
Bisimulation Verifier User Manual

Takahiro Kubota1, Yoshihiko Kakutani1, Go Kato2,
Yasuhito Kawano2 and Hideki Sakurada2

1 The University of Tokyo, Tokyo, Japan
{takahiro.k11 30,kakutani}@is.s.u-tokyo.ac.jp

2 NTT Communication Science Laboratories, Kanagawa, Japan
{kato.go,kawano.yasuhito,sakurada.hideki}@lab.ntt.co.jp

Abstract

This is a user manual for the qCCS bisimulation verifier introduced in a paper “Au-
tomated Verification of Equivalence on Quantum Cryptographic Protocols”. This manual
is for the verifier version 0.6 updated on April 29, 2013, which requires ruby’s version
1.9.2p290 or 1.8.7.

1 Usage

In this section, the usage of the verifier is introduced.

Usage

Please run verifier.rb by ruby.

$ ruby verifier.rb option file

file is a script for the verifier. The verifier reads file and prints the result. If no option is set, the
verifier finds two configurations in file and verify their bisimilarity using the equations defined
in file.

Options

-s, show all configurations defined in file without checking bisimilarity
-t, show transition trees, counts the number of transitions and paths for all configurations
defined in file without checking bisimilarity
-d, show information when the verifier returns false
-u, show two partial traces when they are not equal
-v, show processes, environments and partial traces of two configurations in each step

* If no option is set, only the bisimilarity check procedure runs.
* The options are mutually exclusive.

Examples

$ ruby verifier.rb scripts/shor-preskill.scr

$ ruby verifier.rb -s scripts/shor-preskill.scr

$ ruby verifier.rb -v scripts/qtel.scr

$ ruby verifier.rb -d scripts/epr or prob.scr

1

Prover User Manual Kubota et al.

2 Scripts

In this section, how to write scripts (file) is introduced. Lines that begin from “# ” are ignored
as comments.

2.1 Declaration

Before formalizing processes and environments, symbols need to be declared that are described
in processes or environments.

• natural number symbols with the expression nat n;. A symbol 1 is initially defined in
the framework. (example) nat n; nat m;

• channel names with the expression channel c : n;, where n is a natural number symbol
defined beforehand. Through channel c, quantum variable with length n are communi-
cated. (example) channel c1 : n;

• quantum variables with the expression qvar q : n;, where n is the qubit-length of q.
(example) qvar q : n; qvar r : n; qvar s : n;

• symbols for quantum states (i.e. density operators) with the expression dsym X :

n1,...,nk;. X is a quantum state which k quantum variables with qubit-length n1, ..., nk

are in. (example) dsym EPR : n,n; dsym PROB : n,n; dsym EVE : m;

• symbols for superoperators with the expression operator E : n1,...,nk;. E acts on
quantum variables with qubit-lengths n1, ..., nk. (example) operator hadamards : n;

2.2 Definition of Configurations

Processes, environments, configurations and equations on environments are then defined.

• A process is defined with the expression process process name P end.
(example)

process hadamards_send

hadamards[q].c1!q.discard(r)

end

• An environment is defined with the expression environment environment name ρ end.
(example)

environment epr_env

EPR[q,r] * EVE[s]

end

• A configuration is defined with the expression configuration proc process name env

environment name end.
(example)

configuration C1

proc hadamards_send

env epr_env

end

2

Prover User Manual Kubota et al.

If more than two configurations are defined, bisimilarity of the first two configurations is
verified.

• An equation is defined with the expression equation equation name ρ = σ end, where
ρ and σ are environments. For the quantum state, description [q̃] is permitted, which
matches arbitrary quantum state of q̃.
(example)

equation E1

Tr[q](hadamards[q](EPR[q,r])) = Tr[q](hadamards[q](PROB[q,r]))

end

equation E2

hadamards[q](hadamards[q](__[q])) = __[q]

end

Example

Quantum teleportation Quantum teleportation protocol is formalized as a configuration Tel

in figure 1. A configuration TelSpec is a specification of quantum teleportation, which merely
swaps input’s and output’s quantum states. With equation E1 and E2, Tel and TelSpec are
automatically proven to be bisimilar. Interpretation of constant symbols, quantum operators
and quantum states that appear in this example is as follows. Let I,X and Z be identity, bit
flip and phase flip operators respectively.

• constant symbol 2 are trivially interpreted to natural number 2. m is interpreted to an
arbitrary natural number m.

• density matrix symbols EPR, ZERO and AFTER are interpreted to |00〉〈00| + |00〉〈11| +
|11〉〈00|+ |11〉〈11|, |00〉〈00| and |0000〉〈0000|+ |0101〉〈0101|+ |1010〉〈1010|+ |1111〉〈1111|,
respectively. ANY and EVE are interpreted to arbitrary quantum states with defined di-
mension.

• operator symbols cnot, hadamard and swap are trivially interpreted.

• measure is interpreted to Emeasure(ρ) = AρA†, where A = |00〉〈00| ⊗ I ⊗ I + |01〉〈01| ⊗ I ⊗
X + |10〉〈10| ⊗X ⊗ I + |11〉〈11| ⊗X ⊗X.

• telproc is interpreted to Etelproc(σ) = BσB†, where B = |00〉〈00| ⊗ I + |01〉〈01| ⊗X +
|10〉〈10| ⊗ Z + |11〉〈11| ⊗XZ.

Failure Example The script below is an example of failure of verification. With the option -d,
the verifier shows processes, environments and partial traces when the verification fails. This
could be useful to find equations that are necessary to verify bisimulation of configurations.

$ ruby verifier.rb -d scripts/epr or prob err.scr

...

A’s env. after trace out:

e|-["Tr", ["q1", "q2", "q3", "q6"]]

e|-["*E0", ["qEVE"]]

e|-["EPR", ["q3", "q4"]]

e|-["EVE", ["qEVE"]]

3

Prover User Manual Kubota et al.

nat 2;

nat m;

channel c : 2;

channel d : 1;

qvar q : 1;

qvar q1 : 1;

qvar q2 : 1;

qvar x : 2;

qvar qE : m;

dsym EPR : 1,1;

dsym ZERO : 2;

dsym AFTER : 1,1,2;

dsym ANY : 1;

dsym EVE : m;

operator cnot : 1,1;

operator hadamard : 1;

operator measure : 1,1,2;

operator telproc : 2,1;

operator swap : 1,1;

process Tel_Proc

((cnot[q,q1].

hadamard[q].

measure[q,q1,x].

c!x.discard(q,q1)

||

c?y.telproc[y,q2].

d!q2.discard(y)

)/{c})

end

environment Tel_Env

EPR[q1,q2] * ZERO[x]

* ANY[q] * EVE[qE]

end

configuration Tel

proc Tel_Proc

env Tel_Env

end

process TelSpec_Proc

swap[q,q2].d!q2.discard(q1,x,q)

end

environment TelSpec_Env

EPR[q1,q2] * ZERO[x]

* ANY[q] * EVE[qE]

end

configuration TelSpec

proc TelSpec_Proc

env TelSpec_Env

end

equation E1

telproc[x,q2](measure[q,q1,x](

hadamard[q](cnot[q,q1](

EPR[q1,q2] * ZERO[x] * ANY[q]))))

=

ANY[q2] * AFTER[q,q1,x]

end

equation E2

swap[q,q2](EPR[q1,q2] * ANY[q])

=

EPR[q1,q] * ANY[q2]

end

Figure 1: Code of quantum teleportation

B’s env. after trace out:

e|-["Tr", ["q1", "q2", "q3", "q6"]]

e|-["*E0", ["qEVE"]]

e|-["EVE", ["qEVE"]]

e|-["PROB", ["q3", "q4"]]

They cannot be transformed to the same expression because user-defined equation cannot
be applied any more. With -u, the verifier only shows partial traces while -d shows all other
information. These options will be useful to find equations that are necessary to verify bisimi-
larity. In this case, an equation Tr[q3](EPR[q3,q4]])=Tr[q3](PROB[q3,q4]]) is found to be
necessary.

4

