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Introduction 
 
The purpose of ECE 273 is to teach you the basics of Intel 80x86 assembly language. You will 
learn in ECE 272 lecture that assembly language (or simply "assembly'') is important because it 
is the principal link between the software world of high-level languages like C and Java and the 
hardware world of CPU design. Assembly language is the lowest-level, human-readable 
programming medium we can use to express complete application programs. Assembly language 
gives full access to the programmable features of the hardware, so a good understanding of it 
will provide valuable insight into the fundamentals of CPU design, the operation of the datapath, 
and program execution. 
 
Since the creation of compilers and assemblers, assembly language programming as an art has 
virtually disappeared from the face of the Earth, so of what use is it to you? There are several 
major advantages to understanding assembly language. First, compilers translate high-level 
languages into assembly language, so compiler writers must understand assembly. Operating 
systems also include critical components written in assembly. Furthermore, embedded and 
mobile device programming often require knowledge of assembly language. As these 
technologies become more and more important to the overall performance and flexibility of 
computer systems, knowledge of the computer at the assembly-language level will prove to be a 
valuable asset. Even if you spend your entire career programming in high-level languages, a 
basic understanding of assembly language concepts will give you an insight into your work that 
will in turn make you more valuable as an electrical or computer engineer. 
 
With these considerations in mind, ECE 273 will not strive to make you a proficient assembly 
language programmer. However, like most programming languages, you simply cannot grasp the 
key concepts by mere discussion. Therefore, you will, for a semester, become an assembly 
language programmer just like the “hackers'' of old. ECE 273 is a laboratory class, meaning we 
will provide an environment for you to gain hands-on experience with the tools and concepts 
used in the course. This approach also means that you will only get from it what you put into it. 
The more time you spend working on your program, the more you will learn from it, and the 
more you will understand about how and why assembly languages works the way it does. 
 
The whole laboratory class provides a study of assembly language from the point of view of a 
high-level language, namely C. For example, C provides a control structure called the for loop, 
and we will (eventually) discuss how to implement a for loop in assembly language. As such, a 
good knowledge of C is necessary to fully understand and succeed in the laboratory assignments. 
The goal of the first lab is to introduce you to the tools you will need throughout this course. 
Most of what you will need to know to be successful in ECE 273 will come from a collection of 
documents available on the web at http://www.clemson.edu/ces/departments/ece/resources/ 
ECE273Lab.html. This site includes: background material on the Intel 80386, which outlines the 
features of the CPU and its respective assembly language; the GNU Debugger (GDB), although it 
is not required (but still encouraged) for this course; and information on navigating your way 
around the UNIX terminal. The Appendix of this manual also provides resources for successfully 
completing each lab. 
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For development and testing, any flavor of Linux should suffice, as they are all based on UNIX. 
If you are new to UNIX, you may need to seek out a more complete reference at the library or 
online and spend some time familiarizing yourself with the fundamentals. For each lab, you must 
be able to log onto a campus UNIX machine and edit files with any of the standard text editors 
(vi, gedit, nano, pico, etc). However, when working in any Mac Lab, you are encouraged to use 
Xcode on any of the iMacs. An IDE such as Xcode is an efficient way to work on your 
laboratory assignments. Please note that the iMacs in the 321 Riggs Lab or any other Mac Lab at 
Clemson are not directly compatible with the assembly code in ECE 273. This means your 
assembly programs cannot be tested on them; the iMacs with Xcode are simply a convenient 
interface for editing your code. The code we will be studying is written for 32-bit Linux 
machines running on Intel 80386 (or x86) hardware – the iMacs are 64-bit Mac OS X machines 
with Intel hardware. (Because assembly language is a part of the Instruction Set Architecture 
(ISA), it is specific to not only the OS but also the hardware it runs on.) If you choose to write 
and test the code on your own 32-bit Linux machine or virtual machine, then you should not 
have a problem; however, you should test your code on the campus Linux machiens discussed in 
Lab 1 and Appendix C. Lab 1 will discuss how to compile and test your 32-bit Linux code from 
a Mac Lab. You can refer back to it as a reference for Labs 2 – 6. If you would like to work on 
your code remotely, refer to Appendix C. For online courses, this appendix should be used as a 
guide when working on and testing your code remotely. 
  
On another note, programmers have a general idea how code should be formatted, but it is 
important to standardize the formatting for this course. This not only makes assignments easier 
to grade, but it makes them easier to read and understand. Please be aware that uncommented or 
improperly commented programs will not be accepted, and will result in a reduced grade. See the 
syllabus for specifics on grading and the Appendix A for details on comments. Poorly commented 
assembly code, due to its low-level and complexity, is difficult to understand and is of little use 
to third party users. Your comments need to relay the purpose of the code and not simply 
verbalize the instructions. Consult your lab instructor if you have any questions about code 
comments. 
 
Finally, maintain academic honesty. You will be turning in your assignments via email and/or 
Blackboard, and we will actively work to detect copied programs, including those that have been 
cosmetically altered. Don't do it! If you don't understand what is going on, ask your lab 
instructor for help. Note that each lab has a fully functional solution in Appendix E. Please 
refrain from referencing the solution unless you have exhausted your resources (e.g. the 
instructor, the lab manual, and online sources). Sometimes you may get stumped and find it 
useful to work backwards from the solutions; however, submissions copied verbatim from the 
solution will not be accepted and will be considered academically dishonest. Remember, it is 
important to know not just what the working code looks like, but also why it works and how to 
write your own. You will be assessed via quizzes and/or a final exam to verify you know how to 
program in assembly, as well as the concepts associated with assembly programming. See the 
syllabus for details. 
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Lab 1 
Compiling and Testing Assembly Code 

 
Student Objectives 
 

• Discover the procedure to write, test, and debug lab assignments in the lab 
• Properly use function header and program header comments 
• Learn how to submit lab assignments for evaluation 

 
 
1.1 – Background 
The goal of Lab 1 is simply to introduce you to the basic tools and procedures you will use to 
write, assemble, link, execute, and debug your programs. The task is simple: create an assembly 
program and run it to demonstrate what it does. If you are already familiar with the UNIX 
operating system, this assignment will be trivial. 
 
All of your assignments will consist of two program source files. One is a C program that sets up 
the assignment – it is referred to as the driver. You must not alter this file in any way, or your 
assignment may not work properly when your lab instructor tests it. The second source file is an 
assembly language file that implements one or more functions called by the C program. Some of 
this file will be completed for you – it is referred to as the assembly stub.  Both files are 
provided in the lab manual following each lab’s introduction and discussion. They can be copied 
from the lab manual; however, typing them out manually will give your more experience with 
the structure of C and assembly programs. Note that code copied from a PDF version of the lab 
manual may not paste in the same order as it appears in the manual. Check your driver code 
carefully for copy-and-paste errors before asking for help. 
 
Lab 1 requires no additional code, other than what is provided in the lab manual. As such, we 
only need to save, compile, and test it out! To do so from the Mac Lab on campus, we must 
first find a machine with the same ISA and system call conventions. Fortunately, the College 
of Engineering and Science (COES) has some Linux machines for us to use – they are called 
the Apollo machines and there are 16 of them named apollo01.ces.clemson.edu, 
apollo02.ces.clemson.edu, …, apollo16.ces.clemson.edu. Note the number of the machine is 
a two-digit number from 01 – 16, and any machine listed above will work for compiling and 
running your code. (Simply pick one that is currently online.) 
 
First, we need to transfer our code (the C driver and assembly files) from the Macs, where they 
are developed, to the Apollo machines, where we will compile and test our program. If you 
have had some experience in the terminal, you might be aware of the commands SCP and 
SFTP, which allow the user to securely transfer files from one machine to another. You are 
more than welcome to use these commands; however the Macs have a custom program for 
seamlessly accomplishing this task – cesmount. What cesmount does is essentially establish a 
graphical SSH session using your Clemson username with an Apollo machine. This appears on 
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the iMac Desktop as a removable disk drive named as your username. The advantage to using 
cesmount is the following: when working with your code in an IDE, such as Xcode, on the 
iMacs, you can save your code onto your drive (mounted by cesmount) as if it were a flash 
drive you had plugged in yourself. Now, when you login to the Apollo machines to test your 
code, the same directory in your ‘cesmount-ed’ drive is used as your home directory on any 
Apollo machine. So, if you save your code on your virtual disk drive, it will automatically be 
updated/mirrored on the Apollo machine you are using – pretty cool! For example, say you just 
tested your code on an Apollo machine and realized you need to make a change. Simply open 
up Xcode (or your IDE of choice), resave it to your drive again, and viola it is updated on the 
Apollo machines and ready for you to test, almost instantly. There is no need to use a 
command to transfer your files each time you update them. 
 
That was likely more information than you needed to know in order to do the labs. But, as ECE 
majors, hopefully you found it interesting and perhaps inspiring. So, let's get started with Lab 
1. From here, it is assumed you have just logged into an iMac in the lab. If you have any 
trouble during the following procedure, please ask the instructor or a neighbor for assistance. 
 
1.2 – Assignment 
 

1. Mount your COES user directory to the desktop. Open the terminal. It should appear as 
a black icon in the dock; however, if it is not there, you can use Spotlight to locate it. 
Press command + space; this enables the Spotlight search in the upper right corner of 
the screen. Type “Terminal” or “iTerm” into the prompt. If the application does not 
appear, do not worry, it is likely not indexed on that machine. Open Finder; it is a face 
icon on the far-left in the dock. Select Machintosh HD. From there browse to 
Macintosh HD → Applications → Utilities → Terminal (or iTerm). In the terminal, 
type “cesmount”. If prompted to accept the connection, type “yes”. Enter you Clemson 
username, then press enter. Enter your Clemson password, then press enter. Note, for 
security purposes, your password will not be displayed as you type it. Rest assured that 
it is being received as you type. If you are unable to login using your Clemson 
credentials, please notify the instructor – you may not have COES account. Upon 
success, cesmount will exit. Browse to your Desktop and verify a disk drive has been 
mounted with your username as its name. 

 
2. Open your disk drive on the Desktop and create a folder for each lab this semester – 

Lab1, Lab2, …, Lab6. It is suggested you omit any spaces from the folder and file 
names to simplify browsing in the terminal later on. 

 
3. Open up Xcode. It should appear as a blue icon with a hammer in the dock; however if 

it is not there, you can use Spotlight or Finder to locate it. Follow the same procedure in 
Step 1, but instead search Spotlight for “Xcode” or browse to Macintosh HD → 
Applications → Xcode in Finder. 

 
4. Create a new file in Xcode for your C driver. On the top menu bar, select File → New 
→ New File → C and C++ → C (.c) File. Click the down arrow to the right of the name 
field to expand the window. Browse to Desktop → COES User Directory → Lab1. 
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Name the driver file “lab1drv.c” (or a name of your choosing...this file will not be 
submitted for grading). Save the file. 

 
5. Similar to Step 4, create a new file in Xcode for your assembly file. On the top menu 

bar, select File → New File → Other → Assembly (.s) File. Follow the same procedure 
as in Step 4 to browse to your disk drive's Lab1 folder. Name your assembly file as 
username_273_sectionNum_labNum.s. For example, if I were to create an assembly 
file for myself and I am enrolled in section 002, I would name my assembly file 
“rizard_273_002_1.s”. Save the file. (Consult your syllabus if the file naming 
convention requested by your instructor is different from the example above.) 

 
6. Copy or type the C driver code and the assembly code into their respective files and 

save them. For Lab 1 there is not an assembly stub but the full solution instead. Use this 
in your assembly file for Lab 1 only. In all labs, these are found after the introduction 
and problem statement. Add the required comments to the assembly file. For Lab 1, 
since we have not discussed how to actually write assembly, only the program header 
comments are required. See the Appendix for how to write these comments. As always, 
ask the instructor if anything is unclear. Comments are worth a significant portion of 
each lab assignment's grade. They can also be helpful in debugging your programs. 

 
7. In assembly language, the last line of an assembly file is denoted by a blank line. So, in 

your assembly (.s) file, insert a blank line at the end (i.e. press “Enter” or “Return”) – 
even after any comments you may have at the end of the file. GCC will report a warning 
if the last line of the file is not blank. 

 
8. Login to an Apollo machine to compile and test your code. Open your terminal 

application and SSH into an Apollo machine (01 – 16) by typing “ssh 
username@apolloXX.ces.clemson.edu” where XX is a valid machine number. For 
example, if I were to login to Apollo 08, I would input “ssh 
rizard@apollo08.ces.clemson.edu”. Press enter. If you are prompted to accept the 
connection, type “yes” and press enter. Input your password followed by enter. Just like 
cesmount, your password will not display while you type it. Upon success, SSH will 
log you into the Apollo machine of your choice. Enter the command “ls” followed by 
enter. The file structure shown should be identical to that of your cesmount disk drive. 

 
9. Browse to your Lab1 folder by typing “cd Lab1”. If you have your folder set up or 

named differently, browse to your folder with your Lab 1 files – the C driver and 
assembly file created in Xcode. 

 
10. Compile and run your code. To do this, type “gcc -m32 -o myprog lab1drv.c 

username_273_sectionNum_1.s”. For example, if I wanted to compile my files 
created in the steps above, I would type “gcc -m32 -o myprog lab1drv.c 
rizard_273_002_1.s”. GCC will create an executable named “myprog”. If the “-o 
<name>” flag is omitted, your program will be named “a.out”. For those who are new 
to GCC, the argument immediately following “-o” will be the name of your executable. 
Make sure it is not the same name as your C driver or assembly file; otherwise, the 
source code will be overwritten! The “-m32” tells GCC that the program it is compiling 
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should be compiled as a 32-bit program. This is necessary, since the assembly we will 
learn in this course is 32-bit. If GCC compiled without errors, run your code by typing 
“./myprog”. The output should be a prompt for you to input a string of characters. What 
does the program do? Hint: Try and read the C driver. You will learn later what the 
assembly code means. 

 
11. Once you have verified your program is working and properly commented, submit 

your assignment to your instructor via email and/or via Blackboard. You only need to 
submit your assembly file (.s file). Follow the instructions in your syllabus for 
submitting your code. 

 
12. When working on any public computer, it is important to keep your private data safe. In 

ECE 273, we work on department iMacs. Before you leave the lab, be sure to log out of 
any personal browser sessions (e.g. email, Blackboard, SISWeb, iROAR, etc.). It is also 
important that you eject your user drive mounted via cesmount. To do so, right click the 
drive on your desktop and click “Eject”. If your iMac does not have its right click 
enabled, hold down the “control” key and click the icon simultaneously. On the pop-up 
menu, click “Eject”. Alternatively, if you have your terminal window open, you may run 
the “cesunmount” command. Upon success, it will display a message confirming your 
drive has been removed, and you will see it disappear from the Desktop. If you have any 
trouble ejecting your drive, please ask the instructor for assistance; otherwise, your data 
could become compromised if left accessible on the machine. 

 
13. Read over the documentation at the course web page. Pay particular attention to 

instructions on using GDB. It will not be covered directly in this course, although it can 
be useful (and is a recommended tool) in debugging your programs. 
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The following is the C driver. Do not modify this code. You are not required to add 
comments to the driver. 
 
/* begin C driver */ 
 
#include <stdio.h> 
 
int main(int arg, char **argv) 
{ 
 char buffer[256]; 
 do { 
  int i = 0; 
  printf ("Enter a string terminated with a newline\n"); 
  do { 
   buffer[i] = getchar(); 
  } while (buffer[i++] != '\n'); 
  buffer[i-1] = 0; 
  /* asum() is the function implemented in assembly */ 
  i = asum(buffer); 
  if (i) { 
   printf ("ascii sum is %d\n", i); 
   continue; 
  } 
 } while(1); 

return 0; 
} 
 
/* end C driver */ 
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The following is the assembly solution to the int asum(char *) function. You are 
required to add comments (program and function headers only) to this file. However, you 
are not required to understand the implementation details of this code at this point in the 
course. For Labs 2 – 6, you will be given an assembly stub file instead of the solutions. The 
assembly stub will require you apply the topics discussed in each lab in order to form a 
completed solution to the assignment. 
	  
/* begin assembly code */ 
 
.globl asum 
.type asum,@function 
asum: 

pushl %ebp 
movl %esp, %ebp 
subl $4, %esp 

 movl $0, -4(%ebp) 
.L2: 
 movl 8(%ebp),%eax 
 cmpb $0,(%eax) 
 jne .L4 
 jmp .L3 
.L4: 
 movl 8(%ebp),%eax 
 movsbl (%eax),%edx 
 addl %edx, -4(%ebp) 
 incl 8(%ebp) 
 jmp .L2 
.L3: 
 movl -4(%ebp), %eax 
 jmp .L1 
.L1: 
 movl %ebp, %esp 
 popl %ebp 
 ret 
 
/* end assembly */ 
/* Do not forget the required blank line here! */ 
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Lab 2 
Simple Assignments and Arithmetic 

 
 
Student Objectives 
 
• Learn what registers are, why they are important, and how to use them 
• Learn how to declare and initialize global variables 
• Discover direct and immediate addressing and how they are used in assembly 

programming 
• Learn how to perform basic operations: move, add, subtract, multiply, and divide 
• Learn how to write expression evaluations in assembly from given C code 

 
 
2.1 – Background 
In this lab we will begin to explore the details of assembly language by looking at simple 
expression evaluation. We will provide you with a C program that calls assembly language 
routines that you will write. You need not worry about how data is passed between the C and 
assembly code – we have taken care of that, but you will later learn how to implement such code 
in assembly. The assignment is straightforward – implement simple arithmetic operations in 
assembly. More complex programs involving pointers, arrays, data structures, and function calls and 
returns will be discussed as we progress through the later labs. 
 
To get started, computer programs are composed of two basic elements: (1) memory for storing 
data, such as variables, and (2) instructions (i.e. the code or “program” itself) for manipulating 
the data. Assembly language programs have these same features, plus one more – registers. Like 
memory variables, you can store values into registers and use them in computations. These 
registers are located onboard the CPU itself. Note that the microprocessor and the memory 
(RAM) are two different entities within the computer. Registers are fast data storage units used 
for temporary variables, whereas memory variables (or simply “variables'') exist in the 
computer's memory, which is both more complicated and time-consuming to access. Because 
they are fast and easier to work with, it is best to use registers as much as possible; however, there 
are a limited number of them. Despite this limitation, we cannot use only memory variables 
either. The Intel 80386 architecture places constraints on us as programmers: we can use up to 
one memory variable in a single assembly computation. Furthermore, there is a difference in the 
instructions provided in assembly language: we may only perform one computation per 
instruction or statement. For example, in C we can say: 
 

int a, b, c, d, e; 
a = ((b + c) - (d + e)) - 10; 

 
Code 2.1.1 
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The expression in Code 2.1.1 performs four computations in one statement using four variables 
(a, b, c, d, and e) and a constant (the number 10). In assembly language we cannot perform such 
a complex statement. In x86 assembly language, each instruction can perform only one 
computation at a time and may reference up to one memory variable per computation. At least 
one of the required data (i.e. arguments to the instruction) must be in a register. To start, four 
general purpose registers provided in the 80386 are A, B, C, and D. Thus, the previous 
example would look like this: 

 
.comm a, 4 
.comm b, 4 
.comm c, 4 
.comm d, 4 
.comm e, 4 
.text 
movl b, %eax  # move variable b into register A 
addl c, %eax  # add variable c to register A 
movl d, %ebx  # move variable d into register B 
addl e, %ebx  # add variable e to register B 
subl %ebx, %eax  # subtract register B from register A 
subl $10, %eax  # subtract 10 from register A 
movl %eax, a  # move register A to variable a 

 
Code 2.1.2 

 
Note the comments in Code 2.1.2 above. In assembly, a hash or pound symbol (“#”) is 
interpreted as the start of an inline comment. Unlike C, double-slashes (“//”) and block 
comments (“/* … */”) cannot be on the same line as assembly code; however, they can be 
used on lines without assembly code – the program and function header comments, for instance. 
Placing these types of comments on the same line as assembly code will generate a compile-time 
error. (To avoid this, use the pound symbol like the example above.) 
 
 
2.2 – Data Storage and Variables 
Let's break this down piece by piece. First of all, in order to declare a variable, we use a 
statement that will define a storage location and assign a name or symbol to that location (or 
address). Actually, this isn't an instruction at all but an assembler directive. These are commands 
to the assembler program invoked by GCC to perform some action – in this case, reserve 
memory for a variable. There are several of these directives that can be used to reserve memory. 
Which one we use, depends on what size block of memory we want to allocate (similar to the 
data types char, short, int, and long in C). In assembly, there are directives used to 
allocate space for uninitialized variables, and directives used in order to reserve memory and 
initialize variables. The most common directive used in this course is .comm, which creates a 
symbol (or variable as it is sometimes called) with the name given as the first argument and 
reserves the number of bytes listed as the second argument. This variable name is actually a 
placeholder for the address in memory where the space is allocated. At assemble time, all 
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variable names are replaced by their respective memory addresses. Note that there is no type 
information associated with the memory or the symbol. 
 
Alternatively we could have chosen to initialize the allocated space to some value. In C we could 
have said: 
 

int a;  /* uninitialized */ 
int b = 10;  /* decimal */ 
int c = 0x20;  /* hexadecimal */ 
int d = 'a';  /* ascii */ 
int e = 040;  /* octal */ 
int f = 024;  /* C does not have a binary type */ 
  /* this is octal */ 

 
Code 2.2.1 

 
which, in assembly language would be: 
 

.comm a, 4   # declare variable ‘a’ as 4 bytes (4B) 
b: .int 10   # declare var ‘b’; init to ‘10’ 
c: .int 0x20  # declare var ‘c’; init to ‘0x20’ 
d: .int 'a'  # declare var ‘d’; init to ‘a’ 
e: .int 040  # declare var ‘e’; init to octal ‘040’ 
f: .int 0b000010100 # declare variable ‘f’ 
     # initialize to binary ‘0b000010100’ 

 
Code 2.2.2 

 
In Code 2.2.2, note the syntax for expressing values in different number bases, including the 
octal and binary syntax, the latter of which does not exist in C. The symbol created is defined 
by the label to the left of the colon on each line. (We will discuss labels in greater detail in Lab 
3.) The value it is initialized to is located to the right of the directive .int. Other directives 
include .byte, .hword, .word, .quad, and .octa to initialize 1, 2, 4, 8, and 16-byte 
integers, respectively. Likewise, for floating point numbers, .float, .single, and .double 
are directives to initialize 4, 4, and 8-byte floating point numbers, respectively. (Note .float 
and .single both initialize 4-byte floating point numbers.) 
 
 
2.3 – Moving Data, Addition, Subtraction, and Constants 
Before we begin, in x86 assembly, there are two popular syntaxes used – Intel syntax and 
AT&T syntax. Although we are writing code for an Intel x86-based processor, we will use 
AT&T syntax. Why? Well, GNU GCC works natively with AT&T syntax. In order for us to 
compile our programs with GCC, we must use this syntax. There are no pros or cons to one or 
the other – they are simply different ways of “doing” the same thing. Please note that both 
syntaxes are directly mapped to the Intel x86 machine language – there are no compute 
differences at runtime. Now, let’s get started: 
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Consider the evaluation of the statement a = ((b + c) - (d + e)) – 10;, Code 2.1.1 
from Section 2.1 – Background. Notice that assembly language does not use the standard 
mathematical symbols for addition, subtraction, multiplication, division, and so on, like high 
level languages do. Instead, each operation has its own instruction addl, mull, subl, and 
divl. We will explain how to do each of these during this lab. 
 
In addition to arithmetic operations, in assembly, there is a new operation not available in C – 
the movl or move instruction. The majority of assembly language programs have a lot of movl 
instructions, so let’s begin our discussion of arithmetic instructions by first talking about the 
move instruction. As you may have guessed, the move instruction simply moves data from one 
place to another, and thus the instruction: 
 

movl src, dst  # move src to dst 
 

Code 2.3.1 
 
is equivalent to the simple C assignment statement: 
 

dst = src; 
 

Code 2.3.2 
 
The main limitation to all assembly operations, however, is that at least one of dst and src 
must be in a register. In other words, there can be no more than one memory variable in a movl 
instruction, but they can both be registers if desired. 
 
Notice the example in Code 2.3.1 and Code 2.3.2 above contains dst and src as parameters to 
movl. As you might have imagined, they stand for source and destination, respectively. As such, 
to load a memory variable into the A register, we would write: 
 

movl variable, %eax  # move the source (variable) 
      # to the destination (the A  

# register) 
 

Code 2.3.3 
 
And, to load the contents of the A register into a variable, we would type: 
 

movl %eax, variable  # move the source (the A register) 
      # to the destination (variable) 
 

Code 2.3.4 
 
As previously stated, we can also move a register into a register, but we cannot move a memory 
variable into another memory variable. To do this, we must first move one of the memory 
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variables into a register. Then, we can move that register into the other memory variable. Any 
assembly instruction can access main memory no more than once during its execution. 
 
Notice in Code 2.3.3 and Code 2.3.4 the parameter %eax used for the A register. This 
seemingly cryptic syntax specifies that we want to use all 4 bytes of the A register. We will 
discuss this in more detail in Section 2.4 – Data Sizes, Register References, and Opcode 
Suffixes. 
 
Now that we’ve masted the move instruction, let’s move on to addition and subtraction in 
assembly language. 
 
In C and other high-level languages, it is fairly common to write code that performs the addition 
of more than one source and a different destination, all on a single line, as shown in Code 2.3.5 
below: 
 

dst = src1 + src2; 
 

Code 2.3.5 
 
However, it is not possible to perform such a complex addition in assembly language. What we 
must do instead is break this addition up into many smaller addition operations. To facilitate this, 
addition in assembly language works by adding one argument to another, as shown in Code 2.3.6: 
 

dst = dst + src;  # or equivalently: 
dst += src; 

 
Code 2.3.6 

 
In assembly language, to perform the simple addition in Code 2.3.6, we would write: 
 

addl src, dst # add src to dst and store result in dst 
 

Code 2.3.7 
 
But remember, as was true for the movl instruction, for addition, with respect to Code 2.3.7, 
either dst, or src, or both must be a register. In Code 2.3.8 below, in order to add two 
variables, we must first move one to a register, then perform the addition. 
 

int a, b; 

a += b; 
 

Code 2.3.8 
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The equivalent in assembly is: 
 

.comm a, 4  # reserve 4 bytes of space for ‘a’ 

.comm b, 4  # reserve 4 bytes of space for ‘b’ 
movl b, %eax # first copy variable b to a the A register 
addl %eax, a # add the A register (var b) to variable a 
   # this is a = a + b <--> dst = dst + src 

 
Code 2.3.9 

 
So, continuing our initial example in Code 2.3.5, if we want to add one variable to another and 
store the result in a different variable, we must first move one into a register, perform the 
addition, and then copy the result to the desired destination. For instance: 
 

int dst, src1, src2; 
dst = src1 + src2; 

 
Code 2.3.10 

 
is written in assembly language as: 
 

.comm dst, 4 # reserve 4B of space for ‘dst’, 

.comm src1, 4 # ‘src1’, 

.comm src2, 4 # and ‘src2’ 
movl src1, %eax # copy variable src1 to register A 
addl src2, %eax # add src1 to src2; store the result in A 
movl %eax, dst # copy the result to variable dst 

 
Code 2.3.11 

 
See, it’s that easy – we just need to get accustomed to thinking in smaller steps. 
 
Now, subtraction in assembly works just like addition. So, the following operation in C: 
 

int a, b, c; 
a = b - c; 

 
Code 2.3.12 
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is written in assembly language as: 
 

.comm a, 4  # reserve 4 bytes of space for each variable 

.comm b, 4 

.comm c, 4 
movl b, %eax # copy variable b to register A 
subl c, %eax # subtract c from b (in register A) and 
   # store the result in register A 
movl %eax, a # move the result of b - c to variable a 

 
Code 2.3.13 

 
Notice in Code 2.3.12 and Code 2.3.13 that subtraction (just like addition) takes two arguments 
where the first is the source and the second is the destination. For both addition and subtraction, 
it is very important to note the “add to” and “subtract from” functions implemented by addl and 
subl, respectively. The destination argument is not simply the destination; the data present in 
the destination argument will first be used as part of the computation (i.e dst +/- src), then 
it will be overwritten with the result (i.e. dst = dst +/- src). As such, if the original data 
in the destination argument is important, be sure to movl it somewhere else (i.e. copy it) so that 
it is not lost after the computation. 
 
Lastly, just as we can specify a constant in C to use in a computation, we can specify a constant 
in assembly language. Constants in assembly are preceded by the $ symbol: 
 

int a; 
a = a + 2; 

 
Code 2.3.14 

 
is equivalently 
 

.comm a, 4 

addl $2, a  # $2 is the constant 2 
 

Code 2.3.15 
 
Based on what we have discussed thus far, you should be able to go back to the very first 
example of a = ((b + c) - (d + e)) - 10;, Code 2.1.1 in Section 2.1 – 
Background, and understand how this complex addition and subtraction operation is 
implemented in assembly. Give it a try! 
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2.4 – Data Sizes, Register References, and Opcode Suffixes 
Now it is time to expand our horizons a little more. The first thing to consider is that the 80386 
can operate on several different sizes of data. The primary data sizes are 8, 16, and 32 bits. In 
support of this, the A, B, C, and D general purpose registers can be referenced as 8-bit registers, 
16-bit registers or 32-bit registers. To do this, each of the four general-purpose registers we have 
seen (A, B, C, and D) can be referenced in the following ways: 
 

8-bit: %ah, %al; %bh, %bl; %ch, %cl; %dh, %dl 
 

Code 2.4.1 
 
These eight registers in Code 2.4.1 above reference the A, B, C, and D registers 8 bits at a time. 
The h specifies the high-order 8 bits of the low-order 16 bits of the total 32 bits, while the l 
specifies the low-order 8 bits of the low-order 16 bits of the total 32 bits. That is quite a mouthful 
and is best explained with a picture. 
 

Data Size Bits of the “A” General-Purpose Register 
31, 30, …, 25, 24 23, 22, …, 17, 16 15, 14, …, 9, 8 7, 6, 5, …, 2, 1, 0 

32-bit long-word %eax 
16-bit word  %ax 
8-bit byte %ah %al 

 
Table 2.4.1 

 
Table 2.4.1 represents a general-purpose register A, B, C, or D. (A is used in the table as an 
example, but the principle applies to all.) The register has a total of 32 bits (31 down to 0), where 
it can store data in binary. As depicted in the table, the most significant bit is on the left – bit 31, 
and the least significant bit is on the right – bit 0. If we want to access or store 8-bit data in the 
register, we can use either bits 15 through 8 or bits 7 through 0. The former can be accessed by 
referring to the register as %ah, %bh, %ch, or %dh, depending on which register we want to use. 
Referring to the register as %al, %bl, %cl, or %dl can access the latter. As mentioned 
previously, the h stands for the high-order bits (15 to 8) of bits 15 to 0; the l stands for the low-
order bits (7 to 0) of bits 15 to 0. So theoretically, if we wanted, we could store two 8-bit values 
in a single register by storing one using %ah and the other using %al. As the table illustrates, 
they would be in two different physical locations within the same register. 
 
What about 16-bit data types? They can be referenced the following ways: 
 

16-bit: %ax; %bx; %cx; %dx 
 

Code 2.4.2 
 
These four registers in Code 2.4.2 represent the least-significant 16 bits of the total 32 available 
bits in the general-purpose registers. Note that, as shown in Table 2.4.1, these are the exact same 
16 bits used for referencing 8-bit data sizes; only they are being referenced as all 16 at once, as 
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opposed to 15 to 8 and 7 to 0 separately. The x in the syntax stands for extended, meaning it 
extends the number of bits referenced from 8 bits to 16 bits. 
 
Last, but certainly not least is the 32-bit data size. It is the size most frequently used in this 
course and in most assembly programs. It is also the register size used in the previous move, 
addition, and subtraction examples in the prior sections of this lab, so its syntax should look 
familiar. It can be referenced the following ways: 
 
 
 

32-bit: %eax; %ebx; %ecx; %edx 
 

Code 2.4.3 
 
The syntax in Code 2.4.3 above represents all 32 bits of the register for the A, B, C, and D 
general-purpose registers, respectively. The e in the register name stands for extended and the x 
stands for extended as well. Originally, when the first Intel 80XXX processor was developed, 
there were only 8-bit registers. Therefore, as the family of processors matured and technology 
increased in sophistication, the new 16-bit processors eXtended the 8-bit ones, and when the 
time came around, new 32-bit processors Extended the older 16-bit ones. As seen in Table 
2.4.1, working with 32-bit data leverages all available bits in the register. However, like 
explained previously, these same 32 bits can be accessed 16 or 8 at a time, depending on the 
syntax used to reference the register. 
 
Aside: Although it is not a part of this course, 64-bit system architectures and operating systems 
– x86_64 – are becoming more prevalent. Their registers work in the same fashion, but to 
access all 64 bits of information, one must reference them as %rax, for example. 32, 16, and 8 
bit accesses work the same as described above. 
 
Now, when we refer to a register in an instruction, the size of the register must match the size of 
the opcode. The opcode is merely a fancy name for the bits that characterize the instruction or 
operation being performed. Assembly instructions, in addition to the data they operate on, are also 
represented in the computer in binary coding – this is called the opcode. Note these instructions 
are specific to the size of data we want to work with. In 80386 assembly language, instructions 
can be used with 1, 2 or 4-byte data, specified with an opcode suffix of either b (for “byte”), w 
(for “word”), or l (for “long-word”), respectively. 
 
Recall that all of the assembly instructions in the earlier examples in this lab have used 4-byte 
long-words; thus, all of the opcodes have had an l suffix as in addl, movl, subl. This is 
the most common data size we will work with. But, be aware that there are also instructions for 
other data sizes, such as addb, divb, movb for 1-byte words. We need to be careful and 
match the opcode suffix with the correct register reference. Thus, to match the opcode with the 
parameters, the instruction: 
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addb $2, %al 
 

Code 2.4.4 
 
is an 8-bit operation, where the b and %al correspond to 8-bit instructions. On the other hand: 
 

addw $2, %ax  
 

Code 2.4.5 
 
is a 16-bit operation, where the w and the %ax correspond to 16-bit instruction syntax. Table 
2.4.2 summarizes opcode suffixes: 
 

Data Size Size in Bytes Opcode Suffix Example Use 
byte 1 b addb 
word 2 w addw 

long-word 4 l addl 
 

Table 2.4.2 
 

Remember, the instruction and the data size need to match up in order to compile without errors. 
For example, if we want to add 32-bit data sizes, the opcode suffix needs to be l making addl, 
and the parameters to the instruction addl need to be variables declared as 4 bytes or registers 
using the 32-bit syntax – %eax or %ebx, for example. 
 
 
2.5 – Multiplication and Division 
In assembly, the multiplication and division instructions are somewhat more complex than the 
other operations we have discussed. Let’s start with multiplication. First, there are two 
versions: multiplication for integers, imull, and multiplication of unsigned numbers, mull. 
We will discuss mull in detail; however, keep in mind there is an alternative for integers only. 
 
The mull instruction has a single operand (which can be a variable or a register). The value of 
this operand is multiplied by the A register, and the result is placed back in the A register, and 
potentially the D register. Yes, that's right, the mull instruction can have potentially two 
destination registers. Also note that one parameter to the multiplication instruction is assumed to 
be in the A register. So, this means that if we want to multiply the contents of register B and 
register C we cannot do: 
 

mull %ebx, %ecx  # this is incorrect and will not 
# compile 

 
Code 2.5.1 
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Instead of doing Code 2.5.1, we must first move the contents of one of the operands to register A 
and then multiply by register C: 
 

movl %ebx, %eax 
mull %ecx   # %eax = %eax * %ecx 

 
Code 2.5.2 

 
Note in Code 2.5.2 that the result of register B * register C is placed in the A register, 
overwriting the value of one of the operands to the multiplication. 
 
With regard to data sizes, multiplication and division are different from other instructions, since 
they can operate on more than one data size at a time. For example, when we multiply two 8-bit 
numbers, we can potentially get a 16-bit result. When we multiply two 16-bit numbers we can 
potentially get a 32-bit result, and when we multiple two 32-bit numbers, we can potentially get 
a 64-bit result. Thus, in each case, our result can require more space than the operands. To prove 
this to yourself, try multiplying the maximum integer we can represent in 8 bits by itself. In other 
words, what is the highest multiplication result we could achieve with two 8-bit values? How 
many bits does the result require? 
 
For multiplication, in the 8-bit case, the result is placed in %ah concatenated with %al (denoted 
%ah:%al). This is also known as %ax. Convince yourself of this by referring back to Table 
2.4.1. 
 
For 16 bits, the result is placed in %dx:%ax. Note the result is going into two different registers – 
A and D. This may seem strange, but it was done this way to be compatible with pre-32-bit 
hardware. 
 
Finally, in the 32-bit case, the result is placed in %edx:%eax. The higher-order bits of the result 
are in %edx, while the lower-order bits are placed in %eax. So, if we multiply two numbers that 
result in a number that can be represented with 32 bits (a number less than or equal to 232-1), 
then the entire result will be in the A register. If this is not the case, and a very large answer is 
generated, then the result would overflow into the D register. This principle is true for 8-bit and 
16-bit operations as well, with their respective destination registers. The point is: when working 
with large numbers, do not forget to retrieve your data from both result registers. In this course, 
we will work with relatively small numbers, so this will not be of great concern, but it is still 
very important to remember; otherwise, data can be lost, resulting in inaccurate results. 
 
So, what does this mean with regard to data sizes? This implies that if we would like to 
implement Code 2.5.2 where we multiply a 32-bit value by another 32-bit value, the result will 
potentially be 64 bits and occupy both the A register and the D register, %edx:%eax. If the 
result is small enough, it will only be in the A register, but if it is large, it could occupy both the 
A and the D registers. Table 2.5.1 illustrates multiplication for 8, 16, and 32-bit values: 
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Assembly Instruction Operation Performed 

mulb X8bit %ax = %al * X8bit 
mulw X16bit %dx:%ax = %ax * X16bit 
mull X32bit %edx:%eax = %eax * X32bit 

 
Table 2.5.1 

 
Notice in Table 2.5.1 that for the 32-bit multiplication, the result is placed into %edx:%eax as 
explained above. As the single operand to the mul instruction, we supply X, which is either a 32, 
16 or 8-bit register or a 32, 16 or 8-bit variable in main memory. 
 
Now, that we have discussed multiplication, we can move on to division. Like multiplication, 
division also has its peculiarities. The format of the divide instruction is similar: 
 

divl <divisor> 
 

Code 2.5.3 
 
Like the mull instruction, divl assumes the dividend and the destinations of the quotient and 
remainder based on the opcode suffix. Table 2.5.2 illustrates division for 8, 16, and 32-bit 
values: 
 

Assembly Instruction Operation Performed 
divb X8bit %al = %ax / X8bit, %ah = remainder 
divw X16bit %ax = %dx:%ax / X16bit, %dx = remainder 
divl X32bit %eax = %edx:%eax / X32bit, %edx = remainder 

 
Table 2.5.2 

 
For example, as shown in Table 2.5.2 above, in 32-bit division, the divisor – X32bit – is supplied 
as the parameter to divl; the dividend – %edx:%eax – is assumed to be in the A register and 
D register combined (for a possible 64-bit value); after the calculation, the quotient of the 
operation is placed in the A register – %eax; and finally, the remainder is placed in the D 
register – %edx. This pattern is the same for 16-bit division, but note the differences for 8-bit 
division – like multiplication, it does not use the D register and the A register combined – 
%dl:%al (this is incorrect), but instead it requires the A register alone – %ah:%al or %ax. 
 
Note that just like multiplication, division allows for mixed data sizes. 8-bit division takes a 16-
bit dividend, 16-bit division takes a 32-bit dividend, and 32-bit division takes a 64-bit dividend. 
You might have been wondering why we can generate a 64-bit result in multiplication if the 32-
bit hardware and ISA do not directly support it. With 64-bit-compatible division, a 64-bit result 
from a multiplication (along with clever programming) can be used in later calculations, despite 
the ISA being 32-bit. 
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Please note that when we divide by a 32 or 16-bit number, we must make sure %dx or %edx 
contains the correct value, which is usually zero. This is very important, since if the division we 
need to perform is just %eax / X32bit, the divl instruction will not know we do not want to 
include data in the D register – %edx. If there is irrelevant data there, it will be incorporated into 
the division operation, thus making our intended dividend much larger or maybe even negative 
depending on where the junk data bits are in the D register. In order to avoid this, we must 
always clear out the D register by performing the following operation: 
 

movl $0, %edx  # this ensures the D register has no  
# data in it before a 32-bit/32-bit  
# division 

 
Code 2.5.4 

 
This same principle of clearing the dividend (shown in Code 2.5.4 above) applies to 16, and 8-
bit division, the upper (most significant) bits of the dividend must be cleared unless there is valid 
data in them for the division being performed. By the end of this course, many program bugs will 
take a while to fix, and this is the problem 25% of the time. 
 
Let’s work an example using 32-bit division in assembly language. Let’s assume we have the 
following C code fragment that we wish to implement in assembly language: 
 

int dividend, divisor, quotient, remainder; 
... 
quotient = dividend / divisor; 
remainder = dividend % divisor; # “%” in C is the  

# modulus operator. 
       # It returns the 
       # remainder of the 
       # division instead 
       # of the quotient. 

 
Code 2.5.5 

 
To convert Code 2.5.5 to assembly language, recall that the divl instruction assumes the 
dividend is in the %edx and %eax registers, while it takes the divisor as its single argument. 
Also recall that for 32-bit division, the quotient is stored in %eax and the remainder is stored in 
%edx. Thus, the following assembly code in Code 2.5.6 implements the C in Code 2.5.5: 
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.comm dividend, 4 
.comm divisor, 4 
.comm quotient, 4 
.comm remainder, 4 
... 
movl $0, %edx   # clear the D register 
movl dividend, %eax  # initialize the dividend 
divl divisor   # perform the division 
movl %eax, quotient  # grab the quotient 
movl %edx, remainder # grab the remainder 

 
Code 2.5.6 

 
 
2.6 – Assignment 
This is the specification of what the assembly functions need to perform. Do not copy or 
type this code. Use it as a reference when writing the assembly. 
 
/* begin assignment specification */ 
 
int digit1; 
int digit2; 
int digit3; 
int diff; 
int sum; 
int product; 
int remainder; 
 
dodiff() { 

diff = (digit1 * digit1) + (digit2 * digit2) - (digit3 * 
digit3); 

} 
 
dosumprod() { 

sum = digit1 + digit2 + digit3; 
product = digit1 * digit2 * digit3; 

} 
 
doremainder() { 

remainder = product % sum; 
} 
 
/* end assignment specification*/ 
 



 Page 26 of 155 

The following is the C driver. Do not modify this code. You are not required to add 
comments to the driver. 
 
/* begin C driver */ 
 
#include <stdio.h> 
extern int digit1; 
extern int digit2; 
extern int digit3; 
extern int diff; 
extern int sum; 
extern int product; 
extern int remainder; 
 
int main(int argc, char **argv) 
{ 
 for (digit1 = 0; digit1 < 10; digit1++) { 
  for (digit2 = digit1; digit2 < 10; digit2++) { 

    for (digit3 = digit2; digit3 < 10; digit3++) {  
     dodiff(); 

    if (diff == 0) 
    printf("%d%d%d PT\n", 
     digit1,digit2,digit3); 
   dosumprod(); 

     if (sum && product) { 
      doremainder(); 

    if (remainder == 0) 
     printf("%d%d%d ED\n", 
      digit1,digit2,digit3); 

    } 
   } 
  } 
 } 
 return 0; 
} 
/* end C driver */ 
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The following is the assembly stub to the driver. You are required to fully comment and 
write the assembly code to model the specification code. Insert your code where you see /* 
put code here */ and /* declare variables here */. Do not modify any 
other code in the file. Note the last line of the file must be a blank line to compile without 
warnings. 
 
/* begin assembly stub */ 
 
.globl dodiff 
.type dodiff, @function 
dodiff: 
 /* prolog */ 
 pushl %ebp 
 pushl %ebx 
 movl %esp, %ebp 
  
 /* put code here */ 
 
 /* epilog */ 
 movl %ebp, %esp 
 popl %ebx 
 popl %ebp 
 ret 

 
.globl dosumprod 
.type dosumprod, @function 
dosumprod: 
 /* prolog */ 
 pushl %ebp 
 pushl %ebx 
 movl %esp, %ebp 
  
 /* put code here */ 
  
 /* epilog */ 
 movl %ebp, %esp 
 popl %ebx 
 popl %ebp 
 ret 
 
.globl doremainder 
.type doremainder, @function 
doremainder: 
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/* prolog */ 
 pushl %ebp 
 pushl %ebx 
 movl %esp, %ebp 
  
 /* put code here */ 
  
 /* epilog */ 
 movl %ebp, %esp 
 popl %ebx 
 popl %ebp 
 ret 
 
/* declare variables here */ 
 
/* end assembly stub */ 
/* Do not forget the required blank line here! */ 
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The following is what the correct program output should look like. 
 
000 PT 
011 PT 
022 PT 
033 PT 
044 PT 
055 PT 
066 PT 
077 PT 
088 PT 
099 PT 
123 ED 
138 ED 
145 ED 
159 ED 
167 ED 
189 ED 
224 ED 
235 ED 
246 ED 
257 ED 
268 ED 
279 ED 
333 ED 
345 PT 
345 ED 
347 ED 
357 ED 
369 ED 
448 ED 
456 ED 
459 ED 
466 ED 
578 ED 
579 ED 
666 ED 
678 ED 
789 ED 
999 ED 
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Lab 3 
Control Statements 

 
 
Student Objectives 
 
• Learn about flags and how they are set/reset in assembly operations 
• Learn what labels are in assembly and how they are used 
• Discover how to jump to labeled parts of code based on flags 
• Understand the compare instruction and how it differs from C comparisons 
• Learn and apply conditional jumps to the result of a compare operation 
• Learn how to decompose complex C conditional statements into assembly 
• Discover how to unconditionally jump and learn how to jump to different segments 

 
 
3.1 – Jumps, Labels, and Flags 
In this lab we continue our tour of assembly language by adding control statements. Control 
statements are coding structures that direct the flow of a program (the order in which the code is 
executed). In assembly language there are no if ... then ... else,  while, or for 
statements. Instead, there are two basic primitives: jumps and conditional jumps (actually, there 
are some looping instructions, but we'll cover those after we understand the basics). The 
unconditional jmp instruction is, for all practical purposes, a GOTO statement. You might 
recall from higher-level programming classes that the GOTO statement is something which we 
should avoid. While this is largely true for high-level language applications – as it can result in 
what some call “spaghetti code” – jump statements remain a primary tool of assembly language. 
 
With jumps, where are we “jumping” to, you might ask? The answer is in the label. Labels can 
be likened to mile markers in your program. These markers are named starting with a letter and 
can be up to 30 characters in length. A label denotes a specific location in memory where a part 
of your executable code resides. In practice, we can think of labels as marking the line numbers 
of our code. For example: 
 

Line  Instruction 
142 myLabel: 
143 movl a, %eax 
144 mull %eax 
… … 
… … 
180 jmp myLabel 

 
Code 3.1.1 
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In Code 3.1.1, there is a label called myLabel at line 142 of some assembly code. When the 
code is executed and line 180 is reached, the jmp instruction will force execution of the program 
to move to the location of jmp’s argument – myLabel – which is at line 142. Recall, assembly 
code, like C, executes from top to bottom. We can now extend this definition to be:  assembly 
code executes from top to bottom unless a jump occurs, forcing execution to move elsewhere. 
So, when the jump occurs on line 180, execution will move to myLabel, thus causing lines 143, 
144, and so on… until another jump is reached, to be executed. When a label is reached during 
code execution, it is simply bypassed to the next instruction – labels mean nothing to the 
executable code except places to which we can jump. We can use as many as we desire. In fact, 
as we will demonstrate in the Lab 3 examples, labels can help our conceptual understanding of 
assembly control statements, even though our code does not jump to them. (See the do…while 
loop example later on.) On a final note, notice the syntax for writing labels – there is a colon 
(“:”) after the label – myLabel:, in the previous example. This colon defines the location of the 
label. When a label is used in a jump, notice the colon is omitted, since we are not defining a 
label inside the jump; instead, we want to go to the label, which has been defined elsewhere. 
 
While the jmp instruction has its merit, the more interesting control primitive is the conditional 
jump. A conditional jump works like the following pseudo-code: 
 

if (condition) then goto label 
 

Code 3.1.2 
 
The trick in Code 3.1.2 is in the condition. There are very few pre-defined conditions you 
can jump on, and all of them depend on something called flags. A flag is a single bit of a special 
register in the CPU called the status register or flags register. Each bit in this register has a 
special meaning and most of them tell us something about the results of a previous computation. 
There are three main flags we use: the zero flag, the sign flag, and the carry flag. Certain 
instructions cause these flags to be set according to the results of the instruction. Which 
instructions change certain flags varies from one machine to another, but arithmetic instructions, 
like add and mul, almost always do. There is also a special instruction called a compare 
instruction (cmp) which sets the flags without actually changing any of the other registers in the 
CPU. We'll talk more about that in a moment. 
 
As we said, the flags are set according to the result of certain instructions. As an example, if we 
execute an add instruction and the result is less than zero, then the sign flag is set (indicating a 
negative result), and the zero flag is cleared. If the result is greater than zero, then both flags will 
be cleared, and if it is equal to zero, the zero flag is set and the sign flag is cleared. The carry flag 
indicates if a carry out occurred in the highest order bit position and thus is data dependent. Most 
machines also have an overflow flag which indicates the computation has produced a result that 
cannot be correctly represented in the current data size. As you may have guessed by now, one of 
the differences between signed and unsigned computations is the way flags are set. 
 
Conditional jump instructions allow you to test the current state of the various flags. Each 
combination has its own instruction. For example, jz label will jump to label if the zero flag 
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is set, while jnz label will jump if the zero flag is not set. The zero flag signifies a result of 
zero, “0”. These and others are shown in Table 3.1.1 below: 
 

jc label  # jump if carry 
jnc label  # jump if not carry 

 jz label  # jump if zero 
jnz label  # jump if not zero 

 js label  # jump if sign (negative) 
 jns label  # jump if not sign (positive) 
 jo label  # jump if overflow 
 jno label  # jump if not overflow 
 jpo label  # jump if parity is odd 
 jpe label  # jump if parity is even 
 

Table 3.1.1 
 
While these certainly have merit, usually when we are writing programs, we want to implement 
control statements like: 
 

if (a > b) then ... 
 

Code 3.1.3 
 
Statements similar to Code 3.1.3 are what the cmp instruction is for. The cmp instruction 
compares two values by subtracting the first operand from the second to set the flags. Unlike the 
sub instruction, the result of the subtraction in the cmp instruction is simply discarded – it is 
not saved in a register or a memory variable. Code 3.1.4 shows the operation of the cmpl 
instruction for long-word data sizes: 
 

cmpl src, dst  # (dst – src) __ 0? 
    # How does the result compare to zero? 
    # We can jump based on this result. 

 
Code 3.1.4 

 
After executing the cmpl instruction, the flags in the status register can be checked in order to 
determine the relationship between the two values being compared. A set of special conditional 
jump instructions are provided in Table 3.1.2 to make this easy to do: 
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 je label  # jump if equal 
 jne label  # jump if not equal 
 jg label  # jump if greater than  
 jng label  # jump if not greater than 
 jl label  # jump if less than 
 jnl label  # jump if not less than 
 jge label  # jump if greater or equal 
 jnge label # jump if not greater or equal 
 jle label  # jump if less or equal 
 jnle label # jump if not less or equal 
 

Table 3.1.2 
 
Thus to implement the following C if statement: 
 

int a, b; 
if (a > b) { 

... code ... 
} 
... more code ... 

 
Code 3.1.5 

 
with an assembly conditional statement, we would write: 
 

.comm a, 4 

.comm b, 4 
movl a, %eax  # must have at least 1 argument 

# in a register 
cmpl b, %eax  # is (%eax – b) __ 0? Set flags 
jng done   # if (%eax – b) !> 0, goto done 
... code ... 

done: 
... more code ... 

 
Code 3.1.6 

 
Notice that we execute a jump if not greater than in Code 3.1.6. If a is greater than b then we do 
not want to jump, but we do want to execute the code block. Note that the cmp instruction 
subtracts b from %eax and then we check if the result of the subtraction was negative or not. If 
the result is negative or zero, b must be greater than or equal to a – the opposite of our if (a 
> b) statement – thus we want to skip ... code .... This is done because we want to jump 
over ... code ... to ... more code ... if the result is less than or equal to zero. 
Let's look at some other typical high level language control statements and how they would be 
implemented in assembly language. 
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To start, the following simple C if...else statement: 
 

int a, b; 
if (a > b) { 

... code block 1 ... 
} else { 

... code block 2 ... 
} 
... more code ... 

 
Code 3.1.7 

 
translates to: 
 

.comm a, 4 

.comm b, 4 
movl a, %eax 
cmpl b, %eax 
jng else    # jump if (a – b) !> 0 
... code block 1 ... 
jmp more    # skip else when ‘if’ is true 

else:  
... code block 2 ... 

more: 
... more code ... 

 
Code 3.1.8 

 
While the following C while loop: 
 

int a, b; 
while (a > b) { 

... code ... 
} 
... more code ... 

 
Code 3.1.9 
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translates to: 
 

.comm a, 4 

.comm b, 4 
while: 

movl a, %eax 
cmpl b, %eax 
jng more    # jump if (a – b) !> 0 
... code ... 
jmp while    # continue to loop 

more: 
... more code ... 

 
Code 3.1.10 

 
And the following C for loop: 
 

int i; 
for (i = 0; i < 100; i++) { 

... code ... 
} 
... more code ... 

 
Code 3.1.11 

 
translates to: 
 

.comm i, 4 
movl $0, i 

for: 
cmpl $100, i 
jnl more    # jump if (i – 100) !< 0 
... code ... 

cont: 
incl i    # i = i + 1 (see Section 3.4) 
jmp for    # jump to try and loop again 

more:  
... more code ... 

 
Code 3.1.12 
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And last but not least, the following C do...while loop: 
 

int a, b; 
do { 

... code ... 
} while (a > b); 
... more code ... 

 
Code 3.1.13 

 
translates to: 
 

.comm a, 4 

.comm b, 4 
do:     # will be executed regardless of 

... code ...  # the condition evaluation 
cont: 

movl a, %eax 
cmpl b, %eax 
jg do    # jump back to do if (a – b) > 0 

more:     # automatically break if false 
... more code ... 

 
Code 3.1.14 

 
In all loops, it is important that the loop variable be written to memory just before the jump back 
to the top, so that when it is checked by the compare statement the correct value is used. For 
example: 
 

int a, b; 
while (a > b) { 

... code ... 
} 
... more code ... 

 
Code 3.1.15 
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translates to: 
 

.comm a, 4 

.comm b, 4 
while: 

movl a, %eax 
cmpl b, %eax 
jng more   # jump to more if (a – b) !> 0 
... code ... 
movl %eax, a     # save the present value of a from 

# %eax to a (in main memory) 
jmp while   # keep looping 

more:  
... more code ... 

 
Code 3.1.16 

 
Notice in examples Code 3.1.8, Code 3.1.10, Code 3.1.12, and Code 3.1.16 that we can 
implement the C statement break as jmp <label>, and the C statement continue as jmp 
<label>. In these examples, we have used labels such as do, more, and for. We have done 
this in order to make it easier to see the structure of these control statements (and how they relate 
to their C counterparts) in Code 3.1.7, Code 3.1.9, Code 3.1.11, and Code 3.1.15, respectively. 
In actuality, we as programmers can use whatever label names we desire. 
 
 
3.2 – Complex and Compound Conditional Expressions 
We must also consider different kinds of conditional expressions. In our examples we have only 
shown the comparison of two variables or one variable to a constant. In reality, we can and 
sometimes need to compare combinations of variables in a single conditional expression. We 
can simplify these more complex cases to the familiar comparison of two simple expressions by 
(1) evaluating/simplifying the complex expressions, placing the results in registers, and then 
comparing the registers, and by (2) breaking up complex statements into multiple 
statements/comparisons. This is best understood with some examples.  
 
The following is a complex if statement. The left hand side (LHS) and right hand side (RHS) 
need to be simplified before the check for equality can be done. As shown in the assembly 
translation, once this simplification is performed, the operation becomes trivial and can be 
likened to our previous examples in Section 3.1 – Jumps, Labels, and Flags. 
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int a, b, c, d; 
if ((a + b) == (c - d)){ 

... code block 1 ... 
} 
... more code ... 

 
Code 3.2.1 

 
The above C complex if statement in Code 3.2.1 translates to: 
 

.comm a, 4 

.comm b, 4 

.comm c, 4 

.comm d, 4 
movl a, %eax 
addl b, %eax  # perform the addition, save to A 

# register 
movl c, %ebx 
subl d, %ebx  # perform the subtraction, save to B 

# register 
cmpl %ebx, %eax  # is ((a+b)-(c-d)) __ 0? 
jne more   # (jne    -->      !=  ) 
... code ... 
more: 

... more code ... 
 

Code 3.2.2 
 
As shown in Code 3.2.2, in order to evaluate a complex conditional statement, we simply need to 
reduce the LHS and RHS of the expression in order to perform the comparison and conditionally 
jump. 
 
Another situation we can encounter is a compound conditional, which uses AND and/or OR 
operators (&& and ||). In the case of compound conditionals, it depends on the nature of the 
high level language we are implementing into assembly on how to proceed with the translation. 
Some languages require that the entire expression be evaluated, regardless of the outcome of 
prior evaluations. If this is the case, we must first reduce each and every comparison to a one or a 
zero (true or false). Then, these reductions can be combined with the logical operators and, or, 
and not until a single result is obtained. This final result can then be compared to zero (using 
cmpl and its corresponding jump instruction).  
 
Thankfully, in C (and many other languages), compound conditionals use what are called short 
circuit operators, which means that the conditional expression is evaluated left to right, and as 
soon as the outcome is known, the evaluation stops. This will occur when a true (i.e. “1”) is 
found to the left of an || or a false (i.e. “0”) is found to the left of an &&. In either of these 
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cases, the entire conditional, because it is evaluated one simple expression at a time, can be 
thought of as a set of nested if statements. These can be implemented in the same manner we 
have already shown in Section 3.1 – Jumps, Labels, and Flags. For example, this compound 
AND statement in Code 3.2.3: 

 
int a, b, c, d; 
if (a > b && c < d) { 

... code ... 
} 
... more code ... 

 
Code 3.2.3 

 
can be simplified to: 
 

int a, b, c, d; 
if (a > b) {  # the nexted if statements form 

if (c < d) { # a logical AND 
... code ... 

} 
} 
... more code ... 

 
Code 3.2.4 

 
Notice how the compound AND is broken into (and is equivalent to) two nested if statements in 
Code 3.2.4. This can be readily translated into assembly language by applying techniques 
previously disucussed for non-compound conditional statements. The only difference is we 
check two conditions instead of one: 
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.comm a, 4 
.comm b, 4 
.comm c, 4 
.comm d, 4 
movl a, %eax 
cmpl b, %eax # (a – b) <= 0 ? 
jle more  # break out of the if statement if true 
   # if false, proceed to 2nd conditional 
movl c, %eax 
cmpl d, %eax # (c – d) >= 0 ? 
jge more  # break out of the if statement if true 

code:   # if both jumps fail, execute “code” 
    # i.e. both sides of the AND are true 
 ... code ... 
more:    # execution automatically flows 
 ... more code ... # into “more” if “code” was  

# executed with conditional jump 
 

Code 3.2.5 
 
An OR is a bit trickier: 
 

int a, b, c, d; 
if (a > b || c < d) { 

... code ... 
} 
... more code ... 

 
Code 3.2.6 

 
and can be simplified to: 
 

int a, b, c, d; 
if (a <= b) {   # if “opposite” is true 

if (c >= d) {  # and if “opposite” is also true 
goto more;  # then neither “original” 

}    # condition is true, so skip “if” 
} 
code:    # labels can also be used in C 

... code ... 
more:    # goto will jump to label “more” 

... more code ... 
 

Code 3.2.7 
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Notice, in Code 3.2.7 we dug into our repertoire of ECE knowledge and pulled out De Morgan’s 
Laws. We took our initial compound OR conditional, negated each side’s condition, and changed 
the OR to an AND. (Remember, an AND within an if statement is equivalent to a series of nested 
if statements.) Another thing to note is we are performing the opposite operation inside the 
nested if statements – we are skipping ... code ... and going to the more label. 
Essentially, what we are checking for, is if both original conditions (from Code 3.2.6: a > b 
|| c < d) have failed (i.e. evaluated to false); if so, then neither one of them were true, so 
execution should now skip to more, thus breaking the if statement. Said another way, the 
simplified code checks the opposite conditions, so we need to perform the opposite operation if 
the opposite conditions succeed. Take a moment to convince yourself that what we have done so 
far will work. We can now translate our nested if statements and goto into assembly language: 
 

.comm a, 4 

.comm b, 4 

.comm c, 4 

.comm d, 4 
movl a, %eax 
cmpl b, %eax 
jg code   # 1st is true, so execute code 
movl c, %eax  # 1st is false if we get here 
cmpl d, %eax 
jl code   # 2nd is true, so execute code 
jmp more   # both are false if we get here 

 code: 
... code ... 

 more: 
... more code ... 

 
Code 3.2.8 

 
Notice in this implementation , Code 3.2.8, we jump to code if either of the two original 
conditions are true – this implements the desired OR operation. However, also note the inclusion 
of an unconditional jump to more. This is the goto statement we included in our C 
simplification. It will only get executed if the previous conditional jumps fail – if neither a > b 
nor c < d. In this case, where neither of the conditions evaluate to true, we want to skip to 
more. This necessitates the inclusion of the unconditional jump in this implementation. If it 
were to be omitted, notice that code would get executed regardless of the results of the 
conditional jumps, which is an incorrect implementation. Let’s consider an alternative 
translation: 
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.comm a, 4 
.comm b, 4 
.comm c, 4 
.comm d, 4 
movl a, %eax 
cmpl b, %eax 
jg code   # 1st is true, so execute code 
movl c, %eax  # 1st is false if we get here 
cmpl d, %eax 
jge more   # 2nd is false too, so goto more 

code:     # 1st or 2nd is true if we get to code 
... code ... 

more: 
... more code ... 

 
Code 3.2.9 

 
Notice the implementation in Code 3.2.9 is more efficient than the previous implementation in 
Code 3.2.8. We replaced the second conditional jump and the unconditional jump with a single 
conditional jump. The difference is in the condition upon which we perform the jump. Recall 
from the previous implementation that the unconditional jump to more will only get executed if 
c < d is not true. Notice the second conditional jump only results in a skip over the single 
unconditional jump to the code label. This means we can eliminate the unconditional jump if 
we reverse the conditional jump – jumping to more if c < d is false, meaning jump if c >= d 
to the more label. Why is this the case? This is the second (and final) condition being evaluated. 
If any of the previous conditions (a > b in this case) were true, we would have jumped already; 
but since they were false (thus allowing the code to execute down to the last compare and jump), 
we can assume that if this final check is also false, then none were or will be true – we can skip 
to more. This assumption can only be done if it is the last condition being evaluated in a 
compound conditional expression.  
 
 
3.3 – if … then … else Conditional Expressions 

Perhaps one of the most daunting conditional expressions is the if ... then ... else 
control statement. Writing this in assembly may appear difficult at first glance, but as we will see 
in this section, the if ... then ... else statement is merely a special application of the 
skills and techniques we have learned thus far. Consider what this conditional expression is 
providing: it is very similar to the simple if statements we have worked with earlier in this lab; 
the only difference is we will now control or limit access to multiple blocks of instructions. In the 
following example, we will examine an if ... then ... else style control statement in 
detail and walk through how to write its equivalent in assembly. 
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Consider the following nested if ... then ... else control statement in Code 3.3.1: 
 

int a, b, c, d; 
if (a > b) { 

if (c < d) { 
... code block 1 ... 

} 
else if ((c == d) && (a != 0)) { 

... code block 2 ... 
} 
else if (c > d) { 

... code block 3 ... 
} 
else { 
 ... code block 4 ... 
} 
... more code ... 

 
Code 3.3.1 

 
When working with complex and compound nested control structures, the best place to begin is 
typically at the top. So, let’s approach this example one step at a time. We first need four 
memory variables. Then we want to compare two of them: 
 

.comm a, 4 

.comm b, 4 

.comm c, 4 

.comm d, 4 
movl a, %eax 
cmpl b, %eax # evaluate first if: is (a-b) <= 0? 
jle block4 # if is false, so break out to else 
... 
... 
... 

block4: 
... code block 4 ... 

more: 
... more code ... 

 
Code 3.3.2 

 
Notice in Code 3.3.2 that we have not filled in the details of the nested if statements yet – we 
are writing framework code, where we will insert the pieces (in place of the ...’s) one at a time. 
Continuing this approach, let’s venture inside the first if and add in if (c < d): 
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.comm a, 4 

.comm b, 4 

.comm c, 4 

.comm d, 4 
movl a, %eax 
cmpl b, %eax # evaluate 1st if: is (a-b) <= 0? 
jle block4 # if is false, so jump out to else 
 movl c, %eax # evaluate 2nd if: is (c-d) < 0? 
 cmpl d, %eax # if is true, so jump to block1 
 jl block1 
 ... 
 ... 
 ... 
... 
... 
... 

block1: 
 ... code block 1 ... 
 jmp more  # no more ifs/else to eval. if in block1 
block4: 

... code block 4 ... 
more: 

... more code ... 
 

Code 3.3.3 
 
Notice how we are indenting our assembly code to mimic its C specification code. This will be 
helpful in both writing our code, as well as reading it at a later time. 
 
Also, consider how the block1 label is placed outside the nested if structure in Code 3.3.3. If 
you look closely at Code 3.3.1, you will notice that when the if statement guarding ... 
block 1 ... is true, then when ... block 1 ... finishes executing, execution should 
resume at more. Thus, we do not need to bother with any other comparisons – we simply need 
to unconditionally jump to more. Now, if we wanted, we could have included the code inside 
the block1 label within the nested if structure, instead of towards the end. This is a design 
decision and assembly code can work either way – but be careful with jumps – some 
implementations will require more jumps than others and are thus more difficult to read and less 
efficient. In general, the best approach with regard to the design of your program’s flow should 
be the implementation that is most readable. 
 
Now, what should the next step be in our translation? Take a look at the remaining else if 
conditionals in Code 3.3.1. They also compare c and d, where each comparison is mutually 
exclusive. In other words, only one of c < d, c == d, and c > d can be true given c and d. 
As such, it does not matter the order in which we evaluate these three control statements. Note: 
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this is not true in general – many control statements must be evaluated sequentially to preserve 
the logic and intention of the original code. When we wrote the assembly comparison for c < d 
in Code 3.3.2, we used the cmpl instruction to perform the comparison. Recall, the cmpl 
instruction sets flags (e.g. sign, zero, overflow, carry, etc) to describe the result of the 
comparison. These flags are only set or cleared upon (1) an invocation of cmpl or (2) 
performing any mathematical operation (e.g. addl, subl, mull, and divl). So, we can 
simply insert additional jumps for the other else if statements comparing only c and d 
without having to compare c and d again – the flags will still be set from the initial comparison 
assuming neither (1) nor (2) have occurred since that initial comparison. Knowing this and that 
our comparisons are mutually exclusive, let’s write the fourth if statement, c > d, saving the 
third (and most complex) for last: 
 

.comm a, 4 

.comm b, 4 

.comm c, 4 

.comm d, 4 
movl a, %eax 
cmpl b, %eax # evaluate top if: is (a-b) <= 0? 
jle block4 # if is false, so jump out to else 
 movl c, %eax # evaluate 1st if: is (c-d) < 0? 
 cmpl d, %eax # if is false, so jump to 
 jl block1 
 jg block3  # evaluate 3rd if: is (c-d) > 0? 
 ...   # no need for another cmpl here 
 ... 
... 
... 
... 

block1: 
 ... code block 1 ... 
 jmp more 
block3: 
 ... code block 3 ... 
 jmp more 
block4: 

... code block 4 ... 
# no need to jump to more (it’s immediately below) 

more: 
... more code ... 

 
Code 3.3.4 

 
Notice, like we described, we saved ourselves a line of code in Code 3.3.4 (and made our 
implementation more efficient) by using the comparison for c < d in the c > d comparison – 
we simply inserted a different condition to jump on after the first jump. Now, all we have left to 
implement is the second condition in the inner if...then...else statements – namely(c 
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== d) && (a != 0). Like the c > d comparison, we can use the previous comparison, 
since nothing other than jumps have been inbetween the initial comparison and the jump. But, 
we cannot simply use this comparison alone – we need to implement the compound AND 
technique we discussed in Section 3.2 – Complex and Compound Conditional Expressions to 
also check if a != 0. Doing so, we can now complete our assembly translation with: 
 

.comm a, 4 

.comm b, 4 

.comm c, 4 

.comm d, 4 
movl a, %eax 
cmpl b, %eax # evaluate top if: is (a-b) <= 0? 
jle block4 # if is false, so jump out to else 
 movl c, %eax # evaluate 1st if: is (c-d) < 0? 
 cmpl d, %eax # if is false, so jump to 
 jl block1 
 jg block3  # evaluate 3rd if: is (c-d) > 0? 
 jne more  # evaluate 2nd if: is (c-d) == 0? 
 movl a, %eax 
 cmpl $0, %eax # evaluate 2nd if: is (a-0) != 0? 
 je more 

 block2: 
  ... code block 2 ... 
  jmp more 

block1: 
 ... code block 1 ... 
 jmp more 
block3: 
 ... code block 3 ... 
 jmp more 
block4: 

... code block 4 ... 
# no need to jump to more (it’s immediately below) 

more: 
... more code ... 

 
Code 3.3.5 

 
Since we chose to place ... block 2 ... immediately below the last comparison in Code 
3.3.5, the block2 label is completely optional. However, we included it to make the code easier 
to read. Also, notice that block4 does not need an unconditional jump to more. It is the last 
label before more, so execution will automatically progress into more as it proceeds from top to 
bottom. 
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Take some time to walk through and truly understand the example discussed in Section 3.3 – if 
... then ... else Conditional Expressions. It might seem complicated, but when approached one 
step at a time, if ... then ... else statements can be simple to implement in assembly 
language. 
 
 
3.4 – Special Looping Instructions 
We will next consider three special instructions included in the 80386 instruction set specifically 
for implementing loops. Consider a typical C loop of the form: 
 

int i; 
do { 

... code ... 
} while(--i);  /* decrement i, then check if i > 0 */ 
... more code ... 

 
Code 3.4.1 

 
Normally, we would implement Code 3.4.1 as: 
 

.comm i, 4 
movl i, %ecx 
do: 
 ... code ... 

decl %ecx   # %ecx = %ecx - 1 
jnz do   # go to ‘do’ if zero flag not set 

more: 
movl %ecx, i   # save decremented i from %ecx 
... more code ...  

 
Code 3.4.2 

 
Notice the new instruction in Code 3.4.2 – decl %ecx. This instruction is the decrement 
instruction, and is equivalent to subtracting one from its argument. Recall flags are set for any 
arithmetic or compare instructions, so the decl instruction also sets flags. When the zero flag is 
set, the loop has reached zero, and the while condition fails. 
 
As an aside, note the efficiency of loops that count down to zero instead of up to some number. 
Zero has the special property that it will set the zero flag when its value is reached. Counting up to 
a number will typically not set any flags (unless going from a negative to zero or a positive 
number). In other words, the decl instruction, when looping to zero, performs the decrement 
and the comparison (cmpl) instruction by setting the zero flag automatically. Also note that we 
are keeping i in the %ecx register during the loop and saving it to the variable i after the 
loop breaks, which will produce faster code. 
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The use of decl seems very efficient and quite simple too, but the previous implementation can 
be further improved. There is a special loop instruction called the loop instruction. We can use 
a loop to take the place of both the decl and jnz instructions. For instance, the previous 
example in Code 3.4.2 could also be written as: 
 
 

.comm i, 4 
movl i, %ecx 
do: 

... code ... 
loop do   # decrement %ecx with ‘loop’ 
    # if zero flag not set, go to ‘do’ 

... more code ... 
 

Code 3.4.3 
 
As shown in the comments in Code 3.4.3, the use of loop requires that the loop count down to 
zero and that the loop variable be kept in the %ecx register. The C register is often referred to as 
the counting register because of the many instructions that use it as a counter – the loop 
instruction, for example. There are variations on loop that allow the instructions to both 
decrement the loop variable and test for conditions other than the zero flag. Read more about 
these in the Intel 80386 instruction set reference. 
 
 
3.5 – Long Distance Jumps 
One last thing to consider about conditional jumps is that they are short jumps. This means they 
can only jump short distances in programs – namely, they can only jump within the program’s 
current segment. As a brief background, when programs are running on a computer, they only 
have access to a certain amount of memory (instructions and variables) at a time. The current 
segment is defined as any address that can be referenced from the program’s index register. 
When a label address outside the range of the index register is requested, a new segment selector 
must be loaded to access this part of the executable code. The jmp (long distance jump) 
instruction can modify the segment selection register, and will automatically do so in order to 
access a label outside the current segment. So, for example, if we want to jump if equal to 
label, and label is out of our segment (very far away in our program), we must do the 
following: 
 

je label # this code will not work if ‘label’ is too far  
# away to access with a conditional jump 

 
Code 3.5.1 
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must be written as: 
 

jne nojmp   # skip the long distance jump 
jmp label   # go out of the current segment 

nojmp:    # go here to not jump to ‘label’ 
... more code ... 

 
Code 3.5.2 

 
Code 3.5.2 solves the problem posed in Code 3.5.1 because jmp can jump anywhere in 
memory. Note that the jump condition to nojmp is negated from the original (je label 
becomes jne nojmp). If we do not want to jump to label, we need to check for the opposite 
condition and skip over the long distance jump. 
 
Note that the jmp instruction for long distance jumps is the same jmp instruction used for 
unconditional jumps. We are simply stating its requirement for long distance jumps in this 
section. 
 
Now, there is an instruction that implements this trick for us, and it is called the JUMPS 
instruction. It is placed immediately before any conditional jump that is out of range, and when 
the assembler is run on the source code, the change is automatically made if there is a need to do 
so. 
 
 
3.6 – Assignment 
This is the specification of what the assembly functions need to perform. Do not copy or 
type this code. Use it as a reference when writing the assembly. 
 
/* begin assignment specification */ 
 
void classify(void) 
{ 

/* 
Covert the following C code to equivalent assembly.  
Everywhere you see "return" replace with "jmp return" Don't 
forget to declare "match" in the area at the bottom. Note 
that the C driver defines i, j, k, and tri_type, so the 
assembly code does not need to. 
*/ 
 
if (i == 0 || j == 0 || k == 0) 

{ 
tri_type = 0; /* can't be a triangle */ 
return; 

} 
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/* count matching sides */ 
match = 0; 
if (i == j) match += 1; 
if (i == k) match += 2; 
if (j == k) match += 3; 
 
/* select possible scalene triangles */ 
if (match) 
{ 

if (match == 1) 
{ 

if ((i+j) <= k) 
{ 

tri_type = 0; /* Not a triangle */ 
return; 

} 
} else 
{ 

if (match != 2) 
{ 

if (match == 6) 
{ 

   tri_type = 1; /* Equilateral triangle */ 
return; 

} 
else 
{ 

if ((j+k) <= i) 
{ 

     tri_type = 0; /* Not a triangle */ 
     return; 

} 
} /* end of “if (match == 6)...else” */ 
 

  } else /* else for “if (match != 2)...else” */ 
  { 

if ((i+k) <= j) 
{ 

tri_type = 0; /* Not a triangle */ 
return; 

} 
 

} /* end of “if (match != 2)...else” */ 
 

} /* end of “if (match == 1)...else” */ 
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tri_type = 2; /* Isosceles triangle */ 
return; 
 

} /* end of “if (match)” */ 
 
/* check to see if this is a triangle */  
if ((i+j) <= k || (j+k) <= i || (i+k) <= j) 
{ 

tri_type = 0; /* Not a triangle */ 
return; 

} 
 
tri_type = 3; /* Scalene triangle */ 
return; 

 
} /* end of void classify(void) */ 
 
/* end assignment specification */ 
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The following is the C driver for the assembly file. You are not required to comment this 
code. Please do not modify this file. 
 
/* begin C driver */ 
 
#include <stdio.h> 
 
int i, j, k, tri_type; 
 
int main(int argc, char **argv) 
{ 

printf("Enter the size of triangle side 1 -> "); 
scanf("%d",&i); 
printf("Enter the size of triangle side 2 -> "); 
scanf("%d",&j); 
printf("Enter the size of triangle side 3 -> "); 
scanf("%d",&k); 
 
classify(); 

 
switch(tri_type) 
{ 

case 0: 
printf("This is NOT a triangle.\n"); 
break; 

case 1: 
printf("This is an Equilateral triangle.\n"); 
break; 

case 2: 
printf("This is an Isosceles triangle.\n"); 
break; 

case 3: 
printf("This is a Scalene triangle.\n"); 
break; 

default: 
printf("Invalid triangle type returned.\n"); 

} 
return 0; 

} 
 
/* end C driver */ 
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The following is the assembly stub to the driver. You are required to fully comment and 
write the assembly code to model the specification code. Insert your code where you see /* 
put code here */ and /* declare variables here */. Do not modify any 
other code in the file. Note the last line of the file must be a blank line to compile without 
warnings. 
 
/* begin assembly stub */ 
 
.globl classify 
.type classify,@function 
classify: 

/* prolog */ 
pushl %ebp 
pushl %ebx 
movl %esp, %ebp 
 
/* put code here */ 

 
return: 

/* epilog */ 
movl %ebp, %esp 
popl %ebx 
popl %ebp 
ret 

 
/* declare variables here */ 
 
/* end assembly stub */ 
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The following are the cases you should test to ensure correct operation. 
 
./lab3 
Enter the size of triangle side 1 -> 3 
Enter the size of triangle side 2 -> 3 
Enter the size of triangle side 3 -> 10 
This is NOT a triangle. 
 
./lab3 
Enter the size of triangle side 1 -> 10 
Enter the size of triangle side 2 -> 3 
Enter the size of triangle side 3 -> 3 
This is NOT a triangle. 
 
./lab3 
Enter the size of triangle side 1 -> 3 
Enter the size of triangle side 2 -> 10 
Enter the size of triangle side 3 -> 3 
This is NOT a triangle. 
 
./lab3 
Enter the size of triangle side 1 -> 1 
Enter the size of triangle side 2 -> 2 
Enter the size of triangle side 3 -> 10 
This is NOT a triangle. 
 
./lab3 
Enter the size of triangle side 1 -> 10 
Enter the size of triangle side 2 -> 1 
Enter the size of triangle side 3 -> 2 
This is NOT a triangle. 
 
./lab3 
Enter the size of triangle side 1 -> 1 
Enter the size of triangle side 2 -> 10 
Enter the size of triangle side 3 -> 2 
This is NOT a triangle. 
 
./lab3 
Enter the size of triangle side 1 -> 3 
Enter the size of triangle side 2 -> 3 
Enter the size of triangle side 3 -> 5 
This is an Isosceles triangle. 
 
./lab3 
Enter the size of triangle side 1 -> 5 
Enter the size of triangle side 2 -> 3 
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Enter the size of triangle side 3 -> 3  
This is an Isosceles triangle. 
 
./lab3 
Enter the size of triangle side 1 -> 3 
Enter the size of triangle side 2 -> 5 
Enter the size of triangle side 3 -> 3 
This is an Isosceles triangle. 
 
./lab3 
Enter the size of triangle side 1 -> 4 
Enter the size of triangle side 2 -> 4 
Enter the size of triangle side 3 -> 4 
This is an Equilateral triangle. 
 
./lab3 
Enter the size of triangle side 1 -> 3 
Enter the size of triangle side 2 -> 4 
Enter the size of triangle side 3 -> 5 
This is a Scalene triangle. 
 
./lab3 
Enter the size of triangle side 1 -> 0 
Enter the size of triangle side 2 -> 4 
Enter the size of triangle side 3 -> 5 
This is NOT a triangle. 
 
./lab3 
Enter the size of triangle side 1 -> 3 
Enter the size of triangle side 2 -> 0 
Enter the size of triangle side 3 -> 5 
This is NOT a triangle. 
 
./lab3 
Enter the size of triangle side 1 -> 3 
Enter the size of triangle side 2 -> 4 
Enter the size of triangle side 3 -> 0 
This is NOT a triangle. 
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Lab 4 
Addressing Modes: Arrays and Pointers 

 
 
Student Objectives 
 
• Differentiate between data, operands, result, and post-op location 
• Learn about addressing modes in the Intel 80386 

o Register addressing 
o Immediate addressing 
o Direct addressing 
o Register indirect addressing 
o Direct indexed addressing 
o Base indexed addressing 

• Apply addressing modes to implement arrays, pointers, and data structures 
 

 
4.1 – Addressing Data in the CPU 
In this lab we begin to explore different addressing modes. An addressing mode is the means by 
which the computer selects the data that is used in an instruction. The addressing mode is 
determined by the syntax with which you specify the instruction's operand(s). Let's begin by 
clarifying and expanding upon these terms. 
 
First, data are numerical values that are used in instructions to compute a result. Data can be of 
any type or even a memory address. An operand is the form in which a piece of data is 
presented to the instruction. Consider Code 4.1.1. Here, we give some cases where data and 
operands are defined and used in assembly instructions. 
 
 movl $3, %eax  # 3 is data; $3 is the only operand 
 movl %eax, %ebx  # 3 is data; %eax is the only operand 
 addl $1, %ebx  # 1 and 3 are data; 
     # $1 and %ebx are operands 
 addl %eax, %ebx  # 3 and 4 are data; 
     # %eax and %ebx are operands 
 

Code 4.1.1 
 
In Code 4.1.1, notice that for each instruction, the result and where it is stored are not considered 
data or operands. The result of an instruction is the new value that is produced from the data; 
where the result of the instruction is stored is, for lack of a better word, the post-op (or post-
operation) location. 
 
The terms data and operand only apply to information the instruction uses to compute a result 
(i.e. the source information or parameters). However, sometimes a destination parameter – such as 
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%ebx in each addl instruction in Code 4.1.1 – is considered as data and an operand. Recall that 
for many assembly instructions, addition included, the destination parameter contains information 
necessary to compute the result and is thus treated as a source until the result is computed and 
stored. For example, consider Code 4.1.2, taken from the last line of Code 4.1.1: 
 
 addl %eax, %ebx  # %ebx  = %ebx  +  %eax 
     # post-op loc  = operand  +  operand 
     # 7    = 4   +  3 
     # result   = data  +  data 
 

Code 4.1.2 
 
As shown Code 4.1.2, %ebx, the destination parameter, is not only the post-op location but is 
also an operand. The important thing to note is that certain components of an assembly instruction 
(e.g. the destination parameter in Code 4.1.2) can take on more than one role in the operall 
operation. When %ebx is an operand, it contains data; when it is a post-op location, it contains the 
result. Both term are applicable to this instruction, but only at particular points in time – namely 
the start and at the conclusion of the instruction, respectfully. 
 
Now, as insight into the result, in well-designed assembly code, the result value and its 
corresponding post-op location will likely be data and an operand in a future instruction. 
Otherwise, why would we compute the result in the first place? These concepts of operands, data, 
results, and post-op locations apply to nearly every assembly instruction, including multiplication, 
division, and even compares and jumps. 
 
So, now that we have clarified these terms, let’s talk about the addressing mode of an instruction. 
The addressing mode of an instruction describes the relationship between the operands and the 
data. In other words, it details how we use the operands to retrieve the data desired for use in the 
instruction. In all, there are six ways in which we can reference or address information within an 
instruction: (1) register addressing, (2) immediate addressing, (3) direct addressing, (4) register 
indirect addressing, (5) direct indexed addressing, and (6) base indexed addressing. We will 
consider each of these over the course of this lab. They will give us insight into and allow us to 
work with advanced data types, such as arrays, pointers, and structures. Addressing modes will 
also give us the background necessary to work with data on the stack, which is the topic of Labs 
5 and 6. 
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4.2 – Simple Addressing – Register, Immediate, and Direct 
The previous example (reproduced in Code 4.2.1 below) illustrates the two simplest addressing 
modes, register addressing and immediate addressing. Register addressing means the data is 
in a register, and immediate addressing means the data is supplied as part of the instruction – a 
numerical constant. 
 
 movl %ecx, %eax  # register addressing – register ‘%ecx’ 
 movl $4, %ebx  # immediate addressing – constant ‘4’ 
 addl $3, %ebx  # register addressing – register ‘%ebx’ 
     # immediate addressing – constant ‘3’ 
 

Code 4.2.1 
 
These two are fairly straightforward – a value or constant as an operand is a form of immediate 
addressing, while a register as an operand is register addressing. Let us now consider variables: 
 

addl %eax, var  # var is an address to the data, %eax 
 

Code 4.2.2 
 

In Code 4.2.2, the instruction addl is summing var and the A register. var is a symbol that 
represents a memory location or address. This address in memory contains the data we say is 
“stored” in the variable var. The use of variables or symbols as operands is called direct 
addressing, which means the memory address of the data is supplied with the instruction. One 
might ask, how is the address supplied to the instruction? When the assembler translates the 
program into executable machine code, it assigns an address to the symbol var, and it is that 
address that is included with the instruction in the program memory. Thus, the operand is the 
memory address represented by the symbol var, and the data is the contents of memory at that 
address. 
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4.3 – Declaring and Initializing Arrays 
Now, before we discuss other forms of addressing, let's set the stage and look at a different kind 
of variable – namely, arrays. Consider the following fragment of C code: 
 

int a[10];   /* an array of 10 integers */ 
int i; 
main() 
{ 
 ... 
 ... 

a[0] = 10; 
a[4] = 20; 
a[i] = 30; 
... 
... 

} 
 

Code 4.3.1 
 
As shown in Code 4.3.1 above, the code declares an array and assigns values to certain elements 
of the array. So far, we have not worked with arrays in our assembly programs. To start, let’s 
discuss how to declare or allocate space for an array in assembly language. Recall the .comm 
assembler directive we have studied: 
 
 .comm i, 4  # allocate 4 bytes of space for ‘i’ 
 

Code 4.3.2 
 
We can use the same memory-allocation mechanism demonstrated in Code 4.3.2 to allocate 
memory for arrays. Remember, the second parameter to .comm is the amount of space we want 
to reserve. In the case of the integer i, we need four bytes of space. Now, the array a is an array 
of ten integers. Each integer needs its own four bytes of space; so, it follows that array a requires 
40 bytes of space: 
 

.comm a, 40  # allocate 40 bytes for a 10-int array 
 

Code 4.3.3 
 
In other words, the assembly code given in Code 4.3.3 declares ten long words of memory, but 
does not initialize them to any value. To allocate and initialize arrays, we can use the .fill 
directive as shown in Code 4.3.4: 
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a: .fill 10, 4, 0 # allocate 10*4 bytes at label ‘a’ 
    # fill each 4-byte unit with ‘0’ 

 
Code 4.3.4 

 
In general terms, the .fill assembler directive works as follows: 
 
 <label>: .fill <length>, <size>, <value> 
 

Code 4.3.5 
 
where in Code 4.3.5 <length> is the length of the array, <size> is the size in bytes of each 
element, and <value> is the value to set to each <size> unit in <length>. Note, <value> 
may be omitted. The default for the .fill directive is to initialize each unit to zero if <value> is 
not present. 
 
What if we want to initialize different elements of an array to different values? If we want to set the 
first three elements of array a to the values 10, 20, and 30 and the rest to zero, we could write: 
 
 a: 
  .fill 1, 4, 10  # a[0] = 10 
  .fill 1, 4, 20  # a[1] = 20 
  .fill 1, 4, 30  # a[2] = 30 

.fill 7, 4, 0  # a[3 – 9] = 0 
 

Code 4.3.6 
 
Think of the label a in Code 4.3.6 as being an address in memory. This address a and onward is 
being defined or filled with whatever we choose to put after the a label. In other words, a is a 
symbol that is equal to the starting address of the first word within it. Let’s try and visualize 
what is going on here: 
 
Address 0x100 0x104 0x108 0x10C 0x110 0x114 0x118 0x11C 0x120 0x124 
Data 10 20 30 0 0 0 0 0 0 0 
Position a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

 
Figure 4.3.1 

 
Remember, the symbol a is simply an address in memory to represent the start of the integer array 
we are defining – 0x100, in this example. As shown in Figure 4.3.1, to reference the 0th element, 
address 0x100+0*4 is accessed; to reference the 1st element, address 0x100+1*4 is accessed; to 
reference the 2nd element, address 0x100+2*4 is accessed; etc. When we initialized this space in 
memory for a, the first .fill in label a says to set a single 4-byte size block of memory to the 
value 10; the next .fill in label a sets the next 4-byte block to 20; the third .fill sets the 
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following 4-byte block to 30; while the last .fill sets the 7*4 or 28-byte block of memory to 0. 
We can envision each successive .fill as taking up <length>*<size> bytes of the a label. 
These four invocations of .fill complete the initialization of the 40-byte or ten integer array a. 
 
 
4.4 – Working with Arrays – An Application of Direct Addressing 
So, now that we have allocated and initialized an array in assembly, how can we access array 
elements for use in assembly instructions? Consider the first line of C code within main of our 
example in Code 4.3.1 (reproduced as Code 4.4.1 below). We can access an array element and 
assign it a value using the square bracket notation: 
 

int a[10];   /* an array of 10 integers */ 
int i; 
main() 
{ 
 ... 
 ... 

a[0] = 10;  # Use [X] to access element X 
a[4] = 20; 
a[i] = 30; 
... 
... 

} 
Code 4.4.1 

 
In Code 4.4.1, the a[0] = 10; access is simple, since this refers to the first element of the 
array. We can access it by simply using direct addressing, which as discussed in detail in 4.2 – 
Simple Addressing – Register, Immediate, and Direct, appears as follows: 
 

movl $10, a  # a is at 0x100, move ‘10’ into the 
    # address 0x100 in main memory 

 
Code 4.4.2 

 
Remember that the symbol a in Code 4.4.2 is the address of the first word of the array – 0x100 
in our example. So the movl $10, a instruction simply moves the number 10 into the first 
long word of the array at the address of a – let’s say 0x100 for these examples. Why the first long 
word? The answer is due to the instruction suffix used in the instruction. Recall from Lab 2, 
Section 2.4 – Data Sizes, Register References, and Opcode Suffixes, that in the Intel 80386, 
we can work with data of three different sizes – 1-byte, 2-byte, and 4-byte. Each of these is 
denoted with an instruction suffix of b, w, and l, respectively. In our example, the mov 
instruction has the l suffix, so we are storing the constant 10 as a long word (or as 4 bytes) at 
address a. 
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The second example in Code 4.4.1, a[4] = 20;, is a little more tricky, since we do not have a 
symbol defined for the 4th element. We can, however, use direct addressing once more, and 
specify an offset from the start of the array as follows: 
 

movl $20, a+16  # a is 0x100, 0x100 + 16 bytes = 0x110 
 

Code 4.4.3 
 
Recall that each element of a is 4 bytes, so the element a[4] begins at address a+4*4 = 
a+16, as shown in Code 4.4.3. Note this is still classified as direct addressing. The + symbol 
tells the assembler to add the value following it, 16, to the address of a, and then include this 
sum with the assembly instruction as the address in memory that we wish to access. In the case 
of Code 4.4.3, the sum included with the movl instruction is 0x100 + (decimal) 16 = 
0x110, which is the starting address of a[4]. After the code’s assembly process, there is no 
indication that the address supplied was originally a label or a computed value (such as a+16). 
In fact, if we wanted to read from or write to some fixed memory address, we can exlude the 
label altogether and write: 
 

movl $20, 110H  # move ‘20’ into address 0x110 (a[4]) 
    # the trailing ‘H’ is for ‘hexadecimal’ 

 
Code 4.4.4 

 
The use of labels simplifies our programs by allowing us to refer to memory addresses with 
symbols or variables, rather than referencing the addresses directly, as depicted in Code 4.4.4. 
Fortunately, assemblers allow us to use variables and labels instead of hexadecimal addresses. In 
Code 4.4.3, the use of variables and labels help us keep track of addresses. Not only do they make 
assembly code easier to read, but they can also reduce the likelihood of errors by letting the 
assembler substitute the addresses at compile-time. 
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4.5 – Working with Arrays – Direct Indexed and Based Indexed Addressing 
Continuing with our previous example in Code 4.3.1 and Code 4.4.1, we come to the last line of 
our excerpt, a[i] = 30;.  
 

int a[10];   /* an array of 10 integers */ 
int i; 
main() 
{ 
 ... 
 ... 

a[0] = 10; 
a[4] = 20; 
a[i] = 30;  # set the “ith” element of a to 30 
... 
... 

} 
 

Code 4.5.1 
 
This array access in Code 4.5.1 is different from the previous two examples we have discussed. 
Notice, we have an indexing variable – i – that determines which element of a to access. Because i 
is a variable – meaning it can change during program execution – it is not possible for the assembler 
to know the address of the data at a[i] when the program is assembled. The address of this 
data must be computed at runtime. 
 
As such, the address cannot be directly specified in the instruction. In order to do this type of 
addressing, the Intel 80386 provides us with a couple more addressing modes, which are referred 
to as indexed addressing modes. As we will show in the following examples, these forms of 
addressing are very useful when working with arrays and structures.  
 
In indexed addressing, the processor uses the contents of an indexing register, along with a data 
size constant, to compute the memory address of the data the instruction wishes to access. There 
are two index registers onboard the Intel 80386 for performing index addressing – %esi and 
%edi. %esi stands for source index and %edi stands for destination index. We may use the 
two interchangeably when it comes to working with arrays. The index registers must contain the 
index of the array element we desire to access – the variable i in our example. 
 
Aside:  In actuality, there is no requirement necessitating the use of the source or destination 
index registers in indexed addressing – any general purpose register will work as an index; 
however, indexing registers are preferred, since their primary purpose is to maintain an index 
without utilizing an artithmetic general purpose register (i.e. %eax, %ebx, %edx, or %edx).. 
Furthermore, although it is not common practice, indexing registers can also be used in 
computations for which we have learned to use the arithmetic general purpose registers. 
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Consider the following C fragment: 
 

.comm a, 40 

.comm i, 4 
movl $10, a    # a[0] = 10 
movl $20, a+16    # a[4] = 20 
movl i, %edi   # move the index, ‘i', into an 
    # index register, ‘%edi’ 
movl $30, a(, %edi, 4)  # a[i] = 30; 

 
Code 4.5.2 

 
In Code 4.5.2, the last instruction, movl $30, a(, %edi, 4), uses indexed addressing. 
Let’s discuss the syntax in greater detail. First, there are two types of indexed addressing – 
direct indexed addressing and based indexed addressing. They each take the general form: 
 

<variable>(<base>, <offset>, <size>) 
 

Code 4.5.3 
 
What distinguishes direct indexed and base indexed addressing are the components of this 
general form in Code 4.5.3 that are utilized. Direct indexed addressing omits the <base> 
parameter and appears as follows: 
 
 <variable>(, <offset>, <size>) 
 

Code 4.5.4 
 
Consider the structure of direct indexed addressing provided in Code 4.5.4. This syntax provides 
the program with the information it needs to calculate the address of the memory location 
accessed by the instruction. This address is computed by the program at runtime, which takes the 
<offset> and multiplies it by the <size>. The <offset> is one of the index registers – 
%edi or %esi – and the <size> is the size of each element of the array we are dealing with. In 
our example, we are working with an integer array; and since integers are 4 bytes in x86 
assembly language, the size of each element of the array a is also 4 bytes. 
 
Similar to direct addressing, <variable> as given in Code 4.5.4 is a label or symbol, which 
represents an address in main memory. In our example, this label is variable a. To visualize this, 
let’s construct a sample memory map where the start of our array a is at address 0x100. 
  

Address 0x100 0x104 0x108 0x10C 0x110 0x114 ... ... 0x120 
Data 10 20 --- --- --- --- --- --- 30 
Position a[0] a[1] a[2] a[3] a[4] a[5] a[...] a[...] a[i] 

 
Figure 4.5.1 
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If we wish to access a[i] and set it equal to the value 30, we need to first move our index into 
an index register, and then we can perform direct indexed addressing: 
 

movl i, %edi   # move ‘i’ to an index register 
movl $30, a(, %edi, 4) # 0x100+(i*4) 

 
Code 4.5.5 

 
Code 4.5.5 takes the address of a – 0x100 – and adds to this the value of the %edi register 
multiplied by 4, which is <offset> * <size>. If the indexing variable i is 8, then the 
address accessed is: 
 
 0x100 + (8 * 4) = 0x120 # see Figure 4.5.1 
 

Code 4.5.6 
 
In Code 4.5.6, the computation performed by the program to access a[i] is shown for i = 8. 
This can be validated by a close examination of the memory map given in Figure 4.5.1 above.  
 
What we have discussed so far is only direct indexed addressing. Recall, there is another form or 
indexed addressing called base indexed addressing. It takes the form: 
 
 (<base>, <offset>, <size>) 

 
Code 4.5.7 

 
In Code 4.5.7 <variable> is omitted for based indexed addressing. (Contrast this to direct 
indexed addressing, which omits the <base> as shown in Code 4.5.4.) Based indexed 
addressing uses a base register to store the address of the start of the array we wish to access. So, 
what is the difference between the two forms of indexed addressing? In many cases, there is not 
a difference. In fact, we can write the previous example (see Code 4.5.5) using base indexed 
addressing: 
 

movl i, %edi   # move the index, ‘i', into an 
    # index register, ‘%edi’ 
movl a, %ebx   # move the start of the array ‘a’ 
    # into the base index register 
movl $30, (%ebx, %edi, 4)# a[i] = 30; 

 
Code 4.5.8 

 
Let’s discuss how the address of a[i] is computed in Code 4.5.8. Similar to direct indexed 
addressing, base indexed addressing uses an index for the <offset> (provided via an indexing 
register – %edi or %esi). It then computes the address to be accessed by multiplying the 
<offset> by the <size>; this is then added to the <base>. In this specific example, the 
<base> is the address aliased as array a or 0x100, the <offset> is i in %edi, and the 
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<size> is 4 bytes (i.e. the size of each element in an integer array). Assuming i = 8 once 
again, this computation can be validated using the memory map given in Figure 4.5.1 and is 
shown in Code 4.5.9 below: 
 
 0x100 + (8 * 4) = 0x120 # see Figure 4.5.1 
 

Code 4.5.9 
 
Note that for both forms of indexed addressing, the <size> used to compute the address (seen 
in Code 4.5.5 and Code 4.5.8) is not preceeded by a $. The $ symbol is only used to specify a 
constant that is used directly as a parameter in an assembly instruction. In either form of 
indexed addressing, <size> is an intermediate value and is thus taken literally in the 
computation of the address; the inclusion of the $ symbol will result in a compile time error. 
Furthermore, <size> must be a number and cannot change durring runtime (i.e. it cannot be a 
register or a variable). Contrast this to <offset> which can change at runtime via an indexing 
register. 
 
Although base indexed and direct indexed addressing can oftentimes be used interchangeably, 
there are some cases when we do need to use base indexed addressing, and these cases involve 
structures. We will discuss this specific case set in greater detail in Section 4.7 – Putting it all 
Together – An Example using Arrays, Pointers, and Structures. 
 
 
4.6 – Working with Pointers – Register Indirect Addressing 
Like indexed addressing, there is another situation in which the address of the data is not known 
at assemble time, and that is when a program uses a pointer. In this situation, the address of the 
data is specified entirely in a register. For this case, the Intel 80386 provides us with a final form 
of addressing – register indirect addressing. In register indirect addressing a register holds the 
address of the data to be addressed, as necessitated by Code 4.6.1 below: 
 

int *p;   /* declare an integer pointer */ 
main() 
{ 
 ... 
 ... 

*p = 40;  /* set the value at the ptr to ‘40’ */ 
... 
... 

} 
 

Code 4.6.1 
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which can be written in assembly language as: 
 

.comm p, 4   # allocate space for the pointer 
movl p, %ebx  # move address in ‘p’ to register B 
movl $40, (%ebx) # set value at ‘p’ to ‘40’ 

 
Code 4.6.2 

 
In Code 4.6.2, the variable p is a pointer that contains the address where the integer resides in 
memory. Informally, the parenthesis around the register say, “go to the location/address in %ebx 
and write 40 there.” So, if p contains the address 0x100, this example of register indirect 
addressing dereferences the B register and writes the constant 40 at address 0x100. In assembly 
(and other types of) programming, the term dereference means to obtain the address of some 
data located elsewhere in memory. 
 
An offset can also be applied to a pointer in assembly language. This can be useful when 
traversing an array or accessing an element within a structure. To use register indirect addressing 
with an offset, we simply include to the left of the parenthesis the offset in bytes to add to the 
address stored in the register being dereferenced. For example, if p is a pointer to the base of an 
integer array, to set the 0th element of the array to 50, and the 4th element to 100 using 
register indirect addressing, we would write the assembly code as shown in Code 4.6.3: 
 

movl p, %ebx  # move address in ‘p’ to register B 
movl $50, (%ebx) # set value at ‘p’ to ‘50’ 
movl $100, 16(%ebx) # set value at ‘p[4]’ to ‘100’ 

 
Code 4.6.3 

 
One might think that using a variable as a pointer would look more like movl $40, (p), but 
in 80386 assembly this is not the case. Recall from Section 2.3 – Moving Data, Addition, 
Subtraction, and Constants that no more than one main memory access can be performed in a 
single assembly instruction. The invalid assembly instruction movl $40, (p) accesses main 
memory to read the data at the address of variable p, then accesses main memory again to read 
the data at the address stored in p, which is one memory access too many. We must first move 
the pointer to a register, and then perform register indirect addressing on the register. 
 
Note, although we have used the B register in our example for register indirect addressing (and 
indexed addressing in Section 4.5 – Working with Arrays – Direct Indexed and Base Indexed 
Addressing), we may dereference any general purpose register, including the indexing registers. 
The B register is most commly used, since its name is likened to the base of the array being 
accessed. 
 
 
	    



 Page 68 of 155 

4.7 – Putting it all Together – An Example using Pointers, Arrays, and 

Structures 
Let’s work a final example. Here, we will show how we can use a combination of the addressing 
modes we have discussed in order to implement a more complex (and relatively typical) case 
involving arrays and structures. Consider the following C code: 
 

int *ap;    /* pointer to an array */ 
struct {    /* structure with two integers */ 

int a; 
int b; 

} *asp;    /* pointer to the structure */ 
int i;     /* indexing/counting variable */ 
 
main() 
{ 
 ...    /* ap and asp “malloc’d” */ 
 ... 

ap[3] = 50; 
ap[i] = 60; 
asp[i].b = 70; 
... 
... 

} 
 

Code 4.7.1 
 
Code 4.7.1 can be translated into assembly language as: 
 

.comm ap, 4 

.comm asp, 4 

.comm i, 4 
 
movl ap, %ebx 
movl $50, 12(%ebx)    # ap[3] = 50 
movl i, %edi 
movl $60, (%ebx, %edi, 4)  # ap[i] = 60 
     # ap is still in %ebx 
movl asp, %ebx     # i is still in %edi 
movl $70, 4(%ebx, %edi, 8)  # asp[i].b = 70 

 
Code 4.7.2 

 
Notice, in Code 4.7.2 we have three global variables, all of which are 4 bytes and two of which 
are pointers. In programing, the size of a pointer is based on the size of the address space the 
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pointer needs to be able to map (or “point to”). In our case, we are working with the Intel 80386, 
which is a 32-bit processor; thus, pointers are all 4 bytes (i.e. 32 bits). 
 
Let’s get started. As seen in Code 4.7.1 the first line of main sets the third element of ap to 50. 
Recall from C programming that pointers and arrays are essentially the same thing. We can 
chose to allocate space for an array statically (as we have in our previous examples), or we can 
declare a pointer to an array, and then allocate the space for the array dynamically using tools 
such as malloc. We should assume that sufficient space for the arrays ap and asp has been 
allocated somewhere in main prior to the lines we will examine, as malloc is a topic beyond 
the scope of this course. 
 
Let’s first take a look at ap[3] = 50, which in our assembly translation in Code 4.7.2 is: 
 

movl ap, %ebx 
movl $50, 12(%ebx)  

 
Code 4.7.3 

 
In the excerpt given in Code 4.7.3, ap contains the address of the array where we then want to 
set element 3 to the value 50. We can use register indirect addressing combined with an offset to 
accomplish this. Unlike direct addressing, which specifies the offset with a + sign, register 
indirect addressing applies a constant to the left of the parenthesis of the register being 
dereferenced. In this case, we need to skip 12 bytes in order to get to the third element of ap. 
Why 12 bytes? Well, ap is a pointer to an integer array, and as we know, integers are 4 bytes – 4 
bytes * 3 indices is 12 bytes. For example, assume the zeroth element of ap is at address 
0x100: 
 

Address 0x100 0x104 0x108 0x10C 0x110 ... 
Data --- --- --- 50 --- ... 
Position ap[0] ap[1] ap[2] ap[3] ap[4] a[...] 

 
Figure 4.7.1 

 
As shown in Figure 4.7.1, an offset of 12 bytes from address 0x100 is 0x10C, which 
corresponds to ap[3]. That is all we need to do to accomplish the first line of our C code in 
Code 4.7.1. 
 
Now how about the second line? Here, we want to perform ap[i] = 60, where we set an 
unknown element of ap to the value 60. Recall that in indexed addressing, the variable we index 
with is not known when the program is assembled; thus, we need to use either direct indexed 
addressing or base indexed addressing to access the ith value of ap during program runtime. 
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movl i, %edi 
movl $60, (%ebx, %edi, 4) 

 
Code 4.7.4 

 
In Code 4.7.4, notice that to implement the second line of our C code in Code 4.7.1, we do not 
need to move ap into the B register – it is already there from translating the previous line of C. 
However, we do need to use one of our indexing registers to take i into account. Recall from 
Code 4.7.3 that the address to which the array ap is pointing to is in the B register. We wish to 
access the ith element, so from what we know about base indexed addressing, we can do this 
by incrementing <offset> * <size> bytes from the address supplied in <base>. This is 
0x100 + %edi * 4, in this example. Remember, the size is 4 bytes, since we are working 
with an integer array. 
 
Now, let’s take a look at the final line of Code 4.7.1:  asp[i].b = 70. Here, we wish to 
increment to the ith element of asp, access its b sub-element, and then set it to the value 70. 
 
This is the most complex operation of this example, and is the case we hinted at previously 
where base indexed addressing must be used. Why is this so? Recall the trick we used from 
register indirect addressing. We can insert a constant offset to the left of the parenthesis as an 
additional increment into the address calculated. With direct indexed addressing, the 
<variable> parameter is present, so we cannot use an additional offset; however, base 
indexed addressing allows us to exploit this trick. Let’s walk through how it is done. 
 
To start, recall that asp is a pointer to a structure – in this case, it is an array of structures. Each 
of these structures is of size 8 bytes and contains two integers. We wish to access the ith 
element of the structure array and set its b component to 70. The same principles we have 
learned about base indexed addressing are applied here. The starting address of the asp array is 
placed in the B register, and the index variable is moved into an indexing register. Notice we 
already moved i into %edi for the previous C instruction, and since i has not changed, we can 
reuse it again. 
 
Going further, recall the <size> parameter of indexed addressing is the size of each element in 
the array. In this case, we are working with an array of structures, each of which are 8 bytes. So, 
as a result, the <size> is 8. Here is where we apply our technique from register indirect 
addressing – because we need to get to the b element, we need to add 4 to the address computed. 
When programs are compiled with structures, the elements are allocated sequentially in memory 
in the order they are declared; so, b is after a, and since both a and b are integers, we need to 
skip over a, which is 4 bytes. The entire calculation is as follows in Code 4.7.6: 
 
 <base> + (<offset> * <size>) + <additional offset> 
 

Code 4.7.6 
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or specifically, 0x100 + (i * 8) + 4. In the following memory map in Figure 4.7.2, we 
assume i to be the index 2. So, to get to the desired location, the base indexed addressing 
simplifies to Code 4.7.7: 
  
 0x100 + (2 * 8) + 4 = 0x114 

 
Code 4.7.7 

 
The resulting calculation in Code 4.7.7 can be verified and visualized with the memory map of 
the asp structure array in Figure 4.7.2: 
 

Address 0x100 0x104 0x108 0x10C 0x110 0x114 
Data --- --- --- -- --- 70 
Position asp[0].a asp[0].b asp[1].a asp[1].b asp[i].a asp[i].b 

 
Figure 4.7.2 

 
Thus, the final assignment in our C code in Code 4.7.1 can be implemented in assembly as 
follows in Code 4.7.5: 
 

movl asp, %ebx 
movl $70, 4(%ebx, %edi, 8) # base + (i*structSize) 

# + offsetOfB 
# = 0x100 + (2 * 8) + 4 
# = 0x110 + 4 = 0x114 
# = asp[2].b, when ‘i = 2’ 

 
Code 4.7.5 
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4.8 – Summary of Addressing Modes 

Addressing 
Mode Example Data is... Notes 

Immediate movl $0, %eax A constant  

Register movl %eax, %ebx In a register  

Direct movl var, %eax 
Retrieved from the 
address of a 
variable 

Can include an offset from 
the variable using + 

Register 
Indirect movl (%ebx), %eax 

Retrieved from the 
address stored 
within a register 

Can include an offset in front 
of the parenthesis. Used for 
dereferencing pointers 

Direct 
Indexed movl var(, %edi, 4), %edx 

Retrieved from the 
address of a 
variable plus an 
offset multiplied by 
a constant size 

Used for indexing into arrays 

Base 
Indexed movl (%ebx, %esi, 8), %eax 

Retrieved from the 
address stored 
within the base 
register plus an 
offset multiplied by 
a constant size. 

Can include an additional 
offset in front of the 
parenthesis. Used for 
indexing into arrays and 
structures 

 
Table 4.8.1 
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4.9 – Assignment 
This is the specification of what the assembly functions need to perform. Do not copy or 
type this code. Use it as a reference when writing the assembly. Please refer to the 
Appendix for a reference on ASCII code. 
 
/* begin assignment specification */  
 
AtoI() 
{ 

sign = 1; /* initialize sign to positive */ 
 
/* skip over leading spaces and tabs */ 
while (*ascii == ' ' || *ascii == '\t') 

ascii++; 
 

/* check for a plus or minus sign */ 
if (*ascii == '+')  

ascii++; /* found a plus sign */ 
else if (*ascii == '-') 
{ 

sign = -1; /* found a minus sign */ 
ascii++; 

} 
 
*intptr = 0; /* stores the value calculated below */ 
 
/* skip to the one’s place of the digit */ 
for(i = 0; ascii[i] >= '0' && ascii[i] <= '9'; i++); 
i--; /* back up to the one’s place */ 
 
multiplier = 1; /* set multiplier for one’s place */ 
for(; i>=0 ; i--) 
{ 

*intptr += multiplier * (ascii[i] - '0'); 
multiplier *= 10; /* inc multiplier by factor of 10 */ 

} 
 
/* multiply in the sign */ 
*intptr = *intptr * sign; 

} 
 
/* end assignment specification */ 
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The following is the C driver for the assembly file. You are not required to comment this 
code. Please do not modify this file. 
 
/* begin C driver */ 
 
#include <stdio.h> 
 
char input[10]; 
int output; 
char *ascii; 
int *intptr; 
int sign, multiplier, i; 
 
int main(int argc, char **argv) 
{ 

printf("Enter a number: "); 
fgets(input, 10, stdin); 
ascii = input; 
intptr = &output; 
 
/* this is the function we will write in assembly */ 
AtoI();  
 
printf("\nASCII is: %s\nInteger is: %d\n",input,output); 
 
return 0; 

} 
 
/* end C driver */ 
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The following is the assembly stub to the driver. You are required to fully comment and 
write the assembly code to model the specification code. Insert your code where you see /* 
put code here */. Do not modify any other code in the file. Note the last line of the file 
must be a blank line to compile without warnings. 
 
/* begin assembly stub */ 
 
.globl AtoI 
.type AtoI,@function 
AtoI: 

/* prolog */ 
pushl %ebp 
movl %esp, %ebp 
pushl %ebx 
pushl %esi 
pushl %edi 
 
/* put code here */ 
 

return: 
/* epilog */ 
popl %edi 
popl %esi 
popl %ebx 
movl %ebp, %esp 
popl %ebp 
ret 
 

/* end assembly stub */ 
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The following are the cases you should test to ensure correct operation. Your program 
should accept an integer as input, in the form of a character string. The driver does not 
check for all input cases (e.g. junk in the input string), but correct operation should 
produce the following results: 
 
./lab4 
Enter a number: 32 
ASCII is: 32 
Integer is: 32 
 
./lab4 
Enter a number: -64 
ASCII is: -64 
Integer is: -64 
 
./lab4 
Enter a number: +128 
ASCII is: +128 
Integer is: 128 
 
./lab4 
Enter a number: 0 
ASCII is: 0 
Integer is: 0 
 
./lab4 
Enter a number: +0 
ASCII is: +0 
Integer is: 0 
 
./lab4 
Enter a number: -0 
ASCII is: -0 
Integer is: 0 
 
./lab4 
Enter a number: <space><tab><space><tab>256 
ASCII is:     256 
Integer is: 256 
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Lab 5 
Subroutines and the Stack 

 
 
Student Objectives 
 
• Learn about the “stack” and how it is used in programming 
• Learn about stack registers and how they are used to maintain the stack 
• Learn how to implement functions/subroutines in assembly language 
• Learn about the prolog and epilog and their important role in assembly language 
• Learn how to create and work with local variables 
• Differentiate between iterative techniques and recursive techniques 
• Apply recursion to assembly programming 

 
 
5.1 – Why Use Subroutines? 
In this lab, we will discuss subroutine structure. As you might know from C, subroutines (i.e. 
functions) are the primary mechanisms for building programs out of smaller blocks. Rather than 
creating a program with all its code in main(), it oftentimes makes sense to break code into 
smaller functional blocks. Consider the following example implementations of main(): 
 

/* no functions used */ 
int main(void) { 
 ... 
 ... 
 ...code... 
 ... 
 ... 
 ...more code... 
 ... 
 ... 
 ...even more code... 
 ... 
 ... 
 ...code... /* repeat */ 
 ... 
 ... 
 ...code... /* repeat */ 
 ... 
 ... 
 return 0; 
} 

/* functions used */ 
int main(void) { 
 ... 
 ... 
 code_func(); 
 moreCode_func(); 
 evenMoreCode_func(); 
 code_func(); /* reuse */ 
 code_func(); /* reuse */ 
 return 0; 
} 
void code_func() { 
 ... 
} 
void moreCode_func() { 
 ... 
} 
void evenMoreCode_func() { 
 ... 
} 

Code 5.1.1 
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Notice in the comparison in Code 5.1.1 that functional programming allows easy reuse of code 
and can also increase readability. Rather than repeating or copying ...code... three times in 
main(), we can compose a single function, code_func(), and call it multiple times instead. 
Furthermore, functional programming can also be a means to interface programs to the operating 
system and program library. For example, system calls such as malloc(), printf(), and 
fork() are C library functions that allow a program to interface with the operating system and 
its libraries. 
 
 
5.2 – Calling and Returning from Subroutines 
In assembly language, any program label can be the beginning of a subroutine. Thus, any label 
you can jump to (using jmp, je, jne, jle, jg, etc), you can alternatively call as a 
subroutine. The difference is that when you call a subroutine, the computer saves the return 
address, so that later when a ret instruction is executed, the program returns to the address of 
the instruction immediately after the call. You might be asking, “How does the ret 
instruction know the address of the instruction immediately after the call? The call saves 
this address, but how does ret access this saved information?” The answer involves something 
called the stack, which we will discuss in great detail in the following sections. Before we do 
that, let’s go through a simple call and ret example: 
 

0x100: 
0x104: 
0x108: 
0x10C: 
0x110: 
0x114: 
0x118: 
0x11C: 
0x120: 

jmp some_label 
...code... 
... 
... 
some_label: 

... 

... 
jmp ...code... 

 

call some_label 
...code... 
... 
... 
some_label: 

... 

... 
ret   # go to ...code... 

 

Code 5.2.1 
As shown in Code 5.2.1, call and ret are used to shift execution of the program to the label 
some_label and then resume execution at the address immediately following the call –  
...code... in this case. Notice the line numbers to the left of each line of code. These represent 
the addresses in memory these lines of assembly code reside at. Since the Intel 80386 uses a 32-bit 
instruction set architecture, each assembly instruction takes up 4 bytes of memory; thus, each line 
is represented in increments of four. Now, let’s consider this example in more detail. When the 
call instruction is executed, the address of some_label is read, and then a jump occurs to that 
address – 0x110, in this example. Later on, when the ret instruction is reached within 
some_label, the program jumps to the address of the line immediately after the call – address 
0x104.  
 
With this example in mind, the processor allows us to nest subroutine calls. This means one 
subroutine can call another, which in turn can call another, and so on. Likewise, recursive 
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subroutines (i.e. functions that call themselves) can be implemented. For each subroutine call, 
we need to have a corresponding ret (or return) to go back to the line of code beneath the 
call. Each time a subroutine returns, it only returns to the subroutine that called it last. For 
example: 
 

0x100: 
0x104: 
0x108: 
0x10C: 
0x110: 
0x114: 
0x118: 
0x11C: 
0x120: 
0x124: 
0x128: 
0x12C: 

call function_1 
...after_f1_call... 
... 
function_1: 

... 
call function_2 
...after_f2_call... 
... 
ret   # go to ...after_f1_call... 

function_2:  
... 
ret   # go to ...after_f2_call... 

Code 5.2.2 
Here, in the nested call in Code 5.2.2, the call at line 0x100 causes execution to jump to 
function_1 at line 0x10C, which in turn calls function_2 at line 0x114. This call 
causes execution to jump to function_2. Now, when the ret in function_2 is reached at 
line 0x12C, it will return to the code ...after_f2_call.... After this return, the code 
will resume execution at line 0x118 until it reaches the ret at line 0x120. This return will 
jump to the code ...after_f1_call .... 
 
So, considering we can nest subroutine calls, how does the processor keep track of where to 
return to for a particular ret? In other words, how do we know which call a certain ret 
corresponds to? The answer lies in the stack. 
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5.3 – An Introduction to the Stack 
In programming, the stack is a data storage mechanism that has two basic features:  (1) the 
ability to add data to it, and (2) the ability to remove data from it. Each of these features is 
implemented via the assembly instructions push, pop, respectively. Before we discuss how these 
instructions work and how to use them in our assembly code, let’s first visualize the stack in 
memory: 
 

 
Figure 5.3.1 

In Figure 5.3.1, we have a stack shown on the left, and on the right are some registers – some 
should be familiar and some might not be – we will discuss the last three registers shortly. For 
the time being, let’s ignore the registers and focus our attention on the stack itself. 
 
First, the stack is a segment of main memory (RAM) that has been allocated to a program by the 
operating system. The purpose of the stack is to provide a means and a location for the program 
to store data critical to its successful execution. In a 32-bit computer, and as shown above, the 
stack is composed of 4-byte blocks of memory, where data can be stored and retrieved. Based on 
what we have discussed about function calls and returns, what data does a program need to 
remember when a function is called? It needs to store the return address of the call – the 
address where the assembly instruction after the call instruction is located. As we have alluded 
to, this return address is stored on the stack when the call is executed. The call instruction 
determines the address of the next line of code (4 bytes from the call), and then it saves this 
address on the stack. Later on, when the return is executed, the ret instruction reads the return 
address the call had already saved on the stack, then the program’s execution jumps to that 
address. 
 
It is important to note that the stack resides in a different segment of memory than the code itself. 
The assembly code is not located on the stack, but it instead utilizes the stack to store 
information and data generated during execution and function calls. 

Register Contents 
%eax  
%ebx  
%ecx  
%edx  
%esi  
%edi  
%ess 0x0800 
%ebp 0x1030 
%esp 0x1024 

 

Address Contents 
0x0800  
...  

0x1000  
0x1004  
0x1008  
0x100C  
0x1010  
0x1014  
0x1018  
0x101C  
0x1020  
0x1024 XXXX 
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Figure 5.3.2 

As shown in Figure 5.3.2, programs consist of four independent blocks of memory – (1) the code 
segment, where the instructions are located; (2) the stack segment, where function calls, returns, 
and temporary data are stored; (3) the data segment, where global variables and other static 
variables (those which are known and allocated at compile-time) are stored; and (4) the heap 
segment, where dynamically allocated variables are instantiated and stored. In a 32-bit 
computer, there are 232 distinct addresses in memory – 0x0 through 0xFFFFFFFF; and, each of 
these four segments of memory are mapped to four sets of distinct addresses. For example, the 
code segment is assigned to a different range of addresses than the stack segment, the data 
segment, or the heap segment. The program’s instructions are located in and running from the 
code segment, while the stack, data, and heap segments are used by the instructions in the code 
segment to perform function calls/returns and to access variables, respectively. Note: This is a 
common point of confusion when learning about and working with the stack. The stack is 
separate from the code in memory. The code is designed to use the stack to run. 
 
[As an aside, we mentioned there are 232 distinct addresses in memory in a 32-bit computer. For 
those of us who have tried to upgrade the RAM in 32-bit computer, this is why there is a limit of 
4 gigabytes (i.e. 232 bytes) of RAM. A 32-bit operating system or 32-bit hardware is not capable 
of addressing more memory than 232 bytes of memory.] 
 
Now that we know what the stack is, as well as its purpose, let’s explore how the stack operates. 
Consider our simple example of a call and a ret. As we now know, the return address is 
stored on the stack. However, what we have not discussed is how this process occurs. Consider 
some key information we as programmers might want to know about the stack. As we know, the 
stack is a segment of main memory the program uses to execute function calls and returns. What 
might we need to know about our stack space? It would be nice to know what the bounds of our 
stack space are. Since the stack is only a small chunk of the available RAM in the system, we 
need to know where it begins and where it ends. The %ess register (or stack segment register) 
provides us with one piece of that information. It is a pointer to what we call the bottom of the 
stack. The bottom of the stack is the lowest address of our stack. Likewise, the %esp register 
(or stack pointer register) provides us with the upper bound – a pointer to the top of the stack. 
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The top of the stack is the highest address of our stack. Figure 5.3.3 below illustrates these two 
new registers. 
 

 
Figure 5.3.3 

Note: In our stack illustrations, the bottom of stack is towards the top of the page, while the top 
of the stack is towards the bottom of the page. Do not confuse the top of the page with the top of 
the stack or the bottom of the page with the bottom of the stack. The bottom of the stack is the 
lowest stack address and the top of the stack is the highest stack address. 
 
At program runtime, the operating system initializes the stack segment to the lowest address of 
the stack and the stack pointer to the highest address of the stack. In the example above, the stack 
pointer register (%esp) can point to any memory address from its initial value of 0x1024 all the 
way down to 0x0800 (the value of %ess). The stack segment register is static, while the stack 
pointer register is dynamic. Because the stack pointer can change, it is said to roam the stack. It 
will point to the current top of the stack or the most recently added piece of data. During 
program execution, as data is added to the stack, the value of the stack pointer decreases by 4 
bytes to the limit of the stack segment. 
 
So, with knowledge of the %ess and %esp register, we can now look at how call and ret 
actually work. When a function is called, the call instruction, as we know, places the return 
address of the next line of code to the stack. To do this, the call will (1) decrement the stack 
pointer (%esp) by 4 bytes, and then (2) write the return address at the location of the new value 
in %esp. Consider the following example: 
	    

Register Contents 
%eax  
%ebx  
%ecx  
%edx  
%esi  
%edi  
%ess 0x0800 
%ebp 0x1030 
%esp 0x1024 

 

Address Contents 
0x0800  
...  

0x1000  
0x1004  
0x1008  
0x100C  
0x1010  
0x1014  
0x1018  
0x101C  
0x1020  
0x1024 XXXX 
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0x100: 
0x104: 
0x108: 
0x10C: 
0x110: 
0x114: 

call my_func 
... 
... 
my_func: 

... 
ret 

Code 5.3.1 

In Code 5.3.1 the call to my_func at address 0x100 will (1) decrement the stack pointer from 
0x1024 to 0x1020, then (2) place address 0x104 (the return address) on the stack at the new 
location of %esp – 0x1020. At this point, program execution will then jump to my_func – 
address 0x10C, as shown in Figure 5.3.4 below: 
 

 
Figure 5.3.4 

Consider the same example, where now we return to the calling function. After the jump to 
my_func, the intermediate code is executed and the ret is reached at address 0x114. At this 
point, the ret performs the opposite operation as the call. The ret will (1) determine the 
current location of the stack pointer (0x1020) and read the data at this address on the stack – 
0x104. Next, the ret will (2) increment %esp 4 bytes to address 0x1024. Finally, after this 
operation is complete, ret will resume program execution at the address it read from the stack – 
0x104.  
 

Register Contents 
%eax  
%ebx  
%ecx  
%edx  
%esi  
%edi  
%ess 0x0800 
%ebp 0x1030 
%esp 0x1020 

 

Address Contents 
0x0800  
...  

0x1000  
0x1004  
0x1008  
0x100C  
0x1010  
0x1014  
0x1018  
0x101C  
0x1020 0x104 
0x1024 XXXX 
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Figure 5.3.5 

Notice in Figure 5.3.5 that the address 0x104 remains on the stack even after the return from 
my_func. This data will only be removed from the stack when it is overwritten by the next 
function call’s return address or other such data saved to the stack. This might seem rather 
“unclean,” but when working in microprocessors, efficiency is key. It is not necessary to clear 
the data from the stack after it is removed/copied. 
 
As we can see, ret relies on the fact that the stack pointer is pointing to the correct address on 
the stack – the location where the call placed the return address data. If %esp were to have 
been accidentally moved to 0x101C, ret would have read the data at that stack location, 
moved %esp to 0x1020, and attempted to jump to the address it read from location 0x101C. 
Note, in the figure above, there does not appear to be any data on the stack at 0x101C through 
0x0800; however, it is important to know that the stack is never initialized or cleared to zero 
before the program or function is executed. As such, in our latter (and unfortunate case), ret 
will read whatever “garbage” data is at 0x101C and try to jump or return to the address it read. 
Chances are, the address ret reads is not an address within the code segment of our program’s 
memory. Thus a segmentation fault (a.k.a. seg. fault) will likely occur. When a program 
encounters a segmentation fault, it has tried to access an unauthorized memory address – an 
address not within the scope of the program’s allotted memory. The Intel 80386, when used in 
32-bit or “protected” mode, will stop the operation of a program that accesses other programs’ 
memory/data. This is a great feature, since it prohibits one program from interfering with the 
execution of another. 
 
As we can see, the stack is a very powerful tool in functional programming, but we have just 
explored the surface of what the stack is capable of and used for. Let’s take a look at how we can 
not only call and return from functions but also manually store and retrieve data from the stack. 
 
  

Register Contents 
%eax  
%ebx  
%ecx  
%edx  
%esi  
%edi  
%ess 0x0800 
%ebp 0x1030 
%esp 0x1024 

 

Address Contents 
0x0800  
...  

0x1000  
0x1004  
0x1008  
0x100C  
0x1010  
0x1014  
0x1018  
0x101C  
0x1020 0x104 
0x1024 XXXX 
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5.4 – Pushing To and Popping From the Stack 
As we will see, it is often desirable to use the stack as a place to store data. So, why might we 
want to store something on the stack? To start, consider the number of general purpose registers 
within the Intel 80386; there are eight – %eax, %ebx, %ecx, %edx, %esi, %edi, %ebp, and 
%esp. As we know, the first four of these registers are used to perform computations and store 
results. The next two are indexing registers (discussed in Lab 4), and the final two are registers 
reserved for use on the stack. (We will discuss %ebp in the following section.) What if we need 
to perform a computation that requires keeping track of more intermediate values than the 
general purpose registers can support? In this case, we could use the stack as a place to store any 
temporary data in excess of the space available in the general purpose registers. 
 
To write data to the stack, the Intel 80386 processor provides us with the push instruction. The 
push instruction (or pushl for 32-bit values) takes a single argument. This argument is the 
data to be written to the stack. A push, when it is executed, will (1) subtract 4 bytes from the 
stack pointer, and (2) write the argument of pushl to the new address contained in the %esp 
register. Notice, this is very similar to the call instruction; however, call includes a jump to 
its argument, while push simply saves its argument to the stack. We can think of the call 
instruction as being a combination of a push and a jmp. 
 
Contrary to push, to read data from the stack, the processor provides us with the pop 
instruction. Like push, pop (or popl for 32-bit values) takes a single argument. This 
argument is the location where we would like to read or copy the data from the stack. popl will 
(1) copy the data at the location in the stack pointer to the argument of popl, and (2) increment 
the stack pointer 4 bytes to the next location on the stack. 
 
To illustrate how push and pop work, let’s consider the following situation where we perform a 
calculation, run out of general purpose registers, and need to save an additional intermediate 
value. We decide to save the current value of 10 in %eax to the stack so that we might reuse 
%eax for another intermediate calculation. 
 

0x100: 
0x104: 
0x108: 
0x10C: 
0x110: 
0x114: 
0x118: 
0x11C: 
0x120: 

call my_func 
... 
my_func: 

... 
pushl %eax 
... 
popl %eax 
... 
ret 

Code 5.4.1 
 
Let’s assume we have already called my_func in Code 5.4.1, and the return address 0x104 is 
on the stack. At address 0x110, we need to save %eax (which contains the number 10) to the 
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stack for later use. To do so, we push it to the stack, which decrements the stack pointer 4 bytes 
from 0x1020 to 0x101C and then writes the contents of the A register to this address on the 
stack. The following stack representation in Figure 5.4.1 depicts this push: 
 

 
Figure 5.4.1 

After the push, we are safe to use %eax for our additional calculations, with knowledge its 
original value is safely saved on the stack at address 0x101C. The calculations are then 
performed overwriting %eax with a value not equal to 10. Next, our code reaches line 0x118, 
where we want to retrieve the A register’s previous value to finish our calculation. To do this, we 
execute a pop to %eax, which will determine the location of the stack pointer (0x101C), read 
the value stored there (10), write this value to the argument of pop (%eax), and then increment 
the stack pointer 4 bytes to the next location on the stack. 
	    

Register Contents 
%eax 10 
%ebx XXXX 
%ecx XXXX 
%edx XXXX 
%esi  
%edi  
%ess 0x0800 
%ebp 0x1030 
%esp 0x101C 

 

Address Contents 
0x0800  
...  

0x1000  
0x1004  
0x1008  
0x100C  
0x1010  
0x1014  
0x1018  
0x101C 10 
0x1020 0x104 
0x1024 XXXX 
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Figure 5.4.2 

 
As we can see in the Figure 5.4.2 above, the stack pointer is pointing to the return address at the 
conclusion of the push and pop instructions. As a general rule, for every push in a function, 
there must be a corresponding pop. Had we forgotten to pop 10 off the stack to %eax, not only 
would our calculation have been wrong, but the ret instruction would have tried to return to 
address 10 in memory, which most certainly is not within the scope of the code segment for our 
program. This again demonstrates the low-level (or “dumb”) nature of assembly instructions – 
there is no built-in error-checking against assembly code. For example, a ret will simply read 
the address at the stack pointer, increment %esp, and then attempt to jump to the address it read. 
It is our responsibility as assembly programmers to ensure the stack pointer is pointing to the 
correct data (e.g. the correct return address, in this case). 
 
As we can observe, push simply adds a new data value to the top of the stack, and pop removes 
a data value from the top of stack. What makes the stack a stack is that the push and pop follow 
a “last-in, first-out” or LIFO policy. Thus, if we push the numbers 10, 20, and 30 onto the 
stack, and then pop the stack three times, we will get the numbers 30, 20, and 10, in that order, 
as shown in Code 5.4.2 below: 
 

pushl $10 
pushl $20 
pushl $30 
... 
... 
popl %ecx   # put 30 in %ecx 
popl %ebx   # put 20 in %ebx 
popl %eax   # put 10 in %eax 

Code 5.4.2 

Register Contents 
%eax 10 
%ebx XXXX 
%ecx XXXX 
%edx XXXX 
%esi  
%edi  
%ess 0x0800 
%ebp 0x1030 
%esp 0x1020 

 

Address Contents 
0x0800  
...  

0x1000  
0x1004  
0x1008  
0x100C  
0x1010  
0x1014  
0x1018  
0x101C 10 
0x1020 0x104 
0x1024 XXXX 
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As we have seen and will see in the following sections, the order in which we push and pop 
data to and from the stack is crucial in successfully implementing functional programs.  
 
 
5.5 – Stack Frames:  Caller and Callee Responsibilities 
As we have discovered, functions are implemented by use of the stack in assembly language. 
Each function operates in what is called its stack frame. A stack frame is the address range on 
the stack a particular function uses. For example, the basic function call and return scenario used 
at the beginning of this lab has a stack frame of 4 bytes, since the only thing stored on the stack 
for that particular function was the return address placed there by the call. Likewise, the push 
and pop example in the previous section has a stack frame of 8 bytes – 4 for the return address 
placed on the stack by the call and 4 for the push of the %eax register. Stack frames are 
typically larger than this, since most functions contain local variables stored on the stack. In 
addition to allocating space for local variables, stack frames contain special data critical to the 
execution of and successful return to the calling function. The return address is certainly part of 
this data; however, there are additional pieces to the puzzle of functional programing we have yet 
to discuss – namely setting up and tearing down the stack. 
 
To set the stage, let’s think back to nested function calls. What if a program has data in some 
registers and needs to call a function? It would not be very “fair” (or efficient for that matter) 
to leave the data in the registers and prohibit the next function from using them. In Intel x86 
assembly, to ensure all functions have safe read/write access to the registers in the CPU, both the 
calling function (the “caller”) and the function that gets called (the “callee”) split the task of 
saving CPU register contents to the stack. The caller will save data it needs to remember after the 
function call is complete. By convention, it is the responsibility of the caller to save the contents 
of the %eax, %ecx, and %edx registers, if the caller has anything in these registers it needs to 
use after the function call completes. In a similar manner, by convention, it is the responsibility 
of the callee to save the contents of the %ebx, %ebp, %esi, and %edi registers, if it needs to 
use any of these registers during its execution. This is summarized in Table 5.5.1 below: 
 

Caller Should Save Callee Should Save 
%eax %ebx 
%ecx %ebp 
%edx %esi 
--- %edi 

 
Table 5.5.1 

 
The contents of general purpose registers are saved on a need-only basis. The reason for this is 
that it consumes more time and power to save registers that the caller does not care about or that 
the callee will not overwrite. 
 
Although these facets of the computer are hidden away from us in high-level languages, we as 
assembly programmers need to keep track of what registers we use and will need to use in the 
future when conducting function calls and returns. Let’s go through an example: 
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0x100: 
0x104: 
0x108: 
0x10C: 
0x110: 
0x114: 
0x118: 
0x11C: 
0x120: 
0x124: 
0x128: 
0x12C: 
... 
0x150: 
0x154: 
0x158: 
0x15C: 
0x160: 
0x164: 

... 
movl varl, %eax 
movl ptr1, %ebx 
movl var2, %edx 
movl count, %edi 
## what do we need to save here? 
... 
call my_func 
... 
... 
movl (%ebx, %edi, 4), %ecx 
addl %eax, %edx 
... 
my_func: 

## What do we need to save here? 
movl x, %eax 
movl y, %edi 
... 
ret 

Code 5.5.1 
In this scenario, we have an assembly program that is running and needs to call the function 
my_func. The goal is to determine what registers need to be saved at addresses 0x114 and 
0x154 of the code given in Code 5.5.1.  
 
Let’s begin with the caller and complete the code starting at address 0x114. To do so, let ask the 
question: What registers contain data prior to the function call and are used after it? In other 
words, pretending the function call is not even there, what registers after the call rely on 
data present in the same registers before the call? We can see that the code after the call uses 
registers %ebx (ptr1), %edi (count), %eax (var1), and %edx (var2). These two lines of 
code operate under the assumption that the registers will not be modified during the function 
call. Recall that the caller must save %eax, %ecx, and %edx if it will need their contents after 
the call; thus, we need to push %eax and %edx to the stack before we call my_func. 
Notice we do not need to save %ecx. Although it is used after the function call, it is a 
destination, and data is not read from it to compute a result. So, the following in Code 5.5.2 is 
required by the caller: 
 

0x114: 
0x118: 
0x11C: 

pushl %eax   ## needed after the function call 
pushl %edx   ## needed after the function call 
call my_func 

Code 5.5.2 
We’re halfway there; now let’s work on what the callee needs to save. By convention, the callee 
is required to save %ebx, %ebp, %esi, and %edi, if it will need to use them. As we can see in 
my_func, the %eax and %edi registers are overwritten; thus, the callee needs to include a 



 Page 90 of 155 

push of the %edi register. Notice that the %eax register is not saved – that is the responsibility 
of the caller. Also, notice that the %ebx register is used by the caller after the function return but 
not pushed by the callee. Since the callee does not overwrite %ebx, this register will still contain 
ptr1 after the function return. As such, only one push is necessary in the callee, as shown in 
Code 5.5.3: 
 

0x150: 
0x154: 

my_func: 
pushl %edi 

Code 5.5.3 

Putting it all together, we obtain Code 5.5.4: 
 

0x100: 
0x104: 
0x108: 
0x10C: 
0x110: 
0x114: 
0x118: 
0x11C: 
0x120: 
0x124: 
0x128: 
0x12C: 
... 
0x150: 
0x154: 
0x158: 
0x15C: 
0x160: 
0x164 

... 
movl varl, %eax 
movl ptr1, %ebx 
movl var2, %edx 
movl count, %edi 
pushl %eax 
pushl %edx 
call my_func 
... 
... 
movl (%ebx, %edi, 4), %ecx 
addl %eax, %edx 
... 
my_func: 

pushl %edi 
movl x, %eax 
movl y, %edi 
... 
ret 

Code 5.5.4 
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with its corresponding stack and registers, current as of line 0x160: 
 

 
Figure 5.5.1 

 
Notice in Figure 5.5.1, the push %edx was actually not necessary, since var2 in %edx was 
not changed during the execution of my_func. However, the caller needs to save any register 
(of those it is responsible for) if it has any important data in it. This model operates under the 
assumption that the caller does not have knowledge of how the callee is written – a “better be 
safe than sorry” model. In fact, this is very accurate for library or system calls of which the 
internal code is often hidden from users; so, we cannot assume certain registers will not be used 
or overwritten. 
 
Now, let’s expand this idea to form a fully functional solution, since what we have done so far 
has omitted a key component. We know that both caller and callee subroutines need to save 
some of the general purpose registers, if they are important or will be overwritten, respectively. 
The question becomes, how do we restore what we saved? For example, if the caller needs to 
save the %eax and %edx registers to the stack and the callee needs to save %edi (as in our 
example above), how can we put the values we saved back in the registers when the function 
my_func returns? 
 
Recall that the stack is a LIFO data structure. This means that the last item to be pushed or saved 
to the stack must be the first to be removed or popped. Let’s step through what we have done so 
far and see what is missing. As shown in Code 5.5.4, before the call to my_func, we push 
%eax, then %edx, and then we call my_func, which automatically pushes the return address 
to the stack. Following this, we push %edi to the stack when executing my_func. The next 
stack operation we see in our code is the ret at address 0x164. Remember, ret does not know 
to search for and read the correct return address from the stack. It simply reads the data at the 
address in the stack pointer register. Recall that the stack pointer is decremented for each push 
or call and incremented for each pop or ret. Thus, based on our code so far, %esp will point 
to the old value of %edi, which was the last thing we saved to the stack. ret will attempt to 

Register Contents 
%eax x 
%ebx ptr1 
%ecx  
%edx var2 
%esi  
%edi y 
%ess 0x0800 
%ebp 0x1030 
%esp 0x1014 

 

Address Contents 
0x0800  
...  

0x1000  
0x1004  
0x1008  
0x100C  
0x1010  
0x1014 old %edi 

0x1018 0x120 
0x101C old %edx 

0x1020 old %eax 

0x1024 XXXX 
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jump to the old value of %edi, which is not what we want to happen. As shown in the stack in 
the previous figure, Figure 5.5.1, the correct return address is actually 4 bytes higher on the 
stack than the old value of %edi, so we need to first remove or pop this old value of %edi from 
the stack (which will increment %esp 4 bytes) in order to access the return address with the ret 
instruction. 
 
Likewise, after the return from my_func, we need to restore the %eax and %edx registers we 
pushed. To do so, we must follow the LIFO policy and pop the %edx register, then pop the 
%eax register. Like ret, pop will only remove the data the stack pointer is currently pointing 
to, then increment %esp by 4 bytes to the next element on the stack. Continuing our example, 
after the ret jumps to the return address, the stack pointer is pointing to our old value of %edx, 
so we pop it off, followed by %eax, which results in the assembly given in Code 5.5.5: 
 

0x100: 
0x104: 
0x108: 
0x10C: 
0x110: 
0x114: 
0x118: 
0x11C: 
0x120: 
0x124: 
0x128: 
0x12C: 
... 
0x150: 
0x154: 
0x158: 
0x15C: 
0x160: 
0x164 

... 
movl varl, %eax 
movl ptr1, %ebx 
movl var2, %edx 
movl count, %edi 
pushl %eax 
pushl %edx 
call my_func 
popl %edx   ## By LIFO, this must mirror the pushes 
popl %eax 
movl (%ebx, %edi, 4), %ecx 
addl %eax, %edx 
... 
my_func: 

pushl %edi 
movl x, %eax 
movl y, %edi 
popl %edi   ## Only 1; LIFO order does not matter 
ret 

Code 5.5.5 
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with the following stack, current from address 0x12C: 
 

 
Figure 5.5.2 

Notice in Figure 5.5.2, the stack still contains the data we just popped off it, but the top of the 
stack (%esp) is back where it was before any of our code executed (XXXX at address 0x1024). 
Also note, since we pushed/saved and popped/restored our registers, they have been persevered 
for each stack frame (i.e. each function call). This successfully implements the idea that each 
function should have access to all general purpose registers without the concern of overwriting a 
prior function’s data. 
 
  

Register Contents 
%eax var1 
%ebx ptr1 
%ecx XXXX 
%edx var2 
%esi  
%edi Count 
%ess 0x0800 
%ebp 0x1030 
%esp 0x1024 

 

Address Contents 
0x0800  
...  

0x1000  
0x1004  
0x1008  
0x100C  
0x1010  
0x1014 old %edi 

0x1018 0x120 
0x101C old %edx 

0x1020 old %eax 

0x1024 XXXX 
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5.6 – Stack Frames:  The Prolog, Epilog, and Local Variables 
The act of saving registers and restoring them within a given function is significant enough to 
have its own terminology. These lines of code are called the prolog and the epilog of a function. 
The purpose of the subroutine prolog is to “set up” the stack frame for the function – meaning 
save applicable registers and allocate space for local variables. The purpose of the function 
epilog is to “tear down” the stack frame for the function – meaning de-allocate local variable 
space, restore registers saved in the prolog, and finally return from the function. The prolog and 
epilog skeleton of a function is shown below in Code 5.6.1: 
 

my_func: 
## prolog: push registers and get space for local var’s 
... 
... 
... 
## epilog: restore local var’s space and pop registers 
ret 

Code 5.6.1 

We have already discussed saving and restoring general purpose registers; however we have not 
discussed local variables. 
 
If we look back to the programs we have written thus far in Lab 1 through Lab 4, each of these 
assignments have used global variables to save data from registers. As described earlier in 
Section 5.2 – An Introduction to the Stack, global variables and data are stored in the data 
segment of memory. In addition, global variables are allocated at compile-time, while local 
variables are allocated during run-time. As we know from C and other functional programming 
languages, local variables apply only to the scope of the function or the body of loops they are 
declared within. An interesting aspect about local variables is that there can be more than one 
instance of a given local variable name in a program; this is not true for global variables, which 
must be uniquely identifiable within the scope of the entire program. Thus, it follows that these 
variables of limited scope be stored someplace only the function that uses them will access – the 
stack. 
 
The stack, as we know, is a contiguous segment of memory used by subroutines for their 
successful execution. It has a top and a bottom. The top of the stack is indicated by the stack 
pointer, and as data is added to the stack, %esp slowly approaches the bottom of the stack 
(indicated by %ess). 
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Figure 5.6.1 

In the stack in Figure 5.6.1 above, we can see there are three items present on the stack, which are 
shaded in red. These are pieces of data saved to the stack by the current or perhaps a previous 
subroutine, and thus should not be overwritten. By nature of the stack, the addresses below (lower 
than) the stack pointer are available to store data and are shaded in green. As the stack pointer gets 
closer to the beginning of the stack segment, as items are pushed or function calls are made, there 
is a decreasing amount of available space on the stack, as seen below in Figure 5.6.2. This can 
occur when many sequential stack frames are created but not torn down until a later time, as is 
often done in recursive programming with nested function calls. This is not a bad condition to 
encounter in a program. What is of concern is running out of stack space. 
 

 
Figure 5.6.2 

Register Contents 
%eax  
%ebx  
%ecx  
%edx  
%esi  
%edi  
%ess 0x0800 
%ebp 0x1030 
%esp 0x101C 

 

Address Contents 
0x0800  
...  

0x1000  
0x1004  
0x1008  
0x100C  
0x1010  
0x1014  
0x1018  
0x101C XXXX 
0x1020 XXXX 
0x1024 XXXX 

 

Register Contents 
%eax  
%ebx  
%ecx  
%edx  
%esi  
%edi  
%ess 0x0800 
%ebp 0x1030 
%esp 0x1000 

 

Address Contents 
0x0800  
...  

0x1000 XXXX 
0x1004 XXXX 
0x1008 XXXX 
0x100C XXXX 
0x1010 XXXX 
0x1014 XXXX 
0x1018 XXXX 
0x101C XXXX 
0x1020 XXXX 
0x1024 XXXX 
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When the stack pointer reaches and attempts to decrement lower than the stack segment, there is no 
more space on the stack, and the program encounters a stack overflow, shown below in Figure 
5.6.3. A stack overflow is a fatal event, which results in the termination of the program by the 
operating system. 
 
 

 
Figure 5.6.3 

On the other hand, as data is removed from the stack (items are popped, rets are executed, etc), the 
stack pointer moves farther away from the beginning of the stack segment, which means there is an 
increasing amount of available space on the stack. This behavior can be seen by viewing Figures 
5.6.1 and 5.6.2 in reverse order. 
 
So, what do the previous figures have to do with local variables? As we mentioned before, local 
variables are stored on the stack. In order to use the stack as a space to store local variables, we 
need to understand that the free space on the stack is located below (at a lower address from) the 
stack pointer. We can take advantage of this free space to use for local variables by manually 
decrementing the stack pointer into this unused space. To aid in this process, we have another 
general purpose register at our disposal – the base pointer register or %ebp. The idea is simple – 
(1) save the contents of %ebp to the stack, (2) save the stack pointer address in %ebp, (3) subtract 
from the stack pointer the number of bytes required to store the local variable(s), and (4) access 
these variables via an offset to either the base pointer register or the stack pointer register. This is a 
rather difficult concept to explain without an example, so consider the following... 
 
Let’s say we have a function that requires three local variables that are integers – int a, int b, 
and int c. This means, we will need to get some space on the stack to store these integers. How 
much space do we need? For three integers, we need 3 integers * 4 bytes/integer = 12 bytes. As 
shown in Figures 5.6.1 and 5.6.2, on the stack, unused memory is located at addresses below the 
top of the stack – pointed to by the stack pointer, %esp. So, we can subtract 12 from %esp to 

Register Contents 
%eax  
%ebx  
%ecx  
%edx  
%esi  
%edi  
%ess 0x0800 
%ebp 0x1030 
%esp 0x07FC 

 

Address Contents 
0x0800 XXXX 
... XXXX 

0x1000 XXXX 
0x1004 XXXX 
0x1008 XXXX 
0x100C XXXX 
0x1010 XXXX 
0x1014 XXXX 
0x1018 XXXX 
0x101C XXXX 
0x1020 XXXX 
0x1024 XXXX 

 

Stack 
Overflow! 
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move the top of the stack down three integer’s worth of space. The addresses of this newly 
allocated memory will become synonymous with these three local variables. 
 

my_func: 
## prolog: push registers and get space for local var’s 
pushl %ebx        ## used in ... 
pushl %ebp        ## save prior stack frame’s %ebp value 
movl %esp, %ebp   ## set %ebp = %esp = 0x1010 
subl $12, %esp    ## get space for 3 integers 
... 

Code 5.6.2 
 

Consider a stack like Figure 5.6.1 prior to the execution of my_func. With all functions, the first 
event that occurs on the stack is the return address written by the call (designated as ret addr in 
Figure 5.6.4 below). In Code 5.6.2, following the call, my_func (somewhere in ...) requires 
the use of %ebx, so its register contents need to be pushed to the stack in the prolog. (Recall, the 
callee is required to save %ebx, %ebp, %edi, and %esi, as necessary.) Next, we need to get the 
stack ready for the three integers, which are local variables. To do so, we first push the base 
pointer register’s contents to the stack. Since local variables will require the use of %ebp, we need 
to save its contents from the previous stack frame in the prolog. 
 
After all the push instructions are complete, the stack pointer is pointing to the last item pushed 
(address 0x1010 in Figure 5.6.4). We are now ready to get space for a, b, and, c. We first need 
to mark where %esp is currently pointing. This is done by moving the contents of %esp into 
%ebp. (Note, we have saved %ebp in our prolog, so it is acceptable to write a new value in it.) 
Now, to get the space we need for our local variables, we need move the top of the stack 12 
bytes from its current location (0x1010); however, we do not want to overwrite our prolog – 
the old values of %ebp, %ebx, and the return address. So we need to subtract 12 bytes from the 
stack pointer, which will move it down the stack to address 0x1004 – computed from 0x1010 
minus 0x00C (decimal 12). In essence, the stack addresses below %ebp to the limit of %esp – 
0x100C, 0x1008, and 0x1004 – are now reserved for local variables a, b, and c, respectively. 
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Figure 5.6.4 

 
The question then becomes: How do we access this newly acquired space? Recall, in Lab 4 we 
discussed various addressing modes of the Intel 80386 processor. A couple of these techniques 
applied to pointer and arrays – namely register indirect addressing and base-indexed addressing. As 
such, it is worth noting the array-like structure of the stack. Notice how the stack is a sequence of 
addresses, each of which has some data stored in it. Also, notice the pointers that are used with the 
stack – %esp and %ebp. We can apply either of these addressing technique to the stack and its 
registers in order to access or modify stack contents. 
 
Continuing our example, let’s say we want to perform the following C operation shown in Code 
5.6.3 in assembly: 
 

my_func() { 
int a; 
int b; 
int c; 
a = 0; 
b = 10; 
c = b; 
... 

} 
Code 5.6.3 

 
In assembly, local variables are not given alphanumeric (i.e. human-readable) names. They are 
referred to by their addresses on the stack. Refer to Figure 5.6.4 – the addresses 0x100C, 
0x1008, and 0x1004 correspond to variables a, b, and c, respectively. The first variable to be 
declared is the first to receive space on the stack. In our example, a was declared before b, which 
was declared before c. This means, when we subtract 12 bytes from %esp, the first 4 bytes 
allocated (0x100F through 0x100C) are used for our first integer – int a. Likewise, bytes 5 – 

Register Contents 
%eax  
%ebx var1 
%ecx  
%edx  
%esi  
%edi  
%ess 0x0800 
%ebp 0x1010 
%esp 0x1004 

 

Address Contents 
0x0800  
...  

0x1000  
0x1004  
0x1008  
0x100C  
0x1010 0x1030 
0x1014 var1 
0x1018 ret addr 
0x101C XXXX 
0x1020 XXXX 
0x1024 XXXX 
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8 allocated (0x100B through 0x1008) are used for our second integer – int b. And finally, 
bytes 9 – 12 of the 12 bytes allocated (0x1007 through 0x1004) are used for our third and last 
integer – int c. The function that uses these local variables (my_func) must be written to refer 
to these addresses in order to use any of the local variables – they cannot be referenced by name. 
 
With this information, let’s now convert Code 5.6.3 to assembly. We already have the space 
allocated, as shown in the prolog in Code 5.6.2, so all we need to do is perform the assignments. 
Variable a is the first to be declared, so it is at an offset of 4 bytes from the pointer %ebp, as 
shown in Figure 5.6.4. Which form of addressing could we use to reference this memory reserved 
for int a? Register indirect addressing fits the bill perfectly. Recall that register indirect 
addressing is used for pointers, where the address of the data’s location is in a register and is 
dereferenced using parenthesis with an optional offset. So to set a = 0, we can write the 
following: 
 

my_func: 
... 
movl $0, -4(%ebp)    ## set a = 0 
... 

Code 5.6.4 
 
Notice the -4 in Code 5.6.4. The base pointer register is pointing to address 0x1010 on the stack. 
The memory we reserved for our local variables starts at address 0x100C, which is below %ebp. 
A positive 4 would move in the direction of the registers saved in the prolog, which could 
overwrite important data and later cause an error. Now, let’s use the same methodology to set b = 
10: 
 

my_func: 
... 
movl $0, -4(%ebp)    ## set a = 0 
movl $10, -8(%ebp)   ## set b = 10 
... 

Code 5.6.5 
 

As we can see in Figure 5.6.4, variable b’s space is an additional 4 bytes from the memory used 
for variable a on the stack, which means it is a total of 8 bytes lower than the address in register 
%ebp. Now, to set c = b, we need to access b, then set the address of c equal to it. To do this, 
we need to copy the contents from stack address 0x1008 (the address of b) to address 0x1004 
(the address of c). We will certainly need to use the mov instruction, but be careful – at least one 
argument to any instruction must be a register or constant. So, the act of c = b actually takes two 
assembly instructions, as seen in Code 5.6.6: 
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my_func: 

... 
movl $0, -4(%ebp)    ## set a = 0 
movl $10, -8(%ebp)   ## set b = 10 
movl -8(%ebp), %ebx  ## use B register as intermediate 
movl %ebx, -12(%ebp) ## set c = b 
... 

Code 5.6.6 
 
We are almost done – so far we have allocated space for local variables and accessed these local 
variables on the stack. To finish up, we need to de-allocate the stack space we have used for a, b, 
and c. In other words, we need to set %esp back to where it was before we manually moved it 12 
bytes. Why is this so? Well, if we were to progress right into the epilog and pop the registers we 
saved in the prolog, pop would reference the current location of the stack pointer, and put variable 
c into %ebp, then variable b into %ebx, and finally ret would attempt to return to the address 0 
– the value of a. This would certainly result in a segmentation fault. To avoid this problem, we 
must relocate %esp back to where it was after the last push in the prolog (address 0x1010). 
This way, the pop and ret instructions will reference the correct stack addresses each time. Thus, 
we need to insert a mov %ebp, %esp before any of the pops in the epilog: 
 

my_func: 
## Prolog ## 
pushl %ebx 
pushl %ebp 
movl %esp, %ebp 
subl $12, %esp 
 
## Function Code ## 
movl $0, -4(%ebp) 
movl $10, -8(%ebp) 
movl -8(%ebp), %ebx 
movl %ebx, -12(%ebp) 
 
## Epilog ## 
movl %ebp, %esp 
popl %ebp 
popl %ebx 
ret 

Code 5.6.7 
 
The full implementation of this example is shown in Code 5.6.7. Note how the epilog is a mirror 
image of the prolog – the last register pushed is the first to be popped. As discussed, this is due to 
the LIFO nature of the stack. Likewise, notice how in the prolog we save the stack pointer in the 
base pointer register, and in the epilog we restore the original stack pointer from the base pointer 
by copying it back into %esp. This essentially de-allocates the space we attained on the stack for 
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the local variables, no matter how much space we used. In this case, the stack pointer is 
incremented by 12 bytes by simply moving the base pointer’s value into it. 
 
As we saw from this example, register indirect addressing allows us to read from and write to local 
variables. This idea can be extended to work with base-indexed addressing as well. The only 
difference is the inclusion of an indexing register – typically %esi or %edi. One might wish to 
use this form of addressing over register-indirect when working with loops and local variables. 
Code 5.6.8 below is another way to implement Code 5.6.7 using base-indexed addressing and a 
loop.  
 

my_func: 
## prolog: push registers and get space for local var’s 
pushl %edi 
pushl %ebx 
pushl %ebp 
movl %esp, %ebp 
subl $12, %esp 
movl $-1, %edi 
loop: 

set_a: 
cmpl $-1, %edi 
jne set_b 
movl $0, (%ebp, %edi, 4)    ## set a = 0 
decl %edi 
jmp loop 

set_b: 
cmpl $-2, %edi 
jne set_c 
movl $10, (%ebp, %edi, 4)   ## set b = 10 
decl %edi 
jmp loop 

set_c: 
incl %edi  ## get b (-2) 
movl (%ebp, %edi, 4), %ebx  ## set %ebx = b 
decl %edi  ## go back to c (-3) 
movl %ebx, (%ebp, %edi, 4)  ## set c = %ebx 

done: 
... 

Code 5.6.8 
 
As we can see, this implementation in Code 5.6.8 is of course not the most practical or efficient 
method for this simple example. However, it illustrates how base-indexed addressing can be used 
with the stack. In either form of referencing data on the stack, we may use either the base pointer or 
the stack pointer register with an offset to access local variables. Our examples have focused on 
accessing local variables by applying a negative offset to %ebp. The same principle can be applied 
to %esp; however instead of subtracting from %esp, we would need to add a positive offset to 
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access each variable. Also note, if this latter approach is used, the first variable (a in our case) will 
be the farthest away from %esp, meaning to access int a, we would need to add an offset of 0 
to %esp, to access int b, we would need to add an offset of 4 to %esp, and finally to access 
int c, we would need to add an offset of 8 to %esp. The equivalence of these two methods can 
be verified by examining Figure 5.6.4 once more and applying the offsets. 
 
So, in summary of this section, the prolog and epilog are essential features of any assembly 
language subroutine or function. They work together to initialize the stack for the function and then 
restore the stack to its original condition after the function executes. The prolog optionally saves 
the %ebx, %ebp, %edi, and %esi general purpose registers by pushing them to the stack. 
(%eax, %ecx, and %edx are saved by the caller.) These registers only need to be saved if the 
function that is about to execute will overwrite their contents. This is important, since we want the 
caller to have its original data in these registers when the function returns. In any case, all registers 
that are pushed to the stack in the prolog need to be popped from the stack in the epilog. This is 
done in reverse (or mirror) order from the prolog, due to the LIFO nature of the stack. Finally, the 
prolog is also used to allocate space on the stack for local variables. This is done after all registers 
have been saved and is implemented by subtracting the number of bytes required for the local 
variables from the stack pointer register. This effectively increases the stack space of the function’s 
stack frame. Local variables are accessed on the stack using either %ebp or %esp in register 
indirect or base-indexed addressing. 
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5.7 – Putting it all Together 
Now that we have discussed function calls and returns, pushing and popping data, saving registers 
to the stack, allocating and working with local variables, and the prolog and the epilog of 
subroutines, let’s apply this newfound knowledge to an example where we have a couple C 
functions that are called within a program: 
 

int a = 0; 
int b = 20; 
int sum = 0; 
int avg = 0; 
... 
... 
... 
// Calculate the average of numbers a and b 
get_average(); 
... 
... 
... 
void get_average(void) { 

int quantity; 
get_sum(); 
quantity = 2; 
avg = sum / quantity; 
return; 

} 
... 
... 
... 
void get_sum(void) { 

int a_loc = a; 
int b_loc = b; 
sum = a_loc + b_loc; 
return; 

} 
Code 5.7.1 

 
In Code 5.7.1, we use global variables and function calls to calculate the average of a and b. The 
code calls get_average(), which in turn calls get_sum() in order to compute the average. 
In general (and as many of us have been taught) the use of global variables should be limited to 
those cases in which we absolutely need them. We would normally get around this by writing 
average = get_average(int a, int b) and sum = get_sum(int a, int 
b), where average and sum each take arguments and return values; however, we have not 
discussed how to implement parameters and returns in assembly – this is a topic for Lab 6. So, for 
Lab 5, even though it is not a good programming practice in general, we will use global variables. 
Also note the unnecessary use of local variables in get_average() and get_sum(). We will 



 Page 104 of 155 

use local variables in this example to demonstrate how we could use them in a more complicated 
situation. 
 
So, let’s get to it! Let’s start by declaring and initializing our global variables. These are stored on 
the data segment in memory, which as depicted in Figure 5.3.2 is in a different memory segment 
than the stack. For the purposes of this example, we will give variables in the data segment 
addresses starting with 0x8XXX, assembly instructions in the code segment with memory 
addresses starting with 0x1XXX, and stack data in the stack segment with addresses starting with 
0x3XXX. It is important to distinguish between the location of code, global variables, and stack 
data in RAM. 
 

0x8000: 
 
0x8004: 
 
0x8008: 
 
0x800C: 
 
... 
... 
... 

a: 
.int 0 

b: 
.int 20 

sum: 
.int 0 

avg: 
.int 0 

... 

... 

... 
Code 5.7.2 

 
Now, let’s add in the call to get_average. Since we do not know what happens in-between 
the function call and the global variable declarations, we should assume there is data important 
to the caller in the general purpose registers. Recall that by convention, it is the responsibility of 
the caller to save the %eax, %ecx, and %edx registers, if it needs the data in them when the 
function it is about to call returns (Table 5.5.1). As such, let’s save these registers before we 
call get_average. 
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0x8000: 
 
0x8004: 
 
0x8008: 
 
0x800C: 
 
... 
... 
... 
... 
0x1000: 
0x1004: 
0x1008: 
0x100C: 
... 

a: 
.int 0 

b: 
.int 20 

sum: 
.int 0 

avg: 
.int 0 

... 

... 

... 
## Save caller’s responsible registers, if necessary 
pushl %eax 
pushl %ecx 
pushl %edx 
call get_average 
... 

Code 5.7.3 
 

 
Figure 5.7.1 

 
As we can see in Figure 5.7.1, the stack is now ready to execute get_average. Next, let’s write 
the function prolog for get_average shown in Code 5.7.4 and Figure 5.7.2: 
 

... ... 

Register Contents 
%eax 100 
%ebx 200 
%ecx 300 
%edx 400 
%esi XXXX 
%edi XXXX 
%ess 0x3000 
%ebp 0x30F0 
%esp 0x30D8 

 

Address Contents 
0x3000  
...  

0x30B0  
0x30B4  
0x30B8  
0x30BC  
0x30C0  
0x30C4  
0x30C8  
0x30CC  

0x30D0  

0x30D4  
0x30D8 0x1010 
0x30DC 400 
0x30E0 300 
0x30E4 100 
0x30E8 XXXX 
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... 

... 
0x1040: 
 
 
 
0x1044: 
0x1048: 
0x104C: 
0x1050: 
... 

... 

... 
get_average: 

## Prolog: save callee’s responsible  
## registers, if necessary, and get space 
## for local variables 
pushl %ebp 
pushl %ebx 
movl %esp, %ebp 
subl $4, %esp 
... 

Code 5.7.4 
 

 
Figure 5.7.2 

 
We will use the %ebp and %ebx registers after the function call, so as the callee, we must save 
them to the stack before we overwrite them. We will also use an integer local variable quantity, 
which is 4 bytes. As such, we must make room for this local variable on the stack by subtracting 4 
from the stack pointer register. 
 
  

Register Contents 
%eax 100 
%ebx 200 
%ecx 300 
%edx 400 
%esi XXXX 
%edi XXXX 
%ess 0x3000 
%ebp 0x30D0 
%esp 0x30CC 

 

Address Contents 
0x3000  
...  

0x30B0  
0x30B4  
0x30B8  
0x30BC  
0x30C0  
0x30C4  
0x30C8  
0x30CC  

0x30D0 200 
0x30D4 0x30F0 
0x30D8 0x1010 
0x30DC 400 
0x30E0 300 
0x30E4 100 
0x30E8 XXXX 

 



 Page 107 of 155 

Next, we need to call get_sum from within get_average. There is nothing important to 
get_average in the %eax, %ecx, or %edx registers, so we do not need to save them this time. 
Code 5.7.5 and Figure 5.7.3 show the code and stack at this point in the program’s execution: 
 

... 

... 

... 
0x1040: 
 
 
 
0x1044: 
0x1048: 
0x104C: 
0x1050: 
 
0x1054: 
0x1058: 

... 

... 

... 
get_average: 

## Prolog: save callee’s responsible  
## registers, if necessary, and get  
## space for local variables 
pushl %ebp 
pushl %ebx 
movl %esp, %ebp 
subl $4, %esp 
## Call get_sum; no need to save registers 
call get_sum 
... 

Code 5.7.5 
 

 
Figure 5.7.3 

 
  

Register Contents 
%eax 100 
%ebx 200 
%ecx 300 
%edx 400 
%esi XXXX 
%edi XXXX 
%ess 0x3000 
%ebp 0x30D0 
%esp 0x30C8 

 

Address Contents 
0x3000  
...  

0x30B0  
0x30B4  
0x30B8  
0x30BC  
0x30C0  
0x30C4  
0x30C8 0x1058 
0x30CC XXXX 
0x30D0 200 
0x30D4 0x30F0 
0x30D8 0x1010 
0x30DC 400 
0x30E0 300 
0x30E4 100 
0x30E8 XXXX 
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Now, we’re ready to write the get_sum function. Let’s say it’s at address 0x1080 in the code 
segment of memory. In get_sum, we will need to save the %ebp register, since we have two 
local variables which will require %ebp to be rewritten. We will not use the %ebx register or 
either of the two indexing registers, so we do not need to save them. Code 5.7.6 shows the initial 
assembly code for get_sum, and Figure 5.7.4 depicts the corresponding stack: 
 

... 

... 

... 
0x1080: 
 
 
 
0x1084: 
0x1088: 
0x108C: 
... 

... 

... 

... 
get_sum: 

## Prolog: save callee’s responsible  
## registers, if necessary, and get  
## space for local variables 
pushl %ebp 
movl %esp, %ebp 
subl $8, %esp 
... 

Code 5.7.6 
 

 
Figure 5.7.4 

 
Now, we’re ready to do some calculations. Following the specification code in Code 5.7.1, we 
need to move global variable a into local variable a_loc and global variable b into local variable 
b_loc. Since a_loc is declared before b_loc, it is the highest address/location in the 8 bytes 

Register Contents 
%eax 100 
%ebx 200 
%ecx 300 
%edx 400 
%esi XXXX 
%edi XXXX 
%ess 0x3000 
%ebp 0x30C4 
%esp 0x30BC 

 

Address Contents 
0x3000  
...  

0x30B0  
0x30B4  
0x30B8  
0x30BC  
0x30C0  
0x30C4 0x30D0 
0x30C8 0x1058 
0x30CC XXXX 
0x30D0 200 
0x30D4 0x30F0 
0x30D8 0x1010 
0x30DC 400 
0x30E0 300 
0x30E4 100 
0x30E8 XXXX 
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of space we obtained on the stack. After we set our local variables, we want to compute the sum. 
Code 5.7.7 and Figure 5.7.5 depict this portion of the program: 
 

... 

... 

... 
0x1080: 
 
 
 
0x1084: 
0x1088: 
0x108C: 
 
0x1090: 
0x1094: 
0x1098: 
0x109C: 
0x10A0: 
0x10A4: 
0x10A8: 
... 

... 

... 

... 
get_sum: 

## Prolog: save callee’s responsible  
## registers, if necessary, and get  
## space for local variables 
pushl %ebp 
movl %esp, %ebp 
subl $8, %esp 
## Set local variables and computer sum 
movl a, %eax 
movl b, %ecx 
movl %eax, -4(%ebp) 
movl %ecx, -8(%ebp) 
movl -4(%ebp), %edx 
addl -8(%ebp), %edx 
movl %edx, sum 
... 

Code 5.7.7 
 

 
Figure 5.7.5 

Register Contents 
%eax 0 
%ebx 200 
%ecx 20 
%edx 20 
%esi XXXX 
%edi XXXX 
%ess 0x3000 
%ebp 0x30C4 
%esp 0x30BC 

 

Address Contents 
0x3000  
...  

0x30B0  
0x30B4  
0x30B8  
0x30BC 20 
0x30C0 0 
0x30C4 0x30D0 
0x30C8 0x1058 
0x30CC XXXX 
0x30D0 200 
0x30D4 0x30F0 
0x30D8 0x1010 
0x30DC 400 
0x30E0 300 
0x30E4 100 
0x30E8 XXXX 
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Before we return from get_sum, we need the epilog to undo what the prolog did. We must first 
de-allocate the space used for our local variables, and then pop off any registers we saved to the 
stack. At this point we can return to the caller – get_average. Code 5.7.8 and Figure 5.7.6 
show the inclusion of the epilog to get_sum: 
 

... 

... 

... 
0x1080: 
 
 
 
0x1084: 
0x1088: 
0x108C: 
 
0x1090: 
0x1094: 
0x1098: 
0x109C: 
0x10A0: 
0x10A4: 
0x10A8: 
 
 
0x10AC: 
0x10B0: 
0x10B4: 

... 

... 

... 
get_sum: 

## Prolog: save callee’s responsible  
## registers, if necessary, and get  
## space for local variables 
pushl %ebp 
movl %esp, %ebp 
subl $8, %esp 
## Set local variables and computer sum 
movl a, %eax 
movl b, %ecx 
movl %eax, -4(%ebp) 
movl %ecx, -8(%ebp) 
movl -4(%ebp), %edx 
addl -8(%ebp), %edx 
movl %edx, sum 
## Epilog: restore space for local var’s, 
## restore registers, and return 
movl %ebp, %esp 
popl %ebp 
ret 

Code 5.7.8 
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Figure 5.7.6 

 
Notice the stack of Figure 5.7.6; although we have returned, the contents of the stack remain. They 
will not be overwritten until another function utilizes that stack space. Furthermore, notice how the 
single mov instruction de-allocates our local variable space on the stack. No matter how much 
space we use for local variables, simply setting %esp to %ebp will restore it. Also, saving the base 
pointer in the prolog allows us to restore it to where it was in the previous stack frame – this 
applies to all registers we save in the prolog. 
 
Now we are ready to pick up where we left of at address 0x1058 in get_average. This is the 
address of the instruction below the call, and is the address ret read from the stack. Here, we 
will simply compute the average by dividing the sum by the quantity, which is our local 
variable set to value 2. Notice that since we saved the %ebx register in the prolog, we are safe to 
overwrite it in this function. 
  

Register Contents 
%eax 0 
%ebx 200 
%ecx 20 
%edx 20 
%esi XXXX 
%edi XXXX 
%ess 0x3000 
%ebp 0x30D0 
%esp 0x30CC 

 

Address Contents 
0x3000  
...  

0x30B0  
0x30B4  
0x30B8  
0x30BC 20 
0x30C0 0 
0x30C4 0x30D0 
0x30C8 0x1058 
0x30CC XXXX 
0x30D0 200 
0x30D4 0x30F0 
0x30D8 0x1010 
0x30DC 400 
0x30E0 300 
0x30E4 100 
0x30E8 XXXX 
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... 

... 

... 
0x1040: 
 
 
 
0x1044: 
0x1048: 
0x104C: 
0x1050: 
 
0x1054: 
 
0x1058: 
0x105C: 
0x1060: 
0x1064: 
0x1068: 
0x106C: 
... 

... 

... 

... 
get_average: 

## Prolog: save callee’s responsible  
## registers, if necessary, and get  
## space for local variables 
pushl %ebp 
pushl %ebx 
movl %esp, %ebp 
subl $4, %esp 
## Call get_sum; no need to save registers 
call get_sum 
## Perform calculation and set avg 
movl $2, (%esp)  ## reference using %esp 
movl sum, %eax 
movl $0, %edx  ## don’t forget to clear D 
movl -4(%ebp), %ebx  ## or ref. using %ebp 
divl %ebx 
movl %eax, avg 
... 

Code 5.7.9 
 

 
Figure 5.7.7 

Register Contents 
%eax 10 
%ebx 2 
%ecx 20 
%edx 0 
%esi XXXX 
%edi XXXX 
%ess 0x3000 
%ebp 0x30D0 
%esp 0x30CC 

 

Address Contents 
0x3000  
...  

0x30B0  
0x30B4  
0x30B8  
0x30BC 20 
0x30C0 0 
0x30C4 0x30D0 
0x30C8 0x1058 

0x30CC 2 

0x30D0 200 
0x30D4 0x30F0 
0x30D8 0x1010 
0x30DC 400 
0x30E0 300 
0x30E4 100 
0x30E8 XXXX 
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As shown in Code 5.7.9 and Figure 5.7.7, we have now calculated the average of a and b and 
saved the result in avg. Now, we are ready to return from get_average to the caller. To do so, 
we need to write our epilog, which will de-allocate the 4 bytes of space used on the stack for our 
local variable quantity, restore the general purpose registers we saved, and finally return to the 
caller: 
 

... 

... 
0x1040: 
 
 
 
0x1044: 
0x1048: 
0x104C: 
0x1050: 
 
0x1054: 
 
0x1058: 
0x105C: 
0x1060: 
0x1064: 
0x1068: 
0x106C: 
 
 
0x1070: 
0x1074: 
0x1078: 
0x107C: 

... 

... 
get_average: 

## Prolog: save callee’s responsible  
## registers, if necessary, and get  
## space for local variables 
pushl %ebp 
pushl %ebx 
movl %esp, %ebp 
subl $4, %esp 
## Call get_sum; no need to save registers 
call get_sum 
## Perform calculation and set avg 
movl $2, (%esp)  ## reference using %esp 
movl sum, %eax 
movl $0, %edx  ## don’t forget to clear D 
movl -4(%ebp), %ebx  ## or ref. using %ebp 
divl %ebx 
movl %eax, avg 
## Epilog: restore local var space, 
## restore registers, and return 
movl %ebp, %esp 
popl %ebx 
popl %ebp 
ret 

Code 5.7.10 
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Figure 5.7.8 

 
Now, the average has been computed, and execution has been moved to the instruction at address 
0x1010 in memory. This instruction is immediately after the call to get_average. Before 
we called the function, we saved the registers which contained important data. We now need to 
restore them to general purpose registers, as shown in Code 5.7.11. It is a good thing we saved 
them, since Figure 5.7.8 shows neither %eax, %ecx, or %edx – the registers the caller is 
responsible for saving – are what they were before we called get_average. 
  

Register Contents 
%eax 10 
%ebx 200 
%ecx 20 
%edx 0 
%esi XXXX 
%edi XXXX 
%ess 0x3000 
%ebp 0x30F0 
%esp 0x30DC 

 

Address Contents 
0x3000  
...  

0x30B0  
0x30B4  
0x30B8  
0x30BC 20 
0x30C0 0 
0x30C4 0x30D0 
0x30C8 0x1058 

0x30CC 2 

0x30D0 200 
0x30D4 0x30F0 
0x30D8 0x1010 
0x30DC 400 
0x30E0 300 
0x30E4 100 
0x30E8 XXXX 
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0x8000: 
 
0x8004: 
 
0x8008: 
 
0x800C: 
 
... 
... 
... 
... 
0x1000: 
0x1004: 
0x1008: 
0x100C: 
 
0x1010: 
0x1014: 
0x1018: 
... 

a: 
.int 0 

b: 
.int 20 

sum: 
.int 0 

avg: 
.int 0 

... 

... 

... 
## Save caller’s responsible registers, if necessary 
pushl %eax 
pushl %ecx 
pushl %edx 
call get_average 
## Restore saved registers in LIFO order 
popl %edx 
popl %ecx 
popl %eax 
... 

Code 5.7.11 
 

 
Figure 5.7.9 

Register Contents 
%eax 100 
%ebx 200 
%ecx 300 
%edx 400 
%esi XXXX 
%edi XXXX 
%ess 0x3000 
%ebp 0x30F0 
%esp 0x30E8 

 

Address Contents 
0x3000  
...  

0x30B0  
0x30B4  
0x30B8  
0x30BC 20 
0x30C0 0 
0x30C4 0x30D0 
0x30C8 0x1058 

0x30CC 2 

0x30D0 200 
0x30D4 0x30F0 
0x30D8 0x1010 
0x30DC 400 
0x30E0 300 
0x30E4 100 
0x30E8 XXXX 
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And we are done! Again, notice how all data is still present on the stack in Figure 5.7.9. It will not 
be overwritten until another function is called, at which point the same process will occur once 
more. 
 
In general these are the procedures to follow when calling and returning from functions: 
 

1) Pre-call: push all important registers the caller is required to save to the stack. 
2) Call:  call automatically saves the return address of the code to the stack. 
3) Prolog:  push all registers the callee is required to save to the stack, if needed later. 

Get space for local variables by saving the stack pointer in the base pointer, 
then decrementing the stack pointer. 

4) Mid-call: Access local variables with an offset to either %ebp or %esp. 
Perform arithmetic, implement loops, or anything necessary to the function. 

5) Epilog:  Free space for local variables by restoring the original stack pointer from the 
base pointer register. pop all registers pushed in the prolog in LIFO order. 

6) Return:  Automatically retrieve the return address from the stack (indicated 
by %esp) with the ret instruction. Resume execution at the address read. 
This address will/should be the instruction after the call in the code 
segment of memory. 

7) Post-call: pop all registers that were pushed prior to the function call, in LIFO  
order. 

 
 
5.8 – A Note about Recursion 
In programming, there are two ways to accomplish a repetitive task: (1) iterate through a particular 
block of code, and (2) recurse through a particular function containing the code we want to execute 
repeatedly. Iterative programming involves loops. Such an example would be a basic 
while(true) loop used to keep a program running or perhaps a for loop to sum an array. 
Recursive programming is the act of calling a function within itself to perform the same 
instructions. In either case, repetition needs to be bounded by a condition upon which the code will 
stop looping or recursing. This condition is often referred to as the base case – the condition that 
signals we are done looping or recursing. In loops, this base case is implemented using the 
compare instruction, as discussed in Lab 3. This is also true in recursive programming; however, 
the base case will not only cause the function to stop calling itself, but it will also cause the 
function to start returning into the prior function call. 
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For example, consider two implementations of a C fragment to sum an array x of length 10: 
 

/* Iterative Method */ 
int x[10]; // global var’s 
int sum = 0; 
int i; 
... 
for (i=0;i<10;i++) { 

sum = sum + x[i]; 
} 
... 

/* Recursive Method */ 
int x[10]; // global var’s 
int sum = 0; 
int i = 0; 
... 
find_sum(); 
... 
void find_sum() { 

if (i > 9) // base case 
return; 

sum = sum + x[i]; 
i++; 
find_sum(); // call again 
return; 

} 
Code 5.8.1 

 
In Code 5.8.1, the left fragment is an iterative example for calculating the sum of a 10-element 
array. This code can be implemented in Intel 80386 Assembly using the techniques learned in 
Labs 2, 3, and 4. On the right is the recursive example. Notice how the program, at some point, 
calls the function find_sum(). This function will sum the elements of the array from i=0 to 
i=9, but in a recursive manner. Let’s walk through this process. The first time find_sum() is 
called, the index variable i=0. After find_sum() is called, the base case is first analyzed. We 
need to see if we are done summing the array. Since i=0, this is less than or equal to 9, so the if 
statement evaluates to false and we add x[i=0] to the sum. Next, we increment i and call 
find_sum() again. This is where it gets interesting. We know from the prior sections of this lab 
that each function call in assembly has its own stack frame. This call to find_sum() will 
initialize a new stack frame (i.e. save the return address, save necessary registers, etc.) for the 
upcoming execution of find_sum(). From our studies of the stack, we know this new stack 
frame will be located below (at a lower address from) the stack frame for the previous call to 
find_sum(). Recursive functions do not use the same stack frame – they each have their own. 
(However, programming in assembly can sometimes allow one stack frame to access data from 
another. We will see this in Lab 6.) Continuing our example, execution will jump to 
find_sum(), but this time i=1. The same process will occur as with i=0, and another stack 
frame will be created below the i=1 stack frame for the upcoming execution of find_sum() 
with i=2. The recursive call will occur over and over until i=10, at which point, the base case 
will be true, and the stack frame for i=10 will return to where find_sum() was called in the 
stack frame for i=9. The code will start executing at the next instruction below the call, which 
is return. This returns to the stack frame for the i=8 case, and the process continues – going back 
to previous stack frames higher on the stack – until find_sum() finally returns into the main 
program when the i=0 stack frame concludes. The following Code 5.8.2 is the assembly version 
of Code 5.8.1: 
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/* Iterative Method */ 
.comm x, 40 ## global var’s 
sum: 

.int 0 
.comm i, 4 
... 
movl $0, i 
movl i, %edi 
continue: 

cmpl $10, %edi 
jge done 
movl i, %edi 
movl x(,%edi,4), %eax 
addl %eax, sum 
incl %edi 
jmp continue 

done: 
movl %edi, i 
... 

/* Recursive Method */ 
.comm x, 40 ## global var’s 
sum: 

.int 0 
i: 

.int 0 
... 
call find_sum 
... 
find_sum: 

pushl %edi ## prolog 
cmpl $9, i ## base case 
jg done 
movl I, %edi 
movl x(,%edi,4), %eax 
addl %eax, sum 
incl %edi 
movl %edi, i 
call find_sum ## call again 
done: 

popl %edi ## epilog 
ret 

... 
 

Code 5.8.2 
 
As we can see, the assembly iterative method on the left looks familiar. The assembly recursive 
method on the right calculates the same result but does so via recursion. Notice, each time a call 
to find_sum is made, a new stack frame is created below the existing frame on the stack. As we 
can imagine, had this recursion go on for far greater than 10 elements of array x, the free stack 
space could significantly reduce as more and more stack frames from the find_sum function 
calls are added to the stack. If we were to never check the base case using recursion, our code 
would eventually encounter a stack overflow after it runs out of stack space. See Figures 5.6.1 – 
5.6.3 for an illustration of how the stack grows and shrinks during recursive calls. Figure 5.6.1 
shows the initial stack, and Figure 5.6.2 depicts the stack as more frames are added to it (after 
more recursive calls to find_sum). After the base case is reached, the stack will return (as the 
find_sum function instances return) to its original state in Figure 5.6.1. Figure 5.6.3 depicts the 
stack overflow, which could happen if we forget or incorrectly implement a base case check. 
 
One might wonder, why even use recursion if assembly code can be implemented iteratively? 
Sometimes it is easier to visualize a problem recursively than it is iteratively. There are also many 
cases where is it computationally less complex to use a recursive implementation over an iterative 
implementation. Furthermore, there are languages other than C that are purely functional 
languages, meaning they are not imperative and do not contain looping structures (e.g. for, 
while, do...while, etc.). These languages often require the use of recursion in order to 
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perform repetitive computations. But for our purposes, recursion, although it is not always as 
efficient as iteration, is an excellent way to learn how to program with the stack. 
 
 
5.9 – Assignment 
The assignment for this lab asks us to compose assembly code that calculates the Fibonacci 
sequence of length n+1 given n. For example, the Fibonacci sequence of n = 3 is: 0 1 1 2, 
the Fibonacci sequence of n = 5 is 0 1 1 2 3 5, and likewise for n = 6 is 0 1 1 2 3 5 
8. In general, the calculation of this sequence from position 1 to position n + 1 is calculated by n 
+ 1 = n + (n - 1) – the next digit is the sum of the preceding two digits. This calculation 
could be performed iteratively, where we keep track of the previous two digits in order to 
determine the next; however, it can also be implemented recursively, where we use global and 
local variables to maintain the previous digits and calculate the Fibonacci sequence. It is important 
that you write a recursive implementation of this assignment. Not only is this how the specification 
code is written, but creating an iterative solution will not allow you to sufficiently practice with the 
stack. 
 
 
This is the specification of what the assembly functions need to perform. Do not copy or 
type this code. Use it as a reference when writing the assembly. This is a recursive 
implementation; do not write an iterative solution. 
 
/* begin specification code */ 
 
/* Convert the procedure exactly as given using the local 
variables local_var and temp_var on the stack. */ 
 
void Fib(void) 
{ 

int local_var; 
int temp_var; 
local_var = global_var; 
if(local_var == 0) return; 
else if(local_var == 1) return; 
else { 

global_var = local_var - 1; 
Fib(); 
temp_var = global_var; 
global_var = local_var - 2; 
Fib(); 
temp_var = temp_var + global_var; 
global_var = temp_var; 

} 
return; 

} 
/* end specification code */ 
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The following is the C driver for the assembly file. It works by calling the function Fib() 
in the assembly file. You are not required to comment this code. Please do not modify this 
file. 
 
/* begin C driver */ 
 
/* This is the skeleton C program. It will ask for a number, then 

* print the Fibonacci sequence up to that number plus one. 
* NOTE: You will need to use the stack for the local 
variables local_var and temp_var of the function Fib(). 
global_var is a global variable. 

*/ 
 
#include <stdio.h> 
 
void Fib(void); 
 
int global_var; /* this is a GLOBAL variable */ 
 
int main(void) 
{ 

int i; 
int number; 
int fib_subscript; 
printf("Please enter a number: "); 
scanf("%d",&number); 
printf("Fibonacci sequence from subscript 0 to %d :\n", 
number); 
for(i=0; i<=number; i++) { 

global_var = i; 
Fib(); 
fib_subscript = global_var; 
printf("%3d ", fib_subscript); 

} 
printf("\n"); 

} 
/* end C driver */ 
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The following is the assembly stub to the driver. You are required to fully comment and 
write the assembly code to model the specification code. Insert your code where you see /* 
put code here */, /* prolog */, and /* epilog */. Do not modify any other 
code in the file. Note the last line of the file must be a blank line to compile without 
warning. 
 
/* begin assembly stub */ 
 
.globl Fib 
.type Fib,@function 
Fib: 

/* prolog */ 
  

/* put code here */ 

 
return: 

/* epilog */ 
ret 
 

/* end assembly stub */ 
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The following are the cases you should test to ensure correct operation. Your program 
should accept an integer as input. The driver does not check for all input cases (e.g. junk in 
the input), but correct operation should produce the following results: 
 
./lab5 
Please enter a number: 1 
Fibonacci sequence from subscript 0 to 1 : 0 1 
 
./lab5 
Please enter a number: 2 
Fibonacci sequence from subscript 0 to 2 : 0 1 1 
 
./lab5 
Please enter a number: 3 
Fibonacci sequence from subscript 0 to 3 : 0 1 1 2 
 
./lab5 
Please enter a number: 4 
Fibonacci sequence from subscript 0 to 4 : 0 1 1 2 3 
 
./lab5 Please enter a number: 5 
Fibonacci sequence from subscript 0 to 5 : 0 1 1 2 3 5 
 
./lab5 
Please enter a number: 6 
Fibonacci sequence from subscript 0 to 6 : 0 1 1 2 3 5 8 
 
./lab5 
Please enter a number: 7 
Fibonacci sequence from subscript 0 to 7 : 0 1 1 2 3 5 8 13 
 
./lab5 Please enter a number: 8 
Fibonacci sequence from subscript 0 to 8 : 0 1 1 2 3 5 8 13 21 
 
./lab5 
Please enter a number: 9 
Fibonacci sequence from subscript 0 to 9 : 0 1 1 2 3 5 8 13 21 34 
 
./lab5 Please enter a number: 10 
Fibonacci sequence from subscript 0 to 10 : 0 1 1 2 3 5 8 13 21 
34 55 
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Lab 6 
Subroutine Parameters and Returns 

 
 
Student Objectives 
 
• Learn about how to pass arguments/parameters to assembly functions 
• Learn how to return values from assembly functions 
• Learn how to implement parameters and returns with recursive functions 

 
 
6.1 – Introduction to Parameters 
Parameters or arguments are the primary means of communicating between subroutines. In C, 
we pass parameters using the parenthesis notation. Code 6.1.1 shows a C function that takes 
two integer arguments – arg1 and arg2. 
 

void my_func(int arg1, int arg2) { 
... 

} 
Code 6.1.1 

 
In x86 assembly, there are two main methods for passing parameters: (1) on the stack, and (2) in 
registers. When parameters are passed to a function, the caller must provide them to the callee; 
so, naturally there must be some form of agreement between the two functions. If the caller 
places the arguments on the stack, the callee must know to read them from the stack. Likewise, if 
the callee requires that its arguments be provided via registers, the caller must know to place the 
arguments in registers. Another issue that arises from either method is the placement of multiple 
parameters. In Code 6.1.1, there are two arguments. If they are passed using the stack, which 
order should they appear? And likewise, if they are passed using registers, which register should 
be assigned to a particular argument? Fortunately, compilers like GCC hide these fine points 
from us in high-level languages like C, where they implement the handshaking between 
functions for us. However, now that we are assembly programmers, we must take these details 
into account. 
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6.2 – Parameters on the Stack 
Let’s consider the first method for passing parameters – the stack. By default, GCC passes 
function parameters using the stack. The caller must push the arguments to the stack in the 
reverse order that they would appear in C. For example, Code 6.1.1 could be implemented in 
assembly as follows: 
 

## Save any registers here 
... 
## Pass arguments in reverse order 
movl arg2, %eax 
movl arg1, %ebx 
pushl %eax 
pushl %ebx 
call my_func 
addl $8, %esp 

Code 6.2.1 
 
As a brief aside, notice the last line of Code 6.2.1. We mentioned in Lab 5 that in general, for 
every push there needs to be a corresponding pop; however, here we add 8 bytes to %esp. 
Recall that the popl instruction reads the value at the current location of the stack pointer and 
then increments %esp 4 bytes. With a single addl instruction, we can increment the stack 
pointer back to where it was before we pushed any number of arguments. This is equivalent to 
popping each argument off individually but with a single, more efficient instruction. It is 
important to note that this method does not read data, as pop does. As we know, pop copies 
data from the stack to its argument and increments the stack pointer, while add skips this step 
and simply increments the stack pointer.  
 
Now back to our example, the question is, how does the callee receive these arguments on the 
stack? Recall that with local variables, we can apply an offset to either %ebp or %esp (with 
register indirect or base-indexed addressing) to access data on the stack. This same concept can 
be applied to retrieving arguments from the stack. The trick is to apply the appropriate offset to 
reach the arguments. This offset will depend on the prolog of the function, as well as the number 
of arguments pushed to the stack. Let’s consider an example: 
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pushl %eax 
pushl %ebx 
call my_func 
... 
my_func: 

pushl %ebp 
pushl %ebx 
pushl %edi 
movl %esp, %ebp 
subl $12, %esp 
... 

Code 6.2.2 
 

 
Figure 6.2.1 

 
Consider an assembly fragment in Code 6.2.2 and its corresponding stack in Figure 6.2.1. The 
caller passes 0 and 100 to the stack via %eax and %ebx, respectively. The function my_func 
is called, and the prolog of my_func executes, which saves three registers to the stack and 
allocates space for three integer local variables. To read in the arguments, the callee must use 
either %ebp or %esp with an offset. The base pointer is the most common practice for retrieving 
argument, although it is also possible with the stack pointer. So, from the base pointer, we can 
see that there are three items pushed to the stack from the prolog (12 bytes), the return address of 
the function (4 bytes), and then the arguments appear. This means to reach the first argument, we 
must apply an offset of 16 to %ebp, and to reach the second argument, we must apply an offset 
of 16 bytes plus 4 bytes or 20 bytes. Code 6.2.3 shows the assembly required to access these 
arguments from within my_func. 
	    

Register Contents 
%eax 0 
%ebx 100 
%ecx  
%edx  
%esi  
%edi 3 
%ess 0x0800 
%ebp 0x1030 
%esp 0x1000 

 

Address Contents 
0x0800  
...  

0x1000  
0x1004  
0x1008  
0x100C 3 
0x1010 100  
0x1014 0x1030 
0x1018 ret addr 
0x101C 100 
0x1020 0 
0x1024 XXXX 
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pushl %eax 
pushl %ebx 
call my_func 
... 
my_func: 

pushl %ebp 
pushl %ebx 
pushl %edi 
movl %esp, %ebp 
subl $12, %esp 
## Access/retrieve arguments 
movl 16(%ebp), %eax 
movl 20(%ebp), %ebx 
... 

Code 6.2.3 
 

As shown, we add a positive offset to the base pointer in order to retrieve the arguments from the 
stack. Notice that since we offset from the base pointer, we can ignore the space used for local 
variables; however, if we were to use the stack pointer, then we would need to account for the 
local variable space in our offset as well. 
 
 
6.3 – Parameters in Registers 
Let’s consider the second method for passing parameters to functions – general purpose 
registers. As stated earlier, by default, all functions in assembly and C use the stack to pass 
parameters. The reason is there are a limited number of registers at our disposal. What if we 
need to pass more than a few arguments, or perhaps we need to pass a large data structure to a 
function? The registers cannot be used (entirely) in these cases – we would have to pass some, if 
not all of the parameters using the stack. The use of registers also requires more coordination 
between the caller and the callee. Accessing arguments on the stack is a sequential and calculable 
operation, while accessing arguments in registers requires thought as to which register will 
contain which argument – there is no convention for this, unlike the stack which uses a reverse-
order policy. 
 
These drawbacks aside, in simple cases where there are only a few arguments to pass, we may 
use the general purpose registers. Like the stack though, the caller and callee must agree upon 
which argument will be in which register. The benefit to using registers is that passing arguments 
is very straightforward, since there are no offsets to worry about. Furthermore, accessing 
parameters in registers is far more efficient than the stack, since the latency of a main memory 
access will not be present. 
 
So, why are registers not the primary means of parameter passing? The answer lies in the 
complexity involved with determining which arguments go in which register. In high-level 
languages like C, there are many standard, as well as custom libraries we use to perform 
common computational tasks – e.g. math.h, stdlib.h, and stdio.h. These libraries are 
designed to work with as many users as possible. In order to broaden the compatibility of C 
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functions, the stack is the method by which parameters are passed. So for example, the function 
printf(...) will expect GCC to compile the user’s code such that all of its arguments are 
pushed to the stack in reverse order. No matter what code invokes printf(...), it will expect 
its arguments to be on the stack. As such, the vast majority of assembly functions are written to 
use the stack for passing parameters. Likewise, the C driver files we have used for all our labs 
contain code that calls our assembly functions. Any C code that directly calls an assembly 
function will place its arguments on the stack (when assembled from C by GCC). So, with 
relevance to this lab, we must write our assembly code such that it uses the stack to pass 
parameters. 
 
Having said the above, there is a way to force GCC to compile C functions and use registers as 
the method for passing parameters. This is done using the GCC keyword __attribute__. 
This is included with a C function declaration (i.e. with the function prototype) and supplies the 
compiler with additional information about your function, in order to optimize how it is called by 
other functions and how it performs at runtime. __attribute__ takes a double-parenthesis, 
comma-delimited list of function specifications and appears before the function declaration. As 
of GCC version 4.8.0, __attribute__ has many function specifications, but the ones of 
interest to us at this time are fastcall and noinline. fastcall is a function attribute 
specification that tells GCC to pass the first argument in register %ecx, the second argument in 
register %edx, and all other arguments on the stack. This technique will only work if the 
arguments are of integral type, which means they must be a standard type (char, int, etc.) and 
not user-defined (e.g. structs). When GCC compiles our code, depending on the flags used, it 
might attempt to optimize any code that does not have any side effects. In other words, if our 
code does not use any standard output to the user, GCC will attempt to make it faster; this 
optimization process includes taking functions that are small, removing the call and return, and 
placing the code within the function in the code that called it. Functions that are purposefully 
written in or optimized in this manner are said to be inline functions. To stop GCC from 
converting our functions to inline form (where they are not actually called and thus take no 
arguments) we include another function specification called noinline. Code 6.3.1 
demonstrates how to write a C function and force it to place its arguments in the %ecx and 
%edx registers, with the remainder of the parameters placed on the stack. 
 

__attribute__((fastcall, noinline)) void my_func(int 
x, int y); 

Code 6.3.1 
 
As we can see, the __attribute__ keyword contains the function specifications fastcall 
and noinline, which will cause int x to be placed in register %ecx and int y to be placed 
in register %edx. Note, this is the C function prototype for my_func, which tells GCC at 
compile-time to not only supply my_func with arguments in the aforementioned registers, but 
also assemble my_func in such a way that it expects its arguments to be in the proper registers. 
Without this addition to the function prototype, GCC will place int y followed by int x on 
the stack prior to calling my_func. 
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For those who would like to learn more about attributes in GCC, refer to the GNU GCC online 
documentation. Attributes are powerful tools to optimize and customize C code and can be used 
for functions, variables, and structure/union data types: 
 
For Function Attributes: 
http://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/Function-Attributes.html#Function-Attributes 
 
For Variable Attributes: 
http://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/Variable-Attributes.html#Variable-Attributes 
 
For Type Attributes: 
http://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/Type-Attributes.html#Type-Attributes 
 
Attributes are not a part of this lab’s assignment; however, it is important to understand how C 
and assembly are related and how they interact during function calls and returns. 
 

6.4 – Subroutine Returns 

It is often the case where we wish to create a function that can communicate a result, status, 
event, etc. from the callee function to the caller function. In most programming languages, this is 
accomplished via subroutine returns. In C, to specify a return for a function, we include the 
return type in the function prototype and in the function itself. 
 

int my_func(void); 
... 
... 
... 
int my_func(void) { 

... 

... 

... 
return some_int; 

} 
Code 6.4.1 

 
As shown in Code 6.4.1, the function my_func takes no parameters but returns an integer – 
specified by the int preceeding the function prototype and the function definition. 
 
Also in C, to use a return value, we can do a variety of things – we can set a variable to the return 
or check the return within a conditional expression, for example. 
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int number; 
... 
number = my_func(); 

int number; 
... 
if (my_func()) { 
   ... 
   return some_int; 
} 

Code 6.4.2 
 
As we can see in Code 6.4.2, we set the return of my_func to the integer number and 
demonstrate the use of my_func within an if statement – if my_func is greater than zero, 
then the if statement evaluates to true. 
 
So, the question is, how does this translate to x86 assembly? Like function parameters in 
assembly, function returns are implemented a particular way, by convention. In x86 assembly 
language, all function returns are placed in the A register (i.e. %al, %ah, %ax, or %eax). As 
such, the caller will expect the return value to be in the %eax register after the callee executes 
the ret instruction and execution jumps back to the caller. This means, it is the responsibility of 
the callee to make sure the return value is placed in the A register before executing ret. 
 

... 
addl %ecx, var 
movl var, %eax 
## Epilog 
... 

Code 6.4.3 
 
As seen in Code 6.4.3, the callee is performing some operation and needs to return the value in 
the variable var. To do so, the callee moves the contents of var to the A register, and then gets 
ready to return by executing the epilog (as discussed in Lab 5). It’s that simple! 
 
Sometimes, an explicit movl of a value to the A register is not necessary. Say you wish to return 
the quotient of a division. As we know, the quotient is stored in the %eax register after a 32-bit 
division. If this is what we wish to return, then it is already in the A register, and no explicit 
move is necessary. 
 

... 
divl var 
## Want to return the quotient 
## %eax contains the quotient 
## %edx contains the remainder 
... 
## ...no other instructions with A reg as dest... 
... 
## Epilog 
... 

Code 6.4.4 



 Page 130 of 155 

 
As we can see in Code 6.4.4, the value we wish to return to the caller is already in the %eax 
register, so we do not need to include an explicit move to the A register. Note, this only holds 
true if the most recent calculation with the A register as a destination is the desired return value. 
If a subsequent instruction overwrites the return value (the quotient) with another value, then we 
must explicitly move the quotient back into the A register before we execute the epilog and 
return – otherwise, the caller might not get the correct quotient from our function. 
 
 
6.5 – Subroutine Assembler Directives 
Now that we are well-versed in writing assembly language subroutines, we need to learn how to 
communicate to the assembler that we have a new subroutine for other fuctions or parts of our 
program to call. After all, what use is our function if it cannot be referenced from our C driver 
file, for instance? 
 
To allow assembly subroutines to be called or referenced from functions in other files (like our C 
driver code), we need to (1) give the label of the function global scope and (2) tell the assembler 
that the label of the function can be called with the call instruction. We can accomplish each of 
these tasks using the .globl and .type assembler directives: 
 

     .globl myFunc 
     .type myFunc, @function 
myFunc: 
     ## Prolog 
     ... 
     ... 
     ## Epilog 
     ret 
 

Code 6.5.1 
 
In Code 6.5.1, we have a sample function/subroutine called myFunc that we wish to allow to be 
executed as a function and refereced from other files of our program. Let’s first take a look at 
.globl, which is provided in its general form in Code 6.5.2 below: 
 
 .globl <label> 
 

Code 6.5.2 
 
As seen in Code 6.5.2, .globl takes a single argument, and as you might have guessed, it gives 
its argument – the label myFunc in Code 6.5.1 – global scope in the program. For this course, 
where we have C code that calls assembly code located in another file, the inclusion of .globl 
is imperative in order for our code to compile. Otherwise, main(), in our C code, would never 
be able to “see” our assembly subroutine code myFunc in the separate file. The behavior of 
.globl can be likened to the #include <header_file.h> compiler directive in C. Like 
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.globl, #include instructs the compiler to allow the file the directive is issued from to have 
access to the functions and variables of the file given by <header_file.h>. 
 
Also in Code 6.5.1, notice the new assembler directive .type. In general, .type takes the 
form given below in Code 6.5.3: 
 
 .type <label>, <label_type> 
 

Code 6.5.3 
 
The purpose of .type is to inform the assembler about what kind of label myFunc is. Possible 
values of <label_type> are @notype, @object, and @function, which are used for 
undefined types, frequently referenced labels, and functions, respectively. The only one of these 
types of interest to us when composing subroutines is the type @function – this tells the 
assembler that <label> is a valid label to reference with the call instruction. Theoretically, 
any label can be called in an assembly program; however, the use of .type protects against 
labels being called that are not actually written as functions. Labels that are not written as 
functions internally (with a prolog, epilog, return, etc) but referenced with the call instruction 
could overwrite important data in general purpose registers from other function calls and cause 
undesired results. (Recall the callee responsibilities discussed in Lab 5, Section 5.5 – Stack 
Frames:  Caller and Callee Responsibilities.) 
 
So, with knowledge of the assembler directives .globl and .type, take a look at the 
assembly stubs from previous lab assignments. As you will notice, in the assembly files, each 
subroutine called from the C driver file includes the .globl and .type assembler directives to 
allow our assembly code’s label to (1) be referenced from an external file, the C driver file, and 
(2) be called using the call instruction, respectively. 
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6.6 – Assignment 

This is the specification of what the assembly functions need to perform. Do not copy or 
type this code. Use it as a reference when writing the assembly. This is a recursive 
implementation; do not write an iterative solution. 
 
/* begin specification code */ 
 
/* Convert the procedure exactly as given using local variables 
where needed. */ 
 
int Factorial(int n) 
{ 

if (n == 0 || n == 1) { 
return 1; 

} 
else { 

return n * Factorial(n-1); 
 } 
} 
/* end specification code */ 
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The following is the C driver for the assembly file. It works by calling the function int 
Factorial(int), which you will write in the assembly file. You are not required to 
comment this code. Please do not modify this file. 
 
/* begin C driver */ 
 
/* This is the C driver. It will input a number, then 

print the Factorial of that number. 
NOTE: You will need to use the stack for the local variables 
and return the answer in the appropriate register. 

*/ 
#include <stdio.h> 
 
int main(void); 
int Factorial(int); 
 
int main(void) 
{ 

int i; 
int number; 
int answer; 

 
int fib_subscript; 
printf("Please enter a number: "); 
scanf("%d",&number);  answer = Factorial(number); 
printf("The factorial of %d is %d.\n", number, answer); 

} 
 
/* end C driver */ 
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The following is the assembly stub to the driver. You are required to fully comment and 
write the assembly code to model the specification code. Insert your code where you see /* 
put assembler directives here */, /* put code here */, /* prolog */, 
and /* epilog */. Do not modify any other code in the file. Note the last line of the file 
must be a blank line to compile without warning. 
 
/* begin assembly stub */ 
 
/* put assembler directives here */ 
Factorial: 

/* prolog */ 
 
/* put code here */ 
 
return: 
 
/* epilog */ 
 
ret 
 

/* end assembly stub */ 
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The following are the cases you should test to ensure correct operation. Your program 
should accept an integer as input. The driver does not check for all input cases (e.g. junk in 
the input), but correct operation should produce the following results: 
 
./lab6 Please enter a number: 0 
The factorial of 0 is 1. 
 
./lab6 Please enter a number: 1 
The factorial of 1 is 1. 
 
./lab6 Please enter a number: 2 
The factorial of 2 is 2. 
 
./lab6 Please enter a number: 3 
The factorial of 3 is 6. 
 
./lab6 Please enter a number: 4 
The factorial of 4 is 24. 
 
./lab6 Please enter a number: 5 
The factorial of 5 is 120. 
 
./lab6 Please enter a number: 6 
The factorial of 6 is 720. 
 
./lab6 Please enter a number: 7 
The factorial of 7 is 5040. 
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Appendix A 
Code Comments 

 
As a future engineer, just as it is important for you to compose code that works well, it is equally 
important that your work and your programs are easy to interpret by others – be it an instructor, 
your peers, or your future colleagues.  You will be expected to include three types of comments 
in your lab assignments – a program header, function headers, and in-line comments. 
 
The program header is a comment block at the top of each of your files that gives the 
following information and is formatted in the following fashion: 
  

/*NAME Ryan Izard 
   COURSE ECE 273 
   SECION 400 
   DATE 11.06.12 
   FILE example_program_header.s 
   PURPOSE This is an example of a program header. The 
   Purpose section gives an overview of what 

The program does and what programming skills the 
lab assignment is designed to develop. 

 */ 
 
The function header is a comment block at the top of each function that gives the following 
information and is formatted in the following fashion. Note, for this course, there are not any 
arguments or returns until Lab 6. Do not confuse the use of global variables with arguments or 
returns. 
  

/*FUNCTION myFunction 
  ARGUMENTS Give a list of the parameters and data types 

the function takes as input 
   RETURNS  Give the return type, if any, of the 
    function 

  PURPOSE This is an example of a function header. The 
purpose section gives an overview of what 
the function does and any other 
implementation details a 3rd party viewer 
would need to know (such as any improvements 
that need to be made, etc.) 

 */ 
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In-line comments are commentary within the code itself.  These comments need to be detailed 
and frequent enough for a third party to be able to easily interpret and understand your code and 
its purpose.  In-line comments should describe the big picture of what the line(s) of code is/are 
trying to accomplish.  In-line comments should not state simply the operation the line(s) is/are 
performing.  For example: 
 
 movl $2, %eax  # square 2 

mull %eax 
movl %eax, result # save the result of 2^2 

 
Note the comment square 2 applies to the first two lines of code; and, the comment save 
the result of 2^2 applies to the third line.  They tell the reader what you, the 
programmer, are trying to accomplish – take the square of the number 2 and save it.  The 
comments do not say “move 2 into the A register,” “multiply the A register,” “move the A 
register into the variable result.”  In-line comments of this form are of little to no use to a 
programmer, since he or she can simply read the code itself to figure that out.  Instead, in-line 
comments are designed to give a higher-level overview of what the code is doing.  If you have 
any questions on this, please ask. 
 
Similar to comments, the aesthetics or appearance of your code needs to be pleasing to the eye.  
This increases readability and reduces fatigue when reading code.  It is expected that you indent 
properly and make your code uniform throughout.  For example: 
 
 Label_1: 
  movl $2, %eax  # square 2 

 mull %eax 
 movl %eax, result # save the result of 2^2 
Label_2: 
 ...more assembly code... 
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Appendix B 
Useful Terminal Commands 

 
Being comfortable working in the terminal is a necessary skill for both Electrical and Computer 
Engineers. Although GUIs are great for the end-user, many seasoned programmers and system 
developers find it more straightforward and less cumbersome to work within the terminal. It can 
be an intimidating experience at first, but with a few handy commands in your toolbox, the 
terminal can quickly become an efficient and easy environment to work in. 
 

1) Press the TAB key when you are typing the name of a file, program, etc. in your 
working directory. This will ask the terminal to predict what you are trying to type 
and fill it in for you. Predictions are pulled from the contents of the working directory 
and the environment variables. For example, if you just compiled your program with 
the gcc command gcc -o myprog drv.c asm.s, you can run it by typing 
./m. Don't press ENTER yet, but press TAB instead. The terminal will look in your 
current folder for files starting with the letter m and try and fill it in. Chances are it's 
the only file present starting with m, so it will turn into ./myprog without you 
having to type the whole thing. If there is more than one choice beginning with m, you 
can press TAB twice to have the terminal give you the options. From there, you can 
continue typing which file you want and press TAB again to prompt the terminal to 
search for a matching file based on the additional letters you've given it. Go ahead 
and give it a try! It will save a lot of typing (and typos from occurring) and will 
quickly become second nature with practice. 
 

2) At any time, you can press the UP and DOWN arrow keys to browse through recently 
entered commands. If you just compiled your program using the gcc command given 
in (1) above, you don't have to retype it again to recompile. Just press the UP arrow 
until you see it again. Not only can this help save time and increase productivity, it 
can also help you recall something you typed earlier in the case you have forgotten. 

 
3) The command pwd prints your current working directory. If you just logged into an 

Apollo machine, you will be in the /users/yourUserID directory. 
 

4) The ls command shows the contents of your current working directory. Give this 
command in any folder to see what is inside. 
 

5) The cd command changes to another directory. If you are in 
/users/yourUserID and you do an ls and see that you have a lab1 folder, you 
can go into it by typing cd lab1. If you are am in /users/yourUserID/lab1 
and you want to go back to your /users/yourUserID folder, then you can run 
cd ... This double-dot tells the cd command to go up one folder. 
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6) Pressing ctrl + c (i.e. ^c) will stop the execution of any program running in the 
foreground. So, if your program gets into an infinite loop, or like our Lab 1 program, 
requires the user manually kill it, ctrl + c will stop the program from running. 

 

7) The mkdir command will create a new directory in your current working directory. 
So, if you are in the /users/yourUserID directory and you want to make a 
lab2 folder, you would enter mkdir lab2. You can give the ls command here to 
reveal your newly created lab2 folder. 

 

8) The rm command will remove a file. If you are in /users/yourUserID/lab1, 
and you want to remove the a.out executable that gcc creates, you would run rm 
a.out. rm can also be used to remove folders. It works in the same way, but it 
requires the recursion flag -r. So, if you are in the /users/yourUserID folder 
and you want to delete the lab1 folder inside (full directory: 
/users/yourUserID/lab1), you would run rm -r lab1. This will delete 
your lab1 folder and everything inside it! 

 

9) The cp command will copy files. If you are in /users/yourUserID/lab1, and 
you want to copy the driver file named drv.c to your /users/yourUserID 
folder, then you would do cp drv.c /users/yourUserID. The first argument 
to cp is the source and the second is the destination. cp can also work recursively to 
copy a folder and its contents. If you are in the /users/yourUserID folder and 
you want to copy all of what is in /users/yourUserID/lab1 into the 
/users/yourUserID/Labs directory, you would do cp -r lab1 Labs. 

 

10) The scp command securely copies your files from one machine to the other. Refer to 
Appendix C on Working Remotely for further instructions. 

 

11) "<quotes>" When you have a file name, directory name, program name, or 
anything with a space in it, you need to encapsulate the name with quotes. Linux 
interprets a SPACE as break between two distinct arguments. If you have a folder 
called Lab 1 and you want to navigate to it, you would need to type cd "Lab 1". 
An alternative to using quotes is to use a backslash, \. Everywhere there is a SPACE 
as a part of a name, you put a \ to tell the terminal to expect a SPACE immediately 
following the \. The same example would be cd Lab\ 1. The \ goes immediately 
before the SPACE in the name. If you are looking for more detail as to why we need 
to do this – the terminal, like mentioned before, interprets a SPACE as a delimiter 
between arguments. Every word separated by a SPACE typed on the command line is 
an argument. The command cd "Lab 1" has argument 0 as cd and argument 1 as 
“Lab 1". (We used quotes here, but the same would work with the backslash 
method.) If you did cd Lab 1, there would be three arguments – cd, Lab, and 1. 
The cd command only expects a single argument, so it would throw an error stating it 
was used improperly if “...” or a \ were not used. 
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Appendix C 
Working Remotely 

 
It can sometimes be helpful to work on our assignments away from the lab. For online courses, 
this is a requirement to debug and test your work. There are a couple methods for working 
outside of the lab– (1) using your own Linux machine or (2) logging into the CES Apollo 
machines remotely. 
 
 
Editing with a Local Machine 
If you would like to use your own computer, you must use a version of Linux. Since all 
assignments will be evaluated on the CES Apollo or equivalent machines, it is recommended you 
develop and test your code on an equivalent machine. As of May 2013, CES Apollo machines 
are running Ubuntu Linux x86_64 with kernel version 3.2.0-41-generic. In case of an update, to 
find the most recent kernel and OS information, login to the Apollo machines using the 
instructions below in Remotely Logging In and enter the command uname –a. Information 
will be displayed about the currently running kernel and operating system. 
 
You may either run Ubuntu natively or install a virtual machine. To install Ubuntu on your 
machine, refer to www.ubuntu.com for documentation. If you would like to use a virtual 
machine on top of your existing operating system, refer to www.virtualbox.org. VMWare and 
Parallels are alternatives to VirtualBox; however, VirtualBox is free and highly recommended. If 
you have any difficulties installing Linux, please ask your instructor before assignments are due. 
 
Next, before we install libraries, we must first set up the root password. If you already have root 
access, you may skip this step. Upon a fresh install of Ubuntu, the root password is an unknown 
random hash. To set the root password to something you will remember, execute the sudo 
passwd command in the terminal. It will prompt for the new password and once again to 
confirm it. 
 
Now, most modern computers and operating systems are 64-bit; however, the assembly language 
taught in this course is 32-bit. As such, you must make sure you have the 32-bit C libraries 
installed on your Ubuntu system. To do so, open the terminal and type sudo apt-get 
install gcc-multilib. This will install all standard 32-bit libraries for compiling 32-bit 
code with gcc and will require the root password. 
 
At this point, we are ready to go. Simply use the text editor of your choice and follow the 
instructions for Lab 1 to compile your code. Although development of your assignments is more 
streamlined on your own machine, it is recommended you follow the scp instructions in the last 
section to test your code for compatibility on the machines it will be graded on. 
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Editing with a CES Apollo Machine 
To access the CES Apollo machines remotely, we must first make our computer appear as if it is 
on campus from the point of view of any campus machine. To do this, we can either choose to 
VPN onto campus or use the ssh utility (or an equivalent program). This will allow us to login 
to an Apollo machine to write, test, and debug our assignments. If you would like to VPN, please 
do so, and disregard command (1) below; proceed from (2). The basic command structure (typed 
in the terminal) is the following: 
 

1) ssh ClemsonUserId@access.ces.clemson.edu 
 

Where ClemsonUserId is your Clemson University username. If prompted to accept an RSA 
key fingerprint, type yes. Your password is your Clemson University password. This will create 
a tunnel between your personal computer and the access machine. 
 
From the access machine, we must then ssh again: 
 

2) ssh ClemsonUserId@apolloXX.ces.clemson.edu 
 

where ClemsonUserId is again your Clemson University username and XX is any two-digit 
number in the range 01, 02, 03, ..., 14, 15, 16. Also, if again prompted to accept 
an RSA key fingerprint, type yes. Your password is also your Clemson University password. 
This will log you into the Apollo machine of your choice. Note, regardless of the machine 
number you choose, your account information, files, etc. will be mirrored onto that machine. In 
other words, if one machine does not grant you access (for potentially a variety of reasons), give 
another number a try. Your files should be accessible from every CES computer. If your 
password fails (and you are certain you are using your Clemson password), you might not have 
a CES account. Please email your instructor as soon as possible for assistance. Setting up an 
account takes time and resources and might not get done outside the typical hours of a work day. 
Please do not wait until the last minute to resolve any account issues. 
 
At this point, you can choose the text editor of your choice (vi, vim, pico, nano, etc.) and 
work on your assignments. Note, this method is not graphical; however, it can make you more 
proficient in the Linux terminal. If you would prefer to use an IDE or a GUI-based application to 
edit your code, you will need to copy your files from your local machine to an Apollo machine 
for testing (see Testing Your Code on a CES Apollo Machine, below) 
 
To close any ssh session, give the exit command. If you followed (1), you will need to close 
your Apollo and access ssh sessions. If you VPNed and began with (2), you will only need to 
close the Apollo ssh session. 
 
 
  



 Page 142 of 155 

Testing Your Code on a CES Apollo Machine 
If you chose to edit your code on your local or personal machine, you should transfer it to an 
Apollo machine for testing. Likewise, after you have completed an assignment and fully tested it 
on an Apollo machine, you should transfer your assembly file from the Apollo machines to your 
personal computer for submission. 
 
To copy your files from your local machine to an Apollo machine, open a terminal on your local 
machine and type: 
 

scp labXassembly.s labXdriver.c 
ClemsonUserId@apolloXX.ces.clemson.edu:labXfolder 

 
where labXassembly.s and labXdriver.c are the assembly and driver files for the lab 
you wish to compile and test. ClemsonUserId is your Clemson University username and XX 
is any two-digit number in the range 01, 02, 03, ..., 14, 15, 16. If prompted to 
accept an RSA key fingerprint, type yes. Your password is your Clemson University password. 
This will copy your assembly file and driver file from your local machine’s current working 
directory (i.e. the location you ran scp from) to the Apollo machine in your folder of choice. 
Replace labXfolder with the path you wish to save your files to on the Apollo machines in 
your ClemsonUserId directory. 
 
To copy your assembly file from an Apollo machine to your local machine, open a terminal on 
your local machine and type: 
 

scp ClemsonUserId@apolloXX.ces.clemson.edu:labXfolder/labXassembly.s . 

 
where ClemsonUserId is your Clemson University username and XX is any two-digit number 
in the range 01, 02, 03, ..., 14, 15, 16. If prompted to accept an RSA key 
fingerprint, type yes. Your password is your Clemson University password. This will copy your 
assembly file from the Apollo machine to your personal computer’s current working directory 
(i.e. the location you ran scp from). Replace labXfolder with the path of your file on the 
Apollo machines in your ClemsonUserId directory. Also replace labXassembly.s with 
the name of the assembly file you wish to copy. Note – do not forget the SPACE and PERIOD 
after the labXassembly.s. 
 
In general scp takes X arguments. The first argument through argument X-1 is/are the source 
file(s). The last argument (i.e. argument X) is the destination. If you would like to place the file 
you are copying into a different destination than your current working directory, replace the . 
with the destination directory. For example, if you would like to paste your assembly file on your 
desktop, you might type: 
 
scp ClemsonUserId@apolloXX.ces.clemson.edu:labXfolder/labXassembly.s 

/home/username/Desktop 
 
where username is your local Ubuntu username. 
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If you would like to copy multiple files from a remote source to a local destination, simply 
encapsulate the paths of each file in quotes after the colon, :. 
 
For example: 
 
scp ClemsonUserId@apolloXX.ces.clemson.edu:”labXfolder/labXassembly.s 

labXfolder/labXdriver.c” . 
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Appendix D 
ASCII Code 

 
ASCII (American Standard Code for Information Exchange) is a way to represent characters, 
both visible and hidden, on a computer. Standard ASCII assigns an 8-bit (or 1-byte) binary code 
to a given character. These codes can be referenced in their decimal equivalents of 0 to 127, as 
well as in octal and hexadecimal. For example, the string: 
 
 A B C 1 2 3 
 
is represented in ASCII as: 
 
 65  32  66  32  67  32  49  9  50  9  51  
 
where A is ASCII 65, B is ASCII 66, C is ASCII 67, 1 is ASCII 49, 2 is ASCII 50, 3 is ASCII 
51, a space is ASCII 32, and a tab is ASCII 9. Notice the invisible characters have ASCII 
values as well. 
 
The following table from www.asciitable.com shows the ASCII-coded values for common 
characters. For this course, ASCII will be required in Lab 4. 
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Appendix E 
Assignment Solutions 

 
Please refer to these solutions only once you have exhausted all your resources – the instructor, 
the lab manual, and your neighbor (for group assignments) – and you feel working backwards 
might help. Any submissions copied verbatim or in part from this appendix will not receive 
credit. Your instructor wants to see you succeed and understand these assignments, so ask for 
help! Note there are many ways to complete each assignment; the solutions simply demonstrate 
one correct implementation for each.  
 

 Lab 1 Solution 
/* begin assembly code */ 
 
.globl asum 
.type asum,@function 
asum: 

pushl %ebp 
movl %esp, %ebp 
subl $4, %esp 

 movl $0, -4(%ebp) 
.L2: 
 movl 8(%ebp),%eax 
 cmpb $0,(%eax) 
 jne .L4 
 jmp .L3 
.L4: 
 movl 8(%ebp),%eax 
 movsbl (%eax),%edx 
 addl %edx, -4(%ebp) 
 incl 8(%ebp) 
 jmp .L2 
.L3: 
 movl -4(%ebp), %eax 
 jmp .L1 
.L1: 
 movl %ebp, %esp 
 popl %ebp 
 ret 
 
/* end assembly */ 
/* Do not forget the required blank line here! */ 
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Lab 2 Solution 
/* begin assembly solution */ 
 
.globl dodiff 
.type dodiff, @function 
dodiff: 
 /* prolog */ 
 pushl %ebp 
 pushl %ebx 
 movl %esp, %ebp 
 
 /* put code here */ 
 movl $0, %edx 
 movl digit1, %eax 
 mull %eax 
 movl %eax, %ebx 
 movl digit2, %eax 
 mull %eax 
 movl %eax, %ecx 
 movl digit3, %eax 
 mull %eax 
 addl %ebx, %ecx 
 subl %eax, %ecx 
 movl %ecx, diff 
 
 /* epilog */ 
 movl %ebp, %esp 
 popl %ebx 
 popl %ebp 
 ret 
 
.globl dosumprod 
.type dosumprod, @function 
dosumprod: 
 /* prolog */ 
 pushl %ebp 
 pushl %ebx  
 movl %esp, %ebp 
 
 /* put code here */ 
 movl digit1, %eax 
 addl digit2, %eax 
 addl digit3, %eax 
 movl %eax, sum 
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 movl $0, %edx 
 movl digit1, %eax 
 mull digit2 
 mull digit3 
 movl %eax, product 
 
 /* epilog */ 
 movl %ebp, %esp 
 popl %ebx 
 popl %ebp 
 ret 
 
.globl doremainder 
.type doremainder, @function 
doremainder: 
 /* prolog */ 
 pushl %ebp 
 pushl %ebx 
 movl %esp, %ebp 
 
 /* put code here */ 
 movl $0, %edx 
 movl product, %eax 
 divl sum 
 movl %edx, remainder 
 
 /* epilog */ 
 movl %ebp, %esp 
 popl %ebx 
 popl %ebp 
 ret 
 
/* declare variables here */ 
.comm digit3, 4 
.comm digit1, 4 
.comm digit2, 4 
.comm diff, 4 
.comm sum, 4 
.comm product, 4 
.comm remainder, 4 
 
/* end assembly solution */ 
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Lab 3 Solution 
/* begin assembly solution */ 
 
.globl classify 
.type classify,@function 
 
classify: 

/* prolog */ 
pushl %ebp 
pushl %ebx 
movl %esp, %ebp 
 
movl $0, match 
movl i, %eax 
cmpl j, %eax  # compare j to i (eax) 
jne match2 
addl $1, match 
 
match2: 

cmp k, %eax 
jne match3 
addl $2, match 
 

match3: 
movl j, %eax 
cmpl k, %eax 
jne if_level1_num1 
addl $3, match 

 
if_level1_num1: 

# if(match) 
movl match, %eax  
cmpl $0, %eax   # compare match with 0 
je if_level1_num2 # if they're equal, skip this if 

 
# if(match == 1) 
cmp $1, %eax  # compare match with 1 
jne else_level2  # if not equal, jump to the else 
# if they are equal, perform this nested if statement 
movl i, %ebx 
addl j, %ebx  # ebx = i + j 
cmpl k, %ebx  # compare (i+j) (the ebx reg.) to k 
jg if_level1_fin # if it's greater than, jump to the 
2 if movl $0, tri_type # tri_type = 0 
jmp return   # jump to the return 
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else_level2: 
# if(match != 2) 
movl match, %eax 
cmp $2, %eax   # compare 2 to match 
je else_level3   # if !=, jmp else_level3 
# if(match == 6) 
cmpl $6, %eax  # compare 6 to match 
jne else_level4  # jump if not equal to else_level4 
movl $1, tri_type  # tri_type = 1 
jmp return   # jump to return 

 
else_level4: 

movl j, %eax 
addl k, %eax  # eax = j+k 
cmpl i, %eax  # compare (j+k) to i 
jg if_level1_fin  # if >, jump to the end of main if 
movl $0, tri_type  # tri_type = 0 
jmp return   # jump to return 

 
else_level3: 

movl i, %eax 
addl k, %eax  # eax = i+k 
cmp j, %eax  # compare (i+k) to j 
jg if_level1_fin  # if >, jump to the end of main if 
movl $0, tri_type  # tri_type = 0 
jmp return   # jump to return 

 
if_level1_fin: 

# this is the very bottom of the 1st main if, before 
# the second if 
movl $2, tri_type  # tri_type = 2 
jmp return   # jump to return 

 
if_level1_num2: 

# if((i+j)<=k || (j+k) <= i || (i+k) <= j) 
 movl i, %eax 

addl j, %eax  # eax = i + j 
cmpl k, %eax  # compare (i+j) to k 
jle inside   # if (i+j) <= k, jump to inside 
# or 
movl j, %eax 
addl k, %eax  # eax = j + k 
cmpl i, %eax  # compare (j+k) to i 
jle inside   # if (j+k) <= i, jump to inside 
# or 
movl i, %eax  
addl k, %eax  # eax = i + k 
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cmp j, %eax   # compare (i+k) to j 
jle inside   # if (i+k) <= j, jump to inside 
movl $3, tri_type  # tri_type = 3 
jmp return   # jump to return 

 
inside: 

movl $0, tri_type # tri_type = 0 
jmp return   # jump to return 

 
return: 

/* epilog */ 
movl %ebp, %esp 
popl %ebx 
popl %ebp 
ret 

 
/* variable declarations */ 
.comm match, 4 
 
/* end assembly solution */ 
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Lab 4 Solution 
/* begin assembly solution */ 
 
.globl AtoI 
.type AtoI,@function 
AtoI: 

/* prolog */ 
pushl %ebp  
movl %esp, %ebp 
pushl %ebx 
pushl %esi 
pushl %edi 

 
/* put code here */ 
movl $1, sign 
 
## while(*ascii == ' ' || *ascii == '\t') ascii++; 
CheckWhiteSpace: 

movl ascii, %eax # put the char array pointer in %eax 
cmpb $32, (%eax) # comp this element to a space 
jne CheckTab # if not equal, check if it's a tab 
addl $1, ascii # if equal, move ahead one space 
jmp CheckWhiteSpace # reloop and check next space 

 
CheckTab: 

movl ascii, %eax # put the char array pointer in %eax 
cmpb $9, (%eax) # comp this element to a tab 
jne CheckPlus # if not equal, goto the next checks 
addl $1, ascii # if equal, move ahead one space 
jmp CheckWhiteSpace # reloop and check next space 

 
## if(*ascii == '+') ascii++;  
CheckPlus: 

movl ascii, %eax 
cmpb $43, (%eax) 
jne CheckMinus 
addl $1, ascii 

 
## else if(*ascii == '-') { sign = -1; ascii++; } 
CheckMinus: 

movl ascii, %eax 
cmpb $45, (%eax) 
jne ChecksDone 
movl $-1, sign 
addl $1, ascii 
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ChecksDone: 

movl intptr, %eax 
movl $0, (%eax) 
movl $0, i 

 
LoopSearch: 

movl $0, %eax 
movl ascii, %ebx 
movl i, %esi 
movb (%ebx, %esi, 1), %al 
cmpb $48, %al 
jl LoopSearchDone 
cmpb $57, %al 
jg LoopSearchDone 
addl $1, i 
jmp LoopSearch 

 
LoopSearchDone: 

addl $-1, i 
movl $1, multiplier 

 
LoopCalculate: 

cmp $0, i 
jl FinishUp 
movl $0, %ecx  
movl ascii, %ebx 
movl i, %esi 
movl $0, %eax 
movb (%ebx, %esi, 1), %al 
subb $48, %al 
mull multiplier 
movl intptr, %ebx 
addl %eax, (%ebx) 
movl multiplier, %eax 
movl $10, %edx 
mull %edx 
movl %eax, multiplier 
addl $-1, i 
jmp LoopCalculate 

 
FinishUp: 

movl intptr, %ebx 
movl (%ebx), %eax 
mull sign 
movl %eax, (%ebx) 
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return: 
/* epilog */ 
popl %edi 
popl %esi 
popl %ebx 
movl %ebp, %esp 
popl %ebp 
ret 
 

/* end assembly solution */ 
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Lab 5 Solution 
/* begin assembly solution */ 
 
.globl Fib 
.type Fib,@function 
Fib:  

/* prolog */ 
pushl %ebp 
pushl %ebx 
movl %esp,%ebp 
subl $8,%esp 
 
/* put code here */ 
movl global_var, %eax 
movl %eax, -4(%ebp) 

cmp $0,-4(%ebp) 

je return 
cmp $1,-4(%ebp) 
je return 

 
movl -4(%ebp), %eax 
subl $1, %eax 
movl %eax, global_var 
call Fib 
movl  global_var, %eax 
movl %eax, -8(%ebp) 
movl -4(%ebp), %eax 
subl $2, %eax 
movl %eax, global_var 
call Fib 
movl global_var, %eax 
movl -8(%ebp), %ebx 
addl %ebx, %eax 
movl %eax, global_var 

 
return: 

/* epilog */ 
movl %ebp, %esp 
popl %ebx 
popl %ebp 
ret 
 

/* end assembly solution */ 
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Lab 6 Solution 
/* begin assembly solution */ 
 
.globl Factorial 
.type Factorial,@function 
Factorial: 

/* prolog */ 
pushl %ebp 
pushl %ebx 
movl %esp, %ebp 
subl $4, %esp 
/* put code here */ 
/* get 'number' (the argument) from stack */ 
movl 12(%ebp), %ecx 
/* ecx is the argument now */ 
cmp $0, %ecx 
je ret_one 
cmp $1, %ecx 
je ret_one 
/* save the variable locally so that after the function call  
   we can perform our math 
*/ 
movl %ecx, -4(%ebp) 
/* decrement then call */ 
decl %ecx 
pushl %ecx 
call Factorial 
movl -4(%ebp), %ecx 
/* the return was placed in %eax so we just multiply by 
   our local */ 
mull %ecx 
jmp return 
ret_one: 

movl $1, %eax 
return: 

/* epilog */ 
movl %ebp, %esp 
popl %ebx 
popl %ebp 
ret 

 
/* end assembly solution */ 
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