BREW: Manual
(https://github.com/FoelliX/BREW/wiki)

1/18

Table of contents

Menu

BREW
Runthrough
Install & Compile
Launch parameters
Configuration
Benchmarking
Setup/Load/Execute
Evaluation
Load AQL-System results
ReproDroid
BREW 1.2.0

Improvements

FAQ

2/18

BREW

Benchmark Refinement and Execution Wizard (BREW)

The Benchmark Refinement and Execution Wizard (BREW) can be used to do what the name suggests, first refine and then execute a

benchmark.

New Tutorial

The improvements introduced along with the release of version 1.2.0 are described in the following tutorial:

Improvements

Basic Tutorials

Runthrough
Launch parameters
Configuration

Benchmarking
Setup/Load/Execute
Evaluation

Load AQL-System results

Fully load ReproDroid benchmarks

FAQ

3/18

Runthrough

Runthrough

The following instructions deal with the installation of BREW. Along with that Amandroid will be installed. Hence, BREW will be setup to use

Amandroid only. (The operating system considered is Linux.)

1.

6.

7.

Download the latest version of BREW: here
o Unzip it!

Download Amandroid: https://bintray.com/arguslab/maven/argus-saf/3.1.2
(direct link: https://bintray.com/arguslab/maven/download_file?file_path=com%2Fgithub%2Farguslab%2Fargus-
saf_2.12%2F3.1.2%2Fargus-saf_2.12-3.1.2-assembly.jar)

Download the pirectreaki app from DroidBench 3.0: https://github.com/secure-software-
engineering/DroidBench/raw/develop/apk/AndroidSpecific/DirectLeak.apk

Setup a configuration
o Create file config_amandroid.xm1 located in the directory of BREW

o Copy and Paste the following content:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<config>
<androidPlatforms>/path/to/android/platforms/</androidPlatforms>
<maxMemory>8</maxMemory>
<tools>
<tool name="Amandroid" version="1">
<priority>1</priority>
<execute>
<run>/path/to/Amandroid/aglRun.sh %APP_APK% %MEMORY%</run>
<result>/path/to/Amandroid/outputPath/%APP_APK FILENAME%/result/AppData.txt</result>
<instances>0</instances>
<memoryPerInstance>4</memoryPerInstance>
</execute>
<path>/path/to/Amandroid</path>
<questions>IntraAppFlows</questions>
<runOnExit>/path/to/BREW/flushMemory.sh</runOnExit>
<runOnAbort>/path/to/BREW/killpid.sh %PID%</runOnAbort>
</tool>
</tools>
</config>

o Adjust the path to the Android SDK’s platforms directory (<androidplatforms>/path/to/android/platforms/</androidPlatforms>)

O Adjust the path for Amandroid (<path>/path/to/amandroid</path>) (The directory should contain the previously downloaded .jar file.)

o Use the same path in <run> and <result>

o Adjust the path to flushMemory.sh and killpid.sh to the path of BREW in <runonexit> and <runonabort> .

o Lastly adjust <maxmMemory> and <memoryperinstance>. The latter has to be less than or equal to the first value. Both values are given in

gigabytes. (If sufficient memory is provided, a tool might be executed multiple times in parallel.)

Make filushvemory.sh and kilipid.sh , located in BREW directory, executeable:

chmod ut+x flushMemory.sh killpid.sh

Create launch script

cd /path/to/Amandroid
nano aglRun.sh

Copy and Paste the following:

#!/bin/bash
rm -R outputPath
java -Xmx${2}g -jar argus-saf_2.12-3.1.2-assembly.jar t -o outputPath ${1}

4/18

https://github.com/FoelliX/BREW/releases
https://bintray.com/arguslab/maven/argus-saf/3.1.2
https://bintray.com/arguslab/maven/download_file?file_path=com%252Fgithub%252Farguslab%252Fargus-saf_2.12%252F3.1.2%252Fargus-saf_2.12-3.1.2-assembly.jar
https://github.com/secure-software-engineering/DroidBench/raw/develop/apk/AndroidSpecific/DirectLeak1.apk

8. Save (Ctrl+o) and exit (Ctrl+x) nano
9. Make the script executable:

chmod u+x aglRun.sh

10. Finally, launch BREW

cd /path/to/BREW
java -jar BREW-1.2.0.jar -config config_amandroid.xml -d detailed -gui

11. Load the app
© Open the File menu

o Click on Load File..
o Navigate to and select pirectreakl.apk
12. Click on Next (Green Right-Arrow in the toolbar)

13. Click on Preselect source & sinks based on SuSi

% BEHE| Q| @ u

So... Sink Combine with IDs (e.g...

14. Click on Next again

15. Click on "Run"

|0l B8 Q= @

True P... False ... Durati...
v 0
v 0]

16. Wait for the result and inspect it!

5/18

Install & Compile

Install

To simply install BREW you must
® download the current release: here
® and unzip it
e done!

For a hello world like tutorial follow the runthrough tutorial.

Compile
To compile BREW by yourself follow these steps:
® Clone the repository

® Build the Maven project by:

cd /path/to/project/BREW
mvn

(Test might not be completely up-to-date, consider skipping: mvn -bskipTrests)

6/18

https://github.com/FoelliX/BREW/releases

Launch parameters

Launch Parameters

BREW can be launched with the parameters mentioned in the table below.

Parameter Meaning

-help , -
h, -7,
Outputs a very brief manual, which contains a list of all available parameters
man ,
manpage
-config
nxn, -cfg By default the config.xml file in the tool's directory is used as configuration. With this parameter a different configuration file
ngn , -c can be chosen. x has to reference the path to and the configuration file itself.
-rules By default the rule-set in rules.xml file is loaded. With this parameter a different rule file can be chosen. x has to reference
ny the path to and the rule file itself.
-output
"X, -out The answer to a query is automatically saved in the answers directory. This parameter can be used to store it in a second
nxv, -o directory. x has to define this directory including its path.
-timeout
"X"s/m/h , With this parameter the maximum execution time of each tool can be set. If it expires the tool's execution is aborted. x refers
-t to this time in seconds (e.g. 10s), minutes or hours.
"X"s/m/h
-debug The output generated during the execution of this tool can be set to different levels. x may be setto: error, warning,
nxn o, o-d normal , debug, detailed (ascending precision from left to right). Additionally it can be setto short , the output will then be
nxn equal to norma1 but shorter at some points. By default it is set to norma1 .
. If this parameter is added, the GUI will not be launched. Instead the currently stored benchmark in data/data.ser is directly
-noguil
executed.
-backup , i
To backup previously computed results on startup add one of these parameters.
-bak , -b
-reset , | -
To reset BREW on startup add one of these parameters.
re|, -r
--from
"X, --to If only some benchmark cases shall be executed these parameters can be used to set the limits.

7/18

Configuration

Configuration

Configuring BREW works just as configuring the underlying AQL-System.
Therefore, we refer to the configuration tutorial of the AQL-System.

8/18

https://github.com/FoelliX/AQL-System/wiki/Configuration

Benchmarking

Benchmarking

Setup/Load/Execute
Evaluation
Load AQL-System results

9/18

Setup/Load/Execute

1.

Setup a Benchmark
Open the File menu

o Click on Load File.. and choose an application
OR

o Click on Load Folder.. and select a directory containing a set of apps

Deselect testcases you do not want to run.

® To build an inter-app testcase activate the initial app and enter all other apps' IDs in the last column (Combine with IDs). Deactivate the other

apps.

[Active) Combine with IDs (e.g. "1, 2")

® On the next screen specify which statements are sources and sinks. There exist two options to do so:

2.

Eﬁ‘\"\
s

Click on Next (Green Right-Arrow in the toolbar)

o manually by selecting the checkboxes
OR

o click on Preselect Sources & Sinks based on SuSi.

So... Sink Combine with IDs (e.qg...

Sources & Sinks can be combined by entering appropiate IDs in the Combine with IDs column. This makes sense if multiple statements may

be expectable as source for the same resource, for example.

Click on Next (Green Right-Arrow in the toolbar)

Finally, decide which of the generated benchmark cases should be found (True Positive) and which should not be found (False Positive).

The setup is done. Feel free to save the benchmark.

Load & Execute a Benchmark

Open the File menu

o Click Open.. and choose the benchmark you want to load. You can also add another benchmark to an already opened one by clicking

on Add...

10/18

® Click on Next (Green Right-Arrow in the toolbar)
® Click on Next again

® C(Click on Run Benchmark

. @

True P... False ... Durati...
v 4]
v 0

Refine a benchmark

To refine a benchmark just open one (see 2.) and edit it as described for a new one (see 1.).

11/18

Evaluation

Evaluation of Benchmarks

After executing a benchmark successfully, the result should look like:

Fie it Help

BEM < I AEIEERIDE - |

» Testcase Case True Postive Fale Positive Duration (5)
439 . asing FowSensititylapk getDeviced) -> @]) o
0 2.0 complete/Aliasing/Merge1 apk 0) o
a1 3 .e/AlsingSimpledlasing.apk getDeviced) -> v 0 o
22 4 ete/Aliasing/StrongUpdate1.apk 7] 0 0
3 : cifc/AppliationModeling! apk getDeniceld) > ijavalang Sting avalang Sting) vl 0 o
m & ndroidspeciic/Directeaic apk getDeviced) > @) 0 o
a5 7:..dSpeciic/nactivectuityapk getDeviceld() -> ijavalang String java.lang String) O v [
6 8 .e/AndroidSpecific/Library2.apk getDeviceld() -> v O 0
47 10:..droidSpecific/Obfuscation’.apk getDeviceldl) vl O 0
s 11:..4e/AndroidSpecific/Parcell.apk getDeviceld() -> v O 0
9 12:..dSpecific/PrivateDataleakl apk getText) (1) -> v O 0
450 13:..dSpecific/PrivateDataleak2.apk getTextd (1) -> v{avalang String javalang Sting) v 0 0
251 14:..dSpecific/PrivateDataleak3 apk getDeviceld() -> v O)
152 15 idSpeciic/PubleAPIeid 1 apk cetDeiceld) > iavalsng Sting avalsng Sting) @] 0 o
53 16 idSpeciic/PubleAPFeid2apk cetDeiceld) > iavalsng Sting avalsng Sting) © 0 o
454 17:..Jete/AndroidSpecific/Viewl.apk getDeviceldl) > vl O 0
455 18: .raysAndLists/AayAccess1.apk getDeviceld) > O v 0
456 19:..rrayshndli getDeviceld) -> O G o
57 20:.raysancs >] 0 3
58 20;rayendl 0 © 3
459 22:..rrayshnl a % o
60 231 Arayshaclist s Copyl apk ving e ang String)] 0 3
461 24:.ayshoclista/AayTos getDeviced) ving e ang String) @ 0 3
62 251 ayshndise HazhMspiccess spk getDeviced) -> 0 @ o
62 261 syt sthceese apk getDeviced) -> 0 % o
61 cetDeiceld) > ijavalsng Sing javalang Sting) @ 0 3
a5 > avalang Stingjavalang Sing) v (o
16 o] (o
67 v (o
8 o} (o
460 v (o
a0 0 v o
471 v/ (0
n 32 complete/Calloacks/Butiondapk getDeviceid) -> o} (o
a3 33:..complete/Callbacks/ButtonS.apk getDeviceld) -> ijavalan: (] (o
474 34 v/ (o
475 35: v/ (o
476 36: v/ (o
477 3 v/ (o
478 38) v o
479 38:) v o

1 [o

Satistics
restcase: 190 Sources: 186 Postve caes: 168 Preciion: 0851
Negatv cases: 43 Recalt0512
FoMeszure: 0839
(£+49 1234, mal, S5,)
> <o ity void onCrestelandroidos Bundiel>
> de.ecspride Moindctivity
2

® |egend:

o Ared, green row indicates a failed, successful benchmark case, respectively.
o A blue row stands for an aborted or timed-out benchmark case.
® The values for Precision, Recall and F-measure can be checked in Statistics pane.

® To inspect a single results:
o Select one benchmark case in the table and check the information pane. It shows, for example, which AQL-Query would be executed to
evaulate this case.

o Press Vor click on Show in Viewer (magnifying glass in the toolbar) to review the expected and actual result.

B (optional) Switch to the graphical representation on both sides in order to get a better overview.

12/18

https://raw.githubusercontent.com/wiki/FoelliX/BREW/images/statistics.png

) [a]la]e]

E

™
(=] (a][]=]

H XKML H Graph]

~

~

13/18

https://raw.githubusercontent.com/wiki/FoelliX/BREW/images/compare.png

Load AQL-System results
Load AQL-System results

1. Run a query in the AQL-System (see the query execution tutorial)

2. Save the computed AQL-Answer

3. Load results in BREW
o Launch BREW

o Load the same app that was considered in the query or open a benchmark that contains this app
o Click twice on Next (Green Right-Arrow in the toolbar)
o Open the Edit menu

8 Click on Mark successful (Result based - XML) and choose the saved AQL-Answer

14/18

https://github.com/FoelliX/AQL-System/wiki/Query_execution

ReproDroid
Fully load a ReproDroid benchmark

® Download the latest BREW release: https://github.com/FoelliX/BREW/releases
® Download a ReproDroid benchmark: https://FoelliX.github.io/ReproDroid

o e.g. the refined benchmark version of DroidBench 3.0: https://uni-paderborn.sciebo.de/s/ZmIRvtzI6pVYHVP/download?
path=%2Fbenchmarks&files=DroidBench30.zip

® Extract both downloaded archives: Let us assume sBreEws and «benchmarks refer to the respective extracted archives.
® Choose the tool for which you want to load the benchmark (for this example we assume it is Amandroid).
[] COpy %benchmark%/results/Amandroid/data {0 %BREW%/data

e Start BREW with
o config_toolset1.xml (for Amandroid, DroidSafe, FlowDroid and IccTA)

o config_toolset2.xml (for DIALDroid and DidFail)
® C(Click on Next (Green rightarrow in the toolbar)
e Click on Directory (Ignore parent directory)
® Select the sbenchmark%/benchmark/apks directory
e |f any warnings appear, just click OK
® Click on Next (Green rightarrow in the toolbar) again
® Click Yes

® |[nspect the fully loaded benchmark result
o The lower Statistics pane shows general information such as precision, recall and F-measure

o Individual results can be reviewed by selecting a case and clicking on Show in Viewer (magnifying glass in toolbar) or pressing v.

15/18

https://github.com/FoelliX/BREW/releases
https://foellix.github.io/ReproDroid
https://uni-paderborn.sciebo.de/s/ZmlRvtzI6pVYHVP/download?path=%252Fbenchmarks&files=DroidBench30.zip
https://raw.githubusercontent.com/FoelliX/ReproDroid/master/config_toolset1.xml
https://raw.githubusercontent.com/FoelliX/ReproDroid/master/config_toolset2.xml

BREW 1.2.0

Benchmark Refinement and Execution Wizard (BREW)

The Benchmark Refinement and Execution Wizard (BREW) can be used to do what the name suggests, first refine and then execute a

benchmark.

New Tutorial

The improvements introduced along with the release of version 1.2.0 are described in the following tutorial:

Improvements

Basic Tutorials

Runthrough
Launch parameters
Configuration

Benchmarking
Setup/Load/Execute
Evaluation

Load AQL-System results

Fully load ReproDroid benchmarks

FAQ

16/18

Improvements

Improvements

With BREW version 1.2.0 mainly two improvements are introduced. Both help to select the best tool associated with any benchmark case.
Futhermore, the new version relies on the up-to-date AQL-System (v. 1.2.0).
IMPORTANT: This makes it mandatory to upgrade existing configurations (see Configuration Upgrades)!

1. Features

BREW 1.2.0 allows to automatically determine or specify features for certain benchmark cases. This way tools can be choosen more selectively
based on a tool's priority to handle certain features.

Example: The following configuration holds two artificial tools, namely awesomeproia and ramebroid .

<tool name="AwesomeDroid" version="1">
<priority>1</priority>
<priority feature="Awesome">3</priority>
</tool>
<tool name="LameDroid" version="1">
<priority>2</priority>
</tool>
For arbitrary benchmark cases rameproid has the highest priority (2). For benchmark cases with the associated awesome feature assigned
awesomebroid has the highest priority (3) and will be selected.

2. Rules

The same features can be used to activate (query transformation) rules for certain benchmark cases. These rules are loaded from an XML file.
The structure of such a file is defined through the rules.xsd schema. The launchparameter -ruies x can be used to load rules from file x .

Inside any rule the following variables can be used:

Variable Meaning
%QUERY% The original query before applying the rule without question mark, if the original query ends with a question mark
%FILE_i% File number i (i in [1, n]) from the original query

°%FEATURE i% Feature number i (i in [1, n]) from the original query
%FEATURES% All features from the original query

Example: Let us consider the following query Flows IN App('AwesomeApp.apk') FEATURING 'Awesome' ? .
With the rule-set below in place, it gets transformed to FILTER [Flows IN App ('AwesomeApp.apk') FEATURING 'Awesome' 2] Since only the rule
with the highest priority is applied.

<rules>
<rule always="true">
<priority>1</priority>
<query>UNIFY [%QUERY% ?, Permissions IN App ('%FILE_1%') ?]</query>
</rule>
<rule always="false">
<priority feature="Awesome">2</priority>
<query>FILTER [%QUERY% ?]</query>
</rule>
</rules>

The first rule included is always applied (see attribute aiways=rtrue") independently of the features mentioned in the query. However, since its
priority is only 1 the sencond rule gets applied with a priority of 2 for this query.

17/18

https://github.com/FoelliX/AQL-System
https://github.com/FoelliX/AQL-System/wiki/Configuration_Upgrades
https://github.com/FoelliX/BREW/blob/master/rules.xsd

FAQ
FAQ

No questions, yet!

18/18

	Menu
	BREW
	Benchmark Refinement and Execution Wizard (BREW)
	New Tutorial
	Basic Tutorials

	Runthrough
	Runthrough
	Install & Compile
	Install
	Compile
	Launch parameters
	Launch Parameters
	Configuration
	Configuration
	Benchmarking
	Benchmarking
	Setup/Load/Execute
	1. Setup a Benchmark
	2. Load & Execute a Benchmark
	Refine a benchmark
	Evaluation
	Evaluation of Benchmarks
	Load AQL-System results
	Load AQL-System results
	ReproDroid
	Fully load a ReproDroid benchmark
	BREW 1.2.0
	Benchmark Refinement and Execution Wizard (BREW)
	New Tutorial
	Basic Tutorials

	Improvements
	Improvements
	1. Features
	2. Rules

	FAQ
	FAQ

