
— AnnoFlex —
An annotation-based code generator for lexical scanners

Written in Java, For Java

Version 1.0 (2018-05-27)

Stefan Czaska

We can only see a short distance ahead,
but we can see plenty there that needs to be done.

— Alan M. Turing [9]

AnnoFlex 1.0
Copyright (c) 2018, Stefan Czaska. All rights reserved.
Build Id: 114-20180527-684

Contents
1 Preparations 6

1.1 Licensing . 6
1.2 System Requirements . 6
1.3 Installation . 6
1.4 IDE Integration . 7

1.4.1 Eclipse . 7
1.4.2 IntelliJ IDEA . 8

2 Scanner Definition 10
2.1 The @expr Tag . 10
2.2 Base Expressions . 11

2.2.1 Single Character . 11
2.2.2 Concatenation . 11
2.2.3 Union . 12
2.2.4 String Sequence . 12
2.2.5 Quantifier . 12
2.2.6 Modifier . 13
2.2.7 Grouping/Nesting . 13
2.2.8 Character Class . 13
2.2.9 Lookahead . 16

2.3 Escape Sequences . 16
2.3.1 Escaped Characters . 16
2.3.2 Escaped Character Classes . 17
2.3.3 Escaped Character Sequences . 18

2.4 Unicode Character Properties . 19
2.4.1 Binary Properties . 20
2.4.2 Script, Block and Age . 22
2.4.3 General Category . 23
2.4.4 Character Names . 25

2.5 Lexical States . 25
2.5.1 Start Conditions . 25
2.5.2 Condition Areas . 26
2.5.3 Lexical State Stacks . 27

2.6 Macros . 28
2.6.1 The @macro Tag . 28
2.6.2 Global and Local Macros . 29
2.6.3 Examples . 29

2.7 Syntax Summary . 31

3

3 Code Generation 33
3.1 The Code Area . 33
3.2 Running the Code Generator . 33
3.3 Generation Results . 35
3.4 Scanner Input . 36

3.4.1 String Mode . 36
3.4.2 Reader Mode . 36

3.5 The Scanning Algorithm . 37
3.6 List of Default Code Sections . 38

3.6.1 The logo section . 39
3.6.2 The statistics section . 40
3.6.3 The tableConstants section . 40
3.6.4 The lexicalStateConstants section 41
3.6.5 The helperConstants section 41
3.6.6 The dotFields section . 41
3.6.7 The lexicalStateFields section 42
3.6.8 The matchFields section . 42
3.6.9 The helperFields section . 42
3.6.10 The tableMethods section . 43
3.6.11 The dotMethods section . 43
3.6.12 The lexicalStateMethods section 44
3.6.13 The matchMethods section . 44
3.6.14 The scanMethods section . 45
3.6.15 The helperMethods section . 45

3.7 List of String-Mode Code Sections . 45
3.7.1 The stringFields section . 46
3.7.2 The regionFields section . 46
3.7.3 The stringMethods section . 46
3.7.4 The regionMethods section . 47

3.8 List of Reader-Mode Code Sections . 47
3.8.1 The readerFields section . 47
3.8.2 The bufferFields section . 48
3.8.3 The readerMethods section . 48
3.8.4 The bufferMethods section . 48

4 Options 50
4.1 The @option Tag . 50
4.2 List of Options . 50

4.2.1 The logo option . 51
4.2.2 The statistics option . 52
4.2.3 The headings option . 52
4.2.4 The methodName option . 52
4.2.5 The methodThrows option . 52

4

4.2.6 The defaultReturnValue option 53
4.2.7 The inputMode option . 53
4.2.8 The bufferStrategy option . 54
4.2.9 The bufferIncrement option 54
4.2.10 The functionality option . 54
4.2.11 The javadoc option . 55
4.2.12 The visibility option . 56
4.2.13 The internal option . 56
4.2.14 The noMatchAction option . 57
4.2.15 Examples . 58

5 Infrastructure 59
5.1 The Generation Process . 59
5.2 Limitations and Restrictions . 59
5.3 Performance . 60

References 62

5

1 Preparations
1.1 Licensing
AnnoFlex is provided to you under the terms and conditions of the 3-Clause BSD license.
The full text of this license can be found in the root directory of the installation package
of AnnoFlex. You must read and accept this license before you may install and use
AnnoFlex.

1.2 System Requirements
AnnoFlex has the following system requirements:

• The code generator requires Java 7 or higher.

• The generated scanner code is compatible to Java 1.1.

• CPU and memory requirements are moderate. The code generation for a typical
scanner takes less than a second and does not require more than 32 MB of RAM.

For an overview about the CPU and memory requirements of various scanners have a
look at the performance section in chapter 5.3.

1.3 Installation
In order to run AnnoFlex it is not mandatory necessary to install it in your system.
Nevertheless, for a comfortable usage it is recommended to install it. This ensures that
it can be used everywhere in your system. To do this extract the downloaded installation
package and perform the following two environment variables adjustments:

1. Create a new environment variable called ANNOFLEX_HOME which points to the
root directory of the extracted AnnoFlex package.

2. Add an entry to your PATH environment variable which points relative to the bin
directory of AnnoFlex. For example: %ANNOFLEX_HOME%\bin.

The extracted installation package should have the following structure:

6

File Description

\bin Contains scripts to start AnnoFlex.
\examples Contains code examples.
\lib Contains the compiled source code of AnnoFlex.
\source Contains the source code of AnnoFlex.
changelog.txt A list of all changes and improvements of all versions of An-

noFlex.
license.txt The terms and conditions under which it is allowed to use and

redistribute AnnoFlex.
manual.pdf The manual of AnnoFlex.
readme.txt Describes the most important things you need to know about

AnnoFlex.

Table 1: Content of the installation package.

1.4 IDE Integration
In order to be able to update the code of your scanner definitions within your IDE with
just a few clicks it is recommended to add AnnoFlex as an external tool. The following
two sections describe how this can be done for Eclipse and IntelliJ IDEA. Furthermore
it is recommended to use a keyboard shortcut to launch the external tool. This makes
the code update of your scanner definition very comfortable especially during the main
development phase where typically a lot of changes are made.

1.4.1 Eclipse

Eclipse provides an External Tools Configurations dialog in which launch configurations
for external tools can be created. In order to add AnnoFlex as such a tool perform the
following steps:

1. Open the External Tools Configurations dialog.
2. Click on the New launch configuration button or double click the Program tree

node in order to create a new configuration.
3. Set the Name of the configuration to AnnoFlex.
4. In the Main tab use the following settings:

a) Set Location to ${env_var:ANNOFLEX_HOME}/bin/annoflex.bat
b) Set Arguments to ${resource_loc}

5. In the Refresh tab use the following settings:
a) Enable Refresh resources upon completion.

The following screenshot shows how the Main tab should look after these changes have
been made:

7

Figure 1: The External Tools Configuration dialog in Eclipse with a configuration for
AnnoFlex.

1.4.2 IntelliJ IDEA

Intellij IDEA provides support for external tools via the External Tools property page of
the Settings dialog. In this dialog launch configurations for external tools can be created.
In order to add AnnoFlex as such a tool perform the following steps:

1. Open the Settings dialog.
2. Click on Tools and then on External Tools.
3. Click on the Add button in order to create a new Tool entry.
4. Set the Name of the configuration to AnnoFlex.

8

5. In the Options section use the following settings:
a) Enable Show console when a message is printed to standard output stream.
b) Enable Show console when a message is printed to standard error stream.

6. In the Tool settings section use the following values:
a) Set Program to annoflex.bat
b) Set Parameters to $FilePath$
c) Set Working directory to $ProjectFileDir$

The following screenshot shows how the Edit Tool dialog should look after these changes
have been made:

Figure 2: The Edit Tool dialog in IntelliJ IDEA with a configuration for AnnoFlex.

9

2 Scanner Definition
Generated scanners are usually defined via lexical rules. A lexical rule assigns a code
fragment to a regular expression. The regular expression is detected by a scanning
algorithm and the code fragment is called during this algorithm every time the regular
expression is found in the input. AnnoFlex uses Javadoc-tag-based annotations for the
definition of lexical rules. No common Java annotations are used. The main reason for
this design choice is that no double escaping is necessary inside Java comments in order
to express escaped expressions. This simplifies the syntax in contrast to expressions
inside regular annotations. The following sections describe the syntax of expressions,
explain the concept of lexical states and describe how macros can be used to reduce the
size of a scanner definition.

2.1 The @expr Tag
Lexical rules can be defined in AnnoFlex with the @expr tag. In order to do that the tag
must be placed in a Javadoc comment of a non-static class method with no parameters
but any type of return value. The content of the tag must be a regular expression. It
forms in conjunction with the annotated method a lexical rule. The syntax of the @expr
tag can be summarized as follows:

/**
* @expr <regex>

*/
void createToken() {

// Place token creation code here.
// Use return values to return specific tokens.

}

Each method may only have one @expr tag. If multiple expressions are necessary then
this can be achieved with the union operator (|, see section 2.2.3) and possibly mul-
tiple lines if the expression is long. The annotated method may not have parameters.
The return type may only be a primitive type (e.g. int or short) or a simple ref-
erence type (e.g. String). Array types (e.g. int[]) and parameterized types (e.g.
List<String>) are currently not supported. The return type of all methods of lexical
rules must be equal. Sole exception are void-methods which can always be used in
addition to non-void methods. They are called on matches of regular expressions in
the same way as non-void methods, but after the call the lexical analysis is continued
instead to stop it and to return to the caller. If all methods have void as their return
type then boolean is used as the return type of the lexical analysis. In that case, true
is used to indicate a match and false in all other cases.

10

2.2 Base Expressions
This section describes the most important types of regular expressions in AnnoFlex. All
other expressions which do not fall into this category can be considered as specialized
expressions and are explained in separate sections after this one. An overview of all
available base expressions including a short description gives the following table:

Expression Description

Single Character Matches s single character.
Concatenation Concatenates two or more expressions.
Union Unions two or more expressions.
String Sequence A character sequence with a reduced number of meta characters.
Quantifier Specifies how often an expression may occur.
Modifier Transforms a simple expression into a complex expression.
Grouping/Nesting Ensures atomicity and overrides operator precedence.
Character Class Defines a set of characters.
Lookahead Looks characters ahead but excludes them from the final match.

Table 2: Expression types.

2.2.1 Single Character

A regular expression that matches a single character can be expressed via the character
itself. This is possible for all characters except meta characters. Meta characters are
characters that are used to describe the structure of a regular expression. They must be
escaped with a backslash if they should be part of the words that are described by the
regular expression. Following a few examples of single character expressions:

@expr a # matches the letter "a"
@expr 1 # matches the digit "1"
@expr \\ # matches the backslash character "\"

2.2.2 Concatenation

A regular expression that straight follows another expression represents a concatenation.
A concatenation matches the text of the first expression followed by the text of the second
expression.

@expr ab # matches "ab"
@expr AnnoFlex # matches "AnnoFlex"

11

2.2.3 Union

The union of two regular expressions is an expression which matches the text of the first
expression or the text of the second expression. Unions can be expressed via the union
operator |.

@expr a|b # matches "a" or "b"
@expr Hello | World # matches "Hello" or "World"

2.2.4 String Sequence

A string sequence is a special version of the concatenation. It only allows single characters
and escape sequences and has a reduced set of meta characters in order to simplify the
creation of keyword-like expressions. The only meta characters in string sequences are
the backslash character \ and the quote character ". The backslash can be used to
express escape sequences and the quote character can be used to end the string sequence.

@expr "Hello World" # matches "Hello World"
@expr "+*?" # matches "+*?"

2.2.5 Quantifier

Quantifiers specify how often an expression may occur. Possible specifications are either
fixed ranges or ranges with an unbounded upper limit. The following table lists all types
of quantifiers:

Quantifier Name Description

? Zero-Or-One Once or not at all.
* Zero-Or-More Zero or more times.
+ One-Or-More One or more times.
{n} Exactly Exactly n times.
{n,} At-Least At least n times.
{,n} Up-To Up to n times.
{n,m} From-To At least n times but not more than m times.

Table 3: Syntax and description of quantifiers.

@expr a? # one single "a" or nothing
@expr ab+ # "a" followed by one or more "b"
@expr a{2,4} # two, three or four "a" characters

12

2.2.6 Modifier

Modifiers can be used to create complex expressions based on the combination of a simple
expression and a transformation algorithm. A modified expression consist of a modifi-
cation character followed an arbitrary expression. The modification character specifies
the transformation algorithm and the expression after the modification character is the
expression which is transformed into the complex expression. AnnoFlex supports the
following modifiers:

Modifier Name Description

! Not Creates the complement of the specified expression. The
complement of an expression accepts everything that is not
accepted by the expression.

~ Until Creates an expression that matches everything up to and
including the specified expression. For a given regular
expression r the Until modifier is an abbreviation for
!([ˆ]*r[ˆ]*)r.

Table 4: Syntax and description of modifiers.

@expr !a # matches everything but an "a"
@expr ~a # matches everything up to and including an "a"

2.2.7 Grouping/Nesting

The order in which operators of regular expressions are evaluated depends on the priority
of the operators. This priority is fix and can not be changed which results in a default
evaluation order which always applies. If an order other than this default order is
necessary then this can be achieved by using round brackets. A group of expressions
that is surrounded by round brackets represents a single expression exactly as if the group
would consist of one single expression without the brackets. This way it is possible to
apply operators to any group of expressions independent of the operator priorities inside
this group. The following examples demonstrate this:

@expr (a|b)(c|d) # equals [ab][cd]
@expr (ab)+ # one or more "ab"

2.2.8 Character Class

Character classes can be used to create any type of character sets. For the creation of
these sets multiple components are available. On the top-most level of the character
class there are sequences, sequence operators and a negation operator. Sequences are

13

evaluated from left to right and between each pair of two sequences there must be an
operator which defines how the right sequence is merged into the left sequence. Inside
a sequence there are single characters, character ranges and nested character classes.
They are written one after the other without an explicit operator between them. They
are merged with an implicit union operator into a character set. The negation operator
at the top-most level of the character class negates the entire character class after all
sequences have been processed. The following table lists all syntactic possibilities inside
character classes:

Type Name Associativity Priority

[a] Single character n/a 1
[a-z] Character range n/a 1
[[a-z]] Grouping/Nesting n/a 1
[abc0-9] Union (implicit) n/a 2
[abc||0-9] Union (explicit) left-to-right 3
[a-z&&opq] Intersection left-to-right 3
[a-z--opq] Set difference left-to-right 3
[a-z~~b-y] Symmetric difference left-to-right 3
[ˆa] Negation n/a 4

Table 5: Syntax and description of character class components.

Following some examples with special cases that show how character classes are resolved:

@expr [^] # all characters
@expr [] # space character
@expr [+-] # sign character
@expr [[^]---+] # equals [[^]--[-+]]
@expr [a-z----x] # INVALID, two consecutive operators
@expr [] # INVALID, empty set
@expr [a--a] # INVALID, empty set

POSIX Character Classes
In POSIX there are multiple predefined character classes for important topics like letters
and digits. AnnoFlex supports these character classes but only in their ASCII version.
All corresponding Unicode characters above code point 127 are not part of these char-
acter classes.

14

Character Class Description

[[:alnum:]] Letters and digits [a-zA-Z0-9]
[[:alpha:]] Letters [a-zA-Z]
[[:ascii:]] All ASCII characters [\x00-\x7F]
[[:blank:]] Space or tab [\x09\x20]

[[:cntrl:]] Control characters [\x00-\x1F\x7F]
[[:digit:]] Decimal digits [0-9]
[[:graph:]] Printing characters, excluding space [\x21-\x7E]
[[:lower:]] Lowercase letters [a-z]
[[:print:]] Printing characters, including space [\x20-\x7E]
[[:punct:]] Printing characters, excluding letters, digits and space

!"#$%&’()*+,-./:;<=>?@[\]ˆ_‘{|}~
[[:space:]] Whitespace [\x09-\x0d\x20]
[[:upper:]] Uppercase letters [A-Z]
[[:word:]] Word characters [a-zA-Z0-9_]
[[:xdigit:]] Hexadecimal digits [a-fA-F0-9]

Table 6: POSIX character classes.

POSIX character classes are only evaluated inside normal character classes. Outside of
character classes they are not resolved and represent a normal character class which has
the characters of the POSIX class name and a colon in their character set. An example
of this case can be found in the following list of examples:

@expr [[:xdigit:]]+ # hex numbers
@expr [[:alpha:]][[:word:]]* # simple identifiers
@expr [[:^letter:]--[:blank:]] # no letters and no spaces
@expr [:digit:] # VALID but equals [:digt]

Full Stop Character Class (., \N, \V)
A dot (.) and the escape sequences \N and \V represent a full stop character class which
stands for all characters which are not a Unicode newline character:

[ˆ\x0a-\x0d\x85\u2028\u2029]

The dot has this meaning only outside of character classes. Inside a character class it
simply represents a single dot character. The escape sequences \N and \V do not have
this restriction. They can be used inside and outside of character classes.

15

@expr //.* # end-of-line comment
@expr [\V--\t] # full stop also at tabs

2.2.9 Lookahead

Lookaheads can be used to exclude a specific part at the end of an expression from the
final match result. A lookahead expression consists of two parts, a content part and a
condition part. The content part is the part of the expression which should actually be
matched and the condition part is an expression which must follow the content expres-
sion but without being part of the final match. Lookaheads can be read as “x if followed
by y”. Lookaheads are expressed via the slash (/) operator. It must be placed between
the content expression and the condition expression. Lookahead expressions may also
occur multiple times in an expression but they must be placed at the top-most level of
the expression and surrounded by round brackets and separated via the union operator.
An example for that case can be found in the following list of examples:

@expr a / b # "a" if followed by "b"
@expr a | b / c | d # equals [ab]/[cd]
@expr a | (b / c) | d # equals [a]|(b/c)|[d]
@expr (a / b) | (c / d) # two separate lookaheads

Lookahead expressions should be used with care as they are slower than expressions
without a lookahead. This results from the fact that the condition part is always thrown
away after the match has been determined. If the next run of the scanner starts im-
mediately after the content expression, which is usually the case, then the condition
characters must be read again. This is especially slow if the condition part is very long.
The worst case is a condition expression of variable length which always reaches up to
the end of the input. Such a condition can lead to a scanner runtime of O(n2). Be-
cause of this it makes sense to use lookahead expressions only if real necessary and if so
then they should have whenever possible a condition length which is fix and as short as
possible.

2.3 Escape Sequences
AnnoFlex supports three different types of escape sequences. One for characters, one
for character classes and one for character sequences. Each escape sequence type can be
used at all places where the corresponding expression type is allowed. Escape sequences
are always started with a backslash followed by at least one character. The exact syntax
varies from sequence to sequence and is explained in the next sections.

2.3.1 Escaped Characters

Characters can be escaped in many different ways. AnnoFlex supports the syntax for
single letters, numerical values and Unicode names. The following table lists all possi-

16

bilities in detail:

Sequence Description

\a The alarm bell character 0x07
\b The backspace character 0x08 (only inside a character class)
\cX The control character corresponding to X
\e The escape character 0x1b
\f The form feed character 0x0c
\n The line feed character 0x0a
\N{name} The Unicode character with the specified name
\o{O..O} The character with octal value O..O of arbitrary length
\r The carriage return character 0x0d
\t The tab character 0x09
\uHHHH The character with the specified 16-bit hexadecimal value 0xHHHH
\u{H..H} The character with hexadecimal value 0xH..H of arbitrary length
\UHHHHHH The character with the specified 24-bit hexadecimal value 0xHHHHHH
\xHH The character with the specified 8-bit hexadecimal value 0xHH
\x{H..H} The character with hexadecimal value 0xH..H of arbitrary length
\0 The character with the specified 8-bit single digit octal value "0"

(0 to 7)
\00 The character with the specified 8-bit double digit octal value "00"

(00 to 77)
\000 The character with the specified 8-bit triple digit octal value "000"

(000 to 377)
\CHAR The specified character if it is not a letter or digit

Table 7: Escape sequences for single characters.

Following some examples of escaped characters:

@expr \a # alarm bell character
@expr \b # backspace character

2.3.2 Escaped Character Classes

Escape sequences can also be used to express character classes. AnnoFlex supports all
common sequences for letters, digits and whitespace. The general purpose sequence for
Unicode character properties is also supported. Further details about this topic can be
found in section 2.4. The following table lists all supported types of escape sequences
for character classes:

17

Sequence Description

\d An ASCII digit [0-9]
\D An ASCII non-digit [ˆ\d]
\h A Unicode horizontal white space character [\x09\x20\xa0

\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]
\H A Unicode non-horizontal whitespace character [ˆ\h]
\N A Unicode non-vertical whitespace character [ˆ\v]
\p{spec} A Unicode character with the specified property
\P{spec} A Unicode character without the specified property
\s An ASCII whitespace character [\t\n\x0B\f\r]

\S An ASCII non-whitespace character [ˆ\s]
\v A Unicode vertical whitespace character

[\x0a-\x0d\x85\u2028\u2029]
\V A Unicode non-vertical whitespace character [ˆ\v]
\w An ASCII word character [a-zA-Z0-9_]
\W An ASCII non-word character [ˆ\w]

Table 8: Escape sequences for character classes.

Following some examples of escaped character classes:

@expr \d # ASCII digit
@expr \h # horizontal whitespace character

2.3.3 Escaped Character Sequences

For character sequences there exists two escape sequences. The first one stands for all
Unicode possibilities to express a line terminator and the second one is a general purpose
sequence which escapes everything until a special end sequence occurs. The following
table describes both sequences in detail:

Sequence Description

\R Unicode newline sequence: \x0d\x0a | [\x0a-\x0d\x85
\u2028\u2029]

\Q\E Quote sequence: Starts quoting with \Q and ends it with \E. All
characters are interpreted as simple characters and lose their special
meaning if they have one. This also includes escape sequences. Only
\E is detected as a valid escape sequence and ends the quote sequence.

Table 9: Escape sequences for character sequences.

18

Following some examples of escaped character sequences:

@expr \R # newline sequence
@expr \Q\R\E # matches "\R"

2.4 Unicode Character Properties
In Unicode there are a large number of predefined character properties. They assign
property-specific values to all Unicode characters. These values can be used in two
principle ways. On the one hand it is possible to query the value for a single character,
for example in order to check whether a specific character is a digit or not and on the
other hand it is possible to determine for a property all characters which have a specific
value, for example in order to determine the set of all characters which are digits. The
second use-case is particularly interesting for the definition of character classes in regular
expressions. In order to express a character class via Unicode character properties the
escape sequences \p and \P can be used. They combine a property name, a property
value and an assignment operator in order to express a character class. The syntax is
as follows:

UnicodeProperty := PositiveSpec | NegativeSpec

PositiveSpec := "\p{" Spec "}"
NegativeSpec := "\P{" Spec "}"

Spec := BinaryPropertyName
| ScriptValue
| GeneralCategoryValue
| PropertyName (":" | "=" | "!=") PropertyValue

The positive specification (p, lowercased) uses the specified character set as is. The
negative specification (P, capitalized) uses the complement of the specified character
set which means that all character which are not part of the specified set are part
of the final set. The inner specification consists of four different cases. The last one
(name, operator and value) is a generic selector. Depending on the used operator it
selects all characters with a specified property value or all characters that do not have a
specified value. The first three cases (binary, script and general category) are shortcuts
for commonly occurring properties. Unicode guarantees that these properties will never
have intersections in their names and values. This makes it possible to omit the value
(binary) or name (script and general category) and the operator and to specify only the
remaining part as a single value.

19

2.4.1 Binary Properties

A binary property is a property which only knows two values. One for binary true and
one for binary false. A character for which a binary property is true has the specified
Unicode property and if the binary property is false then it does not have the specified
Unicode property. The digit property can be used as a simple example. A character is
either a digit or not. If it is a digit then the value of the binary property is true otherwise
it is false. In order to make the definition of binary properties more comfortable there
are multiple values available to express both cases. Besides a long version, which is
yes and no, there is also a short version, which is y and n. Additionally there exists
alternative aliases for each of these values which makes in total eight different values
which are summarized in the following table:

Long Short Additional Aliases

Yes Y True, T
No N False, F

Table 10: Value aliases of binary properties.

The following list of examples demonstrates how binary properties and their value aliases
are used:

@expr \p{whitespace=yes} # whitespace characters
@expr \P{whitespace=no} # also whitespace characters
@expr \p{whitespace} # whitespace via shortcut
@expr \p{uppercase:true} # uppercase characters
@expr \p{lowercase!=y} # all but lowercase characters
@expr \p{hexdigit:f} # all but hexadecimal characters

Unicode defines a large number of binary properties. The most of them are supported
by AnnoFlex. Only a small subset is currently unsupported. The following list shows
which properties are supported:

20

Alnum IdStart
Alphabetic IdContinue
Any Ideographic
ASCII IDSBinaryOperator
ASCIIHexDigit IDSTrinaryOperator
Assigned JoinControl
BidiControl LogicalOrderException
BidiMirrored Lowercase
Blank Math
CaseIgnorable NoncharacterCodePoint
Cased OtherAlphabetic
ChangesWhenCasefolded OtherDefaultIgnorableCodePoint
ChangesWhenCasemapped OtherGraphemeExtend
ChangesWhenLowercased OtherIdContinue
ChangesWhenNFKCCasefolded OtherIdStart
ChangesWhenTitlecased OtherLowercase
ChangesWhenUppercased OtherMath
CNTRL OtherUppercase
CompositionExclusion PatternSyntax
Dash PatternWhitespace
DefaultIgnorableCodePoint PrependedConcatenationMark
Deprecated Print
Diacritic Punct
Digit QuotationMark
ExpandsOnNFC Radical
ExpandsOnNFD SentenceTerminal
ExpandsOnNFKC SoftDotted
ExpandsOnNFKD TerminalPunctuation
Extender UnifiedIdeograph
FullCompositionExclusion Uppercase
Graph VariationSelector
GraphemeBase Whitespace
GraphemeExtend Word
GraphemeLink XDigit
HexDigit XIdContinue
Hyphen XIdStart

21

Additional to the predefined properties of Unicode there are some AnnoFlex-specific
properties. The most of them are also available via other syntax constructs (escape
sequence and character class) and are redefined as a character property for the sake of
completeness. The following table lists all AnnoFlex-specific properties:

Name Description

HWhitespace Horizontal whitespace characters \h
VWhitespace Vertical whitespace characters \v
PosixAlnum Letters and digits [a-zA-Z0-9]
PosixAlpha Letters [a-zA-Z]
PosixASCII All ASCII characters [\x00-\x7F]
PosixBlank Space or tab [\x09\x20]

PosixCntrl Control characters [\x00-\x1F\x7F]
PosixDigit Decimal digits [0-9]
PosixGraph Printing characters, excluding space [\x21-\x7E]
PosixLower Lowercase letters [a-z]
PosixPrint Printing characters, including space [\x20-\x7E]
PosixPunct Printing characters, excluding letters, digits and space

!"#$%&’()*+,-./:;<=>?@[\]ˆ_‘{|}~
PosixSpace Whitespace [\x09-\x0d\x20]
PosixUpper Uppercase letters [A-Z]
PosixWord Word characters [a-zA-Z0-9_]
PosixXDigit Hexadecimal digits [a-fA-F0-9]
JavaIdentifierStart Corresponds to Character.isJavaIdentifierStart()
JavaIdentifierPart Corresponds to Character.isJavaIdentifierPart()

Table 11: AnnoFlex-specific binary properties.

2.4.2 Script, Block and Age

The Script, Block and Age properties are according to Unicode catalog properties. Each
property has its own property-specific list of values. The Script property specifies to
which script a character belongs, the Block property specifies to which Unicode code
block a character belongs and the Age property specifies in which Unicode version a
character has been introduced. As the list of available values for these properties is long
the values are not listed here. Only a few examples are shown in order to demonstrate
how these properties are typically used.

22

@expr \p{latin} # latin characters
@expr \p{script=greek} # greek characters
@expr \p{block=Basic Latin} # basic latin characters
@expr \p{block=ASCII} # ASCII characters
@expr \p{age=9.0} # all Unicode 9.0 chars
@expr [\p{age=9.0}--\p{age=8.0}] # chars since Unicode 9.0

2.4.3 General Category

The General Category property is a default categorization of all characters. It differ-
entiates between letters, marks, numbers, punctuation, symbols, separators and special
characters. Each category has a long and an abbreviated name. Both names and a short
description of all available values are listed in the following table:

23

Abbr Long Description
Lu UppercaseLetter An uppercase letter
Ll LowercaseLetter A lowercase letter
Lt TitlecaseLetter A digraphic character, with first part uppercase
LC CasedLetter Lu | Ll | Lt
Lm ModifierLetter A modifier letter
Lo OtherLetter Other letters, including syllables and ideographs
L Letter Lu | Ll | Lt | Lm | Lo
Mn NonspacingMark A nonspacing combining mark (zero advance width)
Mc SpacingMark A spacing combining mark (positive advance width)
Me EnclosingMark An enclosing combining mark
M Mark Mn | Mc | Me
Nd DecimalNumber A decimal digit
Nl LetterNumber A letterlike numeric character
No OtherNumber A numeric character of other type
N Number Nd | Nl | No
Pc ConnectorPunctuation A connecting punctuation mark, like a tie
Pd DashPunctuation A dash or hyphen punctuation mark
Ps OpenPunctuation An opening punctuation mark (of a pair)
Pe ClosePunctuation A closing punctuation mark (of a pair)
Pi InitialPunctuation An initial quotation mark
Pf FinalPunctuation A final quotation mark
Po OtherPunctuation A punctuation mark of other type
P Punctuation Pc | Pd | Ps | Pe | Pi | Pf | Po
Sm MathSymbol A symbol of mathematical use
Sc CurrencySymbol A currency sign
Sk ModifierSymbol A non-letterlike modifier symbol
So OtherSymbol A symbol of other type
S Symbol Sm | Sc | Sk | So
Zs SpaceSeparator A space character (of various non-zero widths)
Zl LineSeparator U+2028 LINE SEPARATOR only
Zp ParagraphSeparator U+2029 PARAGRAPH SEPARATOR only
Z Separator Zs | Zl | Zp
Cc Control A C0 or C1 control code
Cf Format A format control character
Cs Surrogate A surrogate code point
Co PrivateUse A private-use character
Cn Unassigned A reserved unassigned code point or a noncharacter
C Other Cc | Cf | Cs | Co | Cn

Table 12: Values of the General Category property.

Similar to the script property and the binary properties the general category property

24

supports shortcuts which means that the property name and the operator can be omitted.
The following examples show how the general category property is typically used:

@expr \p{gc=letter} # all letter characters
@expr \p{letter} # letter characters via shortcut
@expr \P{N} # all but number characters

2.4.4 Character Names

All Unicode characters can be addressed via unique character names. For this purpose
there exists two character properties, the name and the nameAlias property. The name
property defines the main name of a character and the nameAlias property defines
additional character names which often occurs in practice. If a character should be
addressed via one of its names the general purpose escape sequences \p and \P can be
used. The name property has special logic which also accepts name aliases if the specified
name is not a valid character name. The nameAlias property does not have this logic
and acts as a raw property which only accepts valid name aliases. Additionally there
exists the escape sequence \N. Similar to the name property it combines character names
and name aliases. It has already been introduced in section 2.3.1 as a character escape
sequence. The following list of examples shows all possibilities to address characters via
character names:

Note: space is a name and tab is a name alias

@expr \p{name=space} # space via name property
@expr \p{nameAlias=tab} # tab via nameAlias property
@expr \p{name=tab} # VALID, name accepts aliases
@expr \p{nameAlias=space} # INVALID, space is not an alias
@expr \P{name=space} # all except a space character
@expr \N{space} # space via shortcut
@expr \N{tab} # tab via shortcut

2.5 Lexical States
Lexical states can be used to switch between sets of regular expressions during the
scanning algorithm of the generated scanner. Each set of expressions represents a single
sub-scanner which can be activated by switching into the corresponding lexical state.
The default state is called the initial state. Further lexical states can be defined via start
conditions in regular expressions.

2.5.1 Start Conditions

Start conditions can be used to define new lexical states. They must be specified via
angle brackets at the start of a regular expression or at the start of a sub expression

25

inside a top level union (see examples below). Inside the angle brackets there must be
specified a comma separated list of condition names. The specified names are the names
of the lexical states. The expression that follows the list of start conditions is part of
each sub-scanner represented by the corresponding names. The angle brackets may also
contain a single asterisk which adds the expression to all lexical states. The following
listing shows all syntactic possibilities for the definition of lexical states. Of particular
interest here is the operator priority of start conditions and the union operator.

@expr <Condition1>a # "a" if lexical state is Condition1
@expr <C1,C2>b # "b" if lexical state is C1 or C2
@expr c # "c" if lexical state is Initial
@expr <Initial>c # "c" if lexical state is Initial
@expr <*>d # "d" in all lexical states
@expr <C>a|b # "a or b" if lexical state is C
@expr (<A>a)|(b) # "a" if lexical state is A or

"b" if lexical state is B
@expr <C>(<A>a)|(b) # "a" if lexical state is A or C or

"b" if lexical state is B or C

The names of start conditions are simple ASCII identifiers that start with a letter op-
tional followed by letters, digits and underscores. As they are used for the generation
of static final integer constants they are also case insensitive and insensitive against a
camel case to underscore normalization which works as follows. If the name of a start
condition contains at least one lowercase character then the name is considered unnor-
malized. In order to normalize it, underscores are inserted at all camel case boundaries.
A camel case boundary is a position at which a transition from lowercase to uppercase
occurs or a position at which a digit/non-digit change occurs. Following some examples
that demonstrate the normalization rules:

stateOne -> STATE_ONE # lowercase/uppercase transition
state1 -> STATE_1 # digit/non-digit change
state1a -> STATE_1_A # two digit/non-digit changes
STATE1 -> STATE1 # already normalized
STATE_1A -> STATE_1A # already normalized

2.5.2 Condition Areas

Condition areas can be used to simplify the assignment of start conditions to a large
number of expressions. If all expressions of a longer list of lexical rules have the same
start conditions then it is easier to define the start and end of a start condition range
instead to assign the start condition to each expression separately. The condition area
is defined via two end-of-line comments. The first defines the start of the condition area
and the second the end. Both comments must contain a special marker text which is
detected by AnnoFlex as a processing instruction. The text of the first comment must

26

additionally contain a list of start conditions. The syntax is the same as in expressions.
The following example shows a condition area in action:

//%%LEX-CONDITION-START%%C1,C2%%

/** @expr a */ void createA() {}
/** @expr b */ void createB() {}
/** @expr <C3>c */ void createC() {}
...

//%%LEX-CONDITION-END%%

All expressions inside a condition area inherit the start conditions of that area. Addi-
tional it is possible to define further start conditions per expression.

2.5.3 Lexical State Stacks

If a scanner uses lexical states then it can be necessary to organize the state changes in
the form of an ordered sequence. If this is the case then it is useful to put all previous
states on state changes onto a stack. This makes it possible to restore them in reversed
order. Such a stack is called a lexical state stack. The simplest implementation in
AnnoFlex uses an ArrayList and two methods to enter and leave a lexical state. The
following code requires knowledge about the code generation and the customization of
the generated code which are described later. If it should be unclear what the code
below exactly does then have a look at section 3.6.12, 3.7.3 and 4.2.13 first.

27

/**
* This is the stack of lexical states.

*/
private ArrayList<Integer> stateStack = new ArrayList<>();

/**
* The stack initially contains the "initial" state.

*/
public void setString(String string) {

setStringInternal(string);

stateStack.clear();
stateStack.add(LEXICAL_STATE_INITIAL);

}

/**
* Pushes a state onto the stack and enters it.

*/
private void enterLexicalState(int lexicalState) {

stateStack.add(lexicalState);
setLexicalState(lexicalState);

}

/**
* Leaves the current state and enters the previous one.

*/
private void leaveLexicalState() {

stateStack.remove(stateStack.size()-1);
setLexicalState(stateStack.get(stateStack.size()-1));

}

2.6 Macros
Macros are named expressions which can be reused in other expressions in order to
make them shorter and more readable. They can also be used to remove duplicates from
expressions which makes them more maintainable.

2.6.1 The @macro Tag

For the definition of macros there exists a separate Javadoc tag, the macro tag. It
assigns an expression to an identifier. The assigned expression may contain any type
of expression except start conditions. The identifier to which the expression is assigned
must be a simple ASCII identifier that starts with a letter optional followed by letters,

28

digits and underscores. The syntax of a macro definition can be summarized as follows:

/**
* @macro <name> = <regex>

*/

Macros are referenced inside expressions by their name. The name must be surrounded
by curly brackets. Macros can also be nested which means that they can also be used
inside other macros. Cycles are invalid and reported as an error. Examples for the
definition and reference of macros can be found in the examples sub-section of this
section.

2.6.2 Global and Local Macros

AnnoFlex distinguishes between global and local macros. Global macros are macros
which are defined in the class comment of a scanner. Their scope is the entire scanner
definition which means that their name must be unique across all global and local macros.
Local macros are macros which are defined in a lexical rule. Their scope is limited to
this rule and their name must be unique across all macros in this rule and all global
macros. Local macros can be used to avoid naming conflicts if a large number of macros
are present. They can also be used to simplify the usage of macros because it is easier
to edit a macro definition and its reference if both are part of the same comment.

2.6.3 Examples

The following sample code shows how macros are used. It combines global and local
macros and shows that the name of a local macro may also appear in other local macros
without to produce a naming conflict.

29

/**
* This is a global macro.

*
* @macro NewLine = \r | \n | \r\n

*/
public class Scanner {

/**
* This is a local macro.

*
* @macro Content = (\\\" | [^\r\n"])*
* @expr \" {Content} \"? | (\" {Content} / {NewLine})

**/
String createDoubleQuote() {

return "DoubleQuote";
}

/**
* This is also a local macro.

*
* @macro Content = (\\’ | [^\r\n’])*
* @expr ’ {Content} ’? | (’ {Content} / {NewLine})

**/
String createSingleQuote() {

return "SingleQuote";
}

}

30

2.7 Syntax Summary
The following grammar summarizes the syntax of regular expressions in AnnoFlex:

RootExpr := [Conditions] LookaheadExpr
| [Conditions] TopLevelExpr { ’|’ TopLevelExpr }

TopLevelExpr := BaseExpr
| ’(’ Conditions BaseExpr ’)’
| ’(’ [Conditions] LookaroundExpr ’)’

Conditions := ’<’ Condition { ’,’ Condition } ’>’

LookaheadExpr := BaseExpr ’/’ BaseExpr | Macro

BaseExpr := BaseLiteralChar | EscapedChar
| ’!’ Expr | ’~’ Expr
| BaseExpr Quantifier
| BaseExpr BaseExpr
| BaseExpr ’|’ BaseExpr
| CharClass | ’.’
| ’"’ StringElement { StringElement } ’"’
| EscapedCharSequence
| Macro | ’(’ BaseExpr ’)’

Quantifier := ’*’ | ’+’ | ’?’ | ’{’ Number ’}’ |
| ’{’ Number ’,}’ | ’{,’ Number ’}’ |
| ’{’ Number ’,’ Number ’}’

CharClass := ’[’ [’^’] CCSequence { CCOp CCSequence } ’]’
| EscapedCharClass

CCOp := ’||’ | ’&&’ | ’--’ | ’~~’

CCSequence := CCChar | CCChar ’-’ CCChar
| CharClass | EscapedCharSequence
| Macro | CCSequence CCSequence

CCChar := CCLiteralChar | EscapedChar

StringElement := StringLiteralChar | EscapeSequence

Macro := ’{’ Identifier ’}’

31

Meta Characters
Meta characters are characters that are used to describe the structure of a regular
expression. They can not be used as a normal text character. If the character which
they represent should be part of the text then they must be escaped with a backslash.
There are three different sets of meta characters which are used depending on context:

Context Meta Characters

String Sequence \ "

Character Class \ [] ˆ { }

All others \ [] ˆ { } | () < > " . ? * + / ~ ! $

Table 13: Meta characters in regular expressions.

Operator Precedence
AnnoFlex has the following operator precedence in regular expressions:

Name Operator Associativity Priority

Grouping/Nesting (expr) n/a 1
Modifier ! ~ right-to-left 2
Quantifier * + ? {n} {n,} {,n} {n,m} left-to-right 3
Concatenation expr1 expr2 n/a 4
Union expr1 | expr2 n/a 5
Lookahead expr1 / expr2 n/a 6
Condition <A>expr n/a 7

Table 14: Operator precedence of regular expressions.

Whitespace Handling
As whitespace is a good aid to increase the readability of regular expressions it is ignored
in AnnoFlex by default. The only contexts in which whitespace is handled are string
sequences and character classes. The following table summarizes this:

Context Whitespace Handling

String Sequence Sensitive, considers whitespace
Character Class Sensitive, considers whitespace
All others Insensitive, ignores whitespace

Table 15: Whitespace handling in regular expressions.

32

3 Code Generation
The previous chapter has shown how a scanner definition is structured and which types
of regular expressions can be used to define the scanner language. Now it’s time to see
how the code for a such a scanner definition can be generated and which features are
covered by this code.

3.1 The Code Area
The primary design goal of AnnoFlex is to keep all parts of a lexical scanner in one single
Java source code file. This includes, of course, the generated code. As there are many
possibilities for the location of that code AnnoFlex provides a mechanism to specify the
location. This mechanism is called the code area. It consists of two end-of-line comments.
The first defines the start of the code area and the second the end. Both comments must
contain a special marker text which is detected by AnnoFlex as a processing instruction.
The following example shows how both markers look:

//%%LEX-MAIN-START%%
//%%LEX-MAIN-END%%

The source code of the generated scanner is always placed between these two comments.
Any content in between is fully replaced by the new code. Manually performed modifi-
cations are always discarded. No partial update is performed at any time. This ensures
that the generated code does not depend on previous code generations.

3.2 Running the Code Generator
The command line API of the code generator is as follows:

annoflex [options] <file>

wheras <file> is a scanner class whose code area should be updated and [options]
are command line specific settings which specify how the current run of the generator
should behave. All available options and their meanings are summarized in the following
table:

33

Option Description

-b --bom Specifies whether a Byte Order Mark should be generated at
the start of the scanner file. Requires one of the following mode
constants: ON, OFF, AUTO (default)

-c --charset Specifies the character encoding for reading and writing the
scanner file. Requires a valid character set name as for example
US-ASCII or UTF-8 (default).

-h --help Shows the command line help text.
-l --linesep Sets which line separators should be used for the scanner file.

Requires one of the following line separator mode constants:
LF, CR, CRLF, SYSTEM or AUTO (default).

-v --version Shows the version of AnnoFlex, Java and the operating system.

Table 16: Parameters of the command line API.

Byte Order Mark constants:

• ON: Enables the Byte Order Mark.
• OFF: Disables the Byte Order Mark.
• AUTO (default): Enables the Byte Order Mark if it is present on load and
disables it if it is not present on load.

Character Set name: The specified name must be a valid character set name which
is supported by the used Java VM. Valid values could be for example US-ASCII or
ISO-8859-1. If no character set has been specified then UTF-8 is uses as default on
all platforms.

Line Separator mode:

• LF: Uses the line feed character 0x0a as the line separator for the whole file. All
existing line separators are converted to 0x0a.
• CR: Uses the carriage return character 0x0d as the line separator for the whole
file. All existing line separators are converted to 0x0d.
• CRLF: Uses the sequence 0x0d0x0a as the line separator for the whole file. All
existing line separators are converted to 0x0d0x0a.
• SYSTEM: Uses the system line separator as the line separator for the whole file.
All existing line separators are converted to the system line separator.
• AUTO (default): Uses the line separator which is present in the file. If the file
contains multiple different line separators then the primary line separator is used.
The primary line separator is the one which occurs most often in the file and if
there are multiple possibilities then the first of these is used. If the file does not
contain a line separator then the system line separator is used. All existing line
separators are converted to the chosen line separator.

34

Following some examples of the command line API:

annoflex TutorialPart1.java
annoflex -c utf-8 TutorialPart2.java
annoflex -b on -l crlf TutorialPart3.java

The exit status of the command line API is 0 on success and 1 on every type of error
which especially includes errors in the scanner definition. Warnings are not handled like
errors and lead to a successful run of the generator.

D:\>annoflex TutorialPart1.java
[Info] Loading file "TutorialPart1.java"
[Info] Computing scanner
[Info] Saving file "TutorialPart1.java"
[Info] 0 Errors, 0 Warnings

D:\>echo %errorlevel%
0

If the code generator detects AnnoFlex-specific errors in the scanner class then the Java
file is not updated. The only action which is performed in that case is the display of the
corresponding errors in the console. If the scanner class has Java-specific compile errors
then it is allowed to run the code generator. This especially applies to errors inside the
code area and inside methods that use generated code as these areas are not evaluated
for the code generation. If an update of the code area will help to fix some of these
errors then feel free to run the code generator.

3.3 Generation Results
After a successful run of the generator the code area contains the code of the scanner.
It provides all means which are necessary to perform a lexical analysis based on the
specified lexical rules. The following topics are covered by the generated scanner:

• Character Input
• Start position of next scan
• Match results
• Scanning method
• Lexical states

Details about each of these topics are described in the next sections of this chapter.
Additional information about these topics can be found in chapter 4 which handles the
customization of the scanner. The generated code is divided into code sections. Each
code section covers a certain topic of the generated scanner as for example “all fields
related to the character input” or “all methods in conjunction with match results”. A
code section usually contains class members in the form of fields and methods. There are
only two exceptions, the logo section and the statistics section which only contain a single

35

comment. All code sections which do have class members also act as a member group
whereby the name of the code section is used as the name of the member group. Member
groups are used by certain options (described in chapter 4). They apply properties to
all members of a group. The all member group references all members of all member
groups.

3.4 Scanner Input
The generated scanner requires a sequence of characters in order to be able to perform its
work. This character input can be specified in AnnoFlex in two different ways. Either by
a java.lang.String or by a java.io.Reader. The first possibility is called string mode and
the second one is called reader mode. The next sections describe the difference between
both modes.

3.4.1 String Mode

The string mode is based on a java.lang.String instance. By default the entire string is
used for the lexical analysis but it is also possible to restrict the analysis to a specific
region. This eliminates the need to create a substring of the input if only a part of it
should be scanned. All characters which lie outside the specified region are from the
scanner’s point of view non-existent and never used. There are no character access re-
strictions in string mode. A random access to all characters is possible at any time. Also
the start position of the next scan can be changed at any time. This makes it possible
to create tokens in any possible way, even backwards. However, the scan direction is in
all cases forwards which means that the scanning algorithm iterates the characters from
the current start position to the end of the input. A real backward scanning is only
possible if a reversed version of the string is used.

3.4.2 Reader Mode

The reader mode is based on a java.io.Reader instance. All input characters are read
one after the other and stored in a buffer. The access to the characters in this buffer
depends on the used buffering strategy. There is the all characters strategy and the
current match strategy. The difference between both strategies is whether previously
read characters are overwritten by new characters or not. The following figure visualizes
the difference between both strategies:

36

all characters current match

...A B C D E F G H ...A B C D E F G H

Figure 3: Buffering strategies in reader mode.

The all characters buffering strategy stores all characters in the buffer and does never
discard previously read characters. This mode is comparable to the string mode with
the exception that characters are first available when they have been read. A random
access to all characters in the buffer is possible at any time. Also the start position can
be moved backwards at any time which allows you to rescan specific parts of the input if
necessary. The current match strategy stores only those characters in the buffer which
are necessary to determine the current match. Every time a new scan starts it is possible
that characters of previous matches are discarded and overwritten by new characters.
Whether this actually happens or not depends on the length of previous matches and the
length of the current match. This makes it in general impossible to predict it. Because
of that only the characters of the current match should be accessed in reader mode as
otherwise unpredictable errors can happen at any time.

3.5 The Scanning Algorithm
The main function of the generated scanner is the detection of regular expressions and
the regions to which they apply. These regions are called matches and the process of
finding these regions is called pattern matching. Each run of this process requires a start
position. In AnnoFlex this start position is called the dot. This name is derived from
the fact that positions in character sequences are sometimes visualized as a dot. The
result of a pattern match is a character range. If this range is empty then no matching
regular expression could be found. If this range is non-empty then a matching regular
expression has been found. The method of the corresponding lexical rule is called in that
case. It has now the possibility to handle the match. A typical action is the creation
of a token but it is also possible to change only some internal states or to do nothing.
There are no limitations what such a method may do or not. Methods of lexical rules
can do whatever the scanner requires at this point of time. The entire process which
combines the dot, pattern matching, match ranges and lexical rule methods is called the
scanning algorithm or the scanning method. A snapshot of its properties is shown in the
following figure:

37

A B C D E F G H

dot = start of next scan

last match = next token or part of next token

tokens

Figure 4: Properties of the scanning algorithm.

There are two types of lexical rule methods. Methods with a return type and methods
without a return type. If a method has a return type then it is assumed that it creates
a token and if it does not have a return type then it is assumed that it does not create a
token. The return value of a method with a return type is always passed through to the
caller of the scanning method even if the value is null (or another value depending on the
return type). The lexical analysis is suspended for such methods and first resumed if the
scanning method is called again. Methods without a return type usually only change
internal states, as for example the lexical state of the scanner. They only prepare
the creation of a token and delegate this task to a method call in the future. When
a method without a return type has been called by the scanning method the lexical
analysis is immediately continued by starting a new pattern matching. This procedure
repeats until a method with a return type is called or the end of the input is reached.
The following pseudo code summarizes all steps of the scanning algorithm:

WHILE input is available
find longest match
save match result
set dot to end of match

IF token creation method has return value THEN
CALL token creation method and RETURN result

ELSE
CALL token creation method and CONTINUE scanning

END IF
END WHILE

RETURN default value

3.6 List of Default Code Sections
The following table summarizes all code sections which are generated independent of the
input mode. The order in the table equals the order in the source code file.

38

Code Section Description

Logo The source code logo of AnnoFlex.
Statistics A table which contains statistics about the scanner definition

and the generated code.
Table constants All constants related to the internal tables of the scanner.
Lexical state constants All constants which are related to lexical states.
Helper constants Contains all internal helper constants of the scanner.
Dot fields Contains all fields related to the start position of the next

scan.
Lexical state fields Contains all fields which are related to the current lexical

state.
Match fields Contains all fields to manage the results of a single step of

the lexical analysis.
Helper fields Contains all internal helper fields of the scanner.
Table methods Contains methods to create the internal tables of the scanner.
Dot methods Contains methods for the management of the start position

of the next scan.
Lexical state methods Contains methods for the management of the current lexical

state.
Match methods Contains methods to get the values of the last match.
Scan methods Contains all methods of the scanning algorithm.
Helper methods Contains all internal helper methods of the scanner.

Table 17: All code sections that are independent of the input mode.

3.6.1 The logo section

The logo code section consists of a comment containing a logo that introduces the code
area of the scanner. It can be enabled and disabled via the logo option, which is described
in section 4.2.1.

//==
// _ _____ _
// / \ _ __ _ __ ___ | ___| | ___ _ __
// / _ \ | _ \| _ \ / _ \| |_ | |/ _ \ \/ /
// / ___ \| | | | | | | (_) | _| | | __/> <
// /_/ __| |_|_| |_|___/|_| |_|___/_/_\
//
//==

39

3.6.2 The statistics section

The statistics code section consists of a comment containing a table with characteristic
values about the generated code. The table can be enabled and disabled via the statistics
option, which is described in section 4.2.2. The statistics table has the following content:

/***
* Generation Statistics *
* *
* *
* Rules: 95 *
* Lookaheads: 1 *
* Alphabet length: 69 *
* NFA states: 576 *
* DFA states: 304 *
* Static size: 111 KB *
* Instance size: 24 Bytes *
* *
**/

The meaning of each property is explained in the following table:

Name Description

Rules The total number of lexical rules in the scanner definition.
Lookaheads The total number of lookaheads in all regular expressions.
Alphabet length The size of the virtual alphabet of the DFA.
NFA states The total number of NFA states.
DFA states The total number of DFA states.
Static size This is a rough measure for the memory footprint of static data of

the generated scanner class. The memory consumption of custom
code is not included in this value.

Instance size This is a rough measure for the memory footprint of non-static
data of the generated scanner class. The memory consumption of
custom code is not included in this value.

Table 18: Properties of the generated scanner.

3.6.3 The tableConstants section

The tableConstants code section contains constants for all tables of the DFA. They
are used by the scanning algorithm to perform the pattern matching. All constants
of this code section may not be accessed or manipulated by user code. They should
be considered as private and non-existent. The tableConstants code section has the

40

following class members:

Member Description

characterMap This is a mapping table which maps Unicode characters to char-
acters of the virtual alphabet of the DFA.

transitionTable This is the transition table of the DFA. It contains for each DFA
state and each character of the virtual alphabet a reference to
another DFA state.

actionMap This is a mapping table which contains for each DFA state the
corresponding action number.

Table 19: Members of the tableConstants code section.

3.6.4 The lexicalStateConstants section

The lexicalStateConstants code section contains all constants related to lexical states.
All members of this code section are released for public use. Lexical states are described
in detail in section 2.5. The lexicalStateConstants code section has the following class
members:

Member Description

lexicalStateEnum Two or more enumeration constants which contain the ordinal
numbers of all lexical states.

Table 20: Members of the lexicalStateConstants code section.

3.6.5 The helperConstants section

The helperConstants code section stores all generic and miscellaneous constants for which
it makes sense to separate them from other code sections. All members of this code
section are released for public use. The helperConstants code section has the following
class members:

Member Description

emptyCharArray An empty char array which is used in reader mode to avoid null
checks.

Table 21: Members of the helperConstants code section.

3.6.6 The dotFields section

The dotFields code section contains all fields related to the start position of the next
scan. They may be accessed at any time but should not be manipulated by user code.

41

Use the appropriate dot methods in section 3.6.11 to change the dot. The dotFields code
section has the following class members:

Member Description

dot The start position of the next scan.

Table 22: Members of the dotFields code section.

3.6.7 The lexicalStateFields section

This code section contains all fields which are related to lexical states. They may be
accessed at any time but should not be manipulated by user code. Use the appropriate
lexical state methods in section 3.6.12 to change the lexical state. For more information
about lexical states have a look at section 2.5. The lexicalStateFields code section has
the following class members:

Member Description

lexicalState The ordinal number of the current lexical state.

Table 23: Members of the lexicalStateFields code section.

3.6.8 The matchFields section

This code section contains all fields which are necessary to store the values of the last
match. They may be accessed at any time but should not be manipulated by user code.
For an input mode independent access to all text and character related properties of the
last match it is recommended to use the methods in section 3.6.13. The matchFields
code section has the following class members:

Member Description

matchStart The start of the last match.
matchEnd The end of the last match (exclusive).
matchLookahead The end of the last match (exclusive) including the lookahead.

Table 24: Members of the matchFields code section.

3.6.9 The helperFields section

This code section contains all internal helper fields of the scanner. They may not be
accessed or manipulated by user code. They should be considered as private and non-
existent. The helperFields code section has the following class members:

42

Member Description

startState The start state of the DFA of the current lexical state. It is only
present if the scanner has more than one lexical state.

positionList A list which contains all match end positions of a regular expression
during a lookahead length determination. It is only present if there
are lookahead expressions which do not have a constant part that can
be used to compute the length directly.

Table 25: Members of the helperFields code section.

3.6.10 The tableMethods section

This code section contains all DFA table related methods. They may not be called by
user code and should be considered as private and non-existent. The tableMethods code
section has the following class members:

Member Description

createCharacterMap Unpacks the run-length encoded character map string and re-
turns the resulting mapping table.

createTransitionTable Unpacks the run-length encoded transition table string and
returns the resulting two-dimensional mapping table.

createActionMap Unpacks the run-length encoded action map string and returns
the resulting mapping table.

Table 26: Members of the tableMethods code section.

3.6.11 The dotMethods section

This code section contains all methods for the access and manipulation of the start
position of the next scan. All members of this code section are released for public use.
The dotMethods code section has the following class members:

Member Description

setDot Sets the start position of the next scan to a new position.
getDot Returns the start position of the next scan.

Table 27: Members of the dotMethods code section.

43

3.6.12 The lexicalStateMethods section

This code section contains all methods related to lexical states. All members of this
code section are released for public use. Lexical states are described in detail in section
2.5. The lexicalStateMethods code section has the following class members:

Member Description

setLexicalState Sets the current lexical state of the scanner.
getLexicalState Returns the current lexical state of the scanner.

Table 28: Members of the lexicalStateMethods code section.

3.6.13 The matchMethods section

This code section contains all methods which are available to access the properties of
the last match. All members of this code section are released for public use. The
matchMethods code section has the following class members:

Member Description

getMatchStart Returns the start of the last match.
getMatchEnd Returns the first character after the end of the last match

without the lookahead.
getMatchLookahead Returns the first character after the end of the last match

including the lookahead.
getMatchLength Returns the length of the last match without the looka-

head.
getMatchTotalLength Returns the length of the last match including the looka-

head.
getMatchLookaheadLength Returns the length of the last lookahead.
getMatchText Creates and returns a String with the characters of the

last match without the lookahead.
getMatchTextRange Similar to getMatchText but the sub-string can be ad-

justed by a start and end offset.
getMatchTotalText Creates and returns a String with the characters of the

last match including the lookahead.
getMatchLookaheadText Creates and returns a String with the characters of the

last lookahead.
getMatchChar Returns a character relative to the start of the last match.

Table 29: Members of the matchMethods code section.

44

3.6.14 The scanMethods section

The scanMethods code section contains all methods which are related to the scanning
algorithm. All members of this code section are released for public use. The scanMethods
code section has the following class members:

Member Description

getNextToken Performs at the start position of the next scan a new lexical anal-
ysis and returns the result.

Table 30: Members of the scanMethods code section.

The signature and the behavior of the getNextToken method is highly configurable. Have
a look at section 4.2 for more information.

3.6.15 The helperMethods section

This code section contains all internal helper methods of the scanner. Apart form the
hasNextChar method they may not be called by user code and should be considered pri-
vate and non-existent. The helperMethods code section has the following class members:

Member Description

hasNextChar Checks whether a specified position has a next character.
computeMatchEnd Computes the match end position of a variable lookahead.

Table 31: Members of the helperMethods code section.

3.7 List of String-Mode Code Sections
The following table summarizes all code sections which are generated only if the input
mode is string. The order in the table equals the order in the source code file.

Code Section Description

String fields Contains all fields which are necessary to store the string for which
the lexical analysis should be performed.

Region fields Contains all fields which are necessary to restrict the lexical anal-
ysis to a sub-region of the string.

String methods Contains all methods for the management of the string fields.
Region methods Contains all methods to set and get the properties of the sub-region

of the string.

Table 32: All code sections of the string input mode.

45

3.7.1 The stringFields section

This code section contains all fields which are related to the String instance if the input
mode is string. The fields may be accessed at any time but should not be manipulated
by user code. Use the appropriate string methods in section 3.7.3 to change the string.
The stringFields code section has the following class members:

Member Description

string The current string to be scanned.

Table 33: Members of the stringFields code section.

3.7.2 The regionFields section

This code section contains all fields which are related to the region property of the
String instance if the input mode is string. The fields may be accessed at any time
but should not be manipulated by user code. Use the appropriate region methods in
section 3.7.4 to change the region. Have a look at section 3.4.1 for more information
about regions. The regionFields code section has the following class members:

Member Description

regionStart The start of the scan region (inclusive) inside the string.
regionEnd The end of the scan region (exclusive) inside the string.

Table 34: Members of the regionFields code section.

3.7.3 The stringMethods section

This code section contains all methods to access and manipulate the input string. All
members of this code section are released for public use. The stringMethods code section
has the following class members:

Member Description

setString Sets the current string to be scanned.
getString Returns the current string to be scanned.

Table 35: Members of the stringMethods code section.

46

3.7.4 The regionMethods section

This code section contains all methods to access and manipulate the region. All members
of this code section are released for public use. The regionMethods code section has the
following class members:

Member Description

setRegion Sets the start and end of the region.
getRegionStart Returns the start of the region.
getRegionEnd Returns the end of the region.

Table 36: Members of the regionMethods code section.

3.8 List of Reader-Mode Code Sections
The following table summarizes all code sections which are generated only if the input
mode is reader. The order in the table equals the order in the source code file.

Code Section Description

Reader fields Contains all fields which are related to the Reader instance which
is used to read input characters.

Buffer fields Contains all fields which are necessary to store the input characters.
Reader methods Contains all methods which are related to the management of the

Reader instance.
Buffer methods Contains methods to access the character buffer.

Table 37: All code sections of the reader input mode.

3.8.1 The readerFields section

This code section contains all fields which are related to the Reader instance if the input
mode is reader. The fields may be accessed at any time but should not be manipulated
by user code. Use the appropriate reader methods in section 3.8.3 to change the reader
fields. The readerFields code section has the following class members:

Member Description

reader The Reader from which the input characters are read.
readerStartCapacity The initial size of the character buffer.

Table 38: Members of the readerFields code section.

47

3.8.2 The bufferFields section

This code section contains all fields which are related to the character buffer which is
used as a backing store of the Reader instance if the input mode is reader. In contrast to
the string fields, all buffer fields may not be accessed or manipulated by user code. They
should be considered as private and non-existent. Use the appropriate buffer methods in
section 3.8.4 to access the buffer. The bufferFields code section has the following class
members:

Member Description

buffer The character buffer in which all characters of the Reader are stored.
bufferStart The start position of the buffer relative to the first character of the

input.
bufferEnd The end position of the buffer relative to the first character of the input.

Table 39: Members of the bufferFields code section.

3.8.3 The readerMethods section

This code section contains all Reader-related methods. All members of this code section
are released for public use. The readerMethods code section has the following class
members:

Member Description

setReader Reinitializes the scanner by setting the Reader and the ini-
tial buffer size.

getReader Returns the current reader.
getReaderStartCapacity Returns the initial buffer size.

Table 40: Members of the readerMethods code section.

3.8.4 The bufferMethods section

This code section contains all character buffer related methods. All members of this code
section are released for public use. The bufferMethods code section has the following class
members:

48

Member Description

getBuffer Returns the current character buffer. The returned reference may
change over time due to reallocations of the buffer.

getBufferStart Returns the start position of the buffer (inclusive) relative to the first
character of the input.

getBufferEnd Returns the end position of the buffer (exclusive) relative to the first
character of the input.

Table 41: Members of the bufferMethods code section.

49

4 Options
Options can be used to control how the code of the scanner is generated. They must be
placed in the class comment of the scanner and are evaluated at the start of the code
generation. Options represent global code generator settings which do not influence
lexical rules and macros. The following sections describe the option syntax, summarize
all available options and describe the functionality of each option in detail.

4.1 The @option Tag
Options must be specified with the @option tag inside the class comment of the scanner
class. The tag starts the option declaration and is followed by an option name followed
by an assignment character followed by an option-specific configuration text. The name
of the option selects the option type and the option-specific text contains the data which
is processed by the option. The syntax of this text varies from a single keyword up to
a list of identifier/operator pairs. The general syntax of an option declaration can be
summarized as follows:

/**
* @option <name> = <value>

*/
public class MyScanner {

// lexical rules
// code area

}

4.2 List of Options
The following table lists all supported options in AnnoFlex:

50

Name Description

logo Specifies whether a logo of AnnoFlex should be generated at
the start of the code area.

statistics Specifies whether a statistics table with information about the
scanner and its specification should be generated.

headings Specifies whether and how headings for code sections should
be generated.

methodName Sets the name of the getNextToken method.
methodThrows Sets the content of the throws clause of the getNextToken

method.
defaultReturnValue Sets the default return value of the getNextToken method.
inputMode Specifies how the scanner input is read and processed.
bufferStrategy Specifies which buffer model should be used if input mode is

reader.
bufferIncrement Specifies which formula should be used to increment buffer

sizes.
functionality Controls which scanner methods, fields and constants should

be generated.
javadoc Controls for which methods, fields and constants Javadoc com-

ments should be generated.
visibility Sets the visibility of methods, field and constants.
internal Sets which methods should have private as their default vis-

ibility and a special name to avoid name conflicts with other
methods.

noMatchAction Sets which action should be performed inside the getNextTo-
ken method if no match could be found.

Table 42: All available options and their meaning.

4.2.1 The logo option

The logo option specifies whether the AnnoFlex code logo (described in section 3.6.1)
should be generated at the start of the code area. The logo option has the following
syntax:

Logo := "enabled" | "disabled"

If the specified value is enabled then the logo is generated. If the value is disabled then
the logo is not generated. The default value is enabled.

51

4.2.2 The statistics option

The statistics option specified whether a table with statistical information (described in
section 3.6.2) should be generated at the start of the code area. The statistics option
has the following syntax:

Statistics := "enabled" | "disabled"

If the specified value is enabled then the statistics table is generated. If the value is
disabled then the statistics table is not generated. The default value is enabled.

4.2.3 The headings option

The headings option specifies whether all code sections of the code area should obtain a
descriptive heading. The headings option has the following syntax:

Headings := "enabled" | "disabled"
| "small" | "medium" | "large"

If the specified value is set to disabled then no headings are generated. If the value is set
to enabled, small, medium or large then headings are generated. Enabled is a synonym
for large. Both generate headings with one line at the top and one line at the bottom of
the section name. Medium generates only one line at the bottom and small generates
no lines. The default value is enabled.

4.2.4 The methodName option

The methodName option specifies the name of the getNextToken method. It is described
in detail in section 3.6.14. Please refer this section for more information. The method-
Name option has the following syntax:

MethodName := JavaIdentifier

The specified value must be a valid Java identifier. The default value is getNextToken.

4.2.5 The methodThrows option

The methodThrows option can be used to specify which Throwable classes the getNext-
Token method should have in its throws clause. The methodThrows option has the
following syntax:

MethodThrows := Item { "," Item }

Item := LinkToJavaClassType
| JavaClassType

Multiple Throwable values must be separated by comma. Each value can either be a
Java class type or a link to a Java class type. Links should be preferred as this ensures

52

that features of your IDE like reference search and renaming work also for these refer-
ences. This option does not have a default value which means that no throws clause is
generated.

4.2.6 The defaultReturnValue option

The default value of the getNextToken method can be specified with the defaultReturn-
Value option. The value of this option is used in all cases where the getNextToken
method is not able to return a value. This is especially the case if the end of the input
is reached. The defaultReturnValue option has the following syntax:

DefaultReturnValue := LinkToJavaConstant
| ArbitraryCharacterSequence

The specified value can either be a link to a Java constant or an arbitrary character
sequence. If the value is a link then only the linked constant is used. If it is not a link
then it is considered as an arbitrary character sequence and used "as is". The default
value of this option depends on the return type of the getNextToken method which itself
depends on the return type of the used lexical rules. All possible default values are
summarized in the following table:

Return Type Default Value

boolean false
byte, short, int, long, float, double -1
char 0
Reference null

Table 43: Default values of the defaultReturnValue option.

The arbitrary character sequence value can be used to specify arbitrary Java code. How-
ever, this feature should be used with care as the code is located inside a comment and
thus treated by your IDE as plain text. Features like reference search and renaming will
possibly not work.

4.2.7 The inputMode option

This option specifies the input mode of the scanner. Input modes are described in detail
in section 3.4. Please refer this section for further details. The inputMode option has
the following syntax:

InputMode := "string" | "reader"

If the specified value is string then the string mode (java.lang.String) is used. If

53

the value is reader then the reader mode (java.io.Reader) is used. The default value
is string.

4.2.8 The bufferStrategy option

The bufferStrategy option specifies which kind of buffering should be used if the input
mode is reader. The different types of buffering are explained in section 3.4.2. Please
refer this section for further details. The bufferStrategy option has the following syntax:

BufferStrategy := "currentMatch" | "allCharacters"

If the specified value is currentMatch then the buffer strategy current match is used.
Only the characters of the current match are available in this mode. Buffer sizes are
O(maxMatchLength). If the value is allCharacters then the buffer strategy all char-
acters is used. The buffer is constantly increased and stores all read characters. Buffer
sizes are O(inputLength). The default value of the bufferStrategy option is cur-
rentMatch.

4.2.9 The bufferIncrement option

The bufferIncrement option specifies which formula is used to increment buffer sizes.
This especially includes the main character buffer in reader mode but also all other
buffers that are used by the scanner. The bufferIncrement option has the following
syntax:

BufferIncrement := "goldenRatio" | "double"

If the specified value is goldenRatio then the buffer sizes are multiplied by 3/2. If the
value is double then the buffer sizes are increased by doubling the size. The default value
is goldenRatio which is the default behavior of many classes in Java.

4.2.10 The functionality option

The functionality option controls which scanner functionality should be generated. The
functionality option has the following syntax:

Functionality := Item { Item }

Item := Member Modifier
| MemberGroup Modifier

Modifier := "+" | "-"

The functionality option specifies a set of members for which code should be generated.
Each member which is part of the set is generated. Members which are not part of
the set are only excluded from the code generation if they are not required by other

54

generated functionalities. If they are required, they are still generated. The modifiers of
the functionality option have the following meaning:

Modifier Description

+ Adds the specified member or group of members to the set of generated
functionalities.

- Removes the specified member or group of members from the set of gen-
erated functionalities.

Table 44: Modifiers of the functionality option.

The default value is "all- readerMethods+ stringMethods+ regionMethods+ dotMethods+
getMatchStart+ getMatchEnd+ getMatchLength+ getMatchText+ getMatchChar+".

4.2.11 The javadoc option

The javadoc option controls for which class members a Javadoc comment should be
generated. The javadoc option has the following syntax:

JavaDoc := Item { Item }

Item := Member Modifier
| MemberGroup Modifier

Modifier := "+" | "-"

The javadoc option specifies a set of members for which Javadoc comments should be
generated. A Javadoc comment is only generated if the corresponding member is part of
the set, otherwise no Javadoc comment is generated. The modifiers have the following
meaning:

Modifier Description

+ Adds the specified member or group of members to the set of members
for which Javadoc comments are generated.

- Removes the specified member or group of members from the set of mem-
bers for which Javadoc comments are generated.

Table 45: Modifiers of the javadoc option.

The default value is all+.

55

4.2.12 The visibility option

The visibility option controls which visibility class members have. The visibility option
has the following syntax:

Visibility := Item { Item }

Item := Member Modifier
| MemberGroup Modifier

Modifier := "+" | "-" | "$" | "%"

The modifiers of the visibility option have the following meaning:

Modifier Visibility

+ Public
- Private
$ Protected
% Package private

Table 46: Modifiers of the visibility option.

The default value is "all- readerMethods+ stringMethods+ regionMethods+ dotMethods+
matchMethods+ scanMethods+".

4.2.13 The internal option

The internal option controls which methods have private as their default visibility and
Internal as their name suffix in order to prevent name conflicts with other methods
outside of the generated code. The internal option has the following syntax:

Internal := Item { Item }

Item := Member Modifier
| MemberGroup Modifier

Modifier := "+" | "-"

The internal option specifies a set of members for which the internal feature should be
active. The internal feature is only active if the corresponding member is part of the set,
otherwise the internal feature is not active. The modifiers have the following meaning:

56

Modifier Description

+ Adds the specified member or group of members to the set of members
for which the internal feature should be active.

- Removes the specified member or group of members from the set of mem-
bers for which the internal feature should be active.

Table 47: Modifiers of the internal option.

The default value is all-.
A typical use case looks like in the following example:

/**
* @option internal = setString+

*/
public class MyScanner {

// custom method
public void setString(String string) {

setStringInternal(string);
...

}

// generated method
private void setStringInternal(String string) {

...
}

}

Using internal methods is similar to overriding methods in subclasses. The main differ-
ence is that both methods are part of the same class.

4.2.14 The noMatchAction option

The noMatchAction option specifies which action the scanner should perform if it could
not find a match at the current dot. The noMatchAction option has the following syntax:

NoMatchAction := "error" | "continue" | "return"

If the specified value is error then a java.lang.IllegalStateException is thrown
in order to indicate that the input is invalid. If the value is continue then the scanner
moves the start position of the next scan one character forward and scans the input
again. This is repeated until either a match could be found or the end of input is
reached. If the noMatchAction option has the value return then the scanning stops and
the getNextToken method returns without any action. If necessary a custom action can

57

be performed outside of the scanner by checking for a match length of zero which can
only happen in this case.

4.2.15 Examples

The following class comment contains examples for each option:

/**
* @option logo = disabled

* @option statistics = disabled

* @option headings = small

* @option methodName = yylex

* @option methodThrows = {@link java.io.IOException}

* @option defaultReturnValue = {@link Integer#MIN_VALUE}

* @option inputMode = reader

* @option bufferStrategy = allCharacters

* @option bufferIncrement = double

* @option functionality = all+

* @option javadoc = all-

* @option visibility = all- stringMethods+

* @option internal = setString+

* @option noMatchAction = continue

*/

58

5 Infrastructure
The following chapter gives an overview about technical details of AnnoFlex. It describes
which steps are performed during a run of the code generator and which limitations and
restrictions the code generation has. How the performance of AnnoFlex scales with
increasing number of NFA and DFA states is shown in the last section.

5.1 The Generation Process
The following steps are performed in order to update the generated code of a scanner
definition:

1. Load file: Loads the Java source code file which contains the scanner definition
into memory.

2. Parse file: Parses the content of the Java file using an AnnoFlex-specific Java
parser and reads in all AnnoFlex-specific processing instructions.

3. Create NFAs: Creates for each condition name and all corresponding regular
expressions a NFA. The used algorithm is based on the Thompson’s Construction
Algorithm.

4. Convert NFAs to DFAs: Converts all NFAs into DFAs using the Powerset
Construction Algorithm.

5. Minimize DFAs: All DFAs are minimized using Hopcroft’s Minimization Algo-
rithm.

6. Generate code: Computes the code of the scanner based on the minimized DFAs
and the specified options. After the code has been computed it is integrated into
the in-memory representation of the Java source code file.

7. Write file: Writes the updated Java source code file back to the file system.

5.2 Limitations and Restrictions
AnnoFlex has the following implementation-specific restrictions:

• The Unicode character support is limited to the first plane (Basic Multilingual
Plane).
• The maximum number of lexical rules is limited to ~6400. The exact limit depends
on the type of used regular expressions. It is caused by the 64k code limit of the
class file format which can be reached by the action switch of the getNextToken
method.
• Up to 2ˆ31-1 NFA states are supported. The exact limit depends only on the
amount of memory of the JRE.
• The maximum number of DFA states is limited to 32,767. This value is additionally
limited by the 64k code limit of the class file format which can be reached by the
string concatenation of the compressed DFA table data.

59

• The return type of methods of lexical rules is limited to primitive types and simple
reference types. Array types and parameterized types (generics) are currently not
supported.

5.3 Performance
The following table shows the memory consumption and processing time of AnnoFlex for
the creation of various scanners. It shows how AnnoFlex scales with increasing number
of NFA and DFA states.

Scanner Type # NFA
States

DFA
States

Creation
Time

Memory
Consumption

JavaScanner 565 304 ~0.530 s ~14 MB
RegExScanner 740 413 ~0.520 s ~14 MB

1 character dictionary 3 2 ~0.320 s ~9 MB
10 words dictionary 78 65 ~0.340 s ~9 MB
100 words dictionary 837 460 ~0.390 s ~10 MB
1k words dictionary 8,532 2,617 ~0.620 s ~22 MB
10k words dictionary 85,485 11,297 ~1.6 s ~57 MB
20k words dictionary 170,590 18,343 ~2.9 s ~124 MB
45k words dictionary 383,946 31,400 ~4.5 s ~210 MB

Table 48: Scaling behavior of AnnoFlex for different scanner types.

JavaScanner is AnnoFlex’s scanner for Java source code files. It can be found in the in-
stallation package under source\org\annoflex\jdt\parser\JavaScanner.java.
RegExScanner is AnnoFlex’s scanner for regular expressions. It can be found in the in-
stallation package under source\org\annoflex\regex\parser\RegExScanner.java.
The dictionary scanners refer a synthetic scanner definition with one lexical rule of the
form:

/**
* @expr word1 | ... | wordn

*/
void createToken() {
}

The creation time value has been measured with the following PowerShell command:

Measure-Command {annoflex Scanner.java | Out-Default}

The memory consumption value has been determined with the Java VisualVM profiling

60

tool which is part of the JDK. The specified value is the maximum of the "used heap"
value of the "monitor" tab.

The following platform has been used to determine the values of the performance table.

• CPU: 2.6 GHz Intel Core 2 Duo Processor
• RAM: 8 GB DDR2 RAM
• HDD: 120 GB SATA II SSD
• OS: Microsoft Windows 8.1, 64-Bit
• JRE: Oracle Java SE 8u60, 64-Bit

61

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullmann. Compilerbau. Oldenbourg, 1999.
[2] Wilfried Brauer. Automatentheorie. Teubner, 1984.
[3] The Unicode Consortium. The Unicode Character Property Model. May 2015 (last

access on 2018-05-27). url: http://unicode.org/reports/tr23/.
[4] The Unicode Consortium. Unicode Character Database. June 2016 (last access on

2018-05-27). url: http://unicode.org/reports/tr44/.
[5] The Unicode Consortium. Unicode Regular Expressions. Nov. 2013 (last access on

2018-05-27). url: http://unicode.org/reports/tr18/.
[6] Russ Cox. Regular Expression Matching Can Be Simple And Fast. June 2007 (last

access on 2018-05-27). url: https://swtch.com/~rsc/regexp/regexp1.
html.

[7] Jean Berstel, Luc Boasson, Olivier Carton and Isabelle Fagnot. Minimization of
Automata. Jan. 2011 (last access on 2018-05-27). url: http://arxiv.org/
pdf/1010.5318v3.pdf.

[8] Gerwin Klein. JFlex User‘s Manual. Version 1.6.1. Jan. 2015.
[9] Alan M. Turing. “Computing Machinery and Intelligence.” In: MIND 59.236 (1950),

pp. 433–460.

62

http://unicode.org/reports/tr23/
http://unicode.org/reports/tr44/
http://unicode.org/reports/tr18/
https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp1.html
http://arxiv.org/pdf/1010.5318v3.pdf
http://arxiv.org/pdf/1010.5318v3.pdf

	Preparations
	Licensing
	System Requirements
	Installation
	IDE Integration
	Eclipse
	IntelliJ IDEA

	Scanner Definition
	The @expr Tag
	Base Expressions
	Single Character
	Concatenation
	Union
	String Sequence
	Quantifier
	Modifier
	Grouping/Nesting
	Character Class
	Lookahead

	Escape Sequences
	Escaped Characters
	Escaped Character Classes
	Escaped Character Sequences

	Unicode Character Properties
	Binary Properties
	Script, Block and Age
	General Category
	Character Names

	Lexical States
	Start Conditions
	Condition Areas
	Lexical State Stacks

	Macros
	The @macro Tag
	Global and Local Macros
	Examples

	Syntax Summary

	Code Generation
	The Code Area
	Running the Code Generator
	Generation Results
	Scanner Input
	String Mode
	Reader Mode

	The Scanning Algorithm
	List of Default Code Sections
	The logo section
	The statistics section
	The tableConstants section
	The lexicalStateConstants section
	The helperConstants section
	The dotFields section
	The lexicalStateFields section
	The matchFields section
	The helperFields section
	The tableMethods section
	The dotMethods section
	The lexicalStateMethods section
	The matchMethods section
	The scanMethods section
	The helperMethods section

	List of String-Mode Code Sections
	The stringFields section
	The regionFields section
	The stringMethods section
	The regionMethods section

	List of Reader-Mode Code Sections
	The readerFields section
	The bufferFields section
	The readerMethods section
	The bufferMethods section

	Options
	The @option Tag
	List of Options
	The logo option
	The statistics option
	The headings option
	The methodName option
	The methodThrows option
	The defaultReturnValue option
	The inputMode option
	The bufferStrategy option
	The bufferIncrement option
	The functionality option
	The javadoc option
	The visibility option
	The internal option
	The noMatchAction option
	Examples

	Infrastructure
	The Generation Process
	Limitations and Restrictions
	Performance

	References

