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Chapter 1

Conventions

1.1 Mechanics

We use the Mandel notation to convert symmetric second and fourth order
tensors to vectors and matrices. The convention transforms the second order
tensor

o11 012 013
o12 022 023 | = [ o1 02 o33 V2003 V2013 V2012 | (11)
013 023 033

and, after transformation, a fourth order tensor C becomes

Ciin Cii22 Ciiss V201123 V2Ci113 V2Ciiie

Chiz2 Ca222 Ca33 V202203 V202213 V202212

Cliss Ch233 Css3s  V2C3303 V2C3313 V2C3310 (1.2)
V2Ci123  V2C2223 V203303  2Ca303 209313 202310 | '
V2Ci113 V2Ca213 V203313 2Co313 201313 2Chi312
V2Ci112 V2Ca212 V203312 2Ca312 201312 2Ch212

For symmetric two second order tensors a and b and their Mandel vectors a
and b the relation X

a:b=a-b (1.3)
expresses the utility of this convention. Similarly, given the symmetric fourth
order tensor C and its equivalent Mandel matrix C contraction over two adjacent
indices

a=C:b (1.4)

simply becomes matrix-vector multiplication

a=C-b.



1.2 Interfaces

NEML supports three interfaces into the material library.

1. update_ ldF: Large deformations with kinematics expressed directly through
the deformation gradient F.

2. update 1dI: Incremental large deformations with kinematics expressed
through the spatial velocity gradient 1.

3. update sd: Incremental small deformations with kinematics expressed
through the small strain rate €.

A user defining a new material model selects one of these four interfaces when
implementing a new material model. NEML takes the interface the user elected
to implement and automatically translates the implemented interfaces to con-
form to the remaining two. The translation from interfaces 1 or 2 to interface
3 does not fundamentally change the implemented material model — it simply
applies the assumptions of small deformation kinematics. However, the conver-
sion from interface 3 to interface 1 or 2 assumes a hypoelastic formulation using
the Jaumann objective stress rate. This can fundamentally and detrimentally
alter the material constitutive response [].
The library also provides several non-implementable interfaces:

1. update warp3d: Interface linking the material library to the warp3d finite
element code.

2. update umat_incremental: Interface for linking the material library to
ABAQUS Implicit via the UMAT interface and using the incremental
strains.

These interfaces will introduce similar errors as the small deformation to large
deformation translation step described above.



Chapter 2

Material models

2.1 Yield surfaces

2.1.1 Von Mises with isotropic hardening

Internal variables are q = [or]a = [&))]

f=J2(o)+ \/EUF (&, T) = |Isll + \/EO’F

with s =0 — %tr olfor various yield strength functions.
The derivatives are:

oaf _ s
go sl
0%f 1 < 1 s s )
= —(1-210)- o —
door — T\ 3TV T O
2
9F
Jdodq
and
aof _ /2
oq 3
2
o°f — 0
dqdq
2
o°f — 0
dqio

2.1.2 Von Mises with isotropic and kinematic hardening

Internal variables are q = [ orp X ]a = [ Ep Ep ]



2 2
f=no+ %)+ 2or 6 =5+ X1+ 2or

The derivatives are:

g B s+ X
do Is + X||
0% f 1 1 s+ X s+ X
— 1--(IxI) — ®
dodo s + X]| ( (el s + X|| ||s+XII)
*f [ 1 (1 s+X ° s+X )}
dodq s +X| [s+X[ ~ [s+X]
and
of _ PR }
dq 3 Ts+XT
82]0 [0 0
= 1 s+X s+X
dqdq 0 =7 (1 T Tsaxy ® \|s+x||)
82]0 I 0 ]
= 1 1 _ s+X s+X
dqda | (1- @) - =y o ety

2.2 Hardening Rules

2.2.1 Associative
2.2.1.1 Isotropic

Linear
OoF (gva) =— (00 + Kgp)
0
T~ K
0&p
Voce

OF (Eva) == [00 + R (1 —exp (_5517))]
80F
0&p

= —dRexp (—d&,)

2.2.1.2 Kinematic

Linear
X (ep,T) = —He,



2.2.2 Nonassociative
2.2.2.1 Frederick-Armstrong & Chaboche

A traditional model of this type uses an associative flow rule for the plastic
strain, with a yield surfaces expecting an isotropic hardening parameter and a
backstress. The isotropic hardening rule can be selected from Section 2.2.1.1
while the backstress follows the formulation:

n

X = X,

. 2 2 _ . 3
X; = — <3Cin + \/;yl- (&p) XZ> A — Al\/g [IX;

A Frederick-Armstrong model has n = 1.
So far the library has two forms for v (£,): constant and a form proposed by
Chaboche in his book:

i=1
a;—1
7 X,L

Y (ép) =%+ (Y0 —7s) e Per.

2.3 Viscoplastic models

2.3.1 Perzyna

This is implemented as associative viscoplasticity. The user provides a yield
surface and a hardening rule from the list of associative models above. The
formulation then uses the associative flow and hardening rules and the rate

function:
y(o.0) = <g(fwnq(a)))>

where ¢ is some monotonic function. The library currently only provides a
power law for g:

g(f)=r"

2.3.2 Chaboche

The Chaboche viscoplastic model, as described in [], uses the flow rule associ-
ated to surface f (o, q), a Chaboche backstress, described above, Voce isotropic
hardening, and the rate rule:

y(o,q) = \/§ fea)
’ 2\ V/2/31
The NEML implementation allows for an arbitrary backstress and hardening
rule.



2.3.3 Yaguchi & Takahashi
This model is described by the equations:

Ep = 1P

3 o -X
n--—————

2.1 (o' — X))

Jo (YY) = 1/2Y’ '

ﬁ:<Jg(a’—X’)—aa>"

D
X =X; + X3

- 2 . m—
X =0 (3 (@10 — Q)n — X1> p—mds (X)X,

. 2 . m—
Xy =0y (3112n - Xz) D — Y22 (X2) ! X

Q=d(g-Q)p

&a = b(gas_aa)p
b b 0qs —04,>0
b, 045 —0,<0

Oas = <A +B 1OglO p>

The authors provided interpolation schemes for the model parameters in the
range 473K < T < 873 K. These parameters are hard-coded in the implemen-
tation, so this model takes no parameters.

2.4 Creep models
In general these models have the form

E.CT = .f (avscrvtaT)

so we need to keep in mind the explicit time dependence. The idea is to add
the integrated creep strain to a rate-independent plasticity model for a classical
“non-unified” approach. We solve the creep rate equation implicitly as

cr  __ _cr
Ent1 = En + .fn+1Atn+1

with the residual
R = Efﬁ-l —&y = fn—',—lAtTH-l



and the Jacobian
of

deilia

J == I Atn+1
which the user must provide the derivative for.

To solve the eventual outer nonlinear equation and to calculate the tangent
we need the additional derivative

d€n+1

d6n+1
Play our usual game of

OR OR OR
R=0 = 0=dR= s doy, — : dey’ — :dty,
R = TR
OR OR OR OR
R=0 = 0=dR= s doy, s deg” 2dty, 2 dT,
80n+1 o +1+a cr +1+at +1+atn+ +1

OR OR  deil, | OR .dtn+1 OR  dT,

0= : :
80n+1 8€n+1 d0n+1 8tn+1 d0n+1 8tn+1 d0n+1

and pretending the time and temperature variation is small. Then

deryy ( OR >1 OR

dCT»,H_l 855.::,'_1 80’n+1

deyy _g! of
dan+1 aan+1

Atw+b

Therefore the whole model is defined by the function f and derivatives %,
9F 9f and af

do? Ot?

2.4.1 J; creep

The above gives the specific framework, but we’ll go further are assume that

. 3 s
EcT = g(Uequeq;th) §Ueq
with
s=0——tr(o)
3
Ocq = 53 s
and
€eqg = gs” D ger



Then we can define the whole thing in terms of the nice scalar function g:

3 s
f=93

20¢q
of |3 ( 9Og g s s g
do [2 (aaeq Oeq Ocq @ Ocq * Uqu

of ([ s ® dg e
0e™  \ 0eq O€cq Ecq

3 1
—(I-<-1®1
2( 3 ®>

of _ 093 s
ot Ot 2 04
Of _ 993 s
or 9T 20,

2.4.2 Specific creep laws
2.4.2.1 Power law

g= Aogq
ag n—1
8Ueq - Anaeq
0
g _ 0
O€eq
9g
ZJ 0
ot

g= mAl/ma,;zq/m (aeq)(M—l)/nL
0 _
G = nA! /g (e )M
eq
ag 1/m _n/m -1/m
Oe = (m - 1) A Ueq (aeq)
eq
9g
27 _ 0
ot



Chapter 3

Integration Algorithms

3.1 Elasticity

The equations are simply

Opnt+1 = C'n,+1 L E€n+1
An+1 = Cn+1

where C'is some (possibly temperature dependent) elasticity tensor. This model
has no history variables.

3.2 Perfect plasticity

e Trial state:e? ; = €%, opt1 = Cpp1 : (Eng1 —En +€541)

e Evaluate f (y,41). If less than zero return, else do Newton iteration on
the scheme described here.

Equations:

afn-‘,—l
(90'71_;'_1

p _
Eny1 = Ent Avpi1

f (O'n+laan+1) = 0

. _ . p
with Opt1 = Cn+1 . (En-‘rl - €7L+1)‘
Use an unknowns:
r = [ On+1 A’Y’fH’l ]

Residual:

R—| &nt1t Coli:Ons1+6Ent1 — €5+ %A%H } _ { Ry ] .
Jnt1 Ry

Jacobian.



J = 8 n+1 0
aa'n+1

2
C;_}_l-i-a {:JIA’YnJrl % 1 _ { Ju Ji2 ]

The algorithmic tangent is

L 9% -
P = <Cni1 + fota A’Yn+1>

Oo?

{‘I) afT:»I:| ® {‘I’ 8f7:»1:|
An+1:(§7 5] o

2
|- @ 2|
3.3 General Newton algorithm for rate-independent

plasticity

For associative flow this algorithm has the interpretation of a closest point
projection.

3.3.1 Continuous equations

e’ = rglo,a)
a = ~h(o,a)

and the Kuhn-Tucker and consistency conditions

v =2 0
flo,a) < 0
’Vf (O',Ot) =0

3.3.2 Newton integration scheme
e Trial state: a1 = oy .el | =€b, 0p1 = Cppr: (eng1 — €y y)

e Evaluate f (S;41,0,41). If less than zero return, else do Newton iteration
on the scheme described here.

Equations:
ery = b+ gnr1Ayng
Opy1 = Op+ hn-‘rlA’}/n—i-l
f (an+17 anJrl) =0

with 0,41 = Cpy1: (€n+1 - E£+1)‘

10



Residual:

—€ni1 €L+ 81 A% R;
R= —Opt1 + oy + hn-‘rlA’Yn—i-l = R»
fry1 R3
Jacobian. Helpful note is that
5ﬁ+1 =Ent1 — C;—&l-l P O0n+t1
30‘ 1
E) ntl = Cn+1
€n-i-l
ogn ogn
-1 _ha,_jg,."ii : Cn+1A77L+1 aiyil A77L+1 8n+1 Jii Jio
J— N ng Cnt1Avpyr I+ aa"H Avpyr hpgr | = | Jar Ja2o
n Ofn
e O 85,,; 0 Js1 Jso
3.3.3 Algorithmic tangent

Consider the implicit function theorem applied to the residual at the final iter-
ation:

R (€n+1a €ﬁ+1a QAnt1, A’}/n+1) =0

Provided several conditions are met (notably a non-singular Jacobian at this

. o denyy  dey dey,
point), we can solve for the derivatives 353+, 72+ and S+
€t e TnY Yn+1

the other derivatives. As it turns out, these other derivatives are parts of the
Jacobian we already computed for the Newton scheme.

in terms of

8R1 8R1 6R1 8R
dR; = ——de, d b ——day, ———dAv,41 =0
OR, 8R ORs ORe
dRy = ——de, ———de? —da, ——dAYp11 =0
? asn+1 Entl + 8 n+ ntl + aOén+1 Gt + aA Yn+1 ot
OR3 OR3 OR3 OR3
dRs; = dey, de? —day, dAYp41 =0
3 Denir €+1+ap +1+5an+1 a+1+8A - Tnt1 =
0 0R1 8R1 dEfH_l aRl dan+1 T 8R1 dA’}/n_;,_l
Oeny1  Oep depyr Ooyyr deniyr OAYg1 depya
0 — 8R2 8R2 dEIT)L_,'_l 8R2 dan+1 T 8R2 dA’yn+1
B aen-‘rl 8€£+1 d€7z+1 a(171—}—1 d€n+1 aA'}/n-i-l den-‘rl
0 — 8R3 8R3 dE:ZJrl 8R3 dan+1 + 8R3 dA’}/n+1
8en+1 a€ﬁ+1 d€n+1 8an+1 d€n+1 8A’}/n+1 d€n+1

Make some associations...

11

Ji3
Jo3
J33



[a Ixx I ][ K
o=[n [ )]

where K = ZZ”“. Solve for K:
n+1
_ -1 _
K= Jxkx —Ixkpdpplex)  (JxedppB—A)
Here IR 5
gn+1
A=_——"1 = : CpatA
85n+1 80n+1 1183 Vn+1
and OR oh
B— ens | _ | Forpy i Cnt1Bmp
- Rs3 - -5f71.+1 . C .
O€nt1 90 g1 -

. de? .
With di“ in hand we have

En41
dO‘n+1 —c-(1- d€£+1
d€n+1 ' d€n+1

3.4 General integration algorithm for viscoplas-
ticity
3.4.1 Continuous equations
The system is posed as:
&= d(a,q,é,T,T,t)
a-= a(o,a.eT11)

3.4.2 Newton algorithm

Rl = —Onp41 + o, + o (Un+17 qn+1, E.:n+17 T71,+1Tn+17 7tn+1> Atn-‘,—l = 0
R2 = —Qn+1 + qn + q (O'n+1» qn+1, éEn-i—la Tn+la Tn+17 tn—i—l) Atn-‘,—l = 0

The Jacobian is simple:

J J
J= oo oq :l —
|: Jqo' Jqq

dﬂn+1 3¢1n+_1

Odn+1 _ On 11
Dansi Ay T4 QamiAy,

I+ MAtn+1 MAth
901 n+1

12



3.4.3 Algorithmic tangent

The tangent requires several unusual derivatives. It is formed as:

OR4 O0R4 O0R4 O0R4 OR4
dR1 = s doy, 1 dqp, 1 dé, - dT, — i dtpy1 =
! aU'n—i-l Tnt1 + 5'01n+1 A+t L aEn+ Entl T a n+1 i + atn—i—l 1
OR» ORs OR»
dRs = :do, : dqy, : de 2 dT, s dt =
2 Do Ontl + 53— 8qn+1 Adn+1 + 37— Denit En+tl T 57— T s ntl + 55— Dty n+1
Divide through and substitute...
dqn OR OR, dT, OR, dT, OR, dt,
Jow A1 +J0g : fl+1 : 1 I L : +1 o : +1 L, .+1 _
dént1 6€n+1 aTn-{-l d5n+1 8Tn+1 dént1 atn—i—l d€7L+1
da, OR ORy  dT, OR, dT,, ORy dt,
aniAn+1+Jqq1(.1H 2 2 Ginil 2 Gny 2 Bny1
dsn—i—l asn-ﬁ-l 8T‘n-i-l dsn—i—l 3Tn+1 dsn—i—l 8tn+1 d€n+l

We will need to revisit this, but as an approximation assume:

1. There is no explicit time dependence or the time dependence is small
compared to the dependence on the physical variables.

2. The temperature change is gradual (need to consider this...).

With these assumptions:

JO'O' : An+1 + Jaq :

Joo 1 Api1 +Jgq:

dqn 41
dén+1
dqn+1
dén+1

and this is basically our old algorithm:

X =

Y =

JO’O’ : An+1 + Jaq :

0R4
a‘énﬂ

ORs
8én+1

Jqd : An—i—l + Jqq

An+1 — (Jaa

—Jog:

And the actual tangent is just

Tn+1

dQn+1

X
N

dqn+1

Y =
d€n+1 *

J—l

qq

:Jq(,)71 : (ng :J71

qq 1Y - X)

1

= A —_—
n+1 Athr]

13



3.4.4 Application to plasticity

Define the rates as:
o(o,q,e,T,t) = Cr(é—gw—gTT'—gt)
q(O’,q,E,T, t) = h77+hTT+ht

The derivatives are then

9o _ (08, 97\ _Ogr. . Ot
9o C-<aﬂ (gv%a) do L &y)
Jo _ (98 oy\ _Ogr. . O
oq ©: ( oq (g7® 8(1) dq s 8(1)
04 oh, . 0¥\ oOhg. oh,
9o aﬂ*(h@aa)*aa”aa
94 oh, . 9%\ Ohr . Oh,
2 e’} h L g =t
0q 8q7+<"’®80>+8q +8q
oo

8én+1_ C
oq

8én+1 0

14



Chapter 4

Meta-model algorithms

4.1 Combined plasticity and creep

The idea is to combine one of the base models described in the previous chapter
with some rate dependent creep law.
Start with two functions:

ep €p ep
0n+1 (5n+17 € hn7 Atn+17 Tn+1)
as defined in the previous chapter and
cr cr cr
€n+1 (€n ) O'n+1, Atn—i—lv Tn-i—l)

defined above. We want to make a combined update so that

— ep cr
Ent1 = Ent1t Enq1
cr _ ep
Un+1 - U71,+1'

Combine these two equations into the residual
_ .ep ep
R = €n+1+€qc17;rl (En - Efy,pv On+t1 (En+1v 52p7 hna Athrlv Tn+1) ) Atn+17 Tn+1) —€n+t1

which means we need to supplement the history variables of the elastic-plastic

model with €°?. We want to solve this residual equation for €, | using Newton’s

method. The Jacobian of this residual is

dR dey’ | doptq
ep - €p
de, dony1 de,
dopi1 » . . . de;”
where d‘:ep“ is the algorithmic tangent of the rate independent model and - :11
n+1 n

is an output of the creep model. Finally, the overall algorithmic tangent is

-1
dony _ (deiliy | (doni !
denr1  \do,iy dey’

which is annoying but doable.
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4.2 Kocks-Mecking regime model

The goal of this meta-model is to switch between different material representa-
tions depending on the normalized thermal activation energy.

The model takes as parameters a collection of material models, as definined
in the previous chapter, a collection of activation energies, and the constants
required to compute the normalized activation energy:

KT
= — 1n—.
9= w3 e

Let the material models be represented by the tuples of functions
[(01,A1,h1), (02, A2, ha) .. (01, A1, 1), (00, Ay By

and the cutoffs be
[917927 .. 'gnfl] .
The meta model first computes the normalized activation energy of the update

from the total strain rate and temperature. It then dispatches the call for a
stress update to the appropriate function through the rule:

(01,A1,h1) g<q
(UaAah) = (o-iaAiahi) gi—1 < g S i
(O'mAnahn) 9> Ggn-1-

4.3 Continuum damage mechanics

4.3.1 Most generic

A damage model is a function

! /
Opt1 — o' (Tni1 Ppg1, Wngt)

Wnt1 = w (a-n+1; hn+1a wnJrl)

where 0,11 and h,1 are the stress tensor and history variables resulting from
an umodified stress update, using one of the models above, and w, 41 is a set
of damage variables. The model returns the damaged stress tensor o7, , the
set of composite history variables A}, ; = [ hni1 wpgr | and the modified
tangent

/
/ dan+1

n+1 =

d5n+1

Of course these equations must be solved simultaneously with the original ma-
terial update, complicating the stress update algorithm.

16



4.3.2 Scalar

A scalar damage model simplfies the general equations to

O';H-l = (1= wnpy1) Ont1

Wn+1 = w (o'nJrla hn+17wn+1)

with wp4+1 € [0,1]. The modified tangent is

A;z+1 = (1 - wn+1) A, —

4.3.3 Simplified scalar

In this simplified case the dependence on the history of the undamage model is

limited to the equivalent plastic strain. So:

/
Opt1 = 1 —wni1] Ongr
. . / kS
Wnt1 = w (Wn+170'n+175p)
. 2. .
&y = —€,: E
P 3% &p

4.3.3.1 Update

Our combined residual equation is

R2 —Wn41 + wp + o:)71,+1At

for unknowns x = [ o), wny1 |

[ R, } _ { o1 — [ —wng1] ony1 (Aenir) } _ [ 8 }

For convience we’re going to assume we can additively decompose the update

into two parts:

& (Wnt1, 07415 Ep) = Wp (W1, 07,11) Ep + Do (Wn1,07041)

which makes the residual

[ Ry | _ [ Oyt — 1 — wati] ongr (Aena) } _ { g }

R2 ] —Wn+1 + wn + c’upAép + c‘qut

and the Jacobian

|:J11 J12} o 1 oA o On+1
- Wp = ow . Ep Wp = ow
Jo1 Ja2 | Bor Bt e At H gt o A g

]

Now the question is can we get A&, without explicit knowledge of the plastic

strain?
g, =€—é.=é-C':o

. 2 2
gp:\/3ép:ép:\/3(é:é—i—C_l:0:0_1:0—25':0_1:0')
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4.3.3.2 Tangent
4.3.4 Chaboche

/

U'n+1 = (]. — UJn+1) 0'n+1
(L) _ a¢n+1
n+1 ayn+1
On+1 = ¢(Wn+17yn+1vsn+lvép)
o? 2 o 2
ntl = —— %  _|Z(1+v)+3 121/<m)
Ynit1 2E(1—D)2 3( ) ( ) Oeq
2 o 2
Spg1 = Tep §(1+1/)+3(1—21/) (J”;)
. 2, .
€p = §€p 1 Ep
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Chapter 5

Implemented class hierarchy
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