ExternalMedia

Generated by Doxygen 1.7.6.1

Tue Apr 3 2012 23:59:35

Contents

1 External Media HowTo 1
1.1 Introduction 1

1.2 Using the pre-packaged releases with FluidProp 2

1.3 Architecture ofthepackage 2

1.4 Developing your own external medium package 3

2 Class Index 5
2.1 ClassHierarchy 5

3 Class Index 7
3.1 ClassList 7

4 Class Documentation 9
4.1 BaseSolverClass Reference 9
4.1.1 Detailed Description 12

4.1.2 Constructor & Destructor Documentation. 12

4121 BaseSolver. 12

4122 ~BaseSolver. 13

4.1.3 Member Function Documentation 13

4131 a .. 13

4182 beta 13

4.1.3.3 computeDerivatives, 14

4134 CD 14

4135 CV. .o 14

4136 d .. 15

4137 d.der. 15

ii CONTENTS
4138 ddhp 15
4139 dddp 15
41310 ddph 16
41311 ddvdp 16
41312 dhidp 16
41313 dhvdp 17
41314 dl .. 17
41315 dTp. o 17
41316 dv .. 18
41317 eta 18
41318 h .. 18
413819 hl 18
41820 hv e 19
4.1.3.21 isentropicEnthalpy 19
41322 Kappao 19
41323 lambda o 20
41324 p ... 20
41325 phase 20
41826 Pr. 21
413827 psat 21
41328 S ... 21
41329 setBubbleState L. 21
41330 setDewState 22
4.1.3.31 setFluidConstants 22
41332 setSat. p 23
41333 setSat. T 23
41334 setState dT 23
41335 setState ph L. 24
41336 setState ps 24
41.3.37 setState pT 24
41338 sigma. 25
41339 sl 25
41340 SV. 25
41341 T .o 26

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

CONTENTS iii

4.2

4.3

4.4

4.5

4.6

4.7

41342 Tsat 26
ExternalSaturationProperties Struct Reference 26
4.2.1 Detailed Description 27
ExternalThermodynamicState Struct Reference 27
4.3.1 Detailed Description 28
FluidConstants Struct Reference, 29
441 Detailed Description L oL 29
FluidPropSolver Class Reference 29
451 Detailed Description L oL 31
4.5.2 Member Function Documentation 31

4521 isentropicEnthalpy 31

4522 setBubbleState 32

4523 setDewState oL 32

4524 setFluidConstants 32

4525 setSatp 33

4526 setSat T 33

4527 setState dT 33

4528 setState. pho 33

4529 setState ps 34
SolverMap Class Reference 34
4.6.1 Detailed Description L 34
4.6.2 Member Function Documentation 35

46.21 getSolver 35

46.22 solverKey. 35
TestSolver Class Reference 35
4.7.1 Detailed Description 36
4.7.2 Member Function Documentation 37

4721 setFluidConstants 37

4722 setSat p 37

4723 setSat. T 37

4724 setState dT 38

4725 setState ph 38

4726 setState ps 39

4727 setState pT 39

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

CONTENTS

4.8 TFluidProp Class Reference 39

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

Chapter 1

External Media HowTo

1.1 Introduction

The ExternalMedia project was started in 2006 by Francesco Casella and Christoph
Richter, with the aim of providing a framework for interfacing external codes comput-
ing fluid properties to Modelica.Media-compatible component models. The two main
requirements are: maximizing the efficiency of the code and minimizing the amount of
extra code required to use your own external code within the framework.

The first implementation featured a hidden cache in the C++ layer and used integer
unique IDs to reference that cache. This architecture worked well if the models did not
contain implicit algebraic equations involving medium properties, but had serious issues
when such equations were involved, which is often the case when solving steady-state
initialization problems.

The library has been restructured in 2012 by Francesco Casella and Roberto Bonifetto.
The main idea has been to get rid of the hidden cache and of the unique ID references
and use the Modelica state records for caching. In this way, all optimizations performed
by Modelica tools are guaranteed to give correct results, which was previously not the
case. The current version implements the Modelica.Media.Interfaces.PartialTwoPhase-
Medium interface, so it can handle pure fluids, either one-phase or two-phase, and is
compatible with Modelica and Modelica Standard Library 3.2. Please note that the paths
of the medium packages have been changed from the previous versions, so you might
need some small changes if you want to upgrade your models from previous versions
of the ExternalMedia library.

There are two ways to use this library. The easiest way is to use the releases available
on the Modelica website, which include a pre-compiled interface to the FluidProp tool
(http://www.fluidprop.com). FluidProp features many built-in fluid models,
and can optionally be used to access the whole NIST RefProp database, thus giving
easy access to a wide range of fluid models with state-of-the-art accuracy. If you want
to use your own fluid property computation code instead, then you need to check out
the source code and add the interface to it, as described in this manual.

Please contact the main developer, Francesco Casella (casellalelet .polimi. -
it) if you have questions or suggestions for improvement.

http://www.fluidprop.com
mailto://casella@elet.polimi.it
mailto://casella@elet.polimi.it

2 External Media HowTo

Licensed by the Modelica Association under the Modelica License 2

Copyright (c) 2006-2012, Politecnico di Milano, TU Braunschweig, Politecnico di Torino.

1.2 Using the pre-packaged releases with FluidProp

Download and install the latest version of FluidProp from http://www.—
fluidprop.com. If you want to use the RefProp fluid models, you need to get
the full version of FluidProp, which has an extra license fee.

Download and unzip the library corresponding to the version of Microsoft Visual Studio
that you use to compile your Modelica models, in order to avoid linker errors. Make
sure that you load the ExternalMedia library in your Modelica tool workspace, e.g. by
opening the main package.mo file.

You can now define medium models for the different libraries supported by FluidProp,
by extending the ExternalMedia.Media.FluidPropMedium package. Please note that
only single-component fluids are supported. Set libraryName to "FluidProp.RefProp",
"FluidProp.StanMix", "FluidProp.TPSI", or "FluidProp.IF97", depending on the specific
library you need to use. Set substanceNames to a single-element string array con-
taining the name of the specific medium, as specified by the FluidProp documentation.
Set mediumName to a string that describes the medium (this only used for documen-
tation purposes but has no effect in selecting the medium model). See ExternalMedia.-
Examples for examples.

Please note that the medium model IF97 is already available natively in Modelica.Media
as Water.StandardWater, which is much faster than the FluidProp version. If you need
ideal gas models (single-component or mixtures), use the medium packages contained
in Modelica.Media.ldealGases.

1.3 Architecture of the package

This section gives an overview of the package structure, in order to help you understand
how to interface your own code to Modelica using it.

At the top level there is a Modelica package (ExternalMedia), which contains all the ba-
sic infrastructure needed to use external fluid properties computation software through
a Modelica.Media compliant interface. In particular, the ExternalMedia.Media.External-
TwoPhaseMedium package is a full-fledged implementation of a two-phase medium
model, compliant with the Modelica.Media.Interfaces.PartialTwoPhaseMedium inter-
face. The ExternalTwoPhaseMedium package can be used with any external fluid prop-
erty computation software; the specific software to be used is specified by changing
the libraryName package constant, which is then handled by the underlying C code to
select the appropriate external code to use.

The Modelica functions within ExternalTwoPhaseMedium communicate to a C/C++ in-
terface layer (called externalmedialib.cpp) via external C functions calls, which in turn
make use of C++ objects. This layer takes care of initializing the external fluid computa-
tion codes, called solvers from now on. Every solver is wrapped by a C++ class, inher-

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

http://www.fluidprop.com
http://www.fluidprop.com

1.4 Developing your own external medium package 3

iting from the BaseSolver C++ class. The C/C++ layer maintains a set of active solvers,
one for each different combination of the libraryName and mediumName strings, by
means of the SolverMap C++ class. The key to each solver in the map is given by
those strings. It is then possible to use multiple instances of many solvers in the same
Modelica model at the same time.

All the external C functions pass the libraryName, mediumName and substanceNames
strings to the corresponding functions of the interface layer. These in turn use the -
SolverMap object to look for an active solver in the solver map, corresponding to those
strings. If one is found, the corresponding function of the solver is called, otherwise a
new solver object is instantiated and added to the map, before calling the corresponding
function of the solver.

The default implementation of an external medium model is implemented by the -
ExternalTwoPhaseMedium Modelica package. The setState_xx() and setSat_x() func-
tion calls are rerouted to the corresponding functions of the solver object. These
compute all the required properties and return them in the ExternalThermodynamic-
State and ExternalSaturationProperties C structs, which map onto the corresponding
ThermodynamicState and SaturationProperties records defined in ExternalTwoPhase-
Medium. All the functions returning properties as a function of the state records are im-
plemented in Modelica and simply return the corresponding element in the state record,
which acts as a cache. This is an efficient implementation for many complex fluid mod-
els, where most of the CPU time is spent solving the basic equation of state, while
the computation of all derived properties adds a minor overhead, so it makes sense
to compute them once and for all when the setState_XX() or setSat_xx() functions are
called.

In case some of the thermodynamic properties require a significant amount of CPU
time on their own, it is possible to override this default implementation. On one hand,
it is necessary to extend the ExternalTwoPhaseMedium Modelica package and rede-
clare those functions, so that they call the corresponding external C functions defined
in externalmedium.cpp, instead of returning the value cached in the state record. On
the other hand, it is also necessary to provide an implementation of the corresponding
functions in the C++ solver object, by overriding the virtual functions of the BaseSolver
object. In this case, the setState_xx() and setSat_X() functions need not compute all
the values of the cache state records; uncomputed properties might be set to zero. -
This is not a problem, since Modelica.Media compatible models should never access
the elements of the state records directly, but only through the appropriate functions, so
these values should never be actually used by component models using the medium
package.

1.4 Developing your own external medium package

The ExternalMedia package has been designed to ease your task, so that you will only
have to write the mimum amount of code which is strictly specific to your external code
- everything else is already provided. The following instructions apply if you want to
develop an external medium model which include a (sub)set of the functions defined in
Modelica.Media.Interfaces.PartialTwoPhaseMedium.

The most straightforward implementation is the one in which all fluid properties are com-

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4 External Media HowTo

puted at once by the setState_XX() and setSat_X() functions and all the other functions
return the values cached in the state records.

Get the source code from the SVN repository of the Modelica Association: https—
://svn.modelica.org/projects/ExternalMedialLibrary/trunk.

First of all, you have to write you own solver object code: you can look at the code of
the TestMedium and FluidPropMedium code as examples. Inherit from the BaseSolver
object, which provides default implementations for most of the required functions, and
then just add your own implementation for the following functions: object constructor,
object destructor, setMediumConstants(), setSat_p(), setSat_T(), setState_ph(), set-
State_pT(), setState_ps(), setState_dT(). Note that the setState and setSat functions
need to compute and fill in all the fields of the corresponding C structs for the library to
work correctly. On the other hand, you don’t necessarily need to implement all of the
four setState functions: if you know in advance that your models will only use certain
combinations of variables as inputs (e.g. p, h), then you might omit implementing the
setState and setSat functions corresponding to the other ones.

Then you must modify the SolverMap::addSolver() function, so that it will instantiate
your new solver when it is called with the appropriate libraryName string. You are free
to invent you own syntax for the libraryName string, in case you'd like to be able to set
up the external medium with some additional configuration data from within Modelica
- it is up to you to decode that syntax within the addSolver() function, and within the
constructor of your solver object. Look at how the FluidProp solver is implemented for
an example.

Finally, add the .cpp and .h files of the solver object to the C/C++ project, set the
include.h file according to your needs and recompile it to a static library (or to a DL-
L). The compiled libraries and the externalmedialib.h files must then be copied into the
Include subdirectory of the Modelica package so that the Modelica tool can link them
when compiling the models.

As already mentioned in the previous section, you might provide customized imple-
mentations where some of the properties are not computed by the setState and setSat
functions and stored in the cache records, but rather computed on demand, based on a
smaller set of thermodynamic properties computed by the setState and setSat functions
and stored in the state C struct.

Please note that compiling ExternalMedia from source code might require the profes-
sional version of Microsoft Visual Studio, which includes the COM libraries used by the
FluidProp interface. However, if you remove all the FluidProp files and references from
the project, then you should be able to compile the source code with the Express edition,
or possibly also with gcc.

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

https://svn.modelica.org/projects/ExternalMediaLibrary/trunk
https://svn.modelica.org/projects/ExternalMediaLibrary/trunk

Chapter 2

Class Index

2.1

Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

BaseSolver 9
FluidPropSolver 29
TestSolver e 35

ExternalSaturationProperties Lo o 26

ExternalThermodynamicState 27

FludConstants 29

SolverMap 34

TFIuidProp 39

Class Index

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

BaseSolver

Basesolverclass
ExternalSaturationProperties

ExternalSaturationProperties property struct
ExternalThermodynamicState

ExternalThermodynamicState property struct
FluidConstants

Fluid constants struct
FluidPropSolver

FluidProp solver interfaceclass
SolverMap

Solvermap
TestSolver

Testsolverclass
TFluidProp e

Class Index

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

Chapter 4

Class Documentation

4.1 BaseSolver Class Reference

Base solver class.
#include <basesolver.h>

Inheritance diagram for BaseSolver:

| BaseSolver |
t

|F|uidPropSo|ver|| TestSolver \

Public Member Functions

» BaseSolver (const string &mediumName, const string &libraryName, const string
&substanceName)
Constructor.
« virtual ~BaseSolver ()
Destructor.
+ double molarMass () const
Return molar mass (Default implementation provided)
+ double criticalTemperature () const
Return temperature at critical point (Default implementation provided)
+ double criticalPressure () const
Return pressure at critical point (Default implementation provided)
+ double criticalMolarVolume () const
Return molar volume at critical point (Default implementation provided)
+ double criticalDensity () const

10

Class Documentation

Return density at critical point (Default implementation provided)

double criticalEnthalpy () const
Return specific enthalpy at critical point (Default implementation provided)

double criticalEntropy () const
Return specific entropy at critical point (Default implementation provided)

virtual void setFluidConstants ()
Set fluid constants.

virtual void setState ph (double &p, double &h, int &phase, External-

ThermodynamicState xconst properties)
Set state from p, h, and phase.

virtual void setState_pT (double &p, double &T, ExternalThermodynamicState

*const properties)
Set state from p and T.

virtual void setState dT (double &d, double &T, int &phase, External-

ThermodynamicState xconst properties)
Set state from d, T, and phase.

virtual void setState_ps (double &p, double &s, int &phase, External-

ThermodynamicState xconst properties)
Set state from p, s, and phase.

virtual double Pr (ExternalThermodynamicState xconst properties)
Compute Prandt! number.

virtual double T (ExternalThermodynamicState xconst properties)
Compute temperature.

virtual double a (ExternalThermodynamicState «const properties)
Compute velocity of sound.

virtual double beta (ExternalThermodynamicState xconst properties)
Compute isobaric expansion coefficient.

virtual double cp (ExternalThermodynamicState xconst properties)
Compute specific heat capacity cp.

virtual double cv (ExternalThermodynamicState xconst properties)
Compute specific heat capacity cv.

virtual double d (ExternalThermodynamicState xconst properties)
Compute density.

virtual double ddhp (ExternalThermodynamicState xconst properties)
Compute derivative of density wrt enthalpy at constant pressure.

virtual double ddph (ExternalThermodynamicState xconst properties)
Compute derivative of density wrt pressure at constant enthalpy.

virtual double eta (ExternalThermodynamicState *const properties)
Compute dynamic viscosity.

virtual double h (ExternalThermodynamicState xconst properties)
Compute specific enthalpy.

virtual double kappa (ExternalThermodynamicState xconst properties)
Compute compressibility.

virtual double lambda (ExternalThermodynamicState xconst properties)

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.1 BaseSolver Class Reference 11

Compute thermal conductivity.
« virtual double p (ExternalThermodynamicState *xconst properties)

Compute pressure.
« virtual int phase (ExternalThermodynamicState xconst properties)

Compute phase flag.
« virtual double s (ExternalThermodynamicState xconst properties)

Compute specific entropy.
« virtual double d_der (ExternalThermodynamicState xconst properties)
Compute total derivative of density ph.
« virtual double isentropicEnthalpy (double &p, ExternalThermodynamicState
xconst properties)
Compute isentropic enthalpy.
« virtual void setSat_p (double &p, ExternalSaturationProperties xconst proper-
ties)
Set saturation properties from p.
« virtual void setSat_T (double &T, ExternalSaturationProperties xconst proper-
ties)
Set saturation properties from T.
« virtual void setBubbleState (ExternalSaturationProperties xconst properties, int
phase, ExternalThermodynamicState xconst bubbleProperties)
Set bubble state.
« virtual void setDewState (ExternalSaturationProperties xconst properties, int
phase, ExternalThermodynamicState *const bubbleProperties)
Set dew state.
« virtual double dTp (ExternalSaturationProperties xconst properties)

Compute derivative of Ts wrt pressure.
« virtual double ddidp (ExternalSaturationProperties xconst properties)

Compute derivative of dIs wrt pressure.
« virtual double ddvdp (ExternalSaturationProperties xconst properties)

Compute derivative of dvs wrt pressure.
« virtual double dhldp (ExternalSaturationProperties xconst properties)

Compute derivative of hls wrt pressure.
« virtual double dhvdp (ExternalSaturationProperties xconst properties)

Compute derivative of hvs wrt pressure.
« virtual double dl (ExternalSaturationProperties xconst properties)

Compute density at bubble line.
« virtual double dv (ExternalSaturationProperties xconst properties)

Compute density at dew line.
« virtual double hl (ExternalSaturationProperties xconst properties)

Compute enthalpy at bubble line.
« virtual double hv (ExternalSaturationProperties xconst properties)

Compute enthalpy at dew line.
« virtual double sigma (ExternalSaturationProperties *const properties)

Compute surface tension.

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

12 Class Documentation

virtual double sl (ExternalSaturationProperties xconst properties)

Compute entropy at bubble line.
virtual double sv (ExternalSaturationProperties *const properties)

Compute entropy at dew line.
virtual bool computeDerivatives (ExternalThermodynamicState xconst proper-
ties)

Compute derivatives.
virtual double psat (ExternalSaturationProperties xconst properties)

Compute saturation pressure.
virtual double Tsat (ExternalSaturationProperties xconst properties)

Compute saturation temperature.

Public Attributes

+ string mediumName

Medium name.
« string libraryName

Library name.
+ string substanceName

Substance name.

Protected Attributes

* FluidConstants _fluidConstants

Fluid constants.

41.1 Detailed Description

Base solver class.

This is the base class for all external solver objects (e.g. TestSolver, FluidPropSolver). A
solver object encapsulates the interface to external fluid property computation routines

Francesco Casella, Christoph Richter, Roberto Bonifetto 2006-2012 Copyright -
Politecnico di Milano, TU Braunschweig, Politecnico di Torino

4.1.2 Constructor & Destructor Documentation

4.1.21 BaseSolver::BaseSolver (const string & mediumName, const string &
libraryName, const string & substanceName)
Constructor.

The constructor is copying the medium name, library name and substance name to the
locally defined variables.

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.1 BaseSolver Class Reference 13

Parameters

medium- | Arbitrary medium name
Name

libraryName | Name of the external fluid property library

substance- | Substance name
Name

41.2.2 BaseSolver::~BaseSolver() [virtual]

Destructor.

The destructor for the base solver if currently not doing anything.

4.1.3 Member Function Documentation

4.1.3.1 double BaseSolver::a (ExternalThermodynamicState xconst properties)
[virtual]
Compute velocity of sound.

This function returns the velocity of sound from the state specified by the properties
input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

41.3.2 double BaseSolver::beta (ExternalThermodynamicState xconst properties)
[virtual]
Compute isobaric expansion coefficient.

This function returns the isobaric expansion coefficient from the state specified by the
properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

14 Class Documentation

4.1.3.3 bool BaseSolver::computeDerivatives (ExternalThermodynamicState
xconst properties) [virtual]

Compute derivatives.

This function computes the derivatives according to the Bridgman'’s table. The com-
puted values are written to the two phase medium property struct. This function can be
called from within the setState_XX routines when implementing a new solver. Please
be aware that cp, beta and kappa have to be provided to allow the computation of the
derivatives. It returns false if the computation failed.

Default implementation provided.

Parameters

\ properties\ ExternalThermodynamicState property record

4.1.3.4 double BaseSolver::cp (ExternalThermodynamicState xconst properties)
[virtual]

Compute specific heat capacity cp.

This function returns the specific heat capacity cp from the state specified by the prop-
erties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

4.1.3.5 double BaseSolver::cv (ExternalThermodynamicState const properties)
[virtual]
Compute specific heat capacity cv.

This function returns the specific heat capacity cv from the state specified by the prop-
erties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.1 BaseSolver Class Reference 15

4.1.3.6 double BaseSolver::d (ExternalThermodynamicState xconst properties)
[virtual]

Compute density.
This function returns the density from the state specified by the properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

4.1.3.7 double BaseSolver::d_der (ExternalThermodynamicState :xconst properties)
[virtual]
Compute total derivative of density ph.

This function returns the total derivative of density ph from the state specified by the
properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

41.3.8 double BaseSolver::ddhp (ExternalThermodynamicState xconst properties)
[virtual]
Compute derivative of density wrt enthalpy at constant pressure.

This function returns the derivative of density wrt enthalpy at constant pressure from the
state specified by the properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

4.1.3.9 double BaseSolver::ddidp (ExternalSaturationProperties xconst properties)
[virtual]

Compute derivative of dIs wrt pressure.

This function returns the derivative of dls wrt pressure from the state specified by the

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

16 Class Documentation

properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

4.1.3.10 double BaseSolver::ddph (ExternalThermodynamicState xconst properties
) [virtual]
Compute derivative of density wrt pressure at constant enthalpy.

This function returns the derivative of density wrt pressure at constant enthalpy from the
state specified by the properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

41.3.11 double BaseSolver::ddvdp (ExternalSaturationProperties xconst properties
) [virtual]
Compute derivative of dvs wrt pressure.

This function returns the derivative of dvs wrt pressure from the state specified by the
properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

4.1.3.12 double BaseSolver::dhldp (ExternalSaturationProperties xconst properties
) [virtual]

Compute derivative of hls wrt pressure.

This function returns the derivative of hls wrt pressure from the state specified by the
properties input

Must be re-implemented in the specific solver

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.1 BaseSolver Class Reference 17

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

4.1.3.13 double BaseSolver::dhvdp (ExternalSaturationProperties xconst properties
) [virtual]
Compute derivative of hvs wrt pressure.

This function returns the derivative of hvs wrt pressure from the state specified by the
properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

41.3.14 double BaseSolver::dl (ExternalSaturationProperties xxconst properties)
[virtual]
Compute density at bubble line.

This function returns the density at bubble line from the state specified by the properties
input

Must be re-implemented in the specific solver

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

4.1.3.15 double BaseSolver::dTp (ExternalSaturationProperties xconst properties)
[virtual]
Compute derivative of Ts wrt pressure.

This function returns the derivative of Ts wrt pressure from the state specified by the
properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

18 Class Documentation

4.1.3.16 double BaseSolver::dv (ExternalSaturationProperties xconst properties)
[virtual]
Compute density at dew line.

This function returns the density at dew line from the state specified by the properties
input

Must be re-implemented in the specific solver

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

4.1.3.17 double BaseSolver::eta (ExternalThermodynamicState xconst properties)
[virtual]
Compute dynamic viscosity.

This function returns the dynamic viscosity from the state specified by the properties
input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

4.1.3.18 double BaseSolver::h (ExternalThermodynamicState xconst properties)
[virtual]
Compute specific enthalpy.

This function returns the specific enthalpy from the state specified by the properties
input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

4.1.3.19 double BaseSolver::hl (ExternalSaturationProperties xconst properties)
[virtual]

Compute enthalpy at bubble line.

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.1 BaseSolver Class Reference 19

This function returns the enthalpy at bubble line from the state specified by the proper-
ties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

4.1.3.20 double BaseSolver::hv (ExternalSaturationProperties xconst properties)
[virtual]
Compute enthalpy at dew line.

This function returns the enthalpy at dew line from the state specified by the properties
input

Must be re-implemented in the specific solver

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

41.3.21 double BaseSolver::isentropicEnthalpy (double & p,
ExternalThermodynamicState xconst properties) [virtuall]
Compute isentropic enthalpy.

This function returns the enthalpy at pressure p after an isentropic transformation from
the state specified by the properties input

Must be re-implemented in the specific solver

Parameters

p | New pressure

properties | ExternalThermodynamicState property struct corresponding to current
state

Reimplemented in FluidPropSolver.

4.1.3.22 double BaseSolver::kappa (ExternalThermodynamicState xconst properties
) [virtual]

Compute compressibility.

This function returns the compressibility from the state specified by the properties input

Must be re-implemented in the specific solver

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

20 Class Documentation

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

4.1.3.23 double BaseSolver::lambda (ExternalThermodynamicState xconst
properties) [virtuall]
Compute thermal conductivity.

This function returns the thermal conductivity from the state specified by the properties
input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

4.1.3.24 double BaseSolver::p (ExternalThermodynamicState xconst properties)
[virtual]

Compute pressure.
This function returns the pressure from the state specified by the properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

4.1.3.25 int BaseSolver::phase (ExternalThermodynamicState xconst properties)
[virtual]

Compute phase flag.
This function returns the phase flag from the state specified by the properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.1 BaseSolver Class Reference 21

4.1.3.26 double BaseSolver::Pr (ExternalThermodynamicState xconst properties)
[virtual]

Compute Prandtl number.
This function returns the Prandtl number from the state specified by the properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

4.1.3.27 double BaseSolver::psat (ExternalSaturationProperties xconst properties)
[Vvirtual]
Compute saturation pressure.

This function returns the saturation pressure from the state specified by the properties
input

Must be re-implemented in the specific solver

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

4.1.3.28 double BaseSolver::s (ExternalThermodynamicState xconst properties)
[virtual]

Compute specific entropy.
This function returns the specific entropy from the state specified by the properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

4.1.3.29 void BaseSolver::setBubbleState (ExternalSaturationProperties xconst
properties, int phase, ExternalThermodynamicState xconst bubbleProperties)
[virtual]

Set bubble state.

This function sets the bubble state record bubbleProperties corresponding to the satu-

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

22 Class Documentation

ration data contained in the properties record.

The default implementation of the setBubbleState function is relying on the correct be-
haviour of setState_ph with respect to the state input. Can be overridden in the specific
solver code to get more efficient or correct handling of this situation.

Parameters

properties | ExternalSaturationProperties record with saturation properties data

phase | Phase (1: one-phase, 2: two-phase)

bubble- | ExternalThermodynamicState record where to write the bubble point
Properties | properties

Reimplemented in FluidPropSolver.

4.1.3.30 void BaseSolver::setDewState (ExternalSaturationProperties xconst
properties, int phase, ExternalThermodynamicState xconst dewProperties)
[virtual]

Set dew state.

This function sets the dew state record dewProperties corresponding to the saturation
data contained in the properties record.

The default implementation of the setDewState function is relying on the correct be-
haviour of setState_ph with respect to the state input. Can be overridden in the specific
solver code to get more efficient or correct handling of this situation.

Parameters

properties | ExternalSaturationProperties record with saturation properties data

phase | Phase (1: one-phase, 2: two-phase)

dew- | ExternalThermodynamicState record where to write the dew point prop-
Properties | erties

Reimplemented in FluidPropSolver.

41.3.31 void BaseSolver::setFluidConstants() [virtual]

Set fluid constants.

This function sets the fluid constants which are defined in the FluidConstants record in
Modelica. It should be called when a new solver is created.

Must be re-implemented in the specific solver

Reimplemented in FluidPropSolver, and TestSolver.

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.1 BaseSolver Class Reference 23

4.1.3.32 void BaseSolver::setSat_p (double & p, ExternalSaturationProperties
xconst properties) [virtual]
Set saturation properties from p.

This function sets the saturation properties for the given pressure p. The computed
values are written to the ExternalSaturationProperties propery struct.

Must be re-implemented in the specific solver

Parameters

p | Pressure

properties | ExternalSaturationProperties property struct

Reimplemented in FluidPropSolver, and TestSolver.

4.1.3.33 void BaseSolver::setSat_T (double & T, ExternalSaturationProperties
xconst properties) [virtual]
Set saturation properties from T.

This function sets the saturation properties for the given temperature T. The computed
values are written to the ExternalSaturationProperties propery struct.

Must be re-implemented in the specific solver

Parameters

T | Temperature

properties | ExternalSaturationProperties property struct

Reimplemented in FluidPropSolver, and TestSolver.

4.1.3.34 void BaseSolver::setState_dT (double & d, double & T, int & phase,
ExternalThermodynamicState xconst properties) [virtuall]
Set state from d, T, and phase.

This function sets the thermodynamic state record for the given density d, the temper-
ature T and the specified phase. The computed values are written to the External-
ThermodynamicState property struct.

Must be re-implemented in the specific solver

Parameters

d | Density

T| Temperature

phase | Phase (2 for two-phase, 1 for one-phase, 0 if not known)

properties | ExternalThermodynamicState property struct

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

24 Class Documentation

Reimplemented in FluidPropSolver, and TestSolver.

4.1.3.35 void BaseSolver::setState_ph (double & p, double & h, int & phase,
ExternalThermodynamicState xconst properties) [virtual]
Set state from p, h, and phase.

This function sets the thermodynamic state record for the given pressure p, the specific
enthalpy h and the specified phase. The computed values are written to the External-
ThermodynamicState property struct.

Must be re-implemented in the specific solver

Parameters

p | Pressure

h | Specific enthalpy

phase | Phase (2 for two-phase, 1 for one-phase, 0 if not known)

properties | ExternalThermodynamicState property struct

Reimplemented in FluidPropSolver, and TestSolver.

4.1.3.36 void BaseSolver::setState_ps (double & p, double & s, int & phase,
ExternalThermodynamicState «const properties) [virtual]

Set state from p, s, and phase.

This function sets the thermodynamic state record for the given pressure p, the specific
entropy s and the specified phase. The computed values are written to the External-
ThermodynamicState property struct.

Must be re-implemented in the specific solver

Parameters

p | Pressure

s | Specific entropy

phase | Phase (2 for two-phase, 1 for one-phase, 0 if not known)

properties | ExternalThermodynamicState property struct

Reimplemented in FluidPropSolver, and TestSolver.

4.1.3.37 void BaseSolver::setState_pT (double & p, double & T,
ExternalThermodynamicState xconst properties) [virtual]

Set state fromp and T.

This function sets the thermodynamic state record for the given pressure p and the
temperature T. The computed values are written to the ExternalThermodynamicState
property struct.

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.1 BaseSolver Class Reference 25

Must be re-implemented in the specific solver

Parameters

p | Pressure

T | Temperature

properties | ExternalThermodynamicState property struct

Reimplemented in FluidPropSolver, and TestSolver.

4.1.3.38 double BaseSolver::sigma (ExternalSaturationProperties xconst properties
) [virtual]

Compute surface tension.
This function returns the surface tension from the state specified by the properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

4.1.3.39 double BaseSolver::sl (ExternalSaturationProperties xconst properties)
[Vvirtual]
Compute entropy at bubble line.

This function returns the entropy at bubble line from the state specified by the properties
input

Must be re-implemented in the specific solver

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

4.1.3.40 double BaseSolver::sv (ExternalSaturationProperties xconst properties)
[virtual]

Compute entropy at dew line.

This function returns the entropy at dew line from the state specified by the properties
input

Must be re-implemented in the specific solver

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

26 Class Documentation

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

4.1.3.41 double BaseSolver::T (ExternalThermodynamicState xconst properties)
[virtual]

Compute temperature.
This function returns the temperature from the state specified by the properties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalThermodynamicState property struct corresponding to current
state

4.1.3.42 double BaseSolver::Tsat (ExternalSaturationProperties :xconst properties)
[virtual]
Compute saturation temperature.

This function returns the saturation temperature from the state specified by the proper-
ties input

Must be re-implemented in the specific solver

Parameters

properties | ExternalSaturationProperties property struct corresponding to current
state

The documentation for this class was generated from the following files:

+ D:/Lavoro/ModelicaSVN/ExternalMediaLibrary/Projects/Sources/basesolver.h
» D:/Lavoro/ModelicaSVN/ExternalMediaLibrary/Projects/Sources/basesolver.cpp

4.2 ExternalSaturationProperties Struct Reference

ExternalSaturationProperties property struct.

#include <externalmedialib.h>

Public Attributes

 double Tsat

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.3 ExternalThermodynamicState Struct Reference 27

Saturation temperature.
» double dTp

Derivative of Ts wrt pressure.
 double ddidp

Derivative of dls wrt pressure.
* double ddvdp

Derivative of dvs wrt pressure.
 double dhldp

Derivative of hls wrt pressure.
+ double dhvdp

Derivative of hvs wrt pressure.
» double dl

Density at bubble line (for pressure ps)
 double dv

Density at dew line (for pressure ps)
 double hl

Specific enthalpy at bubble line (for pressure ps)
+ double hv

Specific enthalpy at dew line (for pressure ps)
+ double psat

Saturation pressure.
+ double sigma

Surface tension.
» double sl

Specific entropy at bubble line (for pressure ps)
+ double sv

Specific entropy at dew line (for pressure ps)

4.2.1 Detailed Description

ExternalSaturationProperties property struct.

The ExternalSaturationProperties propery struct defines all the saturation properties for
the dew and the bubble line that are computed by external Modelica medium models
extending from PartialExternalTwoPhaseMedium.

The documentation for this struct was generated from the following file:

» D:/Lavoro/ModelicaSVN/ExternalMediaLibrary/Projects/Sources/externalmedialib.-
h

4.3 ExternalThermodynamicState Struct Reference

ExternalThermodynamicState property struct.

#include <externalmedialib.h>

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

28 Class Documentation

Public Attributes

» double Pr

Prandtl number.
» double T

Temperature.
» double a

Velocity of sound.
+ double beta

Isobaric expansion coefficient.
 double cp

Specific heat capacity cp.
+ double cv

Specific heat capacity cv.
+ double d

Density.
+ double ddhp

Derivative of density wrt enthalpy at constant pressure.
+ double ddph

Derivative of density wrt pressure at constant enthalpy.
+ double eta

Dynamic viscosity.
» double h

Specific enthalpy.
+ double kappa

Compressibility.
+ double lambda

Thermal conductivity.
» double p

Pressure.
* int phase

Phase flag: 2 for two-phase, 1 for one-phase.
+ double s

Specific entropy.

4.3.1 Detailed Description

ExternalThermodynamicState property struct.

The ExternalThermodynamicState propery struct defines all the properties that are
computed by external Modelica medium models extending from PartialExternalTwo-
PhaseMedium.

The documentation for this struct was generated from the following file:

+ D:/Lavoro/ModelicaSVN/ExternalMediaLibrary/Projects/Sources/externalmedialib.-
h

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.4 FluidConstants Struct Reference 29

4.4 FluidConstants Struct Reference

Fluid constants struct.

#include <fluidconstants.h>

Public Attributes

double MM

Molar mass.
+ double pc

Pressure at critical point.
double Tc

Temperature at critical point.
double dc

Density at critical point.
double hc

Specific enthalpy at critical point.
+ double sc

Specific entropy at critical point.

441 Detailed Description

Fluid constants struct.

The fluid constants struct contains all the constant fluid properties that are returned by
the external solver.

Francesco Casella, Christoph Richter, Roberto Bonifetto 2006-2012 Copyright -
Politecnico di Milano, TU Braunschweig, Politecnico di Torino

The documentation for this struct was generated from the following file:

» D:/Lavoro/ModelicaSVN/ExternalMediaLibrary/Projects/Sources/fluidconstants.h

4.5 FluidPropSolver Class Reference

FluidProp solver interface class.
#include <fluidpropsolver.h>

Inheritance diagram for FluidPropSolver:

BaseSolver

FluidPropSolver

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

30 Class Documentation

Public Member Functions

FluidPropSolver (const string &mediumName, const string &libraryName, const
string &substanceName)

virtual void setFluidConstants ()

Set fluid constants.

virtual void setSat_p (double &p, ExternalSaturationProperties xconst proper-
ties)

Set saturation properties from p.

virtual void setSat_T (double &T, ExternalSaturationProperties *const proper-
ties)
Set saturation properties from T.

virtual void setState_ph (double &p, double &h, int &phase, External-
ThermodynamicState *xconst properties)

Computes the properties of the state vector from p and h.

virtual void setState_pT (double &p, double &T, ExternalThermodynamicState
*const properties)
Computes the properties of the state vector from p and T.

virtual void setState dT (double &d, double &T, int &phase, External-
ThermodynamicState *xconst properties)

virtual void setState_ps (double &p, double &s, int &phase, External-
ThermodynamicState xconst properties)

Computes the properties of the state vector from p and s.

virtual void setBubbleState (ExternalSaturationProperties xconst properties, int
phase, ExternalThermodynamicState *const bubbleProperties)
Set bubble state.

virtual void setDewState (ExternalSaturationProperties xconst properties, int
phase, ExternalThermodynamicState xconst dewProperties)

Set dew state.

virtual double isentropicEnthalpy (double &p, ExternalThermodynamicState
*const properties)

Compute isentropic enthalpy.

Protected Member Functions

* bool isError (string ErrorMsg)

Check if FluidProp returned an error.

Protected Attributes

* TFluidProp FluidProp

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.5 FluidPropSolver Class Reference 31

4,51 Detailed Description

FluidProp solver interface class.
This class defines a solver object encapsulating a FluidProp object

The class will work if FluidProp is correctly installed, and if the following files, defining
the CFluidProp object, are included in the C project:

* FluidProp_IF.h
* FluidProp_IF.cpp

* FluidProp_COM.h These files are developed and maintained by TU Delft and
distributed as a part of the FluidProp suite http://www.fluidprop.com

Compilation requires support of the COM libraries: http://en.wikipedia.-
org/wiki/Component_Object_Model

To instantiate a specific FluidProp fluid, it is necessary to set the libraryName and
substanceNames package constants as in the following example:

libraryName = "FluidProp.RefProp"; substanceNames = {"H20"};

Instead of RefProp, it is possible to indicate TPSI, StanMix, etc. Instead of H20, it is
possible to indicate any supported substance

See also the solvermap.cpp code

Francesco Casella, Christoph Richter, Roberto Bonifetto 2006 - 2012 Copyright -
Politecnico di Milano, TU Braunschweig, Politecnico di Torino

4.5.2 Member Function Documentation

45.2.1 double FluidPropSolver::isentropicEnthalpy (double & p,
ExternalThermodynamicState xconst properties) [virtual]

Compute isentropic enthalpy.

This function returns the enthalpy at pressure p after an isentropic transformation from
the state specified by the properties input

Parameters

p | New pressure

properties | ExternalThermodynamicState property record corresponding to current
state

Reimplemented from BaseSolver.

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

http://www.fluidprop.com
http://en.wikipedia.org/wiki/Component_Object_Model
http://en.wikipedia.org/wiki/Component_Object_Model

32 Class Documentation

4.5.2.2 void FluidPropSolver::setBubbleState (ExternalSaturationProperties
«xconst properties, int phase, ExternalThermodynamicState xconst
bubbleProperties) [virtuall

Set bubble state.

This function sets the bubble state record bubbleProperties corresponding to the satu-
ration data contained in the properties record.

Due to current lack of direct control over the phase in FluidProp, a small delta is added
to the dewpoint enthalpy to make sure the correct phase is selected.

Parameters

properties | ExternalSaturationProperties record with saturation properties data

phase | Phase (1: one-phase, 2: two-phase)

bubble- | ExternalThermodynamicState record where to write the bubble point
Properties | properties

Reimplemented from BaseSolver.

45.2.3 void FluidPropSolver::setDewState (ExternalSaturationProperties *const
properties, int phase, ExternalThermodynamicState xconst dewProperties)
[virtual]

Set dew state.

This function sets the dew state record dewProperties corresponding to the saturation
data contained in the properties record.

The default implementation of the setDewState function is relying on the correct be-
haviour of setState_ph with respect to the state input. Can be overridden in the specific
solver code to get more efficient or correct handling of this situation.

Parameters

properties | ExternalSaturationProperties record with saturation properties data

phase | Phase (1: one-phase, 2: two-phase)

dew- | ExternalThermodynamicState record where to write the dew point prop-
Properties | erties

Reimplemented from BaseSolver.

4524 void FluidPropSolver::setFluidConstants () [virtual]

Set fluid constants.

This function sets the fluid constants which are defined in the FluidConstants record in
Modelica. It should be called when a new solver is created.

Must be re-implemented in the specific solver

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.5 FluidPropSolver Class Reference 33

Reimplemented from BaseSolver.

4,5.25 void FluidPropSolver::setSat_p (double & p, ExternalSaturationProperties
xconst properties) [virtual]
Set saturation properties from p.

This function sets the saturation properties for the given pressure p. The computed
values are written to the ExternalSaturationProperties propery struct.

Must be re-implemented in the specific solver

Parameters

p | Pressure

properties | ExternalSaturationProperties property struct

Reimplemented from BaseSolver.

4,5.2.6 void FluidPropSolver::setSat_T (double & T, ExternalSaturationProperties
xconst properties) [virtual]
Set saturation properties from T.

This function sets the saturation properties for the given temperature T. The computed
values are written to the ExternalSaturationProperties propery struct.

Must be re-implemented in the specific solver

Parameters

T | Temperature

properties | ExternalSaturationProperties property struct

Reimplemented from BaseSolver.
4.5.2.7 void FluidPropSolver::setState_dT (double & d, double & T, int & phase,
ExternalThermodynamicState xconst properties) [virtual]

Note: the phase input is currently not supported according to the standard, the phase
input is returned in the state record

Reimplemented from BaseSolver.

45.2.8 void FluidPropSolver::setState_ph (double & p, double & h, int & phase,
ExternalThermodynamicState xconst properties) [virtual]

Computes the properties of the state vector from p and h.

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

34 Class Documentation

Note: the phase input is currently not supported according to the standard, the phase
input is returned in the state record

Reimplemented from BaseSolver.

4.5.2.9 void FluidPropSolver::setState_ps (double & p, double & s, int & phase,
ExternalThermodynamicState xconst properties) [virtuall]
Computes the properties of the state vector from p and s.

Note: the phase input is currently not supported according to the standard, the phase
input is returned in the state record

Reimplemented from BaseSolver.

The documentation for this class was generated from the following files:

 D:/Lavoro/ModelicaSVN/ExternalMediaLibrary/Projects/Sources/fluidpropsolver.-
h

 D:/Lavoro/ModelicaSVN/ExternalMediaLibrary/Projects/Sources/fluidpropsolver.-
cpp

4.6 SolverMap Class Reference

Solver map.

#include <solvermap.h>

Static Public Member Functions

« static BaseSolver *x getSolver (const string &mediumName, const string &library-
Name, const string &substanceName)

Get a specific solver.

« static string solverKey (const string &libraryName, const string &substance-
Name)

Generate a unique solver key.

Static Protected Attributes

+ static map< string, BaseSolver x > _solvers

Map for all solver instances identified by the SolverKey.

4.6.1 Detailed Description

Solver map.

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.7 TestSolver Class Reference 35

This class manages the map of all solvers. A solver is a class that inherits from -
BaseSolver and that interfaces the external fluid property computation code. Only one
instance is created for each external library.

Francesco Casella, Christoph Richter, Roberto Bonifetto 2006-2012 Copyright -
Politecnico di Milano, TU Braunschweig, Politecnico di Torino

4.6.2 Member Function Documentation

4.6.2.1 BaseSolver x SolverMap::getSolver (const string & mediumName, const string
& libraryName, const string & substanceName) [static]

Get a specific solver.

This function returns the solver for the specified library name, substance name and pos-
sibly medium name. It creates a new solver if the solver does not already exist. When
implementing new solvers, one has to add the newly created solvers to this function.
An error message is generated if the specific library is not supported by the interface
library.

Parameters

medium- | Medium name
Name

libraryName | Library name

substance- | Substance name
Name

4.6.2.2 string SolverMap::solverKey (const string & libraryName, const string &
substanceName) [static]
Generate a unique solver key.

This function generates a unique solver key based on the library name and substance
name.

The documentation for this class was generated from the following files:

» D:/Lavoro/ModelicaSVN/ExternalMediaLibrary/Projects/Sources/solvermap.h
» D:/Lavoro/ModelicaSVN/ExternalMediaLibrary/Projects/Sources/solvermap.cpp

4.7 TestSolver Class Reference

Test solver class.
#include <testsolver.h>

Inheritance diagram for TestSolver:

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

36

Class Documentation

BaseSolver

TestSolver

Public Member Functions

4.71

TestSolver (const string &mediumName, const string &libraryName, const string
&substanceName)

virtual void setFluidConstants ()

Set fluid constants.
virtual void setSat_p (double &p, ExternalSaturationProperties *const proper-
ties)

Set saturation properties from p.
virtual void setSat_T (double &T, ExternalSaturationProperties *const proper-
ties)

Set saturation properties from T.
virtual void setState_ph (double &p, double &h, int &phase, External-
ThermodynamicState *const properties)

Set state from p, h, and phase.
virtual void setState_pT (double &p, double &T, ExternalThermodynamicState
xconst properties)

Set state fromp and T.
virtual void setState dT (double &d, double &T, int &phase, External-
ThermodynamicState xconst properties)

Set state from d, T, and phase.
virtual void setState_ps (double &p, double &s, int &phase, External-
ThermodynamicState *const properties)

Set state from p, s, and phase.

Detailed Description

Test solver class.

This class defines a dummy solver object, computing properties of a fluid roughly resem-
bling warm water at low pressure, without the need of any further external code. The
class is useful for debugging purposes, to test whether the C compiler and the Modelica
tools are set up correctly before tackling problems with the actual - usually way more
complex - external code. It is *notx meant to be used as an actual fluid model for any
real application.

To keep complexity down to the absolute medium, the current version of the solver can
only compute the fluid properties in the liquid phase region: 1e5 Pa < p < 2e5 Pa 300 K
< T < 350 K ; results returned with inputs outside that range (possibly corresponding to

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.7 TestSolver Class Reference 37

two-phase or vapour points) are not reliable. Saturation properies are computed in the
range 1e5 Pa < psat < 2e5 Pa ; results obtained outside that range might be unrealistic.

To instantiate this solver, it is necessary to set the library name package constant in
Modelica as follows:

libraryName = "TestMedium";

Francesco Casella, Christoph Richter, Roberto Bonifetto 2006-2012 Copyright -
Politecnico di Milano, TU Braunschweig, Politecnico di Torino

4.7.2 Member Function Documentation
4.7.2.1 void TestSolver::setFluidConstants() [virtual]

Set fluid constants.

This function sets the fluid constants which are defined in the FluidConstants record in
Modelica. It should be called when a new solver is created.

Must be re-implemented in the specific solver

Reimplemented from BaseSolver.

4.7.2.2 void TestSolver::setSat_p (double & p, ExternalSaturationProperties xconst
properties) [virtual]
Set saturation properties from p.

This function sets the saturation properties for the given pressure p. The computed
values are written to the ExternalSaturationProperties propery struct.

Must be re-implemented in the specific solver

Parameters

p | Pressure

properties | ExternalSaturationProperties property struct

Reimplemented from BaseSolver.

4.7.2.3 void TestSolver::setSat_T (double & T, ExternalSaturationProperties xconst
properties) [virtual]
Set saturation properties from T.

This function sets the saturation properties for the given temperature T. The computed
values are written to the ExternalSaturationProperties propery struct.

Must be re-implemented in the specific solver

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

38 Class Documentation

Parameters

T | Temperature

properties | ExternalSaturationProperties property struct

Reimplemented from BaseSolver.

4.7.2.4 void TestSolver::setState_dT (double & d, double & T, int & phase,
ExternalThermodynamicState xconst properties) [virtual]
Set state from d, T, and phase.

This function sets the thermodynamic state record for the given density d, the temper-
ature T and the specified phase. The computed values are written to the External-
ThermodynamicState property struct.

Must be re-implemented in the specific solver

Parameters

d | Density

T | Temperature

phase | Phase (2 for two-phase, 1 for one-phase, 0 if not known)

properties | ExternalThermodynamicState property struct

Reimplemented from BaseSolver.

4.7.2.5 void TestSolver::setState_ph (double & p, double & h, int & phase,
ExternalThermodynamicState xconst properties) [virtual]
Set state from p, h, and phase.

This function sets the thermodynamic state record for the given pressure p, the specific
enthalpy h and the specified phase. The computed values are written to the External-
ThermodynamicState property struct.

Must be re-implemented in the specific solver

Parameters

p | Pressure

h | Specific enthalpy

phase | Phase (2 for two-phase, 1 for one-phase, 0 if not known)

properties | ExternalThermodynamicState property struct

Reimplemented from BaseSolver.

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.8 TFluidProp Class Reference 39

4.7.2.6 void TestSolver::setState_ps (double & p, double & s, int & phase,
ExternalThermodynamicState xconst properties) [virtual]
Set state from p, s, and phase.

This function sets the thermodynamic state record for the given pressure p, the specific
entropy s and the specified phase. The computed values are written to the External-
ThermodynamicState property struct.

Must be re-implemented in the specific solver

Parameters

p | Pressure

s | Specific entropy

phase | Phase (2 for two-phase, 1 for one-phase, 0 if not known)

properties | ExternalThermodynamicState property struct

Reimplemented from BaseSolver.

4.7.2.7 void TestSolver::setState_pT (double & p, double & T,
ExternalThermodynamicState xconst properties) [virtuall]

Set state fromp and T.

This function sets the thermodynamic state record for the given pressure p and the
temperature T. The computed values are written to the ExternalThermodynamicState
property struct.

Must be re-implemented in the specific solver

Parameters

p | Pressure

T | Temperature

properties | ExternalThermodynamicState property struct

Reimplemented from BaseSolver.

The documentation for this class was generated from the following files:

+ D:/Lavoro/ModelicaSVN/ExternalMediaLibrary/Projects/Sources/testsolver.h
+ D:/Lavoro/ModelicaSVN/ExternalMediaLibrary/Projects/Sources/testsolver.cpp

4.8 TFluidProp Class Reference

Public Member Functions

« void CreateObject (string ModelName, string «ErrorMsg)
+ void ReleaseObijects ()

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

40

Class Documentation

void SetFluid (string ModelName, int nComp, string x*Comp, double *Conc, string
*ErrorMsg)

void GetFluid (string xModelName, int xnComp, string *Comp, double *Conc,
bool Complnfo=true)

void GetFluidNames (string LongShort, string ModelName, int «nFluids, string
*FluidNames, string *ErrorMsg)

double Pressure (string InputSpec, double Input1, double Input2, string «Error-
Msg)

double Temperature (string InputSpec, double Input1, double Input2, string x*-
ErrorMsg)

double SpecVolume (string InputSpec, double Input1, double Input2, string *-
ErrorMsg)

double Density (string InputSpec, double Input1, double Input2, string *Error-
Msg)

double Enthalpy (string InputSpec, double Input1, double Input2, string *Error-
Msg)

double Entropy (string InputSpec, double Input1, double Input2, string *Error-
Msg)

double IntEnergy (string InputSpec, double Input1, double Input2, string «Error-
Msg)

double VaporQual (string InputSpec, double Input1, double Input2, string *Error-
Msg)

double *x LiquidCmp (string InputSpec, double Input1, double Input2, string -
ErrorMsg)

double * VaporCmp (string InputSpec, double Input1, double Input2, string -
ErrorMsg)

double HeatCapV (string InputSpec, double Input1, double Input2, string *Error-
Msg)

double HeatCapP (string InputSpec, double Input1, double Input2, string *Error-
Msg)

double SoundSpeed (string InputSpec, double Input1, double Input2, string *-
ErrorMsg)

double Alpha (string InputSpec, double Input1, double Input2, string *xErrorMsg)
double Beta (string InputSpec, double Input1, double Input2, string «ErrorMsg)
double Chi (string InputSpec, double Input1, double Input2, string *xErrorMsg)
double Fi (string InputSpec, double Input1, double Input2, string xErrorMsg)
double Ksi (string InputSpec, double Input1, double Input2, string *ErrorMsg)
double Psi (string InputSpec, double Input1, double Input2, string *xErrorMsg)
double Zeta (string InputSpec, double Input1, double Input2, string «ErrorMsg)
double Theta (string InputSpec, double Inputi, double Input2, string «ErrorMsg)
double Kappa (string InputSpec, double Input1, double Input2, string *xErrorMsg)
double Gamma (string InputSpec, double Input1, double Input2, string *Error-
Msg)

double Viscosity (string InputSpec, double Input1, double Input2, string *Error-
Msg)

double ThermCond (string InputSpec, double Input1, double Input2, string -
ErrorMsg)

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

4.8 TFluidProp Class Reference 41

+ void AllProps (string InputSpec, double Input1, double Input2, double &P, double
&T, double &v, double &d, double &h, double &s, double &u, double &g, double
xX, double xy, double &cv, double &cp, double &c, double &alpha, double &beta,
double &chi, double &fi, double &ksi, double &psi, double &zeta, double &theta,
double &kappa, double &gamma, double &eta, double &lambda, string *Error-
Msg)

« void AllPropsSat (string InputSpec, double Input1, double Input2, double &P,
double &T, double &v, double &d, double &h, double &s, double &u, double &q,
double *x, double xy, double &cv, double &cp, double &c, double &alpha, double
&beta, double &chi, double &fi, double &ksi, double &psi, double &zeta, double
&theta, double &kappa, double &gamma, double &eta, double &lambda, double
&d_lig, double &d_vap, double &h_lig, double &h_vap, double &T_sat, double
&dd_liq_dP, double &dd_vap_dP, double &dh_lig_dP, double &dh_vap_dP, double
&dT_sat_dP, string *ErrorMsg)

» double Solve (string FuncSpec, double FuncVal, string InputSpec, long Target,
double FixedVal, double MinVal, double MaxVal, string «ErrorMsg)

+ double Mmol (string *xErrorMsg)

+ double Terit (string *ErrorMsg)

+ double Pcrit (string xErrorMsg)

+ double Tmin (string *ErrorMsg)

+ double Tmax (string *xErrorMsg)

+ void Allinfo (double &Mmol, double &Tcrit, double &Pcrit, double &Tmin, double
&Tmax, string *ErrorMsg)

« void SetUnits (string UnitSet, string MassOrMole, string Properties, string Units,
string *xErrorMsg)

« void SetRefState (double T_ref, double P_ref, string «ErrorMsg)

—_

The documentation for this class was generated from the following files:

» D:/Lavoro/ModelicaSVN/ExternalMediaLibrary/Projects/Sources/FluidProp_IF.H
 D:/Lavoro/ModelicaSVN/ExternalMediaLibrary/Projects/Sources/FluidProp_IF.-
cpp

Generated on Tue Apr 3 2012 23:59:31 for ExternalMedia by Doxygen

	External Media HowTo
	Introduction
	Using the pre-packaged releases with FluidProp
	Architecture of the package
	Developing your own external medium package

	Class Index
	Class Hierarchy

	Class Index
	Class List

	Class Documentation
	BaseSolver Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	BaseSolver
	BaseSolver

	Member Function Documentation
	a
	beta
	computeDerivatives
	cp
	cv
	d
	d_der
	ddhp
	ddldp
	ddph
	ddvdp
	dhldp
	dhvdp
	dl
	dTp
	dv
	eta
	h
	hl
	hv
	isentropicEnthalpy
	kappa
	lambda
	p
	phase
	Pr
	psat
	s
	setBubbleState
	setDewState
	setFluidConstants
	setSat_p
	setSat_T
	setState_dT
	setState_ph
	setState_ps
	setState_pT
	sigma
	sl
	sv
	T
	Tsat

	ExternalSaturationProperties Struct Reference
	Detailed Description

	ExternalThermodynamicState Struct Reference
	Detailed Description

	FluidConstants Struct Reference
	Detailed Description

	FluidPropSolver Class Reference
	Detailed Description
	Member Function Documentation
	isentropicEnthalpy
	setBubbleState
	setDewState
	setFluidConstants
	setSat_p
	setSat_T
	setState_dT
	setState_ph
	setState_ps

	SolverMap Class Reference
	Detailed Description
	Member Function Documentation
	getSolver
	solverKey

	TestSolver Class Reference
	Detailed Description
	Member Function Documentation
	setFluidConstants
	setSat_p
	setSat_T
	setState_dT
	setState_ph
	setState_ps
	setState_pT

	TFluidProp Class Reference

