The Pencil Code:

A High-Order MPI code for MHD Turbulence

User's and Reference Manual

June 17, 2018
http://www.nordita.org/software/pencil-code/ https://github.com/pencil-code/pencil-code

The Pencil Code: multi-purpose and multi-user maintained

http://www.nordita.org/~brandenb/talks/misc/PencilCode04.htm

Figure 1: Check-in patterns as a function of time for different subroutines. The different users are marked by different symbols and different colors.

Contributors to the code

(in inverse alphabetical order according to their user name)
An up to date list of Pencil Code contributors can be found at GitHub.

wladimir.lyra	Wladimir Lyra	California State University/JPL
weezy	S. Louise Wilkin	University of Newcastle
wdobler	Wolfgang Dobler	Potsdam
vpariev	Vladimir Pariev	University of Rochester
torkel	Ulf Torkelsson	Chalmers University
tavo.buk	Gustavo Guerrero	Stanford University
thomas.gastine	Thomas Gastine	MPI for Solar System Research
theine	Tobias (Tobi) Heinemann	IAS Princeton
tarek	Tarek A. Yousef	University of Trondheim
sven.bingert	Sven Bingert	MPI for Solar System Research
steveb	Steve Berukoff	UCLA
snod	Andrew Snodin	University of Newcastle
pkapyla	Petri Käpylä	University of Helsinki
nils.e.haugen	Nils Erland L. Haugen	SINTEF
ngrs	Graeme R. Sarson	University of Newcastle
NBabkovskaia	Natalia Babkovskaia	University of Helsinki
mreinhardt	Matthias Rheinhardt	University of Helsinki
mkorpi	Maarit J. Käpylä (née Korpi, Mantere)	University of Helsinki
miikkavaisala	Miikka Väisälä	University of Helsinki
mee	Antony (tOnY) Mee	University of Newcastle
memillan	David McMillan	York University, Toronto
mattias	Mattias Christensson	formerly at Nordita
koenkemel	Koen Kemel	Nordita, Stockholm
karlsson	Torgny Karlsson	Nordita
joishi	Jeff S. Oishi	Kavli Institute for Particle Astro
joern.warnecke	Jörn Warnecke	MPI for Solar System Research,
Iomsn1	Simon Candelaresi	University of Dundee, Dundee
fadiesis	Fabio Del Sordo	Nordita, Stockholm
dorch	Bertil Dorch	University of Copenhagen
boris.dintrans	Boris Dintrans	Observatoire Midi-Pyrénées, Tou
dhruba.mitra	Dhrubaditya Mitra	Nordita, Stockholm
ccyang	Chao-Chin Yang	Lund Observatory
christer	Christer Sandin	University of Uppsala
Bourdin.KIS	Philippe Bourdin	MPI for Solar System Research
AxelBrandenburg	Axel Brandenburg	Nordita
apichat	Apichat Neamvonk	University of Newcastle
amjed	Amjed Mohammed	University of Oldenburg
alex.i.hubbard	Alex Hubbard	Am. Museum Nat. History
michiel.lambrechts	Michiel Lambrechts	Lund Observatory, Lund Univers
anders	Anders Johansen	Lund Observatory, Lund Univers
mppiyali	Piyali Chatterjee	University of Oslo

Copyright © 2001-2017 Wolfgang Dobler \& Axel Brandenburg

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

License agreement and giving credit

The content of all files under :pserver:\$USER@svn.nordita.org:/var/cvs/brandenb are under the GNU General Public License (http://www.gnu.org/licenses/gpl.html).

We, the Pencil Code community, ask that in publications and presentations the use of the code (or parts of it) be acknowledged with reference to the web site http://www.nordita.org/software/pencil-code/ or (equivalently) to. https://github.com/pencil-code/pencil-code. As a courtesy to the people involved in developing particularly important parts of the program (use svn annotate src/*.f90 to find out who did what!) we suggest to give appropriate reference to one or several of the following (or other appropriate) papers (listed here in temporal order):

Dobler, W., Haugen, N. E. L., Yousef, T. A., \& Brandenburg, A.: 2003, "Bottleneck effect in three-dimensional turbulence simulations," Phys. Rev. E 68, 026304, 1-8 (astro-ph/0303324)
Haugen, N. E. L., Brandenburg, A., \& Dobler, W.: 2003, "Is nonhelical hydromagnetic turbulence peaked at small scales?" Astrophys. J. Lett. 597, L141-L144 (astro-ph/0303372)
Brandenburg, A., Käpylä, P., \& Mohammed, A.: 2004, "Non-Fickian diffusion and tau-approximation from numerical turbulence," Phys. Fluids 16, 1020-1027 (astro-ph/0306521)
Johansen, A., Andersen, A. C., \& Brandenburg, A.: 2004, "Simulations of dusttrapping vortices in protoplanetary discs," Astron. Astrophys. 417, 361-371 (astro-ph/0310059)
Haugen, N. E. L., Brandenburg, A., \& Mee, A. J.: 2004, "Mach number dependence of the onset of dynamo action," Monthly Notices Roy. Astron. Soc. 353, 947-952 (astro-ph/0405453)
Brandenburg, A., \& Multamäki, T.: 2004, "How long can left and right handed life forms coexist?" Int. J. Astrobiol. 3, 209-219 (q-bio/0407008)
McMillan, D. G., \& Sarson, G. R.: 2005, "Dynamo simulations in a spherical shell of ideal gas using a high-order Cartesian magnetohydrodynamics code," Phys. Earth Planet. Int.153, 124-135
Heinemann, T., Dobler, W., Nordlund, Å., \& Brandenburg, A.: 2006, "Radiative transfer in decomposed domains," Astron. Astrophys. 448, 731-737 (astro-ph/0503510)
Dobler, W., Stix, M., \& Brandenburg, A.: 2006, "Convection and magnetic field generation in fully convective spheres," Astrophys. J. 638, 336-347 (astro-ph/0410645)
Snodin, A. P., Brandenburg, A., Mee, A. J., \& Shukurov, A.: 2006, "Simulating fieldaligned diffusion of a cosmic ray gas," Monthly Notices Roy. Astron. Soc. 373, 643652 (astro-ph/0507176)
Johansen, A., Klahr, H., \& Henning, T.: 2006, "Dust sedimentation and self-sustained Kelvin-Helmholtz turbulence in protoplanetary disc mid-planes," Astrophys. J. 636, 1121-1134 (astro-ph/0512272)
de Val-Borro, M. and 22 coauthors (incl. Lyra, W.): 2006, "A comparative study of disc-planet interaction," Monthly Notices Roy. Astron. Soc. 370, 529-558 (astro-ph/0605237)
Johansen, A., Oishi, J. S., Mac Low, M. M., Klahr, H., Henning, T., \& Youdin, A.: 2007, "Rapid planetesimal formation in turbulent circumstellar disks," Nature 448, 1022-1025 (arXiv/0708.3890)
Lyra, W., Johansen, A., Klahr, H., \& Piskunov, N.: 2008, "Global magnetohydrodynamical models of turbulence in protoplanetary disks I. A cylindrical potential
on a Cartesian grid and transport of solids," Astron. Astrophys. 479, 883-901 (arXiv/0705.4090)
Brandenburg, A., Rädler, K.-H., Rheinhardt, M., \& Käpylä, P. J.: 2008, "Magnetic diffusivity tensor and dynamo effects in rotating and shearing turbulence," Astrophys. J. 676, 740-751 (arXiv/0710.4059)

Lyra, W., Johansen, A., Klahr, H., \& Piskunov, N.: 2008, "Embryos grown in the dead zone. Assembling the first protoplanetary cores in low-mass selfgravitating circumstellar disks of gas and solids," Astron. Astrophys. 491, L41-L44
Lyra, W., Johansen, A., Klahr, H., \& Piskunov, N.: 2009, "Standing on the shoulders of giants. Trojan Earths and vortex trapping in low-mass selfgravitating protoplanetary disks of gas and solids," Astron. Astrophys. 493, 1125-1139
Lyra, W., Johansen, A., Zsom, A., Klahr, H., \& Piskunov, N.: 2009, "Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks," Astron. Astrophys. 497, 869-888 (arXiv/0901.1638)
Mitra, D., Tavakol, R., Brandenburg, A., \& Moss, D.: 2009, "Turbulent dynamos in spherical shell segments of varying geometrical extent," Astrophys. J. 697, 923-933 (arXiv/0812.3106)
Haugen, N. E. L., \& Kragset, S.: 2010, "Particle impaction on a cylinder in a crossflow as function of Stokes and Reynolds numbers," J. Fluid Mech. 661, 239-261
Rheinhardt, M., \& Brandenburg, A.: 2010, "Test-field method for mean-field coefficients with MHD background," Astron. Astrophys. 520, A28 (arXiv/1004.0689)
Babkovskaia, N., Haugen, N. E. L., Brandenburg, A.: 2011, "A high-order public domain code for direct numerical simulations of turbulent combustion," J. Comp. Phys. 230, 1-12 (arXiv/1005.5301)
Johansen, A., Klahr, H., \& Henning, Th.: 2011, "High-resolution simulations of planetesimal formation in turbulent protoplanetary discs," Astron. Astrophys. 529, A62
Johansen, A., Youdin, A. N., \& Lithwick, Y.: 2012, "Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities," Astron. Astrophys. 537, A125
Lyra, W. \& Kuchner, W. : 2013, "Formation of sharp eccentric rings in debris disks with gas but without planets," Nature 499, 184-187
Yang, C.-C., \& Johansen, A.: 2016, "Integration of Particle-Gas Systems with Stiff Mutual Drag Interaction," Astrophys. J. Suppl. Series 224, 39

This list is not always up-to-date. We therefore ask the developers to check in new relevant papers, avoiding however redundancies.

Foreword

This code was originally developed at the Turbulence Summer School of the Helmholtz Institute in Potsdam (2001). While some SPH and PPM codes for hydrodynamics and magnetohydrodynamics are publicly available, this does not generally seem to be the case for higher order finite-difference or spectral codes. Having been approached by people interested in using our code, we decided to make it as flexible as possible and as user-friendly as seems reasonable, and to put it onto a public CVS repository. Since 21 September 2008 it is distributed via https://github.com/pencil-code/pencil-code. The code can certainly not be treated as a black box (no code can), and in order to solve a new problem in an optimal way, users will need to find their own optimal set of parameters. In particular, you need to be careful in choosing the right values of viscosity, magnetic diffusivity, and radiative conductivity.

The Pencil Code is primarily designed to deal with weakly compressible turbulent flows, which is why we use high-order first and second derivatives. To achieve good parallelization, we use explicit (as opposed to compact) finite differences. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with nonperiodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, etc. Furthermore, nonlocal radiation transport, inertial particles, dust coagulation, self-gravity, chemical reaction networks, and several other physical components are installed, but this number increases steadily. In addition to Cartesian coordinates, the code can also deal with spherical and cylindrical polar coordinates.

Magnetic fields are implemented in terms of the magnetic vector potential to ensure that the field remains solenoidal (divergence-free). At the same time, having the magnetic vector potential readily available is a big advantage if one wants to monitor the magnetic helicity, for example. The code is therefore particularly well suited for all kinds of dynamo problems.

The code is normally non-conservative; thus, conserved quantities should only be conserved up to the discretization error of the scheme (not to machine accuracy). There is no guarantee that a conservative code is more accurate with respect to quantities that are not explicitly conserved, such as entropy. Another important quantity that is (to our knowledge) not strictly conserved by ordinary flux conserving schemes is magnetic helicity.

There are currently no plans to implement adaptive mesh refinement into the code, which would cause major technical complications. Given that turbulence is generically space-filling, local refinement to smaller scales would often not be very useful anyway. On the other hand, in some geometries turbulence may well be confined to certain regions in space, so one could indeed gain by solving the outer regions with fewer points.

In order to be cache-efficient, we solve the equations along pencils in the x direction. One very convenient side-effect is that auxiliary and derived variables use very little memory, as they are only ever defined on one pencil. The domain can be tiled in the y and z directions. On multiprocessor computers, the code can use MPI (Message Passing Interface) calls to communicate between processors. An easy switching mechanism allows the user to run the code on a machine without MPI libraries (e.g. a notebook computer). Ghost zones are used to implement boundary conditions on physical and processor boundaries.

A high level of flexibility is achieved by encapsulating individual physical processes and variables in individual modules, which can be switched on or off in the file 'Makefile.local' in the local 'src' directory. This approach avoids the use of difficult-to-read preprocessor directives, at the price of requiring one dummy module for each physics module. For nonmagnetic hydrodynamics, for example, one will use the module 'nomagnetic.f90' and specifies

MAGNETIC = nomagnetic
in 'Makefile.local', while for MHD simulations, 'magnetic.f90' will be used:
MAGNETIC = magnetic
Note that the term module as used here is only loosely related to Fortran modules: both 'magnetic.f90' and 'nomagnetic.f90' define an F90 module named Magnetic - this is the basis of the switching mechanism we are using.

Input parameters (which are set in the files 'start.in', 'run.in') can be changed without recompilation. Furthermore, one can change the list of variables for monitoring (diagnostic) output on the fly, and there are mechanisms for making the code reload new parameters or exit gracefully at runtime. You may want to check for correctness of these files with the command pc_configtest.

The requirements for using the Pencil-MPI code are modest: you can use it on any Linux or Unix system with a F95 and C compiler suite, like GNU gcc and gfortran, together with the shell CSH, and the Perl interpreter are mandatory requirements.

Although the Pencil Code is mainly designed to run on supercomputers, more than 50% of the users run their code also on Macs, and the other half uses either directly Linux on their laptops or they use VirtualBox on their Windows machine on which they install Ubuntu Linux. If you have $I D L$ as well, you will be able to visualize the results (a number of sample procedures are provided), but other tools such as Python, $D X$ (OpenDX, data explorer) can also be used and some relevant tools and routines come with the Pencil Code.

If you want to make creative use of the code, this manual will contain far too little information. Its major aim is to give you an idea of the way the code is organized, so you can more efficiently read the source code, which contains a reasonable amount of comments. You might want to read through the various sample directories that are checked in. Choose one that is closest to your application and start modifying. For further enhancements that you may want to add to the code, you can take as an example the lines in the code that deal with related variables, functions, diagnostics, equations etc., which have already been implemented. Just remember: grep is one of your best friends when you want to understand how certain variables or functions are used in the code.

We will be happy to include user-supplied changes and updates to the code in future releases and welcome any feedback.

Acknowledgments

Many people have contributed in different ways to the development of this code. We thank first of all Åke Nordlund (Copenhagen Observatory) and Bob Stein (University of Michigan) who introduced us to the idea of using high-order schemes in compressible flows and who taught us a lot about simulations in general.

The calculation of the power spectra, structure functions, the remeshing procedures, routines for changing the number of processors, as well as the shearing sheet approximation and the flux-limited diffusion approximation for radiative transfer were implemented by Nils Erland L. Haugen (University of Trondheim). Tobi Heinemann added the long characteristics method for radiative transfer as well as hydrogen ionization. He also added and/or improved shock diffusion for other variables and improved the resulting timestep control. Anders Johansen, Wladimir (Wlad) Lyra, and Jeff Oishi contributed to the implementation of the dust equations (which now comprises an array of different components). Antony (Tony) Mee (University of Newcastle) implemented shock viscosity and added the interstellar module together with Graeme R. Sarson (also University of Newcastle), who also implemented the geodynamo set-up together with David McMillan (currently also at the University of Newcastle). Tony also included a method for outputting auxiliary variables and enhanced the overall functionality of the code and related idl and dx procedures. He also added, together with Andrew Snodin, the evolution equations for the cosmic ray energy density. Vladimir Pariev (University of Rochester) contributed to the development and testing of the potential field boundary condition at an early stage. The implementation of spherical and cylindrical coordinates is due to Dhrubaditya (Dhruba) Mitra and Wladimir Lyra. Wlad also implemented the global set-up for protoplanetary disks (as opposed to the local shearing sheet formalism). He also added a N-body code (based on the particle module coded by Anders Johansen and Tony), and implemented the coupled evolution equations of neutrals and ions for two-fluid models of ambipolar diffusion. Boris Dintrans is in charge of implementing the anelastic and Boussinesq modules. Philippe-A. Bourdin implemented HDF5 support and wrote the optional IO-modules for high-performance computing featuring various communication strategies. He also contributed to the solar-corona module and worked on the IDL GUI, including the IDL routines for reading and working with large amounts of data. Again, this list contains other recent items that are not yet fully documented and acknowledged.

Use of the PPARC supported supercomputers in St Andrews (Mhd) and Leicester (Ukaff) is acknowledged. We also acknowledge the Danish Center for Scientific Computing for granting time on Horseshoe, which is a $512+140$ processor Beowulf cluster in Odense (Horseshoe).

Contents

I Using the PENCIL CODE 1
1 System requirements 1
2 Obtaining the code 2
2.1 Obtaining the code via git or svn 2
2.2 Updating via svn or git 2
2.3 Getting the last validated version 3
2.4 Getting older versions 4
3 Getting started 5
3.1 Setup 5
3.1.1 Environment settings 5
3.1.2 Linking scripts and source files 6
3.1.3 Adapting 'Makefile.src' 6
3.1.4 Running make 6
3.1.5 Choosing a data directory 7
3.1.6 Running the code 7
3.2 Further tests 9
4 Code structure 11
4.1 Directory tree 11
4.2 Basic concepts 12
4.2.1 Data access in pencils 12
4.2.2 Modularity 13
4.3 Files in the run directories 14
4.3.1 'start.in', 'run.in', 'print.in' 14
4.3.2 'datadir.in' 14
4.3.3 'reference.out' 14
4.3.4 'start. csh', 'run.csh', 'getconf.csh' [obsolete; see Sect. 5.1 14
4.3.5 'src/' 14
4.3.6 'data/' 15
5 Using the code 17
5.1 Configuring the code to compile and run on your computer 17
5.1.1 Locating the configuration file 17
5.1.2 Structure of configuration files 18
5.1.3 Compiling the code 20
5.1.4 Running the code 20
5.1.5 Testing the code 20
5.2 Adapting 'Makefile.src' [obsolete; see Sect. 5.1] 21
5.3 Changing the resolution 22
5.4 Using a non-equidistant grid 23
5.5 Diagnostic output 25
5.6 Data files 25
5.6.1 Snapshot files 25
5.7 Video files and slices 26
5.8 Averages 29
5.8.1 One-dimensional output averaged in two dimensions 29
5.8.2 Two-dimensional output averaged in one dimension 29
5.8.3 Azimuthal averages 29
5.8.4 Time averages 30
5.9 Helper scripts 31
5.10 RELOAD and STOP files 33
5.11 RERUN and NEWDIR files 34
5.12 Start and run parameters 34
5.13 Physical units 36
5.14 Minimum amount of viscosity 37
5.15 The time step 38
5.15.1 The usual RK-2N time step 38
5.15.2 The Runge-Kutta-Fehlberg time step 38
5.16 Boundary conditions 39
5.16.1 Where to specify boundary conditions 39
5.16.2 How to specify boundary conditions 39
5.17 Restarting a simulation 40
5.18 One- and two-dimensional runs 41
5.19 Visualization 41
5.19.1 Gnuplot 41
5.19.2 Data explorer 41
5.19.3 GDL 42
5.19.4 IDL 43
5.19.5 Python 46
5.20 Running on multi-processor computers 49
5.20.1 How to run a sample problem in parallel 49
5.20.2 Hierarchical networks (e.g. on Beowulf clusters) 50
5.20.3 Extra workload caused by the ghost zones 50
5.21 Running in double-precision 51
5.22 Power spectrum 52
5.23 Structure functions 54
5.24 Particles 55
5.24.1 Particles in parallel 56
5.24.2 Large number of particles 58
5.24.3 Random number generator 58
5.25 Non-cartesian coordinate systems 59
6 The equations 60
6.1 Continuity equation 60
6.2 Equation of motion 60
6.3 Induction equation 61
6.4 Entropy equation 61
6.4.1 Viscous heating 62
6.4.2 Alternative description 62
6.5 Transport equation for a passive scalar 63
6.6 Bulk viscosity 63
6.6.1 Shock viscosity 63
6.7 Equation of state 63
6.8 Ionization 64
6.8.1 Ambipolar diffusion 65
6.9 Radiative transfer 66
6.10 Self-gravity 67
6.11 Incompressible and anelastic equations 67
6.12 Dust equations 67
6.13 Cosmic ray pressure in diffusion approximation 68
6.14 Particles 69
6.14.1 Tracer particles 69
6.14.2 Dust particles 69
6.15 N -body solver 70
6.16 Test-field equations 71
6.17 Gravitational wave equations 71
7 Troubleshooting/Frequently Asked Questions 75
7.1 Download and setup 75
7.1.1 Download forbidden 75
7.1.2 Shell gives error message when sourcing 'sourceme.X' 75
7.2 Compilation 76
7.2.1 Problems compiling syscalls 76
7.2.2 Unable to open include file: chemistry.h 76
7.2.3 Compiling with ifc under Linux 76
7.2.4 Segmentation fault with ifort 8.0 under Linux 77
7.2.5 The underscore problem: linking with MPI 77
7.2.6 Compilation stops with the cryptic error message: 77
7.2.7 The code doesn't compile, 78
7.2.8 Some samples don't even compile, 78
7.2.9 Internal compiler error with Compaq/Dec F90 79
7.2.10 Assertion failure under SunOS 79
7.2.11 After some dirty tricks I got pencil code to compile with MPI, 80
7.2.12 Error: Symbol 'mpi_comm_world' at (1) has no IMPLICIT type 80
7.2.13 Error: Can't open included file 'mpif.h' 81
7.3 Pencil check 81
7.3.1 The pencil check complains for no reason. 81
7.3.2 The pencil check reports MISSING PENCILS and quits 81
7.3.3 The pencil check reports unnecessary pencils 81
7.3.4 The pencil check reports that most or all pencils are missing 81
7.3.5 Running the pencil check triggers mathematical errors in the code 82
7.3.6 The pencil check still complains 82
7.3.7 The pencil check is annoying so I turned it off 82
7.4 Running 82
7.4.1 Periodic boundary conditions in 'start. x ' 82
7.4 .2 csh problem? 82
7.4.3 'run.csh' doesn't work: 83
7.4.4 Code crashes after restarting 83
7.4.5 auto-test gone mad...? 83
7.4.6 Can I restart with a different number of cpus? 84
7.4.7 Can I restart with a different number of cpus? 84
7.4.8 fft xyz parallel 3D: nygrid needs to be an integer multiple.. 84
7.4.9 Unit-agnostic calculations? 85
7.5 Visualization 86
7.5.1 'start. pro' doesn't work: 86
7.5.2 'start. pro' doesn't work: 86
7.5.3 Something about tag name undefined: 86
7.5.4 Something INC in start.pro 86
7.5.5 nl2idl problem when reading param2.nml 87
7.5.6 Spurious dots in the time series file 87
7.5.7 Problems with pc varcontent. pro 87
7.6 General questions 88
7.6.1 "Installation" procedure 88
7.6.2 Small numbers in the code 88
7.6.3 Why do we need a /lphysics/ namelist in the first place? 89
7.6.4 Can I run the code on a Mac? 90
7.6.5 Pencil Code discussion forum 90
7.6.6 The manual 90
II Programming the PENCIL CODE 91
8 Understanding the code 95
8.1 Example: how is the continuity equation being solved? 95
9 Adapting the code 97
9.1 The Pencil Code coding standard 97
9.2 Adding new output diagnostics 98
9.3 The f-array 100
9.4 The df-arrav 100
9.5 The fp-arrav 101
9.6 The pencil case 101
9.6.1 Pencil check 102
9.6.2 Adding new pencils 103
9.7 Adding new physics: the Special module 103
9.8 Adding switchable modules 104
9.9 Adding your initial conditions: the InitialCondition module 104
10 Testing the code 106
10.1 How to set up periodic tests (auto-tests) 106
11 Useful internals 108
11.1 Global variables 108
11.2 Subroutines and functions 108
III Appendix 111
A Timings 111
A. 1 Test case 118
A. 2 Running the code 119
A. 3 Triolith 119
A. 4 Lindgren 119
B Coding standard 122
B. 1 File naming conventions 122
B. 2 Fortran Code 122
B.2.1 Indenting and whitespace 122
B.2.2 Comments 123
B.2.3 Module names 124
B.2.4 Variable names 124
B.2.5 Emacs settings 125
B. 3 Other best practices 126
B. 4 General changes to the code 126
C Some specific initial conditions 127
C. 1 Random velocity or magnetic fields 127
C. 2 Turbulent initial with given spectrum 127
C. 3 Beltrami fields 128
C. 4 Magnetic flux rings: initaa='fluxrings' 128
C. 5 Vertical stratification 129
C.5.1 Isothermal atmosphere 129
C.5.2 Polytropic atmosphere 130
C.5.3 Changing the stratification 131
C.5.4 The Rayleigh number 131
C.5.5 Entropy boundary condition 132
C.5.6 Temperature boundary condition at the top 132
C. 6 Potential-field boundary condition 132
C. 7 Planet solution in the shearing box 134
D Some specific boundary conditions 135
D. 1 Perfect-conductor boundary condition 135
D. 2 Stress-free boundary condition 135
D. 3 Normal-field-radial boundary condition 136
E High-frequency filters 137
E. 1 Conservative hyperdissipation 137
E. 2 Hyperviscosity 139
E.2.1 Conservative case 139
E.2.2 Non-conservative cases 140
E.2.3 Choosing the coefficient 141
E.2.4 Turbulence with hyperviscosity 141
E. 3 Anisotropic hyperdissipation 142
E. 4 Hyperviscosity in Burgers shock 142
F Special techniques 144
F. 1 After changing REAL_PRECISION 144
F. 2 Remeshing (regridding) 144
F. 3 Restarting from a run with less physics 145
F. 4 Restarting with particles from a run without them 146
G Runs and reference data 148
G. 1 Shock tests 148
G.1.1 Sod shock tube problem 148
G.1.2 Temperature jump 148
G. 2 Random forcing function 148
G. 3 Three-layered convection model 149
G. 4 Magnetic helicity in the shearing sheet 150
H Numerical methods 154
H. 1 Sixth-order spatial derivatives 154
H. 2 Upwind derivatives to avoid 'wiggles' 155
H. 3 The bidiagonal scheme for cross-derivatives 156
H. 4 The 2 N -scheme for time-stepping 157
H. 5 Diffusive error from the time-stepping 158
H. 6 Ionization 159
H. 7 Radiative transfer 160
H.7.1 Solving the radiative transfer equation 160
H.7.2 Angular integration 161
I Curvilinear coordinates 163
I. 1 Covariant derivatives 163
I. 2 Differential operators 163
I.2.1 Gradient 163
I.2.2 Divergence 164
I.2.3 Curl 164
I.2.4 Advection operator 165
I.2.5 Mixed advection operator 165
I.2.6 Shear term 166
I.2.7 Another mixed advection operator 166
I.2.8 Strain Matrix 166
I.2.9 Lambda effect 166
I.2.10 Laplacian of a scalar 167
I.2.11 Hessian of a scalar 167
I.2.12 Double curl 168
I.2.13 Gradient of a divergence 169
J Switchable modules 171
K Startup and run-time parameters 172
K. 1 Startup parameters for 'start. in' 172
K. 2 Runtime parameters for 'run. in' 179
K. 3 Parameters for 'print. in' 186
K. 4 Parameters for 'video. in' 222
K. 5 Parameters for 'phiaver. in' 224
K. 6 Parameters for 'xyaver. in' 225
K. 7 Parameters for 'xzaver. in' 231
K. 8 Parameters for 'yzaver. in' 232
K. 9 Parameters for 'yaver. in' 235
K.10Parameters for 'zaver. in' 237
K.11Boundary conditions 240
K.11.1 Boundary condition $b c x$ 240
K.11.2 Boundary condition bcy 243
K.11.3 Boundary condition bcz 245
K. 12 Initial condition parameter dependence 249

IV Indexes 253

Part I

Using the Pencil Code

1 System requirements

To use the code, you will need the following:

1. Absolutely needed:

- F95 compiler
- C compiler

2. Used heavily (if you don't have one of these, you will need to adjust many things manually):

- a Unix/Linux-type system with make and csh
- Perl (remember: if it doesn't run Perl, it's not a computer)

3. The following are dispensable, but enhance functionality in one way or the other:

- an MPI implementation (for parallelization on multiprocessor systems)
- DX alias OpenDX or data explorer (for 3-D visualization of results)
- IDL (for visualization of results; the 7-minute demo license will do for many applications)

2 Obtaining the code

The code is now distributed via https://github.com/pencil-code/pencil-code, where you can either download a tarball, or, preferably, download it via svn or git. In Iran and some other countries, GitHub is not currently available. To alleviate this problem, we have made a recent copy available on http://www.nordita.org/software/pencil-code/. If you want us to update this tarball, please contact us.

To ensure at least some level of stability of the svn/git versions, a set of test problems (listed in '\$PENCIL_HOME/bin/auto-test') are routinely tested. This includes all problems in '\$PENCIL_HOME/samples'. See Sect. 10 for details.

2.1 Obtaining the code via git or svn

1. Many machines have svn installed (try svn -v or which svn). On Ubuntu, for example, svn comes under the package name subversion.
2. The code is now saved under Github, git can be obtained in Linux by typing sudo apt-get install git
3. Unless you are a privileged users with write access, you can download the code with the command
```
git clone https://github.com/pencil-code/pencil-code.git
```

or

```
svn checkout https://github.com/pencil-code/pencil-code/trunk/ ...\\
pencil-code --username MY_GITHUB_USERNAME
```

In order to push your changes to the repository, you have to ask the maintainer of pencil code for push access (to become a contributor), or put a pull request to the maintainer of the code.

Be sure to run auto-test before you check anything back in again. It can be very annoying for someone else to figure out what's wrong, especially if you are just up to something else. At the very least, you should do

```
pc_auto-test --level=0 --no-pencil-check -C
```

This allows you to run just 2 of the most essential tests starting with all the nomodules and then most-modules.

2.2 Updating via svn or git

Independent of how you installed the code in the first place (from tarball or via svn/git), you can update your version using $s v n / g i t$. If you have done nontrivial alterations to your version of the code, you ought to be careful about upgrading: although svn/git is an excellent tool for distributed programming, conflicts are quite possible, since many of us are going to touch many parts of the code while we develop it further. Thus, despite the
fact that the code is under svn/git, you should probably back up your important changes before upgrading.

Here is the upgrading procedure for git:

1. Perform a git update of the tree:
```
unix> git pull
```

2. Fix any conflicts you encounter and make sure the examples in the directory 'samples/' are still working.

Here is the upgrading procedure for svn:

1. Perform a svn update of the tree:
```
unix> pc_svnup
```

2. Fix any conflicts you encounter and make sure the examples in the directory 'samples/' are still working.

If you have made useful changes, please contact one of the (currently) 10 "Contributors" (listed under https://github.com/pencil-code/pencil-code) who can give you push or check-in permission. Be sure to have sufficient comments in the code and please follow our standard coding conventions explained in Section 9.1. There is also a script to check and fix the most common stylebreaks, pc_codingstyle.

2.3 Getting the last validated version

The script pc_svnup accepts arguments -val or -validated, which means that the current changes on a user's machine will be merged into the last working version. This way every user can be sure that any problems with the code must be due to the current changes done by this user since the last check-in.

Examples:

```
unix> pc_svnup -src -s -validated
```

brings all files in '\$PENCIL_HOME/src' to the last validated status, and merges all your changes into this version. This allows you to work with this, but in order to check in your changes you have to update everything to the most recent status first, i.e.

```
unix> pc_svnup -src
```

Your own changes will be merged into this latest version as before.
NOTE: The functionality of the head of the trunk should be preserved at all times. However, accidents do happen. For the benefit of all other developers, any errors should be corrected within 1-2 hours. This is the reason why the code comes with a file 'pencil-code/license/developers.txt', which should contain contact details of all developers. The pc_svnup -val option allows all other people to stay away from any trouble.

2.4 Getting older versions

You may find that the latest svn version of the code produces errors. If you have reasons to believe that this is due to changes introduced on 27 November 2008 (to give an example), you can check out the version prior to this by specifying a revision number with svn update -r \#\#\#\#\#. One reason why one cannot always reproduce exactly the same situation too far back in time is connected with the fact that processor architecture and the compiler were different, resulting e.g. in different rounding errors.

3 Getting started

To get yourself started, you should run one or several examples which are provided in one of the 'samples/' subdirectories. Note that you will only be able to fully assess the numerical solutions if you visualize them with IDL, DX or other tools (see Sect. 5.19).

3.1 Setup

3.1.1 Environment settings

The functionality of helper scripts and IDL routines relies on a few environment variables being set correctly. The simplest way to achieve this is to go to the top directory of the code and source one of the two scripts 'sourceme.csh' or 'sourceme.sh' (depending on the type of shell you are using):

```
csh> cd pencil-code
csh> source ./sourceme.csh
```

for tcsh or csh users; or

```
sh> cd pencil-code
sh> . ./sourceme.sh
```

for users of bash, Bourne shell, or similar shells. You should get output similar to
PENCIL_HOME = </home/dobler/f90/pencil-code>
Adding /home/dobler/f90/pencil-code/bin to PATH
Apart from the PATH variable, the environment variable IDL_PATH is set to something like ./idl:../idl:+\$PENCIL_HOME/idl:./data:<IDL_DEFAULT>.

Note 1 The <IDL_DEFAULT> mechanism does not work for IDL versions 5.2 or older. In this case, you will have to edit the path manually, or adapt the 'sourceme' scripts.

Note 2 If you don't want to rely on the 'sourceme' scripts' (quite heuristic) ability to correctly identify the code's main directory, you can set the environment variable PENCIL_HOME explicitly before you run the source command.

Note 3 Do not just source the 'sourceme' script from your shell startup file (‘~ / .cshrc' or '~/.bashrc', because it outputs a few lines of diagnostics for each sub-shell, which will break many applications. To suppress all output, follow the instructions given in the header documentation of 'sourceme.csh' and 'sourceme.sh'. Likewise, output from other files invoked by source should also be suppressed.

Note 4 The second time you source 'sourceme', it will not add anything to your PATH variable. This is on purpose to avoid cluttering of your environment: you can source the file as often as you like (in your shell startup script, then manually and in addition in some script you have written), without thinking twice. If, however, at the first sourcing, the setting of PENCIL_HOME was wrong, this mechanism would keep you from ever adding
the right directory to your PATH. In this case, you need to first undefine the environment variable PENCIL_HOME:

```
csh> unsetenv PENCIL_HOME
csh> source ./sourceme.csh
or
sh> unset PENCIL_HOME
sh> . ./sourceme.sh
```


3.1.2 Linking scripts and source files

With your environment set up correctly, you can now go to the directory you want to work in and set up subdirectories and links. This is accomplished by the script 'pc_setupsrc', which is located in '\$PENCIL_HOME/bin' and is thus now in your executable path.

For concreteness, let us assume you want to use 'samples/conv-slab' as your run directory, i.e. you want to run a three-layer slab model of solar convection. You then do the following:

```
unix> cd samples/conv-slab
unix> pc_setupsrc
src already exists
2 files already exist in src
```

The script has linked a number of scripts from '\$PENCIL_HOME/bin', generated a directory 'src' for the source code and linked the Fortran source files (plus a few more files) from '\$PENCIL_HOME/src' to that directory:

```
unix> ls -F
reference.out src/
start.csh@ run.csh@ getconf.csh@
start.in run.in print.in
```


3.1.3 Adapting 'Makefile.src'

This step requires some input from you, but you only have to do this once for each machine you want to run the code on. See Sect. 5.2 for a description of the steps you need to take here.

Note: If you are lucky and use compilers similar to the ones we have, you may be able to skip this step; but blame yourself if things don't compile, then. If not, you can run make with explicit flags, see Sect. 5.2 and in particular Table 1 .

3.1.4 Running make

Next, you run make in the 'src' subdirectory of your run directory. Since you are using one of the predefined test problems, the settings in 'src/Makefile.local' and 'src/cparam.local' are all reasonable, and you just do

```
unix> make
```

If you have set up the compiler flags correctly, compilation should complete successfully.

3.1.5 Choosing a data directory

The code will by default write data like snapshot files to the subdirectory 'data' of the run directory. Since this will involve a large volume of IO-operations (at least for large grid sizes), one will normally try to avoid writing the data via NFS. The recommended way to set up a 'data' data directory is to generate a corresponding directory on the local disc of the computer you are running on and (soft-)link it to './data'. Even if the link is part of an NFS directory, all the IO operations will be local. For example, if you have a local disc '/scratch', you can do the following:

```
unix> mkdir -p /scratch/$USER/pencil-data/samples/conv-slab
unix> ln -s /scratch/$USER/pencil-data/samples/conv-slab ./data
```

This is done automatically by the pc_mkdatadir command which, in turn, is invoked when making a new run directory with the pc_newrun command, for example.

Even if you don't have an NFS-mounted directory (say, on your notebook computer), it is probably still a good idea to have code and data well separated by a scheme like the one described above.

An alternative to symbolic links, is to provide a file called 'datadir.in' in the root of the run directory. This file should contain one line of text specifying the absolute or relative data directory path to use. This facility is useful if one wishes to switch one run directory between different data directories. It is suggested that in such cases symbolic links are again made in the run directory to the various locations, then the 'datadir. in' need contain only a short relative path.

3.1.6 Running the code

You are now ready to start the code:

```
unix> start.csh
Linux cincinnatus 2.4.18-4GB #1 Wed Mar 27 13:57:05 UTC 2002 i686 unknown
Non-MPI version
datadir = data
Fri Aug 8 21:36:43 CEST 2003
    src/start.x
CVS: io_dist.f90 v. 1.61 (brandenb ) 2003/08/03 09:26:55
[...]
CVS: start.in v. 1.4 (dobler ) 2002/10/02 20:11:14
    nxgrid,nygrid,nzgrid= 32 32 32
thermodynamics: assume cp=1
uu: up-down
piecewise polytropic vertical stratification (lnrho)
init_lnrho: cs2bot,cs2top= 1.450000 0.3333330
e.g. for ionization runs: cs2bot,cs2top not yet set
piecewise polytropic vertical stratification (ss)
```

```
start.x has completed successfully
0.070u 0.020s 0:00.14 64.2% 0+0k 0+0io 180pf+0w
```

Fri Aug 8 21:36:43 CEST 2003
This runs 'src/start.x' to construct an initial condition based on the parameters set in 'start.in'. This initial condition is stored in 'data/proc0/var.dat' (and in 'data/proc1/var.dat', etc. if you run the multiprocessor version). It is fair to say that this is now a rather primitive routine; see 'pencil-code/idl/read' for various reading routines. You can then visualize the data using standard idl language.

If you visualize the profiles using IDL (see below), the result should bear some resemblance to Fig. 2, but with different values in the ghost zones (the correct values are set at run-time only) and a simpler velocity profile.

Now we run the code:

```
unix> run.csh
```

This executes 'src/run. x ' and carries out nt time steps, where nt and other run-time parameters are specified in 'run.in'. On a decent PC (1.7 GHz), 50 time steps take about 10 seconds.

The relevant part of the code's output looks like

--it----t-------dt-------urms----umax----rhom------ssm-----dtc----dtu---dtnu---dtchi-										
0	0.34	$6.792 \mathrm{E}-03$	0.0060	0.0452	14.4708	-0.4478	0.978	0.013	0.207	0.346
10	0.41	$6.787 \mathrm{E}-03$	0.0062	0.0440	14.4707	-0.4480	0.978	0.013	0.207	0.345
20	0.48	$6.781 \mathrm{E}-03$	0.0064	0.0429	14.4705	-0.4481	0.977	0.012	0.207	0.345
30	0.54	$6.777 \mathrm{E}-03$	0.0067	0.0408	14.4703	-0.4482	0.977	0.012	0.207	0.345
40	0.61	$6.776 \mathrm{E}-03$	0.0069	0.0381	14.4702	-0.4482	0.977	0.011	0.207	0.346

and lists

1. the number it of the current time step;
2. the time, t;
3. the time step, $d t$;
4. the rms velocity, urms $=\sqrt{\left\langle\boldsymbol{u}^{2}\right\rangle}$;
5. the maximum velocity, umax $=\max |\boldsymbol{u}|$;
6. the mean density, rhom $=\langle\rho\rangle$;
7. the mean entropy, $s s m=\langle s\rangle / c_{p}$;
8. the time step in units of the acoustic Courant step, $\boldsymbol{d t c}=\delta t /\left(c_{\mathrm{s} 0} \delta x_{\text {min }}\right)$;
9. the time step in units of the advective time step, $\boldsymbol{d t u}=\delta t /\left(c_{\delta t} \delta x / \max |\mathbf{u}|\right)$;
10. the time step in units of viscous time step, $d t n u=\delta t /\left(c_{\delta t, v} \delta x^{2} / \nu_{\max }\right)$;
11. the time step in units of the conductive time step, $\boldsymbol{d t c h i}=\delta t /\left(c_{\delta t, \mathrm{v}} \delta x^{2} / \chi_{\max }\right)$.

The entries in this list can be added, removed or reformatted in the file 'print.in', see Sects 5.5 and K.3. The output is also saved in 'data/time_series dat' and should be identical to the content of 'reference. out'.

Figure 2: Stratification of the three-layer convection model in 'samples/conv-slab' after 50 timesteps ($t=0.428$). Shown are (from left to right) density ρ, vertical velocity u_{z}, entropy s / c_{p} and temperature T as functions of the vertical coordinate z for about ten different vertical lines in the computational box. The dashed lines denote domain boundaries: $z<-0.68$ is the lower ghost zone (points have no physical significance); $-0.68<z<0$ is a stably stratified layer ($d s / d z>0$); $0<z<1$ is the unstable layer ($d s / d z<0$) $; 1<z<1.32$ is the isothermal top layer; $z>1.32$ is the upper ghost zone (points have no physical significance).

If you have $I D L$, you can visualize the stratification with (see Sect. 5.19 .4 for details)

```
unix > idl
IDL > pc_read_var,obj=var,/trimall
IDL > tvscl,var,uu(*,*,0,0)
```

which shows u_{x} in the $x y$ plane through the first meshpoint in the z direction. There have been some now outdates specific routines that produce results like that shown in Fig. 2.

Note: If you want to run the code with MPI, you will probably need to adapt 'getconf.csh', which defines the commands and flags used to run MPI jobs (and which is sourced by the scripts 'start. csh' and 'run.csh'). Try

```
csh -v getconf.csh
or
csh -x getconf.csh
```

to see how 'getconf.csh' makes its decisions. You would add a section for the host name of your machine with the particular settings. Since 'getconf.csh' is linked from the central directory 'pencil-code/bin', your changes will be useful for all your other runs too.

3.2 Further tests

There is a number of other tests in the 'samples/' directory. You can use the script 'bin/auto-test' to automatically run these tests and have the output compared to refer-
ence results.

4 Code structure

4.1 Directory tree

Figure 3: The basic structure of the code

The overall directory structure of the code is shown in Fig. 3. Under 'pencil-code', there are currently the following files and directories:
bin/ config/ doc/ idl/ license/ perl/ samples/ sourceme.sh utils/ bugs/ dx/ lib/ misc/ README sourceme.csh src/ WWW/

Almost all of the source code is contained in the directory 'src/', but in order to encapsulate individual applications, the code is compiled separately for each run in a local directory 'src' below the individual run directory, like e.g. 'samples/conv-slab/src'.

It may be a good idea to keep your own runs also under svn or cvs (which is older than but similar to SVn), but this would normally be a different repository. On the machine where you are running the code, you may want to check them out into a subdirectory of
'pencil-code/'. For example, we have our own runs in a repository called 'pencil-runs', so we do

```
unix> cd $PENCIL_HOME
unix> svn co runs pencil-runs
```

In this case, 'runs' contains individual run directories, grouped in classes (like 'spher' for spherical calculations, or 'kinematic' for kinematic dynamo simulations). The current list of classes in our own 'pencil-runs' repository is

```
1d-tests/ disc/ kinematic/ rings/
2d-tests/ discont/ Misc/ slab_conv/
3d-tests/ discussion/ OLD/ test/
buoy_tube/ forced/ pass_only/
convstar/ interstellar/ radiation/
```

The directory 'forced/' contains some forced turbulence runs (both magnetic and nonmagnetic); 'gravz/' contains runs with vertical gravity; 'rings/' contains decaying MHD problems (interlocked flux rings as initial condition, for example); and 'kinematic/' contains kinematic dynamo problems where the hydrodynamics is turned off entirely. The file 'samples/README' should contain an up-to-date list and short description of the individual classes 1

The subdirectory 'src' of each run directory contains a few local configuration files (currently these are 'Makefile.local' and 'cparam.local') and possibly 'ctimeavg.local'. To compile the samples, links the files '. f90', '.c' and 'Makefile. src' need to be linked from the top file[src/]src directory to the local directory './src'. These links are set up by the script pc_setupsrc) when used in the root of a run directory.

General-purpose visualization routines for $I D L$ or $D X$ are in the directories 'idl' and ' dx ', respectively. There are additional and more specialized IDL directories in the different branches under 'pencil-runs'.

The directory 'doc' contains this manual; 'bin' contains a number of utility scripts (mostly written in csh and Perl), and in particular the 'start.csh', 'run.csh', and 'getconf.csh' scripts. The '. svn' directory is used (you guessed it) by .svn, and is not normally directly accessed by the user; 'bugs', finally is used by us for internal purposes.

The files 'sourceme.csh' and 'sourceme.sh' will set up some environment variables - in particular PATH - and aliases/shell functions for your convenience. If you do not want to source one of these files, you need to make sure your IDL path is set appropriately (provided you want to use $I D L$) and you will need to address the scripts from 'bin' with their explicit path name, or adjust your PATH manually.

4.2 Basic concepts

4.2.1 Data access in pencils

Unlike the CRAY computers that dominated supercomputing in the 80 s and early 90 s , all modern computers have a cache that constitutes a significant bottleneck for many

[^0]codes. This is the case if large three-dimensional arrays are constantly used within each time step, which has the obvious advantage of working on long arrays and allows vectorization of elementary machine operations. This approach also implies conceptual simplicity of the code and allows extensive use of the intuitive F90 array syntax. However, a more cache-efficient way of coding is to calculate an entire time step (or substep of a multi-stage time-stepping scheme) only along a one-dimensional pencil of data within the numerical grid. This technique is more efficient for modern RISC processors: on Linux PCs and SGI workstations, for example, we have found a speed-up by about 60% in some cases. An additional advantage is a drastic reduction in temporary storage for auxiliary variables within each time step.

4.2.2 Modularity

Each run directory has a file 'src/Makefile.local' in which you choose certain modules ${ }^{2}$, which tell the code whether or not entropy, magnetic fields, hydrodynamics, forcing, etc. should be invoked. For example, the settings for forced turbulent MHD simulations are

HYDRO	$=$ hydro
DENSITY	$=$ density
ENTROPY	$=$ noentropy
MAGNETIC	$=$ magnetic
GRAVITY	$=$ nogravity
FORCING	$=$ forcing
MPICOMM	$=$ nompicomm
GLOBAL	$=$ noglobal
IO	$=$ io_dist
FOURIER	$=$ nofourier

This file will be processed by make and the settings are thus assignments of make variables. Apart from the physics modules (equation of motion: yes, density [pressure]: yes, entropy equation: no, magnetic fields: yes, gravity: no, forcing: yes), a few technical modules can also be used or deactivated; in the example above, these are MPI (switched off), additional global variables (none), input/output (distributed), and FFT (not used). The table in Sect. Jin the Appendix lists all currently available modules.

Note that most of these make variables must be set, but they will normally obtain reasonable default values in 'Makefile' (so you only need to set the non-standard ones in 'Makefile.local'). It is by using this switching mechanism through make that we achieve high flexibility without resorting to excessive amounts of cryptic preprocessor directives or other switches within the code.

Many possible combinations of modules have already been tested and examples are part of the distribution, but you may be interested in a combination which was never tried before and which may not work yet, since the modules are not fully orthogonal. In such cases, we depend on user feedback for fixing problems and documenting the changes for others.

[^1]
4.3 Files in the run directories

4.3.1 'start.in', 'run.in', 'print.in'

These files specify the startup and runtime parameters (see Sects. 5.12 and K.2), and the list of diagnostic variables to print (see 5.5). They specify the setup of a given simulation and are kept under svn in the individual 'samples' directories.

You may want to check for the correctness of these configuration files by issuing the command pc_configtest.

4.3.2 'datadir.in'

If this file exists, it must contain the name of an existing directory, which will be used as data directory, i.e. the directory where all results are written. If 'datadir. in' does not exist, the data directory is 'data/'.

4.3.3 'reference.out'

If present, 'reference out' contains the output you should obtain in the given run directory, provided you have not changed any parameters. To see whether the results of your run are OK, compare 'time_series.dat' to 'reference. out':

```
unix> diff data/time_series.dat reference.out
```


4.3.4 'start.csh', 'run.csh', 'getconf.csh'[obsolete; see Sect. 5.1]

These are links to '\$PENCIL_HOME/bin'. You will be constantly using the scripts 'start.csh' and 'run.csh' to initialize the code. Things that are needed by both (like the name of the mpirun executable, MPI options, or the number of processors) are located in 'getconf.csh', which is never directly invoked.

4.3.5 'src/'

The 'src' directory contains two local files, 'src/Makefile.local' and 'src/cparam.local', which allow the user to choose individual modules (see 4.2.2) and to set parameters like the grid size and the number of processors for each direction. These two files are part of the setup of a given simulation and are kept under svn in the individual 'samples' directories.

The file 'src/cparam.inc' is automatically generated by the script 'mkcparam' and contains the number of fundamental variables for a given setup.

All other files in 'src/' are either links to source files (and 'Makefile.src') in the '\$PENCIL_HOME/src' directory, or object and module files generated by the compiler.

4.3.6 'data/'

This directory (the name of which will actually be overwritten by the first line of 'datadir. in', if that file is present; see $\$ 4.3 .2$) contains the output from the code:
'data/dim.dat' The global array dimensions.
'data/legend.dat' The header line specifying the names of the diagnostic variables in 'time_series.dat'.
'data/time_series.dat' Time series of diagnostic variables (also printed to stdout). You can use this file directly for plotting with Gnuplot, IDL, Xmgrace or similar tools (see also $\$ 5.19$).
'data/tsnap.dat', 'data/tvid.dat' Time when the next snapshot 'VARN' or animation slice should be taken.
'data/params.log' Keeps a log of all your parameters: 'start. x' writes the startup parameters to this file, 'run.x' appends the runtime parameters and appends them anew, each time you use the 'RELOAD' mechanism (see $\$ 5.10$).
'data/param.nml’ Complete set of startup parameters, printed as Fortran namelist. This file is read in by 'run. x ' (this is how values of startup parameters are propagated to 'run. x ') and by $I D L$ (if you use it).
'data/param2.nml' Complete set of runtime parameters, printed as Fortran namelist. This file is read by IDL (if you use it).
'data/index.pro' Can be used as include file in IDL and contains the column in which certain variables appear in the diagnostics file ('time_series.dat'). It also contains the positions of variables in the 'VARN' files. These positions depend on whether entropy or noentropy, etc, are invoked. This is a temporary solution and the file may disappear in future releases.
'data/interstellar.dat' Unformatted file containing the time at which the next supernova event will occur, under certain supernova schemes. (Only needed by the interstellar module.)
'data/proc0', 'data/proc1', ... These are the directories containing data from the individual processors. So after running an MPI job on two processors, you will have the two directories 'data/proc0' and 'data/proc1'. Each of the directories can contain the following files:
'var.dat' binary file containing the latest snapshot;
'VARN' binary file containing individual snapshot number N;
'dim.dat' ASCII file containing the array dimensions as seen by the given processor;
'time.dat' ASCII file containing the time corresponding to 'var.dat' (not actually used by the code, unless you use the io_mpiodist.f90 module);
'grid.dat' binary file containing the part of the grid seen by the given processor;
'seed.dat' the random seed for the next time step (saved for reasons of reproducibility). For multi-processor runs with velocity forcing, the files 'proc $N /$ seed.dat' must all contain the same numbers, because globally coherent waves of given wavenumber are used;
' $X . \mathrm{xy}$ ', ' $X . \mathrm{xz}$ ', ' X. yz' two-dimensional sections of variable X, where X stands for the corresponding variable. The current list includes

```
bx.xy bx.xz by.xy by.xz bz.xy bz.xz divu.xy lnrho.xz
ss.xz ux.xy ux.xz uz.xy uz.xz
```

Each processor writes its own slice, so these need to be reassembled if one wants to plot a full slice.

5 Using the code

5.1 Configuring the code to compile and run on your computer

Note: We recommend to use the procedure described here, rather than the old method described in Sects. 5.2 and 4.3.4.

Quick instructions: You may compile with a default compiler-specific configuration:

1. Single-processor using the GNU compiler collection:
```
unix> pc_build -f GNU-GCC
```

2. Multi-processor using GNU with MPI support:
```
unix> pc_build -f GNU-GCC_MPI
```

Many compilers are supported already, please refer to the available config files in '\$PENCIL_HOME/config/compilers/*.conf', e.g. 'Intel.conf' and 'Intel_MPI.conf'.

If you have to set up some compiler options specific to a certain host system you work on, or if you like to create a host-specific configuration file so that you can simply execute pc_build without any options, you can clone an existing host-file, just include an existing compiler configuration, and simply only add the options you need. A good example of a host-file is '\$PENCIL_HOME/config/hosts/IWF/host-andromeda-GNU_Linux-Linux.conf'. You may save a clone under '\$PENCIL_HOME/config/hosts/<ID>.conf', where '<ID>' is to be replaced by the output of pc_build -i. This will be the new default for pc_build.

If you don't know what this was all about, read on.

In essence, configuration, compiling and running the code work like this:

1. Create a configuration file for your computer's host ID.
2. Compile the code using pc_build.
3. Run the code using pc_run

In the following, we will discuss the essentials of this scheme. Exhaustive documentation is available with the commands perldoc Pencil::ConfigFinder and perldoc PENCIL: :ConfigParser.

5.1.1 Locating the configuration file

Commands like pc_build and pc_run use the Perl module 'Pencil: :ConfigFinder' to locate an appropriate configuration file and 'Pencil::ConfigParser' to read and interpret it. When you use 'ConfigFinder' on a given computer, it constructs a host ID for the system it is running on, and looks for a file 'host_ID . conf' in any subdirectory of '\$PENCIL_HOME/config/hosts'.
E.g., if the host ID is "workhorse.pencil.org", 'ConfigFinder' would consider the file '\$PENCIL_HOME/config/hosts/pencil.org/workhorse.pencil.org.conf'.

Note 1: The location in the tree under 'hosts/' is irrelevant, which allows you to group related hosts by institution, owner, hardware, etc.

Note 2: 'ConfigFinder' actually uses the following search path:

1. './config'
2. '\$PENCIL_HOME/config-local'
3. '\$HOME/.pencil/config-local'
4. '\$PENCIL_HOME/config'

This allows you to override part of the 'config/' tree globally on the given file system, or locally for a particular run directory, or for one given copy of the Pencil Code. This search path is used both, for locating the configuration file for your host ID, and for locating included files (see below).

The host ID is constructed based on information that is easily available for your system. The algorithm is as follows:

1. Most commands using 'ConfigFinder' have a '--host-id' (sometimes abbreviated as ' $-H$ ') option to explicitly set the host ID.
2. If the environment variable PENCIL_HOST_ID is set, its value is used.
3. If any of the files './host-ID', ‘\$PENCIL_HOME/host-ID’, '\$HOME/ . pencil/host-ID', exists, its first line is used.
4. If 'ConfigFinder' can get hold of a fully qualified host name, that is used as host ID.
5. Else, a combination of host name, operating system name and possibly some other information characterizing the system is used.
6. If no config file for the host ID is found, the current operating system name is tried as fallback host ID.

To see which host IDs are tried (up to the first one for which a configuration file is found), run

```
unix> pc_build --debug-config
```

This command will tell you the host-ID of the system that you are using:

```
unix> pc_build -i
```


5.1.2 Structure of configuration files

It is strongly recommended to include in a users configuration file one of the preset compiler suite configuration files. Then, only minor options need to be set by a user, e.g. the optimization flags. One of those user configuration files looks rather simple:

```
# Simple config file. Most files don't need more.
%include compilers/GNU-GCC
```

or if you prefer a different compiler:

```
# Simple Intel compiler suite config file.
%include compilers/Intel
```

A more complex file (using MPI with additional options) would look like this:

```
# More complex config file.
%include compilers/GNU-GCC_MPI
%section Makefile
    MAKE_VAR1 = -j4 # joined compilation with four threads
    FFLAGS += -03 -Wall -fbacktrace # don't redefine, but append with '+='
%endsection Makefile
%section runtime
    mpiexec = mpirun # some MPI backends need a redefinition of mpiexec
%endsection runtime
%section environment
    SCRATCH_DIR=/var/tmp/$USER
%endsection environment
```

Adding "_MPI" to a compiler suite's name is usually sufficient to use MPI.

Note 3: We strongly advise not to mix Fortran- and C-compilers from different manufacturers or versions by manually including multiple separate compiler configurations.

Note 4: We strongly advise to use at maximum the optimization levels '-O2' for the Intel compiler and '-O3' for all other compilers. Higher optimization levels implicate an inadequate loss of precision.

The '. conf' files consist of the following elements:
Comments: A \# sign and any text following it on the same line are ignored.
Sections: There are three sections:
Makefile for setting make parameters
runtime for adding compiler flags used by pc_run
environment shell environment variables for compilation and running
Include statements: An \%include ... statement is recursively replaced by the contents of the files it points to 3^{3}

The included path gets a .conf suffix appended. Included paths are typically "absolute", e.g.

```
%include os/Unix
```

will include the file 'os/Unix.conf' in the search path listed above (typically from '\$PENCIL_HOME/config'). However, if the included path starts with a dot, it is a relative path, so

[^2]```
%include ./Unix
```

will only search in the directory where the including file is located.
Assignments: Statements like FFLAGS += -03 or mpiexec=mpirun are assignments and will set parameters that are used by pc_build/make or pc_run.

Lines ending with a backslash ' $\backslash$ ' are continuation lines.
If possible, one should always use incremental assignments, indicated by using a $+=$ sign instead of $=$, instead of redefining certain flags.

Thus,

```
CFLAGS += -03
CFLAGS += -I../include -Wall
```

is the same as

```
CFLAGS = $(CFLAGS) -03 -I../include -Wall
```


### 5.1.3 Compiling the code

Use the pc_build command to compile the code:

```
unix> pc_build # use default compiler suite
unix> pc_build -f Intel_MPI # specify a compiler suite
unix> pc_build -f os/GNU_Linux,mpi/open-mpi # explicitly specify config files
unix> pc_build VAR=something # set variables for the makefile
unix> pc_build --cleanall # remove generated files
```

The third example circumvents the whole host ID mechanism by explicitly instructing pc_build which configuration files to use. The fourth example shows how to define extra variables (VAR=something) for the execution of the Makefile.

See pc_build --help for a complete list of options.

### 5.1.4 Running the code

Use the pc_run command to run the code:

```
unix> pc_run # start if necessary, then run
unix> pc_run start
unix> pc_run run
unix> pc_run start run^3 # start, then run 3 times
unix> pc_run start run run run # start, then run 3 times
unix> pc_run `3 # start if necessary, then run 3 times
```

See pc_run --help for a complete list of options.

### 5.1.5 Testing the code

The pc_auto-test command uses pc_build for compiling and pc_run for running the tests. Here are a few useful options:

```
unix> pc_auto-test
unix> pc_auto-test --no-pencil-check # suppress pencil consistency check
unix> pc_auto-test --max-level=1 # run only tests in level 0 and 1
unix> pc_auto-test --time-limit=2m # kill each test after 2 minutes
```

See pc_auto-test --help for a complete list of options.
The pencil-test script will use pc_auto-test if given the '--use-pc_auto-test' or '-b' option:

```
unix> pencil-test --use-pc_auto-test
unix> pencil-test -b # ditto
unix> pencil-test -b -Wa,--max-level=1,--no-pencil-check # quick pen
```

See pencil-test --help for a complete list of options.

### 5.2 Adapting 'Makefile.src’ [obsolete; see Sect. [5.1]

By default, one should use the above described configuration mechanism for compilation. If for whatever reason one needs to work with a modified 'Makefile', there is a mechanism for picking the right set of compiler flags based on the hostname.

To give you an idea of how to add your own machines, let us assume you have several Linux boxes running a compiler f 95 that needs the options ' $-02-\mathrm{u}$ ', while one of them, Janus, runs a compiler f90 which needs the flags '-03' and requires the additional options '-lmpi -llam' for MPI.

The 'Makefile.src' you need will have the following section:

```
Begin machine dependent
IRIX64:
[...] (leave as it is in the original Makefile)
OSF1:
[...] (leave as it is in the original Makefile)
Linux:
[...] (leave everything from original Makefile and add:)
#FC=f95
#FFLAGS=-02 -u
#FC=f90 #(Janus)
#FFLAGS=-03 #(Janus)
#LDMPI=-lmpi -llam #(Janus)
SunOS:
[...] (leave as it is in the original Makefile)
UNICOS/mk:
[...] (leave as it is in the original Makefile)
HI-UX/MPP:
[...] (leave as it is in the original Makefile)
AIX:
[...] (leave as it is in the original Makefile)
```

Table 1: Compiler flags for common compilers. Note that some combinations of OS and compiler require much more elaborate settings; also, if you use MPI, you will have to set LDMPI.

| Compiler | FC | FFLAGS | CC | CFLAGS |
| :---: | :---: | :---: | :---: | :---: |
| Unix / POSIX: |  |  |  |  |
| GNU | gfortran | -03 | gcc | -03 -DFUNDERSC=1 |
| Intel | ifort | -02 | icc | -03 -DFUNDERSC=1 |
| PGI | pgf95 | -03 | pgcc | -03 -DFUNDERSC=1 |
| G95 | g95 | -03 -fno-second-underscore | gcc | -03 -DFUNDERSC=1 |
| Absoft | f95 | -03-N15 | gcc | -03 -DFUNDERSC=1 |
| IBM XL | xlf95 | -qsuffix=f=f90-03 | xlc | -03 -DFUNDERSC=1 |
| outdated: |  |  |  |  |
| IRIX Mips | f90 | -64 -03-mips4 | CC | -03-64 -DFUNDERSC=1 |
| Compaq | f90 | -fast -03 | CC | -03 -DFUNDERSC=1 |

\#\#\# End machine dependent

Note 1 There is a script for adapting the Makefile: 'adapt-mkfile'. In the example above, \#(Janus) is not a comment, but marks this line to be activated (uncommented) by adapt-mkfile if your hostname ('uname -n') matches 'Janus' or 'janus' (capitalization is irrelevant). You can combine machine names with a vertical bar: a line containing \#(onsager $\mid$ Janus) will be activated on both, Janus and Onsager.

Note 2 If you want to experiment with compiler flags, or if you want to get things running without setting up the machine-dependent section of the 'Makefile', you can set make variables at the command line in the usual manner:

```
src> make FC=f90 FFLAGS='-fast -u'
```

will use the compiler $f 90$ and the flags '-fast $-u$ ' for both compilation and linking. Table 1 summarizes flags we use for common compilers.

### 5.3 Changing the resolution

It is advisable to produce a new run directory each time you run a new case. (This does not include restarts from an old run, of course.) If you have a $32^{3}$ run in some directory 'runA_32a', then go to its parent directory, i.e.

```
runA_32a> cd ..
forced> pc_newrun runA_32a runA_64a
forced> cd runA_64a/src
forced> vi cparam.local
```

and edit the 'cparam.local' for the new resolution.
If you have ever wondered why we don't do dynamic allocation of the main variable ( f ) array, the main reason it that with static allocation the compiler can check whether we are out of bounds.

### 5.4 Using a non-equidistant grid

We introduce a non-equidistant grid $z_{i}$ (by now, this is also implemented for the other directions) as a function $z(\zeta)$ of an equidistant grid $\zeta_{i}$ with grid spacing $\Delta \zeta=1$.
The way the parameters are handled, the box size and position are not changed when you switch to a non-equidistant grid, i.e. they are still determined by xyz0 and Lxyz.
The first and second derivatives can be calculated by

$$
\begin{equation*}
\frac{d f}{d z}=\frac{d f}{d \zeta} \frac{d \zeta}{d z}=\frac{1}{z^{\prime}} f^{\prime}(\zeta), \quad \frac{d^{2} f}{d z^{2}}=\frac{1}{z^{\prime 2}} f^{\prime \prime}(\zeta)-\frac{z^{\prime \prime}}{z^{\prime 3}} f^{\prime}(\zeta), \tag{1}
\end{equation*}
$$

which can be written somewhat more compactly using the inverse function $\zeta(z)$ :

$$
\begin{equation*}
\frac{d f}{d z}=\zeta^{\prime}(z) f^{\prime}(\zeta), \quad \frac{d^{2} f}{d z^{2}}=\zeta^{\prime 2}(z) f^{\prime \prime}(\zeta)+\zeta^{\prime \prime}(z) \zeta^{\prime}(z) f^{\prime}(\zeta) \tag{2}
\end{equation*}
$$

Internally, the code uses the quantities $d z_{-} 1 \equiv 1 / z^{\prime}=\zeta^{\prime}(z)$ and $d z_{-}$tilde $\equiv-z^{\prime \prime} / z^{\prime 2}=$ $\zeta^{\prime \prime} / \zeta^{\prime}$, and stores them in 'data/proc $N /$ grid. dat'.
The parameters lequidist (a 3-element logical array), grid_func, coeff_grid (a $\geq 2$-element real array) are used to choose a non-equidistant grid and define the function $z(\zeta)$. So far, one can choose between grid_function='sinh', grid_function='linear' (which produces an equidistant grid for testing purposes), and grid_function='step-linear'.

The sinh profile: For grid_function='sinh', the function $z(\zeta)$ is given by

$$
\begin{equation*}
z(\zeta)=z_{0}+L_{z} \frac{\sinh a\left(\zeta-\zeta_{*}\right)+\sinh a\left(\zeta_{*}-\zeta_{1}\right)}{\sinh a\left(\zeta_{2}-\zeta_{*}\right)+\sinh a\left(\zeta_{*}-\zeta_{1}\right)} \tag{3}
\end{equation*}
$$

where $z_{0}$ and $z_{0}+L_{z}$ are the lowest and uppermost levels, $\zeta_{1}, \zeta_{2}$ are the $\zeta$ values representing those levels (normally $\zeta_{1}=0, \zeta_{2}=N_{z}-1$ for a grid of $N_{z}$ vertical layers [excluding ghost layers]), and $\zeta_{*}$ is the $\zeta$ value of the inflection point of the sinh function. The $z$ coordinate and $\zeta$ value of the inflection point are related via

$$
\begin{equation*}
z_{*}=z_{0}+L_{z} \frac{\sinh a\left(\zeta_{*}-\zeta_{1}\right)}{\sinh a\left(\zeta_{2}-\zeta_{*}\right)+\sinh a\left(\zeta_{*}-\zeta_{1}\right)} \tag{4}
\end{equation*}
$$

which can be inverted ("after some algebra") to

$$
\begin{equation*}
\zeta_{*}=\frac{\zeta_{1}+\zeta_{2}}{2}+\frac{1}{a} \operatorname{artanh}\left[\left(2 \frac{z_{*}-z_{0}}{L_{z}}-1\right) \tanh a \frac{\zeta_{2}-\zeta_{1}}{2}\right] . \tag{5}
\end{equation*}
$$

General profile: For a general monotonic function $\psi()$ instead of sinh we get,

$$
\begin{equation*}
z(\zeta)=z_{0}+L_{z} \frac{\psi\left[a\left(\zeta-\zeta_{*}\right)\right]+\psi\left[a\left(\zeta_{*}-\zeta_{1}\right)\right]}{\psi\left[a\left(\zeta_{2}-\zeta_{*}\right)\right]+\psi\left[a\left(\zeta_{*}-\zeta_{1}\right)\right]} \tag{6}
\end{equation*}
$$

and the reference point $\zeta_{*}$ is found by inverting

$$
\begin{equation*}
z_{*}=z_{0}+L_{z} \frac{\psi\left[a\left(\zeta_{*}-\zeta_{1}\right)\right]}{\psi\left[a\left(\zeta_{2}-\zeta_{*}\right)\right]+\psi\left[a\left(\zeta_{*}-\zeta_{1}\right)\right]} \tag{7}
\end{equation*}
$$

numerically.

Duct flow: The profile function grid_function='duct' generates a grid profile for turbulent flow in ducts. For a duct flow, most gradients are steepest close to the walls, and hence very fine resolution is required near the walls. Here we follow the method of [22] and use a Chebyshev-type grid with a cosine distribution of the grid points such that in the $y$ direction they are located at

$$
\begin{equation*}
y_{j}=h \cos \theta_{j} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{j}=\frac{\left(N_{y}-j\right) \pi}{N_{y}-1}, \quad j=1,2, \ldots, N_{y} \tag{9}
\end{equation*}
$$

and $h=L_{y} / 2$ is the duct half-width.
Currently this method is only adapted for ducts where $x$ is the stream-wise direction, $z$ is in the span-wise direction and the walls are at $y=y_{0}$ and $y=y_{0}+L_{y}$.
In order to have fine enough resolution, the first grid point should be a distance $\delta=$ $0.05 l_{w}$ from the wall, where

$$
\begin{equation*}
l_{w}=\frac{\nu}{u_{\tau}}, \quad u_{\tau}=\sqrt{\frac{\tau_{w}}{\rho}} \tag{10}
\end{equation*}
$$

and $\tau_{w}$ is the shear wall stress. This is accomplished by using at least

$$
\begin{align*}
N_{y} \geq N_{y}^{*} & =\frac{\pi}{\arccos \left(1-\frac{\delta}{h}\right)}+1  \tag{11}\\
& =\pi \sqrt{\frac{h}{2 \delta}}+1-\frac{\pi}{24} \sqrt{\frac{2 \delta}{h}}+O\left[\left(\frac{\delta}{h}\right)^{3 / 2}\right] \tag{12}
\end{align*}
$$

grid points in the $y$-direction. After rounding up to the next integer value, we find that the truncated condition

$$
\begin{equation*}
N_{y} \geq\left\lceil\pi \sqrt{\frac{h}{2 \delta}}\right\rceil+1 \tag{13}
\end{equation*}
$$

(where $\lceil x\rceil$ denotes the ceiling function, i.e. the smallest integer equal to, or larger than, $x$ ) gives practically identical results.

Example: To apply the sinh profile, you can set the following in 'start.in' (this example is from 'samples/sound-spherical-noequi'):

```
&init_pars
 [...]
 xyz0 = -2., -2., -2. ! first corner of box
 Lxyz = 4., 4., 4. ! box size
 lperi = F , F , F ! periodic direction?
 lequidist = F, F, T ! non-equidistant grid in z
 xyz_star = , -2. ! position of inflection point
 grid_func = , , 'sinh' ! sinh function: linear for small, but
 ! exponential for large z
 coeff_grid = , , 0.5
/
```

The parameter array coeff_grid represents $z_{*}$ and $a$; the bottom height $z_{0}$ and the total box height $L_{z}$ are taken from xyz0 and Lxyz as in the equidistant case. The inflection point of the sinh profile (the part where it is linear) is not in the middle of the box, because we have set xyz_star(3) (i.e. $z_{*}$ ) to -2 .

### 5.5 Diagnostic output

Every it1 time steps (it1 is a runtime parameter, see Sect. K.2), the code writes monitoring output to stdout and, parallel to this, to the file 'data/time_series.dat'. The variables that appear in this listing and the output format are defined in the file 'print.in' and can be changed without touching the code (even while the code is running). A simple example of 'print.in' may look like this:

```
t(F10.3)
urms(E13.4)
rhom(F10.5)
oum
```

which means that the output table will contain time $t$ in the first column formatted as (F10.3), followed by the mean squared velocity, urms (i.e. $\left\langle u^{2}\right\rangle^{1 / 2}$ ) in the second column with format (E13.4), the average density rhom ( $\langle\rho\rangle$, which allows to monitor mass conservation) formatted (F10.5) and the kinetic helicity oum (that is $\langle\boldsymbol{\omega} \cdot \boldsymbol{u}\rangle$ ) in the last column with the default format (E10.2) $\sqrt[4]{4}$ The corresponding diagnostic output will look like

| ----t--------urms--------rhom------oum---- |  |  |  |
| :---: | :---: | :---: | :---: |
| 0.000 | $4.9643 \mathrm{E}-03$ | 14.42457 | $-8.62 \mathrm{E}-06$ |
| 0.032 | $3.9423 \mathrm{E}-03$ | 14.42446 | $-5.25 \mathrm{E}-06$ |
| 0.063 | $6.8399 \mathrm{E}-03$ | 14.42449 | $-3.50 \mathrm{E}-06$ |
| 0.095 | $1.1437 \mathrm{E}-02$ | 14.42455 | $-2.58 \mathrm{E}-06$ |
| 0.126 | $1.6980 \mathrm{E}-02$ | 14.42457 | $-1.93 \mathrm{E}-06$ |

### 5.6 Data files

### 5.6.1 Snapshot files

Snapshot files contain the values of all evolving variables and are sufficient to restart a run. In the case of an MHD simulation with entropy equation, for example, the snapshot files will contain the values of velocity, logarithmic density, entropy and the magnetic vector potential.

There are two kinds of snapshot files: the current snapshot and permanent snapshots, both of which reside in the directory 'data/proc $N /$ '. The parameter isav determines the frequency at which the current snapshot 'data/procN/var. dat' is written. If you keep this frequency too high, the code will spend a lot of time on I/O, in particular for large jobs; too low a frequency makes it difficult to follow the evolution interactively during test runs. There is also the ialive parameter. Setting this to 1 or 10 gives an updated

[^3]timestep in the files 'data/proc*/alive.info'. You can put ialive=0 to turn this off to limit the I/O on your machine.

The permanent snapshots 'data/proc*/VARN' are written every dsnap time units. These files are numbered consecutively from $N=1$ upward and for long runs they can occupy quite some disk space. On the other hand, if after a run you realize that some additional quantity $q$ would have been important to print out, these files are the only way to reconstruct the time evolution of $q$ without re-running the code.

File structure Snapshot files consist of the following Fortran records 5 :

1. variable vector $\mathrm{f}[m x \times m y \times m z \times n v a r]$
2. time $t$ [1], coordinate vectors $x[m x], y$ [my], $z$ [mz], grid spacings $\delta x$ [1], $\delta y$ [1], $\delta z$ [1], shearing-box shift $\Delta y$ [1]

All numbers (apart from the record markers) are single precision (4-byte) floating point numbers, unless you use double precision (see $\$ 5.21$, in which case all numbers are 8byte floating point numbers, while the record markers remain 4-byte integers.

The script pc_tsnap allows you to determine the time $t$ of a snapshot file:

```
unix> pc_tsnap data/proc0/var.dat
data/proc0/var.dat: t = 8.32456
unix> pc_tsnap data/proc0/VAR2
data/proc0/VAR2: t = 2.00603
```


### 5.7 Video files and slices

We use the terms video files and slice files interchangeably. These files contain a time series of values of one variable in a given plane. The output frequency of these video snapshots is set by the parameter dvid (in code time units).

When output to video files is activated by some settings in 'run.in' (see example below) and the existence of 'video.in', slices are written for four planes:

1. $x-z$ plane ( $y$ index iy; file suffix.$x z$ )
2. $y$ - $z$ plane ( $y$ index ix; suffix $\cdot \mathrm{yz}$ )
3. $x-y$ plane ( $y$ index iz; suffix .xy)
4. another slice parallel to the $x-y$ plane ( $y$ index iz2; suffix . xy2)

You can specify the position of the slice planes by setting the parameters ix, iy, iz and iz2 in the namelist run_pars in 'run.in'. Alternatively, you can set the input parameter slice_position to one of ' $p$ ' (periphery of box) or 'm' (middle of box). Or you can also specify the $z$-position in terms of $z$ using the tags zbot_slice and ztop_slice. In this case, the zbot_slice slice will have the suffix . xy and the ztop_slice the suffix . xy 2

In the file 'video.in' of your run directory, you can choose for which variables you want to get video files; valid choices are listed in $\S$ K.4.

[^4]The slice files are written in each processor directory 'data/proc*/' and have a file name indicating the individual variable (e.g. 'slice_uu1. yz' for a slice of $u_{x}$ in the $y-z$ plane). Before visualizing slices one normally wants to combine the sub-slices written by each processor into one global slice (for each plane and variable). This is done by running 'src/read_videofiles.x', which will prompt for the variable name, read the individual sub-slices and write global slices to 'data/' Once all global slices have been assembled you may want to remove the local slices 'data/proc*/slice*'.

To read all sub-slices demanded in 'video.in' at once use 'src/read_all_videofiles.x'. This program doesn't expect any user input and can thus be submitted in computing queues.

For visualization of slices, you can use the IDL routines 'rvid_box.pro', 'rvid_plane.pro', or 'rvid_line.pro' which allows the flag '/png' for writing PNG images that can then be combined into an MPEG movie using mpeg_encode. Based on 'rvid_box', you can write your own video routines in IDL.

An example Suppose you have set up a run using entropy.f90 and magnetic.f90 (most probably together with hydro.f90 and other modules). In order to animate slices of entropy $s$ and the $z$-component $B_{z}$ of the magnetic field, in planes passing through the center of the box, do the following:

1. Write the following lines to 'video. in' in your run directory:
```
ss
bb
divu
```

2. Edit the namelist run_pars in the file 'run.in'. Request slices by setting write_slices and set dvid and slice_position to reasonable values, say
```
!lwrite_slices=T !(no longer works; write requested slices into video.in)
dvid=0.05
slice_position='m'
```

3. Run the Pencil Code:
```
unix> start.csh
unix> run.csh
```

4. Run 'src/read_videofiles.x' to assemble global slice files from those scattered across 'data/proc*/':
```
unix> src/read_videofiles.x
 enter name of variable (lnrho, uu1, ..., bb3): ss
unix> src/read_videofiles.x
 enter name of variable (lnrho, uu1, ..., bb3): bb3
```

5. Start IDL and run 'rvid_box':
```
unix> idl
IDL> rvid_box,'bb3'
IDL> rvid_box,'ss',min=-0.3,max=2.
```

etc.

Another example Suppose you have set up a run using magnetic.f90 and some other modules. This run studies some process in a "surface" layer inside the box. This "surface" can represent a sharp change in density or turbulence. So you defined your box setting the $z=0$ point at the surface. Therefore, your 'start. in' file will look something similar to:

```
&init_pars
 lperi=T,T,F
 bcz = 's','s','a','hs','s','s','a'
 xyz0 = -3.14159, -3.14159, -3.14159
 Lxyz = 6.28319, 6.28319, 9.42478
```

Now you can analyze quickly the surface of interest and some other $x y$-slice setting zbot_slice and ztop_slice in the 'run.in' file:

```
&run_pars
 slice_position='c'
 zbot_slice=0.
 ztop_slice=0.2
```

In this case, the slices with the suffix .xy will be at the "surface" and the ones with the suffix . xy2 will be at the position $z=0.2$ above the surface. And you can visualize this slices by:

1. Write the following lines to 'video.in' in your run directory: bb
2. Edit the namelist run_pars in the file 'run. in' to include zbot_slice and ztop_slice.
3. Run the Pencil Code:
```
unix> start.csh
unix> run.csh
```

4. Run 'src/read_videofiles.x' to assemble global slice files from those scattered across 'data/proc*/':
```
unix> src/read_videofiles.x
 enter name of variable (lnrho, uu1, ..., bb3): bb3
```

5. Start IDL, load the slices with 'pc_read_video' and plot them at some time:
```
unix> idl
IDL> pc_read_video, field='bb3',ob=bb3,nt=ntv
IDL> tvscl,bb3.xy(*,*,100)
IDL> tvscl,bb3.xy2(*,*,100)
```

etc.

File structure Slice files consist of one Fortran record (see footnote on page 26) for each slice, which contains the data of the variable (without ghost zones), the time $t$ of the snapshot and the position of the sliced variable (e.g. the $x$ position for a $y-z$ slice):

1. data ${ }_{1}[n x \times n y \times n z]$, time $t_{1}$ [1], position ${ }_{1}$ [1]
2. $\operatorname{data}_{2}[n x \times n y \times n z]$, time $t_{2}$ [1], position ${ }_{2}$ [1]
3. $\operatorname{data}_{3}[n x \times n y \times n z]$, time $t_{3}$ [1], position $_{3}$ [1]
etc.

### 5.8 Averages

### 5.8.1 One-dimensional output averaged in two dimensions

In the file 'xyaver.in', $z$-dependent (horizontal) averages are listed. They are written to the file 'data/xyaverages.dat'. A new line of averages is written every it1 th time steps.

There is the possibility to output two-dimensional averages. The result then depends on the remaining dimension. The averages are listed in the files 'xyaver.in', 'xzaver.in', and 'yzaver.in' where the first letters indicate the averaging directions. The output is then stored to the files 'data/xyaverages.dat', 'data/xzaverages.dat', and 'data/yzaverages.dat'. The output is written every it1dth time steps.

The rms values of the so defined mean magnetic fields are referred to as $b m z, b m y$ and $b m x$, respectively, and the rms values of the so defined mean velocity fields are referred to as umz, umy, and umx. (The last letter indicates the direction on which the averaged quantity still depends.)

See Sect. 9.2 on how to add new averages.
In idl such $x y$-averages can be read using the procedure 'pc_read_xyaver'.

### 5.8.2 Two-dimensional output averaged in one dimension

There is the possibility to output one-dimensional averages. The result then depends on the remaining two dimensions. The averages are listed in the files 'yaver.in', 'zaver.in', and 'phiaver.in' where the first letter indicates the averaging direction. The output is then stored to the files 'data/yaverages.dat', 'data/zaverages.dat', and 'data/phiaverages.dat'.

See Sect. 9.2 on how to add new averages.
Disadvantage: The output files, e.g. ‘data/zaverages. dat', can be rather big because each average is just appended to the file.

### 5.8.3 Azimuthal averages

Azimuthal averages are controlled by the file 'phiaver. in', which currently supports the quantities listed in Sect. K.5. In addition, one needs to set lwrite_phiaverages, lwrite_yaverages, or lwrite_zaverages to .true.. For example, if 'phiaver . in' contains the single line

```
b2mphi
```

then you will get azimuthal averages of the squared magnetic field $\boldsymbol{B}^{2}$.

Azimuthal averages are written every d2davg time units to the files 'data/averages/PHIAVG $N$ '. The file format of azimuthal-average files consists of the following Fortran records:

1. number of radial points $N_{r, \phi-\text { avg }}$ [1], number of vertical points $N_{z, \phi-\text { avg }}$ [1], number of variables $N_{\text {var, } \phi-\text { avg }}$ [1], number of processors in $z$ direction [1]
2. time $t$ [1], positions of cylindrical radius $r_{\text {cyl }}\left[N_{r, \phi-\text { avg }}\right]$ and $z\left[N_{z, \phi-\text { avg }}\right]$ for the grid, radial spacing $\delta r_{\mathrm{cyl}}$ [1], vertical spacing $\delta z$ [1]
3. averaged data [ $N_{r, \phi-\text { avg }} \times N_{z, \phi-\text { avg }}$ ]
4. label length [1], labels of averaged variables [ $N_{\text {var, } \phi-\text { avg }}$ ]

All numbers are 4-byte numbers (floating-point numbers or integers), unless you use double precision (see 95.21 ).

To read and visualize azimuthal averages in IDL, use '\$PENCIL_HOME/idl/files/pc_read_phiavg.pro'

```
IDL> avg = pc_read_phiavg('data/averages/PHIAVG1')
IDL> contour, avg.b2mphi, avg.rcyl, avg.z, TITLE='!17B!U2!N!X'
```

or have a look at '\$PENCIL_HOME/idl/phiavg.pro’ for a more sophisticated example.

### 5.8.4 Time averages

Time averages need to be prepared in the file 'src/ctimeavg.local', since they use extra memory. They are controlled by the averaging time $\tau_{\text {avg }}$ (set by the parameter tavg in 'run.in'), and by the indices idx_tavg of variables to average.
Currently, averaging is implemented as exponential (memory-less) average, ${ }_{6}^{6}$

$$
\begin{equation*}
\langle f\rangle_{t+\delta t}=\langle f\rangle_{t}+\frac{\delta t}{\tau_{\text {avg }}}\left[f(t+\delta t)-\langle f\rangle_{t}\right], \tag{16}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\langle f\rangle_{t}=\int_{t_{0}}^{t} e^{-\left(t-t^{\prime}\right) / \tau_{\mathrm{avg}}} f\left(t^{\prime}\right) d t^{\prime} \tag{17}
\end{equation*}
$$

Here $t_{0}$ is the time of the snapshot the calculation started with, i.e. the snapshot read by the last run. x command. Note that the implementation (16) will approximate Eq. (17) only to first-order accuracy in $\delta t$. In practice, however, $\delta t$ is small enough to make this accuracy suffice.
${ }^{6}$ At some point we may also implement the more straight-forward average

$$
\begin{equation*}
\langle f\rangle_{t+\delta t}=\langle f\rangle_{t}+\frac{\delta t}{t-t_{0}+\delta t}\left[f(t+\delta t)-\langle f\rangle_{t}\right] \tag{14}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\langle f\rangle_{t}=\frac{1}{t-t_{0}} \int_{t_{0}}^{t} f\left(t^{\prime}\right) d t^{\prime}, \tag{15}
\end{equation*}
$$

but we do not expect large differences.

In 'src/ctimeavg.local', you need to set the number of slots used for time averages. Each of these slots uses $m x \times m y \times m z$ floating-point numbers, i.e. half as much memory as each fundamental variable.

For example, if you want to get time averages of all variables, set
integer, parameter : : mtavg=mvar
in 'src/ctimeavg.local', and don't set idx_tavg in 'run.in'.
If you are only interested in averages of variables $1-3$ and $6-8$ (say, the velocity vector and the magnetic vector potential in a run with 'hydro.f90', 'density.f90', 'entropy.f90' and 'magnetic.f90'), then set

```
integer, parameter :: mtavg=6
```

in 'src/ctimeavg.local', and set
idx_tavg $=1,2,3,6,7,8 \quad$ ! time-average velocity and vector potential
in 'run.in'.

Permanent snapshots of time averages are written every tavg time units to the files 'data/proc*/TAVN'. The current time averages are saved periodically in 'data/proc*/timeavg.dat' whenever 'data/proc*/var. dat' is written. The file format for time averages is equivalent to that of the snapshots; see $\S 5.6 .1$ above.

### 5.9 Helper scripts

The 'bin' directory contains a collection of utility scripts, some of which are discussed elsewhere, Here is a list of the more important ones.
adapt-mkfile Activate the settings in a 'Makefile' that apply to the given computer, see $\S 5.2$.
auto-test Verify that the code compiles and runs in a set of run directories and compare the results to the reference output. These tests are carried out routinely to ensure that the svn version of the code is in a usable state.
cleanf95 Can be use to clean up the output from the Intel x86 Fortran 95 compiler (ifc).
copy-proc-to-proc Used for restarting in a different directory Example copy-proc-to-proc seed.dat . ./hydro256e.
copy-snapshots Copy snapshots from a processor-local directory to the global directory. To be started in the background before 'run. $x$ ' is invoked. Used by 'start. csh' and 'run.csh' on network connected processors.
pc_copyvar var1 var2 source dest Copies snapshot files from one directory (source) to another (dest). See documentation in file.
pccopyvar $\mathbf{v} \mathbf{v}$ dir Copies all 'var. dat' files from current directory to 'var . dat' in 'dir' run directory. Used for restarting in a different directory.
pc_copyvar $\mathbf{N} \mathbf{v}$ Used to restart a run from a particular snapshot 'VARN'. Copies a specified snapshot 'VAR $N$ ' to 'var.dat' where $N$ and (optionally) the target run directory are given on the command line.
cvs-add-rundir Add the current run directory to the svn repository.
cvsci_run Similar to cvs-add-rundir, but it also checks in the '*.in' and 'src/*.local' files. It also checks in the files 'data/time_series.dat', 'data/dim.dat' and 'data/index.pro' for subsequent processing in IDL on another machine. This is particularly useful if collaborators want to check each others' runs.
dx_* These script perform several data collection or reformatting exercises required to read particular files into $D X$. They are called internally by some of the $D X$ macros in the ' $\mathrm{dx} /$ macros/' directory.
getconf.csh See $\S 4.3 .4$
gpgrowth Plot simple time evolution with Gnuplot's ASCII graphics for fast orientation via a slow modem line.
local Materialize a symbolic link
mkcparam Based on 'Makefile’ and 'Makefile.local', generate 'src/cparam.inc', which specifies the number mvar of fundamental variables, and maux of auxiliary variables. Called by the 'Makefile'.
pc_mkdatadir Creates a link to a data directory in a suitable workspace. By default this is on '/var/tmp/', but different locations are specified for different machines.
mkdotin Generate minimal 'start.in', 'run.in' files based on 'Makefile' and 'Makefile.local'.
mkinpars Wrapper around 'mkdotin' - needs proper documentation.
mkproc-tree Generates a multi-processor('proc $N$ '/), directory structure. Useful when copying data files in a processor tree, such as slice files.
mkwww Generates a template HTML file for describing a run of the code, showing input parameters and results.
move-slice Moves all the slice files from a processor tree structure, 'proc $N /$ ', to a new target tree creating directories where necessary.
nl2idl Transform a Fortran namelist (normally the files 'param.nml', 'param2.nml' written by the code) into an IDL structure. Generates an IDL file that can be sourced from 'start. pro' or 'run. pro'.
pacx-adapt-makefile Version of adapt-makefile for highly distributed runs using PACX MPI.
pc_newrun Generates a new run directory from an old one. The new one contains a copy of the old '*.local' files, runs pc_setupsrc, and makes also a copy of the old '*. in' and ' $k$. dat' files.
pc_newscan Generates a new scan directory from an old one. The new one contains a copy of the old, e.g. the one given under 'samples/parameter_scan'. Look in the 'README' file for details.
pc_inspectrun Check the execution of the current run: prints legend and the last few lines of the 'time_series.dat' file. It also appends this result to a file called 'SPEED', which contains also the current wall clock time, so you can work out the speed of the code (without being affected by $\mathrm{i} / \mathrm{o}$ time).
read_videofiles.csh The script for running read_videofiles.x.
remote-top Create a file 'top.log' in the relevant 'proc $N /$ ' directory containing the output of top for the appropriate processor. Used in batch scripts for multiprocessor runs.
run.csh The script for producing restart files with the initial condition; see $\S 4.3 .4$
scpdatadir Make a tarball of data directory, 'data/' and use scp to secure copy to copy it to the specified destination.
pc_setupsrc Link 'start.csh', 'run.csh' and 'getconf.csh' from '\$PENCIL_HOME/bin'. Generate 'src/' if necessary and link the source code files from '\$PENCIL_HOME/src' to that directory.
start.csh The script for initializing the code; see $\S$ 4.3.4
summarize-history Evaluate 'params. log' and print a history of changes.
timestr Generate a unique time string that can be appended to file names from shell scripts through the backtick mechanism.
pc_tsnap Extract time information from a snapshot file, 'VARN'.
There are several additional scripts on 'pencil-code/utils'. Some are located in separate folders according to users. There could be redundancies, but it is often just as easy to write your own new script than figuring out how something else works.

### 5.10 RELOAD and STOP files

The code periodically (every it time steps) checks for the existence of two files, 'RELOAD' and 'STOP', which can be used to trigger certain behavior.

Reloading run parameters In the directory where you started the code, create the file 'RELOAD' with

```
unix> touch RELOAD
```

to force the code to re-read the runtime parameters from 'run.in'. This will happen the next time the code is writing monitoring output (the frequency of this happening is controlled by the input parameter it, see Sect. 5.12).
Each time the parameters are reloaded, the new set of parameters is appended (in the form of namelists) to the file 'data/params.log' together with the time $t$, so you have a full record of your changes. If 'RELOAD' contains any text, its first line will be written to 'data/params.log' as well, which allows you to annotate changes:

```
unix> echo "Reduced eta to get fields growing" > RELOAD
```

Use the command summarize-history to print a history of changes.

Stopping the code In the directory where you started the code, create the file 'STOP' with

```
unix> touch STOP
```

to stop the code in a controlled manner (it will write the latest snapshot). Again, the action will happen the next time the code is writing monitoring output.

### 5.11 RERUN and NEWDIR files

After the code finishes (e.g., when the final timestep number is reached or when a 'STOP' file is found), the 'run.csh' script checks whether there is a 'RERUN' file. If so, the code will simply run again, perhaps even after you have recompiled the code. This is useful in the development phase when you changed something in the code, so you don't need to wait for a new slot in the queue!

Even more naughty, as Tony says, is the 'NEWDIR' file, where you can enter a new directory path (relative path is ok, e.g. . ./conv-slab). If nothing is written in this file (e.g. via touch NEWDIR) it stays in the same directory. On distributed machines, the 'NEWDIR' method will copy all the 'VAR\#' and 'var . dat' files back to and from the sever. This can be useful if you want to run with new data files, but you better do it in a separate directory, because with 'NEWDIR' the latest data from the code are written back to the server before running again.

Oh, by the way, if you want to be sure that you haven't messed up the content of the pair of 'NEWDIR' files, you may want to try out the pc_jobtransfer command. It writes the decisive 'STOP' file only after the script has checked that the content of the two 'NEWDIR' files points to existing run directory paths, so if the new run crashes, the code returns safely to the old run directory. I'm not sure what Tony would say now, but this is now obviously extremely naughty.

### 5.12 Start and run parameters

All input parameters in 'start.in' and 'run.in' are grouped in Fortran namelists. This allows arbitrary order of the parameters (within the given namelist; the namelists need no longer be in the correct order), as well as enhanced readability through inserted Fortran comments and whitespace. One namelist (init_pars / run_pars) contains general parameters for initialization/running and is always read in. All other namelists are specific to individual modules and will only be read if the corresponding module is used.

The syntax of a namelist (in an input file like 'start.in') is

```
\&init_pars
 ip=5, Lxyz=2,4,2
/
```

— in this example, the name of the namelist is init_pars, and we read just two variables (all other variables in the namelist retain their previous value): ip, which is set to 5 , and Lxyz, which is a vector of length three and is set to $(2,4,2)$.

While all parameters from the namelists can be set, in most cases reasonable default values are preset. Thus, the typical file 'start. in' will only contain a minimum set of variables or (if you are very minimalistic) none at all. If you want to run a particular problem, it is best to start by modifying an existing example that is close to your application.

Before starting a simulation run, you may want to execute the command pc_configtest in order to test the correctness of your changes to these configuration files.

As an example, we give here the start parameters for 'samples/helical-MHDturb'

```
&init_pars
 cvsid='$Id:$', ! identify version of start.in
 xyz0 = -3.1416, -3.1416, -3.1416, ! first corner of box
 Lxyz = 6.2832, 6.2832, 6.2832, ! box size
 lperi = T , T , T , ! periodic in x, y, z
 random_gen='nr_f90'
/
&hydro_init_pars
/
&density_init_pars
 gamma=1.
/
&magnetic_init_pars
 initaa='gaussian-noise', amplaa=1e-4
/
```

The three entries specifying the location, size and periodicity of the box are just given for demonstration purposes here - in fact a periodic box from $-\pi$ to $-\pi$ in all three directions is the default. In this run, for reproducibility, we use a random number generator from the Numerical Recipes [30], rather than the compiler's built-in generator. The adiabatic index $\gamma$ is set explicitly to 1 (the default would have been $5 / 3$ ) to achieve an isothermal equation of state. The magnetic vector potential is initialized with uncorrelated, normally distributed random noise of amplitude $10^{-4}$.

The run parameters for 'samples/helical-MHDturb' are

```
&run_pars
 cvsid='$Id:$', ! identify version of start.in
 nt=10, it1=2, cdt=0.4, cdtv=0.80, isave=10, itorder=3
 dsnap=50, dvid=0.5
 random_gen='nr_f90'
/
&hydro_run_pars
/
```

```
&density_run_pars
/
&forcing_run_pars
 iforce='helical', force=0.07, relhel=1.
/
&magnetic_run_pars
 eta=5e-3
/
&viscosity_run_pars
 nu=5e-3
/
```

Here we run for $n t=10$ timesteps, every second step, we write a line of diagnostic output; we require the time step to keep the advective Courant number $\leq 0.4$ and the diffusive Courant number $\leq 0.8$, save 'var. dat' every 20 time steps, and use the 3 -step timestepping scheme described in Appendix H.4 (the Euler scheme itorder $=1$ is only useful for tests). We write permanent snapshot file 'VARN' every dsnap $=50$ time units and 2d slices for animation every $d v i d=0.5$ time units. Again, we use a deterministic random number generator. Viscosity $\nu$ and magnetic diffusivity $\eta$ are set to $5 \times 10^{-3}$ (so the mesh Reynolds number is about $u_{\text {rms }} \delta x / \nu=0.3 \times(2 \pi / 32) / 5 \times 10^{-3} \approx 12$, which is in fact rather a bit to high). The parameters in forcing_run_pars specify fully helical forcing of a certain amplitude.

A full list of input parameters is given in Appendix K .

### 5.13 Physical units

Many calculations are unit-agnostic, in the sense that all results remain the same independent of the unit system in which you interpret the numbers. E.g. if you simulate a simple hydrodynamical flow in a box of length $L=1$. and get a maximum velocity of $u_{\max }=0.5$ after $t=3$ time units, then you may interpret this as $L=1 \mathrm{~m}, u_{\max }=0.5 \mathrm{~m} / \mathrm{s}$, $t=3 \mathrm{~s}$, or as $L=1 \mathrm{pc}, u_{\text {max }}=0.5 \mathrm{pc} / \mathrm{Myr}, t=3 \mathrm{Myr}$, depending on the physical system you have in mind. The units you are using must of course be consistent, thus in the second example above, the units for diffusivities would ${\mathrm{be} \mathrm{pc}^{2}}^{2} / \mathrm{Myr}$, etc.

The units of magnetic field and temperature are determined by the values $\mu_{0}=1$ and $c_{p}=1$ used internally by the code $\overline{7}$. This means that if your units for density and velocity are $[\rho]$ and $[v]$, then magnetic fields will be in

$$
\begin{equation*}
[B]=\sqrt{\mu_{0}[\rho][v]^{2}}, \tag{18}
\end{equation*}
$$

and temperatures are in

$$
\begin{equation*}
[T]=\frac{[v]^{2}}{c_{p}}=\frac{\gamma-1}{\gamma} \frac{[v]^{2}}{\mathcal{R} / \mu} \tag{19}
\end{equation*}
$$

For some choices of density and velocity units, Table 2 shows the resulting units of magnetic field and temperature.

[^5]Table 2: Units of magnetic field and temperature for some choices of $[\rho]$ and $[v]$ according to Eqs. (18) and (19). Values are for a monatomic gas $(\gamma=5 / 3)$ of mean atomic weight $\bar{\mu}_{\mathrm{g}}=\bar{\mu} / 1 \mathrm{~g}$ in grams.

| $[\rho]$ | $[v]$ | $[B]$ | $[T]$ |
| :--- | :--- | :--- | :--- |
| $1 \mathrm{~kg} / \mathrm{m}^{3}$ | $1 \mathrm{~m} / \mathrm{s}$ | $1.12 \mathrm{mT}=11.2 \mathrm{G}$ | $\left(\frac{\bar{\mu}_{\mathrm{g}}}{0.6}\right) \times 2.89 \times 10^{-5} \mathrm{~K}$ |
| $1 \mathrm{~g} / \mathrm{cm}^{3}$ | $1 \mathrm{~cm} / \mathrm{s}$ | $3.54 \times 10^{-4} \mathrm{~T}=3.54 \mathrm{G}$ | $\left(\frac{\bar{\mu}_{\mathrm{g}}}{0.6}\right) \times 2.89 \mathrm{nK}$ |
| $1 \mathrm{~g} / \mathrm{cm}^{3}$ | $1 \mathrm{~km} / \mathrm{s}$ | $35.4 \mathrm{~T}=354 \mathrm{kG}$ | $\left(\frac{\bar{\mu}_{\mathrm{g}}}{0.6}\right) \times 28.9 \mathrm{~K}$ |
| $1 \mathrm{~g} / \mathrm{cm}^{3}$ | $10 \mathrm{~km} / \mathrm{s}$ | $354 \mathrm{~T}=3.54 \mathrm{MG}$ | $\left(\frac{\bar{\mu}_{\mathrm{g}}}{0.6}\right) \times 2890 \mathrm{~K}$ |

On the other hand, as soon as material equations are used (e.g. one of the popular parameterizations for radiative losses, Kramers opacity, Spitzer conductivities or ionization, which implies well-defined ionization energies), the corresponding routines in the code need to know the units you are using. This information is specified in 'start. in' or 'run.in' through the parameters unit_system, unit_length, unit_velocity, unit_density and unit_temperature ${ }^{8}$ like e.g.

```
unit_system='SI',
unit_length=3.09e16, unit_velocity=978. ! [l]=1pc, [v]=1pc/Myr
```

Note: The default unit system is unit_system='cgs' which is a synonym for unit_system='Babylonian cubits'.

### 5.14 Minimum amount of viscosity

We emphasize that, by default, the code works with constant diffusion coefficients (viscosity $\nu$, thermal diffusivity $\chi$, magnetic diffusivity $\eta$, or passive scalar diffusivity $\mathcal{D}$ ). If any of these numbers is too small, you would need to have more meshpoints to get consistent numerical solutions; otherwise the code develops wiggles ('ringing') and will eventually crash. A useful criterion is given by the mesh Reynolds number based on the maximum velocity,

$$
\begin{equation*}
\boldsymbol{R e}_{\text {mesh }}=\max (|\boldsymbol{u}|) \max (\delta x, \delta y, \delta z) / \nu \tag{20}
\end{equation*}
$$

which should not exceed a certain value which can be problem-dependent. Often the largest possible value of $\mathrm{Re}_{\text {mesh }}$ is around 5. Similarly there exist mesh Péclet and mesh magnetic Reynolds numbers that should not be too large.

Note that in some cases, 'wiggles' in $\ln \rho$ will develop despite sufficiently large diffusion coefficients, essentially because the continuity equation contains no dissipative term. For convection runs (but not only for these), we have found that this can often be prevented by upwinding, see Sect. H. 2 ,

If the Mach number of the code approaches unity, i.e. if the rms velocity becomes comparable with the speed of sound, shocks may form. In such a case the mesh Reynolds number should be smaller. In order to avoid excessive viscosity in the unshocked regions,

[^6]one can use the so-called shock viscosity (Sect. 6.6.1) to concentrate the effects of a low mesh Reynolds number to only those areas where it is necessary.

### 5.15 The time step

### 5.15.1 The usual RK-2N time step

RK-2N refers to the third order Runge-Kutta scheme by Williamson (1980) with a memory consumption of two chunks. Therefore the 2 N in the name.

The time step is normally specified as Courant time step through the coefficients cdt ( $c_{\delta t}$ ), $\boldsymbol{c d t v}\left(c_{\delta t, \mathrm{v}}\right)$ and $\boldsymbol{c d t s}\left(c_{\delta t, \mathrm{~s}}\right)$. The resulting Courant step is given by

$$
\begin{equation*}
\delta t=\min \left(c_{\delta t} \frac{\delta x_{\min }}{U_{\max }}, c_{\delta t, \mathrm{v}} \frac{\delta x_{\min }^{2}}{D_{\max }}, c_{\delta t, \mathrm{~s}} \frac{1}{H_{\max }}\right), \tag{21}
\end{equation*}
$$

where

$$
\begin{gather*}
\delta x_{\min } \equiv \min (\delta x, \delta y, \delta z)  \tag{22}\\
U_{\max } \equiv \max \left(|\boldsymbol{u}|+\sqrt{c_{\mathrm{s}}^{2}+v_{\mathrm{A}}^{2}}\right), \tag{23}
\end{gather*}
$$

$c_{\mathrm{s}}$ and $v_{\mathrm{A}}$ denoting sound speed and Alfvén speed, respectively;

$$
\begin{equation*}
D_{\max }=\max (\nu, \gamma \chi, \eta, D) \tag{24}
\end{equation*}
$$

where $\nu$ denotes kinematic viscosity, $\chi=K /\left(c_{p} \rho\right)$ thermal diffusivity and $\eta$ the magnetic diffusivity; and

$$
\begin{equation*}
H_{\max }=\max \left(\frac{2 \nu \mathbf{S}^{2}+\zeta_{\text {shock }}(\boldsymbol{\nabla} \cdot \boldsymbol{u})^{2}+\ldots}{c_{v} T}\right), \tag{25}
\end{equation*}
$$

where dots indicate the presence of other terms on the rhs of the entropy equation.
To fix the time step $\delta t$ to a value independent of velocities and diffusivities, explicitly set the run parameter $d t$, rather than $c d t$ or $c d t v$ (see p. 180).

If the time step exceeds the viscous time step the simulation may actually run ok for quite some time. Inspection of images usually helps to recognize the problem. An example is shown in Fig. 4 .

Timestepping is accomplished using the Runge-Kutta 2N scheme. Regarding details of this scheme see Sect. H.4.

### 5.15.2 The Runge-Kutta-Fehlberg time step

A fifth order Runge-Kutta-Fehlberg time stepping procedure is available. It is used mostly for chemistry application, often together with the double precision option. In order to make this work, you need to compile with

TIMESTEP $=$ timestep_rkf
in 'src/Makefile.local'. In addition, you must put itorder=5 in 'run.in'. An example application is 'samples/1d-tests/H2_flamespeed'. This procedure is still experimental.


Figure 4: Example of a velocity slice from a run where the time step is too long. Note the spurious checkerboard modulation in places, for example near $x=-0.5$ and $-2.5<y<-1.5$. This is an example of a hyperviscous turbulence simulations with $512^{3}$ meshpoints and a third order hyperviscosity of $\nu_{3}=$ $5 \times 10^{-12}$. Hyperviscosity is explained in the Appendix E

### 5.16 Boundary conditions

### 5.16.1 Where to specify boundary conditions

In most tests that come with the Pencil Code, boundary conditions are set in 'run.in', which is a natural choice. However, this may lead to unexpected initial data written by 'start.x', since when you start the code (via 'start.csh'), the boundary conditions are unknown and 'start. $x$ ' will then fill the ghost zones assuming periodicity (the default boundary condition) in all three directions. These ghost data will never be used in a calculation, as 'run.x' will apply the boundary conditions before using any ghost-zone values.

To avoid these periodic conditions in the initial snapshot, you can set the boundary conditions in 'start. in' already. In this case, they will be inherited by 'run. x', unless you also explicitly set boundary conditions in 'run. in'.

### 5.16.2 How to specify boundary conditions

Boundary conditions are implemented through three layers of ghost points on either boundary, which is quite a natural choice for an MPI code that uses ghost zones for representing values located on the neighboring processors anyway. The desired type of boundary condition is set through the parameters $b c\{x, y, z\}$ in 'run. in'; the nomenclature used is as follows. Set $b c\{x, y, z\}$ to a sequence of letters like

```
bcx = 'p','p','p', 'p', 'p'
```

for periodic boundaries, or

```
bcz = 's','s','a','a2','c1:c2'
```

for non-periodic ones. Each element corresponds to one of the variables, which are those of the variables $u_{x}, u_{y}, u_{z}, \ln \rho, s / c_{p}, A_{x}, A_{y}, A_{z}, \ln c$ that are actually used in this order. The following conditions are available:
'p' periodic boundary condition
' $a$ ' antisymmetric condition w.r.t. the boundary, i.e. vanishing value
' $s$ ' symmetric condition w.r.t. the boundary, i.e. vanishing first derivative
' a 2 ' antisymmetry w.r.t. the arbitrary value on the boundary, i.e. vanishing second derivative
'c1' special boundary condition for $\ln \rho$ and $s$ : constant heat flux through the boundary
'c2' special boundary condition for $s$ : constant temperature at the boundary - requires boundary condition a2 for $\ln \rho$
' $c T$ ' special boundary condition for $s$ or $\ln T$ : constant temperature at the boundary (for arbitrarily set $\ln \rho$ )
'ce' special boundary condition for $s$ : set temperature in ghost points to value on boundary (for arbitrarily set $\ln \rho$ )
'db' low-order one-sided derivatives ("no boundary condition") for density
'she' shearing-sheet boundary condition (default when the module Shear is used)
' $g$ ' force the value of the corresponding field on vertical boundaries (should be used in combination with the force_lower_bound and force_upper_bound flags set in the namelist init pars)
'hs' special boundary condition for $\ln \rho$ and $s$ which enforces hydrostatic equilibrium on vertical boundaries

The extended syntax $a: b$ (e.g. ' $c 1: c 2$ ') means: use boundary condition $a$ at the left/lower boundary, but $b$ at the right/upper one.

If you build a new 'run.in' file from another one with a different number of variables (noentropy vs. entropy, for example), you need to remember to adjust the length of the arrays bcx to bcz. The advantage of the present approach is that it is very easy to exchange all boundary conditions by a new set of conditions in a particular direction (for example, make everything periodic, or switch off shearing sheet boundary conditions and have stress-free instead).

### 5.17 Restarting a simulation

When a run stops at the end of a simulation, you can just resubmit the job again, and it will start from the latest snapshot saved in 'data/proc*/var. dat'. The value of the latest time is saved in a separate file, 'data/proc*/time.dat'. On parallel machines it is possible that some (or just one) of the 'var.dat' are corrupt; for example after a system crash. Check for file size and date, and restart from a good 'VAR' $N$ file instead.

If you want to run on a different machine, you just need to copy the 'data/proc*/var. dat' (and, just to be sure) 'data/proc*/time.dat') files into a new directory tree. You may also need the 'data/proc*/seed.dat' files for the random number generator. The easiest way to get all these other files is to run start. csh again on the new machine (or in a new directory) and then to overwrite the 'data/proc*/var. dat' files with the correct ones.

For restarting from runs that didn't have magnetic fields, passive scalar fields, or test fields, see Sect. F. 3 .

### 5.18 One- and two-dimensional runs

If you want to run two-dimensional problems, set the number of mesh points in one direction to unity, e.g. nygrid $=1$ or nzgrid $=1$ in 'cparam. local'. Remember that the number of mesh points is still divisible by the number of processors. For 2D-runs, it is also possible to write only 2D-snapshots (i.e. VAR files written only in the considered ( $x, y$ ) or $(x, z)$ plane, with a size seven times smaller as we do not write the third unused direction). To do that, please add the logical flag 'lwrite_ $2 \mathrm{~d}=\mathrm{T}$ ' in the namelist init_pars in 'start.in'.

Similarly, for one-dimensional problems, set, for example, nygrid=1 and nzgrid=1 in 'cparam.local'. You can even do a zero-dimensional run, but then you better set $d t$ (rather than $c d t$ ), because there is no Courant condition for the time step.

See $0 d, 1 d, 2 d$, and $3 d$ tests with examples.

### 5.19 Visualization

### 5.19.1 Gnuplot

Simple visualization can easily be done using Gnuplot (http://www.gnuplot.info), an open-source plotting program suitable for two-dimensional plots.

For example, suppose you have the variables

```
 ---it-----t-------dt-------urms-----umax-----rhom-----ssm------dtc----
```

in 'time_series.dat' and want to plot $u_{\mathrm{rms}}(t)$. Just start gnuplot and type

```
gnuplot> plot "data/time_series.dat" using 2:4 with lines
```

If you work over a slow line and want to see both $u_{\mathrm{rms}}(t)$ and $u_{\max }(t)$, use ASCII graphics:

```
gnuplot> set term dump
gnuplot> set logscale y
gnuplot> plot "data/time_series.dat" using 2:4 title "urms", \
gnuplot> "data/time_series.dat" using 2:5 title "umax"
```


### 5.19.2 Data explorer

DX (data explorer; http://www.opendx.org) is an open-source tool for visualization of three-dimensional data.

The Pencil Code provides a few networks for $D X$. It is quite easy to read in a snapshot file from $D X$ (the only tricky thing is the four extra bytes at the beginning of the file, representing a Fortran record marker), and whenever you run 'start. x', the code writes a file 'var. general' that tells $D X$ all it needs to know about the data structure.

As a starting point for developing your own $D X$ programs or networks, you can use a few generic $D X$ scripts provided in the directory 'dx/basic/'. From the run directory, start $D X$ with

```
unix> dx -edit $PENCIL_HOME/dx/basic/lnrho
```

to load the file 'dx/basic/lnrho.net', and execute it with Ctl-0 or Execute $\rightarrow$ Execute Once. You will see a set of iso-surfaces of logarithmic density. If the viewport does not fit to your data, you can reset it with (Ctl-f. To rotate the object, drag the mouse over the Image window with the left or right mouse button pressed. Similar networks are provided for entropy ('ss.net'), velocity ('uu.net') and magnetic field ('bb.net').
When you expand these simple networks to much more elaborate ones, it is probably a good idea to separate the different tasks (like Importing and Selecting, visualizing velocity, visualizing entropy, and Rendering) onto separate pages through Edit $\rightarrow$ Page.

Note Currently, DX can only read in data files written by one single processor, so from a multi-processor run, you can only visualize one subregion at a time.

### 5.19.3 GDL

GDL, also known as Gnu Data Language is a free visualization package that can be found at http://gnudatalanguage.sourceforge.net/. It aims at replacing the very expensive IDL package (see S. 5.19.4). For the way we use IDL for the Pencil Code, compatibility is currently not completely sufficient, but you can use GDL for many of the visualization tasks. If you get spurious "Error opening file" messages, you can normally simply ignore them.

This section tells you how to get started with using GDL for visualization.

Setup As of GDL 0.9 - at least the version packed with Ubuntu Jaunty (9.10) - you will need to add GDL's 'examples/pro/' directory to your !PATH variable. So the first call after starting GDL should be

```
GDL> .run setup_gdl
```

Starting visualization There are mainly two possibilities for visualization: using a simple GUI or loading the data with pc_read and work with it interactively. Please note that the GUI was written and tested only with IDL, see $\S$ 5.19.4.

Here, the pc_read family of IDL routines to read the data is described. Try

```
GDL> pc_read
```

to get an overview.
To plot a time series, use

```
GDL> pc_read_ts, OBJECT=ts
GDL> help, ts, /STRUCT ;; (to see which slots are available)
GDL> plot, ts.t, ts.umax
GDL> oplot, ts.t, ts.urms
```

Alternatively, you could simply use the 'ts. pro' script:

```
GDL> .run ts
```

To work with data from 'var . dat' and similar snapshot files, you can e.g. use the following routines:

```
GDL> pc_read_dim, OBJECT=dim
GDL> $$PENCIL_HOME/bin/nl2idl -d ./data/param.nml> ./param.pro
GDL> pc_read_param, OBJECT=par
GDL> pc_read_grid, OBJECT=grid
GDL> pc_read_var, OBJECT=var
```

Having thus read the data structures, we can have a look at them to see what information is available:

```
GDL> help, dim, /STRUCT
GDL> help, par, /STRUCT
GDL> help, grid, /STRUCT
GDL> help, var, /STRUCT
```

To visualize data, we can e.g. dd ${ }^{9}$

```
GDL> plot, grid.x, var.ss[*, dim.ny/2, dim.nz/2]
GDL> contourfill, var.ss[*, *, dim.nz/2], grid.x, grid.y
GDL> ux_slice = var.uu[*, *, dim.nz/2, 0]
GDL> uy_slice = var.uu[*, *, dim.nz/2, 1]
GDL> wdvelovect, ux_slice, uy_slice, grid.x, grid.y
GDL> surface, var.lnrho[*, *, dim.nz/2, 0]
```

See also Sect. 5.19.4.

### 5.19.4 IDL

IDL is a commercial visualization program for two-dimensional and simple threedimensional graphics. It allows to access and manipulate numerical data in a fashion quite similar to how Fortran handles them.

In '\$PENCIL_HOME/idl’, we provide a number of general-purpose IDL scripts that we are using all the time in connection with the Pencil Code. While IDL is quite an expensive software package, it is quite useful for visualizing results from numerical simulations. In fact, for many applications, the 7-minute demo version of $I D L$ is sufficient.

Visualization in IDL The Pencil Code GUI is a data post-processing tool for the usage on a day-to-day basis. It allows fast inspection of many physical quantities, as well as advanced features like horizontal averages, streamline tracing, freely orientable 2D-slices, and extraction of cut images and movies. To use the Pencil Code GUI, it is sufficient to run:

```
unix> idl
IDL> .r pc_gui
```

If you like to load only some subvolume of the data, like any 2D-slices from the given data snapshots, or 3D-subvolumes, it is possible to choose the corresponding options in the file selector dialog. The Pencil Code GUI offers also some options to be set on the command-line, please refer to their description in the source code.

[^7]There are also other small GUIs available, e.g. the file 'time-series.dat' can easily be analyzed with the command:

```
unix> idl
IDL> pc_show_ts
```

The easiest way to derive physical quantities at the command-line is to use one of the many pc_read_var-variants (pc_read_var_raw is recommended for large datasets because of its high efficiency regarding computation and memory usage) for reading the data. With that, one can make use of pc_get_quantity to derive any implemented physical quantity. Packed in a script, this is the recommended way to get reproducible results, without any chance for accidental errors on the interactive IDL command-line.

Alternatively, by using the command-line to see the time evolution of e.g. velocity and magnetic field (if they are present in you run), start $I D L 10$ and run 'ts . pro':

```
unix> idl
IDL> .run ts
```

The IDL script 'ts.pro' reads the time series data from 'data/time_series.dat' and sorts the column into the structure $t$, with the slot names corresponding to the name of the variables (taken from the header line of 'data/time_series.dat'). Thus, you can refer to time as ts.t, to the rms velocity as ts.urms, and in order to plot the mean density as a function of time, you would simply type

```
IDL> plot, ts.t, ts.rhom
```

The basic command sequence for working with a snapshot is:

```
unix> idl
IDL> .run start
IDL> .run r
IDL> [specific commands]
```

You run 'start.pro' once to initialize (or reinitialize, if the mesh size has changed, for example) the fields and read in the startup parameters from the code. To read in a new snapshot, run 'r.pro' (or 'rall. pro', see below).

If you are running in parallel on several processors, the data are scattered over different directories. To reassemble everything in IDL, use

[^8]```
IDL> .r rall
```

instead of .r r (here, .r is a shorthand for .run). The procedure 'rall.pro' reads (and assembles) the data from all processors and correspondingly requires large amounts of memory for very large runs. If you want to look at just the data from one processor, use 'r.pro' instead.

If you need the magnetic field or the current density, you can calculate them in IDL by 11

```
IDL> bb=curl(aa)
IDL> jj=curl2(aa)
```

By default one is reading always the current snapshot 'data/procN/var. dat'; if you want to read one of the permanent snapshots, use (for example)

```
IDL> varfile='VAR2'
IDL> .r r (or .r rall)
```

See Sect. 5.6.1 for details on permanent snapshots.
With 'r.pro', you can switch the part of the domain by changing the variable datadir:

```
IDL> datadir='data/proc3'
IDL> .r r
```

will read the data written by processor 3 .

Reading data into IDL arrays or structures As an alternative to the method described above, there is also the possibility to read the data into structures. This makes some more operations possible, e.g. reading data from an IDL program where the command . r is not allowed.

An efficient and still scriptable way would look like the following:

```
IDL> pc_read_var_raw, obj=var, tags=tags
IDL> bb = pc_get_quantity ('B', var, tags)
IDL> jj = pc_get_quantity ('j', var, tags)
```

This reads the data into an array 'var', as well as the array indices of the contained physical variables into a separate structure 'tags'. To use a caching mechanism within pc_get_quantity, please refer to the documentation and the examples contained in 'pencilcode/idl/pc_get_quantity.pro', where you can also start adding not yet implemented physical quantities.

To read a snapshot 'VAR10' into the IDL structure ff, type the following command
IDL> pc_read_var, obj=ff, varfile='VAR10', /trimall
The option /trimall removes ghost zones from the data. A number of other options are documented in the source code of pc_read_var. You can see what data the structure contains by using the command tag_names

```
IDL> print, tag_names(ff)
T X Y Z DX DY DZ UU LNRHO AA
```

[^9]One can access the individual variables by typing ff.varname, e.g.

```
IDL> help, ff.aa
<Expression> FLOAT = Array[32, 32, 32, 3]
```

There are a number of files that read different data into structures. They are placed in the directory \$PENCIL_HOME/idl/files. Here is a list of files (including suggested options to call them with)

- pc_read_var_raw, obj=var, tags=tags

Efficiently read a snapshot into an array.

- pc_read_var, obj=ff, /trimall

Read a snapshot into a structure.

- pc_read_ts, obj=ts

Read the time series into a structure.

- pc_read_xyaver, obj=xya
pc_read_xzaver, obj=xza
pc_read_yzaver, obj=yza
Read 1-D time series into a structure.
- pc_read_const, obj=cst

Read code constants into a structure.

- pc_read_pvar, obj=fp

Read particle data into a structure.

- pc_read_param, obj=par

Read startup parameters into a structure.

- pc_read_param, obj=par2, /param2

Read runtime parameters into a structure.
Other options are documented in the source code of the files.
For some examples on how to use these routines, see Sect. 5.19.3.

5.19.5 Python

Pencil supports reading, processing and the visualization of data using python. A number of scripts are placed in the subfolder '\$PENCIL_HOME/python'. A README file placed under that subfolder contains the information needed to read Pencil output data into python.

Installation For modern operating systems, Python is generally installed together with the system. If not, it can be installed via your preferred package manager or downloaded from the website https://www.python.org/. For convenience, it is strongly recommend to also install IPython, which is a more convenient console for Python. You will also need the NumPy, matplotlib and Tk library.

Perhaps the easiest way to obtain all the required software mentioned above is to install either Continuum's Anaconda or Enthought's Canopy. These Python distributions also provide (or indeed are) integrated graphical development environments.

In order for Python to find the Pencil Code commands you will have to add to your .bashrc:
export PYTHONPATH=\$PENCIL_HOME/python
ipythonrc If you use IPython, for convenience, you should modify your .ipython/ipythonrc (create it if it doesn't exist) and add:
import_all pencil
Additional, add to your .ipython/profile_default/startup/init.py the following lines:

```
import numpy as np
import pylab as plt
import pencil as pc
import matplotlib
from matplotlib import rc
plt.ion()
matplotlib.rcParams['savefig.directory'] = ',
```

.pythonrc In case you are on a cluster and don't have access to IPython you can edit your .pythonrc:
\#!/usr/bin/python
import numpy as np
import pylab as plt
import pencil as pc
import atexit
\#import readline
import rlcompleter
\# enables search with CTR+r in the history
try:
import readline
except ImportError:
print "Module readline not available."
else:
import rlcompleter
readline.parse_and_bind("tab: complete")
\# enables command history
historyPath = os.path.expanduser("~/.pyhistory")
def save_history(historyPath=historyPath):
import readline
readline.write_history_file(historyPath)
if os.path.exists(historyPath):
readline.read_history_file(historyPath)
atexit.register(save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath
plt.ion()
create the file .pythonhistory and add to your .bashrc:
export PYTHONSTARTUP= $\sim /$. pythonrc

Pencil Code Commands in General For a list of all Pencil Code commands start IPython and type pc. <TAB> (as with auto completion). To access the help of any command just type the command followed by a '?' (no spaces), e.g.:

```
In [1]: pc.dot?
Type: function
String Form:<function dot at 0x7f9d96cb0cf8>
File: ~/pencil-code/python/pencil/math/vector_multiplication.py
Definition: pc.dot(a, b)
Docstring:
take dot product of two pencil-code vectors a & b with shape
a.shape = (3,mz,my,mx)
```

You can also use help(pc.dot) for a more complete documentation of the command.
There are various reading routines for the Pencil Code data. All of them return an object with the data. To store the data into a user defined variable type e.g.

In [1]: ts = pc.read_ts()
Most commands take some arguments. For most of them there is a default value, e.g.
In [1]: pc.read_ts(filename='time_series.dat', datadir='data', plot_data=True)
You can change the values by simply typing e.g.
In [1]: pc.read_ts(plot_data = False)

Reading and Plotting Time Series Reading the time series file is very easy. Simply type

In [1]: ts = pc.read_ts()
and Python stores the data in the variable ts. The physical quantities are members of the object ts and can be accessed accordingly, e.g. ts.t, ts.emag. To check which other variables are stored simply do the tab auto completion ts. <TAB>.

Plot the data with the matplotlib commands:
In [1]: plt.plot(ts.t, ts.emag)
The standard plots are not perfect and need a little polishing. See the online wiki for a few examples on how to make pretty plots (https://github.com/pencil-code/pencil-code/wiki/PythonForPencil). You can save the plot into a file using the GUI or with

In [1]: plt.savefig('plot.eps')

Reading and Plotting VAR files and slice files Read var files:
In [1]: var = pc.read_var()

Read slice files:
In [1]: slices, t = pc.read_slices(field='bb1', extension='xy')
This returns the array slices with indices slices [nTimes, my, mx] and the time array t.

If you want to plot e.g. the x-component of the magnetic field at the central plane simply type:
In [1]: plt.imshow(zip(*var.bb[0, 128, :, :]), origin='lower', extent=[-4, 4, -4, 4]) For a complete list of arguments of plt.imshow refer to its documentation.

For a more interactive plot use:
In [1]: pc.animate_interactive(slices, t)
Be aware: arrays from the reading routines are ordered $f[n v a r, m z, m y, m x]$, i.e. reversed to IDL. This affects reading var files and slice files.

5.20 Running on multi-processor computers

The code is parallelized using MPI (message passing interface) for a simple domain decomposition (data-parallelism), which is a straight-forward and very efficient way of parallelizing finite-difference codes. The current version has a few restrictions, which need to be kept in mind when using the MPI features.
The global number of grid points (but excluding the ghost zones) in a given direction must be an exact multiple of the number of processors you use in that direction. For example if you have nprocy=8 processors for the y direction, you can run a job with nygrid=64 points in that direction, but if you try to run a problem with nygrid=65 or nygrid=94, the code will complain about an inconsistency and stop. (So far, this has not been a serious restriction for us.)

5.20.1 How to run a sample problem in parallel

To run the sample problem in the directory 'samples/conv-slab' on 16 CPUs, you need to do the following (in that directory):

1. Edit 'src/Makefile.local' and replace
```
MPICOMM = nompicomm
```

by

$$
\text { MPICOMM }=\text { mpicomm }
$$

2. Edit 'src/cparam.local' and replace
```
integer, parameter :: ncpus=1, nprocy=1, nprocz=ncpus/nprocy, nprocx=1
integer, parameter :: nxgrid=32, nygrid=nxgrid, nzgrid=nxgrid
integer, parameter :: ncpus=16, nprocy=4, nprocz=ncpus/nprocy, nprocx=1
integer, parameter :: nxgrid=128, nygrid=nxgrid, nzgrid=nxgrid
```

by

The first line specifies a 4×4 layout of the data in the y and z direction. The second line increases the resolution of the run because running a problem as small as 32^{3} on 16 CPUs would be wasteful. Even 128^{3} may still be quite small in that respect. For performance timings, one should try and keep the size of the problem per CPU the same, so for example 256^{3} on 16 CPUs should be compared with 128^{3} on 2 CPUs.
3. Recompile the code

```
unix> (cd src; make)
```

4. Run it
```
unix> start.csh
unix> run.csh
```

Make sure that all CPUs see the same 'data/' directory; otherwise things will go wrong.
Remember that in order to visualize the full domain with IDL (rather than just the domain processed and written by one processor), you need to use 'rall.pro' instead of 'r.pro'.

5.20.2 Hierarchical networks (e.g. on Beowulf clusters)

On big Beowulf clusters, a group of nodes is often connected with a switch of modest speed, and all these groups are connected via a n times faster uplink switch. When bandwidth-limited, it is important to make sure that consecutive processors are mapped onto the mesh such that the load on the uplink is $\lesssim n$ times larger than the load on the slower switch within each group. On a 512 node cluster, where groups of 24 processors are linked via fast ethernet switches, which in turn are connected via a Gigabit uplink (~ 10 times faster), we found that nprocy=4 is optimal. For 128 processors, for example we find that nprocy \times nprocz $=4 \times 32$ is the optimal layout, while. For comparison, 8×16 is 3 times slower, and 16×8 is 17 (!) times slower. These results can be understood from the structure of the network, but the basic message is to watch out for such effects and to try varying nprocy and nprocz.

In cases where nygrid $>$ nzgrid it may be advantageous to swap the ordering of processor numbers. This can be done by setting lprocz_slowest=F.

5.20.3 Extra workload caused by the ghost zones

Normally, the workload caused by the ghost zones is negligible. However, if one increases the number of processors, a significant fraction of work is done in the ghost zones. In other words, the effective mesh size becomes much larger than the actual mesh size.

Consider a mesh of size $N_{w}=N_{x} \times N_{y} \times N_{z}$, and distribute the task over $P_{w}=P_{x} \times P_{y} \times$ P_{z} processors. If no communication were required, the number of points per processor would be

$$
\begin{equation*}
\frac{N_{w}}{P_{w}}=\frac{N_{x} \times N_{y} \times N_{z}}{P_{x} \times P_{y} \times P_{z}} . \tag{26}
\end{equation*}
$$

However, for finite difference codes some communication is required, and the amount of communication depends on spatial order of the scheme, Q. The Pencil Code works by
default with sixth order finite differences, so $Q=6$, i.e. one needs 6 ghost zones, 3 on each end of the mesh. With $Q \neq 0$ the number of points per processor is

$$
\begin{equation*}
\frac{N_{w}^{(\mathrm{eff})}}{P_{w}}=\left(\frac{N_{x}}{P_{x}}+Q\right) \times\left(\frac{N_{y}}{P_{y}}+Q\right) \times\left(\frac{N_{z}}{P_{z}}+Q\right) \tag{27}
\end{equation*}
$$

There is efficient scaling only when

$$
\begin{equation*}
\min \left(\frac{N_{x}}{P_{x}}, \frac{N_{y}}{P_{y}}, \frac{N_{z}}{P_{z}}\right) \gg Q . \tag{28}
\end{equation*}
$$

In the special case were $N_{x}=N_{y}=N_{z} \equiv N=N_{w}^{1 / 3}$, with $P_{x}=1$ and $P_{y}=P_{z} \equiv P=P_{w}^{1 / 2}$, we have

$$
\begin{equation*}
\frac{N_{w}^{(\mathrm{eff})}}{P_{w}}=(N+Q) \times\left(\frac{N}{P}+Q\right)^{2} \tag{29}
\end{equation*}
$$

For $N=128$ and $Q=6$ the effective mesh size exceeds the actual mesh size by a factor

$$
\begin{equation*}
\frac{N_{w}^{(\mathrm{eff})}}{N_{w}}=(N+Q) \times\left(\frac{N}{P}+Q\right)^{2} \times \frac{P_{w}}{N_{w}} \tag{30}
\end{equation*}
$$

These factors are listed in Table 3,
Table 3: $N_{w}^{(\text {eff })} / N_{w}$ versus N and P.

$P \backslash N$	128	256	512	1024	2048
1	1.15	1.07	1.04	1.02	1.01
2	1.19	1.09	1.05	1.02	1.01
4	$\underline{1.25}$	1.12	1.06	1.03	1.01
8	1.34	1.16	1.08	1.04	1.02
16	1.48	1.22	1.11	1.05	1.03
32	1.68	1.31	1.15	1.07	1.04
64	1.98	1.44	$\underline{1.21}$	1.10	1.05
128	2.45	1.64	1.30	1.14	1.07
256	3.21	1.93	1.43	$\underline{1.20}$	1.10
512	4.45	2.40	1.62	1.29	1.14

Ideally, one wants to keep the work in the ghost zones at a minimum. If one accepts that $20-25 \%$ of work are done in the ghost zones, one should use 4 processors for 128^{3} mesh points, 16 processors for 256^{3} mesh points, 64 processors for 512^{3} mesh points, 256 processors for 1024^{3} mesh points, and 512 processors for 1536^{3} mesh points.

5.21 Running in double-precision

With many compilers, you can easily switch to double precision (8-byte floating point numbers) as follows.

Add the lines

```
# Use double precision
REAL_PRECISION = double
```

to 'src/Makefile.local' and (re-)run pc_setupsrc.
If REAL_PRECISION is set to 'double', the flag FFLAGS_DOUBLE is appended to the Fortran compile flags. The default for FFLAGS_DOUBLE is -r8, which works for g95 or ifort; for gfortran, you need to make sure that FFLAGS_DOUBLE is set to -fdefault-real-8.
You can see the flags in 'src/Makefile.inc', which is the first place to check if you have problems compiling for double precision.

Using double precision might be important in turbulence runs where the resolution is 256^{3} meshpoints and above (although such runs often seem to work fine at single precision). To continue working in double precision, you just say lread_from_other_prec=T in run_pars; see Sect. F.1.

5.22 Power spectrum

Given a real variable u, its Fourier transform \tilde{u} is given by

$$
\begin{align*}
\tilde{u}\left(k_{x}, k_{y}, k_{z}\right)=\mathcal{F}(u(x, y, z))= & \frac{1}{N_{x} N_{y} N_{z}} \sum_{p=0}^{N_{x}-1} \sum_{q=0}^{N_{y}-1} \sum_{r=0}^{N_{z}-1} u\left(x_{p}, y_{q}, z_{r}\right) \\
& \times \exp \left(-i k_{x} x_{p}\right) \exp \left(-i k_{y} y_{q}\right) \exp \left(-i k_{z} z_{r}\right), \tag{31}
\end{align*}
$$

where

$$
\left|k_{x}\right|<\frac{\pi N_{x}}{L_{x}}, \quad\left|k_{y}\right|<\frac{\pi N_{y}}{L_{y}}, \quad\left|k_{z}\right|<\frac{\pi N_{z}}{L_{z}}
$$

when L is the size of the simulation box. The three-dimensional power spectrum $P(k)$ is defined as

$$
\begin{equation*}
P(k)=\frac{1}{2} \tilde{u} \tilde{u}^{*}, \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}} . \tag{33}
\end{equation*}
$$

Note that we can only reasonably calculate $P(k)$ for $k<\pi N_{x} / L_{x}$.
To get power spectra from the code, edit 'run.in' and add for example the following lines

```
dspec=5., ou_spec=T, ab_spec=T !(for energy spectra)
oned=T
```

under run_pars. The kinetic (vel_spec) and magnetic (mag_spec) power spectra will now be calculated every 5.0 (dspec) time units. The Fourier spectra is calculated using fftpack. In addition to calculating the three-dimensional power spectra also the onedimensional power spectra will be calculated (oned).
In addition one must edit 'src/Makefile.local' and add the lines

```
FOURIER = fourier_fftpack
POWER = power_spectrum
```

Running the code will now create the files 'powerhel_mag.dat' and 'power_kin.dat' containing the three-dimensional magnetic and kinetic power spectra respectively. In addition to these three-dimensional files we will also find the one-dimensional files 'powerbx_x.dat', 'powerby_x.dat', 'powerbz_x.dat', 'powerux_x.dat', 'poweruy_x.dat' and
'poweruz_x.dat'. In these files the data are stored such that the first line contains the time of the snapshot, the following nxgrid/2 numbers represent the power at each wavenumber, from the smallest to the largest. If several snapshots have been saved, they are being stored immediately following the preceding snapshot.

You can read the results with the idl procure 'power', like this:

```
power,'_kin','_mag',k=k,spec1=spec1,spec2=spec2,i=n,tt=t,/noplot
power,'hel_kin','hel_mag',k=k,spec1=spec1h, spec2=spec2h,i=n,tt=t,/noplot
```

If powerhel is invoked, krms is written during the first computation. The relevant output file is 'power_krms.dat'. This is needed for a correct calculation of k used in the realizability conditions.

A caveat of the implementation of Fourier transforms in the Pencil Code is that, due to the parallelization, the permitted resolution is limited to the case when one direction is an integer multiple of the other. So, it can be done for
$N x=n * N y$
Unfortunately, for some applications one wants Nx < Ny. Wlad experimented with arbitrary resolution by interpolating x to the same resolution of y prior to transposing, then transform the interpolated array and then interpolating it back (check 'fourier_transform_y' in 'fourier_fftpack.f90').

A feature of our current implementation with x parallelization is that fft_xyz_parallel_3D requires nygrid to be an integer multiple of nprocy*nprocz. Examples of good mesh layouts are listed in Table 4.

Table 4: Examples of mesh layouts for which Fourier transforms with x parallelization is possible.

ny	nprocyx	nprocy	nprocz	ncpus
256	1	16	16	256
256	2	16	16	512
256	4	16	16	1024
256	8	16	16	2048
288	2	16	18	576
512	2	16	32	1024
512	4	16	16	1024
512	4	16	32	2048
576	4	18	32	2304
576	8	18	32	4608
576	16	18	32	9216
1024	4	32	32	4096
1024	4	16	64	4096
1024	8	16	32	4096
1152	4	36	32	4608
1152	4	32	36	4608
2304	2	32	72	4608
2304	4	36	64	9216
2304	4	32	72	9216

To visualize with $I D L$ just type power and you get the last snapshot of the three-
dimensional power spectrum. See head of '\$PENCIL_HOME/idl/power.pro’ for options to power.

5.23 Structure functions

We define the p-th order longitudinal structure function of \boldsymbol{u} as

$$
\begin{equation*}
\left.S_{\text {long }}^{p}(l)=\langle | u_{x}(x+l, y, z)-\left.u_{x}(x, y, z)\right|^{p}\right\rangle, \tag{34}
\end{equation*}
$$

while the transverse is

$$
\begin{equation*}
\left.\left.S_{\text {trans }}^{p}(l)=\langle | u_{y}(x+l, y, z)-\left.u_{y}(x, y, z)\right|^{p}\right\rangle+\langle | u_{z}(x+l, y, z)-\left.u_{z}(x, y, z)\right|^{p}\right\rangle . \tag{35}
\end{equation*}
$$

Edit 'run.in' and add for example the following lines

```
dspec=2.3,
lsfu=T, lsfb=T, lsfz1=T, lsfz2=T
```

under run_pars. The velocity (lsfu), magnetic (lsfb) and Elsasser (lsfz1 and lsfz2) structure functions will now be calculated every 2.3 (dspec) time unit.
In addition one must edit 'src/Makefile.local' and add the line

```
STRUCT_FUNC = struct_func
```

In 'src/cparam.local', define lb_nxgrid and make sure that

```
nxgrid = nygrid = nzgrid = 2**lb_nxgrid
```

E.g.

```
integer, parameter :: lb_nxgrid=5
integer, parameter :: nxgrid=2**lb_nxgrid,nygrid=nxgrid,nzgrid=nxgrid
```

Running the code will now create the files:
'sfu-1.dat', 'sfu-2.dat', 'sfu-3.dat' (velocity),
'sfb-1.dat', 'sfb-2.dat', 'sfb-3.dat' (magnetic field), 'sfz1-1.dat', 'sfz1-2.dat', 'sfz1-3.dat' (first Elsasser variable), 'sfz2-1.dat', 'sfz2-2.dat', 'sfz2-3.dat' (second Elsasser variable), which contains the data of interest. The first line in each file contains the time t and the number qmax, such that the largest moment calculated is qmax - 1 . The next imax numbers represent the first moment structure function for the first snapshot, here

$$
\begin{equation*}
\operatorname{imax}=2 \frac{\ln (\text { nxgrid })}{\ln 2}-2 \tag{36}
\end{equation*}
$$

The next imax numbers contain the second moment structure function, and so on until $q \max -1$. The following imax numbers then contain the data of the signed third order structure function i.e. $S_{\text {long }}^{3}(l)=\left\langle\left[u_{x}(x+l, y, z)-u_{x}(x, y, z)\right]^{3}\right\rangle$.
The following imax $\times q \max \times 2$ numbers are zero if $n r$ directions $=1$ (default), otherwise they are the same data as above but for the structure functions calculated in the y and z directions.

If the code has been run long enough as to calculate several snapshots, these snapshots will now follow, being stored in the same way as the first snapshot.

To visualize with $I D L$ just type structure and you get the time-average of the first order longitudinal structure function (be sure that 'pencil-runs/forced/idl/' is in IDL_PATH). See head of 'pencil-runs/forced/idl/structure.pro' for options to structure.

5.24 Particles

The Pencil Code has modules for tracer particles and for dust particles (see Sect.6.14). The particle modules are chosen by setting the value of the variable PARTICLES in Makefile.local to either particles_dust or particles_tracers. For the former case each particle has six degrees of freedom, three positions and three velocities. For the latter it suffices to have only three position variables as the velocity of the particles are equal to the instantaneous fluid velocity at that point. In addition one can choose to have several additional internal degrees of freedoms for the particles. For example one can temporally evolve the particles radius by setting PARTICLES_RADIUS to particles_radius in Makefile.local.

All particle infrastructure is controlled and organized by the Particles_main module. This module is automatically selected by Makefile.src if PARTICLES is different from noparticles. Particle modules are compiled as a separate library. This way the main part of the Pencil Code only needs to know about the particles_main.a library, but not of the individual particle modules.

For a simulation with particles one must in addition define a few parameters in cparam.local. Here is a sample of cparam. local for a parallel run with $2,000,000$ particles:

```
integer, parameter :: ncpus=16, nprocy=4, nprocz=4, nprocx=1
integer, parameter :: nxgrid=128, nygrid=256, nzgrid=128
integer, parameter :: npar=2000000, mpar_loc=400000, npar_mig=1000
integer, parameter :: npar_species=2
```

The parameter npar is the number of particles in the simulation, mpar_loc is the number of particles that is allowed on each processor and npar_mig is the number of particles that are allowed to migrate from one processor to another in any time-step. For a nonparallel run it is enough to specify npar. The number of particle species is set through npar_species (assumed to be one if not set). The particle input parameters are given in start.in and run.in. Here is a sample of the particle part of start.in for dust particles:

```
/
&particles_init_pars
    initxxp='gaussian-z', initvvp='random'
    zp0=0.02, delta_vp0=0.01, eps_dtog=0.01, tausp=0.1
    lparticlemesh_tsc=T
/
```

The initial positions and velocities of the dust particles are set in initxxp and initvvp. The next four input parameters are further specifications of the initial condition. Interaction between the particles and the mesh, e.g. through drag force or self-gravity, require a mapping of the particles on the mesh. The Pencil Code currently supports NGP (Nearest Grid Point, default), CIC (Cloud in Cell, set lparticlemesh_cic=T) and TSC
(Triangular Shaped Cloud, set lparticlemesh_tsc=T). See Youdin \& Johansen (2007) for details.

Here is a sample of the particle part of run.in (also for dust particles):

```
/
&particles_run_pars
    ldragforce_gas_par=T
    cdtp=0.2
/
```

The logical ldragforce_gas_par determines whether the dust particles influence the gas with a drag force. cdtp tells the code how many friction times should be resolved in a minimum time-step.

The sample run 'samples/sedimentation/' contains the latest setup for dust particles.

5.24.1 Particles in parallel

The particle variables (e.g. \boldsymbol{x}_{i} and \boldsymbol{v}_{i}) are kept in the arrays fp and dfp. For parallel runs, particles must be able to move from processor to processor as they pass out of the (x, y, z)-interval of the local processor. Since not all particles are present at the same processor at the same time (hopefully), there is some memory optimization in making fp not big enough to contain all the particles at once. This is achieved by setting the code variable mpar_loc less than npar in cparam. local for parallel runs. When running with millions of particles, this trick is necessary to keep the memory need of the code down.

The communication of migrating particles between the processors happens as follows (see the subroutine redist_particles_procs in particles_sub.f90):

1. In the beginning of each time-step all processors check if any of their particles have crossed the local (x, y, z)-interval. These particles are called migrating particles. A run can have a maximum of npar_mig migrating particles in each time-step. The value of npar_mig must be set in cparam.local. The number should (of course) be slightly larger than the maximum number of migrating particles at any time-step during the run. The diagnostic variable nmigmax can be used to output the maximum number of migrating particles at a given time-step. One can set lmigration_redo=T in \&particles_run_pars to force the code to redo the migration step if more than npar_mig want to migrate. This does slow the code down somewhat, but has the benefit that the code does not stop when more than npar_mig particles want to migrate.
2. The index number of the receiving processor is then calculated. This requires some assumption about the grid on other processors and will currently not work for nonequidistant grids. Particles do not always pass to neighboring processors as the global boundary conditions may send them to the other side of the global domains (periodic or shear periodic boundary conditions).
3. The migrating particle information is copied to the end of $f p$, and the empty spot left behind is filled up with the particle of the highest index number currently present at the processor.
4. Once the number of migrating particles is known, this information is shared with neighboring processors (including neighbors over periodic boundaries) so that they
all know how many particles they have to receive and from which processors.
5. The communication happens as directed MPI communication. That means that processors 0 and 1 can share migrating particles at the same time as processors 2 and 3 do it. The communication happens from a chunk at the end of $f p$ (migrating particles) to a chunk that is present just after the particle of the highest index number that is currently at the receiving processor. Thus the particles are put directly at their final destination, and the migrating particle information at the source processor is simply overwritten by other migrating particles at the next time-step.
6. Each processor keeps track of the number of particles that it is responsible for. This number is stored in the variable npar_loc. It must never be larger than mpar_loc (see above). When a particle leaves a processor, npar_loc is reduced by one, and then increased by one at the processor that receives that particle. The maximum number of particles at any processor is stored in the diagnostic variable nparmax. If this value is not close to npar/ncpus, the particles have piled up in such a way that computations are not evenly shared between the processors. One can then try to change the parallelization architecture (nprocy and nprocz) to avoid this problem.

In simulations with many particles (comparable to or more than the number of grid cells), it is crucial that particles are shared relatively evenly among the processors. One can as a first approach attempt to not parallelize directions with strong particle density variations. However, this is often not enough, especially if particles clump locally.

Alternatively one can use Particle Block Domain Decomposition (PBDD, see Johansen et al. 2011). The steps in Particle Block Domain Decomposition scheme are as follows:

1. The fixed mesh points are domain-decomposed in the usual way (with ncpus=nprocx \times nprocy \times nprocz).
2. Particles on each processor are counted in bricks of size $n b x \times n b y \times n b z$ (typically $n b x=n b y=n b z=4)$.
3. Bricks are distributed among the processors so that each processor has approximately the same number of particles
4. Adopted bricks are referred to as blocks.
5. The Pencil Code uses a third order Runge-Kutta time-stepping scheme. In the beginning of each sub-time-step particles are counted in blocks and the block counts communicated to the bricks on the parent processors. The particle density assigned to ghost cells is folded across the grid, and the final particle density (defined on the bricks) is communicated back to the adopted blocks. This step is necessary because the drag force time-step depends on the particle density, and each particle assigns density not just to the nearest grid point, but also to the neighboring grid points.
6. In the beginning of each sub-time-step the gas density and gas velocity field is communicated from the main grid to the adopted particle blocks.
7. Drag forces are added to particles and back to the gas grid points in the adopted blocks. This partition aims at load balancing the calculation of drag forces.
8. At the end of each sub-time-step the drag force contribution to the gas velocity field is communicated from the adopted blocks back to the main grid.

Particle Block Domain Decomposition is activated by setting PARTICLES = particles_dust_blocks and PARTICLES_MAP = particles_map_blocks in Makefile.local. A sample of cparam.local for Particle Block Domain Decomposition can be found in samples/sedimentation/blocks:

```
integer, parameter :: ncpus=4, nprocx=2, nprocy=2, nprocz=1
integer, parameter :: nxgrid=32, nygrid=32, nzgrid=32
integer, parameter :: npar=10000, mpar_loc=5000, npar_mig=100
integer, parameter :: npar_species=4
integer, parameter :: nbrickx=4, nbricky=4, nbrickz=4, nblockmax=32
```

The last line defines the number of bricks in the total domain - here we divide the grid into $4 \times 4 \times 4$ bricks each of size $8 \times 8 \times 8$ grid points. The parameter nblockmax tells the code the maximum number of blocks any processor may adopt. This should not be so low that there is not room for all the bricks with particles, nor so high that the code runs out of memory.

5.24.2 Large number of particles

When dealing with large number of particles, one needs to make sure that the number of particles npar is less than the maximum integer that the compiler can handle with. The maximum integer can be checked by the Fortran intrinsic function huge,

```
program huge_integers
    print *, huge(0_4) ! for default Fortran integer (32 Bit)
    print *, huge(0_8) ! for 64 Bit integer in Fortran
end program huge_integers
```

If the number of particles npar is larger than default maximum integer, one can promote the maximum integer to 64 Bit by setting
integer(kind=8), parameter :: npar=4294967296
in the cparam.local file. This works because the data type of npar is only set here. It is worth noting that one should not use the flag

FFLAGS += -integer-size 64
to promote all the integers to 64 Bit. This will break the Fortran-C interface. One should also make sure that npar_mig<=npar/ncpus. It is also beneficial to set mpar_loc=2*npar/ncpus.

5.24.3 Random number generator

There are several methods to generate random number in the code. It is worth noting that when simulating coagulation with the super-particle approach, one should use the intrinsic random number generator of FORTRAN instead of the one implemented in the code. When invoking random_number_wrapper, there will be back-reaction to the gas flow. This unexpected back-reaction can be tracked by inspecting the power spectra, which exhibits the oscillation at the tail. To avoid this, one should set luser_random_number_wrapper=F under the module particles_coag_run_pars in run.in.

5.25 Non-cartesian coordinate systems

Spherical coordinates are invoked by adding the following line in the file 'start.in'

```
&init_pars
    coord_system='spherical_coords'
```

One can also invoke cylindrical coordinates by saying cylindrical_coords instead. In practice, the names (x, y, z) are still used, but they refer then to (r, θ, ϕ) or (r, ϕ, z) instead.

When working with curvilinear coordinates it is convenient to use differential operators in the non-coordinate basis, so the derivatives are taken with respect to length, and not in a mixed fashion with respect to length for $\partial / \partial r$ and with respect to angle for $\partial / \partial \theta$ and $\partial / \partial \phi$. The components in the non-coordinate basis are denoted by hats, see, e.g., [26], p. 213; see also Appendix B of [27]. For spherical polar coordinates the only nonvanishing Christoffel symbols (or connection coefficients) are

$$
\begin{gather*}
\Gamma_{\hat{r} \hat{\theta}}^{\hat{\theta}}=\Gamma_{\hat{r} \hat{\phi}}^{\hat{\phi}}=-\Gamma_{\hat{\theta} \hat{\theta}}^{\hat{r}}=-\Gamma_{\hat{\phi} \hat{\phi}}^{\hat{\phi}}=1 / r, \tag{37}\\
\Gamma_{\hat{\theta} \hat{\phi}}^{\hat{\phi}}=-\Gamma_{\hat{\phi} \hat{\phi} \hat{\theta}}^{\hat{\theta}} \cot \theta / r . \tag{38}
\end{gather*}
$$

The Christoffel symbols enter as correction terms for the various differential operators in addition to a term calculated straightforwardly in the non-coordinate basis. The derivatives of some relevant Christoffel symbols are

$$
\begin{gather*}
\Gamma_{\hat{\theta} \hat{\theta} \hat{\theta}}^{\hat{\theta}}=\Gamma_{\hat{r} \hat{\phi}, \hat{\phi}}^{\hat{\phi}}=\Gamma^{\hat{\theta} \hat{\theta}, \hat{\phi}}=0 \tag{39}\\
\Gamma_{\hat{\hat{r}} \hat{\hat{\theta}} \hat{,}, \hat{r}}=\Gamma_{{ }_{\hat{r}}^{\hat{\phi}}, \hat{r}}^{\hat{r}}=-r^{-2} \tag{40}\\
\Gamma_{\hat{\theta} \hat{\phi}, \hat{\theta}}^{\hat{\phi}}=-r^{-2} \sin ^{-2} \theta \tag{41}
\end{gather*}
$$

Further details are given in Appendix I.

6 The equations

The equations solved by the Pencil Code are basically the standard compressible MHD equations. However, the modular structure allows some variations of the MHD equations, as well as switching off some of the equations or individual terms of the equation (nomagnetic, noentropy, etc.).
In this section the equations are presented in their most complete form. It may be expected that the code can evolve most subsets or simplifications of these equations.

6.1 Continuity equation

In the code the continuity equation, $\partial \rho / \partial t+\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}=0$, is written in terms of $\ln \rho$,

$$
\begin{equation*}
\frac{\mathrm{D} \ln \rho}{\mathrm{D} t}=-\boldsymbol{\nabla} \cdot \boldsymbol{u} \tag{42}
\end{equation*}
$$

Here ρ denotes density, \boldsymbol{u} the fluid velocity, t is time and $\mathrm{D} / \mathrm{D} t \equiv \partial / \partial t+\boldsymbol{u} \cdot \boldsymbol{\nabla}$ is the convective derivative.

6.2 Equation of motion

In the equation of motion, using a perfect gas, the pressure term, can be expressed as $-\rho^{-1} \nabla p=-c_{\mathrm{s}}^{2}\left(\nabla s / c_{p}+\nabla \ln \rho\right)$, where the squared sound speed is given by

$$
\begin{equation*}
c_{\mathrm{s}}^{2}=\gamma \frac{p}{\rho}=c_{\mathrm{s} 0}^{2} \exp \left[\gamma s / c_{p}+(\gamma-1) \ln \frac{\rho}{\rho_{0}}\right], \tag{43}
\end{equation*}
$$

and $\gamma=c_{p} / c_{v}$ is the ratio of specific heats, or adiabatic index. Note that c_{s}^{2} is proportional to the temperature with $c_{\mathrm{s}}^{2}=(\gamma-1) c_{p} T$.
The equation of motion is accordingly

$$
\begin{align*}
\frac{\mathrm{D} \boldsymbol{u}}{\mathrm{D} t}= & -c_{\mathrm{s}}^{2} \boldsymbol{\nabla}\left(\frac{s}{c_{p}}+\ln \rho\right)-\nabla \Phi_{\text {grav }}+\frac{\boldsymbol{j} \times \boldsymbol{B}}{\rho} \\
& +\nu\left(\nabla^{2} \boldsymbol{u}+\frac{1}{3} \boldsymbol{\nabla} \boldsymbol{\nabla} \cdot \boldsymbol{u}+2 \mathbf{S} \cdot \boldsymbol{\nabla} \ln \rho\right)+\zeta(\boldsymbol{\nabla} \nabla \cdot \boldsymbol{u}) \tag{44}
\end{align*}
$$

Here $\Phi_{\text {grav }}$ is the gravity potential, \boldsymbol{j} the electric current density, B the magnetic flux density, ν is kinematic viscosity, ζ describes a bulk viscosity, and, in Cartesian coordinates

$$
\begin{equation*}
\mathrm{S}_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}-\frac{2}{3} \delta_{i j} \boldsymbol{\nabla} \cdot \boldsymbol{u}\right) \tag{45}
\end{equation*}
$$

is the rate-of-shear tensor that is traceless, because it can be written as the generic rate-of-strain tensor minus its trace. In curvilinear coordinates, we have to replace partial differentiation by covariant differentiation (indicated by semicolons), so we write $\mathrm{S}_{i j}=$ $\frac{1}{2}\left(u_{i ; j}+u_{j ; i}\right)-\frac{1}{3} \delta_{i j} \boldsymbol{\nabla} \cdot \boldsymbol{u}$.

The interpretation of the two viscosity terms varies greatly depending upon the Viscosity module used, and indeed on the parameters given to the module. See $\$ 6.6$,

For isothermal hydrodynamics, see $\S 6.4$ below.

6.3 Induction equation

$$
\begin{equation*}
\frac{\partial \boldsymbol{A}}{\partial t}=\boldsymbol{u} \times \boldsymbol{B}-\eta \mu_{0} \boldsymbol{j} . \tag{46}
\end{equation*}
$$

Here \boldsymbol{A} is the magnetic vector potential, $\boldsymbol{B}=\nabla \times \boldsymbol{A}$ the magnetic flux density, $\eta=$ $1 /\left(\mu_{0} \sigma\right)$ is the magnetic diffusivity (σ denoting the electrical conductivity), and μ_{0} the magnetic vacuum permeability. This form of the induction equation corresponds to the Weyl gauge $\Phi=0$, where Φ denotes the scalar potential.

6.4 Entropy equation

The current thermodynamics module entropy formulates the thermal part of the physics in terms of entropy s, rather than thermal energy e, which you may be more familiar with. Thus the two fundamental thermodynamical variables are $\ln \rho$ and s. The reason for this choice of variables is that entropy is the natural physical variable for (at least) convection processes: the sign of the entropy gradient determines convective (in)stability, the Rayleigh number is proportional to the entropy gradient of the associated hydrostatic reference solution, etc. The equation solved is

$$
\begin{equation*}
\rho T \frac{\mathrm{D} s}{\mathrm{D} t}=\mathcal{H}-\mathcal{C}+\boldsymbol{\nabla} \cdot(K \boldsymbol{\nabla} T)+\eta \mu_{0} \boldsymbol{j}^{2}+2 \rho \nu \mathbf{S} \otimes \mathbf{S}+\zeta \rho(\boldsymbol{\nabla} \cdot \boldsymbol{u})^{2} . \tag{47}
\end{equation*}
$$

Here, T is temperature, c_{p} the specific heat at constant pressure, \mathcal{H} and \mathcal{C} are explicit heating and cooling terms, K is the radiative (thermal) conductivity, ζ describes a bulk viscosity, and \mathbf{S} is the rate-of-shear tensor that is traceless.
In the entropy module we solve for the specific entropy, s. The heat conduction term on the right hand side can be written in the form

$$
\begin{align*}
& \frac{\boldsymbol{\nabla} \cdot}{}(K \boldsymbol{\nabla} T) \tag{48}\\
& \rho T \tag{49}\\
&= c_{p} \chi\left[\nabla^{2} \ln T+\boldsymbol{\nabla} \ln T \cdot \boldsymbol{\nabla}(\ln T+\ln \chi+\ln \rho)\right] \\
&= c_{p} \chi\left[\gamma \nabla^{2} s / c_{p}+(\gamma-1) \nabla^{2} \ln \rho\right] \tag{50}\\
&+c_{p} \chi\left[\gamma \nabla s / c_{p}+(\gamma-1) \nabla \ln \rho\right] \cdot\left[\gamma\left(\nabla s / c_{p}+\nabla \ln \rho\right)+\nabla \ln \chi\right],
\end{align*}
$$

where $\chi=K /\left(\rho c_{p}\right)$ is the thermal diffusivity. The latter equation shows that the diffusivity for s is $\gamma \chi$, which is what we have used in Eq. (24).

In an alternative formulation for a constant K, the heat conduction term on the right hand side can also be written in the form

$$
\begin{equation*}
\frac{\boldsymbol{\nabla} \cdot(K \boldsymbol{\nabla} T)}{\rho T}=\frac{K}{\rho}\left[\nabla^{2} \ln T+(\boldsymbol{\nabla} \ln T)^{2}\right] \tag{51}
\end{equation*}
$$

which is the form used when constant K is chosen.

Note that by setting $\gamma=1$ and initially $s=0$, one obtains an isothermal equation of state (albeit at some unnecessary expense of memory). Similarly, by switching off the evolution terms of entropy, one immediately gets polytropic behavior (if s was initially constant) or generalized polytropic behavior (where s is not uniform, but $\partial s / \partial t=0$).

A better way to achieve isothermality is to use the noentropy module.

6.4.1 Viscous heating

We can write the viscosity as the divergence of a tensor $\tau_{i j, j}$,

$$
\begin{equation*}
\rho \frac{\partial u_{i}}{\partial t}=\ldots+\tau_{i j, j} \tag{52}
\end{equation*}
$$

where $\tau_{i j}=2 \nu \rho \mathrm{~S}_{i j}$ is the stress tensor. The viscous power density P is

$$
\begin{align*}
P & =u_{i} \tau_{i j, j} \tag{53}\\
& =\frac{\partial}{\partial x_{j}}\left(u_{i} \tau_{i j}\right)-u_{i, j} \tau_{i j} \tag{54}
\end{align*}
$$

The term under the divergence is the viscous energy flux and the other term is the kinetic energy loss due to heating. The heating term $+u_{i, j} \tau_{i j}$ is positive definite, because $\tau_{i j}$ is a symmetric tensor and the term only gives a contribution from the symmetric part of $u_{i, j}$, which is $\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)$, so

$$
\begin{equation*}
u_{i, j} \tau_{i j}=\frac{1}{2} \nu \rho\left(u_{i, j}+u_{j, i}\right)\left(2 S_{i j}\right) . \tag{55}
\end{equation*}
$$

But, because $\mathrm{S}_{i j}$ is traceless, we can add anything proportional to $\delta_{i j}$ and, in particular, we can write

$$
\begin{align*}
u_{i, j} \tau_{i j} & =\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)\left(2 \nu \rho \mathbf{S}_{i j}\right) \tag{56}\\
& =\frac{1}{2}\left(u_{i, j}+u_{j, i}-\frac{1}{3} \delta_{i j} \boldsymbol{\nabla} \cdot \boldsymbol{u}\right)\left(2 \nu \rho \mathbf{S}_{i j}\right) \tag{57}\\
& =2 \nu \rho \mathbf{S}^{2} \tag{58}
\end{align*}
$$

which is positive definite.

6.4.2 Alternative description

By setting pretend_lnTT=T in init_pars or run_pars (i.e. the general part of the name list) the logarithmic temperature is used instead of the entropy. This has computational advantages when heat conduction (proportional to $K \nabla T$) is important. Another alternative is to use another module, i.e. set ENTROPY=temperature_idealgas in 'Makefile.local'.

When pretend_lnTT $=\mathrm{T}$ is set, the entropy equation

$$
\begin{equation*}
\frac{\partial s}{\partial t}=-\boldsymbol{u} \cdot \boldsymbol{\nabla} s+\frac{1}{\rho T} \text { RHS } \tag{59}
\end{equation*}
$$

is replaced by

$$
\begin{equation*}
\frac{\partial \ln T}{\partial t}=-\boldsymbol{u} \cdot \boldsymbol{\nabla} \ln T+\frac{1}{\rho c_{v} T} \mathbf{R H S}-(\gamma-1) \boldsymbol{\nabla} \cdot \boldsymbol{u} \tag{60}
\end{equation*}
$$

where RHS is the right hand side of equation (47).

6.5 Transport equation for a passive scalar

In conservative form, the equation for a passive scalar is

$$
\begin{equation*}
\frac{\partial}{\partial t}(\rho c)+\boldsymbol{\nabla} \cdot[\rho c \boldsymbol{u}-\rho \mathcal{D} \nabla c]=0 \tag{61}
\end{equation*}
$$

Here c denotes the concentration (per unit mass) of the passive scalar and \mathcal{D} its diffusion constant (assumed constant). In the code this equation is solved in terms of $\ln c$,

$$
\begin{equation*}
\frac{\mathrm{D} \ln c}{\mathrm{D} t}=\mathcal{D}\left[\nabla^{2} \ln c+(\nabla \ln \rho+\nabla \ln c) \cdot \nabla \ln c\right] \tag{62}
\end{equation*}
$$

Using $\ln c$ instead of c has the advantage that it enforces $c>0$ for all times. However, the disadvantage is that one cannot have $c=0$. For this reason we ended up using the non-logarithmic version by invoking PSCALAR=pscalar_nolog.

6.6 Bulk viscosity

For a monatomic gas it can be shown that the bulk viscosity vanishes. We therefore don't use it in most of our runs. However, for supersonic flows, or even otherwise, one might want to add a shock viscosity which, in its simplest formulation, take the form of a bulk viscosity.

6.6.1 Shock viscosity

Shock viscosity, as it is used here and also in the Stagger Code of Åke Nordlund, is proportional to positive flow convergence, maximum over five zones, and smoothed to second order,

$$
\begin{equation*}
\zeta_{\text {shock }}=c_{\text {shock }}\left\langle\max _{5}\left[(-\boldsymbol{\nabla} \cdot \boldsymbol{u})_{+}\right]\right\rangle(\min (\delta x, \delta y, \delta z))^{2} \tag{63}
\end{equation*}
$$

where $c_{\text {shock }}$ is a constant defining the strength of the shock viscosity. In the code this dimensionless coefficient is called nu_shock, and it is usually chosen to be around unity. Assume that the shock viscosity only enters as a bulk viscosity, so the whole stress tensor is then

$$
\begin{equation*}
\boldsymbol{\tau}_{i j}=2 \rho \nu \mathrm{~S}_{i j}+\rho \zeta_{\text {shock }} \delta_{i j} \boldsymbol{\nabla} \cdot \boldsymbol{u} \tag{64}
\end{equation*}
$$

Assume $\nu=$ const, but $\zeta \neq$ const, so
$\rho^{-1} \boldsymbol{F}_{\text {visc }}=\nu\left(\nabla^{2} \boldsymbol{u}+\frac{1}{3} \boldsymbol{\nabla} \boldsymbol{\nabla} \cdot \boldsymbol{u}+2 \mathbf{S} \cdot \boldsymbol{\nabla} \ln \rho\right)+\zeta_{\text {shock }}\left[\boldsymbol{\nabla} \boldsymbol{\nabla} \cdot \boldsymbol{u}+\left(\boldsymbol{\nabla} \ln \rho+\boldsymbol{\nabla} \ln \zeta_{\text {shock }}\right) \boldsymbol{\nabla} \cdot \boldsymbol{u}\right]$.
and

$$
\begin{equation*}
\rho^{-1} \Gamma_{\text {visc }}=2 \nu \mathbf{S}^{2}+\zeta_{\text {shock }}(\boldsymbol{\nabla} \cdot \boldsymbol{u})^{2} . \tag{65}
\end{equation*}
$$

In the special case with periodic boundary conditions, we have $2\left\langle\mathbf{S}^{2}\right\rangle=\left\langle\boldsymbol{\omega}^{2}\right\rangle+\frac{4}{3}\left\langle(\boldsymbol{\nabla} \cdot \boldsymbol{u})^{2}\right\rangle$.

6.7 Equation of state

In its present configuration only hydrogen ionization is explicitly included. Other constituents (currently He and H_{2}) can have fixed values. The pressure is proportional to the total number of particles, i.e.

$$
\begin{equation*}
p=\left(n_{\mathrm{HI}}+n_{\mathrm{HII}}+n_{\mathrm{H}_{2}}+n_{\mathrm{e}}+n_{\mathrm{He}}+\ldots\right) k_{\mathrm{B}} T \tag{67}
\end{equation*}
$$

It is convenient to normalize to the total number of H both in atomic and in molecular hydrogen, $n_{\mathrm{Htot}} \equiv n_{\mathrm{H}}+2 n_{\mathrm{H}_{2}}$, where $n_{\mathrm{HI}}+n_{\mathrm{HII}}=n_{\mathrm{H}}$, and define $x_{\mathrm{e}} \equiv n_{\mathrm{e}} / n_{\mathrm{Htot}}, x_{\mathrm{He}} \equiv$ $n_{\mathrm{He}} / n_{\mathrm{Htot}}$, and $x_{\mathrm{H}_{2}} \equiv n_{\mathrm{H}_{2}} / n_{\mathrm{Htot}}$. Substituting $n_{\mathrm{H}}=n_{\mathrm{Htot}}-2 n_{\mathrm{H}_{2}}$, we have

$$
\begin{equation*}
p=\left(1-x_{\mathrm{H}_{2}}+x_{\mathrm{e}}+x_{\mathrm{He}}+\ldots\right) n_{\mathrm{Htot}} k_{\mathrm{B}} T \tag{68}
\end{equation*}
$$

This can be written in the more familiar form

$$
\begin{equation*}
p=\frac{\mathcal{R}}{\mu} \rho T, \tag{69}
\end{equation*}
$$

where $\mathcal{R}=k_{\mathrm{B}} / m_{\mathrm{u}}$ and m_{u} is the atomic mass unit (which is for all practical purposes the same as m_{Htot}) and

$$
\begin{equation*}
\mu=\frac{n_{\mathrm{H}}+2 n_{\mathrm{H}_{2}}+n_{\mathrm{e}}+4 n_{\mathrm{He}}}{n_{\mathrm{H}}+n_{\mathrm{H}_{2}}+n_{\mathrm{e}}+n_{\mathrm{He}}}=\frac{1+4 x_{\mathrm{He}}}{1-x_{\mathrm{H}_{2}}+x_{\mathrm{e}}+x_{\mathrm{He}}} \tag{70}
\end{equation*}
$$

is the mean molecular weight (which is here dimensionless; see Kippenhahn \& Weigert 1990, p. 102). The factor 4 is really to be substituted for 3.97153. Some of the familiar relations take still the usual form, in particular $e=c_{v} T$ and $h=c_{p} T$ with $c_{v}=\frac{3}{2} \mathcal{R} / \mu$ and $c_{p}=\frac{5}{2} \mathcal{R} / \mu$.
The number ratio, x_{He}, is more commonly expressed as the mass ratio, $Y=$ $m_{\mathrm{He}} n_{\mathrm{He}} /\left(m_{\mathrm{H}} n_{\mathrm{Htot}}+m_{\mathrm{He}} n_{\mathrm{He}}\right)$, or $Y=4 x_{\mathrm{He}} /\left(1+4 x_{\mathrm{He}}\right)$, or $4 x_{\mathrm{He}}=(1 / Y-1)^{-1}$. For example, $Y=0.27$ corresponds to $x_{\mathrm{He}}=0.092$ and $Y=0.25$ to $x_{\mathrm{He}}=0.083$. Note also that for $100 \% \mathrm{H}_{2}$ abundance, $x_{\mathrm{H}_{2}}=1 / 2$.

In the following, the ionization fraction is given as $y=n_{\mathrm{e}} / n_{\mathrm{H}}$, which can be different from x_{e} if there is H_{2}. Substituting for n_{H} in terms of n_{Htot} yields $y=x_{\mathrm{e}} /\left(1-2 x_{\mathrm{H}_{2}}\right)$.

6.8 Ionization

This part of the code can be invoked by setting EOS=eos_ionization (or EOS=eos_temperature_ionization) in the 'Makefile.local' file. The equation of state described below works for variable ionization, and the entropy offset is different from that used in Eq. (43), which is now no longer valid. As a replacement, one can use EOS=eos_fixed_ionization, where the degree of ionization can be given by hand. Here the normalization of the entropy is the same as for EOS=eos_ionization. This case is described in more detail below ${ }^{12}$

We treat the gas as being composed of partially ionized hydrogen and neutral helium. These are four different particle species, each of which regarded as a perfect gas.
The ionization fraction y, which gives the ratio of ionized hydrogen to the total amount of hydrogen n_{H}, is obtained from the Saha equation which, in this case, may be written as

$$
\begin{equation*}
\frac{y^{2}}{1-y}=\frac{1}{n_{\mathrm{H}}}\left(\frac{m_{\mathrm{e}} k_{\mathrm{B}} T}{2 \pi \hbar^{2}}\right)^{3 / 2} \exp \left(-\frac{\chi_{\mathrm{H}}}{k_{\mathrm{B}} T}\right) \tag{71}
\end{equation*}
$$

The temperature T cannot be obtained directly from the Pencil Code's independent variables $\ln \rho$ and s, but is itself dependent on y. Hence, the calculation of y essentially becomes a root finding problem.

[^10]The entropy of a perfect gas consisting of particles of type i is known from the SackurTetrode equation

$$
\begin{equation*}
S_{i}=k_{\mathrm{B}} N_{i}\left(\ln \left[\frac{1}{n_{\mathrm{tot}}}\left(\frac{m_{i} k_{\mathrm{B}} T}{2 \pi \hbar^{2}}\right)^{3 / 2}\right]+\frac{5}{2}\right) \tag{72}
\end{equation*}
$$

Here N_{i} is the number of particles of a single species and $n_{\text {tot }}$ is the total number density of all particle species.

In addition to the individual entropies we also have to take the entropy of mixing, $S_{\text {mix }}=-N_{\text {tot }} k_{\mathrm{B}} \sum_{i} p_{i} \ln p_{i}$, into account. Summing up everything, we can get a closed expression for the specific entropy s in terms of $y, \ln \rho$ and T, which may be solved for T.

Figure 5: Dependence of temperature on entropy for different values of the density.

For given $\ln \rho$ and s we are then able to calculate the ionization fraction y by finding the root of

$$
\begin{equation*}
f(y)=\ln \left[\frac{1-y}{y^{2}} \frac{1}{n_{\mathrm{H}}}\left(\frac{m_{\mathrm{e}} k_{\mathrm{B}} T(y)}{2 \pi \hbar^{2}}\right)^{3 / 2}\right]-\frac{\chi_{\mathrm{H}}}{k_{\mathrm{B}} T(y)} . \tag{73}
\end{equation*}
$$

In the ionized case, several thermodynamic quantities of the gas become dependent on the ionization fraction y such as its pressure, $P=\left(1+y+x_{\mathrm{He}}\right) n_{\mathrm{H}} k_{\mathrm{B}} T$, and its internal energy, $E=\frac{3}{2}\left(1+y+x_{\mathrm{He}}\right) n_{\mathrm{H}} k_{\mathrm{B}} T+y \chi_{\mathrm{H}}$, where x_{He} gives the ratio of neutral helium to the total amount of hydrogen. The dependence of temperature on entropy is shown in Fig. 5 for different values of the density.
For further details regarding the procedure of solving for the entropy see Sect. H. 6 in the appendix.

6.8.1 Ambipolar diffusion

Another way of dealing with ionization in the PENCIL CODE is through use of the neutrals module. That module solves the coupled equations of neutral and ionized gas, in a two-fluid model

$$
\begin{align*}
\frac{\partial \rho_{i}}{\partial t} & =-\boldsymbol{\nabla} \cdot\left(\rho_{i} \boldsymbol{u}_{i}\right)+\mathcal{G} \tag{74}\\
\frac{\partial \rho_{n}}{\partial t} & =-\boldsymbol{\nabla} \cdot\left(\rho_{n} \boldsymbol{u}_{n}\right)-\mathcal{G} \tag{75}\\
\frac{\partial\left(\rho_{i} \boldsymbol{u}_{i}\right)}{\partial t} & =-\boldsymbol{\nabla} \cdot\left(\rho_{i} \boldsymbol{u}_{i}: \boldsymbol{u}_{i}\right)-\boldsymbol{\nabla}\left(p_{i}+p_{e}+\frac{B^{2}}{2 \mu_{0}}\right)+\mathcal{F} \tag{76}\\
\frac{\partial\left(\rho_{n} \boldsymbol{u}_{n}\right)}{\partial t} & =-\boldsymbol{\nabla} \cdot\left(\rho_{n} \boldsymbol{u}_{n}: \boldsymbol{u}_{n}\right)-\nabla p_{n}-\mathcal{F} \tag{77}\\
\frac{\partial \boldsymbol{A}}{\partial t} & =\boldsymbol{u}_{i} \times \boldsymbol{B} \tag{78}
\end{align*}
$$

where the subscripts n and i are for neutral and ionized, respectively. The terms \mathcal{G} and \mathcal{F}, through which the two fluids exchange mass and momentum, are given by

$$
\begin{align*}
\mathcal{G} & =\zeta \rho_{n}-\alpha \rho_{i}^{2} \tag{79}\\
\mathcal{F} & =\zeta \rho_{n} \boldsymbol{u}_{n}-\alpha \rho_{i}^{2} \boldsymbol{u}_{i}+\gamma \rho_{i} \rho_{n}\left(\boldsymbol{u}_{n}-\boldsymbol{u}_{i}\right) \tag{80}
\end{align*}
$$

In the above equations, ζ is the ionization coefficient, α is the recombination coefficient, and γ the collisional drag strength. By the time of writing (spring 2009), these three quantities are supposed constant. The electron pressure p_{e} is also assumed equal to the ion pressure. Only isothermal neutrals are supported so far.

In the code, Eq. (74) and Eq. (76) are solved in 'density.f90' and 'hydro.f90' respectively. Equation 75 is solved in 'neutraldensity.f90' and Eq. (77) in 'neutralvelocity.f90'. The sample '1d-test/ambipolar-diffusion' has the current setup for a two-fluid simulation with ions and neutrals.

6.9 Radiative transfer

Here we only state the basic equations. A full description about the implementation is given in Sect. H. 7 and in the original paper by Heinemann et al. (2006).

The basic equation for radiative transfer is

$$
\begin{equation*}
\frac{d I}{d \tau}=-I+S \tag{81}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau \equiv \int_{0}^{s} \chi\left(s^{\prime}\right) d s^{\prime} \tag{82}
\end{equation*}
$$

is the optical depth (s is the geometrical coordinate along the ray).
Note that radiative transfer is called also in 'start. csh', and again each time a snapshot is being written, provided the output of auxiliary variables is being requested lwrite_aux=T. (Also, of course, the pencil check runs radiative transfer 7 times, unless you put pencil_check_small=F.)

6.10 Self-gravity

The Pencil Code can consider the self-gravity of the fluid in the simulation box by adding the term

$$
\begin{equation*}
\frac{\partial \boldsymbol{u}}{\partial t}=\ldots-\boldsymbol{\nabla} \phi_{\text {self }} \tag{83}
\end{equation*}
$$

to the equation of motion. The self-potential $\phi_{\text {self }}$ (or just ϕ for simplicity) satisfies Poisson's equation

$$
\begin{equation*}
\nabla^{2} \phi=4 \pi G \rho \tag{84}
\end{equation*}
$$

The solution for a single Fourier component at scale \boldsymbol{k} is

$$
\begin{equation*}
\phi_{k}=-\frac{4 \pi G \rho_{k}}{k^{2}} \tag{85}
\end{equation*}
$$

Here we have assumed periodic boundary conditions. The potential is obtained by Fourier-transforming the density, then finding the corresponding potential at that scale, and finally Fourier-transforming back to real space.
The x-direction in the shearing sheet is not strictly periodic, but is rather shear periodic with two connected points at the inner and outer boundary separated by the distance $\Delta y(t)=\bmod \left[(3 / 2) \Omega_{0} L_{x} t, L_{y}\right]$ in the y-direction. We follow here the method from [17] to allow for shear-periodic boundaries in the Fourier method for self-gravity. First we take the Fourier transform along the periodic y-direction. We then shift the entire y direction by the amount $\delta y(x)=\Delta y(t) x / L_{x}$ to make the x-direction periodic. Then we proceed with Fourier transforms along x and then z. After solving the Poisson equation in Fourier space, we transform back to real space in the opposite order. We differ here from the method by [17] in that we shift in Fourier space rather than in real space ${ }^{13}$. The Fourier interpolation formula has the advantage over polynomial interpolation in that it is continuous and smooth in all its derivatives.

6.11 Incompressible and anelastic equations

This part has not yet been documented and is still under development.

6.12 Dust equations

The code treats gas and dust as two separate fluids ${ }^{14}$. The dust and the gas interact through a drag force. This force can most generally be written as an additional term to the equation of motion as

$$
\begin{equation*}
\frac{\mathrm{D} \boldsymbol{u}_{\mathrm{d}}}{\mathrm{D} t}=\ldots-\frac{1}{\tau_{\mathrm{s}}}\left(\boldsymbol{u}_{\mathrm{d}}-\boldsymbol{u}\right) . \tag{86}
\end{equation*}
$$

Here τ_{s} is the so-called stopping time of the considered dust species. This measures the coupling strength between dust and gas. In the Epstein drag regime

$$
\begin{equation*}
\tau_{\mathrm{s}}=\frac{a_{\mathrm{d}} \rho_{\mathrm{s}}}{c_{\mathrm{s}} \rho} \tag{87}
\end{equation*}
$$

[^11]where a_{d} is the radius of the dust grain and ρ_{s} is the solid density of the dust grain.
Two other important effects work on the dust. The first is coagulation controlled by the discrete coagulation equation
\[

$$
\begin{equation*}
\frac{\mathrm{d} n_{k}}{\mathrm{~d} t}=\frac{1}{2} \sum_{i+j=k} A_{i j} n_{i} n_{j}-n_{k} \sum_{i=1}^{\infty} A_{i k} n_{i} \tag{88}
\end{equation*}
$$

\]

In the code N discrete dust species are considered. Also the bins are logarithmically spaced in order to give better mass resolution. It is also possible to keep track of both number density and mass density of each bin, corresponding to having a variable grain mass in each bin.

Dust condensation is controlled by the equation

$$
\begin{equation*}
\frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{1}{\tau_{\text {cond }}} N^{\frac{d-1}{d}} \tag{89}
\end{equation*}
$$

Here N is the number of monomers in the dust grain (such as water molecules) and d is the physical dimension of the dust grain. The condensation time $\tau_{\text {cond }}$ is calculated from

$$
\begin{equation*}
\frac{1}{\tau_{\text {cond }}}=A_{1} v_{\mathrm{th}} \alpha n_{\mathrm{mon}}\left\{1-\frac{1}{S_{\mathrm{mon}}}\right\}, \tag{90}
\end{equation*}
$$

where A_{1} is the surface area of a monomer, α is the condensation efficiency, $n_{\text {mon }}$ is the number density of monomers in the gas and $S_{\text {mon }}$ is the saturation level of the monomer given by

$$
\begin{equation*}
S_{\mathrm{mon}}=\frac{P_{\mathrm{mon}}}{P_{\mathrm{sat}}} \tag{91}
\end{equation*}
$$

Here $P_{\text {sat }}$ is the saturated vapor pressure of the monomer. Currently only water ice has been implemented in the code.

All dust species fulfill the continuity equation

$$
\begin{equation*}
\frac{\partial \rho_{\mathrm{d}}}{\partial t}+\boldsymbol{\nabla} \cdot\left(\rho_{\mathrm{d}} \boldsymbol{u}_{\mathrm{d}}\right)=0 \tag{92}
\end{equation*}
$$

6.13 Cosmic ray pressure in diffusion approximation

Cosmic rays are treated in the diffusion approximation. The equation of state is $p_{\mathrm{c}}=$ $\left(\gamma_{c}\right) e_{c}$ where the value of γ_{c} is usually somewhere between $14 / 9$ and $4 / 3$. In the momentum equation (44) the cosmic ray pressure force, $-\rho^{-1} \nabla p_{c}$ is added on the right hand side, and e_{c} satisfies the evolution equation

$$
\begin{equation*}
\frac{\partial e_{\mathrm{c}}}{\partial t}+\boldsymbol{\nabla} \cdot\left(e_{\mathrm{c}} \boldsymbol{u}\right)+p_{\mathrm{c}} \boldsymbol{\nabla} \cdot \boldsymbol{u}=\partial_{i}\left(K_{i j} \partial_{j} e_{\mathrm{c}}\right)+Q_{\mathrm{c}} \tag{93}
\end{equation*}
$$

where Q_{c} is a source term and

$$
\begin{equation*}
K_{i j}=K_{\perp} \delta_{i j}+\left(K_{\|}-K_{\perp}\right) \hat{B}_{i} \hat{B}_{j} \tag{94}
\end{equation*}
$$

is an anisotropic diffusivity tensor.

In the non-conservative formulation of this code it is advantageous to expand the diffusion term using the product rule, i.e.

$$
\begin{equation*}
\partial_{i}\left(K_{i j} \partial_{j} e_{\mathrm{c}}\right)=-\boldsymbol{U}_{\mathrm{c}} \cdot \nabla e_{\mathrm{c}}+K_{i j} \partial_{i} \partial_{j} e_{\mathrm{c}} \tag{95}
\end{equation*}
$$

where $U_{\mathrm{c} i}=-\partial K_{i j} / \partial x_{j}$ acts like an extra velocity trying to straighten magnetic field lines. We can write this term also as $\boldsymbol{U}_{\mathrm{c}}=-\left(K_{\|}-K_{\nu}\right) \boldsymbol{\nabla} \cdot(\hat{\boldsymbol{B}} \hat{\boldsymbol{B}})$, where the last term is a divergence of the dyadic product of unit vectors ${ }^{15}$ However, near magnetic nulls, this term can becomes infinite. In order to avoid this problem we are forced to limit $\boldsymbol{\nabla} \cdot(\hat{\boldsymbol{B}} \hat{\boldsymbol{B}})$, and hence $\left|\boldsymbol{U}_{\mathrm{c}}\right|$, to the maximum possible value that can be resolved at a given resolution.

A physically appealing way of limiting the maximum propagation speed is to restore an explicit time dependence in the equation for the cosmic ray flux, and to replace the diffusion term in Eq. (93) by a divergence of a flux that in turn obeys the equation

$$
\begin{equation*}
\frac{\partial \mathcal{F}_{\mathrm{c} i}}{\partial t}=-\tilde{K}_{i j} \nabla_{j} e_{\mathrm{c}}-\frac{\mathcal{F}_{\mathrm{c} i}}{\tau} \quad \text { (non-Fickian diffusion) } \tag{96}
\end{equation*}
$$

where $K_{i j}=\tau \tilde{K}_{i j}$ would be the original diffusion tensor of Eq. (94), if the time derivative were negligible. Further details are described in Snodin et al. (2006).

6.14 Particles

Particles are entities that each have a space coordinate and a velocity vector, where a fluid only has a velocity vector field (the continuity equation of a fluid in some way corresponds to the space coordinate of particles). In the code particles are present either as tracer particles or as dust particles

6.14.1 Tracer particles

Tracer particles always have the local velocity of the gas. The dynamical equations are thus

$$
\begin{equation*}
\frac{\partial \boldsymbol{x}_{i}}{\partial t}=\boldsymbol{u} \tag{97}
\end{equation*}
$$

where the index i runs over all particles. Here \boldsymbol{u} is the gas velocity at the position of the particle. One can choose between a first order (default) and a second order spline interpolation scheme (set lquadratic_interpolation=T in \&particles_init_pars) to calculate the gas velocity at the position of a tracer particle.

The sample run 'samples/dust-vortex' contains the latest setup for tracer particles.

6.14.2 Dust particles

Dust particles are allowed to have a velocity that is not similar to the gas,

$$
\begin{equation*}
\frac{\mathrm{d} \boldsymbol{x}_{i}}{\mathrm{~d} t}=\boldsymbol{v}_{i} \tag{98}
\end{equation*}
$$

[^12]The particle velocity follows an equation of motion similar to a fluid, only there is no advection term. Dust particles also experience a drag force from the gas (proportional to the velocity difference between a particle and the gas).

$$
\begin{equation*}
\frac{\mathrm{d} \boldsymbol{v}_{i}}{\mathrm{~d} t}=\ldots-\frac{1}{\tau_{\mathrm{s}}}\left(\boldsymbol{v}_{i}-\boldsymbol{u}\right) . \tag{99}
\end{equation*}
$$

Here τ_{s} is the stopping time of the dust particle. The interpolation of the gas velocity to the position of a particle is done using one of three possible particle-mesh schemes,

- NGP (Nearest Grid Point, default)

The gas velocity at the nearest grid point is used.

- CIC (Cloud in Cell, set lparticlemesh_cic=T)

A first order interpolation is used to obtain the gas velocity field at the position of a particle. Affects 8 grid points.

- TSC (Triangular Shaped Cloud, set lparticlemesh_tsc=T)

A second order spline interpolation is used to obtain the gas velocity field at the position of a particle. Affects 27 grid points.

The particle description is the proper description of dust grains, since they do not feel any pressure forces (too low number density). Thus there is no guarantee that the grains present within a given volume will be equilibrated with each other, although drag force may work for small grains to achieve that. Larger grains (meter-sized in protoplanetary discs) must be treated as individual particles.

To conserve momentum the dust particles must affect the gas with a friction force as well. The strength of this force depends on the dust-to-gas ratio ϵ_{d}, and it can be safely ignored when there is much more gas than there is dust, e.g. when $\epsilon_{d}=0.01$. The friction force on the gas appears in the equation of motion as

$$
\begin{equation*}
\frac{\partial \boldsymbol{u}}{\partial t}=\ldots-\frac{\rho_{\mathrm{p}}^{(i)}}{\rho}\left(\frac{\partial \boldsymbol{v}^{(i)}}{\partial t}\right)_{\mathrm{drag}} \tag{100}
\end{equation*}
$$

Here $\rho_{\mathrm{p}}^{(i)}$ is the dust density that particle i represents. This can be set through the parameter eps_todt in \&particle_init_pars. The drag force is assigned from the particles onto the mesh using either NGP, CIC or TSC assignment. The same scheme is used both for interpolation and for assignment to avoid any risk of a particle accelerating itself (see Hockney \& Eastwood 1981).

6.15 N-body solver

The N-body code takes advantage of the existing Particles module, which was coded with the initial intent of treating solid particles whose radius a_{\bullet} is comparable to the mean free path λ of the gas, for which a fluid description is not valid. A N-body implementation based on that module only needed to include mass as extra state for the particles, solve for the N^{2} gravitational pair interactions and distinguish between the N-body and the small bodies that are mapped into the grid as a ρ_{p} density field.

The particles of the N-body ensemble evolve due to their mutual gravity and by interacting with the gas and the swarm of small bodies. The equation of motion for particle i is

$$
\begin{equation*}
\frac{d \boldsymbol{v}_{p_{i}}}{d t}=\boldsymbol{F}_{g_{i}}-\sum_{j \neq i}^{N} \frac{G M_{j}}{\mathcal{R}_{i j}^{2}} \hat{\boldsymbol{\mathcal { R }}}_{i j} \tag{101}
\end{equation*}
$$

where $\mathcal{R}_{i j}=\left|\boldsymbol{r}_{p_{i}}-\boldsymbol{r}_{p_{j}}\right|$ is the distance between particles i and j, and $\hat{\mathcal{R}}_{i j}$ is the unit vector pointing from particle j to particle i. The first term of the R.H.S. is the combined gravity of the gas and of the dust particles onto the particle i, solved via

$$
\begin{equation*}
\boldsymbol{F}_{g_{i}}=-G \int_{V} \frac{\left[\rho_{g}(\boldsymbol{r})+\rho_{p}(\boldsymbol{r})\right] \boldsymbol{\mathcal { R }}_{i}}{\left(\mathcal{R}_{i}^{2}+b_{i}^{2}\right)^{3 / 2}} \mathrm{~d} V, \tag{102}
\end{equation*}
$$

where the integration is carried out over the whole disk. The smoothing distance b_{i} is taken to be as small as possible (a few grid cells). For few particles (<10), calculating the integral for every particle is practical. For larger ensembles one would prefer to solve the Poisson equation to calculate their combined gravitational potential.

The evolution of the particles is done with the same third-order Runge-Kutta timestepping routine used for the gas. The particles define the timestep also by the Courant condition that they should not move more than one cell at a time. For pure particle runs, where the grid is absent, one can adopt a fixed time-step $t_{p} \ll 2 \pi \Omega_{\mathrm{fp}}^{-1}$ where Ω_{fp} is the angular frequency of the fastest particle.
By now (spring 2009), no inertial accelerations are included in the N-body module, so only the inertial frame - with origin at the barycenter of the N-body ensemble - is available. For a simulation of the circular restricted three-body problem with mass ratio $q=10^{-3}$, the Jacobi constant of a test particle initially placed at position $(x, y)=(2,0)$ was found to be conserved up to one part in 10^{5} within the time span of 100 orbits.

We stress that the level of conservation is poor when compared to integrators designed to specifically deal with long-term N-body problems. These integrators are usually symplectic, unlike the Runge-Kutta scheme of the Pencil Code. As such, Pencil should not be used to deal with evolution over millions of years. But for the time-span typical of astrophysical hydrodynamical simulations, this degree of conservation of the Jacobi constant can be deemed acceptable.
As an extension of the particle's module, the N-body is fully compatible with the parallel optimization of PENCIL, which further speeds up the calculations. Parallelization, however, is not yet possible for pure particle runs, since it relies on splitting the grid between the processors. At the time of writing (spring 2009), the N-body code does not allow the particles to have a time-evolving mass.

6.16 Test-field equations

The test-field method is used to calculate turbulent transport coefficients for magnetohydrodynamics. This is a rapidly evolving field and we refer the interested reader to recent papers in this field, e.g. by Sur et al. (2008) or Brandenburg et al. (2008). For technical details; see also Sect. F.3.

6.17 Gravitational wave equations

The expansion of the universe with time is described by the scale factor $a(\tau)$, where τ is the physical time. Using conformal time, $t(\tau)=\int_{0}^{\tau} \mathrm{d} \tau^{\prime} / a\left(\tau^{\prime}\right)$, and dependent vari-

Table 5: Scale factor and conformal Hubble parameter for different values of n.

n	a	\mathcal{H}	H
0	1	0	0
$1 / 2$	$\eta / 2$	$1 / \eta$	$1 / \eta$
$2 / 3$	$\eta^{2} / 3$	$2 / \eta$	$6 / \eta^{2}$

ables that are appropriately scaled with powers of a, the hydromagnetic equations can be expressed completely without scale factor [9, 16]. This is not true, however, for the gravitational wave (GW) equations, where a dependence on a remains [16]. The time dependence of a can be modeled as a power law, $a \propto \tau^{n}$, where $n=1 / 2$ applies to the radiation-dominated era; see Table 5 the general relationship. To compare with cases where the expansion is ignored, we put $n=0$.

In the transverse traceless (TT) gauge, the six components of the spatial part of the symmetric tensor characterizing the linearized evolution of the metric perturbations $h_{i j}$, reduce to two components which, in the linear polarization basis, are the + and \times polarizations. However, the projection onto that basis is computationally intensive, because it requires nonlocal operations involving Fourier transformations. It is therefore advantageous to evolve instead the perturbation of the metric tensor, $h_{i j}$, in an arbitrary gauge, compute then $h_{i j}^{\mathrm{TT}}$ in the TT gauge, and perform then the decomposition into the linear polarization basis whenever we compute diagnostic quantities such as averages or spectra. Thus, we solve the linearized GW equation in the form [16]

$$
\begin{equation*}
\frac{\partial^{2} h_{i j}}{\partial t^{2}}=-2 \mathcal{H} \frac{\partial h_{i j}}{\partial t}+c^{2} \nabla^{2} h_{i j}+\frac{16 \pi G}{a^{2} c^{2}} T_{i j} \tag{103}
\end{equation*}
$$

for the six components $1 \leq i \leq j \leq 3$, where t is comoving time, a is the scale factor, $\mathcal{H}=\dot{a} / a$ is the comoving Hubble parameter, $T_{i j}$ is the source term, c is the speed of light, and G is Newton's constant. For $n=0$, when the cosmic expansion is ignored, we have $a=1$ and $\mathcal{H}=0$. We use the Pencil Code; for the numerical treatment of Eq. (103) and equations (105)-(107). For most of the simulations, we use 1152^{3} meshpoints on 1152 cores of a Cray XC40 system with 2.3 GHz processors.

The source term is chosen to be the traceless part of the stress tensor,

$$
\begin{equation*}
T_{i j}(\boldsymbol{x}, t)=\rho u_{i} u_{j}-B_{i} B_{j}-\frac{1}{3} \delta_{i j}\left(\rho \boldsymbol{u}^{2}-\boldsymbol{B}^{2}\right) . \tag{104}
\end{equation*}
$$

The removal of the trace is in principle not necessary, but it helps preventing a continuous build-up of a large trace, which would be numerically disadvantageous. We have ignored here the viscous stress, which is usually small.

We compute $T_{i j}$ by solving the energy, momentum, and induction equations for an ultrarelativistic gas in the form [9, 11]

$$
\begin{align*}
\frac{\partial \ln \rho}{\partial t}= & -\frac{4}{3}(\boldsymbol{\nabla} \cdot \boldsymbol{u}+\boldsymbol{u} \cdot \boldsymbol{\nabla} \ln \rho)+\frac{1}{\rho}\left[\boldsymbol{u} \cdot(\boldsymbol{J} \times \boldsymbol{B})+\eta \boldsymbol{J}^{2}\right], \tag{105}\\
\frac{\mathrm{D} \boldsymbol{u}}{\mathrm{Dt}}= & \frac{\boldsymbol{u}}{3}(\boldsymbol{\nabla} \cdot \boldsymbol{u}+\boldsymbol{u} \cdot \boldsymbol{\nabla} \ln \rho)-\frac{\boldsymbol{u}}{\rho}\left[\boldsymbol{u} \cdot(\boldsymbol{J} \times \boldsymbol{B})+\eta \boldsymbol{J}^{2}\right] \\
& -\frac{1}{4} \boldsymbol{\nabla} \ln \rho+\frac{3}{4 \rho} \boldsymbol{J} \times \boldsymbol{B}+\frac{2}{\rho} \boldsymbol{\nabla} \cdot(\rho \nu \mathbf{S})+\boldsymbol{f}, \tag{106}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial \boldsymbol{B}}{\partial t}=\nabla \times(\boldsymbol{u} \times \boldsymbol{B}-\eta \boldsymbol{J}), \tag{107}
\end{equation*}
$$

where $\boldsymbol{B}=\nabla \times \boldsymbol{A}$ is the magnetic field expressed in terms of the magnetic vector potential to ensure that $\boldsymbol{\nabla} \cdot \boldsymbol{B}=0, \boldsymbol{J}=\boldsymbol{\nabla} \times \boldsymbol{B}$ is the current density, $\mathrm{D} / \mathrm{Dt}=\partial / \partial \mathrm{t}+\mathrm{u} \cdot \boldsymbol{\nabla}$ is the advective derivative, $\mathrm{S}_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)-\frac{1}{3} \delta_{i j} u_{k, k}$ is the trace-free rate of strain tensor, and $p=\rho c_{\mathrm{s}}^{2}$ is the pressure, where $c_{\mathrm{s}}=c / \sqrt{3}$ is the sound speed for an ultra-relativistic gas. Lorentz-Heaviside units for the magnetic field are used.

We are interested in the rms value of the metric tensor perturbations and the GW energy density in the linear polarization basis. To compute $h_{i j}^{\mathrm{TT}}$ from $h_{i j}$, we Fourier transform the six components of $h_{i j}$ and $\dot{h}_{i j}$,

$$
\begin{equation*}
\tilde{h}_{i j}(\boldsymbol{k}, t)=\int h_{i j}(\boldsymbol{x}, t) e^{-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{v}} d^{3} x \quad \text { for } 1 \leq i \leq j \leq 3 \tag{108}
\end{equation*}
$$

and compute the components in the TT gauge as

$$
\begin{equation*}
\tilde{h}_{i j}^{\mathrm{TT}}(\boldsymbol{k}, t)=\left(P_{i l} P_{j m}-\frac{1}{2} P_{i j} P_{l m}\right) \tilde{h}_{l m}(\boldsymbol{k}, t), \tag{109}
\end{equation*}
$$

where $P_{i j}=\delta_{i j}-\hat{k}_{i} \hat{k}_{j}$ is the projection operator, and $\hat{\boldsymbol{k}}=\boldsymbol{k} / k$ is the unit vector of \boldsymbol{k}, with $k=|\boldsymbol{k}|$ being the modulus. Next, we compute the linear polarization bases

$$
\begin{equation*}
e_{i j}^{+}=e_{i}^{1} e_{j}^{1}-e_{i}^{2} e_{j}^{2}, \quad e_{i j}^{\times}=e_{i}^{1} e_{j}^{2}+e_{i}^{2} e_{j}^{1}, \tag{110}
\end{equation*}
$$

where e^{1} and e^{2} are unit vectors perpendicular to \boldsymbol{k}. Thus

$$
\begin{align*}
\tilde{h}_{+}(\boldsymbol{k}, t) & =\frac{1}{2} e_{i j}^{+}(\boldsymbol{k}) \tilde{h}_{i j}(\boldsymbol{k}, t), \tag{111}\\
\tilde{h}_{\times}(\boldsymbol{k}, t) & =\frac{1}{2} e_{i j}^{\times}(\boldsymbol{k}) \tilde{h}_{i j}(\boldsymbol{k}, t) . \tag{112}
\end{align*}
$$

We then return into real space and compute

$$
\begin{equation*}
h_{+/ \times}(\boldsymbol{x}, t)=\int \tilde{h}_{+/ \times}(\boldsymbol{k}, t) e^{i \boldsymbol{k} \cdot \boldsymbol{x}} d^{3} k /(2 \pi)^{3} . \tag{113}
\end{equation*}
$$

Analogous calculations are performed for $\dot{h}_{+/ \times}(\boldsymbol{x}, t)$, which are used to compute the GW energy via

$$
\begin{equation*}
\mathcal{E}_{\mathrm{GW}}(t)=\frac{c^{2}}{32 \pi G}\left(\left\langle\dot{h}_{+}^{2}\right\rangle+\left\langle\dot{h}_{\times}^{2}\right\rangle\right), \tag{114}
\end{equation*}
$$

where angle brackets denote volume averages.
Analogously to kinetic and magnetic energy and helicity spectra, it is convenient to compute the GW energy and polarization spectra integrated over concentric shells of surface $\int_{4 \pi} k^{2} \mathrm{~d} \Omega_{\boldsymbol{k}}$ in \boldsymbol{k} space, defined by

$$
\begin{align*}
S_{\dot{h}}(k) & =\int_{4 \pi}\left(\left.\dot{\tilde{h}}_{+}\right|^{2}+\left|\dot{\tilde{h}}_{\times}\right|^{2}\right) k^{2} \mathrm{~d} \Omega_{\boldsymbol{k}} \tag{115}\\
A_{\dot{h}}(k) & =\int_{4 \pi} 2 \operatorname{Im}\left(\dot{\tilde{h}}_{+} \dot{\tilde{h}}_{\times}^{*}\right) k^{2} \mathrm{~d} \Omega_{\boldsymbol{k}} \tag{116}
\end{align*}
$$

and normalized such that $\int_{0}^{\infty} S_{\dot{h}}(k) \mathrm{d} k=\left\langle\dot{h}_{+}^{2}\right\rangle+\left\langle\dot{h}_{\times}^{2}\right\rangle$ is proportional to the energy density and $\int_{0}^{\infty} A_{\dot{h}}(k) \mathrm{d} k$ is proportional to the polarized energy density. The $A_{\dot{h}}(k)$ spectra are not to be confused with the magnetic vector potential $\boldsymbol{A}(\boldsymbol{x}, t)$. The corresponding GW energy spectra are noted by

$$
\begin{align*}
& E_{\mathrm{GW}}(k)=\left(c^{2} / 32 \pi G\right) S_{\dot{h}}(k), \tag{117}\\
& H_{\mathrm{GW}}(k)=\left(c^{2} / 32 \pi G\right) A_{\dot{h}}(k) . \tag{118}
\end{align*}
$$

We also define spectra for the metric tensor perturbation,

$$
\begin{align*}
& S_{h}(k)=\int_{4 \pi}\left(\left|\tilde{h_{+}}\right|^{2}+\left|\tilde{h_{\times}}\right|^{2}\right) k^{2} \mathrm{~d} \Omega_{\boldsymbol{k}} \tag{119}\\
& A_{h}(k)=\int_{4 \pi} 2 \operatorname{Im}\left(\tilde{h_{+}}{\tilde{h_{\times}}}^{*}\right) k^{2} \mathrm{~d} \Omega_{\boldsymbol{k}} \tag{120}
\end{align*}
$$

which are normalized such that $\int_{0}^{\infty} S_{h}(k) \mathrm{d} k=h_{\mathrm{rms}}^{2}$ is the mean squared metric tensor perturbation.

7 Troubleshooting / Frequently Asked Questions

7.1 Download and setup

7.1.1 Download forbidden

A: Both GitHub and SourceForge are banned from countries on the United States Office of Foreign Assets Control sanction list, including Cuba, Iran, Libya, North Korea, Sudan and Syria; see http://de.wikipedia.org/wiki/GitHub and http://en.wikipedia.org/wiki/SourceForge. As a remedy, you might download a tarball from http://pencil-code.nordita.org/; see also Section 2.
7.1.2 When sourcing the 'sourceme.sh'/'sourceme.csh' file or running pc_setupsrc, I get error messages from the shell, like 'if: Expression Syntax.' or 'set: Variable name must begin with a letter.'

A: This sounds like a buggy shell setup, either by yourself or your system administrator - or a shell that is even more idiosyncratic than the ones we have been working with.

To better diagnose the problem, collect the following information before filing a bug report to us:

1. uname -a
2. /bin/csh -v
3. echo \$version
4. echo \$SHELL
5. ps -p \$\$
6. If you have problems while sourcing the 'sourceme' script,
(a) unset the PENCIL_HOME variable:
for csh and similar: unsetenv PENCIL_HOME
for bash and similar: unexport PENCIL_HOME; unset PENCIL_HOME
(b) switch your shell in verbose mode,
for csh and similar: set verbose; set echo
for bash and similar: set -v ; set -x
then source again.
7. If you have problems with pc_setupsrc, run it with csh in verbose mode:
/bin/csh -v -x \$PENCIL_HOME/bin/pc_setupsrc

7.2 Compilation

7.2.1 Linker can't find the syscalls functions:

```
ld: 0711-317 ERROR: Undefined symbol: .is_nan_c
ld: 0711-317 ERROR: Undefined symbol: .sizeof_real_c
ld: 0711-317 ERROR: Undefined symbol: .system_c
ld: 0711-317 ERROR: Undefined symbol: .get_env_var_c
ld: 0711-317 ERROR: Undefined symbol: .get_pid_c
ld: 0711-317 ERROR: Undefined symbol: .file_size_c
```

A: The Pencil Code needs a working combination of a Fortran- and a C-compiler. If this is not correctly set up, usually the linker won't find the functions inside the syscalls module. If that happens, either the combination of C- and Fortran-compiler is inappropriate (e.g. ifort needs icc), or the compiler needs additional flags, like g95 might need the option '-fno-second-underscore' and xlf might need the option '-qextname'. Please refer to Sect. 5.2, Table 1 .

7.2.2 Make gives the following error now:

```
PGF90-S-0017-Unable to open include file: chemistry.h (nochemistry.f90: 43)
    O inform, 0 warnings, 1 severes, 0 fatal for chemistry
Line 43 of the nochemistry routine, only has 'contains'.
```

A: This is because somebody added a new module (together with a corresponding nomodule.f90 and a module.h file (chemistry in this case). These files didn't exist before, so you need to say:

```
pc_setupsrc
```

If this does not help, say first make clean and then pc_setupsrc.

7.2.3 How do I compile the Pencil Code with the Intel (ifc) compiler under Linux?

A: The Pencil Code should compile successfully with ifc $6 . x$, ifc 7.0 , sufficiently recent versions of ifc 7.1 (you should get the latest version; if yours is too old, you will typically get an 'internal compiler error' during compilation of 'src/hydro.f90'), as well as with recent versions of ifort 8.1 (8.0 may also work).

You can find the ifort compiler atftp://download.intel.com/software/products/compilers/downloa
On many current (as of November 2003) Linux systems, there is a mismatch between the glibc versions used by the compiler and the linker. To work around this, use the following flag for compiling

```
FC=ifc -i_dynamic
```

and set the environment variable

```
LD_ASSUME_KERNEL=2.4.1; export LD_ASSUME_KERNEL
```

setenv LD_ASSUME_KERNEL 2.4.1
This has solved the problems e.g. on a system with glibc-2.3.2 and kernel 2.4.22. Thanks to Leonardo J. Milano (http://udel.edu/~lmilano/) for part of this info.

7.2.4 I keep getting segmentation faults with 'start. x ' when compiling with ifort 8.0

A: There was/is a number of issues with ifort 8.0. Make sure you have the latest patches applied to the compiler. A number of things to consider or try are:

1. Compile with the the '-static -nothreads' flags.
2. Set your stacksize to a large value (but a far too large value may be problematic, too), e.g.
limit stacksize 256m
ulimit -s 256000
3. Set the environment variable KMP_STACKSIZE to a large value (like 100M)

See also http://softwareforums.intel.com/ids/board/message?board.id=11\&message.id=1375

7.2.5 When compiling with MPI on a Linux system, the linker complains:

```
mpicomm.o: In function 'mpicomm_mpicomm_init_':
mpicomm.o(.text+0x36): undefined reference to 'mpi_init_'
mpicomm.o(.text+0x55): undefined reference to 'mpi_comm_size_'
mpicomm.o(.text+0x6f): undefined reference to 'mpi_comm_rank_'
[...]
```

A: This is the infamous underscore problem. Your MPI libraries have been compiled with G77 without the option '-fno-second-underscore', which makes the MPI symbol names incompatible with other Fortran compilers.

As a workaround, use

```
MPICOMM = mpicomm_
```

in 'Makefile.local'. Or, even better, you can set this globally (for the given computer) by inserting that line into the file ' $/ /$.adapt-mkfile.inc' (see perldoc adapt-mkfile for more details).
7.2.6 Compilation stops with the cryptic error message:

```
f95 -03 -u -c .f90.f90
Error : Could not open sourcefile .f90.f90
compilation aborted for .f90.f90 (code 1)
make[1]: *** [.f90.o] Error 1
```

What is the problem?
A: There are two possibilities:

1. One of the variables for make has not been set, so make expands it to the empty string. Most probably you forgot to specify a module in 'src/Makefile.local'. One possibility is that you have upgraded from an older version of the code that did not have some of the modules the new version has.

Compare your 'src/Makefile.local' to one of the examples that work.
2. One of the variables for make has a space appended to it, e.g. if you use the line

```
MPICOMM = mpicomm_^
```

(see $\S 7.2 .5$) with a trailing blank, you will encounter this error message. Remove the blank. This problem can also occur if you added a new module (and have an empty space after the module name in 'src/Makefile.src', i.e. CHIRAL=nochiral_), in which case the compiler will talk about "circular dependence" for the file 'nochiral'.

7.2.7 The code doesn't compile,

...there is a problem with mvar:

```
make start.x run.x
f95 -03 -u -c cdata.f90
Error: cdata.f90, line 71: Implicit type for MVAR
    detected at MVAR@)
[f95 terminated - errors found by pass 1]
make[1]: *** [cdata.o] Error 2
```

A: Check and make sure that 'mkcparam' (directory '\$PENCIL_HOME/bin') is in your path. If this doesn't help, there may be an empty 'cparam. inc' file in your 'src' directory. Remove 'cparam.inc' and try again (Note that 'cparam.inc' is automatically generated from the 'Makefile').

7.2.8 Some samples don't even compile,

as you can see on the web, http://www.nordita.org/software/pencil-code/tests.html.
samples/helical-MHDturb:
Compiling.. not ok:
make start.x run.x read_videofiles.x
make[1]: Entering directory '/home/dobler/f90/pencil-code/samples/helical-MHDturb/src'
/usr/lib/lam/bin/mpif95 -03 -c initcond.f90
/usr/lib/lam/bin/mpif95 -03 -c density.f90
use Gravity, only: gravz, nu_epicycle

Error 208 at (467:density.f90) : No such entity in the module
Error 355 : In procedure INIT_LNRHO variable NU_EPICYCLE has not been given a type
Error 355 : In procedure POLYTROPIC_LNRHO_DISC variable NU_EPICYCLE has not been given a
3 Errors
compilation aborted for density.f90 (code 1)
make[1]: *** [density.o] Error 1

```
make[1]: Leaving directory '/home/dobler/f90/pencil-code/samples/helical-MHDturb/src'
make: *** [code] Error 2
```

A: Somebody may have checked in something without having run auto-test beforehand. The problem here is that something has been added in one module, but not in the corresponding no-module. You can of course check with svn who it was.. .

7.2.9 Internal compiler error with Compaq / Dec F90

The Dec Fortran optimizer has occasional problems with 'nompicomm.f90':

```
make start.x run.x read_videofiles.x
f90 -fast -03 -tune ev6 -arch ev6 -c cparam.f90
[...]
f90 -fast -03 -tune ev6 -arch ev6 -c nompicomm.f90
otal vm 2755568 otal vm 2765296 otal vm 2775024
otal vm 2784752 otal...
Assertion failure: Compiler internal error - please submit problem r...
    GEM ASSERTION, Compiler internal error - please submit problem report
Fatal error in: /usr/lib/cmplrs/fort90_540/decfort90 Terminated
*** Exit 3
Stop.
*** Exit 1
Stop
```

A: The occurrence of this problem depends upon the grid size; and the problem never seems to occur with 'mpicomm.f90', except when ncpus=1. The problem can be avoided by switching off the loop transformation optimization (part of the '-03' optimization), via:

```
#OPTFLAGS=-fast -03 -notransform_loops
```

This is currently the default compiler setting in 'Makefile', although it has a measurable performance impact (some 8% slowdown).

7.2.10 Assertion failure under SunOS

Under SunOS, I get an error message like

```
user@sun> f90 -c param_io.f90
Assertion failed: at_handle_table[at_idx].tag == VAR_TAG,
    file ../srcfw/FWcvrt.c, line 4018
f90: Fatal error in f90comp: Abort
```

A: This is a compiler bug that we find at least with Sun's WorkShop Compiler version ' 5.0 00/05/17 FORTRAN 90 2.0 Patch 107356-05'. Upgrade the compiler version (and possibly also the operating system): we find that the code compiles and works with version 'Sun WorkShop 6 update 2 Fortran 956.2 Patch 111690-05 2002/01/17' under SunOS version '5.8 Generic_108528-11'.

7.2.11 After some dirty tricks I got pencil code to compile with MPI, ...

```
> Before that i installed lam-7.1.4 from source.
Goodness gracious me, you shouldn't have to compile your own MPI library.
```

A: Then don't use the old LAM-MPI. It is long superseded by open-mpi now. Open-mpi doesn't need a daemon to be running. I am using the version that ships with Ubuntu (e.g. 9.04):

```
frenesi:*> aptitude -w 210 search openmpi | grep '^i'
    libopenmpi-dev - high performance message passing library -- header files
A libopenmpi1 - high performance message passing library -- shared library
    openmpi-bin - high performance message passing library -- binaries
A openmpi-common - high performance message passing library -- common files
    openmpi-doc - high performance message passing library -- man pages
```

Install that and keep your configuration (Makefile.src and getconf.csh) close to that for 'frenesi' or 'norlx50'. That should work.

7.2.12 Error: Symbol 'mpi_comm_world' at (1) has no IMPLICIT type

```
I installed the pencil code on Ubuntu system and tested "run.csh"
in ...\samples\conv-slab. Here the code worked pretty well.
Nevertheless, running (auto-test), I found there are some errors.
The messages are,
Error: Symbol 'mpi_comm_world' at (1) has no IMPLICIT type
Fatal Error: Error count reached limit of 25.
make[2]: *** [mpicomm_double.o] Error 1
make[2]: Leaving directory
'/home/pkiwan/Desktop/pencil-code/samples/2d-tests/selfgravitating-shearwave/src'
make[1]: *** [code] Error 2
make[1]: Leaving directory
'/home/pkiwan/Desktop/pencil-code/samples/2d-tests/selfgravitating-shearwave/src'
make: *** [default] Error 2
```

Finally, \#\#\# auto-test failed \#\#\#

Will it be OK? Or, how can I fix this?

A: Thanks for letting me know about the status, and congratulations on your progress! Those tests that fail are those that use MPI. If your machine is a dual or multi core machine, you could run faster by running under MPI. But this is probably not crucial for you at this point. (I just noticed that there is a ToDo listed in the auto-test command to implement the option not to run the MPI tests, but this hasn't been done yet. So I guess you can start with the science next.

7.2.13 Error: Can't open included file 'mpif.h'

It always worked, but now, after some systems upgrade, I get

```
gfortran -03 -o mpicomm.o -c mpicomm.f90
```

Error: Can't open included file 'mpif.h'

When I say locate mpif.h I only get things like

```
/scratch/ntest/1.2.7p1-intel/include/mpif.h
```

But since I use FC=mpif90 I thought I don't need to worry.
A: Since you use $\mathrm{FC}=$ mpif90 there must definitely be something wrong with their setup. Try mpif90 -showme or mpif90 -show; the '-I' option should say where it looks for 'mpif.h'. If those directories don't exist, it's no wonder that it doesn't work, and it is time to complain.

7.3 Pencil check

7.3.1 The pencil check complains for no reason.

A: The pencil check only complains for a reason.

7.3.2 The pencil check reports MISSING PENCILS and quits

A: This could point to a serious problem in the code. Check where the missing pencil is used in the code. Request the right pencils, likely based on input parameters, by adapting one or more of the pencil_criteria_MODULE subroutines.

7.3.3 The pencil check reports unnecessary pencils

The pencil check reports possible overcalculation... pencil rho (43) is requested, but does not appear to be required!

A: Such warnings show that your simulation is possibly running too slowly because it is calculating pencils that are not actually needed. Check in the code where the unnecessary pencils are used and adapt one or more of the pencil_criteria_MODULE subroutines to request pencils only when they are actually needed.

7.3.4 The pencil check reports that most or all pencils are missing

A: This is typically a thing that can happen when testing new code development for the first time. It is usually an indication that the reference df changes every time you call pde. Check whether any newly implemented subroutines or functionality has a "memory", i.e. if calling the subroutine twice with the same f gives different output df.

7.3.5 Running the pencil check triggers mathematical errors in the code

A: The pencil check puts random numbers in f before checking the dependence of $d f$ on the chosen set of pencils. Sometimes these random numbers are inconsistent with the physics and cause errors. In that case you can set lrandom_f_pencil_check=F in \&run_pars in 'run. in'. The initial condition may contain many idealized states (zeros or ones) which then do not trigger pencil check errors when lrandom_f_pencil_check=F, even if pencils are missing. But it does prevent mathematical inconsistencies.

7.3.6 The pencil check still complains

A: Then you need to look into the how the code and the pencil check operate. Reduce the problem in size and dimensions to find the smallest problem that makes the pencil check fail (e.g. 1 x 1 x 8 grid points). At the line of 'pencil_check.f90' when a difference is found between df_ref and df, add some debug lines telling you which variable is inconsistent and in what place. Often you will be surprised that the pencil check has correctly found a problem in the simulation.

7.3.7 The pencil check is annoying so I turned it off

A: Then you are taking a major risk. If one or more pencils are not calculated properly, then the results will be wrong.

7.4 Running

7.4.1 Why does 'start. x ' / 'start.csh' write data with periodic boundary conditions?

A: Because you are setting the boundary conditions in 'run.in', not in 'start.in'; see Sect. 5.16.1. There is nothing wrong with the initial data - the ghost-zone values will be re-calculated during the very first time step.

7.4.2 csh problem?

Q: On some rare occasions we have problems with csh not being supported on other machines. (We hope to fix this by contacting the responsible person, but may not be that trivial today!) Oliver says this is a well known bug of some years ago, etc. But maybe in the long run it would be good to avoid csh.

A: These occasions will become increasingly frequent, and eventually for some architectures, there may not even be a csh variant that can be installed.

We never pushed people to use pc_run and friends (and to report corresponding bugs and get them fixed), but if we don't spend a bit of effort (or annoy users) now, we create a future emergency, where someone needs to run on some machine, but there is no csh and he or she just gets stuck.

We don't have that many csh files, and for years now it should be possible to compile run without csh (using bin/pc_run) - except that people still fall back on the old way of
doing things. This is both cause and consequence of the 'new' way not being tested that much, at least for the corner cases like 'RERUN', 'NEWDIR', ‘SCRATCH_DIR'.

7.4.3 'run.csh' doesn't work:

Invalid character ',' in NAMELIST input
Program terminated by fatal I/O error
Abort
A: The string array for the boundary condition, e.g. bcx or bcz is too long. Make sure it has exactly as many elements as nvar is big.

7.4.4 Code crashes after restarting

```
> > removing mu_r from the namelist just 'like that' makes the code
> > backwards incompatible.
>
> That means that we can never get rid of a parameter in start.in once we
> have introduced it, right?
```

A: In the current implementation, without a corresponding cleaning procedure, unfortunately yes.

Of course, this does not affect users' private changes outside the central svn tree.

7.4.5 auto-test gone mad...?

Q: Have you ever seen this before:

```
giga01:/home/pg/n7026413/cvs-src/pencil-code/samples/conv-slab> auto-test
/home/pg/n7026413/cvs-src/pencil-code/samples/conv-slab:
    Compiling.. ok
        No data directory; generating data -> /var/tmp/pencil-tmp-25318
    Starting.. ok
    Running.. ok
    Validating results..Malformed UTF-8 character (unexpected continuation
byte 0x80, with no preceding start byte) in split at
/home/pg/n7026413/cvs-src/pencil-code/bin/auto-test line 263.
Malformed UTF-8 character (unexpected continuation byte 0x80, with no
preceding start byte) in split at
/home/pg/n7026413/cvs-src/pencil-code/bin/auto-test line 263.
```

A: You are running on a RedHat 8 or 9 system, right?
Set LANG=POSIX in your shell's startup script and life will be much better.

7.4.6 Can I restart with a different number of cpus?

Q: I am running a simulation of nonhelical turbulence on the cluster using MPI. Suppose if I am running a 128^{3} simulation on 32 cpus/cores i.e.

```
integer, parameter :: ncpus=32,nprocy=2,nprocz=ncpus/nprocy,nprocx=1
integer, parameter :: nxgrid=128,nygrid=nxgrid,nzgrid=nxgrid
```

And I stop the run after a bit. Is there a way to resume this run with different number of cpus like this :

```
integer, parameter :: ncpus=16,nprocy=2,nprocz=ncpus/nprocy,nprocx=1
integer, parameter :: nxgrid=128,nygrid=nxgrid,nzgrid=nxgrid
```

I understand it has to be so in a new directory but making sure that the run starts from where I left it off in the previous directory.

A: The answer is no, if you use the standard distributed io. There is also parallel io, but I never used it. That would write the data in a single file, and then you could use the data for restart in another processor layout.

7.4.7 Can I restart with a different number of cpus?

Q: Is it right that once the simulation is resumed, pencil-code takes the last data from var.dat (which is the current snapshot of the fields)? If that is true, then, is it not possible to give that as the initial condition for the run in the second directory (with changed "ncpus")? Is there a mechanism already in place for that?

A: Yes, the code restarts from the last var.dat. It is written after a successful completion of the run, but it crashes or you hit a time-out, there will be a var.dat that is overwritten every isave timesteps. If the system stops during writing, some var.dat files may be corrupt or have the wrong time. In that case you could restart from a good VAR file, if you have one, using, e.g.,

```
restart-new-dir-VAR . 46
```

where 46 is the number of your VAR file, i.e., VAR46 im this case. To restart in another directory, you say, from the old run directory,

```
restart-new-dir ../another_directory
```

Hope this helps. Look into pencil-code/bin/restart-new-dir to see what it is doing.

7.4.8 fft_xyz_parallel_3D: nygrid needs to be an integer multiple...

Q: I just got an:

```
fft_xyz_parallel_3D: nygrid needs to be an integer multiple of nprocy*nprocz
```

In my case, nygrid=2048, nprocy=32, and nprocz=128, so nprocy*nprocz=4096. In other words, 2048 needs to be a multiple of 4096 . But isn't this the case then?

A: No, because $2048=0.5 * 4096$ and 0.5 is not an integer. Maybe try either setting nprocz=64 or nprocy=64. You could compensate the change of ncpus with the x-direction.

For 2048^{3} simulations, nprocy=32 and nprocz=64 would be good. A list of good meshes is given in Table 4.

7.4.9 Unit-agnostic calculations?

Q: The manual speaks about unit-agnostic calculations, stating that one may choose to interpret the results in any (consistent) units, depending on the problem that is solved at hand. So, for example, if I chose to run the ' 2 d-tests/battery_term' simulation for an arbitrary number of time-steps and then choose to examine the diagnostics, am I correct in assuming the following:

1) [Brms] = Gauss (as output by unit_magnetic, before the run begins)
2) $[t]=s$ (since the default unit system is left as CGS)
3) [urms] $=\mathrm{cm} / \mathrm{s}$ (again, as output by unit_velocity, before the run begins)
4) and etc. for the units of the other diagnostics

A: Detailed correspondence on this item can be found on: https://groups.google.com/forum/?fromgroups\#!topic/pencil-code-discuss/zek-uYNbgXI There is also working material on unit systems under http://www.nordita.org/~brandenb/teach/PencilCode/MixedTopics.html with a link to http://www.nordita.org/~brandenb/teach/PencilCode/material/AlfvenWave_SIunits/
Below is a pedagogical response from Wlad Lyra:
In the sample battery-term, the sound speed cs0=1 sets the unit of velocity. Together with the unit of length, that sets your unit of time. The unit of magnetic field follows from the unit of velocity, density, and your choice of magnetic permittivity, according to the definition of the Alfven velocity.
If you are assuming cgs, you are saying that your sound speed cs $0=1$ actually means $[\mathrm{U}]=1 \mathrm{~cm} / \mathrm{s}$. Your unit of length is equivalently 1 cm , and therefore the unit of time is $[\mathrm{t}]=[\mathrm{L}] /[\mathrm{U}]=1 \mathrm{~s}$. The unit of density is [rho] $=1 \mathrm{~g} / \mathrm{cm}^{\wedge} 3$. Since in cgs $\mathrm{vA}=\mathrm{B} / \mathrm{sqrt}(4 * \mathrm{pi} *$ rho $)$, your unit of magnetic field is $[B]=[U] * \operatorname{sqrt}([r h o] * 4 * p i) ~ \sim ~ 3.5$ sqrt (g/cm) / s = 3.5 Gauss.
If instead you are assuming SI, you have cs0=1 assuming that means $[\mathrm{U}]=1 \mathrm{~m} / \mathrm{s}$ and $\mathrm{rho} 0=1$ assuming that to mean $[\mathrm{rho}]=1 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$. Using [L]=1 m , you have still [t$]=1 \mathrm{~s}$, but now what appears as $\mathrm{B}=1$ in your output is actually $[\mathrm{B}]=[\mathrm{U}] * \operatorname{sqrt}(\mathrm{mu} *[\mathrm{rho}])=1 \mathrm{~m} / \mathrm{s} * \operatorname{sqrt}(4 * \mathrm{pi} * 1 \mathrm{e}-7$ $\left.\mathrm{N} * \mathrm{~A}-21 \mathrm{~kg} / \mathrm{m}^{\wedge} 3\right) ~ \sim 0.0011210 \mathrm{~kg} /(\mathrm{s} \wedge 2 * \mathrm{~A}) \sim 11$ Gauss.

You can make it more interesting and use units relevant to the problem. Say you are at the photosphere of the Sun. You may want to use dimensionless cs0=1 meaning a sound speed of $10 \mathrm{~km} / \mathrm{s}$. Your appropriate length can be a megameter. Now your time unit is $[\mathrm{t}]=[\mathrm{L}] /[\mathrm{U}]=1 \mathrm{e} 3 \mathrm{~km} / 10 \mathrm{~km} / \mathrm{s}=10^{\wedge} 2 \mathrm{~s}$, i.e., roughly 1.5 minute. For density, assume $\mathrm{rho}=2 \mathrm{x} 10-4 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$, typical of the solar photosphere. Your unit of magnetic field is therefore [B] $=[\mathrm{U}] * \operatorname{sqrt}([r h o] *$ $4 * \mathrm{pi})=1 \mathrm{e} 6 \mathrm{~cm} / \mathrm{s} * \operatorname{sqrt}(4 * \mathrm{pi} * 2 \mathrm{e}-7 \mathrm{~g} / \mathrm{cm} \wedge 3) \sim 1585.33$ Gauss.

Notice that for $m u 0=1$ and rho0=1 you simply have $v A=B$. Then you can conveniently set the field strength by your choice of plasma beta (=

```
2*cs^2/vA^2). There's a reason why we like dimensionless quantities!
```


7.5 Visualization

7.5.1 'start.pro' doesn't work:

```
Reading grid.dat..
Reading param.nml..
\% Expression must be a structure in this context: PAR.
\% Execution halted at: \$MAIN\$ }10
/home/brandenb/pencil-code/runs/forced/hel1/../../../idl/start.pro
```

A: You don't have the subdirectory 'data' in your IDL variable !path. Make sure you source 'sourceme.csh'/'sourceme. sh' or set a sufficient IDL path otherwise.

7.5.2 'start.pro' doesn't work:

Isn't there some clever (or even trivial) way that one can avoid the annoying error messages that one gets, when running e.g. ".r rall" after a new variable has been introduced in "idl/varcontent.pro"? Ever so often there's a new variable that can't be found in my param2.nml - this time it was IECR, IGG, and ILNTT that I had to circumvent. . .

A: The simplest solution is to invoke 'NOERASE', i.e. say
touch NOERASE
start.csh
or, alternatively, start_run.csh. What it does is that it reruns src/start.x with a new version of the code; this then produces all the necessary auxiliary files, but it doesn't overwrite or erase the 'var.dat' and other 'VAR' and 'slice' files.

7.5.3 Something about tag name undefined:

Q: In one of my older run directories I can't read the data with idl anymore. What should I do? Is says something like

```
Reading param.nml..
% Tag name LEQUIDIST is undefined for structure <Anonymous>.
% Execution halted at: $MAIN$ }18
    /people/disk2/brandenb/pencil-code/idl/start.pro
```

A: Go into 'data/param.nml' and add, LEQUIDIST=T anywhere in the file (but before the last slash).

7.5.4 Something INC in start.pro

Q: start doesn't even work:

```
% Compiled module: $MAIN$.
nname= 11
Reading grid.dat..
Reading param.nml..
Can't locate Namelist.pm in INC (INC contains: /etc/perl /usr/local/lib/perl/5.8.4 /us
BEGIN failed--compilation aborted at /home/brandenb/pencil-code/bin/nl2idl line 49.
```

A: Go into '\$PENCIL_HOME' and say svn up sourceme.csh and/or svn up sourceme.sh. (They were just out of date.)

7.5.5 nl2idl problem when reading param2.nml

Q: Does anybody encounter a backward problem with nl2idl? The file param*.nml files are checked in under 'pencil-code/axel/couette/SStrat128a_mu0.20_g2' and the problem is below.

```
    at /people/disk2/brandenb/pencil-code/bin/nl2idl line 120
HCOND0= 0.0,HCOND1= 1.000000,HCOND2= 1.000000,WIDTHSS= 1.192093E-06,MPOLYO=
`------ HERE
    at /people/disk2/brandenb/pencil-code/bin/nl2idl line 120
```

A: The problem is the stupid ifc compiler writing the following into the namelist file:

```
COOLING_PROFILE='gaussian ',COOLTYPE='Temp
'}\textrm{COOL}=0.0,\textrm{CS2COOL}=0.0,RCOOL=1.000000,WCOOL= 0.1000000,FBOT= 0.0,CHI_T= 0.
```

If you add a comma after the closing quote:

```
COOLING_PROFILE='gaussian ', COOLTYPE='Temp
, ,COOL= 0.0,CS2COOL= 0.0,RCOOL= 1.000000,WCOOL= 0.1000000,FBOT= 0.0,CHI_T= 0.0
```

things will work.
Note that ifc cannot even itself read what it is writing here, so if this happened to occur in param.nml, the code would require manual intervention after each start.csh.

7.5.6 Spurious dots in the time series file

Q: Wolfgang, you explained it to me once, but I forget. How can one remove spurious dots after the timestep number if the time format overflows?

A: I don't know whether it exists anywhere, but it's easy. In Perl you'd say perl -pe 's/^($\backslash \mathrm{s} *[-0-9]+) \backslash .([-0-9 \mathrm{eEdD}]) / \$ 1 \$ 2 / \mathrm{g}$ '
and in sed (but that's harder to read)

```
sed 's/^\( *[-0-9]\+\)\.\([-0-9eEdD]\)/\1 \2/g'
```


7.5.7 Problems with pc_varcontent.pro

Q:

```
    % Subscript range values of the form low:high must be >= 0, < size, with low
    <= high: VARCONTENT.
% Error occurred at: PC_VARCONTENT
        391
    /home/brandenb/pencil-code/idl/read/pc_varcontent.pro
% PC_READ_VAR 318
    /home/brandenb/pencil-code/idl/read/pc_read_var.pro
%
    $MAIN$
```

A: Make sure you don't have any unused items in your src/cparam.local such as
! MAUX CONTRIBUTION 3
! COMMUNICATED AUXILIARIES 3
They would leave gaps in the counting of entries in your data/index. pro file.

7.6 General questions

7.6.1 "Installation" procedure

Why don't you use GNU autoconf/automake for installation of the PENCIL Code?
A: What do you mean by "installation"? Unlike the applications that normally use autoconf, the Pencil Code is neither a binary executable, nor a library that you compile once and then dump somewhere in the system tree. Autoconf is the right tool for these applications, but not for numerical codes, where the typical compilation and usage pattern is very different:

You have different directories with different 'Makefile.local' settings, recompile after introducing that shiny new term in your equations, etc. Moreover, you want to sometimes switch to a different compiler (but just for that run directory) or another MPI implementation. Our adapt-mkfile approach gives you this flexibility in a reasonably convenient way, while doing the same thing with autoconf would be using that system against most of its design principles.

Besides, it would really get on my (WD's) nerves if I had to wait two minutes for autoconf to finish before I can start compiling (or maybe $5-10$ minutes if I worked on a NEC machine...).

Finally, if you have ever tried to figure out what a 'configure' script does, you will appreciate a comprehensible configuration system.

7.6.2 Small numbers in the code

What is actually the difference between epsi, tini and tiny?
A:
F90 has two functions epsilon() and tiny(), with
epsilon(x) = 1.1920929e-07
tiny (x) $=1.1754944 \mathrm{e}-38$
(and then there is huge $(x)=3.4028235 \mathrm{e}+38$)

```
for a single-precision number x.
epsilon(x) is the smallest number that satisfies
    1+epsilon(1.) /= 1 ,
while tiny(x) is the smallest number that can be represented without
precision loss.
In the code we have variants hereof,
    epsi=5*epsilon(1.0)
    tini=5*tiny(1.0)
    huge1=0.2*huge(1.0)
that have added safety margins, so we don't have to think about doing
things like 1/tini.
So in sub.f90,
    - evr = evr / spread(r_mn+epsi,2,3)
did (minimally) affect the result for r_mn=0(1), while the correct version
    + evr = evr / spread(r_mn+tini,2,3)
only avoids overflow.
```


7.6.3 Why do we need a/lphysics/namelist in the first place?

Wolfgang answered on 29 July 2010: "cdata.f90' has the explanation"

```
! Constant 'parameters' cannot occur in namelists, so in order to get the
! now constant module logicals into the lphysics name list...
! We have some proxies that are used to initialize private local variables
! called lhydro etc, in the lphysics namelist!
```

So the situation is this: we want to write parameters like ldensity to param.nml so IDL (and potentially octave, python, etc.) can know whether density was on or not. To avoid confusion, we want them to have exactly their original names. But we cannot assemble the original ldensity etc. constants in a namelist, so we have to define a local ldensity variable. And to provide it with the value of the original cdata.ldensity, we need to transfer the value via ldensity_var. That's pretty scary, although it seems to work fine. I can track the code back to the big eos_merger commit, so it may originate from that branch. One obvious problem is that you have to add code in a number of places (the ldensity \rightarrow ldensity_var assignment and the local definition of ldensity) to really get what you need. And when adding a new boolean of that sort to 'cdata.f90', you may not even have a clue that you need all the other voodoo.

There may be a cleaner solution involving generated code. Maybe something like

```
logical :: ldensity ! INCLUDE_IN_LPHYSICS
```

could later generate code (in some param_io_extra.inc file) that looks like this:

```
write(unit, *) 'ldensity = ', ldensity
```

i.e. we can manually write in namelist format. But maybe there are even simpler solutions?

7.6.4 Can I run the code on a Mac?

A: Macs work well for Linux stuff, except that the file structure is slightly different. Problems when following Linux installs can usually be traced to the PATH. For general reference, if you need to set an environment variable for an entire OS-X login session, google environment.plist. That won't be needed here.

For a Mac install, the following should work:
a) Install Dev Tools (an optional install on the MacOS install disks). Unfortunately, last time I checked the svn version that comes with DevTools is obsolete. So:
b) Install MacPorts (download from web). Note that MacPorts installs to a nonstandard location, and will need to be sourced. The installation normally drops an appropriate line in .profile. If it does so, make sure that that line gets sourced. Otherwise
export PATH=/opt/local/bin:/opt/local/sbin:\$PATH
export MANPATH=/opt/local/share/man:\$MANPATH
c) Install g95 (download from web). Make sure it is linked in /bin.
d) execute macports svn install
e) download the pencil-code and enjoy.

Note: the above way to get svn works. It takes a while however, so there are certainly faster ways out there. If you already have a non-obsolete svn version, use that instead.

7.6.5 Pencil Code discussion forum

Do I just need to send an email somewhere to subscribe or what?
A" The answer is yes; just go to:

```
http://groups.google.com/group/pencil-code-discuss
```


7.6.6 The manual

It would be a good idea to add this useful information in the manual, no?
A: When you have added new stuff to the code, don't forget to mention this in the 'pencil-code/doc/manual.tex' file.

Again, the answer is yes; just go to:

```
cd pencil-code/doc/
vi manual.tex
svn ci -m "explanations about a new module in the code"
```


Part II

Programming the PENCIL CODE

All developers are supposed to have an up-to-date entry in the file 'pencil-code/license/developers.txt' so that they can be contacted in case a code change breaks an auto-test or other code functionality.

Several Pencil Code committers have done several hundred check-ins, but many of the currently 68 registered people on the repository have hardly done anything. To put a number to this, one can define an h index, which gives the number of users, who have done at least as many as that number of check-ins. This h index is currently 32 , i.e., 32 users have done at least 32 check-ins; see Figure 6 .

Figure 6: The h index of Pencil Code check-ins.

The Pencil Code has expanded approximately linearly in the number of lines of code and the number of subroutines (Fig. 77). The increase in the functionality of the code is documented by the rise in the number of sample problems (Fig. 8). It is important to monitor the performance of the code as well. Figure 9 shows that for most of the runs the run time has not changed much.
Before making changes to the code, it is important that you verify that you can run the pc_auto-test successfully. Don't do this when you have already modified the code, because then you cannot be sure that any problems are caused by your changes, or because it wouldn't have worked anyway. Also, keep in mind that the code is public, so your changes should make sense from a broader perspective and should not only be intended for yourself. Regarding more general aspects about coding standards see Sect. B. 2 .

In order to keep the development of the code going, it is important that the users are able to understand and modify (program!) the code. In this section we explain first how

Figure 7: Number of lines of code and the number of subroutines since the end of 2001. The jump in the Summer of 2005 was the moment when the developments on the side branch (eos branch) were merged with the main trunk of the code. Note the approximately linear scaling with time.
to orient yourself in the code and to understand what is in it, and then to modify it according to your needs.
The Pencil Code check-ins occur regularly all the time. By the Pencil Code User Meeting 2010 we have arrived at a revision number of 15,000 . In February 2017, the number of check-ins has risen to 26,804; see https://github.com/pencil-code/pencil-code. Major code changes are nowadays being discussed by the Pencil Code Steering Committee (https://www.nordita.org/~brandenb/pencil-code/PCSC/). The increase of the revision number with time is depicted in Figure 10. The number of Pencil Code developers increases too (Figure 11), but the really active ones are getting rare. This may indicate that new users can produce new science with the code as it is, but it may also indicate that it is getting harder to understand the code. How to understand the code will be discussed in the next section.

Figure 8: Number of tests in the sample directory that are used in the nightly auto tests. Note again the approximately linear scaling with time.

Figure 9: Run time of the daily auto-tests since August 17, 2008. For most of the runs the run time has not changed much. The occasional spikes are the results of additional load on the machine.

Figure 10: Number of check-ins since 2002. Note again the linear increase with time, although in the last part of the time series there is a notable speed-up.

Figure 11: Check-ins since 2002 per user. Users with more than 100 check-ins are color coded.

8 Understanding the code

Understanding the code means looking through the code. This is not normally done by just printing out the entire code, but by searching your way through the code in order to address your questions. The general concept will be illustrated here with an example.

8.1 Example: how is the continuity equation being solved?

All the physics modules are solved in the routine pde, which is located in the file and module 'Equ'. Somewhere in the pde subroutine you find the line

```
call dlnrho_dt(f,df,p)
```

This means that here the part belonging to $\partial \ln \rho / \partial t$ is being assembled. Using the grep command you will find that this routine is located in the module density, so look in there and try to understand the pieces in this routine. We quickly arrive at the following crucial part of code,

```
!
! Continuity equation.
!
    if (lcontinuity_gas) then
    if (ldensity_nolog) then
        df(l1:l2,m,n,irho) = df(l1:12,m,n,irho) - p%ugrho - p%rho*p%divu
    else
        df(l1:l2,m,n,ilnrho) = df(l1:12,m,n,ilnrho) - p%uglnrho - p%divu
    endif
endif
```

where, depending on some logicals that tell you whether the continuity equation should indeed be solved and whether we do want to solve for the logarithmic density and not the actual density, the correct right hand side is being assembled. Note that all these routines always only $a d d$ to the existing $\mathrm{df}(11: 12, \mathrm{~m}, \mathrm{n}, \mathrm{ilnrho)}$ array and never reset it. Resetting df is only done by the timestepping routine. Next, the pieces p\%uglnrho and $\mathrm{p} \%$ divu are being subtracted. These are pencils that are organized in the structure with the name p. The meaning of their names is obvious: uglnrho refers to $u \cdot \nabla \ln \rho$ and divu refers to $\nabla \cdot \boldsymbol{u}$. In the subroutine pencil_criteria_density you find under which conditions these pencils are requested. Using grep, you also find where they are calculated. For example p\%uglnrho is calculated in 'density.f90'; see

```
call u_dot_grad(f,ilnrho,p%glnrho,p%uu,p%uglnrho,UPWIND=lupw_lnrho)
```

So this is a call to a subroutine that calculates the $u \cdot \nabla$ operator, where there is the possibility of upwinding, but this is not the default. The piece divu is calculated in 'hydro.f90' in the line

```
!
```

! Calculate uij and divu, if requested.

Note that the divergence calculation uses the velocity gradient matrix as input, so no new derivatives are recalculated. Again, using grep, you will find that this calculation and many other ones happen in the module and file 'sub.f90'. The various derivatives that enter here have been calculated using the gij routine, which calls the der routine, e.g., like so

```
k1=k-1
do i=1,3
    do j=1,3
        if (nder==1) then
            call der(f,k1+i,tmp,j)
```

For all further details you just have to follow the trail. So if you want to know how the derivatives are calculated, you have to look in deriv.f90, and only here is it where the indices of the f array are being addressed.

If you are interested in magnetic fields, you have to look in the file 'magnetic.f90'. The right hand side of the equation is assembled in the routine

```
!****************************************************************************
    subroutine daa_dt(f,df,p)
!
! Magnetic field evolution.
!
! Calculate dA/dt=uxB+3/2 Omega_0 A_y x_dir -eta mu_0 J.
! For mean field calculations one can also add dA/dt=...+alpha*bb+delta*WXJ.
! Add jxb/rho to momentum equation.
! Add eta mu_0 j2/rho to entropy equation.
!
```

where the header tells you already a little bit of what comes below. It is also here where ohmic heating effects and other possible effects on other equations are included, e.g.

```
!
! Add Ohmic heat to entropy or temperature equation.
!
    if (lentropy .and. lohmic_heat) then
        df(l1:12,m,n,iss) = df(l1:12,m,n,iss) &
                            + etatotal*mu0*p%j2*p%rho1*p%TT1
    endif
```

We leave it at this and encourage the user to do similar inspection work on a number of other examples. If you think you find an error, file a ticket at http://code.google.com/p/pencil-code/issues/list. You can of course also repair it!

9 Adapting the code

9.1 The Pencil Code coding standard

As with any code longer than a few lines the appearance and layout of the source code is of the utmost importance. Well laid out code is more easy to read and understand and as such is less prone to errors.

A consistent coding style has evolved in the Pencil Code and we ask that those contributing try to be consistent for everybody's benefit. In particular, it would be appreciated if those committing changes of existing code via svn follow the given coding style.

There are not terribly many rules and using existing code as a template is usually the easiest way to proceed. In short the most important rules are:

- tab characters do not occur anywhere in the code (in fact the use of tab character is an extension to the Fortran standard).
- Code in any delimited block, e.g. if statements, do loops, subroutines etc., is indented be precisely 2 spaces. E.g.

```
if (lcylindrical) then
    call fatal_error('del2fjv','del2fjv not implemented')
endif
```

- continuation lines (i.e. the continuation part of a logical line that is split using the $\&$ sign) are indented by 4 spaces. E.g. (note the difference from the previous example)

```
if (lcylindrical) &
    call fatal_error('del2fjv','del2fjv not implemented')
[...]
```

- There is always one space separation between 'if' and the criterion following in parenthesis:

```
if (ldensity_nolog) then
    rho=f(l1:l2,m,n,irho)
endif
```

This is wrong:

```
if(ldensity_nolog) then ! WRONG
    rho=f(l1:l2,m,n,irho)
endif
```

- In general, try to follow common practice used elsewhere in the code. For example, in the code fragment above there are no empty spaces within the mathematical expressions programmed in the code. A unique convention helps in finding certain expressions and patterns in the code. However, empty spaces are often used after commas and semicolons, for examples in name lists.
- Relational operators are written with symbols ($==, /=,<,<=,>,\rangle=$), not with characters (.eq., .ne., .lt., .le., .gt., .ge.).
- In general all comments are placed on their own lines with the '!' appearing in the first column.
- All subroutine/functions begin with a standard comment block describing what they do, when and by whom they were created and when and by whom any nontrivial modifications were made.
- Lines longer that 78 characters should be explicitly wrapped using the \& character, unless there is a block of longer lines that can only be read easily when they are not wrapped. Always add one whitespace before the \& character.

These and other issues are discussed in more depth and with examples in Appendix B, and in particular in Sect. B.2.

9.2 Adding new output diagnostics

With the implementation of new physics and the development of new procedures it will become necessary to monitor new diagnostic quantities that have not yet been implemented in the code. In the following, we describe the steps necessary to set up a new diagnostic variable.

This is nontrivial as, in order to keep latency effects low on multi-processor machines, the code minimizes the number of global reduction operations by assembling all quantities that need the maximum taken in fmax, and those that need to be summed up over all processors (mostly for calculating mean quantities) in fsum (see subroutine diagnostic in file 'src/equ.f90').

As a sample variable, let us consider $j b m$ (the volume average $\langle\boldsymbol{j} \cdot \boldsymbol{B}\rangle$). Only the module magnetic will be affected, as you can see (the diagnostic quantity jbm is already implemented) with

```
unix> grep -i jbm src/*.f90
```

If we pretend for the sake of the exercise that no trace of $j b m$ was in the code, and we were only now adding it, we would need to do the following

1. add the variable idiag_jbm to the module variables of Magnetic in both 'magnetic.f90' and 'nomagnetic.f90':
```
integer :: idiag_jbm=0
```

The variable idiag_jbm is needed for matching the position of jbm with the list of diagnostic variables specified in 'print.in'.
2. in the subroutine daa_dt in 'magnetic.f90', declare and calculate the quantity $j b$ (the average of which will be jbm), and call sum_mn_name

```
real, dimension (nx) :: jb !jj·BB
[...]
if (ldiagnos) then ! only calculate if diagnostics is required
    if (idiag_jbm/=0) then ! anybody asked for jbm?
        call dot_mn(jj,bb,jb) ! assuming jj and bb are known
        call sum_mn_name(jb,i_jbm)
    endif
endif
```

3. in the subroutine rprint_magnetic in both 'magnetic.f90', add the following:
```
!
! reset everything in case of RELOAD
! (this needs to be consistent with what is defined above!)
!
if (lreset) then ! need to reset list of diagnostic variables?
    [...]
    idiag_jbm=0
    [...]
endif
!
! check for those quantities that we want to evaluate online
!
do iname=1,nname
    [...]
    call parse_name(iname,cname(iname),cform(iname),'jbm',idiag_jbm)
    [...]
enddo
[...]
!
    write column, i_XYZ, where our variable XYZ is stored
!
[...]
write(3,*) 'i_jbm=',idiag_jbm
[...]
```

4. in the subroutine rprint_magnetic in 'nomagnetic.f90', add the following (newer versions of the code may not require this any more):
```
!
    write column, i_jbm, where our variable jbm is stored
    idl needs this even if everything is zero
[...]
write(3,*) 'i_jbm=',idiag_jbm
[...]
```

5. and don't forget to add your new variable to 'print.in':
```
jbm(f10.5)
```

If, instead of a mean value, you want a new maximum quantity, you need to replace sum_mn_name() by max_mn_name().

Sect. 5.8.1 describes how to output horizontal averages of the magnetic and velocity fields. New such averages can be added to the code by using the existing averaging procedures calc_bmz() or calc_jmz() as examples.

9.3 The f-array

The ' f ' array is the largest array in the Pencil Code and its primary role is to store the current state of the timestepped PDE variables. The f-array and its slightly smaller counter part (the df-array; see below) are the only full size 3D arrays in the code. The f-array is of type real but PDEs for a complex variable may be solved by using two slots in the f-array. The actual size of the f-array is $m x \times m y \times m z \times$ mfarray. Here, mfarray $=$ mvar + maux + mglobal + mscratch where mvar refers to the number of real PDE variables.

As an example, we describe here how to put the time-integrated velocity, uut, into the f-array (see 'hydro.f90'). If this is to be invoked, there must be the following call somewhere in the code:

```
call farray_register_auxiliary('uut',iuut,vector=3)
```

Here, iuut is the index of the variable uut in the f-array. Of course, this requires that maux is increased by 3 , but in order to do this for a particular run only one must write a corresponding entry in the 'cparam.local' file,

```
! -*-f90-*- (for Emacs)
! cparam.local
!
!** AUTOMATIC CPARAM.INC GENERATION
! Declare (for generation of cparam.inc) the number of f array
! variables and auxiliary variables added by this module
!
! MAUX CONTRIBUTION 3
!
!*******************************************************************************
! Local settings concerning grid size and number of CPUs.
! This file is included by cparam.f90
!
integer, parameter :: ncpus=1,nprocy=1,nprocz=ncpus/nprocy,nprocx=1
integer, parameter :: nxgrid=16,nygrid=nxgrid,nzgrid=nxgrid
```

This way such a change does not affect the memory usage for other applications where this addition to 'cparam.local' is not made. In order to output this part of the f-array, one must write lwrite_aux=T in the init_pars of 'start.in'. (Technically, lwrite_aux=T can also be invoked in run_pars of 'run.in', but this does not work at the moment.)

9.4 The df-array

The 'df' array is the second largest chunk of data in the Pencil Code. By using a 2 N storage scheme (see H.4) after Williamson [32] the code only needs one more storage area for each timestepped variable on top of the current state stored in the f-array. As such, and in contrast to the f-array, the df-array is of size $m x \times m y \times m z \times$ mvar. Like the df-array it is of type real. In fact the ghost zones of df are not required or calculated but having f - and df-arrays of the same size make the coding more transparent. For mx, my and $m z$ large the wasted storage becomes negligible.

9.5 The fp-array

Similar to the ' f ' array the code also has a 'fp' array which contains current states of all the particles. Like the f-array the fp-array also has a time derivative part, the dfparray. The dimension of the fp-array is mpar ${ }_{l}$ ocal \times mpvar where mpar $_{l} o c a l$ is the number of particles in the local processor (for serial runs this is the total number of particles) and mpvar depends on the problem at hand. For example if we are solving for only tracer particles then mpvar $=3$, for dust particles mpvar $=6$ The sequence in which the slots in the fp-array are filled up depends on the sequence in which different particle modules are called from the particles_main.f90. The following are the relevant lines from particles_main.f90.

```
!***************************************************************************
    subroutine particles_register_modules()
!
! Register particle modules.
!
! 07-jan-05/anders: coded
!
        call register_particles ()
        call register_particles_radius ()
        call register_particles_spin ()
        call register_particles_number ()
        call register_particles_mass ()
        call register_particles_selfgrav ()
        call register_particles_nbody ()
        call register_particles_viscosity ()
        call register_pars_diagnos_state ()
!
    endsubroutine particles_register_modules
```

The subroutine resister_particles can mean either the tracer particles or dust particles. For the former the first three slots of the fp-array are the three spatial coordinates. For the latter the first six slots of the fp-array are the three spatial coordinates followed by the three velocity components. The seventh slot (or the fourth if we are use tracer particles) is the radius of the particle which can also change as a function of time as particles collide and fuse together to form bigger particles.

9.6 The pencil case

Variables that are derived from the basic physical variables of the code are stored in one-dimensional pencils of length $n x$. All the pencils that are defined for a given set of physics modules are in turn bundled up in a Fortran structure called p (or, more illustrative, the pencil case). Access to individual pencils happens through the variable $\mathrm{p} \%$ name, where name is the name of a pencil, e.g. rho that is a derived variable of the logarithmic density lnrho.

The pencils provided by a given physics module are declared in the header of the file, e.g. in the Density module:
! PENCILS PROVIDED lnrho; rho; rho1; glnrho(3) ; grho(3); uglnrho; ugrho
Notice that the pencil names are separated with a semi-colon and that vector pencils are declared with "(3)" after the name. Before compiling the code, the script 'mkcparam' collects the names of all pencils that are provided by the chosen physics modules. It then defines the structure p with slots for every single of these pencils. The definition of the pencil case p is written in the include file 'cparam_pencils.inc'. When the code is run, the actual pencils that are needed for the run are chosen based on the input parameters. This is done in the subroutines pencil_criteria_modulename that are present in each physics module. They are all called once before entering the time loop. In the pencil_criteria subroutines the logical arrays lpenc_requested, lpenc_diagnos, lpenc_diagnos2d, and lpenc_video are set according to the pencils that are needed for the given run. Some pencils depend on each other, e.g. uglnrho depends on uu and glnrho. Such interdependencies are sorted out in the subroutines pencil_interdep_modulename that are called after pencil_criteria_modulename.

In each time-step the values of the pencil logicals lpenc_requested, lpenc_diagnos, lpenc_diagnos2d, and lpenc_video are combined to one single pencil array lpencil which is different from time-step to time-step depending on e.g. whether diagnostics or video output are done in that time-step. The pencils are then calculated in the subroutines calc_pencils_modulename. This is done before calculating the time evolution of the physical variables, as this depends very often on derived variables in pencils.

The centralized pencil calculation scheme is a guarantee that

- All pencils are only calculated once
- Pencils are always calculated by the proper physics module

Since the Pencil Code is a multipurpose code that has many different physics modules, it can lead to big problems if a module tries to calculate a derived variable that actually belongs to another module, because different input parameters can influence how the derived variables are calculated. One example is that the Density module can consider both logarithmic and non-logarithmic density, so if the Magnetic module calculates

$$
\text { rho }=\exp (f(11: 12, m, n, i l n r h o)
$$

it is wrong if the Density module works with non-logarithmic density! The proper way for the Magnetic module to get to know the density is to request the pencil rho in pencil_criteria_magnetic.

9.6.1 Pencil check

To check that the correct pencils have been requested for a given run, one can run a pencil consistency check in the beginning of a run by setting the logical lpencil_check in \&run_pars. The check is meant to see if

- All needed pencils have been requested
- All requested pencils are needed

The consistency check first calculates the value of df with all the requested pencils. Then the pencil requests are flipped one at a time - requested to not requested, not requested to requested. The following combination of events can occur:

- not requested \rightarrow requested, df not changed The pencil is not requested and is not needed.
- not requested \rightarrow requested, df changed

The pencil is not requested, but is needed. The code stops.

- requested \rightarrow not requested, df not changed

The pencil is requested, but is not needed. The code gives a warning.

- requested \rightarrow not requested, df changed

The pencil is requested and is needed.

9.6.2 Adding new pencils

Adding a new pencil to the pencil case is trivial but requires a few steps.

- Declare the name of the pencil in the header of the proper physics module. Pencils names must appear come in a ";" separated list, with dimensions in parenthesis after the name [(3) for vector, (3,3) for matrix, etc.].
- Set interdependency of the new pencil (i.e. what other pencils does it depend on) in the subroutine pencil_interdep_modulename
- Make rule for calculating the pencil in calc_pencils_modulename
- Request the new pencil based on the input parameters in any relevant physics module

Remember that the centralized pencilation scheme is partially there to force the users of the code to think in general terms when implementing new physics. Any derived variable can be useful for a number of different physics problems, and it is important that a pencil is accessible in a transparent way to all modules.

9.7 Adding new physics: the Special module

If you want to add new physics to the code, you will in many cases want to add a new Special module. Doing so is relatively straight forward and there is even a special directory for such additions.

To create your own special module, copy 'nospecial.f90' from the src/ directory to a new name in the src/special/directory. It is currently only possible to have one special modules at a time and so several new bits of physics are often put in to one special module. For this reasons a name should be chosen that relates to the problem to be solved rather than the specific physics being implemented.

The first thing to do in your new module is to change the lspecial=.false. header to say lspecial=.true.

The file is heavily commented though all such comments can be removed as you go. You may implement any of the subroutines/function that exist in nospecial.f90 and those routines must have the names and parameters as in nospecial.f90. You do not however need to implement all routines, and you may either leave the dummy routines
copied from nospecial.f90 or delete them all together (provided the "include 'special_dummy.inc'" is kept intact at the end of the file. Beyond that, and data and subroutines can be added to a special module as required, though only for use within that module.

There are routines in the special interface to allow you to add new equations, modify the existing equation, add diagnostics, add slices, and many more things. If you feel there is something missing extra hooks can easily be added - please contact the Pencil Code team for assistance.

You are encouraged to submit/commit your special modules to the Pencil Code source. When you have added new stuff to the code, don't forget to mention this in the 'pencil-code/doc/manual.tex' file.

9.8 Adding switchable modules

In some cases where a piece of physics is thought to be more fundamental, useful in many situations or simply more flexibility is required it may be necessary to add a new module newphysics together with the corresponding nonewphysics module. The special modules follow the same structure as the rest of the switchable modules and so using a special module to prototype new ideas can make writing a new switchable module much easier.

For an example of module involving a new variable (and PDE), the pscalar module is a good prototype. The grep command

```
unix> grep -i pscalar src/*
```

gives you a good overview of which files you need to edit or add.

9.9 Adding your initial conditions: the InitialCondition module

Although the code has many initial conditions implemented, we now discourage such practice. We aim to eventually removed most of them. The recommended course of action is to make use of the InitialCondition module.

InitialCondition works pretty much like the Special module. To implement your own custom initial conditions, copy the file 'noinitial_condition.f90' from the src/ to src/ initial_condition, with a new, descriptive, name.

The first thing to do in your new module is to change the linitialcondition=.false. header to say linitialcondition=.true. Also, don't forget to add . ./ in front of the file names in include statements.

This file has hooks to implement a custom initial condition to most variables. After implementing your initial condition, add the line INITIAL_CONDITION=initial_condition/myinitialcondition to your 'src/Makefile.local' file. Here, myinitialcondition is the name you gave to your initial condition file. Add also initial_condition_pars to the 'start.in' file, just below init_pars. This is a namelist, which you can use to add whichever quantity your initial condition needs defined, or passed. You must also un-comment the relevant lines in the subroutines for reading and writing the namelists. For compiling reasons, these subroutines in 'noinitial_condition.f90' are dummies. The lines are easily identifiable in the code.

Check e.g. the samples '2d-tests/baroclinic', '2d-tests/spherical_viscous_ring', or 'interlocked-fluxrings', for examples of how the module is used.

10 Testing the code

To maintain reproducibility despite sometimes quite rapid development, the Pencil CODE is tested nightly on various architectures. The front end for testing are the scripts pc_auto-test and (possibly) pencil-test.
To see which samples would be tested, run

```
unix> pc_auto-test -l
```

, to actually run the tests, use

```
    unix> pc_auto-test
```

or
unix> pc_auto-test --clean
. The latter compiles every test sample from scratch and currently (September 2009) takes about 2 hours on a mid-end Linux PC.

The pencil-test script is useful for cron jobs and allows the actual test to run on a remote computer. See Sect. 10.1 below.

For a complete list of options, run pc_auto-test --help and/or pencil-test --help.

10.1 How to set up periodic tests (auto-tests)

To set up a nightly test of the Pencil Code, carry out the following steps.

1. Identify a host for running the actual tests (the work host) and one to initiate the tests and collect the results (the scheduling host). On the scheduling host, you should be able to
(a) run cron jobs,
(b) ssh to the work host without password,
(c) publish HTML files (optional, but recommended),
(d) send e-mail (optional, but recommended).

Work host and scheduling host can be the same (in this case, use pencil-test's '-l' option, see below), but often they will be two different computers.
2. [Recommended, but optional:] On the work host, check out a separate copy of the Pencil Code to reduce the risk that you start coding in the auto-test tree. In the following, we will assume that you checked out the code as '~/pencil-auto-test'.
3. On the work host, make sure that the code finds the correct configuration file for the tests you want to carry out. [Elaborate on that: PENCIL_HOME/local_config and '-f' option; give explicit example]

Remember that you can set up a custom host ID file for your auto-test tree under '\$\{PENCIL_HOME\}/config-local/hosts/'.
4. On the scheduling host, use crontab -e to set up a cron job similar to the following:

```
30 02 * * * $HOME/pencil-auto-test/bin/pencil-test \
    -D $HOME/pencil-auto-test \
    --use-pc_auto-test \
    -N15 -Uc -rs \
    -T $HOME/public_html/pencil-code/tests/timings.txt \
    -t 15m
    -m <email1@inter.net,email2@inter.net,...> \
    <work-host.inter.net> \
    -H > $HOME/public_html/pencil-code/tests/nightly-tests.html
```

Note 1: This has to be one long line. The backslash characters are written only for formatting purposes for this manual you cannot use them in a crontab file.

Note 2: You will have to adapt some parameters listed here and may want to modify a few more:
'-D <dir>': Sets the directory (on the work host) to run in.
'-T <file>': If this option is given, append a timing statistics line for each test to the given file.
'--use-pc': You want this option (and at some point, it will be the default).
'-t 15 m ': Limit the time for 'start. x ' and 'run. x ' to 15 minutes.
'-N 15': Run the tests at nice level 15 (may not have an effect for MPI tests).
'-Uc': Do svn update and pc_build --cleanall before compiling.
'-m <email-list>': If this option is given, send e-mails to everybody in the (comma-separated) list of e-mail addresses if any test fails. As soon as this option is set, the maintainers (as specified in the 'README' file) of failed tests will also receive an e-mail.
'work-host.inter.net|-1': Replace this with the remote host that is to run the tests. If you want to run locally, write -1 instead.
'-H’: Output HTML.
'> \$HOME/public_html/pencil-code/tests/nightly-tests.html': Write output to the given file.

If you want to run fewer or more tests, you can use the '-Wa, --max-level' option:

$$
- \text { Wa, --max-level=3 }
$$

will run all tests up to (and including) level 3. The default corresponds to '-Wa, --max-level=2'.

For a complete listing of pencil-test options, run

```
unix> pencil-test --help
```


11 Useful internals

11.1 Global variables

The following variables are defined in 'cdata.f90' and are available in any routine that uses the module Cdata.

Variable	Meaning
real	
t	simulated time t.
integer	
n[xyz]grid	global number of grid points (excluding ghost cells) in x, y and z direction.
$n x, n y, n z$	number of grid points (excluding ghost cells) as seen by the current processor, i.e. ny=nygrid/nprocy, etc.
$m x, m y, m z$	number of grid points seen by the current processor, but including ghost cells. Thus, the total box for the ivarth variable (on the given processor) is given by $\mathrm{f}(1: m x, 1: m y, 1: m z, i v a r)$.
11, 12	smallest and largest x-index for the physical domain (i.e. excluding ghost cells) on the given processor.
m1, m2	smallest and largest y-index for physical domain.
n1, n2	smallest and largest z-index for physical domain, i. e. the physical part of the ivarth variable is given by $\mathrm{f}(\mathrm{l} 1: 12, \mathrm{~m} 1: \mathrm{m} 2, \mathrm{n} 1: \mathrm{n} 2$, ivar $)$
m, n	pencil indexing variables: During each time-substep the box is traversed in x-pencils of length $m x$ such that the current pencil of the ivarth variable is f(l1:12,m,n,ivar).
logical	
lroot	true only for MPI root processor.
lfirst	true only during first time-substep of each time step.
headt	true only for very first full time step (comprising 3 substeps for the 3rd-order Runge-Kutta scheme) on root processor.
headtt	= (lfirst .and. lroot): true only during very first time-substep on root processor.
lfirstpoint	true only when the very first pencil for a given timesubstep is processed, i.e. for the first set of (m, n), which is probably $(3,3)$.
lout	true when diagnostic output is about to be written.

11.2 Subroutines and functions

output (file, a, nv) (module IO): Write (in each 'proc N ' directory) the content of the global array a to a file called file, where a has dimensions $m x \times m y \times m z \times n v$, or
$m x \times m y \times m z$ if $n v=1$.
output_pencil(file,a,nv) (module IO): Same as output(), but for a pencil variable, i.e. an auxiliary variable that only ever exists on a pencil (e.g. the magnetic field strength $b b$ in 'magnetic.f90', or the squared sound speed cs 2 in 'entropy.f90'). The file has the same structure as those written by output (), because the values of a on the different pencils are accumulated in the file. This involves a quite nontrivial access pattern to the file and has thus been coded in C ('src/debug_c.c').
cross (a,b,c) (module Sub): Calculate the cross product of two vectors a and b and store in c. The vectors must either all be of size $m x \times m y \times m z \times 3$ (global arrays), or of size $n x \times 3$ (pencil arrays).
$\operatorname{dot}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ (module $S u b)$: Calculate the dot product of two vectors a and b and store in c. The vectors must either be of size $m x \times m y \times m z \times 3$ (a and b) and $m x \times m y \times m z$ (c), or of size $n x \times 3$ (a and b) and $n x(c)$.
$\operatorname{dot2}(\mathrm{a}, \mathrm{c})$ (module $\operatorname{Sub})$: Same as $\operatorname{dot}(\mathrm{a}, \mathrm{a}, \mathrm{c})$.

Part III

Appendix

APPENDIX

Date, Revision

A Timings

In the following table we list the results of timings of the code on different machines. Shown is (among other quantities) the wall clock time per mesh point (excluding the ghost zones) and per full 3 -stage time step, a quantity that is printed by the code at the end of a run ${ }^{16}$

As these results were assembled during the development phase of the code (that hasn't really finished yet,...), you may not get the same numbers, but they should give some orientation of what to expect for your specific application on your specific hardware.

The code will output the timing (in microseconds per grid point per time-step) at the end of a run. You can also specify walltime in print.in to have the code continuously output the physical time it took to reach the time-steps where diagnostics is done. The time-dependent code speed can then be calculated by differentiating, e.g. in IDL with
IDL> pc_read_ts, obj=ts
IDL> plot, ts.it, 1/nw*deriv(ts.it,ts.walltime/1.0e-6), psym=2
where nw=nx*ny*nz.

proc	machine	$\underline{\mu \mathrm{s}}$	resol.	what	mem/proc	when	who
		pt step					
1	N13	19	64^{3}	kinematic	10 MB	20-may-02	AB
1	N13	30	64^{3}	magn/noentro	20 MB	20-may-02	AB
1	Nq1	10	64^{3}	magn/noentro		30-may-02	AB
1	Ukaff	9.2	64^{3}	magn/noentro		20-may-02	AB
1	N16	6.8	64^{3}	magn/noentro		10-mar-03	AB
1	N16	36.3	$64 \times 128 \times 64$	nomag/entro/dust		19-sep-03	AB
1	N16	42.7	$16^{2} \times 256$	nomag/entro/rad6/ion		22-oct-03	AB
1	N16	37.6	$16^{2} \times 256$	nomag/entro/rad2/ion		22-oct-03	AB
1	N16	19.6	$16^{2} \times 256$	nomag/entro/ion		22-oct-03	AB
1	N16	8.7	$16^{2} \times 256$	nomag/entro		22-oct-03	AB
1	N16n	9.8	32^{3}	magn/noentro/pscalar		17-mar-06	AB
1	Mhd	7.8	64^{3}	magn/noentro		20-may-02	AB
1	Nq4	14.4	128^{3}	magn/noentro		8-oct-02	AB
1	Nq5	6.7	$128{ }^{3}$	magn/noentro		8-oct-02	AB
1	fe1	5.1	$128{ }^{3}$	magn/noentro		9-oct-02	AB
1	Kabul	4.4	128^{3}	magn/noentro	130 MB	20-jun-02	WD
1	Hwwsx5	3.4	$256{ }^{3}$	convstar	7.8 GB	29-jan-03	WD
1	Mac/g95	7.7	32^{3}	magn/noentro		14-jan-07	BD
1	Mac/ifc	4.5	32^{3}	magn/noentro		14-jan-07	BD
2	Kabul	2.5	$128{ }^{3}$	magn/noentro	80 MB	20-jun-02	WD
2	Nq3+4	7.4	$128{ }^{3}$	magn/noentro		8 -oct-02	AB
2	Nq4+4	8.9	$128{ }^{3}$	magn/noentro		8-oct-02	AB
2	Nq4+5	7.3	$128{ }^{3}$	magn/noentro		8-oct-02	AB
2	Nq5+5	3.7	128^{3}	magn/noentro		8-oct-02	AB

[^13]| 2 | fe1 | 3.45 |
| :--- | :--- | :--- |
| 2 | Nq2 | 9.3 |
| 2 | Nq1+2 | 8.3 |
| 2 | Hwwsx5 | 1.8 |
| 4 | Nq1+2 | 5.4 |
| 4 | Nq1235 | 4.1 |
| 4 | Nq0-3 | 6.8 |
| 4 | Mhd | 2.76 |
| 4 | fe1 | 3.39 |
| 4 | Rasm. | 2.02 |
| 4 | Mhd | 8.2 |
| 4 | fe1 | 6.35 |
| 4 | fe1 | 2.09 |
| 4 | fe1 | 1.45 |
| 4 | fe1 | 7.55 |
| 4 | fe1 | 5.48 |
| 4 | Luci | 1.77 |
| 4 | Lenn | 0.65 |
| 4 | Lenn | 1.21 |
| 4 | Kabul | 1.5 |
| 4 | Hwwsx5 | 1.8 |
| 8 | Nqall | 3.0 |
| 8 | fe1 | 3.15 |
| 8 | fe1 | 2.36 |
| 8 | Ukaff | 1.24 |
| 8 | Kabul | 1.25 |
| 8 | fe1 | 1.68 |
| 8 | fe1 | 1.50 |
| 8 | fe1 | 1.44 |
| 8 | Kabul | 0.83 |
| 8 | Gridur | 1.46 |
| 8 | Kabul | 0.87 |
| 8 | fe1 | 0.99 |
| 8 | fe1 | 0.98 |
| 8 | cetus | 0.58 |
| 8 | cetus | 0.73 |
| 8 | Neolith | 0.82 |
| 8 | Mhd | 1.46 |
| 8 | Hwwsx5 | 0.50 |
| 8 | Neolith | 0.444 |
| 8 | Ferlin | 0.450 |
| 8 | Ferlin | 0.269 |
| 8 | Ferlin | 0.245 |
| 8 | nor52 | 2.00 |
| 9 | hydra(2) | 0.317 |
| 9 | charybdis | 0.169 |
| 9 | scylla | 0.150 |
| 12 | scylla | 0.151 |
| 12 | janus | 6.02 |
| 16 | fe1 | 1.77 |
| 16 | copson | 0.596 |
| 16 | fe1 | 0.94 |
| 16 | fe1 | 0.75 |
| 16 | workq | 0.88 |
| 16 | giga | 0.76 |
| 16 | giga2 | 0.39 |
| 16 | giga | 0.47 |
| Miga | 0.43 | |
| Mhd | 2.03 | |
| | 0.64 | |
| 16 | | |

128^{3}
64^{3}
64^{3}
256^{3}
64^{3}
128^{3}
256^{3}
64
32^{3}
64
$64 \times 128 \times 64$ nomag/entro/dust
128^{3}
$16^{2} \times 512$
$16^{2} \times 512$
64^{3}
64^{3}
64^{3}
128^{3}
256^{3}
128^{3}
64^{3}
64^{3}
64^{3}
$64^{2} \times 128$
128^{3}
128^{3}
128^{3}
128^{3}
128^{3}
256^{3}
256^{3}
256^{3}
64^{3}
256^{3}
64^{3}
$160^{2} \times 40$
256^{3}
128^{3}
64^{3}
64^{3}
128^{3}
32^{3}
72^{3}
72^{3}
72^{3}
72^{3}
$72^{2} \times$
64^{3}
128^{3}
128^{3}
128^{3}
128^{3}
128^{3}
128^{3}
128^{3}
128^{3}
128^{3}
256^{3}
$128^{3} \mathrm{magn} /$ noentro
magn/noentro magn/noentro magn/noentro convstar magn/noentro magn/noentro magn/noentro magn/noentro magn/noentro magn/noentro nomag/entro magn/noentro nomag/entro/rad2/ion nomag/entro/rad2/ion magn/noentro nomag/noentro magn/noentro magn/noentro convstar magn/noentro magn/noentro magn/noentro magn/noentro nomag/entro magn/noentro nomag/entro convstar magn/noentro 1test/noentro magn/noentro magn/noentro magn/noentro magn/noentro magn/noentro magn/noentro magn/noentro coag/noentro convstar geodynamo/ks95 magn/noentro magn/noentro magn/noentro magn/noentro magn/noentro chiral nomag/noentro magn/noentro magn/noentro

	9 -oct-02	AB
	11-sep-02	AB
	11-sep-02	AB
7.9 GB	29-jan-03	WD
	11-sep-02	AB
	11-sep-02	AB
294 MB	10-jun-02	AB
	30-may-02	AB
	16-aug-02	AB
2×2	8 -sep-02	AB
	23-jul-02	AB
	19-sep-03	AB
	9 -oct-02	AB
giga	9 -oct-02	AB
4×1	1-nov-03	AB
1 x 4	1-nov-03	AB
	27-feb-07	AB
	13-jan-07	AB
	7-nov-06	AB
47 MB	20-jun-02	WD
8.2 GB	29-jan-03	WD
	8 -oct-02	AB
1x8	8 -sep-02	AB
2 x 4	8 -sep-02	AB
	20-may-02	AB
	11-jul-02	WD
1x8	8 -sep-02	AB
2 x 4	8 -sep-02	AB
4×2	8 -sep-02	AB
28 MB	20-jun-02	WD
	19-aug-02	NE
160 MB	20-jun-02	WD
2 x 4	8 -sep-02	AB
4×2	8 -sep-02	AB
4×2	19-aug-07	SS
4x2,156M	19-aug-07	SS
4×2	5-dec-07	AB
46 MB	7-oct-02	AB
8.6 GB	29-jan-03	WD
	6-dec-07	AB
	21-jun-09	AB
	2-apr-10	AB
	2-feb-11	AB
	2-dec-09	AB
1x3x3	8-may-16	AB
1x3x3	8-may-16	AB
1x3x3	8-may-16	AB
1 x 4 x 3	8-may-16	AB
	17-dec-15	AB
	9 -feb-03	AB
	21-nov-03	DM
4×4	8 -sep-02	AB
4x4/ifc6	9-may-03	AB
4x4/ifc6	21-aug-04	AB
4x4/ifc6	21-aug-04	AB
4x4/ifc6	20-aug-04	AB
4x4/ifc6	29-may-04	AB
4x4/ifc6	28-apr-03	AB
	26-nov-02	AB
60 MB	22-may-02	AB

16	fe1	0.56
16	fe1	6.30
16	fe1	1.31
16	Ukaff	0.61
16	Ukaff	0.64
16	Kabul	0.80
16	Kabul	0.51
16	Gridur	0.81
16	Gridur	0.66
16	Sander	0.53
16	Luci	0.375
16	Lenn	0.284
16	Neolith	0.180
16	Triolith	0.075
16	Triolith	0.065
16	Triolith	0.054
16	Coma	0.603
24	Gardar	0.44
24	Summit	0.041
32	giga?	0.32
32	Ukaff	0.34
32	Ukaff	0.32
32	Hermit	0.200
32	fe1	0.168
32	fe1	1.26
32	Luci	0.182
32	Lenn	0.147
32	Steno	0.076
32	Steno	0.081
32	Steno	0.085
32	Steno	0.235
32	Sanss	0.273
32	Neolith	0.275
32	Ferlin	0.556
36	Kraken	0.177
36	scylla	0.096
48	janus	0.028
64	Coma	0.573
64	fe1	0.24
64	giga	0.11
64	giga	0.23
64	fe1	0.164
64	giga	0.091
64	giga	0.150
64	giga	0.166
64	Gridur	0.25
64	Ukaff	0.17
64	Steno	0.075
64	Neolith	0.0695
64	Ferlin	8.51
64	Ferlin	0.156
64	Akka	0.038
64	Triolith	0.0146
64	Triolith	0.0164
64	Hermit	0.101
64	Sisu	0.00205
72	Kraken	0.093
72	Kraken	0.151
72	Kraken	0.091
72	Kraken	0.071

$256{ }^{3}$	magn/noentro
$128 \times 256 \times 128$	nomag/entro/dust
$128^{2} \times 512$	nomag/entro/rad2/ion
$128{ }^{3}$	magn/noentro
$256{ }^{3}$	magn/noentro
128^{3}	magn/noentro
$256{ }^{3}$	magn/noentro
128^{3}	magn/noentro
$256{ }^{3}$	magn/noentro
$256{ }^{3}$	magn/noentro
128^{3}	magn/noentro
128^{3}	magn/noentro
$256{ }^{3}$	magn/noentro
128^{3}	magn/noentro
128^{3}	magn/noentro
256^{3}	magn/noentro
128^{3}	GW/magn/noentro
$128^{2} \times 48$	magn/noentro
$144{ }^{3}$	magn/noentro
$256{ }^{3}$	magn/noentro
$256{ }^{3}$	magn/noentro
512^{3}	magn/noentro
$256 \times 512 \times 256$	spherical conv/magn
512^{3}	nomag/noentro
$64^{2} \times 256$	nomag/entro/rad/ion
$256{ }^{3}$	magn/noentro
$256{ }^{3}$	nomag/entro/cool/fo
$256{ }^{3}$	nomag/entro/cool/fo
$256{ }^{3}$	nomag/entro/cool
$256{ }^{3}$	nomag/entro/cool/sh
$512^{2} \times 256$	mag/entro
128×256^{2}	nomag
$128{ }^{3}$	testfield4
128^{3}	testscalar
$192 \times 384 \times 64$	magn/noentro
72^{3}	magn/noentro
$72^{2} * 216$	magn/noentro
128^{3}	GW/magn/noentro
$256{ }^{3}$	magn/noentro
$256{ }^{3}$	nomag/noentro
$256{ }^{3}$	nomag/noentro/hyp
512^{3}	nomag/noentro/hyp
512^{3}	nomag/noentro/hyp
$256{ }^{3}$	magn/noentro
512^{3}	magn/noentro
$256{ }^{3}$	magn/noentro
512^{3}	magn/noentro
512^{3}	magn/noentro
$256{ }^{3}$	magn/noentro
150×128^{2}	Li mechanism
$256{ }^{3}$	magn/noentro
$256^{2} \times 512$	magn/noentro
$256{ }^{3}$	magn/noentro
$256{ }^{3}$	magn/noentro
$256 \times 512 \times 256$	spherical conv/magn
$256 \times 512 \times 256$	spherical conv/magn
$192 \times 384 \times 64$	magn/noentro
$96 \times 192 \times 16$	magn/noentro
$192 \times 384 \times 32$	magn/noentro
$384 \times 768 \times 64$	magn/noentro

4 x 4	16-aug-02
	19-sep-03
4×4	1-nov-03
	22-may-02
	20-may-02
16 MB	20-jun-02
9 MB	20-jun-02
	19-aug-02
	19-aug-02
	8-sep-02
	28-oct-06
	8-nov-06
	6-dec-07
2x2x 4	1-mar-14
1 x 4 x 4	1-mar-14
$1 \mathrm{x} 4 \times 4$	1-mar-14
$1 \mathrm{x} 4 \times 4$	27-jul-17
	6-nov-13
	28-jul-17
	13-sep-03
	20-may-02
	20-may-02
1 x 8 x 4	22-aug-13
	9 -oct-02
	7 -sep-03
	26-feb-07
4×8	8-nov-06
4 x 8	20-jun-06
4 x 8	20-jun-06
4×8	20-jun-06
4 x 8	9-jul-06
4×8	3 -jul-07
	24-oct-08
	7-jan-09
$3 \times 6 \times 2$	12-jan-12
$1 \mathrm{x} 6 \times 6$	8-may-16
4 x 12	28-mar-16
1 x 8 x 8	7-aug-17
8×8	2-sep-02
4×16	29-apr-03
4×16	8 -dec-03
4×16	17-dec-03
4×16	17-dec-03
4×16	1-jul-03
$64 * 173 \mathrm{MB}$	10-jul-03
	19-aug-02
	21-may-02
8 x 16	19-oct-06
	6-dec-07
8 x 8	21-jun-09
8 x 8	14-jun-09
8 x 8	27-dec-12
1 x 8 x 8	1-mar-14
$2 \times 4 \times 8$	1-mar-14
1x8x8	22-aug-13
1x8x8	22-aug-13
$3 \times 12 \times 2$	12-jan-12
6×12	17-jan-12
6x12	17-jan-12
6×12	17-jan-12

AB
AB
AB
AB
AB
WD
WD
NE
NE
AB
AB
AB
AB
AB
AB
AB
SM
AB
AB
AB
AB
AB
PJK
AB
WL
AB
AB
SM
AB
AB
AB
AB
AB
AB
AB
NE
AB
AB
AB
AB
AB
AB
AB
AB
PJK
PJK
WL
WL
WL
WL

72	Summit	0.0128
128	fe1	0.44
128	fe1	2.8
128	fe1	0.51
128	fe1	0.27
128	fe1	0.108
$64+64$	giga2	0.0600
1281	giga2	0.0605
128	fe1	0.35
128	fe1	0.094
128	Hermit	0.0532
128	Hermit	0.0493
128	Sisu	0.00108
144	Kraken	0.080
144	Kraken	0.058
144	Kraken	0.044
144	Gardar	2.19
144	Summit	0.0064
192	Janus	0.0123
256	Hermit	0.0328
256	Hermit	0.0285
256	giga2	0.028
256	Hermit	0.0262
256	Hermit	0.0254
256	Hermit	0.0226
256	Akka	0.0113
256	Sisu	0.00618
256	Sisu	0.00500
256	Triolith	0.030
256	Triolith	0.0049
256	Beskow	3.36
288	Gardar	0.042
288	Kraken	0.0432
288	Kraken	0.0447
288	Kraken	0.0201
288	Janus	0.0360
288	Summit	0.0033
512	Hermit	0.01717
512	Hermit	0.0166
512	Hermit	0.0142
512	Hermit	0.01340
512	Hermit	0.01189
512	Hermit	0.01165
512	Akka	0.0081
512	Neolith	0.0073
512	Gardar	0.0035
512	Lindgren	0.0040
512	Sisu	0.00446
512	Sisu	0.00435
512	Sisu	0.00268
576	Kraken	0.0257
576	Kraken	0.0317
576	Kraken	0.0116
576	Summit	0.00183
576	Beskow	0.00174
768	Lindgren	0.0049
1024	Hermit	0.00943
1024	Hermit	0.00707
1024	Hermit	0.00698
1024	Hermit	0.00630

	7-aug-17	AB
4×32	10-mar-04	TH
16x8	5 -sep-02	AB
8×16	5 -sep-02	AB
4x32	5 -sep-02	AB
4x32/ifc6	5-jan-02	AB
4x32/ifc6	21-aug-04	AB
4x32/ifc6	21-aug-04	AB
2x64	9 -sep-02	AB
4x32/ifc6	9 -sep-02	A
$1 \mathrm{x} 16 \times 8$	22-aug-13	PJK
2x8x8	22-aug-13	JK
1x16x8	22-aug-13	PJK
$6 \times 12 \times 2$	13-jan-12	WL
$6 \times 12 \times 2$	17-jan-12	WL
$6 \times 12 \times 2$	18-jan-12	WL
$8 \times 1 \times 18$	13-sep-15	AB
	7-aug-17	AB
1x24x32	24-jul-16	AB
1x16x16	22-aug-13	PJK
1x16x16	22-aug-13	PJK
4x64/ifc6	20-aug-04	AB
2x16x8	22-aug-13	PJK
2x16x8	22-aug-13	PJK
$4 \mathrm{x} 8 \times 8$	22-aug-13	PJK
16x16	12-jun-11	AB
1x16x16	22-aug-13	PJK
1x16x16	22-aug-13	PJK
1x16x16	17-mar-14	AB
1x16x16	1-mar-14	AB
1x1x256	3 -mar-15	AB
1x18x16	17-mar-14	AB
6x12x4	12-jan-12	WL
$6 \times 12 \times 4$	13-jan-12	WL
$6 \times 12 \times 4$	18-jan-12	WL
$1 \mathrm{x} 16 \times 18$	22 -feb-16	AB
1x16x18	7-aug-17	AB
1x32x16	22-aug-13	PJK
1x32x16	22-aug-13	PJK
2x16x16	22-aug-13	PJK
2x16x16	22-aug-13	PJK
8x8x8	22-aug-13	PJK
$4 \times 16 \times 8$	22-aug-13	PJK
16x32	10-sep-11	AB
	20-nov-09	AB
	14-jan-13	AB
16x32	8 -jul-12	AB
$4 \times 16 \times 8$	22-aug-13	PJK
	22-aug-13	PJK
1x32x16	22-aug-13	PJK
$6 \times 24 \times 4$	12-jan-12	WL
$12^{2} \times 4$	13-jan-12	WL
$12^{2} \times 4$	18-jan-12	WL
$1 \mathrm{x} 24 \times 48$	29-jul-17	AB
1x24x48	23-may-16	AB
1x24x32	17-oct-14	SJ
1x32x32	22-aug-13	PJK
2x32x16	22-aug-13	PJK
$4 \times 16 \times 16$	22-aug-13	PJK
$4 \times 16 \times 16$	22-aug-13	PJK

1024	Triolith	0.00236	256^{3}
1024	Triolith	0.00126	512^{3}
1024	Triolith	0.00129	512^{3}
1024	Sisu	0.00225	$1024 \times 2048 \times 1024$
1024	Sisu	0.00148	$512 \times 1024 \times 512$
1152	Kraken	0.0212	$192 \times 384 \times 64$
1152	Kraken	0.00856	$384 \times 768 \times 128$
1152	Kraken	0.00549	$768 \times 1536 \times 256$
1152	Lindgren	0.016	$512^{2} \times 512$
1152	Lindgren	0.0066	1152^{3}
1152	Beskow	0.0055	1152^{3}
1152	Beskow	0.0024	1152^{3}
1152	Beskow	0.00098	1152^{3}
1152	Beskow	0.00090	1152^{3}
1152	Beskow	0.0060	1152^{3}
1152	Beskow	0.0063	576^{3}
1536	Lindgren	0.00171	$512^{2} \times 384$
2048	Hermit	0.00451	$1024 \times 2048 \times 1024$
2048	Hermit	0.00380	$512 \times 1024 \times 512$
2048	Hermit	0.00355	$512 \times 1024 \times 512$
2048	Hermit	0.00350	$1024 \times 2048 \times 1024$
2048	Lindgren	0.00129	$512^{2} \times 1024$
2048	Lindgren	0.00129	$1024^{2} \times 2048$
2048	Triolith	9.3×10^{-4}	512^{3}
2048	Sisu	0.00120	$1024 \times 2048 \times 1024$
2048	Sisu	9.2×10^{-4}	$512 \times 1024 \times 512$
2304	Triolith	1.07×10^{-3}	576^{3}
2304	Kraken	0.02267	$192 \times 384 \times 64$
2304	Kraken	0.01233	$192 \times 768 \times 64$
2304	Kraken	0.00300	$768 \times 3072 \times 256$
4096	Hermit	0.00193	$1024 \times 2048 \times 1024$
4096	Triolith	3.6×10^{-4}	1024^{3}
4096	Triolith	3.8×10^{-4}	1024^{3}
18384	Hermit	6.4×10^{-4}	$1024 \times 2048 \times 1024$
4096	Triolith	4.2×10^{-4}	$384 \times 768 \times 256$
4096	Lindgren	4.6×10^{-4}	1024^{3}
40932	Kraken	0.00316	2048^{3}
18432	Kraken	8.8×10^{-4}	$768 \times 1536 \times 512$
36864	Kraken	4.0×10^{-4}	$1536 \times 3072 \times 1024$
4608	Sisu	6.7×10^{-4}	$1024 \times 2048 \times 1024$
9216	Trionen	0.0020	$384 \times 768 \times 512$
9216	Krindgren	Triolith	1.04×10^{-3}
4608	Triolith	7.4×10^{-4}	2.7×10^{-4}

magn/noentro
magn/noentro
magn/noentro
spherical conv/magn
spherical conv/magn
magn/noentro
magn/noentro
magn/noentro
magn/rad
magn/noentro
magn/noentro/GW
magn/noentro
magn/noentro
magn/noentro
magn/noentro/GW
magn/entro/rad
magn/noentro
spherical conv/magn
spherical conv/magn
spherical conv/magn
spherical conv/magn
magn/noentro
magn/noentro
magn/noentro
spherical conv/magn
spherical conv/magn
magn/noentro
magn/noentro
magn/noentro
magn/noentro
spherical conv/magn
magn/noentro
magn/noentro
magn/noentro
magn/noentro
spherical conv/magn
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro/sph
spherical conv/magn
spherical conv/magn
magn/noentro
magn/noentro
magn/noentrical conv/magn
magn/noentro
magn/noentro
magn/noentro
magntro
maentro
magntro

$4 \times 16 \times 16$	1-mar-14	AB
2x16x32	1-mar-14	AB
$4 \times 16 \times 16$	1-mar-14	AB
	22-aug-13	PJK
2x32x16	22-aug-13	PJK
$12 \times 24 \times 4$	13-jan-12	WL
$12 \times 24 \times 4$	17-jan-12	WL
12 x 24 x 4	17-jan-12	WL
$1 \mathrm{x} 36 \times 32$	17-mar-14	AB
$1 \times 32 \times 36$	25-nov-14	AB
1x32x36	27-aug-17	AB
$1 \mathrm{x} 32 \times 36$	20-jan-15	AB
$1 \mathrm{x} 32 \times 36$	18-jan-16	AB-gnu
1x32x36	30-mar-17	AB
1x32x36	31-mar-18	AB
$1 \mathrm{x} 32 \times 36$	17-feb-18	AB
$2 \times 32 \times 24$	15-jul-13	AB
2x32x32	22-aug-13	PJK
$8 \times 16 \times 16$	22-aug-13	PJK
$4 \times 32 \times 16$	22-aug-13	PJK
$4 \times 32 \times 16$	22-aug-13	PJK
32×64	20-apr-13	AB
32×64	31-jul-12	AB
$4 \times 16 \times 32$	1-mar-14	AB
	22-aug-13	PJK
$4 \times 32 \times 16$	22-aug-13	PJK
$4 \times 18 \times 32$	1-mar-14	AB
$12 \mathrm{x} 24 \times 8$	13-jan-12	WL
12 x 48 x 4	13-jan-12	WL
12 x 48 x 4	18-jan-12	WL
$4 \times 32 \times 32$	22-aug-13	PJK
$4 \times 32 \times 32$	1-mar-14	AB
$8 \times 16 \times 32$	1-mar-14	AB
$4 \times 16 \times 64$	1-mar-14	AB
$4 \times 16 \times 64$	26-mar-13	AB
	22-aug-13	PJK
8 x 18 x 32	1-mar-14	AB
$4 \times 32 \times 36$	1-mar-14	AB
$4 \times 36 \times 32$	1-mar-14	AB
$4 \mathrm{x} 18 \times 64$	1-mar-14	AB
$2 \times 32 \times 72$	1-mar-14	AB
12 x 48 x 8	13-jan-12	WL
12 x 48 x 8	18-jan-12	WL
$4 \mathrm{x} 16 \times 64$	21-oct-13	AB
2x48x64	6-jan-15	SJ
$8 \times 32 \times 32$	22-aug-13	PJK
	22-aug-13	PJK
$4 \times 32 \times 64$	1-mar-14	AB
24x48x8	13-jan-12	WL
24x48x8	17-jan-12	WL
24x48x8	18-jan-12	WL
$4 \times 48 \times 48$	$15-\mathrm{feb}-14$	AB
16 x 18 x 32	1-mar-14	AB
$4 \times 36 \times 64$	1-mar-14	AB
$4 \times 32 \times 72$	1-mar-14	AB
16x32x32	22-aug-13	PJK
24 x 48 x 16	13-jan-12	WL
$24 \times 48 \times 16$	17-jan-12	WL
24 x 48 x 16	18-jan-12	WL
$48^{2} \times 16$	14-jan-12	WL

36864	Kraken	4.9×10^{-4}	$1536^{2} \times 512$	magn/noentro	$48^{2} \times 16$	17 -jan-12	WL
36864	Kraken	2.2×10^{-4}	$1536 \times 3072 \times 2048$	magn/noentro	$24 \times 48 \times 32$	18 -jan-12	WL
73728	Kraken	0.00121	$768^{2} \times 512$	magn/noentro	$48^{2} \times 32$	19 -jan-12	WL
73728	Kraken	2.9×10^{-4}	$1536^{2} \times 1024$	magn/noentro	$48^{2} \times 32$	26 -jan-12	WL
73728	Kraken	1.2×10^{-4}	$3072^{2} \times 2048$	magn/noentro	$48^{2} \times 32$	26 -jan-12	WL

The machines we have used can be characterized as follows:
N13: 500 MHz Pentium III single CPU; RedHat Linux 6.2; 256 MB memory
Nq0: 931 MHz Pentium III single CPU; RedHat Linux 7.3; 0.5 GB memory
$\mathbf{N q [1 - 4] : ~} 869 \mathrm{MHz}$ Pentium III dual-CPU cluster; RedHat Linux 7.3; 0.77 GB memory per (dual) node
$\mathbf{N q}[5-6]: 1.2 \mathrm{GHz}$ Athlon dual-CPU cluster; RedHat Linux 7.3; 1 GB memory per (dual) node

Kabul: 1.9 GHz Athlon dual-CPU cluster; 1 GB memory per (dual) node; 256 kB cache per CPU; Gigabit ethernet; SuSE Linux 8.0; LAM-MPI
Cincinnatus: 1.7 GHz Pentium 4 single CPU; 1 GB memory; 256 kB cache per CPU; SuSE Linux 7.3

Horseshoe (fe1, giga, and giga2): consists of different subclusters. The old one (queue name: workq, referred to as fe1) 2.0 GHz Pentium 512 single CPU; 25x 24port fast ethernet switches with gigabit ethernet uplink; 1 30-port gigabit ethernet switch; 1 GB memory. The next generation has gigabit switches directly between nodes, and 2.6 GHz processors. The third generation (giga2) has 3.2 GHz processors (most of which have 1 GB , some 2 GB), is organized in 2 blocks interconnected with 2 Gb links, with 10 Gb uplinks within each block.
Ukaff: SGI Origin 3000; 400 MHz IP35 CPUs; IRIX 6.5; native MPI
Mhd: EV6 Compaq cluster with 4 CPUs per node; 4 GB memory per node (i. e. 1 GB per CPU) OSF1 4.0; native MPI

Sander and Rasmussen: Origin 3000
Steno 118 node IBM cluster with dual node AMD Opteron processors with 10 Gb infiniband network, compiled with pgf90 -fastsse -tp k8-64e (Copenhagen).
Gridur: Origin 3000
Luci: (full name Lucidor) is an HP Itanium cluster, each of the 90 nodes has two 900 MHz Itanium 2 "McKinley" processors and 6 GB of main memory. The interconnect is myrinet.

Lenn: (full name Lenngren) is a Dell Xeon cluster with 442 nodes. Each node has two 3.4 GHz "Nocona" Xeon processors and 8GB of main memory. A high performance Infiniband network from Mellanox is used for MPI traffic.

Kraken: Cray Linux Environment (CLE) 3.1, with a peak performance of 1.17 PetaFLOP; the cluster has 112,896 cores, 147 TB of memory, in 9,408 nodes. Each node has two 2.6 GHz six-core AMD Opteron processors (Istanbul), 12 cores, and 16 GB of memory. Connection via Cray SeaStar2+ router.

Hermit: Cray XE6 with 71042.3 GHz AMD Interlagos 16 core processors $(113,664$ cores in total), nodes with either 1 or 2 GB of memory per core.

Sisu: Cray XC30 with 1472 2.6 GHz Intel (Xeon) Sandy Bridge 8 core (E5-2670) processors (11,776 cores in total), 2 GB of memory per core.

Beskow: Cray XC40 with 2.3 GHz Intel (Xeon) Haswell 16 core (E5-2698v3) processors (67,456 cores in total), 2 GB of memory per core. Theoretical peak performance 2.43 pflops.

Table 8 shows a similar list, but for a few well-defined sample problems. The svn checkin patterns are displayed graphically in Fig 1 .

Figure 12: Scaling results on three different machines. The thin straight line denotes perfectly linear scaling.

Figure 13: Scaling results of particle-mesh problem on Blue Gene/P on up to 4096 cores. The different lines denote different particle-mesh schemes (NGP=Nearest Grid Point, TSC=Triangular Shaped Cloud) and whether self-gravity is included (FFT).

Figure 14: Scaling results on Kraken at fixed problem size, for a magnetized disk model in cylindrical coordinates. The black line shows ideal scaling from 32 cores. The blue line is the best second-order fit to the data points. A load of 16^{3} mesh points per processor marks the best strong scaling.

A. 1 Test case

In the following test samples, we run isothermal magnetohydrodynamics in a periodic domain 17 . Power spectra are computed during the run, but our current parallelization of the Fourier transform requires that the meshpoint number is an integer multiple of the product of processor numbers in the y and z directions and the product of processor numbers in the x and y directions. In addition, the number of processors in one direction
${ }^{17}$ Run directories are available on http://norlx51.nordita.org/~brandenb/pencil-code/timings/bforced/

Figure 15: Scaling results on Kraken at fixed load per processor, for a magnetized disk model in cylindrical coordinates. The figure shows, after determining that 16^{3} is the best load per processor for strong scaling, how far one can push with weak scaling. The scaling index is found to be 0.7 for 16^{3} and 0.93 for 64^{3}, up to 73728 processors.

Table 8: Like previous table, but for the versions from the 'samples' directory.

proc(s)	machine	$\mu \mathrm{s}$										
		pt step	resol.	mem./proc	when	who						
conv-slab												
1	Mhd	6.45	32^{3}	4 MB			$23-j u l-02$	wd				
1	Cincinnatus	4.82	32^{3}	3 MB	$23-j u l-02$	wd						
1	Cincinnatus	11.6	64^{3}	14 MB	$23-j u l-02$	wd						
1	Cincinnatus	20.8	128^{3}	93 MB	$23-j u l-02$	wd						
1	Kabul	3.91	32^{3}		$23-j u l-02$	wd						
1	Kabul	3.88	64^{3}		$23-j u l-02$	wd						
1	Kabul	4.16	128^{3}	93 MB	$23-j u l-02$	wd						
		conv-slab-flat										
1	Kabul	3.02	$128^{2} \times 32$	29 MB	$23-j u l-02$	wd						
2	Kabul	1.81	$128^{2} \times 32$	18 MB	$23-j u l-02$	wd						
4	Kabul	1.03	$128^{2} \times 32$	11 MB	$23-j u l-02$	wd						
8	Kabul	0.87	$128^{2} \times 32$	9 MB	$23-j u l-02$	wd						

should not be so large that the number of mesh points per processor becomes comparable to or less than the number of ghost zones (which is 6).

A. 2 Running the code

To run the code, get one of the sample run directories, e.g., http://norlx51.nordita.org/~brandenb/pencil-code/timings/bforced/512_4x16x32.
The relevant file to be changed is src/cparam.local
ncpus=2048, nprocx=4, nprocy=16,nprocz=ncpus/(nprocx*nprocy)
nxgrid=512, nygrid=nxgrid,nzgrid=nxgrid
in particular the values of ncpus, nprocx, nprocy, and nxgrid. Once they are chosen, say make, and submit start_run.csh.

A. 3 Triolith

On Triolith, strong scaling tests have been performed for three mesh sizes. The time per time step and mesh point is given for different processor numbers and layouts. Generally, it is advantageous to keep the number of processors in the x direction small.

Comments. Although on Triolith the number of processors per node is 16 , resolutions with one or two powers of 3 (such as 576) still work well. Furthermore, the number of processors above which the scaling becomes poor increases quadratically with the number of mesh points. This implies that the RAM per processor increases linearly with the problem size per direction. However, this will not be a limitation, because even for 2304^{3} meshes, the required RAM is still below 100 MB .

A. 4 Lindgren

On Lindgren, we have performed weak scaling tests and compare with weak scaling results for Triolith. Triolith is about twice as fast as Lindgren.

Figure 16: Strong scaling on Triolith (2014).

Figure 17: Comparison Triolith (black, plus signs) and Lindgren (red, triangles). Weak scaling (2014).

Table 9: Triolith timings

proc	$\frac{\mu \mathrm{s}}{\text { pt step }}$	resol.	layout
	0.075	128^{3}	
16	0.065	128^{3}	$1 \times 4 \times 4$
16	0.0544	256^{3}	$1 \times 4 \times 4$
64	0.0146	256^{3}	$1 \times 8 \times 8$
64	0.0164	256^{3}	$2 \times 4 \times 8$
256	0.0049	256^{3}	$1 \times 16 \times 16$
512	0.0035	256^{3}	$2 \times 16 \times 16$
1024	0.00236	256^{3}	$2 \times 16 \times 32$
1024	0.00127	512^{3}	$2 \times 16 \times 32$
1024	0.00129	512^{3}	$4 \times 16 \times 16$
2048	9.34×10^{-4}	512^{3}	$4 \times 16 \times 32$
2304	0.00107	576^{3}	$4 \times 18 \times 32$
4096	3.6×10^{-4}	1024^{3}	$4 \times 32 \times 32$
4096	3.8×10^{-4}	1024^{3}	$8 \times 16 \times 32$
4096	4.2×10^{-4}	1024^{3}	$4 \times 16 \times 64$
4608	7.38×10^{-4}	576^{3}	$8 \times 18 \times 32$
4608	2.66×10^{-4}	1152^{3}	$4 \times 32 \times 36$
4608	3.03×10^{-4}	1152^{3}	$4 \times 36 \times 32$
4608	3.12×10^{-4}	1152^{3}	$4 \times 18 \times 64$
4608	2.36×10^{-4}	2304^{3}	$2 \times 32 \times 72$
8192	1.475×10^{-4}	2048^{3}	$4 \times 32 \times 64$
9216	0.00104	576^{3}	$16 \times 18 \times 32$
9216	1.276×10^{-4}	2304^{3}	$4 \times 36 \times 64$
9216	1.30×10^{-4}	2304^{3}	$4 \times 32 \times 72$

Table 10: Lindgren timings

proc	$\frac{\mu \mathrm{s}}{}$	resol.	layout
	pt step		
1536	0.00171	$512^{2} \times 384$	$2 \times 32 \times 24$
2048	0.00129	$512^{2} \times 1024$	$1 \times 32 \times 64$
2048	0.00129	$1024^{2} \times 2048$	$1 \times 32 \times 64$
4096	4.6×10^{-4}	2048^{3}	$4 \times 16 \times 64$
9216	2.36×10^{-4}	2304^{3}	$4 \times 48 \times 48$

B Coding standard

The numerous elements that make up the Pencil Code are written in a consistent style that has evolved since it was first created. Many people have contributed their knowledge and experience with in this and the result is what we believe is and extremely readable and manageable code.

As well as improving the readability of the code, by having some naming conventions for example aids greatly in understanding what the code does.

There is a standard for all aspects of the code, be it Fortran source, shell scripts, Perl scripts, LaTeX source, Makefiles, or otherwise. Where nothing has been explicitly stated it is recommended that similar existing examples found in the code are used as a template.

B. 1 File naming conventions

All files with the exception of the 'Makefile's are given lowercase filenames.
Fortran source files all have the '.f90' extension. Files that contain 'non-executable code' i.e. declarations that are included into other files are given the extension '. h ' and those that are generated dynamically at compile time have an '.inc' extension.
Fortran source code defining a module is placed in files whose names begin with the Fortran module name in all lowercase. Where there exist multiple implementations of a specific module the filenames are extended using and with an underscore ad a brief name relating to what they do.

Text files containing parameters to be read by the code at run time are placed in files with the extension '.in'

B. 2 Fortran Code

The code should remain fully compatible with the Fortran 90 standard. This ensures that the code will run on all platforms. Indeed, an important aspect of PENCIL Code philosophy is to be maximally flexible. This also means that useful non-standard extensions to the code should be hidden in and be made accessible through suitable non-default modules.

Fortran is not case-sensitive but in almost all instances we prescribe some form of capitalization for readability.

In general all Fortran code including keywords, variable names etc. are written in lowercase. Some of the coding standard has already been discussed in Sect. 9.1. Here we discuss and amplify some remaining matters.

B.2.1 Indenting and whitespace

Whitespace should be removed from the end of lines.
Blank lines are kept to a minimum, and when occurring in subroutines or functions are replaced by a single '!' in the first column.

Tab characters are not used anywhere in the code. Tab characters are not in fact allowed by the Fortran standard and compilers that accept them do so as an extension.

All lines are kept to be not more than 80 characters long. Where lines are longer they must be explicitly wrapped using the Fortran continuation character ' $\&$ '. Longer lines (up to 132 characters) and additional spaces are allowed in cases where the readability of the code is enhanced, e.g. when one line is followed by a similar one with minor differences in some places.

Code in syntactic blocks such as if-endif, do-enddo, subroutine-endsubroutine etc. is always indented by precisely two spaces. The exception to this is that nested loops where only the innermost loop contains executable code should be written with the do-enddo pairs at the same level of indentation,

```
do n=n1,n2
do m=m1,m2
    [...]
enddo
enddo
```

Alternatively nested loops may be written on a single line, i.e.

```
do n=n1,n2; do m=m1,m2
    [...]
enddo; enddo
```


B.2.2 Comments

Descriptive comments are written on their own lines unless there is a strong reason to do otherwise. Comments are never indented and the '!' should appear in the first column followed by two spaces and then the text of the comment. Extremely short comments may follow at the end of a line of code, provided there is space.

Comments also must not exceed the 78 character line length and should be wrapped onto more lines as needed.

Typically comments should appear with a blank commented line above and below the wrapped text of the comment.
All subroutine/functions begin with a standard comment block describing what they do, when and by whom they were created and when and by whom any non-trivial modifications were made.

Comments should be written in sentences using the usual capitalization and punctuation of English, similar to how text is formatted in an e-mail or a journal article.

For example:

```
    some fortran code
    some more fortran code
!
! A descriptive comment explaining what the following few lines
! of code do.
!
    the fortran code being described
```

```
    the fortran code being described
    ...
!
A final detail described here.
    the final fortran code
    the final fortran code
```

Subroutines and functions are started with a comment block describing what they do, when and by whom they were created and when and by whom any non-trivial modifications were made. The layout of this comment block is a standard, for example:

```
    subroutine initialize_density(f,lstarting)
    Perform any post-parameter-read initialization i.e. calculate derived
    parameters.
    For compatibility with other applications, we keep the possibility
    of giving diffrho units of dxmin*cs0, but cs0 is not well defined general.
    24-nov-02/tony: coded
    1-aug-03/axel: normally, diffrho should be given in absolute units
```

!
where dates are written in dd-mmm-yy format as shown and names appearing after the ' $/$ ' are either the users cvs login name or, where such exists amongst the PENCIL CODE community, the accepted short form (≈ 4 characters) of the authors name.

B.2.3 Module names

The names of modules are written with initial letter capitalization of each word and the multiple words written consecutively without any separator.

B.2.4 Variable names

Variable are given short but meaningful names and written in all lowercase. Single character names are avoided except for commonly used loop indices and the two code data structures of the PENCIL CODE: ' f ' the main state array (see 9.3) and 'p' the pencil case structure (see 9.6).

Quantities commonly represented by a particular single character in mathematics are typically given names formed by repeating the character (usually in lowercase), e.g. the velocity u becomes 'uu', specific entropy s becomes 'ss' etc.

Temperature in variable names is denoted with a capital T so as not to be confused with time as represented by a lowercase t. Note however the since Fortran is not case sensitive the variables for example 'TT' and ' tt ' are the same so distinct names must be used. For this reason time is usually represented by a single t contrary to the above guideline.

The natural log of a quantity is represented by using adding 'ln' to its name, for example log of temperature would be 'lnTT'.

There are some standard prefixes used to help identify the type and nature of variables they are as follows:

- i - Denotes integer variables typically used as array indices.
- i_ - Denotes pencil case array indices.
- idiag- - Denotes diagnostic indices.
- l-Denotes logical/boolean flags
- cdt - Denotes timestep constraint parameters.
- unit_ - Denotes conversion code/physics unit conversion parameters.

B.2.5 Emacs settings

Here are some settings from wd's ${ }^{\text {‘~ } / \text {. emacs' file: }}$

```
;;; ~/.f90.emacs
;;; Set up indentation and similar things for coding the {\sc Pencil Code}.
;;; Most of this can probably be set through Emacs' Customize interface
;;; as well.
;;; To automatically load this file, put the lines
;;; (if (file-readable-p "~/.f90.emacs")
;;; (load-file "~/.f90.emacs"))
;;; into your ~/.emacs file.
;; F90-mode indentation widths
(setq f90-beginning-ampersand nil) ; no 2nd ampersand at continuation line
(setq f90-do-indent 2)
(setq f90-if-indent 2)
(setq f90-type-indent 2)
(setq f90-continuation-indent 4)
;; Don't use any tabs for indentation (with TAB key).
;; This is actually already set for F90-mode.
(setq-default indent-tabs-mode nil)
;; Ensure Emacs uses F90-mode (and not Fortran-mode) for F90 files:
(setq auto-mode-alist
    (append
        '(
            ("\\.[fF]90$" . f90-mode)
            ("\\.inc$" . f90-mode)
            )
            auto-mode-alist))
```

; ; Make M-Backspace behave in Xemacs as it does in GNU Emacs. The default
; ; behavior is apparently a long-known bug the fix for which wasn't

```
;; propagated from fortran.el to f90.el.
;; (http://list-archive.xemacs.org/xemacs-patches/200109/msg00026.html):
(add-hook 'f90-mode-hook
    (function (lambda ()
        (define-key f90-mode-map [(meta backspace)] 'backward-kill-word)
)))
```


B. 3 Other best practices

When implementing IF or SELECT blocks always write code for all cases - including the default or else case. This should be done even when that code is only a call to raise an error that the case should not have been reached. If you see a missing case anywhere then do add it. These failsafes are essential in a large multi-purpose multi-user code like the Pencil Code.

If a case is supposed to do nothing and it may be unclear that the coder has recognized this fact then make it explicit by adding the default case with a comment like ! Do Nothing. The compiler will clean away any such empty blocks.

B. 4 General changes to the code

It is sometimes necessary to do major changes to the code. Since this may affect many people and may even be controversial among the developers, such changes are restricted to the time of the next Pencil Code User Meeting. Such meetings are advertised on http://www.nordita.org/software/pencil-code/ under the news section. Notes about previous such meetings can be found under http://www.nordita.org/software/pencil-code/UserMeetings/.

Major changes can affect those developers who have not checked in their latest changes for some time. Before doing such changes it is therefore useful to contact the people who have contributed to the latest developments on that module. If it is not functional or otherwise in bad shape, it should be moved to 'experimental', i.e. one says svn mv file.f90 experimental/file.f90. However, any such directory change constitutes a major change in itself and should be performed in agreement with those involved in the development. Otherwise any file that has been changed in the mean time will end up being outside revision control, which is to be avoided at all cost.

C Some specific initial conditions

C. 1 Random velocity or magnetic fields

Obtained with inituu='gaussian-noise' (or initaa='gaussian-noise'). The vector u (or A) is set to normally distributed, uncorrelated random numbers in all meshpoints for all three components. The power spectrum of $\boldsymbol{u}(\boldsymbol{A})$ increases then quadratically with wavenumber k (without cutoff) and the power spectrum of $\boldsymbol{\omega}$ (or \boldsymbol{B}) increases like k^{4}.

Note that a random initial condition contains significant power at the Nyquist frequency ($k_{\mathrm{Ny}}=\pi / N$, where N is the number of mesh points). In a decay calculation, because of the discretization error, such power decays slower than it ought to; see Fig. 18, where we show the evolution for a random initial velocity field for 64^{3} meshpoints, $\nu=5 \times 10^{-2}$ (fairly large!), and nfilter=30.
It is clearly a good idea to filter the initial condition to prevent excess power at k_{Ny}. On the other hand, such excess power is weak by comparison with the power at the energy carrying scale, so one does not see it in visualizations in real space. Furthermore, as seen from Fig. 18, for $k<k_{\mathrm{Ny}} / 2$ the power spectra for filtered and unfiltered initial conditions is almost the same.

Figure 18: Velocity power spectra at three different times with and without filtering of the initial condition.

C. 2 Turbulent initial with given spectrum

The most general procedure for producing an initial condition with a turbulent spectrum is inituu='power_randomphase_hel', which allows one to set two different slopes, together with an exponential cutoff as well as a Gaussian peak within the spectrum. By default, the field is solenoidal unless one puts lskip_projection=.true. and can have fractional helicity by setting relhel_uu to a value between -1 and 1 . By default it is 0 , which means it is nonhelical.

The spectral indices initpower and initpower2 refer to energy spectral indices. By default, initpower $2=-5 / 3$, corresponding to a Kolmogorov spectrum. For a delta-correlated spectrum, we have to put initpower=2, corresponding to a k^{2} energy spectrum for kinetic energy. This would be suitable for the subinertial range from $k=1$ to $k=k_{\mathrm{p}}$ (corresponding to the variable kpeak).
If cutoff=0, no cutoff will be imposed. Otherwise, the spectrum will be multiplied by an exponential function with $\exp \left(-k^{2 n}\right)$, where $n=$ 'ncutoff $=1$ ' by default.

Example, for ampluu=1e-1, initpower=4., and kpeak=3., we get urms=3.981E-01 when relhel_uu=1 and urms=3.981E-01 when relhel_uu=0 and urms=5.560E-01 when relhel_$u u=1$. The urms values scale linearly with ampluu and for initpower=2 also approximately linearly with kpeak. For the magnetic field, we initialize the magnetic vector potential, so to get a k^{4} spectrum, we have to put initpower_aa=2. Everything else is analogous; see, e.g.,

```
&hydro_init_pars
    inituu='power_randomphase_hel', ampluu=1e-1, initpower=4., kpeak=3.
    relhel_uu=0., cutoff=30.
/
&magnetic_init_pars
    initaa='power_randomphase_hel', amplaa=1e-1, initpower_aa=2., kpeak_aa=3.
    relhel_aa=0., cutoff_aa=30.
/
```

for which we get urms=3.981E-01 and brms=3.871E-01.

C. 3 Beltrami fields

Obtained with inituu='Beltrami-z' or initaa='Beltrami-z'.

$$
\begin{equation*}
\boldsymbol{A}=(\cos z, \sin z, 0), \quad \text { or } \quad \boldsymbol{u}=(\cos z, \sin z, 0) \tag{121}
\end{equation*}
$$

C. 4 Magnetic flux rings: initaa='fluxrings'

This initial condition sets up two interlocked thin magnetic tori (i.e. thin, torus-shaped magnetic flux tubes). One torus of radius R lying in the plane $z=0$ can be described in cylindrical coordinates, (r, φ, z), by the vector potential

$$
\boldsymbol{A}=\Phi_{\mathrm{m}}\left(\begin{array}{c}
0 \tag{122}\\
0 \\
-\theta(r-R) \delta(z)
\end{array}\right)
$$

resulting in a magnetic field

$$
\boldsymbol{B}=\Phi_{\mathrm{m}}\left(\begin{array}{c}
0 \tag{123}\\
\delta(r-R) \delta(z) \\
0
\end{array}\right)
$$

Here Φ_{m} is the magnetic flux through the tube, $\theta(x)$ denotes the Heaviside function, and

$$
\begin{equation*}
\delta(x)=\theta^{\prime}(x) \tag{124}
\end{equation*}
$$

is Dirac's delta function.
Any smoothed versions of $\theta(x)$ and $\delta(x)$ will do, as long as the consistency condition (124) is satisfied. E. g. the pairs

$$
\begin{equation*}
\delta_{\varepsilon}(x)=\frac{1}{\sqrt{2 \pi \varepsilon^{2}}} e^{-\frac{x^{2}}{2 \varepsilon^{2}}}, \quad \theta_{\varepsilon}(x)=\frac{1}{2}\left(1+\operatorname{erf} \frac{x}{\sqrt{2} \varepsilon}\right) \tag{125}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta_{\varepsilon}(x)=\frac{1}{2 \varepsilon} \frac{1}{\cosh ^{2} \frac{x}{\varepsilon}}, \quad \theta_{\varepsilon}(x)=\frac{1}{2}\left(1+\tanh \frac{x}{\varepsilon}\right) \tag{126}
\end{equation*}
$$

are quite popular. Another possibility is a constant or box-like profile with

$$
\begin{equation*}
\delta_{\varepsilon}(x)=\frac{1}{2 \varepsilon} \theta(|x|-\varepsilon), \quad \theta_{\varepsilon}(x)=\frac{1}{2}\{1+\max [-1, \min (x / \varepsilon), 1]\} \tag{127}
\end{equation*}
$$

Note, however, that the Gaussian profile (125) is the only one that yields a radially symmetric (with respect to the distance from the central line of the torus) magnetic field profile $B_{\varphi}=B_{\phi}\left(\sqrt{(r-R)^{2}+z^{2}}\right)$ if ε is sufficiently small.
In Cartesian coordinates, the vector potential (122) takes the form

$$
\boldsymbol{A}=\Phi_{\mathrm{m}}\left(\begin{array}{c}
0 \tag{128}\\
0 \\
-\theta\left(\sqrt{x^{2}+y^{2}}-R\right) \delta(z)
\end{array}\right)
$$

C. 5 Vertical stratification

Gravity, $\mathrm{g}=-\nabla \Phi$, is specified in terms of a potential Φ. In slab geometry, $\Phi=\Phi(z)$, we have $\mathbf{g}=\left(0,0, g_{z}\right)$ and $g_{z}=-\mathrm{d} \Phi / \mathrm{d} z$.
Use grav_profile='const' together with gravz $=-1$ to get

$$
\begin{equation*}
\Phi=\left(z-z_{\infty}\right)\left(-g_{z}\right), \quad\left(-g_{z}\right)>0 \tag{129}
\end{equation*}
$$

Use grav_profile='linear' to get

$$
\begin{equation*}
\Phi=\frac{1}{2}\left(z^{2}-z_{\infty}^{2}\right) \nu_{\mathrm{g}}^{2}, \quad g_{z}=-\nu_{\mathrm{g}}^{2} z \tag{130}
\end{equation*}
$$

where ν_{g} is the vertical epicyclic frequency. For a Keplerian accretion disc, $\nu_{\mathrm{g}}=\Omega$. For galactic discs, $\nu_{\mathrm{g}}=0.5 \Omega$ is representative of the solar neighborhood.
The value of z_{∞} is determined such that $\rho=\rho_{0}$ and $c_{\mathrm{s}}^{2}=c_{\mathrm{s} 0}^{2}$ at $z=z_{\text {ref }}$. This depends on the values of γ and the polytropic index m (see below).

C.5.1 Isothermal atmosphere

Here we want $c_{\mathrm{s}}=c_{\mathrm{s} 0}=$ const. Using initlnrho='isothermal' means

$$
\begin{equation*}
\ln \frac{\rho}{\rho_{0}}=-\gamma \frac{\Phi}{c_{\mathrm{s} 0}^{2}} \tag{131}
\end{equation*}
$$

The entropy is then initialized to

$$
\begin{equation*}
\frac{s}{c_{p}}=(\gamma-1) \frac{\Phi}{c_{\mathrm{s} 0}^{2}} \tag{132}
\end{equation*}
$$

In order that $\rho=\rho_{0}$ and $c_{\mathrm{s}}^{2}=c_{\mathrm{s} 0}^{2}$ at $z=z_{\text {ref }}$, we have to choose $z_{\infty}=z_{\text {ref }}$.

C.5.2 Polytropic atmosphere

For a polytropic equation of state, $p=K \rho^{\Gamma}$, where generally $\Gamma \neq \gamma$, we can write

$$
\begin{equation*}
-\nabla h+T \nabla s=-\frac{1}{\rho} \nabla p=-\nabla\left(\frac{\Gamma K}{\Gamma-1} \rho^{\Gamma-1}\right) \equiv-\nabla \tilde{h}, \tag{133}
\end{equation*}
$$

where we have introduced a pseudo enthalpy \tilde{h} as

$$
\begin{equation*}
\tilde{h}=\frac{\Gamma K}{\Gamma-1} \rho^{\Gamma-1}=\left[\left(1-\frac{1}{\gamma}\right) /\left(1-\frac{1}{\Gamma}\right)\right] h . \tag{134}
\end{equation*}
$$

Obviously, for $\Gamma=\gamma$, the pseudo enthalpy \tilde{h} is identical to h itself. Instead of specifying Γ, one usually defines the polytropic index $m=1 /(\Gamma-1)$. Thus, $\Gamma=1+1 / m$, and

$$
\begin{equation*}
\tilde{h}=(m+1)\left(1-\frac{1}{\gamma}\right) h \tag{135}
\end{equation*}
$$

This is consistent with a fixed entropy dependence, where s only depends on ρ like

$$
\begin{equation*}
\frac{s}{c_{p}}=\left(\frac{\Gamma}{\gamma}-1\right) \ln \frac{\rho}{\rho_{0}} \tag{136}
\end{equation*}
$$

and implies that

$$
\begin{equation*}
\ln \frac{c_{\mathrm{s}}^{2}}{c_{\mathrm{s} 0}^{2}}=(\Gamma-1) \ln \frac{\rho}{\rho_{0}} . \tag{137}
\end{equation*}
$$

For hydrostatic equilibrium we require $\tilde{h}+\Phi=\tilde{h}_{0}=$ const. For gravity potentials that vanish at infinity, we can have $\tilde{h}_{0} \neq 0$, i.e. a finite pseudo enthalpy at infinity. For $g_{z}=-1$ or $g_{z}=-z$, this is not the case, so we put $\tilde{h}_{0}=0$, and therefore $\tilde{h}=-\Phi$. Using $c_{\mathrm{s}}^{2}=(\gamma-1) h$ together with (135) we find

$$
\begin{equation*}
c_{\mathrm{s}}^{2}=-\frac{\gamma}{m+1} \Phi . \tag{138}
\end{equation*}
$$

In order that $\rho=\rho_{0}$ and $c_{\mathrm{s}}^{2}=c_{\mathrm{s} 0}^{2}$ at $z=z_{\text {ref }}$, we have to choose (remember that g_{z} is normally negative!)

$$
\begin{equation*}
z_{\infty}=z_{\text {ref }}+(m+1) \frac{c_{\mathrm{s} 0}^{2}}{\gamma\left(-g_{z}\right)} \quad \text { for grav_profile='const', } \tag{139}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{\infty}^{2}=z_{\mathrm{ref}}^{2}+(m+1) \frac{c_{\mathrm{s} 0}^{2}}{\frac{1}{2} \gamma \nu_{\mathrm{g}}^{2}} \quad \text { for grav_profile='linear'. } \tag{140}
\end{equation*}
$$

Thus, when using initlnrho='polytropic_simple' we calculate

$$
\begin{equation*}
\ln \frac{c_{\mathrm{s}}^{2}}{c_{\mathrm{s} 0}^{2}}=\ln \left[-\frac{\gamma \Phi}{(m+1) c_{\mathrm{s} 0}^{2}}\right] \tag{141}
\end{equation*}
$$

and so the stratification is given by

$$
\begin{equation*}
\ln \frac{\rho}{\rho_{0}}=m \ln \frac{c_{\mathrm{s}}^{2}}{c_{\mathrm{s} 0}^{2}}, \quad \frac{s}{c_{p}}=\left(\frac{\Gamma}{\gamma}-1\right) m \ln \frac{c_{\mathrm{s}}^{2}}{c_{\mathrm{s} 0}^{2}} \tag{142}
\end{equation*}
$$

C.5.3 Changing the stratification

Natural: measure length in units of $c_{\mathrm{s} 0}^{2} / g_{z}$. Can increase stratification by moving $z_{\text {top }}$ close to z_{∞} or, better still, keeping $z_{\text {top }}=0$ and moving $z_{\text {bot }} \rightarrow-\infty$. Disadvantage: in the limit of weak stratification, the box size will be very small (in nondimensional units).

Box units: measure length in units of d. Can increase stratification by increasing g_{z} to $g_{\text {max }}$, which can be obtained by putting $z_{\text {top }}=z_{\infty}$ in (139), so

$$
\begin{equation*}
g_{\max }=\frac{m+1}{\gamma} \frac{c_{\mathrm{s} 0}^{2}}{z_{\mathrm{top}}-z_{\mathrm{ref}}} . \tag{143}
\end{equation*}
$$

For $m=1, \gamma=5 / 3, z_{\text {top }}=1$, and $z_{\text {ref }}=0$, for example, we have $g_{\text {max }}=6 / 5=1.2$.
Gravitational box units: measure speed in units of $\sqrt{g_{z} d}$. The limit of vanishing stratification corresponds to $c_{\mathrm{s} 0} \rightarrow \infty$. This seems optimal if we want to approach the Boussinesq case.

In Hurlburt et al. (1984), z increased downward and the atmosphere always terminated at $z=0$. In order to reproduce their case most directly, we put $z_{\infty}=0$ and consider only negative values of z. To reproduce their case with a density stratification of $1: 1.5$, we place the top of the model at $z=-2$ and the bottom at $z=-3$. In addition, the reference height, $z_{\text {ref }}$, is chosen to be at the top of the box, i.e. $z_{\text {ref }}=-2$. From Eq. (139) we have $c_{\mathrm{s} 0}^{2}=\gamma\left(-g_{z}\right)\left(-z_{\mathrm{ref}}\right) /(m+1)$. Using $\left(-g_{z}\right)=1$ and $m=1$ we find $c_{\mathrm{s} 0}^{2}=\gamma$, so $c_{\mathrm{s} 0}=1.291$ (for $\gamma=5 / 3)$. Values for other combinations are listed in Table 11.

Table 11: Correspondence between density contrast, top and bottom values of z, and $c_{\mathrm{s} 0}$ for $\left(-g_{z}\right)=1$, $m=1$, and $\gamma=5 / 3$.

$\rho_{\text {bot }} / \rho_{\text {top }}$	$z_{\text {bot }}$	$z_{\text {top }}$	$c_{\mathrm{s} 0}$
1.5	3	2	1.291
3	1.5	0.5	0.645
6	1.2	0.2	0.408
11	1.1	0.1	0.289
21	1.05	0.05	0.204

C.5.4 The Rayleigh number

In Ref. [10] the Rayleigh number is defined as

$$
\begin{equation*}
\mathrm{Ra}=\frac{g d^{4}}{\bar{\nu} \bar{\chi}}\left(-\frac{\mathrm{d} s / c_{p}}{\mathrm{~d} z}\right)_{\text {hydrostat }}, \tag{144}
\end{equation*}
$$

where the (negative) entropy gradient was evaluated in the middle of the box for the associated hydrostatic reference solution, and $\bar{\chi}=K /\left(\bar{\rho} c_{p}\right)$ and either $\bar{\nu}=\nu$ (if ν was assumed constant) or $\bar{\nu}=\mu / \bar{\rho}$ (if μ was assumed constant). Note that $\bar{\rho}$ is the average mass in the box per volume, which is conserved. For a polytrope we have

$$
\begin{equation*}
\left(-\frac{\mathrm{d} s / c_{p}}{\mathrm{~d} z}\right)_{\text {hydrostat }}=\left[1-(m+1)\left(1-\frac{1}{\gamma}\right)\right] \frac{1}{z_{\infty}-z_{\mathrm{m}}}, \tag{145}
\end{equation*}
$$

where $z_{\mathrm{m}}=\left(z_{1}+z_{2}\right) / 2$. This factor was also present in the definition of Hurlburt et al. [21], but their definition differs slightly from Eq. (144), because they normalized the
density not with respect to the average value (which is constant for all times), but with respect to the value at the top of the initial hydrostatic solution. Since the Rayleigh number is proportional to ρ^{2}, their definition included the extra factor $\left[\left(z_{\infty}-z_{\mathrm{m}}\right) / d\right]^{2}$. Therefore

$$
\begin{equation*}
\operatorname{Ra}_{\mathrm{HTM}}=\left(\frac{z_{\infty}-z_{\mathrm{m}}}{d}\right)^{2 m}\left(\frac{\rho_{\mathrm{top}}}{\bar{\rho}}\right)^{2} \mathrm{Ra} \tag{146}
\end{equation*}
$$

In the first model of Hurlburt et al. (1984), the Rayleigh number, Ra ${ }_{\text {HTM }}$, was chosen to be 310 times supercritical, and the critical Rayleigh number was around 400 , so Ra $_{\mathrm{HTM}}=$ 1.25×10^{5}. In their model the density contrast was $1: 1.5$ and $m=1$. This turns out to correspond to $\mathrm{Ra}=4.9 \times 10^{4}, F_{\mathrm{bot}}=0.0025$, and $K=0.002$.

Another model that was considered by Hurlburt \& Toomre (1988) had Ra нтм $=10^{5}$, a density contrast of 11, and had a vertical imposed magnetic field (Chandrasekhar number $Q=72$). This corresponds to $\mathrm{Ra}=3.6 \times 10^{8}, K=0.0011, F_{\mathrm{bot}}=0.0014$.

C.5.5 Entropy boundary condition

This discussion only applies to the case of convection in a slab. A commonly used lower boundary condition is to prescribe the radiative flux at the bottom, i.e. $F_{\mathrm{bot}}=-K \mathrm{~d} T / \mathrm{d} z$. Assuming that the density in the ghost zones has already been updated, we can calculate the entropy gradient from

$$
\begin{equation*}
F_{\mathrm{bot}}=-\frac{K}{c_{p}} \frac{c_{\mathrm{s}}^{2}}{\gamma-1}\left((\gamma-1) \frac{\mathrm{d} \ln \rho}{\mathrm{~d} z}+\gamma \frac{\mathrm{d} s / c_{p}}{\mathrm{~d} z}\right), \tag{147}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{\mathrm{d} s / c_{p}}{\mathrm{~d} z}=-\frac{\gamma-1}{\gamma}\left(c_{p} \frac{F_{\mathrm{bot}}}{K c_{\mathrm{s}}^{2}}+\frac{\mathrm{d} \ln \rho}{\mathrm{~d} z}\right) \tag{148}
\end{equation*}
$$

for the derivative of the entropy at the bottom. This is implemented as the ' $c 1$ ' boundary condition at the bottom.

C.5.6 Temperature boundary condition at the top

In earlier papers the temperature at the top was set in terms of the quantity ξ_{0}, which is the ratio of the pressure scale height relative to the depth of the unstable layer. Expressed in terms of the sound speed at the top we have

$$
\begin{gather*}
c_{\mathrm{s}, \text { top }}^{2}=\gamma \xi_{0} g d . \tag{149}\\
c_{\mathrm{s}, \mathrm{bot}}^{2}=\left(\xi_{0}+\frac{1}{m+1}\right) \gamma g d \tag{150}
\end{gather*}
$$

C. 6 Potential-field boundary condition

The 'pot' [or currently rather the 'pwd'] boundary condition for the magnetic vector potential implements a potential-field boundary condition in z for the case of an x - y-periodic box. In this section, we discuss the relevant formulas and their implementation in the Pencil Code.

Table 12: Correspondence between ξ_{0} and $c_{\mathrm{s}, \text { bot }}^{2}$ in single layer polytropes.

ξ_{0}	$c_{\mathrm{s}, \text { bot }}^{2}$
10.00	17.500
0.20	1.167
0.10	1.000
0.05	0.917
0.02	0.867

If the top boundary is at $z=0$, the relevant potential field for $z>0$ is given by

$$
\begin{align*}
& \tilde{A}_{x}\left(k_{x}, k_{y}, z\right)=C_{x}\left(\boldsymbol{k}_{x y}\right) e^{-\kappa z}, \tag{151}\\
& \tilde{A}_{y}\left(k_{x}, k_{y}, z\right)=C_{y}\left(\boldsymbol{k}_{x y}\right) e^{-\kappa z}, \tag{152}\\
& \tilde{A}_{x}\left(k_{x}, k_{y}, z\right)=C_{z}\left(\boldsymbol{k}_{x y}\right) e^{-\kappa z}, \tag{153}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{A}_{i}\left(k_{x}, k_{y}, z\right) \equiv \int e^{-i \boldsymbol{k}_{x y} \cdot \boldsymbol{x}} A_{i}(x, y, z) d x d y \tag{154}
\end{equation*}
$$

is the horizontal Fourier transform with $\boldsymbol{k}_{x y} \equiv\left(k_{x}, k_{y}, 0\right)$, and $k \equiv\left|\boldsymbol{k}_{x y}\right|$. Note that this implies a certain gauge and generally speaking the z dependence in Eq. (153) is completely arbitrary, but the form used here works well in terms of numerical stability.

At the very boundary, the potential field (151)-(153) implies

$$
\begin{equation*}
\frac{\partial \tilde{\boldsymbol{A}}}{\partial z}+\kappa \tilde{\boldsymbol{A}}=0 \tag{155}
\end{equation*}
$$

and, due to natural continuity requirements on the vector potential, these conditions also hold for the interior field at the boundary.

Robin boundary conditions and ghost points To implement a homogeneous Robin boundary condition, i.e. a condition of the form

$$
\begin{equation*}
\frac{d f}{d z}+\kappa f=0 \tag{156}
\end{equation*}
$$

using ghost points, we first write it as

$$
\begin{equation*}
\frac{d}{d z}\left(f e^{\kappa z}\right)=0 \tag{157}
\end{equation*}
$$

and implement this as symmetry condition for the variable $\phi(z) \equiv f(z) e^{\kappa z}$:

$$
\begin{equation*}
\phi_{N-j}=\phi_{N+j}, \quad j=1,2,3 \tag{158}
\end{equation*}
$$

(where z_{N} is the position of the top boundary and z_{N+1}, \ldots are the boundary points). In terms of f, this becomes

$$
\begin{equation*}
f_{N+j}=f_{N-j} e^{-\kappa\left(z_{N+j}-z_{N-j}\right)} \tag{159}
\end{equation*}
$$

Note that although the exponential term in Eq. (159) looks very much like the exterior potential field (151)-(153), our ghost-zone values do not represent the exterior field they are rather made-up values that allow us to implement a local boundary condition at $z=0$.

C. 7 Planet solution in the shearing box

In order to test the setup for accretion discs and the sliding periodic shearing sheet boundary condition, a useful initial condition is the so-called planet solution of Goodman, Narayan, \& Goldreich [18].
Assume $s=0$ (isentropy), so the equations in 2-D are

$$
\begin{gather*}
u_{x} u_{x, x}+\left(u_{y}^{(0)}+u_{y}\right) u_{x, y}=2 \Omega u_{y}-h_{, x} \tag{160}\\
u_{x} u_{y, x}+\left(u_{y}^{(0)}+u_{y}\right) u_{y, y}=-(2-q) \Omega u_{x}-h_{, y} \tag{161}
\end{gather*}
$$

where $u_{y}^{(0)}=-q \Omega x$. Express \mathbf{u} in terms of a stream function, so $\mathbf{u}=\nabla \times(\psi \hat{\mathbf{z}})$, or

$$
\begin{equation*}
u_{x}=\psi_{, y}, \quad u_{y}=-\psi_{, x} \tag{162}
\end{equation*}
$$

Ansatz for enthalpy

$$
\begin{gather*}
h=\frac{1}{2} \delta^{2} \Omega^{2}\left(R^{2}-x^{2}-\epsilon^{2} y^{2}-z^{2} / \delta^{2}\right) \tag{163}\\
\psi=-\frac{1}{2} \sigma \Omega\left(R^{2}-x^{2}-\epsilon^{2} y^{2}\right)-\frac{1}{2} q \Omega x^{2} \tag{164}
\end{gather*}
$$

This implies

$$
\begin{equation*}
u_{x}=\sigma \Omega \epsilon^{2} y, \quad u_{y}=(q-\sigma) \Omega x \tag{165}
\end{equation*}
$$

and $u_{x, x}=u_{y, y}=0$. Inserting into Eqs (160) and (161) yields

$$
\begin{gather*}
(-q+q-\sigma) \sigma \epsilon^{2}=2(q-\sigma)+\delta^{2} \tag{166}\\
\sigma(q-\sigma)=-(2-q) \sigma+\delta^{2} \tag{167}
\end{gather*}
$$

where we have already canceled common Ω^{2} factors in both equations and common ϵ^{2} factors in the last equation. Simplifying both equations yields

$$
\begin{gather*}
-\sigma^{2} \epsilon^{2}=2(q-\sigma)+\delta^{2} \tag{168}\\
-\sigma^{2}=-2 \sigma+\delta^{2} \tag{169}
\end{gather*}
$$

The second equation yields

$$
\begin{equation*}
\delta^{2}=(2-\sigma) \sigma \tag{170}
\end{equation*}
$$

and subtracting the two yields

$$
\begin{equation*}
\sigma^{2}=2 q /\left(1-\epsilon^{2}\right) \tag{171}
\end{equation*}
$$

Table 13: Dependence of ϵ and δ on ϵ.

ϵ	σ	δ
0.1	1.74	0.67
0.2	1.77	0.64
0.3	1.82	0.58
0.4	1.89	0.46
0.48	1.97	0.22
0.5	2	0

D Some specific boundary conditions

In this section, we formulate and discuss the implementation of some common boundary conditions in spherical and cylindrical coordinates.

D. 1 Perfect-conductor boundary condition

This is a popular boundary condition for the magnetic field; it implies that

$$
\begin{equation*}
B_{n}=0 \tag{172}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{E}_{t}=0 \tag{173}
\end{equation*}
$$

on the boundary, where the subscript n denotes the normal component, and \boldsymbol{E}_{t} denotes the tangential components of the electric field.

In Cartesian geometry, these conditions can be implemented by setting the two tangential components of the vector potential \boldsymbol{A} to zero on the boundary. It is easy to see that this also works in arbitrary curvilinear coordinates.

In particular, for spherical coordinates on a radial boundary we must have

$$
\begin{equation*}
r \sin \theta B_{r}=\partial_{\theta}\left(\sin \theta A_{\phi}\right)-\partial_{\phi} A_{\theta}=0 . \tag{174}
\end{equation*}
$$

This can be achieved by setting

$$
\begin{equation*}
A_{\phi}=A_{\theta}=0 \tag{175}
\end{equation*}
$$

everywhere on the boundary. Note that this does not impose any condition on the radial component of the vector potential.

Next, in spherical coordinates on a boundary with constant θ, we must have

$$
\begin{equation*}
B_{\theta}=\frac{1}{r \sin \theta} \partial_{\phi} A_{r}-\frac{1}{r} \partial_{r}\left(r A_{\phi}\right)=0 . \tag{176}
\end{equation*}
$$

Again this can be achieved by $A_{r}=A_{\phi}=0$.

D. 2 Stress-free boundary condition

On an impenetrable, stress-free boundary, we have

$$
\begin{equation*}
u_{n}=0, \tag{177}
\end{equation*}
$$

and the shear stress components $S_{n t}$ must vanish for any tangential direction t. At the radial boundary, the relevant components of the strain tensor (required to vanish at the boundary) are:

$$
\begin{align*}
S_{r \theta} & =\frac{1}{r} \partial_{\theta} u_{r}+r \partial_{r}\left(\frac{u_{\theta}}{r}\right) \tag{178}\\
S_{r \phi} & =\frac{1}{r \sin \theta} \partial_{\phi} u_{r}+r \partial_{r}\left(\frac{u_{\phi}}{r}\right) . \tag{179}
\end{align*}
$$

Both of them vanish if we require

$$
\begin{equation*}
u_{r}=0, \quad \partial_{r}\left(u_{\theta} / r\right)=0, \quad \partial_{r}\left(u_{\phi} / r\right)=0 \tag{180}
\end{equation*}
$$

We implement this by requiring u_{r} to be antisymmetric and u_{θ} / r and u_{ϕ} / r to be symmetric with respect to the boundary.

The more general condition

$$
\begin{equation*}
r^{\alpha} \partial_{r}\left(u_{\theta} / r^{\alpha}\right)=\partial_{r} u_{\theta}-\frac{\alpha}{r} u_{\theta}=0 \tag{181}
\end{equation*}
$$

(where α is a constant) can be implemented by requiring u_{θ} / r^{α} to be symmetric.
At a boundary $\theta=$ const, the stress-free boundary condition will take the form

$$
\begin{align*}
S_{r \theta} & =\frac{1}{r} \partial_{\theta} u_{r}+r \partial_{r}\left(\frac{u_{\theta}}{r}\right)=0 \tag{182}\\
S_{\theta \phi} & =\frac{1}{r \sin \theta} \partial_{\phi} u_{\theta}+\sin \theta \partial_{\theta}\left(\frac{u_{\phi}}{r \sin \theta}\right)=0 . \tag{183}
\end{align*}
$$

With $u_{\theta}=0$, the first condition gives $\partial_{\theta} u_{r}=0$, i.e. we require u_{r} to be symmetric with respect to the boundary. The second condition requires

$$
\begin{equation*}
\frac{\sin \theta}{r} \partial_{\theta}\left(\frac{u_{\phi}}{\sin \theta}\right)=0 \tag{184}
\end{equation*}
$$

and is implemented by requiring $u_{\phi} / \sin \theta$ to be symmetric.

D. 3 Normal-field-radial boundary condition

While unphysical, this boundary condition is often used as a cheap replacement for a potential-field condition for the magnetic field. It implies that the two tangential components of the magnetic field are zero at the boundary, while the normal component is left unconstrained.

At a radial boundary, this gives:

$$
\begin{align*}
B_{\theta} & =\frac{1}{r \sin \theta} \partial_{\phi} A_{r}-\frac{1}{r} \partial_{r}\left(r A_{\phi}\right)=0 \tag{185}\\
B_{\phi} & =\frac{1}{r} \partial_{r}\left(r A_{\theta}\right)-\frac{1}{r} \partial_{\theta} A_{r}=0 \tag{186}
\end{align*}
$$

Which are satisfied by setting

$$
\begin{equation*}
A_{r}=0, \quad \partial_{r}\left(r A_{\theta}\right)=0, \quad \partial_{r}\left(r A_{\phi}\right)=0 \tag{187}
\end{equation*}
$$

and these are implemented by requiring A_{r} to be antisymmetric, and $r A_{\theta}$ and $r A_{\phi}$ to be symmetric.

On a boundary $\theta=$ const, we have

$$
\begin{align*}
r \sin \theta B_{r} & =\partial_{\theta}\left(\sin \theta A_{\phi}\right)-\partial_{\phi} A_{\theta}=0, \tag{188}\\
r B_{\phi} & =\partial_{r}\left(r A_{\theta}\right)-\partial_{\theta} A_{r}=0 \tag{189}
\end{align*}
$$

which can be achieved by setting

$$
\begin{equation*}
\partial_{\theta} A_{r}=0, \quad A_{\theta}=0, \quad \partial_{\theta}\left(\sin \theta A_{\phi}\right)=0 . \tag{190}
\end{equation*}
$$

We thus require A_{r} and $\sin \theta A_{\phi}$ to be symmetric, and A_{θ} to be antisymmetric.

E High-frequency filters

Being high order, Pencil Code has much reduced numerical dissipation. In order to perform inviscid simulations, high-frequency filters can be used to provide extra dissipation for modes approaching the Nyquist frequency. Usual Laplacian viscosity $\nu \nabla^{2} \boldsymbol{u}$ is equivalent to a multiplication by k^{2} in Fourier space, where k is the wavenumber. Another tool is hyperviscosity, which replaces the k^{2} dependency by a higher power-law, k^{n}, $n>2$. The idea behind it is to provide large dissipation only where it is needed, at the grid scale (high k), while minimizing it at the largest scales of the box (small k). In principle, one can use as high n as desired, but in practice we are limited by the order of the code. A multiplication by k^{n} is equivalent to an operator ∇^{n} in real space. As Pencil Code is of sixth order, three ghost cells are available in each direction, thus the sixth-order derivative is the highest we can compute. The hyperdissipation we use is therefore ∇^{6}, or k^{6} is Fourier space. Figure 19 illustrates how such tool maximizes the inertial range of a simulation.

Simplified hyperdiffusivity has been implemented for many dynamical variables and can be found in the respective modules. A strict generalization of viscosity and resistivity to higher order is implemented in the modules 'hypervisc_strict_2nd' and 'hyperresi_strict_2nd'.

Hyperdiffusivity is meant purely as a numerical tool to dissipate energy at small scales and comes with no guarantee that results are convergent with regular second order dissipation. See Haugen \& Brandenburg (2004) for a discussion. In fact, large-scale dynamo action is known to be seriously altered in simulations of closed systems where magnetic helicity is conserved: this results in prolonged saturation times and enhanced saturation amplitudes (Brandenburg \& Sarson 2002).

E. 1 Conservative hyperdissipation

It is desirable to have this high-frequency filter obeying the conservation laws. So, for density we want a mass conserving term, for velocities we want a momentum conserving term, for magnetic fields we want a term conserving magnetic flux, and for entropy we want an energy conserving term. These enter as hyperdiffusion, hyperviscosity, hyperresistivity, and hyper heat conductivity terms in the evolution equations. To ensure conservation under transport, they must take the form of the divergence of the flux \mathcal{J} of the quantity ψ, so that Gauss theorem applies and we have

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}+\nabla \cdot \mathcal{J}=0 \tag{191}
\end{equation*}
$$

For density, the flow due to mass diffusion is usually taken as the phenomenological Fick's Law

$$
\begin{equation*}
\mathcal{J}=-D \nabla \rho \tag{192}
\end{equation*}
$$

i.e., proportional to the density gradient, in the opposite direction. This leads to the usual Laplacian diffusion

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=D \nabla^{2} \rho \tag{193}
\end{equation*}
$$

Laplacian vs hyper dissipation

Figure 19: Dissipation acting on a scalar field ψ, for $n=1$ (Laplacian dissipation) and $n=3$ (third-order hyperdissipation). The field is initially seeded with noise (upper panel). For $n=3$ the large scale is not affected as much as in the $n=1$ case, which is seen by the larger wiggling of the latter in the middle panel. In Fourier space (lower panel) we see that near the grid scale both formulations give strong dissipation. It also illustrates that at the large scales ($k \sim 1$), the effect of $n=3$ is indeed negligible.
under the assumption that the diffusion coefficient D is isotropic. Higher order hyperdiffusion of order $2 n$ involves a generalization of Eq. (192), to

$$
\begin{equation*}
\mathcal{J}^{(n)}=(-1)^{n} D^{(n)} \nabla^{2 n-1} \rho \tag{194}
\end{equation*}
$$

In our case, we are interested in the case $n=3$, so that the hyperdiffusion term is

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=D^{(3)} \nabla^{6} \rho \tag{195}
\end{equation*}
$$

The hyperdiffusion coefficient $D^{(3)}$ can be calculated from D assuming that at the Nyquist frequency the two formulations (193) and (195) yield the same quenching. Considering a wave as a Fourier series in one dimension (x), one element of the series is expressed as

$$
\begin{equation*}
\psi_{k}=A \mathrm{e}^{i(k x+\omega t)} \tag{196}
\end{equation*}
$$

Plugging it into the second order diffusion equation (193) we have the dispersion condition $i \omega=-D k^{2}$. The sixth order version (195) yields $i \omega=-D^{(3)} k^{6}$. Equating both we have $D^{(3)}=D k^{-4}$. This condition should hold at the grid scale, where $k=\pi / \Delta x$, therefore

$$
\begin{equation*}
D^{(3)}=D\left(\frac{\Delta x}{\pi}\right)^{4} \tag{197}
\end{equation*}
$$

For the magnetic potential, resistivity has the same formulation as mass diffusion

$$
\begin{equation*}
\frac{\partial \boldsymbol{A}}{\partial t}=-\eta \nabla \times \boldsymbol{B}=\eta \nabla^{2} \boldsymbol{A}, \tag{198}
\end{equation*}
$$

where we used the Coulomb gauge $\nabla \cdot A=0$. The algebra is the same as above, also yielding $\eta^{(3)}=\eta(\Delta x / \pi)^{4}$. For entropy, the heat conduction term is

$$
\begin{equation*}
\frac{\partial S}{\partial t}=\frac{1}{\rho T} \boldsymbol{\nabla} \cdot(K \boldsymbol{\nabla} T), \tag{199}
\end{equation*}
$$

and requiring that K be constant, we substitute it by

$$
\begin{equation*}
\frac{\partial S}{\partial t}=\frac{K^{(3)}}{\rho T} \nabla^{6} T . \tag{200}
\end{equation*}
$$

also with $K^{(3)}=K(\Delta x / \pi)^{4}$.

E. 2 Hyperviscosity

Viscosity has some caveats where subtleties apply. The difference is that the momentum flux due to viscosity is not proportional to the velocity gradient, but to the rate-of-strain tensor

$$
\begin{equation*}
S_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}-\frac{2}{3} \delta_{i j} \boldsymbol{\nabla} \cdot \boldsymbol{u}\right), \tag{201}
\end{equation*}
$$

which only allows the viscous acceleration to be reduced to the simple formulation $\nu \nabla^{2} \boldsymbol{u}$ under the condition of incompressibility and constant dynamical viscosity $\mu=\nu \rho$. Due to this, the general expression for conservative hyperviscosity involves more terms. In some cases, it is no great overhead, but for others, simpler formulations can be applied.

E.2.1 Conservative case

In the general case, the viscous acceleration is

$$
\begin{equation*}
f_{\mathrm{visc}}=\rho^{-1} \boldsymbol{\nabla} \cdot(2 \rho \nu \mathbf{S}) \tag{202}
\end{equation*}
$$

So, for the hyperviscous force, we must replace the rate-of-strain tensor by a high order version

$$
\begin{equation*}
f_{\text {visc }}^{(\text {hyper })}=\rho^{-1} \boldsymbol{\nabla} \cdot\left(2 \rho \nu_{n} \mathbf{S}^{(n)}\right) \tag{203}
\end{equation*}
$$

where the $n^{\text {th }}$-order rate of strain tensor is

$$
\begin{equation*}
\mathbf{S}^{(n)}=\left(-\nabla^{2}\right)^{n-1} \mathbf{S} . \tag{204}
\end{equation*}
$$

For the $n=3$ case it is

$$
\begin{equation*}
S_{i j}^{(3)}=\frac{1}{2}\left(\frac{\partial^{5} u_{j}}{\partial x_{i}{ }^{5}}+\frac{\partial^{4}}{\partial x_{i}{ }^{4}}\left(\frac{\partial u_{i}}{\partial x_{j}}\right)-\frac{1}{3} \frac{\partial^{4}}{\partial x_{i}{ }^{4}}(\boldsymbol{\nabla} \cdot \boldsymbol{u})\right) . \tag{205}
\end{equation*}
$$

Plugging it into Eq. (203), and assuming $\mu_{3}=\rho \nu_{3}=$ const

$$
\begin{equation*}
f_{\text {visc }}^{(\text {hyper })}=\nu_{3}\left(\nabla^{6} \boldsymbol{u}+\frac{1}{3} \nabla^{4}(\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{u}))\right) \tag{206}
\end{equation*}
$$

For $\nu_{3}=$ const, we have to take derivatives of density as well

$$
\begin{equation*}
f_{\text {visc }}^{(\text {hyper })}=\nu_{3}\left(\nabla^{6} \boldsymbol{u}+\frac{1}{3} \nabla^{4}(\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{u}))+2 \mathbf{S}^{(3)} \cdot \boldsymbol{\nabla} \ln \rho\right) \tag{207}
\end{equation*}
$$

E.2.2 Non-conservative cases

Equations (206) and (207) explicitly conserve linear and angular momentum. Although desirable properties, such expressions are cumbersome and numerically expensive, due to the fourth order derivatives of $\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{u})$.

This term, however, is only important when high compressibility is present (since it depends on the divergence of u). In practice we drop this term and use a simple hyperviscosity

$$
f_{\mathrm{visc}}= \begin{cases}\nu_{3} \nabla^{6} \boldsymbol{u} & \text { if } \mu=\text { const } \tag{208}\\ \nu_{3}\left(\nabla^{6} \boldsymbol{u}+2 \mathbf{S}^{(3)} \cdot \nabla \ln \rho\right) & \text { if } \nu=\mathrm{const}\end{cases}
$$

Notice that this can indeed be expressed as the divergence of a simple rate-of-strain tensor

$$
\begin{equation*}
S_{i j}^{(3)}=\frac{\partial^{5} u_{i}}{\partial x_{j}{ }^{5}}, \tag{209}
\end{equation*}
$$

so it does conserve linear momentum. It does not, however, conserve angular momentum, since the symmetry of the rate-of-strain tensor was dropped. Thus, vorticity sinks and sources may be spuriously generated at the grid scale.

A symmetric tensor can be computed, that conserves angular momentum and can be easily implemented

$$
\begin{equation*}
S_{i j}=\frac{1}{2}\left(\frac{\partial^{5} u_{i}}{\partial x_{j}{ }^{5}}+\frac{\partial^{5} u_{j}}{\partial x_{i}{ }^{5}}\right) \tag{210}
\end{equation*}
$$

This tensor, however, is not traceless, and therefore accurate only for weak compressibility. It should work well if the turbulence is subsonic. Major differences are not expected, since the spectral range in which hyperviscosity operates is very limited: as a numerical tool, only its performance as a high-frequency filter is needed. This also supports the usage of the highest order terms only, since these are the ones that provide quenching at high k. Momentum conservation is a cheap bonus. Angular momentum conservation is perhaps playing it too safe, at great computational expense.

E.2.3 Choosing the coefficient

When changing the resolution, one wants to keep the grid Reynolds number, here defined as

$$
\begin{equation*}
\operatorname{Re}_{\mathrm{grid}}=u_{\mathrm{rms}} /\left(\nu_{n} k_{\mathrm{Ny}}^{2 n-1}\right) \tag{211}
\end{equation*}
$$

approximately constant. Here, $k_{\mathrm{Ny}}=\pi / \delta x$ is the Nyquist wavenumber and δx is the mesh spacing. Thus, when doubling the number of meshpoints, we can decrease the viscosity by a factor of about $2^{5}=32$ (Haugen \& Brandenburg 2004). This shows that hyperviscosity can allow a dramatic increase of the Reynolds number based on the scale of the box.

By choosing idiff='hyper3_mesh' in density_run_pars the hyperdiffusion for density is being set automatically in a mesh-independent way. A hyper-mesh Reynolds number of 30 corresponds to a coefficient diffrho_hyper3_mesh=2 if maxadvec is about 1, but in practice we need a bit more (5 is currently the default).

E.2.4 Turbulence with hyperviscosity

When comparing hyperviscous simulations with non-hyperviscous ones, it turns out that the Reynolds number at half the Nyquist frequency is usually in the range 5-7, i.e.

$$
\begin{equation*}
\operatorname{Re}_{\text {half-grid }}=u_{\mathrm{rms}} /\left[\nu_{n}\left(k_{\mathrm{Ny}} / 2\right)^{2 n-1}\right] \approx 5-7 \tag{212}
\end{equation*}
$$

The following table gives some typical values used in simulations with forcing wavenumber $k_{\mathrm{f}}=1.5$ and a forcing amplitude of $f_{0}=0.02$. If hyperdiffusion D_{3} is used in the continuity equation, the corresponding values are about 30 times smaller than those of ν_{3}; see Table 14

Table 14: Empirical values of viscosity and hyperviscosity, as well as hyperdiffusion for density, at different numerical resolution, for simulations with forcing wavenumber $k_{\mathrm{f}}=1.5$ and a forcing amplitude of $f_{0}=0.02$ in a 2π periodic domain. In all cases the half-mesh Reynolds number is about $5-7$. For comparison, estimates of the numerical 4th order hyperdiffusion resulting from a third order time step are give for two values of the CFL parameter.

N	ν_{1}	ν_{2}	ν_{3}	D_{3}	$\kappa_{2}^{\text {CFL }} 0.4$	$\kappa_{2}^{\text {CFL }}=0.9$
16	1×10^{-2}	3×10^{-4}	2×10^{-5}	6×10^{-7}	7×10^{-4}	1×10^{-4}
32	5×10^{-3}	4×10^{-5}	6×10^{-7}	2×10^{-8}	1×10^{-6}	2×10^{-5}
64	2×10^{-3}	5×10^{-6}	2×10^{-8}	6×10^{-10}	2×10^{-7}	3×10^{-6}
128	1×10^{-3}	6×10^{-7}	6×10^{-10}	2×10^{-11}	3×10^{-8}	4×10^{-7}
256	5×10^{-4}	8×10^{-8}	2×10^{-11}	6×10^{-13}	4×10^{-9}	5×10^{-8}
512	2×10^{-4}	1×10^{-8}	6×10^{-13}	2×10^{-14}	5×10^{-10}	6×10^{-9}
1024	1×10^{-4}	1×10^{-9}	2×10^{-14}	6×10^{-16}	6×10^{-11}	8×10^{-10}

For comparison, we give in Table 14 estimates of the numerical 4th order hyperdiffusion resulting from a third order time step, for which we have

$$
\begin{equation*}
\kappa_{2}^{\mathrm{CFL}}=\frac{1}{24} u_{\mathrm{rms}}\left(C_{\mathrm{CFL}} \delta x\right)^{3} \tag{213}
\end{equation*}
$$

where $C_{\text {CFL }}$ is the CFL parameter which is either 0.4 in the conservative case or 0.9 in the more progressive case.

E. 3 Anisotropic hyperdissipation

As we want quenching primarily at the Nyquist frequency, hyperdissipation depends intrinsically on the resolution, according to Eq. (197). Because of this, isotropic hyperdissipation only gives equal quenching in all spatial directions if $\Delta x=\Delta y=\Delta z$, i.e., if the cells are cubic. For non-cubic cells, anisotropic dissipation is required as different directions may be better/worse sampled, thus needing less/more numerical smoothing. Such generalization is straightforward. For that, we replace Eq. (194) by

$$
\begin{equation*}
\mathcal{J}=\left(D_{x} \frac{\partial^{5} \rho}{\partial x^{5}}, D_{y} \frac{\partial^{5} \rho}{\partial y^{5}}, D_{z} \frac{\partial^{5} \rho}{\partial z^{5}}\right) \tag{214}
\end{equation*}
$$

so that different diffusion operates in different directions. Since D_{x}, D_{y} and D_{z} are constants, the divergence of this vector is

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathcal{J}=D_{x} \frac{\partial^{6} \rho}{\partial x^{6}}+D_{y} \frac{\partial^{6} \rho}{\partial y^{6}}+D_{z} \frac{\partial^{6} \rho}{\partial z^{6}} \tag{215}
\end{equation*}
$$

The formulation for resistivity and heat conductivity are strictly the same. For viscosity it also assumes the same form if we consider the simple non-conservative rate-of-strain tensor (209).

Mathematically, these operations can be written compactly by noticing that the coefficients in Eq. (215) transform like diagonal tensors $\chi_{i j}^{(3)}=\chi_{k}^{(3)} \delta_{i j k}$, where $\delta_{i j k}$ is the unit diagonal third order tensor, $\chi^{(3)}$ is the vector containing the dissipative coefficients (diffusion, viscosity, resistivity, or heat conductivity) in x, y, and z, and summation over repeated indices applies.

Therefore, for a scalar quantity ψ (density, any of the three components of the velocity or magnetic potential), we can write

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}=-\chi_{i j}^{(3)} \partial_{i} \partial_{j}^{5} \psi=-\sum_{q} \chi_{q}^{(3)} \frac{\partial^{6}}{\partial x_{q}^{6}} \psi \tag{216}
\end{equation*}
$$

E. 4 Hyperviscosity in Burgers shock

Figure 20: Left: Burgers shock from teach/PencilCode/material/BurgersShock (in the teaching material) with $-20 \leq x \leq 20, n_{x}=64$ mesh points, $u_{x}=\mp 1$ on the two ends, $\nu=0.4$ and either $\nu_{3}=0$ (solid line) or $\nu_{3}=0.05$ (dashed line). Right: similar to the left hand side, but with $\nu=0$ and $\nu_{3}=0.05$ (dashed line), compared with the case $\nu=0.4$ and $\nu_{3}=0$ (solid line).

Hyperviscosity has the unfortunate property of introducing (numerically stable) wiggles, even if one just adds a little bit of hyperviscosity to a run with normal viscosity; see left hand side of Fig. 20, Running with just hyperviscosity give strong wiggles.

F Special techniques

F. 1 After changing REAL_PRECISION

To continue working in double precision (REAL_PRECISION=double), you just say lread_from_other_prec=T in run_pars. Afterwards, remember to put lread_from_other_prec=F. If continuation is done in a new run directory, first execute start.csh there and then copy the files var.dat (and if present global.dat) from the old to the new directory, using pc_copyvar.

F. 2 Remeshing (regridding)

[This should be written up in a better way and put somewhere else. But currently, remeshing is only available for the Pencil developers anyway.]

Suppose you have a directory run_64 with a 64^{3} run (running on $N_{0}=n y \times n z=2 \times 1$ CPUs) that you want to continue from 'VAR1' at 128^{3} (on $n y \times n z=4 \times 4$ CPUs).

1. The remeshing code is part of the Pencil Code repository.
2. Create another run directory with current 'VAR1' as 'var.dat' (remesh.csh so far only works with 'var. dat'):
```
unix> cd run_64
run_64> pc_newrun ../tmp_64 or new tmp_64
run_64> mkdir -p ../tmp_64/data or (cd ../tmp_64/; crtmp)
run_64> (cd ../tmp_64/data ; mkproc-tree N N0)
run_64> restart-new-dir-VAR ../tmp_64 1
```

3. Create the new run directory (linking the executables with -s):
```
run_64> cd ../tmp_64
tmp_64> pc_newrun -s ../run_128 or new run_128
tmp_64> vi ../run_128/src/cparam.local
# set nxgrid=128, ncpus=16, nprocy=4
tmp_64> (cd ../run_128; crtmp; pc_setupsrc; make)
```

4. Setup and do remeshing
```
tmp_64> setup-remesh
tmp_64> vi remesh/common.local
# set muly=2, mulz=4, remesh_par=2
tmp_64> (cd remesh; make)
tmp_64> vi remesh.in
# Replace line by ../run_128
tmp_64> remesh.csh
# Answer 'yes'
```


F. 3 Restarting from a run with less physics

First, prepare a new run directory with the new physics included. By new physics, we mean that the new run wants to read in more fields (e.g. magnetic fields, if the old run didn't have magnetic fields).
Example for test fields:

1. Prepare 'src/cparam.local'

Add the following 2 fragments into the 'cparam. local' file. The first piece comes in the beginning and the second in the end of the file.

```
!** AUTOMATIC CPARAM.INC GENERATION ******************************************
! Declare (for generation of cparam.inc) the number of f array
! variables and auxiliary variables added by this module
! Use MVAR to reserve the appropriate workspace for testfield_z.f90
! The MAUX number must be equally big and is used for uxb in the f-array.
! At the end of this file, njtest must be set such that 3*njtest=MVAR.
!
! MVAR CONTRIBUTION 12
! MAUX CONTRIBUTION 12
!
!********************************************************************************
!
! note that MVAR=MAUX=3*njtest must be obeyed
!
integer, parameter :: njtest=4
!
```

2. Prepare 'src/Makefile.local'

Add the line TESTFIELD=testfield_z to the file. Finally, compile the code.
3. Prepare restart data

Go into data directory of the new run and prepare the directory tree using, e.g., the command pc_mkproctree 16. [In principle this could be automatized, but it isn't yet.]
Next, go into old run directory and say restart-new-dir . ./32c, if '. ./32c' is the name of the new run directory. This procedure copies all the files from the processor tree, plus files like 'param.nml', but this file may need some manual modification (or you could just us one from another runs with the new physics included, which is definitely the simplest!).
4. Prepare 'run.in'

Set lread_oldsnap_notestfield=T in run_pars. This means (as the name says) that one reads an old snapshot that did not have test fields in it.
Reset boundary conditions and add stuff for the newly added fields, e.g., bcz='a:s','a','a:s','a2','a','a','s','a','a','s','a','a','s','a','a','s' in run_pars. If you don't do this, you would effectively use periodic boundary conditions for the response to the test field, which is hardly correct once you set non-periodic boundary conditions for the other variables.

Add something like the following text fragments in the right position (after grav_run_pars and magnetic_run_pars, but before shear_run_pars and viscosity_run_pars.

```
&testfield_run_pars
    !linit_aatest=T, daainit=100.
    itestfield='B11-B22'
    etatest=1e-4
    lsoca=F
/
```

Make sure that the data above are correct. You may want to change the values of daainit or etatest.

If you now run, and if you didn't fix the file 'data/param.nml' you might get something like the following error:
forrtl: severe (24): end-of-file during read, unit 1, file /wkspace/brandenb/pencil-
The reason for this is that it reads the old boundary data, but the corresponding array is too short. This includes stuff like FBCX1 to FBCX2_2, but it is still not enough. Therefore it is easiest to use the 'data/param.nml' file from another run. You may well just use one from a single processor run with a different mesh. But remember to fix the 'start. in' file by correcting the boundary conditions and adding things like

```
&testfield_init_pars
    luxb_as_aux=T
/
```

5. Prepare 'print.in', 'xyaver.in', and other obvious files such as 'video.in'.
6. Once it works and is running, you must say explicitly
```
&run_pars
    lread_oldsnap_notestfield=F
/
```

because otherwise you won't read in your precious test field data next time you restart the code! (If you instead just remove this line, it will remember lread_oldsnap_notestfield=T from the previous run, which is of course wrong!)
Comments: For large magnetic Reynolds numbers the solutions to the test-field equations can show a linear instability, which can introduce large fluctuations. In that case it is best to reset the dependent test-field variable to zero in regular intervals. This is done by setting linit_aatest=T. Note that daainit=100 sets the reset interval to 100 .

F. 4 Restarting with particles from a run without them

If you want to restart from a run without particles to a run with them, you need to
(1) Compile a run with particles,

RunWithParticles\$ pc_build
(2) Copy a VARN or var.dat into this new run directory. Say the old run is at the directory OldRun and you want to copy the var.dat of that run and restart with particles. You do

RunWithParticles\$ pc_copyvar v v ../OldRun . -e
(3) In the start.in init_pars of the new run, add the lines
lread_oldsnap = T
ireset_tstart = 0
(4) Remove all calls to initial conditions (make all initlnrho, inituu, initss, initaa, etc 'nothing'), and
5) Run pc_start.

The variable lread_oldsnap makes the code on start time read from the f-array of the snapshop, instead of the default, which is to initialize it with zeros. The necessity in step (4) to remove all calls to initial conditions is because otherwise the code would rewrite the content of the f-array with these initial conditions, or add them on top of the existing values of the snapshot.

The variable ireset_tstart when set to zero makes it read the timestamp of the old snapshot and restart from that time. The default is 2 , which sets the timestamp back to zero.

G Runs and reference data

For reference purposes we document here some results obtained with various samples of the code.

G. 1 Shock tests

G.1.1 Sod shock tube problem

Table 15: Combinations of ρ, p, and s / c_{p} that are relevant for the Sod shock tube problem with constant temperature and different pressure ratios on the left and right hand sides of the shock.

ρ	p	s
1.0	1.0	0.3065
0.1	0.1	1.2275
0.01	0.01	2.1486

G.1.2 Temperature jump

Table 16: Combinations of c_{s}^{2}, p, and s / c_{p} that are relevant for the temperature shock problem with constant density, $\rho=1$, and different temperature ratios on the left and right hand sides of the shock.

c_{s}^{2}	s
1.0	0.0
0.1	-2.3
0.01	-4.6
10^{-4}	-9.2

G. 2 Random forcing function

A solenoidal random forcing function f can be invoked by putting iforce='helical' in the forcing_run pars namelist. This produces the forcing function f of the form

$$
\begin{equation*}
\boldsymbol{f}(\boldsymbol{x}, t)=\operatorname{Re}\left\{N \boldsymbol{f}_{\boldsymbol{k}(t)} \exp [i \boldsymbol{k}(t) \cdot \boldsymbol{x}+i \phi(t)]\right\}, \tag{217}
\end{equation*}
$$

where $\boldsymbol{k}(t)=\left(k_{x}, k_{y}, k_{z}\right)$ is a time dependent wave vector, $\boldsymbol{x}=(x, y, z)$ is position, and $\phi(t)$ with $|\phi|<\pi$ is a random phase. On dimensional grounds the normalization factor is chosen to be $N=f_{0} c_{\mathrm{s}}\left(k c_{\mathrm{s}} / \delta t\right)^{1 / 2}$, where f_{0} is a nondimensional factor, $k=|\boldsymbol{k}|$, and δt is the length of the timestep. The $\delta t^{-1 / 2}$ dependence ensures that the forcing, which is delta-correlated in time, is properly normalized such that the correlator of the forcing function is independent of the length of the time step, δt. We focus on the case where $|\boldsymbol{k}|$ is around 5 , and select at each timestep randomly one of the 350 possible vectors in $4.5<|\boldsymbol{k}|<5.5$. We force the system with eigenfunctions of the curl operator,

$$
\begin{equation*}
\boldsymbol{f}_{\boldsymbol{k}}=\frac{i \boldsymbol{k} \times(\boldsymbol{k} \times \boldsymbol{e})-\sigma|\boldsymbol{k}|(\boldsymbol{k} \times \boldsymbol{e})}{\sqrt{1+\sigma^{2}} \boldsymbol{k}^{2} \sqrt{1-(\boldsymbol{k} \cdot \boldsymbol{e})^{2} / \boldsymbol{k}^{2}}} \tag{218}
\end{equation*}
$$

where e is an arbitrary unit vector needed in order to generate a vector $k \times e$ that is perpendicular to \boldsymbol{k}. Note that $\left|\boldsymbol{f}_{\boldsymbol{k}}\right|^{2}=1$ and, for $\sigma=1$, $i \boldsymbol{k} \times \boldsymbol{f}_{\boldsymbol{k}}=|\boldsymbol{k}| \boldsymbol{f}_{\boldsymbol{k}}$, so the helicity density of this forcing function satisfies

$$
\begin{equation*}
\boldsymbol{f} \cdot \boldsymbol{\nabla} \times \boldsymbol{f}=|\boldsymbol{k}| \boldsymbol{f}^{2}>0 \quad(\text { for } \sigma=1) \tag{219}
\end{equation*}
$$

at each point in space. We note that since the forcing function is like a delta-function in \boldsymbol{k}-space, this means that all points of f are correlated at any instant in time, but are different at the next timestep. Thus, the forcing function is delta-correlated in time (but the velocity is not). This is the forcing function used in Brandenburg (2001), Brandenburg \& Dobler (2001), and other papers in that series.
For $\sigma=0$, the forcing function is completely nonhelical and reduces to the simpler form

$$
\begin{equation*}
\boldsymbol{f}_{\boldsymbol{k}}=(\boldsymbol{k} \times \boldsymbol{e}) / \sqrt{\boldsymbol{k}^{2}-(\boldsymbol{k} \cdot \boldsymbol{e})^{2}} \tag{220}
\end{equation*}
$$

For $0<|\sigma|<1$, the forcing function has fractional helicity, where $\sigma \approx\langle\boldsymbol{\omega} \cdot \boldsymbol{u}\rangle /\left(k_{\mathrm{f}}\left\langle\boldsymbol{u}^{2}\right\rangle\right)$; see Sect. 4.5 of Ref. [8]. In the code and the forcing_run_pars namelist, σ is called relhel.
In the code, the possible wavevectors are pre-calculated and stored in ' k.dat', which is being read in the beginning the code runs. To change the wavevectors (e.g. the typical value of k_{f}, you need to change the file. In the directory '\$PENCIL_-HOME/samples/helical-MHDturb/K_VECTORS/' there are several such files prepared:

$$
\begin{array}{lllll}
\text { k10.dat } & \text { k1.dat } & \text { k2.dat } & \text { k3.dat } & \text { k5.dat } \\
\text { k15.dat } & \text { k27.dat } & \text { k30.dat } & \text { k4.dat } & \text { k8.dat }
\end{array}
$$

and more can be prepared in IDL with the procedure '\$PENCIL_-HOME/samples/helical-MHDturb/idl/generate_kvectors.pro' There is also more help in the 'README' file in 'helical-MHDturb'.

G. 3 Three-layered convection model

Figure 21: Like in Fig. 2 , but at time $t=50$.

In Sect. 3 we have shown the early stages of the convection model located in 'samples/conv-slab'. To arrive at fully developed convection, you will need to run the

Figure 22: Time evolution of rms and maximum velocity for the model 'samples/conv-slab'. Similar plots can be produced by running the IDL script 'ts.pro'.
code for many more time steps. Figure 21 shows the vertical profiles of four basic quantities at time $t=50$. Figure 22 shows the time evolution of rms and maximum velocity for the model for $0<t<50$.
Figures 23 and 24 show vertical and horizontal sections for time $t=50$.

Figure 23: Horizontal sections for $t=50$. Top: velocity field. Bottom: entropy (color coded) and density (isocontours). Plots of this type can be produced by running the IDL script 'hsections.pro')

G. 4 Magnetic helicity in the shearing sheet

To test magnetic helicity evolution in the shearing shear, we can choose as initial condition initaa='Beltrami-y' with amplaa=1. in magnetic_init_pars together with Sshear=-1. in shear_run_pars.

Figure 24: Vertical section $y=0.516$ at $t=50$. Top: velocity field. Bottom: entropy (color coded) and density (isocontours). Plots of this type can be produced by running the IDL scripts 'vsections.pro') or 'vsections2.pro').

Thus, in 'src/Makefile.local' we just use
MAGNETIC=magnetic
HYDRO=nohydro
EOS=noeos
DENSITY=nodensity
SHEAR=shear
VISCOSITY=noviscosity
and put
\&init_pars
cvsid='\$Id\$',
/
\&magnetic_init_pars
initaa='Beltrami-y', amplaa=1.
/
\&shear_init_pars

Figure 25: Wind-up of the magnetic field leads to a linear increase in the rms magnetic field strength until Ohmic diffusion begins to become important (top panel). During this time the magnetic helicity is conserved. With Ohmic diffusion, the decay of $\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle$ is well described by integrating $-2 \eta\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle$ (indicated by "from rhs" in the second panel).

```
/
in 'start.in' and, for example,
&run_pars
    cvsid='$Id$'
    nt=150000, it1=10, cdt=0.9, isave=50, itorder=3
    dsnap=100. dvid=5., ialive=1
/
&magnetic_run_pars
    eta=0.
/
&shear_run_pars
    Sshear=-1.
/
```

in 'run.in'. The output includes, among other things
arms(f10.7)

```
brms(f12.7)
jrms(f14.7)
abm(f14.11)
jbm(f14.7)
```

The result is shown in Figure 25, where we show the wind-up of the magnetic field, which leads to a linear increase in the rms magnetic field strength until Ohmic diffusion begins to become important (top panel). During this time the magnetic helicity is conserved. With Ohmic diffusion, the decay of $\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle$ is well described by integrating $-2 \eta\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle$ (indicated by "from rhs" in the second panel).

H Numerical methods

H. 1 Sixth-order spatial derivatives

Spectral methods are commonly used in almost all studies of ordinary (usually incompressible) turbulence. The use of this method is justified mainly by the high numerical accuracy of spectral schemes. Alternatively, one may use high order finite differences that are faster to compute and that can possess almost spectral accuracy. Nordlund \& Stein [29] and Brandenburg et al. [13] use high order finite difference methods, for example fourth and sixth order compact schemes [25] ${ }^{18]}$
The sixth order first and second derivative schemes are given by

$$
\begin{gather*}
f_{i}^{\prime}=\left(-f_{i-3}+9 f_{i-2}-45 f_{i-1}+45 f_{i+1}-9 f_{i+2}+f_{i+3}\right) /(60 \delta x), \tag{221}\\
f_{i}^{\prime \prime}=\left(2 f_{i-3}-27 f_{i-2}+270 f_{i-1}-490 f_{i}+270 f_{i+1}-27 f_{i+2}+2 f_{i+3}\right) /\left(180 \delta x^{2}\right), \tag{222}
\end{gather*}
$$

In Fig. 26 we plot effective wavenumbers for different schemes. Apart from the different explicit finite difference schemes given above, we also consider a compact scheme of 6 th order, which can be written in the form

$$
\begin{equation*}
\frac{1}{3} f_{i-1}^{\prime}+f_{i}^{\prime}+\frac{1}{3} f_{i+1}^{\prime}=\left(f_{i-2}-28 f_{i-1}+28 f_{i+1}-f_{i+2}\right) /(36 \delta x), \tag{223}
\end{equation*}
$$

for the first derivative, and

$$
\begin{equation*}
\frac{2}{11} f_{i-1}^{\prime \prime}+f_{i}^{\prime \prime}+\frac{2}{11} f_{i+1}^{\prime \prime}=\left(3 f_{i-2}+48 f_{i-1}-102 f_{i}+48 f_{i+1}+3 f_{i+2}\right) /\left(44 \delta x^{2}\right) \tag{224}
\end{equation*}
$$

for the second derivative. As we have already mentioned in the introduction, this scheme involves obviously solving tridiagonal matrix equations and is therefore effectively nonlocal.

In the second panel of Fig. 26 we have plotted effective wavenumbers for second derivatives, which were calculated as

$$
\begin{equation*}
(\cos k x)_{\mathrm{num}}^{\prime \prime}=-k_{\mathrm{eff}}^{2} \cos k x \tag{225}
\end{equation*}
$$

Of particular interest is the behavior of the second derivative at the Nyquist frequency, because that is relevant for damping zig-zag modes. For a second-order finite difference scheme $k_{\text {eff }}^{2}$ is only 4 , which is less than half the theoretical value of $\pi^{2}=9.87$. For fourth, sixth, and tenth order schemes this value is respectively $5.33,6.04,6.83$. The last value is almost the same as for the 6 th order compact scheme, which is 6.86 . Significantly stronger damping at the Nyquist frequency can be obtained by using hyperviscosity, which Nordlund \& Galsgaard (1995) treat as a quenching factor that diminishes the value of the second derivative for wavenumbers that are small compared with the Nyquist frequency. Accurate high order second derivatives (with no quenching factors) are important when calculating the current \boldsymbol{J} in the Lorentz force $\boldsymbol{J} \times \boldsymbol{B}$ from a vector potential \boldsymbol{A} using $-\mu_{0} \boldsymbol{J}=\nabla^{2} \boldsymbol{A}-\nabla \boldsymbol{\nabla} \cdot \boldsymbol{A}$. This will be important in the MHD calculations presented below.

[^14]

Figure 26: Effective wave numbers for first and second derivatives using different schemes. Note that for the second derivatives the sixth order compact scheme is almost equivalent to the tenth order explicit scheme. For the first derivative the sixth order compact scheme is still superior to the tenth order explicit scheme.

H. 2 Upwind derivatives to avoid 'wiggles'

High-order centered-difference convection simulations often show "wiggles" (Nyquist zigzag pattern) in $\ln \rho$, which are apparently caused by a velocity profile where the velocity approaches zero on the boundary or inside the box ${ }^{19}$ This causes the density profile to be squeezed into a boundary layer where eventually numerical resolution is insufficient and, for centered differences, a spurious Nyquist signal is generated that almost instantaneously propagates into much of the whole box.

Even if the stagnation point is on the boundary (and enforced by the boundary conditions), this behavior is hardly influenced by the boundary conditions on $\ln \rho$ at all. A solution, however, is to apply upwinded derivative operators. The simplest upwind derivative is a finite-difference derivative operator where the point furthest downwind is excluded from the stencil. For $u>0$, that means that instead of

$$
\begin{equation*}
f_{0}^{\prime}=\frac{-f_{-3}+9 f_{-2}-45 f_{-1}+45 f_{1}-9 f_{2}+f_{3}}{60 \delta x}-\frac{\delta x^{6} f^{(7)}}{140}=D^{(\mathrm{cent}, 6)}+O\left(\delta x^{6}\right), \tag{226}
\end{equation*}
$$

one takes

$$
\begin{equation*}
f_{0}^{\prime}=\frac{-2 f_{-3}+15 f_{-2}-60 f_{-1}+20 f_{0}+30 f_{1}-3 f_{2}}{60 \delta x}+\frac{\delta x^{5} f^{(6)}}{60}=D^{(\mathrm{up}, 5)}+O\left(\delta x^{5}\right) . \tag{227}
\end{equation*}
$$

A fourth-order upwind scheme (excluding two downwind points) would be

$$
\begin{equation*}
f_{0}^{\prime}=\frac{-f_{-3}+6 f_{-2}-18 f_{-1}+10 f_{0}+3 f_{1}}{12 \delta x}-\frac{\delta x^{4} f^{(5)}}{20}=D^{(\mathrm{up}, 4)}+O\left(\delta x^{4}\right) . \tag{228}
\end{equation*}
$$

[^15]The effect of upwinding is mostly to stop the Nyquist perturbations from spreading away from the boundary or stagnation point. With the fourth-order formula they actually hardly ever develop.

The difference between central and fifth-order upwind derivative is

$$
\begin{equation*}
\left[D^{(\mathrm{up}, 5)}-D^{(\mathrm{cent}, 6)}\right] f_{0}=\frac{-f_{-3}+6 f_{-2}-15 f_{-1}+20 f_{0}-15 f_{1}+6 f_{2}-f_{3}}{60 \delta x}=-\frac{\delta x^{5}}{60} f_{0}^{(6)} \tag{229}
\end{equation*}
$$

In other words, 5th-order upwinding can be represented for any sign of u as hyperdiffusion (Dobler et al. 2006):

$$
\begin{equation*}
-u f_{(\text {up }, 5 \mathrm{th})}^{\prime}=-u f_{(\text {centr }, 6 \mathrm{th})}^{\prime}+\frac{|u| \delta x^{5}}{60} f^{(6)} \tag{230}
\end{equation*}
$$

The advantage over adopting constant hyperdiffusion is that in the upwinding scheme hyperdiffusion is only applied where it is needed (i.e. where advection is happening, hence the factor $|u|$).
The form (230) also suggests an easy way to get 'stronger' upwinding: Rather than excluding more points in the downwind direction, we can simply treat the weight of the hyperdiffusion term as a free parameter α :

$$
\begin{equation*}
-u f_{(\mathrm{up}, 5 \mathrm{th}, \alpha)}^{\prime}=-u f_{(\text {centr }, 6 \mathrm{th})}^{\prime}+\alpha|u| \delta x^{5} f^{(6)} . \tag{231}
\end{equation*}
$$

If α is large, this may affect the time step, but for $\alpha=1 / 60$, the stability requirement for the hyperdiffusive term should always be weaker than the advective Courant criterion.

H. 3 The bidiagonal scheme for cross-derivatives

The old default scheme used for cross-derivatives of type $\partial^{2} /(\partial x \partial y)$ used to read as follows:

$$
\begin{aligned}
& \text { df=fac*(\& } \\
& \text { 270.*(} \mathrm{f}(\mathrm{l} 1+1: \mathrm{l} 2+1, \mathrm{~m}+1, \mathrm{n}, \mathrm{k})-\mathrm{f}(\mathrm{l} 1-1: 12-1, \mathrm{~m}+1, \mathrm{n}, \mathrm{k}) \quad \text { \& } \\
& +f(11-1: 12-1, m-1, n, k)-f(11+1: 12+1, m-1, n, k)) \& \\
& \text { - 27.*(} f(\mathrm{l} 1+2: 12+2, \mathrm{~m}+2, \mathrm{n}, \mathrm{k})-\mathrm{f}(\mathrm{l} 1-2: \mathrm{l} 2-2, \mathrm{~m}+2, \mathrm{n}, \mathrm{k}) \quad \text { \& } \\
& +f(11-2: 12-2, m-2, n, k)-f(11+2: 12+2, m-2, n, k)) \& \\
& +2 . *(\mathrm{f}(11+3: 12+3, m+3, n, k)-f(11-3: 12-3, m+3, n, k) \text { \& } \\
& +f(11-3: 12-3, m-3, n, k)-f(11+3: 12+3, m-3, n, k)) \& \\
& \text {) }
\end{aligned}
$$

and is "visualized" in the left part of Fig. 27, It is way more efficient than the straightforward approach of first taking the x and the y derivative consecutively. (shown in the right part of Fig. 27).
Off-diagonal terms enter not only the diffusion terms through $\nabla \nabla \cdot \boldsymbol{u}$ and $\nabla \nabla \cdot \boldsymbol{A}$ terms, but also through the $\boldsymbol{J}=\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \boldsymbol{A}$ operator. The general formula is $J_{i}=A_{j, i j}-A_{i, j j}$, so in 2-D in the $x y$-plane we have

$$
\begin{align*}
J_{x} & =A_{x, x x}+A_{y, x y}-A_{x, x x}-A_{x, y y}=A_{y, x y}-A_{x, y y} \tag{232}\\
J_{y} & =A_{x, y x}+A_{y, y y}-A_{y, x x}-A_{y, y y}=A_{x, y x}-A_{y, x x} \tag{233}
\end{align*}
$$

Figure 28 shows how the two schemes perform for the propagation of Alfvén waves,

-2	0	0	0	0	0	+2
0	+27	0	0	0	-27	0
0	0	-270	0	+270	0	0
0	0	0	0	0	0	0
0	0	+270	0	-270	0	0
0	-27	0	0	0	+27	0
+2	0	0	0	0	0	-2

9	-27	135	0	-135	27	-9
-27	81	-405	0	405	-81	27
135	-405	2025	0	-2025	405	-135
0	0	0	0	0	0	0
-135	405	-2025	0	2025	-405	135
27	-81	405	0	-405	81	-27
-9	27	-135	0	135	-27	9

Figure 27: Weights of bidiagonal scheme (left) and consecutive scheme (right) for mixed derivatives $\partial^{2} / \partial x \partial y$. The numbers shown need to be divided by $720 \delta x \delta y$ for the bidiagonal and by $3600 \delta x \delta y$ for the consecutive scheme.

Figure 28: Alfvén wave for $\boldsymbol{B}_{0}=(1,2,0)$ and $\boldsymbol{k}=(1,2,0)$ after $t=2 \pi$. The wave travels in the direction of k. Red symbols are for the bidiagonal scheme, black symbols show results obtained using the consecutive scheme. Already for 16^{2} mesh points there are no clear differences. For 8^{2} mesh points both schemes are equally imprecise regarding the phase error, but the amplitude error is still quite small (but this is mainly a property of the time stepping scheme).

$$
\begin{align*}
\dot{u}_{z} & =J_{x} B_{0 y}-J_{y} B_{0 x} \tag{234}\\
\dot{A}_{x} & =-u_{z} B_{0 y} \tag{235}\\
\dot{A}_{y} & =+u_{z} B_{0 x} \tag{236}
\end{align*}
$$

The initial condition (as implemented in subroutine alfven_xy) is

$$
\begin{align*}
u_{z} & \sim \cos \left(k_{x} x+k_{y} y-\omega t\right) \tag{237}\\
A_{x} & \sim+B_{0 y} \sin \left(k_{x} x+k_{y} y-\omega t\right) / \omega \tag{238}\\
A_{y} & \sim-B_{0 x} \sin \left(k_{x} x+k_{y} y-\omega t\right) / \omega \tag{239}
\end{align*}
$$

where $\omega=\boldsymbol{k} \cdot \boldsymbol{B}_{0}$. The figure shows that there is no clear advantage of either scheme, so the code uses the more efficient bidiagonal one.

H. 4 The 2N-scheme for time-stepping

For time stepping, higher-order schemes are necessary in order to reduce the amplitude and phase errors of the scheme and, to some extent, to allow longer time steps. Usually
such schemes require large amounts of memory. However, we here use the memoryeffective $2 N$-schemes that require only two sets of variables to be held in memory. Such schemes work for arbitrarily high order, although not all Runge-Kutta schemes can be written as $2 N$-schemes [32, 31]. Consider the ordinary differential equation (ODE)

$$
\begin{equation*}
\dot{u}=F(u, t), \tag{240}
\end{equation*}
$$

which can also be used as a prototype for a system of ODEs to be solved, like the ones obtained by spatial discretization of PDEs. The $2 N$-schemes construct an approximation to the solution

$$
\begin{equation*}
u^{(n)} \equiv u\left(t_{n}\right) \tag{241}
\end{equation*}
$$

according to the iterative procedure

$$
\begin{align*}
w_{i} & =\alpha_{i} w_{i-1}+\delta t F\left(u_{i-1}, t_{i-1}\right), \tag{242}\\
u_{i} & =u_{i-1}+\beta_{i} w_{i} \tag{243}
\end{align*}
$$

For a three-step (RK3-2N) scheme we have $i=1, \ldots, 3$. In order to advance the variable u from $u^{(n)}$ at time $t^{(n)}$ to $u^{(n+1)}$ at time $t^{(n+1)}=t^{(n)}+\delta t$ we set in Eq. (243)

$$
\begin{equation*}
u_{0}=u^{(n)} \quad \text { and, after the last step, } \quad u^{(n+1)}=u_{3} \tag{244}
\end{equation*}
$$

with u_{1} and u_{2} being intermediate steps. In order to be able to calculate the first step, $i=1$, for which no $w_{i-1} \equiv w_{0}$ exists, we have to require $\alpha_{1}=0$. Thus, we are left with 5 unknowns, $\alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}$, and β_{3}. Three conditions follow from the fact that the scheme be third order for linear equations, so we have to have two more conditions. One possibility is to choose the fractional times at which the right hand side is evaluated, for example $(0,1 / 3,2 / 3)$ or even $(0,1 / 2,1)$. Yet another possibility is to require that inhomogeneous equations of the form $\dot{u}=t^{n}$ with $n=1$ and 2 are solved exactly. The corresponding coefficients are listed in Table 17] and compared with those given by Williamson [32]. In practice all of them are about equally good when it comes to real applications, although we found the first one in Table 17 ('symmetric') marginally better in some simple test problems where an analytic solution was known. In Ref. [4] the accuracy of some nonlinear equations is tested.

Table 17: Coefficients for different $2 N$-type third-order Runge-Kutta schemes. The coefficients c_{i} (which are determined by the α_{i}, β_{i}) give the time for each substep, $t_{i}=t_{0}+c_{i} \delta t$

scheme	c_{1}	c_{2}	c_{3}	α_{2}	α_{3}	β_{1}	β_{2}	β_{3}
symmetric	0	$1 / 3$	$2 / 3$	$-2 / 3$	-1	$1 / 3$	1	$1 / 2$
[predictor/corrector]	0	$1 / 2$	1	$-1 / 4$	$-4 / 3$	$1 / 2$	$2 / 3$	$1 / 2$
inhomogeneous	0	$15 / 32$	$4 / 9$	$-17 / 32$	$-32 / 27$	$1 / 4$	$8 / 9$	$3 / 4$
Williamson (1980)	0	$4 / 9$	$15 / 32$	$-5 / 9$	$-153 / 128$	$1 / 3$	$15 / 16$	$8 / 15$

H. 5 Diffusive error from the time-stepping

In many cases we use centered first derivatives for the advection operator, so the resulting discretization errors are only of dispersive nature (proportional to odd derivatives). A diffusive error can be obtained from the discretization error of the time-stepping scheme. For the RK3-2N scheme we have

$$
\begin{equation*}
\left(\frac{\mathrm{d} f}{\mathrm{~d} t}\right)_{n \text {th order }}=\left(\frac{\mathrm{d} f}{\mathrm{~d} t}\right)_{\text {exact }}+a_{n} \delta t^{n}\left(\frac{\mathrm{~d}^{n+1} f}{\mathrm{~d} t^{n+1}}\right)+\ldots \tag{245}
\end{equation*}
$$

where $a_{n}=1 /(n+1)!=0.5$. In particular, for $n=1$ we have $a_{1}=1 / 2=0.2$ and for $n=3$ we have $a_{3}=1 / 24 \approx 0.04$. The advection operator leads to a diffusive error equal to $a 1 \delta t(\boldsymbol{u} \cdot \boldsymbol{\nabla})^{2}$ for $n=1$ and a hyperdiffusive error equal to $a 3 \delta t^{3}(\boldsymbol{u} \cdot \boldsymbol{\nabla})^{4}$ for $n=3$. Substituting $\delta t=c_{\mathrm{CFL}} \delta x /|\boldsymbol{u}|$, where c_{CFL} is Courant-Friedrich-Lewy constant, we have a diffusive error $\nu \nabla^{2}$ with negative $\nu=-a 1 c_{\mathrm{CFL}}|\boldsymbol{u}| \delta x$ for $n=1$, and a hyperdiffusive error $-\nu_{\text {hyp }} \nabla^{4}$ with positive $\nu_{\text {hyp }}=a_{3} c_{\mathrm{CFL}}^{3}|\boldsymbol{u}| \delta x^{3}$ for $n=3$. The fact that the hyperdiffusive error has a positive effective hyperdiffusivity is an important factor in the choice of this scheme.

To decide whether the effective hyperdiffusivity from the diffusive error is significant, we can compare with the error that would occur had we used a third-order upwinding scheme (Sect. H.2). In that case we would have an effective hyperdiffusive coefficient $|\boldsymbol{u}| \delta x / 12$ that is $1 /\left(12 a_{3} c_{\mathrm{CFL}}^{3}\right) \approx 5.8$ times larger than that from the time stepping scheme. In this sense, the hyperdiffusive error can be regarded as small.

Since the hyperdiffusive error is proportional to $-\nabla^{4}$, we cannot directly compare with the physical diffusion which is proportional to ∇^{2}. Therefore we define an effective viscosity as $\nu_{\text {eff }}=\nu_{\text {hyp }} k_{\mathrm{Ny}}^{2}$ with $k_{\mathrm{Ny}}=\pi / \delta x$ being the Nyquist wavenumber of the mesh of the domain covered by N mesh points. We define Reynolds number based on the Nyquist wavenumber as $\operatorname{Re}_{\mathrm{Ny}}=|\boldsymbol{u}| / \nu_{\mathrm{eff}} k_{\mathrm{Ny}}$, and find $\operatorname{Re}=-24 /\left(\pi c_{\mathrm{CFL}}\right)^{3} \approx 2.3$ for our favorite choice $c_{\text {CFL }}=0.7$. Thus, at the scale of the mesh, the effective Reynolds number is comparable to the value often obtained in simulations. However, in turbulence simulations the viscous cutoff wavenumber is usually $5-10$ times smaller than k_{Ny}, so the relevant Reynolds number at the viscous scale is then another $2-3$ orders of magnitude larger and does therefore not impose a constraint in view of the physical viscosity that is applied in such calculations.

H. 6 Ionization

The specific entropy of each particle species (neutral hydrogen, electrons, protons and neutral helium) may be written as

$$
\begin{equation*}
\frac{s_{i}}{s_{0}}=x_{i}\left(\ln \left[\frac{1}{x_{\mathrm{tot}}} \frac{\rho_{i}}{\rho}\left(\frac{T}{T_{0}}\right)^{3 / 2}\right]+\frac{5}{2}\right) \tag{246}
\end{equation*}
$$

where

$$
\begin{gather*}
x_{\mathrm{H}}=1-y, \quad x_{\mathrm{e}}=x_{\mathrm{p}}=y, \quad x_{\mathrm{tot}}=1+y+x_{\mathrm{He}} \tag{247}\\
s_{0}=\frac{k_{\mathrm{B}}}{\mu m_{\mathrm{H}}}, \quad T_{0}=\frac{\chi_{\mathrm{H}}}{k_{\mathrm{B}}} \tag{248}
\end{gather*}
$$

and

$$
\begin{equation*}
\rho_{i}=\mu m_{\mathrm{H}}\left(\frac{m_{i} \chi_{\mathrm{H}}}{2 \pi \hbar^{2}}\right)^{3 / 2} \tag{249}
\end{equation*}
$$

The specific entropy of mixing is

$$
\begin{equation*}
\frac{s_{\mathrm{mix}}}{s_{0}}=-\sum_{i} x_{i} \ln \frac{x_{i}}{x_{\mathrm{tot}}} \tag{250}
\end{equation*}
$$

Summing up everything, we get the total specific entropy

$$
\begin{align*}
\frac{s}{s_{0}} & =\sum_{i} \frac{s_{i}}{s_{0}}+\frac{s_{\text {mix }}}{s_{0}}=\sum_{i} x_{i}\left(\ln \left[\frac{1}{x_{i}} \frac{\rho_{i}}{\rho}\left(\frac{T}{T_{0}}\right)^{3 / 2}\right]+\frac{5}{2}\right) \tag{251}\\
& =\sum_{i} x_{i} \ln \frac{\rho_{i}}{x_{i}}+x_{\mathrm{tot}}\left(\ln \left[\frac{1}{\rho}\left(\frac{T}{T_{0}}\right)^{3 / 2}\right]+\frac{5}{2}\right) . \tag{252}
\end{align*}
$$

Solving for T gives

$$
\begin{equation*}
\frac{3}{2} \ln \frac{T}{T_{0}}=\frac{s / s_{0}+\sum_{i} x_{i} \ln x_{i} / \rho_{i}}{x_{\text {tot }}}+\ln \rho-\frac{5}{2} . \tag{253}
\end{equation*}
$$

Using this expression and the constants defined above, we may obtain the ionization fraction y for given $\ln \rho$ and s by finding the root of

$$
\begin{equation*}
F=\ln \left[\frac{\rho_{\mathrm{e}}}{\rho}\left(\frac{T}{T_{0}}\right)^{3 / 2} \frac{1-y}{y^{2}}\right]-\frac{T_{0}}{T} \tag{254}
\end{equation*}
$$

The derivative with respect to y for Newton-Raphson is

$$
\begin{equation*}
\frac{\partial F}{\partial y}=\left(\frac{3}{2}+\frac{T_{0}}{T}\right) \frac{\partial \ln T / T_{0}}{\partial y}-\frac{1}{1-y}-\frac{2}{y} \tag{255}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial \ln T / T_{0}}{\partial y}=\frac{\frac{2}{3}\left(\ln \rho_{\mathrm{H}} / \rho_{\mathrm{p}}-F-T_{0} / T\right)-1}{1+y+x_{\mathrm{He}}} \tag{256}
\end{equation*}
$$

In order to compute the pressure gradient in the momentum equation, the derivative of y with respect to $\ln \rho$ and s needs to be known:

$$
\begin{gather*}
\frac{\partial \ln P}{\partial \ln \rho}=\frac{1}{1+y+x_{\mathrm{He}}} \frac{\partial y}{\partial \ln \rho}+\frac{\partial \ln T}{\partial \ln \rho}+\frac{\partial \ln T}{\partial y} \frac{\partial y}{\partial \ln \rho}+1 \tag{257}\\
\frac{\partial \ln P}{\partial s}=\frac{1}{1+y+x_{\mathrm{He}}} \frac{\partial y}{\partial s}+\frac{\partial \ln T}{\partial s}+\frac{\partial \ln T}{\partial y} \frac{\partial y}{\partial s} \tag{258}
\end{gather*}
$$

Since $F=0$ for all desired solutions $(y, \ln \rho, s)$ we also have

$$
\begin{equation*}
d F=\frac{\partial F}{\partial \ln \rho} \mathrm{~d} \ln \rho+\frac{\partial F}{\partial s} \mathrm{~d} s+\frac{\partial F}{\partial y} \mathrm{~d} y=0 \tag{259}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\frac{\partial y}{\partial \ln \rho}=\left(\frac{\mathrm{d} y}{\mathrm{~d} \ln \rho}\right)_{\mathrm{d} s=0}=-\frac{\partial F / \partial \ln \rho}{\partial F / \partial y} \tag{260}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial y}{\partial s}=\left(\frac{\mathrm{d} y}{\mathrm{~d} s}\right)_{\mathrm{d} \ln \rho=0}=-\frac{\partial F / \partial s}{\partial F / \partial y} \tag{261}
\end{equation*}
$$

H. 7 Radiative transfer

H.7.1 Solving the radiative transfer equation

A formal solution of Eq. (81) is given by

$$
\begin{equation*}
I(\tau)=I\left(\tau_{0}\right) e^{-\left(\tau-\tau_{0}\right)}+\int_{\tau_{0}}^{\tau} e^{-\left(\tau-\tau^{\prime}\right)} S\left(\tau^{\prime}\right) d \tau^{\prime} \tag{262}
\end{equation*}
$$

Using a generalization of the trapezoidal rule,

$$
\begin{align*}
\int_{\tau_{0}}^{\tau} e^{-\left(\tau-\tau^{\prime}\right)} f\left(\tau^{\prime}\right) d \tau^{\prime} & \approx \int_{\tau_{0}}^{\tau} e^{-\left(\tau-\tau^{\prime}\right)}\left[f\left(\tau_{0}\right)+\frac{f(\tau)-f\left(\tau_{0}\right)}{\tau-\tau_{0}}\left(\tau^{\prime}-\tau_{0}\right)\right] d \tau^{\prime} \tag{263}\\
& =\left[1-e^{-\left(\tau-\tau_{0}\right)}\right] f(\tau)-\frac{1-e^{-\left(\tau-\tau_{0}\right)}\left(1+\tau-\tau_{0}\right)}{\tau-\tau_{0}}\left[f(\tau)-f\left(\tau_{0}\right)\right] \tag{264}
\end{align*}
$$

which is exact for linear functions $S(\tau)$, we discretize this as

$$
\begin{align*}
I_{k+1} & =I_{k} e^{-\delta \tau}+\left(1-e^{-\delta \tau}\right) S_{k+1}-\frac{1-e^{-\delta \tau}(1+\delta \tau)}{\delta \tau}\left(S_{k+1}-S_{k}\right) \tag{265}\\
& =I_{k} e^{-\delta \tau}+\left(1-e^{-\delta \tau}\right) S_{k}+\frac{e^{-\delta \tau}-1+\delta \tau}{\delta \tau}\left(S_{k+1}-S_{k}\right) \tag{266}
\end{align*}
$$

Here the simplest way to calculate $\delta \tau$ is

$$
\begin{equation*}
\delta \tau=\frac{\chi_{k}+\chi_{k+1}}{2} \delta x \tag{267}
\end{equation*}
$$

more accurate alternatives are

$$
\begin{equation*}
\delta \tau=\sqrt{\chi_{k} \chi_{k+1}} \delta x \tag{268}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta \tau=\frac{\chi_{k+1}-\chi_{k}}{\ln \frac{\chi_{k+1}}{\ln \chi_{k}}} \delta x \tag{269}
\end{equation*}
$$

H.7.2 Angular integration

Table 18: Sums $\sqrt{4 \pi} Y_{l}^{m}\left(\theta_{i}, \phi_{i}\right)$ for special sets of directions. For all degrees and orders up to $l=8$ not mentioned in this table, the sums are 0 . The label 'Non-h. f-d'. stands for 'non-horizontal face-diagonals', i.e. the eight face diagonals that are not in the horizontal plane.

Directions	Y_{0}^{0}	Y_{2}^{0}	Y_{4}^{0}	$Y_{4}^{ \pm 4}$	Y_{6}^{0}	$Y_{6}^{ \pm 4}$	Y_{8}^{0}	$Y_{8}^{ \pm 4}$	$Y_{8}^{ \pm 8}$
Coord.	6	0	$\frac{21}{2}$	$\frac{3}{4} \sqrt{70}$	$\frac{3}{4} \sqrt{13}$	$-\frac{3}{8} \sqrt{182}$	$\frac{99}{32} \sqrt{17}$	$\frac{3}{32} \sqrt{2618}$	$\frac{3}{64} \sqrt{24310}$
Face diag.	12	0	$-\frac{21}{4}$	$-\frac{3}{8} \sqrt{70}$	$-\frac{39}{16} \sqrt{13}$	$\frac{39}{32} \sqrt{182}$	$\frac{891}{256} \sqrt{17}$	$\frac{27}{256} \sqrt{2618}$	$\frac{27}{512} \sqrt{24310}$
Space diag.	8	0	$-\frac{28}{3}$	$-\frac{2}{3} \sqrt{70}$	$\frac{16}{9} \sqrt{13}$	$-\frac{8}{9} \sqrt{182}$	$\frac{11}{9} \sqrt{17}$	$\frac{1}{27} \sqrt{2618}$	$\frac{1}{54} \sqrt{24310}$
Non-h. f-d.	8	$2 \sqrt{5}$	$-\frac{39}{4}$	$\frac{3}{8} \sqrt{70}$	$-\frac{19}{16} \sqrt{13}$	$\frac{27}{32} \sqrt{182}$	$\frac{611}{256} \sqrt{17}$	$\frac{51}{256} \sqrt{2618}$	$\frac{3}{512} \sqrt{24310}$
Coord. x, y	4	$-2 \sqrt{5}$	$\frac{9}{2}$	$\frac{4}{3} \sqrt{70}$	$-\frac{5}{4} \sqrt{13}$	$-\frac{3}{8} \sqrt{182}$	$\frac{35}{32} \sqrt{17}$	$\frac{3}{32} \sqrt{2618}$	$\frac{3}{64} \sqrt{24310}$
Coord. z	2	$2 \sqrt{5}$	6	0	$2 \sqrt{13}$	0	$2 \sqrt{17}$	0	0

For angular integration over the full solid angle, we make the ansatz

$$
\begin{equation*}
\int_{4 \pi} f(\theta, \phi) \frac{d \omega}{4 \pi}=\sum_{i=1}^{N} w_{i} f\left(\theta_{i}, \phi_{i}\right)+R_{N} \tag{270}
\end{equation*}
$$

Table 18 shows the sums $\sqrt{4 \pi} Y_{l}^{m}\left(\theta_{i}, \phi_{i}\right)$ over special sets of directions $\left(\theta_{i}, \phi_{i}\right)$. Using these numbers and requiring that angular integration is exact for $l \leq l_{\text {max }}$, we find the following weights w_{i} for different sets of directions (see also [1], §25.4.65) ${ }^{20}$

Cooling times have been determined numerically in [2]. Comparing with analytic expressions obtained in the Eddington approximation, the proposed suitable switches in $1-\mathrm{D}$ and 2-D problems.

20

1. Axes

Coordinate axes: $1 / 6$
$l_{\text {max }}=3$
2. Face diagonals

Face diagonals: 1/12
$l_{\text {max }}=3$
3. Space diagonals

Space diagonals: 1/8
$l_{\text {max }}=3$
4. Axes + face diagonals

Coordinate axes: $1 / 30$
Face diagonals: $\quad 1 / 15$
$l_{\text {max }}=5$
5. Axes + space diagonals

Coordinate axes: $1 / 15$
Space diagonals: $\quad 3 / 40$
$l_{\text {max }}=5$
6. Face + space diagonals

Face diagonals: $2 / 15$
Space diagonals: $-3 / 40$
$l_{\text {max }}=5$
7. Axes, face + space diagonals

Coordinate axes: $\quad 1 / 21$
Face diagonals: $\quad 4 / 105$
Space diagonals: $9 / 280$
$l_{\text {max }}=7$
8. Axes, non-horizontal face diagonals

Coordinate axes x, y : $\quad 1 / 10$
Coordinate axes z : $\quad 1 / 30$
Non-hor. face diagonals: $1 / 15$
$l_{\text {max }}=3$
9. Axes, non-horizontal face diagonals, space diagonals

Coordinate axes $x, y: \quad 12 / 215$
Coordinate axes $z: \quad 10 / 129$
Non-hor. face diagonals: $\quad-14 / 645$
Space diagonals: $\quad 171 / 1720$
$l_{\text {max }}=5$

I Curvilinear coordinates

The use and implementation of non-cartesian coordinate systems is briefly explained in Section5.25, All differential operators look like their cartesian counterparts, except that all derivatives are now replaced by covariant derivatives. The relevant reference for the Pencil Code is [27]; see their Appendix B. Here some details.

I. 1 Covariant derivatives

$$
\begin{gather*}
A_{\hat{\alpha} ; \hat{\beta}}=A_{\hat{\alpha}, \hat{\beta}}-\Gamma_{\hat{\alpha} \hat{\beta}}^{\hat{\sigma}} A_{\hat{\sigma}}, \tag{271}\\
A_{\hat{\alpha} \hat{\beta} ; \hat{\gamma}}=A_{\hat{\alpha} \hat{\beta}, \hat{\gamma}}-\Gamma_{\hat{\alpha} \hat{\alpha} \hat{\gamma}} A_{\hat{\sigma} \hat{\beta}}-\Gamma_{\hat{\beta} \hat{\gamma}}^{\hat{\gamma}} A_{\hat{\alpha} \hat{\sigma}} . \tag{272}
\end{gather*}
$$

Second derivative tensor

$$
\begin{aligned}
& A_{\hat{\alpha} ; \hat{\beta} \hat{\gamma}}=A_{\hat{\alpha} ; \hat{\beta}, \hat{\gamma}}-\Gamma_{\hat{\sigma}}^{\hat{\alpha} \hat{\gamma}} A_{\hat{\sigma} ; \hat{\beta}}-\Gamma_{\hat{\sigma}}^{\hat{\beta}} \hat{\hat{\beta}} \\
&=A_{\hat{\alpha}, \hat{\beta} \hat{\gamma}}-\Gamma_{\hat{\alpha} ; \hat{\sigma}} \\
&{ }_{\hat{\alpha}} A_{\hat{\sigma}, \hat{\gamma}}-\Gamma_{\hat{\alpha} \hat{\beta}, \hat{\gamma}} A_{\hat{\sigma}}-\Gamma_{\hat{\alpha} \hat{\gamma} \hat{\gamma}} A_{\hat{\sigma}, \hat{\beta}}+\Gamma^{\hat{\sigma}}{ }_{\hat{\alpha} \hat{\gamma}} \Gamma_{\hat{\alpha}}^{\hat{\sigma}} \hat{\hat{\beta}}
\end{aligned} A_{\hat{\nu}}-\Gamma_{\hat{\sigma} \hat{\gamma}}^{\hat{\gamma}} A_{\hat{\alpha}, \hat{\sigma}}+\Gamma^{\hat{\sigma}}{ }_{\hat{\beta} \hat{\gamma}} \hat{\Gamma}_{\hat{\alpha} \hat{\sigma}} A_{\hat{\nu}} .
$$

Elements of the first derivative tensor

$$
\begin{array}{ll}
A_{\hat{r} ; \hat{r}}=A_{\hat{r}, \hat{r}}, & A_{\hat{\theta} ; \hat{\theta}}=A_{\hat{\theta}, \hat{\theta}}+r^{-1} A_{\hat{r}}, \\
& A_{\hat{\phi} ; \hat{\phi}}=A_{\hat{\phi}, \hat{\phi}}+r^{-1} A_{\hat{r}}+r^{-1} \cot \theta A_{\hat{\theta}} . \\
A_{\hat{\phi} ; \hat{\theta}}=A_{\hat{\phi}, \hat{\theta}} & A_{\hat{\theta} \hat{\phi}}=A_{\hat{\theta}, \hat{\phi}}-r^{-1} \cot \theta A_{\hat{\phi}} \tag{274}\\
A_{\hat{r} ; \hat{\phi}}=A_{\hat{\phi}, \hat{\phi}}-r^{-1} A_{\hat{\phi}} & A_{\hat{\phi} ; \hat{r}}=A_{\hat{\phi}, \hat{r}} \\
A_{\hat{\theta} ; \hat{r}}=A_{\hat{\theta}, \hat{r}} & A_{\hat{r} ; \hat{\theta}}=A_{\hat{r}, \hat{\theta}}-r^{-1} A_{\hat{\theta}}
\end{array}
$$

I. 2 Differential operators

All differential operators look like their cartesian counterparts, except that all derivatives are now replaced by covariant derivatives.

I.2.1 Gradient

For the gradient operator the covariant and partial derivatives are the same, i.e.

$$
\nabla \Psi=\Psi_{; \hat{\alpha}}=\Psi_{, \hat{\alpha}}=\left(\begin{array}{c}
\partial_{\hat{r}} \Psi \tag{275}\\
\partial_{\hat{\hat{\theta}}} \Psi \\
\partial_{\hat{\phi}} \Psi
\end{array}\right)
$$

where

$$
\begin{align*}
\partial_{\hat{r}} & =\partial_{r} \tag{276}\\
\partial_{\hat{\theta}} & =r^{-1} \partial_{\theta} \tag{277}\\
\partial_{\hat{\phi}} & =\varpi^{-1} \partial_{\phi} \tag{278}
\end{align*}
$$

and $\varpi=r \sin \theta$ is the cylindrical radius. Thus,

$$
\begin{equation*}
\nabla \Psi=(\nabla \Psi)^{(0)} \tag{279}
\end{equation*}
$$

where the superscript (0) indicated the straightforward calculation in the noncoordinate basis. The coordinate and non-coordinate bases are related to each other via

$$
(\nabla \Psi)^{0} \equiv\left(\begin{array}{c}
\Psi_{, \hat{r}} \tag{280}\\
\Psi_{, \hat{\theta}} \\
\Psi_{, \hat{\phi}}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & r^{-1} & 0 \\
0 & 0 & \varpi^{-1}
\end{array}\right)(\nabla \boldsymbol{\nabla} \Psi)^{(\mathrm{coord})}
$$

Here, the result in the coordinate basis is just what one would get by computing as if one had cartesian coordinates. In the PENCIL Code the output or the subroutine der is now in this non-coordinate basis.

I.2.2 Divergence

For the divergence operator we have a 'correction term', i.e.

$$
\begin{align*}
\boldsymbol{\nabla} \cdot \boldsymbol{A} & =A_{; \hat{\alpha}}^{\hat{\alpha}} \tag{281}\\
& =A^{\hat{\alpha}}{ }_{, \hat{\alpha}}+\Gamma^{\hat{\alpha}}{ }_{\hat{\beta} \hat{\alpha}} A^{\hat{\beta}} \tag{282}
\end{align*}
$$

where the only non-vanishing contributions to the last term are

$$
\begin{align*}
\Gamma_{\hat{\beta} \hat{\alpha}}^{\hat{\alpha}} A^{\hat{\beta}} & =\Gamma_{\hat{r} \hat{\theta}}^{\hat{\theta}} A^{\hat{r}}+\Gamma_{\hat{r} \hat{\phi}}^{\hat{\phi}} A^{\hat{r}}+\Gamma^{\hat{\phi}}{ }_{\hat{\theta} \hat{\phi}} A^{\hat{\theta}} \tag{283}\\
& =2 r^{-1} A^{\hat{r}}+r^{-1} \cot \theta A^{\hat{\theta}} . \tag{284}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{A}=(\boldsymbol{\nabla} \cdot \boldsymbol{A})^{(0)}+M_{\hat{\alpha}}^{(\mathrm{div})} A_{\hat{\alpha}}, \tag{285}
\end{equation*}
$$

where

$$
M_{\hat{\alpha}}^{(\mathrm{div})}=\left(\begin{array}{c}
2 r^{-1} \tag{286}\\
r^{-1} \cot \theta \\
0
\end{array}\right)
$$

represents the correction term.
Alternatively:

$$
\begin{align*}
A_{\hat{\alpha} ; \hat{\alpha}} & =A_{\hat{\alpha}, \hat{\alpha}}-\Gamma_{\hat{\alpha} \hat{\alpha}}^{\hat{\alpha}} A_{\hat{\sigma}} \tag{287}\\
& =A_{\hat{\alpha}, \hat{\alpha}}+2 r^{-1} A_{\hat{r}}+r^{-1} \cot \theta A_{\hat{\theta}} . \tag{288}
\end{align*}
$$

I.2.3 Curl

The curl operator is given by

$$
\begin{equation*}
(\boldsymbol{\nabla} \times \boldsymbol{B})^{\hat{\alpha}}=\epsilon^{\hat{\alpha} \hat{\beta} \hat{\gamma}} B_{\hat{\gamma}, \hat{\beta}} . \tag{289}
\end{equation*}
$$

So

$$
\begin{gather*}
\boldsymbol{\nabla} \times \boldsymbol{A}=\left(\begin{array}{l}
A_{\hat{\phi} ; \hat{\theta}}-A_{\hat{\theta} ; \hat{\phi}} \\
A_{\hat{\gamma} ; \hat{\phi}}-A_{\hat{\phi} ; \hat{r}} \\
A_{\hat{\theta} ; \hat{r}}-A_{\hat{r} ; \hat{\theta}}
\end{array}\right) \tag{290}\\
\boldsymbol{\nabla} \times \boldsymbol{A}=\left(\begin{array}{l}
A_{\hat{\phi}, \hat{\theta}}-A_{\hat{\theta}, \hat{\phi}}+\Gamma^{\hat{\phi}} \hat{\theta}_{\hat{\theta}} A^{\hat{\phi}} \\
A_{\hat{\gamma}, \hat{\phi}}-A_{\hat{\phi}, \hat{r}}-\Gamma_{\hat{\hat{\phi}}}^{\hat{\phi}} \hat{\phi} A^{\hat{\phi}} \\
A_{\hat{\theta}, \hat{r}}-A_{\hat{r}, \hat{\theta}}+\Gamma_{\hat{\hat{r}} \hat{\theta}} A^{\hat{\theta}}
\end{array}\right) \tag{291}
\end{gather*}
$$

Thus,

$$
\begin{equation*}
\boldsymbol{\nabla} \times \boldsymbol{A}=(\boldsymbol{\nabla} \times \boldsymbol{A})^{(0)}+M_{\hat{\alpha} \hat{\beta}}^{(\mathrm{curl})} A_{\hat{\beta}}, \tag{292}
\end{equation*}
$$

where

$$
M_{\hat{\alpha} \hat{\beta}}^{(\mathrm{curl})}=\left(\begin{array}{ccc}
0 & 0 & r^{-1} \cot \theta \tag{293}\\
0 & 0 & -r^{-1} \\
0 & r^{-1} & 0
\end{array}\right)
$$

is the correction term. In the Pencil Code we use the subroutine curl_mn(aij,bb,aa), which uses aij $=A_{\hat{\alpha}, \hat{\beta}}$ and $\mathrm{aa}=A_{\hat{\alpha}}$ as input pencils and produces $\mathrm{bb}=B_{\hat{\alpha}}$ as output.

I.2.4 Advection operator

[The usage of roman indices here is insignificant.]

$$
\begin{align*}
& \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}= \boldsymbol{\omega} \times \boldsymbol{u}+\frac{1}{2} \boldsymbol{\nabla} \boldsymbol{u}^{2}=-\boldsymbol{u} \times \boldsymbol{\omega}+\frac{1}{2} \boldsymbol{\nabla} \boldsymbol{u}^{2} \tag{294}\\
& \begin{aligned}
(\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u})_{i} & =-\epsilon_{i j k} \epsilon_{k l m} u_{j} u_{m ; l}+u_{j} u_{j, i} \\
& =\left(-\delta_{i l} \delta_{j m}+\delta_{i m} \delta_{j l}\right) u_{j} u_{m ; l}+u_{j} u_{j, i} \\
& =-u_{j} u_{j ; i}+u_{j} u_{i, j}+u_{j} u_{j, i} \\
& =u_{j} u_{i ; j}+\Gamma^{k}{ }_{j i} u_{j} u_{k} \\
& =u_{j} u_{i, j}+\left(-\Gamma^{k}{ }_{i j}+\Gamma^{k}{ }_{j i}\right) u_{j} u_{k}
\end{aligned}
\end{align*}
$$

Note that the terms with $\Gamma_{\hat{r}}^{\hat{\theta} \hat{\theta}}, ~ \Gamma^{\hat{r}} \hat{\hat{\phi}}_{\hat{\phi}}$, and $\Gamma_{\hat{\phi} \hat{\phi} \hat{}}^{\hat{\phi}}$ drop out. Thus, we have

$$
\begin{align*}
& (\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u})_{\hat{r}}=u_{j} u_{\hat{r}, j}+\left(-\Gamma_{\hat{r} j}^{k}+\Gamma^{k}{ }_{j \hat{r}}\right) u_{j} u_{k} \\
& =u_{j} u_{\hat{r}, j}-\Gamma^{\hat{\theta}}{ }_{\hat{r} \hat{\theta}} u_{\hat{\theta}}^{2}-\Gamma^{\hat{\phi}}{ }_{\hat{r} \hat{\phi}} u_{\hat{\phi}}^{2} \\
& =u_{j} u_{\hat{r}, j}-r^{-1}\left(u_{\hat{\theta}}^{2}+u_{\hat{\phi}}^{2}\right) \tag{296}\\
& (\boldsymbol{u} \cdot \nabla \boldsymbol{u})_{\hat{\theta}}=u_{j} u_{\hat{\theta}, j}+\left(-\Gamma^{k}{ }_{\hat{\theta} j}+\Gamma^{k}{ }_{j \hat{\theta}}\right) u_{j} u_{k} \\
& =u_{j} u_{\hat{\theta}, j}-\Gamma^{\hat{\phi}}{ }_{\hat{\theta} \hat{\phi}} u_{\hat{\phi}}^{2}+\Gamma^{\hat{\theta}}{ }_{\hat{r} \hat{\theta}} u_{\hat{r}} u_{\hat{\theta}} \\
& =u_{j} u_{\hat{\theta}, j}-r^{-1} \cot \theta u_{\hat{\phi}}^{2}+r^{-1} u_{\hat{r}} u_{\hat{\theta}} \tag{297}\\
& (\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u})_{\hat{\phi}}=u_{j} u_{\hat{\phi}, j}+\left(-\Gamma^{k}{ }_{\hat{\phi} j}+\Gamma^{k}{ }_{j \hat{\phi}}\right) u_{j} u_{k} \\
& =u_{j} u_{\hat{\phi}, j}+\Gamma^{\hat{\phi}}{ }_{\hat{r} \hat{\phi}} u_{\hat{r}} u_{\hat{\phi}}+\Gamma^{\hat{\phi}} \hat{\theta}_{\hat{\phi}} u_{\hat{\theta}} u_{\hat{\phi}} \\
& =u_{j} u_{\hat{\phi}, j}+r^{-1} u_{\hat{r}} u_{\hat{\phi}}+r^{-1} \cot \theta u_{\hat{\theta}} u_{\hat{\phi}} \tag{298}
\end{align*}
$$

Note that the formulation above is slightly misleading, because

$$
\begin{gather*}
\Gamma^{k}{ }_{j \hat{\theta}} u_{j} u_{k}=\Gamma^{\hat{r}}{ }_{\hat{\theta} \hat{\theta}} u_{\hat{\theta}} u_{\hat{r}}+\Gamma^{\hat{\theta}}{ }_{\hat{r} \hat{\theta}} u_{\hat{r}} u_{\hat{\theta}}=0 \tag{299}\\
\Gamma_{j \hat{\phi}}^{k} u_{j} u_{k}=\Gamma^{\hat{r}}{ }_{\hat{\phi} \hat{\phi}} u_{\hat{\phi}} u_{\hat{r}}+\Gamma_{\hat{\hat{r}} \hat{\phi}}^{\hat{\phi}} u_{\hat{r}} u_{\hat{\phi}}+\Gamma^{\hat{\theta}}{ }_{\hat{\phi} \hat{\phi} \hat{\phi}} u_{\hat{\phi}} u_{\hat{\theta}}+\Gamma^{\hat{\phi}}{ }_{\hat{\theta} \hat{\phi}} u_{\hat{\theta}} u_{\hat{\phi}}=0 \tag{300}
\end{gather*}
$$

I.2.5 Mixed advection operator

$$
\begin{equation*}
\boldsymbol{u} \times \boldsymbol{B}=\boldsymbol{u} \times \boldsymbol{\nabla} \boldsymbol{B}=u_{j} \epsilon_{i j k} \epsilon_{k l m} A_{m ; l}=u_{j}\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) A_{m ; l}=u_{j} A_{j ; i}-u_{j} A_{i ; j} \tag{301}
\end{equation*}
$$

I.2.6 Shear term

$$
\begin{gather*}
u_{j} A_{j ; i}=\left(u_{j} A_{j}\right)_{; i}-u_{j ; i} A_{j}=\left(u_{j} A_{j}\right)_{, i}-u_{j ; i} A_{j} \tag{302}\\
u_{j ; i} A_{j}=u_{j, i} A_{j}-\Gamma_{j i}^{k} u_{k} A_{j} \tag{303}
\end{gather*}
$$

So

$$
\begin{gather*}
u_{\hat{\phi} ; \hat{r}} A_{\hat{\phi}}=u_{\hat{\phi}, \hat{r}} A_{\hat{\phi}}-\Gamma_{\hat{\phi} \hat{r}}^{k} u_{k} A_{\hat{\phi}}=u_{\hat{\phi}, \hat{r}} A_{\hat{\phi}} \tag{304}\\
u_{\hat{r} ; \hat{\phi}} A_{\hat{r}}=u_{\hat{r}, \hat{\phi}} A_{\hat{r}}-\Gamma_{\hat{r} \hat{\phi}}^{\hat{\phi}} u_{\hat{\phi}} A_{\hat{r}} \tag{305}
\end{gather*}
$$

I.2.7 Another mixed advection operator

$$
\begin{equation*}
u_{\hat{\beta}} A_{\hat{\alpha} ; \hat{\beta}}=u_{\hat{\beta}} A_{\hat{\alpha}, \hat{\beta}}-\Gamma_{\hat{\alpha} \hat{\beta}}^{\hat{\sigma}} u_{\hat{\beta}} A_{\hat{\sigma}}, \tag{306}
\end{equation*}
$$

Write out

$$
\begin{aligned}
(\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{A})_{\hat{r}}=u_{\hat{r}} A_{\hat{r}, \hat{r}}+u_{\hat{\theta}} A_{\hat{r}, \hat{\theta}}+u_{\hat{\phi}} A_{\hat{r}, \hat{\phi}} & =u_{\hat{r}} A_{\hat{r}, \hat{r}},+u_{\hat{\theta}} A_{\hat{r}, \hat{\theta}}-r^{-1} u_{\hat{\theta}} A_{\hat{\theta}}+u_{\hat{\phi}} A_{\hat{r}, \hat{\phi}}-r^{-1} u_{\hat{\phi}} A_{\hat{\phi}} \\
(\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{A})_{\hat{\theta}}=u_{\hat{r}} A_{\hat{\theta}, \hat{r}}+u_{\hat{\theta}} A_{\hat{\theta}, \hat{\theta}}+u_{\hat{\phi}} A_{\hat{\theta}, \hat{\phi}} & =u_{\hat{r}} A_{\hat{\theta}, \hat{r}}+u_{\hat{\theta}} A_{\hat{\theta}, \hat{\theta}}+r^{-1} u_{\hat{\theta}} A_{\hat{r}},+u_{\hat{\phi}} A_{\hat{\theta}, \hat{\phi}}-r^{-1} \cot \theta u_{\hat{\phi}} A_{\hat{\phi}} \\
(\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{A})_{\hat{\phi}}=u_{\hat{r}} A_{\hat{\phi} ; \hat{r}}+u_{\hat{\theta}} A_{\hat{\phi} ; \hat{\theta}}+u_{\hat{\phi},} A_{\hat{\phi} ; \hat{\phi}} & =u_{\hat{r}} A_{\hat{\phi}, \hat{r}}+u_{\hat{\theta}} A_{\hat{\phi}, \hat{\theta}}+u_{\hat{\phi}} A_{\hat{\phi}, \hat{\phi}}+r^{-1} u_{\hat{\phi}} A_{\hat{r}}+r^{-1} \cot \theta u_{\hat{\phi}} A_{\hat{\theta}} .
\end{aligned}
$$

Reorder

$$
\begin{align*}
& (\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{A})_{\hat{r}}=u_{\hat{r}} A_{\hat{r}, \hat{r}}+u_{\hat{\theta}} A_{\hat{r}, \hat{\theta}}+u_{\hat{\phi}} A_{\hat{r}, \hat{\phi}}-r^{-1} u_{\hat{\theta}} A_{\hat{\theta}}-r^{-1} u_{\hat{\phi}} A_{\hat{\phi}} \\
& (\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{A})_{\hat{\theta}}=u_{\hat{r}} A_{\hat{\theta}, \hat{r}}+u_{\hat{\theta}} A_{\hat{\theta}, \hat{\theta}}+u_{\hat{\phi}} A_{\hat{\theta}, \hat{\phi}}+r^{-1} u_{\hat{\theta}} A_{\hat{r}}-r^{-1} \cot \theta u_{\hat{\phi}} A_{\hat{\phi}} \\
& (\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{A})_{\hat{\phi}}=u_{\hat{r}} A_{\hat{\phi}, \hat{r}}+u_{\hat{\theta}} A_{\hat{\phi}, \hat{\theta}}+u_{\hat{\phi}} A_{\hat{\phi}, \hat{\phi}}+r^{-1} u_{\hat{\phi}} A_{\hat{r}}+r^{-1} \cot \theta u_{\hat{\phi}} A_{\hat{\theta}} . \tag{307}
\end{align*}
$$

I.2.8 Strain Matrix

The strain matrix takes the form $2 \mathrm{~s}_{\hat{\alpha} \hat{\beta}}=u_{\hat{\alpha} ; \hat{\beta}}+u_{\hat{\beta}, \hat{\alpha}}$. The components of the covariant derivative tensor were given in Eqs. (273) and (274), so the final result reads

$$
2 \mathbf{s} \equiv\left(\begin{array}{ccc}
2 u_{\hat{r}, \hat{r}} & u_{\hat{r}, \hat{\theta}}+u_{\hat{\theta}, \hat{r}}-u_{\hat{\theta}} / r & u_{\hat{r}, \hat{\phi}}+u_{\hat{\phi}, \hat{r}}-u_{\hat{\phi}} / r \tag{308}\\
u_{\hat{r}, \hat{\theta}}+u_{\hat{\theta}, \hat{r}}-u_{\hat{\theta}} / r & 2 u_{\hat{\theta}, \hat{\theta}}+2 u_{\hat{r}} / r & u_{\hat{\theta}, \hat{\phi}}+u_{\hat{\phi}, \hat{\theta}}-u_{\hat{\phi}} \frac{\cot \theta}{r} \\
u_{\hat{r}, \hat{\phi}}+u_{\hat{\phi}, \hat{r}}-u_{\hat{\phi}} / r & u_{\hat{\theta}, \hat{\phi}}+u_{\hat{\phi}, \hat{\theta}}-u_{\hat{\phi}} \frac{\cot \theta}{r} & 2 u_{\hat{\phi}, \hat{\phi}}+2 u_{\hat{r}} / r+2 u_{\hat{\theta}} \frac{\cot \theta}{r}
\end{array}\right)
$$

The trace-less rate of strain matrix is given by

$$
\begin{equation*}
\mathrm{S}_{i j}=\mathrm{s}_{i j}-\frac{1}{3} \delta_{i j} \boldsymbol{\nabla} \cdot \boldsymbol{u} \tag{309}
\end{equation*}
$$

I.2.9 Lambda effect

$$
Q_{i j}=\left(\begin{array}{ccc}
0 & 0 & \Lambda_{V} \Omega \tag{310}\\
0 & 0 & \Lambda_{H} \Omega \\
\Lambda_{V} \Omega & \Lambda_{H} \Omega & 0
\end{array}\right)
$$

where $\Omega=u_{\hat{\phi}} / r \sin \theta$. Next, compute $Q_{i j ; j}$.

$$
\begin{equation*}
Q_{\hat{\alpha} \hat{\beta} ; \hat{\gamma}}=Q_{\hat{\alpha} \hat{\beta}, \hat{\gamma}}-\Gamma_{\hat{\alpha} \hat{\gamma} \hat{\gamma}} Q_{\hat{\sigma} \hat{\beta}}-\Gamma_{\hat{\beta} \hat{\gamma}}^{\hat{\sigma}} Q_{\hat{\alpha} \hat{\sigma}} . \tag{311}
\end{equation*}
$$

$$
\begin{align*}
Q_{\hat{\theta} \hat{r}, \hat{r}} & =Q_{\hat{\theta} \hat{r}, \hat{r}}-\Gamma^{\hat{\sigma}} \hat{\theta}_{\hat{r}} Q_{\hat{\sigma} \hat{r}}-\Gamma^{\hat{\sigma}}{ }_{\hat{r} \hat{r}} Q_{\hat{\theta} \hat{\sigma}} . \\
& =0 \tag{312}\\
Q_{\hat{\theta} \hat{\theta}, \hat{\theta}} & =Q_{\hat{\theta} \hat{\theta}, \hat{\theta}}-\Gamma^{\hat{\sigma}}{ }_{\hat{\theta} \hat{\theta}} Q_{\hat{\sigma} \hat{\theta}}-\Gamma^{\hat{\sigma}} \hat{\sigma}_{\hat{\theta} \hat{\theta}} Q_{\hat{\theta} \hat{\sigma}} . \\
& =-\Gamma_{\hat{\theta} \hat{\theta}} Q_{\hat{\phi} \hat{\theta}}-\Gamma_{\hat{\theta} \hat{\theta}}^{\hat{\theta}} Q_{\hat{\theta} \hat{\phi}} \\
& =0 \tag{313}\\
Q_{\hat{\theta} \hat{\phi} ; \hat{\phi}} & =Q_{\hat{\theta} \hat{\phi}, \hat{\phi}}-\Gamma^{\hat{\sigma}} \hat{\sigma}_{\hat{\theta} \hat{\phi}} Q_{\hat{\sigma} \hat{\phi}}-\Gamma^{\hat{\sigma}}{ }_{\hat{\phi} \hat{\phi}} Q_{\hat{\theta} \hat{\sigma}} . \\
& =Q_{\hat{\theta} \hat{\phi}, \hat{\phi}}-\Gamma_{\hat{\theta} \hat{\phi} \hat{\phi}} Q_{\hat{\phi} \hat{\phi}}-\Gamma^{\hat{r}}{ }_{\hat{\phi} \hat{\phi}} Q_{\hat{\theta} \hat{r}}-\Gamma^{\hat{\theta} \hat{\phi} \hat{\phi}} Q_{\hat{\theta} \hat{\theta}} . \\
& =0 \tag{314}
\end{align*}
$$

ϕ terms

$$
\begin{align*}
& Q_{\hat{\phi} \hat{r}, \hat{r}}=Q_{\hat{\phi} \hat{r}, \hat{r}}-\Gamma^{\hat{\sigma}}{ }_{\hat{\phi} \hat{r}} Q_{\hat{\sigma} \hat{r}}-\Gamma^{\hat{\sigma}}{ }_{\hat{r} \hat{r}} Q_{\hat{\phi} \hat{\sigma} \hat{~}} . \\
& =Q_{\hat{\phi} \hat{r}, \hat{r}} \tag{315}\\
& Q_{\hat{\phi} \hat{\theta} ; \hat{\theta}}=Q_{\hat{\phi} \hat{\theta}, \hat{\theta}}-\Gamma^{\hat{\sigma}}{ }_{\hat{\phi} \hat{\theta}} Q_{\hat{\sigma} \hat{\theta}}-\Gamma^{\hat{\sigma}}{ }_{\hat{\theta} \hat{\theta}} Q_{\hat{\phi} \hat{\sigma}} \\
& =Q_{\hat{\phi} \hat{\theta}, \hat{\theta}}-\Gamma^{\hat{r}} \hat{\hat{\theta} \hat{\theta}}, Q_{\hat{\phi} \hat{r}} \\
& =Q_{\hat{\phi} \hat{\theta}, \hat{\theta}}+r^{-1} Q_{\hat{\phi} \hat{r}} \tag{316}\\
& Q_{\hat{\phi} \hat{\phi} ; \hat{\phi}}=Q_{\hat{\phi} \hat{\phi}, \hat{\phi}}-\Gamma^{\hat{\sigma} \hat{\phi} \hat{\phi}} Q_{\hat{\sigma} \hat{\phi}}-\Gamma^{\hat{\sigma}} \hat{\phi} \hat{\phi} Q_{\hat{\phi} \hat{\sigma}} \\
& =-\Gamma^{\hat{\sigma}}{ }_{\hat{\phi} \hat{\phi}} Q_{\hat{\sigma} \hat{\phi}}-\Gamma^{\hat{\sigma}}{ }_{\hat{\phi} \hat{\phi}} Q_{\hat{\phi} \hat{\sigma}} \\
& =-\Gamma^{\hat{r}} \hat{\phi} \hat{\phi} Q_{\hat{r} \hat{\phi}}-\Gamma_{\hat{\theta} \hat{\phi} \hat{\phi}}^{\hat{\theta}} Q_{\hat{\theta} \hat{\phi}}-\Gamma^{\hat{r}}{ }_{\hat{\phi} \hat{\phi}} Q_{\hat{\phi} \hat{r}}-\Gamma^{\hat{\theta}}{ }_{\hat{\phi} \hat{\phi}} Q_{\hat{\phi} \hat{\theta}} \\
& =+r^{-1} Q_{\hat{r} \hat{\phi}}+\cot \theta r^{-1} Q_{\hat{\theta} \hat{\phi}}+r^{-1} Q_{\hat{\phi} \hat{r}}+\cot \theta r^{-1} Q_{\hat{\phi} \hat{\theta}} \\
& =+2 r^{-1} \Lambda_{\mathrm{V}} \Omega+2 \cot \theta r^{-1} \Lambda_{\mathrm{H}} \Omega \tag{317}
\end{align*}
$$

So, the ϕ component of the divergence of the Lambda tensor is then

$$
\begin{equation*}
Q_{\hat{\phi} \hat{\sigma} ; \hat{\sigma}}=Q_{\hat{\phi} \hat{\phi}, \hat{r}}+Q_{\hat{\phi} \hat{\theta}, \hat{\theta}}+3 r^{-1} \Lambda_{\mathrm{V}} \Omega+2 \cot \theta r^{-1} \Lambda_{\mathrm{H}} \Omega \tag{318}
\end{equation*}
$$

I.2.10 Laplacian of a scalar

Let $E_{\hat{\alpha}} \equiv(\nabla \Psi)_{\hat{\alpha}}=\partial_{\hat{\alpha}} \Psi$ Then

$$
\begin{equation*}
\Delta \Psi=E_{\hat{\beta} ; \hat{\beta}}=\left(\partial_{\hat{\beta}} \Psi\right)_{, \hat{\beta}}+\frac{2}{r} \Psi_{, \hat{r}}+\frac{\cot \theta}{r} \Psi_{, \hat{\theta}} \tag{319}
\end{equation*}
$$

I.2.11 Hessian of a scalar

$$
\begin{gather*}
s_{; \hat{\alpha}}=s_{, \hat{\alpha}} \tag{320}\\
s_{; \hat{r} \hat{r}}=s_{, \hat{r} \hat{r}}-\Gamma^{\hat{\sigma}}{ }_{\hat{r} \hat{r}} s_{, \hat{\sigma}}=s_{, \hat{r} \hat{r}} \tag{321}\\
s_{; \hat{\theta} \hat{\theta}}=s_{, \hat{\theta} \hat{\theta}}-\Gamma^{\hat{r}}{ }_{\hat{\theta} \hat{\theta}} s_{, \hat{r}},=s_{, \hat{\theta} \hat{\theta}}+r^{-1} s_{, \hat{r}} \tag{322}\\
s_{; \hat{\phi} \hat{\phi}}=s_{, \hat{\phi} \hat{\phi}}-\Gamma_{\hat{\phi} \hat{\phi}}^{\hat{\sigma}} s_{, \hat{\sigma},}=s_{, \hat{\phi} \hat{\phi}}-\Gamma_{\hat{\phi} \hat{\phi}}^{\hat{\phi}} s_{, \hat{r}},-\Gamma_{\hat{\theta} \hat{\phi} \hat{\phi}} s_{, \hat{\theta}}=s_{, \hat{\phi} \hat{\phi}}+r^{-1} s_{, \hat{r}},+r^{-1} \cot \theta s_{, \hat{\theta}}, \tag{323}
\end{gather*}
$$

$$
\begin{gather*}
s_{; \hat{r} \hat{\theta}}=s_{, \hat{r} \hat{\theta}}-\Gamma_{\hat{r} \hat{\theta}}^{\hat{\theta}} s_{, \hat{\theta}}=s_{, \hat{r} \hat{\theta}}-r^{-1} s_{, \hat{\theta}}, \tag{324}\\
s_{; \hat{r} \hat{\phi}}=s_{, \hat{r} \hat{\phi}}-\Gamma_{\hat{r} \hat{\phi}}^{\hat{\phi}} s_{, \hat{\phi}}=s_{, \hat{r} \hat{\phi}}-r^{-1} s_{, \hat{\phi}} \tag{325}\\
s_{; \hat{\theta} \hat{r}}=s_{, \hat{\theta} \hat{r}}-\Gamma_{\hat{\theta} \hat{r}}^{\hat{\sigma}} s_{, \hat{\sigma}}=s_{, \hat{\theta} \hat{r}} \tag{326}\\
s_{; \hat{\phi} \hat{r}}=s_{, \hat{\phi} \hat{r} \hat{\phi}}-\Gamma_{\hat{\sigma}}^{\hat{\phi} \hat{r}} s_{, \hat{\theta} \hat{\phi}}=s_{, \hat{\phi} \hat{r}} \tag{327}\\
s_{; \hat{\phi} \hat{\theta}}=s_{, \hat{\phi} \hat{\theta} \hat{\phi}} s_{, \hat{\phi}}=\Gamma_{, \hat{\theta} \hat{\phi}}^{\hat{\sigma}}=r_{\hat{\phi} \hat{\theta}} s_{, \hat{\sigma}}=s_{, \hat{\phi} \hat{\theta}} \cot \theta s_{, \hat{\phi}} \tag{328}
\end{gather*}
$$

So,

$$
s_{; \hat{\alpha} \hat{\beta}}=s_{, \hat{\alpha} \hat{\beta}}+\left(\begin{array}{ccc}
0 & -r^{-1} s_{, \hat{\theta}} & -r^{-1} s_{, \hat{\phi}} \tag{330}\\
0 & +r^{-1} s_{, \hat{r}} & -r^{-1} \cot \hat{\theta} s_{\hat{\phi}} \\
0 & 0 & -\Gamma_{\hat{\phi} \hat{\phi}} s_{, \hat{r}}-\Gamma_{\hat{\phi}}^{\hat{\phi} \hat{\phi}} s_{, \hat{\theta}}
\end{array}\right)
$$

I.2.12 Double curl

For the calculation of $\boldsymbol{J}=\boldsymbol{\nabla} \times \boldsymbol{B}$ we use the same curl routine, but with different arguments, $\mathrm{bij}=B_{\hat{\alpha}, \hat{\beta}}$ and $\mathrm{bb}=B_{\hat{\alpha}}$ as input pencils and $\mathrm{j}=J_{\hat{\alpha}}$ as output, i.e. curl_mn(bij,jj,bb), so that

$$
\boldsymbol{J}=\left(\begin{array}{l}
B_{\hat{\phi}, \hat{\theta}}-B_{\hat{\theta}, \hat{\phi}}+\Gamma^{\hat{\phi}} \hat{\hat{\phi}, \hat{\phi}} \tag{331}\\
B_{\hat{r}, \hat{\phi}}-B_{\hat{\phi}, \hat{\phi}}-\Gamma_{\hat{\phi}}^{\hat{\phi}} \hat{\phi} \hat{\phi} \\
B_{\hat{\theta}, \hat{r}}-B_{\hat{r}, \hat{\theta}}+\Gamma_{\hat{\theta} \hat{\theta}} B^{\hat{\theta}}
\end{array}\right)=(\boldsymbol{\nabla} \times \boldsymbol{B})^{(0)}+M_{\hat{\alpha} \hat{\beta}}^{(\mathrm{curl})} B_{\hat{\beta}},
$$

where

$$
\begin{equation*}
(\boldsymbol{\nabla} \times \boldsymbol{B})^{(0) \hat{\alpha}}=\epsilon^{\hat{\alpha} \hat{\beta} \hat{\gamma}} B_{\hat{\gamma}, \hat{\beta}} . \tag{332}
\end{equation*}
$$

Expressing the components of $(\boldsymbol{\nabla} \times \boldsymbol{B})^{(0)}$ in terms of $A_{\hat{\alpha}}$ we have

$$
\begin{align*}
& B_{\hat{\phi}, \hat{\theta}}=\left(A_{\hat{\theta}, \hat{r}}-A_{\hat{r}, \hat{\theta}}+\Gamma_{\hat{r} \hat{\theta}}^{\hat{\theta}} A^{\hat{\theta}}\right)_{, \hat{\theta}} \quad B_{\hat{\theta}, \hat{\phi}}=\left(A_{\hat{r}, \hat{\phi}}-A_{\hat{\phi}, \hat{r}}-\Gamma_{\hat{\phi} \hat{r} \hat{\phi}}^{\hat{\phi}} A_{\hat{\phi}}^{\hat{\phi}}\right)_{, \hat{\phi}} \\
& B_{\hat{r}, \hat{\phi}}=\left(A_{\hat{\phi}, \hat{\theta}}-A_{\hat{\theta}, \hat{\phi}}+\Gamma^{\hat{\phi}} \hat{\theta}_{\hat{\theta} \hat{\phi}} A^{\hat{\phi}}\right)_{, \hat{\phi}} \quad B_{\hat{\phi}, \hat{r}}=\left(A_{\hat{\theta}, \hat{r}}-A_{\hat{r}, \hat{\theta}}+\Gamma_{\hat{\hat{\theta}}}^{\hat{\hat{\theta}}}{ }_{\hat{\theta}} A^{\hat{\theta}}\right)_{, \hat{r}} \tag{333}\\
& B_{\hat{\hat{\theta}, \hat{r}}}=\left(A_{\hat{r}, \hat{\phi}}-A_{\hat{\phi}, \hat{r}}-\Gamma_{\hat{r} \hat{\phi}}^{\hat{\phi}} A^{\hat{\phi}}\right)_{, \hat{r}} \quad B_{\hat{r}, \hat{\theta}}=\left(A_{\hat{\phi}, \hat{\theta}}-A_{\hat{\theta}, \hat{\phi}}+\Gamma^{\hat{\phi}}{ }_{\hat{\theta} \hat{\phi}} A^{\hat{\phi}}\right)_{, \hat{\theta}}
\end{align*}
$$

or

$$
\begin{align*}
& B_{\hat{\phi}, \hat{\theta}}=A_{\hat{\theta}, \hat{r} \hat{\theta}}-A_{\hat{r}, \hat{\theta} \hat{\theta}}+\left(\Gamma_{\hat{\theta}}^{\hat{\theta}} \hat{\hat{\theta}} A^{\hat{\theta}}\right)_{, \hat{\theta}} \quad B_{\hat{\theta}, \hat{\phi}}=A_{\hat{r}, \hat{\phi} \hat{\phi}}-A_{\hat{\phi}, \hat{r} \hat{\phi}}-\left(\Gamma_{\hat{\gamma}}^{\hat{r}} \hat{\hat{\phi}} \hat{A} A^{\hat{\phi}}\right)_{, \hat{\phi}} \\
& B_{\hat{r}, \hat{\phi}}=A_{\hat{\phi}, \hat{\theta} \hat{\phi}}-A_{\hat{\theta}, \hat{\phi} \hat{\phi}}+\left(\Gamma^{\hat{\phi}} \hat{\hat{\theta} \hat{\phi}} A^{\hat{\phi}}\right)_{, \hat{\phi}} \quad B_{\hat{\phi}, \hat{r}}=A_{\hat{\theta}, \hat{r} \hat{r}}-A_{\hat{r}, \hat{\theta} \hat{r}}+\left(\Gamma^{\hat{\theta}}{ }_{\hat{r} \hat{\theta}} A^{\hat{\theta}}\right)_{, \hat{r}} \tag{334}\\
& B_{\hat{\theta}, \hat{r}}=A_{\hat{r}, \hat{\phi} \hat{r}}-A_{\hat{\phi}, \hat{r} \hat{r}}-\left(\Gamma_{\hat{\gamma} \hat{\phi}}^{\hat{\phi}} A^{\hat{\phi}}\right)_{, \hat{r}} \quad B_{\hat{r}, \hat{\theta}}=A_{\hat{\phi}, \hat{\theta} \hat{\theta}}-A_{\hat{\theta}, \hat{\phi} \hat{\theta}}+\left(\Gamma^{\hat{\phi}} \hat{\theta} \hat{\phi} A^{\hat{\phi}}\right)_{, \hat{\theta}}
\end{align*}
$$

Thus,

$$
\begin{equation*}
B_{\hat{\alpha}, \hat{\beta}}=\left(B_{\hat{\alpha}, \hat{\beta}}\right)^{(0)}+M_{\hat{\alpha} \hat{\beta} \hat{\gamma} \hat{\delta}}^{(2 \operatorname{curl2})} A_{\hat{\gamma}, \hat{\delta}}+M_{\hat{\alpha} \hat{\beta} \hat{\gamma}}^{(1 \mathrm{curl} 2)} A_{\hat{\gamma}}, \tag{335}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(B_{\hat{\alpha}, \hat{\delta}}\right)^{(0)}=\epsilon_{\hat{\alpha} \hat{\beta} \hat{\gamma}} A_{\hat{\gamma}, \hat{\beta} \hat{\delta}} \tag{336}
\end{equation*}
$$

with

$$
\begin{align*}
\Psi_{\hat{r} \hat{r}} & =\Psi_{, r r} \tag{337}\\
\Psi_{, \hat{\theta} \hat{\theta}} & =\Psi_{, \theta \theta} r^{-2} \tag{338}\\
\Psi_{, \hat{\phi} \hat{\phi}} & =\Psi_{, \phi \phi} r^{-2} \sin ^{-2} \theta \tag{339}\\
\Psi_{, \hat{r} \hat{\theta}} & =\Psi_{, r \theta} r^{-1} \\
\Psi_{, \hat{\theta} \hat{r}} & =\Psi_{, \theta r} r^{-1}-\Psi_{, \hat{\theta}} r^{-1} \tag{341}\\
\Psi_{, \hat{r} \hat{\phi}} & =\Psi_{, r \phi} r^{-1} \sin ^{-1} \theta \tag{342}\\
\Psi_{, \hat{\phi} \hat{r}} & =\Psi_{, \phi r} r^{-1} \sin ^{-1} \theta-\Psi_{, \hat{\phi}} r^{-1} \tag{343}\\
\Psi_{, \hat{\theta} \hat{\phi}} & =\Psi_{, \theta \phi} r^{-2} \sin ^{-1} \theta \tag{344}
\end{align*}
$$

and

$$
\begin{align*}
& B_{\hat{\phi}, \hat{\theta}}=\ldots+\Gamma_{\hat{\hat{\theta}} \hat{\theta}}^{\hat{\theta}} A^{\hat{\theta}}{ }_{\hat{\theta}}+\Gamma^{\hat{\theta}}{ }_{\hat{r} \hat{\theta}, \hat{\theta}} A^{\hat{\theta}} \quad B_{\hat{\theta}, \hat{\phi}}=\ldots-\Gamma^{\hat{\phi}}{ }_{\hat{r} \hat{\phi}} A_{\hat{\phi}}^{\hat{\phi}}{ }_{\hat{\phi}}-\Gamma_{\hat{\hat{\phi}}}^{\hat{\phi} \hat{\phi}, \hat{\phi}}{ } A^{\hat{\phi}} \\
& B_{\hat{r}, \hat{\phi}}=\ldots+\Gamma_{\hat{\phi} \hat{\phi} \hat{\phi}}^{\hat{\phi}} A^{\hat{\phi}}, \hat{\phi}+\Gamma^{\hat{\phi}} \hat{\hat{\theta} \hat{\phi}, \hat{\phi}}, A^{\hat{\phi}} \quad B_{\hat{\phi}, \hat{r}}=\ldots+\Gamma_{\hat{r} \hat{\theta}}^{\hat{\theta}} A^{\hat{\theta}}{ }_{, \hat{r}}+\Gamma_{\hat{r} \hat{r}, \hat{r}}^{\hat{\theta}} A^{\hat{\theta}} \tag{345}\\
& B_{\hat{\theta}, \hat{r}}=\ldots-\Gamma_{\hat{r} \hat{\phi}}^{\hat{\phi}} A^{\hat{\phi}_{, \hat{r}}}-\Gamma_{\hat{r} \hat{\phi}, \hat{r}}^{\hat{r}} A^{\hat{\phi}} \quad B_{\hat{r}, \hat{\theta}}=\ldots+\Gamma^{\hat{\phi}}{ }_{\hat{\theta} \hat{\phi}} A^{\hat{\phi}}{ }_{, \hat{\theta}}+\Gamma^{\hat{\phi}}{ }_{\hat{\theta} \phi, \hat{\theta}} A^{\hat{\phi}}
\end{align*}
$$

Note that some derivatives of Christoffel symbols vanish, so we are left with

$$
\begin{array}{ll}
B_{\hat{\phi}, \hat{\theta}}=\ldots+r^{-1} A_{, \hat{\theta}}^{\hat{\theta}} & B_{\hat{\theta}, \hat{\phi}}=\ldots-r^{-1} A^{\hat{\phi}}{ }_{, \hat{\phi}} \\
B_{\hat{r}, \hat{\phi}}=\ldots+r^{-1} \cot \theta A^{\hat{\phi}}, \hat{,} & B_{\hat{\phi}, \hat{r}}=\ldots+r^{-1} A_{, \hat{\boldsymbol{\theta}}}-r^{-2} A^{\hat{\theta}} \tag{346}\\
B_{\hat{\theta}, \hat{r}}=\ldots-r^{-1} A_{, \hat{r}}^{\hat{\phi}}+r^{-2} A^{\hat{\phi}} & B_{\hat{r}, \hat{\theta}}=\ldots+r^{-1} \cot \theta A_{, \hat{\theta}}-r^{-2} \sin ^{-2} \theta A^{\hat{\phi}}
\end{array}
$$

I.2.13 Gradient of a divergence

$$
A_{\hat{\alpha}, \hat{\alpha} \hat{\gamma}}=A_{\hat{\alpha}, \hat{\alpha} \hat{\gamma}}-\Gamma^{\hat{\sigma}}{ }_{\hat{\alpha} \hat{\alpha}} A_{\hat{\sigma}, \hat{\gamma}}-\Gamma_{\hat{\alpha} \hat{\alpha}, \hat{\gamma}}^{\hat{\sigma}} A_{\hat{\sigma}}-\Gamma_{\hat{\alpha} \hat{\gamma}}^{\hat{\sigma}} A_{\hat{\sigma}, \hat{\alpha}}+\Gamma^{\hat{\sigma}}{ }_{\hat{\alpha} \hat{\gamma}} \Gamma_{\hat{\hat{\gamma}} \hat{\alpha}} A_{\hat{\nu}}-\Gamma_{\hat{\alpha} \hat{\gamma} \hat{\gamma}}^{\hat{\alpha}} A_{\hat{\alpha}, \hat{\sigma}}+\Gamma^{\hat{\sigma}}{ }_{\hat{\alpha} \hat{\gamma}} \Gamma_{\hat{\hat{\nu}} \hat{\sigma} \hat{\sigma}} A_{\hat{\nu}} .
$$

\hat{r} component:

$$
\begin{align*}
A_{\hat{\alpha} ; \hat{\alpha} \hat{r}} & =A_{\hat{\alpha}, \hat{\alpha} \hat{r}}-\Gamma_{\hat{\sigma} \hat{\alpha} \hat{\alpha}}^{\hat{\alpha}} A_{\hat{\sigma}, \hat{r}}-\Gamma_{\hat{\alpha} \hat{\alpha}, \hat{r}}^{\hat{\alpha}} A_{\hat{\sigma}}-\Gamma^{\hat{\sigma}}{ }_{\hat{\alpha} \hat{r}} A_{\hat{\sigma}, \hat{\alpha}}+\Gamma^{\hat{\sigma}}{ }_{\hat{\alpha} \hat{r}} \hat{\Gamma}_{\hat{\sigma} \hat{\alpha}} A_{\hat{\nu}}-\Gamma^{\hat{\alpha}}{ }_{\hat{\alpha} \hat{r}} A_{\hat{\alpha}, \hat{\sigma}}+\Gamma_{\hat{\alpha} \hat{r} \hat{\Gamma}}^{\hat{\nu}}{ }_{\hat{\alpha} \hat{\sigma}} A_{\hat{\nu}} \\
& =A_{\hat{\alpha}, \hat{\alpha} \hat{r}}-\Gamma_{\hat{\alpha} \hat{\alpha} \hat{\alpha}}+2 r^{-1} A_{\hat{\sigma}, \hat{r}, \hat{r}}-\Gamma^{-1} \cot \theta A_{\hat{\alpha} \hat{\alpha}, \hat{r}}-2 r^{-2} A_{\hat{r}}-r^{-2} \cot \theta A_{\hat{\theta}}
\end{align*}
$$

$\hat{\theta}$ component:

$$
\begin{align*}
& A_{\hat{\alpha} ; \hat{\alpha} \hat{\theta}}=A_{\hat{\alpha}, \hat{\alpha} \hat{\theta}}-\Gamma^{\hat{\sigma}}{ }_{\hat{\alpha} \hat{\alpha}} A_{\hat{\sigma}, \hat{\theta}}-\Gamma_{\hat{\alpha} \hat{\alpha}, \hat{\theta}}^{\hat{\theta}} A_{\hat{\sigma}}-\Gamma_{\hat{\alpha} \hat{\theta} \hat{\theta}}^{\hat{\sigma}} A_{\hat{\sigma}, \hat{\alpha}}+\Gamma_{\hat{\alpha} \hat{\theta}}^{\hat{\theta}} \hat{\Gamma}_{\hat{\sigma} \hat{\alpha}}^{\hat{\alpha}} A_{\hat{\nu}}-\Gamma_{\hat{\alpha} \hat{\theta}}^{\hat{\sigma}} A_{\hat{\alpha}, \hat{\sigma}}+\Gamma_{\hat{\alpha} \hat{\theta}}^{\hat{\sigma}}{ }^{\hat{\nu}}{ }_{\hat{\alpha} \hat{\alpha}} A_{\hat{\nu}} \\
& =A_{\hat{\alpha}, \hat{\alpha} \hat{\theta}}+2 r^{-1} A_{\hat{r}, \hat{\theta}}+r^{-1} \cot \theta A_{\hat{\theta}, \hat{\theta}}-r^{-2} \sin ^{-2} \theta A_{\hat{\theta}} \tag{348}
\end{align*}
$$

Note that the last four terms in the above expression canceled, because

$$
\begin{align*}
&-\Gamma^{\hat{\sigma}} \\
&=-r_{\hat{\alpha}} A_{\hat{\sigma}, \hat{\alpha}}+\Gamma^{\hat{\sigma}} A_{\hat{\sigma}, \hat{r}}+r^{-1}{ }^{\hat{\alpha}} A_{\hat{r}, \hat{\theta}}-r^{-2} A_{\hat{\nu}}-\Gamma_{\hat{\theta}}^{\hat{\sigma}}-r_{\hat{\alpha} \hat{\theta}} A_{\hat{\alpha}, \hat{\sigma}}+\Gamma_{\hat{r}, \hat{\theta}}+r^{\hat{\alpha}}{ }^{-1} \Gamma_{\hat{\theta}}^{\hat{\nu}} A_{\hat{\alpha}, \hat{\sigma}} A_{\hat{\nu}}+r^{-2} A_{\hat{\theta}}=0 \tag{349}
\end{align*}
$$

$\hat{\phi}$ component:

$$
\begin{aligned}
& A_{\hat{\alpha} ; \hat{\alpha} \hat{\phi}}=A_{\hat{\alpha}, \hat{\alpha} \hat{\phi}}-\Gamma^{\hat{\sigma}}{ }_{\hat{\alpha} \hat{\alpha}} A_{\hat{\sigma}, \hat{\phi}}-\Gamma_{\hat{\alpha} \hat{\alpha}, \hat{\phi}}^{\hat{\phi}} A_{\hat{\sigma}}-\Gamma_{\hat{\alpha} \hat{\phi} \hat{\alpha}}^{\hat{\alpha}} A_{\hat{\alpha}, \hat{\alpha}}+\Gamma_{\hat{\alpha} \hat{\phi} \hat{\phi}}^{\hat{\alpha}} \Gamma_{\hat{\sigma} \hat{\alpha} \hat{\alpha} \hat{\alpha}} A_{\hat{\nu}}-\Gamma_{\hat{\alpha} \hat{\alpha} \hat{\alpha}}^{\hat{\sigma}} A_{\hat{\sigma}, \hat{\phi}}-\Gamma_{\hat{\alpha}, \hat{\sigma}}^{\hat{\sigma}}+\Gamma_{\hat{\alpha} \hat{\alpha} \hat{\phi}}^{\hat{\alpha}} A_{\hat{\alpha}} \Gamma_{\hat{\alpha} \hat{\alpha} \hat{\sigma}} A_{\hat{\nu}} . \\
& .
\end{aligned}
$$

$$
\begin{align*}
& =A_{\hat{\alpha}, \hat{\alpha} \hat{\phi}}-\Gamma^{\hat{\sigma}}{ }_{\hat{\alpha} \hat{\alpha}} A_{\hat{\sigma}, \hat{\phi}} \\
& =A_{\hat{\alpha}, \hat{\alpha} \hat{\phi}}-\Gamma^{\hat{r}} \hat{\hat{\theta} \hat{\theta}},{ }_{\hat{r}, \hat{\phi}}-\Gamma^{\hat{r}} \hat{\phi} \hat{\phi} A_{\hat{r}, \hat{\phi}}-\Gamma^{\hat{\theta}} \hat{\phi \hat{\phi}}, A_{\hat{\theta}, \hat{\phi}} \\
& =A_{\hat{\alpha} \hat{\alpha} \hat{\phi}}+r^{-1} A_{\hat{r}, \hat{\phi}}+r^{-1} A_{\hat{r}, \hat{\phi}}+r^{-1} \cot \theta A_{\hat{\theta}, \hat{\phi}} \\
& =A_{\hat{\alpha}, \hat{\alpha} \hat{\phi}}+2 r^{-1} A_{\hat{r}, \hat{\phi}}+r^{-1} \cot \theta A_{\hat{\theta}, \hat{\phi}} \tag{350}
\end{align*}
$$

In the first line of the expression above, the last four terms vanish ${ }^{21}$ and the ϕ derivative of any Christoffel symbol (term before that) also vanishes.
${ }^{21}$ The following four terms vanish because

$$
\begin{align*}
& -\Gamma_{\hat{\alpha} \hat{\phi}}^{\hat{\sigma}} A_{\hat{\sigma}, \hat{\alpha}}+\Gamma_{\hat{\alpha} \hat{\phi} \hat{\phi}}^{\hat{\nu}}{ }_{\hat{\sigma} \hat{\alpha}} A_{\hat{\nu}}-\Gamma^{\hat{\sigma}}{ }_{\hat{\alpha} \hat{\phi}} A_{\hat{\alpha}, \hat{\sigma}}+\Gamma_{\hat{\alpha} \hat{\phi}}^{\hat{\sigma}} \Gamma^{\hat{\nu}}{ }_{\hat{\alpha} \hat{\sigma}} A_{\hat{\nu}} \\
& =\Gamma_{\hat{\alpha} \hat{\phi}}^{\hat{\phi}}\left(-A_{\hat{\sigma}, \hat{\alpha}}+\Gamma^{\hat{\nu}}{ }_{\hat{\sigma} \hat{\alpha}} A_{\hat{\nu}}-A_{\hat{\alpha}, \hat{\sigma}}+\Gamma^{\hat{\nu}}{ }_{\hat{\alpha} \hat{\sigma}} A_{\hat{\nu}}\right) \\
& =\Gamma^{\hat{\phi}}{ }_{\hat{r} \hat{\phi}}\left(-A_{\hat{\phi}, \hat{r}}+\Gamma^{\hat{\nu}}{ }_{\hat{\phi} \hat{r}} A_{\hat{\nu}}-A_{\hat{r}, \hat{\phi}}+\Gamma_{\hat{\hat{\nu}} \hat{\phi} \hat{\phi}}^{\hat{\nu}} A_{\hat{\nu}}\right) \\
& +\Gamma^{\hat{r}}{ }_{\hat{\phi} \hat{\phi}}\left(-A_{\hat{r}, \hat{\phi}}+\Gamma_{\hat{\nu} \hat{\phi} \hat{\phi}}^{\hat{\nu}} A_{\hat{\nu}}-A_{\hat{\phi}, \hat{r}}+\Gamma_{\hat{\phi} \hat{\phi} \hat{r}}^{\hat{\nu}} A_{\hat{\nu}}\right) \\
& +\Gamma_{\hat{\theta} \hat{\phi}}^{\hat{\phi}}\left(-A_{\hat{\phi}, \hat{\theta}}+\Gamma_{\hat{\phi} \hat{\phi} \hat{\theta}} A_{\hat{\nu}}-A_{\hat{\theta}, \hat{\phi}}+\Gamma_{\hat{\theta} \hat{\phi}}^{\hat{\phi}} A_{\hat{\nu}}\right) \\
& +\Gamma^{\hat{\theta}}{ }_{\hat{\phi} \hat{\phi}}\left(-A_{\hat{\theta}, \hat{\phi}}+\Gamma^{\hat{\nu}}{ }_{\hat{\theta} \hat{\phi}} A_{\hat{\nu}}-A_{\hat{\phi}, \hat{\theta}}+\Gamma^{\hat{\nu}}{ }_{\hat{\phi} \hat{\theta}} A_{\hat{\nu}}\right) \\
& =\Gamma_{\hat{r} \hat{\phi}}^{\hat{\phi}}\left(-A_{\hat{\phi}, \hat{r}}-A_{\hat{r}, \hat{\phi}}+\Gamma_{\hat{r} \hat{\phi}}^{\hat{\phi}} A_{\hat{\nu}}\right) \\
& +\Gamma^{\hat{r}} \hat{\hat{\phi} \hat{\phi}}\left(-A_{\hat{r}, \hat{\phi}}+\Gamma_{\hat{r} \hat{\phi}}^{\hat{\phi}} A_{\hat{\nu}}-A_{\hat{\phi}, \hat{r}}\right) \\
& +\Gamma_{\hat{\theta} \hat{\phi}}\left(-A_{\hat{\phi}, \hat{\theta}}-A_{\hat{\theta}, \hat{\phi}}+\Gamma_{\hat{\theta} \hat{\phi}}^{\hat{\phi}} A_{\hat{\nu}}\right) \\
& +\Gamma^{\hat{\theta}}{ }_{\hat{\phi} \hat{\phi}}\left(-A_{\hat{\theta}, \hat{\phi}}+\Gamma_{\hat{\hat{\theta}} \hat{\phi}}^{\hat{\nu}} A_{\hat{\nu}}-A_{\hat{\phi}, \hat{\theta}}\right) \\
& =r^{-1}\left(-A_{\hat{\phi}, \hat{r}}-A_{\hat{r}, \hat{\phi}}+\Gamma_{\hat{\nu} \hat{\phi}}^{\hat{\nu}} A_{\hat{\nu}}\right) \\
& -r^{-1}\left(-A_{\hat{r}, \hat{\phi}}-A_{\hat{\phi}, \hat{r}}+\Gamma_{\hat{\nu} \hat{\phi}}^{\hat{\phi}} A_{\hat{\nu}}\right) \\
& +r^{-1} \cot \theta\left(-A_{\hat{\phi}, \hat{\theta}}-A_{\hat{\theta}, \hat{\phi}}+\Gamma_{\hat{\theta} \hat{\phi}}^{\hat{\phi}} A_{\hat{\nu}}\right) \\
& -r^{-1} \cot \theta\left(-A_{\hat{\theta}, \hat{\phi}}-A_{\hat{\phi}, \hat{\theta}}+\Gamma^{\hat{\nu}} \hat{\theta} \hat{\phi} A_{\hat{\nu}}\right)=0 \tag{351}
\end{align*}
$$

J Switchable modules

The material in this section is being assembled from the file 'inlinedoc-modules.tex', which is automatically assembled. However, it is currently incomplete and contains only a small number of the available modules.

Module	Description
hydro.f90	This module takes care of most of the things related to velocity. Pressure, for example, is added in the energy (entropy) module.
chemistry.f90	This modules adds chemical species and reactions. The units used in the chem.in files are cm3,mole,sec,kcal and K
gpu_astaroth.f90	This module contains GPU related types and functions to be used ASTAROTH nucleus.
noentropy.f90	Calculates pressure gradient term for polytropic equation of state $p=$ const ρ^{Γ}.
nogpu.f90	This module contains GPU related dummy types and functions.
nohydro.f90	no variable u: useful for kinematic dynamo runs.
nopower_spectrum.f90	reads in full snapshot and calculates power spetrum of u
noyinyang.f90	This module contains Yin-Yang related dummy types and functions.
noyinyang_mpi.f90	This module contains Yin-Yang related dummy types and functions.
particles_adsorbed.f90	This module takes care of the evolution of adsorbed species on the particle surface for reactive particles
particles_chemistry.f90	This module implements reactive particles.
particles_surfspec.f90	immediate vicinity of reactive particles.
power_spectrum.f90	reads in full snapshot and calculates power spetrum of u
timestep.f90	Runge-Kutta time advance, accurate to order itorder. At the moment, itorder can be 1, 2, or 3.
timestep_strang.f90	Runge-Kutta time advance, accurate to order itorder. At the moment, itorder can be 1, 2, or 3.
timestep_subcycle.f90	This is a highly specified timestep module currently only working together with the special module coronae.f90.
yinyang.f90	This module contains Yin-Yang related types and functions which are incompatible with FORTRAN 95. which are incompatible with FORTRAN 95.
yinyang_mpi.f90	

K Startup and run-time parameters

K. 1 List of startup parameters for 'start.in'

The following table lists all (at the time of writing, September 2002) namelists used in 'start.in', with the corresponding parameters and their default values (in square brackets). Any variable referred to as a flag can be set to any nonzero value to switch the corresponding feature on. Not all parameters are used for a given scenario. This list is not necessarily up to date; also, in many cases it can only give an idea of the corresponding initial state; to get more insight and the latest set of parameters, you need to look at the code.
The value ε corresponds to 5 times the smallest number larger than zero. For single precision, this is typically about $\varepsilon \approx 5 \times 1.2 \times 10^{-7}=6 \times 10^{-7}$; for double precision, $\varepsilon \approx$ 10^{-15}.

Variable [default value]	Meaning
Namelist init_pars	
cvsid [${ }^{\prime}$] ip [14]	the svn identification string, which allows you to keep track of the version of 'start.in'. (anti-)verbosity level: ip=1 produces lots of diagnostic output, ip=14 virtually none.
$\begin{aligned} & \operatorname{xyz} 0[(-\pi,-\pi,-\pi)], \\ & \operatorname{Lxyz}[(2 \pi, 2 \pi, 2 \pi)], \end{aligned}$	
lperi [(T, $\mathrm{T}, \mathrm{T})$]	determine the geometry of the box. All three are vectors of the form (x-comp., y-comp., z-comp.); xyz0 describes the left (lower) corner of the box, Lxyz the box size. Iperi specifies whether a direction is considered periodic (in which case the last point is omitted) or not. In all cases, three ghost zones will be added.
lprocz_slowest [T]	if set to F , the ordering of processor numbers is changed, so the z processors are now in the inner loop. Since nprocy=4 is optimal (see Sect. 5.20.2), you may want to put lprocz_slowest=T when nygrid>nzgrid.
lwrite_ic [F]	if set T , the initial data are written into the file 'VARO'. This is generally useful, but doing this all the time uses up plenty of disk space.
lnowrite [F]	if set T, all initialization files are written, including the param.nml file, except 'var.dat'. This option allows you to use old filevar.dat files, but updates all other initialization files. This could be useful after having changed the code and, in particular, when the 'var.dat' files will be overwritten by 'remesh.csh'.
1write_aux [F]	if set T , auxiliary variables (those calculated at each step, but not evolved mathematically) to 'var . dat' after the evolved quantities.
lwrite_2d [F]	if set T, only 2D-snapshots are written into VAR files in the case of 2 D -runs with $n y g r i d=1$ or $n z g r i d=1$.

$\left.\begin{array}{ll}\text { lread_oldsnap [F] } & \begin{array}{l}\text { if set T, the old snapshot will be read in before pro- } \\ \text { ducing (overwriting) initial conditions. For example, } \\ \text { if you just want to add a perturbation to the mag- }\end{array} \\ & \text { netic field, you'd give no initial condition for density } \\ \text { and velocity (so you keep the data from a hopefully } \\ \text { relaxed run), and just add whatever you need for the }\end{array}\right\}$
bcx [('p', 'p', ...)], bcy [('p', 'p',...)],

$b c z[(' \mathrm{p}$ ', 'p',...$)]$	boundary conditions. See Sect. 5.16 for a discussion of where and how to set these.
pretend_lnTT[F]	selects $\ln T$ as fundamental thermodynamic variable in the entropy module

	Namelist hydro_init_pars
inituu ['zero']	initialization of velocity. Currently valid choices are 'zero' (u=0), 'gaussian-noise' (random, normally-distributed u_{x}, u_{z}), 'gaussian-noise-x' (random, normally-distributed u_{x}), 'sound-wave' (sound wave in x direction), 'shock-tube' (polytropic standing shock), 'bullets' (blob-like velocity perturbations), 'Alfven-circ-x' (circularly polarized Alfven wave in x direction), 'const-ux' (constant x-velocity), 'const-uy' (constant y-velocity), 'tang-discont-z' (tangential discontinuity: veloc- ity is directed along x, jump is at $z=0$), 'Fourier-trunc' (truncated Fourier series), 'up-down' (flow upward in one spot, downward in another; not solenoidal).
ampluu [0.] widthuu [0.1] urand [0.]	amplitude for some types of initial velocities. width for some types of initial velocities. additional random perturbation of \boldsymbol{u}. If urand >0, the perturbation is additive, $u_{i} \mapsto u_{i}+u_{\text {rand }} \mathcal{U}_{[0.5,0.5]}$; if urand <0, it is multiplicative, $u_{i} \mapsto u_{i} \times u_{\text {rand }} \mathcal{U}_{[0.5,0.5]}$; in both cases, $\mathcal{U}_{[0.5,0.5]}$ is a uniformly distributed random variable on the interval $[-0.5,0.5]$.
uu_left [0.], uu_right [0.]	needed for inituu='shock-tube'.
	Namelist density_init_pars

initlnrho ['zero']	initialization of density. Currently valid choices are 'zero' ($\ln \rho=0$), 'isothermal' (isothermal stratification), 'polytropic_simple' (polytropic stratification), 'hydrostatic-z-2' (hydrostatic vertical stratification for isentropic atmosphere), 'xjump' (density jump in x of width widthlnrho), 'rho-jump-z' (density jump in z of width widthlnrho), 'piecew-poly' (piecewise polytropic vertical stratification for solar convection), 'polytropic' (polytropic vertical stratification), 'sound-wave' (sound wave), 'shock-tube' (polytropic standing shock), 'gaussian-noise' (Gaussian-distributed, uncorrelated noise), 'gaussian-noise' (Gaussian-distributed, uncorrelated noise in x, but uniform in y and z), 'hydrostatic-r' (hydrostatic radial density stratification for isentropic or isothermal sphere), ' $\sin -x y$ ' (sine profile in x and y), ' \sin-xy-rho' (sine profile in x and y, but in ρ, not $\ln \rho$), 'linear' (linear profile in $\boldsymbol{k} \cdot \boldsymbol{x}$), 'planet' (planet solution; see $\mathbb{C} .7$).

gamma [5./3]
cs0 [1.]
rho0 [1.]
ampllnrho [0.], widthlnrho [0.1]
rho_left [1.], rho_right [1.] cs2bot [1.], cs2top [1.]
adiabatic index $\gamma=c_{p} / c_{v}$.
can be used to set the dimension of velocity; larger values can be used to decrease stratification
reference values of sound speed and density, i.e. values at height zref.
amplitude and width for some types of initial densities.
needed for initlnrho='shock-tube'.
sound speed at bottom and top. Needed for some types of stratification.

Namelist grav_init_pars
zref [0.]
reference height where in the initial stratification $c_{\mathrm{s}}^{2}=c_{\mathrm{s} 0}^{2}$ and $\ln \rho=\ln \rho_{0}$. vertical gravity component g_{z}.
gravz [-1.]
grav_profile
['const']
constant gravity g_{z} = gravz (grav_profile='const') gravity or linear profile $g_{z}=$ gravz $\cdot z$ (grav_profile='linear', for accretion discs and similar).
z1 [0.],
z2 [1.] specific to the solar convection case initlnrho='piecew-poly'. The stable layer is $z_{0}<z<z_{1}$, the unstable layer $z_{1}<z<z_{2}$, and the top (isothermal) layer is $z_{2}<z<z_{\text {top }}$.
nu_epicycle [1.] vertical epicyclic frequency; for accretion discs it should be equal to Omega, but not for galactic discs; see Eq. (130) in Sect. C.5.
grav_amp [0.], grav_tilt [0.] specific to the tilted gravity case (amplitude and angle wrt the vertical direction).

Namelist entropy_init_pars

initss ['nothing']
pertss ['zero']
initialization of entropy. Currently valid choices are
'nothing' (leaves the initialization done in the density module unchanged),
'zero' (put $s=0$ explicitly; this may overwrite the initialization done in the density module),
'isothermal' (isothermal stratification, $T=$ const),
'isobaric' (isobaric, $p=$ const),
'isentropic' (isentropic with superimposed hot [or cool] bubble),
'linprof' (linear entropy profile in z),
'piecew-poly' (piecewise polytropic stratification for convection),
'polytropic' (polytropic stratification, polytropic exponent is mpoly0),
'blob' (puts a gaussian blob in entropy for buoyancy experiments; see Ref. [6] for details)
'xjump' (jump in x direction),
'hor-tube' (horizontal flux tube in entropy, oriented in the y-direction).
additional perturbation to entropy. Currently valid choices are
'zero' (no perturbation)
'hexagonal' (hexagonal perturbation for convection).
ampl_ss [0.],
widthss [2ع]
grads0 [0.]
radius_ss [0.1]
mpoly0 [1.5],
mpoly1 [1.5],
amplitude and width for some types of initial entropy.
initial entropy gradient for initss=linprof.
radius of bubble for initss=isentropic.

qshear [0.]	degree of shear for shearing-box simulations (the shearing-periodic boundaries are the x-boundaries and are sheared in the y-direction). The shear veloc- ity is $\mathrm{U}=-q \Omega x \hat{\mathbf{y}}$.
	Namelist particles_ads_init_pars
init_ads_mol_frac [0.]	initial adsorbed mole fraction
	Namelist particles_surf_init_pars
init_surf_mol_frac [0.]	initial surface mole fraction
	Namelist particles_chem_init_pars
total_carbon_sites [1.08e - 8]	carbon sites per surface area [mol/cm]2
	Namelist particles_stalker_init_pars
dstalk_[0.1]	times between printout of stalker data
lstalk_xx [F]	particles position
lstalk_Vv [F]	particles velocity
lstalk_uu [F]	gas velocity at particles position
lstalk_guu [F]	gas velocity gradient at particles position
lstalk_rho [F]	gas density at particles position
lstalk_grho [F]	gas density gradient at particles position
lstalk_ap [F]	particles diameter
lstalk_bb [T]	magnetic field at particles position
lstalk_relvel [F]	particles relative velocity to gas

K. 2 List of runtime parameters for 'run.in'

The following table lists all (at the time of writing, September 2002) namelists used in file 'run.in', with the corresponding parameters and their default values (in square brackets). Default values marked as [start] are taken from 'start.in'. Any variable referred to as a flag can be set to any nonzero value to switch the corresponding feature on. Not all parameters are used for a given scenario. This list is not necessarily up to date; also, in many cases it can only give an idea of the corresponding setup; to get more insight and the latest set of parameters, you need to look at the code.

Once you have changed any of the ' $*$. in' files, you may want to first execute the command pc_configtest in order to test the correctness of these configuration files, before you apply them in an active simulation run.

Variable [default value]	Meaning
	Namelist run_pars
cvsid ['']	svn identification string, which allows you to keep track of the version of 'run.in'.
ip [14]	(anti-)verbosity level: ip=1 produces lots of addi- tional diagnostic output, ip=14 virtually none. $n t[0]$
	number of time steps to run. This number can be increased or decreased during the run by touch RELOAD.

it1 [10]	write diagnostic output every it1 time steps (see Sect. 5.5).
it1d [it1]	write averages every it1d time steps (see Sect. (5.8.1). it1d has to be greater than or equal to it1.
cdt [0.4]	Courant coefficient for advective time step; see §5.15,
cdtv [0.08]	Courant coefficient for diffusive time step; see \$5.15,
$d t$ [0.]	time step; if $\neq 0$., this overwrites the Courant time step. See $\S 5.15$ for a discussion of the latter.
dtmin $\left[10^{-6}\right]$	abort if time step $\delta t<\delta t_{\text {m }}$
$t m a x\left[10^{33}\right]$	don't run time steps beyond this time. Useful if you want to run for a given amount of time, but don't know the necessary number of time steps.
isave [100]	update current snapshot 'var.dat' every isave time steps.
itorder [3]	order of time step (1 for Euler; 2 for 3nd-order, 3 for 3rd-order Runge-Kutta).
dsnap [100.]	save permanent snapshot every dsnap time units to files 'var N ', where N counts from $N=1$ upward. (This information is stored in the file 'data/tsnap.dat'; see the module wsnaps.f90, which in turn uses the subroutines out1 and out2).
dvid [100.]	write two-dimensional sections for generation of videos every dvid time units (not timesteps; see the subroutines out1 and out2 in the code).
iwig [0]	if $\neq 0$, apply a Nyquist filter (a filter eliminating any signal at the Nyquist frequency, but affecting large scales as little as possible) every iwig time steps to logarithmic density (sometimes necessary with convection simulations).
ix [-1], iy [-1], iz [-1], iz2 [-1]	position of slice planes for video files. Any negative value of some of these variables will be overwritten according to the value of slice_position. See $\S(5.7)$ for details.
slice_position ['p']	symbolic specification of slice position. Currently valid choices are 'p' (periphery of the box) ' m ' (middle of the box) 'e' (equator for half-sphere calculations, i.e. x, y centered, z bottom)
	These settings are overridden by explicitly setting ix, iy, iz or iz2. See $\S 5.7$) for details.
zbot_slice [value]	z position of slice xy-plane. The value can be any float number inside the z domain. These settings are overridden by explicitly setting ix, iy, iz or iz2. Saved as slice with the suffix $x y$. See $\S(5.7)$ for details.
ztop_slice [value]	z position of slice xy-plane. The value can be any float number inside the z domain. These settings are overridden by explicitly setting $i x, i y, i z$ or iz2. Saved as slice with the suffix $x y 2$. See \S 5.7) for details.

wdamp [0.2],
ampl_forc [0.],
k forc [0.], w_forc [0.]
permanently damp motions in $|\boldsymbol{x}|<r_{\text {dampint }}$ with damping term $-\operatorname{damp}_{u}$ int $\boldsymbol{u} \chi\left(r-r_{\text {dampint }}\right)$ or $|\boldsymbol{x}|>r_{\text {dampext }}$ with damping term $-\operatorname{damp}_{u} \operatorname{ext} \boldsymbol{u} \chi\left(r-r_{\text {dampext }}\right)$, where $\chi(\cdot)$ is a smooth profile of width wdamp.
amplitude of the ux-forcing or uy-forcing on the vertical boundaries that is of the form $u_{-} x(t)=a m p l_{-}$forc* $\sin \left(k_{-}\right.$forc $\left.* x\right) * \cos \left(w_{-}\right.$forc $\left.* t\right)$ [must be used in connection with bcx='g' or bcz='g' and force_lower_bound='vel_time' or force_upper_bound='vel_time'] corresponding horizontal wavenumber corresponding frequency

Namelist density_run_pars

cs0 [start], rho0 [start], gamma [start]
cdiffrho [0.]
cs2bot [start], cs2top [start]
lupw_lnrho [.false.]
see start parameters, p. 175
Coefficient for mass diffusion (diffusion term will be $c_{\text {diffrho }} \delta x c_{\mathrm{s} 0}$.
squared sound speed at bottom and top for boundary condition ' c 2 '.
use 5th-order upwind derivative operator for the advection term $\boldsymbol{u} \cdot \nabla \ln \rho$ to avoid spurious Nyquist signal ('wiggles'); see $\$ \underline{H .2}$.

Namelist entropy_run_pars

hcond0 [0.],
hcond1 [start], hcond2 [start]
iheatcond ['K-const']
lcalc_heatcond_constchi [F]
specific to the solar convection case initss=piecew-poly: heat conductivities K in the individual layers. hcond0 is the value $K_{\text {unst }}$ in the unstable layer, hcond1 is the ratio $K_{\text {stab }} / K_{\text {unst }}$ for the stable layer, and hcond2 is the ratio $K_{\text {top }} / K_{\text {unst }}$ for the top layer. The function $K(z)$ is not discontinuous, as the transition between the different values is smoothed over the width widthss. If hcond1 or hcond2 are not set, they are calculated according to the polytropic indices of the initial profile, $K \propto m+1$. select type of heat conduction. Currently valid choices are
' K -const' (constant heat conductivity),
'K-profile' (vertical or radial profile),
'chi-const' (constant thermal diffusivity),
'magnetic' (heat conduction by electrons in magnetic field - currently still experimental).
flag for assuming thermal diffusivity $\chi=K /\left(c_{p} \rho\right)=$ const, rather than $K=$ const (which is the default). This is currently only correct with 'noionization.f90'. Superseded by iheatcond.
chi [0.]
widthss [start]
isothtop [start]
luminosity [0.], wheat [0.1]
cooltype ['Temp']
cool [0.],
wcool [0.1]
rcool [1.]
Fbot [start]
chi_t [0.]
lupw_ss [.false.]
tauheat_buffer [0.]
zheat_buffer [0.]
dheat_buffer1 [0.]
TTheat_buffer [0.]
value of χ when lcalc_heatcond_constchi=T.
width of transition region between layers. See start parameters, p . 177 .
flag for isothermal top layer for solar convection case. See start parameters, p. 177.
strength and width of heating region.
type of cooling; currently only implemented for spherical geometry. Currently valid choices are
'Temp','cs2' (cool temperature toward $c_{\mathrm{s}}^{2}=$ cs2cool) with a cooling term

$$
-\mathcal{C}=-c_{\mathrm{cool}} \frac{c_{\mathrm{s}}^{2}-c_{\mathrm{scool}}^{2}}{c_{\mathrm{scool}}^{2}}
$$

)
'Temp-rho',cs2-rho (cool temperature toward $c_{\mathrm{s}}^{2}=$ cs2cool) with a cooling term

$$
-\mathcal{C}=-c_{\mathrm{cool}} \rho \frac{c_{\mathrm{s}}^{2}-c_{\mathrm{scool}}^{2}}{c_{\mathrm{scool}}^{2}}
$$

- this avoids numerical instabilities in lowdensity regions [currently, the cooling coefficient $c_{\text {cool }} \equiv$ cool is not taken into account when the time step is calculated])
'entropy' (cool entropy toward 0.).
strength $c_{\text {cool }}$ and smoothing width of cooling region. radius of cooling region: cool for $|x| \geq$ rcool.
heat flux for bottom boundary condition 'c1'. For polytropic atmospheres, if Fbot is not set, it will be calculated from the value of hcond0 in 'start. x', provided the entropy boundary condition is set to ' $c 1$ '. entropy diffusion coefficient for diffusive term $\partial s / \partial t=\ldots+\chi_{\mathrm{t}} \nabla^{2} s$ in the entropy equation, that can represent some kind of turbulent (sub-grid) mixing. It is probably a bad idea to combine this with heat conduction hcond $0 \neq 0$.
use 5th-order upwind derivative operator for the advection term $\boldsymbol{u} \cdot \nabla s$ to avoid spurious Nyquist signal ('wiggles'); see \S H.2.
time scale for heating to target temperature (=TTheat_buffer); zero disables the buffer zone.
z coordinate of the thermal buffer zone. Buffering is active in $|z|>$ TTheat_buffer.
Inverse thickness of transition to buffered layer. target temperature in thermal buffer zone (z direction only).
lhcond_global [F]

Namelist magnetic_run_pars	
B _ext [(0., 0., 0.)]	uniform background magnetic field (for fully periodic boundary conditions, uniform fields need to be explicitly added, since otherwise the vector potential A has a linear x-dependence which is incompatible with periodicity).
lignore_Bext_in_b2 [F] or luse_Bext_in_b2 [T] eta [0.]	add uniform background magnetic field when computing \boldsymbol{b}^{2} pencils magnetic diffusivity $\eta=1 /\left(\mu_{0} \sigma\right)$, where σ is the electric conductivity.
height_eta [0.], eta_out [0.] eta_int [0.]	used to add extra diffusivity in a halo region. used to add extra diffusivity inside sphere of radius rint.
eta_ext [0.]	used to add extra diffusivity outside sphere of radius r_ext.
kinflow [' ']	set type of flow fixed with 'nohydro'. Currently the only recognized value is ' $A B C$ ' for an $A B C$ flow; all other values lead to $\boldsymbol{u}=\mathbf{0}$.
kx [1.],	
ky [1.],	
kz [1.]	wave numbers for $A B C$ flow.
ABC_A [1.],	
ABC_B [1.],	
ABC_C [1.]	amplitudes A, B and C for $A B C$ flow.

Namelist pscalar_run_pars

	Namelist $p s c a l a r _r u n _p a r s$
pscalar_diff[0.]	diffusion for passive scalar concentration c. tensor_pscalar_diff [0.]
coefficient for non-isotropic diffusion of passive	
reinitialize_lncc [F]	scalar. reinitialize the passive scalar to the value of cc_const in start.in at next run

Namelist forcing_run_pars

iforce [2]
flag for calculating the heat conductivity K (and also $\nabla \log K$) globally using the global arrays facility. Only valid when iheatcond=' K -profile'.

Namelist magnetic_run_pars
boundary conditions, uniform fields need to be explicitly added, since otherwise the vector potential \boldsymbol{A} has a linear x-dependence which is incompatible with periodicity).
add uniform background magnetic field when computing b^{2} pencils
magnetic diffusivity $\eta=1 /\left(\mu_{0} \sigma\right)$, where σ is the electric conductivity.
used to add extra diffusivity in a halo region.
used to add extra diffusivity inside sphere of radius rint.
used to add extra diffusivity outside sphere of radius r_ext.
set type of flow fixed with 'nohydro'. Currently the only recognized value is ' ABC ' for an $A B C$ flow; all other values lead to $\boldsymbol{u}=\mathbf{0}$.
wave numbers for $A B C$ flow.
amplitudes A, B and C for $A B C$ flow.
select form of forcing in the equation of motion; cur- rently valid choices are
'zero' (no forcing),
'irrotational' (irrotational forcing), 'helical' (helical forcing),
'fountain' (forcing of "fountain flow"; see Ref. [12]),
'horizontal-shear' (forcing localized horizontal sinusoidal shear).
'variable_gravz' (time-dependent vertical gravity for forcing internal waves),
select form of additional forcing in the equation of motion; valid choices are as for iforce.
force [0.]
relhel [1.]
height_ff [0.]
r_ff [0.]
width_ff [0.5]
kfountain [5]
fountain [1.]
omega_ff [1.]
ampl_ff [1.]
amplitude of forcing.
helicity of forcing. The parameter relhel corresponds to σ introduced in Sect. G.2. ($\sigma= \pm 1$ corresponds to maximum helicity of either sign).
multiply forcing by z-dependent profile of width height_ff (if $\neq 0$).
if $\neq 0$, multiply forcing by spherical cutoff profile (of radius r_ff) and flip signs of helicity at equatorial plane.
width of vertical and radial profiles for modifying forcing.
horizontal wavenumber of the fountain flow.
amplitude of the fountain flow.
frequency of the cos or sin forcing [e.g. cos(omega_ff*t)].
amplitude of forcing in front of cos or sin [e.g. ampl_ff* $\left.\cos \left(o m e g a _f f * t\right)\right]$.

Namelist grav_run_pars

zref [start], gravz [start], grav_profile [start]
nu_epicycle [start]
see p . 175.
see Eq. (130) in Sect. C.5.

Namelist viscosity_run_pars

nu [0.]
nu_hyper2 [0.]
nu_hyper3 [0.]
zeta [0.]
ivisc ['nu-const']
kinematic viscosity.
kinematic hyperviscosity (with $\nabla^{4} u$).
kinematic hyperviscosity (with $\nabla^{6} u$).
bulk viscosity.
select form of viscous term (see $\S 6.2$); currently valid choices are
'nu-const' - viscous force for $\nu=$ const, $\boldsymbol{F}_{\text {visc }}=$ $\nu\left(\nabla^{2} \boldsymbol{u}+\frac{1}{3} \boldsymbol{\nabla} \boldsymbol{\nabla} \cdot \boldsymbol{u}+2 \mathrm{~S} \cdot \boldsymbol{\nabla} \ln \rho\right)$
'rho_nu-const' - viscous force for $\mu \equiv \rho \nu=$ const, $\boldsymbol{F}_{\text {visc }}=(\mu / \rho)\left(\nabla^{2} \boldsymbol{u}+\frac{1}{3} \nabla \nabla \cdot \boldsymbol{u}\right)$. With this option, the input parameter nu actually sets the value of μ / ρ_{0} (rho $0=\rho_{0}$ is another input parameter, see pp. 175 and 182)
'simplified' - simplified viscous force $\boldsymbol{F}_{\text {visc }}=$ $\nu \nabla^{2} \boldsymbol{u}$

	Namelist shear_run_pars
qshear [start]	See p. 179.
	Namelist particles_run_pars
ldragforce_dust_par [F]	dragforce on particles
ldragforce_gas_par [F]	particle-gas friction force
ldraglaw_steadystate [F]	particle forces only with $\frac{1}{\tau} \Delta v$
lpscalar_sink [F]	particles consume passive scalar
pscalar_sink_rate [0]	volumetric pscalar consumption rate

lbubble [F]	addition of the virtual mass term
	Namelist particles_ads_run_pars
placeholder [start]	placeholder
	Namelist particles_surf_run_pars
lspecies_transfer [T]	Species transfer from solid to fluid phase
	Namelist particles_chem_run_pars
lthiele [T]	Modeling of particle porosity by application of Thiele modulus

K. 3 List of parameters for 'print.in'

The following table lists all possible inputs to the file 'print.in' that are documented.

Variable	Meaning
	Module 'cdata.f90'
it	number of time step (since beginning of job only)
t	time $t \quad$ (since start.csh)
dt	time step δt
walltime	wall clock time since start of run.x, in seconds
Rmesh	$R_{\text {mesh }}$
Rmesh3	$R_{\text {mesh }}^{(3)}$
maxadvec	maxadvec
	\quad Module 'hydro.f90'
u2tm	$\left\langle\boldsymbol{u}(t) \cdot \int_{0}^{t} \boldsymbol{u}\left(t^{\prime}\right) d t^{\prime}\right\rangle$
uotm	$\left\langle\boldsymbol{u}(t) \cdot \int_{0}^{t} \boldsymbol{\omega}\left(t^{\prime}\right) d t^{\prime}\right\rangle$
outm	$\left\langle\boldsymbol{\omega}(t) \cdot \int_{0}^{t} \boldsymbol{u}\left(t^{\prime}\right) d t^{\prime}\right\rangle$
fkinzm	$\left\langle\frac{1}{2} \varrho \boldsymbol{u}^{2} u_{z}\right\rangle$
u2m	$\left\langle\boldsymbol{u}^{2}\right\rangle$
uxpt	$u_{x}\left(x_{1}, y_{1}, z_{1}, t\right)$
uypt	$u_{y}\left(x_{1}, y_{1}, z_{1}, t\right)$
uzpt	$u_{z}\left(x_{1}, y_{1}, z_{1}, t\right)$
uxp2	$u_{x}\left(x_{2}, y_{2}, z_{2}, t\right)$
uyp2	$u_{y}\left(x_{2}, y_{2}, z_{2}, t\right)$
uzp2	$u_{z}\left(x_{2}, y_{2}, z_{2}, t\right)$
urms	$\left\langle\boldsymbol{u}^{2}\right\rangle^{1 / 2}$
urmsx	$\left\langle\boldsymbol{u}^{2}\right\rangle^{1 / 2}$ for the hydro_xaver_range
urmsz	$\left\langle\boldsymbol{u}^{2}\right\rangle^{1 / 2}$ for the hydro_zaver_range
durms	$\left\langle\delta \boldsymbol{u}^{2}\right\rangle^{1 / 2}$
umax	$\max ^{(\|\boldsymbol{u}\|)}$
umin	min $(\|\boldsymbol{u}\|)$
uxrms	$\left\langle u_{x}^{2}\right\rangle^{1 / 2}$
uyrms	$\left\langle u_{y}^{2}\right\rangle^{1 / 2}$

```
uzrms
uxmin
uymin
uzmin
uxmax
uymax
uzmax
uxm
uym
uzm
\(u \times 2 m\)
uy 2 m
uz2m
ux2ccm
ux 2 ssm
uy2ccm
uy2ssm
uxuycsm
uxuym
uxuzm
uyuzm
umx
umy
umz
omumz
umamz
umbmz
umxbmz
rux2m
ruy2m
ruz2m
divum
rdivum
divu2m
gdivu2m
u3u21m
u1u32m
u2u13m
u2u31m
u3u12m
u1u23m
ruxm
ruym
ruzm
ruxtot
rumax
\(\left\langle u_{z}^{2}\right\rangle^{1 / 2}\)
tion)
\(\left\langle\langle\boldsymbol{u}\rangle_{x y} \cdot\langle\boldsymbol{A}\rangle_{x y}\right\rangle\)
\(\left\langle\langle\boldsymbol{W}\rangle_{x y} \cdot\langle\boldsymbol{U}\rangle_{x y}\right\rangle \quad\) ( \(x y\)-averaged mean cross helicity produc-
```

ruxuym
ruxuzm
ruyuzm
divrhourms
divrhoumax
rlxm
rlym
rlzm
rlx2m
rly 2 m
rlz2m
tot_ang_mom
dtu
oum
ou_int
fum
odel2um
o2m
orms
omax
ox2m
oy2m
oz2m
oxuzxm
oyuzym
oxoym
oxozm
oyozm
qfm
q2m
qrms
qmax
qom
quxom
pvzm
oumphi
ugurmsx
ugu2m
dudx
Marms
Mamax
ekin
ekintot
uxglnrym
uyglnrxm
uzdivum
uxuydivum
$\left\langle\varrho u_{x} u_{y}\right\rangle \quad$ (mean Reynolds stress)
$\left\langle\varrho u_{x} u_{z}\right\rangle \quad$ (mean Reynolds stress)
$\left\langle\varrho u_{y} u_{z}\right\rangle \quad$ (mean Reynolds stress)
$|\nabla \cdot(\varrho \boldsymbol{u})|_{\text {rms }}$
$|\nabla \cdot(\varrho \boldsymbol{u})|_{\max }$
$\left\langle\rho y u_{z}-z u_{y}\right\rangle$
$\left\langle\rho z u_{x}-x u_{z}\right\rangle$
$\left\langle\rho x u_{y}-y u_{x}\right\rangle$
$\left\langle\left(\rho y u_{z}-z u_{y}\right)^{2}\right\rangle$
$\left\langle\left(\rho z u_{x}-x u_{z}\right)^{2}\right\rangle$
$\left\langle\left(\rho x u_{y}-y u_{x}\right)^{2}\right\rangle$
Total angular momentum in spherical coordinates about the axis.
$\delta t /\left[c_{\delta t} \delta x / \max |\mathbf{u}|\right] \quad$ (time step relative to advective time step;
see \S 5.15)
$\langle\boldsymbol{\omega} \cdot \boldsymbol{u}\rangle$
$\int_{V} \boldsymbol{\omega} \cdot \boldsymbol{u} d V$
$\langle\boldsymbol{f} \cdot \boldsymbol{u}\rangle$
$\left\langle\boldsymbol{\omega} \nabla^{2} \boldsymbol{u}\right\rangle$
$\left\langle\boldsymbol{\omega}^{2}\right\rangle \equiv\left\langle(\nabla \times \boldsymbol{u})^{2}\right\rangle$
$\left\langle\boldsymbol{\omega}^{2}\right\rangle^{1 / 2}$
$\max (|\boldsymbol{\omega}|)$
$\left\langle\omega_{x}^{2}\right\rangle$
$\left\langle\omega_{y}^{2}\right\rangle$
$\left\langle\omega^{2}\right\rangle$
$\left\langle\omega_{x} u_{z, x}\right\rangle$
$\left\langle\omega_{y} u_{z, y}\right\rangle$
$\left\langle\omega_{x} \omega_{y}\right\rangle$
$\left\langle\omega_{x} \omega_{z}\right\rangle$
$\left\langle\omega_{y} \omega_{z}\right\rangle$
$\langle\boldsymbol{q} \cdot \boldsymbol{f}\rangle$
$\left\langle\boldsymbol{q}^{2}\right\rangle$
$\left\langle\boldsymbol{q}^{2}\right\rangle^{1 / 2}$
$\max (|\boldsymbol{q}|)$
$\langle\boldsymbol{q} \cdot \boldsymbol{\omega}\rangle$
$\langle\boldsymbol{q} \cdot(\boldsymbol{u} \times \boldsymbol{\omega})\rangle$
$\left\langle\omega_{z}+2 \Omega / \varrho\right\rangle \quad$ (\mathbf{z} component of potential vorticity)
$\langle\boldsymbol{\omega} \cdot \boldsymbol{u}\rangle_{\varphi}$
$\left\langle(\boldsymbol{u} \nabla \boldsymbol{u})^{2}\right\rangle^{1 / 2}$ for the hydro_xaver_range
$\langle\boldsymbol{u} \nabla \boldsymbol{u}\rangle^{2}$
$\left\langle\frac{\delta \boldsymbol{u}}{\delta x}\right\rangle$
$\left\langle\boldsymbol{u}^{2} / c_{\mathrm{s}}^{2}\right\rangle \quad$ (rms Mach number)
$\max |\boldsymbol{u}| / c_{\mathrm{s}} \quad$ (maximum Mach number)
$\left\langle\frac{1}{2} \varrho \boldsymbol{u}^{2}\right\rangle$
$\int_{V} \frac{1}{2} \varrho \boldsymbol{u}^{2} d V$
$\left\langle u_{x} \partial_{y} \ln \varrho\right\rangle$
$\left\langle u_{y} \partial_{x} \ln \varrho\right\rangle$
$\left\langle u_{z} \nabla \cdot \boldsymbol{u}\right\rangle$
$\left\langle u_{x} u_{y} \nabla \cdot \boldsymbol{u}\right\rangle$

divuHrms	$\left(\nabla_{\mathrm{H}} \cdot \boldsymbol{u}_{\mathrm{H}}\right)^{\text {rms }}$
uxxrms	$u_{x, x}^{\mathrm{rms}}$
uyyrms	$u_{y, y}^{\mathrm{rms}}$
uxzrms	$u_{x, z}^{\mathrm{rms}}$
uyzrms	$u_{y, z}^{\mathrm{rms}}$
uzyrms	$u_{z, y}^{\text {rms }}$
$d t F$	$\delta t /\left[c_{\delta t} \delta x / \max \|\mathbf{F}\|\right] \quad$（time step re see §5．15） $\int u_{r}(\theta, \phi) Y_{\ell}^{m}(\theta, \phi) \sin (\theta$
udpxxm	components of symmetric tensor
Module＇density．f90＇	
rhom	〈＠〉（mean density）
rhomxmask	$\langle\varrho\rangle$ for the density＿xaver＿range
rhomzmask	$\langle\varrho\rangle$ for the density zaver range
drho2m	$<\left(\varrho-\varrho_{0}\right)^{2}>$
drhom	$<\varrho-\varrho_{0}>$
rhomin	$\min (\rho)$
rhomax	$\max (\rho)$
lnrhomin	$\min (\log \rho)$
lnrhomax	$\max (\log \rho)$
ugrhom	$\langle\boldsymbol{u} \cdot \nabla \varrho\rangle$
uglnrhom	$\langle\boldsymbol{u} \cdot \nabla \ln \varrho\rangle$
totmass	$\int \varrho d V$
mass	$\int \varrho d V$
vol	$\int d V$（volume）
grhomax	$\max (\|\nabla \varrho\|)$

Module＇entropy．f90＇	
$d t c$	```\deltat/[cc}\mp@subsup{c}{\deltat}{}\mp@subsup{\delta}{x}{}/\operatorname{max}\mp@subsup{c}{\textrm{s}}{}]\quad\mathrm{ (time step relative to acoustic time step; see § 5.15)```
ethm	〈ee〉（mean thermal［＝internal］energy）
ssruzm	$\left\langle\right.$ s＠uz $\left.^{\prime} c_{p}\right\rangle$
ssuzm	$\left\langle s u_{z} / c_{p}\right\rangle$
ssm	$\left\langle s / c_{p}\right\rangle$（mean entropy）
ss2m	$\left\langle\left(s / c_{p}\right)^{2}\right\rangle \quad$（mean squared entropy）
eem	＜e＞
ppm	$\langle p\rangle$
csm	$\left\langle c_{s}\right\rangle$
cgam	$\left\langle c_{\gamma}\right\rangle$
pdivum	$\langle p \nabla \cdot \boldsymbol{u}\rangle$
fradbot	$\int F_{\text {bot }} \cdot d \boldsymbol{S}$
fradtop	$\int F_{\text {top }} \cdot d \boldsymbol{S}$
TTtop	$\int T_{\text {top }} d \boldsymbol{S}$
ethtot	\int_{V}＠edV（total thermal［＝internal］energy）
dtchi	$\delta t /\left[c_{\delta t, \mathrm{v}} \delta x^{2} / \chi_{\max }\right] \quad$（time step relative to time step based on heat conductivity；see $\S(5.15)$
Hmax	$H_{\text {max }} \quad$（net heat sources summed see $\S(5.15)$
tauhmin	$H_{\max }$（net heat sources summed see \S 5．15）
$d t H$	$\delta t /\left[c_{\delta t, \mathrm{~s}} c_{\mathrm{v}} T / H_{\text {max }}\right]$（time step relative to time step based on heat sources；see $\S(5.15)$

yHm	mean hydrogen ionization
yHmax	max of hydrogen ionization
TTm	$\langle T\rangle$
TTmax	$T_{\text {max }}$
TTmin	$T_{\text {min }}$
$g T$ max	$\max (\|\nabla T\|)$
ssmax	$s_{\text {max }}$
ssmin	$s_{\text {min }}$
gTrms	$(\nabla T)_{\text {rms }}$
gsrms	$(\nabla s)_{\text {rms }}$
gTxgsrms	$(\nabla T \times \nabla s)_{\text {rms }}$
fconvm	$\left\langle c_{p} \varrho u_{z} T\right\rangle$
ufpresm	$\langle-u / \rho \nabla p\rangle$
Kkramersm	$\left\langle K_{\text {kramers }}\right\rangle$
	Module 'magnetic.f90'
eta_tdep	t-dependent η
ab_int	$\int \boldsymbol{A} \cdot \boldsymbol{B} d V$
jb_int	$\int \boldsymbol{j} \cdot \boldsymbol{B} d V$
b2tm	$\left\langle\boldsymbol{b}(t) \cdot \int_{0}^{t} \boldsymbol{b}\left(t^{\prime}\right) d t^{\prime}\right\rangle$
bjtm	$\left\langle\boldsymbol{b}(t) \cdot \int_{0}^{t} \boldsymbol{j}\left(t^{\prime}\right) d t^{\prime}\right\rangle$
jbtm	$\left\langle\boldsymbol{j}(t) \cdot \int_{0}^{t} \boldsymbol{b}\left(t^{\prime}\right) d t^{\prime}\right\rangle$
b2ruzm	$\left\langle\boldsymbol{B}^{2} \rho u_{z}\right\rangle$
b2uzm	$\left\langle\boldsymbol{B}^{2} u_{z}\right\rangle$
ubbzm	$\left\langle(\boldsymbol{u} \cdot \boldsymbol{B}) B_{z}\right\rangle$
b1m	$\langle \| \boldsymbol{B}\rangle$
b2m	$\left\langle B^{2}\right\rangle$
EEM	$\left\langle\boldsymbol{B}^{2}\right\rangle / 2$
b4m	$\left\langle\boldsymbol{B}^{4}\right\rangle$
bm2	$\max \left(\boldsymbol{B}^{2}\right)$
j2m	$\left\langle\boldsymbol{j}^{2}\right\rangle$
jm2	$\max \left(\boldsymbol{j}^{2}\right)$
abm	$\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle$
abumx	$\left\langle u_{x} \boldsymbol{A} \cdot \boldsymbol{B}\right\rangle$
abumy	$\left\langle u_{y} \boldsymbol{A} \cdot \boldsymbol{B}\right\rangle$
abumz	$\left\langle u_{z} \boldsymbol{A} \cdot \boldsymbol{B}\right\rangle$
abmh	$\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle$ (temp)
abmn	$\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle$ (north)
abms	$\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle$ (south)
abrms	$\left\langle(\boldsymbol{A} \cdot \boldsymbol{B})^{2}\right\rangle^{1 / 2}$
jbrms	$\left\langle(\boldsymbol{j} \cdot \boldsymbol{B})^{2}\right\rangle^{1 / 2}$
ajm	$\langle\boldsymbol{j} \cdot \boldsymbol{A}\rangle$
jbm	$\langle\boldsymbol{j} \cdot \boldsymbol{B}\rangle$
jbmh	$\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle$ (temp)
jbmn	$\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle$ (north)
jbms	$\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle$ (south)
ubm	$\langle\boldsymbol{u} \cdot \boldsymbol{B}\rangle$
dubrms	$\left\langle(\boldsymbol{u}-\boldsymbol{B})^{2}\right\rangle^{1 / 2}$

dobrms	$\left\langle(\boldsymbol{\omega}-\boldsymbol{B})^{2}\right\rangle^{1 / 2}$
uxbxm	$\left\langle u_{x} B_{x}\right\rangle$
uybxm	$\left\langle u_{y} B_{x}\right\rangle$
uzbxm	$\left\langle u_{z} B_{x}\right\rangle$
uxbym	$\left\langle u_{x} B_{y}\right\rangle$
uybym	$\left\langle u_{y} B_{y}\right\rangle$
uzbym	$\left\langle u_{z} B_{y}\right\rangle$
uxbzm	$\left\langle u_{x} B_{z}\right\rangle$
uybzm	$\left\langle u_{y} B_{z}\right\rangle$
uzbzm	$\left\langle u_{z} B_{z}\right\rangle$
cosubm	$\langle\boldsymbol{U} \cdot \boldsymbol{B} /(\|\boldsymbol{U}\|\|\boldsymbol{B}\|)\rangle$
jxbxm	$\left\langle j_{x} B_{x}\right\rangle$
jybxm	$\left\langle j_{y} B_{x}\right\rangle$
jzbxm	$\left\langle j_{z} B_{x}\right\rangle$
jxbym	$\left\langle j_{x} B_{y}\right\rangle$
jybym	$\left\langle j_{y} B_{y}\right\rangle$
jzbym	$\left\langle j_{z} B_{y}\right\rangle$
jxbzm	$\left\langle j_{x} B_{z}\right\rangle$
jybzm	$\left\langle j_{y} B_{z}\right\rangle$
jzbzm	$\left\langle j_{z} B_{z}\right\rangle$
uam	$\langle\boldsymbol{u} \cdot \boldsymbol{A}\rangle$
ujm	$\langle\boldsymbol{u} \cdot \boldsymbol{J}\rangle$
fbm	$\langle\boldsymbol{f} \cdot \boldsymbol{B}\rangle$
fxbxm	$\left\langle f_{x} B_{x}\right\rangle$
epsM	$\left\langle\eta \mu_{0} \boldsymbol{j}^{2}\right\rangle$
epsAD	$\left\langle\rho^{-1} t_{\mathrm{AD}}(\boldsymbol{J} \times \boldsymbol{B})^{2}\right\rangle$ (heating by ion-neutrals friction)
bxpt	$B_{x}\left(x_{1}, y_{1}, z_{1}, t\right)$
bypt	$B_{y}\left(x_{1}, y_{1}, z_{1}, t\right)$
bzpt	$B_{z}\left(x_{1}, y_{1}, z_{1}, t\right)$
jxpt	$J_{x}\left(x_{1}, y_{1}, z_{1}, t\right)$
jypt	$J_{y}\left(x_{1}, y_{1}, z_{1}, t\right)$
jzpt	$J_{z}\left(x_{1}, y_{1}, z_{1}, t\right)$
Expt	$\mathcal{E}_{x}\left(x_{1}, y_{1}, z_{1}, t\right)$
Eypt	$\mathcal{E}_{y}\left(x_{1}, y_{1}, z_{1}, t\right)$
Ezpt	$\mathcal{E}_{z}\left(x_{1}, y_{1}, z_{1}, t\right)$
axpt	$A_{x}\left(x_{1}, y_{1}, z_{1}, t\right)$
aypt	$A_{y}\left(x_{1}, y_{1}, z_{1}, t\right)$
azpt	$A_{z}\left(x_{1}, y_{1}, z_{1}, t\right)$
bxp2	$B_{x}\left(x_{2}, y_{2}, z_{2}, t\right)$
byp2	$B_{y}\left(x_{2}, y_{2}, z_{2}, t\right)$
bzp2	$B_{z}\left(x_{2}, y_{2}, z_{2}, t\right)$
jxp2	$J_{x}\left(x_{2}, y_{2}, z_{2}, t\right)$
jyp2	$J_{y}\left(x_{2}, y_{2}, z_{2}, t\right)$
jzp2	$J_{z}\left(x_{2}, y_{2}, z_{2}, t\right)$
Exp2	$\mathcal{E}_{x}\left(x_{2}, y_{2}, z_{2}, t\right)$
Eyp2	$\mathcal{E}_{y}\left(x_{2}, y_{2}, z_{2}, t\right)$
Ezp2	$\mathcal{E}_{z}\left(x_{2}, y_{2}, z_{2}, t\right)$
axp2	$A_{x}\left(x_{2}, y_{2}, z_{2}, t\right)$
ayp2	$A_{y}\left(x_{2}, y_{2}, z_{2}, t\right)$
azp2	$A_{z}\left(x_{2}, y_{2}, z_{2}, t\right)$

exabot
exatop
emag
brms
bfrms
bf2m
bf4m
bmax
bxmin
bymin
bzmin
bxmax
bymax
bzmax
bbxmax
bbymax
bbzmax
jxmax
jymax
jzmax
jrms
hjrms
jmax
vArms
vAmax
dtb
dteta
a2m
arms
amax
divarms
beta1m
beta1max
betam
betamax
betamin
bxm
bym
bzm
bxbym
$b m x$
bmy
bmz
$\int \boldsymbol{E} \times\left.\boldsymbol{A} d S\right|_{\text {bot }}$
$\int \boldsymbol{E} \times\left.\boldsymbol{A} d S\right|_{\text {top }}$
$\int_{V} \frac{1}{2 \mu_{0}} \boldsymbol{B}^{2} d V$
$\left\langle\boldsymbol{B}^{2}\right\rangle^{1 / 2}$
$\left\langle\boldsymbol{B}^{\prime 2}\right\rangle^{1 / 2}$
$\left\langle\boldsymbol{B}^{\prime 2}\right\rangle^{1 / 2}$
$\left\langle\boldsymbol{B}^{\prime 4}\right\rangle$
$\max (|\boldsymbol{B}|)$
$\min \left(\left|B_{x}\right|\right)$
$\min \left(\left|B_{y}\right|\right)$
$\min \left(\left|B_{z}\right|\right)$
$\max \left(\left|B_{x}\right|\right)$
$\max \left(\left|B_{y}\right|\right)$
$\max \left(\left|B_{z}\right|\right)$
$\max \left(\left|B_{x}\right|\right)$ excluding $B v_{\text {ext }}$
$\max \left(\left|B_{y}\right|\right)$ excluding $B v_{e x t}$
$\max \left(\left|B_{z}\right|\right)$ excluding $B v_{\text {ext }}$
$\max \left(\left|j v_{x}\right|\right)$
$\max \left(\left|j v_{y}\right|\right)$
$\max \left(\left|j v_{z}\right|\right)$
$\left\langle\boldsymbol{j}^{2}\right\rangle^{1 / 2}$
$\left\langle\boldsymbol{j}^{2}\right\rangle^{1 / 2}$
$\max (|\boldsymbol{j}|)$
$\left\langle\boldsymbol{B}^{2} / \varrho\right\rangle^{1 / 2}$
$\max \left(\boldsymbol{B}^{2} / \varrho\right)^{1 / 2}$
$\delta t /\left[c_{\delta t} \delta x / v_{\mathrm{A}, \max }\right] \quad$ (time step relative to Alfvén time step; see § 5.15)
$\delta t /\left[c_{\delta t, \mathrm{v}} \delta x^{2} / \eta_{\max }\right] \quad$ (time step relative to resistive time step;
see \S 5.15)
$\left\langle\boldsymbol{A}^{2}\right\rangle$
$\left\langle\boldsymbol{A}^{2}\right\rangle^{1 / 2}$
$\max (|\boldsymbol{A}|)$
$\left\langle(\nabla \cdot \boldsymbol{A})^{2}\right\rangle^{1 / 2}$
$\left\langle\boldsymbol{B}^{2} /\left(2 \mu_{0} p\right)\right\rangle \quad$ (mean inverse plasma beta)
$\max \left[\boldsymbol{B}^{2} /\left(2 \mu_{0} p\right)\right] \quad$ (maximum inverse plasma beta)
$\langle\beta\rangle$
$\max \beta$
$\min \beta$
$\left\langle B_{x}\right\rangle$
$\left\langle B_{y}\right\rangle$
$\left\langle B_{z}\right\rangle$
$\left\langle B_{x} B_{y}\right\rangle$
$\left\langle\langle\boldsymbol{B}\rangle_{y z}^{2}\right\rangle^{1 / 2} \quad$ (energy of $y z$-averaged mean field)
$\left\langle\langle\boldsymbol{B}\rangle_{x z}^{2}\right\rangle^{1 / 2} \quad$ (energy of $x z$-averaged mean field)
$\left\langle\langle\boldsymbol{B}\rangle_{x y}^{2}\right\rangle^{1 / 2} \quad$ (energy of $x y$-averaged mean field)

bmzS2	$\left\langle\left\langle\boldsymbol{B}_{S}\right\rangle_{x y}^{2}\right\rangle$
bmzA2	$\left\langle\left\langle\boldsymbol{B}_{A}\right\rangle_{x y}^{2}\right\rangle$
$j m x$	$\left\langle\langle\boldsymbol{J}\rangle_{y z}^{2}\right\rangle^{1 / 2} \quad$ (energy of $y z$-averaged mean current density)
jmy	$\left\langle\langle\boldsymbol{J}\rangle_{x z}^{2}\right\rangle^{1 / 2} \quad$ (energy of $x z$-averaged mean current density)
jmz	$\left\langle\langle\boldsymbol{J}\rangle_{x y}^{2}\right\rangle^{1 / 2}$ (energy of $x y$-averaged mean current density)
bmzph	Phase of a Beltrami field
bmzphe	Error of phase of a Beltrami field
$b s i n p h z$	sine of phase of a Beltrami field
bcosphz	cosine of phase of a Beltrami field
emxamz3	$\left\langle\langle\boldsymbol{E}\rangle_{x y} \times\langle\boldsymbol{A}\rangle_{x y}\right\rangle \quad$ ($x y$-averaged mean field helicity flux)
embmz	$\left.{ }_{\text {) }}^{\langle }\langle\boldsymbol{E}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle$ ($x y$-averaged mean field helicity production
ambmz	$\left\langle\langle\boldsymbol{A}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle \quad$ (magnetic helicity of $x y$-averaged mean field)
ambmzh	$\left\langle\langle\boldsymbol{A}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle \quad$ (magnetic helicity of $x y$-averaged mean field, temp)
ambmzn	$\left\langle\langle\boldsymbol{A}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle \quad$ (magnetic helicity of $x y$-averaged mean field, north)
ambmzs	$\left\langle\langle\boldsymbol{A}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle \quad$ (magnetic helicity of $x y$-averaged mean field, south)
jmbmz	$\left\langle\langle\boldsymbol{J}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle \quad$ (current helicity of $x y$-averaged mean field)
Rmmz	$\left\langle\frac{\|\boldsymbol{u} \times \boldsymbol{B}\|}{\|\eta \boldsymbol{J}\|}\right\rangle_{x y}$
kx_aa	k_{x}
kmz	$\left\langle\langle\boldsymbol{J}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle /\left\langle\langle\boldsymbol{B}\rangle_{x y}^{2}\right\rangle$
bx2m	$\left\langle B_{x}^{2}\right\rangle$
by 2 m	$\left\langle B_{y}^{2}\right\rangle$
bz2m	$\left\langle B_{z}^{2}\right\rangle$
uxbm	$\langle\boldsymbol{u} \times \boldsymbol{B}\rangle \cdot \boldsymbol{B}_{0} / B_{0}^{2}$
jxbm	$\langle\boldsymbol{j} \times \boldsymbol{B}\rangle \cdot \boldsymbol{B}_{0} / B_{0}^{2}$
magfricmax	$\langle\boldsymbol{j} \times \boldsymbol{B}\rangle \cdot \boldsymbol{B}^{2}$
b3b21m	$\left\langle B_{3} B_{2,1}\right\rangle$
b3b12m	$\left\langle B_{3} B_{1,2}\right\rangle$
b1b32m	$\left\langle B_{1} B_{3,2}\right\rangle$
b1b23m	$\left\langle B_{1} B_{2,3}\right\rangle$
b2b13m	$\left\langle B_{2} B_{1,3}\right\rangle$
b2b31m	$\left\langle B_{2} B_{3,1}\right\rangle$
uxbmx	$\left\langle(\boldsymbol{u} \times \boldsymbol{B})_{x}\right\rangle$
uxbmy	$\left\langle(\boldsymbol{u} \times \boldsymbol{B})_{y}\right\rangle$
uxbmz	$\left\langle(\boldsymbol{u} \times \boldsymbol{B})_{z}\right\rangle$
jxbmx	$\left\langle(\boldsymbol{j} \times \boldsymbol{B})_{x}\right\rangle$
jxbmy	$\left\langle(\boldsymbol{j} \times \boldsymbol{B})_{y}\right\rangle$
jxbmz	$\left\langle(\boldsymbol{j} \times \boldsymbol{B})_{z}\right\rangle$
examx	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle\right\|_{x}$

examy	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle\right\|_{y}$
examz	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle\right\|_{z}$
exjmx	$\left.\langle\boldsymbol{E} \times \boldsymbol{J}\rangle\right\|_{x}$
exjmy	$\left.\langle\boldsymbol{E} \times \boldsymbol{J}\rangle\right\|_{y}$
exjmz	$\left.\langle\boldsymbol{E} \times \boldsymbol{J}\rangle\right\|_{z}$
dexbmx	$\left.\langle\nabla \times \boldsymbol{E} \times \boldsymbol{B}\rangle\right\|_{x}$
dexbmy	$\left.\langle\nabla \times \boldsymbol{E} \times \boldsymbol{B}\rangle\right\|_{y}$
dexbmz	$\left.\langle\nabla \times \boldsymbol{E} \times \boldsymbol{B}\rangle\right\|_{z}$
phibmx	$\left.\langle\phi \boldsymbol{B}\rangle\right\|_{x}$
phibmy	$\left.\langle\phi \boldsymbol{B}\rangle\right\|_{y}$
phibmz	$\left.\langle\phi \boldsymbol{B}\rangle\right\|_{z}$
b2divum	$\left\langle\boldsymbol{B}^{2} \nabla \cdot \boldsymbol{u}\right\rangle$
jdel2am	$\left.\left\langle\boldsymbol{J} \cdot \nabla^{2} \boldsymbol{A}\right)\right\rangle$
ujxbm	$\langle\boldsymbol{u} \cdot(\boldsymbol{J} \times \boldsymbol{B})\rangle$
jxbrmax	$\max (\|\boldsymbol{J} \times \boldsymbol{B} / \rho\|)$
jxbr2m	$\left\langle(\boldsymbol{J} \times \boldsymbol{B} / \rho)^{2}\right\rangle$
bmxy_rms	$\sqrt{\left[\left\langle b_{x}\right\rangle_{z}(x, y)\right]^{2}+\left[\left\langle b_{y}\right\rangle_{z}(x, y)\right]^{2}+\left[\left\langle b_{z}\right\rangle_{z}(x, y)\right]^{2}}$
etasmagm	Mean of Smagorinsky resistivity
etasmagmin	Min of Smagorinsky resistivity
etasmagmax	Max of Smagorinsky resistivity
etavamax	Max of artificial resistivity $\eta \sim v_{A}$
etajmax	Max of artificial resistivity $\eta \sim J / \sqrt{\rho}$
etaj2max	Max of artificial resistivity $\eta \sim J^{2} / \rho$
etajrhomax	Max of artificial resistivity $\eta \sim J / \rho$
cosjbm	$\langle\boldsymbol{J} \cdot \boldsymbol{B} /(\|\boldsymbol{J}\|\|\boldsymbol{B}\|)\rangle$
jparallelm	Mean value of the component of J parallel to B
jperpm	Mean value of the component of J perpendicular to B
hjparallelm	Mean value of the component of $J_{\text {hyper }}$ parallel to B
hjperpm	Mean value of the component of $J_{\text {hyper }}$ perpendicular to B
brmsx	$\left\langle\boldsymbol{B}^{2}\right\rangle^{1 / 2}$ for the magnetic_xaver_range
brmsz	$\left\langle\boldsymbol{B}^{2}\right\rangle^{1 / 2}$ for the magnetic_zaver_range
Exmxy	$\left\langle\mathcal{E}_{x}\right\rangle_{z}$
Eymxy	$\left\langle\mathcal{E}_{y}\right\rangle_{z}$
Ezmxy	$\left\langle\mathcal{E}_{z}\right\rangle_{z}$
	Module 'pscalar.f90'
rhoccm	$\langle\varrho c\rangle$
ccmax	$\max (c)$
ccglnrm	$\left\langle c \nabla_{z} \varrho\right\rangle$
	Module '1D_loop.f90'
dtchi2	heatconduction
dtrad	radiative loss from RTV
dtspitzer	Spitzer heat conduction time step
q max	max of heat flux vector
qrms	rms of heat flux vector
	Module 'advective_gauge.f90'
Lamm	$\langle\Lambda\rangle$
Lampt	$\Lambda(x 1, y 1, z 1)$

Lamp2	$\Lambda(x 2, y 2, z 2)$
Lamrms	$\left\langle\Lambda^{2}\right\rangle^{1 / 2}$
Lambzm	$\left\langle\Lambda B_{z}\right\rangle$
Lambzmz	$\left\langle\Lambda B_{z}\right\rangle_{x y}$
gLambm	$\langle\Lambda \boldsymbol{B}\rangle$
apbrms	$\left\langle\left(\boldsymbol{A}^{\prime} \boldsymbol{B}\right)^{2}\right\rangle^{1 / 2}$
jxarms	$\left\langle(\boldsymbol{J} \times \boldsymbol{A})^{2}\right\rangle^{1 / 2}$
jxaprms	$\left\langle\left(\boldsymbol{J} \times \boldsymbol{A}^{\prime}\right)^{2}\right\rangle^{1 / 2}$
jxgLamrms	$\left\langle(\boldsymbol{J} \times \nabla \Lambda)^{2}\right\rangle^{1 / 2}$
gLamrms	$\left\langle(\nabla \Lambda)^{2}\right\rangle^{1 / 2}$
divabrms	$\left\langle[(\nabla \cdot \boldsymbol{A}) \boldsymbol{B}]^{2}\right\rangle^{1 / 2}$
divapbrms	$\left\langle\left[\left(\nabla \cdot \boldsymbol{A}^{\prime}\right) \boldsymbol{B}\right]^{2}\right\rangle^{1 / 2}$
d2Lambrms	$\left\langle\left[\left(\nabla^{2} \Lambda\right) \boldsymbol{B}\right]^{2}\right\rangle^{1 / 2}$
d2Lamrms	$\left\langle\left[\nabla^{2} \Lambda\right]^{2}\right\rangle^{1 / 2}$

Module 'anelastic.f90'

rhom	$\langle\varrho\rangle \quad$ (mean density)
ugrhom	$\langle\boldsymbol{u} \cdot \nabla \varrho\rangle$
mass	$\int \varrho d V$
divrhoum	$\langle\nabla \cdot(\varrho \boldsymbol{u})\rangle$
divrhourms	$\|\nabla \cdot(\varrho \boldsymbol{u})\|_{\mathrm{rms}}$
divrhoumax	$\|\nabla \cdot(\varrho \boldsymbol{u})\|_{\text {max }}$

Module 'bfield.f90'

bmax	$\max B$
bmin	$\min B$
brms	$\left\langle B^{2}\right\rangle^{1 / 2}$
bm	$\langle B\rangle$
b2m	$\left\langle B^{2}\right\rangle$
bxmax	$\max \left\|B_{x}\right\|$
bymax	$\max \left\|B_{y}\right\|$
bzmax	$\max \left\|B_{z}\right\|$
bxm	$\left\langle B_{x}\right\rangle$
bym	$\left\langle B_{y}\right\rangle$
bzm	$\left\langle B_{z}\right\rangle$
bx2m	$\left\langle B_{x}^{2}\right\rangle$
by2m	$\left\langle B_{y}^{2}\right\rangle$
bz2m	$\left\langle B_{z}^{2}\right\rangle$
bxbym	$\left\langle B_{x} B_{y}\right\rangle$
bxbzm	$\left\langle B_{x} B_{z}\right\rangle$
bybzm	$\left\langle B_{y} B_{z}\right\rangle$
dbxmax	$\max \left\|B_{x}-B_{\text {ext } t, x}\right\|$
dbymax	$\max \left\|B_{y}-B_{\text {ext }, y}\right\|$
dbzmax	$\max \left\|B_{z}-B_{\text {ext }, z}\right\|$
dbxm	$\left\langle B_{x}-B_{\text {ext }, x}\right\rangle$
dbym	$\left\langle B_{y}-B_{\text {ext }, y}\right\rangle$
dbzm	$\left\langle B_{z}-B_{\text {ext }, z}\right\rangle$
dbx2m	$\left\langle\left(B_{x}-B_{\text {ext }, x}\right)^{2}\right\rangle$
dby2m	$\left\langle\left(B_{y}-B_{\left.\text {ext }, y)^{2}\right\rangle}^{2}\right\rangle\right.$

dbz2m	$\left\langle\left(B_{z}-B_{\text {ext }, z}\right)^{2}\right\rangle$
jmax	$\max J$
jmin	$\min J$
jrms	$\left\langle J^{2}\right\rangle^{1 / 2}$
jm	$\langle J\rangle$
j2m	$\left\langle J^{2}\right\rangle$
jxmax	$\max \left\|J_{x}\right\|$
jymax	$\max \left\|J_{y}\right\|$
jzmax	$\max \left\|J_{z}\right\|$
jxm	$\left\langle J_{x}\right\rangle$
jym	$\left\langle J_{y}\right\rangle$
jzm	$\left\langle J_{z}\right\rangle$
jx2m	$\left\langle J_{x}^{2}\right\rangle$
jy2m	$\left\langle J_{y}^{2}\right\rangle$
jz2m	$\left\langle J_{z}^{2}\right\rangle$
divbmax	$\max \|\nabla \cdot \boldsymbol{B}\|$
divbrms	$\left\langle(\nabla \cdot \boldsymbol{B})^{2}\right\rangle^{1 / 2}$
betamax	$\max \beta$
betamin	$\min \beta$
betam	$\langle\beta\rangle$
vAmax	$\max v_{A}$
vAmin	$\min v_{A}$
vAm	$\left\langle v_{A}\right\rangle$
	Module 'chemistry.f90'
dtchem	$d t_{\text {chem }}$
	Module 'chemistry_simple.f90'
dtchem	$d t_{\text {chem }}$
	Module 'chiral_fluids.f90'
mu5m	$\left\langle\mu_{5}\right\rangle$
mu5rms	$\left\langle\mu_{5}^{2}\right\rangle^{1 / 2}$
bgmu5rms	$\left\langle\left(\boldsymbol{B} \cdot \nabla \mu_{5}\right)^{2}\right\rangle^{1 / 2}$
bgtheta5rms	$\left\langle\left(\boldsymbol{B} \cdot \nabla \theta_{5}\right)^{2}\right\rangle^{1 / 2}$
theta5m	$\left\langle\theta_{5}\right\rangle$
theta5rms	$\left\langle\theta_{5}^{2}\right\rangle^{1 / 2}$
	Module 'chiral_fluids_gradtheta.f90'
mu5m	$\left\langle\mu_{5}\right\rangle$
mu5rms	$\left\langle\mu_{5}^{2}\right\rangle^{1 / 2}$
bgmu5rms	$\left\langle\left(\boldsymbol{B} \cdot \nabla \mu_{5}\right)^{2}\right\rangle^{1 / 2}$
bgtheta5rms	$\left\langle\left(\boldsymbol{B} \cdot \nabla \theta_{5}\right)^{2}\right\rangle^{1 / 2}$
gtheta 5 rms	$\left\langle\left(\nabla \theta_{5}\right)^{2}\right\rangle^{1 / 2}$
gmu5rms	$\left\langle\left(\nabla \mu_{5}\right)^{2}\right\rangle^{1 / 2}$
gtheta5mx	$\left\langle\nabla \theta_{5 x}\right\rangle$
gtheta5my	$\left\langle\nabla \theta_{5 y}\right\rangle$
gtheta5mz	$\left\langle\nabla \theta_{5 z}\right\rangle$

mu5m	$\left\langle\mu_{5}\right\rangle$
mu5rms	$\left\langle\mu_{5}^{2}\right\rangle^{1 / 2}$
gmu5rms	$\left\langle\left(\nabla \mu_{5}\right)^{2}\right\rangle^{1 / 2}$
gmu5mx	$\left\langle\nabla \mu_{5}\right\rangle_{x}$
gmu5my	$\left\langle\nabla \mu_{5}\right\rangle_{y}$
gmu5mz	$\left\langle\nabla \mu_{5}\right\rangle_{z}$
bgmu5rms	$\left\langle\left(\boldsymbol{B} \cdot \nabla \mu_{5}\right)^{2}\right\rangle^{1 / 2}$
dt_mu5_1	$\min \left(\mu_{5} / \boldsymbol{B}^{2}\right) \delta x /(\lambda \eta)$
dt_mu5_2	$\left(\lambda \eta \min \left(\boldsymbol{B}^{2}\right)\right)^{-1}$
dt_mu5_3	$\delta x^{2} / D_{5}$
dt_bb_1	$\delta x /\left(\eta \max \left(\mu_{5}\right)\right)$
dt_chiral	total time-step contribution from chiral MHD
Module 'coronae.f90'	
dtchi2	$\delta t /\left[c_{\delta t, \mathrm{v}} \delta x^{2} / \chi_{\max }\right] \quad$ (time step relative to time step based on heat conductivity; see \S 5.15)
dtspitzer	Spitzer heat conduction time step
dtrad	radiative loss from RTV
Module 'cosmicray_current.f90'	
ekincr ethmcr	$\begin{aligned} & \left\langle\frac{1}{2} \varrho \boldsymbol{u}_{\text {cr }}^{2}\right\rangle \\ & \left\langle\varrho_{\text {cr }} e_{\text {cr }}\right\rangle \end{aligned}$
Module 'density_stratified.f90'	
mass	$\int \rho d^{3} x$
rhomin	$\min \|\rho\|$
rhomax	max $\|\rho\|$
drhom	$\left\langle\Delta \rho / \rho_{0}\right\rangle$
drho2m	$\left\langle\left(\Delta \rho / \rho_{0}\right)^{2}\right\rangle$
drhorms	$\left\langle\Delta \rho / \rho_{0}\right\rangle_{\text {rms }}$
drhomax	$\max \left\|\Delta \rho / \rho_{0}\right\|$
Module 'detonate.f90'	
detn	Number of detonated sites (summed over time steps between adjacent outputs)
dettot	Total energy input (summed over time steps between adjacent outputs)
Module 'dustdensity.f90'	
KKm	$\sum \mathcal{T}_{k}^{\text {coag }}$
KK2m	$\sum \mathcal{T}_{k}^{\text {coag }}$
MMxm	$\sum \mathcal{M}_{k, \text { coag }}^{x}$
MMym	$\sum \mathcal{M}_{k, \text { coag }}^{y,}$
MMzm	$\sum \mathcal{M}_{k, \text { coag }}^{z}$
Module 'entropy_anelastic.f90'	
dtc	```\deltat/[c}\mp@subsup{c}{\deltat}{}\mp@subsup{\delta}{x}{}/\operatorname{max}\mp@subsup{c}{\textrm{s}}{}]\quad\mathrm{ (time step relative to acoustic time step; see §5.15)```
ethm	〈@e〉 (mean thermal [=internal] energy)
ssm	$\left\langle s / c_{p}\right\rangle \quad$ (mean entropy)

ss2m	$\left\langle\left(s / c_{p}\right)^{2}\right\rangle$ (mean squared entropy)
eem	$\langle e\rangle$
ppm	$\langle p\rangle$
csm	$\left\langle c_{\mathrm{s}}\right\rangle$
pdivum	$\langle p \nabla \boldsymbol{u}\rangle$
fradbot	$\int F_{\text {bot }} \cdot d \boldsymbol{S}$
fradtop	$\int F_{\text {top }} \cdot d \boldsymbol{S}$
TTtop	$\int T_{\text {top }} d \boldsymbol{S}$
ethtot	\int_{V} @edV (total thermal [=internal] energy)
dtchi	$\delta t /\left[c_{\delta t, \mathrm{v}} \delta x^{2} / \chi_{\max }\right]$ (time step relative to time step based on heat conductivity; see \S 5.15)
ssmxy	$\langle s\rangle_{z}$
Ssmxz	$\langle s\rangle_{y}$

Module 'gravitational_waves.f90'

hhT2m	$\left\langle h_{\mathrm{T}}^{2}\right\rangle$
hhX2m	$\left\langle h_{\mathrm{X}}^{2}\right\rangle$
hhThhXm	$\left\langle h_{\mathrm{T}} h_{\mathrm{X}}\right\rangle$
ggTpt	$g_{\mathrm{T}}\left(x_{1}, y_{1}, z_{1}, t\right)$
strTpt	$S_{\mathrm{T}}\left(x_{1}, y_{1}, z_{1}, t\right)$
strXpt	$S_{\mathrm{X}}\left(x_{1}, y_{1}, z_{1}, t\right)$

Module 'gravitational_waves_hij6.f90'

h22rms	$h_{22}^{\text {rrs }}$
h33rms	$h_{33}^{\text {rms }}$
h23rms	$h_{23}^{\text {rms }}$
g11pt	$g_{11}\left(x_{1}, y_{1}, z_{1}, t\right)$
g22pt	$g_{22}\left(x_{1}, y_{1}, z_{1}, t\right)$
g33pt	$g_{33}\left(x_{1}, y_{1}, z_{1}, t\right)$
g12pt	$g_{12}\left(x_{1}, y_{1}, z_{1}, t\right)$
g23pt	$g_{23}\left(x_{1}, y_{1}, z_{1}, t\right)$
g31pt	$g_{31}\left(x_{1}, y_{1}, z_{1}, t\right)$
hhTpt	$h_{T}\left(x_{1}, y_{1}, z_{1}, t\right)$
hhXpt	$h_{X}\left(x_{1}, y_{1}, z_{1}, t\right)$
ggTpt	$\dot{h}_{T}\left(x_{1}, y_{1}, z_{1}, t\right)$
ggXpt	$\dot{h}_{X}\left(x_{1}, y_{1}, z_{1}, t\right)$
hhTp2	$h_{T}\left(x_{1}, y_{1}, z_{1}, t\right)$
hhXp2	$h_{X}\left(x_{1}, y_{1}, z_{1}, t\right)$
ggTp2	$\dot{h}_{T}\left(x_{1}, y_{1}, z_{1}, t\right)$
ggXp2	$\dot{h}_{X}\left(x_{1}, y_{1}, z_{1}, t\right)$
hrms	$\left\langle h_{T}^{2}+h_{X}^{2}\right\rangle^{1 / 2}$
EEGW	$\left\langle g_{T}^{2}+g_{X}^{2}\right\rangle c^{2} /(32 \pi G)$
gg2m	$\left\langle g_{T}^{2}+g_{X}^{2}\right\rangle$
hhT2m	$\left\langle h_{T}^{2}\right\rangle$
hhX2m	$\left\langle h_{X}^{2}\right\rangle$
hhTXm	$\left\langle h_{T} h_{X}\right\rangle$
ggT2m	$\left\langle g_{T}^{2}\right\rangle$
ggX2m	$\left\langle g_{X}^{2}\right\rangle$
ggTXm	$\left\langle g_{T} g_{X}\right\rangle$
ggTm	$\left\langle g_{T}\right\rangle$

ggXm	$\left\langle g_{X}\right\rangle$
	Module 'gravity_simple.f90'
epot	$\left\langle\varrho \Phi_{\text {grav }}\right\rangle \quad$ (mean potential energy)
epottot	$\int_{V} \varrho \Phi_{\text {grav }} d V \quad$ (total potential energy)
ugm	$\langle\boldsymbol{u} \cdot \boldsymbol{g}\rangle \quad$
	\quad Module 'heatflux.f90'
dtspitzer	Spitzer heat conduction time step
dtq	heatflux time step
dtq2	heatflux time step due to tau
qmax	$\max (\|\boldsymbol{q}\|)$
qxmin	$\min \left(\left\|q_{x}\right\|\right)$
qymin	$\min \left(\left\|q_{y}\right\|\right)$
qzmin	$\min \left(\left\|q_{z}\right\|\right)$
qxmax	$\max \left(\left\|\left.\right\|_{x}\right\|\right)$
qymax	$\max \left(\left\|q_{y}\right\|\right)$
qzmax	$\max \left(\left\|q_{z}\right\|\right)$
qrms	rms of heat flux vector
qsatmin	$\operatorname{minimum~of~qsat/qabs~}$
qsatrms	rms of qsat/abs

Module 'lorenz_gauge.f90’

phim	$\langle\phi\rangle$
phipt	$\phi(x 1, y 1, z 1)$
phip2	$\phi(x 2, y 2, z 2)$
phibzm	$\left\langle\phi B_{z}\right\rangle$
phibzmz	$\left\langle\phi B_{z}\right\rangle_{x y}$

Module 'magnetic_shearboxJ.f90'

ab_int	
jb_int	$\int \boldsymbol{A} \cdot \boldsymbol{B} d V$
b2tm	$\int \boldsymbol{j} \cdot \boldsymbol{B} d V$
bjtm	$\left\langle\boldsymbol{b}(t) \cdot \int_{0}^{t} \boldsymbol{b}\left(t^{\prime}\right) d t^{\prime}\right\rangle$
jbtm	$\left\langle\boldsymbol{b}(t) \cdot \int_{0}^{t} \boldsymbol{j}\left(t^{\prime}\right) d t^{\prime}\right\rangle$
b2ruzm	$\left\langle\boldsymbol{j}(t) \cdot \int_{0}^{t} \boldsymbol{b}\left(t^{\prime}\right) d t^{\prime}\right\rangle$
b2uzm	$\left\langle\boldsymbol{B}^{2} \rho u_{z}\right\rangle$
ubbzm	$\left\langle\boldsymbol{B}^{2} u_{z}\right\rangle$
b1m	$\left\langle(\boldsymbol{u} \cdot \boldsymbol{B}) B_{z}\right\rangle$
b2m	$\langle \| \boldsymbol{B}\rangle$
bm2	$\left\langle\boldsymbol{B}^{2}\right\rangle$
j2m	$\max \left(\boldsymbol{B}^{2}\right)$
jm2	$\left\langle\boldsymbol{j}^{2}\right\rangle$
abm	$\max \left(\boldsymbol{j}^{2}\right)$
abumx	$\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle$
abumy	$\left\langle u_{x} \boldsymbol{A} \cdot \boldsymbol{B}\right\rangle$
abumz	$\left\langle u_{y} \boldsymbol{A} \cdot \boldsymbol{B}\right\rangle$
abmh	$\left\langle u_{z} \boldsymbol{A} \cdot \boldsymbol{B}\right\rangle$
abmn	$\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle$ (temp)
	$\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle$ (north)

abms
abrms
jbrms
ajm
jbm
jbmh
jbmn
jbms
ubm
dubrms
dobrms
uxbxm
uybxm
uzbxm
uxbym
uybym
uzbym
uxbzm
uybzm
uzbzm
cosubm
jxbxm
jybxm
jzbxm
jxbym
jybym
jzbym
jxbzm
jybzm
jzbzm
uam
ujm
fbm
fxbxm
epsM
epsAD
bxpt
bypt
bzpt

jxpt

jypt
jzpt
Expt
Eypt Ezpt
axpt
aypt azpt bxp2
$\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle$ (south)
$\left\langle(\boldsymbol{A} \cdot \boldsymbol{B})^{2}\right\rangle^{1 / 2}$
$\left\langle(\boldsymbol{j} \cdot \boldsymbol{B})^{2}\right\rangle^{1 / 2}$
$\langle\boldsymbol{j} \cdot \boldsymbol{A}\rangle$
$\langle\boldsymbol{j} \cdot \boldsymbol{B}\rangle$
$\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle$ (temp)
$\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle$ (north)
$\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle$ (south)
$\langle\boldsymbol{u} \cdot \boldsymbol{B}\rangle$
$\left\langle(\boldsymbol{u}-\boldsymbol{B})^{2}\right\rangle^{1 / 2}$
$\left\langle(\boldsymbol{\omega}-\boldsymbol{B})^{2}\right\rangle^{1 / 2}$
$\left\langle u_{x} B_{x}\right\rangle$
$\left\langle u_{y} B_{x}\right\rangle$
$\left\langle u_{z} B_{x}\right\rangle$
$\left\langle u_{x} B_{y}\right\rangle$
$\left\langle u_{y} B_{y}\right\rangle$
$\left\langle u_{z} B_{y}\right\rangle$
$\left\langle u_{x} B_{z}\right\rangle$
$\left\langle u_{y} B_{z}\right\rangle$
$\left\langle u_{z} B_{z}\right\rangle$
$\langle\boldsymbol{U} \cdot \boldsymbol{B} /(|\boldsymbol{U}||\boldsymbol{B}|)\rangle$
$\left\langle j_{x} B_{x}\right\rangle$
$\left\langle j_{y} B_{x}\right\rangle$
$\left\langle j_{z} B_{x}\right\rangle$
$\left\langle j_{x} B_{y}\right\rangle$
$\left\langle j_{y} B_{y}\right\rangle$
$\left\langle j_{z} B_{y}\right\rangle$
$\left\langle j_{x} B_{z}\right\rangle$
$\left\langle j_{y} B_{z}\right\rangle$
$\left\langle j_{z} B_{z}\right\rangle$
$\langle\boldsymbol{u} \cdot \boldsymbol{A}\rangle$
$\langle\boldsymbol{u} \cdot \boldsymbol{J}\rangle$
$\langle\boldsymbol{f} \cdot \boldsymbol{B}\rangle$
$\left\langle f_{x} B_{x}\right\rangle$
$\left\langle\eta \mu_{0} \boldsymbol{j}^{2}\right\rangle$
$\left\langle\rho^{-1} t_{\mathrm{AD}}(\boldsymbol{J} \times \boldsymbol{B})^{2}\right\rangle$ (heating by ion-neutrals friction)
$B_{x}\left(x_{1}, y_{1}, z_{1}, t\right)$
$B_{y}\left(x_{1}, y_{1}, z_{1}, t\right)$
$B_{z}\left(x_{1}, y_{1}, z_{1}, t\right)$
$J_{x}\left(x_{1}, y_{1}, z_{1}, t\right)$
$J_{y}\left(x_{1}, y_{1}, z_{1}, t\right)$
$J_{z}\left(x_{1}, y_{1}, z_{1}, t\right)$
$\mathcal{E}_{x}\left(x_{1}, y_{1}, z_{1}, t\right)$
$\mathcal{E}_{y}\left(x_{1}, y_{1}, z_{1}, t\right)$
$\mathcal{E}_{z}\left(x_{1}, y_{1}, z_{1}, t\right)$
$A_{x}\left(x_{1}, y_{1}, z_{1}, t\right)$
$A_{y}\left(x_{1}, y_{1}, z_{1}, t\right)$
$A_{z}\left(x_{1}, y_{1}, z_{1}, t\right)$
$B_{x}\left(x_{2}, y_{2}, z_{2}, t\right)$

byp2	$B_{y}\left(x_{2}, y_{2}, z_{2}, t\right)$
bzp2	$B_{z}\left(x_{2}, y_{2}, z_{2}, t\right)$
jxp2	$J_{x}\left(x_{2}, y_{2}, z_{2}, t\right)$
jyp2	$J_{y}\left(x_{2}, y_{2}, z_{2}, t\right)$
jzp2	$J_{z}\left(x_{2}, y_{2}, z_{2}, t\right)$
Exp2	$\mathcal{E}_{x}\left(x_{2}, y_{2}, z_{2}, t\right)$
Eyp2	$\mathcal{E}_{y}\left(x_{2}, y_{2}, z_{2}, t\right)$
Ezp2	$\mathcal{E}_{z}\left(x_{2}, y_{2}, z_{2}, t\right)$
axp2	$A_{x}\left(x_{2}, y_{2}, z_{2}, t\right)$
ayp2	$A_{y}\left(x_{2}, y_{2}, z_{2}, t\right)$
azp2	$A_{z}\left(x_{2}, y_{2}, z_{2}, t\right)$
exabot	$\int \boldsymbol{E} \times\left.\boldsymbol{A} d S\right\|_{\text {bot }}$
exatop	$\int \boldsymbol{E} \times\left.\boldsymbol{A} d S\right\|_{\text {top }}$
emag	$\int_{V} \frac{1}{2 \mu_{0}} \boldsymbol{B}^{2} d V$
brms	$\left\langle\boldsymbol{B}^{2}\right\rangle^{1 / 2}$
bfrms	$\left\langle\boldsymbol{B}^{\prime 2}\right\rangle^{1 / 2}$
bmax	$\max (\|\boldsymbol{B}\|)$
bxmin	$\min \left(\left\|B_{x}\right\|\right)$
bymin	$\min \left(\left\|B_{y}\right\|\right)$
bzmin	$\min \left(\left\|B_{z}\right\|\right)$
bxmax	$\max \left(\left\|B_{x}\right\|\right)$
bymax	$\max \left(\left\|B_{y}\right\|\right)$
bzmax	$\max \left(\left\|B_{z}\right\|\right)$
bbxmax	$\max \left(\left\|B_{x}\right\|\right)$ excluding $B v_{\text {ext }}$
bbymax	$\max \left(\left\|B_{y}\right\|\right)$ excluding $B v_{\text {ext }}$
bbzmax	$\max \left(\left\|B_{z}\right\|\right)$ excluding $B v_{\text {ext }}$
jxmax	$\max \left(\left\|j v_{x}\right\|\right)$
jymax	max $\left(\left\|j v_{y}\right\|\right)$
jzmax	$\max \left(\left\|j v_{z}\right\|\right)$
jrms	$\left\langle\boldsymbol{j}^{2}\right\rangle^{1 / 2}$
hjrms	$\left\langle j^{2}\right\rangle^{1 / 2}$
jmax	$\max (\|\boldsymbol{j}\|)$
vArms	$\left\langle\boldsymbol{B}^{2} / \varrho\right\rangle^{1 / 2}$
vAmax	$\max \left(\boldsymbol{B}^{2} / \varrho\right)^{1 / 2}$
$d t b$	$\delta t /\left[c_{\delta t} \delta x / v_{\mathrm{A}, \max }\right] \quad$ (time step relative to Alfvén time step; see $\S[5.15)$
dteta	$\delta t /\left[c_{\delta t, \mathrm{v}} \delta x^{2} / \eta_{\max }\right] \quad$ (time step relative to resistive time step; see $\S 5.15$)
a2m	$\left\langle A^{2}\right\rangle$
arms	$\left\langle\boldsymbol{A}^{2}\right\rangle^{1 / 2}$
amax	$\max (\|\boldsymbol{A}\|)$
divarms	$\left\langle(\nabla \cdot \boldsymbol{A})^{2}\right\rangle^{1 / 2}$
beta1m	$\left\langle\boldsymbol{B}^{2} /\left(2 \mu_{0} p\right)\right\rangle$ (mean inverse plasma beta)
beta1max	$\max \left[\boldsymbol{B}^{2} /\left(2 \mu_{0} p\right)\right] \quad$ (maximum inverse plasma beta)
betam	$\langle\beta\rangle$
betamax	$\max \beta$
betamin	$\min \beta$
bxm	$\left\langle B_{x}\right\rangle$

bym	$\left\langle B_{y}\right\rangle$
bzm	$\left\langle B_{z}\right\rangle$
bxbym	$\left\langle B_{x} B_{y}\right\rangle$
bmx	$\left\langle\langle\boldsymbol{B}\rangle_{y z}^{2}\right\rangle^{1 / 2}$ (energy of $y z$-averaged mean field)
bmy	$\left\langle\langle\boldsymbol{B}\rangle_{x z}^{2}\right\rangle^{1 / 2} \quad$ (energy of $x z$-averaged mean field)
bmz	$\left\langle\langle\boldsymbol{B}\rangle_{x y}^{2}\right\rangle^{1 / 2} \quad$ (energy of $x y$-averaged mean field)
bmzS2	$\left\langle\left\langle\boldsymbol{B}_{S}\right\rangle_{x y}^{2}\right\rangle$
bmzA2	$\left\langle\left\langle\boldsymbol{B}_{A}\right\rangle_{x y}^{2}\right\rangle$
jmx	$\left\langle\langle\boldsymbol{J}\rangle_{y z}^{2}\right\rangle^{1 / 2}$ (energy of $y z$-averaged mean current density)
jmy	$\left\langle\langle\boldsymbol{J}\rangle_{x z}^{2}\right\rangle^{1 / 2}$ (energy of $x z$-averaged mean current density)
jmz	$\left\langle\langle\boldsymbol{J}\rangle_{x y}^{2}\right\rangle^{1 / 2} \quad$ (energy of $x y$-averaged mean current density)
bmzph	Phase of a Beltrami field
bmzphe	Error of phase of a Beltrami field
$b \operatorname{sinphz}$	sine of phase of a Beltrami field
bcosphz	cosine of phase of a Beltrami field
emxamz3	$\left\langle\langle\boldsymbol{E}\rangle_{x y} \times\langle\boldsymbol{A}\rangle_{x y}\right\rangle \quad$ ($x y$-averaged mean field helicity flux)
embmz	$\left.{ }_{\text {) }}^{\langle }\langle\boldsymbol{E}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle \quad$ ($x y$-averaged mean field helicity production
ambmz	$\left\langle\langle\boldsymbol{A}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle$ (magnetic helicity of $x y$-averaged mean field)
ambmzh	$\left\langle\langle\boldsymbol{A}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle$ (magnetic helicity of $x y$-averaged mean field, temp)
ambmzn	$\left\langle\langle\boldsymbol{A}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle \quad$ (magnetic helicity of $x y$-averaged mean field, north)
ambmzs	$\left\langle\langle\boldsymbol{A}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle$ (magnetic helicity of $x y$-averaged mean field, south)
jmbmz	$\left\langle\langle\boldsymbol{J}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle \quad$ (current helicity of $x y$-averaged mean field)
kx_aa	k_{x}
kmz	$\left\langle\langle\boldsymbol{J}\rangle_{x y} \cdot\langle\boldsymbol{B}\rangle_{x y}\right\rangle /\left\langle\langle\boldsymbol{B}\rangle_{x y}^{2}\right\rangle$
bx 2 m	$\left\langle B_{x}^{2}\right\rangle$
by 2 m	$\left\langle B_{y}^{2}\right\rangle$
bz2m	$\left\langle B_{z}^{2}\right\rangle$
uxbm	$\langle\boldsymbol{u} \times \boldsymbol{B}\rangle \cdot \boldsymbol{B}_{0} / B_{0}^{2}$
jxbm	$\langle\boldsymbol{j} \times \boldsymbol{B}\rangle \cdot \boldsymbol{B}_{0} / B_{0}^{2}$
magfricmax	Magneto-Frictional velocity $\langle\boldsymbol{j} \times \boldsymbol{B}\rangle \cdot \boldsymbol{B}^{2}$
b3b21m	$\left\langle B_{3} B_{2,1}\right\rangle$
b3b12m	$\left\langle B_{3} B_{1,2}\right\rangle$
b1b32m	$\left\langle B_{1} B_{3,2}\right\rangle$
b1b23m	$\left\langle B_{1} B_{2,3}\right\rangle$
b2b13m	$\left\langle B_{2} B_{1,3}\right\rangle$
b2b31m	$\left\langle B_{2} B_{3,1}\right\rangle$
uxbmx	$\left\langle(\boldsymbol{u} \times \boldsymbol{B})_{x}\right\rangle$

uxbmy	$\left\langle(\boldsymbol{u} \times \boldsymbol{B})_{y}\right\rangle$
uxbmz	$\left\langle(\boldsymbol{u} \times \boldsymbol{B})_{z}\right\rangle$
jxbmx	$\left\langle(\boldsymbol{j} \times \boldsymbol{B})_{x}\right\rangle$
jxbmy	$\left.\langle\boldsymbol{j} \times \boldsymbol{B})_{y}\right\rangle$
jxbmz	$\left\langle(\boldsymbol{j} \times \boldsymbol{B})_{z}\right\rangle$
examx	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle\right\|_{x}$
examy	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle\right\|_{y}$
examz	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle\right\|_{z}$
exjmx	$\left.\langle\boldsymbol{E} \times \boldsymbol{J}\rangle\right\|_{x}$
exjmy	$\left.\langle\boldsymbol{E} \times \boldsymbol{J}\rangle\right\|_{y}$
exjmz	$\left.\langle\boldsymbol{E} \times \boldsymbol{J}\rangle\right\|_{z}$
dexbmx	$\left.\langle\nabla \times \boldsymbol{E} \times \boldsymbol{B}\rangle\right\|_{x}$
dexbmy	$\left.\langle\nabla \times \boldsymbol{E} \times \boldsymbol{B}\rangle\right\|_{y}$
dexbmz	$\left.\langle\nabla \times \boldsymbol{E} \times \boldsymbol{B}\rangle\right\|_{z}$
phibmx	$\left.\langle\phi \boldsymbol{B}\rangle\right\|_{x}$
phibmy	$\left.\langle\phi \boldsymbol{B}\rangle\right\|_{y}$
phibmz	$\left.\langle\phi \boldsymbol{B}\rangle\right\|_{z}$
b2divum	$\left\langle\boldsymbol{B}{ }^{2} \nabla \cdot \boldsymbol{u}\right\rangle$
ujxbm	$\langle\boldsymbol{u} \cdot(\boldsymbol{J} \times \boldsymbol{B})\rangle$
jxbrmax	max $(\|\boldsymbol{J} \times \boldsymbol{B} / \rho\|)$
jxbr2m	$\left\langle(\boldsymbol{J} \times \boldsymbol{B} / \rho)^{2}\right\rangle$
bmxy_rms	$\sqrt{\left[\left\langle b_{x}\right\rangle_{z}(x, y)\right]^{2}+\left[\left\langle b_{y}\right\rangle_{z}(x, y)\right]^{2}+\left[\left\langle b_{z}\right\rangle_{z}(x, y)\right]^{2}}$
etasmagm	Meean of Smagorinsky resistivity
etasmagmin	Min of Smagorinsky resistivity
etasmagmax	Max of Smagorinsky resistivity
etavamax	Max of artificial resistivity $\eta \sim v_{A}$
etajmax	Max of artificial resistivity $\eta \sim J / \sqrt{\rho}$
etaj2max	Max of artificial resistivity $\eta \sim J^{2} / \rho$
etajrhomax	Max of artificial resistivity $\eta \sim J / \rho$
cosjbm	$\langle\boldsymbol{J} \cdot \boldsymbol{B} /(\|\boldsymbol{J}\|\|\boldsymbol{B}\|)\rangle$
jparallelm	Mean value of the component of J parallel to B
jperpm	Mean value of the component of J perpendicular to B
hjparallelm	Mean value of the component of $J_{\text {hyper }}$ parallel to B
hjperpm	Mean value of the component of $J_{\text {hyper }}$ perpendicular to B
brmsx	$\left\langle\boldsymbol{B}{ }^{2}\right\rangle^{1 / 2}$ for the magnetic_xaver_range
brmsz	$\left\langle\boldsymbol{B}{ }^{2}\right\rangle^{1 / 2}$ for the magnetic_zaver_range
Exmxy	$\left\langle\mathcal{E}_{x}\right\rangle_{z}$
Eymxy	$\left\langle\mathcal{E}_{y}\right\rangle_{z}$
Ezmxy	$\left\langle\mathcal{E}_{z}\right\rangle_{z}$

Module 'meanfield.f90'

qsm	$\left\langle q_{p}(\bar{B})\right\rangle$
qpm	$\left\langle q_{p}(\bar{B})\right\rangle$, in the paper referred to as $\left\langle q_{g}(\bar{B})\right\rangle$
qem	$\left\langle q_{e}(\bar{B})\right\rangle$, in
qam	$\left.\left\langle q_{a} \bar{B}\right)\right\rangle$
alpm	$\langle\alpha\rangle$
etatm	$\left\langle\eta_{\mathcal{E}}\right\rangle$
EMFmz1	$\left.\langle\mathcal{E}\rangle_{x y}\right\|_{x}$
EMFmz2	$\left.\langle\mathcal{E}\rangle_{x y}\right\|_{y}$
EMFmz3	$\left.\langle\mathcal{E}\rangle_{x y}\right\|_{z}$

EMFdotBm EMFdotB_int	$\begin{aligned} & \langle\mathcal{E} \cdot \boldsymbol{B}\rangle \\ & \int \mathcal{E} \cdot \boldsymbol{B} d V \\ & \hline \end{aligned}$
Module 'meanfield_demfdt.f90'	
EMFrms EMFmax EMFmin	$\begin{aligned} & (\langle\mathcal{E}\rangle)_{\mathrm{rms}} \\ & \max (\langle\mathcal{E}\rangle) \\ & \min (\langle\mathcal{E}\rangle) \end{aligned}$
Module 'noentropy.f90'	
$d t c$ ethm pdivum	```\deltat/[c}\mp@subsup{c}{\deltat}{}\mp@subsup{\delta}{x}{}/\operatorname{max}\mp@subsup{c}{\textrm{s}}{}]\quad\mathrm{ (time step relative to acoustic time step; see § 5.15) <\varrhoe\rangle (mean thermal [=internal] energy) \langlep\nabla\boldsymbol{u}\rangle```
Module 'particles_chemistry.f90'	
Shchm	meanparticleSherwoodnumber
Module 'particles_dust.f90'	
xpm xpmin xpmax xp2m vrelpabsm vpxm vpx2m ekinp vpxmax vpxmin npm	$\begin{aligned} & x_{\text {part }} \\ & x_{\text {part }} \\ & x_{\text {part }} \\ & x_{\text {part }}^{2} \\ & \text { Absolutevalueofmeanrelativevelocity } \\ & u_{\text {part }} \\ & u_{\text {part }}^{2} \\ & E_{\text {kin,part }} \\ & M A X\left(u_{\text {part }}\right) \\ & M I N\left(u_{\text {part }}\right) \\ & \text { meanparticlenumberdensity } \end{aligned}$
Module 'particles_dust_brdeplete.f90'	
xpm xp2m vrelpabsm vpxm $v p x 2 m$ ekinp vpxmax vpxmin npm	$\begin{aligned} & x_{\text {part }} \\ & x_{\text {part }}^{2} \\ & \text { Absolutevalueofmeanrelativevelocity } \\ & u_{\text {part }} \\ & u_{\text {part }}^{2} \\ & E_{\text {kin,part }} \\ & M A X\left(u_{\text {part }}\right) \\ & M I N\left(u_{\text {part }}\right) \\ & \text { meanparticlenumberdensity } \end{aligned}$
Module 'particles_lagrangian.f90'	
xpm xp2m vrelpabsm vpxm $v p x 2 m$ ekinp vpxmax vpxmin npm	$\begin{aligned} & x_{\text {part }} \\ & x_{\text {part }}^{2} \\ & \text { Absolutevalueofmeanrelativevelocity } \\ & u_{\text {part }} \\ & u_{\text {part }}^{2} \\ & E_{\text {kin,part }} \\ & M A X\left(u_{\text {part }}\right) \\ & M I N\left(u_{\text {part }}\right) \\ & \text { meanparticlenumberdensity } \end{aligned}$

Module 'particles_mass_swarm.f90'

mpm mpmin mpmax	$\begin{aligned} & \overline{m_{p}} \\ & \min _{j} m_{p, j} \\ & \max _{j} m_{p, j} \\ & \hline \end{aligned}$
Module 'particles_surfspec.f90'	
dtpchem	$d t_{\text {particle,chemistry }}$
Module 'polymer.f90'	
polytrm frmax	$\begin{aligned} & \left\langle\operatorname{Tr}\left[C_{i j}\right]\right\rangle \\ & \max (f(r)) \end{aligned}$
Module 'shear.f90'	
dtshear deltay	advec_shear/cdt deltay
Module 'shock.f90'	
shockmax	Max shock number
Module 'shock_highorder.f90'	
gshockmax	$\max \left\|\nabla \nu_{\text {shock }}\right\|$
Module 'solar_corona.f90'	
dtvel	Velocity driver time step
dtnewt	Radiative cooling time step
dtradloss	Radiative losses time step
dtchi2	$\delta t /\left[c_{\delta t, v} \delta x^{2} / \chi_{\max }\right] \quad$ (time step relative to time step based on heat conductivity; see \S 5.15)
dtspitzer	Spitzer heat conduction time step
mag_flux	Total vertical magnetic flux at
Module 'solid_cells_CGEO.f90'	
Module 'solid_cells_reactive.f90'	
Module 'temperature_idealgas.f90'	
TTmax	$\max (T)$
$g T$ max	$\max (\|\nabla T\|)$
TTmin	$\min (T)$
TTm	$\langle T\rangle$
TTzmask	$\langle T\rangle$ for the temp_zaver_range
TT2m	$\left\langle T^{2}\right\rangle$
TugTm	$\langle T \boldsymbol{u} \cdot \nabla T\rangle$
Trms	$\sqrt{\left\langle T^{2}\right\rangle}$
uxTm	$\left\langle u_{x} T\right\rangle$
uyTm	$\left\langle u_{y} T\right\rangle$
uzTm	$\left\langle u_{z} T\right\rangle$
gT2m	$\left\langle(\nabla T)^{2}\right\rangle$
guxgTm	$\left\langle\nabla u_{x} \cdot \nabla T\right\rangle$
guygTm	$\left\langle\nabla u_{y} \cdot \nabla T\right\rangle$
guzgTm	$\left\langle\nabla u_{z} \cdot \nabla T\right\rangle$
Tugux_uxugTm	$\left\langle T \boldsymbol{u} \cdot \nabla u_{x}+u_{x} \boldsymbol{u} \cdot \nabla T\right\rangle=\left\langle\boldsymbol{u} \cdot \nabla\left(u_{x} T\right)\right\rangle$

Tuguy_uyugTm	$\left\langle T \boldsymbol{u} \cdot \nabla u_{y}+u_{y} \boldsymbol{u} \cdot \nabla T\right\rangle=\left\langle\boldsymbol{u} \cdot \nabla\left(u_{y} T\right)\right\rangle$
Tuguz_uzugTm	$\left\langle T \boldsymbol{u} \cdot \nabla u_{z}+u_{z} \boldsymbol{u} \cdot \nabla T\right\rangle=\left\langle\boldsymbol{u} \cdot \nabla\left(u_{z} T\right)\right\rangle$
Tdxpm	$\langle T d p / d x\rangle$
Tdypm	$\langle T d p / d y\rangle$
Tdzpm	$\langle T d p / d z\rangle$
fradtop	$\left.<-K \frac{d T}{d z}\right\rangle_{\text {top }} \quad$ (top radiative flux)
fradbot	$<-K \frac{d T}{d z}>_{\text {bot }}$ (bottom radiative flux)
yHmax	DOCUMENT ME
yHmin	DOCUMENT ME
yHm	DOCUMENT ME
ethm	$\left\langle e_{\text {th }}\right\rangle=\left\langle c_{v} \rho T\right\rangle \quad$ (mean thermal energy)
eem	$\langle e\rangle=\left\langle c_{v} T\right\rangle$ (mean internal energy)
ethtot	$\int_{V} \varrho e d V \quad$ (total thermal energy)
ssm	$\stackrel{v}{S}$
thcool	$\tau_{\text {cool }}$
ppm	\bar{P}
csm	$\bar{c}_{\text {s }}$
dtc	$\begin{aligned} & \delta t /\left[c_{\delta t} \delta_{x} / \max c_{\mathrm{s}}\right] \quad \text { (time step relative to acoustic time step; } \\ & \text { see } \S[5.15) \end{aligned}$
dtchi	$\delta t /\left[c_{\delta t, \mathrm{v}} \delta x^{2} / \chi_{\max }\right]$ (time step relative to time step based on heat conductivity; see \S 5.15)
Emzmask	$\left\langle n^{2} \exp -\left(\log T-\log T_{0}\right)^{2} /(\delta \log T)^{2}\right\rangle$ the emiss_zaver_range
	Module 'temperature_ionization.f90'
TTmax	$\max (T)$
TTmin	$\min (T)$
TTm	$\langle T\rangle$
ethm	$\left\langle e_{\text {th }}\right\rangle=\left\langle c_{v} \rho T\right\rangle \quad$ (mean thermal energy)
eem	$\langle e\rangle$ (mean internal energy)
ppm	$\langle p\rangle$
	Module 'testfield_axisym.f90'
alpPERP	α_{\perp}
alpPARA	α_{\perp}
gam	γ
betPERP	β_{\perp}
betPARA	β_{\perp}
del	δ
kapPERP	κ_{\perp}
kapPARA	κ_{\perp}
$m u$	μ
alpPERPz	$\alpha_{\perp}(z)$
alpPARAz	$\alpha_{\perp}(z)$
gamz	$\gamma(z)$
betPERPz	$\beta_{\perp}(z)$
betPARAz	$\beta_{\perp}(z)$
delz	$\delta(z)$
kapPERPz	$\kappa_{\perp}(z)$
kapPARAz	$\kappa_{\perp}(z)$
muz	$\mu(z)$

bx1pt	b_{x}^{1}
bx2pt	b_{x}^{2}
$b x 3 p t$	b_{x}^{3}
b1rms	$\left\langle b_{1}^{2}\right\rangle^{1 / 2}$
$b 2 r m s$	$\left\langle b_{2}^{2}\right\rangle^{1 / 2}$
$b 3 r m s$	$\left\langle b_{3}^{2}\right\rangle^{1 / 2}$

Module 'testfield_axisym2.f90'

alpPERP	α_{\perp}
alpPARA	α_{\perp}
gam	γ
betPERP	β_{\perp}
betPARA	β_{\perp}
del	δ
kapPERP	κ_{\perp}
kapPARA	κ_{\perp}
mu	μ
bx1pt	b_{x}^{1}
bx2pt	b_{x}^{2}
bx3pt	b_{x}^{3}
b1rms	$\left\langle b_{1}^{2}\right\rangle^{1 / 2}$
b2rms	$\left\langle b_{2}^{2}\right\rangle^{1 / 2}$
b3rms	$\left\langle b_{3}^{2}\right\rangle^{1 / 2}$

Module 'testfield_axisym4.f90'

alpPERP	α_{\perp}
alpPARA	α_{\perp}
gam	γ
betPERP	β_{\perp}
betPERP2	$\beta_{\perp}^{(2)}$
betPARA	β_{\perp}
del	δ
del2	$\delta^{(2)}$
kapPERP	κ_{\perp}
kapPERP2	$\kappa_{\perp}^{(2)}$
kapPARA	κ_{\perp}
mu	μ
mu2	$\mu^{(2)}$
alpPERPz	$\alpha_{\perp}(z)$
alpPARAz	$\alpha_{\perp}(z)$
gamz	$\gamma^{\prime}(z)$
betPERPz	$\beta_{\perp}(z)$
betPARAz	$\beta_{\perp}(z)$
delz	$\delta(z)$
kapPERPz	$\kappa_{\perp}(z)$
kapPARAz	$\kappa_{\perp}(z)$
muz	$\mu(z)$
bx1pt	b_{x}^{1}
bx2pt	b_{x}^{2}

bx3pt	b_{x}^{3}
b1rms	$\left\langle b_{1}^{2}\right\rangle^{1 / 2}$
b2rms	$\left\langle b_{2}^{2}\right\rangle^{1 / 2}$
b3rms	$\left\langle b_{3}^{2}\right\rangle^{1 / 2}$
	Module 'testfield_compress_z.f90'
alp11	α_{11}
alp21	α_{21}
alp31	α_{31}
alp12	α_{12}
alp22	α_{22}
alp32	α_{32}
eta11	$\eta_{11} k$
eta21	$\eta_{21} k$
eta12	$\eta_{12} k$
eta22	$\eta_{22} k$
alpK	α^{K}
alpM	α^{M}
alpMK	$\alpha^{M K}$
phi11	ϕ_{11}
phi21	ϕ_{21}
phi12	ϕ_{12}
phi22	ϕ_{22}
phi32	ϕ_{32}
psi11	$\psi_{11} k$
psi21	$\psi_{21} k$
psi12	$\psi_{12} k$
psi22	$\psi_{22} k$
phiK	ϕ^{K}
phiM	ϕ^{M}
phiMK	$\phi^{M K}$
alp11cc	$\alpha_{11} \cos ^{2} k z$
alp21sc	$\alpha_{21} \sin k z \cos k z$
alp12cs	$\alpha_{12} \cos k z \sin k z_{\text {alp22ss }}^{\text {eta11cc }}$
eta21sc	$\alpha_{22} \sin ^{2} k z$
eta12cs	$\eta_{11} \cos ^{2} k z$
eta22ss	$\eta_{21} \sin ^{2} k z \cos k z$
s2kzDFm	$\eta_{12} \cos ^{2} z z \sin k z$
M11	$\eta_{22} \sin ^{2} k z$
M22	$\left\langle\sin ^{2} 2 k z \nabla \cdot F\right\rangle$
M33	\mathcal{M}_{11}
M11cc	\mathcal{M}_{22}
M11ss	\mathcal{M}_{33}
M22cc	$\mathcal{M}_{11} \cos ^{2} k z$
M22ss	$\mathcal{M}_{11} \sin { }^{2} k z$
M12cs	$\mathcal{M}_{22} \cos ^{2} k z$
bx11pt	$\mathcal{M}_{22} \sin ^{2} k z$
bx21pt	$\mathcal{M}_{12} \cos ^{2} k z \sin k z$
b_{x}^{11}	
b_{x}^{21}	

$b x 12 p t$	b_{x}^{12}
$b x 22 p t$	b_{x}^{22}
$b x 0 p t$	b_{x}^{0}
by11pt	b_{y}^{11}
by21pt	b_{y}^{21}
by12pt	b_{y}^{12}
by22pt	b_{y}^{22}
by0pt	b_{y}^{0}
u11rms	$\left\langle u_{11}^{2}\right\rangle^{1 / 2}$
u21rms	$\left\langle u_{21}^{2}\right\rangle^{1 / 2}$
u12rms	$\left\langle u_{12}^{2}\right\rangle^{1 / 2}$
u22rms	$\left\langle u_{22}^{2}\right\rangle^{1 / 2}$
j11rms	$\left\langle j_{11}^{2}\right\rangle^{1 / 2}$
b11rms	$\left\langle b_{11}^{2}\right\rangle^{1 / 2}$
b21rms	$\left\langle b_{21}^{2}\right\rangle^{1 / 2}$
b12rms	$\left\langle b_{12}^{2}\right\rangle^{1 / 2}$
b22rms	$\left\langle b_{22}^{2}\right\rangle^{1 / 2}$
ux0m	$\left\langle u_{0_{x}}\right\rangle$
uy0m	$\left\langle u_{0_{y}}\right\rangle$
ux11m	$\left\langle u_{11_{x}}\right\rangle$
uy11m	$\left\langle u_{11_{y}}\right\rangle$
u0rms	$\left\langle u_{0}^{2}\right\rangle^{1 / 2}$
b0rms	$\left\langle b_{0}^{2}\right\rangle^{1 / 2}$
jb0m	$\left\langle j b_{0}\right\rangle$
E11rms	$\left\langle\mathcal{E}_{11}^{2}\right\rangle^{1 / 2}$
E21rms	$\left\langle\mathcal{E}_{21}^{2}\right\rangle^{1 / 2}$
E12rms	$\left\langle\mathcal{E}_{12}^{2}\right\rangle^{1 / 2}$
E22rms	$\left\langle\mathcal{E}_{22}^{2}\right\rangle^{1 / 2}$
E0rms	$\left\langle\mathcal{E}_{0}^{2}\right\rangle^{1 / 2}$
Ex11pt	\mathcal{E}_{x}^{11}
Ex21pt	\mathcal{E}_{x}^{21}
Ex12pt	\mathcal{E}_{x}^{12}
Ex22pt	\mathcal{E}_{x}^{22}
Ex0pt	\mathcal{E}_{x}^{0}
Ey11pt	\mathcal{E}_{y}^{11}
Ey21pt	\mathcal{E}_{y}^{21}
Ey12pt	\mathcal{E}_{y}^{12}
Ey22pt	\mathcal{E}_{y}^{22}
Ey0pt	\mathcal{E}_{y}^{0}
bamp	bamp
E111z	\mathcal{E}_{1}^{11}
E211z	\mathcal{E}_{2}^{11}
$E 311 z$	\mathcal{E}_{3}^{11}
E121z	\mathcal{E}_{1}^{21}
E221z	\mathcal{E}_{2}^{21}
E321z	\mathcal{E}_{3}^{21}
E112z	\mathcal{E}_{1}^{12}
E212z	\mathcal{E}_{2}^{12}

E312z	\mathcal{E}_{3}^{12}
E122z	\mathcal{E}_{1}^{22}
E222z	\mathcal{E}_{2}^{22}
E322z	\mathcal{E}_{3}^{22}
E10z	\mathcal{E}_{1}^{0}
E20z	\mathcal{E}^{0}
E30z	\mathcal{E}_{3}^{0}
EBpq	$\mathcal{E} \cdot \boldsymbol{B}^{p q}$
E0Um	$\mathcal{E}^{0} \cdot \boldsymbol{U}$
E0Wm	$\mathcal{E}^{0} \cdot \boldsymbol{W}$
bx0mz	$\left\langle b_{x}\right\rangle_{x y}$
by0mz	$\left\langle b_{y}\right\rangle_{x y}$
bz0mz	$\left\langle b_{z}\right\rangle_{x y}$
M11z	$\left\langle\mathcal{M}_{11}\right\rangle_{x y}$
M22z	$\left\langle\mathcal{M}_{22}\right\rangle_{x y}$
M33z	$\left\langle\mathcal{M}_{33}\right\rangle_{x y}$
E11xy	$E_{11 x y}$
E12xy	$E_{12 x y}$
E13xy	$E_{13 x y}$
E21xy	$E_{21 x y}$
E22xy	$E_{22 x y}$
E23xy	$E_{23 x y}$
E31xy	$E_{31 x y}$
E32xy	$E_{32 x y}$
E33xy	$E_{33 x y}$
E41xy	$E_{41 x y}$
E42xy	$E_{42 x y}$
E43xy	$E_{43 x y}$
E51xy	$E_{51 x y}$
E52xy	$E_{52 x y}$
E53xy	$E_{53 x y}$
E61xy	$E_{61 x y}$
E62xy	$E_{62 x y}$
E63xy	$E_{63 x y}$
E71xy	$E_{71 x y}$
E72xy	$E_{72 x y}$
E73xy	$E_{73 x y}$
E81xy	E_{81}
E82xy	E_{82}
E83xy	E_{83}
E91xy	E_{91}
E92xy	E_{92}
E93xy	E_{93}
a11xy	α_{11}
a12xy	α_{12}
a13xy	α_{13}
a21xy	α_{21}
a22xy	α_{22}

a23xy	α_{23}
a31xy	α_{31}
a32xy	α_{32}
a33xy	α_{33}
b111xy	$=111$
b121xy	$=121$
b131xy	$=131$
b211xy	$=211$
$b 221 x y$	$=221$
$b 231 x y$	
$b 311 x y$	$=231$
$b 321 x y$	$=311$
$b 331 x y$	$=321$
$b 112 x y$	$=112$
$b 122 x y$	$=132$
$b 132 x y$	$=212$
$b 212 x y$	$=222$
$b 222 x y$	$=312$
$b 232 x y$	$=322$
$b 312 x y$	

Module 'testfield_nonlin_z.f90'

alp11	α_{11}
alp21	α_{21}
alp31	α_{31}
alp12	α_{12}
alp22	α_{22}
alp32	α_{32}
eta11	$\eta_{11} k$
eta21	$\eta_{21} k$
eta12	$\eta_{12} k$
eta22	$\eta_{22} k$
alpK	α^{K}
alpM	α^{M}
alpMK	$\alpha^{M K}$
phi11	ϕ_{11}
phi21	ϕ_{21}
phi12	ϕ_{12}
phi22	ϕ_{22}
phi32	ϕ_{32}
psi11	$\psi_{11} k$
psi21	$\psi_{21} k$
psi12	$\psi_{12} k$
psi22	$\psi_{22} k$
phiK	ϕ^{K}
phiM	ϕ^{M}
phiMK	$\phi^{M K}$
alp11cc	$\alpha_{11} \cos ^{2} k z$

alp21sc	$\alpha_{21} \sin k z \cos k z$
alp12cs	$\alpha_{12} \cos k z \sin k z$
alp22ss	$\alpha_{22} \sin ^{2} k z$
eta11cc	$\eta_{11} \cos ^{2} k z$
eta21sc	$\eta_{21} \sin k z \cos k z$
eta12cs	$\eta_{12} \cos k z \sin k z$
eta22ss	$\eta_{22} \sin ^{2} k z$
s2kzDFm	$\langle\sin 2 k z \nabla \cdot F\rangle$
M11	\mathcal{M}_{11}
M22	\mathcal{M}_{22}
M33	\mathcal{M}_{33}
M11cc	$\mathcal{M}_{11} \cos ^{2} k z$
M11ss	$\mathcal{M}_{11} \sin ^{2} k z$
M22cc	$\mathcal{M}_{22} \cos ^{2} k z$
M22ss	$\mathcal{M}_{22} \sin ^{2} k z$
M12cs	$\mathcal{M}_{12} \cos k z \sin k z$
bx11pt	b_{x}^{11}
bx21pt	b_{x}^{21}
bx12pt	b_{x}^{12}
bx22pt	b_{x}^{22}
bx0pt	b_{x}^{0}
by11pt	b_{y}^{11}
by21pt	b_{y}^{21}
by12pt	b_{y}^{12}
by22pt	b_{y}^{22}
by0pt	b_{y}^{0}
u11rms	$\left\langle u_{11}^{2}\right\rangle^{1 / 2}$
u21rms	$\left\langle u_{21}^{2}\right\rangle^{1 / 2}$
u12rms	$\left\langle u_{12}^{2}\right\rangle^{1 / 2}$
u22rms	$\left\langle u_{22}^{2}\right\rangle^{1 / 2}$
j11rms	$\left\langle j_{11}^{2}\right\rangle^{1 / 2}$
b11rms	$\left\langle b_{11}^{2}\right\rangle^{1 / 2}$
b21rms	$\left\langle b_{21}^{2}\right\rangle^{1 / 2}$
b12rms	$\left\langle b_{12}^{2}\right\rangle^{1 / 2}$
b22rms	$\left\langle b_{22}^{2}\right\rangle^{1 / 2}$
ux0m	$\left\langle u_{0_{x}}\right\rangle$
uy0m	$\left\langle u_{0_{y}}\right\rangle$
ux11m	$\left\langle u_{11_{x}}\right\rangle$
uy11m	$\left\langle u_{11_{y}}\right\rangle$
u0rms	$\left\langle u_{0}^{2}\right\rangle^{1 / 2}$
b0rms	$\left\langle b_{0}^{2}\right\rangle^{1 / 2}$
jb0m	$\left\langle j b_{0}\right\rangle$
E11rms	$\left\langle\mathcal{E}_{11}^{2}\right\rangle^{1 / 2}$
E21rms	$\left\langle\mathcal{E}_{21}^{2}\right\rangle^{1 / 2}$
E12rms	$\left\langle\mathcal{E}_{12}^{2}\right\rangle^{1 / 2}$
E22rms	$\left\langle\mathcal{E}_{22}^{2}\right\rangle^{1 / 2}$
E0rms	$\left\langle\mathcal{E}_{0}^{2}\right\rangle^{1 / 2}$
Ex11pt	\mathcal{E}_{x}^{11}

Ex21pt	\mathcal{E}_{x}^{21}
Ex12pt	\mathcal{E}_{x}^{12}
Ex22pt	\mathcal{E}_{x}^{22}
Ex0pt	\mathcal{E}_{x}^{0}
Ey11pt	\mathcal{E}_{y}^{11}
Ey21pt	\mathcal{E}_{y}^{21}
Ey12pt	\mathcal{E}_{y}^{12}
Ey22pt	\mathcal{E}_{y}^{22}
Ey0pt	\mathcal{E}^{0}
bamp	bamp
E111z	\mathcal{E}_{1}^{11}
E211z	\mathcal{E}_{2}^{11}
E311z	\mathcal{E}_{3}^{11}
E121z	\mathcal{E}_{1}^{21}
E221z	\mathcal{E}_{2}^{21}
E321z	\mathcal{E}_{3}^{21}
E112z	\mathcal{E}_{1}^{12}
E212z	\mathcal{E}_{2}^{12}
E312z	\mathcal{E}_{3}^{12}
E122z	\mathcal{E}_{1}^{22}
E222z	\mathcal{E}_{2}^{22}
E322z	\mathcal{E}_{3}^{22}
E10z	\mathcal{E}_{1}^{0}
E20z	\mathcal{E}_{2}^{0}
E30z	\mathcal{E}_{3}^{0}
EBpq	$\mathcal{E} \cdot \boldsymbol{B}^{p q}$
E0Um	$\mathcal{E}^{0} \cdot \boldsymbol{U}$
E0Wm	$\mathcal{E}^{0} \cdot \boldsymbol{W}$
bx0mz	$\left\langle b_{x}\right\rangle_{x y}$
by0mz	$\left\langle b_{y}\right\rangle_{x y}$
bz0mz	$\left\langle b_{z}\right\rangle_{x y}$
M11z	$\left\langle\mathcal{M}_{11}\right\rangle_{x y}$
M22z	$\left\langle\mathcal{M}_{22}\right\rangle_{\text {xy }}$
M33z	$\left\langle\mathcal{M}_{33}\right\rangle_{\text {xy }}$

Module 'testfield_x.f90'

alp11	α_{11}
alp21	α_{21}
alp31	α_{31}
alp12	α_{12}
alp22	α_{22}
alp32	α_{32}
eta11	$\eta_{11} k$
eta21	$\eta_{21} k$
eta12	$\eta_{12} k$
eta22	$\eta_{22} k$
alp11cc	$\alpha_{11} \cos ^{2} k x$
alp21sc	$\alpha_{21} \sin ^{2} k x \cos k x$
alp12cs	$\alpha_{12} \cos ^{2} x \sin k x$
alp22ss	$\alpha_{22} \sin ^{2} k x$

eta11cc	$\eta_{11} \cos ^{2} k x$
eta21sc	$\eta_{21} \sin k x \cos k x$
eta12cs	$\eta_{12} \cos k x \sin k x$
eta22ss	$\eta_{22} \sin ^{2} k x$
alp11_x	$\alpha_{11} x$
alp21_x	$\alpha_{21} x$
alp12_x	$\alpha_{12} x$
alp22_x	$\alpha_{22} x$
eta11_x	$\eta_{11} k x$
eta21_x	$\eta_{21} k x$
eta12_x	$\eta_{12} k x$
eta22_x	$\eta_{22} k x$
alp11×2	$\alpha_{11} x^{2}$
alp21_x2	$\alpha_{21} x^{2}$
alp12_x2	$\alpha_{12} x^{2}$
alp22_x2	$\alpha_{22} x^{2}$
eta11_x2	$\eta_{11} k x^{2}$
eta21x2	$\eta_{21} k x^{2}$
eta12_x2	$\eta_{12} k x^{2}$
eta22_x2	$\eta_{22} k x^{2}$
b11rms	$\left\langle b_{11}^{2}\right\rangle^{1 / 2}$
b21rms	$\left\langle b_{21}^{2}\right\rangle^{1 / 2}$
b12rms	$\left\langle b_{12}^{2}\right\rangle^{1 / 2}$
b22rms	$\left\langle b_{22}^{2}\right\rangle^{1 / 2}$
b0rms	$\left\langle b_{0}^{2}\right\rangle^{1 / 2}$
E11rms	$\left\langle\mathcal{E}_{11}^{2}\right\rangle^{1 / 2}$
E21rms	$\left\langle\mathcal{E}_{21}^{2}\right\rangle^{1 / 2}$
E12rms	$\left\langle\mathcal{E}_{12}^{2}\right\rangle^{1 / 2}$
E22rms	$\left\langle\mathcal{E}_{22}^{2}\right\rangle^{1 / 2}$
E0rms	$\left\langle\mathcal{E}_{0}^{2}\right\rangle^{1 / 2}$
E111z	\mathcal{E}_{1}^{11}
$E 211 z$	\mathcal{E}_{2}^{11}
E311z	\mathcal{E}_{3}^{11}
E121z	\mathcal{E}_{1}^{21}
E221z	\mathcal{E}_{2}^{21}
E321z	\mathcal{E}_{3}^{21}
E112z	\mathcal{E}_{1}^{12}
E212z	\mathcal{E}_{2}^{12}
E312z	\mathcal{E}_{3}^{12}
E122z	\mathcal{E}_{1}^{22}
E222z	\mathcal{E}_{2}^{22}
E322z	\mathcal{E}_{3}^{22}
$E 10$ z	\mathcal{E}_{1}^{0}
E20z	\mathcal{E}_{2}^{0}
E30z	\mathcal{E}_{3}^{0}
EBpq	$\mathcal{E} \cdot \boldsymbol{B}^{p q}$
bx0mz	$\left\langle b_{x}\right\rangle_{x y}$
by0mz	$\left\langle b_{y}\right\rangle_{x y}$

bz0mz	$\left\langle b_{z}\right\rangle_{x y}$
alp11x	$\alpha_{11}(x, t)$
$\operatorname{alp} 21 \mathbf{x}$	$\alpha_{21}(x, t)$
$\operatorname{alp} 12 \mathbf{x}$	$\alpha_{12}(x, t)$
alp22x	$\alpha_{22}(x, t)$
eta11x	$\eta_{11}(x, t)$
eta21x	$\eta_{21}(x, t)$
eta12x	$\eta_{12}(x, t)$
eta22x	$\eta_{22}(x, t)$

Module 'testfield_xz.f90'

$E 111 z$	\mathcal{E}_{1}^{11}
$E 211 z$	\mathcal{E}_{2}^{11}
$E 311 z$	\mathcal{E}_{3}^{11}
$E 121 z$	\mathcal{E}_{1}^{21}
$E 221 z$	\mathcal{E}_{2}^{21}
$E 321 z$	\mathcal{E}_{3}^{21}
$\operatorname{alp} 11$	α_{11}
$\operatorname{alp} 21$	α_{21}
eta11	$\eta_{113} k$
eta21	$\eta_{213} k$
b11rms	$\left\langle b_{11}^{2}\right\rangle$
b21rms	$\left\langle b_{21}^{2}\right\rangle$

Module 'testfield_z.f90'

alp11	α_{11}
alp21	α_{21}
alp31	α_{31}
alp12	α_{12}
alp22	α_{22}
alp32	α_{32}
alp13	α_{13}
alp23	α_{23}
eta11	$\eta_{113} k$ or $\eta_{11} k$ if leta_rank2=T
eta21	$\eta_{213} k$ or $\eta_{21} k$ if leta_rank2=T
eta31	$\eta_{313} k$
eta12	$\eta_{123} k$ or $\eta_{12} k$ if leta_rank2=T
eta22	$\eta_{223} k$ or $\eta_{22} k$ if leta_rank2=T
eta32	$\eta_{323} k$
alp11cc	$\alpha_{11} \cos { }^{2} k z$
alp21sc	$\alpha_{21} \sin k z \cos k z$
alp12cs	$\alpha_{12} \cos k z \sin k z$
alp22ss	$\alpha_{22} \sin { }^{2} k z$
eta11cc	$\eta_{11} \cos { }^{2} k z$
eta21sc	$\eta_{21} \sin k z \cos k z_{\text {eta12cs }}^{\text {eta22ss }}$
$\eta_{12} \cos k z \sin k z$	
s2kzDFm	$\eta_{22} \sin ^{2} k z$
M11	$\langle\sin 2 k z \nabla \cdot F\rangle_{\text {M22 }} \quad \mathcal{M}_{11}$
\mathcal{M}_{22}	

M33	\mathcal{M}_{33}
M11cc	$\mathcal{M}_{11} \cos ^{2} k z$
M11ss	$\mathcal{M}_{11} \sin ^{2} k z$
M22cc	$\mathcal{M}_{22} \cos ^{2} k z$
M22ss	$\mathcal{M}_{22} \sin ^{2} k z$
M12cs	$\mathcal{M}_{12} \cos k z \sin k z$
$b x 11 p t$	b_{x}^{11}
$b x 21 p t$	b_{x}^{21}
$b x 12 p t$	b_{x}^{12}
$b x 22 p t$	b_{x}^{22}
bx0pt	b_{x}^{0}
by11pt	b_{y}^{11}
by21pt	b_{y}^{21}
by12pt	b_{y}^{12}
by22pt	b_{y}^{22}
by0pt	b_{y}^{0}
b11rms	$\left\langle b_{11}^{2}\right\rangle^{1 / 2}$
b21rms	$\left\langle b_{21}^{2}\right\rangle^{1 / 2}$
b12rms	$\left\langle b_{12}^{2}\right\rangle^{1 / 2}$
b22rms	$\left\langle b_{22}^{2}\right\rangle^{1 / 2}$
b0rms	$\left\langle b_{0}^{2}\right\rangle^{1 / 2}$
jb0m	$\left\langle j b_{0}\right\rangle$
E11rms	$\left\langle\mathcal{E}_{11}^{2}\right\rangle^{1 / 2}$
E21rms	$\left\langle\mathcal{E}_{21}^{2}\right\rangle^{1 / 2}$
E12rms	$\left\langle\mathcal{E}_{12}^{2}\right\rangle^{1 / 2}$
E22rms	$\left\langle\mathcal{E}_{22}^{2}\right\rangle^{1 / 2}$
E0rms	$\left\langle\mathcal{E}_{0}^{2}\right\rangle^{1 / 2}$
Ex11pt	\mathcal{E}_{x}^{11}
Ex21pt	\mathcal{E}_{x}^{21}
Ex12pt	\mathcal{E}_{x}^{12}
Ex22pt	\mathcal{E}_{x}^{22}
Ex0pt	\mathcal{E}_{x}^{0}
Ey11pt	\mathcal{E}_{y}^{11}
Ey21pt	\mathcal{E}_{y}^{21}
Ey12pt	\mathcal{E}_{y}^{12}
Ey22pt	\mathcal{E}_{y}^{22}
Ey0pt	\mathcal{E}_{y}^{0}
bamp	bamp
alp11z	$\alpha_{11}(z, t)$
alp21z	$\alpha_{21}(z, t)$
alp12z	$\alpha_{12}(z, t)$
alp22z	$\alpha_{22}(z, t)$
alp13z	$\alpha_{13}(z, t)$
alp23z	$\alpha_{23}(z, t)$
eta11z	$\eta_{11}(z, t)$
eta21z	$\eta_{21}(z, t)$
eta12z	$\eta_{12}(z, t)$
eta22z	$\eta_{22}(z, t)$

$E 111 z$	\mathcal{E}_{1}^{11}
$E 211 z$	\mathcal{E}_{2}^{11}
$E 311 z$	\mathcal{E}_{3}^{11}
$E 121 z$	\mathcal{E}_{1}^{21}
$E 221 z$	\mathcal{E}_{2}^{21}
$E 321 z$	\mathcal{E}_{3}^{21}
$E 112 z$	\mathcal{E}_{1}^{12}
$E 212 z$	\mathcal{E}_{2}^{12}
$E 312 z$	\mathcal{E}_{3}^{12}
$E 122 z$	\mathcal{E}_{1}^{22}
$E 222 z$	\mathcal{E}_{2}^{22}
$E 322 z$	\mathcal{E}_{3}^{22}
$E 10 z$	\mathcal{E}_{1}^{0}
$E 20 z$	\mathcal{E}_{2}^{0}
$E 30 z$	\mathcal{E}_{3}^{0}
$E B p q$	$\mathcal{E}^{0} \cdot \boldsymbol{B}^{p q}$
$E 0 U m$	$\mathcal{E}^{0} \cdot \boldsymbol{U}$
$E 0 W m$	$\mathcal{E}^{0} \cdot \boldsymbol{W}$
$b x 0 m z$	$\left\langle b_{x}\right\rangle_{x y}$
$b y 0 m z$	$\left\langle b_{y}\right\rangle_{x y}$
$b z 0 m z$	$\left\langle b_{z}\right\rangle_{x y}$
$M 11 z$	$\left\langle\mathcal{M}_{11}\right\rangle_{x y}$
$M 22 z$	$\left\langle\mathcal{M}_{22}\right\rangle_{x y}$
$M 33 z$	$\left\langle\mathcal{M}_{33}\right\rangle_{x y}$

Module 'testflow_z.f90'

gal	GAL-coefficients, couple \bar{F} and \bar{U}
aklam	AKA- λ-tensor, couples \bar{F} and $\bar{W}=\nabla \times \bar{U}$
gamma	γ-vector, couples \bar{F} and $\nabla \cdot \bar{U}$
nu	ν-tensor, couples \bar{F} and $\partial^{2} \bar{U} / \partial z^{2}$
zeta	ζ-vector, couples \bar{F} and $\bar{G}_{z}=\nabla_{z} \bar{H}$
xi	ξ-vector, couples \bar{F} and $\partial^{2} \bar{H} / \partial z^{2}$
aklam Q	aklam ${ }^{Q}$-vector, couples \bar{Q} and \bar{W}
gammaQ	γ^{Q}-scalar, couples \bar{Q} and $\nabla \cdot \bar{U}=d U_{z} / d z$
nuQ	ν^{Q}-vector, couples \bar{Q} and $\partial^{2} \bar{U} / \partial z^{2}$
zetaQ	ζ^{Q}-scalar, couples \bar{Q} and \bar{G}_{z}
xiQ	ξ^{Q}-scalar, couples \bar{Q} and $\partial^{2} \bar{H} / \partial z^{2}$
	$\alpha_{K, i j} \gamma_{i} \nu_{i j} \zeta_{i} \xi_{i} \nu_{i}^{Q}$ aklam $\mathcal{F}_{i}^{p q} \mathcal{Q}^{p q}\left\langle u^{p q 2}\right\rangle\left\langle h^{p q 2}\right\rangle$
ux0mz	$\left\langle u_{x}\right\rangle_{x y}$
uy0mz	$\left\langle u_{y}\right\rangle_{x y}$
uz0mz	$\left\langle u_{z}\right\rangle_{x y}$

Module 'testperturb.f90’

alp11	α_{11}
alp21	α_{21}
alp31	α_{31}
alp12	α_{12}
alp22	α_{22}
alp32	α_{32}
eta11	$\eta_{113} k$

eta21	$\eta_{213} k$
eta31	$\eta_{313} k$
eta12	$\eta_{123} k$
eta22	$\eta_{223} k$
eta32	$\eta_{323} k$

Module 'testscalar.f90'

gam11	$\gamma_{1}^{(1)}$
gam12	$\gamma_{2}^{(1)}$
gam13	$\gamma_{3}^{(1)}$
gam21	$\gamma_{1}^{(2)}$
gam22	$\gamma_{2}^{(2)}$
gam23	${ }^{(2)}$
gam23	$\gamma_{3}(3)$
gam31	γ_{1}
gam32	$\gamma_{2}^{(3)}$
gam33	$\gamma_{3}^{(3)}$
kap11	κ_{11}
kap21	κ_{21}
kap31	κ_{31}
kap12	κ_{12}
kap22	κ_{22}
kap32	κ_{32}
kap13	κ_{13}
kap23	κ_{23}
kap33	κ_{33}
gam11z	$\gamma_{1}^{(1)}(z, t)$
gam12z	$\gamma_{2}^{(1)}(z, t)$
gam13z	$\gamma_{3}^{(1)}(z, t)$
gam21z	$\gamma_{1}^{(2)}(z, t)$
gam22z	$\gamma_{2}^{(2)}(z, t)$
gam23z	$\gamma_{3}^{(2)}(z, t)$
gam31z	$\gamma_{1}^{(3)}(z, t)$
gam32z	$\gamma_{2}^{(3)}(z, t)$
gam33z	$\gamma_{3}^{(3)}(z, t)$
kap11z	$\kappa_{11}(z, t)$
kap21z	$\kappa_{21}(z, t)$
kap31z	$\kappa_{31}(z, t)$
kap12z	$\kappa_{12}(z, t)$
kap22z	$\kappa_{22}(z, t)$
kap32z	$\kappa_{32}(z, t)$
kap13z	$\kappa_{13}(z, t)$
kap23z	$\kappa_{23}(z, t)$
kap33z	$\kappa_{33}(z, t)$
mgam33	$\tilde{\gamma}_{33}$
mkap33	$\tilde{\kappa}_{33}$
ngam33	$\hat{\gamma}_{33}$
nkap33	$\hat{\kappa}_{33}$
c1rms	$\left\langle c_{1}^{2}\right\rangle^{1 / 2}$

$\boldsymbol{c} 2 \mathrm{rms}$	$\left\langle c_{c}^{2}\right\rangle^{1 / 2}$
$\boldsymbol{c} 3 \mathrm{rms}$	$\left\langle c_{3}^{2}\right\rangle^{1 / 2}$
$\boldsymbol{c} 4 r m s$	$\left\langle c_{4}^{2}\right\rangle^{1 / 2}$
$\boldsymbol{c} 5 \mathrm{rms}$	$\left\langle c_{5}^{2}\right\rangle^{1 / 2}$
$\boldsymbol{c} 6 \mathrm{rms}$	$\left\langle c_{c}^{2}\right\rangle^{1 / 2}$
$\boldsymbol{c} 1 p t$	c^{1}
$\boldsymbol{c} 2 p t$	c^{2}
$\boldsymbol{c} 3 p t$	c^{3}
$\boldsymbol{c} 4 p t$	c^{4}
$\boldsymbol{c} 5 p t$	c^{5}
$\boldsymbol{c} 6 p t$	c^{6}
F11z	\mathcal{F}_{1}^{1}
F21z	\mathcal{F}_{2}^{1}
F31z	\mathcal{F}_{3}^{1}
F12z	\mathcal{F}_{1}^{2}
F22z	\mathcal{F}_{2}^{2}
F32z	\mathcal{F}_{3}^{2}

Module 'testscalar_axisym.f90'

muc1	$\mu^{(c 1)}$	
muc2	$\mu^{(c 2)}$	
gamc	$\gamma^{(c)}$	
kapcPERP1	$\kappa_{\perp}^{(1)}$	
kapcPERP2	$\kappa_{\perp}^{(2)}$	
kapcPARA	$\kappa_{\\|}$	
mucz	$\mu^{(c)}(z, t)$	
gamcz	$\gamma^{(c)}(z, t)$	
kapcPERPz	$\kappa_{\perp}(z, t)$	
kapcPARAz	$\kappa_{\\|}(z, t)$	
gam11	$\gamma_{1}^{(1)}$	
gam12	$\gamma_{2}^{(1)}$	
gam13	$\gamma_{3}^{(1)}$	
gam21	$\gamma_{1}^{(2)}$	
gam22	$\gamma_{2}^{(2)}$	
gam23	$\gamma_{3}^{(2)}$	
gam31	$\gamma_{1}^{(3)}$	
gam32	$\gamma_{2}^{(3)}$	
gam33	$\gamma_{3}^{(3)}$	
kap11	κ_{11}	
kap21	κ_{21}	
kap31	κ_{31}	
kap12	κ_{12}	
kap22	κ_{22}	
kap32	κ_{32}	
kap13	κ_{13}	
kap23	κ_{23}	
kap33	κ_{33}	
gam11z	$\gamma_{1}^{(1)}(z, t)$	

gam12z	$\gamma_{2}^{(1)}(z, t)$
gam13z	$\gamma_{3}^{(1)}(z, t)$
gam21z	$\gamma_{1}^{(2)}(z, t)$
gam22z	$\gamma_{2}^{(2)}(z, t)$
gam23z	$\gamma_{3}^{(2)}(z, t)$
gam31z	$\gamma_{1}^{(3)}(z, t)$
gam32z	$\gamma_{2}^{(3)}(z, t)$
gam33z	$\gamma_{3}^{(3)}(z, t)$
gam3z	$\gamma^{(c)}(z, t)$
kap11z	$\kappa_{11}(z, t)$
kap21z	$\kappa_{21}(z, t)$
kap31z	$\kappa_{31}(z, t)$
kap12z	$\kappa_{12}(z, t)$
kap22z	$\kappa_{22}(z, t)$
kap32z	$\kappa_{32}(z, t)$
kap13z	$\kappa_{13}(z, t)$
kap23z	$\kappa_{23}(z, t)$
kap33z	$\kappa_{33}(z, t)$
mgam33	$\tilde{\gamma}_{33}$
mkap33	$\tilde{\kappa}_{33}$
ngam33	$\hat{\gamma}_{33}$
nkap33	$\hat{\kappa}_{33}$
c1rms	$\left\langle c_{1}^{2}\right\rangle^{1 / 2}$
c2rms	$\left\langle c_{2}^{2}\right\rangle^{1 / 2}$
c3rms	$\left\langle c_{3}^{2}\right\rangle^{1 / 2}$
c4rms	$\left\langle c_{4}^{2}\right\rangle^{1 / 2}$
c5rms	$\left\langle c_{5}^{2}\right\rangle^{1 / 2}$
c6rms	$\left\langle c_{6}^{2}\right\rangle^{1 / 2}$
c1pt	c^{1}
c2pt	c^{2}
c3pt	c^{3}
c4pt	c^{4}
c5pt	c^{5}
c6pt	c^{6}
F11z	\mathcal{F}_{1}^{1}
F21z	\mathcal{F}_{2}^{1}
F31z	\mathcal{F}_{3}^{1}
F12z	\mathcal{F}_{1}^{2}
F22z	\mathcal{F}_{2}^{2}
F32z	\mathcal{F}_{3}^{2}

Module 'testscalar_simple.f90'

$\operatorname{gam} 11$	$\gamma_{1}^{(1)}$
$\operatorname{gam} 12$	$\gamma_{2}^{(1)}$
$\operatorname{gam} 13$	$\gamma_{3}^{(1)}$
$\operatorname{gam} 21$	$\gamma_{1}^{(2)}$
$\operatorname{gam} 22$	$\gamma_{2}^{(2)}$
$\operatorname{gam} 23$	$\gamma_{3}^{(2)}$

gam31	$\gamma_{1}^{(3)}$
gam32	$\gamma_{2}^{(3)}$
gam33	$\gamma_{3}^{(3)}$
kap11	κ_{11}
kap21	κ_{21}
kap31	κ_{31}
kap12	κ_{12}
kap22	κ_{22}
kap32	κ_{32}
kap13	κ_{13}
kap23	κ_{23}
kap33	κ_{33}
gam11z	$\gamma_{1}^{(1)}(z, t)$
$\operatorname{gam} 12 z$	$\gamma_{2}^{(1)}(z, t)$
$\operatorname{gam} 13 z$	$\gamma_{3}^{(1)}(z, t)$
gam21z	$\gamma_{1}^{(2)}(z, t)$
$\operatorname{gam} 22 z$	$\gamma_{2}^{(2)}(z, t)$
gam23z	$\gamma_{3}^{(2)}(z, t)$
gam31z	$\gamma_{1}^{(3)}(z, t)$
gam32z	$\gamma_{2}^{(3)}(z, t)$
gam33z	$\gamma_{3}^{(3)}(z, t)$
kap11z	$\kappa_{11}(z, t)$
kap21z	$\kappa_{21}(z, t)$
kap31z	$\kappa_{31}(z, t)$
kap12z	$\kappa_{12}(z, t)$
kap22z	$\kappa_{22}(z, t)$
kap32z	$\kappa_{32}(z, t)$
kap13z	$\kappa_{13}(z, t)$
kap23z	$\kappa_{23}(z, t)$
kap33z	$\kappa_{33}(z, t)$
mgam33	$\tilde{\gamma}_{33}$
mkap33	$\tilde{\kappa}_{33}$
ngam33	$\hat{\gamma}_{33}$
nkap33	$\hat{\kappa}_{33}$
c1rms	$\left\langle c_{1}^{2}\right\rangle^{1 / 2}$
c2rms	$\left\langle c_{2}^{2}\right\rangle^{1 / 2}$
c3rms	$\left\langle c_{3}^{2}\right\rangle^{1 / 2}$
c4rms	$\left\langle c_{4}^{2}\right\rangle^{1 / 2}$
c5rms	$\left\langle c_{5}^{2}\right\rangle^{1 / 2}$
c6rms	$\left\langle c_{6}^{2}\right\rangle^{1 / 2}$
c1pt	c^{1}
c2pt	c^{2}
c3pt	c^{3}
c4pt	c^{4}
c5pt	c^{5}
c6pt	c^{6}
F11z	\mathcal{F}_{1}^{1}
F21z	\mathcal{F}_{2}^{1}

F31z	\mathcal{F}_{3}^{1}
F12z	\mathcal{F}_{1}^{2}
F22z	\mathcal{F}_{2}^{2}
F32z	\mathcal{F}_{3}^{2}
Module 'thermal_energy.f90'	
TTmax	$\max (T)$
TTmin	$\min (T)$
ppm	$\langle p\rangle$
TTm	$\langle T\rangle$
ethm	$\left\langle e_{\text {th }}\right\rangle=\left\langle c_{v} \rho T\right\rangle \quad$ (mean thermal energy)
ethtot	$\int_{V} e_{\text {th }} d V$ (total thermal energy)
ethmin	mine $_{\text {th }}$
ethmax	maxe $_{\text {th }}$
eem	$\langle e\rangle=\left\langle c_{v} T\right\rangle \quad$ (mean internal energy)
etot	$\left\langle e_{\text {th }}+\rho u^{2} / 2\right\rangle$
Module 'visc_smagorinsky.f90'	
nu_LES	Mean value of Smagorinsky viscosity
Module 'viscosity.f90'	
nu_tdep	time-dependent viscosity
fviscm	Mean value of viscous acceleration
fviscmin	Min value of viscous acceleration
fviscmax	Max value of viscous acceleration
fviscrmsx	Rms value of viscous acceleration for the vis_xaver_range
num	Mean value of viscosity
nusmagm	Mean value of Smagorinsky viscosity
nusmagmin	Min value of Smagorinsky viscosity
nusmagmax	Max value of Smagorinsky viscosity
nu_LES	Mean value of Smagorinsky viscosity
visc_heatm	Mean value of viscous heating
qfviscm	$\left\langle\boldsymbol{q} \cdot \boldsymbol{f}_{\text {visc }}\right\rangle$
ufviscm	$\left\langle\boldsymbol{u} \cdot \boldsymbol{f}_{\text {visc }}\right\rangle$
Sij2m	$\left\langle\mathbf{S}^{2}\right\rangle$
epsK	$\left\langle 2 \nu \varrho \mathbf{S}^{2}\right\rangle$
dtnu	$\delta t /\left[c_{\delta t, \mathrm{v}} \delta x^{2} / \nu_{\max }\right] \quad$ (time step relative to viscous time step; see
meshRemax	Max mesh Reynolds number
Reshock	Mesh Reynolds number at shock

K. 4 List of parameters for 'video.in'

The following table lists all (at the time of writing, June 17, 2018) possible inputs to the file 'video.in'.

Variable Meaning

uu	velocity vector u; writes all three components separately to files 'u[xyz]. $\{x z, y z, x y, x y 2\}$ '
u2	kinetic energy density u^{2}; writes 'u2. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
oo	vorticity vector $\omega=\nabla \times \boldsymbol{u}$; writes all three components separately to files ' 00 [xyz]. $\{x z, y z, x y, x y 2\}$ '
o2	enstrophy $\omega^{2}=\|\nabla \times u\|^{2}$; writes 'o2. $\left.\mathrm{xzz}^{\text {c }} \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\right\}$ '
divu	
mach	Mach number squared Ma^{2}; writes 'mach. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
Module 'density.f90'	
lnrho rho	logarithmic density $\ln \rho$; writes 'lnrho. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ ' density ρ; writes 'rho. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
Module 'entropy.f90'	
ss	entropy s; writes 'ss. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
$p p$	pressure p; writes 'pp. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
Module 'temperature_idealgas.f90'	
$\begin{aligned} & \ln T T \\ & T T \end{aligned}$	logarithmic temperature $\ln T$; writes ' $1 \mathrm{nTT} .\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ ' temperature T; writes ' $\mathrm{TT} .\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
Module 'shock.f90'	
shock	shock viscosity $\nu_{\text {shock }}$; writes 'shock. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
Module 'eos_ionization.f90'	
yH	ionization fraction y_{H}; writes ' $\mathrm{yH} .\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
Module 'radiation_ray.f90'	
Qrad Isurf	radiative heating rate Q_{rad}; writes 'Qrad. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ ' surface intensity $I_{\text {surf }}$ (?); writes 'Isurf.xz'
Module 'magnetic.f90'	
aa	magnetic vector potential \boldsymbol{A}; writes 'aa[xyz]. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
bb	magnetic flux density \boldsymbol{B}; writes 'bb [xyz]. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
b2	magnetic energy density \boldsymbol{B}^{2}; writes ' $\mathrm{b} 2 .\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
jj	current density \boldsymbol{j}; writes ' jj [xyz]. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
j2	current density squared j^{2}; writes ' $\mathrm{j} 2 .\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
jb	$j B$; writes 'jb. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
beta1	inverse plasma beta $\boldsymbol{B}^{2} /\left(2 \mu_{0} p\right)$; writes 'beta1. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
Poynting	Poynting vector $\eta \boldsymbol{j} \times \boldsymbol{B}-(\boldsymbol{u} \times \boldsymbol{B}) \times \boldsymbol{B} / \mu_{0}$; writes 'Poynting[xyz]. $\{x z, y z, x y, x y 2\} ’$
$a b$	$\underset{\text { 'ab [xyz] } .\{x z, y z, x y, x y 2\}}{\text { magnetic }}$ helicity
Module 'pscalar.f90'	
lncc	logarithmic density of passive scalar $\ln c$; writes ' $\mathrm{ncc} .\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '
Module 'cosmicray.f90'	
ecr	energy $e_{\text {cr }}$ of cosmic rays (?); writes 'ec. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ '

K. 5 List of parameters for 'phiaver .in'

The following table lists all (at the time of writing, November 2003) possible inputs to the file 'phiaver.in'.

Variable	Meaning
Module 'cdata.f90'	
rcylmphi	cylindrical radius $\varpi=\sqrt{x^{2}+y^{2}}$ (useful for debugging az- imuthal averages) azimuthal angle $\varphi=\arctan \frac{y}{x}$ (useful for debugging) phimphi zmphi rmphi
spherical radius $r=\sqrt{\varpi^{2}+z^{2}}$ (useful for debugging)	
Module 'hydro.f90'	
urmphi	$\left\langle u_{\varpi}\right\rangle_{\varphi}$ [cyl. polar coords (ϖ, φ, z)]
upmphi	$\left\langle u_{\varphi}\right\rangle_{\varphi}$
uzmphi	$\left\langle u_{z}\right\rangle_{\varphi}$
ursphmphi	$\left\langle u_{r}\right\rangle_{\varphi}$
uthmphi	$\left\langle u_{\vartheta}\right\rangle_{\varphi}$
uumphi	
shorthand for urmphi, upmphi and uzmphi together	
uusphmphi	
u2mphi	$\left\langle u^{2}\right\rangle_{\varphi} \quad$

| lnrhomphi $\langle\ln \varrho\rangle_{\varphi}$
 rhomphi $\langle\varrho\rangle_{\varphi}$ |
| :--- | :--- |

Module 'entropy.f90'

ssmphi	$\langle s\rangle_{\varphi}$
cs2mphi	$\left\langle c_{s}^{\rangle}\right\rangle_{\varphi}$

	Module 'magnetic.f90'
jbmphi	$\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle_{\varphi}$
brmphi	$\left\langle B_{\varpi}\right\rangle_{\varphi}$ [cyl. polar coords $\left.(\varpi, \varphi, z)\right]$
bpmphi	$\left\langle B_{\varphi}\right\rangle_{\varphi}$
bzmphi	$\left\langle B_{z}\right\rangle_{\varphi}$
bbmphi	shorthand for brmphi, bpmphi and bzmphi together
bbsphmphi	shorthand for brsphmphi, bthmphi and bpmphi together
b2mphi	$\left\langle\boldsymbol{B}^{2}\right\rangle_{\varphi}$
brsphmphi	$\left\langle B_{r}\right\rangle_{\varphi}$
bthmphi	$\left\langle B_{\vartheta}\right\rangle_{\varphi}$

Module 'anelastic.f90'

| lnrhomphi $\langle\ln \varrho\rangle_{\varphi}$
 rhomphi $\langle\varrho\rangle_{\varphi}$ l |
| :--- | :--- |

Module 'entropy_anelastic.f90'
ssmphi $\quad\langle s\rangle_{\varphi}$

cs2mphi	$\left\langle c_{s}^{2}\right\rangle_{\varphi}$
Module 'magnetic_shearboxJ.f90'	
jbmphi	$\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle_{\varphi}$
brmphi	$\left\langle B_{\varpi}\right\rangle_{\varphi}$ [cyl. polar coords $\left.(\varpi, \varphi, z)\right]$
bpmphi	$\left\langle B_{\varphi}\right\rangle_{\varphi}$
bzmphi	$\left\langle B_{z}\right\rangle_{\varphi}$
bbmphi	shorthand for brmphi, bpmphi and bzmphi together
bbsphmphi	shorthand for brsphmphi, bthmphi and bpmphi together
b2mphi	$\left\langle\boldsymbol{B}^{2}\right\rangle_{\varphi}$
brsphmphi	$\left\langle B_{r}\right\rangle_{\varphi}$
bthmphi	$\left\langle B_{\vartheta}\right\rangle_{\varphi}$

K. 6 List of parameters for 'xyaver.in'

The following table lists possible inputs to the file 'xyaver.in'. This list is not complete and maybe outdated.

Variable	Meaning
	Module 'hydro.f90'
u2mz	$\left\langle\boldsymbol{u}^{2}\right\rangle_{x y}$
o2mz	$\left\langle\boldsymbol{W}^{2}\right\rangle_{x y}$
divu2mz	$\left\langle(\nabla \cdot \boldsymbol{u})^{2}\right\rangle_{x y}$
curlru2mz	$\left\langle(\nabla \times \varrho \boldsymbol{U})^{2}\right\rangle_{x y}$
divru2mz	$\left\langle(\nabla \cdot \varrho \boldsymbol{u})^{2}\right\rangle_{x y}$
fmasszmz	$\left\langle\varrho u_{z}\right\rangle_{x y}$
fkinzmz	$\left\langle\frac{1}{2} \varrho \boldsymbol{u}^{2} u_{z}\right\rangle_{x y}$
uxmz	$\left\langle u_{x}\right\rangle_{x y} \quad$ (horiz. averaged x velocity)
uymz	$\left\langle u_{y}\right\rangle_{x y}$
uzmz	$\left\langle u_{z}\right\rangle_{x y}$
uzupmz	$\left\langle u_{z \uparrow}\right\rangle_{x y}$
uzdownmz	$\left\langle u_{z \downarrow}\right\rangle_{x y}$
ruzupmz	$\left\langle\varrho u_{z \uparrow}\right\rangle_{x y}$
ruzdownmz	$\left\langle\varrho u_{z \downarrow}\right\rangle_{x y}$
divumz	$\langle\operatorname{div} \boldsymbol{u}\rangle_{x y}$
uzdivumz	$\left\langle u_{z} \operatorname{div} \boldsymbol{u}\right\rangle_{x y}$
oxmz	$\left\langle\omega_{x}\right\rangle_{x y}$
oymz	$\left\langle\omega_{y}\right\rangle_{x y}$
ozmz	$\left\langle\omega_{z}\right\rangle_{x y}$
ux2mz	$\left\langle u_{x}^{2}\right\rangle_{x y}$
uy 2 mz	$\left\langle u_{y}^{2}\right\rangle_{x y}$
uz2mz	$\left\langle u_{z}^{2}\right\rangle_{x y}$
ox 2 mz	$\left\langle\omega_{x}^{2}\right\rangle_{x y}$
oy 2 mz	$\left\langle\omega_{y}^{2}\right\rangle_{x y}$
oz2mz	$\left\langle\omega_{z}^{2}\right\rangle_{x y}$

ruxmz	$\left\langle\varrho u_{x}\right\rangle_{x y}$
ruymz	$\left\langle\varrho u_{y}\right\rangle_{x y}$
uzmz	$\left\langle\varrho u_{z}\right\rangle_{x y}$
rux 2 mz	$\left\langle\varrho u_{x}^{2}\right\rangle_{x y}$
ruy 2 mz	$\left\langle\varrho u_{y}^{2}\right\rangle_{x y}$
ruz2mz	$\left\langle\varrho u_{z}^{2}\right\rangle_{x y}$
uxuymz	$\left\langle u_{x} u_{y}\right\rangle_{x y}$
uxuzmz	$\left\langle u_{x} u_{z}\right\rangle_{x y}$
uyuzmz	$\left\langle u_{y} u_{z}\right\rangle_{x y}$
ruxuymz	$\left\langle\rho u_{x} u_{y}\right\rangle_{x y}$
ruxuzmz	$\left\langle\rho u_{x} u_{z}\right\rangle_{x y}$
ruyuzmz	$\left\langle\rho u_{y} u_{z}\right\rangle_{x y}$
ruxuy2mz	$\left\langle\rho u_{x} u_{y}\right\rangle_{x y}$
ruxuz2mz	$\left\langle\rho u_{x} u_{z}\right\rangle_{x y}$
ruyuz2mz	$\left\langle\rho u_{y} u_{z}\right\rangle_{x y}$
oxuxxmz	$\left\langle\omega_{x} u_{x, x}\right\rangle_{x y}$
oyuxymz	$\left\langle\omega_{y} u_{x, y}\right\rangle_{x y}$
oxuyxmz	$\left\langle\omega_{x} u_{y, x}\right\rangle_{x y}$
oyuyymz	$\left\langle\omega_{y} u_{y, y}\right\rangle_{x y}$
oxuzxmz	$\left\langle\omega_{x} u_{z, x}\right\rangle_{x y}$
oyuzymz	$\left\langle\omega_{y} u_{z, y}\right\rangle_{x y}$
uyxuzxmz	$\left\langle u_{y, x} u_{z, x}\right\rangle_{x y}$
uyyuzymz	$\left\langle u_{y, y} u_{z, y}\right\rangle_{x y}$
uyzuzzmz	$\left\langle u_{y, z} u_{z, z}\right\rangle_{x y}$
ekinmz	$\left\langle\frac{1}{2} \varrho \boldsymbol{u}^{2}\right\rangle_{x y}$
oumz	$\langle\boldsymbol{\omega} \cdot \boldsymbol{u}\rangle_{x y}$
Remz	$\left\langle\frac{\|\boldsymbol{u} \cdot \boldsymbol{u}\|}{} \frac{\partial}{\frac{\partial}{\partial x_{j}}\left(\nu \mathrm{~S}_{i j}\right)}\right\rangle_{x y}$
oguxmz	$\left\langle(\boldsymbol{\omega} \cdot \nabla \boldsymbol{u})_{x}\right\rangle_{x y}$
oguymz	$\left\langle(\boldsymbol{\omega} \cdot \nabla \boldsymbol{u})_{y}\right\rangle_{x y}$
oguzmz	$\left\langle(\boldsymbol{\omega} \cdot \nabla \boldsymbol{u})_{z}\right\rangle_{x y}$
ogux 2 mz	$\left\langle(\boldsymbol{\omega} \cdot \nabla \boldsymbol{u})_{x}^{2}\right\rangle_{x y}$
oguy 2 mz	$\left\langle(\boldsymbol{\omega} \cdot \nabla \boldsymbol{u})_{y}^{2}\right\rangle_{x y}$
oguz2mz	$\left\langle(\boldsymbol{\omega} \cdot \nabla \boldsymbol{u})_{z}^{2}\right\rangle_{x y}$
oxdivumz	$\left\langle\omega_{x} \nabla \cdot \boldsymbol{u}\right\rangle_{x y}$
oydivumz	$\left\langle\omega_{y} \nabla \cdot \boldsymbol{u}\right\rangle_{x y}$
ozdivumz	$\left\langle\omega_{z} \nabla \cdot \boldsymbol{u}\right\rangle_{x y}$
oxdivu2mz	$\left\langle\left(\omega_{x} n a b l a \cdot \boldsymbol{u}\right)^{2}\right\rangle_{x y}$
oydivu2mz	$\left\langle\left(\omega_{y} \nabla \cdot \boldsymbol{u}\right)^{2}\right\rangle_{x y}$
ozdivu2mz	$\left\langle\left(\omega_{z} \nabla \cdot \boldsymbol{u}\right)^{2}\right\rangle_{x y}$
accpowzmz	$\left\langle\left(u_{z} D u_{z} / D t\right)^{2}\right\rangle_{x}$
accpowzupmz	$\left\langle\left(u_{z} D u_{z} / D t\right)^{2}\right\rangle_{x y}$
accpowzdownmz	$\left\langle\left(u_{z} D u_{z} / D t\right)^{2}\right\rangle_{x y}$
fkinxmx	$\left\langle\frac{1}{2} \varrho \boldsymbol{u}^{2} u_{x}\right\rangle_{y z}$

Module 'density.f90'

rhomz	$\langle\varrho\rangle_{x y}$
rho2mz	$\left\langle\varrho^{2}\right\rangle_{x y}$

gzlnrhomz	$\left\langle\nabla_{z} \ln \varrho\right\rangle_{x y}$
uglnrhomz	$\langle\boldsymbol{u} \cdot \nabla \ln \varrho\rangle_{x y}$
ugrhomz	$\langle\boldsymbol{u} \cdot \nabla \varrho\rangle_{x y}$
uygzlnrhomz	$\left\langle u_{y} \nabla_{z} \ln \varrho\right\rangle_{x y}$
uzgylnrhomz	$\left\langle u_{z} \nabla_{y} \ln \varrho\right\rangle_{x y}$
rho2mx	$\left\langle\varrho^{2}\right\rangle_{y z}$

Module 'entropy.f90'

fradz	$\left\langle F_{\text {rad }}\right\rangle_{x y}$
fconvz	$\left\langle c_{p} \varrho u_{z} T\right\rangle_{x y}$
ssmz	$\langle s\rangle_{x y}$
ss2mz	$\left\langle s^{2}\right\rangle_{x y}$
$p p m z$	$\langle p\rangle_{x y}$
TTmz	$\langle T\rangle_{x y}$
TT2mz	$\left\langle T^{2}\right\rangle_{x y}$
uxTTmz	$\left\langle u_{x} T\right\rangle_{x y}$
uyTTmz	$\left\langle u_{y} T\right\rangle_{x y}$
uzTTmz	$\left\langle u_{z} T\right\rangle_{x y}$
gTxgsxmz	$\left\langle(\nabla T \times \nabla s)_{x}\right\rangle_{x y}$
gTxgsymz	$\left\langle(\nabla T \times \nabla s)_{y}\right\rangle_{x y}$
gTxgszmz	$\left\langle(\nabla T \times \nabla s)_{z}\right\rangle_{x y}$
gTxgsx2mz	$\left\langle\left(\nabla T \times \nabla s s_{x}^{2}\right\rangle_{x y}\right.$
gTxgsy2mz	$\left\langle(\nabla T \times \nabla s)_{y}^{2}\right\rangle_{x y}$
gTxgsz2mz	$\left\langle(\nabla T \times \nabla s)_{z}^{2}\right\rangle_{x y}$
fradz_kramers	$F_{\text {rad }}($ from Kramers' opacity)
fradz_Kprof	$F_{\text {rad }}$ (from Kprof)
fradz_constchi	$F_{\text {rad }}$ (from chi_const)
fturbz	$\left\langle\varrho T \chi_{t} \nabla_{z} s\right\rangle_{x y} \quad$ (turbulent heat flux)
fturbtz	$\left\langle\varrho T \chi_{t} 0 \nabla_{z} s\right\rangle_{x y} \quad$ (turbulent heat flux)
fturbmz	$\left\langle\varrho T \chi_{t} 0 \nabla_{z} \bar{s}\right\rangle_{x y} \quad$ (turbulent heat flux)
fturbfz	$\left\langle\varrho T \chi_{t} 0 \nabla_{z} s^{\prime}\right\rangle_{x y} \quad$ (turbulent heat flux)
dcoolz	surface cooling flux
heatmz	heating
Kkramersmz	$\left\langle K_{0} T(3-b) / r h o(a+1)\right\rangle_{x y}$
ethmz	$\langle\varrho e\rangle_{x y}$

Module 'magnetic.f90'

axmz	$\left\langle\mathcal{A}_{x}\right\rangle_{x y}$
aymz	$\left\langle\mathcal{A}_{y}\right\rangle_{x y}$
azmz	$\left\langle\mathcal{A}_{z}\right\rangle_{x y}$
abuxmz	$\left\langle(\boldsymbol{A} \cdot \boldsymbol{B}) u_{x}\right\rangle_{x y}$
abuymz	$\left\langle(\boldsymbol{A} \cdot \boldsymbol{B}) u_{y}\right\rangle_{x y}$
abuzmz	$\left\langle(\boldsymbol{A} \cdot \boldsymbol{B}) u_{z}\right\rangle_{x y}$
uabxmz	$\left\langle(\boldsymbol{u} \cdot \boldsymbol{A}) B_{x}\right\rangle_{x y}$
uabymz	$\left\langle(\boldsymbol{u} \cdot \boldsymbol{A}) B_{y}\right\rangle_{x y}$
uabzmz	$\left\langle(\boldsymbol{u} \cdot \boldsymbol{A}) B_{z}\right\rangle_{x y}$
bbxmz	$\left\langle\mathcal{B}_{x}^{\prime}\right\rangle_{x y}$
bbymz	$\left\langle\mathcal{B}_{y}^{\prime}\right\rangle_{x y}$

bbzmz	$\left\langle\mathcal{B}_{z}^{\prime}\right\rangle_{x y}$
bxmz	$\left\langle\mathcal{B}_{x}\right\rangle_{x y}$
bymz	$\left\langle\mathcal{B}_{y}\right\rangle_{x y}$
bzmz	$\left\langle\mathcal{B}_{z}\right\rangle_{x y}$
jxmz	$\left\langle\mathcal{J}_{x}\right\rangle_{x y}$
jymz	$\left\langle\mathcal{J}_{y}\right\rangle_{x y}$
jzmz	$\left\langle\mathcal{J}_{z}\right\rangle_{x y}$
Exmz	$\left\langle\mathcal{E}_{x}\right\rangle_{x y}$
Eymz	$\left\langle\mathcal{E}_{y}\right\rangle_{x y}$
Ezmz	$\left\langle\mathcal{E}_{z}\right\rangle_{x y}$
bx2mz	$\left\langle B_{x}^{2}\right\rangle_{x y}$
by 2 mz	$\left\langle B_{y}^{2}\right\rangle_{x y}$
bz2mz	$\left\langle B_{z}^{2}\right\rangle_{x y}$
bx 2 rmz	$\left\langle B_{x}^{2} / \varrho\right\rangle_{x y}$
by2rmz	$\left\langle B_{y}^{2} / \varrho\right\rangle_{x y}$
bz2rmz	$\left\langle B_{z}^{2} / \varrho\right\rangle_{x y}$
beta1mz	$\left\langle\left(B^{2} / 2 \mu_{0}\right) / p\right\rangle_{x y}$
betamz	$\langle\beta\rangle_{x y}$
beta2mz	$\left\langle\beta^{2}\right\rangle_{x y}$
jbmz	$\left.\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle\right\|_{x y}$
d6abmz	$\left.\left\langle\nabla^{6} \boldsymbol{A} \cdot \boldsymbol{B}\right\rangle\right\|_{x y}$
d6amz1	$\left.\left\langle\nabla^{6} \boldsymbol{A}\right\rangle_{x y}\right\|_{x}$
d6amz2	$\left.\left\langle\nabla^{6} \boldsymbol{A}\right\rangle_{x y}\right\|_{y}$
d6amz3	$\left.\left\langle\nabla^{6} \boldsymbol{A}\right\rangle_{x y}\right\|_{z}$
abmz	$\left.\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle\right\|_{x y}$
ubmz	$\left.\langle\boldsymbol{u} \cdot \boldsymbol{B}\rangle\right\|_{x y}$
uamz	$\left.\langle\boldsymbol{u} \cdot \boldsymbol{A}\rangle\right\|_{x y}$
uxbxmz	$\left.\left\langle u_{x} b_{x}\right\rangle\right\|_{x y}$
uybxmz	$\left.\left\langle u_{y} b_{x}\right\rangle\right\|_{x y}$
uzbxmz	$\left.\left\langle u_{z} b_{x}\right\rangle\right\|_{x y}$
uxbymz	$\left.\left\langle u_{x} b_{y}\right\rangle\right\|_{x y}$
uybymz	$\left.\left\langle u_{y} b_{y}\right\rangle\right\|_{x y}$
uzbymz	$\left.\left\langle u_{z} b_{y}\right\rangle\right\|_{x y}$
uxbzmz	$\left.\left\langle u_{x} b_{z}\right\rangle\right\|_{x y}$
uybzmz	$\left.\left\langle u_{y} b_{z}\right\rangle\right\|_{x y}$
uzbzmz	$\left.\left\langle u_{z} b_{z}\right\rangle\right\|_{x y}$
examz1	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle_{x y}\right\|_{x}$
examz2	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle_{x y}\right\|_{y}$
examz3	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle_{x y}\right\|_{z}$
e3xamz1	$\left.\left\langle\boldsymbol{E}_{\text {hyper } 3} \times \boldsymbol{A}\right\rangle_{x y}\right\|_{x}$
e3xamz2	$\left.\left\langle\boldsymbol{E}_{\text {hyper } 3} \times \boldsymbol{A}\right\rangle_{x y}\right\|_{y}$
e3xamz3	$\left.\left\langle\boldsymbol{E}_{\text {hyper } 3} \times \boldsymbol{A}\right\rangle_{x y}\right\|_{z}$
etatotalmz	$\langle\eta\rangle_{x y}$
bxbymz	$\left\langle B_{x} B_{y}\right\rangle_{x y}$
bxbzmz	$\left\langle B_{x} B_{z}\right\rangle_{x y}$
bybzmz	$\left\langle B_{y} B_{z}\right\rangle_{x y}$
b2mz	$\left\langle\boldsymbol{B}^{2}\right\rangle_{x y}$
bf2mz	$\left\langle\boldsymbol{B}^{\prime 2}\right\rangle_{x y}$

j2mz poynzmz epsMmz	$\left\langle\boldsymbol{j}^{2}\right\rangle_{x y}$ Averaged poynting flux in z direction $\left\langle\eta \mu_{0} \boldsymbol{j}^{2}\right\rangle_{x y}$
Module 'bfield.f90'	
bmz	$\langle B\rangle_{x y}$
b2mz	$\left\langle B^{2}\right\rangle_{x y}$
$b x m z$	$\left\langle B_{x}\right\rangle_{x y}$
bymz	$\left\langle B_{y}\right\rangle_{x y}$
bzmz	$\left\langle B_{z}\right\rangle_{x y}$
bx 2 mz	$\left\langle B_{x}^{2}\right\rangle_{x y}$
by 2 mz	$\left\langle B_{y}^{2}\right\rangle_{x y}$
bz2mz	$\left\langle B_{z}^{2}\right\rangle_{x y}$
bxbymz	$\left\langle B_{x} B_{y}\right\rangle_{x y}$
bxbzmz	$\left\langle B_{x} B_{z}\right\rangle_{x y}$
bybzmz	$\left\langle B_{y} B_{z}\right\rangle_{x y}$
betamz beta2mz	$\begin{aligned} & \langle\beta\rangle_{x y} \\ & \left\langle\beta^{2}\right\rangle_{x v} \end{aligned}$
Module 'density_stratified.f90'	
drhomz drho2mz	$\begin{aligned} & \left\langle\Delta \rho / \rho_{0}\right\rangle_{x y} \\ & \left\langle\left(\Delta \rho / \rho_{0}\right)^{2}\right\rangle_{x y} \end{aligned}$
Module 'gravity_simple.f90'	
epotmz epotuzmz	$\left\langle\varrho \Phi_{\text {grav }}\right\rangle_{x y}$ $\left\langle\varrho \Phi_{\text {grav }} u_{z}\right\rangle_{x y}$$\quad$ (potential energy flux)
Module 'magnetic_shearboxJ.f90'	
axmz	$\left\langle\mathcal{A}_{x}\right\rangle_{x y}$
aymz	$\left\langle\mathcal{A}_{y}\right\rangle_{x y}$
azmz	$\left\langle\mathcal{A}_{z}\right\rangle_{x y}$
abuxmz	$\left\langle(\boldsymbol{A} \cdot \boldsymbol{B}) u_{x}\right\rangle_{x y}$
abuymz	$\left\langle(\boldsymbol{A} \cdot \boldsymbol{B}) u_{y}\right\rangle_{x y}$
abuzmz	$\left\langle(\boldsymbol{A} \cdot \boldsymbol{B}) u_{z}\right\rangle_{x y}$
uabxmz	$\left\langle(\boldsymbol{u} \cdot \boldsymbol{A}) B_{x}\right\rangle_{x y}$
uabymz	$\left\langle(\boldsymbol{u} \cdot \boldsymbol{A}) B_{y}\right\rangle_{x y}$
uabzmz	$\left\langle(\boldsymbol{u} \cdot \boldsymbol{A}) B_{z}\right\rangle_{x y}$
bbxmz	$\left\langle\mathcal{B}_{x}^{\prime}\right\rangle_{x y}$
bbymz	$\left\langle\mathcal{B}_{y}^{\prime}\right\rangle_{x y}$
bbzmz	$\left\langle\mathcal{B}_{z}^{\prime}\right\rangle_{x y}$
bxmz	$\left\langle\mathcal{B}_{x}\right\rangle_{x y}$
bymz	$\left\langle\mathcal{B}_{y}\right\rangle_{x y}$
$b z m z$	$\left\langle\mathcal{B}_{z}\right\rangle_{x y}$
jxmz	$\left\langle\mathcal{J}_{x}\right\rangle_{x y}$
jymz	$\left\langle\mathcal{J}_{y}\right\rangle_{x y}$
jzmz	$\left\langle\mathcal{J}_{z}\right\rangle_{x y}$
Exmz	$\left\langle\mathcal{E}_{x}\right\rangle_{x y}$
Eymz	$\left\langle\mathcal{E}_{y}\right\rangle_{x y}$
Ezmz	$\left\langle\mathcal{E}_{z}\right\rangle_{x y}$

bx 2 mz	$\left\langle B_{x}^{2}\right\rangle_{x y}$
by 2 mz	$\left\langle B_{y}^{2}\right\rangle_{x y}$
bz2mz	$\left\langle B_{z}^{2}\right\rangle_{x y}$
bx 2 rmz	$\left\langle B_{x}^{2} / \varrho\right\rangle_{x y}$
by 2 rmz	$\left\langle B_{y}^{2} / \varrho\right\rangle_{x y}$
bz2rmz	$\left\langle B_{z}^{2} / \varrho\right\rangle_{x y}$
beta1mz	$\left\langle\left(B^{2} / 2 \mu_{0}\right) / p\right\rangle_{x y}$
betamz	$\langle\beta\rangle_{x y}$
beta2mz	$\left\langle\beta^{2}\right\rangle_{x y}$
jbmz	$\left.\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle\right\|_{x y}$
d6abmz	$\left.\left\langle\nabla^{6} \boldsymbol{A} \cdot \boldsymbol{B}\right\rangle\right\|_{x y}$
d6amz1	$\left.\left\langle\nabla^{6} \boldsymbol{A}\right\rangle_{x y}\right\|_{x}$
d6amz2	$\left.\left\langle\nabla^{6} \boldsymbol{A}\right\rangle_{x y}\right\|_{y}$
d6amz3	$\left.\left\langle\nabla^{6} \boldsymbol{A}\right\rangle_{x y}\right\|_{z}$
abmz	$\left.\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle\right\|_{x y}$
ubmz	$\left.\langle\boldsymbol{u} \cdot \boldsymbol{B}\rangle\right\|_{x y}$
uamz	$\left.\langle\boldsymbol{u} \cdot \boldsymbol{A}\rangle\right\|_{x y}$
uxbxmz	$\left.\left\langle u_{x} b_{x}\right\rangle\right\|_{x y}$
uybxmz	$\left.\left\langle u_{y} b_{x}\right\rangle\right\|_{x y}$
uzbxmz	$\left.\left\langle u_{z} b_{x}\right\rangle\right\|_{x y}$
uxbymz	$\left.\left\langle u_{x} b_{y}\right\rangle\right\|_{x y}$
uybymz	$\left.\left\langle u_{y} b_{y}\right\rangle\right\|_{x y}$
uzbymz	$\left.\left\langle u_{z} b_{y}\right\rangle\right\|_{x y}$
uxbzmz	$\left.\left\langle u_{x} b_{z}\right\rangle\right\|_{x y}$
uybzmz	$\left.\left\langle u_{y} b_{z}\right\rangle\right\|_{x y}$
uzbzmz	$\left.\left\langle u_{z} b_{z}\right\rangle\right\|_{x y}$
examz1	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle_{x y}\right\|_{x}$
examz2	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle_{x y}\right\|_{y}$
examz3	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle_{x y}\right\|_{z}$
e3xamz1	$\left\langle\boldsymbol{E}_{\text {hyper } 3} \times \boldsymbol{A}\right\rangle_{x y}$
e3xamz2	$\left.\left\langle\boldsymbol{E}_{\text {hyper } 3} \times \boldsymbol{A}\right\rangle_{x y}\right\|_{y}$
e3xamz3	$\left.\left\langle\boldsymbol{E}_{\text {hyper } 3} \times \boldsymbol{A}\right\rangle_{x y}\right\|_{z}$
etatotalmz	$\langle\eta\rangle_{x y}$
bxbymz	$\left\langle B_{x} B_{y}\right\rangle_{x y}$
bxbzmz	$\left\langle B_{x} B_{z}\right\rangle_{x y}$
bybzmz	$\left\langle B_{y} B_{z}\right\rangle_{x y}$
$b 2 \mathrm{mz}$	$\left\langle\boldsymbol{B}^{2}\right\rangle_{x y}$
bf2mz	$\left\langle\boldsymbol{B}^{\prime 2}\right\rangle_{x y}$
j2mz	$\left\langle\boldsymbol{j}^{2}\right\rangle_{x y}$
poynzmz	Averaged poynt

poynzmz
epsMmz
Averaged poynting flux in z direction $\left\langle\eta \mu_{0} \boldsymbol{j}^{2}\right\rangle_{x y}$

Module 'meanfield.f90'

$q p m z$	$\left\langle q_{p}\right\rangle_{x y}$
Module 'shock_highorder.f90'	
Module 'temperature_idealgas.f90'	
$\quad\langle p\rangle_{x y}$	

TTmz	$\langle T\rangle_{x y}$
ethmz	$\left\langle e_{\text {th }}\right\rangle_{x y}$
fpresxmz	$\left\langle(\nabla p)_{x}\right\rangle_{x y}$
fpresymz	$\left\langle(\nabla p)_{y}\right\rangle_{x y}$
fpreszmz	$\left\langle(\nabla p)_{z}\right\rangle_{x y}$
TT2mz	$\left\langle T^{2}\right\rangle_{x y}$
uxTmz	$\left\langle u_{x} T\right\rangle_{x y}$
uyTmz	$\left\langle u_{y} T\right\rangle_{x y}$
uzTmz	$\left\langle u_{z} T\right\rangle_{x y}$
fradmz	$\left\langle F_{\text {rad }}\right\rangle_{x y}$
fconvmz	$\left\langle c_{p} \varrho u_{z} T\right\rangle_{x y}$
	Module 'temperature_ionization.f90'
puzmz	$\left\langle p u_{z}\right\rangle_{x y}$
pr1mz	$\langle p / \varrho\rangle_{x y}$
eruzmz	$\left\langle e \varrho u_{z}\right\rangle_{x y}$
ffakez	$\left\langle\varrho u_{z} c_{p} T\right\rangle_{x y}$
mumz	$\langle\mu\rangle_{x y}$
TTmz	$\langle T\rangle_{x y}$
ssmz	$\langle s\rangle_{x y}$
eemz	$\langle e\rangle_{x y}$
ppmz	$\langle p\rangle_{x y}$
	Module 'thermal_energy.f90'
ppmz	$\langle p\rangle_{x y}$
TTmz	$\langle T\rangle_{x y}$
fviscmz	$\left\langle 2 \nu \varrho u_{i} \mathcal{S}_{i z}\right\rangle_{x y}$ (z-component of viscous flux)
fviscsmmz	$\left\langle 2 \nu_{\text {Smag }} \varrho u_{i} \mathcal{S}_{i z}\right\rangle_{x y}(z$-component of viscous flux)
epsKmz	$\left\langle 2 \nu \varrho \mathbf{S}^{2}\right\rangle_{x y}$

K. 7 List of parameters for 'xzaver.in'

The following table lists possible inputs to the file 'xzaver.in'. This list is not complete and maybe outdated.

Variable	Meaning	
		Module 'hydro.f90'
uxmy	$\left\langle u_{x}\right\rangle_{x z}$	
uymy	$\left\langle u_{y}\right\rangle_{x z}$	
uzmy	$\langle u\rangle_{x z}$	
oumy	$\langle\boldsymbol{\omega} \cdot \boldsymbol{u}\rangle_{x z}$	
		Module 'density.f90'
rhomy	$\langle\varrho\rangle_{x z}$	

Module 'entropy.f90'

ssmy ppmy TTmy	$\begin{aligned} & \langle s\rangle_{x z} \\ & \langle p\rangle_{x z} \\ & \langle T\rangle_{x z} \end{aligned}$
Module 'magnetic.f90'	
bxmy	$\left\langle B_{x}\right\rangle_{x z}$
bymy	$\left\langle B_{y}\right\rangle_{x z}$
bzmy	$\left\langle B_{z}\right\rangle_{x z}$
bx2my	$\left\langle B_{x}^{2}\right\rangle_{x z}$
by2my	$\left\langle B_{y}^{2}\right\rangle_{r z}$
bz2my	$\left\langle B_{z}^{2}\right\rangle_{x z}$
bxbymy	$\left\langle B_{x} B_{y}\right\rangle_{x z}$
bxbzmy	$\left\langle B_{x} B_{z}\right\rangle_{x z}$
bybzmy	$\left\langle B_{y} B_{z}\right\rangle_{x z}$
Module 'density_stratified.f90'	
drhomy drho2my	$\begin{aligned} & \left\langle\Delta \rho / \rho_{0}\right\rangle_{x z} \\ & \left\langle\left(\Delta \rho / \rho_{0}\right)^{2}\right\rangle_{x z} \end{aligned}$
Module 'gravity_simple.f90'	
epotmy	$\left\langle\varrho \Phi_{\text {grav }}\right\rangle_{x z}$
Module 'magnetic_shearboxJ.f90'	
bxmy	$\left\langle B_{x}\right\rangle_{x z}$
bymy	$\left\langle B_{y}\right\rangle_{x z}$
bzmy	$\left\langle B_{z}\right\rangle_{x z}$
bx2my	$\left\langle B_{x}^{2}\right\rangle_{x z}$
by 2 my	$\left\langle B_{y}^{2}\right\rangle_{x z}$
bz2my	$\left\langle B_{z}^{2}\right\rangle_{x z}$
bxbymy	$\left\langle B_{x} B_{y}\right\rangle_{x z}$
bxbzmy	$\left\langle B_{x} B_{z}\right\rangle_{x z}$
bybzmy	$\left\langle B_{y} B_{z}\right\rangle_{x z}$

Module 'shock_highorder.f90'
Module 'temperature_idealgas.f90'

ppmy	$\langle p\rangle_{x z}$	
TTmy	$\langle T\rangle_{x z}$	
		Module 'thermal_energy .f90'
ppmy	$\langle p\rangle_{x z}$	
TTmy	$\langle T\rangle_{x z}$	

K. 8 List of parameters for 'yzaver. in'

The following table lists possible inputs to the file 'yzaver. in'. This list is not complete and maybe outdated.

Variable	Meaning
	Module 'hydro.f90'
uxmx	$\left\langle u_{x}\right\rangle_{y z}$
uymx	$\left\langle u_{y}\right\rangle_{y z}$
uzmx	$\left\langle u_{z}\right\rangle_{y z}$
ruxmx	$\left\langle\varrho u_{x}\right\rangle_{y z}$
ruymx	$\left\langle\varrho u_{y}\right\rangle_{y z}$
ruzmx	$\left\langle\varrho u_{z}\right\rangle_{y z}$
rux 2 mx	$\left\langle\rho u_{x}^{2}\right\rangle_{y z}$
ruy 2 mx	$\left\langle\rho u_{y}^{2}\right\rangle_{y z}$
ruz2mx	$\left\langle\rho u_{z}^{2}\right\rangle_{y z}$
ruxuymx	$\left\langle\rho u_{x} u_{y}\right\rangle_{y z}$
ruxuzmx	$\left\langle\rho u_{x} u_{z}\right\rangle_{y z}$
ruyuzmx	$\left\langle\rho u_{y} u_{z}\right\rangle_{y z}$
ux2mx	$\left\langle u_{x}^{2}\right\rangle_{y z}$
uy $2 m x$	$\left\langle u_{y}^{2}\right\rangle_{y z}$
uz2mx	$\left\langle u_{z}^{2}\right\rangle_{y z}$
ox 2 mx	$\left\langle\omega_{x}^{2}\right\rangle_{y z}$
oy 2 mx	$\left\langle\omega_{y}^{2}\right\rangle_{y z}$
oz2mx	$\left\langle\omega_{z}^{2}\right\rangle_{y z}$
uxuymx	$\left\langle u_{x} u_{y}\right\rangle_{y z}$
uxuzmx	$\left\langle u_{x} u_{z}\right\rangle_{y z}$
uyuzmx	$\left\langle u_{y} u_{z}\right\rangle_{y z}$
oumx	$\langle\boldsymbol{\omega} \cdot \boldsymbol{u}\rangle_{y z}$
ekinmx	$\left\langle\frac{1}{2} \rho u^{2}\right\rangle_{x y}$
	Module 'density.f90'
rhomx	$\langle\varrho\rangle_{y z}$
	Module 'entropy.f90'
SSmX	$\langle s\rangle_{y z}$
ss2mx	$\left\langle s^{2}\right\rangle_{y z}$
ppmx	$\langle p\rangle_{y z}$
TTmx	$\langle T\rangle_{y z}$
TT2mx	$\left\langle T^{2}\right\rangle_{y z}$
uxTTmx	$\left\langle u_{x} T\right\rangle_{y z}$
uyTTmx	$\left\langle u_{y} T\right\rangle_{y z}$
uzTTmx	$\left\langle u_{z} T\right\rangle_{y z}$
fconvxmx	$\left\langle c_{p} \varrho u_{x} T\right\rangle_{y z}$
fradmx	$\left\langle F_{\text {rad }}\right\rangle_{y z}$
fturbmx	$\left\langle\varrho T \chi_{t} \nabla_{x} s\right\rangle_{y z} \quad$ (turbulent heat flux)
Kkramersmx	$\left.\left\langle K_{0} T^{(} 3-b\right) / r h o(a+1)\right\rangle_{y z}$
dcoolx	surface cooling flux
fradx_kramers	$F_{\text {rad }}$ (from Kramers' opacity)

Module 'magnetic.f90'

$b 2 m x \quad\left\langle B^{2}\right\rangle_{y z}$

bxmx	$\left\langle B_{x}\right\rangle_{y z}$
bymx	$\left\langle B_{y}\right\rangle_{y z}$
bzmx	$\left\langle B_{z}\right\rangle_{y z}$
bx2mx	$\left\langle B_{x}^{2} y_{y z}\right.$
by2mx	$\left\langle B_{y}^{2}\right\rangle_{y z}$
bz2mx	$\left.\left\langle B_{z}^{2}\right\rangle_{y z}\right\rangle_{x}$
bxbymx	$\left\langle B_{x} B_{y}\right\rangle_{y z}$
bxbzmx	$\left\langle B_{x} B_{z}\right\rangle_{y z}$
bybzmx	$\left\langle B_{y} B_{z}\right\rangle_{y z}$
betamx	$\langle\beta\rangle_{y z}$
beta2mx	$\left\langle\beta^{2}\right\rangle_{y z}$
etatotalmx	$\langle\eta\rangle_{y z}$

Module 'bfield.f90'

bmx	$\langle B\rangle_{y z}$
b2mx	$\left\langle B^{2}\right\rangle_{y z}$
bxmx	$\left\langle B_{y}\right\rangle_{y z}$
bymx	$\left\langle B_{y}\right\rangle_{y z}$
bzmx	$\left\langle B_{z}\right\rangle_{y z}$
bx2mx	$\left\langle B_{x}^{2}\right\rangle_{y z}$
by2mx	$\left\langle B_{y}^{2}\right\rangle_{y z}$
bz2mx	$\left\langle B_{z}^{2}\right\rangle_{y z}$
bxbymx	$\left\langle B_{x} B_{y}\right\rangle_{y z}$
bxbzmx	$\left\langle B_{x} B_{z}\right\rangle_{y z}$
bybzmx	$\left\langle B_{y} B_{z}\right\rangle_{y z}$
betamx	$\langle\beta\rangle_{y z}$
beta2mx	$\left\langle\beta^{2}\right\rangle_{y z}$

Module 'density_stratified.f90'

drhomx	$\left\langle\Delta \rho / \rho_{0}\right\rangle_{y z}$
drho2mx	$\left\langle\left(\Delta \rho / \rho_{0}\right)^{2}\right\rangle_{y z}$

Module 'gravity_simple.f90'		
epotmx epotuxmx	$\left\langle\varrho \Phi_{\text {grav }}\right\rangle_{y z}$	

Module 'magnetic_shearboxJ.f90’

b2mx	$\left\langle B^{2}\right\rangle_{y z}$
bxmx	$\left\langle B_{x}\right\rangle_{y z}$
bymx	$\left\langle B_{y}\right\rangle_{y z}$
bzmx	$\left\langle B_{z}\right\rangle_{y z}$
bx2mx	$\left\langle B_{x}^{2}\right\rangle_{y z}$
by2mx	$\left\langle B_{y}^{2}\right\rangle_{y z}$
bz2mx	$\left\langle B_{z}^{2}\right\rangle_{y z}$
bxbymx	$\left\langle B_{x} B_{y}\right\rangle_{y z}$
bxbzmx	$\left\langle B_{x} B_{z}\right\rangle_{y z}$
bybzmx	$\left\langle B_{y} B_{z}\right\rangle_{y z}$
betamx	$\langle\beta\rangle_{y z}$
beta2mx	$\left\langle\beta^{2}\right\rangle_{y z}$
etatotalmx	$\langle\eta\rangle_{y z}$

	Module 'shock_highorder.f90'	
Module 'temperature_idealgas.f90'		
$p p m x$	$\langle p\rangle_{y z}$	
$T T m x$	$\langle T\rangle_{y z}$	
Module 'thermal_energy.f90'		
$p p m x$	$\langle p\rangle_{y z}$	
$T T m x$	$\langle T\rangle_{y z}$	
Module 'viscosity.f90'		
fviscmx	$\left\langle 2 \nu \varrho u_{i} \mathcal{S}_{i x}\right\rangle_{y z}$ (x-component of viscous flux)	
numx	$\langle\nu\rangle_{y z}(y z$-averaged viscosity)	

K. 9 List of parameters for 'yaver. in'

The following table lists possible inputs to the file 'yaver.in'. This list is not complete and maybe outdated.

Variable	Meaning	
		Module 'hydro.f90'
uxmxz	$\left\langle u_{x}\right\rangle_{y}$	
uymxz	$\left\langle u_{y}\right\rangle_{y}$	
uzmxz	$\left\langle u_{z}\right\rangle_{y}$	
ux2mxz	$\left\langle u_{x}^{2}\right\rangle_{y}$	
uy2mxz	$\left\langle u_{y}^{2}\right\rangle_{y}$	
uz2mxz	$\left\langle u_{z}^{2}\right\rangle_{y}$	
uxuymxz	$\left\langle u_{x} u_{y}\right\rangle_{y}$	
uxuzmxz	$\left\langle u_{x} u_{z}\right\rangle_{y}$	
uyuzmxz	$\left\langle u_{y} u_{z}\right\rangle_{y}$	
oumxz	$\langle\boldsymbol{\omega} \cdot \boldsymbol{u}\rangle_{y}$	
		Module 'density.f90'
rhomxz	$\langle\varrho\rangle_{y}$	
		Module 'entropy.f90'
TTmxz	$\langle T\rangle_{y}$	
ssmxz	$\langle s\rangle_{y}$	
		Module 'magnetic.f90'
b2mxz $\left\langle\boldsymbol{B}^{2}\right\rangle_{y}$ axmxz $\left\langle A_{x}\right\rangle_{y}$ aymxz $\left\langle A_{y}\right\rangle_{y}$ azmxz $\left\langle A_{z}\right\rangle_{y}$ bx1mxz $\left\langle\mid B_{x}\right\rangle_{y}$ 		

by1mxz	$\langle \| B_{y}\| \rangle_{y}$
bz1mxz	$\langle \| B_{z}\| \rangle_{y}$
bxmxz	$\left\langle B_{x}\right\rangle_{y}$
bymxz	$\left\langle B_{y}\right\rangle_{y}$
bzmxz	$\left\langle B_{z}\right\rangle_{y}$
jxmxz	$\left\langle J_{x}\right\rangle_{y}$
jymxz	$\left\langle J_{y}\right\rangle_{y}$
jzmxz	$\left\langle J_{z}\right\rangle_{y}$
bx2mxz	$\left\langle B_{x}^{2}\right\rangle_{y}$
by2mxz	$\left\langle B_{y}^{2}\right\rangle_{y}$
bz2mxz	$\left\langle B_{z}^{2}\right\rangle_{y}$
bxbymxz	$\left\langle B_{x} B_{y}\right\rangle_{y}$
bxbzmxz	$\left\langle B_{x} B_{z}\right\rangle_{y}$
bybzmxz	$\left\langle B_{y} B_{z}\right\rangle_{y}$
uybxmxz	$\left\langle U_{y} B_{x}\right\rangle_{y}$
uybzmxz	$\left\langle U_{y} B_{z}\right\rangle_{y}$
Exmmz	$\left\langle\mathcal{E}_{x}\right\rangle_{y}$
Eymmz	$\left\langle\mathcal{E}_{y}\right\rangle_{y}$
Ezmxz	$\left\langle\mathcal{E}_{z}\right\rangle_{y}$
vAmxz	$\left\langle v_{A}^{2}\right\rangle_{y}$

Module 'density_stratified.f90'
drhomxz $\quad\left\langle\Delta \rho / \rho_{0}\right\rangle_{y}$
drho2mxz $\left\langle\left(\Delta \rho / \rho_{0}\right)^{2}\right\rangle_{y}$
Module 'magnetic_shearboxJ.f90'

b2mxz	$\left\langle B^{2}\right\rangle_{y}$
axmxz	$\left\langle A_{x}\right\rangle_{y}$
aymxz	$\left\langle A_{y}\right\rangle_{y}$
azmxz	$\left\langle A_{z}\right\rangle_{y}$
bx1mxz	$\langle \| B_{x}\| \rangle_{y}$
by1mxz	$\langle \| B_{y}\| \rangle_{y}$
bz1mxz	$\langle \| B_{z}\| \rangle_{y}$
bxmxz	$\left\langle B_{x}\right\rangle_{y}$
bymxz	$\left\langle B_{y}\right\rangle_{y}$
bzmxz	$\left\langle B_{z}\right\rangle_{y}$
jxmxz	$\left\langle J_{x}\right\rangle_{y}$
jymxz	$\left\langle J_{y}\right\rangle_{y}$
jzmxz	$\left\langle J_{z}\right\rangle_{y}$
bx2mxz	$\left\langle B_{x}^{2}\right\rangle_{y}$
by2mxz	$\left\langle B_{y}^{2}\right\rangle_{y}$
bz2mxz	$\left\langle B_{z}^{2}\right\rangle_{y}$
bxbymxz	$\left\langle B_{x} B_{y}\right\rangle_{y}$
bxbzmxz	$\left\langle B_{x} B_{z}\right\rangle_{y}$
bybzmxz	$\left\langle B_{y} B_{z}\right\rangle_{y}$
uybxmxz	$\left\langle U_{y} B_{x}\right\rangle_{y}$
uybzmxz	$\left\langle U_{y} B_{z}\right\rangle_{y}$
Exmxz	$\left\langle\mathcal{E}_{x}\right\rangle_{y}$

Eymxz	$\left\langle\mathcal{E}_{y}\right\rangle_{y}$
Ezmxz	$\left\langle\mathcal{E}_{z}\right\rangle_{y}$
vAmxz	$\left\langle v_{A}^{2}\right\rangle_{y}$

Module 'meanfield.f90'

peffmxz alpmxz	$\left\langle\mathcal{P}_{\text {eff }}\right\rangle_{y}$ $\langle\alpha\rangle_{y}$	
Module 'temperature_idealgas.f90'		
$T T m x z$	$\langle T\rangle_{y}$	
$E m y m x z$	$\left\langle E m_{y}\right\rangle_{y}$	Emission in y-direction
		Module 'thermal_energy.f90'
$T T m x z$	$\langle T\rangle_{y}$	

K. 10 List of parameters for 'zaver.in'

The following table lists possible inputs to the file 'zaver. in'. This list is not complete and maybe outdated.

Variable	Meaning
	Module 'hydro.f90'
uxmxy	$\left\langle u_{x}\right\rangle_{z}$
uymxy	$\left\langle u_{y}\right\rangle_{z}$
uzmxy	$\left\langle u_{z}\right\rangle_{z}$
uxuymxy	$\left\langle u_{x} u_{y}\right\rangle_{z}$
uxuzmxy	$\left\langle u_{x} u_{z}\right\rangle_{z}$
uyuzmxy	$\left\langle u_{y} u_{z}\right\rangle_{z}$
oxmxy	$\left\langle\omega_{x}\right\rangle_{z}$
oymxy	$\left\langle\omega_{y}\right\rangle_{z}$
ozmxy	$\left\langle\omega_{z}\right\rangle_{z}$
oumxy	$\langle\boldsymbol{\omega} \cdot \boldsymbol{u}\rangle_{z}$
pvzmxy	$\left\langle\left(\omega_{z}+2 \Omega\right) / \varrho\right\rangle_{z} \quad$ (z component of potential vorticity)
uguxmxy	$\left\langle(\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u})_{x}\right\rangle_{z}$
uguymxy	$\left\langle(\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u})_{y}\right\rangle_{z}$
uguzmxy	$\left\langle(\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u})_{z}\right\rangle_{z}$
ruxmxy	$\left\langle\rho u_{x}\right\rangle_{z}$
ruymxy	$\left\langle\rho u_{y}\right\rangle_{z}$
ruzmxy	$\left\langle\rho u_{z}\right\rangle_{z}$
ux2mxy	$\left\langle u_{x}^{2}\right\rangle_{z}$
uy 2 mxy	$\left\langle u_{y}^{2}\right\rangle_{z}$
uz2mxy	$\left\langle u_{z}^{2}\right\rangle_{z}$
rux2mxy	$\left\langle\rho u_{x}^{2}\right\rangle_{z}$
ruy 2 mxy	$\left\langle\rho u_{y}^{2}\right\rangle_{z}$
ruz2mxy	$\left\langle\rho u_{z}^{2}\right\rangle_{z}$
ruxuymxy	$\left\langle\rho u_{x} u_{y}\right\rangle_{z}$
ruxuzmxy	$\left\langle\rho u_{x} u_{z}\right\rangle_{z}$

ruyuzmxy fkinxmxy fkinymxy	$\begin{aligned} & \left\langle\rho u_{y} u_{z}\right\rangle_{z} \\ & \left\langle\frac{1}{2} \varrho \boldsymbol{u}^{2} u_{x}\right\rangle_{z} \\ & \left\langle\frac{1}{2} \varrho \boldsymbol{u}^{2} u_{y}\right\rangle_{z} \\ & \hline \end{aligned}$
Module 'density.f90'	
rhomxy	$\langle\varrho\rangle_{z}$
Module 'entropy.f90'	
TTmxy	$\langle T\rangle_{z}$
ssmxy	$\langle s\rangle_{z}$
uxTTmxy	$\left\langle u_{x} T\right\rangle_{z}$
uyTTmxy	$\left\langle u_{y} T\right\rangle_{z}$
uzTTmxy	$\left\langle u_{z} T\right\rangle_{z}$
gTxmxy	$\left\langle\nabla_{x} T\right\rangle_{z}$
gTymxy	$\left\langle\nabla_{y} T\right\rangle_{z}$
gTzmxy	$\left\langle\nabla_{z} T\right\rangle_{z}$
gsxmxy	$\left\langle\nabla_{x} s\right\rangle_{z}$
gsymxy	$\left\langle\nabla_{y}\right\rangle_{z}$
gszmxy	$\left\langle\nabla_{z} s\right\rangle_{z}$
gTxgsxmxy	$\left\langle(\nabla T \times \nabla s)_{x}\right\rangle_{z}$
gTxgsymxy	$\left\langle(\nabla T \times \nabla s)_{y}\right\rangle_{z}$
gTxgszmxy	$\left\langle(\nabla T \times \nabla s)_{z}\right\rangle_{z}$
gTxgsx $2 m x y$	$\left\langle(\nabla T \times \nabla s)_{x}^{2}\right\rangle_{z}$
gTxgsy $2 m x y$	$\left\langle(\nabla T \times \nabla s)_{y}^{2}\right\rangle_{z}$
gTxgsz2mxy	$\left\langle(\nabla T \times \nabla s)_{z}^{2}\right\rangle_{z}$
fconvxy	$\left\langle c_{p} \varrho u_{x} T\right\rangle_{z}$
fconvyxy	$\left\langle c_{p} \varrho u_{y} T\right\rangle_{z}$
fconvzxy	$\left\langle c_{p} \varrho u_{z} T\right\rangle_{z}$
fradxy_Kprof	$F_{x}^{\text {rad }}$ (x-component of radiative flux, z-averaged, from Kprof)
fradymxy_Kprof	$F_{y}^{\text {rad }}$ (y-component of radiative flux, z-averaged, from Kprof)
fradxy kramers	$F_{\text {rad }}$ (z-averaged, from Kramers' opacity)
fturbxy	$\left\langle\varrho T \chi_{t} \nabla_{x} s\right\rangle_{z}$
fturbymxy	$\left\langle\varrho T \chi_{t} \nabla_{y} s\right\rangle_{z} \quad$ d
fturbrxy	$\left\langle\varrho T \chi_{r i} \nabla_{i} s\right\rangle_{z} \quad$ (radial part of anisotropic turbulent heat flux)
fturbthxy	$\left\langle\varrho T \chi_{\theta i} \nabla_{i}\right\rangle_{z} \quad$ (latitudinal part of anisotropic turbulent heat flux)
dcoolxy	surface cooling flux
Module 'magnetic.f90'	
bxmxy	$\left\langle B_{x}\right\rangle_{z}$
bymxy	$\left\langle B_{y}\right\rangle_{z}$
bzmxy	$\left\langle B_{z}\right\rangle_{z}$
jxmxy	$\left\langle J_{x}\right\rangle_{z}$
jymxy	$\left\langle J_{y}\right\rangle_{z}$
jzmxy	$\left\langle J_{z}\right\rangle_{z}$
axmxy	$\left\langle A_{x}\right\rangle_{z}$
aymxy	$\left\langle A_{y}\right\rangle_{z}$
azmxy	$\left\langle A_{z}\right\rangle_{z}$
$b x 2 m x y$	$\left\langle B_{x}^{2}\right\rangle_{z}$

by2mxy	$\left\langle B_{y}^{2}\right\rangle_{z}$
bz2mxy	$\left\langle B_{z}^{2}\right\rangle_{z}$
bxbymxy	$\left\langle B_{x} B_{y}\right\rangle_{z}$
bxbzmxy	$\left\langle B_{x} B_{z}\right\rangle_{z}$
bybzmxy	$\left\langle B_{y} B_{z}\right\rangle_{z}$
poynxmxy	$\langle\boldsymbol{E} \times \boldsymbol{B}\rangle_{x}$
poynymxy	$\langle\boldsymbol{E} \times \boldsymbol{B}\rangle_{y}$
poynzmxy	$\langle\boldsymbol{E} \times \boldsymbol{B}\rangle_{z}$
jbmxy	$\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle_{z}$
abmxy	$\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle_{z}$
examxy1	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle_{z}\right\|_{x}$
examxy2	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle_{z}\right\|_{y}$
examxy3	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle_{z}\right\|_{z}$
StokesImxy	$\left\langle\epsilon_{B \perp}\right\rangle_{z} \mid z$
StokesQmxy	$-\left.\left\langle\epsilon_{B \perp} \cos 2 \chi\right\rangle_{z}\right\|_{z}$
StokesUmxy	$-\left.\left\langle\epsilon_{B \perp} \sin 2 \chi\right\rangle_{z}\right\|_{z}$
StokesQ1mxy	$+\left.\left\langle F \epsilon_{B \perp} \sin 2 \chi\right\rangle_{z}\right\|_{z}$
StokesU1mxy	$-\left.\left\langle F \epsilon_{B \perp} \cos 2 \chi\right\rangle_{z}\right\|_{z}$
beta1mxy	$\left.\left\langle\boldsymbol{B} /\left(2 \mu_{0} p\right)\right\rangle_{z}\right\|_{z}$
	Module^{\prime} density_stratified.f90'
drhomxy	$\left\langle\Delta \rho / \rho_{0}\right\rangle_{z}$
drho2mxy	$\left\langle\left(\Delta \rho / \rho_{0}\right)^{2}\right\rangle_{z}$

Module 'gravity_simple.f90'

epotmxy epotuxmxy	$\left\langle\varrho \Phi_{\text {grav }}\right\rangle_{z}$	

Module 'magnetic_shearboxJ.f90'

bxmxy	$\left\langle B_{x}\right\rangle_{z}$
bymxy	$\left\langle B_{y}\right\rangle_{z}$
bzmxy	$\left\langle B_{z}\right\rangle_{z}$
jxmxy	$\left\langle J_{x}\right\rangle_{z}$
jymxy	$\left\langle J_{y}\right\rangle_{z}$
jzmxy	$\left\langle J_{z}\right\rangle_{z}$
axmxy	$\left\langle A_{x}\right\rangle_{z}$
aymxy	$\left\langle A_{y}\right\rangle_{z}$
azmxy	$\left\langle A_{z}\right\rangle_{z}$
bx2mxy	$\left\langle B_{x}^{2}\right\rangle_{z}$
by2mxy	$\left\langle B_{y}^{2}\right\rangle_{z}$
bz2mxy	$\left\langle B_{z}^{2}\right\rangle_{z}$
bxbymxy	$\left\langle B_{x} B_{y}\right\rangle_{z}$
bxbzmxy	$\left\langle B_{x} B_{z}\right\rangle_{z}$
bybzmxy	$\left\langle B_{y} B_{z}\right\rangle_{z}$
poynxmxy	$\langle\boldsymbol{E} \times \boldsymbol{B}\rangle_{x}$
poynymxy	$\langle\boldsymbol{E} \times \boldsymbol{B}\rangle_{y}$
poynzmxy	$\langle\boldsymbol{E} \times \boldsymbol{B}\rangle_{z}$
jbmxy	$\langle\boldsymbol{J} \cdot \boldsymbol{B}\rangle_{z}$
abmxy	$\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle_{z}$
examxy1	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle_{z}\right\|_{x}$

examxy2	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle_{z}\right\|_{y}$
examxy3	$\left.\langle\boldsymbol{E} \times \boldsymbol{A}\rangle_{z}\right\|_{z}$
StokesImxy	$\left.\left\langle\epsilon_{B \perp}\right\rangle_{z}\right\|_{z}$
StokesQmxy	$-\left.\left\langle\epsilon_{B \perp} \cos 2 \chi\right\rangle_{z}\right\|_{z}$
StokesUmxy	$-\left.\left\langle\epsilon_{B \perp} \sin 2 \chi\right\rangle_{z}\right\|_{z}$
StokesQ1mxy	$+\left.\left\langle F \epsilon_{B \perp} \sin 2 \chi\right\rangle_{z}\right\|_{z}$
StokesU1mxy	$-\left.\left\langle F \epsilon_{B \perp} \cos 2 \chi\right\rangle_{z}\right\|_{z}$
beta1mxy	$\left.\left\langle\boldsymbol{B}^{2} /\left(2 \mu_{0} p\right)\right\rangle_{z}\right\|_{z}$
Module 'temperature_idealgas.f90'	
TTmxy	$\langle T\rangle_{z}$
Emzmxy	$\left\langle E m_{z}\right\rangle_{z} \quad$ Emission in z-direction
Module 'thermal_energy.f90'	
TTmxy	$\langle T\rangle_{z}$
Module 'viscosity.f90'	
fviscmxy	$\left\langle 2 \nu \varrho u_{i} \mathcal{S}_{i x}\right\rangle_{z}$ (x-xomponent of viscous flux)
fviscsmmxy	$\left\langle 2 \nu_{\text {Smag }} \varrho u_{i} \mathcal{S}_{i x}\right\rangle_{z}$ (x-xomponent of viscous flux)
fviscymxy	$\left\langle 2 \nu \varrho u_{i} \mathcal{S}_{i y}\right\rangle_{z}$ (y-xomponent of viscous flux)

K. 11 Boundary conditions

The following tables list all possible boundary condition labels that are documented.
K.11.1 Boundary condition bcx

Variable	Meaning
\quad Module 'boundcond.f90'	
0	zero value in ghost zones, free value on boundary
p	periodic
S	symmetry, $f_{N+i}=f_{N-i} ;$ implies $f^{\prime}\left(x_{N}\right)=f^{\prime \prime \prime}\left(x_{0}\right)=0$
$s f$	symmetry with respect to interface
SS	symmetry, plus function value given
S0d	symmetry, function value such that df/dx $=0$
a	antisymmetry, $f_{N+i}=-f_{N-i} ;$ implies $f\left(x_{N}\right)=f^{\prime \prime}\left(x_{0}\right)=0$
af	antisymmetry with respect to interface
a2	antisymmetry relative to boundary value, $f_{N+i}=2 f_{N}-f_{N-i} ;$ implies
	$f^{\prime \prime}\left(x_{0}\right)=0$
a2v	set boundary value and antisymmetry relative to it $f_{N+i}=2 f_{N}-f_{N-i} ;$
	implies $f^{\prime \prime}\left(x_{0}\right)=0$
a2r	sets $d^{2} f / d r^{2}+2 d f / d r-2 f / r^{2}=0$ This is the replacement of zero second
	derivative in spherical coordinates, in radial direction.
$c p c$	cylindrical perfect conductor implies $f^{\prime \prime}+f^{\prime} / R=0$
$c p p$	cylindrical perfect conductor implies $f^{\prime \prime}+f^{\prime} / R=0$
$c p z$	cylindrical perfect conductor implies $f^{\prime \prime}+f^{\prime} / R=0$
$s p r$	spherical perfect conductor implies $f^{\prime \prime}+2 f^{\prime} / R=0$ and $f\left(x_{N}\right)=0$
v	vanishing third derivative

cop	copy value of last physical point to all ghost cells
1 s	onesided
d1s	onesided for 1 st/2nd derivative in two first inner points, Dirichlet in boundary point
$n 1 s$	onesided for 1st/2nd derivative in two first inner points, Neumann in boundary point
1so	onesided
$c T$	constant temperature (implemented as condition for entropy s or temperature T)
c1	constant temperature (or maybe rather constant conductive flux??)
Fgs	Fconv $=-$ chi_t*rho*T* grad(s)
Fct	Fbot $=-\mathrm{K}^{*} \operatorname{grad}(\mathrm{~T})-$ chi t^{*} rho*T* $\operatorname{grad}(\mathrm{s})$
Fcm	$F b o t=-K * \operatorname{rrad}(\bar{T})-c h i_{t} * \overline{r h o} * \bar{T} * \operatorname{grad}(\bar{s})$
sT	symmetric temperature, $T_{N-i}=T_{N+i}$; implies $T^{\prime}\left(x_{N}\right)=T^{\prime \prime \prime}\left(x_{0}\right)=0$
asT	select entropy for uniform ghost temperature matching fluctuating boundary value, $T_{N-i}=T_{N}=$; implies $T^{\prime}\left(x_{N}\right)=T^{\prime}\left(x_{0}\right)=0$
f	"freeze" value, i.e. maintain initial
$f g$	"freeze" value, i.e. maintain initial
1	$f=1$ (for debugging)
set	set boundary value to fbcx
der	set derivative on boundary to fbcx
slo	set slope at the boundary $=f b c x$
slp	set slope at the boundary and in ghost cells = fbcx
shx	set shearing boundary proportional to x with slope=fbcx and abscissa=fbcx2
shy	set shearing boundary proportional to y with slope=fbcx and abscissa=fbcx2
shz	set shearing boundary proportional to z with slope $=f b c x$ and abscissa=fbcx2
dr0	set boundary value [really??]
ovr	overshoot boundary condition ie ($d / d x-1 /$ dist) $f=0$.
out	allow outflow, but no inflow forces ghost cells and boundary to not point inwards
e1o	allow outflow, but no inflow uses the e1 extrapolation scheme
ant	stops and prompts for adding documentation
e1	extrapolation [describe]
e2	extrapolation [describe]
e3	extrapolation in log [maintain a power law]
el	linear extrapolation from last two active cells
hat	top hat jet profile in spherical coordinate.
jet	top hat jet profile in cartezian coordinate.
spd	sets $d\left(r A_{\alpha}\right) / d r=\mathrm{fbcx}(\mathrm{j})$
sfr	stress-free boundary condition for spherical coordinate system.
sr1	Stress-free bc for spherical coordinate system. Implementation with one-sided derivative.
$n f r$	Normal-field bc for spherical coordinate system. Some people call this the "(angry) hedgehog bc".
$n \mathrm{r} 1$	Normal-field bc for spherical coordinate system. Some people call this the "(angry) hedgehog bc". Implementation with one-sided derivative.

sa2 $\quad(d / d r)\left(r B_{\phi}\right)=0$ imposes boundary condition on 2nd derivative of $r A_{\phi}$. Same applies to θ component.
$p f c \quad$ perfect-conductor in spherical coordinate: $d / d r\left(A_{r}\right)+2 / r=0$.
fix set boundary value [really??]
fil set boundary value from a file
$c f b \quad$ radial centrifugal balance
$g \quad$ set to given value(s) or function
nil do nothing; assume that everything is set
ioc inlet/outlet on western/eastern hemisphere in cylindrical coordinates do nothing; assume that everything is set
$s \quad$ implies $f^{\prime}\left(y_{N}\right)=f^{\prime \prime \prime}\left(y_{0}\right)=0$
Module 'boundcond_alt.f90'

0	zero value in ghost zones, free value on boundary
p	periodic
S	symmetry, $f_{N+i}=f_{N-i}$; implies $f^{\prime}\left(x_{N}\right)=f^{\prime \prime \prime}\left(x_{0}\right)=0$
SS	symmetry, plus function value given
s0d	symmetry, function value such that $\mathrm{df} / \mathrm{dx}=0$
a	antisymmetry, $f_{N+i}=-f_{N-i}$; implies $f\left(x_{N}\right)=f^{\prime \prime}\left(x_{0}\right)=0$
a2	antisymmetry relative to boundary value, $f_{N+i}=2 f_{N}-f_{N-i}$; implies $f^{\prime \prime}\left(x_{0}\right)=0$
a2r	sets $d^{2} f / d r^{2}+2 d f / d r-2 f / r^{2}=0$ This is the replacement of zero second derivative in spherical coordinates, in radial direction.
cpe	cylindrical perfect conductor implies $f^{\prime \prime}+f^{\prime} / R=0$
cpp	cylindrical perfect conductor implies $f^{\prime \prime}+f^{\prime} / R=0$
cpz	cylindrical perfect conductor implies $f^{\prime \prime}+f^{\prime} / R=0$
spr	spherical perfect conductor implies $f^{\prime \prime}+2 f^{\prime} / R=0$ and $f\left(x_{N}\right)=0$
v	vanishing third derivative
cop	copy value of last physical point to all ghost cells
1 s	onesided
1so	onesided
$c T$	constant temperature (implemented as condition for entropy s or temperature T)
c1	constant temperature (or maybe rather constant conductive flux??)
Fgs	Fconv = - chi_t*rho*T*grad(s)
Fct	Fbot $=-\mathrm{K}^{*} \operatorname{grad}(\mathrm{~T})-$ chi_t*rho*T* $\operatorname{grad}(\mathrm{s})$
Fcm	Fbot $=-K * \operatorname{grad}(\bar{T})-c h i_{t} * \overline{r h o} * \bar{T} * \operatorname{grad}(\bar{s})$
${ }_{\text {sT }}$	symmetric temperature, $T_{N-i}=T_{N+i}$; implies $T^{\prime}\left(x_{N}\right)=T^{\prime \prime \prime}\left(x_{0}\right)=0$
asT	select entropy for uniform ghost temperature matching fluctuating boundary value, $T_{N-i}=T_{N}=$; implies $T^{\prime}\left(x_{N}\right)=T^{\prime}\left(x_{0}\right)=0$
f	"freeze" value, i.e. maintain initial
fg	"freeze" value, i.e. maintain initial
1	$f=1$ (for debugging)
set	set boundary value to fbcx12
der	set derivative on boundary to fbcx12
slo	set slope at the boundary $=f b c x 12$
dr0	set boundary value [really??]
ovr	overshoot boundary condition ie ($d / d x-1 /$ dist $) f=0$.
out	allow outflow, but no inflow forces ghost cells and boundary to not point inwards

e1o allow outflow, but no inflow uses the e1 extrapolation scheme
ant stops and prompts for adding documentation
e1 extrapolation [describe]
e2 extrapolation [describe]
e3 extrapolation in log [maintain a power law]
hat top hat jet profile in spherical coordinate.
jet top hat jet profile in cartezian coordinate.
spd \quad sets $d\left(r A_{\alpha}\right) / d r=\mathrm{fbcx} 12(\mathrm{j})$
sfr stress-free boundary condition for spherical coordinate system.
nfr \quad Normal-field bc for spherical coordinate system. Some people call this the "(angry) hedgehog bc".
sa2 $\quad(d / d r)\left(r B_{\phi}\right)=0$ imposes boundary condition on 2 nd derivative of $r A_{\phi}$. Same applies to θ component.
$p f c \quad$ perfect-conductor in spherical coordinate: $d / d r\left(A_{r}\right)+2 / r=0$.
fix set boundary value [really??]
fil set boundary value from a file
$g \quad$ set to given value(s) or function
nil do nothing; assume that everything is set
ioc inlet/outlet on western/eastern hemisphere in cylindrical coordinates do nothing; assume that everything is set

S implies $f^{\prime}\left(y_{N}\right)=f^{\prime \prime \prime}\left(y_{0}\right)=0$

K.11.2 Boundary condition bcy

Variable	Meaning
	Module 'boundcond.f90'
sds	symmetric-derivative-set
0	zero value in ghost zones, free value on boundary
p	periodic
$p p$	periodic across the pole
уу	Yin-Yang grid
ap	anti-periodic across the pole
S	symmetry symmetry, $f_{N+i}=f_{N-i}$;
SS	symmetry, plus function value given
sds	symmetric-derivative-set
cds	complex symmetric-derivative-set
s0d	symmetry, function value such that df/dy=0
a	antisymmetry
a2	antisymmetry relative to boundary value
v	vanishing third derivative
v3	vanishing third derivative
out	allow outflow, but no inflow forces ghost cells and boundary to not point inwards
$1 s$	onesided
d1s	onesided for 1st and 2nd derivative in two first inner points, Dirichlet in boundary point
n1s	onesided for 1st and 2nd derivative in two first inner points, Neumann in boundary point
$c T$	constant temp.

$s T$	symmetric temp.
asT	select entropy for uniform ghost temperature matching fluctuating boundary value, $T_{N-i}=T_{N}=$; implies $T^{\prime}\left(x_{N}\right)=T^{\prime}\left(x_{0}\right)=0$
f	freeze value
$s+f$	freeze value
$f g$	"freeze" value, i.e. maintain initial
$f B s$	frozen-in B-field (s)
$f B$	frozen-in B-field (a2)
1	$\mathrm{f}=1$ (for debugging)
set	set boundary value
sse	symmetry, set boundary value
sep	set boundary value
e1	extrapolation
e2	extrapolation
e3	extrapolation in log [maintain a power law]
der	set derivative on the boundary
cop	outflow: copy value of last physical point to all ghost cells
c+k	no-inflow: copy value of last physical point to all ghost cells, but suppressing any inflow
$s f r$	stress-free boundary condition for spherical coordinate system.
$n f r$	Normal-field bc for spherical coordinate system. Some people call this the "(angry) hedgehog bc".
spt	spherical perfect conducting boundary condition along θ boundary $f^{\prime \prime}+$ $\cot \theta f^{\prime}=0$ and $f\left(x_{N}\right)=0$
$p f c$	perfect conducting boundary condition along θ boundary
nil',	do nothing; assume that everything is set
sep	set boundary value
crk	no-inflow: copy value of last physical point to all ghost cells, but suppressing any inflow

Module 'boundcond_alt.f90'

$s d s$	symmetric-derivative-set
0	zero value in ghost zones, free value on boundary
p	periodic
$p p$	periodic across the pole
$a p$	anti-periodic across the pole
s	symmetry symmetry, $f_{N+i}=f_{N-i} ;$
$s S$	symmetry, plus function value given
$s d s$	symmetric-derivative-set
$c d s$	complex symmetric-derivative-set
$s 0 d$	symmetry, function value such that df/dy=0 a
antisymmetry	
v	antisymmetry relative to boundary value
$v 3$	vanishing third derivative
out	vanishing third derivative allow outflow, but no inflow forces ghost cells and boundary to not point
$1 S$	inwards $c T$
$s T$	onesided constant temp. symmetric temp.

asT	select entropy for uniform ghost temperature matching fluctuating boundary value, $T_{N-i}=T_{N}=$; implies $T^{\prime}\left(x_{N}\right)=T^{\prime}\left(x_{0}\right)=0$
f	freeze value
$s+f$	freeze value
fg	"freeze" value, i.e. maintain initial
1	$\mathrm{f}=1$ (for debugging)
set	set boundary value
sse	symmetry, set boundary value
sep	set boundary value
e1	extrapolation
e2	extrapolation
e3	extrapolation in log [maintain a power law]
der	set derivative on the boundary
cop	outflow: copy value of last physical point to all ghost cells
$c+k$	no-inflow: copy value of last physical point to all ghost cells, but suppressing any inflow
sfr	stress-free boundary condition for spherical coordinate system.
$n f r$	Normal-field bc for spherical coordinate system. Some people call this the "(angry) hedgehog bc".
spt	spherical perfect conducting boundary condition along θ boundary $f^{\prime \prime}+$ $\cot \theta f^{\prime}=0$ and $f\left(x_{N}\right)=0$
$p f c$	perfect conducting boundary condition along θ boundary
nil',	do nothing; assume that everything is set
sep	set boundary value

K.11.3 Boundary condition bcz

Variable	Meaning
\quad Module 'boundcond.f90'	
0	zero value in ghost zones, free value on boundary
p	periodic
$y y$	Yin-Yang grid
s	symmetry
$s f$	symmetry with respect to interface
$s 0 d$	symmetry, function value such that df/dz=0
$0 d s$	symmetry, function value such that df/dz=0
a	antisymmetry
a2	antisymmetry relative to boundary value
a2v	set boundary value and antisymmetry relative to it
af	antisymmetry with respect to interface
a0d	antisymmetry with zero derivative
v	vanishing third derivative
$v 3$	vanishing third derivative
$1 s$	one-sided
$d 1 s$	onesided for 1st and 2nd derivative in two first inner points, Dirichlet
	in boundary point
$n 1 s$	onesided for 1st and 2nd derivative in two first inner points, Neumann
	in boundary point

a1s	special for perfect conductor with const alpha and etaT when A considered as B; one-sided for 1st and 2nd derivative in two first inner points
fg	"freeze" value, i.e. maintain initial
c1	complex
c1s	complex
Fgs	Fconv = - chi_t*rho*T* ${ }^{*}$ grad(s)
Fct	Fbot $=-\mathrm{K}^{*} \operatorname{grad}(\mathrm{~T})-$ chi_t*rho*T* $\operatorname{grad}(\mathrm{s})$
c3	constant flux at the bottom with a variable hcond
$p f e$	potential field extrapolation
p1D	potential field extrapolation in 1D
pot	potential magnetic field
pwd	a variant of 'pot' for nprocx=1
hds	hydrostatic equilibrium with a high-frequency filter
$c T$	constant temp.
cT1	constant temp.
cT2	constant temp. (keep lnrho)
cT3	constant temp. (keep lnrho)
hs	hydrostatic equilibrium
hse	hydrostatic extrapolation rho or lnrho is extrapolated linearily and the temperature is calculated in hydrostatic equilibrium.
$c p$	constant pressure
sT	symmetric temp.
ctz	for interstellar runs copy T
$c d z$	for interstellar runs limit rho
ism	for interstellar runs limit rho
asT	select entropy for uniform ghost temperature matching fluctuating boundary value, $T_{N-i}=T_{N}=$; implies $T^{\prime}\left(x_{N}\right)=T^{\prime}\left(x_{0}\right)=0$
c2	complex
$d b$	complex
ce	complex
e1	extrapolation
e2	extrapolation
ex	simple linear extrapolation in first order
exf	simple linear extrapolation in first order
exd	simple linear extrapolation in first order
exm	simple linear extrapolation in first order
b1	extrapolation with zero value (improved 'a')
b2	extrapolation with zero value (improved 'a')
b3	extrapolation with zero value (improved 'a')
f^{\prime} ', $f a$	freeze value + antisymmetry
fs	freeze value + symmetry
fBs	frozen-in B-field (s)
fB	frozen-in B-field (a2)
g	set to given value(s) or function
1	$\mathrm{f}=1$ (for debugging)
StS	solar surface boundary conditions
set	set boundary value
der	set derivative on the boundary
div	set the divergence of u to a given value use bc = 'div' for iuz

ovr	set boundary value
inf	allow inflow, but no outflow
ouf	allow outflow, but no inflow
in	allow inflow, but no outflow forces ghost cells and boundary to not point outwards
out	allow outflow, but no inflow forces ghost cells and boundary to not point inwards
in0	allow inflow, but no outflow forces ghost cells and boundary to not point outwards relaxes to vanishing 1 st derivative at boundary
ou0	allow outflow, but no inflow forces ghost cells and boundary to not point inwards relaxes to vanishing 1st derivative at boundary
ind	allow inflow, but no outflow forces ghost cells and boundary to not point outwards creates inwards pointing or zero 1st derivative at boundary
oud	allow outflow, but no inflow forces ghost cells and boundary to not point inwards creates outwards pointing or zero 1st derivative at boundary
ubs	copy boundary outflow,
win	forces massflux given as $\sum \rho_{i}\left(u_{i}+u_{0}\right)=\mathrm{fbcz1} 1 / 2(\rho)$
cop	copy value of last physical point to all ghost cells
nil	do nothing; assume that everything is set
	Module 'boundcond_alt.f90'
cfb	radial centrifugal balance
$f B s$	frozen-in B-field (s)
fB	frozen-in B-field (a2)
0	zero value in ghost zones, free value on boundary
p	periodic
s	symmetry
sf	symmetry with respect to interface
s0d	symmetry, function value such that $\mathrm{df} / \mathrm{dz}=0$
0ds	symmetry, function value such that $\mathrm{df} / \mathrm{dz}=0$
a	antisymmetry
a2	antisymmetry relative to boundary value
af	antisymmetry with respect to interface
a0d	antisymmetry with zero derivative
v	vanishing third derivative
v3	vanishing third derivative
1 s	one-sided
fg	"freeze" value, i.e. maintain initial
c1	complex
Fgs	Fconv $=-$ chi_t*rho*T*grad(s)
Fct	Fbot $=-\mathrm{K} * \operatorname{grad}(\mathrm{~T})-$ chi t^{*} rho*T* $\operatorname{grad}(\mathrm{s})$
c3	constant flux at the bottom with a variable hcond
pfe	potential field extrapolation
p1D	potential field extrapolation in 1D
pot	potential magnetic field
pwd	a variant of 'pot' for nprocx=1
hds	hydrostatic equilibrium with a high-frequency filter
$c T$	constant temp.
cT2	constant temp. (keep lnrho)
cT3	constant temp. (keep lnrho)

hs	hydrostatic equilibrium
hse	hydrostatic extrapolation rho or lnrho is extrapolated linearily and the temperature is calculated in hydrostatic equilibrium.
$c p$	constant pressure
$s T$	symmetric temp.
ctz	for interstellar runs copy T
$c d z$	for interstellar runs limit rho
asT	select entropy for uniform ghost temperature matching fluctuating boundary value, $T_{N-i}=T_{N}=$; implies $T^{\prime}\left(x_{N}\right)=T^{\prime}\left(x_{0}\right)=0$
c2	complex
$d b$	complex
ce	complex
e1	extrapolation
e2	extrapolation
ex	simple linear extrapolation in first order
exf	simple linear extrapolation in first order
exd	simple linear extrapolation in first order
exm	simple linear extrapolation in first order
b1	extrapolation with zero value (improved 'a')
b2	extrapolation with zero value (improved 'a')
b3	extrapolation with zero value (improved 'a')
f^{\prime} ',fa	freeze value + antisymmetry
fs	freeze value + symmetry
$f B s$	frozen-in B-field (s)
$f B$	frozen-in B-field (a2)
g	set to given value(s) or function
1	$\mathrm{f}=1$ (for debugging)
StS	solar surface boundary conditions
set	set boundary value
der	set derivative on the boundary
div	set the divergence of \boldsymbol{u} to a given value use bc = 'div' for iuz
ovr	set boundary value
inf	allow inflow, but no outflow
ouf	allow outflow, but no inflow
in	allow inflow, but no outflow forces ghost cells and boundary to not point outwards
out	allow outflow, but no inflow forces ghost cells and boundary to not point inwards
in0	allow inflow, but no outflow forces ghost cells and boundary to not point outwards relaxes to vanishing 1st derivative at boundary
ou0	allow outflow, but no inflow forces ghost cells and boundary to not point inwards relaxes to vanishing 1st derivative at boundary
ind	allow inflow, but no outflow forces ghost cells and boundary to not point outwards creates inwards pointing or zero 1st derivative at boundary
oud	allow outflow, but no inflow forces ghost cells and boundary to not point inwards creates outwards pointing or zero 1st derivative at boundary
ubs	copy boundary outflow,
win	forces massflux given as $\Sigma \rho_{i}\left(u_{i}+u_{0}\right)=\mathrm{fbcz1} 1 / 2(\rho)$
cop	copy value of last physical point to all ghost cells
nil	do nothing; assume that everything is set

K． 12 Initial condition parameter dependence

The following tables list which parameters from each Namelist are required（•），optional (\diamond) or irrelevant（blank）．The distinction is made between required and optional where by a parameter requires a setting if the default value would give an invalid or degenerate case for the initial condition．

inituu	$\begin{aligned} & \text { 亏 } \\ & \text { 号 } \\ & \text { 品 } \end{aligned}$		$\begin{aligned} & \text { ت̈ } \\ & \text { ت్ర } \end{aligned}$	岕			¢ 3 3 \vdots 3	岕		｜r	宕	F
zero												
gaussian－noise	－											
gaussian－noise－x	－											
xjump		\diamond		\bullet	\bullet			\bullet	\bullet			
Beltrami－x	\bullet											
Beltrami－y	\bullet											
Beltrami－z	－											
trilinear－x	\bullet											
trilinear－y	\bullet											
trilinear－z	\bullet											
cos－cos－sin－uz	\bullet											
tor＿pert	\bullet											
trilinear－x	\bullet											
sound－wave	\bullet									－		
shock－tube		\diamond		－	\bullet							
bullets	－	\diamond										
Alfven－circ－x	\bullet									\diamond		
const－ux	\bullet											
const－uy	\bullet											
tang－discont－z	$\stackrel{\rightharpoonup}{\circ}$	\bullet				－	－					
Fourier－trunc	－	\diamond									\bullet	
up－down		\diamond										

initss	\％		告	$\begin{aligned} & \sqrt{2} \\ & 0 \\ & 0 \\ & 0 \\ & \frac{1}{6} \\ & \frac{0}{0} \end{aligned}$	｜		过		苞		｜${ }$			cn		center1＿y	$\begin{aligned} & N \\ & \text { N } \\ & \text { む } \\ & \text { IU } \\ & \text { d } \end{aligned}$				thermal_background
zero																					
const＿ss									\bullet												
blob	－	\bullet																			
isothermal																					
Ferrière																					
xjump			－				－	\bullet													
hor－fluxtube	\bullet	\bullet		－																	
hor－tube	\bullet	\bullet		－																	
sedov		\bullet													－	－	\bullet				\bullet
sedov－dual		－													\bullet	\bullet	－	－	－	－	\bullet
isobaric																					
isentropic																					
linprof																					
piecew－poly																					
polytropic																					

References

[1] Abramowitz, A., Stegun, I. A., Pocketbook of Mathematical Functions, Harri Deutsch, Frankfurt (1984)
[2] Barekat, A., \& Brandenburg, A., Astron. Astrophys. 571, A68 (2014) "Nearpolytropic stellar simulations with a radiative surface"
[3] Brandenburg, A., Astrophys. J. 550, 824-840 (2001) "The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence"
[4] Brandenburg, A., in Advances in non-linear dynamos, ed. A. Ferriz-Mas \& M. Núñez Jiménez, (The Fluid Mechanics of Astrophysics and Geophysics, Vol. 9) Taylor \& Francis, London and New York, pp. 269-344 (2003); http://arXiv.org/abs/astro-ph/0109497
[5] Brandenburg, A., Dobler, W., Astron. Astrophys. 369, 329-338 (2001) "Large scale dynamos with helicity loss through boundaries"
[6] Brandenburg, A., \& Hazlehurst, J., Astron. Astrophys. 370, 1092-1102 (2001) "Evolution of highly buoyant thermals in a stratified layer"
[7] Brandenburg, A., \& Sarson, G. R., Phys. Rev. Lett. 88, 055003 (2002) "The effect of hyperdiffusivity on turbulent dynamos with helicity"
[8] Brandenburg, A., Dobler, W., \& Subramanian, K., Astron. Nachr. 323, 99-122 (2002) "Magnetic helicity in stellar dynamos: new numerical experiments"
[9] Brandenburg, A., Enqvist, K., \& Olesen, P., Phys. Rev. D 54, 1291-1300 (1996) "Large-scale magnetic fields from hydromagnetic turbulence in the very early universe"
[10] Brandenburg, A., Jennings, R. L., Nordlund, Å., Rieutord, M., Stein, R. F., \& Tuominen, I., J. Fluid Mech. 306, 325-352 (1996) "Magnetic structures in a dynamo simulation"
[11] A. Brandenburg, T. Kahniashvili, S. Mandal, A. Roper Pol, A. G. Tevzadze, and T. Vachaspati, Phys. Rev. D 96, 123528 (2017) "Evolution of hydromagnetic turbulence from the electroweak phase transition"
[12] Brandenburg, A., Moss, D., \& Shukurov, A., MNRAS 276, 651-662 (1995) "Galactic fountains as magnetic pumps"
[13] Brandenburg, A., Nordlund, Å., Stein, R. F., \& Torkelsson, U., Astrophys. J. 446, 741-754 (1995) "Dynamo-generated turbulence and large scale magnetic fields in a Keplerian shear flow"
[14] Collatz, L., The numerical treatment of differential equations, Springer-Verlag, New York, p. 164 (1966)
[15] Dobler, W., Stix, M., \& Brandenburg, A.: 2006, "Convection and magnetic field generation in fully convective spheres," Astrophys. J. 638, 336-347
[16] Durrer, R., "The Cosmic Microwave Background," Cambridge University Press (2008)
[17] Gammie, C. F., Astrophys. J. 553, 174-183 (2001) "Nonlinear outcome of gravitational instability in cooling, gaseous disks"
[18] Goodman, J., Narayan, R. \& Goldreich, P., Month. Not. Roy. Soc. 225, 695-711 (1987) "The stability of accretion tori - II. Nonlinear evolution to discrete planets"
[19] Haugen, N. E. L., \& Brandenburg, A. Phys. Rev. E 70, 026405 (2004) "Inertial range scaling in numerical turbulence with hyperviscosity"
[20] Hockney, R. W., \& Eastwood, J. W., Computer Simulation Using Particles, McGrawHill, New York (1981)
[21] Hurlburt, N. E., Toomre, J., \& Massaguer, J. M., Astrophys. J. 282, 557-573 (1984) "Two-dimensional compressible convection extending over multiple scale heights"
[22] Kim, J., Moin, P. \& Moser, R J. of Fluid Mech. 177, 133 (1987) "Turbulence statistics in fully developed channel flow at low Reynolds number"
[23] Kippenhahn, R. \& Weigert, A. Stellar structure and evolution, Springer: Berlin (1990)
[24] Krause, F., Rädler, K.-H., Mean-Field Magnetohydrodynamics and Dynamo Theory, Akademie-Verlag, Berlin; also Pergamon Press, Oxford (1980)
[25] Lele, S. K., J. Comp. Phys. 103, 16-42 (1992) "Compact finite difference schemes with spectral-like resolution"
[26] Misner, C. W., Thorne, K. S. \& Wheeler, J. A. Gravitation, San Francisco: W.H. Freeman and Co. (1973), p. 213.
[27] Mitra, D., Tavakol, R., Brandenburg, A., \& Moss, D.: 2009, "Turbulent dynamos in spherical shell segments of varying geometrical extent," Astrophys. J. 697, 923-933 (arXiv/0812.3106)
[28] Nordlund, Å., \& Galsgaard, K., A $3 D$ MHD code for Parallel Computers, http://www.astro.ku.dk/~aake/NumericalAstro/papers/kg/mhd.ps.gz (1995)
[29] Nordlund, Å., Stein, R. F., Comput. Phys. Commun. 59, 119 (1990) "3-D simulations of solar and stellar convection and magnetoconvection"
[30] Press, W., Teukolsky, S., Vetterling, W., \& Flannery, B., Numerical Recipes in Fortran 90, 2nd ed., Cambridge (1996)
[31] Stanescu, D., Habashi, W. G., J. Comp. Phys. 143, 674 (1988) " $2 N$-storage low dissipation and dispersion Runge-Kutta schemes for computational acoustics"
[32] Williamson, J. H., J. Comp. Phys. 35, 48 (1980) "Low-storage Runge-Kutta schemes"

Part IV

Indexes

File Index

*. c 12
*.f90 12
*. in 32, 179
*.local
. 32
. ./32c 145
./config. 18
./host-ID 18
. adapt-mkfile.inc . . 77
.bashrc 5
.conf 19
.cshrc 5
.emacs 125
.svn/ 12
/scratch/ 7
<ID> 17
\$HOME/.pencil/config-local
18
\$HOME/.pencil/host-ID
18
\$PENCIL_HOME 87
\$PENCIL_HOME/config 18,
19
\$PENCIL_HOME/config-local
18
\$PENCIL_HOME/config/compilers/*.confu4, 247
17
\$PENCIL_HOME/config/hosts
17 cdata.f90. 89, 108, 186,
\$PENCIL_HOME/config/hosts/<ID>. con 224
17
chemistry.f90
196
\$PENCIL_HOME/config/hosts/IWEhbasibtyydsimple-G甘O_-
196
chiral_fluids.f90. 196

2d-tests/spherical_-
viscous_ring 105
aa[xyz]. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$
223
ab[xyz]. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$
223
adapt-mkfile 22
advective_gauge.f90 194
alive.info 181
anelastic.f90 195, 224
auto-test 2, 9
b2. $\{x z, y z, x y, x y 2\} .223$
bb.net 42
bb[xyz]. \{xz,yz,xy,xy2\}

223

beta1. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ 223
bfield.f90 195, 229, 234
bin/ 6, 9, 12, 14, 31, 33, 78
boundcond.f90 240, 243, 245
boundcond_alt.f90 242,
bugs/
12
\$PENCIL_HOME/config/hosts
17 cdata.f90. 89, 108, 186,
\$PENCIL_HOME/config/hosts/<ID>.con224
17
chemistry.f90
196
\$PENCIL_HOME/config/hosts/IWEKhasistadisimple-G甘O_-
Linux-Linux.conf
17
conf
17
chiral_fluids.f90. 196

17 gradtheta.f90
cparam.inc . . 14, 32, 78
cparam.local . . . 6, 12,
14, 22, 41, 49, 54, 100, 145
cparam_pencils.inc 102
ctimeavg.local . 12,30 , 31
data/7, 14, 27, 33, 50, 86
data/ 15
data/dim.dat 173
data/param.nml 86, 146, 173
data/procN/ 25
data/proc*/ 27, 28
data/proc*/alive.info 26
data/proc*/slice* . . 27
data/proc*/var.dat. 40
datadir.in . . . 7, 14, 15
debug_c.c 109
density.f9031, 66,
95, 189, 223, 224, 226, 231, 233, 235, 238
density_stratified.f90 197, 229, 232, 234, 236, 239
detonate.f90 197
dim.dat 15, 16, 32
divu. $\{x z, y z, x y, x y 2\} 223$
doc/
. 12
dustdensity.f90. . . 197
dx/basic. 41
dx/macros/ 32
ec. $\{x z, y z, x y, x y 2\} \cdot 223$
entropy.f9031, 109, 189, 223, 224, 227, 232, 233, 235, 238
entropy_anelastic.f90 197, 224
eos_ionization.f90 223
Equ 95
equ.f90 98
examples/pro/ 42

experimental 126
forced/ 12
forced/idl/ 55
fourier_fftpack.f90 53
fourier_transform_y 53
generate_kvectors.pro 149
getconf.csh 9, 12, 14, 33
$\begin{aligned} & \text { gravitational_- } \\ & \text { waves.f90 . . } 198 \end{aligned}$
gravitational_waves_- $\text { hij6.f90 . . } 198$
$\begin{array}{r} \text { gravity_simple.f90 } 199, \\ \mathbf{2 2 9}, 232,234,239 \end{array}$
gravz/ 12
grid.dat 16, 23
heatflux.f90 199
helical-MHDturb 35, 149
host_ID.conf 17
hosts/ 18
hsections.pro . . . 150
hydro.f90 . . 31, 66, 76,
95, 100, 186, 222,
224, 225, 231,
233, 235, 237
hyperresi_strict_2nd 137
hypervisc_strict_2nd 137
idl/ 12, 43
index.pro 15, 32
inlinedoc-modules.tex 171
Intel.conf 17
Intel_MPI.conf . . . 17
interlocked-fluxrings 105
interstellar.dat . . 15
Isurf.xz 223
j2. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\} .223$
jb. $\mathrm{xzz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\} .223$
$\begin{gathered} \mathrm{jj}[\mathrm{xyz}] \cdot\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\} \\ 223 \end{gathered}$
k.dat 32, 149
K_VECTORS/ 149
inematic/ 12

legend.dat
15
lncc. $\{x z, y z, x y, x y 2\} 223$
lnrho. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$
223
lnrho.net 42
lnTT. $\{x z, y z, x y, x y 2\} 223$
lorenz_gauge.f90 . . 199
mach. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\} 223$
magnetic.f90 viii, 31, 96,
98, 99, 109, 190, 223. 224, 227, 232, 233, 235, 238
magnetic_shearboxJ.f90 199, 225, 229, 232, 234, 236, 239
Makefile. 13, 21, 22, 31, 32, 78, 79, 122
Makefile.local . viii, 6, 12-14, 32, 49, 52, 54, 62, 64, 77, 78, 88
Makefile.src .6, 12, 14, 21, 78
meanfield.f90 203, 230, 237
meanfield_demfdt.f90 204
mkcparam. . . 14, 78, 102 mpicomm.f90 79
neutraldensity.f90. 66
neutralvelocity.f90 66
NEWDIR 34, 83
nochiral. 78
noentropy.f90 204
NOERASE 86
noinitial_condition.f90 104
noionization.f90.. 182
nomagnetic.f90 viii, 98, 99
nompicomm.f90 . 79, 111
nospecial.f90 103
o2. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$. 223
oo[xyz]. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$ 223
os/Unix.conf 19
param.nml.. 15, 32, 145
param2.nml 15, 32
params.log. . 15, 33, 34
particles_chemistry.f90 204
particles_dust.f90 204
particles_dust_-
brdeplete.f90
204
particles_lagrangian.f90 204
particles_mass_swarm.f90. . 205
particles_surfspec.f90 205
pc_read_phiavg.pro . 30
pc_read_video 28
pc_read_xyaver 29
pc_setupsrc 6
pencil-code/ 11, 12, 87
pencil-code/doc/manual.tex 90, 104
pencil-code/idl/read 8
pencil-code/license/developers 3, 91
pencil-code/utils 33
pencil-runs/ 12
Pencil::ConfigFinder 17
Pencil::ConfigParser 17
pencil_check.f90... 82
phiaver.in . . . 29, 224
phiaverages.dat. . . . 29
PHIAVGN 30
phiavg.pro 30
polymer.f90 205
power 53
power.pro 54
power_kin.dat 52
power_krms.dat . . . 53
powerbx_x.dat 52
powerhel_mag.dat.. . 52
powerux_x.dat . . 52, 53
Poynting [xyz]. $\{x z, y z, x y, x y 2\}$ 223
pp. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$. 223
print.in. . 8, 14, 25, 98, 99, 146, 186
procN 15, 32, 33
proc0 15
proc1 15
procN/ 108
pscalar.f90 . . 194, 223

Qrad. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\} 223$
r.pro

44, 45, 50
radiation_ray.f90. 223
rall.pro 44, 45, 50
README . . . 32, 107, 149 reference. out . . 8, 8, 14 RELOAD 15, 33, 34 remesh.csh 172 RERUN 34, 83 rho. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\} 223$ rings/ 12 run. $\operatorname{csh} 9,12,14,31,33$, 34, 83
run.in viii, 8 , 14, 26-28, 30-32, [34, 37,40, 52, 54, 82, 100, 145, 152, 179
run.pro 32
run.x.8, 15, 31, 39, 107
runA_32a
22
runs/ 12
rvid_box. 27
rvid_box.pro 27
rvid_line.pro 27
rvid_plane.pro 27
samples/ . . 2, 3, 5, 9, 14, 119
samples/1d-tests/H2_-
flamespeed . . 38
samples/dust-vortex 69
samples/parameter_scan 32
samples/README 12
samples/sedimentation/ 56
SCRATCH_DIR 83
seed.dat 16, 40
sfb-1.dat 54
sfu-1.dat......... . 54
sfz1-1.dat 54
shear.f90......... 205
shock. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\}$
223
shock.f90 . . . 205, 223
shock_highorder.f90
205, 230, 232, 235
slice
86
slice_uu1.yz 27
solar_corona.f90 . . 205
solid_cells_CGEO.f90
205
solid_cells_reactive.f90 205
sound-spherical-noequi
24
sourceme 5, 75
sourceme.csh . 5, 12, 75, 86
sourceme.sh 5, 12, 75, 86
SPEED 33
spher/ 12
$\mathrm{src} /$ viii, 3, 6, 11, 12, 14, 33, 78
src/ 14
src/*.local 32
src/cparam.local. . 145
src/Makefile.inc... 52
src/Makefile.local 38, 104, 145, 151
src/read_all_videofiles.x 27
src/read_videofiles.x 27, 28
ss. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\} .223$
ss.net 42
start.csh . 9, 12, 14, 31, 33, 39, 66, 82
start.in viii, 8 , 14, 24, 28, 32, 34, 35, 37, 39, 41, 59, 82, 100, 104, 146, 152, 172, 179
start.pro . . . 32, 44, 86
start. x 8, 15, 39, 41, 77, 82, 107, 183
STOP
33, 34
structure.pro 55
sub.f90 96
TAVGN 31
temperature_idealgas.f90
205, 223, 230, 232, 235, 237, 240
temperature_ionization.f90
206, 231
testfield_axisym.f90 206
testfield_axisym2.f90 207
testfield_axisym4.f90 207
testfield_compress_z.f90 208
testfield_meri.f90 210
testfield_nonlin_z.f90 211
testfield_x.f90 . . . 213
testfield_xz.f90 . . 215
testfield_z.f90 . . . 215
testflow_z.f90 . . . 217
testperturb.f90... 217
testscalar.f90 . . . 218
testscalar_axisym.f90 219
testscalar_simple.f90 220
thermal_energy.f90 222 , 231, 232, 235, 237, 240
time.dat
16, 40
time_series.dat. 8, 14, 15, 25, 32, 33, 41, 44
timeavg.dat 31
top.log 33
ts.pro 42, 44, 150
tsnap.dat 15, 180
TT. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\} .223$
tvid.dat 15
u2. $\{\mathrm{xz}, \mathrm{yz}, \mathrm{xy}, \mathrm{xy} 2\} .223$
$u[x y z] .\{x z, y z, x y, x y 2\}$
223
uu.net 42

VAR . 40, 86, 181
VARN $15,16,26,32,33$, 36, 180
var.dat 8,
15, 16, 25, 31, 32,
34, 36, 40, 42, 45,
86, 144, 172, 180, 181
var.general 41
VARO 172
VAR1 144
VAR\# 34
video.in26-28, 146, 222
visc_smagorinsky.f90 222

viscosity.f90 222, 231,
$\boxed{235,240}$

vsections.pro 151
vsections2.pro . . . 151
X.xy 16
X.xz 16

X.yz 16 xyaver.in . 29, 146, 225 xyaverages.dat 29 xzaver.in 29, 231 xzaverages.dat 29 yaver.in 29, 235
yaverages.dat 29
yH. \{xz,yz, xy, xy2\}. 223
yzaver.in 29, 232
yzaverages.dat 29
zaver.in. 29, 237
zaverages.dat 29

Variable Index

ajm 190, 200	alpmxz	237
aklam 217	alpPARA	206, 207
aklamQ 217	alpPARAz	206, 207
alp11 208, 211, 213, 215,	alpPERP	206, 207
217	alpPERPz	206, 207
alp11-x 214	amax . .	192, 201
alp11-x2 214	ambmz	193, 202
alp11cc . . 208, 211, 213,	ambmzh	193, 202
215	ambmzn	193, 202
alp11x 215	ambmzs	193, 202
alp11z 216	ampl_ff	185
alp12 $\frac{208, ~ 211, ~ 213, ~ 215, ~}{217}$	amplforc	182
217	ampl_ss	176
alp12 x 214	amplaa	178
alp12 x2 214	amplaa2	178
alp12cs . . 208, 212, 213, 215	ampllncc	178
	ampllncc2	178
$\begin{array}{cc} \text { alp12x } 215 \\ \text { alp12z } \end{array}$	ampllnrho	175
alp13 215	ampluu.	128, 174
alp13z 216	ampluи=1e-1	128
alp21 208, 211, 213, 215,		
217		243, 244
alp21.x 214	apbrms	. 195
alp21-x2 214	$a s T . \sqrt{241,242}$	$244-246$
alp21sc . . 208, 212, 213, 215	asT - ${ }^{248}$	
alp21x 215	axmxy	$8,239$
alp21z 216	axmxz	235, 236
alp22 208, 211, 213, 215,	axmz	227, 229
217	axp2	191, 201
alp22 x 214	axpt	191, 200
alp22-x2 214	aymxy	238, 239
alp22ss . . 208, 212, 213,	aymxz	235, 236
215	aymz	227, 229
alp22x 215	ayp2	191, 201
alp22z 216	aypt	191, 200
alp23 215	azmxy	238, 239
alp23z 216	azmxz	235, 236
alp31 208, 211, 213, 215,	azmz	227, 229
217	azp2	191, 201
alp32 208, 211, 213, 215,	azpt	191,200
217		
alpK 208, 211	b0rms 209, 21	214, 216
alpM 208, 211	b1	246, 248
alpm 203	b111xy	211
alpMK 208, 211	b112xy	211

214-216	
b121xy	211
b122xy	211
b12rms	12, 214,
216	
b131xy	211
b132xy	211
b1b23m	193, 202
b1b32m	193, 202
b1m	190, 199
b1rms	207, 208
	246, 248
b211xy	211
b212xy	211
b21rms	209, 212,
214-216	
b221xy	211
b222xy	211
b22rms	212, 214,
216	
b231xy	211
b232xy	211
b2b13m	193, 202
b2b31m	193, 202
b2divum	194, 203
b2m	195, 199
b2mphi	224, 225
$b 2 m x$	233, 234
$b 2 m x z$	235, 236
b2mz	228-230
b2rms	207, 208
b2ruzm	190, 199
b2tm	190, 199
b2uzm	190, 199
	246, 248
b311xy	211
b312xy	211
b321xy	211
b322xy	211
b331xy	211
b332xy	211
b3b12m	193, 202
b3b21m	193, 202
b3rms	207, 208
b4m	190
B ext .	184
bamp	213, 216
bb.	109, 223
bbmphi	224, 225

bbsphmphi . . . 224, 225	bpmphi. 224, 225
bbxmax 192, 201	brmphi 224, 225
bbxmz 227, 2229	brms 192, 195, 201
bbymax 192, 201	brms=3.871E-01 . . 128
bbymz 227, 222	brmsx 194, 203
bbzmax 192, 201	brmsz 194, 203
bbzmz 228, 222	brsphmphi . . . 224, 225
$b c\{x, y, z\}$. 39	bsinphz 193, 202
bcosphz 193, 202	bthmphi 224, 225
$b c x$ 39, 40, 83, 173, 181,	$b x 0 m z 210,213,214,217$
240	bx0pt . . . 209, 212, 216
bcy . . .39, 173, 181, 243	bx11pt . . 208, 212, 216
$b c z$ [39, 40, 83, 174, 181,	bx12pt . . 209, 212, 216
245	bx1mxz 235, 236
beta1 2223	bx1pt 207
beta1m 192, 201	bx21pt . . 208, 212, 216
beta1max 192, 201	bx22pt . . 209, 212, 216
beta1mxy 239, 240	bx2m . . . 193, 195, 202
beta1mz 228, 230	bx2mx 2234
beta2mx 233	bx2mxy 238, 2239
beta2mz 228-230	bx2mxz 236
betam . . . 192, 196, 201	bx2my 232
betamax . 192, 196, 201	bx2mz 228-230
betamin . 192, 196, 201	bx2pt 207
betamx 233	bx2rmz 228, 230
betamz 228-230	bx3pt 207, 208
betPARA 206, 207	bxbym . . 192, 195, 202
betPARAz 206, 207	bxbymx 234
betPERP 206, 207	bxbymxy 2239
betPERP2 207	bxbymxz 236
betPERPz 206, 207	bxbymy 232
bf2m 192	bxbymz 228-230
bf2mz 228, 230	bxbzm 195
bf4m 192	bxbzmx 2234
bfrms 192, 201	bxbzmxy 232
bgmu5rms . . . 196, 197	bxbzmxz 232
bgtheta5rms 196	bxbzmy 2232
bjtm 190, 199	bxbzmz 228-230
bm 195	bxm 192, 195, 201
bm2 190, 199	bxmax . . 192, 195, 201
bmax . . . 192, 195, 201	bxmin 192, 201
bmin 195	bxmx 234
$b m x$. .29, 192, 202, 234	bxmxy 238, 239
bmxy_rms . . . 194, 203	bxmxz 236
bmy 29, 192, 202	bxmy 232
bmz . .29, 192, 202, 229	bxmz 228, 222
bmzA2 193, 202	bxp2 191, 200
bmzph 193, 202	bxpt 191,200
bmzphe 193, 202	by0mz 210, 213, 214, 217
bmzS2 193, 202	by0pt . . 209, 212, 216

by11pt	209, 212, 216
by12pt	209, 212, 216
by1mxz	236
by21pt	209, 212, 216
by22pt	209, 212, 216
by2m	193, 195, 202
by $2 m x$	234
by $2 m x y$	239
by $2 m x z$	236
by $2 m y$	232
by 2 mz	228-230
by 2 rmz	228, 230
bybzm	195
bybzmx	234
bybzmxy	239
bybzmxz	236
bybzmy	232
bybzmz	228-230
bym	192, 195, 202
bymax	192, 195, 201
bymin	192, 201
bymx	234
bymxy	238, 239
bymxz	236
bymy	232
bymz	228, 229
byp2	191, 201
bypt	191, 200
bz0mz 21	213, 215, 217
bz1mxz	236
bz2m	193, 195, 202
bz2mx	234
bz2mxy	239
bz2mxz	236
bz2my	232
bz2mz	228-230
bz2rmz	228, 230
bzm	192, 195, 202
bzmax	192, 195, 201
bzmin	192, 201
bzmphi	224, 225
bzmx	. 234
bzmxy	238, 239
bzmxz	236
bzmy	232
bzmz	228, 229
bzp2	191, 201
bzpt	191,200
$c+k \ldots2,244,245$	

$c T 2$	246, 247
cT3	246, 247
ctz	246, 248
curlru2mz	. 225
cutoff=0	128
cusid	172, 179

d1s 241, 243, 245
d2davg 30, 181
d2Lambrms 195
d2Lamrms 195
d6abmz 228, 230
d6amz1 228, 230
d6amz2 228, 230
d6amz3 228, 230
damp 181, 182
dатри 181
dampuext 181
dampuint 181
datadir 45
db 246, 248
dbx2m 195
dbxm 195
dbxmax 195
dby2m 195
dbym 195
dbymax 195
dbz2m 196
dbzm 195
dbzmax 195
dcoolx 233
dcoolxy 238
dcoolz 227
del 206, 207
del2 207
deltay 205
delz 206, 207
der . 241, 242, 244-246, 248
detn 197
dettot 197
dexbmx 194, 203
dexbmy 194, 203
dexbmz 194, 203
dheat_buffer1 183
div 246, 248
divabrms 195
divapbrms 195
divarms 192, 201
divbmax 196
divbrms 196

divrhoum	195
divrhoumax . . 188	195
divrhourms . . 188,	195
divru2mz	225
divu	223
divu2m	187
divu2mz	225
divuHrms	189
divum	187
divumz	225
dobrms 191,	200
dr0 241	242
drho2m 189 ,	197
drho2mx	234
drho2mxy	239
drho2mxz	236
drho2my	232
drho2mz	229
drhom 189 ,	197
drhomax	197
drhomx	234
drhomxy	239
drhomxz	236
drhomy	232
drhomz	229
drhorms	197
dsnap 26, 36,	180
dstalk	179
$d t$. . 8, 38, 41, 180,	186
$d t _b b_{1} 1$	197
dt_chiral	197
dt_mu5_1	197
$d t$ mu5 2	197
dt_mu5 3	197
dtb 192 ,	201
dtc 8, 189, 197, 204,	206
dtchem	196
dtchi . . 88, 189, 198,	206
dtchi2 . . . 194, 197,	205
dteta 192,	,201
$d t F$	189
$d t H$	189
dtmin	180
$d t n e w t$	205
dtnu 8 ,	222
dtpchem	205
$d t q$	199
$d t q 2$	199
dtrad 194,	197
dtradloss	205

mz1	228, 230
e3xamz2	228, 230
e3xamz3	228, 230
E41xy	210
E42xy	210
E43xy	210
E51xy	210
E52xy	210
E53xy	210
E61xy	210
E62xy	210
E63xy	210
E71xy	210
E72xy	210
E73xy	210
E81xy	210
E82xy	210
E83xy	210
E91xy	210
E92xy	210
E93xy	210
EBpq 210, 2	214, 217
ror	223
EEGW	198
EEM	190
еет . .189, 198	206, 222
eemz	231
ekin	188
ekincr	197
ekinmx	233
ekinmz	226
ekinp	204
ekintot	188
el	241
emag	192, 201
embmz	193, 202
EMFdotB_int	204
EMFdotBm	204
EMFmax	204
EMFmin	204
EMFmz1	203
EMFmz2	203
EMFmz3	203
EMFrms	204
emxamz3	193, 202
Emymxz	237
Emzmask	206
Emzmxy	240
eos_merger	89
epot	199

epotmx	234
epotmxy	239
epotmy	232
epotmz	229
epottot	199
epotuxmx	234
epotuxmxy	239
epotuzmz	229
epsAD	,200
epsilonaa	178
epsK	222
epsKmz	231
epsM	200
epsMmz	,230
eruzmz	231
eta	184
eta11 208,	215
217	
eta11 x	214
eta11 $x 2$	214
215	
eta11x	215
eta11z	216
eta12 208,	215
218	
etal2x	214
eta12 $x 2$	214
eta12cs	214,
215	
eta12x	215
eta $12 z$	216
eta21 208,	215
218	
eta21 x	214
eta21x2	214
eta21sc . . 215	
eta21x	215
eta21z	216
eta22 208,	215,
218	
eta22 x	214
eta22 22	214
eta22ss	214.
215	
eta22x	215
eta22z	216
eta31	,218
eta32	, 218

eta_ext	184
eta_int	184
eta_out	184
eta_tdep	190
etaj2max	194, 203
etajmax	194, 203
etajrhomax	194, 203
etasmagm	194, 203
etasmagmax	194, 203
etasmagmin	194, 203
etatm	203
etatotalmx	234
etatotalmz	228, 230
etavamax	194, 203
ethm 189, 197	204, 206,
222	

ethmax 222
ethmer 197
ethmin 222
ethmz 227, 231
ethtot 189, 198, 206, 222
etot 222
ex 246, 248
Ex0pt 209, 213, 216
Ex11pt . . 209, 212, 216Ex12pt . . 209, 213, 216Ex21pt . . 209, 213, 216
Ex22pt . . 209, 213, 216
exabot 192, 201
examx 193, 203
examxy1 239
examxy 2 239, 240
examxy 3 239, 240
examy 194, 203
examz 194, 203
examz1 228, 230
examz2 228, 230
examz3 228, 230
exatop 192, 201
exd 246, 248
exf 246, 248
exjmx 194, 203
exjmy 194, 203
exjmz 194, 203
exm 246, 248
Exmxy 194, 203
Exmxz 236
Exmz 228, 229
Exp2 191, 201
Expt 191, 200

Ey0pt . . . 209, 213, 216 Ey11pt . . 209, 213, 216 Ey12pt . . 209, 213, 216 Ey21pt . . 209, 213, 216 Ey22pt . . 209, 213, 216 Eymxy 194, 203
Eymxz 236, 237
Eymz 228, 229
Eyp2 191, 201
Eypt 191, 200
Ezmxy 194, 203
Ezmxz 236, 237
Ezmz 228, 229
Ezp2 191, 201
Ezpt 191, 200
f. . . .241, 242, 244, 245
f','fa 246, 248
F11z 219-221
F12z 219, 220, 222
F21z 219-221
F22z 219, 220, 222
F31z 219, 220, 222
F32z 219, 220, 222
fB 244, 246-248
fbcx 241
fbcx12 242
fbcx2 241
fbm 191, 200
Fbot 183
fBs 244, 246-248
Fcm 241, 242
fconvm 190
fconvmz 231
fconvxmx 233
fconvxy 238
fconvyxy 238
fconvz 227
fconvzxy 238
Fct . . 241, 242, 246, 247
ffakez 231
FFLAGS DOUBLE . . 52
fg . . .241, 242, 244-247
Fgs . .241, 242, 246, 247
fil 242, 243
fix 242, 243
fkinxmx 226
fkinxmxy 238
fkinymxy 238
fkinzm 186
fkinzmz 222

gravz	5
grhomax	189
grid_func	23
gshockmax	205
gsrms	190
gsxmxy	238
gsymxy	238
gszmxy	238
gT2m	205
gtheta $5 m x$	196
gtheta5my	196
gtheta5mz	196
gtheta5rms	196
gTmax	205
gTrms	190
gTxgsrms	190
gTxgsx2mxy	238
gTxgsx2mz	227
gTxgsxmxy	238
gTxgsxmz	227
gTxgsy2mxy	238
gTxgsy2mz	227
gTxgsymxy	238
gTxgsymz	227
gTxgsz2mxy	238
gTxgsz2mz	227
gTxgszmxy	238
gTxgszmz	227
gTxmxy	238
gTymxy	238
gTzmxy	238
guxgTm	205
guygTm	205
guzgTm	205
gzlnrhomz	227
h22rms	198
h23rms	198
h33rms	198
hat	243
hcond0	183
hcond1	182
hcond2	182
$h d s$	247
headt	108
headtt	108
heatmz	227
height_eta	184
heightff	185
hhT2m	198
hhThhXm	198

hhTp2	198
hhTpt	198
hhTXm	198
hhX2m	198
$h h X p 2$	198
hhXpt	198
hjparallelm	194, 203
hjperpm	194, 203
hjrms	192, 201
Hmax	189
hrms	198
hs	246, 248
hse	246, 248
hydro.f90	171
ialive	25, 181
ialive $=0$	26
idiag_jbm	98
IDL_PATH	5,55
idx_tavg . . 30,	, 31, 181
iforce	184
iforce2	184
iheatcond	182, 184
imax	54
	247, 248
in0	247, 248
ind	247, 248
inf	247, 248
init_ads_mol_frac	c . 179
init_surf_mol_frac	c . . 179
initaa	177
initaa 2	178
initlnce	178
initlncc2	178
initlnrho	175
initpower	128
initpower2	128
initpower $2=-5 / 3$	128
initpower=2	128
initpower=4.	128
initpower_aa=2.	128
initss	176
inituu	174
	242, 243
ip 35,	172, 179
Iring1,Iring2	178
isav	. 25
isave	180
ism	246
isothtop	177, 183
Isurf .	223

IDL_PATH 5, 55
init_ads_mol_frac . . 179
initaa2 178
initlncc 178
initlncc2 178
initlnrho 175
initpower2 128
initpower $2=-5 / 3$. . . 128
initpower=2 128
initpower=4. 128
initpower_aa=2. . . 128
inituu 174
ioc 242, 243

jxbrmax	194, 203
jxbxm	191, 200
jxbym	191, 200
jxbzm	191,200
jxgLamrm	195
jxm	196
jxmax	192, 196, 201
jxmxy	238, 239
jxmxz	236
jxmz	228, 229
jxp2	191, 201
jxpt	191, 200
jy2m	196
jybxm	191, 200
jybym	191, 200
jybzm	191, 200
jym	196
jymax	192, 196, 201
jymxy	238, 239
jymxz	236
jymz	228, 229
jyp2	191, 201
jypt	191, 200
jz2m	196
jzbxm	191, 200
jzbym	191, 200
jzbzm	191, 200
jzm	196
jzmax	192, 196, 201
jzmxy	238, 239
jzmxz	236
jzmz	228, 229
jzp2	191, 201
jzpt	191, 200
k forc	182
kap11	218, 219, 221
kap11z	218, 220, 221
kap12	218, 219, 221
kap12z	218, 220, 221
kap13	218, 219, 221
kap13z	218, 220, 2221
kap21	218, 219, 221
kap21z	218, 220, 221
kap22	218, 219, 221
kap22z	218, 220, 221
kap23	218, 219, 221
kap23z	218, 220, 221
kap31	218, 219, 221
kap31z	218, 220, 221
kap32	218, 219, 221

lequidist	23
lfirst	108
lfirstpoint	108
lhcond global	184
lignore Bext in_b2	184
lncc	223
lnowrite	172
lnrho	223
lnrhomax	189
lnrhomin	189
lnrhomphi	224
$\ln T T$	223
lout	108
lperi	172
lpress_equil	178
lprocz_slowest	172
lpscalar_sink	185
lread_oldsnap	173
lread_oldsnap_nom 173	
lread_oldsnap_nops 173	
lroot	108
lshift_origin	173
lspecies_transfer [T]	186
lstalk_ap	179
lstalk_bb	179
lstalk_grho	179
lstalk_guu	179
lstalk_relvel	179
lstalk rho	179
lstalk_uu	179
lstalk_vv	179
lstalk_xx	179
lthiele [T]	186
luminosity	183
lupw lnrho	182
lupwss	183
luse_Bext_in_b2	184
lwrite_2d	172
lwrite_aux . . . 172	181
lwrite_ic	172
lwrite phiaverages	
lwrite_yaverages	
lwrite_zaverages	. 29
Lxyz23, 25, 35	172
m	108
m1	108
M11 208, 212	215
M11cc . . . 208, 212	

M11ss . . . 208, 212, 216
M11z . . . 210, 213, 217
M12cs . . . 208, 212, 216
m2 108
M22 208, 212, 215
M22cc . . . 208, 212, 216
M22ss . . . 208, 212, 216
M22z . . . 210, 213, 217
M33 208, 212, 216
M33z . . . 210, 213, 217
mach 223
mag flux 205
magfricmax . . 193, 202
MAGNETIC_INIT_-
PARS 173
Mamax 188
Marms 188
mass 189, 195, 197
maux 32, 100
maxadvec 141, 186
meshRemax 222
mgam33 . 218, 220, 221
mkap33 . 218, 220, 221
MMxт 197
MMym 197
MMzm 197
mpm 205
mpmax 205
mpmin 205
mpoly0 176, 177
mpoly1 176, 177
mpoly2 177
ти 206, 207
mи2 207
ти5m 196, 197
mu5rms 196, 197
muc1 219
тис2 219
тисz 219
титz 231
muz 206, 207
muar 32, 78, 173
$m x$. 26, 108, 109
my 26, 108, 109
$m z$. 26, 108, 109
n 108
n1 108
n1s 241, 243, 245
n2
108
$n f r$. 241, 243-245

omumz	187	ozmz 222
oo	223	
ms	188	$p \ldots . .240,242,245,247$
ou0 247,	248	p1D 246, 247
ou_int	188	particles_adsorbed.f90 171
oud 247,	248	171
ouf 247,	248	particles_chemistry 171
um 25,	188	particles_surfspec.f90 171
oumphi	188	PATH 5, 6, 12
oumx	233	pdivum . . 189, 198, 204
oumxy	237	peffmxz 237
umxz	235	PENCIL_HOME 5, 6, 75
oumy	231	PENCIL HOSTID . 18
oumz	226	pertss 176
out . . 241-244, 247,	248	$p f c$. 242 -245
out1	180	pfe 246, 2477
out2	180	phi11 208, 211
outm	186	phi12 208, 211
ovr . . 241, 242, 247,	248	phi21 208, 211
ox2m	188	phi22 208, 211
ox2mx	233	phi32 208, 211
ox2mz	225	phibmx 194, 203
oxdivu2mz	226	phibmy 194, 203
oxdivumz	226	phibmz 194, 203
oxmxy	237	phibzm 199
oxmz	225	phibzmz 199
oxoym	188	phiK 208, 211
oxozm	188	phiM 208, 211
oxuxxmz	226	phim 199
охиухтz	226	phiMK 208, 211
oxuzxm	188	phimphi 2224
oxuzxmz	226	phip2 199
oy $2 m$	188	phipt 199
oy $2 m x$	233	placeholder 186
oy2mz	225	polytrm 205
oydivu2mz	226	pot 246, 247
oydivumz	226	power_spectrum.f90 171
oymxy	237	Poynting 2223
oymz	225	poynxmxy 2239
oyozm	188	poynymxy 2239
oyuxymz	226	poynzmxy 233
oyuyymz	226	poynzmz 229, 2230
oyuzym	188	pp 223, 243, 244
oyuzymz	226	ppm . 189, 198, 206, 222
oz2m	188	$p p m x$. 233, 2235
oz2mx	233	ppmy 2332
oz2mz	225	ppmz . . . 227, 230, 231
ozdivu2mz	226	pr1mz. 231
ozdivumz	226	pretend $\ln T T$. . . . 174
ozmxy	237	pscalar_diff 184

relhel_uu=0	28
relhel_uu=1	128
Remz	226
Reshock	222
rho	223
rho0 . . . 17	182, 185
rho2mx	227
rho2mz	226
rho_left	175
rhoright	175
rhoccm	194
rhom . . 8, 25	189, 195
rhomax	189, 197
rhomin	189, 197
rhomphi	224
rhomx	233
rhomxmask	189
rhomxy	238
rhomxz	235
rhomy	231
rhomz	226
rhomzmask	189
rlx2m	188
rlxm	188
rly2m	188
rlym	188
rlz2m	188
rlzm	188
Rmesh	186
Rmesh3	186
Rmmz	193
rmphi	224
Rring1,Rring2	178
rumax	187
rux2m.	187
rux2mx	233
rux2mxy	237
rux2mz	226
ruxm	187
ruxmx	233
ruxmxy	237
ruxmz	226
ruxtot	187
ruxuy2mz	226
ruxuym	188
ruxuymx	233
ruxuymxy	237
ruxuymz	226
ruxuz2mz	226
uzm	188

ruxuzmx	. 233
ruxuzmxy	. 237
ruxuzmz	. 226
ruy $2 m$. 187
ruy2mx	. 233
ruy $2 m x y$. 237
ruy $2 m z$. 226
ruym	. 187
ruymx	. 233
ruymxy	. 237
ruymz	. 226
ruyuz2mz	. 226
ruyuzm	188
ruyuzmx	. 233
ruyuzmxy	. 238
ruyuzmz	. 226
ruz2m	. 187
ruz2mx	. 233
ruz2mxy	. 237
ruz2mz	. 226
ruzdownmz	. 225
ruzm	. 187
ruzmx	. 233
ruzmxy	. 237
ruzmz	. 226
ruzupmz	225

s 240, 242-245, 247 $s+f$. 244, 245 s0d . . 240, 242-245, 247 s2kzDFm 208, 212, 215 sa2 242, 243 sds 243, 244 sep 244, 245 set . 241, 242, 244-246, 248
sf 240, 245, 247
sfr 241, 243-245
Shchm 204
shock 223
shockmax 205
shx 241
shy 241
shz 241
Sij2m 222
slice_position 26, 27, 180
slo 241, 242
slp 241
spd 241, 243
spr 240, 242
spt 244, 245

sr1	241
ss . . . 223, 240, 242	244
ss2m 189 ,	198
ss2mx	233
ss2mz	227
sse 244 ,	245
ssm8, 189, 197,	206
ssmax	190
ssmin	190
ssmphi	224
ssm x	233
ssmxy 198 ,	238
ssmxz 198 ,	,235
ssmy	232
ssmz 227 ,	231
ssruzm	189
ssuzm	189
$s T$. . 241, 242, 244,	246
248	
StokesImxy . . . 239,	240
StokesQ1mxy . 239,	240
StokesQmxy . . 239,	,240
StokesU1mxy . 239,	240
StokesUmxy . . 239,	240
strTpt	198
strXpt	198
StS 246,	248
t. 8, 25, 108,	, 186
tauheat_buffer	183
tauhmin	189
tavg 30, 31,	181
$t d a m p$.	181
Tdxpm	206
Tdypm	206
Tdzpm	206
tensor_pscalar_diff	184
theool	206
theta	181
theta5m	196
theta5rms	196
timestep.f90	171
timestep_strang.f90	171
timestep_subcycle.f90	171
tmax	180
tot_ang_mom	188
total_carbon_sites	179
totmass	189
Trms	205
$t s$	44
$T T$	223

m	
TT2mx	233
TT2mz	227, 231
TTheat_buffer	183
TTm . 190, 20	206, 222
$\begin{gathered} \text { TTmax . . } 190 \\ 222 \end{gathered}$	205, 206,
TTmin 190, 20	206, 222
TTmx	233, 235
TTmxy	238, 240
TTmxz	235, 237
TTmy	232
TTmz	227, 231
ttransient	181
TTtop	, 199
TTzmask	205
TugTm	205
Tugux_uxugTm	205
Tuguy_uyugTm	206
Tuguz_uzugTm	06
uOrms	209, 212
u11rms	209, 212
u12rms	209, 212
u1u23m	187
u1u32m	187
u2	223
u21rms	209, 212
u22rms	209, 212
u2m	186
u2mphi	224
u2mz	225
u2tm	186
u2u13m	187
u2u31m	187
u3u12m	187
u3u21m	187
uabxmz	227, 222
uabymz	227, 229
uabzmz	227, 229
uam	191, 200
uamz	228, 230
ubbzm	190, 199
ubm	190, 200
ubmz	228, 230
ubs	247, 248
udpxxm	189
ufpresm	190
ufviscm	222
uglnrhom	189
uglnrhomz	227

ux2ssm	187
uxbm	193, 202
uxbmx	193, 202
uxbmy	193, 203
uxbmz	193, 203
uxbxm	191,200
uxbxmz	228, 230
uxbym	191, 200
uxbymz	228, 230
uxbzm	191, 200
uxbzmz	228, 230
uxglnrym	188
uxm	187
uxmax	187
uxmin	187
uxmx	233
uxmxy	237
uxmxz	235
uxmy	231
uxmz	225
uxp2	186
uxpt	186
uxrms	186
uxTm	205
uxTmz	231
uxTTmx	233
uxTTmxy	238
uxTTmz	227
uxuycsm	187
uxuydivum	188
uхиут	187
uхиуmx	233
uxuymxy	237
ихиутхz	235
uxuymz	226
uхиzm	187
uxuzmx	233
uxuzmxy	237
uxuzmxz	235
uxuzmz	226
uxxrms	189
uxzrms	189
uy0m	209, 212
uy0mz	217
uy11m	209, 212
uy2ccm	187
uy 2 m	187
uy $2 m x$	233
uy $2 m x y$.	237
uy $2 m x z$	235

uy $2 m z$	225
uy2ssm	187
uybxm	191,200
uybxmxz	236
uybxmz	228, 230
uybym	191,200
uybymz	228, 230
uybzm	191,200
uybzmxz	236
uybzmz	228, 230
uyglnrxm	188
uygzlnrhomz	227
иуm	187
uymax	187
uymin	187
иутх	233
иуmxy.	237
uymxz	235
uymy	231
uymz	225
uyp2	186
uypt	186
uyrms	186
uyTm	205
uyTmz	231
uyTTmx	233
uyTTmxy	238
uyTTmz	227
иуиzm	187
иуиzтх	233
uyuzmxy	237
uyuzmxz	235
иуиzmz	226
иухиzxmz	226
uyyrms	189
uyyuzymz	226
uyzrms	189
иуzuzzmz	226
uz0mz	217
uz2m	187
$u z 2 m x$	233
$u z 2 m x y$	237
$u z 2 m x z$	235
uz2mz	225
uzbxm	191, 200
uzbxmz	228, 230
uzbym	191,200
uzbymz	228, 230
uzbzm	191, 200
zm	228, 230

uzdivum	188
uzdivumz	. 225
uzdownmz	. 225
uzgylnrhomz	. 227
uzm	. 187
uzmax	. 187
uzmin	. 187
uzmphi	. 224
uzmx	. 233
uzmxy	. 237
uzmxz	. 235
uzmy	. 231
uzmz	. 225
uzp2	186
uzpt	. 186
uzrms	. 187
uzTm	. 205
uzTmz	. 231
uzTTmx	. 233
uzTTmxy	. 238
uzTTmz	. 227
иzupmz	. 225
uzyrms	189
v . . . 240 , 24	, 247
v3 24	, 247
$v A m$. 196
vAmax . 19	,201
vAmin	196
$v A m x z$, 237
vArms	,201
visc heatm	. 222
vol	. 189
vpx2m	. 204
vpxm	. 204
vpxmax	. 204
vpxmin	. 204
vrelpabsm.	. 204
w forc	. 182
walltime	. 186
wcool	. 183
wdamp	,182
wheat	. 183
width ff	. 185
widthaa	. 178
widthlnrho	175
widthss. . 17	, 183
widthuu	. 174
win	,248
wr1,wr2	. 178

write_slices	. 27	xyz0 23, 25, 172	z0aa 178
wsnaps.f90	180	xyz_star 25	z1 175
$x i$	217		$z 2$. 176
$x i Q$	217	yH 223	zbot_slice . . 26, 28, 180
$x p 2 m$	204	yHm 190, 206	zeta 185, 217
xpm	204	yHmax 190, 206	zetaQ 217
xpmax	204	yHmin 206	zheat_buffer 183
xpmin	204	yinyang.f90 171	zmphi 224
$x y$	180	yinyang_mpi.f90 . . 171	zref 175, 185
$x y 2$	180	yy 243, 245	ztop_slice . . 26, 28, 180

Index

This index contains options, names, definitions and commands. Files and variables have their own indexes.

'VAR10' 45
.r 45
.run 45
.svn 12
/trimall 45
\$PENCIL HOME /idl/files 46
2N-scheme 157
6 th-order derivatives 154
pc_mkproctree $16 . .145$
adapt-mkfile 77
adapt-mkfile 22, 88
anelastic. 67
Auto-tests 106
autoconf 88
Autoconf 88
Autoconf/automake. . 88
Averages 29, 30
Azimuthal averages . 29
bandwidth 50
Bash 5, 75
bash 44
bc 44
Beowulf clusters . . . 50
Bidiagonal scheme . 156
bin/pc_run 82
Boundary conditions. 39
Bourne shell 5

Cviii, 1, 109
Cdata 108
cgs units 36, 173
Changes 126
Check-in details 91
CHIRAL=nochiral. . 78
Coding standards97, 122
Comments 123
Coordinate systems . 59
copy-proc-to-proc seed.dat ../hydro256e 31
Coriolis force 181
Cosmic rays 68

Courant number 36
Covariant derivatives 163
Cron 106
crontab -e 106
CSH viii
Csh 1, 5, 12, 75
csh 75
Curvilinear coordinates 59, 163
CVS 2
CVSvii
Cvs 11
cvs-add-rundir 32
Daainit. 146
Data directory 14
Data explorer 1, 41
datafiles 25
Density_init_pars . . 174
Density_run_pars . . 182
diffrho hyper3 mesh=2 141
double precision 51, 144
Download 2, 44, 75
Download forbidden . 75
DX .viii, 1, 5, 12, 32, 41, 42

Emacs settings 125
Entropy 61
Entropy 15, 40, 61
Entropy.f90 27
Entropy_init_pars . . 176
Entropy_run_pars . . 182
Equation of state . . . 63
Error, diffusive 158
Etatest 146
f-array 100
f90 21, 22
F95 viii, 1 f95 21
FAQ 75
FBCX1 146
FBCX2_2 146
FC=mpif90 81
ff 45
ff.varname 46
FFT 13
Fftpack 52
Filters 137
Flag 172, 179
Flux rings 128
Forcing_run_pars 36,
148, 149, 184
Fortran record 26, 30
Fortran record 26
fp-array 101
Frequently Asked Ques-tions75
ftp 44
Fully qualified host name 18
G77 77
G95 52, 76
GDL 42
Gfortran viii, 52
Ghost points 39
Ghost zones 39, 50
Git 2
Git 2, 3
git 3
Glibc 76
Gnu Data Language 42
GNU gcc viii
Gnuplot 15, 41
gnuplot 44
Grav_init_pars 175
Grav_r 13
Grav_run_pars 146, 185
Gravitational Waves 71
Gravity 13
Gravity_simple 13
grep viii, 95, 96
grid, nonuniform 23
h-index 91
Hydro.f90 27

Hydro_init_pars
Hydro_run_pars . . . 181
hyperdiffusivity . . . 137
Hyperviscosity $137,139-$ $[141,154,156$
idiff='hyper3_mesh' . 141
IDL . .viii, 1, 5, 8, 9, 12,
15, 27, 28, 30, 32,
42-44, 53, 55
IDL 149
Ifort 76, 77
ifort 52
incompressible 67
Init_pars . . 34, 35, 172
Initial conditions . . 127
InitialCondition module 104
Interlocked flux rings 128
Interstellar 15
IO 108, 109
Io_mpiodist.f90 16
Ionization 64, 159
Ionization.f90 . . 36, 37
itorder=5 38
Janus 21, 22
ldensity 89
Linux 1,76
locate mpif.h 81
lwrite aux=T 66
Magnetic 98
Magnetic 98
Magnetic helicity . . .vii
Magnetic.f90 . . . 27, 28
Magnetic_init_pars . 177
Magnetic_run_pars 146, 184
Make 1, 13, 22, 78
make . . . 6, 13, 19, 20
make clean 76
Makefile . . 6, 14, 21, 80
Makefile 20
Manual.iv, 90, 104
mesh, nonuniform . . 23

Message passing interface 49	Option '-qextname' . . 76 Option ' $-t 15 m$ ' . . . 107
Module viii	Option '-T ifile ${ }^{\prime}$ ' . . . 107
Module.h 76	Option ' $-U c$ ' 107
Modules 13	Option '-Wa,-max-level'
Modules viii, 13	107
MPEG 27	Option ${ }^{\text {-Wa,-max- }}$
Mpeg_encode 27	level=2'. . . . 107
MPI vii, 1, 9, 13-15, 21,	Option '/png' 27
49, 77, 88	Option '̇̇ \$HOME / public
mpif90 -show 81	html/pencil-
mpif90 -showme . . . 81	code /tests / nightly
mpirun 14	tests.html'. . 107
	Option ' a ' 39
Namelist 32	Option ' $a 2$ ' 40
Namelists 34	Option 'c1' 40, 132, 183
Networks 41	Option 'c2' 40, 182
NEWDIR file 34	Option 'ce'. 40
Newphysics 104	Option 'cT' 40
Noentropy . . 15, 40, 61	Option 'db' 40
NOERASE file 86	Option ' g ' 40
Nogravity 13	Option 'hs' 40
Noionization.f90 . 36, 37	Option 'nohydro' . . . 184
Nomodule.f90 76	Option 'p' 39
Nonewphysics . . . 104	Option 'pot' 132
nonuniform grid . . . 23	Option 'pwd' 132
Nospecial.f90 . 103,104	Option 's' 40
octave 44	Option 'she'. 40
Onsager 22	Particles 69, 146
OpenDX 1	Particles_ads_init_pars
Option '-host-id' 18	179
Option '-use-pc' . . . 107	Particles_ads_run_pars
Option '-use-pc_auto-test'	186
21	Particles_chem_init_pars
Option '-b' 21	179
Option '-D ;diré . . . 107	Particles_chem_run pars
Option 'ff' 106	186
Option '-fast' 22	Particles_run_pars . 185
Option '-fno-second-	Particles_stalker_init
underscore’ . .76,	pars 179
77	Particles_surf_init_pars
Option '-H' 18, 107	179
Option ' - ' 106	Particles_surf_run_pars
Option '-lmpi' 21	186
Option '-m jemail-list;'	pc_jobtransfer 34
107	pc_auto-test . .20, 21, 91,
Option '-N 15' 107	106
Option '-nothreads' . . 77	pc_auto-test -help 21, 106
Option '-O2-u' 21	pc_build 17, 20
Option '-O3' 21, 79	pc_build-cleanall . 107

pc_build-help. 20
pc_get_quantity . . 44, 45
pc_jobtransfer 34
pc_mkdatadir 7
pc_newrun7 7
pc_read_const, obj=cst 46
pc_read_param, obj=par 46
pc_read_param, obj=par2, /param2 . . . 46
pcread puar, obj=fp. 46
pc_read_ts,obj=ts . . 46
pcread_var. . . . 44, 45
pc_read_var, obj=ff, /trimall 46
pc_read_var_raw 44
pc_read_var_raw, obj=var, tags=tags 46
pc_read_xyaver, obj=xya 46
pcread_xzaver, $\quad o b j=x z a$ 46
pc_read_yzaver, obj=yza 46
pcrun . . 17, 19, 20, 82
pcrun -help 20
pc_setupsrc . . 12, 32, 52, 75, 76
pc_sunup 3
pc_sunup -val 3
pc_tsnap 26
Pencil case 101
Pencil check 102
Pencil Code 88
Pencil consistency check 102
Pencil design 12
pencil-test. 21, 106, 107
pencil-test-help 21, 106
pencil_check_small=F 66
Pencils vii, 101
Perlviii, 1, 12
perldoc Pencil::ConfigFinder 17
perldoc PENCIL::ConfigParser start.csh 40 17 Stdout 25
Planet solution 134
PNG 27

Polytropic atmosphere 130
Potential-field boundary condition . . 132
power 53, 54
pretend $\operatorname{lnTT} . .62,174$
Programming style . 97, 122
Pscalar 104
Pscalar_init_pars . . 178
Pscalar_run_pars . . 184
Python viii
Python 46
Radiative transfer . 66, 160
Readline 44
Regridding 144
Remeshing 144
RERUN file 34
restart-new-dir ../32c 145
Restarting 40, 145, 146
rlwrap 44
Run directory6
run.x 30
Run_pars 26- 28 , 34, 145, 179, 181
Runge-Kutta 157
Runge-Kutta time step 38
Runge-Kutta-Fehlberg time step . . . 38

Scripts 31
Setup 5, 42, 75
Shear 40
Shear_init_pars 178
Shear_run_pars 146, 185
Shock viscosity . . 37, 63
SI units 36, 173
Sixth-order derivatives 154
slice files 28
Slice files 26, 27
Special module 103

Stratification 129
structure 55

Style 3, 97, 122
Sub 109
summarize-history . . 34
svn 2-4, 14, 117
Svn. 2-4, 11, 14, 31, 32, 79, 117, 172, 179
sun . 3
sun annotate src/*.f90 v
sun mv file.f90 experimental/file.f90 126
svn up sourceme.csh . 87
sun up sourceme.sh . .87
sun update 107
sun update -r \#\#\#\#\# . . 4
Svn/git 2, 3
Syscalls 76
tab 97
Tab characters 122
tag_names 45
Tcsh 5
teach / PencilCode / material / Burg 142
Testfield method 71, 145
Time averages 30
Time step 38, 157
Toroidal averages . . . 29
touch NEWDIR 34
touch NOERASE . . 173
touch RELOAD 179
uname 22
Underscore problem . 77
Units 36, 173
Unix 1
Upwinding . 37, 95, 155
use 108
Vector potential 61
Video files 26
Viscosity 37, 63
Viscosity_run pars 146, 185

Weyl gauge 61
Whitespace 122
Xlf 76
Xmgrace 15

[^0]: ${ }^{1}$ Our 'pencil-runs' directory also contains runs that were done some time ago. Occasionally, we try to update these, especially if we have changed names or other input conventions.

[^1]: ${ }^{2}$ We stress once more that we are not talking about F90 modules here, although there is some connection, as most of our modules define F90 modules: For example each of the modules gravity_simple, grav_r and nogravity defines a Fortran module Gravity.

[^2]: ${ }^{3}$ However, if the include statement is inside a section, only the file's contents inside that section are inserted.

[^3]: ${ }^{4}$ The format specifiers are like in Fortran, apart from the fact that the E format will use standard scientific format, corresponding to the Fortran 1 pE syntax. Seasoned Fortran IV programmers may use formats like (0 pE 13.4) to enjoy nostalgic feelings, or (1 pF 10.5) if they depend on getting wrong numbers.

[^4]: ${ }^{5}$ A Fortran record is marked by the 4-byte integer byte count of the data in the record at the beginning and the end, i.e. has the form $\left\langle N_{\text {bytes }}\right.$, raw_data, $\left.N_{\text {bytes }}\right\rangle$

[^5]: ${ }^{7}$ Note that $c_{p}=1$ is only assumed if you use the module noionization.f90. If you work with ionization.f90, temperature units are specified by unit_temperature as described below.

[^6]: ${ }^{8}$ Note: the parameter unit_temperature is currently only used in connection with ionization.f90. If you are working with noionization.f90, the temperature unit is completely determined by Eq. (19) above.

[^7]: ${ }^{9}$ If contourfill produces just contour lines instead of a color-coded plot, your version of GDL is too old. E.g. the version shipped with Ubuntu 9.10 is based on GDL 0.9 rc 1 and has this problem.

[^8]: ${ }^{10}$ If you run IDL from the command line, you will highly appreciate the following tip: IDL's command line editing is broken beyond hope. But you can fix it, by running IDL under rlwrap, a wrapper for the excellent GNU readline library.

 Download and install rlwrap from http://utopia.knoware.nl/~hlub/uck/rlwrap/ (on some systems you just need to run 'emerge rlwrap', or 'apt-get install rlwrap'), and alias your idl command:
 csh> alias idl 'rlwrap -a -c idl'
 bash> alias idl='rlwrap -a -c idl'
 From now on, you can

 - use long command lines that correctly wrap around;
 - type the first letters of a command and then PageUp to recall commands starting with these letters;
 - capitalize, uppercase or lowercase a word with Esc-C, Esc-U, Esc-L;
 - use command line history across IDL sessions (you might need to create "~/.idl_history' for this);
 - complete file names with Tab (works to some extent);
 - ... use all the other readline features that you are using in bash, octave, bc, gnuplot, ftp, etc.

[^9]: ${ }^{11}$ Keep in mind that $j j=c u r l(b b)$ would use iterated first derivatives instead of the second derivatives and thus be numerically less accurate than $j j=c u r l 2(a a)$, particularly at small scales.

[^10]: ${ }^{12} \mathrm{We}$ omit here the contribution of H_{2}.

[^11]: ${ }^{13}$ We were kindly made aware of the possibility of interpolating in Fourier space by C. McNally on his website.
 ${ }^{14}$ See master's thesis of A. Johansen (can be downloaded from
 http://www.mpia.de/homes/johansen/research_en.php)

[^12]: ${ }^{15}$ In practice, we calculate $\partial_{j}\left(\hat{B}_{i} \hat{B}_{j}\right)=\left(\delta_{i j}-2 \hat{B}_{i} \hat{B}_{k}\right) \hat{B}_{j} B_{k, j} /|\boldsymbol{B}|$, where derivatives of \boldsymbol{B} are calculated as $B_{i, j}=\epsilon_{i k l} A_{l, j k}$.

[^13]: ${ }^{16}$ Note that when using 'nompicomm.f90', the timer currently used will overflow on some machines, so you should not blindly trust the timings given by the code.

[^14]: ${ }^{18}$ The fourth order compact scheme is really identical to calculating derivatives from a cubic spline, as was done in Ref. [29]. In the book by Collatz [14] the compact methods are also referred to as Hermitian methods or as Mehrstellen-Verfahren, because the derivative in one point is calculated using the derivatives in neighboring points.

[^15]: ${ }^{19}$ A simple one-dimensional test profile would be $u(x)=1-x^{2}$ on $x \in[-1,1]$, which will accumulate more and more mass near the right boundary $x=1$.
 In two- or three-dimensional settings, the presence of stagnation points of X-type leads to the same configuration, this time with the possibility of a steady state (i.e. without accumulation of mass). Such stagnation points occur e.g. at the top of an upwelling, or at the bottom of a downdraft in convection simulations, where locally $u_{z} \propto z_{\mathrm{X}}-z$.

