Manual

Table of Contents

Introduction

The manual serves as an introduction of the concepts in REScala. The full API
is covered in the scaladoc especially for Signals and Events. More details can be
found in [7, 3]. The manual introduces the concepts related to functional reactive
programming and event-based programming from a practical perspective.

e The chapter Basic REScala covers how to get started and integrate RFEScala
into a program, and

e The chapter Common combinators presents REScalas most common fea-
tures fir composing signals and events.

e The chapter Combinators describes other combinators of REScalas.

e If you encounter any problems, check out the chapter Common Pitfalls.

e The readers interested in a more general presentation of these topics can
find thee essential references in the section related work.

Setup

Create a build.sbt file in an empty folder with the following contents:

scalaVersion := "2.12.6"
resolvers += Resolver.bintrayRepo("stg-tud", "maven"
libraryDependencies += "de.tuda.stg" %)% "rescala" % "0.24.0"

Install sbt and run sbt console inside the folder, this should allow you to follow
along the following examples.

The code examples in the manual serve as a self contained Scala REPL session,
all code is executed and results are annotated as comments using tut. Most
code blocks can be executed on their own when adding this import, but some
require definitions from the prior blocks. To use all features of REScala the only
required import is:

http://www.scala-sbt.org/
https://github.com/tpolecat/tut

import rescala.default._

Basic REScala

Because most code is imperative, you need to know the following imperative
parts of REScala for starters, before making use of the functional features. This
chapter is about using Var and Evt, the imperative subtypes of Signal and Event.

Var, set, now

A Var[T] holds a value of type T. Var[T] is a subtype of Signal[T]. See also
the chapter about Signals. In contrast to declarative signals, Vars can be read
and written to.

val a = Var(0)

val b = Var("Hello World")
val ¢ = Var(List(1,2,3))
val d = Var((x: Int) => x * 2)

Vars enable the framework to track changes of input values. Vars can be changed
directly, via set and transform, which will trigger a propagation:

a.set(10)
println(a.now)

// 10

a.transform(val => val + 1)
println(a.now)

/7 11

c.transform(list => 0 :: list)
println(c.now)
// List(0, 1, 2, 3)

Evt, fire

Imperative events are defined by the Evt[T] type. Evt[T] are a subtype of
Event [T]. The value of the parameter T defines the value that is attached to
the event. If you do not care about the value, you can use an Evt [Unit]. If you
need more than one value to the same event, you can use tuples. The following
code snippet shows some valid events definitions:

val el = Evt[Int] ()
val e2 = Evt[Unit] ()
val e3 = Evt[(Boolean, String, Int)]()

Events can be fired with the method fire, which will start a propagation.

el.fire(5)
e2.fire(Q))
e3.fire((false, "Hallo", 5))

Now, observe, remove

The current value of a signal can be accessed using the now method. It is useful
for debugging and testing, and sometimes inside onclick handlers. If possible,
use observers or even better combinators instead.

println((a.now, s.now, t.now))

// (0, 2, false)

Handlers are code blocks that are executed when the event fires. The observe
operator attaches the handler to the event. When a handler is registered to an
event, the handler is executed every time the event is fired. The handler is a
first class function that receives the events value as a parameter.

val e = Evt[String] ()

val o = e.observe({ x =>
val string = "hello " + x + "I"
println(string)

b

e.fire("annette")
// hello annette!

e.fire("tom")
// hello tom!

If multiple handlers are registered, all of them are executed when the event is
fired. Applications should not rely on the order of handler execution.

val e = Evt[Int] ()
val ol = e observe { x => println(x) }
val 02 = e observe { x => println(f'"n: $x") }

e.fire(10)
// n: 10
// 10

e.fire(10)

// n: 10
// 10

Note that events without arguments still need an argument in the handler.

val e = Evt[Unit] ()
e observe { x => println("ping") }
e observe { _ => println("pong") }

Scala allows one to refer to a method using the partially applied function syntax.
This approach can be used to directly register a method as an event handler.

def mi(x: Int) = {
val y = x + 1
println(y)

}

val e = Evt[Int]
val ol = e observe ml _
e.fire(10)

Handlers can be unregistered from events with the remove operator. When a
handler is unregistered, it is not executed when the event is fired. If you create
handlers, you should also think about removing them, when they are no longer
needed.

val e = Evt[Int] ()
val handlerl = e observe println

e.fire(10)
// n: 10
// 10

handlerl.remove ()

Signal Expressions

Signals are defined by the syntax Signal{sigexpr}, where sigexpr is a side effect-
free expression. A signal that carries integer values has the type Signal[Int].

Inside a signal expression others signals should be accessed with the () operator.
In the following code, the signal c is defined to be a + b. When a or b are
updated, the value of c is updated as well.

val a = Var(2)

val b = Var(3)

val ¢ = Signal { a() + b() %}
println((a.now, b.now, c.now))

/7 (2,3,5)

a set 4
println((a.now, b.now, c.now))

/7 (4,3,7)

b set 5
println((a.now, b.now, c.now))

/7 (4,5,9)

The signal ¢ is a dependent / derivative of the vars a and b, meaning that the
values of s depends on both a and b.

Here are some more example of using signal expressions:

val a = Var(0)

val b = Var(2)

val ¢ = Var(true)

val s = Signal{ if (c()) a() else b() }

def factorial(m: Int) = Range.inclusive(l,n).fold(1)(_ * _)

val a = Var(0)

val s: Signal[Int] = Signal {
val tmp = a() * 2
val k = factorial (tmp)
k+ 2

}

Example

Now, we have introduced enough features of REScala to give a simple example.
The following example computes the displacement space of a particle that is
moving at constant speed SPEED. The application prints all the values associated
to the displacement over time.

val SPEED = 10

val time = Var(0)

val space = Signal{ SPEED * time() }

val ol = space observe ((x: Int) => println(x))

// 0

while (time.now < 5) {
Thread sleep 20
time set time.now + 1
}
// 10
// 20

// 30
// 40
// 50

ol.remove()

The application behaves as follows. Every 20 milliseconds, the value of the time
var is increased by 1 (Line 9). When the value of the time var changes, the
signal expression at Line 3 is reevaluated and the value of space is updated.
Finally, the current value of the space signal is printed every time the value of
the signal changes.

Note that using println(space.now) would also print the value of the signal,
but only at the point in time in which the print statement is executed. Instead,
the approach described so far prints all values of the signal.

Common Combinators

Combinators express functional dependencies among values. Intuitively, the
value of a combinator is computed from one or multiple input values. Whenever
any inputs changes, the value of the combinator is also updated.

Latest, Changed

Conversion between signals and events are fundamental to introduce time-
changing values into OO applications — which are usually event-based.

This section covers the basic conversions between signals and events. Figure
1 shows how basic conversion functions can bridge signals and events. Events
(Figure 1, left) occur at discrete point in time (x axis) and have an associate
value (y axis). Signals, instead, hold a value for a continuous interval of time
(Figure 1, right). The latest conversion functions creates a signal from an
event. The signal holds the value associated to an event. The value is hold until
the event is fired again and a new value is available. The changed conversion
function creates an event from a signal. The function fires a new event every
time a signal changes its value.

Event-Signal
Figure 1: Basic conversion functions.

The latest function applies to a event and returns and a signal holding the
latest value of the event e. The initial value of the signal is set to init.

latest[T] (e: Event[T], init: T): Signall[T]

Example:

val e = Evt[Int] O
val s: Signal[Int] = e.latest(10)

assert(s.now == 10)
e.fire(1)
assert(s.now == 1)
e.fire(2)
assert(s.now == 2)
e.fire(1)
assert(s.now == 1)

The changed function applies to a signal and returns an event that is fired every
time the signal changes its value.

changed[U >: T]: Event[U]
Example:

var test = 0

val v = Var(1l)

val s = Signal{ v() + 1 }

val e: Event[Int] = s.changed

val ol = e observe ((x:Int)=>{test+=1})

v.set(2)
assert(test == 1)

v.set(3)
assert(test == 2)

Map

The reactive r.map £ is obtained by applying f to the value carried by r. The
map function must take the parameter as a formal parameter. The return type
of the map function is the type parameter value of the resulting event. If r is a
signal, then r map f is also a signal. If r is an event, then r map f is also an
event.

val s = Var[Int](0)
val s_MAP: Signal[String] = s map ((x: Int) => x.toString)
val ol = s_MAP observe ((x: String) => println(s"Here: $x"))

s set 5
// Here: 5

s set 15
// Here: 15

val e = Evt[Int] O
val e_MAP: Event[String] = e map ((x: Int) => x.toString)
val ol = e_MAP observe ((x: String) => println(s"Here: $x"))

e.fire(5)
// Here: 5

e.fire(15)
// Here: 15

Fold

The fold function creates a signal by folding events with a given function.
Initially the signal holds the init value. Every time a new event arrives, the
function £ is applied to the previous value of the signal and to the value associated
to the event. The result is the new value of the signal.

fold[T,A]l (e: Event[T], init: A)(f :(A,T)=>A): Signall[A]
Example:

val e = Evt[Int] Q)
val £ = (x:Int,y:Int)=>(x+y)
val s: Signal[Int] = e.fold(10)(£)

e.fire(1)

e.fire(2)

assert(s.now == 13)

Or, And

The event e_1 || e_2 is fired upon the occurrence of one among e_1 or e_2.

Note that the events that appear in the event expression must have the same
parameter type (Int in the next example). The or combinator is left-biased, so
if both e_1 and e_ 2 fire in the same transaction, the left value is returned.

val el = Evt[Int]l()

val e2 = Evt[Int] ()

val el OR_e2 = el || e2

val ol = el_OR_e2 observe ((x: Int) => println(x))

el.fire(1)
// 1

e2.fire(2)
// 2

The event e && p (or the alternative syntax e filter p) is fired if e occurs
and the predicate p is satisfied. The predicate is a function that accepts the
event parameter as a formal parameter and returns Boolean. In other words the
filter operator filters the events according to their parameter and a predicate.

val e = Evt[Int] O
val e_AND: Event[Int] = e filter ((x: Int) => x>10)
val ol = e_AND observe ((x: Int) => println(x))

e.fire(5)
e.fire(3)

e.fire(15)
// 15

e.fire(1)
e.fire(2)

e.fire(11)
// 11

{::comment} ## dropParam

The dropParam operator transforms an event into an event with Unit parameter.
In the following example the dropParam operator transforms an Event [Int]
into an Event [Unit].

val e = Evt[Int] ()
val e_drop: Event[Unit] = e.dropParam
val ol = e_drop observe (_ => println("x"))

e.fire(10)
/) *

e.fire(10)
/) *

The typical use case for the dropParam operator is to make events with different
types compatible. For example the following snippet is rejected by the compiler
since it attempts to combine two events of different types with the || operator.

scala> /* WRONG - DON’T DO THIS x*/
| val el = Evt[Int] ()

el: rescala.default.Evt[Int] = rescala.interface.RescalalnterfaceRequireSerializer#Evt:51

scala> val e2 = Evt[Unit] ()
e2: rescala.default.Evt[Unit] = rescala.interface.RescalalnterfaceRequireSerializer#Evt:51

scala> val el OR_e2 = el || e2 // Compiler error
<console>:17: warning: a type was inferred to be ‘AnyVal‘; this may indicate a programming ¢
val el OR_e2 = el || e2 // Compiler error

el _OR_e2: rescala.reactives.Event[AnyVal,rescala.parrp.ParRP] = (or rescala.interface.Resca:

The following example is correct. The dropParam operator allows one to make
the events compatible with each other.

val el = Evt[Int] ()

// el: rescala.default.Evt[Int] = rescala.interface.RescalalnterfaceRequireSerializer#Eut:5.

val e2 = Evt[Unit] ()
// e2: rescala.default.Evt[Unit] = rescala.interface.RescalalInterfaceRequireSerializer#Euvt:.

val el _OR_e2: Event[Unit] = el.dropParam || e2
// el_OR_e2: rescala.default.Event[Unit] = (or el_OR_e2:17 rescala.interface.Rescalalnterfa

{:/comment }

Combinators

Count Signal

Returns a signal that counts the occurrences of the event. Initially, when the
event has never been fired yet, the signal holds the value 0. The argument of
the event is simply discarded.

count(e: Event[_]): Signal[Int]

val e = Evt[Int] O
val s: Signal[Int] = e.count

assert(s.now == 0)
e.fire(1)
e.fire(3)
assert(s.now == 2)

10

Last(n) Signal

The last function generalizes the latest function and returns a signal which
holds the last n events.

last[T] (e: Event[T], n: Int): Signall[List[T]]

Initially, an empty list is returned. Then the values are progressively filled up to
the size specified by the programmer. Example:

val e = Evt[Int] O
val s: Signal[scala.collection.LinearSeq[Int]] = e.last(5)
val ol = s observe println

// Queue()

e.fire(1)
// Queue(1)

e.fire(2)
// Queue(1, 2)

e.fire(3);e.fire(4);e.fire(5)
// Queuve(1, 2, 3)

// Queue(l, 2, 3, 4)

// Queve(l, 2, 3, 4, 5)

e.fire(6)
// Queve(2, 3, 4, 5, 6)

List Signal

Collects the event values in a (growing) list. This function should be used
carefully. Since the entire history of events is maintained, the function can
potentially introduce a memory overflow.

list[T] (e: Event[T]): Signal[List[T]]

LatestOption Signal

The latestOption function is a variant of the latest function which uses the
Option type to distinguish the case in which the event did not fire yet. Holds
the latest value of an event as Some(val) or None.

latestOption[T] (e: Event[T]): Signal[Option[T]]

Example:

11

val e = Evt[Int] ()
val s: Signal[Option[Int]]

e.latestOption()

assert(s.now == None)
e.fire(1)

assert(s.now == Option(1))
e.fire(2)

assert(s.now == Option(2))
e.fire(1)

assert(s.now == Option(1))

Fold matcher Signal

The fold Match construct allows to match on one of multiple events. For every
firing event, the corresponding handler function is executed, to compute the new
state. If multiple events fire at the same time, the handlers are executed in order.
The acc parameter reflects the current state.

val word = Evt[String]

val count = Evt[Int]

val reset = Evt[Unit]

val result = Events.foldAl1(""){ acc => Events.Match(
reset >> (_ => ""),
word >> identity,
count >> (acc * _),

)}

val ol = result.observe(r => println(r))

//
count.fire(10)
reset.fire()

word.fire("hello")
// hello

count.fire(2)
// hellohello

12

word.fire("world")
// world

update(count -> 2, word -> "do them all!", reset -> (()))
// do them all!do them all!

Iterate Signal

Returns a signal holding the value computed by £ on the occurrence of an event.
Differently from fold, there is no carried value, i.e. the value of the signal does
not depend on the current value but only on the accumulated value.

iterate[A]l (e: Event[_], init: A)(f: A=>A): Signall[Al
Example:

var test: Int = 0

val e = Evt[Int] ()

val f = (x:Int)=>{test=x; x+1}

val s: Signal[Int] = e.iterate(10) (f)

e.fire(1)
assert(test == 10)
assert(s.now == 11)
e.fire(2)
assert(test == 11)
assert(s.now == 12)
e.fire(1)
assert(test == 12)
assert(s.now == 13)

Change Event

The change function is similar to changed, but it provides both the old and the
new value of the signal in a tuple.

change[U >: T]: Event[(U, U)]

13

Example:

val s = Var(5)
val e = s.change
val ol = e observe println

s.set(10)
// Diff(Value(5), Value(10))

s.set (20)
// Diff(Value(10), Value(20))

ChangedTo Event

The changedTo function is similar to changed, but it fires an event only when
the signal changes its value to a given value.

changedTo [V] (value: V): Event[Unit]

var test = 0

val v = Var(1l)

val s = Signal{ v + 1 }

val e: Event[Unit] = s.changedTo(3)

val ol = e observe ((x:Unit)=>{test+=1})

assert(test == 0)
v set(2)
assert(test == 1)
v set(3)
assert(test == 1)

Flatten

The flatten function is used to “flatten” nested reactives.

It can, for instance, be used to detect if any signal within a collection of signals
fired a changed event:

val vl = Var(1)

val v2 = Var("Test")

val v3 = Var(true)

val collection: List[Signall[_]] = List(vl, v2, v3)

14

val innerChanges = Signal {collection.map(_.changed).reduce((a, b) => a || b)}
val anyChanged = innerChanges.flatten

val ol = anyChanged observe println

// resl05: rescala.reactives.Observe[rescala.parrp.ParRP] = res105:17

vl.set(10)
// 10

v2.set("Changed")
// Changed

v3.set(false)
// false

Common Pitfalls

In this section we collect the most common pitfalls for users that are new to
reactive programming and RFEScala.

Accessing values in signal expressions

The () operator used on a signal or a var, inside a signal expression, returns
the signal /var value and creates a dependency. The now operator returns the
current value but does not create a dependency. For example the following signal
declaration creates a dependency between a and s, and a dependency between b
and s.

val s = Signal{ a() + b }
The following code instead establishes only a dependency between b and s.

val s = Signal{ a.now + b() }

// <comsole>:17: warning: Using ‘now‘ inside a reactive expression does not create a depend
/7 val s = Signal{ a.now + b() }

/7 -

// s: rescala.default.Signal [Int] = s:17

In other words, in the last example, if a is updated, s is not automatically
updated. With the exception of the rare cases in which this behavior is desirable,
using now inside a signal expression is almost certainly a mistake. As a rule of
dumb, signals and vars appear in signal expressions with the () operator.

15

Attempting to assign a signal

Signals are not assignable. Signal depends on other signals and vars, the
dependency is expressed by the signal expression. The value of the signal is
automatically updated when one of the values it depends on changes. Any
attempt to set the value of a signal manually is a mistake.

Side effects in signal expressions

Signal expressions should be pure. i.e. they should not modify external variables.
For example the following code is conceptually wrong because the variable c is
imperatively assigned form inside the signal expression (Line 4).

var ¢ = 0 /* WRONG - DON’T DO IT */
// c: Int = 0

val s = Signal{
val sum = a() + b();
c = sum * 2

// s: rescala.default.Signal [Unit] = s:18

/S
println(c)
/74

A possible solution is to refactor the code above to a more functional style. For
example, by removing the variable ¢ and replacing it directly with the signal.

val ¢ = Signal{
val sum = a() + b();
sum * 2

¥
// c: rescala.default.Signal[Int] = c:17

/)

println(c.now)

/74

Cyclic dependencies

When a signal s is defined, a dependency is establishes with each of the signals

or vars that appear in the signal expression of s. Cyclic dependencies produce a
runtime error and must be avoided. For example the following code:

16

val a = Var(0) /* WRONG - DON’T DO IT */
// a: rescala.default.Var[Int] = a:15

val s = Signal{ a() + tO }

// <comsole>:17: error: overloaded method value + with alternatives:
// (z: Double)Double <and>

// (z: Float)Float <and>

// (z: Long)Long <and>

// (z: Int)Int <and>

// (z: Char)Int <and>

// (z: Short)Int <and>

// (z: Byte)Int <and>

// (z: String)String

// cannot be applied to (Boolean)

// val s = Signal{ a() + t() }
/7 -

val t = Signal{ a() + s + 1 }

// <comsole>:17: error: overloaded method wvalue + with alternatives:
// (z: Double)Double <and>

// (z: Float)Float <and>

// (z: Long)Long <and>

// (z: Int)Int <and>

// (z: Char)Int <and>

// (z: Short)Int <and>

// (z: Byte)Int <and>

// (z: String)String

// cannot be applied to (Unit)

// val t = Signal{ a() + s() + 1 }
// -

creates a mutual dependency between s and t. Similarly, indirect cyclic depen-
dencies must be avoided.

Objects and mutability

Vars and signals may behave unexpectedly with mutable objects. Consider the
following example.

/% WRONG - DON’T DO THIS */
class Foo(init: Int) {
var x = init
}
val foo = new Foo(1)
val varFoo = Var(foo)
val s = Signal{ varFoo().x + 10 }

17

println(s.now)

// 11
foo.x = 2

println(s.now)

// 11

One may expect that after increasing the value of foo.x in Line 9, the signal
expression is evaluated again and updated to 12. The reason why the application
behaves differently is that signals and vars hold references to objects, not the
objects themselves. When the statement in Line 9 is executed, the value of the
x field changes, but the reference hold by the varFoo var is the same. For this
reason, no change is detected by the var, the var does not propagate the change
to the signal, and the signal is not reevaluated.

A solution to this problem is to use immutable objects. Since the objects cannot
be modified, the only way to change a filed is to create an entirely new object
and assign it to the var. As a result, the var is reevaluated.

class Foo(val x: Int){}

val foo = new Foo(1)

val varFoo = Var(foo)

val s = Signal{ varFoo().x + 10 }

println(s.now)

// 11
varFoo set (new Foo(2))

println(s.now)

/7 12

Alternatively, one can still use mutable objects but assign again the var to force
the reevaluation. However this style of programming is confusing for the reader
and should be avoided when possible.

/* WRONG - DON’T DO THIS */
class Foo(init: Int) {
var x = init
+
val foo = new Foo(1)
val varFoo = Var(foo)
val s = Signal{ varFoo().x + 10 }

println(s.now)

// 11

18

foo.x = 2
varFoo set foo

println(s.now)

// 11

Functions of reactive values

Functions that operate on traditional values are not automatically transformed
to operate on signals. For example consider the following functions:

def increment(x: Int): Int = x + 1

The following code does not compile because the compiler expects an integer,
not a var as a parameter of the increment function. In addition, since the
increment function returns an integer, b has type Int, and the call b() in the
signal expression is also rejected by the compiler.

val a = Var(1) /* WRONG - DON’T DO IT */
// a: rescala.default.Var[Int] = a:15

val b = increment(a)
// <console>:17: error: type mismatch;

// found : rescala.default.Var[Int]

// (which ezpands to) rescala.reactives.Var[Int,rescala.parrp.ParRP]
// required: Int

/7 val b = increment (a)

/7 -

val s = Signal{ b() + 1 }
// s: rescala.default.Signal[Int] = s:16

The following code snippet is syntactically correct, but the signal has a constant
value 2 and is not updated when the var changes.

val a = Var(1)
val b: Int = increment(a.now) // b is not reactive!
val s = Signal{ b + 1 } // s is a constant signal with value 2

The following solution is syntactically correct and the signal s is updated every
time the var a is updated.

val a = Var(1)
val s = Signal{ increment(a()) + 1 }

19

Essential Related Work

{: #related }

A more academic presentation of REScala is in [7]. A complete bibliography on
reactive programming is beyond the scope of this work. The interested reader
can refer to [1] for an overview of reactive programming and to[8] for the issues
concerning the integration of RP with object-oriented programming.

REScala builds on ideas originally developed in EScala [3] — which supports event
combination and implicit events. Other reactive languages directly represent
time-changing values and remove inversion of control. Among the others, we
mention FrTime [2] (Scheme), FlapJax [6] (Javascript), AmbientTalk/R [4] and
Scala.React [5] (Scala).

Acknowledgments

Several people contributed to this manual, among the others David Richter,
Gerold Hintz and Pascal Weisenburger.

References

{t #ref} [1] E. Bainomugisha, A. Lombide Carreton, T. Van Cutsem, S.
Mostinckx, and W. De Meuter. A survey on reactive programming. ACM
Comput. Surv. 2013.

[2] G. H. Cooper and S. Krishnamurthi. FEmbedding dynamic dataflow in a
call-byvalue language. In ESOP, pages 294-308, 2006.

[3] V. Gasiunas, L. Satabin, M. Mezini, A. Ninez, and J. Noye. EScala: modular
event-driven object interactions in Scala. AOSD ’11, pages 227-240. ACM, 2011.

[4] A. Lombide Carreton, S. Mostinckx, T. Cutsem, and W. Meuter. Loosely-
coupled distributed reactive programming in mobile ad hoc networks. In J. Vitek,
editor, Objects, Models, Components, Patterns, volume 6141 of Lecture Notes
in Computer Science, pages 41-60. Springer Berlin Heidelberg, 2010.

[5] I. Maier and M. Odersky. Deprecating the Observer Pattern with Scala.react.
Technical report, 2012.

[6] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg, A.
Bromfield, and S. Krishnamurthi. Flapjaz: a programming language for ajax
applications. OOPSLA ’09, pages 1-20. ACM, 20009.

20

[7] G. Salvaneschi, G. Hintz, and M. Mezini. REScala: Bridging between objecto-
riented and functional style in reactive applications. AOSD 14, New York, NY,
USA, Accepted for publication, 2014. ACM.

[8] G. Salvaneschi and M. Mezini. Reactive behavior in object-oriented applica-
tions: an analysis and a research roadmap. AOSD ’13, pages 37-48, New York,
NY, USA, 2013. ACM.

21

	Introduction
	Setup
	Basic REScala
	Var, set, now
	Evt, fire
	Now, observe, remove
	Signal Expressions
	Example

	Common Combinators
	Latest, Changed
	Map
	Fold
	Or, And

	Combinators
	Count Signal
	Last(n) Signal
	List Signal
	LatestOption Signal
	Fold matcher Signal
	Iterate Signal
	Change Event
	ChangedTo Event
	Flatten

	Common Pitfalls
	Accessing values in signal expressions
	Attempting to assign a signal
	Side effects in signal expressions
	Cyclic dependencies
	Objects and mutability
	Functions of reactive values

	Essential Related Work
	Acknowledgments
	References

