency spectra
to infinitely many gridpoints, but will sometimes return tiny negative values (often |Xi| < 1e− 50)
due to floating point rounding errors. Using dadi.Numerics.make extrap log func will some-
times return Inf values and care should be taken that these numerical errors do not propagate to
downstream steps of the analysis. In practice, it seems that the tiny negative values do not affect
the integration because they are insignificant, but if the error message appears the SFS should be
manually double-checked. Alternately, the small negative values can be manually replaced with 0.

3

In the example, the pre-computed SFSs are saved in the list spectra.spectra. For conve-
nience’s sake, the spectra object can be pickled.

1 #import p i c k l e
2 #p i c k l e . dump(spectra , open (” example spectra . sp ” ,”w”))

6 Fitting a DFE

6.1 Fitting simple DFEs

Fitting a DFE is the quickest part of this procedure, especially for simple distributions such as the
gamma distribution. If you wish to get an SFS for a specific DFE, you can use the integrate

method that is built into the spectra object: spectra.integrate(sel params, sel dist, theta).
Another option is to use the spectra.integrate norm method. The former does not normalize
the DFE and the second normalizes the DFE. We chose to use the former and assumed that muta-
tions with selection coefficients outside of the range we integrated over were effectively lethal, that
is, not seen in the sample. Note that we integrated over the range of gammas corresponding to
|s| = [0, 1]. sel params is a list containing the DFE parameters, sel dist is the distribution used
for the DFE, and theta is θNS . To compute the expected SFS for our simulations with the true
parameter values, we would use spectra.integrate([0.186, 686.7], Selection.gamma dist,

4000.).
First, load the sample data:

1 data = dadi . Spectrum . f r om f i l e (’ example . s f s ’)

Similar to the way in which vanilla ∂a∂i is used, you should have a starting guess at the param-
eters. Set an upper and lower bound. Perturb the parameters to select a random starting point,
then fit the DFE. This should be done multiple times from different starting points. We use the
spectra.integrate methods to generate the expected SFSs during each step of the optimization.
The following lines of code fit a gamma DFE to the example data:

1 se l params = [0 . 2 , 1 0 0 0 .]
2 lower bound = [1 e−3, 1e−2]
3 upper bound = [1 , 5 0000 .]
4 p0 = dadi . Misc . perturb params (se l params , lower bound=lower bound ,
5 upper bound=upper bound)
6 popt = Se l e c t i o n . op t im i z e l o g (p0 , data , spec t ra . i n t eg ra t e , S e l e c t i o n . gamma dist ,
7 theta ns , lower bound=lower bound ,
8 upper bound=upper bound , verbose=len (se l params) ,
9 maxiter=30)

If this runs correctly, you should infer something close to, but not exactly, the true DFE. The
final results will be stored in popt:

>>> popt

[-678.338 , array([0.187071 , 666.092])]

The expected SFS at the MLE can be computed with:

1 mode l s f s = spec t ra . i n t e g r a t e (popt [1] , S e l e c t i o n . gamma dist , the ta ns)

4

6.2 Fitting complex DFEs

Fitting complex distributions is similar to fitting simple DFEs, but requires a few additional steps,
outlined in the following lines of code. Here, we are fitting a neutral+gamma DFE to an SFS
generated under a gamma DFE just for the sake of the example. Additionally, we assume that every
selection coefficient γ < 1e−4 is effectively neutral. Since this is a mixture of two distributions, we
infer the proportion of neutral mutations, pneu, and assume the complement of that (i.e. 1− pneu)
is the proportion of new mutations drawn from a gamma distribution. Therefore, the parameter
vector is: [pneu,shape, scale].

1 de f neugamma(mgamma, pneu , alpha , beta) :
2 mgamma=−mgamma
3 #assume anything with gamma<1e−4 i s neu t ra l
4 i f (0 <= mgamma) and (mgamma < 1e−4) :
5 re turn pneu /(1 e−4) + (1−pneu) ∗ S e l e c t i o n . gamma dist(−mgamma, alpha ,
6 beta)
7 e l s e :
8 re turn S e l e c t i o n . gamma dist(−mgamma, alpha , beta) ∗ (1−pneu)

Then, the custom DFE needs to be vectorized. This is easily done with the numpy.frompyfunc

function.

1 neugamma vec = numpy . frompyfunc (neugamma , 4 , 1)

Fit the DFE as before, accounting for the extra parameter to describe the proportion of neutral
new mutations. Note that pneu is explicitly bounded to be 0 < pneu ≤ 1.

1 se l params = [0 . 2 , 0 . 2 , 1 0 0 0 .]
2 lower bound = [1 e−3, 1e−3, 1e−2]
3 upper bound = [1 , 1 , 5 0000 .]
4 p0 = dadi . Misc . perturb params (se l params , lower bound=lower bound ,
5 upper bound=upper bound)
6 popt = Se l e c t i o n . op t im i z e l o g (p0 , data , spec t ra . i n t eg ra t e , neugamma vec ,
7 theta ns , lower bound=lower bound ,
8 upper bound=upper bound , verbose=len (se l params) ,
9 maxiter=30)

If this has run properly, your result should look like the following:

>>> popt

[-678.35389753002551, array([1.10498940e-03, 1.87041580e-01, 6.71354664e+02])]

Another way to approach this problem is by defining the neutral+gamma DFE as a function of
four parameters instead of assuming the two are complementary. While this is unnecessary for the
neutral+gamma distribution since we bounded pneu to be between 0 and 1, it becomes necessary
for mixtures of three or more distributions. However, the principles will be the same as shown here.

First, define the neutral+gamma DFE as a function with parameter vector: [pneu,pgamma,shape,
scale].

1 de f neugamma(mgamma, pneu , pgamma, alpha , beta) :
2 mgamma=−mgamma
3 #assume anything with gamma<1e−4 i s neu t ra l
4 i f (0 <= mgamma) and (mgamma < 1e−4) :
5 re turn pneu /(1 e−4) + pgamma∗ S e l e c t i o n . gamma dist(−mgamma, alpha , beta)
6 e l s e :
7 re turn S e l e c t i o n . gamma dist(−mgamma, alpha , beta) ∗ pgamma

5

Here we do not explicitly set pneu+pgamma = 1, so we need to apply some additional constraints
to enforce this. A function that equals 0 when the constraint is satisfied should be used:

1 de f cons func (x , ∗ args) :
2 re turn 1−sum(x [0 : −2])

In other words, the constraint is satisfied when sum([pneu,pgamma,shape, scale][0:-2])=1,
that is, when sum([pneu,pgamma])=1.

Then, use the function Selection.optimize cons to fit the DFE. This function is the same as
Selection.optimize except that it requires the constraint function to be passed as an additional
argument.

1 neugamma vec = numpy . frompyfunc (neugamma , 5 , 1)
2

3 se l params = [0 . 2 , 0 . 8 , 0 . 2 , 1 0 0 0 .]
4 lower bound = [1 e−3, 1e−3, 1e−3, 1e−2]
5 upper bound = [1 , 1 , 1 , 5 0000 .]
6

7 p0 = dadi . Misc . perturb params (se l params , lower bound=lower bound ,
8 upper bound=upper bound)
9 popt = Se l e c t i o n . opt imize cons (p0 , data , spec t ra . i n t eg ra t e , neugamma vec ,

10 theta ns , lower bound=lower bound ,
11 upper bound=upper bound , verbose=len (se l params) ,
12 maxiter=30, c on s t r a i n t=cons func)

The result is roughly similar to the previous method:

>>> popt

[-678.40252289901571, array([1.00000000e-03, 9.99000000e-01, 1.85534565e-01,

6.93897711e+02])]

References

[1] Ryan N Gutenkunst, Ryan D Hernandez, Scott H Williamson, and Carlos D Bustamante. Infer-
ring the joint demographic history of multiple populations from multidimensional snp frequency
data. PLoS Genet, 5(10):e1000695, 2009.

[2] Diego Ortega-Del Vecchyo, Clare D Marsden, and Kirk E Lohmueller. Prefersim: Fast simula-
tion of demography and selection under the poisson random field model. Bioinformatics, page
btw478, 2016.

[3] Benjamin C Haller and Philipp W Messer. Slim 2: Flexible, interactive forward genetic simu-
lations. Molecular Biology and Evolution, page msw211, 2016.

6

	Introduction
	Installation
	Example dataset
	Demographic inference
	Pre-computing of the SFS for many
	Fitting a DFE
	Fitting simple DFEs
	Fitting complex DFEs

