GeckoBot Code Manual

Lars Schiller

June 21, 2018

Contents

1	Setting Up the BBB									
	1.1	Install OS on BBB								
	1.2	Log in BBB for the first time								
	1.3	Set LAN connection on BBB at AmP								
	1.4	Configure SSH Connection to BBB								
	1.5	Configure BBB Device Tree								
	1.6	Installing Software on BBB								
	1.7	Running the Code								
2	Pin	Layout								
3	Aux	Auxilary								
	3.1	Formatting SD Card with debian								
	3.2	Set WiFi connection								
	3.3	Setup for analog inputs								

1 Setting Up the BBB

1.1 Install OS on BBB

The developers of BBB embedded linux systems decided to change the device tree structure from kernel overlay (till version 8.7), to uboot overlay (9.1+). (Don't ask me to explain). However, the PWM setup for all pins is only possible with kernel overlay (or at least I'm not able to configure it in version 9.1+). Therefore you have to use the following image:

bone-debian-8.7-iot-armhf-2017-03-19-4gb.img (Download: http://beagleboard.org/latest-images)
To install it on a 8GB Micro-SD Card follow the instructions:

• You can use Etcher (https://etcher.io/).

OR (on debian):

- Instructions from: http://derekmolloy.ie/write-a-new-image-to-the-beaglebone-black/
 - and from: https://learn.adafruit.com/beaglebone-black-installing-operating-systems?view= all#copying-the-image-to-a-microsd
- Decompress and write on SD card (need to be **su** and make sure the security locker of SD Adapter is in writing mode):

```
<sup>1</sup> $ xz -d bone-debian -**.img.xz
```

```
^{2} dd if=./bone-debian -**.img of=/dev/sdX
```

(Here, \mathtt{sdX} is the mounted empty uSD Card. It can be found with multiple use of the command \mathtt{mount} or $\mathtt{df.})$

- Obsolete:
 - In order to turn these images into eMMC flasher images, edit the /boot/uEnv.txt file on the BBB and remove the # on the line with
 - cmdline=init=/opt/scripts/tools/eMMC/init-eMMC-flasher-v3.sh.

Enabling this will cause booting the microSD card to flash the eMMC. Images are no longer provided here to avoid people accidentally overwriting their eMMC flash.

- Insert the SD Card in the unpowered BBB, and power it by plugging in the USB or the 5VDC supply. Wait until all 4 LED have solid lights. This can take up to 45 minutes.
- Flash MicroSD 4 with: Debian 8.7 2017-03-19 4GB SD IoT from http://beagleboard.org/latest-images (MicroSD 3 is weird ...).
- $-\,$ Insert MicroSD in (unpowered) BBB, press the USER Button, and apply power.
- It will take 30-45 minutes to flash the image onto the on-board chip. Once it is done, the bank of 4 LEDs to the right
 of the Ethernet port will all turn off. You can then power down your BBB.

1.2 Log in BBB for the first time

Assuming you are called **bianca** and your PC is also called **bianca**, your BBB is called **beaglebone** and the default user on BBB is called **debian**, then the following sythax is correct.

- Connect your PC with a MicroUSB cable to the BBB.
- Open a terminal and ssh into BBB as debian and then get superuser to configure the Board.

```
    bianca@bianca:~ ssh debian@192.168.7.2
    temppwd
    debian@beaglebone:~ su
    root
    root@beaglebone:~#
```

• Note that the default passwords are: temppwd for debian for root

1.3 Set LAN connection on BBB at AmP

This is from:

https://groups.google.com/forum/#!msg/beaglebone/AS2US9rtNd4/8y0mZ3LxAwAJ

• You have to configure ethO like this:

address	134.28.136.51 (ask administrator for your personal IP)
netmask	255.255.255.0
dns-nameservers	134.28.205.14
gateway	134.28.136.1

- Plug in LAN cable.
- Get the name of the LAN connection:

```
1 su
2 root
```

- 2 root@beaglebone:/etc/network# connmanctl services
 3 *Ac Wired ethernet_689e19b50543_cable
- Using the appropriate ethernet service, tell comman to setup a static IP address for this service. Syntax:

```
1 connmanctl config <service> --ipv4 manual <ip_addr> <netmask> <gateway> --nameservers <
    dns_server>
```

In our case:

```
        connmanctl config ethernet_689e19b50543_cable — ipv4 manual 134.28.136.51 255.255.255.0

        134.28.136.1 — nameservers 134.28.205.14
```

- Reboot and you are done.
- You can revert back to a DHCP configuration simply as follows:
- ¹ \$ sudo commanctl config ethernet_689e19b50543_cable ---ipv4 dhcp

1.4 Configure SSH Connection to BBB

- Source: https://askubuntu.com/questions/115151/how-to-set-up-passwordless-ssh-access-forroot-user
- If your Board crashed, and you were forced to reinstall the OS, there already exist a ssh-key. This you have to remove first (this is for USB cable):
- bianca@bianca: ssh-keygen -f "/home/bianca/.ssh/known_hosts" -R 192.168.7.2
- Generate a new key:
- ¹ bianca@bianca: ssh-keygen -f "/home/bianca/.ssh/key_bianca"

When you are prompted for a password, just hit the enter key and you will generate a key with no password.

- Allow to log in as root with a password on the server, in aim to transfer the created key to it:
- root@beaglebone:# nano /etc/ssh/sshd_config

Make sure you allow root to log in with the following syntax

1 PermitRootLogin yes

2

PasswordAuthentication yes

Restart the ssh-server:

- 1 root@beaglebone:# service ssh restart
- Now you are able to transfer the key to the server:
- bianca@bianca:~ ssh-copy-id -i /home/bianca/.ssh/key_bianca root@192.168.7.2

• Check if its work:

- bianca@bianca: ssh root@192.168.7.2
- Now disable root login with password on server (for saftey):
- 1 root@beaglebone:# nano /etc/ssh/sshd_config

And modify the Line:

- 1 PermitRootLogin without-password
- 2 PasswordAuthentication yes

This will allow to login as root with valid key, but not with a password. All other users can further login with a password. Restart the ssh-server and you are done:

1 root@beaglebone:# service ssh restart

1.5 Configure BBB Device Tree

In order to enable P9.28 as pwm pin, you have to load cape-universala. This you gonna do in /boot/uEnv.txt:

- source: https://groups.google.com/forum/#!topic/beagleboard/EYSwmyxYjdM
- /boot/uEnv.txt should be looking something like this:

```
1 root@beaglebone:# cat /boot/uEnv.txt | grep -v "#"
```

```
_{3} uname_r=4.4.54-ti-r93
```

cmdline=coherent_pool=1M quiet cape_universal=enable

Edit it with:

root@beaglebone:# nano /boot/uEnv.txt

Add the following lines, such that /boot/uEnv.txt looks like:

```
1 root@beaglebone:# cat /boot/uEnv.txt | grep -v "#"
```

```
_{3} uname_r=4.4.54-ti-r93
```

```
4 dtb=am335x-boneblack-overlay.dtb
```

- 5 cmdline=coherent_pool=1M quiet cape_universal=enable
- 6 cape_enable=bone_capemgr.enable_partno=cape-universala

• Reboot and you should be able to configure with:

```
root@beaglebone:# config-pin P9_28 pwm
```

Note:

1

```
• In debian-elinux-version-9.1+ the /boot/uEnv.txt looks like:
```

root@beaglebone:# cat /boot/uEnv.txt | grep -v "#"

- ³ uname_r=4.9.82-ti-r102
- 4 enable_uboot_overlays=1
- 5 enable_uboot_cape_universal=1
- 6 cmdline=coherent_pool=1M net.ifnames=0 quiet

If you see this, you may want to find a way to enable all the pins. I failed.

Robert C Nelson seems to be the only one, who has an idea whats going on... https://elinux.org/Beagleboard:BeagleBo neBlack_Debian#U-Boot_Overlays

1.6 Installing Software on BBB

In order to run the GeckoBot software on the BBB install following packages:

• on BBB as su

```
root@beaglebone:# apt-get update
1
   root@beaglebone:# apt-get install ntpdate
2
   root@beaglebone:# ntpdate pool.ntp.org
3
   root@beaglebone:# apt-get install build-essential python-dev python-pip -y
4
   root@beaglebone:# pip install ---upgrade pip
5
   root@beaglebone:# pip install Adafruit_BBIO
7
   root@beaglebone:# pip install Adafruit_GPIO
   root@beaglebone:# pip install termcolor
8
   root@beaglebone:# pip install numpy
   root@beaglebone:~# mkdir Git
11
   root@beaglebone:~# cd Git
12
   root@beaglebone: // Git/# git clone https:// github.com/larslevity/GeckoBot.git
13
```

1.7 Running the Code

To run the geckobot code:

- on BBB as su
- 1
- root@beaglebone:~# **cd** Git/GeckoBot/Code root@beaglebone:~Git/GeckoBot/Code/# python server_hardware_controlled.py 2

2 Pin Layout

	P9					P8		
Function	Physical Pins		Function		Function	Physical Pins		Function
DGND	1	2	DGND		DGND	1	2	DGN
VDD 3.3 V	3	4	VDD 3.3 V		MMC1_DAT6	3	4	MMC1
VDD 5V	5	6	VDD 5V		MMC1_DAT2	5	6	MMC1
SYS 5V	7	8	SYS 5V		GPIO_66	7	8	GPIO
PWR_BUT	9	10	SYS_RESET		GPIO_69	9	10	GPIO
UART4_RXD	11	12	GPIO_60		GPIO_45	11	12	GPIO
UART4_TXD	13	14	EHRPWM1A		EHRPWM2B	13	14	GPIO
GPIO_48	15	16	EHRPWM1B		GPIO_47	15	16	GPIO
SPIO_CSO	17	18	SPIO_D1		GPIO_27	17	18	GPIO
I2C2_SCL	19	20	I2C_SDA		EHRPWM2A	19	20	MMC1
SPIO_DO	21	22	SPIO_SLCK		MMC1_CLK	21	22	MMC1
GPIO_49	23	24	UART1_TXD		MMC1_DAT4	23	24	MMC1
GPI0_117	25	26	UART1_RXD		MMC1_DATO	25	26	GPIO
GPIO_115	27	28	SP11_CSO		LCD_VSYNC	27	28	LCD_
SP11_DO	29	30	GPIO_112	Part microsu care	LCD_HSYNC	29	30	LCD_AC
SP11_SCLK	31	32	VDD_ADC		LCD_DATA14	31	32	LCD_D/
AIN4	33	34	GND_ADC	LEGEND	LCD_DATA13	33	34	LCD_D4
AIN6	35	36	AIN5	Power, Ground, Reset	LCD_DATA12	35	36	LCD_D/
AIN2	37	38	AIN3	Digital Pins	LCD_DATA8	37	38	LCD_D
AINO	39	40	AIN1	PWM Output	LCD_DATA6	39	40	LCD_D
GPIO_20	41	42	ECAPWMO	1.8 Volt Analog Inputs	LCD_DATA4	41	42	LCD_D
DGND	43	44	DGND	Shared I2C Bus	LCD_DATA2	43	44	LCD_D
DGND	45	46	DGND	Reconfigurable Digital	LCD_DATA0	45	46	LCD_D

Figure 1: Pin layout of BBB

The following pins were used, where Fx means foot x and y means leg or belly y:

Table 1: Used pins (Outdated)

	Table II even plus (e atalatea)								
P8-7	P8-8	P8-9	P8-10	P8-13	P8-19				
F1	F2	F3	F4	2	1				
P9-1	P9-5	P9-14	P9-16	P9-19	P9-20	P9-21	P9-22		
VDD	GND	6	5	I2C-SCL	I2C-SDA	4	3		

3 Auxilary

3.1 Formatting SD Card with debian

• Source: https://www.techwalla.com/articles/how-to-format-an-sd-card-in-debian-linux

- Determine location of SDCard (in the following called: /dev/mmcblk0p2) and directory where it is mounted (in the following called: /media/SDCard):
- su1 df 2
- Unmount, format, and remount:

```
umount /dev/mmcblk0p2
1
```

```
^{2}
```

- mkdosfs /dev/mmcblk0p2 -F16 mount /dev/mmcblk0p2 /media/SDCard 3
- For formatting SD with more than one partition, use:
- cfdisk /dev/mmcblk0

and follow the instructions.

3.2 Set WiFi connection

- Order WiFi Antenna TP-LINK WLAN LITEN HI.G USB ADA. WN722N from somewhere.
- Complete this tuturial ...

3.3 Setup for analog inputs

- https://groups.google.com/forum/#!topic/beagleboard/Lk3vWNIExiQ
- Insert in command line on BBB:

```
su apt-get install bb-cape-overlays
1
  cd /opt/source/bb.org-overlays
3
  ./dtc-overlay.sh
\mathbf{5}
  ./install.sh
7
  sudo sh -c "echo 'BB-ADC' > /sys/devices/platform/bone_capemgr/slots"
9
```

• For readout the ADC input Pins from python: https://learn.adafruit.com/setting-up-io-pythonlibrary-on-beaglebone-black/adc

[•] Reboot.