
Manual for Tali Forth 2 for the 65c02
Scot W. Stevenson

Version BETA, 03. Nov 2018

Table of Contents
Dedication. 2

Introduction. 3

But why?. 4

The Big Picture . 4

Forth . 5

Writing Your Own Forth . 5

Overview of Tali Forth . 7

Design Considerations . 7

Deeper down the rabbit hole . 8

User Guide . 9

Installing Tali Forth . 10

Downloading . 10

Running . 10

Installing on Your Own Hardware . 10

Hardware Projects with Tali Forth 2 . 11

Running Tali Forth. 12

Booting . 12

Command-Line History . 12

Words . 12

Native Compiling . 15

Underflow Detection. 16

Restarting . 16

Gotchas. 16

Major Components . 18

Blocks . 18

The Block Editor. 18

The Line-Based Editor ed . 21

Assembler . 24

Disassembler. 24

Developer Guide . 26

How Tali Forth Works . 27

The Data Stack . 27

Dictionary . 29

Input . 33

The Words create and does> . 34

Control Flow . 37

Native Compiling . 39

cmove, cmove> and move . 44

Developing. 45

Adding New Words . 45

Deeper Changes . 45

Code Cheat Sheets . 47

Future and Long-Term plans . 49

Tutorials . 50

Working with Blocks . 51

The ed Line-Based Editor . 52

First steps with ed . 52

Saving Your Text . 55

Getting Out of ed . 55

Programming with ed . 56

Further Information . 56

Appendix . 58

Reporting Problems. 59

FAQ . 60

Testing Tali Forth 2 . 62

User Tests. 62

Cycle Tests . 62

Old Tests. 63

Thanks . 64

References and Further Reading . 65

Colophon . 66

Tali Forth 2 is a bare-metal ANS(ish) Forth for the 65c02 8-bit MPU. It aims to be,
roughly in order of importance, easy to try out (just run the included binary),
simple (subroutine threading model), specific (for the 65c02 only), and
standardized (ANS Forth).

1

Dedication
For the crew at 6502.org, who made this possible in more ways than one.

2

Introduction

3

But why?
Forth is well suited to resource-constrained situations. It doesn’t need lots of
memory and doesn’t have much overhead. [CHM1]

— Charles H. Moore, redgate Hub 2009

The Big Picture
This section provides background information on Forth, the 6502 processor, and why anybody
would want to combine the two. It can be skipped if you already know all those things.

The 6502 CPU

It is a well-established fact that humanity reached the apex of processor design with the 6502 in
1976.

Created by a team including Chuck Peddle and Bill Mensch, it was the engine that powered the 8-bit
home computer revolution of the 1980s. [1: Rumor has it that there was another MPU called "Z80",
but it ended up being a mere footnote.] The VIC-20, Commodore PET, Apple II, and Atari 800 all
used the 6502, among others.

Figure 1. The 65c02 MPU. Photo: Anthony King, released in the public domain

More than 40 years later, the processor is still in production by the Western Design Center. Apart
from commercial uses, there is an active hobbyist scene centered on the website 6502.org. A
number of people have built their own 8-bit computers based on this chip and the instructions
there, including a primer by Garth Wilson. It is for these systems that Tali Forth 2 was created.

The most important variant of the 6502 produced today is the 65c02, a CMOS chip with some
additional instructions. It is for this chip that Tali Forth 2 was written.

But why program in 8-bit assembler at all? The 65c02 is fun to work with because of its clean

4

http://www.westerndesigncenter.com/wdc/w65c02s-chip.cfm
http://6502.org/
http://wilsonminesco.com/6502primer/
https://en.wikipedia.org/wiki/WDC_65C02

instruction set architecture (ISA) This is not the place to explain the joys of assembler. The official
handbook for the 65c02 is Programming the 65816 [EnL].


Garth Wilson answers this question in greater detail as part of his 6502 primer at
http://wilsonminesco.com/6502primer/ .

Forth

If C gives you enough rope to hang yourself, Forth is a flamethrower
crawling with cobras. [EW]

— Elliot Williams, Forth: The Hacker's language

Forth(Forth is the enfant terrible of programming languages. It was invented by Charles "Chuck" H.
Moore in the 1960s to do work with radio astronomy, way before there were modern operating
systems or programming languages.


A brief history of Forth can be found at https://www.forth.com/resources/forth-
programming-language

As a language for people who actually need to get things done, it lets you run with scissors, play
with fire, and cut corners until you’ve turned a square into a circle. Forth is not for the faint-
hearted: It is trivial, for instance, to redefine 1 as 2 and true as false. Though you can do really,
really clever things with few lines of code, the result can be hard for other people to understand,
leading to the reputation of Forth begin a "write-only language". However, Forth excels when you
positively, absolutely have to get something done with hardware that is really too weak for the job.

It should be no surprise that NASA is one of the organizations that uses Forth. The Cassini mission
to Saturn used a Forth CPU, for instance. It is also perfect for small computers like the 8-bit 65c02.
After a small boom in the 1980s, more powerful computers led to a decline of the language. The
"Internet of Things" (IOT) with embedded small processors has led to a certain amount of renewed
interest in the language. It helps that Forth is easy to implement: It is stack-based, uses Reverse
Polish Notation (RPN) and a simple threaded interpreter model.

There is no way this document can provide an adequate introduction to Forth. There are quite a
number of tutorials, however, such as A Beginner’s Guide to Forth by J.V. Nobel [JVN] or the classic
(but slightly dated) Starting Forth by Leo Brodie.[LB1] Gforth, one of the more powerful free Forths,
comes with its own tutorial.


Once you have understood the basics of the language, do yourself a favor and read
Thinking Forth by Brodie[LB2] which deals with the philosophy of the language.
Even if you never code a line of Forth in your life, exposure to Forth will change
the way you think about programming, much like Lisp.

Writing Your Own Forth
Even if the 65c02 is great and Forth is brilliant, why got to the effort of writing a new, bare-metal

5

http://wilsonminesco.com/6502primer/
https://www.forth.com/resources/forth-programming-language
https://www.forth.com/resources/forth-programming-language
http://www.cpushack.com/2013/02/21/charles-moore-forth-stack-processors/
https://www.embedded.com/design/programming-languages-and-tools/4431133/Go-Forth-
https://www.embedded.com/design/programming-languages-and-tools/4431133/Go-Forth-
http://www.complang.tuwien.ac.at/forth/gforth/Docs-html/Tutorial.html

version of the languages? After almost 50 years, shouldn’t there be a bunch of Forths around
already?

FIG Forth

In fact, the classic Forth available for the whole group of 8-bit MPUs is FIG Forth. "FIG" stands for
"Forth Interest Group". Ported to various architectures, it was original based on an incarnation for
the 6502 written by Bill Ragsdale and Robert Selzer. There are PDFs of the 6502 version from
September 1980 freely available — there is a tradition of placing Forth in the public domain — and
more than one hobbyist has revised it to his machine.

However, Forth has changed a lot in the past three decades. There is now a standardized version
called ANS Forth, which includes very basic changes such as how the do loop works. Learning the
language with FIG Forth is like learning English with The Canterbury Tales.

A Modern Forth for the 65c02

Tali Forth was created to provide an easy to understand modern Forth written especially for the
65c02 that anybody can understand, adapt to their own use, and maybe actually work with. As part
of that effort, the source code is heavily commented. And this document tries to explain the
internals in more detail.

6

http://www.forth.org/fig-forth/fig-forth_6502.pdf
https://forth-standard.org/

Overview of Tali Forth

Design Considerations
When creating a new Forth, there are a bunch of design decisions to be made.


Probably the best introduction to these questions is found in "Design Decisions in
the Forth Kernel" at http://www.bradrodriguez.com/papers/moving1.htm by Brad
Rodriguez.

Spoiler alert: Tali Forth is a subroutine-threaded (STC) variant with a 16-bit cell size and a
dictionary that keeps headers and code separate. If you don’t care and just want to use the
program, skip ahead.

Characteristics of the 65c02

Since this is a bare-metal Forth, the most important consideration is the target processor. The 65c02
only has one full register, the accumulator A, as well as two secondary registers X and Y. All are 8-
bit wide. There are 256 bytes that are more easily addressable on the Zero Page. A single hardware
stack is used for subroutine jumps. The address bus is 16 bits wide for a maximum of 64 KiB of RAM
and ROM.

For the default setup, we assume 32 KiB of each, but allow this to be changed so people can adapt
Tali to their own hardware.

Cell Size

The 16-bit address bus suggests the cell size should be 16 bits as well. This is still easy enough to
realize on a 8-bit MPU.

Threading Technique

A "thread" in Forth is simply a list of addresses of words to be executed. There are four basic
threading techniques: [GK]

Indirect threading (ITC)

The oldest, original variant, used by FIG Forth. All other versions are modifications of this
model.

Direct threading (DTC)

Includes more assembler code to speed things up, but slightly larger than ITC.

Token threading (TTC)

The reverse of DTC in that it is slower, but uses less space than the other Forths. Words are
created as a table of tokens.

Subroutine threading (STC)

7

http://www.bradrodriguez.com/papers/moving1.htm

Converts the words to a simple series of jsr combinations. Easy to understand and less complex
than the other variants, but uses more space and is slower.

Our lack of registers and the goal of creating a simple and easy to understand Forth makes
subroutine threading the most attractive solution. We try to mitigate the pain caused by the 12 cycle
cost of each and every jsr-rts combination by including a relatively high number of native words.

Register Use

The lack of registers — and any registers larger than 8 bit at that — becomes apparent when you
realize that Forth classically uses at least four virtual registers:

Table 1. The classic Forth registers

Registe
r

Name

W Working Register

IP Interpreter Pointer

DSP Data Stack Pointer

RSP Return Stack Pointer

On a modern processor like a RISC-V RV32I with 32 registers of 32 bit each, none of this would be a
problem (in fact, we’d probably run out of ways to use the registers). On the 65c02, at least we get
the RSP for free with the built-in stack pointer. This still leaves three registers. We cut that number
down by one through subroutine threading, which gets rid of the IP. For the DSP, we use the 65c02’s
Zero Page indirect addressing mode with the X register. This leaves W, which we put on the Zero
Page as well.

Data Stack Design

We’ll go into greater detail on how the Data Stack works in a later chapter when we look at the
internals. Briefly, the stack is realized on the Zero Page for speed. For stability, we provide
underflow checks in the relevant words, but give the user the option of stripping it out for native
compilation. There are no checks for overflow because those cases tend to be rare.

Dictionary Structure

Each Forth word consists of the actual code and the header that holds the meta-data. The headers
are arranged as a simple single-linked list.

In contrast to Tali Forth 1, which kept the header and body of the words together, Tali Forth 2 keeps
them separate. This lets us play various tricks with the code to make it more effective.

Deeper down the rabbit hole
This concludes our overview of the basic Tali Forth 2 structure. For those interested, a later chapter
will provide far more detail.

8

User Guide

9

Installing Tali Forth

Downloading
Tali Forth 2 lives on GitHub at https://github.com/scotws/TaliForth2. This is where you will always
find the current version. You can either clone the code with git or simply download it. To just test
Tali Forth, all you need is the binary file taliforth-py65mon.bin.

Running

Downloading the py65mon Simulator

Tali was written to run out of the box on the py65mon simulator from https://github.com/mnaberez/
py65. This is a Python program that should run on various operating systems. Py65mon is also
required for the test suite.

To install py65mon on Linux, use the command

sudo pip install -U py65

If you don’t have pip installed, you will have to add it first with something like sudo apt-get install
python-pip (Ubuntu Linux). There is a setup.py script as part of the package.

Running the Binary

To start the emulator, run:

py65mon -m 65c02 -r taliforth-py65mon.bin

Note that the option -m 65c02 is required, because Tali Forth makes extensive use of the additional
commands of the CMOS version and will not run on a stock 6502 MPU.

Installing on Your Own Hardware
The Tali Forth project started out as a way to run Forth on my own 65c02 computer, the
Übersquirrel. Though it soon developed a life of its own, a central aim of the project is to provide a
working, modern Forth that people can install on their projects.

Figure 2. The functioning Übersquirrel Mark Zero prototype, August 2013. Photo by Scot W. Stevenson

10

https://github.com/scotws/TaliForth2
https://github.com/mnaberez/py65
https://github.com/mnaberez/py65

The Platform Files

For this to work, you need to go to the platform folder and create your own kernel code to replace
platform-py65mon.asm, the default kernel for use with the py65mon kernel. By convention, the name
should start with platform-. See the README.md file in the the platform folder for details.

Hardware Projects with Tali Forth 2
This is a list of projects known to run Tali Forth 2. Please let me know if you want to have your
project added to the list.

• Steckschwein (https://steckschwein.de/) by Thomas Woinke and Marko Lauke. A multi-board 8
MHz 65c02 system. Platform file: platform-steckschwein.asm (26. Oct 2018)

• SamCo’s SBC (https://github.com/SamCoVT/SBC) by Sam Colwell. A single-board computer
running at 4MHz. Platform file: platform-sbc.asm (29. Oct 2018)

11

https://steckschwein.de/
https://github.com/SamCoVT/SBC

Running Tali Forth
One doesn’t write programs in Forth. Forth is the program.

— Charles Moore, Masterminds of Programming

Booting
Out of the box, Tali Forth boots a minimal kernel to connect to the py65mon simulator. By default,
this stage ends with a line such as

Tali Forth 2 default kernel for py65mon (18. Feb 2018)

When you port Tali Forth to your own hardware, you’ll have to include your own kernel (and
probably should print out a different line).

Tali Forth itself boots next, and after setting up various internal things, compiles the high level
words. This causes a slight delay, depending on the number and length of these words. As the last
step, Forth should spit out a boot string like

Tali Forth 2 for the 65c02
Version ALPHA 02. July 2018
Copyright 2014-2018 Scot W. Stevenson
Tali Forth 2 comes with absolutely NO WARRANTY
Type 'bye' to exit

Because these are the last high-level commands Tali Forth executes, this functions as a primitive
self-test. If you have modified the high level Forth words in either forth_words.fs or user_words.fs,
the boot process might fail with a variant of the error message "unknown word". The built-in,
native words should always work. For this dump is a built-in word — it is very useful for testing.

Command-Line History
Tali’s command line includes a simple, eight-element history function. To access the previous
entries, press CONTROL-p, to go forward to the next entry, press CONTROL-n.

Words
Tali Forth comes with the following Forth words out of the box:

12

see block_init_ramdrive evaluate thru load flush empty-buffers buffer update
block save-buffers block_words_deferred blockwrite blockread scr blk buffstatus
buffblocknum blkbuffer 2literal 2constant d.r d. ud.r ud. .r u.r action-of is defer@
defer! endcase endof of case while until repeat else then if .((drop dup swap ! @
over >r r> r@ nip rot -rot tuck , c@ c! +! execute emit type . u. ? false true
space 0 1 2 2dup ?dup + - abs dabs and or xor rshift lshift pick char [char] char+
chars cells cell+ here 1- 1+ 2* 2/ = <> < u< u> > 0= 0<> 0> 0< min max 2drop 2swap
2over 2! 2@ 2variable 2r@ 2r> 2>r invert negate dnegate c, bounds spaces bl
-trailing /string refill accept unused depth key allot create does> variable constant
value to s>d d>s d- d+ erase blank fill find-name ' ['] name>int int>name
name>string >body defer latestxt latestnt parse-name parse source source-id : ;
:noname
compile, [] 0branch branch literal sliteral ." s" postpone immediate compile-only
never-native always-native nc-limit uf-strip abort abort" do ?do i j loop +loop exit
unloop leave recurse quit begin again state evaluate base digit? number >number hex
decimal count m* um* * um/mod sm/rem fm/mod / /mod mod */mod */ \ move cmove> cmove
pad within >in <# # #s #> hold sign output input cr page at-xy marker words
wordsize aligned align bell dump .s disasm compare search environment? find word cold
bye

 This list might be outdated. To get the current list, run words from inside Tali Forth.

Though the list might look unsorted, it actually reflects the priority in the dictionary, that is, which
words are found first. For instance, the native words  — those coded in assembler — always start
with drop and end with bye. This is the last word that Tali will find in the dictionary. [2: If you’re
going to quit anyway, speed can’t be that important] The words before drop are those that are
defined in high-level Forth. For more information on individual the words, use the see command.

Note that the built-in words are lower case. While Tali is not case sensitive — KASUMI is the same
word as Kasumi  — newly defined words will be lowercased as they are created and entered into the
dictionary. There is a slight speed advantage during lookup to using lowercase words (because Tali
doesn’t have to lowercase the entered text), so all of the tests for Tali are in lowercase.

The ANS Standard

Tali Forth is orientated on ANS Forth, the standard defined by the American National Standards
Institute (ANSI). Tali also adopted some words from Gforth such as bounds. In practical terms, Tali
aims to be a subset of Gforth: If a program runs on Tali, it should run on Gforth the same way or
have a very good reason not to.

Tali-Specific Words

In addition, there are words that are specific to Tali Forth.

0branch

(f — ) Branch if zero. Used internally for branching commands such as if. In modern Forths,
this is usually replaced by cs-pick and cs-roll; Tali Forth might switch to these words in the
future.

13

0

( — 0) Push the number 0 on the Data Stack.

1

( — 0) Push the number 1 on the Data Stack.

2

( — 0) Push the number 2 on the Data Stack.

always-native

Mark last word in dictionary so that it is always natively compiled.

bell

Ring the terminal bell (ASCII 07).

block-read

(addr blk# — ) This is a deferred word the user can change to point to their own routine for
reading 1K blocks into memory from storage.

block-write

(addr blk# — ) This is a deferred word the user can change to point to their own routine for
writing 1K blocks from memory to storage.

block-ramdrive-init

(u — ) Create a ram drive with the given number of blocks (numbered 0 to (u-1)) to allow use of
the block words with no additional hardware. Because the blocks are only held in ram, they will
be lost when the hardware is powered down or the simulator is stopped.

branch

Always take branch. See 0branch.

compile-only

Mark last word in dictionary as compile-only.

digit?

(char — u f | char f) If character is a digit, convert and set flag to true, otherwise return the
offending character and a false flag.

ed

Start the command-line editor. There is a whole chapter on this father down.

input

Return the address where the vector for the input routine is stored (not the vector itself). Used
for input redirection for emit and others.

int>name

(xt — nt) Given the execution execution token (xt), return the name token (nt).

14

latestnt

( — nt) Return the last used name token. The Gforth version of this word is called latest.

nc-limit

( — addr) Return the address where the threshold value for native compiling native compiling
is kept. To check the value of this parameter, use nc-limit ?. The default value is 20.

never-native

Mark most recent word so it is never natively compiled.

number

(addr u — u | d) Convert a string to a number. Gforth uses s>number? and returns a success flag
as well.

output

( — addr) Return the address where the vector for the output routine is stored (not the vector
itself). Used for output redirection for emit and others.

uf-strip

( — addr) Return the address where the flag is kept that decides if the underflow checks are
removed during native compiling. To check the value of this flag, use uf-strip ?.

wordsize

(nt — u) Given the name token (nt) of a Forth word, return its size in bytes. Used to help tune
native compiling.

Native Compiling
As the name says, subroutine threaded code encodes the words as a series of subroutine jumps.
Because of the overhead caused by these jumps, this can make the code slow. Therefore, Tali Forth
enables native compiling, where the machine code from the word itself is included instead of a
subroutine jump. This is also called "inlining".

The parameter nc-limit sets the limit of how small words have to be to be natively compiled. To get
the current value (usually 20), check the value of the system variable:

nc-limit ?

To set a new limit, save the maximal allowed number of bytes in the machine code like any other
Forth variable:

40 nc-limit !

To complete turn off native compiling, set this value to zero.

15

Underflow Detection
When a word tries to access more words on the stack than it is holding, an "underflow" error
occurs. Whereas Tali Forth 1 didn’t check for these errors, this version does.

However, this slows the program down. Because of this, the user can turn off underflow detection
for words that are natively compiled into new words. To do this, set the system variable uf-strip to
true. Note this does not turn off underflow detection in the built-in words. Also, words with
underflow detection that are not included in new words through native compiling will also retain
their tests.

Restarting
Tali Forth has a non-standard word cold that resets the system. This doesn’t erase any data in
memory, but just moves the pointers back. When in doubt, you might be better off quitting and
restarting completely.

Gotchas
Some things to look out for when using Tali Forth.

Cell Size

Tali has a 16-bit cell size.

 Use 1 cells 8 * . to get the cell size in bits with any Forth.

This can trip up calculations when compared to the de facto standard Gforth with 64 bits. Take this
example:

(Gforth) decimal 1000 100 um* hex swap u. u. (returns 186a0 0 ok)
(Tali Forth) decimal 1000 100 um* hex swap u. u. (returns 86a0 1 ok)

Tali has to use the upper cell of a double-celled number to correctly report the result, while Gforth
doesn’t. If the conversion from double to single is only via a drop instruction, this will produce
different results.

There is a similar effect with the Gforth word bounds: Because of Tali’s 16 bit address space, it wraps
the upper address if we go beyond $FFFF:

(Gforth) hex FFFF 2 bounds swap u. u. (returns 10001 ffff ok)
(Tali) hex FFFF 2 bounds swap u. u. (returns 1 ffff ok)

16

Delimiters During Parsing

Both parse-name and parse skip white space - defined as ASCII characters from 00 to 32 (SPACE)
inclusive - when the standard talks about "spaces". Otherwise, Tali would choke on TABs during
compiling, and the ed editor couldn’t be used to edit programs because of the Line Feed characters.
This is covered in the standard, see the footnote at https://forth-standard.org/standard/core/PARSE-
NAME by Anton Ertl, referencing http://forth-standard.org/standard/usage#subsubsection.3.4.1.1
and http://forth-standard.org/standard/file#subsection.11.3.5 .

Negative allot

The ANSI standard does not define what happens if there is an attempt to free more memory with
allot by passing a negative value than is available. Tali will let the user free memory up the
beginning of RAM assigned to the Dictionary (marked with cp0 in the code), even though this can
mean that the Dictionary itself is compromised. This is Forth, you’re the boss.

However, any attempt to free more memory than that will set the beginning of RAM to cp0. Also, the
Dictionary Pointer dp will point to the last native word of the Dictionary, which is usually drop.
Because of this, the high level words defined during boot will not be available. There will be an
error message to document this. Realistically, you’ll probably want to restart with cold if any of this
happens.

17

https://forth-standard.org/standard/core/PARSE-NAME
https://forth-standard.org/standard/core/PARSE-NAME
http://forth-standard.org/standard/usage#subsubsection.3.4.1.1
http://forth-standard.org/standard/file#subsection.11.3.5

Major Components

Blocks
Tali supports the optional BLOCK word set. The 2012 Forth standard defines a block as 1024 bytes,
and the buffers for them are the same size (as opposed to some older forths that had smaller
buffers.) Tali currently comes with one buffer.

Before these words can be used, the user needs to write two routines: one for reading blocks into
RAM and one for writing blocks out from RAM. Both of these should have the signature (addr
blk# — ). Once these have been written, they can be incorporated into the BLOCK word set by
changing the deferred words block-read and block-write. That might look like:

' myblockreader IS BLOCK-READ
' myblockwriter IS BLOCK-WRITE

Once these two deferred words have been updated, you can use the block words.

If you would like to play with some blocks, but don’t have any hardware or are running Tali in a
simulator, fear not! Tali has a built-in RAM drive that can be accessed by running:

4 block-ramdrive-init

This reserves a chunk of ram with four blocks in it (numbered 0-3) which is enough to play around
with. It also sets up the routines for reading and writing blocks in this ramdrive for you. If you
want more blocks, you can change the number. Because they start at zero, the last valid block will
always be one less than the number you provide.

Be careful about creating too many blocks as they are 1K each. It’s also worth noting that running
block-ramdrive-init again will create another ramdrive and the existing one will be inaccessible
while still taking up space in RAM.

The Block Editor
If you are using blocks (see the block chapter), you can use the following code to create a very basic
screen editor that allows you to replace a single line or an entire screen. Screens are 16 lines
(numbered 0-15) of 64 characters each, for a total of 1K characters. Because newlines are not stored
in the blocks (the remainder of each line is filled with spaces,) you should leave a space in the very
last character of each line to separate the words in that line from the words in the next line.



This editor uses a word named E which may interfere with the use of hex. Once
you have entered the editor words, you will need to use the hex value "0E"
anywhere you want a single "E" value. This will not interfere with hex numbers
that have additional digits. Alternately, you can rename the E word and update the
O word which uses it.

18

(Simple Editor for screens /blocks)
decimal
(line provides the address, in the buffer, of the given line)
: line (line# - c-addr)
 64 * (Convert line number to # characters offset)
 scr @ block (Get the buffer address for that block)
 + ; (Add the offset)

: E (line# -) (Erase the given line number with spaces)
 line 64 blank update ;

: O (line# -) (Overwrite line with new text)
 dup E (Erase existing text on line)
 cr dup 2 u.r ." * " line 64 accept drop update ;

(Editor, continued)
: enter-screen (scr# -)
 dup scr ! buffer drop
 16 0 do i o loop ;
: erase-screen (scr# -)
 dup scr ! buffer 1024 blank update ;

To use this editor, first select a screen to work with by running list on it. If you are planning on
using load to run some code later, it’s worth noting that only screens above 0 can be LOADed.
Screen 0 is reserved for comments describing what is on the other screens. It can be LISTed and
edited, but cannot be LOADed.

1 list

Tali will show you the current (blank) contents of that screen.

19

Screen # 1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
 ok

To add some text to line 3, you might say

3 o

This will give you a prompt to enter the text to overwrite line 3. You can enter up to 64 characters.
Once you have selected a screen with list, you can use just L to list it again.

To replace the contents of an entire screen, you can say something like:

2 enter-screen

This will prompt you, line by line, for the new contents to screen 2.

Once you have your screens the way you want them, you can type

flush

to flush your changes out to storage.

You can enter Forth code on these screens. At the moment, Tali only supports comments in
parentheses inside of blocks, so make sure you put your comments (like this) rather than using \
when entering Forth code. To load the Forth code on a screen, just type something like:

2 load

Because a screen only holds 16 lines, you may need to split your code across multiple screens. You

20

can load a series of screens (in order) using the thru command like so:

1 3 thru

The Line-Based Editor ed

 This manual includes a tutorial for ed

Ed makes no response to most commands – there is no prompting or typing
of messages like "ready". (This silence is preferred by experienced users, but
sometimes a hangup for beginners.) [BWK]

— B. W. Kernighan, A Tutorial Introduction to the UNIX Text Editor

Tali Forth 2 currently ships with a clone of the ed line-based editor of Unix fame. It is envoked with
ed and does not change the data stack. The formal name is ed6502.

 ed is included in a very primitive form only and should be considered ALPHA.

Supported Commands

ed currently supports only a small number of the commands of the Unix version:

a

Add new lines below given line

d

Delete line

i

Add new lines above given line

q

Quit if no unsaved work

Q

Unconditional quit, unsaved work is lost

w

Write text to given memory location (eg 7000w)

=

Print value of given parameter (eg $= gives number of last line)

For the parameters, these are currently available:

21

.

Current line number

,

When alone: All lines, the same as 1,$ or %

$

Last line

%

All lines, the same as 1,$ or , alone

An empty line (pressing the ENTER key) will advance by one line and print it. A simple number will
print that line without the line number and make that line the new current line.

Future planned commands

There is no time frame for these additions.

+

Advance by one line, print it and make it the new current line

-

Go back by one line, print it and make it the new current line

c

Change a line, possibly adding new lines

e

Edit lines given as addr,u in text buffer

f

Show current target address for writes

j

Join two lines to a new line

m

Move block of text to new line

r

Read lines into text buffer

s

Substitute one string on line with another

!

Execute a shell command (Forth command in our case)

22

#

Comment, ignore rest of the line

The following parameter features:

;

Range from current line to end, same as .,$

Differences to Unix ed

(Apart from missing about 90 percent of the features, that is)

• The w (write) command takes its parameter before and not after the word. Where Unix ed uses
the format w <FILENAME>, ed6502 takes the address to write the text to as 7000w.


At this point, it isn’t totally clear what happens if the number base is set to
hexadecimal via hex. Use at your own risk.

Using ed for programming

Ed can be used to write programs and then execute them with evaluate. For instance, a session to
add a small string could look something like this:

ed
a
.(Shepard, is that ... You're alive?)
.
7000w ①
22 ②
q

① Address we save the command to

② Number of characters saved including final line feed

It is a common mistake to forget the . (dot) to end the input, and try to go immediately to saving the
text. Then, we can run the program:

7000 22 evaluate

Ǹote that evaluate will handle line feeds, carriage returns and other white space apart from simple
spaces without problems.

Known Issues

Memory use

Ed currently uses memory without releasing it when done. For small, quick edits, this probably is

23

not a problem. However, if you known you are going to be using more memory, you probably will
want to set a marker first.

marker pre-edit ①
ed ②
pre-edit ③

① Set marker at current value of here

② Edit normally

③ Call marker, releasing memory

This issue might be taken care of in a future release.

Address of Saved Text

Currently, ed returns the data stack just the way it found it. This means that you have to remember
where you saved the text to with w and how long it was. A different option would be to return (
 — addr u), that is, the address and length of the text we saved. If nothing is saved, the program
would return a zero length as TOS.

Developer Information

Ed will be massively rewritten under the hood once the code has been stabilized, has all features,
and a testing suite. Currently, it’s somewhat of a mess and contains some testing routines that will
be removed in the final version.

The "buffer" of ed is a simple linked list of nodes, consisting of a pointer to the next entry, a pointer
to the string address, and the length of that string. Each entry is two byte, making six bytes in total
for each node. A value of 0000 in the pointer to the next address signals the end of the list. The
buffer starts at the point of the cp (accessed with the Forth word here) and is only saved to the given
location when the w command is given.

Assembler


Currently, there is no assembler included. The plan is to include a simple
assembler based on Simpler Assembler Notation (SAN).

Disassembler
Tali Forth is currently shipped with a very primitive disassembler, which is started with disasm (
addr u — ).

Format

The output format is in Simpler Assembler Notation (SAN) which adds the mode of an instruction to
the main mnemonic, simplifying parsing of code. For instance,

24

lda #1
sta $1000,x
sta $80
lda ($80)

becomes

lda.# 1
sta.x $1000
sta.z $80
lda.di $80

A full discussion of SAN is beyond the scope of this document, see this link for an overview of the
format (currently still under a different name).

Replacing the Disassembler

Tali was designed to make it easy for the user to swap in a different disassembler. The code is in a
separate file, disassembler.asm. To replace this by your version, move the file to a different name,
make sure that it accepts (addr u) on the Forth Data Stack as parameters, and start your code
after the label disassembler:.

25

https://docs.google.com/document/d/16Sv3Y-3rHPXyxT1J3zLBVq4reSPYtY2G6OSojNTm4SQ/edit#heading=h.ik059qk0tz7r

Developer Guide

26

How Tali Forth Works
Our intent was to create a pleasant computing environment for ourselves,
and our hope was that others liked it. [DMR]

— Dennis M. Ritchie, Reflections on Software Research

The Data Stack
Tali Forth uses the lowest part of the top half of the Zero Page for the Data Stack (DS). This leaves
the lower half of the Zero Page for any kernel stuff the user might require. The DS grows towards
the initial user variables. See the file definitions.asm for details. Because of the danger of
underflow, it is recommended that the user kernel’s variables are kept closer to $0100 than to
$007F.

The X register is used as the Data Stack Pointer (DSP). It points to the least significant byte of the
current top element of the stack ("Top of the Stack", TOS).


In the first versions of Tali Forth 1, the DSP pointed to the next free element of the
stack. The new system makes detecting underflow easier and follows the
convention in Liara Forth.

Initially, the DSP points to $78, not $7F as might be expected. This provides a few bytes as a
"floodplain" for underflow. The initial value of the DSP is defined as dsp0 in the code.

Single Cell Values

Since the cell size is 16 bits, each stack entry consists of two bytes. They are stored little endian
(least significant byte first). Therefore, the DSP points to the LSB of the current TOS. [3: Try reading
that last sentence to a friend who isn’t into computers. Aren’t abbreviations fun?]

Because the DSP points to the current top of the stack, the byte it points to after boot — dsp0 — will
never be accessed: The DSP is decremented first with two dex instructions, and then the new value
is placed on the stack. This means that the initial byte is garbage and can be considered part of the
floodplain.

27

Snapshot of the Data Stack with one entry as TOS. The DSP has been increased by one and the value written.

 +--------------+
 | ... |
 +- -+
 | | ...
 +- (empty) -+
 | | FE,X
 +- -+
 ... | | FF,X
 +==============+
 $0076 | LSB| 00,X <-- DSP (X Register)
 +- TOS -+
 $0077 | MSB| 01,X
 +==============+
 $0078 | (garbage) | 02,X <-- DSP0
 +--------------+
 $0079 | | 03,X
 + (floodplain) +
 $007A | | 04,X
 +--------------+

Note that the 65c02 system stack — used as the Return Stack (RS) by Tali — pushes the MSB on first
and then the LSB (preserving little endian), so the basic structure is the same for both stacks.

Because of this stack design, the second entry ("next on stack", NOS) starts at 02,X and the third
entry ("third on stack", 3OS) at 04,X.

Underflow Detection

Most native words come with built-in underflow detection. This works by comparing the Data Stack
Pointer (X) to values that it must be smaller than (because the stack grows towards 0000). For
instance, to make sure we have one element on the stack, we write

 cpx #dsp0-1
 bmi _ok
 jmp underflow
_ok:
 (...)

For the most common cases, this gives us:

Table 2. DSP values for underflow testing

Test for Pointer
offset

one element dsp0-1

two elements dsp0-3

28

Test for Pointer
offset

three elements dsp0-5

four elements dsp0-7

Underflow detection adds seven bytes to the words that have it. However, it increases the stability
of the program. There is an option for stripping it out during for user-defined words (see below).

Double Cell Values

The double cell is stored on top of the single cell. Note this places the sign bit at the beginning of the
byte below the DSP.

 +---------------+
 | |
 +===============+
 | LSB| $0,x <-- DSP (X Register)
 +-+ Top Cell -+
 |S| MSB| $1,x
 +-+-------------+
 | LSB| $2,x
 +- Bottom Cell -+
 | MSB| $3,x
 +===============+

Tali Forth does not check for overflow, which in normal operation is too rare to justify the
computing expense.

Dictionary
Tali Forth follows the traditional model of a Forth dictionary — a linked list of words terminated
with a zero pointer. The headers and code are kept separate to allow various tricks in the code.

Elements of the Header

Each header is at least eight bytes long:

29

 8 bit 8 bit
 LSB MSB
nt_word -> +--------+--------+
 +0 | Length | Status |
 +--------+--------+
 +2 | Next Header | next nt_word
 +-----------------+
 +4 | Start of Code | xt_word
 +-----------------+
 +6 | End of Code | z_word
 +--------+--------+
 +8 | Name | |
 +--------+--------+
 | | |
 +--------+--------+
 | | ... |
 +n +--------+--------+

Each word has a name token (nt, nt_word in the code) that points to the first byte of the header. This
is the length of the word’s name string, which is limited to 255 characters.

The second byte in the header (index 1) is the status byte. It is created by the flags defined in the file
definitions.asm:

Table 3. Header flags

Fla
g

Function

CO Compile Only

IM Immediate Word

NN Never Native Compile

AN Always Native Compile

UF Underflow detection

HC Has Code Field Area (CFA)

Note there are currently two bits unused.

CO

This word may only be used inside definitions of new words.

IM

Word is executed immediately during definitions of new words.

NN

Word is never inlined. Usually means that the return address from a subroutine jump is
required for processing.

30

AN

Word must always be inlined.

HC

Consider first three bytes of the word’s code the Code Field Area (CFA) of the word. Used by
words defined with create so >body returns the correct value.

The status byte is followed by the pointer to the next header in the linked list, which makes it the
name token of the next word. A 0000 in this position signals the end of the linked list, which by
convention is the word bye for the native code words.

This is followed by the current word’s execution token (xt, xt_word) that points to the start of the
actual code. Some words that have the same functionality point to the same code block.


Because Tali uses a subroutine threaded model (STC), the classic Forth distinction
between the Code Field Area (CFA) and the Parameter Field Area (PFA, also Data
Field Area) is meaningless — it’s all "payload".

The next pointer is for the end of the code (z_word) to enable native compilation of the word (if
allowed and requested).

The name string starts at the eighth byte. The string is not zero-terminated. Tali Forth lowercases
names as they are copied into the dictionary and also lowercases during lookup, so quarian is the
same word as QUARIAN. If the name in the dictionary is directly modified, it is important to ensure
that only lowercase letters are used, or else Tali will not be able to find that word.

Structure of the Header List

Tali Forth distinguishes between three different word sources: The native words that are hard-
coded in the file native_words.asm, the Forth words from forth_words.asm which are defined as
high-level words and then generated at run-time when Tali Forth starts up, and user words in the
file user_words.asm.

Tali has an unusually high number of native words in an attempt to make the Forth as fast as
possible on the 65c02 and compensate for the disadvantages of the subroutine threading model
(STC). The first word on that list — the one that is checked first — is always drop, the last one — the
one checked for last — is always bye. The words which are (or are assumed to be) used more than
others come first. Since humans are slow, words that are used more interactively like words always
come later.

The list of Forth words ends with the intro strings. This functions as a primitive form of a self-test: If
you see the welcome message, compilation of the Forth words worked.

 $0000 +-------------------+ ram_start, zpage, user0
 | User variables |
 +-------------------+
 | |
 | ^ Data Stack | <-- dsp
 | | |

31

 $0078 +-------------------+ dsp0, stack
 | |
 | (Reserved for |
 | kernel) |
 | |
 $0100 +===================+
 | |
 | ^ Return Stack | <-- rsp
 | | |
 $0200 +-------------------+ rsp0, buffer, buffer0
 | | |
 | v Input Buffer |
 | |
 $0300 +-------------------+ cp0
 | | |
 | v Dictionary |
 | (RAM) |
 | |
          ~~~~~~~~~~~~~~~~~~~~~  <-- cp
          |                   |
          |                   |
          +-------------------+
          |                   |
          | ACCEPT history    |
          |                   |
   $7FFF  #####################  ram_end
   $8000  |                   |  forth, code0
          |                   |
          |                   |
          |    Tali Forth     |
          |     (24 KiB)      |
          |                   |
          |                   |
   $E000  +-------------------+
          |                   |  kernel_putc, kernel_getc
          |      Kernel       |
          |                   |
   $F000  +-------------------+
          |   I/O addresses   |
          +-------------------+
          |                   |
          |      Kernel       |
          |                   |
   $FFFA  +-------------------+
          |  65c02 vectors    |
   $FFFF  +-------------------+

Note that some of these values are hard-coded into the test suite; see the file definitions.txt for
details.

32



Input
Tali Forth follows the ANS Forth input model with refill instead of older forms. There are four
possible input sources:

• The keyboard ("user input device")

• A character string in memory

• A block file

• A text file

To check which one is being used, we first call blk which gives us the number of a mass storage
block being used, or 0 for the "user input device" (keyboard). In the second case, we use source-id to
find out where input is coming from:

Table 4. Non-block input sources

Valu
e

Source

0 keyboard

-1 string in memory

n file-id

Since Tali currently doesn’t support blocks, we can skip the blk instruction and go right to source-
id.

Booting

The initial commands after reboot flow into each other: cold to abort to quit. This is the same as
with pre-ANS Forths. However, quit now calls refill to get the input. refill does different things
based on which of the four input sources (see above) is active:

Keyboard entry

This is the default. Get line of input via accept and return true even if the input string was empty.

evaluate string

Return a false flag

Input from a buffer

Not implemented at this time

Input from a file

Not implemented at this time

The Command Line Interface (CLI)

Tali Forth accepts input lines of up to 256 characters. The address of the current input buffer is
stored in cib. The length of the current buffer is stored in ciblen — this is the address that >in

33



returns. source by default returns cib and ciblen as the address and length of the input buffer.

The Word evaluate

The word `evaluate`is used to execute commands that are in a string. A simple example:

s" 1 2 + ." evaluate

Tali Forth uses evaluate to load high-level Forth words from the file forth_words.asc and, if present,
any extra, user-defined words from user_words.asc.

The Words create and does>
The tandem of words create and does> is the most complex, but also most powerful part of Forth.
Understanding how it works in Tali Forth is important if you want to be able to modify the code. In
this text, we walk through the generation process for a subroutine threaded code (STC) such as Tali
Forth.


For a more general explanation, see Brad Rodriguez' series of articles at
http://www.bradrodriguez.com/papers/moving3.htm There is a discussion of this
walkthrough at http://forum.6502.org/viewtopic.php?f=9&t=3153

We start with the following standard example, a high-level Forth version of the word constant.

: constant  ( "name" -- )  create , does> @ ;

We examine this in three phases or "sequences", following Rodriguez (based on [DB]).

Sequence 1: Compiling the Word constant

constant is a defining word, one that makes new words. In pseudocode, ignoring any compilation to
native 65c02 assembler, the above compiles to:

        jsr CREATE
        jsr COMMA
        jsr (DOES>)         ; from DOES>
   a:   jsr DODOES          ; from DOES>
   b:   jsr FETCH
        rts

To make things easier to explain later, we’ve added the labels a and b in the listing.


This example uses the traditional word (does>), which in Tali Forth 2 is actually an
internal routine that does not appear as a separate word. This version is easier to
explain.

34

http://www.bradrodriguez.com/papers/moving3.htm
http://forum.6502.org/viewtopic.php?f=9&t=3153


does> is an immediate word that adds not one, but two subroutine jumps, one to (does>) and one to
dodoes, which is a pre-defined system routine like dovar. We’ll discuss those later.

In Tali Forth, a number of words such as defer are "hand-compiled", that is, instead of using forth
such as

: defer create ['] abort , does> @ execute ;

we write an optimized assembler version ourselves (see the actual defer code). In these cases, we
need to use (does>) and dodoes instead of does> as well.

Sequence 2: Executing the Word constant

Now when we execute

42 constant life

This pushes the rts of the calling routine — call it "main" — to the 65c02’s stack (the Return Stack, as
Forth calls it), which now looks like this:

        (1) rts                 ; to main routine

Without going into detail, the first two subroutine jumps of constant give us this word:

        (Header "LIFE")
        jsr DOVAR               ; in CFA, from LIFE's CREATE
        4200                    ; in PFA (little-endian)

Next, we jsr to (does>). The address that this pushes on the Return Stack is the instruction of
constant we had labeled a.

        (2) rts to CONSTANT ("a")
        (1) rts to main routine

Now the tricks start. (does>) takes this address off the stack and uses it to replace the dovar jsr
target in the CFA of our freshly created life word. We now have this:

        (Header "LIFE")
        jsr a                   ; in CFA, modified by (DOES>)
   c:   4200                    ; in PFA (little-endian)

Note we added a label c. Now, when (does>) reaches its own rts, it finds the rts to the main routine
on its stack. This is Good Thing™, because it aborts the execution of the rest of constant, and we

35



don’t want to do dodoes or fetch now. We’re back at the main routine.

Sequence 3: Executing life

Now we execute the word life from our "main" program. In a STC Forth such as Tali Forth, this
executes a subroutine jump.

        jsr LIFE

The first thing this call does is push the return address to the main routine on the 65c02’s stack:

        (1) rts to main

The CFA of life executes a subroutine jump to label a in constant. This pushes the rts of life on the
65c02’s stack:

        (2) rts to LIFE ("c")
        (1) rts to main

This jsr to a lands us at the subroutine jump to dodoes, so the return address to constant gets
pushed on the stack as well. We had given this instruction the label b. After all of this, we have three
addresses on the 65c02’s stack:

        (3) RTS to CONSTANT ("b")
        (2) RTS to LIFE ("c")
        (1) RTS to main

dodoes pops address b off the 65c02’s stack and puts it in a nice safe place on Zero Page, which we’ll
call z. More on that in a moment. First, dodoes pops the rts to life. This is c, the address of the PFA
or life, where we stored the payload of this constant. Basically, dodoes performs a dovar here, and
pushes c on the Data Stack. Now all we have left on the 65c02’s stack is the rts to the main routine.

        [1] RTS to main

This is where z comes in, the location in Zero Page where we stored address b of constant.
Remember, this is where the PFA of constant begins, the fetch command we had originally codes
after does> in the very first definition. The really clever part: We perform an indirect jmp — not a
jsr! — to this address.

        jmp (z)

Now the little payload program of constant is executed, the subroutine jump to fetch. Since we just
put the PFA (c) on the Data Stack, fetch replaces this by 42, which is what we were aiming for all

36



along. And since constant ends with a rts, we pull the last remaining address off the 65c02’s stack,
which is the return address to the main routine where we started. And that’s all.

Put together, this is what we have to code:

does>

Compiles a subroutine jump to (does>), then compiles a subroutine jump to dodoes.

(does>)

Pops the stack (address of subroutine jump to dodoes in constant, increase this by one, replace
the original dovar jump target in life.

dodoes

Pop stack (PFA of constant), increase address by one, store on Zero Page; pop stack (PFA of life),
increase by one, store on Data Stack; jmp to address we stored in Zero Page.

Remember we have to increase the addresses by one because of the way jsr stores the return
address for rts on the stack on the 65c02: It points to the third byte of the jsr instruction itself, not
the actual return address. This can be annoying, because it requires a sequence like:

        inc z
        bne +
        inc z+1
*
        (...)

Note that with most words in Tali Forth, as any STC Forth, the distinction between PFA and CFA is
meaningless or at least blurred, because we go native anyway. It is only with words generated by
create and does> where this really makes sense.

Control Flow

Branches

For if and then, we need to compile something called a "conditional forward branch", traditionally
called 0branch.


Many Forths now use the words cs-pick and cs-roll instead of the branch variants,
see http://lars.nocrew.org/forth2012/rationale.html\#rat:tools:CS-PICK Tali Forth
will probably switch to this variant in the future.

At run-time, if the value on the Data Stack is false (flag is zero), the branch is taken ("branch on
zero", therefore the name). Except that we don’t have the target of that branch yet — it will later be
added by then. For this to work, we remember the address after the 0branch instruction during the
compilation of if. This is put on the Data Stack, so that then knows where to compile it’s address in
the second step. Until then, a dummy value is compiled after 0branch to reserve the space we need.

37

http://lars.nocrew.org/forth2012/rationale.html\#rat:tools:CS-PICK



This section and the next one are based on a discussion at http://forum.6502.org/
viewtopic.php?f=9\&t=3176 see there for more details. Another take on this subject
that handles things a bit differently is at http://blogs.msdn.com/b/ashleyf/archive/
2011/02/06/loopty-do-i-loop.aspx

In Forth, this can be realized by

: if  postpone 0branch here 0 , ; immediate

and

: then  here swap ! ; immediate

Note then doesn’t actually compile anything at the location in memory where it is at. It’s job is
simply to help if out of the mess it has created. If we have an else, we have to add an unconditional
branch and manipulate the address that if left on the Data Stack. The Forth for this is:

: else  postpone branch here 0 , here rot ! ; immediate

Note that then has no idea what has just happened, and just like before compiles its address where
the value on the top of the Data Stack told it to — except that this value now comes from else, not
if.

Loops

Loops are more complicated, because we have do, ?do, loop, +loop, unloop, and leave to take care of.
These can call up to three addresses: One for the normal looping action (loop and +loop), one to skip
over the loop at the beginning (?do) and one to skip out of the loop (leave).

Based on a suggestion by Garth Wilson, we begin each loop in run-time by saving the address after
the whole loop construct to the Return Stack. That way, leave and ?do know where to jump to when
called, and we don’t interfere with any if-then structures. On top of that address, we place the limit
and start values for the loop.

The key to staying sane while designing these constructs is to first make a list of what we want to
happen at compile time and what at run time. Let’s start with a simple do-loop.

do at compile-time:

• Remember current address (in other words, here) on the Return Stack (!) so we can later
compile the code for the post-loop address to the Return Stack

• Compile some dummy values to reserve the space for said code

• Compile the run-time code; we’ll call that fragment (do)

• Push the current address (the new here) to the Data Stack so loop knows where the loop
contents begin

38

http://forum.6502.org/viewtopic.php?f=9\&t=3176
http://forum.6502.org/viewtopic.php?f=9\&t=3176
http://blogs.msdn.com/b/ashleyf/archive/2011/02/06/loopty-do-i-loop.aspx
http://blogs.msdn.com/b/ashleyf/archive/2011/02/06/loopty-do-i-loop.aspx


do at run-time:

• Take limit and start off Data Stack and push them to the Return Stack

Since loop is just a special case of +loop with an index of one, we can get away with considering
them at the same time.

loop at compile time:

• Compile the run-time part (+loop)

• Consume the address that is on top of the Data Stack as the jump target for normal looping and
compile it

• Compile unloop for when we’re done with the loop, getting rid of the limit/start and post-loop
addresses on the Return Stack

• Get the address on the top of the Return Stack which points to the dummy code compiled by do

• At that address, compile the code that pushes the address after the list construct to the Return
Stack at run-time

loop at run-time (which is (+loop))

• Add loop step to count

• Loop again if we haven’t crossed the limit, otherwise continue after loop

At one glance, we can see that the complicated stuff happens at compile-time. This is good, because
we only have to do that once for each loop.

In Tali Forth, these routines are coded in assembler. With this setup, unloop becomes simple (six pla
instructions — four for the limit/count of do, two for the address pushed to the stack just before it)
and leave even simpler (four pla instructions for the address).

Native Compiling
In a pure subroutine threaded code, higher-level words are merely a series of subroutine jumps.
For instance, the Forth word [char], formally defined in high-level Forth as

: [char] char postpone literal ; immediate

in assembler is simply

                jsr xt_char
                jsr xt_literal

as an immediate, compile-only word. There are two problems with this method: First, it is slow,
because each jsr-rts pair consumes four bytes and 12 cycles as overhead. Second, for smaller
words, the jumps use far more bytes than the actual code. Take for instance drop, which in its naive
form is simply

39



                inx
                inx

for two bytes and four cycles. If we jump to this word as is assumed with pure subroutine threaded
Forth, we add four bytes and 12 cycles — double the space and three times the time required by the
actual working code.

(In practice, it’s even worse, because drop checks for underflow. The actual assembler code is

                cpx #dsp0-1
                bmi +
                jmp underflow
*
                inx
                inx

for eleven bytes. We’ll discuss the underflow checks further below.)

To get rid of this problem, Tali Forth supports native compiling (also known as inlining). The
system variable nc-limit sets the threshold up to which a word will be included not as a subroutine
jump, but in machine language. Let’s start with an example where nc-limit is set to zero, that is, all
words are compiled as subroutine jumps. Take a simple word such as

: aaa 0 drop ;

and check the actual code with see

see aaa
  nt: 7CD  xt: 7D8
 size (decimal): 6

07D8  20 52 99 20 6B 88  ok

(The actual addresses might be different, this is from the ALPHA release). Our word aaa consists of
two subroutine jumps, one to zero and one to drop. Now, if we increase the threshold to 20, we get
different code, as this console session shows:

40



20 nc-limit !  ok
: bbb 0 drop ;  ok
see bbb
  nt: 7DF  xt: 7EA
 size (decimal): 17

07EA  CA CA 74 00 74 01 E0 77  30 05 A9 0B 4C C7 AC E8
07FA  E8  ok

Even though the definition of bbb is the same as aaa, we have totally different code: The number
0001 is pushed to the Data Stack (the first six bytes), then we check for underflow (the next nine
bytes), and finally we drop by moving X register, the Data Stack Pointer. Our word is definitely
longer, but have just saved 12 cycles.

To experiment with various parameters for native compiling, the Forth word words&sizes is
included in user_words.fs (but commented out by default). The Forth is:

: words&sizes ( -- )
        latestnt
        begin
                dup
        0<> while
                dup name>string type space
                dup wordsize u. cr
                2 + @
        repeat
        drop ;

An alternative is see which also displays the length of a word. One way or another, changing nc-
limit should show differences in the Forth words.

Return Stack Special Cases

There are a few words that cause problems with subroutine threaded code (STC): Those that access
the Return Stack such as r>, >r, r@, 2r>, and 2>r. We first have to remove the return address on the
top of the stack, only to replace it again before we return to the caller. This mechanism would
normally prevent the word from being natively compiled at all, because we’d try to remove a
return address that doesn’t exit.

This becomes clearer when we examine the code for >r (comments removed):

41



xt_r_from:
                pla
                sta tmptos
                ply

                ; --- CUT FOR NATIVE CODING ---

                dex
                dex
                pla
                sta 0,x
                pla
                sta 1,x

                ; --- CUT FOR NATIVE CODING ---

                phy
                lda tmptos
                pha

z_r_from:       rts

The first three and last three instructions are purely for housekeeping with subroutine threaded
code. To enable this routine to be included as native code, they are removed when native compiling
is enabled by the word compile, This leaves us with just the six actual instructions in the center of
the routine to be compiled into the new word.

Underflow Stripping

As described above, every underflow check adds seven bytes to the word being coded. Stripping
this check by setting the uf-strip system variable to true simply removes these seven bytes from
new natively compiled words.

It is possible, of course, to have lice and fleas at the same time. For instance, this is the code for >r:

42



xt_to_r:
                pla
                sta tmptos
                ply

                ; --- CUT HERE FOR NATIVE CODING ---

                cpx #dsp0-1
                bmi +
                jmp underflow
*
                lda 1,x
                pha
                lda 0,x
                pha

                inx
                inx

                ; --- CUT HERE FOR NATIVE CODING ---

                phy
                lda tmptos
                pha

z_to_r:         rts

This word has both native compile stripping and underflow detection. However, both can be
removed from newly native code words, leaving only the eight byte core of the word to be
compiled.

Enabling Native Compling on New Words

By default, user-defined words are flagged with the Never-Native (NN) flag. While the words used
in the definition of the new word might have been natively compiled into the new word, this new
word will always be compiled with a JSR when used in future new words. To override this behavior
and allow a user-defined word to be natively compiled, the user can use the always-native word just
after the definition has been completed (with a semicolon). An example of doing this might be:

: double dup + ; always-native

Please note adding the always-native flag to a word overrides the never-native flag and it also
causes the word to be natively compiled regardless of the setting of nc_limit.

43




Do not apply always-native to a word that has any kind of control structures in it,
such as if, case or any kind of loop. If these words ever get native compiled, the
JMP instructions used in the control structures are copied verbatim, causing them
to jump back into the original words.


When adding your own words in assembly, if a word has a jmp instruction in it, it
should have the NN (Never Native) flag set in the headers.asm file and should
never have the AN (Always Native) flag set.

cmove, cmove> and move
The three moving words cmove, cmove> and move show subtle differences that can trip up new users
and are reflected by different code under the hood. cmove and cmove> are the traditional Forth words
that work on characters (which in the case of Tali Forth are bytes), whereas move is a more modern
word that works on address units (which in our case is also bytes).

If the source and destination regions show no overlap, all three words work the same. However, if
there is overlap, cmove and cmove> demonstrate a behavior called "propagation" or "clobbering" :
Some of the characters are overwritten. `move: does not show this behavior. This example shows
the difference:

create testbuf  char a c,  char b c,  char c c,  char d c,  ( ok )
testbuf 4 type  ( abcd ok )
testbuf dup char+ 3  cmove  ( ok )
testbuf 4 type ( aaaa ok )

Note the propagation in the result. move, however, doesn’t propagate. The last two lines would be:

testbuf dup char+ 3  move  ( ok )
testbuf 4 type  ( aabc ok )

In practice, move is usually what you want to use.

44



Developing
After spending an entire weekend wrestling with blocks files, stacks, and
the like, I was horrified and convinced that I had made a mistake. Who in
their right mind would want to program in this godforsaken language! [DH]

— Doug Hoffman, Some notes on Forth from a novice user

Adding New Words
The simplest way to add new words to Tali Forth is to include them in the file
forth_code/user_words.fs. This is the suggested place to put them for personal use.

To add words to the permanent set, it is best to start a pull request on the GitHub page of Tali Forth.
How to setup and use git and GitHub is beyond the scope of this document — we’ll just point out it
they are not as complicated as they look, and the make experimenting a lot easier.

During development, Tali Forth tends to follow a sequence of steps for new words:

• If it is an ANS Forth word, first review the standard online. In some cases, there is a reference
implementation that can be used.

• Otherwise, check other sources for a high-level realization of the word, for instance Jonesforth
or Gforth. A direct copy is usually not possible (or legally allowed, given different licenses), but
studying the code provides hints for a Tali Forth version.

• Write the word in Forth in the interpreter. After it has been tested tested interactively, add a
high-level version to the file forth_code/forth_words.fs.

• Add automatic tests for the new word to the test suite. Ideally, there will be test code included in
the ANS Forth specification. If not, document what the test does.

• In a further step, if appropriate, convert the word to assembler. This requires adding an entry
to headers.asm and the code itself to native_words.asm. In this first step, it will usually be a simple
1:1 sequence of jsr subroutine jumps to the existing native Forth words.

• If appropriate, rewrite all or some of the subroutine jumps in direct assembler. Because we
have the automatic tests in place, we can be confident that the assembly version is correct as
well.

However, if you are contributing code, feel free to happily ignore this sequence and just submit
whatever you have.

Deeper Changes
Tali Forth was not only placed in the public domain to honor the tradition of giving the code away
freely. It is also to let people play around with it and adapt it to their own machines. This is also the
reason it is (perversely) over-commented.

To work on the internals of Tali Forth, you will need the Ophis assembler.

45



The Ophis Assembler

Michael Martin’s Ophis Cross-Assembler can be downloaded from http://michaelcmartin.github.io/
Ophis/. It uses a slightly different format than other assemblers, but is in Python and therefore will
run on pretty much any operating system. To install Ophis on Windows, use the link provided
above. For Linux:

git clone https://github.com/michaelcmartin/Ophis
cd Ophis/src
sudo python setup.py install

Switch to the folder where the Tali code lives, and run the Makefile with a simple make command.
This also updates the file listings in the docs folder.

Ophis has some quirks. For instance, you cannot use math symbols in label names, because it will
try to perform those operations. Use underscores instead.

General Notes

• The X register is used as the Data Stack Pointer (DSP) and should only be used if there is no
other alternative.

• The Y register, however, is free to be changed by subroutines. This also means it should not be
expected to survive subroutines unchanged.

• Naively coded words generally should have exactly one point of entry — the xt_word link — and
exactly one point of exit at z_word. In may cases, this requires a branch to an internal label _done
right before z_word.

• Because of the way native compiling works, the trick of combining jsr-rts pairs to a single jmp
instruction (usually) doesn’t work.

Coding Style

Until there is a tool for Ophis assembly code that formats the source file the way gofmt does for Go
(golang), the following format is suggested.

• Tabs are eight characters long and converted to spaces.

• Opcodes are indented by two tabs.

• Function-like routines are followed by a one-tab indented "function doc string" based on the
Python 3 format: Three quotation marks at the start, three at the end in their own line, unless it
is a one-liner. This should make it easier to automatically extract the docs for them at some
point.

• The native words have a special comment format with lines that start with ## that allows the
automatic generation of word lists by a tool in the tools folder, see there for details.

• Assembler mnemonics are lower case. I get enough uppercase insanity writing German, thank
you very much.

• Hex numbers are, however, upper case, such as $FFFE.

46

http://michaelcmartin.github.io/Ophis/
http://michaelcmartin.github.io/Ophis/



The Ophis assembler interprets numbers with a leading zero as octal. This can be
an annoying source of errors.

• Numbers in mnemonics are a stripped-down as possible to reduce visual clutter: use lda 0,x
instead of lda $00,x.

• Comments are included like popcorn to help readers who are new both to Forth and 6502
assembler.

Code Cheat Sheets

Programming computers can be crazy-making. [LB2]

— Leo Brodie, Thinking Forth

The Stack Drawing

This is your friend and should probably go on your wall or something.

                +--------------+
                |          ... |
                +-            -+
                |              |   ...
                +-  (empty)   -+
                |              |  FE,X
                +-            -+
          ...   |              |  FF,X
                +==============+
         $0076  |           LSB|  00,X   <-- DSP (X Register)
                +-    TOS     -+
         $0077  |           MSB|  01,X
                +==============+
         $0078  |  (garbage)   |  02,X   <-- DSP0
                +--------------+
         $0079  |              |  03,X
                + (floodplain) +
         $007A  |              |  04,X
                +--------------+

Coding Idioms

The first modern FORTH was coded in FORTRAN. Shortly thereafter it was
recoded in assembler. Much later it was coded in FORTH. [CHM2]

— Charles Moore, The Evolution of FORTH

While coding a Forth, there are certain assembler fragments that get repeated over and over again.
These could be included as macros, but that can make the code harder to read for somebody only

47



familiar with basic assembly.

Some of these fragments could be written in other variants, such as the "push value" version, which
could increment the DSP twice before storing a value. We try to keep these in the same sequence (a
"dialect" or "code mannerism" if you will) so we have the option of adding code analysis tools later.

• drop cell of top of the Data Stack

                inx
                inx

• push a value to the Data Stack. Remember the Data Stack Pointer (DSP, the X register of the
65c02) points to the LSB of the TOS value.

                dex
                dex
                lda <LSB>      ; or pla, jsr kernel_getc, etc.
                sta 0,x
                lda <MSB>      ; or pla, jsr kernel_getc, etc.
                sta 1,x

• pop a value off the Data Stack

                lda 0,x
                sta <LSB>      ; or pha, jsr kernel_putc, etc
                lda 1,x
                sta <MSB>      ; or pha, jsr kernel_putc, etc
                inx
                inx

vim Shortcuts

One option for these is to add abbreviations to your favorite editor, which should of course be vim,
because vim is cool. There are examples farther down. They all assume that auto-indent is on and
we are two tabs into the code, and use # at the end of the abbreviation to keep them separate from
the normal words. My ~/.vimrc file contains the following lines for work on .asm files:

ab drop# inx<tab><tab>; drop<cr>inx<cr><left>
ab push# dex<tab><tab>; push<cr>dex<cr>lda $<LSB><cr>sta $00,x<cr>lda $<MSB><cr>sta
$01,x<cr><up><up><u>
ab pop# lda $00,x<tab><tab>; pop<cr>sta $<LSB><cr>lda $01,x<cr>sta
$<MSB><cr>inx<cr>inx<cr><up><up><up>>

48



Future and Long-Term plans

 This section is missing. See the GitHub page for further details.

49



Tutorials

50



Working with Blocks

 This section is currently missing.

51



The ed Line-Based Editor
While TECO was known for its complex syntax, ed must have been the most
user-hostile editor ever created.[PHS]

— Peter H. Saulus, The Daemon, the Gnu and the Penguin

Tali Forth 2 comes with two editors, a traditional block-based editor of the type common with Forth,
and the line-based editor ed, formally known as ed6502. This second editor is included because I like
line-based editors. More to the point, the saved text uses less space than the block editor, where
every block, regardless of how much text is in it, uses 1024 bytes. In contrast, ed uses one byte per
character plus one end-of-line character per line. We’ll see an example of this later.

The original ed was created by Ken Thompson and Dennis Ritchie along with the Unix operating
system, sometime about 1971. It is terse, small, robust, and has a reputation for being completely
unhelpful. An error is just signaled with a question mark (?). There isn’t even a prompt unless it is
explicitly turned on.


Newer versions of ed allow an option to display an explanation of the last error,
but Tali doesn’t have space for that. Error messages are for wimps. And who really
needs a prompt anyway?

Commands in ed are single-letter commands like a or p. They can be prefixed with a combination of
letters and special characters to designate the line numbers the command is supposed to work on.
For example, 1,4d deletes lines one to four.

First steps with ed
Like its big brother vi (or its newer incarnation vim), ed has various modes, except that ed is so small
it only has two. We start out in the command mode in which we accept, well, commands. Using a or
i switches to input mode where all of the characters are added to the buffer. The first important
thing is about how to get out of command mode: You type . (the period or dot) at the beginning of
the line as the only character to return to command mode. A typical ed session will look something
like this: [4: All quotes in the ed tutorial are taken from the Mass Effect games by BioWare/EA. As
stated already, they hold the rights to all characters and whatnot.]

        ed      ①
        a       ②
        After time adrift among open stars
        Along tides of light
        And through shoals of dust
        I will return to where I began.
        .       ③
                ④

① Start the editor from Tali Forth. It doesn’t take anything on the stack.

②

52



Switch to insert mode and type the text.

③ The dot alone on the line signals the end of the text. We return to command mode.

④ The cursor moves down to the next line, without printing any confirmation. This is where you
continue typing.

When you first use ed, you’ll spend lots of time print what you’ve written and trying to figure out
what the line numbers are. The commands for this are p (print without line numbers) and n (print
with line numbers). The first special character prefix we’ll learn for this is % (the percent symbol,
alternatively a comma) works as well. This makes the command that follows it apply to the whole
text.

        %p      ①
        After time adrift among open stars
        Along tides of light
        And through shoals of dust
        I will return to where I began.
                ②

① This could also be ,p

② Note again we return to an empty line.

The %n (or ,n) command is usually more helpful because it gives you line numbers:

        ,n      ①
        1       After time adrift among open stars
        2       Along tides of light
        3       And through shoals of dust
        4       I will return to where I began.

① This could also be %n

Line numbers are indented automatically by one tab. Note we start counting with 1, not 0, because
this is an editor for real humans.

Just entering the command directly without a line number will print the current line, which ed
adjusts depending on what you are doing. After a it is the last line.

 To find out which is the current line, type the = (equal sign) command.

This session could continue as such:

        n
        4       I will return to where I began.

The d (delete) command removes a line. Let’s explicitly remove the second line:

53



        2d

Again, ed provides absolutely no feedback on what just happened. We need to call %n (or ,n) again if
we are unsure:

        %n
        1       After time adrift among open stars
        2       And through shoals of dust
        3       I will return to where I began.

Note that lines three and four have moved up — they are now lines two and three.


To avoid confusion, when you have to delete a large number of lines, start at the
bottom and move upwards towards the beginning of the text.

We can also use comma-separated numbers to indicate a range of lines (say, 1,2d). As you probably
will have guessed, or the , (or %) prefix can be used to delete the complete text. Be careful — in the
real version of ed, you can undo changes with the u command. Tali’s version currently doesn’t
support this option. If you delete it, it’s gone.


The undo (u) function may be added to a future version of ed if space allows, at
least for the last change.

Now, let’s say we want to put back the second line. We can do this again with a, to add text after the
first line. Note there is currently no way to paste the line we have just deleted. If we can’t
remember it, we’re in trouble.

        1a      ①
        And then, I, uh, did something
        .       ②
                ③

① Add text after the first line.

② The dot takes us out again.

③ Still no feedback.

Displaying our whole text with %n again, we get:

        %n
        1       After time adrift among open stars
        2       And then, I, uh, did something
        3       And through shoals of dust
        4       I will return to where I began.

54



Lines three and four are numbered again as they were.

Instead of using 1a, we could have used 2i to insert the new line before line number two. Most long-
term users of ed (like, all three of them) develop a preference for a or i. This is easy because ed
accepts 0a as a way to add new lines before the first line. In most other circumstances, line 0 is
illegal. There is also the $ prefix for the last line.

 The combination $= will print the number of the last line.

Saving Your Text
The only way to currently save text with ed on Tali is to write the buffer to a location in memory.

        7000w   ①
        128     ②

① The address in memory comes immediately before the w command with no space.

② ed returns the number of characters written, including the end-of-line characters. Yes, this is
actually feedback of sorts. But don’t get cocky!


Changing the number base hasn’t been tested yet, so stick to decimal numbers for
the time being when saving text.

The w command was originally created for files. Tali doesn’t have files, just addresses. This means
that you can write anything anywhere, at the risk of completely destroying your system. Really,
really don’t write anything to 0000, which will overwrite the zero page of the 65c02.

Getting Out of ed
We can leave ed at any time with Q - note this is the capital letter "q". Any unsaved (unwritten,
rather) text will be lost. The lowercase q will refuse to quit if there is still unwritten text. When it
doubt, use q.

To access your text from the Forth command line, you can use standard Forth words like type with
the address chosen and the length of the text provided after the w command.

        7000 128 cr type        ①
        After time adrift among open stars
        And then I, uh, did something
        And through the shoals of dust
        I will return to where I began.
         ok                     ②

① Place the cr word before the type word to prevent the first line of the text being placed right
after the Forth command.

② We’re back to the helpful Forth interpreter.

55




In future, ed might provide the address and length of the saved text on the data
stack when quitting. The stack signature of ed would then change to ( — addr u ).
This would make further processing of the text easier.

You can also use dump to show how compact ed stores the text:

7000 128 dump
1B58  41 66 74 65 72 20 74 69  6D 65 20 61 64 72 69 66  After ti me adrif
1B68  74 20 61 6D 6F 6E 67 20  6F 70 65 6E 20 73 74 61  t among  open sta
1B78  72 73 0A 41 6E 64 20 74  68 65 6E 20 49 2C 20 75  rs.And t hen I, u ①
1B88  68 2C 20 64 69 64 20 73  6F 6D 65 74 68 69 6E 67  h, did s omething
1B98  0A 41 6E 64 20 74 68 72  6F 75 67 68 20 74 68 65  .And thr ough the
1BA8  20 73 68 6F 61 6C 73 20  6F 66 20 64 75 73 74 0A   shoals  of dust.
1BB8  49 20 77 69 6C 6C 20 72  65 74 75 72 6E 20 74 6F  I will r eturn to
1BC8  20 77 68 65 72 65 20 49  20 62 65 67 61 6E 2E 0A   where I  began..
1BD8   ok

① The dot in the text part of the hexdump at address $157A is not the period at the end of the line,
but the way dump displays the non-printable $0A character. This control character marks the end
of the line.

Note this text uses 128 bytes, in the block editor it would use one block of 1024 bytes.

Programming with ed
You can use ed to write and save programs. Fire it up as usual:

    ed
    a
    : myloop ( -- )         ①
        101 1 do i . loop   ②
    ;
    myloop
    .
    7000w
    48
    q

① Type normally as you would with any other editor.

② Any indentation has to be provided by hand. There is no auto-indent.

Running 7000 48 evaluate will now print the numbers from 1 to 100.

Further Information
This tutorial will be expanded as new commands become available. In the meantime, there are
other sources:

56



• https://en.wikipedia.org/wiki/Ed_(text_editor) Background and history

• https://www.gnu.org/software/ed/ed.html The official GNU ed page

• https://www.gnu.org/software/ed/manual/ed_manual.html The official GNU ed manual

• https://sanctum.geek.nz/arabesque/actually-using-ed/ Small tutorial of Unix ed

• http://www.psue.uni-hannover.de/wise2017_2018/material/ed.pdf A tutorial by B. W. Kernighan
(yes, that Kernighan).

57

https://en.wikipedia.org/wiki/Ed_(text_editor
https://www.gnu.org/software/ed/ed.html
https://www.gnu.org/software/ed/manual/ed_manual.html
https://sanctum.geek.nz/arabesque/actually-using-ed/
http://www.psue.uni-hannover.de/wise2017_2018/material/ed.pdf


Appendix

58



Reporting Problems
The best way to point out a bug or make any other form of a comment is on Tali Forth’s page on
GitHub at https://github.com/scotws/TaliForth2 There, you can "open an issue", which allows other
people who might have the same problem to help even when the author is not available.

59

https://github.com/scotws/TaliForth2


FAQ
Why does Tali Forth take so long to start up?

After the default kernel string is printed, you’ll notice a short pause that didn’t occur with Tali
Forth 1. This is because Tali Forth 2 has more words defined in high-level Forth (see
forth_code/forth-words.fs). The pause happens because they are being compiled on the fly.

What happened to Tali Forth 1 anyway?

Tali Forth 1, informally just Tali Forth, was my first Forth. As such, it is fondly remembered as a
learning experience. You can still find it online at GitHub at https://github.com/scotws/TaliForth.
When Tali Forth 2 entered BETA, Tali Forth was discontinued. It does not receive bug fixes. In
fact, new bugs are not even documented.

Figure 3. Screenshot of the Tali Forth 1 boot screen, version Alpha 3, April 2014

What does the word "FEHLT" mean in unfinished code?

That’s German for "missing". During development, I use it as a marker where stuff has to be
added, sort of like another level of "TODO". Since there is no English word like that, it’s very easy
to find with grep.

Who’s "Tali"?

I like the name, and we’re probably not going to have any more kids I can give it to. If it sounds
vaguely familiar, you’re probably thinking of Tali’Zorah vas Normandy a character in the Mass
Effect  universe created by BioWare. This software has absolutely nothing to do with neither the
game nor the companies and neither do I, expect that I’ve played the whole series and enjoyed it.
[5: Though I do wish they would tell us what happened to the quarian ark in Andromeda.]

60

https://github.com/scotws/TaliForth


And who is "Liara"?

Liara Forth is another STC Forth for the big sibling of the 6502, the 65816. Tali Forth 1 came first,
then I wrote Liara with that knowledge and learned even more, and now Tali 2 is such much
better for the experience. And yes, it’s another Mass Effect  character.

61



Testing Tali Forth 2
Tali Forth 2 comes with a test suite in the tests folder. It is based on the official ANS test code by
John Hayes and was first adapted for Tali Forth by Sam Colwell.

To run the complete test, type make test from the main folder (this assumes a Unix-type system).
Alternatively, switch to the test folder and start the talitest.py  program with Python3. The tests
should take only a very few minutes to run and produce a lot of output, including, at the end, a list
of words that didn’t work. A detailed list of results is saved to the file results.txt.

User Tests
A special test file named user.fs  is available for users to add their own tests. The results of this will
be found just before the cycle tests near the end of results.txt. To run only this set of tests, you can
use the command:

./talitest.py -t user

in the tests folder.

Cycle Tests
The last set of tests, found in cycles.fs, determines cycle counts for the various built-in words.
Users who are adding words may want to add cycle tests as well and there are instructions for
doing that in that file. The cycle tests only work with the simulator and will not work on real
hardware.

The cycle tests time (in 65C02 clock cycles) from the jsr that calls a word to the rts that returns from
the word, including the jsr and rts. These cycle counts are the number of cycles if the word was
used directly in interpreted mode. Some words will use more or fewer cycles depending on their
input, so the cycles reported are for the input provided in the cycles.fs file.

The cycle tests work with some help from the py65mon simulator and extensions to it in
talitest.py. Accesses to special addresses in the 65C02 memory map are used to start, stop, and
read back the cycle counter in the simulator. A special word named cycle_test is created near the
top of cycles.fs to help with this. It accepts the xt of the word you want to test (you can get the xt of
any word by using the word ') and runs that word with the special memory accesses before and
after, printing out the results.

Cycle Tests and Native Compiling

Because Tali Forth 2 has native compiling capability, small words used in a word declaration will
have their assembly code compiled directly into the word being defined, rather than using a jsr.
This means that small words will not have the overhead of a jsr and rts when they are compiled
into other words.

A perfect example of that is the built-in word ALIGN. This word has no assembly instructions (except

62



for an rts), but the cycle testing shows it takes 12 cycles. This is the number of cycles to run the
word by itself, and it’s the number of cycles to run a jsr instruction followed immediately by an rts
instruction.

When this word is compiled into another word, however, Tali will use native compiling and will put
the (empty) body of this word into the word being compiled rather than using a jsr. This results in
0 extra cycles for the word being defined. Twelve cycles will be saved for each small word that is
natively compiled into a new definition. See the section on Native Compiling for more information.

Old Tests


During early development, testing was done by hand with a list of words that has
since been placed in the old  folder. These tests might be still useful if you are in
the very early stages of developing your own Forth.

63



Thanks
Tali Forth would never have been possible without the help of a very large number of people, very
few of whom I have actually met.

First, there is the crew at 6502.org who not only helped me build my own actual, working 6502
computer, but also introduced me to Forth. Tali would not exist without their inspiration, support,
and feedback.

Special thanks go out to Mike Barry and Lee Pivonka, who both suggested vast improvements to the
code in size, structure, and speed. And then there is Sam Colwell who contributed the invaluable
test suite and a whole lot of code.

Thank you, everybody.

64

http://6502.org


References and Further Reading
[FB] Masterminds of Programming, Federico Biancuzzi, O’Reilly Media 1st edition, 2009.

[CHM1] "Charles H. Moore: Geek of the Week", redgate Hub 2009 https://www.red-gate.com/simple-
talk/opinion/geek-of-the-week/chuck-moore-geek

[CHM2] "The Evolution of FORTH, an Unusual Language", Charles H. Moore, Byte 1980,
https://wiki.forth-ev.de/doku.php/projects:the_evolution_of_forth

[CnR] Forth Programmer’s Handbook, Edward K. Conklin and Elizabeth Rather, 3rd edition 2010

[DB] Forth Enzyclopedia, Mitch Derick and Linda Baker, Mountain View Press 1982

[DH] "Some notes on Forth from a novice user", Douglas Hoffman, Feb 1988 https://wiki.forth-ev.de/
doku.php/projects:some_notes_on_forth_from_a_novice_user

[DMR] "Reflections on Software Research", Dennis M. Ritchie, Turing Award Lecture in
Communications of the ACM August 1984 Volume 27 Number 8 http://www.valleytalk.org/wp-
content/uploads/2011/10/p758-ritchie.pdf

[EnL] Programming the 65816, including the 6502, 65C02 and 65802, David Eyes and Ron Lichty
(Currently not available from the WDC website)

[EW] "Forth: The Hacker’s Language", Elliot Williams, https://hackaday.com/2017/01/27/forth-the-
hackers-language/

[GK] "Forth System Comparisons", Guy Kelly, in Forth Dimensions V13N6, March/April 1992
http://www.forth.org/fd/FD-V13N6.pdf}{http://www.forth.org/fd/FD-V13N6.pdf

[JN] A Beginner’s Guide to Forth, J.V. Nobel, http://galileo.phys.virginia.edu/classes/551.jvn.fall01/
primer.htm

[BWK] A Tutorial Introduction to the UNIX Text Editor, B. W. Kernighan, http://www.psue.uni-
hannover.de/wise2017_2018/material/ed.pdf

[LB1] Starting Forth, Leo Brodie, new edition 2003, https://www.forth.com/starting-forth/}{https://
www.forth.com/starting-forth/

[LB2] Thinking Forth, Leo Brodie, 1984, http://thinking-forth.sourceforge.net/\#21CENTURY

[LL] 6502 Assembly Language Programming, Lance A. Leventhal, OSBORNE/McGRAW-HILL 1979

[PHS] "The Daemon, the Gnu and the Penguin", Peter H. Saulus, 22. April 2005,
http://www.groklaw.net/article.php?story=20050422235450910

65

https://www.red-gate.com/simple-talk/opinion/geek-of-the-week/chuck-moore-geek
https://www.red-gate.com/simple-talk/opinion/geek-of-the-week/chuck-moore-geek
https://wiki.forth-ev.de/doku.php/projects:the_evolution_of_forth
https://wiki.forth-ev.de/doku.php/projects:some_notes_on_forth_from_a_novice_user
https://wiki.forth-ev.de/doku.php/projects:some_notes_on_forth_from_a_novice_user
http://www.valleytalk.org/wp-content/uploads/2011/10/p758-ritchie.pdf
http://www.valleytalk.org/wp-content/uploads/2011/10/p758-ritchie.pdf
https://hackaday.com/2017/01/27/forth-the-hackers-language/
https://hackaday.com/2017/01/27/forth-the-hackers-language/
http://www.forth.org/fd/FD-V13N6.pdf}{http://www.forth.org/fd/FD-V13N6.pdf
http://galileo.phys.virginia.edu/classes/551.jvn.fall01/primer.htm
http://galileo.phys.virginia.edu/classes/551.jvn.fall01/primer.htm
http://www.psue.uni-hannover.de/wise2017_2018/material/ed.pdf
http://www.psue.uni-hannover.de/wise2017_2018/material/ed.pdf
https://www.forth.com/starting-forth/}{https://www.forth.com/starting-forth/
https://www.forth.com/starting-forth/}{https://www.forth.com/starting-forth/
http://thinking-forth.sourceforge.net/\#21CENTURY
http://www.groklaw.net/article.php?story=20050422235450910


Colophon
The Tali Forth 2 Manual was written with the vim editor in AsciiDoc format, formatted to HTML
with AsciiDoctor, and version controlled with Git, all under Ubuntu Linux 16.04 LTS.

66

https://www.vim.org/
https://asciidoctor.org/docs/what-is-asciidoc/
https://git-scm.com/
https://www.ubuntu.com/

	Manual for Tali Forth 2 for the 65c02
	Table of Contents
	Dedication
	Introduction
	But why?
	The Big Picture
	Forth
	Writing Your Own Forth

	Overview of Tali Forth
	Design Considerations
	Deeper down the rabbit hole


	User Guide
	Installing Tali Forth
	Downloading
	Running
	Installing on Your Own Hardware
	Hardware Projects with Tali Forth 2

	Running Tali Forth
	Booting
	Command-Line History
	Words
	Native Compiling
	Underflow Detection
	Restarting
	Gotchas

	Major Components
	Blocks
	The Block Editor
	The Line-Based Editor ed
	Assembler
	Disassembler


	Developer Guide
	How Tali Forth Works
	The Data Stack
	Dictionary
	Input
	The Words create and does>
	Control Flow
	Native Compiling
	cmove, cmove> and move

	Developing
	Adding New Words
	Deeper Changes
	Code Cheat Sheets

	Future and Long-Term plans

	Tutorials
	Working with Blocks
	The ed Line-Based Editor�
	First steps with ed
	Saving Your Text
	Getting Out of ed
	Programming with ed
	Further Information


	Appendix
	Reporting Problems
	FAQ
	Testing Tali Forth 2
	User Tests
	Cycle Tests
	Old Tests

	Thanks
	References and Further Reading
	Colophon


