
Version 1.3.5b, 31 May 2018

Page 1

Track changes base is 1.3.4c

Pi Presents
A Multi-media Interactive Display and Animation Toolkit

 for Museums, Visitor Centres and more…..

 Running on the Raspberry Pi

Ken Thompson

http://pipresents.wordpress.com

Version 1.3.5b, 31 May 2018

Page 2

Contents

1 Introduction .. 6

1.1 Acknowledgements ... 8

2 Installation .. 9

3 Try Some Examples ... 9

3.1 Terminating Pi Presents .. 13

4 The Pi Presents Profile Editor ... 14

4.1 Using the Editor... 14

4.1.1 The Displays .. 14

4.1.2 Profile Menu ... 15

4.1.3 Show Menu .. 15

4.1.4 Medialist Menu ... 15

4.1.5 Track Menu .. 15

4.1.6 OSC Menu ... 16

4.1.7 Tools Menu .. 16

4.1.8 Options Menu ... 16

4.1.9 Editor Command Line Options ... 17

4.2 Making Profiles ... 17

4.2.1 Making Profiles Portable .. 17

4.2.2 Using the SD Card for Profiles ... 18

4.2.3 Using the Editor on a Windows PC .. 18

4.2.4 Using a USB Stick for Profiles .. 18

4.2.5 Developing Profiles using a Monitor with Different Pixel Dimensions.. 19

5 The Components of Pi Presents ... 19

5.1 Introduction ... 19

5.2 Shows ... 21

5.2.1 Mediashow and Artmediashow ... 21

5.2.1.1 Controls and Commands... 23

5.2.1.2 Triggers ... 25

5.2.1.3 Fields .. 26

5.2.2 Menu .. 33

5.2.2.1 Controls and Commands... 33

5.2.2.2 Fields .. 33

5.2.3 Liveshow and Artliveshow .. 34

5.2.4 Radiobuttonshow ... 35

5.2.4.1 Controls and Commands... 36

5.2.4.2 Fields .. 36

5.2.5 Hyperlinkshow .. 38

5.2.5.1 Controls and Commands... 39

5.2.5.2 Touchscreens and Soft Buttons .. 40

5.2.5.3 Fields .. 41

5.2.6 Start Show ... 43

5.3 Medialists .. 43

5.4 Tracks ... 44

5.4.1 Track Location Names ... 44

5.4.2 Anonymous and Labelled tracks .. 45

5.4.3 Show Track .. 45

5.4.4 Image Track ... 45

Version 1.3.5b, 31 May 2018

Page 3

5.4.4.1 Image Window .. 48

5.4.5 Video Track .. 49

5.4.5.1 Video Playout .. 51

5.4.6 Audio Track .. 51

5.4.7 Web Tracks .. 53

5.4.7.1 Browser Commands .. 55

5.4.7.2 Full screen Integrated Browser Displays 56

5.4.8 Message Tracks ... 57

5.4.9 Show Track .. 59

5.4.10 Menu Track .. 59

6 Black Box Operation .. 63

6.1 Command Line Options ... 63

6.2 Specify a Profile .. 65

6.3 Specify a Home Directory .. 65

6.4 Using GPIO to Control Pi Presents.. 65

6.5 Disable Screen Blanking ... 66

6.6 Start Pi Presents when Power is applied to the Pi 66

6.7 Shutdown the Raspberry Pi from the GPIO ... 67

6.8 Controlling the Monitor .. 67

7 Exiting Pi Presents and Shutdown of the RPi .. 67

8 Controlling Shows.. 68

8.1 Controlling Track Movement in Individual Shows 68

8.2 Opening and Closing Shows and Show Control 69

8.2.1 Opening and Closing Shows .. 69

8.2.2 Sending Events between Shows .. 70

8.2.3 Other Uses of Show Controls ... 70

8.3 Time Of Day Scheduler ... 71

8.4 Concurrent Shows ... 72

8.4.1 Control with Concurrent Shows .. 72

8.4.2 Limitations on Concurrency .. 73

9 Touchscreens and Soft Buttons ... 73

9.1 Controlling Shows with a Touchscreen .. 73

9.2 Click Areas .. 74

9.3 Soft Buttons .. 74

10 Run-Time Commands ... 75

11 Providing Dynamic Content in a Liveshow ... 76

12 Counters .. 76

13 Animation Control .. 77

14 Input/Output (I/O) Plugins .. 78

14.1 Enabling a Standard I/O Device ... 79

14.2 Configuring Inputs and Output Drivers ... 80

14.2.1 Interfacing with GPIO using pp_gpiodriver.py 81

14.2.2 Interfacing with a Remote Control or Keypad using
pp_inputdevicedriver.py ... 82

14.2.3 Interfacing with a Serial Link using pp_serialdriver.py 83

14.2.4 Interfacing with I2C devices using pp_i2cdriver.py 84

14.2.5 Configuring Tkinter Keyboard Keys using pp_kbdriver.py 85

14.2.6 Advanced Interfacing with a Keyboard using pp_kbddriver_plus.py .. 86

14.2.7 Configuring Touch/Click Areas ... 87

Version 1.3.5b, 31 May 2018

Page 4

14.2.8 Interfacing with a RFID tag reader using pp_pn532driver.py 88

14.3 Writing I/O Plugins ... 89

14.3.1 Configuring and Registering an I/O plugin .. 89

14.3.2 Class .. 90

14.3.3 Methods ... 90

14.3.4 Example ... 92

15 Remote Control using OSC .. 92

15.1 Sending and Receiving Commands via OSC ... 93

15.2 OSC Fundamentals ... 93

15.3 Configuring OSC ... 95

15.4 oscremote and oscmonitor... 96

16 Track Plugins .. 97

17 Remote Management .. 99

17.1 Setting up for Remote Use ... 99

17.2 .Using the Manager ... 101

17.3 Using the Web Editor ... 103

18 Email Alerts ... 103

18.1 Setting Up Email Alerts .. 103

18.2 Using Email Alerts ... 104

19 Hardware Requirements ... 104

20 Updating Pi Presents .. 105

20.1 Updating Profiles ... 105

20.2 Updating Pi Presents ... 105

21 Debugging, Statistics, Bug Reports and Feature Requests 105

21.1 Statistics Production .. 105

21.2 Debugging Profiles .. 106

22 Gotchas and Known Problems .. 107

23 Converting Version 1.2 to 1.3 ... 109

Version 1.3.5b, 31 May 2018

Page 5

Copyright Notice

This manual and the Pi Presents software are copyright Ken Thompson. For licence
conditions see:

 https://github.com/KenT2/pipresents-gapless/blob/master/licence.md

Raspberry Pi is a trademark of the Raspberry Pi Foundation

http://www.raspberrypi.org

Version 1.3.5b, 31 May 2018

Page 6

1 Introduction

Pi Presents is a toolkit for creating and deploying multi-media interactive displays
with animation control facilities. It was originally intended for Museums and Visitor
Centres but has already found uses in hospitals, shops, schools, art installations,
libraries and more…..

Until the Raspberry Pi arrived buying or constructing something even as simple as an
interactive audio player was expensive. The Raspberry Pi with its combination of
Linux, GPIO and a powerful GPU is ideal for black box multi-media applications; all it
needed was a program to harness its power in a way that could be used by non-
programmers.

There are a number of digital signage applications for the Raspberry Pi which are
limited to slideshows and must take their media from the internet. Pi Presents is
different; it is a toolkit which allows construction of many types of interactive
presentation applications by using a simple to use editor running on a browser either
on a Pi or remotely.

The Pi Presents toolkit supports the types of show commonly seen in museums;
each of these can be configured to meet your individual requirements.

Some uses:

 Animation or interpretation of exhibits by triggering a sound, video, or
slideshow from a button, keyboard or other GPIO input.

 While playing media, GPIO outputs can be used to control external devices
such as lights, animatronics etc.

 A multimedia slideshow for a visitor centre. Images, videos, audio tracks, and
messages can be displayed. Repeats can be at intervals or at specified times
of day.

 Slideshows to be interrupted by the visitor and a menu of further content
presented.

 A show for kiosks where content can be initiated by pressing one of a number
of buttons.

 Facilities to construct ‘hyperlinked’ shows commonly seen on touch screens
in museums.

 Construct a 'powerpoint' like multi-media presentation where progress
through slides is manually controlled by buttons or keyboard.

 Basic digital signage with the ability upload image, video or audio tracks over
a network for display in a repeating show.

 Multi-window displays, displaying several types of content on a single screen

Version 1.3.5b, 31 May 2018

Page 7

 Run a selection of shows at different times, days of the week, and special
days in a year.

 Construct a network of Pi Presents applications controlled through the Open
Sound Control (OSC) protocol or control Pi Presents from remote computers,
tablets or smartphones.

 Manage Pi Presents and edit profiles remotely using any browser (Local Area
Network required). Receive email alerts reporting the status of deployed Pi
Presents applications.

 Foreign language support. All text shown to the audience is configurable.

Once set up Pi Presents is easy to use and does not require a network:

 Shows can be prepared using a simple to use editor.

 Will operate on a Model A or A+ Raspberry Pi (but see hardware
requirements).

 No need to modify the Pi’s SD card after initial installation. All media and
configuration options can be kept on a removable USB stick. Installing an
updated application can be as simple as inserting the USB stick.

 Video output can use HDMI or composite video selected using the normal Pi
setup procedure. As Pi Presents can be started and shutdown without a
keyboard a monitor is not required.

 Audio track output is selectable between HDMI and analogue and can be
output from left, right or stereo speakers on a per track basis. A number of
tracks can be played simultaneously to different speakers each with
presettable volume.

Pi Presents, out of the box, runs as a desktop application on the Raspberry Pi using
the keyboard for control. However with a little bit of Linux magic, which is explained in
this manual, it can be made to run as a black box application with control from GPIO
or remotely via OSC. Black box features include:

 Disabling screen blanking and the mouse pointer.

 Full screen operation without window decorations

 Completely headless operation without a keyboard, mouse or buttons (except
perhaps a shutdown button if you do not want to risk SD Card corruption)

 Black box control can be by buttons, PIR, or any source of digital inputs. It is
straightforward to make your own controls.

 Mouse compatible touchscreens are supported if drivers are available for the
Raspberry Pi. Alternatively a keyboard and mouse can be used. Pi Presents

Version 1.3.5b, 31 May 2018

Page 8

has been designed such that it is possible to add drivers written in Python for
other forms of input and output such as RS232 and I2C.

 Automatic start up when power is applied to the Pi

 Safe shutdown without using keyboard or mouse

 Automatic opening and closing of shows and shutdown of the Pi at specified
times of day. The time of day scheduler is programmable for different
schedules on different days of the week, or month, or for special days in the
year.

 Remote control of a Pi Presents application using Open Sound Control from
another Pi Presents or any computer with a suitable OSC application.

1.1 Acknowledgements

Douglas Otwell for dbus control of omxplayer

 https://github.com/Douglas6/omxcontrol

Davide Rosa for RemI – Remote Interface, a toolkit for writing browser based gui’s in
Python

https://github.com/dddomodossola/remi

Johannes Baiter (jbaiter) for pyomxplayer based on Noah's pexpect

Numerous people on the Raspberry Pi forum and websites, particularly
StackOverflow, who have unwittingly provided me with solutions to many technical
problems and taught me Python.

Bullets from http://www.enterprise-dashboard.com/tag/red-green-yellow-alert/

Icons from http://www.fatcow.com/free-icons

Buttons from http://www.freewebsitebuttons.com

The Raspberry Pi Foundation for the first affordable machine that plays video, audio
and has GPIO.

Having been introduced to open source software through the Raspberry Pi I was
amazed at the time and effort which so many people put in to produce software for
others, so I thought it worthwhile to do the same with Pi Presents. I am glad I did
because the feedback I have had from users and potential users has given me so
many good ideas for extensions to Pi Presents. Needless to say I have been so busy
producing Pi Presents that I have not had time to use it for my own intended projects,
however one day I am sure I will (I now have two three) .

Version 1.3.5b, 31 May 2018

Page 9

2 Installation
The installation instructions are in the README.md file. Pi Presents requires
Raspbian Stretch and should always use the latest Foundation Raspbian release and
MUST BE INSTALLED AND RUN FROM THE PIXEL DESKTOP.

3 Try Some Examples
Download the examples from the pipresents-gapless-examples github repository as
described in the README.md file.

N.B. Pi Presents must be run from the PIXEL desktop (you must have executed
startx either from the command line or set ‘boot to desktop’ in raspi-config) . From a
terminal window opened in the pipresents directory type:

 python pipresents.py –p pp_mediashow_1p3

You will see a continuous looping show in a small window. The small window is
useful for development purposes; you can adjust its size by editing pipresents.py,
around line 45. You can expand the display to nearly full screen by using the
appropriate window decoration. If however you want to see the show truly full screen
without borders then use the -f command option and –b to disable screen blanking:

 python pipresents.py –p pp_mediashow_1p3 –f -b

The mediashow example and all the other examples are designed for a 1920*1080
display. If you have a smaller resolution display some of the text and part of the
larger images will disappear off the edges of the display. Pi Presents does not
automatically adjust for screen resolution; you will need to use the Pi Presents editor
to adjust text position and font sizes , and to resize images external to Pi Presents.

The pipresents-gapless-examples repository has examples of how to use Pi
Presents.

You can use the bash script examples.sh to execute the examples, just type
./examples.sh from a terminal window open in the /pipresents directory or copy the
examples.desktop file from /pipresents to your desktop. You will need to make
examples.sh executable.

The examples use the following keys:

 Up or Down Cursor- move through a menu.

 Up or Down Cursor - Move through a mediashow show. Can also be used to
skip to the next or previous track in an automatic mediashow. The movement
circles around at the start and end of a show.

 Return – Play the selected menu entry or a child track.

 Escape – Stops the current track/show in an intuitive manner.

 Spacebar - in an image, video, or audio track, toggle pause.

 CTRL-BREAK always exits Pi Presents. (Duplicated by the Close window
icon or Alt+F4)

All examples use a selection of media tracks which are in /home/pi/pp_home/media.
The profiles are in /home/pi/pp_home/pp_profiles. In each profile the

Version 1.3.5b, 31 May 2018

Page 10

pp_showlist.json file specifies the look and feel of each show; other files specify the
media to use. The files can be viewed in a text editor but it is much better to edit
them using Pi Present's own editor described in Section 4.

Other optional files in the profile, screen.cfg, gpio.cfg, keys.cfg, osc.cfg and
schedule.json customise other aspects of Pi Presents.

How the profiles work is explained in detailed later so do not worry if you do not
understand them, just enjoy what Pi Presents is capable of.

The examples:

 pp_mediashow_1p3
The profile you have just run. The show will start immediately, progress
automatically, and then repeat. Use the Up and Down cursor keys to skip
tracks. The example demonstrates the types of track and additional
information that can be added to the primary content.

 pp_menu_1p3
The example demonstrates all the menu formats available in Pi Presents. The
second level menus, and any show which runs from another show are called
subshows. Use the Up and Down cursor keys to traverse the menu then
press Return to Start a track or sub-menu, and Escape to terminate it.

 pp_exhibit_1p3
This demonstrates how to trigger a mediashow from a PIR. When started, the
screen will be blank. Triggering the PIR input (opening a contact connected to
0 volts on P1-11) or pressing a button (closing a contact connected to 0 volts
on P1-18) will start a one shot mediashow and then wait for the trigger in
order to repeat the show.

The example uses the gpio.cfg file in the profile which has pins P1-18 and P1-
11 bound to the symbolic name PIR. This name is then associated with
Trigger for Start in the mediashow.

The example also uses the Return key as a trigger input so you can see the
effect without using the GPIO pins. The keys.cfg file in the profile overrides
the default keys.cfg and binds the Return key to the symbolic name PIR.

BEWARE: Do not use the GPIO pins until you have read Section 6.4

 pp_openclose_1p3 (New in Version 1.3)
A single shot mediashow with a different method of triggering. Useful if you
want a track to play when opening a box or door, and stop when it is closed.
gpio.cfg in the profile uses p1-18 for this task.

 pp_onerandom_1p3 (New in Version 1.3)
When triggered plays a single track randomly chosen from the medialist .

 pp_magicpicture_1p3 (Rewritten in Version 1.3.2a)
A still picture of a person is seen in a picture frame. When a button is pressed
the picture comes to life as a video is played. The effect is achieved by
pausing the video just after the first frame. I don’t have a video of a person so
Suits will have to do!

Version 1.3.5b, 31 May 2018

Page 11

 pp_interactive_1p3
This combines a mediashow and a menu. The mediashow is run continuously
but every track has a hint showing that a menu can be triggered by the Return
key. Pressing Escape from the menu returns to the mediashow. A track or
show which is accessible from any track in a mediashow is called a child.

 pp_presentation_1p3
The mediashow is configured as a manually controlled presentation. Use the
Up and Down cursor keys to traverse through it. Pi Presents cannot use
Powerpoint presentations but Powerpoint presentations can be saved as jpeg
images.

 pp_liveshow_1p3
While the Liveshow is running place some video files, audio files, or images
into the directory /home/pi/pp_home/pp_live_tracks and watch them
miraculously appear. A liveshow is a mediashow without pre-defined media.

 pp_liveshowempty_1p3 (new in 1.3.2a)
Demonstrates the increased flexibility in handling liveshows with an empty
tracks directory. An empty live tracks directory will play a ‘list empty’ track and
execute the ‘on empty’ and ‘on not empty’ Show Control commands.

 pp_radiobuttonshow_1p3
Think of the navigation method in a Radiobuttonshow as being like a car radio
channel changer. Press keys 1-4 or GPIO buttons to play a track and Escape
to return to the main screen.

Controls defined in the Radiobutttonshow profile allow for both keyboard keys
and buttons to be used to select a track. A gpio.cfg file is included in the
profile to bind four GPIO pins to entries and one to the Stop Operation.

 pp_hyperlinkshow_1p3
The Hyperlinkshow works something like a set of web pages with links
between them and Back and Home buttons. All of the ‘story telling’
applications in museums appear to use this navigation technique.

The show is aimed at touchscreens. The on screen buttons are touch
sensitive areas which, for testing purposes, are also sensitive to mouse
clicks. The file screen.cfg in the profile defines the buttons and the symbolic
names of their input events. If using ‘Soft Keys’ the show could be controlled
by GPIO pins by binding pins to the symbolic names in a gpio.cfg file.

 pp_audio_1p3
This mediashow demonstrates the capabilities of the audioplayer. You will
need speakers connected to hdmi and analogue ports to fully appreciate it. It
plays tracks to different speakers; it also demonstrates the use of Run-Time
controls to control volume from keyboard (8 and 9) or GPIO pins and mute
(keys 1 and 2). For this reason it has keys.cfg and gpio.cfg files in the profile,

 pp_web_1p3
A demonstration of the web browser capabilities. Ideally an internet
connection is required. Because the integration between Pi Presents and the
browser is not good, it will take a long time for the browser to open and, if you

Version 1.3.5b, 31 May 2018

Page 12

need to interact with Pi Presents when the browser is displayed you will need
to click on its window first.

 pp_concurrent_1p3
This application demonstrates concurrent show playing capabilities. There are
two mediashows running simultaneously. The mediashow showing images
must be controlled from the keyboard while the concurrent mediashow
containing audio tracks has its controls disabled and is played continuously.

 pp_multiwindow_1p3 (New in Version 1.3)
This application demonstrates concurrent show playing capabilities where
many shows display content. There are 4 mediashows and a menu running
simultaneously. The menu must be controlled from the keyboard while the
concurrent mediashows have their controls disabled and are played
continuously. The number of concurrent shows is limited only by the power of
the Pi. In the example:

• background - provides the static background
• audio - plays the background audio
• text - is a changing text only mediashow
• slideshow – multimedia automatic slideshow
• menu – interactive menu

The show is set up for remote control by OSC, see Section 15.4

 pp_artmediashow_1p3(New in Version 1.3)
A mediashow which features gapless transitions without freezing the picture
at the end of video tracks. Has limited features but could be useful for ‘artistic’
applications.

 pp_artliveshow_1p3(New in Version 1.3)
A liveshow which features gapless transitions without freezing the picture at
the end of video tracks. Has limited features but could be useful for ‘artistic’
applications.

 pp_subshow_1p3
Demonstrates how to use subshows to segment a larger mediashow.

 pp_timeofday_1p3 (Greatly enhanced from Version 1.2)
Opens and closes two mediashows at different times of day and then exits Pi
Presents. This is all controlled by the schedule.json in the profile. To make
this demonstration work whatever the day and time you test it the date and
time is simulated by setting “simulated-time” to “yes” in schedule.json. Make
a backup copy of schedule.json and then alter the date and time to see the
effects. Note morning opening only on Xmas day, just like English pubs!

 pp_plugin_1p3 (Plugin API has been modified for Version 1.3)
Demonstrates the operation of track plugins. Track plugins are Python
modules with a defined API which allow you to produce dynamic displays
particularly clocks and from data scraped from the web. Before using the
liveshow copy the .cfg files from the /media directory to the /pp_live_tracks
directory.

 pp_showcontrol_1p3

Version 1.3.5b, 31 May 2018

Page 13

Demonstrates the use of Show Control to start and stop one concurrent show
from another. The show is set up to control another Pi by OSC, see Section
15.4

 pp_showcontrolevent_1p3
Demonstrates the use of the Show Control Event command to pause and un-
pause a track using pause-on and pause-off commands

 pp_clickarea_1p3
Demonstrates use of click areas in each type of show and the use of Soft
Buttons. In the Radiobuttonshow click areas are selectively disabled by
individual tracks. Soft Buttons has a keys.cfg file which allows keys 1 and 2 to
select the two tracks. When deployed properly there would be two GPIO
buttons mounted adjacent to the left edge of the screen and a gpio.cfg file to
associate the buttons with the symbolic names.

 pp_animate_1p3 (Animation commands have changed for version 1.3)
Demonstrates the use of Animation Control by setting P1-11 to On at the start
of a track and to Off at the end. To achieve this it has a gpio.cfg file in the
profile. BEWARE: Ensure P1-11 can safely be used as an output before
running this.

 pp_shutdown_1p3
A mediashow that demonstrates how to use Show Control to shut down the Pi
It displays a message track and then when the Down Cursor is pressed starts
a track that shuts down the Pi immediately.

 pp_videoplayout_1p3
A demonstration of three types of show that can be used as a video playout
system in theatres or television stations. The key aspect is that videos are
loaded and paused just before the first frame so that pressing the g key which
executes the Go command causes the video to start immediately. Audio files
can be similarly played provided they are implemented as video tracks. See
Section 5.4.5.1

 pp_counters_1p3 (new for version 1.3.3a)
Demonstrates the commands for control of counters and use the track plugin
which can access and display values of counters

 pp_quiz_1p3 (new for version 1.3.3a)
Demonstrates the use of counters and a Hyperlinkshow to implements a quiz

 pp_osc_1p3 (new for version 1.3.3c)
Demonstrates the show control commands for remote control via OSC

3.1 Terminating Pi Presents

You can terminate Pi presents by pressing Ctrl+Break or Alt+F4, or clicking on the
'Close' icon. Terminate is aimed at aborting Pi Presents even in abnormal situations.
For other ways of closing Pi Presents or shutting down the RPi see Section 7

Version 1.3.5b, 31 May 2018

Page 14

Some keyboards do not have a BREAK key; it is possible to configure another key to
exit Pi Presents by editing the keys.cfg file to bind another key to the pp-terminate
symbolic name as described in Section 14.2.5

4 The Pi Presents Profile Editor

This manual is for the new web based editor which replaces the Pi only editor in Pi
Presents - Next. The web based editor is browser based so can be used from a
remote computer in addition to local use. Using the web based editor remotely and
details of the minor differences to look and feel are described in Section 17.3

Profiles can be created and edited using the Pi Presents editor. For use on the Pi the
command is:

python pp_web_editor.py

This will open the Chrome browser and display the editor gui.

When using the editor you will need to supply show references, track references and
file names. It is advisable not to create names beginning with pp- or pp_ to avoid
clashes with names used by Pi Presents.

4.1 Using the Editor

4.1.1 The Displays

Select one of the example profiles using the Profile>Open menu. In the directory
browser click on the text of the example (e.g. pp_mediashow_1p3) and press OK.
Unlike the previous editor do not open the directory.

 The top left panel displays the shows in the profile

 The bottom left panel shows the medialists in the profile, click on one of the
entries to select it.

 The right-hand panel shows the tracks in the selected medialist.

The selected entries are shown with a red background. Click the 'Edit Show' button
adjacent to the left-hand panel to edit the selected show and the 'Edit' button
adjacent to the right-hand panel to edit the selected track.

Edits are saved to disc when OK is pressed, use Cancel if you want to exit without
saving.

You can run pipresents.py and pp_web_editor.py concurrently from two terminal
windows so the effect of any edits can quickly be seen. You will need to restart
pipresents.py to see the effect of the updates made by the editor.

If you are going to edit the examples then first make a copy of them by using the
PCManFM File Manager to access

/home/pi/pp_home/pp_profiles

Version 1.3.5b, 31 May 2018

Page 15

and to copy a profile directory.

4.1.2 Profile Menu

Profile>Open - displays a directory viewer to select a profile for editing. The profiles
displayed are those in the home + offset directory defined in the Options>Edit menu.

Profile>Validate - Validate the Profile. Font and Colour fields are currently not
validated and if you edit the .json files with a text editor you are on your own!

Profile>Copy To – Copies a profile

Profile>Delete – Delete a profile

Profile>New from Template - lists templates for all types of show. The templates
have example tracks so they will run un-edited but some will be missing configuration
files. Examples of these can be copied from:

/home/pi/pipresents/pp_io_config
and /home/pi/pipresents/pp_resources/pp_templates

4.1.3 Show Menu

Show>Add - Add a new show, and a medialist with the same name. The show type
of an existing show cannot be edited.

Show>Copy To - Copy the show, creating an empty medialist for the show

Show> Edit - Duplicates the Edit Show button

Show>Delete - Deletes the show from the profile, no going back!

4.1.4 Medialist Menu

Medialist>Add - Add a new medialist. The .json extension is added if not included.

Medialist>Copy To – Copy the medialist

Medialist>Delete - Deletes the medialist from the profile, no going back!

4.1.5 Track Menu

Track>Add File
Adds one or more track entries containing media files to the end of the medialist.
These may be images, videos or audio tracks. The editor automatically calculates the
file location and track type. If either of these is unacceptable or the media file
extension is rejected then use Track>New to add a blank track of the required type.

The list of extensions that are used to select track type is in the first few lines of the
pp_definitions.py source. Please raise a bug report if these are inadequate.

Track>Add Dir

Version 1.3.5b, 31 May 2018

Page 16

Similar to Add File, except that all eligible tracks in the directory are added to the
medialist.

The list of eligible extensions that is used to select tracks and their types is in the first
few lines of the pp_definitions.py source. Please raise a bug report if these are
inadequate.

Track>New
Adds a blank track of the selected type to the end of the medialist.

Track>Edit
Duplicates the Edit Button

Track>Copy
Copies a track

Track>Delete
Deletes the track from the medialist, no going back!

4.1.6 OSC Menu

OSC>Create
Creates an empty osc.cfg file in the profile in the directory pp_io_plugins

OSC>Edit
Edits osc.cfg.

4.1.7 Tools Menu

Tools>Update All
Update the version of all profiles in the current home + offset directory, see Section
20.

4.1.8 Options Menu

Options>Edit
Edit the editor options:

 Pi Presents Home Directory
This is an important option which must be set to the directory in which any
profile directories and relative media is to be assembled. Out of the box it is
set to /home/pi/pp_home. If you choose an alternative setting for this then
ensure that the directory /pp_profiles is created inside the chosen /pp_home.

 Initial Media Directory
This is just a helper setting to define where 'Add Track' and 'Add from Dir'
start their browsing.

 Offset for current profiles
This advanced option allows profiles to be separated into directories under
/pp_home/pp_profiles and readily accessed so an offset of /1p3_examples
defaults ‘open’ to /pp_home/pp_profiles/1p3_examples

Version 1.3.5b, 31 May 2018

Page 17

4.1.9 Editor Command Line Options

one of :

-r --remote
-l --local
-n --native

If none of these are specified then -l is assumed.

local – the editor server is run and a browser is opened on the
RPi (ip=127.0.0.1)

remote – the editor server is run with the IP address of the RPi
(e.g. 192.168.1.67) it can be accessed remotely from a browser
on another computer using http://192.168.1.67:8082

native – the editor is run natively on the RPi without a browser.
Requires qt5 and pyview to be installed (which I failed to achieve)

4.2 Making Profiles

Application data is kept is a directory called /pp_home. /pp_home must contain a
directory /pp_profiles in which profiles are stored.

A profile is a directory which contains the information needed to configure a single
application of Pi Presents. It must contain a pp_showlist.json file and one or more
medialist (.json) files. The pp_showlist.json file contains a number of sections, a
'start' show section and a number of sections each defining a user generated show.

Each section in the pp_showlist.json file defines the look and feel of a show and how
they link together. Medialist (.json) files in a profile define the content each show and
some per track look and feel information.

To make profiles portable all media is best kept either under the directory /pp_home
or alternatively inside a profile. In both cases it is recommended that media is stored
in a sub-directory, by convention named media. Media stored like this is referenced
by relative file paths in a profile e.g. +/media/myimage.jpg or @/media/myimage.jpg

The default location of /pp_home is /home/pi; this will need to be overridden by
command line options if you are using a USB stick.

A profile may optionally contain other configuration files such as schedule.json also
an optional directory /pp_io_config which contains Input/output configuration files
such as gpio.cfg. A readme.txt file can be included to allow the profile to be
documented.

4.2.1 Making Profiles Portable

Profiles and their media can be moved between different drives without breaking the
references between shows and their media tracks. This is necessary if a profile is
prepared on a Pi on a SD card and moved to a USB Stick for operational use.

To achieve portability media tracks should be stored under the /pp_home directory,
preferably in sub-directories or alternatively in a profile, by convention in a directory
called media. If tracks are stored in these locations before the profile is prepared then
the Profile Editor will automatically compute the appropriate track reference:

Version 1.3.5b, 31 May 2018

Page 18

If the file is below the home directory (…../pp_home), as defined in the
Options>Edit menu then the file reference will look like '+/track_to_play.mp4'

If the track is in the profile then the file reference will look like
'@/media/track_to_play.mp4’

 Otherwise the reference will look like '/home/pi/mymedia/track_to_play.mp4';
an absolute reference.

Absolute references do have their uses, for example in specifying internet url's e.g.
http://www.mysite.com/ track_to_play.mp4

4.2.2 Using the SD Card for Profiles

This is very useful for developing applications on a Pi. To use the SD card for
developing and running profiles:

 Create a directory /pp_home in the User Pi's home directory and inside that
create a directory called pp_profiles. You can also create a directory in
/pp_home called say, media, to hold media files.

 In the Editor Options set the Pi Presents Data Home directory to
/home/pi/pp_home and the Initial Directory for Media to
/home/pi/pp_home/media

 Copy media files to the /media directory

 Using the editor create a new profile, call it myprofile, and edit it.

 To run the profile type:

 python pipresents.py -p myprofile

 from a terminal window open in the pipresents directory.

When running Pi Presents from a desktop shortcut, or from an autostart file it is best
to specify the full path of pipresents and also the full path of the data home directory.
e.g.

 python /home/pi/pipresents/pipresents.py -o /home/pi -p myprofile

4.2.3 Using the Editor on a Windows PC

Note: This applies to the old editor which is discontinued.

4.2.4 Using a USB Stick for Profiles

To run profiles from a USB stick copy /pp_home to the top level of a USB stick from
its location either on a Pi.

Version 1.3.5b, 31 May 2018

Page 19

Insert the USB stick into a Pi and run Pi Presents with the -o option set to
/media/pi/STICKNAME. STICKNAME is the drive name.

4.2.5 Developing Profiles using a Monitor with Different Pixel
Dimensions

The –s –screensize command line option assists with developing applications on a
host monitor that has different pixel dimensions to the target monitor. Use of this
option will cause Pi Presents to use the provided dimensions instead of the host
screen dimensions that it obtains from Raspbian.

 All layout operations such as centring and warping images will use the
provided target dimensions.

 If fullscreen mode is not in use a yellow rectangle will show the dimensions of
the target screen.

 If fullscreen mode is in use then the display will be the size of the target
monitor placed at the top left of the host monitor. If the target dimensions are
greater than the host dimension then parts of the display will disappear.

5 The Components of Pi Presents

5.1 Introduction

Shows and Tracks

The Pi Presents toolkit has two building blocks - shows and tracks.

A show plays tracks; the list of tracks to be played is contained in a medialist which is
associated with the show, think of the medialist as an enhanced playlist.

 The toolkit currently has seven types of show each optimised for a different purpose:

 Mediashow - plays a sequence of tracks, usually automatically, but progress
can be manually controlled. Transitions between tracks are gapless but this is
achieved by freezing videos and images at the end of the track while the next
track is loaded.

 Artmediashow – plays a sequence of tracks as in Mediashow with full gapless
capability. The next track is loaded while the previous track is playing hence
the tracks do not freeze at their end. The Artmediashow has no triggering
capability and does not support Child tracks or Subshows

 Hyperlinkshow - Implements the touchscreen functionality that you see in
many museums.

Version 1.3.5b, 31 May 2018

Page 20

 Radiobuttonshow - A simple kiosk show showing a navigation screen - press
one of many buttons to play a track.

 Menu - Similar to a Radiobuttonshow but the track selection is by traversing a
menu using 'cursor' keys or a single button.

 Liveshow - A Mediashow like show with dynamic remotely sourced content.

 Artliveshow – uses remote content as in Liveshow and has full gapless
capability. The next track is loaded while the previous track is playing hence
the tracks do not freeze at their end. The Artliveshow has no triggering
capability and does not support Child tracks or Subshows

The toolkit currently has 'players' for five types of track each playing a different type
of media. All 'players' allow the primary media to be displayed in a window with an
optional background of plain colours, images, and text annotations. Players allow
animation to be controlled, track plugins to be written in Python, and for other
concurrent shows to be opened and closed.

 video - plays videos using omxplayer

 audio - plays audio tracks using mplayer

 image - displays images in many different formats (.jpg etc.) (uses Python
Imaging Library)

 message - a quick way to display text.

 Web – runs an embedded web browser (uses uzbl)

Subshows and Child Tracks

In Pi Presents a show can be a track of its parent show; this is called a subshow.
Subshows have a number of uses which include:

 Dividing a long mediashow into segments. Each segment is a show and a
parent mediashow contains the segment shows in its medialist.

 A menu or radiobuttonshow might have mediashows as entries rather than
single tracks

 Multi-level menus

Subshows can be nested to any depth; the limit is probably the confusion that it will
cause the audience when using them. Subshows are tracks so appear in the
medialist as Show tracks.

Child tracks are tracks used in a special way by mediashows and liveshows. If a child
track is specified in the profile it can be initiated while running any track in the parent
show returning to the next track in the parent when finished. Child tracks, like any
track can be a show and are sometimes referred to as Child Shows..

The Egg Timer

In all shows transitions between tracks are gapless (no black gaps between tracks).
This is achieved by freezing videos and images at the end of the track while the next

Version 1.3.5b, 31 May 2018

Page 21

track is loaded. For manual operation this means there is a delay of up to 2 seconds
after a control is pressed. The ‘Egg Timer’ can be used cover this delay by displaying
text while the loading takes place. The text appears above the track display so its
content, format, and position is configurable in the show profile.

Concurrent Shows

Pi Presents can run two or more shows concurrently, see Section 8.4. The
concurrent shows appear to run in parallel. This has many uses which include:

 Providing a background audio track to a slideshow.
Use two mediashows, one with the slideshow and the other with the audio
tracks. The latter will need the controls disabled if there is customer
interaction with the former.

 Dividing the screen into areas (Show Canvases) each showing a different
Show. Perhaps an automatic slideshow in one area, time of day provided by a
show with a track plugin in another, and a user controlled menu of pictures in
a third. Controls may need to be disabled for all but one of the shows. For
more advanced applications Pi Presents can be configured so that each
concurrent show and each subshow has their own sets of controls.

 Being really thrifty and doing two completely different tasks with the same Pi,
perhaps a slideshow in the Reception and a dummy talking in a museum
exhibit triggered by a PIR

Each concurrent show can have subshows.

5.2 Shows

Shows have fields which control the sequencing and look of the show. They also
have a number of fields which provide default values for all the tracks in the show
e.g. Duration, Transition, OMXPlayer Audio; tracks will use the values in the show if
their corresponding fields are left blank.

All shows have the following fields:

 Title - Text displayed in the editor and in the entries of a menu show

 Show Reference - A label which allows other shows to reference this show.
Can be any alpha-numeric string without spaces.

 Medialist - this is the name of a file which appears in the medialist panel. It
must have the extension .json. Every show must have a medialist to define
the tracks in the show. The same medialist can be used by more than one
show.

5.2.1 Mediashow and Artmediashow

Think of a mediashow as a slideshow that can play tracks of different types - videos,
audio tracks, images, and even animation control sequences.

Version 1.3.5b, 31 May 2018

Page 22

Mediashows have a number of fields to define the control of the show, e.g. Trigger
for Start, Repeat/Single and Sequence.

A track can be associated with a mediashow such that the track is accessible from
any track in the show. These are termed 'child tracks'. The Child Track parameter
specifies the track reference of the child track, which may be a track or a show.
Associated with the use of a Child Track is ‘Hint Text’ that is displayed only when the
Child Track field is not blank.

The Repeat/Single field control how mediashows run:

 repeat - the mediashow repeats until it is stopped.

 single-run - the mediashow runs once and then exits. Single run is primarily
for use in subshows and with Show Control

Other fields allow mediashows to the customised for many applications. The table
below shows the Trigger and other field settings for common uses of mediashows
and liveshows.

Task Repeat Trigger for
Start

Trigger for
End

Other
Fields
(where

non-zero)

Continuous show repeat start none

Continuous show that repeats
the medialist until a period of
time has elapsed, then it
ends.

repeat start none Show
Timeout =
h:m:s

Continuous show that repeats
the medialist at intervals

repeat start none Repeat
Interval =
h:m:s

Run a medialist triggered by
an input (was single shot)

repeat input none

Run a medialist triggered by
an input. Inhibit re-triggering
for a period of time after the
medialist completes.

repeat input none Repeat
Interval =
h:m:s

Play a track triggered by an
input. If sequence = shuffle a
random track will be played
each time.

repeat input Track
Count Limit
= tracks

Start and stop playing a
medialist when an input is
pressed and released

repeat input input In gpio.cfg
use rising
edge and
falling
edge of a
pin for the
two
triggers.

Version 1.3.5b, 31 May 2018

Page 23

‘Magic Picture’. Start a video
and pause it after its first
frame. Unpause using the go
command and then repeat.

repeat start none Video
requires
‘freeze at
start’ and
‘after first
frame’.
Also the go
command
to be used

Use a mediashow as a
subshow or as an item of a
menu, radiobuttonshow etc.

single-run start none

Mediashows and Liveshows can also be controlled by the user using Commands
such as Up, Down and Stop. The association of these with the Symbolic names of
Input Events is in the Controls field.

Artmediashow
Artmediashows provide full gapless playback; there is no gap between tracks and
tracks do not freeze at their end to cover loading of the next track. Artmediashows
have some limitations and do not have the fields and commands which are shown in
brackets in the Table below:

 Subshows

 Child Tracks

 Start, Next and End Triggers.

 Web Tracks

5.2.1.1 Controls and Commands

The first means of controlling mediashows and liveshows is by using their
Commands. Out of the box these Commands are bound to a set of symbolic names
and these in turn are bound to a set of keyboard keys. In addition control of Pi
Presents by GPO with a useful set of bindings can be enabled easily by copying a
prepared gpio.cfg file to a profile from /pipresents/pp_resources/pp_templates:

The out of the box settings are:

 'Out of the box'
For GPIO Pin see Section 14.2.1

Effect

Command Symbolic
Name

Key GPIO Pin.

up pp-up Cursor Up Previous track in mediashow or
liveshow, or up for menu

down pp-down Cursor
Down

 Next track in mediashow or
liveshow, or down for menu

play pp-play Return Start an entry in a menu, or start
a child show.

pause pp-pause Spacebar toggle pause for tracks that
support pause.

pause-on pause for tracks that support
pause.

Version 1.3.5b, 31 May 2018

Page 24

pause-off unpause for tracks that support
pause.

mute mute for tracks that support
mute.

unmute unmute for tracks that support
mute.

stop pp-stop Escape Stop playing a track and, if a
show is in its quiescent state and
is not a top level show, return to
the parent show.
Quiescent state:

 Liveshow/Mediashow –
at all times

 Menu – displaying menu.
If it is in its quiescent state and a
top level show then stop closes a
single-run show but moves to the
next track for a repeating show.

(go) <not
bound>

<not
bound>

<not
bound>

unpause a video track that is
‘frozen at start’

null <not
applicable>

<not
applicable>

<not
applicable>

inhibits the control with the same
symbolic name that has been
defined in the show.

exit pp-exit <not
bound>

<not
bound>

Stop playing a track and exit to
the parent show or, if a top level
show, close the show.

omx-* <not
bound>

<not
bound>

<not
bound>

execute a runtime commandl for
the video player (Section 10)

mplay-* <not
bound>

<not
bound>

<not
bound>

execute a runtime command for
the audio player (Section 10)

(uzbl-*) <not
bound>

<not
bound>

<not
bound>

execute a runtime command for
the web browser (Section 10)

The 'out of the box' key for each operation is set in /pipresents/pp_io_config/keys.cfg
and the GPIO pin in gpio.cfg. The bindings can be modified as described in Section
14.2. The binding of the Command to the symbolic name is specified in the Controls
field of the show. It is unlikely you will want to modify these but you may wish to
override them for an individual show as described below.

Remember that if more than one show is running concurrently the input event is
passed to and potentially executed by each concurrent show. This may be
undesirable, for example if a mediashow of audio tracks is running as a background
to a manually advanced slideshow; we do not want the up and down operations to
change audio track, so Disable Controls is used with the audio show.

If Disable Controls = yes for the show then all Commands are disabled for the show
and it must run automatically or be controlled by triggers as described in the next
section. For more advanced situations individual Commands can be deleted or
bound to alternative symbolic names for a specific show by using the Controls field of
a show.

Commands can be placed in the Controls field of the tracks in addition to the
Controls field of the mediashow. The controls in a track are merged with and override
those in the show. This is generally not required but could be used where, for
example it is required that the audience watches the whole of a video. In this case
using the null commands would inhibit up/down/stop for the track

Version 1.3.5b, 31 May 2018

Page 25

5.2.1.2 Triggers

Mediashows and liveshows have triggering facilities. The facilities are designed for
use when the show is played without the full user interaction provided by their
Commands

Immediately after a mediashow is run, or it repeats, the show uses the Trigger For
Start field to decide what to do next, After each track Trigger For Next can be
employed to control movement to the next track. Trigger for End determines when
the mediashow finishes

Triggers can be applied to sub-shows and child shows. Triggers are not inhibited by
‘Disable Controls’.

5.2.1.2.1 Trigger for Start

Trigger For Start can take the following values:

 start
The mediashow continues to the first track.

 input /input-persist
The mediashow waits for an input event before running the first track of the
show. The symbolic name of the input event must be included in the Trigger
for Start Parameter field. Input-persist is a way of implementing ‘magic
pictures’ now replaced by the better Freeze at Start, After First Frame in a
video track.

Text to display while waiting for a Star Trigger is in the Notices Tab of a
mediashow or liveshow.

5.2.1.2.2 Trigger for End

Trigger for End causes the show to exit (single-run) or repeat (repeat). It can take the
following values:

 none
The end trigger is not operative the show will exit or repeat at the end of the
medialist/live tracks directory.

 input – the end trigger is generated when an input with a symbolic name
matches that in the Trigger for End Parameter field.

5.2.1.2.3 Trigger for Next

The Trigger For Next field allows individual tracks in a mediashow to be triggered by
an input event:

Version 1.3.5b, 31 May 2018

Page 26

 None - The trigger is not operative the show will continue to the next track at
the end of the previous.

 Input - The show moves to the next track when it is triggered by the input
event having the symbolic name specified in Trigger for Next Parameter field.
The track duration can be used to set a longstop on the trigger, or if set to 0 to
allow forward movement by trigger only.

5.2.1.3 Fields

Fields for Mediashow and Liveshow. Fields not used for Artmediashow and
Artliveshow in brackets

Field Examples Values

Show Tab

Type (art)mediasho
w

Cannot be edited

Title My First Show Text describing the show. Displayed in the editor
and on menus

Show
Reference

show1 A ‘label’ by which the show is referenced by
other shows. Any text without spaces

Medialist show1.json Filename of the medialist file containing the
tracks for the mediashow. By default it is the
same as the Show Reference but can be
changed.

(Trigger For
Start)

start How the media show proceeds after it is started
and at the beginning of a repeat:

 start - continue without waiting

 input - wait for an input event.

 input-persist – wait for an input event.
Input-persist displays the immediately
previous track while waiting (providing
videos are frozen at their end)

(Trigger for
Start
Parameter)

PIR If Trigger For Start is 'input', or ‘input-persist’:
A symbolic name that is bound to an
input event as described in Section 14.2

(Trigger for
Next)

continue How to trigger the next track

 input - respond an input event

 continue – continue without waiting
Input can be used in one of two ways:
If the duration of a track is zero the mediashow
will move forward only when the trigger is
received.
If the duration of a track is non-zero then the
mediashow will move forward automatically and
also when the trigger is received.

(Trigger for
Next
Parameter)

 If Trigger For Next is 'input':
A symbolic name that is bound to an
input event as described in Section 14.2

Version 1.3.5b, 31 May 2018

Page 27

Field Examples Values

Sequence sequence of tracks:

 ordered - played in the order of the
medialist

 shuffle - play tracks in a random order.
For liveshow this is a true shuffle so a
track will not be replayed until all the
tracks in the live tracks directories have
been played. For mediashow the next
track is chosen randomly.

Repeat/Single repeat How the media show is repeated:

 repeat – Wait for Trigger for Start. Tracks
in the medialist are then played once and
then the medialist repeats by waiting for
Trigger for Start.

 single-run – Waits for Trigger for Start.
Tracks are then played once and then the
show closes.

Note: There is no natural end to a shuffled set of
tracks.

(Trigger For
End)

none How the end of a show can be triggered. See the
table above for more detail.

 none – the end trigger is not operative

 input – Ends after an input event as
described in Section 14.2

 duration – end the show after a period of
time.

(Trigger for End
Parameter)

5:00 If Trigger For End =:

 input – A symbolic name that is bound to an
input event as described in Section 14.2

(Track Count
Limit)

1 If non-zero the show closes or repeats after
Count tracks have been played. Intended fo use
where the Track Count Limit is less than the
number of anonymous tracks in the medialist.

(Repeat
Interval)

30 h:m:s

The show repeats/ends at Repeat Interval or at
the end of the medialist, whichever is last. If the
medialist ends before Repeat Interval then a
blank screen is displayed.

Interval = 0 always repeats/ends when medialist
is complete. Repeat Interval=0 does not work for
shuffle as a shuffled medialist never finishes.

For shuffle and Repeat Interval>0 the show
always continues until Repeat Interval as a
shuffled medialist does not finish

Version 1.3.5b, 31 May 2018

Page 28

Field Examples Values

(Show Timeout) 1:30:20 h:m:s If non-zero end the show after the
specified period if nothing else has ended it.

Show Canvas 100 100 400
600

The top left and bottom right coordinates of the
show canvas. Show canvas helps the user divide
the screen when displaying more than one
concurrent show. If the field is not blank the
Show Canvas dimensions controls the placing
and size of images and videos taking the place
of the dimensions of the screen. The Show
Canvas determines the origin of the images (top
left) however it is not a window and does not
crop the image or video so, if the bottom right co-
ordinates of the image are larger than the Show
Canvas it can overlap other show canvases.

Instead of 2 x,y, pairs x1+y1+w*h can be used

Child Track
Tab

(Child Track) child-track Non-blank to enable a Child Track and to specify
the track reference of the track.

(Hint Text) Press Play to.. A single line of text

(Hint Font) Helvetica 30
bold

Use the Font Chooser to select a font, or type
one in:

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

(Hint Colour) white Use the Colour Chooser to select a colour which
will return a six digit hex number, or type in a
colour name.

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

(Hint Justify) right left, right, center – Justify lines in a block of text

(Hint x) 500 Position of left of text. If blank then the text is
centred on the show canvas

(Hint y) 900 Position of top of text. If blank then the text is
centred on the show canvas

Eggtimer Tab

Eggtimer text is displayed when the next track is
being loaded

EggTimer Text Loading…. A single line of text

Eggtimer Text
Font

Helvetica 30
bold

Use the Font Chooser to select a font, or type
one in:

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

Version 1.3.5b, 31 May 2018

Page 29

Field Examples Values

Eggtimer Text
Colour

white Use the Colour Chooser to select a colour which
will return a six digit hex number, or type in a
colour name.

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

Eggtimer Text x
Position

100 distance of the start of the text from the left of the
screen (pixels) If blank then the text is centred on
the show canvas

Eggtimer Text y
Position

100 distance of the top of the text from the top of the
screen (pixels) If blank then the text is centred on
the show canvas

Eggtimer Justify right left, right, center – Justify lines in a block of text

Notices Tab

(Trigger Wait
Text)

Waiting… Text to show when Waiting for Trigger

Notice Text x
Position

 distance of the start of the text from the left of the
screen (pixels) If blank then the text is centred on
the show canvas

Notice Text y
position

 distance of the top of the text from the top of the
screen (pixels) If blank then the text is centred on
the show canvas

Notice Text
Colour

 Use the Colour Chooser to select a colour which
will return a six digit hex number, or type in a
colour name.

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

Notice Text
Font

 Use the Font Chooser to select a font, or type
one in:

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

Notice Justify right left, right, center – Justify lines in a block of text

Show
Background
and Text Tab

Background
Image

+/media/image
.jpg

If not blank the file name of an image which is
used as the background for any tracks in the
show. The image is warped to fit the Show
Canvas. If you do not want background images
to be warped then edit them in advance to be the
size of the Show Canvas.

Version 1.3.5b, 31 May 2018

Page 30

Field Examples Values

Background
Colour

 Use the Colour Chooser to select a colour which
will return a six digit hex number, or type in a
colour name.

See http://effbot.org/tkinterbook/tkinter-widget-
styling.htm
The background colour is set to black when Pi
Presents starts. The value in this field is used by
a track in the show if the value in the track’s field
is blank.
If the resulting Background Colour is blank the
background colour is not changed.

Show Text Pictures from
my holiday

Show text is overlayed on all tracks in the show.
If not blank the text to be displayed.

Show Text Font Helvetica 30
bold

Use the Font Chooser to select a font, or type
one in:

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

Show Text
Colour

white Use the Colour Chooser to select a colour which
will return a six digit hex number, or type in a
colour name.

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

Show Text x
Position

100 distance of the start of the text from the left of the
screen (pixels) If blank then the text is centred on
the show canvas

Show Text y
Position

100 distance of the top of the text from the top of the
screen (pixels) If blank then the text is centred on
the show canvas

Show Text
Justify

right left, right, center – Justify lines in a block of text

Track Defaults
Tab

Tracks played in the show need some
configuration if not supplied in the individual
tracks

Duration 10 seconds. How long a track having no natural end
is displayed. A value of 0 displays continuously.

Pause Timeout 5 seconds. If not blank and greater than 0 a
paused track will automatically unpause after the
timeout.

Track Text Font Helvetica 30
bold

Use the Font Chooser to select a font, or type
one in.

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

Track Text
Colour

white Use the Colour Chooser to select a colour which
will return a six digit hex number, or type in a
colour name.

See: http://effbot.org/tkinterbook/tkinter-widget-

Version 1.3.5b, 31 May 2018

Page 31

Field Examples Values

styling.htm

Track Text x
Position

100 distance of the left end of the text from the left of
the screen (pixels) If blank then the text is
centred on the show canvas

Track Text y
Position

100 distance of the top of the text from the top of the
screen (pixels) If blank then the text is centred
on the show canvas

Track Text
Justify

right left, right, center - Justify lines in a block of text

Transition cut cut. Type of transition between tracks.
Currently not used.

Image Rotation 90 Rotates the image

Image Window original 10 100

fit

fit 1010 40 40

fit ANTIALIAS

For any image track in the show a viewport in
which to show the image. See section 5.4.4.1

Video Audio hdmi hdmi/local/both/alsa <blank>. Sound output
channel for any video track played by omxplayer
from the show. If blank then the channel is set
automatically by the presence of a hdmi monitor.
(can be forced in raspi-config) (both is
hdmi+local)

Video Audio
Volume

0 Volume of audio for the video track (-60 -> 0 dB).

Video Window original

warp

warp 10 100
200 700

For any video track in the show a viewport in
which to show the video.

 original – use OMXPlayer default
behaviour

 warp – scale to the size of the screen
without maintaining aspect ration

 warp followed by two x,y, pairs (top left,
bottom right) – the viewport window. The
video is scaled to this size without
preserving the aspect ratio. Instead of 2
x,y, pairs x1+y1+w*h can be used

Freeze at Start before-first-
frame

Freeze a video at the start of the track

 no – no freeze

 before-first-frame – the video is paused
before the first frame is shown

 after-first-frame - the video is paused
after the first frame is shown

To continue after the freeze use the ‘go’
command.

Audio tracks can be ‘frozen at start’ by playing

Version 1.3.5b, 31 May 2018

Page 32

Field Examples Values

them as video tracks.

Freeze at End yes yes/no If yes the video will be frozen near the
last frame until the next track is ready to be
displayed.

Video Player
Options

 Other options for omxplayer (care required to
avoid have a nice day!)

Audio Player
Audio

local hdmi/local. Sound output channel for any audio
track played by MPlayer from the show.

Audio Player
Speaker

stereo left/right/stereo. Speaker for any audio track
played by MPlayer in the show.

Audio Player
Volume

0 Volume of audio track (-60 -> 0dB) played by
MPlayer in the show.

Audio Player
Options

 Other options for MPlayer (care required to avoid
rejection!)

(Web Window) warp

warp 10 100
200 700

For any web track in the show a viewport in
which to show the web page.

 warp - scale to the size of the screen
without maintaining aspect ration

 warp followed by two x,y, pairs (top left,
bottom right) - the viewport window. The
web page is scaled to this size without
preserving the aspect ratio. Instead of 2
x,y, pairs x1+y1+w*h can be used

Controls Tab

Controls pp-play play
pp-up up

Defines the bindings between symbolic names of
input events and commands

See Table above and Section 6.4

One binding per line each with the format:

symbolic-name command

Bindings are NOT inherited by subshows.

Disable
Controls

no yes/no
If 'yes' Commands (e.g. play, pause, up, down,
stop) are disabled. This is a quick way to inhibit
all controls for a concurrent show. For more
selective control use the Controls field

Show Control
Tab

Show Control at
Beginning

open audio1 See Section 8.2

Show Control at
End

close audio1 See Section 8.2

Version 1.3.5b, 31 May 2018

Page 33

5.2.2 Menu

A menu show uses the Title and Thumbnail fields of tracks and of shows to
automatically generate a menu on the screen. The Up and Down Commands can
then be used to scroll the menu and the Play Command to play the track or show.

A menushow needs an associated menu track in its medialist which defines the
layout of the menu:

 Display, thumbnails, bullets or Titles in many combinations

 Align the menu vertically or horizontally

 Create multi-column, multi-row menus

 Alter the separation, colours and font of the menu items

5.2.2.1 Controls and Commands

Menu Commands are the same as those for Mediashow and are described in details
in Section 5.2.1.1

5.2.2.2 Fields

Field Examples Values

Show Tab

Essential information

Type menu Cannot be edited

Title Text describing the show, displayed in the editor.

Show
Reference

mymenu A ‘label’ by which the show is referenced by other
shows. Any text without spaces

Show Canvas See Mediashow

Medialist
mymenu.json

Filename of the medialist file containing the tracks
for the menu.

Show Timeout 59 h:m:s, If there is no activity on the menu Pi
presents automatically close the show. 0 for no
timeout.

Track Timeout 20 h:m:s, If non-zero tracks launched from the menu
will be stopped after this time and control will
return to the menu.

Menu Track menu-track The track reference of the track that will display the
menu content. Must be of type Menu Track

Eggtimer Tab

Eggtimer text is displayed when the next track is
being loaded.

 See mediashow

Show
Background
and Text Tab

Show text is overlaid on all tracks other than
message tracks opened from the menu.

Version 1.3.5b, 31 May 2018

Page 34

Field Examples Values

 See mediashow

Track Defaults
Tab

Tracks played from a menu need some
configuration if not supplied in the individual
tracks

 See Mediashow

Controls Tab

pp-down down Defines the bindings between symbolic names of
input events and commands

One binding per line each with the format:

symbolic-name command

Bindings are not inherited by subshows.

See Table above and Section 5.2.1.1

Disable
Controls

no yes/no
If 'yes' the commands are disabled. This is a
quick way to inhibit all controls for a concurrent
show. For more selective control use the
Controls field

Show Control
Tab

See Mediashow

5.2.3 Liveshow and Artliveshow

A Liveshow is identical to a Mediashow except that the content is dynamically
supplied from directories of media, the Live Tracks directories, and is therefore
limited to video, image, and audio tracks, and their track plugins. The tracks from the
two directories are merged and, if sequence = ordered, sorted by the leaf of the file
name.

See Section 5.2.1 for details of commands, triggers and fields.

A medialist must be associated with a Liveshow. It is used for the Child Track, List
Empty Track, and Escape Track all other tracks in it will be ignored.

Actions on the list of tracks being empty:

a. List Empty/Escape

 If the liveshow’s repeat field is ‘Single Run’ then the liveshow exits.

 If the liveshow’s repeat field is ‘Repeat‘ and List Empty Track’ is blank then an
error will be generated.

 If the liveshow’s repeat field is ‘Repeat’ and the ‘List Empty Track’ is not a
show it is run whenever the list of tracks to be played is empty. The track is
played once and then the content of the list of tracks is re-evaluated.

Version 1.3.5b, 31 May 2018

Page 35

 The List Empty Track may be a show. If so the show should be ‘single run’ or
there should be some other method of exiting from the show so that the list of
liveshow tracks can be re-evaluated. If the list is then empty the Escape track
is run once. This track must not be a show. Its purpose is to allow the
liveshow to be stopped or exited if it is a subshow of another show.

 The limitation of this method is that the empty track/show uses the same
Show Canvas as the liveshow.

b. Show Control

 The ‘Show Control on Empty’ and ‘Show Control on Not Empty’ fields allow
other shows to be opened or closed depending on whether there are tracks to
be played.

It is unlikely that both methods will be required in the same application.

Artliveshow
Artliveshows provide full gapless playback; there is no gap between tracks and tracks
do not freeze at their end to cover loading of the next track. Artliveshows have some
limitations and do not have the fields which are shown in brackets in the Table in
Section 5.2.1.3:

 Start, Next and End Triggers.

 Child Tracks

The Liveshow has the following fields additional to those of the Mediashow:

Field Examples Values

Live Tracks
Directory 1

 The full path of a Directory containing tracks for
this show. If blank the tracks are taken from the
pp_live_tracks directory in pp_home

Live Tracks
Directory 2

 The full path of a Directory containing tracks for
this show. If blank the tracks are taken from
directory specified in the –l command line option.

(List Empty
Track)

 Not ArtLiveshow. Run when the list of tracks in a
liveshow is empty. See text

(Escape Track) Not ArtLiveshow. Run when returning from an
Empty Track which is a show. See text.

Show Control
Tab

Show Control
on Empty

open show1 See Section 8.2

Show Control
on Not Empty

close show1 See Section 8.2

5.2.4 Radiobuttonshow

A Radiobuttonshow provides the sort of show facilities that are in many kiosks
namely:

'Start with an initial display which might include some text inviting the user to
press buttons or touch the screen to initiate a track. While playing the track

Version 1.3.5b, 31 May 2018

Page 36

pressing another button will play another track. At the end of a track or when
Stop is pressed revert to the initial display.'

In Pi Presents the initial display can be an image, message, video or audio track, or a
show. Playing of other tracks is by means of commands in the Controls field of the
Radiobuttonshow e.g.

but1 play myimagetrack
but2 play myvideotrack

5.2.4.1 Controls and Commands

Each control has three fields separated by spaces:

 symbolic name - the symbolic name of the input event that will play the show
or track.

 command – see below

 track - the Track Reference or Show Reference of the track or Show to be
played.

Command Argument

play track-ref Play the track specified by track-ref

return <blank> return to the first track of the show

stop <blank> stop the current track and, if show is the quiescent
state and this is not a top level show, then close
the show.
The quiescent state is when the first track is
showing.

go <blank> unpause a video track that is ‘frozen at start’

exit <blank> close the Radiobuttonshow

null <blank> inhibits the control with the same symbolic name
that has been defined in the show.

pause <blank> toggle pause on video, audio, or image tracks

pause-on <blank> pause for tracks that support pause

pause-off <blank> unpause for tracks that support pause

mute <blank> mute for tracks that support mute

unmute <blank> unmute for tracks that support mute

omx-* <blank> execute a runtime control for the video player
(Section 10)

mplay-* <blank> execute a runtime control for the audio player
(Section 10)

uzbl-* <blank> execute a runtime control for the web browser
(Section 10)

Commands can be placed in the Controls field of the tracks in addition to the
Controls field of the radiobuttonshow. The controls in a track are merged with and
override those in the show. This is generally not required but could be used where,
for example it is required that the audience watches the whole of a video. In this case
using the null command would inhibit the symbolic names that play other tracks or
stop the track.

5.2.4.2 Fields

Version 1.3.5b, 31 May 2018

Page 37

Field Examples Values

Show Tab

Type radiobuttonshow Cannot be edited

Title My Show Text describing the show displayed in the Editor
and menu

Show
Reference

myradioshow A ‘label’ by which the show is referenced by
other shows. Any text without spaces

Show
Canvas

 See Mediashow

Medialist mymedia.json Filename of the medialist file containing the
tracks for the Radiobuttonshow. All tracks should
have a Track Reference.

First Track myfirsttrack The Track Reference of the track that will form
the initial display for the show.

Show
Timeout

1:59 h:m:s, If there is no activity on the First Track Pi
Presents automatically returns to the previous
show. 0 for no timeout.

Track
Timeout

20 h:m:s If non-zero tracks launched from the
radiobuttonshow will be stopped after this time
and control will return to the show.

Controls in
Subshows

no yes/no
If no (normal Radiobuttonshow operation)
pressing a button or key while a track is playing
will start playing the selected track.
If yes and the track is a show then input events
will be passed down to the show. This allows the
show to be controlled but it will not be possible to
select another track while a track is playing.

Eggtimer
Tab

 See Mediashow

Show
Background
and Text

 See Mediashow

Track
Defaults
Tab

 See mediashow

Controls
Tab

Version 1.3.5b, 31 May 2018

Page 38

Field Examples Values

Controls myname play
mytrack

Defines the bindings between symbolic names of
input events and commands

One binding per line each with the format:

symbolic-name command [arg]

Bindings are NOT inherited by subshows.

See Table above for list of commands

Disable
Controls

no yes/no
If 'yes' all Commands are disabled. This is a
quick way to inhibit all controls for a concurrent
show. For more selective control use the
Controls field.

Show
Control Tab

See
Mediashow

5.2.5 Hyperlinkshow

A Hyperlinkshow provides the type of show facilities that are used in touchscreen
displays in museums:

'Start with an initial page with some introductory text, video or image and a
selection of on screen buttons which allow the user to move to another page.
Each page can have a different selection of buttons to link to other pages.
When in any page other than the initial page additional buttons allow the user
to go back to the previous page or to return to the initial page.

All of the touchscreen displays that I have tried in my researches seem to work this
way, or are Radiobuttonshows.

Every page in the example above is a track in a Hyperlinkshow. Each has a Controls
field which contains commands implementing the movement between tracks and
back.

 e.g.track ‘story1b’ might contain the following controls:

next-name call story1c
alternative-name call alternative1
back-name return
home-name home

xxx-name is the symbolic name of an input event. This example says either go
forward to ‘story1c’ or to ‘alternative1’, return to the previous track (which was
probably ‘story1a’), or return to the home track which probably means going back
through ‘story1a’ without displaying it.

Version 1.3.5b, 31 May 2018

Page 39

When executing the call command Pi Presents remembers where it has come from in
the ‘path’ (essentially a stack) so the return command can go back one removing the
current track from the path. Think of nested call and return of subroutines in a
programming language.

There is a special track called the Home Track. The home command can skip back
along the path until it arrives at the Home Track so it is not necessary to know how
far you have gone to get back to a known starting point.

Each control has three fields separated by spaces:

 symbolic name - the symbolic name of the input event that will trigger the
command

 command - call, return, goto, jump, exit, null, repeat, pause, no-command,
and runtime controls

 track - the Track Reference of the track to be played

5.2.5.1 Controls and Commands

Command Argument Effect

call Track
Reference

play Track Reference and add it to the path

return <blank>

return 1 back up the path removing the track from
the path, stops at Home Track.

return number

return n tracks back up the path removing the
track from the path, stops at Home Track.

return <Track
Reference>

return to Track Reference removing tracks from
the path, goes through Home Track if necessary.

home <blank>

Return up the path to Home Track removing tracks
from the path

jump <Track
Reference>

play Track Reference forgetting the path back to
Home Track

goto <Track
Reference>

play Track Reference, forget the path

repeat <blank> Repeat the current track without resetting the
timeout.

go <blank> unpause a video track that is ‘frozen at start’

null <blank> inhibits the Link with the same symbolic name that
has been defined in the show.

exit <blank> end the Hyperlinkshow

pause <blank> toggle pause on video, audio, or image tracks

pause-on <blank> pause for tracks that support pause

pause-off <blank> unpause for tracks that support pause

mute <blank> mute for tracks that support mute

unmute <blank> unmute for tracks that support mute

no-command <blank> Clicking it has no effect. Use for legends for ‘soft
keys’ to display a ‘Click Area’ that is not enabled.

omx-* <blank> execute a runtime control for the video player
(Section 10)

mplay-* <blank> execute a runtime control for the audio player

Version 1.3.5b, 31 May 2018

Page 40

(Section 10)

uzbl-* <blank> execute a runtime control for the web browser
(Section 10)

Commands can be placed in the Controls field of the Hyperlinkshow in addition to the
Controls field of tracks. This is a convenience to save typing because the commands
from the show are used in every track and the commands from the track are merged
with them. Sometimes this is not desirable and using the null command in the track
will cancel the command with the same symbolic name in the show.

The goto command does not remember where it has come from. It is used in special
circumstances such as timeout. It is also an alternative way to call/return for
implementing a back button. If used every back has to be a goto. It is not a good idea
to mix call/return and goto in the same part of a Hyperlinkshow.

If a track, such as a video or a timed image, ends naturally there needs to be a way
for Pi Presents to execute a Command in order to determine what to do next. This is
achieved by Pi Presents generating an internal input event with the symbolic name
pp-onend; the Links field can then have a command to service it e.g.

 pp-onend goto mynextpage
 or
 pp-onend repeat

Commands associated with pp-onend cannot be pause, no-command, omx-, mplay-,
or uzbl-

There is a second special track the First Track. Pi Presents always starts the show
here. In many applications Home Track and First Track will have the same Track
Reference. They may however be different. This was designed such that First Track
would start the show with an image or video to entice the user to touch a button to
move to the Home Track in order to start the interactive sequence of tracks. Once
past the Home Track pressing home, return, or jump would not return him to First
Track. However the timeout would.

To ensure that the screen goes back to the First Track if the user leaves the screen
there is a timeout. If activated the Hyperlinkshow goto’s the Timeout Track. This
could have the same Track Reference as the First Track but a separate Timeout
Track allows for reset of, say, animation before goto’ing the First Track.

Tracks in Hyperlinkshows can be shows. These shows have their own set of
commands including stop which will return to the hyperlinkshow.

When developing a hyperlinkshow application it is sometimes useful to see the path
of pages that Pi Presents has remembered. To enable this use Debug Path.

5.2.5.2 Touchscreens and Soft Buttons

The nature of Hyperlinkshows is such that a different set of controls is needed for
each track of the show. Pi Presents has two ways to provide these controls:

 Click Areas

Version 1.3.5b, 31 May 2018

Page 41

Click areas are aimed at touchscreens. A ‘click area’ is an area of the screen
which is mouse click sensitive. Although they are called ‘click areas’ they can
best be used with touchscreens and might better be called touch areas.
Touching the area of a touchscreen or clicking with a mouse in the area will
cause an input event with a symbolic name defined in screen.cfg.

Optionally associated with a click area is an image, maybe of a button, which
is displayed when the click area is enabled. Alternatively a click area can be
transparent and the area defined as a polygon to encompass the shape of the
object behind.

 Soft Buttons
Soft buttons are a poor man’s touchscreen. They were used a lot in real time
control applications before touchscreens were developed.

Soft buttons are a row of unmarked keys or buttons arranged along the edges
of a display screen. The legends for the buttons are software controlled and
appear adjacent to the button on the edge of the display area of the screen.
Thus different button positions and legends can be applied to each track of a
Hyperlinkshow.

Pi Presents will allow both of these techniques to be used to control Hyperlinkshows
as describes in Section 9

5.2.5.3 Fields

Field Examples Values

Show Tab

Type hyperlinkshow Cannot be edited

Title My Hyperlink Show Text describing the show displayed in the
editor and menu.

Show
Reference

myhyperlinkshow A ‘label’ by which the show is referenced
by other shows. Any text without spaces

Medialist mymedia.json Filename of the medialist file containing
the tracks for the Hyperlinkshow. All
tracks should have a Track Reference

First Track myfirsttrack The Track Reference of the track that will
form the initial display for the show.

Home Track myhometrack The Track Reference of the track that will
form the root of the call/return path.

Timeout
Track

 The track displayed when a timeout
occurs. Pi Presents does not return
directly to the Home track as there may
be a need to reset animation or stop
concurrent shows.

Usually this track will do whatever is
required and 'goto' the First or Home
Track after a short time. If the track is an
audio track it can have no sound and zero
duration.

Version 1.3.5b, 31 May 2018

Page 42

Field Examples Values

Show
Timeout

60 h:m:s, If there is no activity on the Home
Track Pi Presents automatically returns to
the previous show. 0 for no timeout.

Track
Timeout

30 h:m:s. When playing a track if no user
input is received or the track does not
naturally finish before the timeout then
goto the Timeout Track. A value of 0
disables the timeout function.

Show
Canvas

 See Mediashow

Eggtimer
Tab

 See mediashow

Show
Background
and Text
Tab

 See Mediashow

Track
Defaults
Tab

 See mediashow

Controls
Tab

 See Mediashow

Disable
Controls

no yes/no
If 'yes' Internal Operations (play, pause,
up, down, stop) and Run Time controls
are disabled. This is a quick way to inhibit
all controls for a concurrent show. For
more selective control use the Controls
field.

Controls name call mytrack Defines the bindings between symbolic
names of input events and commands

One binding per line each with the
format:

symbolic-name command

Bindings are NOT inherited by subshows.

See Table above for a list of commands

Show
Control Tab

See
Mediashow

Version 1.3.5b, 31 May 2018

Page 43

5.2.6 Start Show

Do not delete the Start Show. The Start show is not a show; it is a part of the profile
that specifies things that are common to all shows:

It specifies the shows to be run when Pi Presents starts. Each show will run
concurrently with other shows. Input events will be passed to all concurrent shows.
The Start shows field may be blank in which case shows must be started by other
means.

Whether the time of day scheduler is enabled and the schedule for things that are
common to shows (See Sect. 8.3)

Controls for simulated time that can be used to test the time of day scheduler (See
Sect. 8.3).

The colour of the background that is displayed behind shows.

Field Examples Values

Schedule
Tab

Start Shows show1 show2 A list of Show References separated by spaces.
These are shows that are started when Pi
Presents starts.

Enable
Scheduler

no yes/no Enables the time of day scheduler.
Leave as No unless you want have set up the
time of day scheduler. See Section 8.3

 See Section ?? for additional fields

Simulate
Time Tab

Simulate
Time

 yes/no Use a simulated time and date when
testing the time of day scheduler.
Leave as No unless you want have set up the
time of day scheduler. See Section ????

 See Section 8.3 for additional fields

Background
Tab

Background
Colour

 The colour of the background where no shows
are displayed.

Show Tab

type start Must always be start, not editable.

title Start Show Text describing the show, displayed in the
editor.

Show
Reference

start must be 'start', not editable

5.3 Medialists

Medialists are similar to playlists in a media player in that they define the tracks to be
played. How they are played is defined by the show that the list is associated with.
Each entry in a medialist is a 'track'. Tracks can be of various types:

Version 1.3.5b, 31 May 2018

Page 44

 image - a still image

 video - a track played by OMXPlayer.

 audio - an audio track played by MPlayer

 message - displays lines of text

 web – runs a browser to display a URL

 show - shows can be used as tracks allowing nesting to any depth.

 menu-track – a special track to define the format of a menu

A medialist is generally associated with a single show. However in Pi Presents they
have been kept separate from the remainder of the show specification so that the
same medialist could be used in two different shows.

5.4 Tracks

Each type of track has fields describing how to display the track, some of these
override the corresponding fields in the associated show.

The type of track describes the primary content of the track; primary content can be
displayed in front of an image or plain coloured background and have text
annotations.

 image - a still image. Image types are those that can be rendered by the
Python Imaging Library. For performance reasons image size is best limited
to the 1 megapixel region.

 video - a track played by OMXPlayer. Playable video formats depend on the
codec licences purchased from the Foundation.

 audio - an audio track played by MPlayer. Any track type playable by MPlayer
should be playable. The audio track type is very flexible as it has extended
duration handling features which makes them useful for sequencing
animation or shows.

 message - displays lines of text. Can also used to display a blank screen. It
provides a simple slide preparation facility. If you want something better use
Powerpoint or similar and export as .jpg displaying as an image.

 web- displays a URL in a browser. Browser integration into Pi Presents is not
optimal and this type of track should be used with care. There are many other
browser based digital signage systems.

 show - shows can be used as tracks allowing nesting to any depth.

 menu – used to specify the layout of a menu for the Menu Show.

5.4.1 Track Location Names

Track locations which specify files can be relative or absolute. Relative file names
allow profiles to be portable. See Section 4.2.1

Version 1.3.5b, 31 May 2018

Page 45

 The leading + sign in file paths allows tracks to be specified relative to the
/pp_home directory. If a plus sign is not present then the path must be
absolute. It is recommended that media files be stored under /pp_home if the
profiles are to be portable.

 Absolute references do have their uses, for example in specifying internet
url's e.g. http://www.mysite.com/track_to_play.mp4

5.4.2 Anonymous and Labelled tracks

Some medialist entries will have labels defined by the field Track Reference. If the
Track Reference is blank then the track is included in a Menu, Mediashow or
Liveshow, these are called anonymous tracks. If the label is not blank then the track
can be referenced by Commands used in Radiobuttonshows and Hyperlinkshows, or
for a special purpose. Special purposes include:

 The Child of a mediashow or liveshow.

 The Menu Track of a Menu

 First, Home and Timeout tracks in Hyperlinkshow or Radiobuttonshow

The field definitions for each type of medialist track follow in the next section.

5.4.3 Show Track

The tracks in a show can themselves be shows. These are called sub-shows. Show
tracks allow sub-shows to be included in a medialist. The Show To Run field
specifies the Show Reference of the show.

5.4.4 Image Track

Image tracks are rendered by the Python Imaging Library. (See hardware
requirements for recommended image size). Image tracks can be paused with the
Pause Command. Images can appear in a window, be rotated, can have an image or
colour as a background, can be overlaid with text; Track Text is overlaid on a per
track basis, Show Text per show.

Field Example Values

Track Tab

Type image

Title Displayed on a menu and in the editor

Track
Reference

 A label for the track - blank if the track is to be
included in a menu or mediashow. Non-blank if
the track is to be triggered from a symbolic name
or is special.

Location +/media/sarenam
e.gif

The filename of the track which may be blank.

Thumbnail +/media/sarenam
e_tn.jpg

The optional filename of a thumbnail image to be
displayed by a menushow.

Duration 5 Seconds. If 0 then image is displayed until
terminated by user input. If blank then the value

Version 1.3.5b, 31 May 2018

Page 46

Field Example Values

in the parent show is used.

Transition cut cut. (Not used)

Rotation 90 degrees. If blank then the value in the parent
show is used.

Image
Window

original 10 100

fit

fit 1010 40 40

fit ANTIALIAS

A viewport in which to show the image. If blank
then the value in the parent show is used. See
section 5.4.4.1

Background
Image

+/media/image.jpg The file name of an image which is used as the
background for the main image. If blank then the
value in the parent show is used.

Display
Show
Background
Image

yes yes,no
yes - the background image of the parent show
is displayed if the track Background Image is
blank
no - the background image of the parent show is
not displayed

Background
Colour

 Use the Colour Chooser to select a colour which
will return a six digit hex number, or type in a
colour name.

See http://effbot.org/tkinterbook/tkinter-widget-
styling.htm
If blank then the value in the parent show is
used.

Plugin
Configuratio
n File

+/media/krt-
time.cfg

File which specifies the name and parameters of
the Track Plugin.

Pause
Timeout

5 seconds. If not blank and greater than 0 a
paused track will automatically unpause after the
timeout.

Controls
Tab

Controls myname null Bindings of symbolic names to commands. The
bindings defined here for the track are merged
with and override bindings for the associated
show. See Section 8.1

Text Tab

Track Text Picture of Taj
Mahal

If not blank the text displayed with the image,
overlaying it if necessary.

Track Text
Font

Helvetica 30 bold Use the Font Chooser to select a font, or type
one in.

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

Track Text
Colour

white Use the Colour Chooser to select a colour which
will return a six digit hex number, or type in a
colour name.

Version 1.3.5b, 31 May 2018

Page 47

Field Example Values

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

Track Text x
Position

100 distance of the left end of the text from the left of
the screen (pixels) If blank then the text is
centred on the show canvas

Track Text y
Position

100 distance of the top of the text from the top of the
screen (pixels) If blank then the text is centred
on the show canvas

Track Text
Justify

right left, right, center - Justify lines in a block of text

Display
Show Text

yes yes,no
Allow or inhibit the display of show text for this
track

Pause Text Paused….. Text displayed when track is paused

Pause Text
Font

Helvetica 30 bold Use the Font Chooser to select a font, or type
one in.

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

Pause Text
Colour

white Use the Colour Chooser to select a colour which
will return a six digit hex number, or type in a
colour name.

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

Pause Text x
Position

100 distance of the left end of the text from the left of
the screen (pixels) If blank then the text is
centred on the show canvas

Pause Text y
Position

100 distance of the top of the text from the top of the
screen (pixels) If blank then the text is centred
on the show canvas

Pause Text
Justify

right left, right, center - Justify lines in a block of text

Show
Control Tab

Show Control
at Beginning

open audio1 See Section 8.2

Show Control
at End

close audio1 See Section 8.2

Animation
Tab

Animation at
Beginning

1 out1 state on
2 out1 state off
1 out2 state on
6 out3 state off

See Section 13

Clear
Animation

no yes/no See Section 13

Animation at
End

0 out2 state off

See Section 13

Version 1.3.5b, 31 May 2018

Page 48

5.4.4.1 Image Window

The Image Window controls how an image is presented spatially. It contains a
number of fields separated by spaces. If Image Window is blank then the value from
the show is used.

The first field is one of original, shrink, fit or warp

 original
The image is displayed at its original size. The command has optionally two
arguments the x,y, coordinates of the top left corner of the displayed image.
If the arguments are omitted then the image is displayed centred on the
screen.

e.g. original, original 100 100

 fit
The image is displayed such that it fits in the specified window maintaining its
aspect ratio. The image is shrunk or expanded as required. The command
has optionally four arguments the x,y, coordinates of the top left corner and
bottom right corners of the displayed image. If the arguments are omitted then
the image is displayed centred on the screen.

e.g. fit, fit 100 100 1000 500. Instead of 2 x,y, pairs x1+y1+w*h can be used

 shrink
As fit except that the image is not expanded if it is smaller than the window.

e.g. shrink, shrink 100 100 1000 500. Instead of 2 x,y, pairs x1+y1+w*h can
be used

 warp
The image is displayed such that it fits in the specified window without
maintaining its aspect ratio. The image is shrunk or expanded as required.
The command has optionally four arguments the x,y, coordinates of the top
left corner and bottom right corners of the displayed image. If the arguments
are omitted then the image is warped to be displayed full screen.

e.g. warp, warp 100 100 1000 500, warp 100 100 1000 500 BICUBIC

Instead of 2 x,y, pairs x1+y1+w*h can be used

For fit, shrink and warp an optional filter, one of NEAREST, BILINEAR, BICUBIC,
ANTIALIAS can be specified as the fifth argument, see

http://effbot.org/imagingbook/image.htm

thumbnail and resize sections. If the argument is omitted NEAREST is used.

 e.g.fit 100 100 1000 500 BICUBIC

Instead of 2 x,y, pairs x1+y1+w*h can be used

Version 1.3.5b, 31 May 2018

Page 49

5.4.5 Video Track

A track played by OMXPlayer. Pi Presents should play any track that OMXPlayer can
play (but see hardware requirements Section19). Video tracks can be paused with
the Pause Internal Operation. Videos can appear in a window, can have an image or
colour as a background which can be overlaid with text; Track Text is overlaid on a
per track basis, Show Text per show. The video itself cannot be overlaid with text
because of OMXPlayer limitations.

Field Example Values

Track Tab

Type video

Title The Film Displayed on a menu and in the editor

Track
Reference

 A label for the track - blank if the track is
included in a menu or mediashow. Non-blank if
the track is to be triggered from a symbolic name
or is special.

Location +/myvideos/film.
mp4

The filename of the track.

Thumbnail +/media/film
_tn.jpg

The optional filename of a thumbnail image to be
displayed by a menushow.

Freeze at
Start

before-first-frame Freeze a video at the start of the track

 no – no freeze

 before-first-frame – the video is paused
before the first frame is shown

 after-first-frame - the video is paused
after the first frame is shown

To continue after the freeze use the ‘go’
command.

Freeze at
End

 yes/no
If yes, the last frame of the track is displayed
when the track ends (the video is paused just
before its end). If no, the video ends normally.

If blank the value is taken from the show.

Video Player
Audio

local hdmi/local/both/alsa. If blank then the value in
the parent show is used. (both is hdmi+local).

Video Player
Volume

0 Volume of video track (-60 -> 0 dB). If blank then
the value in the parent show is used.

Video Player
Options

 -t 1 Additional command line options for omxplayer.
If blank then the value in the parent show is
used.

Video
Window

original

warp

A viewport in which to show the video. If blank
then the values are taken from the parent show.

 original - use OMXPlayer default

Version 1.3.5b, 31 May 2018

Page 50

warp 10 10 500
1000

behaviour

 warp - scale to the size of the screen
without maintaining aspect ratio

 warp followed by two x,y, pairs (top left,
bottom right) - the viewport window. The
video is scaled to this size without
preserving the aspect ratio. Instead of 2
x,y, pairs x1+y1+w*h can be used

Background
Colour

red Use the Colour Chooser to select a colour which
will return a six digit hex number, or type in a
colour name.

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm.

If blank then the value in the parent show is
used.

Background
Image

+/images/back.jp
g

The filename of an optional image that is
displayed in the background, can be blank. The
video, Show Text and Track text is displayed
above the image. If blank then the value in the
parent show is used.

Display
Show
Background
Image

yes yes,no
yes - the background image of the parent show
is displayed if the track Background Image is
blank
no - the background image of the parent show is
not displayed

Plugin
Configuration
File

+/media/weather_
ny.cfg

File which specifies the name of and parameters
for the Track Plugin

Seamless
Loop

 yes/no. yes enables the omxplayer –loop option
to repeat the track continuously. For
(art)liveshow Seamless Loop is always ‘no’.

An artmediashow with one track might perform
better than using Seamless Loop.

Note: a looping track has no end.

Pause
Timeout

5 seconds. If not blank and greater than 0 then a
paused track will automatically unpause after the
timeout.

Controls
Tab

Controls myname null Bindings of symbolic names to commands. The
bindings defined here for the track are merged
with and override bindings for the associated
show. See Section 8.1

Text Tab

 See Image Track. Does not have Pause Text

Version 1.3.5b, 31 May 2018

Page 51

Show
Control Tab

 See Image Track

Animation
Tab

 See Image Track

5.4.5.1 Video Playout

The ‘freeze at start’ field set to ‘before first frame’ opens the way to use Pi Presents
as a simple video playout system. Some methods of achieving this are shown in the
pp_videoplayout_1p3 example (Section 3).

For full operation two displays are required, one display for the controller displaying
text and images and another (the RPi’s local HDMI display) for the videos. This can
be achieved by:

 The controlling display is implemented using RealVNC and a virtual display
as described below.

 Using two Pi displays, a HDMI display to show the videos and a DSI display
as the controlling display. (This was suggested by a PP user)

Using RealVNC

 Follow the instructions here https://www.realvnc.com/docs/raspberry-
pi.html#raspberry-pi-setup to create a Virtual Desktop on a remote computer.
Run Pi Presents from this remote computer. Everything but the videos will be
displayed.

 The videos will be displayed on the RPi’s monitor. They will be displayed
above the Pi’s native desktop. By adjusting Display Appearance and Panel
settings it is possible to make the desktop black. Unclutter removes the
cursor.

5.4.6 Audio Track

A track played by MPlayer. Pi Presents should play any audio track that MPlayer can
play. Sound can be directed to HDMI or analogue and to either of the analogue
speakers. Audio tracks can be paused with the Pause Command.

Audio tracks can have an associated display. The display can have a coloured or
image background; Track Text is overlaid on a per track basis, Show Text per show.

Version 1.3.5b, 31 May 2018

Page 52

The audio track has enhanced duration control making it suitable as a 'dummy' track
for controlling animation or concurrent shows. It can have zero duration and run
without playing any media.

Field Example Values

Track Tab

Type audio

Title The Music Displayed on a menu and in the editor

Track
Reference

 A label for the track – blank if the track is
included in a menu or mediashow. Non-blank if
the track is to be triggered from a symbolic
name or is special.

Thumbnail +/media/sarena
me_tn.jpg

The optional filename of a thumbnail image to
be displayed by a menushow.

Location +/tracks/music.
mp3

The filename of the track. The location is
optional. If blank the timing of the track is taken
from the Duration field which must not be blank.

Duration 5 Seconds.

If duration is blank then the track ends when
the audio file ends or is stopped. The track
must be stopped by the user if there is no audio
track.

If zero the Location field should be left blank so
no audio track is played. Animation and Show
Control are executed. Zero duration is aimed at
use of the track for show or animation control.

If greater than zero the ‘track’ ends at the
stated time. If a file has been specified in
Location the playing of the track may be cut
short or there may be period of silence after the
audio file. This is primarily aimed at Animation
and Show Control

For (art)liveshow Duration is always Blank.

Audio Player
Speaker

left left/right/stereo. If blank then the value in the
parent show is used.

Audio Player
Audio

local hdmi/local. If blank then the value in the parent
show is used.

Audio Player
Volume

0 Volume of audio track (-60 -> 0 dB). If blank
then the value in the parent show is used.

Audio Player
Options

 Additional command line options for mplayer. If
blank then the value in the parent show is used.

Background
Colour

red Use the Colour Chooser to select a colour
which will return a six digit hex number, or type
in a colour name.

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm.).

Version 1.3.5b, 31 May 2018

Page 53

 If blank then the value in the parent show is
used.

Background
Image

+/images/back.j
pg

The filename of an optional image that is
displayed in the background. The video, Show
Text and Track text is displayed above the
image. If blank then the value in the parent
show is used.

Display Show
Background
Image

yes yes,no
yes – the background image of the parent show
is displayed if the track Background Image is
blank
no – the background image of the parent show
is not displayed

Plugin
Configuration
File

+/media/weathe
r_ny.cfg

File which specifies the name of and
parameters for the Track Plugin

Pause Timeout 5 seconds. If not blank and greater than 0 a
paused track will automatically unpause after
the timeout.

Controls Tab

Controls myname null Bindings of symbolic names to commands. The
bindings defined here for the track are merged
with and override bindings for the associated
show. See Section 8.1

Text Tab

 See Image Track

Show Control
Tab

 See Image Track

Animation Tab

 See Image Track

5.4.7 Web Tracks

Web tracks are rendered by the Webkit based uzbl browser.

You will have installed the uzbl browser when installing Pi Presents. You can use it in
from the desktop like an ordinary program.

Web pages can be played from the internet or from the local file system. They can
appear in a window or be fullscreen, can have an image or colour as a background
and Track and Show Text. Track Text is overlaid on a per track basis, Show Text per
show.

The integration of uzbl into Pi Presents is not as good as the other players; it is best
used in non-interactive displays:

Version 1.3.5b, 31 May 2018

Page 54

 The browser is loaded each time a web track is played; this can take up to 15
seconds and is not properly handshaked with Pi Presents. If you want to
display a succession of web pages the Web Player in Pi Presents has a
Browser Command script which allows a sequence of web pages to be
displayed, with optional looping.

 Unlike other players, when the browser is in use ‘focus’ is on the browser
window and not on Pi Presents. This means that keyboard inputs are sent to
uzbl and not to Pi Presents until the Pi Presents window is clicked on. GPIO
inputs are not affected.

 The browser window has scrollbars and title bar. Use of the browser affects
the display of the task bar. Section 5.4.7.2 describes how to correct these.

Field Example Values

Track Tab

Type web

Title Displayed on a menu and in the editor

Track
Reference

 A label for the track - blank if the track is to be
included in a menu or mediashow. Non-blank if
the track is to be triggered from a symbolic name
or is special.

Location
www.google.co.uk

+/media/mywebpa
ge.html

The filename of the track:

 an internet url

 a full pathname to a file

 a relative path to a file located under
pp_home

Thumbnail +/media/sarenam
e_tn.jpg

The optional filename of a thumbnail image to be
displayed by a menushow.

Duration 5 Seconds. If 0 then the web page is displayed
until terminated by user input. If blank then the
value in the parent show is used.

Web Window warp

warp 10 100 200
700

A viewport in which to show the web page. If
blank then the value in the parent show is used
otherwise:

 warp - scale to the size of the screen
without maintaining aspect ration

 warp followed by two x,y, pairs (top left,
bottom right) - the viewport window. The
web page is scaled to this size without
preserving the aspect ratio. Instead of 2
x,y, pairs x1+y1+w*h can be used

Background
Image

+/media/image.jp
g

The file name of an image which is used as the
background for the web page. If blank then the
value in the parent show is used.

Version 1.3.5b, 31 May 2018

Page 55

Field Example Values

Display
Show
Background
Image

yes yes,no
yes - the background image of the parent show
is displayed if the track Background Image is
blank
no - the background image of the parent show is
not displayed

Background
Colour

 Use the Colour Chooser to select a colour which
will return a six digit hex number, or type in a
colour name.

See http://effbot.org/tkinterbook/tkinter-widget-
styling.htm
If blank then the value in the parent show is
used.

Plugin
Configuration
File

+/media/weather_
ny.cfg

File which specifies the name of and parameters
for the Track Plugin

Text Tab

 See Image Track. No Pause text

Browser
Commands
Tab

Browser
Commands

wait 10
refresh

Commands which load URL’s etc. See Section
5.4.7.1

Controls
Tab

Controls myname null Bindings of symbolic names to commands. The
bindings defined here for the track are merged
with and override bindings for the associated
show. See Section 8.1

Text Tab

 See Image Track

Show
Control Tab

 See Image Track

Animation
Tab

 See Image Track

5.4.7.1 Browser Commands

The Browser commands field contains 0 or more browser commands. Each
command is on a new line. Some commands have an argument which is separated
from the command by a space

Command Description uzbl Command
used

Version 1.3.5b, 31 May 2018

Page 56

load <arg> Load the web page specified by <arg>.
<arg> may be:

 an internet URI

 a full pathname to a file

 a relative path to a file located under
pp_home preceeded by +

uri

refresh refresh the currently loaded web page reload_ign_cache

wait <arg> wait <arg> seconds -

exit Normally the script loops after the last
command is executed. Exit, as the last
command, will end playing of the track.

-

loop A single loop command is allowed. If a loop
command is present execution will resume
here after the last command of the script.

-

uzbl <arg> Execute a uzbl browser command. The
commands are defined here:

http://www.uzbl.org/readme.php

<arg> is the uzbl command together with its
arguments.

These commands will allow tailoring of the
display of individual web pages

Example: repeating two web pages. Looping will continue until the track duration is
exceeded.
 wait 20

load www.google.co.uk
wait 20
load www.museumoftechnology.org.uk

Example: display two pages then exit to the next track.

wait 20
load www.google.co.uk
wait 20
load www.museumoftechnology.org.uk
wait 20
exit

Example: Refresh the initially loaded web page at 20 second intervals
 wait 20
 refresh

5.4.7.2 Full screen Integrated Browser Displays

Out of the box uzbl will show a title bar. To remove this, edit the file
/home/pi/.config/openbox/lxde-rc.xml to include the following just before the
statement </applications>

 <application name="uzbl*">
 <decor>no</decor>

Version 1.3.5b, 31 May 2018

Page 57

 </application>

A reboot of the Pi is necessary for the edit to take effect. NOTE: This requires
confirmation if using a Raspbian release of 25/12/2014 or later (new UI).

When the browser is displayed the underlying Pi Presents window changes to reveal

the task bar. To correct this, adjust the Taskbar and minimize it:

 Right click on the Taskbar and select Panel Setting

 Select the Appearance Tab. Select Solid colour and, choose black with 100%
opacity.

 Select the Advanced Tab

 Set 'minimise panel when not in use' to On

 Set 'Size when minimized' to 2 pixels

Scrollbars are displayed when the content of a web page is larger than the window.
These can be removed as described here. (not tested)

http://www.uzbl.org/wiki/hide-scrollbars

Alternatively use the uzbl zoom_out command in a Browser Command script to
adjust the size of the page so scrollbars are not required.

5.4.8 Message Tracks

Message tracks display text against a coloured background or optional image. They
do not need a media file to be specified as the text is contained in the Message Text
field.

Field Example Values

Track Tab

Type message

Title A Message Displayed on a menu and in the editor

Track
Reference

 A label for the track - blank if the track is
included in a menu or mediashow. Non-blank if
the track is to be triggered from a symbolic name
or is special.

Message Text Welcome

The text to be displayed.

Thumbnail +/media/sarena
me_tn.jpg

The optional filename of a thumbnail image to be
displayed by a menushow.

Duration 5 Seconds. If 0 then message is displayed until
terminated by user input. If blank then the value
in the parent show is used.

Text Font Helvetica 30
bold

Use the Font Chooser to select a font, or type
one in:

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

Text Colour white Use the Colour Chooser to select a colour which
will return a six digit hex number, or type in a

Version 1.3.5b, 31 May 2018

Page 58

colour name.

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm

Justification left left/center/right. Text justification.

Message x
Position

100 If blank then the message is centred in the
screen.
If non-blank the distance of the left end of the
text from the left of the screen (pixels)

Message y
Position

500 If Message x Position is specified then distance
of the top of the text from the top of the screen
(pixels)
If blank then the message is centred in the
screen.

Background
Colour

red Use the Colour Chooser to select a colour which
will return a six digit hex number, or type in a
colour name.

See: http://effbot.org/tkinterbook/tkinter-widget-
styling.htm
If blank then the value in the parent show is
used.

Background
Image

+/images/back.j
pg

The filename of an optional image that is
displayed instead of a plain background. The
message is displayed on top of the image.

If blank then the value in the parent show is
used.

Display Show
Background
Image

yes yes,no
yes - the background image of the parent show
is displayed if the track Background Image is
blank
no - the background image of the parent show is
not displayed

Plugin
Configuration
File

+/media/weather
_ny.cfg

File which specifies the name of and parameters
for the Track Plugin

Controls Tab

Controls myname play
track34

Bindings of symbolic names to commands. The
bindings defined here for the track are merged
with and override bindings for the associated
show. See Section 8.1

Text Tab

 See Image Track. Does not have Pause Text

Show Control
Tab

 See Image Track

Animation
Tab

 See Image Track

Version 1.3.5b, 31 May 2018

Page 59

5.4.9 Show Track

A show can be a track in another show. Uses might be:

 A mediashow made up of smaller mediashows

 A menu of mediashows

 Menus with sub-menus

 A Liveshow run from a Mediashow which provides an initial screen.

Field Example Values

Type show

Title My Other Show Displayed on a menu and in the editor

Track
Reference

 A label for the track - blank if the track is
included in a menu or mediashow. Non-blank
if the track is to be triggered from a symbolic
name or is special.

Show to Run myothershow

Show Reference of the show to be run

Thumbnail +/media/sarename_t
n.jpg

The optional filename of a thumbnail image to
be displayed by a menushow.

5.4.10 Menu Track

A menushow needs an associated menu track in its medialist which defines the
layout of the menu. A menu track provides it. Its Track Reference should appear in
the Menu Track field of a Menu show.

The menu formats that can be produced are extensive:

 Display, thumbnails, bullets or Titles in many combinations

 Align the menu vertically or horizontally

 Create multi-column, multi-row menus

 Alter the separation, colours and font of the menu items

Version 1.3.5b, 31 May 2018

Page 60

Menu Geometry Definitions

Field Example Use

Track Tab

Type menu

Title Menu Track Displayed on a menu and in the editor

Track Reference menu-track A label for the track.

Background
Colour

 see mediashow - Background Colour for
menu

Background
Image

+/media/image.j
pg

If not blank The file name of an image which
is used as the background for the menu.

Display Show
Background
Image

yes yes,no
yes - the background image of the parent
show is displayed if the track Background
Image is blank
no - the background image of the parent show
is not displayed

Entry Font Helvetica 30
bold

Use the Font Chooser to select a font, or type
one in:
see: http://effbot.org/tkinterbook/tkinter-
widget-styling.htm

Entry Colour white Use the Colour Chooser to select a colour
which will return a six digit hex number, or
type in a colour name.

see: http://effbot.org/tkinterbook/tkinter-
widget-styling.htm

Selected Entry
Colour

red colour when the entry selected

Plugin
Configuration File

+/media/krt-
time.cfg

File which specifies the name and parameters
of the Track Plugin.

ICON
TEXT

ICON
TEXT

Text Width Icon Width

Horizontal
Padding

Icon
Height

Text
Height

Vertical
Separation

Stipple
Background
Padding

ENTRY
STIPPLE
BACKGROUND

Version 1.3.5b, 31 May 2018

Page 61

Geometry Tab

Menu Window fullscreen, one or two pairs of x,y, coordinates
fields are separated by spaces.

 fullscreen - the menu is displayed full
screen.

 one x,y, coordinate - the menu's top
left corner

 two x,y, coordinates - the second pair
of coordinates specifies the bottom
right corner of a bounding box for the
menu. Instead of 2 x,y, pairs
x1+y1+w*h can be used

Direction vertical vertical, horizontal - the direction of laying out
and traversing the menu.

Rows 5 If Direction = vertical the number of rows in
the menu.

Columns 1 If Direction = horizontal the number of
columns in the menu.

Icon Mode thumbnail,bullet,none

 thumbnail - if the track has a thumbnail
then this is displayed otherwise,
if it is an image track the image is
warped to the icon size otherwise
a thumbnails is displayed which
depends on the type of track.

 bullet- the icon specified in Bullet is
displayed.

 none - the menu displays only text .

Text Mode none,right,below

 right - the text is displayed to the right
of the icon

 below - the text is displayed below the
icon

Bullet +/media/bullet.jp
g

The filename of the bullet. Absolute or
relative.

Icon Width 100 Width of the icon. Images will be warped to fit
into the defined size.

Icon Height 100 Height of the icon. Images will be warped to fit
into the defined size.

Horizontal
Padding

10 When Text Mode is Right the horizontal
distance between the Icon and the Text

Vertical Padding 10 When Text Mode is Below the vertical
distance between the Icon and the Text

Version 1.3.5b, 31 May 2018

Page 62

Text Width 200 Width of the text. The text is wrapped to fit
into this width.

Text Height 50 Height of the text. Used to calculate the
positions of entries. However text is not
constrained to fit into this height. The user
must adjust he font size to suit.

Horizontal
Separation

20 The distance between the bottom of one
menu entry and the top of the next.

Vertical
Separation

20 The distance between the right edge of one
menu entry and the left edge of the next.

Stipple
Background

 yes/no. Display a stippled rectangle
decoration behind the menu entry.

Stipple
Background
Padding

 The distance that the stipple background
extends from the menu entry.

Guidelines never,auto,always

If Menu Window has two x,y pairs then
coloured rectangles are displayed on the
screen to help design the menu.

 White rectangles are the menu entry.

 The Blue rectangle is the calculated
extent of the menu.

 The Red rectangle is the bounding box
as defined by Menu Window

Auto displays the rectangles only when the
extent of the menu is outside the bounding
box.

Text Tab

Track Text This menu Multi-line text

Track Text Font Helvetica 30
bold

Use the Font Chooser to select a font, or type
one in:

See: http://effbot.org/tkinterbook/tkinter-
widget-styling.htm

Track Text
Colour

white Use the Colour Chooser to select a colour
which will return a six digit hex number, or
type in a colour name.

See: http://effbot.org/tkinterbook/tkinter-
widget-styling.htm

Track Text x 100 distance of the start of the text from the left of
the screen (pixels) If blank then the message
is centred in the screen.

Track Text y 800 distance of the top of the text from the top of
the screen (pixels) If blank then the message
is centred in the screen.

Track Text justify right left, right, center – Justify lines in a block of
text

Version 1.3.5b, 31 May 2018

Page 63

Hint Text To Play, press
return

Menus do not have children; the hint is a
general purpose field which might be used for
displaying instructions.

Hint Font Helvetica 30
bold

Use the Font Chooser to select a font, or type
one in:

See: http://effbot.org/tkinterbook/tkinter-
widget-styling.htm

Hint Colour white Use the Colour Chooser to select a colour
which will return a six digit hex number, or
type in a colour name.

See: http://effbot.org/tkinterbook/tkinter-
widget-styling.htm

Hint x 100 distance of the start of the text from the left of
the screen (pixels) If blank then the message
is centred in the screen.

Hint y 800 distance of the top of the text from the top of
the screen (pixels) If blank then the message
is centred in the screen.

Hint justify right left, right, center – Justify lines in a block of
text

Controls Tab

Controls myname null Bindings of symbolic names to commands.
The bindings defined here for the track are
merged with and override bindings for the
associated show. See Section 8.1

Show Control
Tab

 See Image Track

Animation Tab

 See Image Track

6 Black Box Operation
There are a number of things to set up to make Pi Presents into a full screen, auto
starting, GPIO controlled application. You do not need to use them all.

6.1 Command Line Options

python pipresents.py -h will show the command line options

Options

-p --profile <arg> Name of the profile to be used. e.g. pp_mediashow_1p3

If this is not specified then an error message will be shown.

-b --noblank Disable screen blanking.

Version 1.3.5b, 31 May 2018

Page 64

-f --fullscreen Run Pi Presents in full screen mode.

-o --home <arg> Location of the Pi Presents 'data home' directory

e.g. /media/pi/USBSTICK or /home/pi/my_data

If this option is not specified it defaults to the users home
directory.

-d –debug Fatal (system) errors and Profile errors produce alerts on the
display. On acknowledgment Pi Presents exits because it
cannot continue.

 Profile errors are errors detected in the profile.

 Fatal errors are errors in the Pi Presents software.
These could be a side effect of an undetected Profile
error.

The pp_editor validate menu option will detect many Profile
Errors. Tell me about ones that are not detected by the editor.

Log output is also displayed in the terminal window if Pi
Presents is started from one, and is also reported in the file

/pipresents/pp_log/pp_log.txt

If the –d option is not used then the Log output is Fatal Errors,
Profile errors, and Warnings. if the –d option is used then log
output also includes a log of the operation of Pi Presents
suitable for debugging profiles.

Warnings are detected intermittent problems that Pi Presents
can recover from. Most of them are due to random crashes by
omxplayer.

-d –debug <arg> Using the debug option with <arg> gives finer control of logging,
see Section 21

-v –validate Not supported,use the editor.

-l –liveshow <arg> Liveshow tracks are always played from the directory
pp_live_tracks in the data home specified in the –o option
defaulting to

 /home/pi/pp_home/pp_live_tracks

If the –l option contains a directory path this is used as a
second source for liveshow tracks.

e.g. /home/pi/mylivetracks

-s –screensize
<arg>

This command line option allows shows to be developed using
a monitor which has a different pixel dimensions than the target
monitor. <arg> is width*height where width and height are
positive integers. See Section 4.2.5 for use of this option.

Version 1.3.5b, 31 May 2018

Page 65

--manager Used by Manager for Pi Presents to disable terminal messages.
Should not be used by users.

-n --nonetwork When the Time of Day Scheduling is required and this option is
omitted Pi Presents will wait up to 5 seconds for the LAN
(network) to be available. If the option is included with no
argument then it will not wait, this is useful of you have a RTC
and do not require ntp time.
Non-intuitively if you need to wait for a different time then
 use --nonetwork n to wait n seconds.

6.2 Specify a Profile
The --profile (-p) command line option specifies the profile to use. This is the name of
the profile directory in the pp_profiles directory. If the option is omitted an error will be
produced.

The prefix pp_ means nothing special other than denoting files provided by the
developer.

6.3 Specify a Home Directory
The --home (-o) command line option specifies the location of Pi Presents data
home. If the option is omitted it will default to the users home directory.

USB sticks can be used to hold profiles and media. They will be assigned mount
points in the /media directory.

 e.g. /media/pi/KINGSTON

Raspbian will auto mount USB sticks if they are present at power on, or plugged in
afterwards. If Pi Presents is started at power on it takes up to 10 seconds for the
drive to be mounted; Pi Presents allows for this.

Raspbian will compute the mount point from the name of the drive on the stick. If
preparing the USB Stick on a Windows machines it appears Windows converts all
entered drive names to upper case.

6.4 Using GPIO to Control Pi Presents
GPIO control is enabled when a gpio.cfg file is present in the /pp_io_config directory
in a profile.

sudo need not (and must not) be used.

If the gpo.cfg file from /pipresents/pp_resources/pp_templates is copied to a profile,
then pins of the P1 connector are bound to the following symbolic names. These
names are used in examples by mediashows, menus and special commands. The
bindings can be modified as described in Section 14.2.1

Pin of P1
connector

Symbolic Name Command

P1-15 pp-down down

Version 1.3.5b, 31 May 2018

Page 66

P1-16 pp-up up

P1-18 pp-play play.

P1-22 pp-pause pause

P1-7 pp-stop stop

P1-11 PIR Used as a mediashow Start Trigger in
some examples

P1-12 pp-shutdownnow Configured in gpio.cfg such that a press
for 5 seconds is required. Closes Pi
Presents and shuts down the Pi.

Using this file the GPIO pins are configured as edge triggered inputs with internal
pull-up resistors and require the following device characteristics:

 Push buttons should be mechanical, push to make (normally open), and be
connected between the GPIO pin and 0 volts. The contact will close when the
button is pressed so it is set to falling edge trigger.

 I have based the PIR entry on PIR’s used in UK burglar alarms. These have
Normally Closed relay contacts which should be connected between the
GPIO pin and 0 volts. The relay contact will open when movement is detected
so the entry is set to rising edge trigger and, because it is a relay contact, the
a pull up resistor is configured to avoid radio signals causing false triggering.

Inputs can be changed from normally open to normally closed and vice versa by
changing the edge which is used for triggering as described in Section 14.2.1

A 330 ohm resistor is series with the button or PIR is recommended to protect the Pi
should the inputs inadvertently be used as outputs.

 GPIO Pin ----- 330R ----- contact ---- 0 volts

Be very careful not to connect a GPIO pin to the +5volt pin; it is likely to fry your Pi

There is software contact de-bouncing which is set with a small hysteresis. If you
have problems with contact bounce increase the THRESHOLD of the appropriate pin
by modifying gpio.cfg (See Section 14.2.1).

6.5 Disable Screen Blanking
To disable screen blanking you must first install xset which is part of the x server
utilities package, this should already be installed in Raspbian.

 sudo apt-get install x11-xserver-utils

You can then use the --noblank command option to disable screen blanking.

6.6 Start Pi Presents when Power is applied to the Pi
This will function only if you have set 'boot to desktop' using raspi-config.

Version 1.3.5b, 31 May 2018

Page 67

 If you are using Raspbian Jessie edit the file

/home/pi/.config/lxsession/LXDE-pi/autostart

Note: The directory .config is already present in the image but you will need to
select 'Show Hidden Files' in the File Manager to see it.

Add the following line below the last line to start Pi Presents with the required
options:

/usr/bin/python /home/pi/pipresents/pipresents.py -o /home/pi -p
myprofile

6.7 Shutdown the Raspberry Pi from the GPIO
Press the Shutdown button for more than 5 seconds. Pi Presents will exit and safely
shut down the Pi.

The RPi can also be shut down immediately in other ways as described in Section 7

6.8 Controlling the Monitor

Show control commands (Section 8.2.3) can be used to control the power to a
monitor

Command Action

monitor on Sends the vcgencmd display_power 1 command to the
monitor

monitor off Sends the vcgencmd display_power 0 command to the
monitor

cec standby Sends the ‘echo "standby 0" | cec-client –s’ command

cec on Sends the ‘echo "on 0" | cec-client –s’ command

cec scan Sends the ‘echo scan | cec-client -s -d 1’ command
A list of devices on the CEC bus will be displayed in the
terminal window

7 Exiting Pi Presents and Shutdown of the RPi

There are many ways to exit PI Presents and shut down the Pi from Pi Presents:

 Bind a key, pin or click area to the internally defined symbolic name pp-
shutdownnow as described in Section 14.2. An input event with this symbolic
name will cause the Pi to shut down immediately. For gpio the appropriate
pin can also be configured such that the event is not sent unless the pin is
held in one state for a period of time. (See below)

 Use the Show control command 'shutdownnow' to shut down the Pi
immediately from within a show, or reboot to reboot the RPi, See Section 8.2

Version 1.3.5b, 31 May 2018

Page 68

 Use the Time of Day Scheduler

 Remotely via an OSC command

There are many ways to exit Pi Presents

 Bind a key, GPIO pin, or click area to the internally defined symbolic name
pp-exitpipresents. (see below)

 Use the Show control 'exitpipresents' command to exit Pi Presents from within
a show.

 Use the Time of Day Scheduler

 Remotely via an OSC command

 When developing use Ctrl+Break, Alt+F4 or the Close icon on the Pi Presents
window

Symbolic name Use

pp-exitpipresents Exits Pi Presents having closed all shows.

pp-shutdownnow Exits Pi Presents and the safely shuts down the
Raspberry Pi.

8 Controlling Shows

8.1 Controlling Track Movement in Individual Shows

Control of an individual show uses commands such as up, down, play and stop call
return to control the movement between individual tracks in a show. There needs to
be some method of connecting these commands to the physical input devices such
as keys and GPIO buttons. This is a two stage ‘binding’ or association process:

 In configuration files associated with a particular input device (e.g keys.cfg,
gpio.cfg) the physical keys are bound to symbolic names. e.g. for gpio
falling_name = myname

 In the Controls field of shows and tracks the symbolic name is bound to the
command e.g. myname up.

To re-iterate in more technical detail. In Pi Presents the physical devices that are
employed are separated from the core operations on shows and tracks. The physical
devices have drivers which take the physical inputs and produce input events which
are identified by symbolic names. The shows and tracks receive these input
events and convert them into the Commands that control the show.

The two associations (bindings) take place in:

Version 1.3.5b, 31 May 2018

Page 69

 Configuration files associated with the drivers, e.g. gpio.cfg. These define
which inputs produce input events and their symbolic names.

 The Controls field in shows and tracks. These associate symbolic names of
input events with the Commands, Run-Time Controls, and Triggers used by
shows and tracks.

Each type of show has a set of commands which are defined in the section
describing the show. Mediashows and Menus have commands such as play, pause,
up and stop. Hyperlinkshows have commands such as call and return.

In addition to Commands, Mediashows and Liveshows have Triggers which are used
in some shows as an alternative to commands. These are generally used by gpio to
trigger simple responses to buttons or PIR’s

All shows also have Run-Time controls which are used by tracks when they are
running to allow user control of volume etc.

For outputs a similar system is employed. Animation commands include symbolic
names. Output device drivers use configuration files such as gpio.cfg to convert the
symbolic names to physical outputs.

Controls and Subshows

A show can have sub-shows; input events are passed down from show to subshow
so they affect the currently lowest level show and its tracks.

A top level show is started when Pi presents starts, from Show Control commands,
from the time of day scheduler or remotely via OSC; it has no parent. In version 1.2
the bindings in the Controls field of a top level show were inherited by its subshows.
In version 1.3 this is not the case and each show must have its own set of Control
bindings.

8.2 Opening and Closing Shows and Show Control

8.2.1 Opening and Closing Shows

There are four methods to open and close shows:

 Start one or more shows by including their show references in the Start
Shows field of the Start Show. All shows specified in the Start Shows field of
the Start Show will be run when Pi Presents starts.

 Open or close shows using the Time of Day Scheduler.

 Use a Show Control command in the Show Control field of a track to open or
close a show e.g.

 open myothershow
 close myothershow

Version 1.3.5b, 31 May 2018

Page 70

 Open and Close a show remotely using the Open Sound Control protocol

Shows opened by one method can be closed by any other method.

Only one instance of a show can be running at a time. Attempts to open a show that
is already running will be ignored.

It is possible to start Pi Presents with no shows running. Additionally if all shows are
closed Pi Presents will continue running with a blank black screen to allow remote
control or time of day scheduler to open further shows.

Show Control Commands are placed in the Show Control fields of tracks.

Command Use

open <show-
ref>

Opens the specified show. The command will be ignored
if the show is already running

close <show-
ref>

Closes the specified show. The command is ignored of
the show is not running.

closeall Closes all shows. Pi Presents is still running.

openexclusive
<show-ref>

Closes all shows (including the show that the command
was sent from, if applicable) and opens the specified
show.

8.2.2 Sending Events between Shows

The Event show control command allows a show to generate input events which are
sent to all running shows. As for user generated events in Section 8.1 the shows and
tracks receive these input events and convert them into the Commands that control
the show/track.

Command Use

event <symboli
c name>

send and input event with the symbolic name to all
running shows.

8.2.3 Other Uses of Show Controls

Other Uses are:

 Closing Pi Presents , shutdown or reboot the RPi (Section 7).

 Sending remote control commands using the OSC protocol (Section 15)

 Control the power of the monitor using the vcgencmd commands (Section
6.8)

 Controlling counters (Section 12)

Version 1.3.5b, 31 May 2018

Page 71

8.3 Time Of Day Scheduler
The time of day scheduler opens and closes shows at a specified time and date. It
will also trigger any other Show Control command at a specified time and date.. The
scheduler is enabled and controlled by a profile using the Schedule tab in the Start
Show and the Schedule tab in every other show.

The Schedule tab of the Start Show allows the Time of day scheduler to be enabled.
It also controls functions of Pi Presents common to all shows replacing the pp-core
section in the legacy .json file.

Every other show in a profile has a Schedule Tab which controls the schedule for that
show. Each has 4 fields - everyday, weekday, monthday and specialday. Each has
zero or more match criteria (day) with an associated list of times (times) There is an
example in the example profile pp_timeofday_1p3. The aim is to eliminate the need
to type in the date of every day of the year, instead everyday is used as a base and
then exceptions to thos are added either for days, of the week, days of the month, or
special days.

Pi Presents prepares a list of tasks for today when Pi Presents is started and at every
midnight. For each show it considers each field in the order below and each set of
day/time lines, matching today’s date with the match criteria:

 everyday always matches. (the day line must have the word everyday)

 weekday – matches if today’s day of the week is in the list of weekdays

 monthday – matches if today’s day of the month is in the list of numbers

 specialday – matches if the todays date is in the list of dates

When a match occurs the times are remembered and their associated open and
close commands are remembered. If a later set of day/time lines or field also
matches it overrides the previous matches for the specified show. A set of day/time
lines with a day line but an empty list of times can be used to delete times from a
previous match. When all matches are done the list of tasks for today is prepared by
sorting the times.

Times can be hh:mm:ss or hh:mm using a 24 hour clock. Commands are open and
close and are associated with the show-ref of the show.

The Start Show is different; it is used to control Pi Presents. The matching process is
the same and a schedule for today is produced. The commands that can be used
only in this section are all the Show Commands with parameters. (It is possible to
use open and close show commands in this section specifying the show-ref instead
of in individual shows.)

If Pi Presents is started in the middle of a day then it will try to catch up by going
through today’s list of tasks for each show (not for the Start show) and starting the
show immediately should the show need to be running at the current time. There is
no catchup for the Start show, all previous tasks for the day are just ignored.

Gotchas:

 When using the Time of Day scheduler it is best not to include shows in the
Start Shows field of the Schedule Tab of the Start Show or to use Show

Version 1.3.5b, 31 May 2018

Page 72

Control commands to open or close shows. These are not taken account of
by catch up and can result in unexpected results.

 Any commands in the Schedule tab of the Start show are not subject to catch
up

 The scheduler should be time zone agnostic. Be careful with shows that run
across midnight. I have not investigated the effect of changing to/from
Daylight Saving Time.

There is a logging option specifically for testing the schedule (See Section 6.1). This
shows time as Time of Day and events that are of interest.

To test the schedule with a real clock is difficult thus the Simulate Time tab in the
Start Show can be used to enable a simulated time for exercising the schedule (and
only the schedule). If enabled then the simulated time you wish to start the test
should be specified. The date need not have consistent day/month/year as each of
the match criteria are independent.

The scheduler requires that time of day be available when Pi Presents starts; to this
end Pi Presents waits for up to 5 seconds for the LAN network and hence for time
from a ntp server to be available. This primarily allows wifi to connect. You can
control this wait with the –nonetwork command line option.

8.4 Concurrent Shows
Pi Presents can run two or more shows concurrently. The shows appear to run in
parallel. All concurrent shows use the same screen area but the Show Canvas field
of a show can help to separate shows to different parts of a screen. There are some
limitations on concurrent shows due to the power of the RPi and limitations of the
operating system. Some uses of concurrent shows:

 Providing a background audio track to a slideshow.
Use two mediashows, one with a manually controlled slideshow and the other
with the audio tracks. The latter will need the controls disabled using Disable
Controls if there is any customer interaction with the former.

 Using a single display for a number of independent shows, maybe a
slideshow to the left, a user controlled menu to the right and a strip showing
the current time and date at the top.

 Being really thrifty and doing two completely different tasks with the same Pi,
perhaps a slideshow in the Visitor Reception with Child show facilities, and a
dummy talking in a museum exhibit triggered by a PIR using a single shot
mediashow.

8.4.1 Control with Concurrent Shows

Version 1.3.5b, 31 May 2018

Page 73

Pi Presents can run two or more shows concurrently. The concurrent shows appear
to run in parallel and Input Events are passed to all concurrent shows. This is
essential but if not managed carefully can lead to some undesirable effects. Most of
the common situations can however be addressed by Disable Controls.

For example, if running a manually controlled mediashow displaying images in
parallel with a mediashow providing background music; using Up and Down to move
through the images should not skip audio tracks. The solution is to set Disable
Controls = Yes in the audio show.

More complicated scenarios can be addressed by editing or deleting the bindings of
the Controls for a specific show. Using the Controls field of a show a Command can
be bound to a different symbolic name for each show and hence be triggered by a
different input. Alternatively individual Commands can be deleted for that show.

8.4.2 Limitations on Concurrency

Concurrent shows have some limitations due to limits built into Linux, MPlayer and
OMXPlayer:

 If two show display overlapping images or text the last object to be displayed
will overlay older objects.

 Video tracks will always overlay images and text

 If two video tracks overlap then there is likely to be flickering.

 If there is more than one audio or video track to be played that might overlap
in time then local audio must be used. This is because omxplayer does not
use the alsa mixer. The problem is particularly severe for the artmediashow
and artliveshow as the next track is loaded during the playing of the previous
track, not at its end. The problematic combinations are complex, the only safe
way is to direct all audio to the local headphone socket.

 HD videos may stutter while an audio track is being played.

 Animation outputs are delayed if they are coincident with the start of an audio
track or image. The output event will not be missed but will be delayed.

 If CPU load is high omxplayer can take so long to load a video that it times
out.

9 Touchscreens and Soft Buttons

9.1 Controlling Shows with a Touchscreen

All types of show can be controlled by touchscreens and use soft buttons.
Touchscreens or soft buttons are almost essential for Hyperlinkshows, a useful
alternative to gpio buttons in Radiobuttonshows and can be used to replace cursor or
gpio button control in mediashows, liveshows and menus.

Version 1.3.5b, 31 May 2018

Page 74

 Click Areas

Click areas are aimed at touchscreens. A ‘click area’ is an area of the screen
which is mouse click sensitive. Although they are called ‘click areas’ they can
best be used with touchscreens and might better be called touch areas.
Touching the area of a touchscreen or clicking with a mouse in the area will
cause an input event.

Optionally associated with a click area is an image, maybe of a button, which
is displayed when the click area is enabled. Alternatively a click area can be
transparent and the area defined as a polygon to encompass the shape of the
object displayed as part of the background image.

 Soft Buttons
Soft buttons are a poor man’s touchscreen. They were used a lot in real time
control applications before touchscreens were developed.

Soft buttons are a row of unmarked keys or buttons arranged along the edges
of a display screen. The legends for the buttons are software controlled and
appear adjacent to the button on the edge of the display area of the screen.
Thus different buttons and legends can be applied to each track of a
Hyperlinkshow.

Pi Presents allows both of these techniques to be used to control any type of show.

9.2 Click Areas

In its screen.cfg file Pi Presents allows the definition of click areas. These are
polygonal areas of the screen which are touch or mouse click sensitive. A touch or
click will produce an input event identified by a symbolic name.

Click areas can have text, coloured backgrounds, outlines and images.

The presence of a screen.cfg file in the /pp_io_config directory in a profile enables
click areas and contains the click areas to be used for every show and track in the
application. The click areas to be displayed on each track and show are determined
by the symbolic names in the Controls field of the track or show. Configuration of
Click Areas is described in Section 14.2.7.

9.3 Soft Buttons

Soft buttons need both a gpio button to be associated with the required Command as
described elsewhere and a passive on screen legend for the button configured as
described here. The passive legend must appear only on the track that requires it so
it needs to be included in screen.cfg as a click area and included in the Controls field
of the track with a special command to disable it.

For example to set up a soft button to control movement from a page in a
Hyperlinkshow:

Version 1.3.5b, 31 May 2018

Page 75

 Use the symbolic name bound to a gpio button in the Controls field of the
Track.

 my-button call pig-video

 Mount the button next to the screen and set up a ‘click area’ in screen.cfg,
with the symbolic name my-button-legend. Specify its ‘points’ such that it is
displayed next to the button. This click area will display the legend, say ‘See a
Pig’, but must not be clickable.

 To make the click area appear when the track is being displayed but for it not
to respond to clicks use it in the Controls Field of the track and give it the
command ‘no-command’

 my-button-legend no-command

10 Run-Time Commands

OMXPlayer, Mplayer and the uzbl browser have a number of run-time commands
which are defined for omxplayer and mplayer in:

https://github.com/popcornmix/omxplayer

The following mapping is used by Pi Presents (see pp_omxdriver.py line 60)

 KEY_MAP = {'<':3,'>':4,'z':5,'j':6,'k':7,'i':8,'o':9,'n':10,'m':11,'s':12,
 '-': 17, '+': 18, '=':18,'x':30,'w':31}

http://www.mplayerhq.hu/DOCS/man/en/mplayer.1.html#INTERACTIVE%20CONTR
OL

Only operations with a single character from the list of operations in the references
are allowed. The single character must be preceded by omx- or mplay- respectively.
Multi-character operations are not currently supported.

For example:

 videovolup omx-+
 videovoldown omx--

included in the controls field of a show or track adds volume control to omxplayer.
videovolup is a symbolic name which can be bound to a key, gpio pin etc. Keyboard
keys naturally have repeats; for GPIO pins gpio.cfg can enable repeating for buttons.

For the uzbl browser used to display web tracks the commands useable for run-time
controls are defined here:

http://www.uzbl.org/readme.php

The command strings should be preceded by uzbl-

Version 1.3.5b, 31 May 2018

Page 76

For example:

largerweb = uzbl-zoom_in

will make the content of the browser larger.

11 Providing Dynamic Content in a Liveshow
Pi Presents was not intended for the dynamic supply of media however by popular
demand I have included a facility where a 'Liveshow' can play a set of tracks which
change during the running of the show .

The New> Liveshow template and New>Artliveshow are working Liveshows. The
tracks to be played should be placed in the Live Tracks Directory1 which out of the
box is /home/pi/pp_home/pp_live_tracks

Liveshows play audio, video and image tracks. The media file types that a Liveshow
recognises are in the first few lines of the file pp_definitions.py.

The Pi Presents Manager Section 17 can upload or import tracks; alternatively
tracks could be ftp'ed into the Live Tracks Directory1 using Filezilla or some such.

Advanced Use

Using the -l command line option of Pi Presents it is possible to have a second
location containing live tracks; the Live Tracks Directory2. The location of this
directory is specified by the -l command line option. The files in the two live tracks
directories are combined and sorted by their leaf name.

The directory could be on a remote fileserver (I have not tried this). Alternatively the
complete profile for a show could be held on a remote fileserver.

From Version 1.3.1 concurrent shows are allowed hence it is necessary for allow
each liveshow to access its own directory. The liveshow profile now has two fields for
this purpose, Live Tracks Directory1 and Live Tracks Directory2. If these are not
blank their location overrides the default location.

12 Counters
Counters are intended for quizzes but could have other uses. All types of track have
facilities to create, set, increment, decrement and delete counters. Currently the
value of counters is displayable only by writing track plugins which requires a little
knowledge of Python (or some copy and paste of the examples).

Counter commands are stored in the ‘Show Control Begin’ and ‘Show Control End’
fields of tracks and shows. Counter commands are of the form:

 counter [name] [command] [parameters]

The counter field must be present to differentiate counter commands from other
types of command in Show Control fields

Version 1.3.5b, 31 May 2018

Page 77

The commands are:

command parameters example use

set name value counter fred set 0 Create a counter
called name and
set its value to
value. If the
counter already
exists just set its
value.

inc name value counter fred inc 1 increment name by
value (which must
be positive)

dec name value counter fred dec 2 decrement name
by value (which
must be positive)

delete name counter fred delete delete the counter
name

Counters are stored in a Python dictionary called counters in the Python Class
CounterManager which is defined in the file pp_countermanager.py

There are two examples of track plugins which use methods in this class to display
counters, these are in /pipresents/pp_track_plugins:

 krt_counters.py

This track plugin shows the use of all the display methods exposed by
CounterManager

 get_counter(name) – return the value of counter name as a string

 str_counters() – returns a string with the name/value of all currently
defined counters.

 print_counters() – print the name/value of all currently defined counters to
the terminal window.

The example profile pp_counters_1p3 uses this plugin

 krt_quiz.py

 Used by the example profile pp_quiz_1p3 to provide its prettier output.

13 Animation Control
All types of track have facilities to control animation. Using commands included in the
'Animation at Beginning' and 'Animation at End' fields an external output can be
turned on or off synchronised with the start or end of tracks, with optional delay.

An example of animation commands is shown below.

Version 1.3.5b, 31 May 2018

Page 78

animate at
beginning

1 out1 state on
2 out1 state off
1 out2 state on
6 out3 state on

Clear
Animation

no

Animation at
End

0 out2 state off

A command has four or more fields separated by spaces and terminated with a
newline:

 Delay - seconds as a positive integer or 0.

 Symbolic Name - The name of the output as defined in the gpio.cfg file in the
profile (Section14.2.1).

 Parameter Type

 Parameter - 1 or more fields compatible with Parameter Type.

Commands in Animation at Beginning are executed at the beginning of a track and
Animation at End at the end of a track. When the commands are executed the
required commands are put in a queue for firing at the appropriate time. The time is
not affected by pausing a track.

Every command is offered to every active I/O plugin. If the Symbolic Name and
Parameter Type matches any of those implemented by the plugin then the command
will be executed using the provided parameters.

Animation commands in the queue are not forgotten at the end of a track so
animation can be extended over multiple tracks. A side effect of this is that it is
possible for an output to happen at the wrong time if the duration of a track is
indeterminate . If you want to avoid this and ensure outputs are in a defined state at
the end of a track set Animate Clear to yes. If yes then, before Animation at End is
executed, the queue will be cleared of those events that were commanded by the
track but not fired.

14 Input/Output (I/O) Plugins

In Pi Presents Input and Output is independent of the core execution of shows and
tracks. From version 1.3.3 developers can interface to their own input/output devices
by writing additional I/O plugins. These plugins have a standard API and will use
configuration files to enable and configure them.

An input plugin accepts an input from a physical device, pre-processes it and
produces an input event with a symbolic names, some also allow input values to be
accessed by track plugins. An output plugin takes output commands (e.g. out1 state
on) having a symbolic name and parameters which it uses to generate the physical
output.

I/O plugins are python modules that should be in the directory
/pipresents/pp_io_plugins. An I/O plugin needs to be configured with a .cfg file.
These files are stored in the /pp_io_config directory in a profile. There can be more
than one .cfg for a plugin, for example pp_inputdevicedriver.py may have a .cfg file
for each make of remote control.

Version 1.3.5b, 31 May 2018

Page 79

Most I/O plugins have a standard API and standard .cfg files. There are currently I/O
plugins with standard configuration files and standard API for:

Device Provided
Configuration

File

Direction I/O Plugin Use

Tkinter
Keyboard

keys.cfg Input pp_kbddriver.py Interfaces with a
keyboard using
the Tkinter API,
not a totally
standard API

GPIO gpio.cfg Input/Outp
ut

pp_gpiodriver.py Interfaces the
GPIO general
purpose pins
using RPI.GPIO

Input
Device

osmcremote.cf
g

Input pp_inputdevicedriv
er.py

Interfaces with a
specific remote
controls, keypads
etc. using evdev

Serial
device

serialdriver.cfg Input/Outp
ut

pp_serialdevicedriv
er.py

Interface with
serial devices
usually using a
USB to RS232
convertor

I2C devices i2c.cfg Input/Outp
ut

pp_i2cdriver.py Interfaces with
I2C devices

RFID Tag
Reader

pn532driver.cfg Input pp_pn532driver.py Interfaces with
PN532 based
readers

There are two I/O plugins that have a non-standard configuration file and a non-
standard API, however their elements are stored as above:

touchscreen screen.cfg Input - Enables touch/click
sensitive areas on a
touchscreen/monitor
and configures the look
of the touch sensitive
areas.

remote
control
using OSC

osc.cfg Input/Output - Allows Pi Presents to
control or be controlled
by other units.
Configuration file is
generated using the
editor.

14.1 Enabling a Standard I/O Device

To enable an I/O device a configuration file must be placed in a /pp_io_config
directory in a profile. There are sample configuration files in

Version 1.3.5b, 31 May 2018

Page 80

/pipresents/pp_resources/pp_templates which can be copied and edited. These files
also contain information, additional to that here, on how to use them.

When Pi Presents starts it will look in the /pp_io_config directory in the profile and will
use any .cfg files found there. It will then look in /pipresents/pp_io_config and will use
a .cfg files found there if a .cfg file with the same name has not been found in the
profile.

Out of the box keys.cfg is present in /pipresents/pp_io_config so that the Tkinter
keyboard is enabled.

The .cfg files are all text files which can be edited by Leafpad. Do not edit the files
inside /pp_templates; if you wish to change their content then copy the file to a
profile.

 e.g. inside /home/pi/pp_home/pp_profiles/myprofile/pp_io_config

or if you want them to be used by all profiles to /pipresents/pp_io_config

If editing these files be aware that there is little checking of the content of these files
by Pi Presents. If you modify the file run pipresents.py from a terminal window first so
that any Python error messages can be displayed.

14.2 Configuring Inputs and Output Drivers

Section 8.1 describes the input system of Pi Presents and how external physical
events are converted to input events with symbolic names. Most of the responses are
configurable using the files described in this section.

When editing I/O configuration files you will need to supply symbolic names. It is
advisable not to create names beginning with pp- to avoid clashes with names used
by Pi Presents.

All I/O configuration files must have a section called [DRIVER]. This must contain the
following fields:

Field Example Use

title GPIO Text which is used when reporting activity of the I/O
plugin in error reports and logs.

enabled yes yes/no. An I/O plugin becomes active if it has a .cfg file
in the appropriate directory and enabled = yes . This field
enables an I/O plugin to be made inactive without
removing its configuration file.

module pp_gpiodriver The name of the python module which implements the
I/O plugin, without .py. The file must be in
/pipresents/pp_io_plugins

There can be more than one .cfg file referring to the
same module, for example if there are two remotes with
different key bindings.

The [DRIVER] section can contain other fields used by a specific I/O plugin.

Version 1.3.5b, 31 May 2018

Page 81

14.2.1 Interfacing with GPIO using pp_gpiodriver.py

BEWARE: Accidentally using a pin as an output with the output shorted to ground or
+3.3 volts might fry your Pi, use a series resistor on every input and output for
protection.

The configuration of the GPIO used by Pi Presents out of the box is defined in the file
gpio.cfg.

The file in /pipresents/pp_resources/pp_templates/gpio.cfg is an example which,
when copied to the/ pp_io_config directory in a profile, configures Pi Presents for the
buttons and the PIR described in this manual and used by the examples.

The .cfg file maps physical P1 connector GPIO input and output pins to the symbolic
names of inputs and outputs used by the Pi Presents examples. It also configures the
input pins.

A section for every pin must be present in the file. A pin with direction=none is
ignored .

Inputs

Each pin can generate an event having the specified symbolic name in any of four
ways:

 rising edge - An event with the symbolic name specified in 'rising-name' is
generated when the input changes from 0 to 1 (0 volts to 3.3 volts)

 falling edge - An event with the symbolic name specified in 'falling-name' is
generated when the input changes from 1 to 0 (3.3 volts to 0 volts)

 one state - An event with the symbolic name specified in 'one-name' is
generated at 'repeat' intervals while the input state is '1' (3.3 volts). The first
event happens after 'repeat' interval. If you want the input to respond
immediately set the rising edge event to the same symbolic name.

 zero state - An event with the symbolic name specified in 'zero-name' is
generated at 'repeat' intervals while the input state is '0' (0 volts). The first
event happens after 'repeat' interval. If you want the input to respond
immediately set the falling edge event to the same symbolic name.

If you do not want the event to be generated leave the symbolic name blank

For the purposes of this manual and the examples gpio.cfg is set up to allow normally
open push buttons connected to ground (0 volts) and a PIR with a normally closed
relay contact connected to ground.

Linked Outputs
The optional linked-output and linked-invert fields allow a gpio output to be directly
connected to a gpio input. See /pp_resources/pp_templates/gpio.cfg for details

Outputs

Version 1.3.5b, 31 May 2018

Page 82

The logical 'ON' state produces +3.3 volts. The logical 'OFF' state produces 0 volts

Pi Presents initialises GPIO outputs to 0 volts so it is best to design relays etc. for
positive logic (which many of those on the market are not). The outputs are reset to 0
volts when Pi Present exits.

When sending the animation command:

 delay output_name parameter_type parameter_value

 The output_name is compared against the name field of all pins having
direction = out

 The parameter_type field should be state as this is Parameter Type
supported by pp_gpiodriver.py. The animation command will be ignored for
any other state even if the ouput_name matches.

 the parameter value must be on or off, if not an error will be flagged.

14.2.2 Interfacing with a Remote Control or Keypad using
pp_inputdevicedriver.py

Remote controls etc. that interface with Linux userland by providing a file in
/dev/input and which provide key presses should be able to interface with Pi Presents
using the pp_inputdevicedriver.py I/O plugin. The template file osmcremote.cfg
configures this plugin to work with the official OSMC remote.

https://osmc.tv/store/product/osmc-remote-control/

The [DRIVER] section must contain the following additional fields:

Field Example
Content

Use

device-name HBGIC
Technology Co.,
Ltd. USB
Keyboard Mouse

The name of the device producing the inputs.

Only inputs from this device will cause an input
event to be generated. (But see Duplicate Events
below).

Run the program input_device.py to find this
name for your remote.

key-codes KEY_STOP,KEY
_PLAYPAUSE,K
EY_DOWN, ….

The list of key codes that Pi Presents is to
respond to.

Run the program input_device.py to find the key
codes for your remote.

tick-interval 50 The interval between polls of the remote in mS.

There are also sections for each button, the content of which is similar the gpio.cfg.
Details in /pipresents/pp_resources/pp_templates/osmcremote.cfg

Version 1.3.5b, 31 May 2018

Page 83

NOTE: if you are getting two input events from some remote control buttons read the
Tkinter Keyboard Section 14.2.5

14.2.3 Interfacing with a Serial Link using pp_serialdriver.py

Serial links such as RS232 are often used for the control of projectors. The RPi
provides an inbuilt serial link which is configured for factory debugging. It is difficult to
use and will almost certainly require voltage level convertors. A better way is to use a
USB to RS232 adaptor. Adaptors such as this are exposed to Linux as files like
/dev/ttyUSB0 and can use the pyserial python library.

The pp_serialdriver.py I/O plugin uses the pyserial library to drive serial devices. It
has been tested with a usb connected device interfacing with a Windows XP machine
and Windows 98 machine. The template file serialdriver.cfg in
/pipresents/pp_resources/pp_templates is an example of using the I/O plugin. In the
example the serial link is used to drive a projector but the configuration will require
modification and validation for your projector.

Details for using the configuration data are in the file:

 /pipresents/pp_resources/pp_templates/serialdriver.cfg

The driver allows both input and output.

Input
Characters received from the link are matched against characters and strings defined
in the configuration file. If a match occurs an input event with a symbolic name, also
defined in the configuration file, is generated:

 As each character is received it is matched against the configuration data to
generate and input event.

 When an end of line character is detected the characters received after the
previous end of line are matched against the configuration data to generate
an input event.

Events can be generated from any-character, specific-character, any-line and
specific-line

Output
Output to the serial link uses animation commands. There are two ways to use the
command, determined by the value field in the configuration data:

 preset – the characters to be output are defined in the configuration data. The
configuration data defines the message to be sent for each combination of
name, parameter type and parameter value and the driver translates this into
the message to be sent.

For example the command ‘0 projector state on’ will be translated into a
sequence of bytes 02 00 00 00 01

 explicit – the characters/bytes to be output are in the animation command.
Examples are:

Version 1.3.5b, 31 May 2018

Page 84

0 serial-send bytes “02 00 00 00 01”
0 serial-send string “the cat sat on the mat”

14.2.4 Interfacing with I2C devices using pp_i2cdriver.py

Many devices can interface with the RPi using the I2C bus. pp_i2cdriver.py supports
a number of devices which may be of use to Pi Presents users. However the main
use of this driver is to provide an example of how to interface your own device with Pi
Presents.

To use the provided pp_i2cdriver.py it will be necessary to enable I2C in RPI
Preferences menu.

The following devices are supported by pp_i2cdriver.py

Device Input/Output Symbolic
Name

Parameter Type

Adafruit
MCP4725
DAC

Output dac set – set the DAC to a ‘percentage’*** of 3.3
volts

mirror – mirror the named ADC input
(analog1,analog2,analog3)

fade – ramp the output from a to b in t
seconds. a and b are expressed as
‘percentages’***.

Pimoroni
Four Letter
Phat

Output fourletter string – display a four letter string

num-string – display a 4 digit number with
decimal point

blank – blank

mirror-voltage – display the voltage applied
to the adc input

mirror-percentage – display the
percentage*** value of the ADC input

countdown – countdown in minutes and
seconds from the seconds specified.

Pimoroni
Scroll HD
LED matrix
display

Output scrollhd scroll - scroll single or multiple lines of text.

static – display static text

static-high – a high brightness variant of
static

blank - blank

Version 1.3.5b, 31 May 2018

Page 85

Pimoroni
Automation
Phat
(ADS1015
ADC)

Input The three analog input channels of the
HAT are read continually at 100mS
intervals. The results are used in the mirror
methods and are available to track plugins
using the I/O plugin manager’s get_input
method. The keys are:

 analog-1volts
 analog2-volts
 analog3-volts
 analog1-percentage
 analog2-percentage
 analog3-percentage

Note: The digital inputs, digital outputs and
relay of the HAT are GPIO based and
controlled using pp_gpiodriver.py

***Percentage – A number between 0 and 100 which is the percentage of 3.3 volts
applied to the ADC input.

The file /pipresents/pp_resources/pp_templates/i2c.cfg has details of implemented
commands and methods.

Libraries used by I2C I/O plugin.
The Scroll HD and Four Letter PHats use the Pimoroni libraries. Some of the
methods are just adaptions of the Pimoroni examples of using these devices. The
libraries are already in the Raspbian image.

The Automation PHAT and Adafruit DAC libraries are not required as Pi Presents
uses its own libraries for these which are in in pp_i2cdevices.py, however it may be
necessary to install the smBus module.

14.2.5 Configuring Tkinter Keyboard Keys using pp_kbdriver.py

Pi Presents is implemented using Tkinter. This has a native keyboard/mouse
interface which is implemented in Pi Presents by pp_kbddriver.py and configured by
keys.cfg. This interface is the only interface enabled out of the box so it has a file in
/pipresents/pp_io_config/keys.cfg

The [DRIVER] section of the .cfg file should have the following additional fields:

Field content use

bind-printing yes/no If yes then all printing keys automatically bound to
symbolic names as described below

Keyboard keys are bound to symbolic names in the .cfg. file The file has a number of
lines with the format

 condition = symbolic name

Version 1.3.5b, 31 May 2018

Page 86

The conditions are defined in effbot.org/tkinterbook/tkinter-events-and-bindings.htm
in the <Return>, a, and <Shift-Up> sections. The conditions and the symbolic names
are case sensitive.

In addition to these bindings the printing characters on the keyboard, (the ones
obeying the <Key> condition in the reference), are automatically bound to the
symbolic name pp-key-x if ‘bind-printing’ = yes

 e.g the 'a' key produces pp-key-a

Automatic binding of a printing key can be added or overridden by a line such as a =
pp-pause.

The default keys.cfg in /pipresents/pp_io_config has the following bindings:

Symbolic
Name

Bound Key Command

pp-down Cursor Down

down

pp-up Cursor Up up

pp-play Return play

pp-pause Spacebar pause

pp-stop Escape stop

pp-terminate CTRL-BREAK Abort Pi Presents.

Duplicate Events

The Tkinter device driver has a quirk in that it accepts inputs from all devices in
/dev/input. As a result a remote control button press that causes an event from
pp_inputdevicedriver.py may also generate an event from pp_kbddriver.py. It may be
necessary to remove bindings in one or other of the .cfg files or to set bind-printing to
no.

The duplicate events can be seen by enabling debugging in Pi Presents with the –d
command line option.

14.2.6 Advanced Interfacing with a Keyboard using
pp_kbddriver_plus.py

This I/O plugin enhances the standard pp_kbddiver.py I/O plugin by allowing Pi
Presents to:

 allow strings, in addition to single characters, to trigger events

 allow lines of text to be provided to track plugins

The operation of the plugin is almost identical to the serial port driver (Section 14.2.3)

Details for using the configuration data are in the file:

 /pipresents/pp_resources/pp_templates/keys_plus.cfg

Version 1.3.5b, 31 May 2018

Page 87

The use of pp_kbddriver_plus.py conflicts with pp_kbddriver.py. If using the driver
then disable pp_kbddriver.py by one of the following:

 Add a keys.cfg file to the profile with enabled = no

 Disable the driver in /pipresents/pp_io_config/ keys.cfg

 Remove keys.cfg from /pipresents/pp_io_config

The example pp_kbddisplay_1p3 demonstrates the use of the driver to accept lines
of text as events and to display the text using a track plugin.

Characters received from the link are matched against characters and strings defined
in the configuration file. If a match occurs an input event with a symbolic name, also
defined in the configuration file, is generated:

 As each character is received it is matched against the configuration data to
generate and input event.

 When an end of line character is detected the characters received after the
previous end of line are matched against the configuration data to generate
an input event.

Events can be generated from any-character, specific-character, any-line and
specific-line

14.2.7 Configuring Touch/Click Areas

The file screen.cfg defines the areas of the screen that will become mouse click or
touch sensitive. Click areas are not limited to Hyperlinkshows; they can be used for
all types of show.

The file consists of a number of sections each with a unique name. The name can be
anything but must be unique within the file.

All fields in each section must be present. The fields of each section are used as
follows:

 name - The symbolic name of the click area. Each command in the Controls
field of a track or show has a symbolic name. When the track in a show is
played the click areas in the Controls field are displayed on the screen and
when an area is clicked the symbolic name will identify an input event.

 points - this is a set of x y pairs that defines the points of a polygon bounding
the area. The polygon is automatically closed so a quadrilateral will have 4
(not 5) x,y pairs. There must be at least three pairs of points. For details of
this and other attributes see http://effbot.org/tkinterbook/canvas.htm
create_polygon For rectangular click areas the points may be specified as

x1+y1+w*h

Version 1.3.5b, 31 May 2018

Page 88

where xi, y1 are the coordinates of the top left corner of the click area and w,h
are the width and height, all in pixels.

 fill-colour, outline-colour

Specifies the look of the polygon. Use a blank field for transparent

 text, text-font, text-colour

If text is not blank then the text is written centred in the polygon.

 image, image-width, image-height

An image to be used as a button. Paths relative to pp_home are supported
(+/) or specify the complete path. The image will be warped to fit - image-
width and image-height and centred on the polygon.

14.2.8 Interfacing with a RFID tag reader using pp_pn532driver.py

RFID tag readers read the data on cards such as credit cards. These cards have a
small microchip which is powered by the RFID tag reader which then interrogates the
card and can read or write data from/to the card. Every card has a unique
Identification number and this is the only information used by Pi Presents.

There are a number of card readers, there are also different standards of card. I
chose a reader based on the PN532 chip which reads cheap tags. The tags may be
in different forms - credit card sized cards, key fobs, and probably most useful to
museums, paper stickers.

The pp_pn532driver.py I/O plugin uses the pynfc and libnfc libraries to interface with
the PN532. It has been tested using the PN532’s I2C interface but should work with
serial/usb and SPI.

The template file pn532.cfg in /pipresents/pp_resources/pp_templates is an example
of using the I/O plugin. In the example two tag codes are defined and bound to the
symbolic names of events.

Details for using the configuration data are in the file:

 /pipresents/pp_resources/pp_templates/pn532.cfg

When a tag is presented to the reader the tag Id is read and matched with the tags
defined in the various sections of the .cfg file. If a match is found an input event is
generated with the appropriate symbolic name. An event can also be generated
when the tag is removed. Hysteresis is applied by using the threshold parameter
because when a card is moved towards the reader multiple events can be produced.

There is an example pp_rfidioplugin_1p3 which use a radiobuttonshow with two tags
triggering two tracks.

Installing the RFID Tag Reader

Version 1.3.5b, 31 May 2018

Page 89

I bought this kit:

XCSOURCE® NXP PN532 NFC RFID Module V3

It works well, except that the detection distance is only a couple of centimetres. I
used the I2C interface but it should work with SPI or UART.

I found that most of the instructions on the Web to install the software are out of date.
The instructions here work well:

https://blog.stigok.com/2017/10/12/setting-up-a-pn532-nfc-module-on-a-raspberry-pi-
using-i2c.html

This installs libnfc and nfc-tools which enables you to use the command line to read
tag Id’s. You also need the pynfc library. There is a copy of this in the
pipresents/pynfc directory which has been modified to correct a bug. The original is
at https://github.com/ikelos/pynfc

14.3 Writing I/O Plugins

An I/O plugin is a python module which:

 For inputs translates physical inputs to the RPi into events with symbolic
names

 For outputs translates animation commands having symbolic names and
parameters into physical outputs

I/O plugins should be placed in the directory /pipresents/ pp_io_plugins where they
will be available to all profiles.

14.3.1 Configuring and Registering an I/O plugin

I/O plugins will be registered if there is an I/O plugin configuration file in the
pp_io_config directory of a profile. Registration is implemented by
pp_iopluginmanager.py. The module reads the [driver] section of the configuration
file and if enabled = yes imports the module specified in module = .

The I/O configuration file can also be used to configure an I/O plugin module. This
allows one module to be used with different devices, e.g. different wireless remote
controls. Configuration data can be added to the [driver] section or further sections
can be created if desired.

The path to the plugin configuration file is passed to the I/O plugin module so that the
module can read the additional parameters.

Version 1.3.5b, 31 May 2018

Page 90

14.3.2 Class

The class name must be the same as the name of the file

The I/O plugin output method may be called from many different objects hence
variables used by the output side should be class variables.

14.3.3 Methods

init

def init(self,filename,filepath,widget,button_callback=None)

init() is called once by the I/O plugin manager when Pi Presents starts. The method
should:

 read configuration data from the [driver] section of the I/O configuration file in
the profile

 initialise the physical device

 indicate using a state variable that initialisation is successful and the plugin is
active.

 if activation is successful return ‘normal’,’a message for the log’

 if activation fails return ‘error’,’a message for the error pop up and log’

Arguments:

filepath – the path to the I/O plugin configuration file.

filename - leaf of filepath, used for logging

widget - the instance of an object onto which to hang the Tkinter after and
after_cancel calls

callback- the remote function to be called to generate an event from a
physical input. callback has two parameters:

 symbolic name of the event

 a text string identifying the source of the event. The plugin should read it
from the [driver] section

start

def start(self):

start() is called once by the I/O plugin manager when Pi Presents starts. The method
should:

 If appropriate enable any interrupt action

 If the input is polled scan the inputs once and then call widget.after() to
schedule a further scan.

Version 1.3.5b, 31 May 2018

Page 91

Scanning the physical inputs must not be blocking because Pi Presents use
cooperative scheduling.

Reception of an interrupt or detection of a physical input when polling should execute
the callback function:

 self.button_callback(symbolic_name,source)

get input

get_input(self,key)

get_input is used by track plugins to obtain values of inputs. The key will be a string
which can be used to identify the input required.

The method returns 2 arguments:

 Found – True/False

 Value – the value

terminate

def terminate(self)

terminate is called by the main program when Pi Presents closes for any reason. It
should shut down any interrupts and cancel any polling timers

is active

allows PI Presents to determine the whether the plugin is active

def is_active(self):
 returns whether the i/O plugin is active (True/False)

handle output event

This method uses animation commands of the form:

name param_type param_value_1 “param value 2”

to generate physical outputs

def handle_output_event(self, name, param_type, param_values, req_time)

name – the symbolic name specified in the animation command

param_type – the parameter type specified in the animation command

param_values – a list of parameter values specified in the animation
command. There may be 0 or more parameter values. If a parameter has
embedded spaces then it must be contained in “”

Version 1.3.5b, 31 May 2018

Page 92

req_time – the time at which the command was required to be executed, Use
for logging only, the animation manager ensures the output is made at the
correct time.

Every animation command is offered to this and every other active I/O plugin. If the
name and param_type matches any of those implemented by the plugin then the
command should be executed using the provided parameters and ‘normal’ returned

The parameter values should be checked for correctness (e.g. state is on or off). If
illegal parameter values are provided then ‘error’ should be returned.

The function returns two parameters - status,message

status – ‘normal’/’error’
message – a text string which will be displayed in the error pop up and used
for logging.

14.3.4 Example

Components:

 pp_exampledriver.py in the pp_io_plugin directory

 exampledriver.cfg in /resources/templates directory

 pp_ioplugin_1p3 example profile in the Pi Presents examples github
repository

The example plugin has all the elements of a plugin but does not do any physical I/O:

 The input generates an event with the symbolic name tick at an interval
defined in the exampledriver.cfg configuration file.

 The output prints the message contained in the animation command to the
terminal window.

15 Remote Control using OSC

Version 1.3.1 allows Pi Presents to control instances of Pi Presents on other
computers or to control or be controlled by a computer that supports the Open Sound
Control protocol, including smartphones and tablets.

OSC is a lightweight flexible protocol which was originally intended to control musical
instruments. It can do much more than this and is supported by many multi-media
equipments. For Pi Presents a Master is a unit that sends commands to control
Slaves so:

 A Master Unit (OSC Client) sends commands to Slaves

 A Slave Unit (OSC Server) receives commands from Master Units and acts
on them.

Depending on its configuration Pi Presents may be both a Master and a Slave.

Version 1.3.5b, 31 May 2018

Page 93

The implementation in this version of the software (1.3.1c) is much improved from
the initial experimental version. Improvements include:

 Many slaves per master

 A particular unit can be both a master and a slave

 A slave can be controlled by many masters, replies are returned to the master
sending the commands.

 It continues to use the UDP protocol not TCP. This makes it fast and
compatible with more third party systems but UDP is what is called an
unreliable protocol – messages are not guaranteed to arrive or be in the order
they were sent; whether this matters for small systems on a local LAN
remains to be seen.

 Commands now use Pi Presents Show Command syntax, converting them
internally to the messages required by OSC.

 Configuration is much simplified

The implementation does not support:

 Pattern matching language to specify multiple recipients of a single message

 High resolution time tags

 "Bundles" of messages whose effects must occur simultaneously

15.1 Sending and Receiving Commands via OSC
In Pi Presents terms OSC commands are sent by Master units and received by Slave
units. To send an OSC command, place the appropriate command in the Show
Control field of a track or show. Other than configuring OSC, receiving messages is
automatic.

Other than the send, loopback, and server-info commands, all OSC commands have
the same effect as they would have if used on the local machine.

An OSC Show Control command has three or more fields:

 osc – all osc commands have osc or OSC as a first field

 unit – the OSC name of the unit to which the command is to be sent, the
name should also appear in the ‘OSC Names of slaves’ field of the configuration
file.

 command – open, openexclusive, close, closeall, event, monitor, animate,
exitpipresents, shutdownnow, reboot, send, loopback, server-info

 parameters – zero or more parameter values

e.g. osc unit1 open myshow

15.2 OSC Fundamentals

OSC commands are converted by Pi Presents into messages. The OSC software
does a further conversion into an efficient binary format for transmission. The
messages have an OSC address field and zero or more data fields. e.g.

Version 1.3.5b, 31 May 2018

Page 94

/pipresents/unit1/core/open myshow

The OSC address is hierarchical, for example:

/pipresents/unit1/core/open

This means:

 /pipresents - the message is for equipments that can understand Pi Presents
type OSC messages. All other units will ignore this message.

 /unit1 - message is for Pi Presents unit1 and will be ignored by any other
units. unit1 must appear in the list of slave units in the configuration file.

 /core - the message is for the core of Pi Presents, the part that controls
shows and controls tracks via input events.

 /open is the command to open a show. The complete message will have a
show-ref as an argument.

Pi Presents Show
Command

OSC Command Use

osc unit1 open myshow /pipresents/unit1/core/open
myshow

Open the referenced show

osc unit1 close myshow /pipresents/unit1/core/close
myshow

Closes the referenced show

osc unit1 openexclusive
myshow

/pipresents/unit1/core/opene
xclusive myshow

Close all running shows then
open the referenced show

osc unit1 closeall /pipresents/unit1/core/closea
ll

Closes all running shows

osc unit1 event pp-stop /pipresents/unit1/core/event
pp-stop

Generates an input event with
the referenced symbolic name

osc unit1 exitpipresents /pipresents/unit1/core/exitpip
resents

Exits Pi Presents

osc unit1 shutdownnow

/pipresents/unit1/core/shutdo
wnnow

Shut down the RPi

osc unit1 reboot /pipresents/unit1/core/reboot Reboot the RPi

osc unit1 animate out1
state on

/pipresents/unit1/core/animat
e out1 state on

This provides an output pass-
through system. The arguments
are any data used by Animation
commands without the leading
delay parameter.

osc unit1 monitor on /pipresents/unit1/core/monito
r on

Turn the monitor on.

osc unit1 monitor off /pipresents/unit1/core/monito
r off

Turn the monitor off

osc anyunit send
/myprotocol/anything/you
/like arg1 2

/myprotocol/anything/you/lik
e arg1 2

Send the osc message
specified to ‘anyunit’. Can be
used to send commands to
types of unit other than Pi
Presents units. All arguments
are sent as strings.

osc unit1 loopback /pipresents/unit1/system/loo
pback

Causes the slave to return a
blank loopback-reply message
to the master.
The reply appears in the

Version 1.3.5b, 31 May 2018

Page 95

terminal window.

osc unit1 server-info /pipresents/unit1/system/ser
ver-info

Causes the slave to report
information about itself in a
server-info-reply message. The
reply appears in the terminal
window.

15.3 Configuring OSC

OSC is enabled and configured by the presence of an osc.cfg file in the directory
/pp_io_config in a profile. The file is a non-standard I/O plugin configuration file.
pp_web_editor.py has a menu option to create, and edit osc.cfg files in the profile.

This Unit

Field Example Use

OSC Name of this
unit

my-pi The /unit part of the address of this unit. Used in
matching messages sent to this unit.

IP of This Unit Normally this field should be blank and Pi Presents
will obtain this value from the network. If this fails an
IP can be specified here.

If your Pi is connected to two networks it may be
necessary to choose a preferred network in web.cfg
(Section 17.1).

The IP used to listen for messages from a master
when slave is enabled, and replies when master is
enabled.

Fields for a Master Unit

Field Example Use

Master Enabled yes yes/no, Enable/disable this unit as a Master

Listening Port for
replies from slaves.

9001 Port used to listen for replies from the slave units.

Slaves reply on the same port as they listen hence
the Listening port of the Master must be the same
as the Listening Port of all its Slaves

OSC Names of
slaves

slave1 slave2 A space separated list of OSC names that is used
as a lookup table to determine the IP’s of slave
units from the OSC command.

IP’s of Slaves myhostname
192.168.1.102

A space separated list of IP’s of the slave units
having the same order as the OSC Names of
slaves.

The IP may be the numerical IP of the unit. I have
also found the hostname, or hostname.lan also
works. hostname.local may work.

Version 1.3.5b, 31 May 2018

Page 96

Fields for a Slave Unit

Field Example Use

Slave Enabled yes Enable/disable this unit as a slave

Listening Port for
commands from a
master

9001 Port that the slave listens to for commands from a
master unit.

All slaves must listen for commands on the same
port which must be the same as the Listening port of
the Master Unit.

15.4 oscremote and oscmonitor

pp_oscremote.py and pp_oscmonitor.py are two stand-alone programs which I
developed to test the OSC interface of Pi Presents. They run on Windows (requires
python to be installed), Linux, or Raspbian. They contain code which could be used
as the basis for other applications. Anyone interested in writing an IOS or Android
App for controlling Pi Presents?

oscremote sends commands to Pi Presents while oscmonitor monitors and displays
OSC messages that Pi Presents has sent. Out of the box oscremote is configured to
send commands to the unit /pipresents using port 9001 and oscmonitor to listen to
master units on port 9002. When first running these programs you will need to
complete other configuration fields.

By running them from different RPi’s you can run Pi Presents, a remote, and a
monitor. (or just 2 of them). Three example profiles have been set up as
demonstrations of OSC that can be run in this way out of the box.

 pp_osc_1p3 is a simple profile to demonstrate some of the key points. Its
osc.cfg sets up Pi Presents as a master and a slave. The show mediashow is
in the Start show and sends a number of different commands from the show
control fields of the track which can be monitored by oscmonitor. Replies to
the loopback and server-info commands can be seen in the terminal window
running Pi Presents. Use oscremote to close and open the show mediashow.

 pp_multiwindow_1p3 has an osc.cfg file which allows it to be controlled by
oscremote.py; just remove all the shows from the Start Show and control
them from oscremote.py using open show and close show commands.

 pp_showcontrol.py has an osc.cfg file which allows it to send output
commands from the show control field of the two image tracks to mirror
control of the audio show. These can be monitored by oscmonitor.py

By changing the configuration you can run oscremote and oscmonitor as a pair. You
can also run oscmonitor and oscremote on one machine and Pi Presents on a
second.

pp_oscremote.py

Version 1.3.5b, 31 May 2018

Page 97

Before using oscremote.py it needs to be configured using the options>edit menu to
configure the communication. Out of the box it is set up to communicate with the osc
unit pipresents with the hostname raspberrypi using port 9001.

The buttons each generate all or part of an OSC message in the Message to Send
field; you will need to add show refs, and animation commands and press Send.
Messages sent and any replies appear in the status field.

The profile>select menu option allows a Pi Presents profile to be selected. To do this
a /pp_home/pp_profiles directory containing the profile will need to be presents and
the – o command line option of pp_oscremote.py used to set the path to pp_home
(default is /home/pi).

The shows in the profile are shown in the Shows tab; selecting one of these before
the open or close button saves you remembering or typing the show-ref, nothing
more.

pp_oscmonitor.py
Just displays messages it receives in the Status window. Out of the box it is
configured to receive messages on port 9002.

16 Track Plugins

Track plugins are python code modules with a documented interface specification
that can be coded by the user to enhance the displays of Pi Presents. Track Plugins
allow dynamic display of information such as time, weather, and tickers. It is likely
that information will be scraped from web sites or from RSS feeds.

Track plugins are executed by Players. Their primary use is to display dynamic
content. This can be achieved in two ways:

 By modifying or replacing the media to be played.

 By writing dynamic information direct to the Pi Presents display

Track plugins are stored in the directory /pipresents/pp_track_plugins in .py files. It is
recommended that the plugin file name is preceded by your initials so that there are
no clashes with python modules (e.g. time.py will clash with the standard time
module.)

Using Plugins

If the plugin is required for a track then the 'Plugin Configuration File' field of a Player
should contain the name of a Plugin Configuration File e.g.

 +/media/krt_image_text.cfg.

Relative paths are allowed. The media produced by the plugin must match the type
of the track to be played.

The Plugin Configuration File allows the same plugin to be called with different
parameters. It must contain at least

Version 1.3.5b, 31 May 2018

Page 98

[plugin]
plugin = pluginname
type = image # required if the plugin is to be used in a liveshow

pluginname is the name of the python module containing the plugin (the filename
without .py).

The configuration file may define further parameters which will be available to the
plugin code via the dictionary plugin_params:

e.g.

[plugin]
plugin = krt _image_text
type = image # required if the plugin is to be used in a liveshow
optional
text = text to display

The plugin code can read the value of text so by using a number of configuration files
all calling the same krt _image_text plugin you can have a different text in each track.

You can use plugins in Liveshows. To do this the plugin must be specially written. To
use a plugin in a liveshow just copy the plugin configuration file to pp_live_tracks. To
be used in liveshows plugin configuration files must specify the track type so that Pi
Presents knows which type of track to play.

Writing Plugins
As of Version 1.3.1 the track plugin API has changed and improved. The changes
are necessary so that the plugin way of displaying information matches the pre-
loading required for gapless transitions. API details are in pp_example_plugin.py

I have provided three examples of plugins

 pp_example_plugin.py
This contains the API documentation. The example is long as it addresses all
the types of track that a plugin might be used for, and also liveshows.

 krt_image_text.py
An example that adds text to an image.

 krt_time.py
Modifies the screen directly to display the current time.

The examples use:

 The Python Imaging Library (PIL). The handbook is at
http://effbot.org/imagingbook/pil-index.htm.

 Tkinter canvas operations are documented at
http://effbot.org/tkinterbook/canvas.htm

The functional interface varies slightly depending on the type of the track:

Version 1.3.5b, 31 May 2018

Page 99

 image - the plugin will be supplied with the path to a file containing an image
(e.g picture.jpg). An image track file must be returned and must be able to be
displayed using PIL and Tkinter.

 audio - the plugin will be supplied with a file containing audio. An audio track
can optionally be returned that is playable by mplayer. Blank is allowed and
no audio will be played.

 video - the plugin will be supplied with a file containing a video. A video track
must be returned that is playable by omxplayer. The plugin can also write
directly to the canvas but be aware that the video will appear over the top of
the text so use Video Window to window it.

 web - the plugin will be supplied with a file containing html code (whatever
uzbl supports for rendering). A html file should be returned that is playable by
uzbl. The plugin can also write directly to the canvas but be aware that the
browser will appear over the top of the text so use Web Window to window it.

 message - the plugin will be supplied with the text that would have been
displayed, this can be modified and returned. The plugin can also write
directly to the canvas.

17 Remote Management

The programs pp_manager.py and pp_web_editor.py are used for the remote
management of Pi Presents from a web browser running on any computer on the
same network as Pi Presents. Each program runs a web server serving an interactive
web page that, for the editor, looks similar to the normal gui of the Pi Presents editor.

 Manager - pp_manager.py provides facilities to select and run Pi Presents
profiles. It is also possible to upload and download profiles, media and
livetracks.

The Manager can also replace the normal autostart mechanism (Sect. 6.6)
with a mechanism that can remotely choose the profile to be auto-started.

The presumed workflow of the manager is that you will upload media or
livetrack files from a remote computer to the Pi, or import them from a USB
stick. Once in the Pi media and livetracks can be deleted or renamed. Profiles
can similarly be uploaded or imported; in addition they can be created or
edited on the Pi and then downloaded to the remote computer.

 Web Editor - pp_web_editor.py is a near clone of the Pi Presents Profile
editor.

17.1 Setting up for Remote Use

Before first using the two programs:

Version 1.3.5b, 31 May 2018

Page 100

 The file /pipresents/pp_config/pp_web.cfg must be edited using a text editor.
Entries in the section [manager-editable] can subsequently be edited by the
Manager.

Field Example Description

[manager-editable]

media_offset /media The offset from the pp_home directory to which media
will be imported or uploaded. So /media will store media
in home/pi/pp_home/media

livetracks_offset /pp_live_tra
cks

The offset from the pp_home directory to which livetracks
will be imported or uploaded. So /pp_live_tracks will store
media in /home/pi/pp_home/ pp_live_tracks the default
live tracks directory.

profiles_offset The offset from the pp_profiles directory to which profiles
will be imported or uploaded. Generally left blank.

This offset also determines the directory for the
Manager’s profile selection list.

e.g. Specifying an offset e.g. /test_profiles will store
profiles in /home/pi/pp_home/pp_profiles/test_profiles

options When starting Pi Presents from the Manager append the
specified options. Sect 6.1
The –p and –o options should not be specified. The
Manager automatically adds these.

autostart_path /my_profile If not blank the Manager will autostart Pi Presents when it
is started and before its web server is started.

The field specifies the profile to be used when
auotstarting Pi Presents..So /my_profile will start the
profile in

/home/pi/pp_home/pp_profiles/my_profile

autostart_options -fb When autostarting Pi Presents appends the specified
options. (Sect 6.1)
The –p and –o options should not be specified. The
manger automatically adds these.

[manager]

home /home/pi/p
p_home

The path of the Pi Presents Home Directory. It must end
in pp_home.

import_top /media/pi This field limits the files for the following actions to those
in this directory and below:

 Source for importing media and livetrack files.

 Source for importing profiles

As a security measure this option limits the files that can
be seen to those below the top. It also determines the
starting point for the import File Selection dialog.

port 8081 The port used by the editor. Should not need to be
changed.

username If a username and password is specified then to use the
Manager it will be necessary to login

password

 Configure the Web Editor

Version 1.3.5b, 31 May 2018

Page 101

[editor]

port 8082 The port used by the editor. Should not need to be
changed.

username If a username and password is specified then to use the
Web Editor it will be necessary to login

password

[network]

 These fields are also used by the email system.

unit My Pi A name which appears on the Manager’s screen and on
emails. Useful if you have more than one Pi under
management.

force_ip The ip address of Raspberry Pi that is running the Editor
or Manager.

For normal use this field can be left blank as the IP
address of the Pi is automatically determined. If this field
is specified auto detection will not be used.

preferred_interface If wifi and wired Ethernet are both connected the Pi will
have two IP addresses. If you have two interfaces and
wish to specify which one should be used populate this
field. Values on my Pi are wlan0 and eth0.

17.2 .Using the Manager

Start the Manager by the command python pp_manager.py from a terminal window
opened in the pipresents directory. This will start the Manager’s server.

The Manager can be accessed from a browser using the server’s IP address and
port e.g. 192.168.1.108:8081

The manager will show a list of profiles from the profiles directory.

Buttons

 Start button – Starts the profile selected from the displayed list of profiles.

 Exit button – Exits Pi Presents

 Refresh List button – Refreshes the list of profiles; required if a profile is
added or deleted from the Pi rather than from the Manager.

The line above the buttons displays the Unit and the run state of Pi Presents. When
Pi Presents has exited an exit code is displayed in brackets:

 100 – Normal Exit

 101 – Pi Presents Closed by external event (usually from the Pi)

 102 – Pi Presents exited due to a runtime error. The error message can be
accessed by downloading the log.

Menus

 media>import - Copy media files from the selected directory into pp_home
into the sub-directory defined by media_offset.

 media>upload - Upload media files from the browser into pp_home into the
sub-directory defined by media_offset.

Version 1.3.5b, 31 May 2018

Page 102

 media>manage - delete or rename media files

 livetracks>import - Copy livetrack files from the selected directory into
pp_home into the sub-directory defined by livetracks_offset.

 livetracks>upload - Upload liverack files from the browser into pp_home into
the sub-directory defined by livetracks_offset.

 livetracks>manage - delete or rename livetracks files

 profile>import – Copy a profile directory into pp_home/pp_profiles into the
sub-directory defined by profiles_offset.

 profile>upload - upload a profile directory into pp_home/pp_profiles into a
directory defined by profiles_offset. The profile directory must be archived into
a .zip file before upload. The Manager will automatically unzip the archive.

 profile>download – download the selected profile to the browser. The profile
is downloaded as a zip archive.

 profile>manage – delete or rename a profile.

 editor>run – Run the Web editor. This will start the editor’s server on the Pi.
Click the link to access the editor which will open a new browser tab at the IP
address and port of the editor e.g. 192.168.1.108:8082

 editor>exit – Exit the Web Editor

 options>manager/ options>autostart – Edit the Manager’s configuration

 options>email – edit the Email Alert options (see Sect. 18.1)

 logs>Download Log – Download the Pi Presents log file

 logs>Download Stats – Download the Pi Presents statistics file

 Pi>Reboot/Pi>Shutdown - reboot or shutdown the RPi

Using Autostart

If the Manager’s autostart_path configuration entry is not blank then, when the
Manager is started, Pi Presents will be run with the configured profile and options.

To achieve this Raspbian’s autostart file (Sect. 6.6) should have the command:

usr/bin/python /home/pi/pipresents/pp_manager.py

instead of a command to run Pi Presents.

After the profile has been run the Manager’s server will be started and can be
accessed in the normal way via a browser. It will show that the auto-started profile is
running.

Version 1.3.5b, 31 May 2018

Page 103

It is intended that the Manager be run continually in parallel with Pi Presents. If this is
consuming too much processor power then edit update_interval=0.1 (secs) to say 0.5
in the last line of pp_manager.py

17.3 Using the Web Editor

When managing Pi Presents remotely the Web Editor is normally started and
stopped from the Manager however it can be run independently :

 Use the command python pp_web_editor.py -r from a terminal window
opened in the /pipresents directory. This will start the Web Editor’s server.

In either case the Editor can be accessed from a browser using its IP address and
port e.g. 192.168.1.108:8082

The Web Editor provides more functions than the Pi hosted editor. There are a few
minor differences:

 Navigation when selecting files and directories. To open a directory click on
its icon. To select a directory click on its name, to select a file click on its
name.

 Colour names can be used but if the colour chooser is used the name will be
converted to the rgb hex code.

 The colour chooser is not supported by Internet Explorer

 Various browsers layout pages differently. IE seems to be the main culprit for
showing different layouts. The Manager and Editor have been developed
using Firefox and Chromium (The current Pi browser).

18 Email Alerts
Pi Presents and the Manager can send alerts by email.

email_with_ip Sent by the Manager when it starts. The email contains the
IP address of the Pi for use by the remote browser.

email_at_start Sent by Pi Presents when it starts.

email_on_error Sent when Pi Presents exits when a Fatal or Profile error is
detected. The message contains the error text.

email_on_terminate Sent when Pi Presents exits either by it being terminated
from the Pi or pressing Exit on the Manager

log_on_error (not implemented) Attach the log file to the error email.

18.1 Setting Up Email Alerts

Before first using email alerts:

Version 1.3.5b, 31 May 2018

Page 104

 The file /pipresents/pp_config/pp_web.cfg must be edited using a text editor.
The [network] section fields preferred_interface and force_ip need to be set.
For normal use they should be blank.

 The file /pipresents/pp_config/pp_email.cfg must be edited using a text editor.
Entries in the section [email-editable] can subsequently be edited by the
Manager.

Field Example Description

[email]

server url of the server to be used to send the emails. The
software has been tested only with gmail. Since the
username and password is not encrypted it is better not
to use your normal email account. Set up a gmail account
especially for the purpose. You will need to disable the
advanced security feature in the gmail account.

port port of the server used to send the emails

username username and password for the server used to send the
emails.

password

[email_editable]

email_allowed A global enable. yes to enable all types of email alert,
otherwise no

to A list of email addresses to which the emails will be sent,
one address per. line.

email_with_ip
email_at_start
email_on_error
email_on_terminate

 set to yes to enable the alert, otherwise no.

log_on_error Not implemented.
Set to yes to enable the log as an attachment, otherwise
no.

18.2 Using Email Alerts
having set up the pp_email.cfg file alerts will be sent automatically. The editable part
of pp_email.cfg can be modified using the Manager.

19 Hardware Requirements
Pi Presents can be used with either Model 1, Model 2 or Model 3 Pi's. However for a
better performance for videos or images a Model 2 or Model 3 Pi is preferred. The
GPIO pins have been chosen such that they are version agnostic.

If you wish to play videos 256MB of GPU memory must be used.

Display of images is slow with earlier Pi’s. A one megapixel images takes a couple of
seconds to display. The one 10 megapixel image I tried took 10 seconds to display
and crashed a 256MB Pi. Larger images, greater than the screen pixel dimensions,
will do nothing to improve the picture and will take longer to display even on 512MB
machines; I use the brilliant Faststone Photo Resizer
http://www.faststone.org/FSResizerDetail.htm to reduce the size of images on a
Windows PC.

Version 1.3.5b, 31 May 2018

Page 105

Use the HDMI or headphone output for audio. Amplification and volume control will
need to be provided in external hardware to suit the application.

20 Updating Pi Presents

20.1 Updating Profiles

As Pi Presents develops new fields are added to the profile definition and others
deleted. To control this, the three elements - Pi Presents, the editor and the profiles -
must have the same version. Pi Presents will warn if a profile with the wrong version
is used. To correct this open the profile in the editor, it will automatically update the
version of the profile and its fields and leave a backup in pp_profiles.bak. There may
be a few residual update tasks that cannot be automated; read the Release Notes to
identify these.

If you have many profiles to update in the same directory then you can use the
'Tools>Update All' menu option of the editor to update them.

The profiles in the pipresents-gapless-examples github repository will be kept
compatible with the latest version of Pi Presents. Beware, re-installing these may
overwrite profiles you have made.

20.2 Updating Pi Presents
For safety take a copy of the pipresents directory and any data before doing updates.

Download Pi Presents from github and install it as described in the README.md file.
Data stored in /home/pi/pp_home will not be affected. Do not store your data or
modify any files in the pipresents directories as they may be overwritten.

When updating Pi Presents read the release notes. You may need to update the
configuration files and carry out a few tasks that cannot be done automatically.

21 Debugging, Statistics, Bug Reports and Feature
Requests

21.1 Statistics Production

Pi Presents will output events to the file /pipresents/pp_logs/pp_stats.txt. The content
of the file is suitable for analysing to produce statistics on the use of an application.
The file contents CSV and suitable for reading into a spreadsheet. The separator is ;
it can be changed in pp_utils.py.

Statistics logging is enabled by the –d command line option as described in Section
21.2.

Version 1.3.5b, 31 May 2018

Page 106

When Pi Presents starts, if the file pp_stats.txt does not exist it will be created and a
header line written. If the file exists it will not be deleted, further event rows will be
appended to those from the previous run of Pi Presents.

There are four forms of event lines denoted by the command field:

 Start – Indicates the Pi Presents has been started. Date/time and the name of
the profile are written.

 start trigger, next trigger – Indicates that a mediashow or liveshow has
received a start or next trigger. The date/time and show details are written.

 play child – Indicates that a mediashow or liveshow has received and event to
play a child track. Content is as for the events below.

 other commands such as play, call – Menushows, Radiobuttonshows and
Hyperlinkshows write date/time, show details and track details when user
instigated events are detected.

Show details are show type, show reference, show title. Track details are track type,
track reference, track title and location.

Example:
"Date";"Time";"Show Type";"Show Ref";"Show Title";"Command";"Track Type";"Track
Ref";"Track Title";"Location"
"2016-02-01";"15:02:43";"";"";"";"start";"";"";"";"/1p3_examples/pp_interactive_1p3"

"2016-02-01";"15:02:53";"mediashow";"mediashow";"Mediashow";"play
child";"menu";"mymenu";"Menu";""

"2016-02-01";"15:02:58";"menu";"mymenu";"Menu";"play";"image";"";"A Stunning
River Scene";"+/media/river.jpg"

21.2 Debugging Profiles

The –d command line option allows a trace of the operation of Pi Presents to be
output to the terminal window and to a log file as described in Section 6.1. The –d
option has an argument which allow fine control of the log output

Value
(Binary)

Value
(decimal)

Log Output

1 1 Fatal (System) Errors

10 2 Profile Errors

100 4 Warnings

1000 8 A log suitable for debugging profiles

10000 16 A log suitable for debugging Pi Presents.

100000 32 A log suitable for debugging Pi Presents with
instances of Player and Shower

1000000 64 Memory leak monitoring for debugging Pi Presents

10000000 128 Write events suitable for statistics production to
stats.txt. See Section 21.1

1000000000 256 A log that is suitable debugging Time of Day
scheduling.

Version 1.3.5b, 31 May 2018

Page 107

Without the –d option Pi Presents uses a value of 7. With the d option but no value
specified a value of 15 is used.

Reporting of uncollectable garbage is permanently on. This may result in a message
being reported to the terminal when Pi Presents is closed. They indicate that Pi
Presents software is not deleting tracks or shows correctly. I am interested in these
reports.

In addition to the trace most of my debugging is by the use of Print statements in the
python code. I may have inadvertently left some of these statements in the code
resulting in messages on the terminal even if debugging is turned off.

Bug Reports and Feature Requests
Please use the Github Issues Tab https://github.com/KenT2/pipresents-
gapless/issues to report bugs and ideas for extensions.

I am keen to improve Pi Presents and your input on real world experiences and
requirements would be invaluable to me, both minor tweaks to the existing
functionality and major improvements.

22 Gotchas and Known Problems

When not fullscreen the Pi Presents window is too small or too large

Edit the following lines in pipresents.py (around line 40).

 self.nonfull_window_width = 0.6 # proportion of width
 self.nonfull_window_height = 0.6 # proportion of height
 self.nonfull_window_x = 0 # position of top left corner
 self.nonfull_window_y=0 # position of top left corner

When using autostart, or running from a desktop shortcut my profile is not
found.
In any of these situations it is best to use the full path of pipresents and the data
home in commands e.g.

 /usr/bin/python /home/pi/pipresents.py -o /home/pi -p myprofile

Also be aware that the location of the autostart file changed at the 25/12/2014
release of Raspbian Wheezy and its content is different for Raspbian Jessie.

Pi Presents locks up in full screen, how do I escape.

This is usually caused by Python reporting an exception due to incorrect
configuration data. To avoid this use validation in the editor and try the show, not full
screen, and running from a terminal window so you can Ctrl+C out if Ctrl+Break fails.
If this fails, try Ctrl+Z then closing the terminal window.

When Pi Presents crashes it sometimes leaves omxplayer mplayer or uzbl running.
You can see this using top. To remove these processes use:

Version 1.3.5b, 31 May 2018

Page 108

 killall omxplayer omxplayer.bin mplayer uzbl-core

This may leave zombie processes. To remove these it seems necessary to close the
terminal window.

Pulling the power has potential for corruption, so the ideal solution to a seemingly
complete lockup is to SSH into the Pi from another machine, run top (top -upi) and
kill the python process with the k xxxx command. You may need to kill an omxplayer
process as well.

My video/audio track does not play with Pi Presents
Try playing it using OMXPlayer or MPlayer from the command line.

Unclutter does not hide the cursor at all times

Azizar reported that he edited /etc/default/unclutter, adding

-grab
-noevents

I have built a gpio input or output device and it is not working with Pi Presents.
There are two stand alone GPIO test programs in the pipresents directory
input_test.py and output_test.py so you can test you I/O before blaming Pi Presents!
For B+ and 2b you will need to modify the python code to add the additional pins
(just uncomment the second definition of pins)

Pi Presents crashes after playing videos for a few hours
There seems to be some timing problem in the interface with OMXPlayer or with
OMXPlayer itself. I have tried to detect these crashes and allow Pi Presents to
continue. If you have such problems and can reliably reproduce them without using
Pi Presents please report them on the omxplayer github.

Version 1.3.5b, 31 May 2018

Page 109

23 Converting Version 1.2 to 1.3

There are significant changes between the versions. pp_editor,py will insert and
delete fields in the profile but the following will require manual intervention

Change Reason

Pi Presents

It is now not necessary to use the –o command
line option when using sudo (from 1.3.1h sudo is
not required)

Pi Presents detects the use of
sudo and compensates

The –g command line option has been removed.
GPIO is enabled by the presence of a gpio.cfg file
in the profile (not in data home or
/pipresents/pp_home).

Enables future user coded I/O
plugins.

Shows

Links field and Controls Field have been combined
into a field called Controls. The functionality is
unchanged. Controls bind Symbolic Names to
Commands, the words Internal Operation and Link
are not used any more, both are called
Commands.

Make all shows operate in the
same way to ease
understanding.

In Version 1.2 Subshows and Child Shows
inherited their Controls from their parent show.

All shows now require their own set of Controls.
Newly created mediashows and liveshows have a
useful set pre-defined but you will need to insert
the following into existing mediashows, liveshows
and menus:
pp-down down
pp-up up
pp-play play
pp-stop stop
pp-pause pause

In 1.2 the parent and subshow
could not have different types
of control (e.g. links and
internal operations) so a
mediashow called from a
Hyperlinkshow could not be
controlled.

The Show and Track Background are now
‘warped’ to the size of the Show Canvas

Makes it easier to modify the
size of show canvas windows in
multi-window applications

The Interval, Show Timeout and Track Timeout
fields now use hh:mm:ss instead of secs.
Currently >59 seconds is allowed but this might
change.

Commands and Symbolic Names

pp-exit pre-defined symbolic name is now pp-
exitpipresents

avoid clashes of terminology

In keys.cfg pp-exit is now pp-terminate avoid clashes of terminology

Mediashow

Version 1.3.5b, 31 May 2018

Page 110

The triggers and other show control fields have
been re-organised and expanded
• interval and singleshot needs to be replaced

by repeat.
• Time of Day Triggers are replaced by the Time

of Day Scheduler.
• Review all mediashows and liveshows for

correct functioning as there are many
modifications.

Much improved mediashow
triggering and control.

The has-child field has been removed. Instead
there is a Child field that contains the track-
reference of a track in the medialist if a child is
required.
Will require the child field to be completed.

Recognition that a ‘child show’
is actually just a track that is
accessible from all tracks in a
mediashow. Being a track in
can be a Show Track.

Manual progress has been removed. Use tracks
with 0 duration instead. Use freeze at end if you do
not want videos to auto advance.

Manual made the code even
more complex and
presentations not a high priority
for Pi Presents.

The input-quiet trigger type has been removed.
Instead delete the trigger text in the notices tab.

Some fields have been moved between tabs Make shows consistent.

Start Trigger cannot now be triggered by Play or
Down commands. If trigger by a key is required
then bind start trigger to a key.

Liveshow

In version 1.2 the liveshow and mediashow had
completely different code. In version 1.3 much of
the code is common which means all the features
of mediashow are available.

Review liveshows to ensure they function correctly

Enhancement

Menu

In version 1.2 the layout of the menu was
determined by the Show Profile.

In Version 1.3 there is a Menu Type track in the
medialist which determines the layout of the menu.
pp_editor will do the conversion and insert a ‘menu
track’ into a copy of the medialist called xxx –
menu1p3. The conversion retains the old medialist
file which can be deleted.

All shows are structured the
same making software
maintenance easier.

The menu background is now specified in the
show profile. The menu background track can be
deleted.

All shows are structured the
same making software
maintenance easier.

The location of default bullet is now
/pipresents/pp_resources/bullet.png

Click Areas

screen.cfg has additional mandatory fields allowing
a click area to have an image.
Add to each section is screen.cfg:
image =

Click areas can have button
images.

Version 1.3.5b, 31 May 2018

Page 111

image-width =
image-height=

Track Plugins

The API has changed significantly. They will need
a rewrite.

Be compatible with gapless
transitions and multi-windows

Show Control

The order of fields in the Show Control field has
been reversed and the names of the commands
changed.

‘myshow start’ > ‘open myshow’
‘myshow stop’ > ‘close myshow’
‘gobdegook exit’ > ‘exitpipresents’

Allows OSC commands.
Names changed to avoid
confusion caused by command
clashes.

Animation

The order of fields in animation commands has
been changed and the command fields expanded

‘out1 on 10’ > ’10 out1 state on’

The delay field is now mandatory.

Provision for additional I/O
plugins with more complex
command formats.

GPIO

Whether to use GPIO is now determined by the
presence of a gpio.cfg file in the /pp_io_config
directory in a profile. The –g command line option
is not now used.

Required to allow users to add
I/O plugins (see below)

Pins for B+ and 2B will need to be added to
gpio.cfg. If not a warning is given.

Configuration Files

In a profile keys.cfg, gpio.cfg, and screen.cfg need
to be moved to a subdirectory /pp_io_config. The
new osc.cfg will reside there as well.
schedule.json is in the profile not in the
subdirectory.

These are configuration files for
I/O device drivers. When the
I/O plugin API is implemented a
plugin will be enabled by the
existence of a configuration file
in the /pp_io_config directory in
a profile.

/pipresents/pp_home has been removed

Having a pp_home in two
places could be confusing.

The fields of resources.cfg are now in the show
profile. These fields will require re-populating with
your choice of text.

Allows different concurrent
shows to have different
messages.

Fallbacks of gpio.cfg,, screen.cfg, and keys.cfg are
now not allowed in /pp_home and in
/pipresents/pp_home. They must be in the profile.

If necessary copy gpio.cfg and screen.cfg into the

These are configuration files for
I/O device drivers. When the
I/O plugin API is implemented a
plugin will be enabled by the
existence of a configuration file

Version 1.3.5b, 31 May 2018

Page 112

profile (in a pp_io_config directory). keys.cfg still
has a fallback in /pipresents/pp_io_config; only
need to copy this if you have modified it.

NOTE: In keys.cfg pp-exit is now pp-terminate

There are templates for screen.cfg, gpio.cfg and
schedule.json in /pp_resource/pp_templates, and
for keys,cfg in /pp_io_config. These can be copied
to profiles and modified.

in the /pp_io_config directory in
a profile.

There is one exception, to
make it easy for beginners
there is a fallback keys.cfg in
/pipresents/pp_io_config

controls.cfg has been removed. It is replaced by every show
having its own set of controls.

Limited other resources used as fallbacks by Pi
Presents are in /pp_resources.. It is best to put
resources for an application in the profile or in
pp_home and not modify /pipresents sub-
directories.

Updating of Pi Presents is less
likely to cause you problems.

Editor

Validation has not caught up with the changes to
the profiles. There should be no correct profiles
that fail but there could be undetected profile errors

