

Fernando Sáenz-Pérez 1/357

Universidad Complutense de Madrid

Datalog Educational System

Datalog Educational
System V6.1

User’s Manual

Fernando Sáenz-Pérez

Formal Analysis and Design of Software Systems (FADoSS)

Departamento de Ingeniería del Software e Inteligencia Artificial (DISIA)

Universidad Complutense de Madrid (UCM)

 May, 24th, 2018

Fernando Sáenz-Pérez 2/357

Universidad Complutense de Madrid

Datalog Educational System

Copyright (C) 2004-2018 Fernando Sáenz-Pérez

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in Appendix A, in the section entitled "Documentation License".

Fernando Sáenz-Pérez 3/357

Universidad Complutense de Madrid

Datalog Educational System

Contents

1. Introduction... 9

1.1 Some Novel Extensions in DES ... 10
1.2 Highlights for the Current Version .. 11
1.3 Features of DES in Short .. 11
1.4 Future Enhancements ... 14
1.5 Related Work ... 14

1.5.1 Deductive Database Systems .. 15
1.5.2 Technological Transfers... 16
1.5.3 Systems with Formal Relational Query Languages 17

2. Installation... 17
2.1 Downloading DES .. 17

2.1.1 Source Distribution .. 17
2.1.2 Executable Distribution ... 19

2.1.2.1 Windows ... 19
2.1.2.2 DES+ACIDE Bundle .. 21
2.1.2.3 Linux .. 21
2.1.2.4 Mac OS X ... 22

2.1.3 Other Interfaces .. 24
2.1.3.1 Emacs ... 24
2.1.3.2 Crimson Editor 3.70 ... 25

2.2 Installing and Executing DES .. 27
2.2.1 MS Windows ... 27

2.2.1.1 Executable Distribution ... 27
2.2.1.2 Source Distribution .. 27

2.2.2 Linux .. 27
2.2.2.1 Executable Distribution ... 27
2.2.2.2 Source Distribution .. 28

2.2.3 Starting DES from a Prolog Interpreter ... 28
3. Getting Started .. 28

3.1 Datalog Mode .. 30
3.2 SQL Mode .. 32
3.3 Relational Algebra Mode ... 36
3.4 Tuple Relational Calculus Mode .. 41
3.5 Domain Relational Calculus Mode... 44
3.6 Prolog Mode .. 47
3.7 Caveats ... 47
3.8 Getting Help .. 48

4. Query Languages .. 49
4.1 Datalog ... 50

4.1.1 Syntax ... 50
4.1.2 Rules ... 53
4.1.3 Programs ... 53
4.1.4 Queries ... 53
4.1.5 Temporary Views ... 54
4.1.6 Automatic Temporary Views ... 54
4.1.7 Underscored Variables .. 55
4.1.8 Negation .. 57

Fernando Sáenz-Pérez 4/357

Universidad Complutense de Madrid

Datalog Educational System

4.1.9 Duplicates .. 59
4.1.10 Null Values.. 62
4.1.11 Outer Joins ... 63
4.1.12 Aggregates .. 65

4.1.12.1 Aggregate Functions ... 65
4.1.12.2 Group_by Predicate ... 65
4.1.12.3 Aggregate Predicates ... 68
4.1.12.4 Aggregates and Duplicates... 70

4.1.13 Disjunctive Bodies .. 72
4.1.14 Relational Division in Datalog ... 73
4.1.15 Existential Quantification .. 74
4.1.16 Integrity Constraints .. 75

4.1.16.1 Type ... 75
4.1.16.1.1 Types on the Intensional Database .. 78
4.1.16.1.2 Types on Propositional Relations ... 78
4.1.16.1.3 Type Casting.. 78

4.1.16.2 Nullability (Existency Constraint) ... 80
4.1.16.3 Primary Key .. 80
4.1.16.4 Candidate Key (Uniqueness Constraint) .. 81
4.1.16.5 Foreign Key ... 81
4.1.16.6 Functional Dependency .. 83
4.1.16.7 User-defined Integrity Constraints ... 84
4.1.16.8 Dropping Constraints .. 87
4.1.16.9 Caveats .. 87

4.1.17 Restricted Predicates .. 88
4.1.18 Limited Domain Predicates .. 90
4.1.19 Hypothetical Queries ... 93

4.1.19.1 Hypothetical Queries and Integrity Constraints 96
4.1.19.2 Hypothetical Queries and Duplicates ... 97
4.1.19.3 Hypothetical Queries and Negation ... 98

4.1.1 Fuzzy Datalog ... 100
4.1.1.1 Fuzzy Relations and Approximation Degrees 101
4.1.1.2 Fuzzy Relations and Properties ... 104
4.1.1.3 Weak Unification and Weak Unification Operator 107
4.1.1.4 Fuzzy Expressions ... 108
4.1.1.5 Accessing Approximation Degrees ... 108

4.2 SQL .. 109
4.2.1 Main Limitations .. 109
4.2.2 Main Features ... 109
4.2.3 Datalog vs. SQL .. 111
4.2.4 Data Definition Language ... 111

4.2.4.1 Creating Tables ... 111
4.2.4.2 Creating Views ... 114
4.2.4.3 Dropping Tables... 116
4.2.4.4 Dropping Views ... 116
4.2.4.5 Renaming Tables .. 116
4.2.4.6 Renaming Views .. 116
4.2.4.7 Modifying Table Constraints ... 116
4.2.4.8 Dropping Databases .. 117

4.2.5 Data Manipulation Language ... 118

Fernando Sáenz-Pérez 5/357

Universidad Complutense de Madrid

Datalog Educational System

4.2.5.1 Inserting Tuples ... 118
4.2.5.2 Deleting Tuples .. 120
4.2.5.3 Updating Tuples .. 120

4.2.6 Data Query Language.. 120
4.2.6.1 Basic SQL Queries .. 120

4.2.6.1.1 Top-N Queries ... 124
4.2.6.1.2 The dual table .. 124

4.2.7 String Operations ... 125
4.2.7.1 CONCAT (Non-ISO) ... 125
4.2.7.2 LENGTH (Non-ISO) .. 125
4.2.7.3 LIKE (ISO) ... 125
4.2.7.4 LOWER (ISO) ... 126
4.2.7.5 SUBSTR (Non-ISO) .. 126
4.2.7.6 UPPER (ISO) ... 126

4.2.8 Conversion Functions .. 126
4.2.8.1 EXTRACT (ISO) ... 126
4.2.8.2 CAST (ISO) .. 126

4.2.9 (Multi)Set Expressions (Non-Standard) .. 126
4.2.9.1 Relational Division in SQL (Non-Standard) .. 127
4.2.9.2 Set SQL Queries.. 128

4.2.9.3 WITH SQL Queries ... 128
4.2.9.4 Hypothetical SQL Queries (Non-Standard) ... 130

4.2.10 Information Schema Language (ISL) ... 134
4.2.11 SQL Grammar ... 134

4.3 (Extended) Relational Algebra .. 142
4.3.1 Operators ... 143

4.3.1.1 Basic operators ... 143
4.3.1.2 Additional operators ... 144
4.3.1.3 Extended operators .. 145

4.3.2 Recursion in RA .. 148
4.3.3 RA Grammar ... 148

4.4 Tuple Relational Calculus .. 150
4.4.1 TRC Grammar .. 156

4.5 Domain Relational Calculus .. 157
4.5.1 DRC Grammar .. 161

4.6 Prolog .. 162
4.7 Built-ins .. 162

4.7.1 Comparison Operators .. 163
4.7.2 Datalog and Prolog Arithmetic .. 163
4.7.3 SQL, TRC and DRC Arithmetic .. 165
4.7.4 Arithmetic Built-ins .. 165

4.7.4.1 Arithmetic Operators .. 165
4.7.4.2 Arithmetic Constants... 166
4.7.4.3 Arithmetic Functions ... 166

4.7.5 String Functions and Operators ... 167
4.7.6 Date and Time: Data Structures, Functions and Operators 168
4.7.7 Negation .. 170
4.7.8 Datalog Outer Joins .. 170
4.7.9 Datalog Aggregates .. 171

Fernando Sáenz-Pérez 6/357

Universidad Complutense de Madrid

Datalog Educational System

4.7.9.1 Aggregate Functions ... 171

4.7.9.2 Predicate group_by .. 171
4.7.9.3 Aggregate Predicates ... 171

4.7.10 Null-related Predicates .. 172
4.7.11 Duplicates .. 172
4.7.12 Top-N Queries .. 173
4.7.13 Order-By Predicate ... 174

5. System Description .. 176
5.1 RDBMS connections via ODBC .. 177

5.1.1 Opening an ODBC Connection .. 177
5.1.2 Using a Connection .. 178
5.1.3 Opening Several Connections .. 181
5.1.4 Current Connection ... 182
5.1.5 Making a Connection the Current One ... 182
5.1.6 Closing a Connection ... 182
5.1.7 Schema and Data Visibility ... 182
5.1.8 Solving Engine and ODBC Connections ... 184
5.1.9 Integrity Constraints, ODBC Connections, and Persistence 186
5.1.10 Caveats and Limitations .. 187

5.1.10.1 Caching .. 187
5.1.10.2 ODBC Metadata ... 188
5.1.10.3 Platform-specific Issues ... 189

5.1.11 Tested ODBC Drivers .. 190
5.2 Persistence .. 190

5.2.1 Declaring a Persistent Predicate ... 190
5.2.2 Using Persistent Predicates ... 191
5.2.3 Processing a Persistence Assertion .. 195
5.2.4 Restoring Predicates .. 197
5.2.5 Schema of Persistent Predicates ... 198
5.2.6 Removing Predicate Persistence .. 200
5.2.7 Closing a Persistent Predicate Connection ... 201
5.2.8 Schema and Data Visibility ... 202
5.2.9 Applications .. 204
5.2.10 Caveats ... 206

5.2.10.1 Supported Built-ins .. 206
5.2.10.2 Incomplete Meanings .. 206
5.2.10.3 Opening and Closing Connections .. 207
5.2.10.4 Abolishing Predicates .. 208
5.2.10.5 Null Values ... 208
5.2.10.6 External Database Processing .. 208
5.2.10.7 Supported Platforms ... 208

5.3 Safety and Computability .. 208
5.3.1 Classical Safety ... 208
5.3.2 Safety and Variables .. 212
5.3.3 Safety for Aggregates and Duplicate Elimination 212
5.3.4 Unsafe Rules from Compilations ... 213
5.3.5 Safety for Limited Domain Predicates .. 214

5.4 Modes for Unsafe Predicates ... 215
5.5 Syntax Checking .. 216

5.5.1 Basic Syntax ... 216

Fernando Sáenz-Pérez 7/357

Universidad Complutense de Madrid

Datalog Educational System

5.5.2 Arguments of Built-ins and Metapredicates .. 217
5.5.3 Safety .. 218
5.5.4 Undefined Predicates ... 218
5.5.5 Singleton Variables .. 218
5.5.6 Set Variables .. 219
5.5.7 Stratification .. 219

5.6 Source-to-Source Transformations ... 219
5.7 Multi-line Mode .. 220
5.8 Development Mode .. 220
5.9 Datalog and SQL Tracers ... 223

5.9.1 Tracing Datalog Queries ... 224
5.9.2 Tracing SQL Views... 224

5.10 Datalog Declarative Debugger .. 225
5.10.1 Basic Debugging of Datalog Programs ... 226
5.10.2 Debugging Datalog Programs with Wrong and Missing Answers 230

5.11 SQL Declarative Debugger .. 233
5.11.1 Trusted Specifications .. 235
5.11.2 Missing and Wrong Tuples ... 236

5.11.2.1 Missing Tuples ... 236
5.11.2.2 Wrong Tuples ... 238
5.11.2.3 Displaying Extended Information ... 238
5.11.2.4 Automated Benchmarking for Debugging ... 239

5.12 SQL Test Case Generator ... 244
5.13 Batch Processing.. 245

5.13.1 Comments in Scripts .. 246
5.13.2 Logging Script Processing ... 246
5.13.3 Script Parameters ... 246
5.13.4 Script Return Codes ... 248

5.14 Configuration File ... 248
5.15 System and User Variables .. 248
5.16 Messages .. 251
5.17 Commands ... 252

5.17.1 DDB Database ... 253
5.17.2 ODBC/DDB Database ... 259
5.17.3 Dependency Graph and Stratification ... 262
5.17.4 Debugging and Test Case Generation ... 263
5.17.5 Tabling ... 264
5.17.6 Operating System ... 264
5.17.7 Logging .. 266
5.17.8 Informative .. 267
5.17.9 Query Languages ... 268
5.17.10 TAPI ... 269
5.17.11 Settings ... 269
5.17.12 Timing .. 274
5.17.13 Statistics ... 276
5.17.14 Scripting ... 277
5.17.15 Miscellanea .. 278
5.17.16 Implementor ... 278
5.17.17 Fuzzy .. 280

5.18 Textual API .. 283

Fernando Sáenz-Pérez 8/357

Universidad Complutense de Madrid

Datalog Educational System

5.18.1 Notes about the Interface .. 284

5.18.1.1 Identifiers .. 285
5.18.1.2 Kinds of Answers ... 285

5.18.2 TAPI-enabled Commands ... 286
5.18.3 TAPI-enabled Queries ... 300
5.18.4 TAPI-enabled Assertions .. 302

5.19 Enabling Host Safety .. 303
5.20 ISO Escape Character Syntax .. 303
5.21 Database Instances Generator ... 304
5.22 Notes about the Implementation of DES ... 306

5.22.1 Tabling ... 306
5.22.2 Fixpoint Computation ... 307
5.22.3 Dependency Graphs and Stratification: Negation, Outer Joins, and

Aggregates .. 308
5.22.4 Optimizations ... 309

5.22.4.1 Complete Computations (/optimize_cc) .. 309
5.22.4.2 Extensional Predicates (/optimize_ep) .. 311

5.22.4.3 Non-recursive Predicates (/optimize_nrp) 312
5.22.4.4 Stratum (/optimize_st) .. 314

5.22.5 Indexing (/indexing) .. 315
5.22.6 Porting to Unsupported Systems ... 316

6. Examples .. 317
6.1 Relational Operations (files relop.{dl,sql,ra,drc,trc}) 317

6.2 Paths in a Graph (files paths.{dl,sql,ra}) ... 320

6.3 Shortest Paths (file spaths.{dl,sql,ra}) ... 322

6.4 Family Tree (files family.{dl,sql,ra}) ... 324

6.5 Basic Recursion Problem (file recursion.dl) ... 326

6.6 Transitive Closure (files tranclosure.{dl,sql,ra}) 326

6.7 Mutual Recursion (files mutrecursion.{dl,sql,ra}) 327

6.8 Farmer-Wolf-Goat-Cabbage Puzzle (file puzzle.dl) 328

6.8.1 Dealing with paths (file puzzle1.dl) ... 330

6.9 Paradoxes (files russell.{dl,sql,ra}) .. 332

6.10 Parity (file parity.dl) ... 334
6.11 Grammar (file grammar.dl) .. 335

6.12 Fibonacci (file fib.{dl,sql,ra}) .. 336

6.13 Hanoi Towers (file hanoi.dl) ... 337
6.14 Other Examples ... 338

7. Contributions .. 338
8. Caveats and Limitations.. 339
9. Release Notes .. 341

9.1 Version 6.1 of DES (released on May, 24th, 2018) .. 341
10. Acknowledgements ... 342
11. License .. 345
Bibliography ... 353

Fernando Sáenz-Pérez 9/357

Universidad Complutense de Madrid

Datalog Educational System

1. Introduction

The intersection of databases, logic, and artificial intelligence gave raise to
deductive databases. Deductive database systems are database management systems
built around a logical model of data, and their query languages allow expressing
logical queries. A deductive database system includes procedures for defining
deductive rules which can infer information (in the so-called intensional database) in
addition to the facts loaded in the (so-called extensional) database. The logic model for
deductive databases is closely related to the relational model and, in particular, with
the domain relational calculus. Datalog is the most known deductive query language
(which syntactically is a Prolog subset) where constructed terms are not allowed as
other non-declarative constructs such as the cut.

On the other hand, relational database systems are well-known and widespread
nowadays. Their formal query languages include relational algebra and relational
calculi but, in practical systems, the de-facto and ANSI/ISO standard SQL is the
language of choice of every relational database vendor. Whilst SQL and relational
formal languages implement a limited form of logic, deductive database languages
implement advanced forms of logic. Database languages are conceived to be specific-
purpose rather than general-purpose languages, and are targeted at solving database
queries. This is contrary to the case of Prolog, for instance, which is intended as a

general-purpose language and its strengths must not be missed with those of Datalog.1

This manual describes DES, a deductive system which born from the need to
teach Datalog, and to have a simple, interactive, multiplatform, and affordable system
(not necessarily efficient) for students, so that they can grasp the fundamental concepts
behind a deductive database with Datalog, Relational Algebra, Tuple Relational
Calculus, Domain Relational Calculus and SQL as query languages. All these query
languages do operate over the same shared database. Pure and extended Datalog are
supported. Also, SQL is supported with a reasonable coverage of the standard for
teaching purposes, nevertheless with novel extensions. Supported (extended) relational
algebra includes duplicates, outer joins and recursion. Both relational calculi are
supported following the syntax of [Diet01]. Original development of DES was driven
by the need for such a tool with features that no other deductive system (see related
work in Section 1.5) enjoyed at the time.

 This system is not targeted as a complete deductive database, so that it does
not provide transactions, security, and other features present in current database
systems, but it has grown in different areas. In particular, it has been added with
several additions coming from research and practical applications. Its web page
des.sourceforge.net contains many use cases of this system in teaching,
researching and applications. Statistics also reveal it has become a widely-used system
along time.

1 Interestingly, both Datalog and standard SQL are both Turing complete (see for
instance a proof for SQL in [PSQL15] which implements a tag system), but no one would use it
as a general-purpose language in practical terms.

des.sourceforge.net

Fernando Sáenz-Pérez 10/357

Universidad Complutense de Madrid

Datalog Educational System

As a condensed description, the Datalog Educational System (DES) is a free,

open-source, multiplatform, portable, Prolog-based implementation of a deductive
database system. DES 6.1 is the current implementation, which enjoys Datalog,
Relational Algebra, Tuple Relational Calculus, Domain Relational Calculus and SQL
query languages, full recursive evaluation with memoization techniques, full-fledged
arithmetic, stratified negation, duplicates and duplicate elimination, restricted
predicates, integrity constraints, ODBC connections to external relational database
management systems (RDBMSs), Datalog and SQL tracers, a textual API for external
applications, and novel approaches to hypothetical SQL queries and Datalog rules,
declarative debugging of Datalog queries and SQL views, test case generation for SQL
views, modes, null values support, (tabled) outer join, aggregate predicates, and Fuzzy
Datalog. The system is implemented on top of Prolog and it can be used from a Prolog
interpreter running on any OS supported by such interpreter. Moreover, Windows,
Linux and Mac OS X executables are also provided. The graphical and configurable
IDE ACIDE [Saen07] has been specifically adapted to work with DES.

As being said already, though DES was developed for teaching purposes, it has
been used to develop some novel extensions as introduced next.

1.1 Some Novel Extensions in DES

A novel contribution implemented in this system is a declarative debugger of
Datalog queries (with several approaches along time [CGS07, CGS08]), which relies on
program semantics rather than on the computation mechanism. The debugging process
is usually started when the user detects an unexpected answer to a query. By asking
questions about the intended semantics, the debugger looks for incorrect program
relations. The initial implementation was superseded by a recent one [CGS15a] for
which more detailed user answers are allowed. See Section 5.10.

Also, a similar declarative approach has been used to implement an SQL
declarative debugger, following [CGS11b]. There, possible erroneous objects
correspond to views, and the debugger looks for erroneous views asking the user
whether the result of a given view is as expected. In addition, trusted views are
supported to prune the number of questions. This was extended to also include user
information about wrong and missing tuples [CGS12a]. See Section 5.11.

Following the need for catching program errors when handling large amounts
of data, we also include a test case generator for SQL correlated views [CGS10a]. Our
tool can be used to generate positive, negative and both positive-negative test cases.
See Section 5.12.

Decision support systems usually require assuming that some data are added to
or removed from the current database to make deductions. In this line, DES introduces
Hypothetical Datalog rules [Saen13] following [Bonn90] (Section 4.1.19). The novel
concept of restricted predicates was introduced to provide support for negative
assumptions in [Saen15] (Section 4.1.17). Also, limited domain predicates (tightly
related to referential integrity constraints) are a new class of predicates with a finite
meaning and that widen the queries on them, notably with non-closed negation calls
(Section 4.1.18). Also, DES included a novel ASSUME clause for supporting hypothetical

SQL queries and views [DES2.6], which was later changed first to make temporary
relations (common table expressions - CTE) local to their contexts, and, second, to
support negative assumptions in [DES3.7] (Section 4.2.9.4). For positive assumptions,

Fernando Sáenz-Pérez 11/357

Universidad Complutense de Madrid

Datalog Educational System

ASSUME statements can be alternatively specified with a WITH clause with minor
changes. Both are compiled into hypothetical Datalog rules. This makes a WITH
encapsulation something natural in the realms of hypothetical Datalog.

For dealing with vagueness and imprecise information, Fuzzy logic
programming has been applied to develop a fuzzy deductive database following [JS10]
(Section 4.1.1), with Fuzzy Datalog as its query language.

Finally, as this system is targeted mainly towards teaching, we have provided
an SQL semantic checker that raises warnings for, though syntactically correct SQL
statements, possible incorrect ones, following the descriptions in [BG06]. Some errors
include inconsistent conditions, lack of correlations in joins, unused tuple variables and
the like.

1.2 Highlights for the Current Version

The current version features several improvements including the following.
Date and time datatypes have been revisited: From the restricted date range we
considered in previous versions (based on Linux epoch, with lower bound in year
1970), we now adhere to the Julian Date (for the current epoch starting in 4713 BC) as
used by astronomers. This way, we support both the Julian and Gregorian calendars,
very similar to Oracle DBMS. Another improvement is the scripting system, which has
been extended with several commands (as /goto and /return) and labels, allowing a
very basic procedural programming language on top of the deductive database. This
allows (basic) bidirectional communication between the procedural and the SQL
language (conceptually similar to 4GL languages as PL/SQL and TransactSQL). The
help command has been reworked and turned interactive for selecting command
categories instead of showing the whole command listing. Other commands include
setting a default timeout and detailed timing display for inputs. The complete list of
enhancements, changes and fixed bugs are listed in Section 11.1.

1.3 Features of DES in Short

 Free, multiplatform, portable, and open-source.

It can be used in any OS platform (Windows, Mac, Linux, ...), running on one of
the supported Prolog interpreters. Moreover, portable executable applications are
provided for Windows, Mac, and Linux.

 Interactive.

Based on a command line interpreter, you can play with DES by submitting
queries, modifying the database, and processing commands.

 Five query languages and one shared database.

Datalog, SQL, Relational Algebra (RA), Tuple Relational Calculus (TRC), Domain
Relational Calculus (DRC) and with access to the same database, either locally or
externally stored (via ODBC connections and/or persistent predicates). Examine
the equivalent Datalog code resulting from compiling other languages
(/show_compilations on).

 Graphical user interface.

Fernando Sáenz-Pérez 12/357

Universidad Complutense de Madrid

Datalog Educational System

The Java-based ACIDE graphical environment (screenshot) has been configured
for a specific connection to DES via the textual application programming interface
(TAPI). It enjoys Datalog, SQL, RA, TRC, and DRC syntax highlighting, command
buttons and interactive console, therefore easing its use by decreasing the number
of keystrokes. In addition, an Emacs environment can be used.

 Database updates.

The database can be modified with both SQL DML and system commands.

 Null values and outer joins for three languages: Datalog, RA and SQL.

 Aggregates.

Typical aggregates as count, sum, min, max, avg, and times for SQL, RA and
Datalog are included. Datalog aggregates include both aggregate predicates and
aggregate functions (to be used in expressions). Grouping is supported and groups
built on-the-fly with Datalog auto-grouping.

 Multisets.

Duplicates can be enabled or disabled in Datalog, RA and SQL processing. Discard
duplicates with distinct operators.

 Hypothetical queries, views and rules in both Datalog and SQL.

Use the implication => in Datalog to build “what-if” applications in a business
intelligence scenario. Use the novel ASSUME SQL clause to build hypothetical

queries and views.

 Relational database access via ODBC.

ODBC sources of data can be seamlessly accessed. Connect DES to any DBMS
supporting such connections (MySQL, MS Access, Oracle, ...)

 Persistency.

Predicates and relations can persist on external data sources via ODBC
connections. Examine the SQL statements sent to the external database for
persistent predicates (/show_sql on) .

 Modes.

An input mode warns users about the need to ground an argument in queries for
an unsafe predicate.

 Highly configurable system on-the-fly.

Multiple features can be turned on and off and parameterized via commands.

 Stratified negation.

 Novel and extended SQL features include:

o Enforcement of functional dependencies.

o Hypothetical queries and views.

o DIVISION relational operation.

o Mutual and non-linear recursion

Fernando Sáenz-Pérez 13/357

Universidad Complutense de Madrid

Datalog Educational System

 Integrity constraints.

o Domain.

o Types.

o Primary key.

o Referential integrity.

o Functional dependency.

o Check constraints (user-defined).

o ... and several typical others.

Constraint checking can be enabled or disabled.

 Declarative debugging for Datalog and SQL.

Several declarative debuggers have been included along time in DES with the aim
to debug towards intended semantics rather than procedural semantics. In
addition, debugging can be used with existing external databases as DB2, MySQL,
PostgreSQL and Oracle.

 Test case generation for SQL views.

This prototype can be used for working with views over large tables and test them
with the test cases, instead of with the actual tables.

 SQL database generator.

If you need SQL database instances for your benchmarks, generate them randomly
at will.

 Full-fledged arithmetic.

Write arithmetical expressions with a wide set of arithmetical functions, operators
and constants. Unlimited precision integer arithmetic is provided thanks to the
underlying Prolog systems.

 Type system for Datalog, RA, TRC, DRC and SQL.

Whilst SQL require typed relations, Datalog predicates can be optionally typed to
feeling the benefits of typed relations and type inference. Automatic type casting à
la SQL in both settings can be enabled with the command /type_casting on.
And explicit type casting is allowed with both an SQL function and a Datalog
predicate.

 Syntax checking for all languages with informative error messages, and SQL
semantic checking with informative warning messages.

 Connecting DES to the outside programmatic world.

DES can be plugged to a host system via standard streams using the textual
application interface TAPI. DES can be connected to any development system
supporting standard stream operations: Java, C++, VB, Python, Lua, ...
Alternatively, use the underlying Prolog API's to generate executables or run-time
systems with access to several languages (Java, C++, ...).

 Configurable look and feel.

Fernando Sáenz-Pérez 14/357

Universidad Complutense de Madrid

Datalog Educational System

o Pretty-printers for Datalog, RA and SQL.

o Single and multiline modes.

o Compact and sparse display lines.

 Batch execution.

o Provide a file with DES inputs and log the results into another file. Several
logs at a time are supported.

o Use batch commands and system variables for execution control.

 Fuzzy Datalog:

o Formal concepts supporting the fuzzy logic programming system
Bousi~Prolog are translated into the deductive database system

 Implementation includes:

o Source-to-source program transformations:

 Safety. Safety transformations can be enabled to deal with some
unsafe rules. Also, unsafe rules can be used to experiment in
conjunction with modes.

 Built-ins. Programs with outer join calls are transformed in order to
be computed by the underlying tabled, fixpoint method.

o Tabling. Answer tables are used for implementing fixpoint and caching
computations.

 Development mode.

This mode, when enabled, helps to understand how the system works
(/development on). Transformed and compiled programs can be examined.

1.4 Future Enhancements

The following list (in order of importance) suggests some points to address for
enhancing DES:

 Embed declarative debugging into the GUI ACIDE

 Disjunctive heads

 Information about cycles involving negation in the loaded program

 Complete algorithm for finding undefined information

 Constraints à la CLP (real, integer, enumerated types, strings)

If you find worthwhile for your application either some of the points above, or
others not listed, please inform the author for trying to guide the implementation to the
most demanded points.

1.5 Related Work

Origins of deductive databases can be found in automatic theorem proving and,
later, in logic programming. Minker [Mink87] suggested that Green and Raphael
[GR68] were the pioneers in discovering the relation between theorem proving and

Fernando Sáenz-Pérez 15/357

Universidad Complutense de Madrid

Datalog Educational System

deduction in databases. They developed several question–answer systems using a
version of the Robinson resolution principle [Robi65], showing that deduction can be
systematically performed in a database environment. Other pioneer systems were
MRPPS [MN82], DEDUCE–2 [Chan78] and DADM [KT81]. See Section 1.5 for
references to other current deductive database systems.

There has been a high amount of work around deductive databases [RU95] (its
interest delivered many workshops and conferences for this subject) which dealt to
several systems. However, to the best of our knowledge, there is no a friendly system
oriented to introducing deductive databases with several query languages to students.
Nevertheless, on the one hand, we can comment some representative deductive
database systems, and, on the other hand, some technological transfers to face real-
world problems. Finally, we comment on existing systems with formal relational query
languages.

1.5.1 Deductive Database Systems

This section collects and describes some deductive database systems developed
so far:

 4QL [MS11] (http://4ql.org/) is a recent development of a rule-based database
query language with negation allowed in bodies and heads of rules, which is
founded on a four-valued semantics with truth values: true, false, inconsistent and
unknown. It provides means for a uniform treatment of Open and Local Closed
World, other nonmonotonic/commonsense formalisms, including various variants
of default reasoning, autoepistemic reasoning and other formalisms application-
specific disambiguation of inconsistent information, including defeasible reasoning.

 Logic Query Language (LogiQL, http://www.logicblox.com/technology.html) is a
declarative programming language derived from Datalog and developed by
LogicBlox Inc. for their LogicBlox database engine. It has been designed including
advanced techniques for query evaluation, concurrency management, network
optimization, program analysis, declarative and reactive programming models.

 ConceptBase [JJNS98] (http://conceptbase.sourceforge.net/) is a multi-user
deductive object manager mainly intended for conceptual modelling and
coordination in design environments. It is multiplatform, object-oriented, it enjoys
integrity constraints, database updates and several other interesting features.

 The LDL project at MCC lead to the LDL++ system [AOTWZ03], a deductive
database system with features such as X-Y stratification, set and complex terms,
database updates and aggregates. It has been replaced by DeAL. The Deductive
Application Language (DeAL) System (http://wis.cs.ucla.edu/deals/) is a next-
generation Datalog system. The objective of the DeALS project is to extend the
power of Datalog with advanced constructs with strong theoretical foundations.
DeAL supports stratified aggregation, negation and XY-stratification. DeAL also
supports new monotonic aggregates that can be used in recursive rules.

 DLV [FP96] (http://www.dlvsystem.com/dlv/) is a multiplatform system for
disjunctive Datalog with constraints, true negation (à la Gelfond & Lifschitz) and
queries. It includes the K planning system, a frontend for abductive diagnosis and
Reiter's diagnosis, support for inheritance, and an SQL front-end which prototypes
some novel SQL3 features. DLVDB is an extension of DLV which provides interfaces

http://4ql.org/
http://www.logicblox.com/technology.html
http://conceptbase.sourceforge.net/
http://wis.cs.ucla.edu/deals/
http://www.dlvsystem.com/dlv/

Fernando Sáenz-Pérez 16/357

Universidad Complutense de Madrid

Datalog Educational System

with relational databases, taking advantage of their efficient implementations to
speed-up computations.

 XSB [RSSWF97] (http://xsb.sourceforge.net/) is an extended Prolog system that
can be used for deductive database applications. It enjoys a well–founded
semantics for rules with negative literals in rule bodies and implements tabling
mechanisms. It runs both on Unix/Linux and Windows operating systems.
Datalog++ [Tang99] is a front-end for the XSB system.

 bddbddb [WL04] (http://bddbddb.sourceforge.net/) stands for BDD-Based
Deductive DataBase. It is an implementation of Datalog that represents the
relations using binary decision diagrams (BDD's). BDD's are a data structure that
can efficiently represent large relations and provide efficient set operations. This
allows bddbddb to efficiently represent and operate on extremely large relations.

 IRIS (Integrated Rule Inference System) [IRIS2008] is a Java implementation of an
extensible reasoning engine for expressive rule-based languages provided as an
API. Supports safe or un-safe Datalog with (locally) stratified or well-founded
negation as failure, function symbols and bottom-up rule evaluation.

 Coral [RSSS94] is a deductive system with a declarative query language that
supports general Horn clauses augmented with complex terms, set–grouping,
aggregation, negation, and relations with tuples that contain (universally
quantified) variables. It only runs under Unix platforms. There is also a version
which allows object–oriented features, called Coral++ [SRSS93].

 FLORID (F-LOgic Reasoning In Databases) [KLW95] is a deductive object-oriented
database system supporting F-Logic as data definition and query language. With
the increasing interest in semistructured data, Florid has been extended for
handling semistructured data in the context of Information Integration from the
Semantic Web.

 The NAIL! project delivered a prototype with stratified negation, well–founded
negation, and modularity stratified negation. Later, it added the language Glue,
which is essentially single logical rules, with SQL statements wrapped in an
imperative conventional language [PDR91, DMP93]. The approach of combining
two languages is similar to the aforementioned Coral, which uses C++. It does not
run on Windows platforms.

 Another deductive database following this combination of declarative and
imperative languages is Rock&Roll [BPFWD94].

 ADITI 2 [VRK+91] is the last version of a deductive database system which uses the
logic/functional programming language Mercury. It does not run on Windows
platforms. There is no further development planned for Aditi.

See also the Datalog entry in Wikipedia (http://en.wikipedia.org/wiki/
Datalog).

1.5.2 Technological Transfers

Datalog has been extensively studied and is gaining a renowned interest thanks
to their application to ontologies [FHH04], semantic web [CGL09], social networks
[RS09], policy languages [BFG07], and even for optimization [GTZ05]. Companies as
LogicBlox, Exeura, Semmle, DLVSYSTEM s.r.l. and Lixto embody Datalog-based

http://xsb.sourceforge.net/
http://bddbddb.sourceforge.net/

Fernando Sáenz-Pérez 17/357

Universidad Complutense de Madrid

Datalog Educational System

deductive database technologies in the solutions they develop. The high-level
expressivity of Datalog and its extensions has therefore been acknowledged as a
powerful feature to deal with knowledge-based information.

The first commercial oriented deductive database system was the Smart Data
System (SDS) and its declarative query language Declarative Reasoning (DECLARE)
[KSSD94], with support for stratified negation and sets. Currently, XSB and DLV have
been projected to spin-off companies and they develop deductive solutions to real-
world problems.

1.5.3 Systems with Formal Relational Query Languages

Several implementations of formal relational query languages exist. One of the
most known is WinRDBI (https://winrdbi.asu.edu/), a system including SQL, RA,
and tuple and domain relational calculi (TRC and DRC, respectively). It includes a GUI
and allows the definition of views in each language. This system is described in the
book [Diet01] as a tool for learning formal languages. Another system is RAT
(http://www.slinfo.una.ac.cr/rat/rat.html) which allows students to write statements
in RA which are translated to SQL in order to verify the correct syntax for these
expressions. RAT also allows connections to relational databases. Also, Chris Date and
Hugh Darwen proposed a language called Tutorial D intended for use in teaching
relational database theory, and its query language also draws on ISBL's ideas. Rel
(http://reldb.org/) is an implementation of Tutorial D as a true relational database
management system. LEAP (http://leap.sourceforge.net) is a relational database
management system developed at the Oxford Brookes University (UK) which includes
pure relational algebra. Relational Algebra System for Oracle and Microsoft SQL Server
(http://www.cse.fau.edu/~marty/), developed by M.K. Solomon at the Florida
Atlantic University (USA), features relational algebra with division operating on those
existing RDBMS's.

2. Installation

This section explains how to download the available distributions (binary,
sources, bundle with the graphical environment ACIDE), their contents, and hints for
installations and configurations.

2.1 Downloading DES

You can download the system from the DES web page via the URL:

http://des.sourceforge.net/

There, you can find source distributions for several Prolog interpreters and
operating systems, and executable distributions for MS Windows, Linux and Mac OS
X.

2.1.1 Source Distribution

Under the source distribution, there are several versions depending on the
Prolog interpreter you select to run DES: either SICStus Prolog [SICStus] or SWI-Prolog
[SWI]. However, adapting the code in the file des_glue.pl, it could be ported to any
other Prolog system. (See Section 5.22.3 for porting to unsupported systems.) We have
tested DES under SICStus Prolog 4.4.1 and SWI–Prolog 7.4.2), and several operating

https://winrdbi.asu.edu/
http://www.slinfo.una.ac.cr/rat/rat.html
http://reldb.org/
http://leap.sourceforge.net/
http://www.cse.fau.edu/~marty/

Fernando Sáenz-Pérez 18/357

Universidad Complutense de Madrid

Datalog Educational System

systems (MS Windows XP/Vista/7, Ubuntu 10.04.1, Ubuntu 12.04, and Mac OS X
Snow Leopard).

The source distribution comes in a single archive file containing the following:

 readmeDES<version>.txt. A quick installation guide and file release contents.

 des.pl. Core of DES, including Datalog processor.

 des_atts.pl. Attributed variables of the host Prolog system.

 des_commands.pl. System commands.

 des_common.pl. Common predicates to different files.

 des_dbigen.pl. SQL database instance random generator.

 des_dcg.pl. DCG expansion.

 des_dl_debug.pl. Datalog declarative debuggers.

 des_drc.pl. DRC processor.

 des_fuzzy.pl. Fuzzy Datalog subsystem.

 des_glue.pl. Contains particular code for the selected host Prolog system.

 des_help.pl. Help system.

 des_ini.pl. Initialization files.

 des_modes.pl. Modes for Datalog predicates and rules

 des_pchr.pl. CHR program for debugging Datalog predicates

 des_persistence.pl. Persistence for Datalog predicates

 des_ra.pl. RA processor

 des_sql.pl. SQL processor

 des_sql_semantic.pl. SQL semantic checker

 des_sql_debug.pl. SQL declarative debugger

 des_tc.pl. Test case generator for SQL views

 des_trace.pl. Tracers for SQL and Datalog

 des_trc.pl. TRC processor

 des_types.pl. Type inferrer and checker for SQL, RA and Datalog

 doc/manualDES6.1.pdf. This manual

 doc/release_notes_history_DES.pdf. Releases notes history of previous
versions

 examples/* Example files, some of them discussed in Section 6

 license/* A verbatim copy of the GNU Lesser General Public License for this
distribution

 readmeDES6.1.txt. A quick installation guide and release notes

Fernando Sáenz-Pérez 19/357

Universidad Complutense de Madrid

Datalog Educational System

2.1.2 Executable Distribution

2.1.2.1 Windows

From the same URL above, you can download a Windows executable
distribution in a single archive file containing the following:

 des.exe. Console executable file, intended to be started from a OS command shell,
as depicted in the next figure:

 deswin.exe. Windows-application executable file, as depicted below:

Fernando Sáenz-Pérez 20/357

Universidad Complutense de Madrid

Datalog Educational System

Please note that the menu bar above is inherited from the host Prolog system and all its
settings apply to such system, not to DES. However, there are some menu items that
can be useful.

For the SICStus executable:

o File Save Transcript: Save the current window buffer to a file.

o Edit: For clipboard operations. "Automatic Copy" means that by selecting
text, it will automatically copied to the clipboard.

o Keyboard shortcuts for clipboard are: Ctrl+Insert (Copy), and Shift+Insert
(Paste)

o Settings Window Settings save lines: Number of lines in the window
buffer.

o Settings Fonts: Select font and size

o Settings Save Settings: Save current settings for the next session.

For the SWI-Prolog executable:

o Edit: For clipboard operations. Automatic copy is always enabled.

o Keyboard shortcuts for clipboard are: Ctrl+C (Copy), and Ctrl+V (Paste)

o Settings Fonts: Select font and size

 *.dll. DLL libraries for the runtime system

 doc/manualDES6.1.pdf. This manual

 doc/release_notes_history_DES.pdf. Releases notes history of previous
versions

Fernando Sáenz-Pérez 21/357

Universidad Complutense de Madrid

Datalog Educational System

 examples/*.dl. Example files which will be discussed in Section 6

 license/*. A verbatim copy of the GNU Lesser General Public License for this
distribution

 readmeDES6.1.txt. A quick installation guide and release notes

2.1.2.2 DES+ACIDE Bundle

From the same URL above, you can download a bundle including both DES
and the integrated development environment ACIDE, preconfigured to work with
DES, and including the configuration file des.cnf for DES. The following figure is a
snapshot of the system taken in a Windows 10 64 bit system:

2.1.2.3 Linux

From the same URL above, you can download a Linux executable distribution
in a single archive file containing the following:

 des. Console executable file

 doc/manualDES6.1.pdf. This manual

 doc/release_notes_history_DES.pdf. Releases notes history of previous
versions

 examples/*. Example files which will be discussed in Section 6

 license/*. A verbatim copy of the GNU Lesser General Public License for this
distribution

 readmeDES6.1.txt. A quick installation guide and release notes

The following screenshot has been taken in Ubuntu 16.04 LTS:

Fernando Sáenz-Pérez 22/357

Universidad Complutense de Madrid

Datalog Educational System

An ACIDE bundle can be downloaded for Linux and including the
configuration file des.cnf for DES. The following snapshot shows this running on
Ubuntu 16.04 64bit:

2.1.2.4 Mac OS X

From the same URL above, you can download a Mac OS X executable
distribution in a single archive file containing the following:

 des. Console executable file

 doc/manualDES6.1.pdf. This manual

Fernando Sáenz-Pérez 23/357

Universidad Complutense de Madrid

Datalog Educational System

 doc/release_notes_history_DES.pdf. Releases notes history of previous

versions

 examples/*. Example files which will be discussed in Section 6

 license/*. A verbatim copy of the GNU Lesser General Public License for this
distribution

 readmeDES6.1.txt. A quick installation guide and release notes

The following screenshot has been taken in Mac OS X High Sierra:

There is also an ACIDE bundle that can be downloaded for Mac OS X and
including the configuration file des.cnf for DES. The following snapshot shows this
running on Mac OS X High Sierra:

Fernando Sáenz-Pérez 24/357

Universidad Complutense de Madrid

Datalog Educational System

2.1.3 Other Interfaces

Other interfaces include Emacs and Crimson Editor.

2.1.3.1 Emacs

The first one is a contribution of Markus Triska and provides an integration of
DES into Emacs. Once a Datalog file has been opened, you can consult it by pressing
F1 and submit queries and commands from Emacs. This works at least in combination
with SWI Prolog (it depends on the -s switch); other systems may require slight
modifications. For its installation, copy des.el (as found in the contributions web
page) to your home directory and add to your .emacs:

(load "~/des")

; adapt the following path as necessary:

(setq des-prolog-file "~/des/systems/swi/des.pl")

(add-to-list 'auto-mode-alist '("\\.dl$" . des-mode))

Restart Emacs, open an *.dl file to load it into a DES process (this currently
only works with SWI-Prolog). If the region is active, F1 consults the text in the region.
You can then interact with DES as on a terminal. Next figure shows DES running on
Emacs:

http://des.sourceforge.net/des/emacs/des.el
http://des.sourceforge.net/des/emacs/des.el

Fernando Sáenz-Pérez 25/357

Universidad Complutense de Madrid

Datalog Educational System

2.1.3.2 Crimson Editor 3.70

The second interface run on Windows and is obtained by configuring Crimson
Editor 3.70 to work with DES as an external tool whose output is captured by Crimson
and input can be sent to DES. In Tools->Conf. User Tools, fill in the
Preferences dialog box the path to the console executable in the Command input box.
Other alternative is to start a Prolog system with an initial goal, as described in Section
2.2.1.2.

Fernando Sáenz-Pérez 26/357

Universidad Complutense de Madrid

Datalog Educational System

Then, in this case, pressing Ctrl+1 starts the DES console:

Fernando Sáenz-Pérez 27/357

Universidad Complutense de Madrid

Datalog Educational System

Crimson Editor also lets you to play with multiple editors, syntax highlighting,

projects, and several useful tools. The input can be typed in the input box below or by
clicking with the secondary mouse button to select Input.

2.2 Installing and Executing DES

Unpack the distribution archive file into the directory you want to install DES,
which will be referred to as the distribution directory from now on. This allows you to
run the system, whether you have a Prolog interpreter or not (in this latter case, you
have to run the system either on MS Windows, Linux or Mac OS X).

Although there is no need for further setup and you can go directly to Section
2.2.3, you can also configure a more user-friendly way for system start. In this way,
you can follow two routes depending on the operating system.

2.2.1 MS Windows

2.2.1.1 Executable Distribution

Simply create a shortcut in the desktop for executing the executable of your
choice: either des.exe, or deswin.exe or des_acide.jar. The former is a console-
based executable, the second is a windows-based executable, and the latter is a Java
application that includes a call to the binary des.exe. Executables have been
generated with SICStus Prolog and SWI-Prolog, so that all notes relating these systems
in the rest of this document also apply to these executables. In addition, since it is a
portable application, it needs to be started from its distribution directory, which means
that the start-up directory of the shortcut must be the distribution directory.

2.2.1.2 Source Distribution

Perform the following steps:

1. Create a shortcut in the desktop for running the Prolog interpreter of your choice.

2. Modify the start directory in the “Properties” dialog box of the shortcut to the
installation directory for DES. This allows the system to consult the needed files at
startup.

3. Append the following options to the Prolog executable path, depending on the
Prolog interpreter you use:

(a) SICStus Prolog: -l des.pl

(b) SWI-Prolog: -g "ensure_loaded(des)" (remove --win_app if present)

Another alternative is to write a batch file similar to the script file described in
the next section.

2.2.2 Linux

2.2.2.1 Executable Distribution

You can create a script or an alias for executing the file des at the distribution
root. This executable has been generated under SICStus Prolog, so that all SICStus
notes in the rest of this document also apply to these executables. In addition, since it is
a portable application, it needs to be started from its distribution directory.

Fernando Sáenz-Pérez 28/357

Universidad Complutense de Madrid

Datalog Educational System

2.2.2.2 Source Distribution

You can write a script for starting DES according to the selected Prolog
interpreter, as follows:

(a) SICStus Prolog:

$SICSTUS –l des.pl

Provided that $SICSTUS is the variable which holds the absolute filename of the
SICStus Prolog executable.

(b) SWI-Prolog:

$SWI -g "ensure_loaded(des)"

Provided that $SWI is the variable which holds the absolute filename of the SWI-
Prolog executable.

2.2.3 Starting DES from a Prolog Interpreter

Besides the methods just described, you can start DES from a Prolog interpreter,
whatever the OS and platform, first changing to the distribution directory, and then
submitting:

?- [des].

Or better, if the system does support it:

?- ensure_loaded(des).

If the unlikely event that the system does not start by itself, then type:

?- start.

3. Getting Started

Whichever method you use to start DES (a script, batch file, or shortcut, as
described in Section 2.2), you get the following:

Fernando Sáenz-Pérez 29/357

Universidad Complutense de Madrid

Datalog Educational System

* *

* DES: Datalog Educational System v.6.1 *

* *

* Type "/help" for help about commands *

* *

* Fernando Saenz-Perez (c) 2004-2018 *

* DISIA FADoSS UCM *

* Please send comments, questions, etc. to: *

* fernan@sip.ucm.es *

* Web site: *

* http://des.sourceforge.net/ *

* *

* This program comes with ABSOLUTELY NO WARRANTY, is *

* free software, and you are welcome to redistribute it *

* under certain conditions. Type "/license" for details *

DES>

Last line (DES>) is the DES system prompt, which allows you to write queries
and statements in the languages Datalog, SQL, Relational Algebra (RA), Tuple
Relational Calculus (TRC), and Domain Relational Calculus (DRC). Also, commands,
temporary views and conjunctive queries (see next sections) can be inputs. If an error
leads to an exit from DES and you have started from a Prolog interpreter, then you can
write ”des.” (without the double quotes and with the dot) at the Prolog prompt to
continue.

Though a query in any of the languages above can be submitted from such a
prompt, there are currently six modes available which enable to use a concrete query
interpreter for Datalog, SQL, RA, TRC, DRC and also Prolog (a special mode is used for
fuzzy Datalog, c.f. Section 4.1.1). The Datalog mode is the default. Modes can be
switched with the commands /datalog, /sql, /ra, /trc , /drc and /prolog. Note
that commands always start with a slash (/). Anyway, if you are in a given mode, you
can submit queries or goals to other interpreter simply by writing the query or goal
after any of the previous commands. Also, if you are in Datalog mode, you can directly
submit SQL, RA, TRC and DRC queries. But a Prolog query can only be submitted
from either the Prolog mode or with the command /prolog.

Data are stored in an in-memory deductive database, including facts (the
extensional database part) and rules (the intensional database part). All queries and
goals, irrespective of the language, refer to this database. When an external database is
opened (see Section 5.1), their tables and views are available and can be queried from
Datalog, Prolog, RA, TRC, DRC and SQL. The term relation is interchangeably used
with predicate, as are also the terms goal and query.

In contrast with interpreters of other systems, the default input mode is single-
line, which means that the input will be processed after hitting the INTRO key, which
allows to omit the terminating character. Nonetheless, this mode can be switched to
multi-line as described in Section 5.7 with the command /multiline on. However,

even in this mode, commands remain as single-line inputs.

Fernando Sáenz-Pérez 30/357

Universidad Complutense de Madrid

Datalog Educational System

Terminal sessions in this manual correspond to actual sessions in a given DES

version (not always the last one). Listings have been captured with compact listings
enabled (with the command /multiline on).

3.1 Datalog Mode

In this mode, a query is sent to the Datalog processor. If it does not follow
Datalog syntax, then it is sent, first, to the SQL processor (see Section 4.2) , second, to
the RA processor (see Section 4.3), third, to the TRC processor (see Section 4.4), and
fourth, to the DRC processor (see Section 4.4) should such query is written in any of
these other query languages (See caveats in Section 3.7).

Commands (see Section 5.17) start with a slash (/) and are sent to the command
processor. Commands can end with an optional dot. While in single-line mode,
Datalog inputs can also end with an optional dot, the dot is required in multi-line
mode. Datalog mode is the default mode and can be anyway enabled via the command
/datalog.

The typical way of using the system is to write Datalog program files (with
default extension .dl) and consulting them before submitting queries. Another
alternative is to interactively assert program rules in the system prompt. Following the
first alternative, you write the program in a text file, and then change to the path where
the file is located by using the command /cd Path, where Path is the new directory
(relative or absolute). Next, the command /consult FileName is used to consult the

file FileName. Or, instead of changing the current directory, you can write the
absolute or relative path to the file in the consult command. When writing a path, you
can use interchangeably the backslash and the slash to delimit folders in Windows.

Provided that there are a number or example files in the directory examples at
the distribution directory, and assuming that the current path is the distribution
directory (as by default), one can use the following commands to consult the example
file relop.dl:2

DES> /cd examples

DES> /consult relop.dl

Info: 18 rules consulted.

(where the default extension .dl can be omitted). Note that Datalog rules in files must

end with a dot, in contrast to command prompt inputs, where the dot is optional in
single-line input. Rules in a consulted file may span on multiple lines because a multi-
line mode is enforced for such files.

Be warned that the command /consult erases the current database. If you want to
keep already loaded facts and rules, use the command /reconsult instead.

Then, one can examine the contents of the database (see Section 6.1 for an explanation
of the consulted program) via the command:

DES> /listing

a(a1).

2 See section 5 for more details about commands.

Fernando Sáenz-Pérez 31/357

Universidad Complutense de Madrid

Datalog Educational System

a(a2).

a(a3).

b(a1).

b(b1).

b(b2).

c(a1,a1).

c(a1,b2).

c(a2,b2).

cartesian(X,Y) :-

 a(X),

 b(Y).

difference(X) :-

 a(X),

 not b(X).

full_join(X,Y) :-

 fj(a(X),b(Y),X = Y).

inner_join(X) :-

 a(X),

 b(X).

left_join(X,Y) :-

 lj(a(X),b(Y),X = Y).

projection(X) :-

 c(X,Y).

right_join(X,Y) :-

 rj(a(X),b(Y),X = Y).

selection(X) :-

 a(X),

 X = a2.

union(X) :-

 a(X)

 ;

 b(X).

Info: 18 rules listed.

Submitting a query is pretty easy:

DES> a(X)

{

 a(a1),

 a(a2),

 a(a3)

}

Info: 3 tuples computed.

You can interactively add new rules with the command /assert, as in:

DES> /assert a(a4)

DES> a(X)

{

 a(a1),

 a(a2),

 a(a3),

 a(a4)

}

Fernando Sáenz-Pérez 32/357

Universidad Complutense de Madrid

Datalog Educational System

Info: 4 tuples computed.

Saving the current database, which may include such interactively added (or , if
it is the case, deleted) tuples, is allowed with the command /save_ddb Filename,
which saves in a plain file the Datalog rules located in the default in-memory database.
Later, they can be restored with /restore_ddb Filename (this command is only an
alias for /consult.) In the following session, the current database is stored, abolished
(cleared), and finally restored. All the data, including the ones interactively added are
eventually recovered:

DES> /save_ddb db.dl

DES> /abolish

DES> /restore_ddb db.dl

Info: 19 rules consulted.

DES> a(X)

{

 a(a1),

 a(a2),

 a(a3),

 a(a4)

}

Info: 4 tuples computed.

In addition to be able of saving the in-memory database, Section 5.2 explains
how to make single predicates persistent in external SQL databases.

Another useful command is /list_et, which lists, in particular, the answers
already computed. Following the last series of queries and commands above, we
submit:

Answers:

{

 a(a1),

 a(a2),

 a(a3),

 a(a4)

}

Info: 4 tuples in the answer table.

Calls:

{

 a(A)

}

Info: 1 tuple in the call table.

Here, we can see that the computed meaning of the queried relation is stored in
an extension (answer) table, as well as the last call (cf. sections 5.22.1 and 5.22.2). The
extension table keeps computed results unless either the database is changed (e.g., via
/assert, /retract or /abolish commands), or a Datalog temporary view (see
Section 4.1.6) is executed, or an SQL, RA, TRC or DRC query is executed, or the
command /clear_et is submitted.

3.2 SQL Mode

In this mode, queries are sent to the SQL processor, whereas commands (cf.
Section 5.17) are sent to the command processor. SQL queries can end with an optional

Fernando Sáenz-Pérez 33/357

Universidad Complutense de Madrid

Datalog Educational System

semicolon in single-line mode. Multi-line mode requires the ending semicolon. SQL
mode is enabled via the command /sql. Datalog, RA, TRC and DRC queries cannot be
handled by this mode. Recall, however, that the Datalog mode is able to reckon SQL
inputs and handle them without the need for turning on the SQL mode. The SQL mode
is provided for a single language input (cf. Section 3.7) and to display language-specific
syntax errors.

If we want to develop an analogous SQL example session to the Datalog
example in the last section, we can submit the first inputs (also available in the file
examples/relop.sql) listed below (the example is augmented to provide a first
glance of SQL). Now, answer relations to SQL queries are denoted by the relation name
answer. Also note that lines starting by -- are simply remarks as usual in SQL
systems (though you can still use %). If you wish to automatically reproduce the
following interactive session of inputs, you can type /process

examples/relop.sql (notice that you must omit examples/ if you are in this
directory already):

Info: Processing file 'relop.sql' ...

DES> -- Switch to SQL interpreter

DES> /sql

DES> -- Creating tables

DES> create or replace table a(a string);

DES> create or replace table b(b string);

DES> create or replace table c(a string,b string);

DES> -- Listing the database schema

DES> /dbschema

Info: Table(s):

 * a(a:string)

 * b(b:string)

 * c(a:string,b:string)

Info: No views.

Info: No integrity constraints.

DES> -- Inserting values into tables

DES> insert into a values ('a1');

Info: 1 tuple inserted.

DES> insert into a values ('a2');

Info: 1 tuple inserted.

DES> insert into a values ('a3');

Info: 1 tuple inserted.

DES> insert into b values ('b1');

Info: 1 tuple inserted.

DES> insert into b values ('b2');

Info: 1 tuple inserted.

DES> insert into b values ('a1');

Info: 1 tuple inserted.

DES> insert into c values ('a1','b2');

Info: 1 tuple inserted.

DES> insert into c values ('a1','a1');

Info: 1 tuple inserted.

DES> insert into c values ('a2','b2');

Info: 1 tuple inserted.

DES> -- Testing the just inserted values

DES> select * from a;

Fernando Sáenz-Pérez 34/357

Universidad Complutense de Madrid

Datalog Educational System

answer(a.a) ->

{

 answer(a1),

 answer(a2),

 answer(a3)

}

Info: 3 tuples computed.

DES> select * from b;

answer(b.b) ->

{

 answer(a1),

 answer(b1),

 answer(b2)

}

Info: 3 tuples computed.

DES> select * from c;

answer(c.a, c.b) ->

{

 answer(a1,a1),

 answer(a1,b2),

 answer(a2,b2)

}

Info: 3 tuples computed.

DES> -- Projection

DES> select a from c;

answer(c.a) ->

{

 answer(a1),

 answer(a2)

}

Info: 2 tuples computed.

DES> -- Selection

DES> select a from a where a='a2';

answer(a.a) ->

{

 answer(a2)

}

Info: 1 tuple computed.

DES> -- Cartesian product

DES> select * from a,b;

answer(a.a, b.b) ->

{

 answer(a1,a1),

 answer(a1,b1),

 answer(a1,b2),

 answer(a2,a1),

 answer(a2,b1),

 answer(a2,b2),

 answer(a3,a1),

 answer(a3,b1),

 answer(a3,b2)

}

Info: 9 tuples computed.

DES> -- Inner Join

Fernando Sáenz-Pérez 35/357

Universidad Complutense de Madrid

Datalog Educational System

DES> select a from a inner join b on a.a=b.b;

answer(a) ->

{

 answer(a1)

}

Info: 1 tuple computed.

DES> -- Left Join

DES> select * from a left join b on a.a=b.b;

answer(a.a, b.b) ->

{

 answer(a1,a1),

 answer(a2,null),

 answer(a3,null)

}

Info: 3 tuples computed.

DES> -- Right Join

DES> select * from a right join b on a.a=b.b;

answer(a.a, b.b) ->

{

 answer(a1,a1),

 answer(null,b1),

 answer(null,b2)

}

Info: 3 tuples computed.

DES> -- Full Join

DES> select * from a full join b on a.a=b.b;

answer(a.a, b.b) ->

{

 answer(a1,a1),

 answer(a1,null),

 answer(a2,null),

 answer(a3,null),

 answer(null,a1),

 answer(null,b1),

 answer(null,b2)

}

Info: 7 tuples computed.

DES> -- Union

DES> select * from a union select * from b;

answer(a.a) ->

{

 answer(a1),

 answer(a2),

 answer(a3),

 answer(b1),

 answer(b2)

}

Info: 5 tuples computed.

DES> -- Difference

DES> select * from a except select * from b;

answer(a.a) ->

{

 answer(a2),

 answer(a3)

Fernando Sáenz-Pérez 36/357

Universidad Complutense de Madrid

Datalog Educational System

}

Info: 2 tuples computed.

Info: Batch file processed.

Duplicates are disabled by default, i.e., answers are set-oriented. But they can
be enabled as well, which is useful in Datalog, SQL and RA queries (see Section 4.1.9).
For instance:

DES> /duplicates on

Info: Duplicates are on.

DES> select a from c;

answer(c.a:string) ->

{

 projection(a1),

 projection(a1),

 projection(a2)

}

Info: 3 tuples computed.

You can see the equivalent Datalog rules for a given query by enabling
compilation listings as in:

DES> /show_compilations on

DES> select * from a union all select * from b;

Info: SQL statement compiled to:

answer(A) :-

 a(A).

answer(A) :-

 b(A).

answer(a.a:string) ->

{

 answer(a1),

 answer(a2),

 answer(a3),

 answer(b1),

 answer(b2)

}

Info: 5 tuples computed.

3.3 Relational Algebra Mode

In this mode, queries are sent to the Relational Algebra (RA) processor, whereas
commands (cf. Section 5.17) are sent to the command processor. RA queries can end
with an optional semicolon in single-line mode. Multi-line mode requires the ending
semicolon. RA mode is enabled via the command /ra. Datalog, SQL, TRC and DRC
queries cannot be handled by this mode. Recall, however, that the Datalog mode is able
to reckon SQL, RA, TRC and DRC inputs and handle them without the need for
turning on the RA mode. The relational algebra mode is provided for a single language
input (cf. Section 3.7) and to display language-specific syntax errors.

If we want to develop an analogous RA example session to the former
examples, we can submit the first inputs (also available in the file
examples/relop.ra) listed below. Now, answer relations to RA queries are denoted
by the relation name answer. As before, lines starting by either % or -- are simply

Fernando Sáenz-Pérez 37/357

Universidad Complutense de Madrid

Datalog Educational System

remarks. If you wish to automatically reproduce the following interactive session of
inputs, you can type /process examples/relop.ra (notice that you must omit
examples/ if the current directory is this one already):

DES> % Creating tables

% Table creation and tuple insertion are omitted here because

they are the same as in the SQL session in previous Section 3.2.

DES-RA> % Testing the just inserted values

DES-RA> select true (a);

answer(a.a:string) ->

{

 answer(a1),

 answer(a2),

 answer(a3)

}

Info: 3 tuples computed.

DES-RA> select true (b);

answer(b.b:string) ->

{

 answer(a1),

 answer(b1),

 answer(b2)

}

Info: 3 tuples computed.

DES-RA> select true (c);

answer(c.a:string,c.b:string) ->

{

 answer(a1,a1),

 answer(a1,b2),

 answer(a2,b2)

}

Info: 3 tuples computed.

DES-RA> % Projection

DES-RA> project a (c);

answer(c.a:string) ->

{

 answer(a1),

 answer(a2)

}

Info: 2 tuples computed.

DES-RA> % Selection

DES-RA> select a='a2' (a);

answer(a.a:string) ->

{

 answer(a2)

}

Info: 1 tuple computed.

DES-RA> % Cartesian product

DES-RA> a product b;

answer(a.a:string,b.b:string) ->

{

 answer(a1,a1),

 answer(a1,b1),

Fernando Sáenz-Pérez 38/357

Universidad Complutense de Madrid

Datalog Educational System

 answer(a1,b2),

 answer(a2,a1),

 answer(a2,b1),

 answer(a2,b2),

 answer(a3,a1),

 answer(a3,b1),

 answer(a3,b2)

}

Info: 9 tuples computed.

DES-RA> % Union

DES-RA> a union b;

answer(a.a:string) ->

{

 answer(a1),

 answer(a2),

 answer(a3),

 answer(b1),

 answer(b2)

}

Info: 5 tuples computed.

DES-RA> % Difference

DES-RA> a difference b;

answer(a.a:string) ->

{

 answer(a2),

 answer(a3)

}

Info: 2 tuples computed.

DES-RA> % Intersection

DES-RA> a intersect b;

answer(a.a:string) ->

{

 answer(a1)

}

Info: 1 tuple computed.

DES-RA> % Theta Join

DES-RA> select a.a=b.b (a product b);

answer(a.a:string,b.b:string) ->

{

 answer(a1,a1)

}

Info: 1 tuple computed.

DES-RA> a zjoin a.a=b.b b;

answer(a.a:string,b.b:string) ->

{

 answer(a1,a1)

}

Info: 1 tuple computed.

DES-RA> % Natural Inner Join

DES-RA> a njoin c;

answer(a.a:string,c.b:string) ->

{

 answer(a1,a1),

 answer(a1,b2),

Fernando Sáenz-Pérez 39/357

Universidad Complutense de Madrid

Datalog Educational System

 answer(a2,b2)

}

Info: 3 tuples computed.

DES-RA> % Left Outer Join

DES-RA> a ljoin a.a=b.b b;

answer(a.a:string,b.b:string) ->

{

 answer(a1,a1),

 answer(a2,null),

 answer(a3,null)

}

Info: 3 tuples computed.

DES-RA> % Right Outer Join

DES-RA> a rjoin a.a=b.b b;

answer(a.a:string,b.b:string) ->

{

 answer(a1,a1),

 answer(null,b1),

 answer(null,b2)

}

Info: 3 tuples computed.

DES-RA> % Full Outer Join

DES-RA> a fjoin a.a=b.b b;

answer(a.a:string,b.b:string) ->

{

 answer(a1,a1),

 answer(a2,null),

 answer(a3,null),

 answer(null,b1),

 answer(null,b2)

}

Info: 5 tuples computed.

DES-RA> % Grouping

DES-RA> group_by a a,count(*) true (c);

answer(c.a:string,$a3:int) ->

{

 answer(a1,2),

 answer(a2,1)

}

Info: 2 tuples computed.

DES-RA> % Renaming

DES-RA> select a1.a<a2.a ((rename a1(a) (a)) product (rename

a2(a) (a)));

answer(a1.a:string,a2.a:string) ->

{

 answer(a1,a2),

 answer(a1,a3),

 answer(a2,a3)

}

Info: 3 tuples computed.

DES-RA> % Duplicate elimination

DES-RA> /duplicates off

Info: Duplicates are already disabled.

DES-RA> project a (c);

Fernando Sáenz-Pérez 40/357

Universidad Complutense de Madrid

Datalog Educational System

answer(c.a:string) ->

{

 answer(a1),

 answer(a2)

}

Info: 2 tuples computed.

DES-RA> /duplicates on

DES-RA> project a (c);

answer(c.a:string) ->

{

 answer(a1),

 answer(a1),

 answer(a2)

}

Info: 3 tuples computed.

DES-RA> distinct (project a (c));

answer(c.a:string) ->

{

 answer(a1),

 answer(a1),

 answer(a2)

}

Info: 3 tuples computed.

As well, you can see both the equivalent Datalog rules and SQL statement for a
given RA query by enabling compilation listings and SQL display as in:

DES> /show_compilations on

DES> /show_sql on

DES> a union b

Info: Equivalent SQL query:

(

 SELECT ALL *

 FROM

 a

)

UNION ALL

(

 SELECT ALL *

 FROM

 b

);

Info: RA expression compiled to:

answer(A) :-

 a(A).

answer(A) :-

 b(A).

answer(a.a:string) ->

{

 answer(a1),

 answer(a2),

 answer(a3),

 answer(b1),

 answer(b2)

}

Fernando Sáenz-Pérez 41/357

Universidad Complutense de Madrid

Datalog Educational System

Info: 5 tuples computed.

3.4 Tuple Relational Calculus Mode

In this mode, queries are sent to the Tuple Relational Calculus (TRC) processor,
whereas commands (cf. Section 5.17) are sent to the command processor. TRC queries
can end with an optional semicolon in single-line mode. Multi-line mode requires the
ending semicolon. TRC mode is enabled via the command /trc. Datalog, SQL, RA
and DRC queries cannot be handled by this mode. Recall, however, that the Datalog
mode is able to reckon SQL, RA, TRC and DRC inputs and handle them without the
need for turning on the TRC mode. The tuple relational calculus mode is provided for
a single language input (cf. Section 3.7) and to display language-specific syntax errors.

If we want to develop an analogous TRC example session to the former
examples, we can submit the first inputs (also available in the file
examples/relop.trc) listed below. Now, answer relations to TRC queries are
denoted by the relation name answer. As before, lines starting by either % or -- are
simply remarks. If you wish to automatically reproduce the following interactive
session of inputs, you can type /process examples/relop.trc (notice that you
must omit examples/ if you are in this directory already):

DES> % Creating tables

% Table creation and tuple insertion are omitted here because

they are the same as in the SQL session in previous Section 3.2.

DES-TRC> % Testing the just inserted values

DES-TRC> {A|a(A)};

Info: TRC statement compiled to:

answer(A) :-

 a(A).

answer(a:string) ->

{

 answer(a1),

 answer(a2),

 answer(a3)

}

Info: 3 tuples computed.

DES-TRC> {B|b(B)};

Info: TRC statement compiled to:

answer(B) :-

 b(B).

answer(b:string) ->

{

 answer(a1),

 answer(b1),

 answer(b2)

}

Info: 3 tuples computed.

DES-TRC> {C|c(C)};

Info: TRC statement compiled to:

answer(A,B) :-

 c(A,B).

answer(a:string,b:string) ->

Fernando Sáenz-Pérez 42/357

Universidad Complutense de Madrid

Datalog Educational System

{

 answer(a1,a1),

 answer(a1,b2),

 answer(a2,b2)

}

Info: 3 tuples computed.

DES-TRC> % Projection

DES-TRC> {C.a|c(C)};

Info: TRC statement compiled to:

answer(A) :-

 c(A,_B).

answer(a:string) ->

{

 answer(a1),

 answer(a2)

}

Info: 2 tuples computed.

DES-TRC> % Selection

DES-TRC> {A|a(A) and A.a='a2'};

Info: TRC statement compiled to:

answer(A) :-

 a(A),

 A=a2.

answer(a:string) ->

{

 answer(a2)

}

Info: 1 tuple computed.

DES-TRC> % Cartesian product

DES-TRC> {A,B|a(A) and b(B)};

Info: TRC statement compiled to:

answer(A,B) :-

 a(A),

 b(B).

answer(a:string,b:string) ->

{

 answer(a1,a1),

 answer(a1,b1),

 answer(a1,b2),

 answer(a2,a1),

 answer(a2,b1),

 answer(a2,b2),

 answer(a3,a1),

 answer(a3,b1),

 answer(a3,b2)

}

Info: 9 tuples computed.

DES-TRC> % Union

DES-TRC> {X|a(X) or b(X)};

Info: TRC statement compiled to:

answer(A) :-

 a(A)

 ;

 b(A).

Fernando Sáenz-Pérez 43/357

Universidad Complutense de Madrid

Datalog Educational System

answer(a:string) ->

{

 answer(a1),

 answer(a2),

 answer(a3),

 answer(b1),

 answer(b2)

}

Info: 5 tuples computed.

DES-TRC> % Difference

DES-TRC> {X|a(X) and not b(X)};

Info: TRC statement compiled to:

answer(A) :-

 a(A),

 not b(A).

answer(a:string) ->

{

 answer(a2),

 answer(a3)

}

Info: 2 tuples computed.

DES-TRC> % Intersection

DES-TRC> {X|a(X) and b(X)};

Info: TRC statement compiled to:

answer(A) :-

 a(A),

 b(A).

answer(a:string) ->

{

 answer(a1)

}

Info: 1 tuple computed.

DES-TRC> % Theta Join

DES-TRC> {A,B|a(A) and b(B) and A.a=B.b};

Info: TRC statement compiled to:

answer(A,B) :-

 a(A),

 b(B),

 A=B.

answer(a:string,b:string) ->

{

 answer(a1,a1)

}

Info: 1 tuple computed.

DES-TRC> % Natural Inner Join

DES-TRC> {A.a,C.b|a(A) and c(C) and A.a=C.a};

Info: TRC statement compiled to:

answer(A,B) :-

 a(A),

 c(_C_a,B),

 A=_C_a.

answer(a:string,b:string) ->

{

 answer(a1,a1),

Fernando Sáenz-Pérez 44/357

Universidad Complutense de Madrid

Datalog Educational System

 answer(a1,b2),

 answer(a2,b2)

}

Info: 3 tuples computed.

3.5 Domain Relational Calculus Mode

In this mode, queries are sent to the Domain Relational Calculus (DRC)
processor, whereas commands (cf. Section 5.17) are sent to the command processor.
DRC queries can end with an optional semicolon in single-line mode. Multi-line mode
requires the ending semicolon. DRC mode is enabled via the command /drc. Datalog,
SQL, RA and TRC queries cannot be handled by this mode. Recall, however, that the
Datalog mode is able to reckon SQL, RA, TRC and DRC inputs and handle them
without the need for turning on the DRC mode. The tuple relational calculus mode is
provided for a single language input (cf. Section 3.7) and to display language-specific
syntax errors.

If we want to develop an analogous DRC example session to the former
examples, we can submit the first inputs (also available in the file
examples/relop.drc) listed below. Now, answer relations to TRC queries are
denoted by the relation name answer. As before, lines starting by either % or -- are
simply remarks. If you wish to automatically reproduce the following interactive
session of inputs, you can type /process examples/relop.drc (notice that you
must omit examples/ if you are in this directory already):

DES> % Creating tables

% Table creation and tuple insertion are omitted here because

they are the same as in the SQL session in previous Section 3.2.

DES-DRC> % Testing the just inserted values

DES-DRC> {A|a(A)};

Info: DRC statement compiled to:

answer(A) :-

 a(A).

answer(a:string) ->

{

 answer(a1),

 answer(a2),

 answer(a3)

}

Info: 3 tuples computed.

DES-DRC> {B|b(B)};

Info: DRC statement compiled to:

answer(B) :-

 b(B).

answer(b:string) ->

{

 answer(a1),

 answer(b1),

 answer(b2)

}

Info: 3 tuples computed.

DES-DRC> {A,B|c(A,B)};

Fernando Sáenz-Pérez 45/357

Universidad Complutense de Madrid

Datalog Educational System

Info: DRC statement compiled to:

answer(A,B) :-

 c(A,B).

answer(a:string,b:string) ->

{

 answer(a1,a1),

 answer(a1,b2),

 answer(a2,b2)

}

Info: 3 tuples computed.

DES-DRC> % Projection

DES-DRC> {A|c(A,_)};

Info: DRC statement compiled to:

answer(A) :-

 c(A,_).

answer(a:string) ->

{

 answer(a1),

 answer(a2)

}

Info: 2 tuples computed.

DES-DRC> % Selection

DES-DRC> {A|a(A) and A>='a2'};

Info: DRC statement compiled to:

answer(A) :-

 a(A),

 A>=a2.

answer(a:string) ->

{

 answer(a2),

 answer(a3)

}

Info: 2 tuples computed.

DES-DRC> % Cartesian product

DES-DRC> {A,B|a(A) and b(B)};

Info: DRC statement compiled to:

answer(A,B) :-

 a(A),

 b(B).

answer(a:string,b:string) ->

{

 answer(a1,a1),

 answer(a1,b1),

 answer(a1,b2),

 answer(a2,a1),

 answer(a2,b1),

 answer(a2,b2),

 answer(a3,a1),

 answer(a3,b1),

 answer(a3,b2)

}

Info: 9 tuples computed.

DES-DRC> % Union

DES-DRC> {A|a(A) or b(A)};

Fernando Sáenz-Pérez 46/357

Universidad Complutense de Madrid

Datalog Educational System

Info: DRC statement compiled to:

answer(A) :-

 a(A)

 ;

 b(A).

answer(a:string) ->

{

 answer(a1),

 answer(a2),

 answer(a3),

 answer(b1),

 answer(b2)

}

Info: 5 tuples computed.

DES-DRC> % Difference

DES-DRC> {A|a(A) and not b(A)};

Info: DRC statement compiled to:

answer(A) :-

 a(A),

 not b(A).

answer(a:string) ->

{

 answer(a2),

 answer(a3)

}

Info: 2 tuples computed.

DES-DRC> % Intersection

DES-DRC> {A|a(A) and b(A)};

Info: DRC statement compiled to:

answer(A) :-

 a(A),

 b(A).

answer(a:string) ->

{

 answer(a1)

}

Info: 1 tuple computed.

DES-DRC> % Theta Join

DES-DRC> {A,B|a(A) and b(B) and A>=B};

Info: DRC statement compiled to:

answer(A,B) :-

 a(A),

 b(B),

 A>=B.

answer(a:string,b:string) ->

{

 answer(a1,a1),

 answer(a2,a1),

 answer(a3,a1)

}

Info: 3 tuples computed.

DES-DRC> % Natural Inner Join

DES-DRC> {A,B|a(A) and c(A,B)};

Info: DRC statement compiled to:

Fernando Sáenz-Pérez 47/357

Universidad Complutense de Madrid

Datalog Educational System

answer(A,B) :-

 a(A),

 c(A,B).

answer(a:string,b:string) ->

{

 answer(a1,a1),

 answer(a1,b2),

 answer(a2,b2)

}

Info: 3 tuples computed.

3.6 Prolog Mode

This mode is enabled via the command /prolog and goals are sent to the
Prolog processor. This is the only language mode in which Prolog inputs can be
processed. Assuming that the file relop.dl has been already consulted, let’s consider
the following example:

DES-Prolog> projection(X)

projection(a1)

? (type ; for more solutions, <Intro> to continue) ;

projection(a1)

? (type ; for more solutions, <Intro> to continue) ;

projection(a2)

? (type ; for more solutions, <Intro> to continue) ;

no

DES-Prolog> /datalog projection(X)

{

 projection(a1),

 projection(a2)

}

Info: 2 tuples computed.

The execution of this goal allows to noting the basic differences between Prolog
and Datalog engines. First, the former searches for solutions, one-by-one, that satisfy
the goal projection(X). The latter gives the whole meaning3 of the user-defined
relation projection with the query projection(X) at a time. And, second, note

the default set-oriented behaviour of the Datalog engine, which discards duplicates in
the answer.

3.7 Caveats

Since the Datalog mode prompt accepts Datalog, SQL, RA, TRC and DRC
queries, a given query can be interpreted in more than one language. Let's consider the
following system session, in which a table is created and an RA query is submitted:

DES> create table t(a int)

DES> insert into t values(1)

DES> distinct (t)

3 The meaning of a relation is the set of facts inferred both extensionally and
intensionally from the program.

Fernando Sáenz-Pérez 48/357

Universidad Complutense de Madrid

Datalog Educational System

Info: Processing:

 answer :-

 distinct(t).

Warning: Undefined predicate(s): [t/0]

{

}

Info: 0 tuples computed.

Here, we get a missing answer as we’d expect the tuple t(1) in the result set.
However, this query has been processed as a Datalog one, where distinct (t)
computes the different tuples for the relation t/0 (which is not defined in this system
session). To overcome such situations, simply precede the query by the language
selection command, as follows:

DES> /ra distinct (t)

answer(t.a:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

Alternatively, switch to the other query processor:

DES> /ra

DES-RA> distinct (t)

Another example is the division operator:

DES> create table t(a int, b int)

DES> create table s(a int)

DES> t division s

Error: Incompatible schemas in division operation: t division s

DES> /ra t division s

answer(t.b:int) ->

{

}

Info: 0 tuples computed.

As the query t division s is firstly interpreted as a Datalog query, both t
and s are assumed to be predicates of arity 0, which obviously are not compatible for
the operation. Prepending the command /ra forces the system to interpret the input as
an RA query, providing the expected result.

3.8 Getting Help

You can get useful information with the following commands:

 /help. Shows the list of available commands, which are explained in Section 5.17.

 /help Keyword. To request help on a given keyword (command or built-in).

 /builtins. Shows the list of built-ins, which are explained in Section 4.7.

If the system can find appropriate names for those which are not valid, it
automatically informs the user. In particular, if a given predicate does not exist but
some similar names are found (modulo misspelling), they are hinted to the user.
Another hints include alternative column, table and view names are for SQL DML and

Fernando Sáenz-Pérez 49/357

Universidad Complutense de Madrid

Datalog Educational System

DDL queries and Datalog queries. This is somewhat related to SWI-Prolog's DWIM
(Do What I Mean).

Also, visit the URL for last information:

http://des.sourceforge.net/

Finally, you can contact the author via the e-mail address:

fernan@sip.ucm.es

4. Query Languages

DES has evolved from a quite simple Datalog interpreter to its current state, a
system relying on a deductive database engine which can be queried with either
Datalog, SQL, RA, TRC and DRC languages. In addition, a Prolog interface is also
provided in order to highlight the differences between Datalog and Prolog systems.
Since DES is intended to students, it has no full-blown features of either state-of-the-art
Prolog, or Datalog or SQL-based systems. However, it has many features that make it
appealing as an educational tool, along with the novel implementations of declarative
debugging (sections 5.10 and 5.11) and the test case generator (Section 5.12). In this
section, we describe its four query languages: Datalog, SQL, RA, and Prolog.

The database is shared by all the query languages, so that queries or goals can
refer to any object defined using any language. However, there are some dependent
issues that must be taken into account. For instance, once a Datalog fact is loaded into
the database, the relation it defines can be queried in Datalog. But, if one wants to
access this relation from either SQL, or RA, or TRC or DRC, two alternatives are
provided: 1) Define the same relation in SQL via a create table statement (Section
4.2.4.1), and 2) Declare types for the table (Section 4.1.16.1). This particular issue comes
from the fact that Datalog relations have unnamed attributes, and a positional
reference based on variables (instead of indexes) is used for accessing those relations.
In turn, SQL, RA, TRC and DRC use a notational syntax, giving names to relation
arguments. To illustrate the first alternative, let’s consider the following session:

DES> /assert t(1)

DES> t(X)

{

 t(1)

}

Info: 1 tuple computed.

DES> select * from t

Error: Unknown table or view "t"

DES> create table t(a int);

DES> select * from t;

answer(t.a:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

The error above reflects that t is not a known object for SQL statements in the
database schema.

Fernando Sáenz-Pérez 50/357

Universidad Complutense de Madrid

Datalog Educational System

Following the second alternative to access a Datalog relation from SQL:

DES> /assert t(1)

DES> :-type(t,[a:int])

DES> select * from t

answer(t.a:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

4.1 Datalog

Since Datalog stems from Prolog, we have adopted almost all the Prolog syntax
conventions for writing Datalog programs (the reader is assumed to have basic
knowledge about Prolog). Syntax follows Prolog ISO standard [ISO00] (considering
Datalog syntax as a subset of Prolog). We allow (recursive) Datalog programs with
stratified negation [Ullm95], i.e., normal logic programs without function symbols.
Stratification is imposed to ensure a clear semantics when negation is involved, and
function symbols are not allowed in order to guarantee termination of queries, a
natural requirement with respect to a (relational) database user who is not able to deal
with compound data.

Commands are somewhat different for Prolog programmers as they are
accustomed to (see Section 5.17). Also, exceptions are noted when necessary.

4.1.1 Syntax

Definitions for Datalog mainly come from the field of Logic Programming,
following [Lloyd87], referring the reader to this book for a more general presentation
of Logic Programming. Next, some definitions for understanding the syntax of
programs, queries and views are introduced.

 Numbers. Integers and float numbers are allowed. A number is a float whenever
the number contains a dot (.) between two digits. The range depends on the Prolog
platform being used. Negative numbers are identified by a preceding minus (-), as
usual.

Scientific notation is supported, as usually, in E-notation as: mEn, where m is a
number (maybe including a fractional part), and n is an integer, which may start
with + or – (but it is not required). The base (10) can be represented with either E or
e.

If the fractional dot is included in a number, there must be (at least) a digit to its left
and another to its right.

Examples of numbers are 1, 1.1, -1.0, 1.2E34, 1.2E+34, and 0.2e-34.

Note that -1., +1, .1, 1.E23, and 1E2.3 are not valid numbers. A plus sign is
not part of a positive number; however, both a plus and a minus sign can be used
as a prefix unary operator in arithmetical expressions (cf. Section 4.7.4.1) and also
following the symbol E in scientific notation, as already seen.

 Constants. A constant can be:

o A number (either integer or float).

Fernando Sáenz-Pérez 51/357

Universidad Complutense de Madrid

Datalog Educational System

o Any sequence of alphanumeric characters (including the underscore _),

starting with a lowercase letter.

o Any sequence of characters delimited by single quotes. If the sequence
contains a single quote, it can be either escaped or to be included as part of
the constant.

Examples of alphanumeric constants are foo, foo_foo, 'foo foo', '2*3', 'X',
'foo''s', and 'foo\'s'. The last two represent the same constant (foo's).

 Variables. Variables are written with alphanumeric characters, and alternatively
start with either an uppercase or with an underscore (_). Anonymous variables are

also allowed, which are denoted with a single underscore. Each occurrence of an
anonymous variable is considered different from any other variable (either
anonymous or not). For instance, in the rule a :- b(_), c(_), goals do not
share variables. Any variable starting with an underscore (either anonymous or
not) is removed from the answer to a query (cf. Section 4.1.7). Also, they are not
taken into account for singleton variable warnings (cf. Section 5.5.5).

Examples of variables are: X, _X, _var, and _.

 Unknowns. Unknowns are represented as null values and are written alternatively
as both null and '$NULL'(ID), where ID is a unique global identifier. The first
form is used for normal users, whilst the second one is intended for development
uses (cf. /development command in Section 5.17.8).

 Operators.

o Infix, as addition (e.g., 1+2).

o Prefix, as bitwise negation (e.g., \1).

Available operators (comparisons, arithmetic, string, and date/time) can be
consulted in Section 4.7.

 Terms. Terms can be:

o Non-compound. Variables or constants.

o Compound. As in Prolog, they have the form t(t1, ..., tn), where t is
a function symbol (functor), and ti (1 ≤ i ≤ n) are terms. Compound terms

are very restricted in DES and can only be of the following forms:

 '$NULL'(ID) for internally representing nulls.

 Date/time data values, with the form explained in Section 4.1.16.1.

 Predicate patterns of the form Name/Arity for fuzzy proximity
equations (see Section 4.1.1.1).

Examples of terms are: r(p), and p(X,Y), and X > Y.

 Expressions. An expression is constructed with constants, operators, and functions.
An expression occurring in any comparison operator is evaluated before applying
the comparison. There is one exception: the operator \== (intended for syntactic
disequality) which do not evaluate their arguments. Expressions can be of different
data types (integer, string, ...).

Examples of expressions are:

Fernando Sáenz-Pérez 52/357

Universidad Complutense de Madrid

Datalog Educational System

1/2, 10*rand, length('Hello'), year(current_date) and 'Hello, ' ||
'world'

 Atoms. An atom has the form a(t1, ..., tn), where a is a predicate (relation)
symbol, and ti (1 ≤ i ≤ n) are terms. If i is 0, then the atom is simply written as a.

Positive, ground atoms are used to build the Herbrand universe.

There are several built-in predicates: is (for evaluating arithmetical expressions),
arithmetic functions, (infix and prefix) operators and constants, and comparison
operators. Comparison operators are infix, as “less-than”. For example, 1 < 2 is a
positive atom built from an infix built-in comparison operator (see Section 4.7.1).

Examples of atoms are: p, r(a,X), 1 < 2, and X is 1+2.

Note that p(1+2) and p(t(a)) are not valid atoms.

 Restricted atoms. A restricted atom has the form -A, where A is an atom built with
no built-in.

 Conditions. A condition is a Boolean expression containing conjunctions (,/2),
disjunctions (;/2), built-in comparison operators, constants and variables.

Examples of conditions are:

X>1, X=Y, (X>Y,Y>Z), (X=<Y;Z<0), and log(X)<sin(pi/2)

Note that the last example is valid because the arguments of the disequality are
evaluable arithmetic expression, and it can be solved whenever the rule where it
occurs is safe (cf. Section 5.3).

 Relation functions. A function has the form f(a1, …, an), where f is a function
name, ai are its arguments, and maps to a relation. Only built-in functions are
allowed. The current provision of built-in relation functions includes, among
others:

o lj(a1,a2,a3). Compute the left outer join of the relations a1 (left
relation) and a2 (right relation), committing the condition (Boolean
expression) a3 (join condition).

o order_by(a1,a2). Return the meaning of a1 (left relation) and a2 is the
list [E1,..,En], where Ei are ordering expressions (non-declarative

function).

o distinct(a1,a2). Return the distinct tuples in the meaning of a2 with
respect to the tuple of arguments defined in a2 as the list [V1,..,Vn],
where Vi are variables.

Note that outer join functions can be nested (see Section 4.1.11).

 Literals. Literals can be:

o Positive. An atom or restricted atom.

o Negative. A negated body of the form not Body, where Body is a body (cf.
next section). Negative literals are used to express the negation (not truly
classical negation) of a relation either as a query or as a part of a rule body.

o Disjunctive. A disjunctive literal is of the form l;r , where l and r are
literals.

Fernando Sáenz-Pérez 53/357

Universidad Complutense de Madrid

Datalog Educational System

o Divided. A divided literal is of the form l division r, where l and r are

literals.

Examples of literals are:

p

-p

r(a,X)

not q(X,b)

not (a;b)

r(a,X);not q(X,b)

1 < 2

t(X,Y) division s(Y)

X is 1+2

A literal can occur in rule bodies, queries, and view bodies.

Syntax of built-ins is explained in their corresponding forthcoming sections.

4.1.2 Rules

Datalog rules have the form head :- body, or simply head. In this last case,
the rule is known as a fact. Both end with a dot. A Datalog head is either an atom or
restricted atom that uses no built-in predicate symbol. A Datalog body contains a
comma-separated sequence of literals, which may contain built-in symbols as listed in
Section 4.7, as well as disjunctions (;/2) and divisions (division/2). A rule with a
restricted atom as its head is called a restricting rule.

4.1.3 Programs

DES programs consist of a multiset of rules. Programs may contain remarks. A
single-line remark starts with the symbol %, and ends at the end of line. Consulted
programs can also contain multi-line remarks, enclosed between /* and */, which can
be nested.

4.1.4 Queries

A (positive) query is the name of a relation with as many arguments as the arity
of the relation (a positive literal). Each one of these arguments can be a variable or a
constant; a compound term is not allowed but as an arithmetic expression. Built-in
relations may require relations, lists of variables or expressions, and conditions as
arguments. A negative query is written as not Query.

Queries are typed at the DES system prompt and cannot be part of consulted
files, but they can be part of processed files. The answer to a query is the (multi)set of
atoms matching the query which are deduced in the context of the program, from both
the extensional and the intensional databases. A query with variables for all the
arguments of the queried relation gives the whole set of deduced facts (meaning)
defining the relation, as the query a(X) in the example of Section 3. If a query contains
a constant in an argument position, it means that the query processing will select the
facts from the meaning of the relation such that the argument position matches with
that constant (i.e., analogous to a select relational operation). This is the case of the
query a(a3) in the same example before.

Fernando Sáenz-Pérez 54/357

Universidad Complutense de Madrid

Datalog Educational System

You can also write conjunctive queries on the fly, such as a(X), b(X) (see

Section 4.1.6). Built-in comparison operators (listed in Section 4.7.1) can be safely used
in queries whenever their arguments are ground at evaluation time (equality does not
require this for atomic arguments as it performs unification; cf. Section 4.7.1 for more
details about equality). Disjunctive queries are also allowed too, as a(X); b(X). A
query follows the same syntax as rule bodies.

If only a limited number of tuples in the answer are required, one can submit a
query as top(N,Query), where N is the maximum number of tuples to be returned
(See Section 4.7.12). Also, query answers can be sorted with order_by (See Section
4.7.13). Duplicates can be discarded with distinct (See Section 4.1.9).

4.1.5 Temporary Views

A temporary view allows you to write a query on the fly, and provide a relation
name and its arguments at will. A temporary view is therefore a rule which is added to
the database; its head is considered as a query and executed. Afterwards, the rule is
removed. Temporary views are useful for quickly submitting conjunctive queries and
for testing the impact of adding a rule to a current relation. For instance, the view:

DES> d(X) :- a(X), not b(X)

computes the set difference between the sets a and b, provided they have been already
defined.

Note that the view is evaluated in the context of the program; so, if you have
more rules already defined with the same name and arity of the rule's head, the
evaluation of the view will return its meaning under the whole set of rules matching
the query. For instance:

DES> a(X) :- b(X)

computes the set union of the sets a and b, provided they have been already defined.

4.1.6 Automatic Temporary Views

Automatic temporary views, autoviews for short, are temporary views which
do not need a head and allows you to write conjunctive queries on the fly. When you
write a conjunctive query, a new temporary relation, named answer, is built with as

many arguments as relevant variables occur in the conjunctive query. The identifier
answer is a reserved word and cannot be used for defining any other relation. As an
example of an autoview, let’s consider:

DES> a(X),b(Y)

Info: Processing:

 answer(X,Y) :-

 a(X),

 b(Y).

{

 answer(a1,a1),

 answer(a1,b1),

 answer(a1,b2),

 answer(a2,a1),

 answer(a2,b1),

Fernando Sáenz-Pérez 55/357

Universidad Complutense de Madrid

Datalog Educational System

 answer(a2,b2),

 answer(a3,a1),

 answer(a3,b1),

 answer(a3,b2)

}

Info: 9 tuples computed.

which computes the Cartesian product of the relations a and b, provided they have
been already defined as:

 a(a1).

 a(a2).

 a(a3).

 b(b1).

 b(b2).

 b(a1).

4.1.7 Underscored Variables

An underscored variable (a variable starting with the underscore symbol '_') is
handled similar to Prolog. It is assumed to be of no interest for the answer, so that they
are discarded from the answer should they occur in the body of a query, view or
autoview (even in its head)4. A special case of underscored variables is the anonymous
variable, which is simply written as '_' (without the quotes). Several occurrences of the
anonymous variable in the same rule are understood as different variables.

For instance, computing the projection of a relation t with respect to its first
argument can be simply done as follows:

DES> /assert t(1,2)

DES> /assert t(2,3)

DES> t(X,_)

Info: Processing:

 answer(X) :-

 t(X,_).

{

 answer(1),

 answer(2)

}

Info: 2 tuples computed.

instead of having to resort to a temporary view such as:

DES> p(X):-t(X,Y)

Info: Processing:

 p(X) :-

 t(X,Y).

{

 p(1),

 p(2)

}

Info: 2 tuples computed.

4 Prolog does not support autoviews.

Fernando Sáenz-Pérez 56/357

Universidad Complutense de Madrid

Datalog Educational System

Also, let's consider other situation, as follows:

DES> /duplicates off

DES> t(X,Y)

{

 t(1,1),

 t(1,2),

 t(3,3)

}

Info: 3 tuples computed.

DES> t(X,X)

{

 t(1,1),

 t(3,3)

}

Info: 2 tuples computed.

DES> t(_X,_X)

Info: Processing:

 answer :-

 t(_X,_X).

{

 answer

}

Info: 1 tuple computed.

Above, when underscored variables are used in the query, then you get only
one answer tuple. However, if duplicates are enabled, you get two answer tuples,
although the concrete values for the arguments of t are not visible:

DES> /duplicates on

DES> t(_X,_X)

Info: Processing:

 answer :-

 t(_X,_X).

{

 answer,

 answer

}

Info: 2 tuples computed.

By using anonymous variables in this query, the result become different:

DES> t(_,_)

Info: Processing:

 answer :-

 t(_,_).

{

 answer,

 answer,

 answer

}

Info: 3 tuples computed.

In this example, the two arguments of t are not constrained to be equal.
Therefore, you get three answers, one for each tuple in the relation.

Fernando Sáenz-Pérez 57/357

Universidad Complutense de Madrid

Datalog Educational System

As a final example, the next temporary view gets its head argument removed

because _X is considered as a non-relevant variable for the outcome:

DES> v(_X):-p(_X)

Info: Processing:

 v :-

 p(_X).

{

 v

}

Info: 1 tuple computed.

4.1.8 Negation

DES ensures that negative information can be gathered from a program with
negated goals, provided that a restricted form of negation is used: Stratified negation
[Ullm95]. This broadly means that negation is not involved in a recursive computation
path, although it can use recursive rules. The following program5 illustrates this point:

a :- not b.

b :- c,d.

c :- b.

c.

The query a succeeds with the meaning {a}. Observe also that not a does not

succeed, i.e., its meaning is the empty set.

If you are interested in how programs with negation are solved, you can find
useful the following commands (cf. Section 5.17.8):

DES> /pdg

Nodes: [a/0,b/0,c/0,d/0]

Arcs : [b/0+c/0,b/0+d/0,c/0+b/0,a/0-b/0]

DES> /strata

[(b/0,1),(c/0,1),(d/0,1),(a/0,2)]

The first command shows the predicate dependency graph (see, e.g., [ZCF+97])
for the loaded program. First, nodes in the graph are shown in a list whose elements P
are predicates with their arities with the form predicate/arity. Next, arcs in the graph
are shown in a list whose elements are either P+Q or P-Q, where P and Q are nodes in
the graph. An arc P+Q means that there exists a rule such that P is the predicate for its
head, and Q is the predicate for one of its literals. If the literal is negated, the arc is
negative, which is expressed as P-Q. The graph for this program can be depicted as in
Figure 1.

5 In file negation.dl, located at the examples distribution directory. Adapted

from [RSSWF97].

Fernando Sáenz-Pérez 58/357

Universidad Complutense de Madrid

Datalog Educational System

+

-

b

c

a d

+

+

Figure 1. Predicate Dependency Graph for negation.dl

The second command shows the stratum assigned to each predicate. This
assignment is computed by following an algorithm based on [Ullm95], but modified
for taking advantage of the predicate dependency graph. Strata are shown as a list of
pairs (P,S), where P is a predicate and S is its assigned stratum. In this example, all of
the program predicates are in stratum 1 but a, which is assigned to stratum 2. This
means that if the meaning of a is to be computed, then the meanings of predicates in
lower strata (and only those predicates a depends on) have to be firstly computed.

Since the algorithm strata does not follow a naïve bottom-up solving, only
the meanings of required predicates are computed. To illustrate this, consider the
query b for the same program. DES computes the predicate dependency subgraph for
b, i.e., all of the predicates which are reachable from b, and, then, a stratification is
computed. Notice the different information given by the system for solving the queries
a and b (here, verbose output is enabled with the command /verbose on):

DES> a

Info: Parsing query...

Info: DL query successfully parsed.

Info: Solving query a...

Info: Computing by stratum: [b].

Info: Displaying query answer...

Info: Sorting answer...

{

 a

}

Info: 1 tuple computed.

DES> b

Info: Parsing query...

Info: DL query successfully parsed.

Info: Solving query b...

Info: Displaying query answer...

Info: Sorting answer...

{

}

Info: 0 tuples computed.

For the goal a, the system informs that b is previously computed (nevertheless
taking advantage of the extension table mechanism), whereas for the goal b there is no
need of resorting to the stratum-by-stratum solving.

Finally, see also Section 5.3 for limitations in the use of negation.

Fernando Sáenz-Pérez 59/357

Universidad Complutense de Madrid

Datalog Educational System

4.1.9 Duplicates

Duplicates in answers are removed by default. However, it is also possible to
enable them with the command /duplicates on for Datalog, SQL, and RA. This
allows to generate answers as multisets instead of as the typical set-oriented deductive
systems behave. Computing the meaning of a relation containing duplicates in the
extensional database (i.e., its facts) will include all of them in the answer, as in:

DES> /duplicates on

DES> /assert t(1)

DES> /assert t(1)

DES> t(X)

{

 t(1),

 t(1)

}

Info: 2 tuples computed.

Rules can also be source of duplicates, as in:

DES> /assert s(X):-t(X)

DES> s(X)

{

 s(1),

 s(1)

}

Info: 2 tuples computed.

In particular, recursive rules are duplicate sources, as in:

DES> /assert t(X):-t(X)

DES> t(X)

{

 t(1),

 t(1),

 t(1),

 t(1)

}

Info: 4 tuples computed.

where two tuples directly come from the two facts for t/1, and the other two from the
single recursive rule. Again, adding the same recursive rule yields:

DES> /assert t(X):-t(X)

DES> t(X)

{

 t(1),

 t(1),

 t(1),

 t(1),

 t(1),

 t(1),

 t(1),

 t(1),

 t(1),

 t(1)

Fernando Sáenz-Pérez 60/357

Universidad Complutense de Madrid

Datalog Educational System

}

Info: 10 tuples computed.

where this answer contains the outcome due to two tuples directly from the two facts,
and four tuples for each recursive rule. The first recursive rule is source of four tuples
because of the two facts and the two tuples from the second recursive rule.
Analogously, the second recursive rule is source of another four tuples: two facts and
the two tuples from the first recursive rule.

The rule of thumb to understand duplicates in recursive rules is to consider all
possible computation paths in the dependency graph, stopping when a (recursive)
node already used in the computation is reached.

It is also possible to discard duplicates for an atom with the metapredicate
distinct/1. For instance, let’s consider the following with the same example above:

DES> distinct(t(X))

Info: Processing:

 answer(X) :-

 distinct(t(X)).

{

 answer(1)

}

Info: 1 tuple computed.

Such query is equivalent to the following SQL statement, provided that
metadata is available for the relation t:

DES> :-type(t(a:int))

DES> select distinct * from t

answer(t.a) ->

{

 answer(1)

}

Info: 1 tuple computed.

As it would be expected, duplicates are only discarded for the call
distinct(Atom), but not for other occurrences of Atom during query solving. Thus:

DES> t(X),distinct(t(X))

Info: Processing:

 answer(X) :-

 t(X),

 distinct(t(X)).

{

 answer(1),

 answer(1),

 answer(1),

 answer(1),

 answer(1),

 answer(1),

 answer(1),

 answer(1),

 answer(1),

 answer(1)

}

Fernando Sáenz-Pérez 61/357

Universidad Complutense de Madrid

Datalog Educational System

Info: 10 tuples computed.

Compare this to the call:

DES> t(X),t(X)

Info: Processing:

 answer(X) :-

 t(X),

 t(X).

{

 answer(1),

 ...

 answer(1)

}

Info: 100 tuples computed.

A subset of arguments in an atom can be selected for discarding duplicates. To
this end, the metapredicate distinct/2 is provided. Its first argument is the list of
variables for which duplicates are not required, i.e., each concrete assignment of values
to all variables in the list must be different. So, let's consider the following session:

DES> /listing

t(1,1).

t(1,2).

t(2,1).

Info: 3 rules listed.

DES> distinct([X],t(X,Y))

Info: Processing:

 answer(X) :-

 distinct([X],t(X,Y)).

{

 answer(1),

 answer(2)

}

Info: 2 tuples computed.

In addition, discarding duplicates can be performed in the context of
aggregates:

DES> count(distinct(t(X)),C)

Info: Processing:

 answer(C)

in the program context of the exploded query:

 answer(C) :-

 count('$p0'(X),[],C).

 '$p0'(A) :-

 distinct(t(A)).

{

 answer(1)

}

Info: 1 tuple computed.

See also Section 4.1.12 for discarding duplicates in aggregates.

Fernando Sáenz-Pérez 62/357

Universidad Complutense de Madrid

Datalog Educational System

4.1.10 Null Values

The null value is included in each program signature for denoting unknowns,
in a similar way it is an inherent part of current SQL database systems. Comparing null
values in Datalog opens a new scenario: Two null values are not (known to be) equal,
and are (not known to be) distinct. The following illustrates this expected behaviour:

DES> null=null

{

}

Info: 0 tuples computed.

DES> null\=null

{

}

Info: 0 tuples computed.

However, for the same null value, the equality should succeed, as in the
conjunctive query: X=null,X=X.

A null value is internally represented as '$NULL'(ID), where ID is a unique
identifier (an integer). Development listings (enabled via the command
/development on) allow to inspect these identifiers, such as in:

DES> /development on

DES> p(X,Y):-X=null,Y=null,X=Y

Info: Processing:

 p(X,Y) :-

 X = '$NULL'(14),

 Y = '$NULL'(15),

 X = Y.

{

}

Info: 0 tuples computed.

DES> p(X,Y):-X=null,Y=null,X\=Y

Info: Processing:

 p(X,Y) :-

 X = '$NULL'(16),

 Y = '$NULL'(17),

 X \= Y.

{

}

Info: 0 tuples computed.

The built-in predicate is_null/1 tests whether its single argument is a null
value:

DES> is_null(null)

{

 is_null(null)

}

Info: 1 tuple computed.

DES> X=null,is_null(X)

Info: Processing:

 answer(X) :-

Fernando Sáenz-Pérez 63/357

Universidad Complutense de Madrid

Datalog Educational System

 X = null,

 is_null(X).

{

 answer(null)

}

Info: 1 tuple computed.

Its counterpart predicate is also provided: is_not_null/1, which is true if its
argument is not a null value.

Note that from a system implementor viewpoint, nulls can never unify because
they are represented by different ground terms. On the other hand, disequality is
explicitly handled in order to fail when comparing nulls.

Evaluation of a given expression including at least one null value returns
another different concrete null value n. The very same expression in a further
computation step receives the same null value n. For instance, X=null, X+1=X+1
succeeds, whereas neither X=null, X+1=1+X, nor X=null, Y=null, X+1=Y+1
succeeds.

4.1.11 Outer Joins

Three outer join operations are provided (cf. Section 4.7.8), following relational
database query languages (SQL and extended relational algebra): left, right and full
outer join. Having loaded the example program relop.dl, we can submit the
following queries:

DES> /c relop

DES> /listing a

a(a1).

a(a2).

a(a3).

DES> /listing b

b(a1).

b(b1).

b(b2).

DES> lj(a(X),b(Y),X=Y)

Info: Processing:

 answer(X,Y) :-

 lj(a(X),b(Y),X = Y).

{

 answer(a1,a1),

 answer(a2,null),

 answer(a3,null)

}

Info: 3 tuples computed.

DES> rj(a(X),b(Y),X=Y)

Info: Processing:

 answer(X,Y) :-

 rj(a(X),b(Y),X = Y).

{

 answer(a1,a1),

 answer(null,b1),

 answer(null,b2)

}

Fernando Sáenz-Pérez 64/357

Universidad Complutense de Madrid

Datalog Educational System

Info: 3 tuples computed.

DES> fj(a(X),b(Y),X=Y)

Info: Processing:

 answer(X,Y) :-

 fj(a(X),b(Y),X = Y).

{

 answer(a1,a1),

 answer(a1,null),

 answer(a2,null),

 answer(a3,null),

 answer(null,a1),

 answer(null,b1),

 answer(null,b2)

}

Info: 7 tuples computed.

Note that the third parameter is the join condition. Be aware and do not miss a
where condition with a join condition. Let´s consider the above query
lj(a(X),b(Y),X=Y). Do not expect the same result as above for the following query
(note the shared variable X):

DES> lj(a(X),b(X),true)

Info: Processing:

 answer(X) :-

 lj(a(X),b(X),true).

{

 answer(a1)

}

Info: 1 tuple computed.

Here, the same variable X for the relations a and b means that tuples from a
and b with the same value are to be joined, as in the next equivalent query:

DES> lj(a(X),b(Y),true),X=Y

Info: Processing:

 answer(X,Y) :-

 lj(a(X),b(Y),true),

 X = Y.

{

 answer(a1,a1)

}

Info: 1 tuple computed.

 Outer join relations can be nested as well:

DES> lj(a(X),rj(b(Y),c(U,V),Y=U),X=Y)

Info: Processing:

 answer(X,Y,U,V) :-

 lj(a(X),rj(b(Y),c(U,V),Y = U),X = Y).

{

 answer(a1,a1,a1,a1),

 answer(a1,a1,a1,b2),

 answer(a2,null,null,null),

 answer(a3,null,null,null)

}

Fernando Sáenz-Pérez 65/357

Universidad Complutense de Madrid

Datalog Educational System

Info: 4 tuples computed.

Note that compound conditions must be enclosed between parentheses, as in:

DES> lj(a(X),c(U,V),(X>U;X>V))

Info: Processing:

 answer(X,U,V)

in the program context of the exploded query:

 answer(X,U,V) :-

 lj(a(X),c(U,V),(X > U;X > V)).

{

 answer(a1,null,null),

 answer(a2,a1,a1),

 answer(a2,a1,b2),

 answer(a3,a1,a1),

 answer(a3,a1,b2),

 answer(a3,a2,b2)

}

Info: 6 tuples computed.

4.1.12 Aggregates

Aggregates refer to functions and predicates that compute values with respect
to a collection of values instead of a single value. Aggregates are provided by means of
five usual computations: sum (cumulative sum), count (element count), avg (average),
min (minimum element), and max (maximum element). In addition, the less usual

times (cumulative product) is also provided. They behave close to most SQL
implementations, i.e., ignoring nulls.

Duplicate-free counterparts are also provided: sum_distinct,
count_distinct, avg_distinct, and times_distinct. Note that for minimum
and maximum, no counterparts are provided since they would compute the same
results. These functions behave as the above when duplicates are disabled, which is the
default mode.

Any arithmetic expression can be argument of an aggregate function.

4.1.12.1 Aggregate Functions

An aggregate function can occur in expressions and returns a value, as in
R=1+sum(X), where sum is expected to compute the cumulative sum of possible
values for X, and X has to be bound in the context of a group_by predicate (cf. next
section), wherein the expression also occur.

4.1.12.2 Group_by Predicate

A group_by predicate encloses a query for which a given list of variables
builds answer sets (groups) for all possible values of these variables. Then, these
groups can be aggregated with specific aggregate functions. Let’s consider the
following excerpt from the file aggregates.dl:

% employee(Name,Department,Salary)

employee(anderson,accounting,1200).

employee(andrews,accounting,1200).

employee(arlingon,accounting,1000).

employee(nolan,null,null).

Fernando Sáenz-Pérez 66/357

Universidad Complutense de Madrid

Datalog Educational System

employee(norton,null,null).

employee(randall,resources,800).

employee(sanders,sales,null).

employee(silver,sales,1000).

employee(smith,sales,1000).

employee(steel,sales,1020).

employee(sullivan,sales,null).

We can count the number of employees for each department with the following
query:

DES> group_by(employee(N,D,S),[D],R=count)

Info: Processing:

 answer(D,R) :-

 group_by(employee(N,D,S),[D],R = count).

{

 answer(accounting,3),

 answer(null,2),

 answer(resources,1),

 answer(sales,5)

}

Info: 4 tuples computed.

Note that two employees are not assigned to any department yet (nolan and
norton). This query behaves as an SQL user would expect, though nulls do not have
to represent the same data value (in spite of this, such tuples are collected in the same
bag).

If we rather want to count active employees (those with assigned salaries), we
submit the following query:

DES> group_by(employee(N,D,S),[D],R=count(S))

Info: Processing:

 answer(D,R) :-

 group_by(employee(N,D,S),[D],R = count(S)).

{

 answer(accounting,3),

 answer(null,0),

 answer(resources,1),

 answer(sales,3)

}

Info: 4 tuples computed.

Note that null departments have no employee with assigned salary.

Counting the number of departments from the relation employee needs to
discard duplicates, as in:

DES> group_by(employee(N,D,S),[],R=count_distinct(D))

Info: Processing:

 answer(R) :-

 group_by(employee(N,D,S),[],[],R=count_distinct(D)).

{

 answer(3)

}

Info: 1 tuple computed.

Fernando Sáenz-Pérez 67/357

Universidad Complutense de Madrid

Datalog Educational System

Conditions including aggregates on groups can be stated as well (cf. having

conditions in SQL). For instance, the following query lists departments with more than
one active employee.

DES> group_by(employee(N,D,S),[D],count(S)>1)

Info: Processing:

 answer(D) :-

 group_by(employee(N,D,S),[D],(A = count(S),A > 1)).

{

 answer(accounting),

 answer(sales)

}

Info: 2 tuples computed.

Note that the number of employees can also be returned, as follows:

DES> group_by(employee(N,D,S),[D],(R=count(S),R>1))

Info: Processing:

 answer(D,R) :-

 group_by(employee(N,D,S),[D],(R = count(S),R > 1)).

{

 answer(accounting,3),

 answer(sales,3)

}

Info: 2 tuples computed.

Conditions including no aggregates on tuples of the input relation (cf. SQL
FROM clause) can also be used (cf. WHERE conditions in SQL). For instance, the
following query computes the number of employees whose salary is greater than 1,000.

DES> group_by((employee(N,D,S),S>1000),[D],R=count(S))

Info: Processing:

 answer(D,R)

in the program context of the exploded query:

 answer(D,R) :-

 group_by('$p2'(S,D,N),[D],R = count(S)).

 '$p2'(S,D,N) :-

 employee(N,D,S),

 S > 1000.

{

 answer(accounting,2),

 answer(sales,1)

}

Info: 2 tuples computed.

Note that the following query is not equivalent to the former, since variables in
the input relation are not bound after a grouping computation. The following query
illustrates this situation, which generates a syntax error.

DES> group_by(employee(N,D,S),[D],R=count(S)), S>1000

Error: Incorrect use of shared set variables in metapredicate:

[N,S]

The predicate group_by admits a more compact representation than its SQL
counterpart. Let's consider the following Datalog session:

Fernando Sáenz-Pérez 68/357

Universidad Complutense de Madrid

Datalog Educational System

DES> /assert p(1,1)

DES> /assert p(2,2)

DES> /assert q(X,C):-group_by(p(X,Y),[X],(C=count;C=sum(Y)))

DES> q(X,C)

Info: Computing by stratum of [p(A,B)].

{

 q(1,1),

 q(2,1),

 q(2,2)

}

Info: 3 tuples computed.

An analogous SQL session follows:

DES> create table p(X int, Y int)

DES> create view q(X,C) as (select X,count(Y) as C from p group

by X) union (select X, sum(Y) as C from p group by X)

DES> select * from q

answer(q.X:int, q.C:int) ->

{

 answer(1,1),

 answer(2,1),

 answer(2,2)

}

Info: 3 tuples computed.

4.1.12.3 Aggregate Predicates

An aggregate predicate returns its result in its last argument position, as in
sum(p(X),X,R), which binds R to the cumulative sum of values for X, provided by
the input relation p. These aggregate predicates simply allow another way to
expressing aggregates, in addition to the way explained just above. Again, with the
same file, the following queries are allowed:

DES> count(employee(N,D,S),S,T)

Info: Processing:

 answer(T) :-

 count(employee(N,D,S),S,[],T).

{

 answer(7)

}

Info: 1 tuple computed.

A group by operation is simply specified by including the grouping variable(s)
in the head of a clause, as in the following view, which computes the number of active
employees by department:

DES> c(D,C):-count(employee(N,D,S),S,C)

Info: Processing:

 c(D,C) :-

 count(employee(N,D,S),S,[D],C).

{

 c(accounting,3),

 c(null,0),

 c(resources,1),

 c(sales,3)

Fernando Sáenz-Pérez 69/357

Universidad Complutense de Madrid

Datalog Educational System

}

Info: 4 tuples computed.

Note that the system adds to the aggregate predicate an argument with the list
of grouping variables, which are the ones occurring in the first argument of the
aggregate predicate that also occur in the head. This code translation is required for the
aggregate predicate to be computed, although such form has not been made available
to the user.

Having conditions are also allowed, including them as another goal of the first
argument of the aggregate predicate as, for instance, in the following view, which
computes the number of employees that earn more than the average:

DES> count((employee(N,D,S),avg(employee(N1,D1,S1),S1,A),S>A),C)

Info: Processing:

 answer(C)

in the program context of the exploded query:

 answer(C) :-

 count('$p2'(A,S,D,N),[],C).

 '$p2'(A,S,D,N) :-

 employee(N,D,S),

 avg(employee(N1,D1,S1),S1,[],A),

 S > A.

{

 answer(2)

}

Info: 1 tuple computed.

Note that this query uses different variables in the same argument positions for
the two occurrences of the relation employee. Compare this to the following query,
which computes the number of employees so that each one of them earns more than
the average salary of his corresponding department. Here, the same variable name D
has been used to refer to the department for which the counting and average are
computed:

DES> count((employee(N,D,S),avg(employee(N1,D,S1),S1,A),S>A),C)

Info: Processing:

 answer(C)

in the program context of the exploded query:

 answer(C) :-

 count('$p2'(A,S,N),[],C).

 '$p2'(A,S,N) :-

 employee(N,D,S),

 avg(employee(N1,D,S1),S1,[],A),

 S > A.

{

 answer(3)

}

Info: 1 tuple computed.

Also, as a restriction of the current implementation, keep in mind that having
conditions including aggregates (as the one including the average computations above)
can only occur in the first argument of an aggregate. The following query, which
should be equivalent to the last one, would generate a run-time exception:

Fernando Sáenz-Pérez 70/357

Universidad Complutense de Madrid

Datalog Educational System

DES> v(D):-

avg(employee(N1,D,S1),S1,A),count((employee(N,D,S),S>A),C)

Error: S > A will raise a computing exception at run-time.

Warning: This view is unsafe because of variable(s):

 [A]

Finally, recall that expressions including aggregate functions are not allowed in
conjunction with aggregate predicates, but only in the context of a group_by
predicate.

4.1.12.4 Aggregates and Duplicates

When duplicates are disabled (default option), aggregate functions operate over
sets, so that if the source relation for an aggregate contains duplicates, they are
discarded. The following system session illustrates this:

DES> /duplicates off

DES> /assert t(1,2)

DES> /assert t(1,2)

DES> count(t(X,Y),C)

Info: Processing:

 answer(C) :-

 count(t(X,Y),[],C).

{

 answer(1)

}

Info: 1 tuple computed.

On the other hand, enabling duplicates, both tuples in the relation t are
counted unless count_distinct is used:

DES> /duplicates on

DES> count(t(X,Y),C)

Info: Processing:

 answer(C) :-

 count(t(X,Y),[],C).

{

 answer(2)

}

Info: 1 tuple computed.

DES> count_distinct(t(X,Y),C)

Info: Processing:

 answer(C) :-

 count_distinct(t(X,Y),[],C).

{

 answer(1)

}

Info: 1 tuple computed.

Note that subtle behaviours may arise when duplicates are disabled. For
instance, let's assume the relation employee from the file
examples/aggregates.dl and that we want to know how many employees are
above the average salary minus 20. We can submit the following goal to display the
salaries that meet this condition:

DES> avg(employee(_,_,S),S,A),employee(_,_,S1),S1>A-20

Fernando Sáenz-Pérez 71/357

Universidad Complutense de Madrid

Datalog Educational System

Info: Processing:

 answer(A,S1) :-

 avg(employee(_,_,S),S,[],A),

 employee(_,_,S1),

 S1>A-20.

{

 answer(1031.4285714285713,1020),

 answer(1031.4285714285713,1200)

}

Info: 2 tuples computed.

However, if we count them:

DES> count((avg(employee(_,_,S),S,A),employee(_,_,S1),S1>A-

20),C)

Info: Processing:

 answer(C)

in the program context of the exploded query:

 answer(C) :-

 count('$p2',[],C).

 '$p2' :-

 avg(employee(_,_,S),S,[],A),

 employee(_,_,S1),

 S1>A-20.

{

 answer(1)

}

Info: 1 tuple computed.

we get only one because the compilation of the query generates the predicate '$p2'
for which, with duplicates disabled, at most only one tuple can be in its meaning as it
has no arguments. By enabling duplicates we get the expected answer:

DES> /duplicates on

DES> count((avg(employee(_,_,S),S,A),employee(_,_,S1),S1>A-

20),C)

Info: Processing:

 answer(C)

in the program context of the exploded query:

 answer(C) :-

 count('$p2',[],C).

 '$p2' :-

 avg(employee(_,_,S),S,[],A),

 employee(_,_,S1),

 S1>A-20.

{

 answer(3)

}

Info: 1 tuple computed.

Note also that there are 3 employees meeting the condition, as 2 employees
have the top salary (cf. the first query of this example above):

DES> employee(_,_,S)

Info: Processing:

Fernando Sáenz-Pérez 72/357

Universidad Complutense de Madrid

Datalog Educational System

 answer(S) :-

 employee(_,_,S).

{

 answer(800),

 answer(1000),

 answer(1000),

 answer(1000),

 answer(1020),

 answer(1200),

 answer(1200),

 answer(null),

 answer(null),

 answer(null),

 answer(null)

}

Info: 11 tuples computed.

4.1.13 Disjunctive Bodies

As introduced in Section 4.1.1, rule bodies can contain disjunctions, such as the
one contained in the program family.dl:

parent(X,Y) :-

 father(X,Y)

 ;

 mother(X,Y).

This clause is equivalent to:

parent(X,Y) :-

 father(X,Y).

parent(X,Y) :-

 mother(X,Y).

If you list the database contents via the command /listing you will get the
first form when development listings are disabled (via the command /development
off). Otherwise, you get the second one (command /development on).

Datalog views and autoviews containing disjunctive bodies are allowed, and
the system informs about the program transformation performed to compute them. For
instance, you can directly submit the rule above as a temporary view at the prompt:

DES> parent(X,Y) :- father(X,Y) ; mother(X,Y)

Info: Processing:

 parent(X,Y)

in the program context of the exploded query:

 parent(X,Y) :-

 father(X,Y).

 parent(X,Y) :-

 mother(X,Y).

{

 parent(amy,fred),

 parent(carolI,carolII),

 parent(carolII,carolIII),

 parent(fred,carolIII),

 parent(grace,amy),

Fernando Sáenz-Pérez 73/357

Universidad Complutense de Madrid

Datalog Educational System

 parent(jack,fred),

 parent(tom,amy),

 parent(tony,carolII)

}

Info: 8 tuples computed.

4.1.14 Relational Division in Datalog

The relational division operation for Datalog provided in DES follows the
original proposal of Codd [Codd72] but, instead of comparing schemas based on
column names, comparing schemas based on variable names. Given a left operand L
and a right operand R in a division operator, the result is a relation with as many

arguments as variables are in vars(L)-vars(R), where vars(R)vars(L) and vars(T)
returns the variables in a term T.

For example, given the database:

t(1,1).

t(1,2).

t(2,1).

s(1).

s(2).

Then, the query:

t(X,Y) division s(Y)

returns:

{answer(1)}

Now, let's consider that the relations to be divided contain other arguments that
are not relevant for the division operator. For instance, let's consider the relation
work(employee,project,hours), under an intuitive meaning. If we want to know
the name of each employee who is working on each project on which employee smith
is working, we have to project the division operands for the appropriate arguments.
For instance:

DES> /assert np_work(N,P) :- work(N,P,_)

DES> np_work(N,P) division np_work(smith,P)

However, by using anonymous variables, it is possible to omit the non-relevant
variables (by using an anonymous annotation '_' for them) for the division operator,
without needing to project the relevant ones. Following the same example, the same
query can be submitted as simply as:

DES> work(N,P,_) division work(smith,P,_)

Division can be nested as well. For instance, let's consider the relation
team(team_nbr, employee). If we want to know whether the employees for the
last query do form a complete team, then:

DES> team(T,N) division (work(N,P,_) division work(smith,P,_))

As a caveat, note that variables in the right operand of the division operator are
demanded if they occur in another goal, similar to what happens with built-ins as

Fernando Sáenz-Pérez 74/357

Universidad Complutense de Madrid

Datalog Educational System

comparison operators. For instance, the variable Y in the following query is demanded
and, therefore, the query is not valid:

DES> (t(X,Y) division s(Y)),p(Y)

By switching both goals, the query becomes valid:

DES> p(Y),(t(X,Y) division s(Y))

If, on the contrary, Y does not occur in any other subgoal (and neither in the
head, if considering a rule) there is no such demandness requirement. This issue breaks
the declarative nature of the division operator. In addition, this is not warned to the
user, yet, and will be part of future enhancements.

4.1.15 Existential Quantification

Variables occurring in a clause body that do not occur in the clause head are
implicitly and existentially quantified. Given said this, existential quantifiers can be
explicitly used at programmer's will with a couple of purposes: First, for explicitly
denoting which are the existential variables in a rule (as a syntax recall for this kind of
variables). Second, for allowing more powerful uses of the existential quantifier when
coupled with negation.

The syntax for an existential quantification is exists(Vars,Goal), where
Vars is the list (delimited by square brackets) of existential variables with their scope
in Goal.

Next is an example of a safe query (even when X is not range restricted; cf.
Section 5.3.1):

exists([X],not p(X))

A universal quantification can be expressed with the logic equivalence xP(x)

xP(x). As an example, consider the relation products including the total
(including taxes) and the net (excluding taxes) prices. Checking if all the products (a

relation with arguments: id, name, net and total) satisfy total net can be stated
as follows:

not exists([Net,Total], (products(_,_,Net,Total), Total<Net))

i.e., there is not the case of finding a net price greater than the grand total for any
product. This query is a syntactic sugaring equivalent to:

not exists([Id,Name,Net,Total], (products(Id,Name,Net,Total),

Total<Net))

where, in the first query, underscored variables are existentially quantified by default.

An existentially quantified variable cannot occur out of the quantification.
Incorrect uses are rejected, as in:

DES> t(X), exists([X],not p(X))

Error: (DL) Quantified variable [X] cannot occur outside its

scope.

As well, an unused existentially quantified variable makes the input to be
rejected, as in:

Fernando Sáenz-Pérez 75/357

Universidad Complutense de Madrid

Datalog Educational System

DES> exists([X,Y],not p(X))

Error: Variables in the first argument of 'exists' must occur in

its second argument: exists([X,Y],not p(X))

Finally, duplicated variables in the quantifier are not allowed, as in:

DES> exists([X,X],not p(X))

Error: (DL) Quantified variable [X] can occur only once in the

quantifier's variable list.

4.1.16 Integrity Constraints

Integrity constraints allow the user to specifying valid values for tuples in
relations. DES provides several predefined constraints stemmed from SQL: type,
primary key and foreign key. In addition, a predefined functional integrity constraint is
also provided. Users can also define their own integrity constraints, which are called
user-defined integrity constraints from now on. All of them can be declared and the
system monitors their fulfilment, which is the default behaviour. However, the
command /check off allows to disable constraint checking. All predefined integrity
constraints apply to facts, except type constraints, which also apply to rules. Also, user-
defined constraints apply to facts and rules.

 A comma-separated sequence of predefined integrity constraints is allowed to
specifying multiple constraints in a single input.

4.1.16.1 Type

A type constraint specifies the values in a domain a predicate argument (table
column) may take. An example of a type constraint declaration at the command
prompt is as follows:

DES> :- type(p,[int,string])

This is equivalent to the following alternative syntax:

DES> :- type(p(int,string))

Allowed types include the following (where each cell in the first column
contains type synonyms):

Type Meaning
varchar

string
String of unbounded length

char(N)

varchar(N)
String with length up to N

char String with length 1
integer

int
Integer number

float

real
Real number

date Date expressed as date(Year,Month,Day)
time Time expressed as time(Hour,Minute,Second)
datetime

timestamp
Timestamp expressed as
datetime(Year,Month,Day,Hour,Minute,Second)

Fernando Sáenz-Pérez 76/357

Universidad Complutense de Madrid

Datalog Educational System

Precision and range depend on the underlying Prolog system. Strings are

represented with constants (cf. Section 4.1.1). A number with a dot between two digits
is considered as a float and an integer otherwise.

Subsequent type declarations are allowed for the same predicate and arity,
where the last declaration for a given predicate is the one to persist, overriding
previous type declarations for such predicate. The following session is possible, and
thus the second declaration persists:

DES> :- type(p,[string,string])

DES> :- type(p,[int,int])

Several type declarations can be submitted in a single assertion as in:

DES> :- type(p(a:int)), type(q(b:string))

As well, columns can be given names:

DES> :- type(p,[a:int,b:string])

which is equivalent to the following alternative syntax:

DES> :- type(p(a:int,b:string))

However, a type declaration for a relation already typed with a different arity is
not allowed. As it will be seen in further sections, SQL statements can refer to Datalog
relations, and SQL does not allow relations of the same name and different arities.

DES> :- type(p,[a:int])

Error: Cannot add types to a relation with several arities.

 Relation: p

A Datalog type declaration is analogous to the creation of an SQL table, with
the same outcome (defining metadata for a relation: relation name, column names and
types).

DES> /dbschema p

Info: Table:

 * p(a:int,b:string)

DES> drop table p

DES> /dbschema p

Info: No table or view found with that name.

DES> create table p(a int, b string)

DES> /dbschema p

Info: Table:

 * p(a:int,b:string)

As already seen in previous examples, it is also possible to omit column names.
In this case, they are automatically provided (with names '$1', '$2', and so on).

DES> :- type(p,[int,string])

DES> /dbschema p

Info: Table:

 * p($1:int,$2:string)

Let's consider the following session, where it can be seen that the system
monitors type constraints in both Datalog and SQL queries:

Fernando Sáenz-Pérez 77/357

Universidad Complutense de Madrid

Datalog Educational System

DES> :-type(p,[int,string])

DES> /assert p(a,b)

Error: Type mismatch p.$1:number(integer) vs. string(char(1)).

 p($1:number(integer),$2:string(varchar))

DES> /assert p(1,a)

DES> p(X,Y)

{

 p(1,a)

}

Info: 1 tuple computed.

DES> select * from p

answer(p.$1:int,p.$2:string) ->

{

 answer(1,a)

}

Info: 1 tuple computed.

DES> insert into p values('a','b')

Error: Type mismatch p.$1:number(integer) vs.

string(char(_6937)).

 p($1:number(integer),$2:string(varchar))

Info: 0 tuples inserted.

Note that columns with automatically given names can be accessed from an
SQL statement, but enclosed as special user identifiers. ISO delimiters (double quotes
"", supported by Oracle and SQL Server) are supported as well as other vendor-

specific delimiters: MS Access (square brackets []) and MySQL (back quotes ``).
Otherwise, an error is raised:

DES> /sql select $1 from p

Error: (SQL) Invalid SELECT list or (SQL) Expected valid SQL

expression near '/sql select '

DES> select "$1" from p

answer(p.$1:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

A relation already defined is checked for consistency when trying to assert a
new type constraint:

DES> /assert t(1)

DES> /assert t(a)

DES> :-type(t,[int])

Error: No type tuple covers all the loaded rules for t/1:

 t(1).

 t(a).

Info: 2 rules listed.

Should any other constraint remains asserted (other than a type constraint), a
type constraint cannot be changed:

DES> :-type(p,[a:int,b:string])

Error: Cannot change type assertion while other constraints

remain.

Fernando Sáenz-Pérez 78/357

Universidad Complutense de Madrid

Datalog Educational System

Such constraints can be inspected in the database schema (command

/dbschema).

4.1.16.1.1 Types on the Intensional Database

Types can also be declared for predicates of the intensional database, i.e., those
predicates defined at least with rules, not only with facts. So, asserting a new type
constraint over an intensional relation will trigger type checking, inferring types along
the predicate dependency graph restricted to the typed predicate. Let's consider the
following situation as an example:

DES> /listing

s(a).

t(1).

t(X) :-

 s(X).

Info: 3 rules listed.

DES> :-type(t,[int])

Error: No type tuple covers all the loaded rules for t/1:

 t(1).

 t(X) :-

 s(X).

Info: 2 rules listed.

4.1.16.1.2 Types on Propositional Relations

Finally, propositional relations are also subject of beign typed, of course with an
empty list of arguments:

DES> :-type(a,[])

DES> /dbschema a

Info: Table:

 * a

The alternative syntax becomes shorter in this case indeed:

DES> :-type(a)

4.1.16.1.3 Type Casting

A value of a type can be converted to a value of another type for selected type
combinations, either automatically or manually. The following table shows the possible
type combinations:

From To

Number Type Number Type

Number Type String Type

String Type Number Type

String Type String Type

String Type Datetime Type

Datetime Type String Type

date datetime

Fernando Sáenz-Pérez 79/357

Universidad Complutense de Madrid

Datalog Educational System

datetime date

datetime time

where:

Number Type String Type Datetime Type

integer char date

float char(N) time

int varchar(N) datetime

real string

Automatic type casting allows you to automatically applying a type conversion
to a value in order to match the declared type along tuple insertions. By default, type
casting is disabled and can be enabled with the command /type_casting on. For
instance, let's consider the following example:

DES> /type_casting on

DES> :-type(t(a:int,b:float,c:string,d:varchar(2)))

DES> /assert t(1.5,1,2,123)

DES> /listing

t(2,1.0,'2','12').

Info: 1 rule listed.

Here, a round function (closest integer) has been applied to the first argument,
the integer 1 has been converted the float 1.0, the integer 2 has been converted to a
string, and so the last argument, which in addition has been truncated to fit the type
string length constraint. Also, strings can be converted to numbers if they are read as a
valid number (following the syntax in Section 4.1.1), as in:

DES> /assert t('4','5.0E10','','')

DES> /listing

t(4,5.0E+10,'','').

Info: 1 rule listed.

If a conversion is not possible, an error is raised:

DES> :-type(p(a:int))

DES> /assert p('foo')

Error: Impossible conversion of 'foo' to number(integer).

Note that the conversion proceeds only on tuple (facts) insertions, but neither
on retractions nor on rules:

DES> /retract t(1.5,1,2,123)

Warning: Nothing retracted.

DES> /assert p(X) :- X='1'

Error: Type mismatch number(integer) vs. string(varchar(1)).

 p(a:number(integer)) (declared types).

Fernando Sáenz-Pérez 80/357

Universidad Complutense de Madrid

Datalog Educational System

A manual type casting can be applied in the context of an expression with the

function cast, and in the context of a goal with the predicate '$cast'/3. The
function cast(Value, Type) returns Value in the type Type. For instance:

DES> X=cast(date(2016,8,31),datetime)-

datetime(2016,8,30,23,59,59)

Info: Processing:

 answer(X) :-

 '$cast'(date(2016,8,31),datetime(datetime),A),

 '$datetime_sub'(A,datetime(2016,8,30,23,59,59),B),

 X=B.

{

 answer(1)

}

Info: 1 tuple computed.

4.1.16.2 Nullability (Existency Constraint)

 Columns can be imposed to contain a concrete value rather than a null. The
next system session shows an example:

DES> :-type(p,[a:int,b:string])

DES> :-nn(p,[a])

The list of column names specifies the columns for which null values are not
allowed. Thus, trying to assert a tuple such as the following, will raise an error:

DES> /assert p(null,'')

Error: Not null violation p.[a]

Subsequent existency constraints are allowed for the same predicate and arity;
the last declaration is the one to persist, overriding previous declarations for such
predicate.

4.1.16.3 Primary Key

A primary key constraint specifies that no two tuples have the same values for a
given set of columns. Next, a system session illustrates the use of a primary key
assertion:

DES> :-type(p,[a:int,b:string])

DES> :-pk(p,[a])

Primary key constraints are trivially satisfied when duplicates are disabled, as
relations are considered as sets, irrespective of the current database instance, that may
contain duplicates for the arguments in the primary key.

Several primary key declarations are allowed for the same predicate and arity;
the last declaration is the one to persist, overriding previous type declarations for such
predicate:

DES> :-pk(p,[a])

DES> :-pk(p,[c])

Error: Unknown column c.

DES> :-pk(p,[a,a])

Fernando Sáenz-Pérez 81/357

Universidad Complutense de Madrid

Datalog Educational System

A relation already defined with facts or rules is checked for consistency when

trying to assert a new primary key constraint:

DES> :-type(q,[a:int,b:int])

DES> /assert q(1,1)

DES> /assert q(2,2)

DES> /assert q(1,2)

DES> :-pk(q,[a])

Error: Primary key violation q.[a]

 Offending values in database: [pk(1)]

Info: Constraint has not been asserted.

4.1.16.4 Candidate Key (Uniqueness Constraint)

As a primary key, a candidate key constraint specifies that no two tuples have
the same values for a given set of columns. Next, a system session illustrates the use of
a candidate key assertion:

DES> :-type(p,[a:int,b:string])

DES> :-ck(p,[a])

Candidate key constraints are trivially satisfied when duplicates are disabled,
as relations are considered as sets, irrespective of the current database instance, that
may contain duplicates for the arguments in the candidate key.

Several candidate key declarations are allowed for the same predicate and arity.
By contrast to primary keys, several candidate key constraints are allowed for the same
predicate:

DES> :-ck(p,[b])

DES> :-ck(p,[a,b])

DES> /dbschema p

Info: Table:

 * p(a:int,b:string)

 - NN: [a]

 - CK: [a]

 - CK: [b]

 - CK: [a,b]

4.1.16.5 Foreign Key

A foreign key constraint specifies that the values in a given set of columns of a
relation must exist already in the columns declared in the primary key constraint of
another relation. Next, an example of a foreign key assertion is shown:

DES> :-type(p(a:int)),type(q(b:int)),pk(q,[b])

DES> :-fk(p,[a],q,[b])

However, if the relations do not exist, an error is raised:

DES> :-fk(p,[a],q,[b])

Error: Relation p has not been typed yet.

DES> :-type(p,[a:int]), type(q,[b:int])

Trying to impose a foreign key with a referenced table which does not have a
primary key for matching columns raises an error:

Fernando Sáenz-Pérez 82/357

Universidad Complutense de Madrid

Datalog Educational System

DES> :-fk(p,[a],q,[b])

Error: Referenced column list q.[b] is not a primary key.

DES> :-pk(q,[b])

DES> :-fk(p,[a],q,[b])

The same constraint cannot be reasserted:

DES> :-fk(p,[a],q,[b])

Error: Trying to reassert an existing constraint.

DES> /dbschema

Info: Table(s):

 * p(a:int)

 - FK: p.[a] -> q.[b]

 * q(b:int)

 - PK: [b]

Info: No views.

DES> /assert p(1)

Error: Foreign key violation p.[a]->q.[b]

 when trying to insert: p(1)

DES> /assert q(1)

DES> /assert p(1)

DES> /listing

p(1).

q(1).

Info: 2 rules listed.

Several foreign keys may exist for the same relation:

DES> :-type(p,[a:int])

DES> :-type(q,[b:int])

DES> :-type(r,[a:int,b:int,c:string])

DES> :-pk(p,[a]), pk(q,[b])

DES> :-fk(r,[a],p,[a]), fk(r,[b],q,[b])

DES> /dbschema r

Info: Table:

 * r(a:int,b:int,c:string)

 - FK: r.[a] -> p.[a]

 - FK: r.[b] -> q.[b]

Referenced columns have to match the types of foreign key columns, otherwise
an error is raised:

DES> :-fk(r,[c],q,[b])

Error: Type mismatch r.c:string(varchar) <> q.b:number(integer)

A relation already defined with facts or rules is checked for consistency when
trying to assert a new foreign key constraint:

DES> :-type(p,[a:int])

DES> :-type(q,[a:int])

DES> /assert p(1)

DES> :-pk(q,[a])

DES> :-fk(p,[a],q,[a])

Error: Foreign key violation p.[a]->q.[a]

 Offending values in database: [fk(1)]

Fernando Sáenz-Pérez 83/357

Universidad Complutense de Madrid

Datalog Educational System

Info: Constraint has not been asserted.

So far, this corresponds to the usual behaviour in the relational setting, but
foreign keys in this deductive setting can be used not only for extensional relations, but
also for intensional ones. This subject is covered in Section 4.1.18, when dealing with
limited domain predicates.

4.1.16.6 Functional Dependency

A functional dependency constraint specifies that, given a set of attributes A1 of
a relation R, they functionally determine another set A2, i.e., each tuple of values of A1
in R is associated with precisely one tuple of values A2 in the same tuple of R.

DES> :-fd(p,[a],[c])

Error: Relation p has not been typed yet.

DES> :-type(p,[a:int,b:int])

DES> :-fd(p,[a],[c])

Error: Unknown column c.

DES> :-fd(p,[a],[b])

DES> /dbschema p

Info: Table:

 * p(a:int,b:int)

 - FD: [a] -> [b]

By asserting the fact p(1,2), it must hold that any other tuple with 1 in its first
attribute must have the value 2 in its second attribute.

DES> /assert p(1,2)

DES> /assert p(1,3)

Error: Functional dependency violation p.[a]->p.[b]

 in table p(a,b)

 when trying to insert: p(1,3)

 Witness tuple : p(1,2)

Several functional dependency constraints can be imposed on a given relation.
They can be deleted either with the command drop_ic or when an SQL DROP TABLE
or DROP DATABASE statements are issued.

Trivial functional dependencies are rejected:

DES> :-fd(p,[a],[a])

Warning: Trivial functional dependency. Not asserted.

A relation already defined with facts or rules is checked for consistency when
trying to assert a new functional dependency constraint:

DES> :-type(p,[a:int,b:int,c:int])

DES> /assert p(1,1,1)

DES> /assert p(1,2,3)

DES> :-fd(p,[a],[c])

Error: Functional dependency violation p.[a]->p.[c]

 Offending values in database: [fd(1,1,1),fd(1,2,3)]

Info: Constraint has not been asserted.

Fernando Sáenz-Pérez 84/357

Universidad Complutense de Madrid

Datalog Educational System

4.1.16.7 User-defined Integrity Constraints

Users can also define their own integrity constraints. A user-defined integrity
constraint is represented with a rule without head. The rule body is an assertion that
specifies inconsistent data, i.e., should this body can be proved, an inconsistency is
detected and reported to the user.

Declaring such integrity constraints implies to change your mind w.r.t. usual
consistency constraints as domain constraints in SQL. For instance, to specify that a
column c of a table t can take values between two integers one can use the SQL clause
CHECK in the creation of the table as follows:

CREATE TABLE t(c INT CHECK (c BETWEEN 0 AND 10));

In contrast, in Datalog you can submit the following constraints:

DES> :-type(t,[c:int])

DES> :-t(X),(X<0;X>10)

Notice that the rule body succeeds for values in t out of the interval [0,10]. So,
an integrity constraint specifies unfeasible values rather than feasible. Also note that
whilst several predefined constraints are allowed in a constraint, only one user-defined
integrity constraint is allowed. A couple of assertions to show the behaviour of the
above example follow:

DES> /assert t(0)

DES> /assert t(11)

Error: Integrity constraint violation.

 ic(X) :-

 t(X),

 X < 0

 ;

 X > 10.

 Offending values in database: [ic(11)]

Note that to be able to interpret that offending values, the integrity constraint is
shown as a rule defining a new predicate ic, where the rule's head has as many
variables as relevant variables in the constraint. Then, offending values are
encapsulated in the meaning of the constraint relation ic.

A rule body of a constraint is any valid rule body, i.e., goals in constrainsts can
refer to other user-defined or built-in predicates as well, including negation,
aggregates, etc. Let's consider the following session, in which we are interested in
specifying a directed tree (a connected graph with no cycles):

DES> /verbose on

Info: Verbose output is on.

DES> /consult paths

Info: Consulting paths...

 edge(a,b).

 edge(a,c).

 edge(b,a).

 edge(b,d).

 path(X,Y) :-

 path(X,Z),

Fernando Sáenz-Pérez 85/357

Universidad Complutense de Madrid

Datalog Educational System

 edge(Z,Y).

 path(X,Y) :-

 edge(X,Y).

 end_of_file.

Info: 6 rules consulted.

Info: Computing predicate dependency graph...

Info: Computing strata...

DES> :-path(X,X)

Info: Parsing query...

Info: Constraint successfully parsed.

Info: Checking user-defined integrity constraint over database.

 :-

 path(X,X).

Info: Computing predicate dependency graph...

Info: Computing strata...

Error: Integrity constraint violation.

 ic(X) :-

 path(X,X).

 Offending values in database: [ic(b),ic(a)]

Info: Constraint has not been asserted.

The constraint :-path(X,X) specifies that a path from a node to itself is not
allowed. As the consulted program contains a cycle involving nodes a and b, the
constraint is violated and therefore it is not asserted. Offending values are listed (in
this case, all the values involved in any cycle; you can try out other edges and see the
outcome).

Another use is to first specify the constraint and then a graph. However, don't
be tempted to submit the constraint and consult the program: the constraint will be
removed since consulting a program amounts to erase the existing database, including
user-defined integrity constraints. Instead, use the /reconsult command:

DES> /verbose on

Info: Verbose output is on.

DES> /cd examples

Info: Current directory is:

 c:/des/des6.1/examples/

DES> :-path(X,X)

Info: Parsing query...

Info: Constraint successfully parsed.

Info: Checking user-defined integrity constraint over database.

 :-

 path(X,X).

Info: Computing predicate dependency graph...

Warning: Undefined predicate(s): [path/2]

Info: Computing strata...

DES> /reconsult paths

Info: Consulting paths...

 edge(a,b).

 edge(a,c).

 edge(b,a).

 edge(b,d).

Info: Checking user-defined integrity constraint over database.

 :-

 path(X,X).

Fernando Sáenz-Pérez 86/357

Universidad Complutense de Madrid

Datalog Educational System

Info: Computing predicate dependency graph...

Info: Computing strata...

 path(X,Y) :-

 path(X,Z),

 edge(Z,Y).

Info: Checking user-defined integrity constraint over database.

 :-

 path(X,X).

Info: Computing predicate dependency graph...

Info: Computing strata...

Error: Integrity constraint violation.

 ic(X) :-

 path(X,X).

 Offending values in database: [ic(b),ic(a)]

 path(X,Y) :-

 edge(X,Y).

 File : c:/des/des6.1/examples/paths.dl

 Lines: 10,10

 end_of_file.

Info: 5 rules consulted.

Info: Computing predicate dependency graph...

Info: Computing strata...

Note that the first rule for path is not rejected because in the already consulted
program it is still consistent w.r.t. to the constraint. However, trying to add the second
rule for path makes it infeasible, so it is rejected. Now, only 5 rules have been asserted.
If the file was not included the third fact for edge, then it would be accepted as a valid
tree. Again, trying to insert such a tuple, after such a program is consulted, raises an
error:

DES> /assert edge(d,a)

Info: Checking user-defined integrity constraint over database.

 :-

 path(X,X).

Info: Computing predicate dependency graph...

Info: Computing strata...

Error: Integrity constraint violation.

 ic(X) :-

 path(X,X).

 Offending values in database: [ic(a),ic(b),ic(d)]

Observe that since the path relation is now complete, all the nodes in the cycle
are displayed (a, b, and c).

The considered constraint is not yet enough to ensure a directed tree defined by
edge facts. Two conditions remain: First, a given node cannot have more than one
incoming edge, and, second, a tree must be a connected graph. If the first condition is
imposed, it suffices for the second to check that the number of nodes is the number of
edges plus 1. So:

DES> /assert node(N):-edge(N,A);edge(A,N)

Info: Computing predicate dependency graph...

Info: Computing strata...

Info: Rule asserted.

DES> :-count(edge(A,B),Es), count(node(N),Ns), D is Ns-Es, D\=1.

Fernando Sáenz-Pérez 87/357

Universidad Complutense de Madrid

Datalog Educational System

Info: Parsing query...

Info: Constraint successfully parsed.

Info: Computing predicate dependency graph...

Info: Computing strata...

Info: Checking user-defined integrity constraint over database.

 :-

 count(edge(A,B),Es),

 count(node(N),Ns),

 D is Ns - Es,

 D \= 1.

Info: Computing by stratum of [edge(A,B),node(A)].

Info: Computing predicate dependency graph...

Info: Computing strata...

DES> /assert edge(e,f) % An unconnected component

Info: Checking user-defined integrity constraint over database.

 :-

 count(edge(A,B),Es),

 count(node(N),Ns),

 D is Ns - Es,

 D \= 1.

Info: Computing by stratum of [edge(A,B),node(A)].

Info: Computing predicate dependency graph...

Info: Computing strata...

Error: Integrity constraint violation.

 ic(Es,Ns,D) :-

 count(edge(A,B),Es),

 count(node(N),Ns),

 D is Ns - Es,

 D \= 1.

 Offending values in database: [ic(4,6,2)]

User-defined integrity constraints are dropped when abolishing the database or
consulting a file.

4.1.16.8 Dropping Constraints

Any predefined or user-defined integrity constraint can be dropped with the
command /drop_ic (see Section 5.17.1) followed by the constraint to be dropped with
the same syntax as its declaration.

4.1.16.9 Caveats

Either by consulting a program, or by dropping the current database, or by
abolishing the database, all integrity constraints are removed, including SQL table and
view definitions.

As rules are not checked for predefined constraints, situations like the following
may occur:

DES> create table t(a int primary key)

DES> insert into t values (1)

Info: 1 tuple inserted.

DES> /assert t(X):-X=1

DES> /duplicates on

DES> t(X)

{

Fernando Sáenz-Pérez 88/357

Universidad Complutense de Madrid

Datalog Educational System

 t(1),

 t(1)

}

Info: 2 tuples computed.

Nonetheless, if you also want to monitor rules, you can otherwise use a user-
defined constraint such as:

DES> create table t(a int)

DES> insert into t values (1)

Info: 1 tuple inserted.

DES> :-group_by(t(X),[X],C=count(X),C>1),C>1

DES> /assert t(X):-X=1

Error: Integrity constraint violation.

 ic(X,C) :-

 group_by(t(X),[X],(C = count(X),C > 1)),

 C > 1.

 Offending values in database: [ic(1,2)]

Error: Asserting rules due to integrity constraint violation.

4.1.17 Restricted Predicates

The meaning of a predicate can be limited by defining restricting rules. A
restricting rule is a rule for which its head is a restricting atom (a regular atom
preceded by a minus sign, cf. Section 4.1.2). The meaning of a predicate is then the
tuples deduced from its regular rules minus the tuples deduced from its restricting
rules. A restricting rule does not represent true negation, but a means to discard
positive tuples from the meaning of a predicate. So, both p and -p can occur in a
program with no contradiction. Computing a restricted predicate p can be seen as
follows: First, compute its meaning P+ from its regular rules. Then, compute the
meaning P- of its restricting rules and build the meaning for p as the difference P+ - P-.
Adding a restricting rule for a predicate involves to add a negative dependency q-p (cf.
Section 4.1.8) from any other predicate q depending on p.

Let’s consider the following number generator:

DES> /assert p(X) :- X=1 ; p(Y), Y<10, X=Y+1.

DES> p(X)

{

 p(1),

 p(2),

 ...

 p(10)

}

Info: 10 tuples computed.

Even numbers can be obtained by adding the following restricting rule:

DES> /assert -p(X) :- p(X), X mod 2 = 1.

DES> p(X)

{

 p(2),

 p(4),

 p(6),

 p(8),

Fernando Sáenz-Pérez 89/357

Universidad Complutense de Madrid

Datalog Educational System

 p(10)

}

Info: 5 tuples computed.

Note that you can also request the meaning of the restricted part of the
predicate. In general, a restricting atom can occur anywhere an atom is allowed, and, in
particular, in a top-level query, as follows:

DES> -p(X)

{

 -(p(1)),

 -(p(3)),

 -(p(5)),

 -(p(7)),

 -(p(9))

}

Info: 5 tuples computed.

Restricting rules can also be recursive. The following example looks also for
even numbers:

DES> /assert -p(X) :- X=1 ; -p(Y), X=Y+2, X<10.

DES> p(X)

{

 p(2),

 p(4),

 p(6),

 p(8),

 p(10)

}

Info: 5 tuples computed.

As a caveat, note that the complete meaning of a predicate can be removed if a
regular atom is used incorrectly, as in:

DES> /assert -p(X) :- p(X)

DES> p(X)

{

}

Info: 0 tuples computed.

The rule -p(X) :- -p(X) represents a tautology.

All duplicates in the meaning of a restricted predicate are removed for a single
tuple in the meaning of the restricting rules. For example:

DES> /assert p(1)

DES> /assert p(1)

DES> /assert p(2)

DES> /assert p(2)

DES> /assert -p(1)

DES> /duplicates on

DES> p(X)

{

 p(2),

 p(2)

Fernando Sáenz-Pérez 90/357

Universidad Complutense de Madrid

Datalog Educational System

}

Info: 2 tuples computed.

Restricted predicates are also useful for hypothetical reasoning, a subject
covered in Section 4.1.19.

4.1.18 Limited Domain Predicates

Domains corresponding to predefined types are infinite in general. For instance,
integer has associated the (non-limited) domain of integers (..., -1, 0, 1, ...).
However, predicates with foreign key declarations on a set of its arguments have the
domains for these arguments limited to those of the referenced predicates' primary
keys. For example, let's consider the following session:

DES> :-type(my_date(day:int,month:int,year:int)),

 type(day_dom(day:int)),

 pk(day_dom,[day]),

 fk(my_date,[day],day_dom,[day]).

The argument day in my_date can only take values in the argument of
day_dom, which can be defined as:

day_dom(1).

day_dom(2).

day_dom(3).

day_dom(4).

day_dom(5).

day_dom(6).

day_dom(7).

So, trying to assert an incorrect argument for day in my_date would raise an
error:

DES> /assert my_date(8,10,2015)

Error: Foreign key violation my_date.[day]->day_dom.[day]

 when trying to insert: my_date(8,10,2015)

Analogously, the domains for months and years can be constrained in this way.
This example mimics the behaviour of a relational database but, further, in this
deductive setting, the domain of the days can be intensionally defined as follows:

day_dom(X) :- X=1 ; day_dom(Y), Y<7, X=Y+1

In addition, the relation for which the functional dependency is imposed can be
an intensional relation as well. Let's consider this other example:

DES> :-type(numbers(a:int)), type(even(a:int)),

 pk(even,[a]), fk(numbers,[a],even,[a]).

Here, the predicate numbers can only take values in the semantics of even due
to the foreign key constraint. Let's confirm this with a predicate numbers as a number
generator from 1 to 10, and even as an even number generator from 0 to 20:

DES> /assert numbers(X):-X=1;numbers(Y),Y<10,X=Y+1

DES> /assert even(X):-X=0;even(Y),Y<20,X=Y+2

DES> even(X)

Fernando Sáenz-Pérez 91/357

Universidad Complutense de Madrid

Datalog Educational System

{

 even(0),

 even(2),

 ...

 even(20)

}

Info: 11 tuples computed.

DES> numbers(X)

{

 numbers(2),

 numbers(4),

 numbers(6),

 numbers(8),

 numbers(10)

}

Info: 5 tuples computed.

Since numbers is limited to have tuples in even, only the even numbers from 2
to 10 are in the meaning of numbers. Looking at the rules in the database, we find the
ones for the generator predicates and one restricting rule for numbers:

DES> /listing

-numbers(A) :-

 numbers(A),

 not even(A).

numbers(X) :-

 X=1

 ;

 numbers(Y),

 Y<10,

 X=Y+1.

even(X) :-

 X=0

 ;

 even(Y),

 Y<20,

 X=Y+2.

Info: 3 rules listed.

This restricting rule limits the possible values that numbers can take by
eliminating the tuples in numbers that are not in even. This adds a negative
dependency from even to numbers in the PDG:

DES> /pdg

Nodes: [numbers/1,even/1]

Arcs : [numbers/1+numbers/1,

 numbers/1-even/1,

 even/1+even/1]

Foreign keys, thus, are useful devices to specify domain constraints for
relations. In contrast to the relational case, where foreign key constraints can only be

Fernando Sáenz-Pérez 92/357

Universidad Complutense de Madrid

Datalog Educational System

applied to tables (the extensional part of the database), here we admit this also for the
intensional part of the deductive database. A predicate with all their arguments

affected by foreign keys is called here a limited domain predicate.6

A limited domain predicate is safe with respect to negation because its domain
is finite whenever its referenced predicates are also finite. Then, it is possible to submit
an open negated call because the predicate domain is known and the complement of
the positive meaning is thus known as well. For example, the following query is safe
and returns the expected result:

DES> not numbers(X)

Info: Processing:

 answer(X) :-

 not numbers(X).

{

 answer(0),

 answer(12),

 answer(14),

 answer(16),

 answer(18),

 answer(20)

}

Info: 6 tuples computed.

The domain of numbers is (0), (2), (4), ... (20) and its positive semantics is
defined by the positive program rules as (2), (4), ..., (10). Therefore, the
complement of the positive semantics is (0), (12), (14), ..., (20), which is the
intended meaning for its negation. Out of curiosity, let's see the restricted part of the
predicate numbers:

DES> -numbers(X)

{

 -numbers(1),

 -numbers(3),

 -numbers(5),

 -numbers(7),

 -numbers(9)

}

Info: 5 tuples computed.

It is not possible to submit a non-ground negated call to this restricted
predicate:

DES> not -numbers(X)

Error: not '$p0'(X) might not be correctly computed because of

the unrestricted variable: [X]

Warning: This autoview is unsafe because of variable: [X]

because the restricting rules has no limited domain7. Still, it is possible to submit
ground negated calls as:

6 We discarded the term finite domain predicate to refer to these kind of predicates in
order to avoid a possible confusion with finite domain constraints, as this Datalog dialect is not
a constraint database in the sense of [Rev02].

Fernando Sáenz-Pérez 93/357

Universidad Complutense de Madrid

Datalog Educational System

DES> not -numbers(0)

Info: Processing:

 answer

in the program context of the exploded query:

 answer :-

 not '$p0'.

 '$p0' :-

 -numbers(0).

{

 answer

}

Info: 1 tuple computed.

DES> not -numbers(1)

Info: Processing:

 answer

in the program context of the exploded query:

 answer :-

 not '$p0'.

 '$p0' :-

 -numbers(1).

{

}

Info: 0 tuples computed.

Limited domain predicates are also useful for hypothetical reasoning, as shown
in the next section.

4.1.19 Hypothetical Queries

Hypothetical queries are a common need in several scenarios, related mainly
with business intelligence applications and the like. They are also known as "what-if"
queries and help managers to take decisions on scenarios which are somewhat
changed with respect to a current state. Such queries are used, for instance, for
deciding which resources must be added, changed or removed to optimize some
criterion (cost function - also well related to optimization technologies). Hypothetical
queries in the database arena are typically used for assumptions w.r.t. a current
database instance.

DES includes one form of hypothetical Datalog queries which may serve to
answer several questions. The syntax of an hypothetical query is as follows:

Rule1 /\ ... /\ RuleN => Goal

which means that, assuming that the current database is augmented with the rules
Rule1, ..., RuleN, then Goal is computed with respect to the current database which is
augmented with these rules, which must be safe (see Section 5.3). Such query is also
understood as a literal in the context of a rule, so that any rule can contain hypothetical
goals, as in a :- b => c. In turn, any Rulei can contain hypothetical goals.
Variables in Rulei are local to Rulei (i.e., they are neither shared with other rules nor
the goal). Moreover, a hypothetical literal does neither share variables with other

7 One can roughly think of the restricting rules of p as belonging to a different predicate

with the same arity but with name -p.

Fernando Sáenz-Pérez 94/357

Universidad Complutense de Madrid

Datalog Educational System

literals nor the head of the rule in which it occurs. Assumed rules can be either regular
or restricting rules.

Borrowing an example from [Bon90]8, we consider an extended and adapted
rule-based system for describing university policy: student(S) means that S is a
student, course(C) that C is a course, take(S,C) that student S takes course C, and
grad(S) that S is eligible for graduation. The extensional database can contain facts
as:

student(adam).

student(bob).

student(pete).

student(scott).

student(tony).

course(eng).

course(his).

course(lp).

take(adam,eng).

take(pete,his).

take(pete,eng).

take(scott,his).

take(scott,lp).

take(tony,his).

The intensional database can contain rules as:

grad(S) :- take(S,his), take(S,eng).

A regular query for students that would be eligible to graduate is:

DES> grad(S)

{

 grad(pete)

}

Info: 1 tuple computed.

A first hypothetical query for this database asks "If Tony took eng, would he be

eligible to graduate?", which can be queried with:

DES> take(tony,eng) => grad(tony)

Info: Processing:

 answer :-

 take(tony,eng)=>grad(tony).

{

 answer

}

Info: 1 tuple computed.

8 However, note that our approach differs from [Bon90] in at least the following: We
allow for rules in the assumption (not only facts), and variables in any assumed rule are not
shared out of the rule.

Fernando Sáenz-Pérez 95/357

Universidad Complutense de Madrid

Datalog Educational System

Also, if Pete did not take his, he would not be elibible to graduate (notice the

restricting atom, with a preceding minus sign):

DES> -take(pete,his) => grad(S)

Info: Processing:

 answer(S) :-

 -(take(pete,his))=>grad(S).

{

}

Info: 0 tuples computed.

More than one assumption can be simultaneously stated, as in: "If Tony took
eng, and Adam took his, what are the students that are eligible to graduate?"

DES> take(tony,eng) /\ take(adam,his) => grad(S)

Info: Processing:

 answer(S) :-

 take(tony,eng)/\take(adam,his)=>grad(S).

{

 answer(adam),

 answer(pete),

 answer(tony)

}

Info: 3 tuples computed.

Another query is "Which are the students which would be eligible to graduate if
his and lp were enough to get it?":

DES> (grad(S) :- take(S,his), take(S,lp)) => grad(S)

Info: Processing:

 answer(S) :-

 (grad(S):-take(S,his),take(S,lp))=>grad(S).

{

 answer(pete),

 answer(scott)

}

Info: 2 tuples computed.

Note that, although S occurs in both the antecedent and the consequent, they

are not actually shared, and they simply act as different variables.

Considering also information about course prerequisites as:

pre(eng,lp).

pre(hist,eng).

pre(Pre,Post) :-

 pre(Pre,X),

 pre(X,Post).

One might wonder whether adding a new prerequisite implies a cycle (so that
students cannot fulfil prerequisites at all for the courses in a cycle):

DES> pre(lp,hist)=>pre(X,X)

Info: Processing:

 answer(X) :-

 pre(lp,hist)=>pre(X,X).

Fernando Sáenz-Pérez 96/357

Universidad Complutense de Madrid

Datalog Educational System

{

 answer(eng),

 answer(hist),

 answer(lp)

}

Info: 3 tuples computed.

The answer includes those nodes in the graph that are in a cycle (i.e., a course
becomes a prerequisite of itself).

Following the example for even numbers in Section 4.1.17, and given the
regular rule for p is asserted, we can use the following assumption for computing those
numbers:

DES> /assert p(X) :- X=1 ; p(Y), Y<10, X=Y+1.

DES> (-p(X) :- p(X), X mod 2 = 1) => p(X)

Info: Processing:

 answer(X) :-

 (-(p(X)):-p(X),X mod 2=1)=>p(X).

{

 answer(2),

 answer(4),

 answer(6),

 answer(8),

 answer(10)

}

Info: 5 tuples computed.

4.1.19.1 Hypothetical Queries and Integrity Constraints

Assumptions can be used in combination with any of the features of DES; in
particular, integrity constraints. Following the previous example, you can even express
it with the aid of integrity constraints. Avoiding cycles can be forced by:

DES> :-pre(X,X)

Then, if you want to list prerequisites assuming pre(lp,hist) as before:

DES> pre(lp,hist)=>pre(X,Y)

Info: Processing:

 answer(X,Y) :-

 pre(lp,hist)=>pre(X,Y).

Error: Integrity constraint violation.

 ic(X) :-

 pre(X,X).

 Offending values in database: [ic(lp),ic(eng),ic(hist)]

Info: The following rule cannot be assumed:

 pre(lp,hist).

{

 answer(eng,lp),

 answer(hist,eng),

 answer(hist,lp)

}

Info: 3 tuples computed.

Fernando Sáenz-Pérez 97/357

Universidad Complutense de Madrid

Datalog Educational System

So, the system informs that there is an inconsistency when trying to assert such

offending fact (pre(lp,hist)), which makes prerequisites to form a cycle (as shown
in the offending value list [ic(lp),ic(eng),ic(hist)]). The system informs
about the rules that cannot be assumed but continues its processing. This is also useful
to know the result for the admissible assumptions. Note that, in general, offending
facts can be a subset of the meaning of an assumed rule in the context of the current
database. To illustrate this, let's consider the following program for throwing a coin:

% Tails win:

:- win, heads.

win :- heads ; tails.

Predicate win states that one wins if either heads or tails are got, and the
constraint states that you have to get tails to win. Then, the following hypothetical goal
states whether assuming heads or tails leads to win.

DES> heads /\ tails => win

Info: Processing:

 answer :-

 heads/\tails=>win.

Error: Integrity constraint violation.

 ic :-

 win,

 heads.

Info: The following rule cannot be assumed:

 heads.

{

 answer

}

Info: 1 tuple computed.

As it is informed, heads cannot be assumed in order to win.

4.1.19.2 Hypothetical Queries and Duplicates

Duplicates can also be used along computations involving assumptions. Let's
consider a variation of the classical Nim game, known as the subtraction game. Here,
there is only one heap from which a player can take one or two tokens in his turn. A
player wins if there is only one token in other player's turn (misère game). This can be
formulated with the next program:

win_nim :-

 take => one_left.

win_nim :-

 take/\take => one_left.

win_nim :-

 take => enough, win_nim.

win_nim :-

 take/\take => enough, win_nim.

one_left :-

 total(N),

 count(take,C),

 N-C=1.

Fernando Sáenz-Pérez 98/357

Universidad Complutense de Madrid

Datalog Educational System

enough :-

 total(N),

 count(take,C),

 N-C>0.

total(4).

The predicate win_nim states that I win if I take one or two tokens and there is
one left for you. Otherwise, if there are enough tokens (after taking one or two) to
continue playing, then let's see if I can win.

Each occurrence of take in the left hand side of => is an assumed fact that can

be counted if duplicates are enabled (otherwise, the counting will be 0 - if there is no
one - or 1 - if there is one or more, as duplicates are discarded). So, the predicate
one_left determines whether there is exactly one token left, and enough determines
if there is one token left at least. The predicate total states the total number of tokens
which are available for a game.

For more than 2 tokens there is always both winning and loosing paths for the
player in turn. For exactly 2 tokens there is no loosing path (because the player cannot
take 2 as the heap would be empty). And for 1 token, there is no winning path:

DES> win_nim

{

}

Info: 0 tuples computed.

Note that enabling duplicates can lead to non-terminating queries. For instance,
let's consider:

DES> /duplicates off

DES> /assert p:-p=>p

DES> p

{

 p

}

Info: 1 tuple computed.

DES> /duplicates on

DES> p

... Non-terminating

Here, the hypothesis p is recursively added to the database with no end as there
is no terminating condition.

4.1.19.3 Hypothetical Queries and Negation

Implication can also be used in conjunction with negation. Let's consider the
following example, which states flight links (flight/2 for origin and destination)
between airports (airport}), and where flight travels (flight_travel/2 also for
origin and destination) are possible if involved airports are not closed:

flight_travel(X,Y) :-

 flight(X,Y),

 not closed(X),

 not closed(Y).

Fernando Sáenz-Pérez 99/357

Universidad Complutense de Madrid

Datalog Educational System

flight_travel(X,Y) :-

 flight_travel(X,Z),

 flight_travel(Z,Y).

flight(a,b).

flight(b,c).

flight(c,d).

A regular query for consulting possible travels is:

DES> flight_travel(X,Y)

{

 flight_travel(a,b),

 flight_travel(a,c),

 flight_travel(a,d),

 flight_travel(b,c),

 flight_travel(b,d),

 flight_travel(c,d)

}

Info: 6 tuples computed.

Assuming that airport b is closed, we ask for the possible travels with this
assumption:

DES> closed(b) => flight_travel(X,Y)

Info: Processing:

 answer(X,Y) :-

 closed(b)=>flight_travel(X,Y).

{

 answer(c,d)

}

Info: 1 tuple computed.

where negated calls to closed/1 occur in the first rule of flight_travel/2.

We can also ask for the opposite: Which are the flight travels which are not
possible for that assumption:

DES> flight_travel(X,Y),(closed(b)=>not flight_travel(X,Y))

Info: Processing:

 answer(X,Y) :-

 flight_travel(X,Y),

 closed(b)=>not flight_travel(X,Y).

{

 answer(a,b),

 answer(a,c),

 answer(a,d),

 answer(b,c),

 answer(b,d)

}

Info: 5 tuples computed.

Note that, first, we ask for all the possible flights (first goal
flight_travel(X,Y)) and, then, we restrict to those flights which are not possible
under the assumption. The first goal is needed for the query to be safe. Recall that
Datalog with negation is not constructive (variables in the negated goal are not

Fernando Sáenz-Pérez 100/357

Universidad Complutense de Madrid

Datalog Educational System

instantiated unless their values are already provided by a positive goal), and answers
must be ground. Note, also, that the meaning of the first occurrence of goal
flight_travel(X,Y) in this last query is the very same as the meaning of the first
query. However, the meaning of the second occurrence of that goal restricts the answer
to those flights for which involved airports are not closed because of the assumption.

Another alternative for such assumption would be to discard those flights with
either its origin or destination at airport b, and then assuming the transitive closure of
the relation flight with travel:

DES> (-flight(X,Y):-flight(X,Y),(X=b;Y=b)) /\

 (travel(X,Y):-flight(X,Y);flight(X,Z),travel(Z,Y)) =>

 travel(X,Y).

Info: Processing:

 answer(X,Y) :-

 (-(flight(X,Y)):-flight(X,Y),(X=b;Y=b))/\(travel(X,Y):-

flight(X,Y);flight(X,Z),travel(Z,Y))=>travel(X,Y).

{

 answer(c,d)

}

Info: 1 tuple computed.

But notice that this is not equivalent to overloading the relation flight with its
transitive closure, as follows:

DES> (-flight(X,Y):-flight(X,Y),(X=b;Y=b)) /\

 (flight(X,Y):-flight(X,Y);flight(X,Z),flight(Z,Y)) =>

 flight(X,Y).

Info: Processing:

 answer(X,Y) :-

 (-(flight(X,Y)):-flight(X,Y),(X=b;Y=b))/\(flight(X,Y):-

flight(X,Y);flight(X,Z),flight(Z,Y))=>flight(X,Y).

{

 answer(a,c),

 answer(a,d),

 answer(c,d)

}

Info: 3 tuples computed.

Indeed, for computing the meaning of flight, first the meaning of its regular
rules are computed (which deliver its transitive closure including flights involving
airport b), and then, the meaning of its restricting rules, therefore removing from the
transitive closure those flights leaving from or arriving at airport b.

4.1.1 Fuzzy Datalog

Datalog implements Logic Programming with crisp relations, as opposed to
uncertainty as found in some real-world applications that require approximate relations.
Relations between objects cannot be always precisely specified. As an example, think of
the relations near, cold, and tall. Usually, in a fuzzy setting they are given an
approximation degree δ for a given pair of related objects, stating that the first one is
related to the second one with confidence δ.

Fernando Sáenz-Pérez 101/357

Universidad Complutense de Madrid

Datalog Educational System

Fuzzy theory comes as early as [Zade65] and it was applied to logic

programming in the eighties. A relevant work [Sess02] introduces the notion of
syntactic similarity and a weak SLD-resolution for fuzzy logic programs. In DES, we
follow the approach of Bousi~Prolog (BPL) [JR10], which modifies the classical
resolution procedure by replacing the unification algorithm by a fuzzy unification one.
In addition, we extend it with approximation degrees for rules (known as graded rules).

Fuzzy Datalog in DES is a new system mode that must be enabled with the
command:

DES> /system_mode fuzzy

FDES>

which changes the default prompt DES> to FDES>.

4.1.1.1 Fuzzy Relations and Approximation Degrees

[JR10] defines a proximity/similarity binary relation ~ relating either two
predicates or two function symbols. Here, function symbols are restricted to constant
symbols. For example, the proximity equation:

so_much ~ very_much = 0.6.

between the constants so_much and very_much states that they are similar with a
degree of 0.6.

By taking an example from that work, let us consider the following program (in
the distribution directory examples/fuzzy/cookies.dl):

% Facts

likes(john, cookies, a_little).

likes(mary, cookies, very_much).

likes(peter, cookies, so_much).

likes(paul, cookies, does_not).

% Rules

buy(X,P) :- likes(X, P, very_much).

For the query buy(X,cookies) about people prone to buying cookies, a
classical Datalog system (eliding proximity equations) would return the single answer
buy(mary, cookies). However, john and peter are also reasonable candidates to
buy cookies from a real-world interpretation of the relation likes. Hence, if we are
looking for a flexible query answering procedure, more approximate to the real-world
setting, john and peter should appear as answers. So, by adding the next proximity
equations:

% Proximity Equations relating Constants

does_not ~ a_little = 0.5.

a_little ~ very_much = 0.2.

does_not ~ so_much = 0.1.

so_much ~ very_much = 0.6.

a_little ~ so_much = 0.4.

then, the query above would return these answers:

FDES> buy(X,cookies)

Fernando Sáenz-Pérez 102/357

Universidad Complutense de Madrid

Datalog Educational System

Info: Processing:

 answer(X) :-

 buy(X,cookies).

{

 answer(mary),

 answer(peter)with 0.6,

 answer(john)with 0.4,

 answer(paul)with 0.4

}

Info: 4 tuples computed.

Any fuzzy query is considered as an autoview, and the answer is built with the
relevant variables in the query. In this example, X is the relevant variable for which
matching values are looked for in the database. Thus, while mary is surely expected to
buy cookies (i.e., with an approximation degree of 1.0 -which is omitted in the output),
both john and paul would buy cookies with an approximation degree of 0.4, and
peter with 0.6 (denoted with the keyword with).

As a second way to state approximation degrees, proximity equations can be
stated between predicates as well. To this end, each predicate symbol in an equation
must be accompanied by its arity. The next example (in the distribution directory
examples/fuzzy/sizes.dl) classifies people on their height as tall, medium and
short, specifying that a medium (resp. short) person can be understood as a tall (resp.
medium) one with a degree of 0.4:

:- t_norm(product).

tall/1 ~ medium/1 = 0.4.

medium/1 ~ short/1 = 0.4.

tall(magic_johnson).

tall(paul).

medium(john).

medium(ava).

short(bob).

short(eve).

Looking for tall people, we get:

FDES> tall(X)

Info: Processing:

 answer(X) :-

 tall(X).

{

 answer(magic_johnson),

 answer(paul),

 answer(ava)with 0.4,

 answer(john)with 0.4,

 answer(bob)with 0.16,

 answer(eve)with 0.16

}

Info: 6 tuples computed.

Fernando Sáenz-Pérez 103/357

Universidad Complutense de Madrid

Datalog Educational System

Notice that the assertion :- t_norm(product) in this program selects a

specific t-norm. A t-norm (represented with the operator) is the extension of the first-
order logic conjunction for the fuzzy setting, and applies to approximation degrees.
Usual t-norms include: minimum (Göedel), product and Łukasiewicz, where the first
one is the default in DES. Also note that the answer is ordered first by approximation
degree, and then, by tuples.

For the last example, it turns out to be more appropriate a product t-norm
because, by transitivity, if the approximation degree between tall and medium is 0.4,
and between medium and short is 0.4, then the approximation degree between tall

and short is computed as 0.4 product 0.4 = 0.16 (the minimum t-norm would return 0.4,

which does not seem appropriate in this case).

The third and last way to express approximation degrees is for rules in
predicates. Each rule in a predicate may receive a degree to express its confidence in
the context of the predicate. Such rules are known as graded rules. As an example in the
stock market, let us consider the following rules (in the distribution directory
examples/fuzzy/stock.dl):

stock_up(google) with 0.9.

stock_up(greek_bonds) with 0.2.

shareholder(paul,google).

shareholder(paul,greek_bonds).

keep_stock(Name,Stock) :-

 shareholder(Name,Stock),

 stock_up(Stock).

where google stock is expected to raise with a degree of 0.9 and greek_bonds with
0.2. Then, the query keep_stock(Name,Stock) would return the stocks that are
profitable to keep for each shareholder:

FDES> keep_stock(N,S)

Info: Processing:

 answer(N,S) :-

 keep_stock(N,S).

{

 answer(paul,google)with 0.9,

 answer(paul,greek_bonds)with 0.2

}

Info: 2 tuples computed.

In this example, it might be wise to set a degree threshold for the outcome,

which can be done with a -cut value. For example, we can be interested in keeping
stocks with a degree greater than or equal to 0.8.

FDES> /lambda_cut 0.8

FDES> keep_stock(Name,Stock).

Info: Processing:

 answer(N,S) :-

 keep_stock(N,S).

{

 answer(paul,google)with 0.9

Fernando Sáenz-Pérez 104/357

Universidad Complutense de Madrid

Datalog Educational System

}

Info: 1 tuple computed.

The command /lambda_cut sets this threshold, which can be alternatively
stated in a program as an assertion, with :- lambda_cut(0.8).

4.1.1.2 Fuzzy Relations and Properties

A crisp binary relation R relates values of two domains D1 and D2 as a subset of
D1 × D2, so it can be specified as a characteristic function as well:

For a binary fuzzy relation R: D × D, this function admits values in the interval
[0,1] and, as classical relations, may enjoy several properties, including:

 Reflexive: R(x,x) = 1 for all x D.

 Symmetric: R(x,y) = R(y,x) for all x,y D.

 Transitive: R(x,z) ≥ R(x,y) R(y,z) for all x,y,z D.

One can extensionally specify fuzzy relations with a set of proximity equations,
and properties that intensionally provides all the tuples in its meaning. This meaning is

computed as a -closure (also referred to as t-closure), which is somewhat similar to a

transitive closure by replacing the conjunction by a t-norm operator .

Let us consider the following example:

FDES> /abolish

FDES> /assert a~b=0.4

FDES> /assert b~c=0.3

These two proximity equations define the relation ~, which by default has
attached the properties reflexive, symmetric and transitive, and the t-norm Gödel. The
complete meaning of the fuzzy relation can be inspected with the following command:

FDES> /list_t_closure

a~a=1.0.

a~b=0.4.

a~c=0.3.

b~a=0.4.

b~b=1.0.

b~c=0.3.

c~a=0.3.

c~b=0.3.

c~c=1.0.

Info: 9 equations listed.

where equations as a~a=1.0 are deduced by reflexivity, b~a=0.4 by symmetry, and
a~c=0.3 by transitivity. So, users are not obliged to specify such equations that are
intensionally deduced by properties.

Typical relations are collected in the following table with respect to their
properties:

Relation Reflexive Symmetric Transitive

Fernando Sáenz-Pérez 105/357

Universidad Complutense de Madrid

Datalog Educational System

Strict Order no no yes

Proximity yes yes maybe

Partial Order yes no yes

Similarity yes yes yes

Properties (reflexive, symmetric and transitive) for the (default)
relation ~ can be stated with the command:

/fuzzy_relation ~ [comma-separated property names]

However, the default fuzzy relation ~ is not intended to be modified because it
plays a fundamental role in the so-called weak unification recalled in next subsection
(if changed, unexpected results may occur). Instead, one can define arbitrary fuzzy
relations, as for example the proximity relation near, which can be specified as
follows:

/fuzzy_relation near [reflexive,symmetric]

You can specify as many fuzzy relations as needed, which can coexist with the
default ~. We speak of relationship equations referring to equations of user-defined
fuzzy relations. But note that weak unification only works for this relation.

Properties can be consulted with the same command with no arguments:

FDES> /fuzzy_relation

Info: Properties of '~' are [reflexive,symmetric,transitive]

As already introduced, the operator represents the t-norm, where typical ones
and included in DES are:

 Minimum/Göedel (min/goedel): x y = min(x,y)

 Product (product): x y =x∙y

 Łukasiewicz (luka/lukasiewicz): x y = max(0,x+y-1)

 Hamacher Product (hamacher):

 Nilpotent Minimum (nilpotent):

These t-norms can be stated and consulted with the command:

/t_norm ~ t-norm_name

As a matter of portability with BPL programs, the t-norm can be stated in the
command /fuzzy_relation as a parameter (between parentheses) of the transitive
property (to this end, also the command synonym /fuzzy_rel is provided). For
example:

FDES> /fuzzy_relation ~

[reflexive,symmetric,transitive(product)]

Fernando Sáenz-Pérez 106/357

Universidad Complutense de Madrid

Datalog Educational System

Submitting the goal X~Y in the last example results in obtaining the whole

meaning of the relation ~.

FDES> X~Y

Info: Processing:

 answer(X,Y) :-

 X~Y.

{

 answer(a,a),

 answer(b,b),

 answer(c,c),

 answer(a,b)with 0.4,

 answer(b,a)with 0.4,

 answer(a,c)with 0.3,

 answer(b,c)with 0.3,

 answer(c,a)with 0.3,

 answer(c,b)with 0.3

}

Info: 9 tuples computed.

Note that this result is valid for a -cut less or equal to 0.3. If the -cut value of
0.8 which was specified in an earlier example remains, then the answer in this case
consists only of the first three answers.

Replacing a variable by any of the constants in the fuzzy relation results in an
appropriate filtering of the relation, as in:

FDES> X~a

Info: Processing:

 answer(X) :-

 X~a.

{

 answer(a),

 answer(b)with 0.4,

 answer(c)with 0.3

}

Info: 3 tuples computed.

where the outcome shows that the constant a is related to itself with an approximation

degree of 1.0, with b with of 0.4, and with c with of 0.3.

By removing both the reflexive and transitive properties, this goal now outputs:

FDES> /fuzzy_relation ~ [symmetric]

FDES> X~a

Info: Processing:

 answer(X) :-

 X~a.

{

 answer(b)with 0.4

}

Info: 1 tuple computed.

If the symmetric property would also be removed, no result tuple would be
output in this last query. But recall that unexpected results can occur with respect to

Fernando Sáenz-Pérez 107/357

Universidad Complutense de Madrid

Datalog Educational System

the weak unification and resolution procedures if the default properties of ~ are
changed. So, if other properties are needed, better define a new fuzzy relation.

4.1.1.3 Weak Unification and Weak Unification Operator

Classical logic programming unification is replaced by weak unification in
which syntactically-different symbols may match with a certain approximation degree.
In Datalog, only constants and variables can be unified because it implements function-
free first-order logic. In the fuzzy setting, two constants are unifiable is they are similar

with an approximation degree greater than or equal to the current -cut.

Weak unification implicitly occurs when matching query (or goal) arguments as
in the following, taken from Subsection 4.1.1.1: likes(X,P,very_much). Also,
whereas the operator = implements classical (crisp) equality, the operator ~~
implements an explicit fuzzy weak unification. The following are examples of explicit
weak unification between Datalog terms (either variables or constants):

FDES> % Next goal delivers an approximation degree 0.4 because

it was specified with a proximity equation

FDES> a~~b

Info: Processing:

 answer :-

 a~~b.

{

 answer with 0.4

}

Info: 1 tuple computed.

FDES> % Due to the reflexive property, the following is true

with an approximation degree 1.0 (which is omitted in the

displays)

FDES> a~~a

Info: Processing:

 answer :-

 a~~a.

{

 answer

}

Info: 1 tuple computed.

FDES> % Due to the transitive property, the following is true

with an approximation degree 0.3

FDES> a~~c

Info: Processing:

 answer :-

 a~~c.

{

 answer with 0.3

}

Info: 1 tuple computed.

FDES> % Weak unification provides a representative of unifiers:

FDES> X~~a

Info: Processing:

 answer(X) :-

 X~~a.

{

 answer(a)

Fernando Sáenz-Pérez 108/357

Universidad Complutense de Madrid

Datalog Educational System

}

Info: 1 tuple computed.

Note that the result of a weak unification is a representative of the class of all
possible weak most general unifiers. In the last example, in addition to X/a with 1,
other unifiers include X/b with 0.4 and X/c with 0.3. Notably, the representative
is the best (w.r.t. the computed unification degree) among the possible weak most
general unifiers.

Alternatives for different degrees are only possible for alternative program
rules. For example, given the same proximity equations, we can add to the database the
rules p(a), p(b) and p(c). Then:

FDES> p(a)

Info: Processing:

 answer :-

 p(a).

{

 answer,

 answer with 0.4,

 answer with 0.3

}

Info: 3 tuples computed.

4.1.1.4 Fuzzy Expressions

A fuzzy expression Term1 FuzzyRelationOperator Term2 returns the
approximation degree between Term1 and Term2, where FuzzyRelationOperator
can be ~ or any other user-defined fuzzy relation operator. Evaluating a fuzzy
expression returns its approximation degree. Thus, a fuzzy expression can occur at any
point in an expression for which a numeric value is expected. For instance, following
the previous example:

FDES> 1-a~b>0.2

Info: Processing:

 answer :-

 1-sim(~,a,b)>0.2.

{

 answer

}

Info: 1 tuple computed.

4.1.1.5 Accessing Approximation Degrees

By default, approximation degrees are automatically displayed along answers.
They are hidden from the user when, in fact, each goal in either a conjunctive query or
rule body receives an approximation degree. This degree is internally used to build the
outcome approximation degree, as seen in previous examples. Sometimes, it is needed
to access its value to reasoning in terms of it. To this end, we provide the metapredicate
approx_degree/2, which returns in its second argument the approximation degree
of the goal in its first argument.

As an application example, this can be used to emulate a dynamic -cut in
which the computation can proceed if it is above a (dynamic) value. The following
example shows this, given the same equations as before:

Fernando Sáenz-Pérez 109/357

Universidad Complutense de Madrid

Datalog Educational System

FDES> approx_degree(X~Y,D), D>0.3

Info: Processing:

 answer(X,Y,D) :-

 approx_degree(X~Y,D),

 D>0.3.

{

 answer(a,a,1.0),

 answer(a,b,0.4),

 answer(b,a,0.4),

 answer(b,b,1.0),

 answer(c,c,1.0)

}

Info: 5 tuples computed.

4.2 SQL

This section describes the main limitations, features, and decisions taken in
adding SQL to DES as a query language, which coexists with Datalog. We describe
four parts of the supported subset of the SQL language: DDL (Data Definition
Language, for defining the database schema), DQL (Data Query Language, for listing
contents of the database) and DML (Data Manipulation Language, for inserting and

deleting tuples)9, and ISL (Information Schema Language). Section 4.2.11 resumes the
SQL grammar. As ODBC connections are allowed, some DBMS specific features have
been added, as well as features in ISL which are not covered in the SQL standard.

The syntax recognized by the interpreter is borrowed from the SQL standard.
However, the SQL dialect supported by DES includes features which are not in this
standard, as hypothetical views and the division relational algebra operator. Section
names include the notice (Non-Standard) to refer to such extra features.

4.2.1 Main Limitations

 No insertions/deletions/updates into views.

 Strings in displayed outputs are not enclosed between apostrophes unless they
begin with upper case.

 DCL (Data Control Language, for controlling access rights) is not provided in DES.

4.2.2 Main Features

As main features, we highlight:

 Data query, data definition, data manipulation, and information schema language
parts provided.

 Subqueries (nested queries without depth limits).

 Correlated queries (tables and relations in nested subqueries can be referenced by
the host query). For example: SELECT * FROM t,(SELECT a FROM s) s
WHERE t.a=s.a.

9 We depart here from the usual convention of having three language parts because we
separate statements that retrieve tuples (DQL) from the statements that modify tuples (DML).

Fernando Sáenz-Pérez 110/357

Universidad Complutense de Madrid

Datalog Educational System

 Subqueries in expressions, as SELECT a FROM t WHERE t.a > (SELECT a

FROM s).

 Table, relation, column, and expression aliases.

 Support for duplicates and duplicate elimination (which must be explicitly enabled
with the command /duplicates on by contrast to usual DBMS's, in which this is
the default and only one mode).

 Linear, non-linear and mutual recursive queries (not all current DBMS's support
linear queries and no one support non-linear and mutual recursive ones). In
contrast to some current DBMS's, these queries can be located anywhere a query is
allowed.

 Simplified recursive queries are allowed (Non-Standard): Although supported, there
is no need for using a WITH clause.

 Hypothetical queries (Non-Standard).

 Set operators build relations, which can be used wherever a data source is expected
(FROM clause).

 Null values are supported, along with outer joins (full, left and right).

 Aggregate functions allowed in expressions at the projection list and HAVING
conditions. GROUP BY clauses are also allowed.

 View support. Any relation built with an SQL query can be defined as a view.

 Supported database integrity constraints include type constraints, existency
(nullability), primary keys, candidate keys, referential integrity, check constraints,
functional dependencies (non-standard), and user-defined constraints.

 Parentheses can be used elsewhere they are needed and also for easing the reading
of statements. Also, they are not required when they are not needed (in contrast to
some current DBMS systems).

 Suggestions are provided for misspelled table, view and column names when
similar entries are found.

 Type casting is disabled by default. Enabling this (with /type_casting on)
provides the usual behaviour of current DBMS's allowing, for instance, to insert a
string (representing a number) into a numeric field.

 SQL statements can end with a semicolon (;) but it is not compulsory unless
/multiline on is enabled.

 Any identifier is valid as an user identifier. For instance, the following statements
are valid in DES, but rejected in most DBMS's.

 CREATE TABLE from(from INT, dest INT);

 SELECT * FROM from JOIN from using;

Note that using stands for a renaming for the second from table reference (user
identifiers are shown in lowercase whereas system identifiers are shown in
uppercase).

 Syntax error reports for both the local database and ODBC connections.

Fernando Sáenz-Pérez 111/357

Universidad Complutense de Madrid

Datalog Educational System

4.2.3 Datalog vs. SQL

With respect to Datalog, some decisions have been taken:

 As in Datalog, user identifiers are case-sensitive (table and attribute names, ...). This
is not the usual behaviour of current DBMS's.

 In contrast to Datalog, built-in identifiers are not case-sensitive. This conforms to
the normal behaviour of current DBMS's.

4.2.4 Data Definition Language

This part of the language deals with creating (or replacing), and dropping tables
and views. The schema can be consulted with the command /dbschema.

4.2.4.1 Creating Tables

The first form of this statement is as follows:

CREATE [OR REPLACE] TABLE TableName(Column1 Type1

[ColumnConstraint1], ..., ColumnN TypeN [ColumnConstraintN] [,

TableConstraints])

This statement defines the table schema with name TableName and column
names Column1, ..., ColumnN., with types Type1, ..., TypeN, respectively. If the
optional clause OR REPLACE is used, the table is dropped if existed already, deleting
all of its tuples.

A second form of this statement creates a table with the same schema of an
existing table, following SQL standard optional feature T171:

CREATE TABLE TableName [(] LIKE ExistingTableName [)]

This version copies the complete schema, including all integrity constraints
(both predefined and user-defined).

A third, last form of this statement creates a table with a SQL statement as data
and schema generator:

CREATE TABLE TableName [(] AS SQLStatement [)]

In this case, a table with name TableName is created with the schema and data

returned by the query SQLStatement.

As indicated by the optional meta-symbols [], parentheses in these two last
forms are not mandatory.

There is provision for several column constraints:

 NOT NULL. Existency constraint forbiding null values.

 PRIMARY KEY. Primary key constraint for only one column.

 UNIQUE. Uniqueness constraint for only one column (Also allowed the alternative
syntax: CANDIDATE KEY).

 REFERENCES TableName[(Column)]. Referential integrity constraint for only
one column.

Fernando Sáenz-Pérez 112/357

Universidad Complutense de Madrid

Datalog Educational System

 DEFAULT Expression. Makes the value resulting from evaluating Expression

the value assigned to a column for which no value is provided in an INSERT
statement

 DETERMINED BY Column. Functional dependency. If this constraint is applied to
the column Column1, then: Column → Column1 (Non-Standard).

 CHECK Condition. Check constraint for columns as in a WHERE clause.

Also, there is provision for several table constraints:

 PRIMARY KEY (Column,..., Column). Primary key constraint for one or
more columns.

 UNIQUE (Column,..., Column). Uniqueness constraint for one or more
columns (Also allowed the non-standard alternative syntax: CANDIDATE KEY

(Column,..., Column)

 FOREIGN KEY (Column1,..., ColumnN) REFERENCES

TableName[(Column1,..., ColumnN)])]. Referential integrity constraint
for one or more columns.

 CHECK CheckConstraint. Check constraint, as listed next.

Check constraints:

 Condition. As in a WHERE clause

 (ColumnR1,..., ColumnRN) DETERMINED BY (ColumnL1,...,

ColumnLN). Functional dependency: ColumnL1,...,ColumnLN →

ColumnR1,...,ColumnRN (Non-Standard)

Allowed types include:

 CHAR. Fixed-length string of 1.

 CHAR(n). Fixed-length string of n characters.

 VARCHAR(n) (or VARCHAR2(n)). Variable-length string of up to n characters.

 VARCHAR (or STRING). Variable-length string of up to the maximum length of the
underlying Prolog atom.

 INTEGER (or INT or SMALLINT or NUMERIC or DECIMAL). Integer number.

 REAL (or FLOAT). Real number.

 NUMERIC(n) (or DECIMAL(n)). Integer number of up to n digits.

 NUMERIC(p,s) (or DECIMAL(p,s)). Decimal number with precision p and scale
s.

 DATE. Date (year-month-day).

 TIME. Date (hour:minute:second).

 TIMESTAMP (or DATETIME). Timestamp (year-month-day hour:minute:second).

Numeric types rely on the underlying Prolog system (see Section 4.1.16.1).
Precision and scale are ignored. Automatic type casting is disabled by default but can

Fernando Sáenz-Pérez 113/357

Universidad Complutense de Madrid

Datalog Educational System

be enabled with /type_casting on to behave similar to SQL systems. By default,
strong typing is applied.

Examples:

CREATE TABLE t(a INT PRIMARY KEY, b STRING)

CREATE OR REPLACE TABLE s(a INT, b INT REFERENCES t(a), PRIMARY

KEY (a,b))

Note in this last example that if the column name in the referential integrity
constraint is missing, the referred column of table t is assumed to have the same name
that the column of s where the constraint applies (i.e., b). So, an error is thrown
because columns s.b and t.b have different types:

DES> CREATE OR REPLACE TABLE s(a INT, b INT REFERENCES t,

PRIMARY KEY (a,b))

Error: Type mismatch s.b:number(int) <> t.b:string(varchar).

Error: Imposing constraints.

A declared primary key or foreign key constraint is checked whenever a new
tuple is added to a table, following relational databases. Recall, first, that the same
database is shared for Datalog and SQL, and second, that asserting production rules
(i.e., those defining the intensional database) from the Datalog side is allowed but
primary key and foreign key constraints are not checked for them (they are only
checked for facts). Then, the following scenario is possible:

DES> create or replace table t(a int, b int, c int, d int,

primary key (a,c))

DES> insert into t values(1,2,3,4)

Info: 1 tuple inserted.

DES> % The following is expected to raise an error:

DES> insert into t values(1,1,3,4)

Error: Primary key violation when trying to insert: t(1,1,3,4)

Info: 0 tuples inserted.

DES> % However, the following is allowed:

DES> /assert t(X,Y,Z,U) :- X=1,Y=2,Z=3,U=4.

DES> /listing

t(1,2,3,4).

t(X,Y,Z,U) :-

 X = 1,

 Y = 2,

 Z = 3,

 U = 4.

A Datalog rule should be viewed as a component of the intensional database.
Current DBMS's avoid to define a view with the same name as a table and, therefore,
there is no way of unexpected behaviours such as the one illustrated above.

Fernando Sáenz-Pérez 114/357

Universidad Complutense de Madrid

Datalog Educational System

Note that it is possible to have tuples already stored in the database prior to its

corresponding table creation. This means that the CREATE TABLE statement can fail if
any of those tuples does not meet all the constraints stated for the table. For instance,
let's consider:

DES> /assert t(null)

DES> create table t(a int primary key)

Error: Null values found for t.[a]

 Offending values in database: [nn($NULL(0))]

Info: Constraint has not been asserted.

DES> /dbschema

Info: Database '$des'

Info: No tables.

Info: No views.

Info: No integrity constraints.

Next, a very simple example is reproduced to illustrate basic constraint
handling:

DES> create or replace table u(b int primary key,c int)

DES> create or replace table s(a int,b int, primary key (a,b))

DES> create or replace table t(a int,b int,c int,d int, primary

key (a,c), foreign key (b,d) references s(a,b), foreign key(b)

references u(b))

DES> insert into t values(1,2,3,4)

Error: Foreign key violation t.[b,d]->s.[a,b] when trying to

insert: t(1,2,3,4)

Info: 0 tuples inserted.

DES> insert into s values(2,4)

Info: 1 tuple inserted.

DES> insert into t values(1,2,3,4)

Error: Foreign key violation t.[b]->u.[b] when trying to insert:

t(1,2,3,4)

Info: 0 tuples inserted.

DES> insert into u values(2,2)

Info: 1 tuple inserted.

DES> insert into t values(1,2,3,4)

Info: 1 tuple inserted.

DES> /listing

s(2,4).

t(1,2,3,4).

u(2,2).

4.2.4.2 Creating Views

CREATE [OR REPLACE] VIEW ViewName[(Column1, ..., ColumnN)]

 AS SQLStatement

Fernando Sáenz-Pérez 115/357

Universidad Complutense de Madrid

Datalog Educational System

This statement defines the view schema in a similar way as defining tables. The

view is created with the SQL statement SQLStatement as its definition. If the optional
clause OR REPLACE is used, the view is firstly dropped if existed already. Other tuples
or rules asserted (with the command /assert) are not deleted, as the next example
shows:

DES> /assert v(1)

DES> create or replace view v(a) as select 2

DES> select * from v

answer(v.a:int) ->

{

 answer(1),

 answer(2)

}

Info: 2 tuples computed.

Note that column names are not mandatory.

Examples:

DES> CREATE VIEW v(a,b,c,d) AS

 SELECT * FROM t WHERE a>1;

DES> CREATE OR REPLACE VIEW w(a,b) AS

 SELECT t.a,s.b FROM t,s WHERE t.a>s.a;

DES> /dbschema

Info: Table(s):

 * s(a:int,b:int)

 - PK: [a,b]

 * u(b:int,c:int)

 - PK: [b]

 * t(a:int,b:int,c:int,d:int)

 - PK: [a,c]

 - FK: t.[b,d] -> s.[a,b]

 - FK: t.[b] -> u.[b]

Info: View(s):

 * v(a:int,b:int,c:int,d:int)

 - Defining SQL Statement:

 SELECT ALL *

 FROM

 t

 WHERE a > 1;

 - Datalog equivalent rules:

 v(A,B,C,D) :-

 t(A,B,C,D),

 A > 1.

 * w(a:int,b:int)

 - Defining SQL Statement:

 SELECT ALL t.a, s.b

 FROM

 t,

 s

 WHERE t.a > s.a;

 - Datalog equivalent rules:

 w(A,B) :-

 t(A,C,D,E),

Fernando Sáenz-Pérez 116/357

Universidad Complutense de Madrid

Datalog Educational System

 s(F,B),

 A > F.

Info: No integrity constraints.

Note that primary key constraints follow the table schema, and inferred types
are in the view schema.

4.2.4.3 Dropping Tables

DROP TABLE [IF EXISTS] TableName

This statement drops the table schema corresponding to TableName, deleting
all of its tuples (whether they were inserted with INSERT or with the command

/assert) and rules (which might have been added via /assert). If the optional
clause IF EXISTS is included, dropping an inexistent table does not raise an error.

Example:

DROP TABLE t

4.2.4.4 Dropping Views

DROP VIEW [IF EXISTS] ViewName

This statement drops the view with name ViewName, deleting all of its tuples
(inserted with the command /assert) and rules (which might have been added via
/assert). If the optional clause IF EXISTS is included, dropping an inexistent table

does not raise an error.

Example:

DROP VIEW v

4.2.4.5 Renaming Tables

RENAME TABLE TableName TO NewTableName

This non-standard statement (following IBM DB2) allows to change the name of
table TableName to NewTableName. Foreign keys referring to this table are modified
accordingly. Also, views including referenes to this table are modified to refer to the
new name.

4.2.4.6 Renaming Views

RENAME VIEW ViewName TO NewViewName

This non-standard statement (following IBM DB2) allows changing the name of
view ViewName to NewViewName. Also, views including references to this view are
modified to refer to the new name.

4.2.4.7 Modifying Table Constraints

ALTER TABLE TableName [ADD|DROP] CONSTRAINT TableConstraint

This statement allows adding and dropping constraints. Syntax of
TableConstraint is as of table constraints, where a constraint specification is

expected (instead of a constraint name).

For instance:

Fernando Sáenz-Pérez 117/357

Universidad Complutense de Madrid

Datalog Educational System

DES> create table t(a int primary key check(a>0))

DES> /dbschema

Info: Database '$des'

Info: Table(s):

 * t(a:int)

 - PK: [a]

 - IC:

 + SQL Check:

 a > 0

 + Datalog Check:

 '$ic_t0'(A) :-

 t(A),

 A=<0.

Info: No views.

Info: No integrity constraints.

DES> alter table t drop constraint primary key

Error: (SQL) Expected sequence of column names between

parentheses after 'alter table t drop constraint primary key'.

DES> alter table t drop constraint primary key(a)

DES> /development on

DES> /dbschema

Info: Database '$des'

Info: Table(s):

 * t(a:int)

 - IC:

 + SQL Check:

 a > 0

 + Datalog Check:

 '$ic_t0'(A) :-

 t(A),

 A=<0.

Info: No views.

Info: No integrity constraints.

DES> alter table t drop constraint check(a>0)

DES> /dbschema

Info: Database '$des'

Info: Table(s):

 * t(a:int)

Info: No views.

Info: No integrity constraints.

Note here that a column constraint as primary key is not allowed, and the
equivalent table constraint must be used instead.

4.2.4.8 Dropping Databases

DROP DATABASE

This statement drops the current database, dropping all tables, views, and rules
(this includes Datalog rules and constraints that may have been asserted or consulted).
It behaves exactly as the command /abolish except that it asks for user confirmation.

Example:

DES> drop database

Fernando Sáenz-Pérez 118/357

Universidad Complutense de Madrid

Datalog Educational System

Info: This will drop all views, tables, constraints and Datalog

rules.

 Do you want to proceed? (y/n) [n]:

4.2.5 Data Manipulation Language

This part of the language deals with inserting, deleting and updating tuples in
tables. SQL insertions, deletions and updates are not allowed for views.

4.2.5.1 Inserting Tuples

There are two forms of inserting tuples. The first one explicitly states what
tuples are to be inserted:

INSERT INTO TableName[(Col1,…,ColN)] VALUES (Expr1,...,ExprN) [,

..., (Expr1,...,ExprN)]

This statement inserts into the table TableName as many tuples as those built
with each tuple of expressions Expr1, ..., ExprN, and Col1 to ColN are non-repeated
column names of the table. Expressions are evaluated before inserting the tuple. If no
column names are given, N is expected to be the number of columns of the table. If
column names are given, each expression Expri corresponds to column name Coli.
For those column names which are not provided in a column name sequence, nulls are
inserted. The keyword DEFAULT can be used instead of a constant (this makes to select
either null or the value defined with the DEFAULT constraint in the CREATE TABLE
statement). Ex

The next example inserts a single tuple:

CREATE TABLE t(a int, b int DEFAULT 0)

INSERT INTO t VALUES (1,1)

The next one inserts a single tuple into the same table (automatically applying a
null value for the non-provided column a):

INSERT INTO t(b) VALUES (2)

Which is equivalent to:

INSERT INTO t(b,a) VALUES (2,null)

and represents the tuple (null,2). Note that the order of provided column names
represent the order of corresponding values; in this example, the columns are reversed
with respect to the table definition.

For inserting several tuples at a time:

INSERT INTO t VALUES (1,1),(null,2)

The default value defined for the column b can be used in these two sentences:

INSERT INTO t(a) VALUES (1)

INSERT INTO t(a,b) VALUES (2,DEFAULT)

The first one inserts the tuple (1,0), and the second one the tuple (2,0).

Default values for all columns can be expressed as in:

Fernando Sáenz-Pérez 119/357

Universidad Complutense de Madrid

Datalog Educational System

INSERT INTO t DEFAULT VALUES

Expressions for default values can be used instead of just values in the table
definition. For instance:

DES> CREATE TABLE t(a int, b time DEFAULT CURRENT_TIME+30)

DES> INSERT INTO t(a) VALUES (1)

Info: 1 tuple inserted.

DES> SELECT CURRENT_TIME

answer($a0:datetime(time)) ->

{

 answer(time(19,44,20))

}

Info: 1 tuple computed.

DES> SELECT * FROM t

answer(t.a:int,t.b:datetime(time)) ->

{

 answer(1,time(19,44,50))

}

Info: 1 tuple computed.

It is possible to specify expressions instead of values when inserting tuples, as:

INSERT INTO t(a) VALUES (sqrt(5)^2);

The second form of the INSERT statement allows to inserting tuples which are

the result of a SELECT statement:

INSERT INTO TableName[(Col1,…,ColN)] SQLStatement

This statement inserts into the table TableName as many tuples as returned by
the SQL statement SQLStatement. This statement has to return as many columns as
either the columns of TableName, if no column names are given, or the number of
provided column names (N), otherwise.

Examples:

INSERT INTO t SELECT * FROM s

You can also insert tuples into a table coming directly (or indirectly) from the
table itself for duplicating rows, as in:

INSERT INTO t SELECT * FROM t

Note that there is no recursion in this query as the source table t is not changed
during solving the SELECT statement.

For testing the new (duplicated) contents of t, you can use /listing t,
instead of a SELECT statement, since this statement always returns a set (no duplicates)
when duplicates are disabled (cf. Section 4.1.9).

As in the first form, you can specify columns of the target table as in:

INSERT INTO t(b) SELECT a FROM t

which inserts as many rows in t as it had before insertion, and for each row, a
new tuple is built with the value of the source column a in the target column b, and
null in the target column a.

Fernando Sáenz-Pérez 120/357

Universidad Complutense de Madrid

Datalog Educational System

4.2.5.2 Deleting Tuples

DELETE FROM TableName [[AS] Identifier] [WHERE Condition]

This statement deletes all the tuples of the table TableName that fulfil
Condition. It does not delete production rules asserted via /assert.

Examples:

DELETE FROM t

which deletes all tuples from table t.

DELETE FROM t WHERE a>0

which only deletes tuples from the table t such that the value for the column a is
greater than 0.

Aliases can be used in correlated subqueries, as in:

DELETE FROM Contracts C

WHERE NOT EXISTS (SELECT *

 FROM Contains

 WHERE Reference = C.Reference);

4.2.5.3 Updating Tuples

UPDATE TableName [[AS] Identifier] SET Att1=Expr1,...,AttN=ExprN

[WHERE Condition]

This statement updates each column Atti with the values computed for each
Expri for all the tuples of the table TableName that fulfil Condition.

Example:

UPDATE Employees SET Salary=Salary*1.1 WHERE Id IN

 (SELECT Id from Promoted WHERE Year='2018');

which increases in a 10% the salaries of the employees which have been promoted in
2018.

4.2.6 Data Query Language

There are three main types of SQL query statements: SELECT statements, set
statements (UNION, INTERSECT, and EXCEPT), and WITH statements (for building
recursive queries).

4.2.6.1 Basic SQL Queries

The syntax of the basic SQL query statement is:

SELECT [DISTINCT|ALL] ProjectionList

 [INTO SelectTargetList]

[FROM Relations

[WHERE Condition]

[ORDER BY OrdExpressions]]

Where:

Fernando Sáenz-Pérez 121/357

Universidad Complutense de Madrid

Datalog Educational System

 Square brackets indicate that the enclosed text is optional. Also, the vertical bar is

used to denote alternatives.

 ProjectionList is a list of comma-separated columns or expressions that will be
returned as a tuple result. Wildcards are allowed, as * (for referring to all the
columns in the data source) and Relation.* (for referring to all the columns in
the relation Relation). The name Relation can be the name of a table, view or
an alias (for a table or subquery). The clause DISTINCT discards duplicates
whereas the clause ALL does not (this is only noticeable when duplicates are
enabled with the command /duplicates on).

 SelectTargetList is the list of comma-separated system/user variable names

which receives the values from ProjectionList. This allows to communicate
SQL return values with the basic scripting system. For example, SELECT 1 INTO
v stores the number 1 in the user variable v. Note that the other way round of
communication is by including variables surrounded by $ signs for injecting values
from the scripting system to SQL (as, e.g., SELECT * FROM t WHERE a=v,
where v is a variable defined with the comand /set_flag).

 Condition is a logical condition built from comparison operators (=, <>, !=, <, >,
>=, and <=), Boolean operators (AND, OR, and NOT), Boolean constants (TRUE,
FALSE), the existence operator (EXISTS) and the inclusion operator (IN). See the
grammar description in Section 4.2.11 for details. Subqueries are allowed with no
limitations.

 Relations is a list of comma-separated relations. A relation can be either a table
name, or a view name, or a subquery, or a join relation. They can be renamed via
aliases. If no FROM clause is provided, the built-in DUAL relation is used as a data
source (cf. Section 4.2.6.1.2).

 OrdExpressions is a list of comma-separated ordering expressions. An ordering
expression can be either simply an expression or an expression followed by the
ordering criterion (ASC -or ASCENDING- for ascending order, and DESC -or
DESCENDING- for descending order). Answers are ordered by default (see
/order_answer) but this order is overridden if the ORDER BY clause is either
directly used in a query or in the definition of a view the query refers to. The order
is based on the standard order of terms of the underlying Prolog system (see
Section 4.7.13).

Examples:

Given the tables:

CREATE TABLE s(a int, b int);

CREATE TABLE t(a int, b int);

CREATE TABLE v(a int, b int);

We can submit the following queries:

SELECT distinct a

FROM t

SELECT t.*, s.b

FROM t,s,v

Fernando Sáenz-Pérez 122/357

Universidad Complutense de Madrid

Datalog Educational System

WHERE t.a=s.a AND v.b=t.b

SELECT t.a, s.b, t.a+s.b

FROM t,s

WHERE t.a=s.a

SELECT *

FROM (SELECT * from t) as r1,

 (SELECT * from s) as r2

WHERE r1.a=r2.b;

SELECT *

FROM s

WHERE s.a NOT IN SELECT a FROM t;

SELECT *

FROM s

WHERE EXISTS

 SELECT a

 FROM t

 WHERE t.a=s.a;

SELECT *

FROM s

WHERE s.a > (SELECT a FROM t);

SELECT 1, a1+a2, a+1 AS a1, a+2 AS a2

FROM t;

SELECT 1;

SELECT a FROM t ORDER BY -a;

SELECT CAST(MONTH(CURRENT_DATE) AS STRING) || ' - ' ||

CAST(YEAR(CURRENT_DATE) AS STRING);

Notes:

 SQL expressions follow the same syntax as Datalog.

 An SQL expression can be renamed and used in other expressions.

 Circular definitions will yield exceptions at run-time, as in a+a3 AS a3

 Terms in expressions in the select list are first tried as built-in constants and
functions. This may lead to confusion. For example:, creating a table with a column
with name e, and selecting e from this table renders:

DES> CREATE TABLE t(e int);

DES> INSERT INTO t VALUES (1);

Info: 1 tuple inserted.

DES> SELECT e FROM t;

answer($a1:float) ->

{

 answer(2.718281828459045)

}

Fernando Sáenz-Pérez 123/357

Universidad Complutense de Madrid

Datalog Educational System

Info: 1 tuple computed.

That is, e represents the Euler arithmetic constant, and in this query, its
numerical value is returned. If you want to access the column name e, then use
qualification, as follows:

DES> SELECT t.e FROM t;

answer(t.e:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

A join relation is either of the form:

Relation NATURAL JoinOp Relation

or:

Relation JoinOp Relation [JoinCondition]

where Relation is as before (without any limitation), JoinOp is any join operator
(including [INNER] JOIN, LEFT [OUTER] JOIN, RIGHT [OUTER] JOIN, and
FULL [OUTER] JOIN), and JoinCondition can be either:

ON Condition

or:

USING (Column1,...,ColumnN)

where Condition is as described in the WHERE clause, and Column1, ..., ColumnN are
common column names of the joined relations. Omitting the condition in a non-natural
join is equivalent to a true condition. Note that the clause USING does not apply to
NATURAL joins.

Examples:

Given the tables:

CREATE TABLE s(a int, b int);

CREATE TABLE t(a int, b int);

CREATE TABLE v(a int, b int);

We can submit the following queries:

SELECT *

FROM t INNER JOIN s ON t.a=s.a AND t.b=s.b;

SELECT *

FROM t NATURAL INNER JOIN s;

SELECT *

FROM t INNER JOIN s USING (a,b);

SELECT * FROM t INNER JOIN s USING (a);

SELECT *

Fernando Sáenz-Pérez 124/357

Universidad Complutense de Madrid

Datalog Educational System

FROM t INNER JOIN s USING (b);

SELECT *

FROM (t INNER JOIN s ON t.a=s.a) AS s, v

WHERE s.a=v.a;

SELECT *

FROM (t LEFT JOIN s ON t.a=s.a) RIGHT JOIN v ON t.a=v.a;

SELECT * FROM t FULL JOIN s ON t.a=s.a;

Note: The default keyword ALL following SELECT retains duplicates whenever

duplicates are enabled (command /duplicates on). In turn, DISTINCT discards
duplicates. But note that if duplicates are disabled, both ALL and DISTINCT behave
the same (i.e., discarding duplicates).

4.2.6.1.1 Top-N Queries

The number of computed tuples for a select statement can be limited with the
so-called Top-N queries. ISO 2008 includes this as a final clause in the select statement:

SELECT [DISTINCT|ALL] ProjectionList

FROM Rels

…

FETCH FIRST Integer ROWS ONLY

However, DES also provides another non-standard, but common form in other
RDBMS's of such queries:

SELECT [TOP Integer] [DISTINCT|ALL] ProjectionList

…

You can switch the order of the top and distinct clauses, and even the weird
case of simultaneously specifying both forms of Top-N queries in the same statement,
as long as they express the same limit.

4.2.6.1.2 The dual table

The dual table is a special one-row, one-column table present by default in
Oracle databases. It is suitable for computing expressions and selecting a pseudo
column with no data source. As propositional relations are also allowed in DES, dual
does not need a column at all, and it is therefore defined as a single fact without
arguments. This table can be used to compute arithmetic expressions as, e.g.:

DES> select sqrt(2) from dual

answer($a0:float) ->

{

 answer(1.4142135623730951)

}

Info: 1 tuple computed.

 As in MySQL, DES also allows to omit the FROM clause in theses cases (the
compilation from SQL to Datalog adds the dual table as data source):

DES> select sqrt(2)

answer($a0:float) ->

{

Fernando Sáenz-Pérez 125/357

Universidad Complutense de Madrid

Datalog Educational System

 answer(1.4142135623730951)

}

Info: 1 tuple computed.

 Although this table is not displayed with the command /dbschema, it can be
nevertheless dropped with a DROP TABLE SQL statement. If it is deleted, the just
described behaviour is no longer possible. In addition, it cannot be re-declared with a
CREATE TABLE SQL statement, but with a type declaration, as :-type(dual). Both
the statement DROP DATABASE and the command /abolish restore this table.

4.2.7 String Operations

This section lists string predicates and functions which can be used for testing
strings and building string expressions, respectively.

4.2.7.1 CONCAT (Non-ISO)

The function concat(String1, String2) returns a string as the
concatenation of String1 and String2. The infix operators || (ISO) and + (Non-
ISO) can also be used to concatenate strings.

4.2.7.2 LENGTH (Non-ISO)

The function length(String) returns the number of characters of String.

4.2.7.3 LIKE (ISO)

The predicate like is used for pattern matching on strings, where patterns are

built with constants and two special characters:

o Percent (%), which matches any substring.

o Underscore (_), which matches any character.

Patterns are case sensitive. The following example retrieves the employees
whose names starts with 'N':

DES> select employee from works where employee like 'N%'

answer(works.employee:string) ->

{

 answer('Nolan'),

 answer('Norton')

}

Info: 2 tuples computed.

It is possible to provide an escape character should the pattern must include
one of the special character. For example, the next query retrieves e-mail addresses
containing at least one underscore:

DES> select email from employees where email like '%_%' escape

'_'

answer(employees.email:string) ->

{

 answer('a_nolan@gmail.com')

}

Info: 1 tuple computed.

Values, patterns and the escape character can be formed as expressions
involving constants, columns, and other string operations.

Fernando Sáenz-Pérez 126/357

Universidad Complutense de Madrid

Datalog Educational System

4.2.7.4 LOWER (ISO)

The function lower(String) returns the lower case version of String.

4.2.7.5 SUBSTR (Non-ISO)

The function substr(String, Offset, Length) returns a string that
consists of Length characters from String starting at the Offset position.

4.2.7.6 UPPER (ISO)

The function upper(String) returns the upper case version of String.

4.2.8 Conversion Functions

4.2.8.1 EXTRACT (ISO)

The function extract(field from datetime) extracts the given field
(year, month, day, hour, minute, or second) from a datetime value (date, time
or timestamp/datetime). See also Section 4.7.6 for functions extracting parts of a
datetime type.

4.2.8.2 CAST (ISO)

The function cast(value as type) converts the data value to a type type.
It can be used with the alternative syntax cast(value,type).

4.2.9 (Multi)Set Expressions (Non-Standard)

Expressions in the projection list and conditions (in having and where clauses)
are scalar following the standard. However, DES allows non-scalar expressions dealing
to multisets (sets, if duplicates are disabled as by default).

In the following example, the table t will contain values 1 and 2 for its single
field a. By selecting the sum of a from two instances of t, we get the different
summations (1+1, 1+2, 2+1, and 2+2):

DES> create table t(a int)

DES> insert into t values (1),(2)

Info: 2 tuples inserted.

DES> select (select a from t)+(select a from t) from dual

answer($a4:int) ->

{

 answer(2),

 answer(3),

 answer(4)

}

Info: 3 tuples computed.

DES> /duplicates on

DES> select (select a from t)+(select a from t) from dual

answer($a4:int) ->

{

 answer(2),

 answer(3),

 answer(3),

 answer(4)

}

Info: 4 tuples computed.

Fernando Sáenz-Pérez 127/357

Universidad Complutense de Madrid

Datalog Educational System

If the multiset expression is located at a condition, this condition is examined

for each value of the expression, giving as many alternatives as true condition
instances:

DES> select 1 from dual where (select a from t)>0

answer($a2:int) ->

{

 answer(1),

 answer(1)

}

Info: 2 tuples computed.

In this example, following the previous one, there are two values for a in t that
makes true the select condition. Thus, two answers are returned. If more multiset
expressions are included, the possible alternatives are the product of their cardinalities,
as in:

DES> select 1 from dual where (select a from t)>=(select a from

t)

answer($a4:int) ->

{

 answer(1),

 answer(1),

 answer(1)

}

Info: 3 tuples computed.

Future work includes to include a flag to commit to SQL standard.

4.2.9.1 Relational Division in SQL (Non-Standard)

The division operation was originally introduced as a relational operation in
Codd's paper about relational model. Although it seems to be a practical operation, it is
not included in current DBMS's. However, DES includes a novel DIVISION operator
that can be used in the FROM clause of a SELECT statement. The next system session
illustrates its use:

DES> create table t(a int, b int)

DES> create table s(a int)

DES> insert into t values (1,1)

Info: 1 tuple inserted.

DES> insert into t values (1,2)

Info: 1 tuple inserted.

DES> insert into t values (2,1)

Info: 1 tuple inserted.

DES> insert into s values (1)

Info: 1 tuple inserted.

DES> insert into s values (2)

Info: 1 tuple inserted.

DES> select * from t division s

answer(t.b:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

Fernando Sáenz-Pérez 128/357

Universidad Complutense de Madrid

Datalog Educational System

4.2.9.2 Set SQL Queries

The three set operators defined in the standard are available: UNION, EXCEPT,
and INTERSECT. (Also, Oracle's MINUS is allowed as a synonymous for EXCEPT.) The
first one also admits the form UNION ALL for retaining duplicates. The syntax of a set
SQL query is:

SQLStatement

SetOperator

SQLStatement

Where SQLStatement is any SQL statement described in the data query part
(without any limitation). SetOperator is any of the abovementioned set operators.

Examples:

(SELECT * FROM s) UNION (SELECT * FROM t);

(SELECT * FROM s) UNION ALL (SELECT * FROM t);

(SELECT * FROM s) INTERSECT (SELECT * FROM t);

(SELECT * FROM s) EXCEPT (SELECT * FROM t);

Note that parentheses are not mandatory in these cases and are only used for
readability.

4.2.9.3 WITH SQL Queries

The WITH clause, as introduced in the SQL:1999 standard and available in
several RDBMS as DB2, Oracle and SQL Server, is intended in particular to define
recursive queries. Its syntax is:

WITH LocalViewDefinition1,

 ...,

 LocalViewDefinitionN

SQLStatement

Where SQLStatement is any SQL statement, and

LocalViewDefinition1, ..., LocalViewDefinition1 are (local) view definitions

that can only be used in any of these definitions and in SQLStatement. These local
views are not stored in the database and are rather computed by demand when
executing SQLStatement. Although such definitions are local, they can have the same
names as existing objects (tables or views). In such a case, the semantics of the object is
overloaded with the semantics of the local definition.

The syntax of a local view definition is as follows:

[RECURSIVE] ViewName(Column1, ..., ColumnN) AS SQLStatement

Here, the keyword RECURSIVE for defining recursive views is not mandatory.

Examples10:

10 Adapted from [GUW02].

Fernando Sáenz-Pérez 129/357

Universidad Complutense de Madrid

Datalog Educational System

CREATE TABLE flights(airline string, from string, to string);

WITH

 RECURSIVE reaches(from,to) AS

 (SELECT from,to FROM flights)

 UNION

 (SELECT r1.from,r2.to

 FROM reaches AS r1, reaches AS r2

 WHERE r1.to=r2.from)

SELECT * FROM reaches;

WITH

 Triples(airline,from,to) AS

 SELECT airline,from,to

 FROM flights,

 RECURSIVE Reaches(airline,from,to) AS

 (SELECT * FROM Triples)

 UNION

 (SELECT Triples.airline,Triples.from,Reaches.to

 FROM Triples,Reaches

 WHERE Triples.to = Reaches.from AND

 Triples.airline=Reaches.airline)

(SELECT from,to FROM Reaches WHERE airline = 'UA')

 EXCEPT

(SELECT from,to FROM Reaches WHERE airline = 'AA');

In addition, shorter definitions for recursive views are allowed in DES. The next
view delivers the same result set as the first example above:

CREATE VIEW reaches(from,to) AS

 (SELECT from,to FROM flights)

 UNION

 (SELECT r1.from,r2.to

 FROM reaches AS r1, reaches AS r2

 WHERE r1.to=r2.from);

Defining a local view v with the same name as an existing view or table in
DBMS's as SQL Server and DB2 results in computing the WITH main statement with
respect to the new (local and temporary) definition of v, disregarding the contents of

the already-defined, non-local relation v. DES, by contrast, considers the local
definition as overloading the existing relation. The following session shows this:

DES> create table s(a int)

DES> insert into s values (2)

Info: 1 tuple inserted.

DES> with s(a) as select 1 select * from s

answer(s.a:int) ->

{

 answer(1),

 answer(2)

}

Info: 2 tuples computed.

DES> /open_db db2

DES> with s(A) as (select 1 from dual) select * from s

answer(A:INTEGER(4)) ->

Fernando Sáenz-Pérez 130/357

Universidad Complutense de Madrid

Datalog Educational System

{

 answer(1)

}

Info: 1 tuple computed.

DES> select * from s;

answer(A:INTEGER(4)) ->

{

 answer(2)

}

Info: 1 tuple computed.

4.2.9.4 Hypothetical SQL Queries (Non-Standard)

A novel addition to SQL in DES includes hypothetical queries. Such queries are
useful, for instance, in decision support systems as they allow submitting a query by
assuming either some knowledge which is not in the database or some knowledge
which must not taken into account.

Syntax of hypothetical queries is proposed as:

ASSUME

 LocalAssumption1,

 ...,

 LocalAssumptionN

SQLStatement

Where SQLStatement is any SQL DQL statement, and LocalAssumption1,

..., LocalAssumptionN are of the form:

DQLStatement [NOT] IN Relation

SQLStatement is solved under the local assumptions LocalAssumptioni. A
Relation is either a name or a complete schema (including attribute names) of either
an existing relation or a new relation. So, both tables and views can be overloaded with
such local assumptions.

As an example, let's consider a flight database defined by the following:

CREATE TABLE flight(origin string, destination string, time

real);

INSERT INTO flight VALUES('lon','ny',9.0);

INSERT INTO flight VALUES('mad','par',1.5);

INSERT INTO flight VALUES('par','ny',10.0);

CREATE OR REPLACE VIEW travel(origin,destination,time) AS

WITH connected(origin,destination,time) AS

 SELECT * FROM flight

 UNION

 SELECT flight.origin,connected.destination,

 flight.time+connected.time

 FROM flight,connected

 WHERE flight.destination = connected.origin

SELECT * FROM connected;

Fernando Sáenz-Pérez 131/357

Universidad Complutense de Madrid

Datalog Educational System

Here, the relation flight represents possible direct flights between locations,

and travel represents possible connections by using one or more direct flights. Both
include flight time. By querying the relation travel, we get:

DES> SELECT * FROM travel;

answer(travel.origin:string,travel.destination:string,travel.tim

e:float) ->

{

 answer(lon,ny,9.0),

 answer(mad,ny,11.5),

 answer(mad,par,1.5),

 answer(par,ny,10.0)

}

Info: 4 tuples computed.

Now, if we assume that there is a tuple flight('mad','lon',2.0), we can
query the database with this assumption with the following query (with multi-line
input enabled):

DES> ASSUME

 SELECT 'mad','lon',2.0

 IN

 flight(origin,destination,time)

 SELECT * FROM travel;

answer(travel.origin:string,travel.destination:string,travel.tim

e:float) ->

{

 answer(lon,ny,9.0),

 answer(mad,lon,2.0),

 answer(mad,ny,11.0),

 answer(mad,ny,11.5),

 answer(mad,par,1.5),

 answer(par,ny,10.0)

}

Info: 6 tuples computed.

Note that the SELECT statement following the keyword ASSUME simply stands
for the construction of a single tuple for the table flight (such statement can be
otherwise stated as SELECT 'mad','lon',2.0 FROM dual, where dual is the
built-in table described in Section 4.2.6.1.2).

In addition, not only tuples can be extensionally assumed, but any SQL DQL
statement, i.e., tuples intensionally assumed. As an example, let's suppose that the
relation flight is as previously defined, and a view connect that displays locations
connected by direct flights:

DES> CREATE VIEW connect(origin,destination) AS

 SELECT origin,destination FROM flight;

DES> SELECT * FROM connect;

answer(connect.origin:string,connect.destination:string) ->

{

 answer(lon,ny),

 answer(mad,par),

 answer(par,ny)

Fernando Sáenz-Pérez 132/357

Universidad Complutense de Madrid

Datalog Educational System

}

Info: 3 tuples computed.

Then, if we assume that connections are allowed with transits, we can submit
the following hypothetical query (note that the assumed SQL statement is recursive):

DES> ASSUME

 (SELECT flight.origin,connect.destination

 FROM flight,connect

 WHERE flight.destination = connect.origin)

 IN

 connect(origin,destination)

 SELECT * FROM connect;

answer(connect.origin:string,connect.destination:string) ->

{

 answer(lon,ny),

 answer(mad,ny),

 answer(mad,par),

 answer(par,ny)

}

Info: 4 tuples computed.

In addition to this, one can use a WITH statement instead of an ASSUME
statement by simply stating an existing relation in the definition of the local view. For
instance, for the last example, we can write:

DES> WITH

 connect(origin,destination) AS

 (SELECT flight.origin,connect.destination

 FROM flight,connect

 WHERE flight.destination = connect.origin)

 SELECT * FROM connect;

answer(connect.origin:string,connect.destination:string) ->

{

 answer(lon,ny),

 answer(mad,ny),

 answer(mad,par),

 answer(par,ny)

}

Info: 4 tuples computed.

One can use several assumptions in the same query, but only one for a given
relation. If needed, you can assume several rules by using UNION. For example:

WITH

 flight(origin,destination,time) AS

 SELECT 'mad','lon',2.0

 UNION

 SELECT ‘par’,’ber’,3.0

SELECT * FROM travel;

which is equivalent to:

ASSUME

Fernando Sáenz-Pérez 133/357

Universidad Complutense de Madrid

Datalog Educational System

 SELECT 'mad','lon',2.0

 UNION

 SELECT ‘par’,’ber’,3.0

 IN

 flight(origin,destination,time)

SELECT * FROM travel;

Both can be alternatively formulated as follows, where several assumptions are
made for the same relation and attribute names are dropped:

WITH

 flight AS

 SELECT 'mad','lon',2.0,

 flight AS

 SELECT ‘par’,’ber’,3.0

SELECT * FROM travel;

ASSUME

 SELECT 'mad','lon',2.0

 IN flight,

 SELECT ‘par’,’ber’,3.0

 IN flight

SELECT * FROM travel;

Note that an assumption for a non-existing relation requires its complete
schema:

DES> ASSUME SELECT 1 IN p SELECT * FROM p

Error: Complete schema required for local view definition: p

DES> ASSUME SELECT 1 IN p(a) SELECT * FROM p

answer(p.a:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

It is also possible to assume that some tuples are not in a relation (either a table
or a view) and then submit a query involving such relation. The following example
illustrates this, where we assume that the flight from Madrid to Paris is not available
but another flight to London does. Then, we query what travels are possible in this
new scenario:

DES> ASSUME

 SELECT 'mad','lon',2.0 IN flight,

 SELECT 'mad','par',1.5 NOT IN flight

 SELECT * FROM travel;

answer(travel.origin:string,travel.destination:string,travel.tim

e:float) ->

{

 answer(lon,ny,9.0),

 answer(mad,lon,2.0),

 answer(mad,ny,11.0),

 answer(par,ny,10.0)

}

Fernando Sáenz-Pérez 134/357

Universidad Complutense de Madrid

Datalog Educational System

Info: 4 tuples computed.

Finally, the command /hypothetical Switch allows enabling (on) and
disabling (off) the redefinition of relations in WITH and ASSUME queries. If it is
enabled, reusing an existing relation causes to overload its definition with the new
query. Otherwise, a redefinition error is raised.

4.2.10 Information Schema Language (ISL)

Several non-standard statements are provided to display schema information:

 SHOW TABLES; List table names. TAPI enabled.

 SHOW VIEWS; List view names. TAPI enabled.

 SHOW DATABASES; List database names. TAPI enabled.

 DESCRIBE Relation; Display schema for Relation, as /dbschema

Relation.

4.2.11 SQL Grammar

This grammar follows an EBNF-like syntax. Here, terminal symbols are:
Parentheses, commas, semicolons, single dots, asterisks, and apostrophes. Other
terminal symbols are completely written in capitals, as SELECT. Alternations are
grouped with brackets instead of parentheses. Percentage symbols (%) start line
comments. User identifiers must start with a letter and consist of letters and numbers;
otherwise, a user identifier can be enclosed between quotation marks (both square
brackets and double quotes are supported) and contain any character. Next, SQLstmt
stands for a valid SQL statement.

SQLstmt ::=

 DDLstmt[;]

 |

 DMLstmt[;]

 |

 DQLstmt[;]

 |

 ISLstmt[;]

%%%

% DDL (Data Definition Language) statements

%%%

DDLstmt ::=

 CREATE [OR REPLACE] TABLE CompleteConstrainedSchema

 |

 CREATE [OR REPLACE] TABLE TableName [(] LIKE TableName [)]

 |

 CREATE [OR REPLACE] TABLE TableName [(] AS DQLstmt [)]

 |

 CREATE [OR REPLACE] VIEW Schema AS DQLstmt

 |

 ALTER TABLE TableName [ADD|DROP] CONSTRAINT TableConstraint

 |

 RENAME TABLE TableName TO TableName

Fernando Sáenz-Pérez 135/357

Universidad Complutense de Madrid

Datalog Educational System

 |

 RENAME VIEW ViewName TO ViewName

 |

 DROP TABLE [IF EXISTS] TableName{,TableName} % Extended syntax

following MySQL 5.6

 |

 DROP VIEW [IF EXISTS] ViewName

 |

 DROP DATABASE

 |

 CompleteSchema := DQLstmt % Addition to

support HR-SQL syntax

Schema ::=

 RelationName

 |

 RelationName(Att,...,Att)

CompleteConstrainedSchema ::=

 RelationName(Att Type [ColumnConstraint {ColumnConstraint}]

{,Att Type [ColumnConstraint {ColumnConstraint}]} [,

TableConstraints])

CompleteSchema ::=

 RelationName(Att Type {,...,Att Type})

Type ::=

 CHAR(n) % Fixed-length string of n characters

 |

% CHARACTER(n) % Equivalent to CHAR(n)

% |

 CHAR % Fixed-length string of 1 character

 |

 VARCHAR(n) % Variable-length string of up to n characters

 |

 VARCHAR2(n) % Oracle's variable-length string of up to n

characters

 |

 VARCHAR % Variable-length string of up to the maximum length

of the underlying Prolog atom

 |

 STRING % Equivalent to VARCHAR

 |

% CHARACTER VARYING(n) % Equivalent to the former

% |

 INT

 |

 INTEGER % Equivalent to INT

 |

% SMALLINT

% |

% NUMERIC(p,d) % A total of p digits, where d of those are in

the decimal place

% |

Fernando Sáenz-Pérez 136/357

Universidad Complutense de Madrid

Datalog Educational System

% DECIMAL(p,d) % Synonymous for NUMERIC

% |

 NUMBER(p,d) % Synonymous for NUMERIC. For supporting Oracle

NUMBER

 |

 REAL

 |

 FLOAT % Synonymous for REAL

% |

% DOUBLE PRECISION % Equivalent to FLOAT

% |

% FLOAT(n) % FLOAT with precision of at least n digits

 |

 DECIMAL % Synonymous for REAL (added to support DECIMAL LogiQL

Type). Not SQL standard

 |

 DATE % Year, month and day

 |

 TIME % Hours, minutes and seconds

 |

 TIMESTAMP % Combination of date and time

ColumnConstraint ::=

 NOT NULL

 |

 PRIMARY KEY

 |

 UNIQUE

 |

 CANDIDATE KEY % Not in the standard

 |

 REFERENCES TableName[(Att)]

 |

 DEFAULT Expression

 |

 CHECK CheckConstraint

TableConstraints ::=

 TableConstraint{,TableConstraint}

TableConstraint ::=

 NOT NULL Att % Not in the standard

 |

 UNIQUE (Att {,Att})

 |

 CANDIDATE KEY (Att {,Att}) % Not in the standard

 |

 PRIMARY KEY (Att {,Att})

 |

 FOREIGN KEY (Att {,Att}) REFERENCES TableName[(Att {,Att})]

 |

 CHECK CheckConstraint

Fernando Sáenz-Pérez 137/357

Universidad Complutense de Madrid

Datalog Educational System

CheckConstraint ::=

 WhereCondition

 |

 (Att {,Att}) DETERMINED BY (Att {,Att}) % Not in the standard

RelationName is a user identifier for naming tables, views and

aliases

TableName is a user identifier for naming tables

ViewName is a user identifier for naming views

Att is a user identifier for naming relation attributes

%%%

% DML (Data Manipulation Language) statements

%%%

DMLstmt ::=

 INSERT INTO TableName[(Att {,Att})] VALUES (ExprDef

{,ExprDef}) {, (ExprDef {,ExprDef})}

 |

 INSERT INTO TableName[(Att {,Att})] DQLstmt

 |

 DELETE FROM TableName [[AS] Identifier] [WHERE Condition]

 |

 UPDATE TableName [[AS] Identifier] SET Att=Expr {,Att=Expr}

[WHERE Condition]

% ExprDef is either a constant or the keyword DEFAULT

%%%

% DQL (Data Query Language) statements:

%%%

DQLstmt ::=

 (DQLstmt)

 |

 UBSQL

UBSQL ::=

 SELECTstmt

 |

 DQLstmt UNION [ALL] DQLstmt

 |

 DQLstmt EXCEPT DQLstmt

 |

 DQLstmt MINUS DQLstmt

 |

 DQLstmt INTERSECT DQLstmt

 |

 WITH LocalViewDefinition {,LocalViewDefinition} DQLstmt

 |

 ASSUME LocalAssumption {,LocalAssumption} DQLstmt

LocalViewDefinition ::=

 [RECURSIVE] Schema AS DQLstmt

Fernando Sáenz-Pérez 138/357

Universidad Complutense de Madrid

Datalog Educational System

 |

 [RECURSIVE] DQLstmt NOT IN Schema

LocalAssumption ::=

 DQLstmt [NOT] IN Schema

SELECTstmt ::=

 SELECT [TOP Integer] [[ALL|DISTINCT]] SelectExpressionList

 [INTO SelectTargetList]

 [FROM Rels

 [WHERE WhereCondition]

 [GROUP BY Atts]

 [HAVING HavingCondition]

 [ORDER BY OrderDescription]

 [FETCH FIRST Integer ROWS ONLY]]

Atts ::=

 Att {,Att}

OrderDescription ::=

 Att [ASC|DESC] {,Att [ASC|DESC]}

SelectExpressionList ::=

 *

 |

 SelectExpression {,SelectExpression}

SelectExpression ::=

 UnrenamedSelectExpression

 |

 RenamedExpression

UnrenamedSelectExpression ::=

 Att

 |

 RelationName.Att

 |

 RelationName.*

 |

 Expression

 |

 DQLstmt

RenamedExpression ::=

 UnrenamedExpression [AS] Identifier

Expression ::=

 Op1 Expression

 |

 Expression Op2 Expression

 |

 Function(Expression{, Expression})

 |

 Att

Fernando Sáenz-Pérez 139/357

Universidad Complutense de Madrid

Datalog Educational System

 |

 RelationName.Att

 |

 Cte

 |

 DQLstmt

Op1 ::=

 - | \

Op2 ::=

 ^ | ** | * | / | // | rem | \/ | # | + | - | /\ | << | >>

Function ::=

 sqrt/1 | ln/1 | log/1 | log/2 | sin/1 | cos/1 | tan/1 |

cot/1

 | asin/1 | acos/1 | atan/1 | acot/1 | abs/1 | power/1 |

float/1

 | integer/1 | sign/1 | gcd/2 | min/2 | max/2 | trunc/1

 | truncate/1 | float_integer_part/1 | float_fractional_part/1

 | round/1 | floor/1 | ceiling/1 | rand/1 | rand/2

 | concat/2 | length/1 | like-escape | lower/1 | substr/3

 | upper/1

 | year/1 | month/1 | day/1 | hour/1 | minute/1 | second/1

 | current_time/1 | current_date/1 | current_datetime/0

 | extract-from

 | cast/2

SelectTargetList ::=

 HostVariable {, HostVariable}

% Aggregate Functions:

% The argument may include a prefix "distinct" for all but "min"

and "max":

% avg/1 | count/1 | count/0 | max/1 | min/1 | sum/1 | times/1

ArithmeticConstant ::=

 pi | e

Rels ::=

 Rel {,Rel}

Rel ::=

 UnrenamedRel

 |

 RenamedRel

UnrenamedRel ::=

 TableName

 |

 ViewName

 |

 DQLstmt

 |

Fernando Sáenz-Pérez 140/357

Universidad Complutense de Madrid

Datalog Educational System

 JoinRel

 |

 DivRel

RenamedRel ::=

 UnrenamedRel [AS] Identifier

JoinRel ::=

 Rel [NATURAL] JoinOp Rel [JoinCondition]

JoinOp ::=

 INNER JOIN

 |

 LEFT [OUTER] JOIN

 |

 RIGHT [OUTER] JOIN

 |

 FULL [OUTER] JOIN

JoinCondition ::=

 ON WhereCondition

 |

 USING (Atts)

DivRel ::=

 Rel DIVISION Rel % Not in the standard

WhereCondition ::=

 BWhereCondition

 |

 UBWhereCondition

HavingCondition

 % As WhereCondition, but including aggregate functions

BWhereCondition ::=

 (WhereCondition)

UBWhereCondition ::=

 TRUE

 |

 FALSE

 |

 EXISTS DQLstmt

 |

 NOT (WhereCondition)

 |

 (AttOrCte{,AttOrCte}) [NOT] IN

[DQLstmt|(Cte{,Cte})|((Cte{,Cte}){,(Cte{,Cte})})] % Extension

for lists of tuples

 |

 WhereExpression IS [NOT] NULL

 |

 WhereExpression [NOT] IN DQLstmt

Fernando Sáenz-Pérez 141/357

Universidad Complutense de Madrid

Datalog Educational System

 |

 WhereExpression ComparisonOp [[ALL|ANY]] WhereExpression

 |

 WhereCondition [AND|OR] WhereCondition

 |

 WhereExpression BETWEEN WhereExpression AND WhereExpression

WhereExpression ::=

 Att

 |

 Cte

 |

 Expression

 |

 DQLstmt

AggrExpression ::=

 [AVG|MIN|MAX|SUM]([DISTINCT] Att)

 |

 COUNT([*|[DISTINCT] Att])

AttOrCte ::=

 Att

 |

 Cte

ComparisonOp ::=

 = | <> | != | < | > | >= | <=

Cte ::=

 Number

 |

 'String'

 |

 DATE 'String' % String in format '[BC] Int-Int-Int'

 |

 TIME 'String' % String in format 'Int:Int:Int'

 |

 TIMESTAMP 'String' % String in format '[BC] Int-Int-Int

Int:Int:Int'

 |

 NULL

% Number is an integer or floating-point number

% Int is an integer number

%%%

% ISL (Information Schema Language) statements

%%%

ISLstmt ::=

 SHOW TABLES

 |

 SHOW VIEWS

Fernando Sáenz-Pérez 142/357

Universidad Complutense de Madrid

Datalog Educational System

 |

 SHOW DATABASES

 |

 DESCRIBE [TableName|ViewName]

Note that this grammar includes the following syntax for DDL statements:

CompleteSchema := DQLstmt

This allows to write typed view definitions in the form:

 view(col1 type1, ..., coln typen) := DQLstmt;

which is the syntax needed to support HR-SQL relation definitions.

4.3 (Extended) Relational Algebra

Following the original proposal [Codd70,Codd72] there have been some
extensions to its operators (basic, additional and extended). Here, we include all the
original and extended operators for dealing with outer joins, duplicate elimination,
recursion, and grouping with aggregates. Further, we provide recursion in this setting,
as well as other operators for Top-N queries and ordering.

With respect to the textual syntax, we follow [Diet01], where arguments of
functions are enclosed between parentheses (as relations), and subscripts and
superscripts are delimited between blanks. Arguments in infix operators are not
required to be enclosed between any delimiters. Also, parentheses can be used to
enhance reading. Conditions and expressions are built with the same syntax as in SQL.

The equivalent Datalog rules and SQL statements for a given RA query can be
inspected with the commands /show_compilations on and /show_sql on,
respectively. For instance, assuming that the relations in examples/aggregates.ra
have been processed already:

DES> /show_compilations on

DES> /show_sql on

DES> project employee.name (employee njoin parking)

Info: Equivalent SQL query:

SELECT ALL employee.name

FROM ((

 employee

 NATURAL INNER JOIN

 parking

));

Info: RA expression compiled to:

answer(A) :-

 employee(A,_B,_C),

 parking(A,_D).

...

Info: 4 tuples computed.

Examples below refer to the database defined in either examples/relop.ra.
(relations a, b, and c) or examples/aggregates.ra (relations employee and
parking) .

Fernando Sáenz-Pérez 143/357

Universidad Complutense de Madrid

Datalog Educational System

4.3.1 Operators

This section includes descriptions for basic, additional and extended operators.

4.3.1.1 Basic operators

 Selection σ(R). Select tuples in relation R matching condition .

Concrete syntax:

select Condition (Relation)

Example:

select a<>'a1' (c);

 Projection πA1,...,An(R). Return all tuples in R only with columns A1,...,An.

Concrete syntax:

project A1,...,An (Relation)

Example:

project b (c);

Note: Columns can be qualified when ambiguity arises, as in:

project a.a (a product c)

If no qualification is provided in presence of ambiguity, then a syntax error is
raised.

 Set union R1 R2.

Concrete syntax:

Relation1 union Relation2

Example:

a union b;

 Set difference R1 - R2.

Concrete syntax:

Relation1 difference Relation2

Example:

a difference b;

 Cartesian product R1 R2.

Concrete syntax:

Relation1 product Relation2

Example:

a product b;

Fernando Sáenz-Pérez 144/357

Universidad Complutense de Madrid

Datalog Educational System

 Renaming R2(A1,...,An)(R1). Rename R1 to R2, and also arguments of R1 to A1,...,An.

Concrete syntax:

rename Schema (Relation)

Example:

project v.b (rename v(b) (select true (a)));

Note:

The new name of a renamed relation must be different from the relation.

 Assignment R1(A1,...,An) R2. Create a new relation R1 with argument names
A1,...,An as a copy of R2. It allows defining new views.

Concrete syntax:

Relation1 := Relation2

Example:

v(c) := select true (a);

Note:

Easy relation copying is supported by simply specifying relation names (no need to
specify their arguments unless you want to change the destination argument
names), as in:

u := v; -- Same argument schema for u and v

u(b) := v; -- Renamed schema for u w.r.t. v

4.3.1.2 Additional operators

These operators can be expressed in terms of basic operators, and include:

 Set intersection R1 R2.

Concrete syntax:

Relation1 intersect Relation2

Example:

a intersect b;

 Theta join R1 R2. Equivalent to σ(R1 R2).

Concrete syntax:

Relation1 zjoin Condition Relation2

Example:

a zjoin a.a<b.b b;

 Natural (inner) join R1 R2. Return tuples of R1 joined with R2 such that common
attributes are pair-wise equal and occur only once in the output relation.

Concrete syntax:

Fernando Sáenz-Pérez 145/357

Universidad Complutense de Madrid

Datalog Educational System

Relation1 njoin Relation2

Example:

a njoin c;

 Division R1 ÷ R2. Return restrictions of tuples in R1 to the attribute names of R1
which are not in the schema of R2, for which it holds that all their combinations
with tuples in R2 are present in R1. The attributes in R2 form a proper subset of
attributes in R1.

Concrete syntax:

Relation1 division Relation2

Example:

a division c;

4.3.1.3 Extended operators

Extended operators cannot be expressed in terms of former operators, and
include:

 Extended projection (expressions and renamings) πE1 A1,...,En An(R). Return tuples of R
with a new schema R(A1,...,An) with columns E1,...,En where each Ei is an expression
built from constants, attributes of R, and built-in operators. If a given Ai is not
provided, the name for the column is either the column Ei, if it is a column, or it is
given an arbitrary new name.

Concrete syntax:

project E1 A1,...,En An (Relation)

Examples:

:-type(d(a:string,b:int)).

project b+1 (d);

project incb (project b+1 incb (d))

project sqrt(2) (dual)

 Duplicate elimination (R). Return tuples in R, discarding duplicates.

Concrete syntax:

distinct (Relation)

Example:

distinct (project a (c));

Notes:

1) The effect of duplicate elimination is observable when duplicates are enabled
with the command /duplicates on.

2) As distinct is also a Datalog (meta)predicate, the query distinct (c)

from the Datalog prompt would be solved as a Datalog query, instead of an RA
one. Then, if you have to ensure your query will be evaluated by the RA

Fernando Sáenz-Pérez 146/357

Universidad Complutense de Madrid

Datalog Educational System

processor, you can either switch to RA with /ra, or prepend the query with
/ra, as follows:

DES> % Either switch to RA:

DES>/ra

DES-RA> distinct (project a (c));

DES> /datalog

DES> % Or simply add /ra

DES>/ra distinct (project a (c));

 Left outer join R1 R2. Includes all tuples of R1 joined with matching tuples of R2

w.r.t. the condition . Those tuples of R1 which do not have matching tuples of R2
are also included in the result, and columns corresponding to R2 are filled with null
values.

Concrete syntax:

Relation1 ljoin Condition Relation2

Example:

a ljoin a=b b;

 Right outer join R1 R2. Equivalent to R2 R1. R1 R2

Concrete syntax:

Relation1 rjoin Condition Relation2

Example:

a rjoin a=b b;

 Full outer join R1 R2. Equivalent to R1 R2 R1 R2.

Concrete syntax:

Relation1 fjoin Condition Relation2

Example:

a fjoin a=b b;

 Natural left outer join R1 R2. Similar to the left outer join but with no condition.
Return tuples of R1 joined with R2 such that common attributes are pair-wise equal
and occur only once in the output relation.

Concrete syntax:

Relation1 nljoin Relation2

Example:

a nljoin c;

 Natural right outer join R1 R2. Equivalent to R2 R1.

Concrete syntax:

Relation1 nrjoin Relation2

Fernando Sáenz-Pérez 147/357

Universidad Complutense de Madrid

Datalog Educational System

Example:

a nrjoin c;

 Natural full outer join R1 R2. Equivalent to R1 R2 R1 R2.

Concrete syntax:

Relation1 nfjoin Relation2

Example:

a nfjoin c;

 Grouping with aggregations G1,...,Gn E1,...,En (R). Build groups of tuples in R so that:
first, each tuple t in the group have the same values for attributes G1,...,Gn , second,

t matches the condition (possibly including aggregate functions) and, third, t is
projected by the expressions E1,...,En (also possibly including aggregate functions).
An empty list of grouping attributes G1,...,Gn is denoted by an opening and a
closing bracket ([]).

Concrete syntax:

group_by GroupingAtts ProjectingExprs HavingCond (Relation)

Examples:

% Number of employees

group_by [] count(*) true (employee);

% Employees with a salary greater than average salary,

% grouped by department

group_by dept id salary > avg(salary) (employee);

 Sorting τL (R). Sort the relation R with respect to the sequence L [GUW02]. This
sequence contains expressions which can be annotated by an ordering criterion,
either ascending or descending (respectively abbreviated by asc and desc).

Concrete syntax:

sort Sequence (Relation)

Examples:

sort salary (employee);

sort dept desc, name asc (employee);

 Top φN (R). Return the first N tuples of the relation R.

Concrete syntax:

top N (Relation)

Example:

top 10 (hits);

Fernando Sáenz-Pérez 148/357

Universidad Complutense de Madrid

Datalog Educational System

4.3.2 Recursion in RA

Recursion in RA expressions can be specified by simply including the name of
the view which is being defined in its definition body. Solving recursion in RA has
been proposed as the application of a fixpoint operator to an RA expression (see, for
instance, [Agra88, HA92]). DES compiles RA expressions to Datalog programs and
uses the (fixpoint-based) deductive engine to solve them.

As an example of recursion in RA, let's consider the following classic program
for finding paths in a graph:

create table edge(origin string, destination string);

paths(origin, destination) :=

 select true (edge)

 union

 project paths.origin, edge.destination

 (select paths.destination=edge.origin (edge product paths));

select true (paths);

As illustrated in this example, non-linear recursion is allowed as the relation
paths is called twice in its definition. Note also that the complete schema must be
provided in the left hand side of the assignment operator (otherwise, an unknown
relation is raised).

As well, mutually recursive definitions can be specified. However, the schema
of the relations must be known before their use in a recursive RA expression. As there
is no available an RA context within two or more mutual recursive relations can be
encapsulated and defined (similar to the WITH SQL clause), one has to define the
schema of each involved mutually recursive relation prior to its definition. This can be
done with a CREATE TABLE statement or submitting void definitions. Let's consider
the mutually recursive definition for even and odd integers.

With the first alternative:

DES> create table odd(x int);

DES> even(x):= project 0 (dual) union project x+1 (odd);

DES> odd(x) := project x+1 (even);

With the second alternative:

DES> even(x):= project 0 (dual)

DES> odd(x) := project x+1 (even);

DES> even(x):= project 0 (dual) union project x+1 (odd);

This is possible because the assignment operator rewrites any previous
definition.

4.3.3 RA Grammar

Here, terminal symbols are: Parentheses, commas, semicolons, single dots,
asterisks, and apostrophes. Other terminal symbols are completely written in capitals,
as SELECT. However, they are not case-sensitive (though relation names do).
Percentage symbols (%) start comments. User identifiers must start with a letter and
consist of letters and numbers; otherwise, a user identifier can be enclosed between

Fernando Sáenz-Pérez 149/357

Universidad Complutense de Madrid

Datalog Educational System

quotation marks (both square brackets and double quotes are supported) and contain
any characters. Next, RAstmt stands for a valid RA statement.

This grammar is built following [Diet01], so that RA files accepted by WinRDBI
(a tool described in that book) are also accepted by DES. DES grammar extends
WinRDBI grammar in providing support also for: Theta join operator, division, outer
join operators, duplicate elimination (distinct operator), grouping (group_by
operator), recursive queries, and renaming operator (this avoids to resort to building
new relations with the assignment operator :=, although it is supported, too). Also,
there is no need to define views and simple queries can be directly submitted to the
system.

RAstmt ::=

 SELECT WhereCondition (RArel) % Selection (sigma)

 |

 PROJECT SelectExpressionList (RArel) % Projection (pi)

 |

 RENAME Schema (RArel) % Renaming (rho)

 |

 DISTINCT (RArel) % Duplicate elimination

 |

 RArel PRODUCT RArel % Cartesian Product

 |

 RArel DIVISION RArel % Division

 |

 RArel UNION RArel % Set union

 |

 RArel DIFFERENCE RArel % Set difference

 |

 RArel INTERSECT RArel % Set intersection

 |

 RArel NJOIN RArel % Natural join

 |

 RArel ZJOIN WhereCondition RArel % Zeta join

 |

 RArel LJOIN WhereCondition RArel % Left outer join

 |

 RArel RJOIN WhereCondition RArel % Right outer join

 |

 RArel FJOIN WhereCondition RArel % Full outer join

 |

 RArel NLJOIN RArel % Natural left outer join

 |

 RArel NRJOIN RArel % Natural right outer

join

 |

 GROUP_BY GAtts SelectExpressionList HavingCondition (RArel)

 % Grouping

 |

 SORT OrderDescription (RArel) % Sorting

 |

 TOP Integer (RArel) % Top-N query

RArel ::=

Fernando Sáenz-Pérez 150/357

Universidad Complutense de Madrid

Datalog Educational System

 RAstmt

 |

 Relation

View definition (assignment statement):

RAview ::=

 [Schema | ViewName] := [RAstmt | ViewName]

Schema ::=

 ViewName

 |

 ViewName(ColName,...,ColName)

GAtts :=

 []

 |

 Atts

Where Atts, Condition, SelectExpressionList, HavingCondition and

OrderDescription are as in the SQL grammar.

4.4 Tuple Relational Calculus

Relational calculus was proposed by E.F. Codd in [Codd72] as a relational
database sublanguage, together with a relational algebra (cf. previous section) with the
same purpose. In that paper, he introduced what we know today as Tuple Relational
Calculus (TRC) with a positional notation for relation arguments instead of the named
notation more widely used nowadays. TRC is closer to SQL than DRC.

Textual syntax of TRC statements in DES follows [Diet01] (with named
notation) but relaxing some conditions to ease the writing of queries. For instance,
parentheses are not required unless they are really needed, but nonetheless they can be
used sparingly to help reading. Furthermore, there are several additions included in
DES w.r.t. [Diet01]:

 Implicit references to the dual table are supported, which allows the user to write
not only variables but also constants in the target list (following [Codd72]
nomenclature for the comma-separated sequence of variables that conforms the
output).

 Classical implication is supported, both with the keyword implies as suggested
in [Diet01] and the infix operator ->.

 The membership operator in (and its negation not in) supported as an addition
for range restriction. So, several syntaxes proposed by different textbooks are
supported.

 Wider support of formulae: Order of terms is not relevant for safe formulas, e.g., a
comparison can precede the reference to the relation which is the data provider
(range restriction).

 Support for propositional relations.

 More detailed syntax and safety error messages.

Fernando Sáenz-Pérez 151/357

Universidad Complutense de Madrid

Datalog Educational System

 Strong type checking. For instance, trying to compare a numeric constant with a

string constant is not allowed.

 In addition to (DDL) relation definition queries, DML queries for selecting data are
also supported.

The basic syntax of a TRC query (alpha expression in [Codd72]) is:

{ VarsAttsCtes | Formula }

where VarsAttsCtes is known as the target list: a comma-separated sequence of
either tuple variables, or attributes, or constants. Tuple variables start with either
uppercase or an underscore. A tuple attribute is denoted by r.a, where r is the

relation name, and a is an attribute name of the relation r. String constants are
delimited by single quotes ('). Identifiers for relations and attributes start either with
lowercase or are delimited by double quotes (").

A query can be optionally ended with a semicolon (;). This semicolon is only
required when multiline input is enabled (with the command /multiline on).

The following are TRC formulas:

o A monadic atom A

o A comparison built with constants, built-in comparison symbol and variables

Moreover, if F, F1 and F2 are formulae, Vars is a comma-separated sequence
of tuple variables, Var is a tuple variable, and Rel is a relation name, then the
following are also formulae:

not F -- Negation

F1 and F2 -- Conjunction

F1 or F2 -- Disjunction

F1 -> F2 -- Implication

exists Vars F -- Existential quantifier

forall Vars F -- Universal quantifier

-- The following are alternative syntax sugarings

F1 implies F2 -- Logical implication

Var in Rel -- An atom: Rel(Var)

Var not in Rel -- A negated atom: not Rel(Var)

Tuple variables starting with an underscore are existentially quantified by
default ([Diet01] only allows this in DRC). Parentheses can be used sparingly to
encapsulate and enhance reading. The alternative syntax sugaring is redundant and
intended for user convenience. Operators are not case-sensitive.

The original proposal [Codd72] included range terms of the form pjR, where pj
is a monadic predicate followed by a tuple variable R, indicating that R has relation rj
in its range. This is expressed in DES as either rj(R) (as in [Diet01]) or rj in R, thus
removing the need for pj.

TRC queries must be safe and legal:

 Each tuple variable in a negated formula must occur in a positive atom (data
provider) out of the formula.

 A quantified tuple variable cannot occur out of the formula to which the quantifier
is applied.

Fernando Sáenz-Pérez 152/357

Universidad Complutense de Madrid

Datalog Educational System

 Tuple variables and attributes cannot occur duplicated in the target list.

Assuming the relations in examples/jobs.trc, the following are valid TRC
queries:

DES> -- Name of employees working for 'IBM':

DES> {W.employee | works(W) and W.company='IBM'}

answer(employee:string) ->

{

 answer('Anderson'),

 answer('Andrews'),

 answer('Arlington'),

 answer('Bond')

}

Info: 4 tuples computed.

DES> -- Name of employees not working for 'IBM':

DES> {W.employee | works(W) and not exists U (works(U) and

U.company='IBM' and U.employee=W.employee)};

answer(employee:string) ->

{

 answer('Nolan'),

 answer('Norton'),

 answer('Sanders'),

 answer('Silver'),

 answer('Smith'),

 answer('Steel'),

 answer('Sullivan')

}

Info: 7 tuples computed.

A tuple variable occurring at different places of a formula (that is, shared tuple
variables) means an additional constraint on the result: tuples in each relation for a
shared tuple variable must match, therefore easing formulations by removing the need
for introducing new equalities. For example, the following query for the database
defined in examples/empTraining.trc returns the employees that are either
managers or coaches, where the tuple variable T is shared by the relations managers
and coaches:

DES> /trc { T | managers(T) or coaches(T) };

answer(eID:string) ->

{

 answer('654'),

 ...

}

Info: 7 tuples computed.

The relations with shared tuple variables must be compatible, i.e., they must
have the same number of attributes and the same types (but can have different
attribute names). If one of these tuple variables is referenced in the target list, the
output schema is built from the first relation occurrence in the formula.
Correspondingly, any reference to an attribute of a shared variable corresponds to the
name of the attribute of the first relation in the formula with that shared variable. This
means that attribute names of a further relations for the same shared variable cannot be
accessed. For instance:

Fernando Sáenz-Pérez 153/357

Universidad Complutense de Madrid

Datalog Educational System

DES> create table p(a int)

DES> create table q(b int)

DES> {X|p(X) and q(X) and X.b>0}

Error: Unknown column 'X.b' in statement.

Though types are enforced to be equal for relations referred by the same shared
tuple variable, it is however possible to relax this requirement à la SQL, i.e., by
allowing compatible types (see Section 4.1.16.1.3), as illustrated in the next example:

DES> create table p(a int)

DES> create table q(b float)

DES> {X|p(X) or q(X)}

Error: Type mismatch q.b:number(float) vs. number(integer).

DES> /type_casting on

DES> {X|p(X) or q(X)}

answer(a:int) ->

{

 answer(2.0),

 answer(1)

}

Info: 2 tuples computed.

Relations can be defined with the assignment operator (:=) with two
possibilities:

 Relation definition: Schema := TRCQuery

 Relation copying: RelationName1 := RelationName2

A schema can be either a relation name or an atom. In the first case, i.e., when
attribute names are not provided for defining a relation, an attribute name in the target
list becomes the attribute name for the relation. If an attribute name is duplicated in the
target list (when it comes from different relations), its name is preceded (qualified)
with varname_, where varname is the (first letter being down cased) name of the
tuple variable it belongs to. For instance, in the following query, each duplicated
attribute name is automatically qualified in the schema as follows:

DES> {E1.employee, E2.employee |

 lives(E1) and lives(E2) and E1.city=E2.city and

 E1.street=E2.street and E1.employee<E2.employee} ;

answer(e1_employee:string,e2_employee:string) ->

{

 answer('Steel','Sullivan')

}

Info: 1 tuple computed.

Recursive definitions are allowed when the relation name to be defined occurs
in its definition. For example, let us consider a relation knows(who:string,
whom:string) stating that a person identified in its first attribute directly knows a
person identified in the second one, and its instance { knows(a,b), knows(b,c),
knows(c,d) }. Following the link of related people can be expressed in TRC as the
union of the base case (knows) and the inductive case (indc) as follows:

DES> :-type(knows(who:string, whom:string))

DES> insert into knows values ('a','b'), ('b','c'), ('c','d');

Fernando Sáenz-Pérez 154/357

Universidad Complutense de Madrid

Datalog Educational System

DES> :-type(indc(who:string, whom:string))

DES> :-type(link(who:string, whom:string))

DES> indc := { K.who, I.whom | K in knows and I in link and

K.whom=I.who };

DES> link := { L | L in knows or L in indc };

Note that it is needed to provide the schema of link before the recursive definition for

indc because indc refers to the relation link11. Otherwise, an undefined relation
error is raised.

This can be queried from the TRC prompt with:

DES-TRC> { L | L in link };

{

 linked(a,b), linked(a,c), linked(a,d),

 linked(b,c), linked(b,d),

 linked(c,d)

}

Info: 6 tuples computed.

Non-linear recursive definitions (i.e., the defined relation occurs more than once
in its definition) are also allowed, as the following equivalent formulation to the
previous one, which also retrieves the same tuples:

DES> indc := { L1.who, L2.whom | L1 in link and L2 in link and

L1.whom=L2.who };

Note that termination is ensured even when there may be cycles in the graph
represented by the relation knows, as adding the tuple knows(d,a) to its instance. In
this case, 16 tuples would be retrieved (each person would be linked with any other
person including itself). Termination control is due to the fixpoint the deductive engine
implements (fixpoint iterations are repeated until no more tuples are deduced).

However, it is not possible to devise the link length between two individuals
because arithmetic expressions are not yet supported. This feature would be interesting
to add for applications requiring such data (as social networks in particular and length
of paths in general).

Duplicates are also allowed in TRC. For example, the following session shows
the difference when dealing with sets and multisets:

DES> -- Duplicates disabled by default (set operations)

DES> z := { 0 | exists T dual(T) }

DES> { T | z(T) or z(T) }

answer(a:int) ->

{

 answer(0)

}

Info: 1 tuple computed.

DES> -- Enabling duplicates (multiset operations)

DES> /duplicates on

DES> { T | z(T) or z(T) }

11 Note that in this example, the schema for indc has been also provided, but it can be

omitted.

Fernando Sáenz-Pérez 155/357

Universidad Complutense de Madrid

Datalog Educational System

answer(a:int) ->

{

 answer(0),

 answer(0)

}

Info: 2 tuples computed.

As an example of propositional relations, the following one can be considered:

DES> /assert p

DES> {'true' | p -> q}

Warning: Undefined predicate: [q/0]

answer($a0:boolean) ->

{

}

Info: 0 tuples computed.

DES> /assert q

DES> {'true' | p -> q}

answer($a0:boolean) ->

{

 answer(true)

}

Info: 1 tuple computed.

DES translates TRC queries to DRC queries, which in turn are compiled to
Datalog, and eventually processed by the deductive engine. The equivalent Datalog
rules for a given TRC query can be inspected by enabling compilation listings with the
command /show_compilations on. The final executable Datalog form can be
inspected alternatively by enabling development listings with the command
/development on. The next session, which considers the relations defined in
examples/jobs.trc, shows this:

DES> {E1.employee | works(E1) and not exists E2 (works(E2) and

E1.employee=E2.employee and E2.company='IBM')};

Info: TRC statement compiled to:

answer(Employee) :-

 works(Employee,_E1_company,_E1_salary),

 not exists([_E2_employee,_E2_company,_E2_salary],

 (works(_E2_employee,_E2_company,_E2_salary),

 Employee=_E2_employee,_E2_company='IBM')).

answer(employee:string) ->

{ ... }

Info: 7 tuples computed.

DES> /development on

DES> {E1.employee | works(E1) and not exists E2 (works(E2) and

E1.employee=E2.employee and E2.company='IBM')};

Info: TRC statement compiled to:

answer(Employee) :-

 works(Employee,_E1_company,_E1_salary),

 not '$p4'(Employee).

'$p4'(Employee) :-

 works(Employee,A,B),

 works(Employee,'IBM',_E2_salary).

answer(employee:string) ->

{ ... }

Fernando Sáenz-Pérez 156/357

Universidad Complutense de Madrid

Datalog Educational System

Info: 7 tuples computed.

4.4.1 TRC Grammar

% Tuple Relational Calculus statement:

TRCstmt ::=

 { VarsAttsCtes | Formula }

Formula ::=

 Formula AND Formula

 |

 Formula OR Formula

 |

 Formula IMPLIES Formula

 |

 Formula -> Formula % Synonymous for IMPLIES

 |

 (Formula)

 |

 Relation (Var)

 |

 Var [NOT] IN Relation

 |

 NOT Formula

 |

 Condition

 |

 QuantifiedFormula

QuantifiedFormula ::=

 Quantifier Formula

 |

 Quantifier QuantifiedFormula

Quantifier ::=

 EXISTS Vars

 |

 FORALL Vars

Condition ::=

 AttCte RelationalOp AttCte

AttCte ::=

 Variable.Attribute

 |

 Constant

VarAttCte ::=

 Variable

 |

 AttCte

VarsAttsCtes ::=

 VarAttCte

Fernando Sáenz-Pérez 157/357

Universidad Complutense de Madrid

Datalog Educational System

 |

 VarAttCte, VarsAttsCtes

Vars ::=

 Variable

 |

 Variable, Vars

RelationalOp ::=

 =

 | >

 | <

 | <>

 | !=

 | >=

 | <=

% View definition (assignment statement):

TRCview ::=

 [Schema | ViewName] := [TRCstmt | ViewName]

Schema ::=

 ViewName

 |

 ViewName(ColName,...,ColName)

4.5 Domain Relational Calculus

Domain Relational Calculus (DRC) was proposed in [LP77] and includes
domain variables instead of the tuple variables as found in the Tuple Relational
Calculus (TRC) [Codd72]. Both calculi are acknowledged as more declarative than their
counterpart algebra because while the algebra require to specify the operations needed
to compose the output data, the calculi do not, expressing queries with logic constructs
(conjunction, disjunction, negation, implication, and existential and universal
quantifications). DRC is closer to Datalog than TRC.

Textual syntax of DRC statements in DES follows [Diet01] and, as in TRC,
relaxing some conditions to ease the writing of queries and providing several
additions. Besides the additions already introduced in the TRC introduction in
previous section, for DRC:

 Domain variables starting with an underscore are existentially quantified by
default (in addition to the anonymous variables).

The basic syntax of a DRC query is:

{ VarsCtes | Formula }

where VarsCtes is known as the target list, i.e., a comma-separated sequence of either
domain variables or constants. Domain variables start with either uppercase or an
underscore. String constants are delimited by single quotes ('). Identifiers for relations
and attributes start either with lowercase or are delimited by double quotes (").

Fernando Sáenz-Pérez 158/357

Universidad Complutense de Madrid

Datalog Educational System

A query can be optionally ended with a semicolon (;). This semicolon is only

required when multiline input is enabled (with the command /multiline on).

The following are TRC formulas:

o An atom A

o A comparison A B C, where A and C can be either constants or variables, and C a
built-in infix comparison symbol (=, <, <=, ...)

Moreover, if F, F1 and F2 are formulae, Vars is a comma-separated sequence
of domain variables and Rel is a relation name, then the following are also formulae:

not F -- Negation

F1 and F2 -- Conjunction

F1 or F2 -- Disjunction

F1 -> F2 -- Implication

exists Vars F -- Existential quantifier

forall Vars F -- Universal quantifier

-- The following are alternative syntax sugarings

F1 implies F2 -- Logical implication

Vars in Rel -- An atom: Rel(Vars)

Vars not in Rel -- A negated atom: not Rel(Vars)

Domain variables starting with an underscore are existentially quantified by
default. Parentheses can be used sparingly to encapsulate and enhance reading. The
alternative syntax sugaring is redundant and intended for user convenience. Operators
are not case-sensitive.

DRC queries must be safe and legal:

 Each domain variable in a negated formula must occur in a positive atom (data
provider) out of the formula.

 A quantified domain variable cannot occur out of the formula on which the
quantifier is applied.

 Domain variables must not occur duplicated in the target list.

Assuming the relations in examples/jobs.drc, the following is a valid DRC
query:

DES> -- Name of employees working for 'IBM':

DES> {E | works(E,'IBM',_)}

answer(e:string) ->

{

 answer('Anderson'),

 answer('Andrews'),

 answer('Arlington'),

 answer('Bond')

}

Info: 4 tuples computed.

This query is equivalent to the following one, where the quantification has been
made explicit:

{E | exists Co,S (works(E,Co,S) and Co='IBM')}

Fernando Sáenz-Pérez 159/357

Universidad Complutense de Madrid

Datalog Educational System

Another example for the same database is:

DES> -- Name, street and city of employees earning more than

1000 in a given company:

DES> {E,St,C | lives(E,St,C) and exists Co,S (works(E,Co,S) and

S>1000)};

answer(e:string,st:string,c:string) ->

{

 answer('Anderson','Main','Armonk'),

 answer('Norton','James','Redwood'),

 answer('Sanders','High','Redmond'),

 answer('Steel','Oak','Redmond'),

 answer('Sullivan','Oak','Redmond')

}

Info: 5 tuples computed.

Note that a comma-separated sequence of domain variables is allowed in a
quantifier, as in the quantification exists Co,S above. Also, a domain variable
occurring at different places of a formula removes the need for introducing new
variables and equalities. Without this sugaring, the statement above should be
verbosely rewritten as:

{E,St,C | lives(E,St,C) and exists Co (exists E1,S

(works(E1,Co,S) and S>1000 and E=E1))};

The following query specifies a division relational operation for the database in
jobs.drc, looking for the names of employees working at least for the same
companies as the employee Arlington:

{ E | works(E,_,_) and

 (forall Co) (works('Arlington',Co,_) -> works(E,Co,_)) }

Relations can be defined with the assignment operator (:=) as in DRC (cf.
previous section).

A schema can be either a relation name or an atom. In the first case, each
attribute name is the corresponding variable name with its first letter being down
cased (in [Diet01] the whole variable identifier is taken in lowercase). Expressions
receive a system identifier with the form $ai, where i is an integer starting at 0. In the

second case, the functor of the atom is the relation name and its arguments are the
names of the attributes.

DES> q2 := {E | works(E,_,_) and not works(E,'IBM',_)};

DES> /dbschema q2

Info: Database '$des'

Info: View:

 * q2(e:string)

...

DES> q2(name) := {E | works(E,_,_) and not works(E,'IBM',_)};

DES> /dbschema q2

Info: Database '$des'

Info: View:

 * q2(name:string)

...

DES> { 1 | 1=1 }

Fernando Sáenz-Pérez 160/357

Universidad Complutense de Madrid

Datalog Educational System

answer($a0:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

Recursive definitions are allowed similarly to the case of TRC. However,
formulations can be shortened with the use of shared domain variables. Following the
same recursive example as in TRC, it can be expressed in DRC as follows:

DES> :-type(link(who:string, whom:string))

DES> link(X,Z) := { X,Y | knows(X,Y) or exists Z knows(X,Z) and

linked(Z,Y) }

In this case, the schema of link must be defined before, because link refers to
itself in its definition.

Non-linear recursive definitions are also allowed, as the following equivalent
formulation to the previous one, which also retrieves the same tuples:

DES> linked(X,Z) := { X,Y | knows(X,Y) or exists Z linked(X,Z)

and linked(Z,Y) }

Duplicates are also allowed in DRC similarly to TRC.

Propositional relations are the same in both DRC and TRC (cf. previous section
on TRC).

DES compiles DRC queries to Datalog, which eventually solves them. The
equivalent Datalog rules for a given DRC query can be inspected by enabling
compilation listings with the command /show_compilations on. The final
executable Datalog form can be inspected alternatively by enabling development
listings with the command /development on. The next session, which considers the
relations defined in examples/jobs.drc, shows this:

DES> {E1 | exists Co,S (works(E1,Co,S) and not exists E2,Co2,S2

(works(E2,Co2,S2) and E1=E2 and Co2='IBM'))};

Info: DRC statement compiled to:

answer(E1) :-

 exists([Co,S],(works(E1,Co,S), not

exists([E2,Co2,S2],((works(E2,Co2,S2),E1=E2),Co2='IBM')))).

answer(e1:string) ->

{ ... }

Info: 7 tuples computed.

DES> /development on

DES> {E1 | exists Co,S (works(E1,Co,S) and not exists E2,Co2,S2

(works(E2,Co2,S2) and E1=E2 and Co2='IBM'))};

Info: DRC statement compiled to:

answer(E1) :-

 works(E1,_Co,_S),

 not '$p8'(E1).

'$p8'(E1) :-

 works(E1,_Co,_S),

 works(E1,'IBM',_S2).

answer(e1:string) ->

{ ... }

Fernando Sáenz-Pérez 161/357

Universidad Complutense de Madrid

Datalog Educational System

Info: 7 tuples computed.

4.5.1 DRC Grammar

% Domain Relational Calculus statement:

DRCstmt ::=

 { VarsCtes | Formula }

Formula ::=

 Formula AND Formula

 |

 Formula OR Formula

 |

 Formula IMPLIES Formula

 |

 Formula -> Formula % Synonymous for IMPLIES

 |

 (Formula)

 |

 Relation (VarsCtes)

 |

 VarsCtes [NOT] IN Relation

 |

 NOT Formula

 |

 Condition

 |

 QuantifiedFormula

QuantifiedFormula ::=

 Quantifier Formula

 |

 Quantifier QuantifiedFormula

Quantifier ::=

 EXISTS Vars

 |

 FORALL Vars

Condition ::=

 VarCte RelationalOp VarCte

VarCte ::=

 Variable

 |

 Constant

VarsCtes ::=

 VarCte

 |

 VarCte, VarsCtes

Vars ::=

 Variable

Fernando Sáenz-Pérez 162/357

Universidad Complutense de Madrid

Datalog Educational System

 |

 Variable, Vars

RelationalOp ::=

 =

 | >

 | <

 | <>

 | !=

 | >=

 | <=

% View definition (assignment statement):

DRCview ::=

 [Schema | ViewName] := [DRCstmt | ViewName]

Schema ::=

 ViewName

 |

 ViewName(ColName,...,ColName)

4.6 Prolog

Syntax of Prolog programs and goals is the same as for Datalog, including all
built-in operators (cf. next Section) but metapredicates. Notice that negation is written
as not Goal, instead of the usual \+ Goal in Prolog.

When a goal is solved, instead of displaying the variable substitution for the
answer, the goal is displayed with the substitution applied, as in:

DES-Prolog> t(X)

t(1)

? (type ; for more solutions, <Intro> to continue) ;

t(2)

? (type ; for more solutions, <Intro> to continue) ;

no

4.7 Built-ins

Most built-ins are shared by all the languages. For instance, w.r.t. comparison
operators, the first difference is the less or equal (=<) operator used in Datalog and
Prolog. This operator is different from the used in SQL, TRC, DRC and RA, which is
written as <=. The former is written that way since in Prolog and Datalog, it is
distinguished from the implication to the left operator (<=). SQL does not provide
implications; so, the SQL syntax seems to be more appealing since the order of the two
symbols matches the order of words. The second difference is the disequality symbol:
In Datalog and Prolog, it is used \=,12 while in SQL, TRC, DRC and RA the alternative
symbols <> and != are used.

12 Though, more precisely, in Prolog this is the symbol used for non-unifiable pair of
terms, whereas \== checks syntax disequality.

Fernando Sáenz-Pérez 163/357

Universidad Complutense de Madrid

Datalog Educational System

Arithmetic expressions are constructed with the same built-ins in the three

languages. However, in Datalog and Prolog, you need to use the infix is (cf. Section
4.7.2), and in Datalog, the equality = can also be used.

The built-in predicates is_null/1 and is_not_null/1 belong to the Datalog
language.

Also, consult Section 5.3 for limitations regarding safety in the use of built-ins in
Datalog.

4.7.1 Comparison Operators

All comparison operators are infix and apply to terms. For the inequality and
disequality operators (greater than, less than, etc.), numbers are compared in terms of
their arithmetical value; other terms are compared in Prolog standard order.

If a compound term is involved in a comparison operator, it is evaluated as an
expression and its result is then compared (for all operators except equality) or unified
(for equality). Note that this departs from Prolog in which expressions (terms) are
simply data terms and therefore are not evaluated.

All comparison operators, except equality, demand ground arguments since
they are not constraints, but test operators, and argument domains are infinite. If a
ground argument is demanded and a variable is received, an exception is raised.

Next, we list the available comparison operators, where X and Y are terms

(variables, constants or expressions of any of the supported types). Expressions are
evaluated before comparison. Order of data depends on the underlying Prolog system
on which DES runs.

 X = Y (Equality)
Tests equality between X and Y. It also performs unification when variables are
involved. This is the only comparison operator that does not demand ground
arguments.

 X \= Y (Disequality)
Tests disequality between the evaluation of expressions X and Y.

 X \== Y (Disequality)
Tests syntactic disequality between X and Y, without evaluating them.

 X > Y (Greater than)

Tests whether X is greater than Y.

 X >= Y (Greater than or equal to)
Tests whether X is greater than or equal to than Y.

 X < Y (Less than)
Tests whether X is less than Y.

 X =< Y (Less than or equal to)
Tests whether X is less than or equal to Y.

4.7.2 Datalog and Prolog Arithmetic

Borrowed from most Prolog implementations, arithmetic is allowed by using
the infix operator is, which is used to construct a query with two arguments, as

follows:

X is Expression

Fernando Sáenz-Pérez 164/357

Universidad Complutense de Madrid

Datalog Educational System

where X is a variable or a number, and Expression is an arithmetic expression built
from numbers, variables, built-in arithmetic operators, constants and functions, mainly
following ISO for Prolog (they are labelled, if so, in the listings below). Availability of
arithmetic built-ins mainly depends on the underlying Prolog system (binary
distributions cope with all the listed built-ins).

At evaluation time, the expression must be ground (i.e., its variables must be
bound to numbers or constants); otherwise, problems as stated in the previous section
may arise. Evaluating the above query amounts to evaluate the arithmetic expression
according to the usual arithmetic rules, which yields a number (integer or float), and X
is bound to this number if it is a variable, or tested its equivalence if it is a number.
Precision depends on the underlying Prolog system.

Arithmetic built-ins have meaning only in the second argument of is or as any
operand of equality. They cannot be used elsewhere. For example:

DES> X is sqrt(2)

{

 1.4142135623730951 is sqrt(2)

}

Info: 1 tuple computed.

Here, sqrt(2) is an arithmetic expression that uses the built-in function sqrt
(square root). But:

DES> sqrt(2) is sqrt(2)

raises an input error because an arithmetic expression can only occur as the right
argument of is. Another example is:

DES> X is e

{

 2.718281828459045 is exp(1)

}

Info: 1 tuple computed.

Note that arithmetic expressions are compound terms which are translated into
an internal equivalent representation. The last example shows this since the constant e
is translated to exp(1).

Concluding, the infix (infinite) relation is is understood as the set of pairs <V,
E> such that V is the equivalent value to the evaluation of the arithmetical expression
E. Note that, since this relation is infinite, we may reach non-termination: Let’s
consider the following program (loop.dl in the distribution directory) with the query
loop(X):

loop(0).

loop(X) :-

 loop(Y),

 X is Y + 1.

Evaluating that query results in a non-terminating cycle because unlimited
tuples is(N,N+1) become computed. To show it, try the query, press Ctrl-C, and type

Fernando Sáenz-Pérez 165/357

Universidad Complutense de Madrid

Datalog Educational System

listing(et) at the Prolog prompt (only when DES has been started from a Prolog
interpreter). Should you want a limited answer for loop, you can use the Top-N built-in
top/2 (see forthcoming Section 4.7.12).

This infix operator is can be replaced by the equality comparison with the same
results (but not the other way round). For instance:

DES> X=sqrt(2)

{

 1.4142135623730951=sqrt(2)

}

Info: 1 tuple computed.

DES> X is sqrt(2)

{

 1.4142135623730951 is sqrt(2)

}

Info: 1 tuple computed.

DES> sqrt(2) is X

Error: (DL) Invalid number after 'sqrt(2'

4.7.3 SQL, TRC and DRC Arithmetic

Arithmetic expressions are constructed with the arithmetic operators listed in
the next section. They are used in projection lists and conditions.

4.7.4 Arithmetic Built-ins

This section contains the listings for the supported arithmetic operators,
constants, and functions.

4.7.4.1 Arithmetic Operators

The following operators are the only ones allowed in arithmetic expressions,
where X and Y stand also for arithmetic expressions.

 \X (Bitwise negation) ISO
Bitwise negation of the integer X.

 -X (Negative value) ISO

Negative value of its single argument X.

 X ** Y (Power) ISO

X raised to the power of Y.

 X ^ Y (Power)

Synonym for X ** Y.

 X * Y (Multiplication) ISO
X multiplied by Y.

 X / Y (Real division) ISO

Float quotient of X and Y.

 X + Y (Addition) ISO

Sum of X and Y.

 X - Y (Subtraction) ISO

Difference of X and Y.

 X // Y (Integer quotient) ISO
Integer quotient of X and Y. The result is always truncated towards zero.

 X rem Y (Integer remainder) ISO

Fernando Sáenz-Pérez 166/357

Universidad Complutense de Madrid

Datalog Educational System

The value is the integer remainder after dividing X by Y, i.e., integer(X)-
integer(Y)*(X//Y). The sign of a nonzero remainder will thus be the same as
that of the dividend.

 X \/ Y (Bitwise disjunction) ISO

Bitwise disjunction of the integers X and Y.

 X /\ Y (Bitwise conjunction) ISO

Bitwise disjunction of the integers X and Y.

 X xor Y (Bitwise exclusive or) ISO
Bitwise exclusive or of the integers X and Y.

 X << Y (Shift left) ISO
X shifted left Y places.

 X >> Y (Shift right) ISO

X shifted right Y places.

4.7.4.2 Arithmetic Constants

 pi (π)
Archimedes' constant.

 e (Neperian number)
Neperian number.

4.7.4.3 Arithmetic Functions

 sqrt(X) (Square root) ISO
Square root of X.

 log(X) (Natural logarithm) ISO
Logarithm of X in the base of the Neperian number (e).

 ln(X) (Natural logarithm)
Synonym for log(X).

 log(X,Y) (Logarithm)
Logarithm of Y in the base of X.

 sin(X) (Sine) ISO
Sine of X.

 cos(X) (Cosine) ISO
Cosine of X.

 tan(X) (Tangent) ISO

Tangent of X.

 cot(X) (Cotangent)
Cotangent of X.

 asin(X) (Arc sine)
Arc sine of X.

 acos(X) (Arc cosine)
Arc cosine of X.

 atan(X) (Arc tangent) ISO

Arc tangent of X.

 acot(X) (Arc cotangent)
Arc cotangent of X.

 abs(X) (Absolute value) ISO
Absolute value of X.

 power(B,E) (Power)

B raised to the power of E.

Fernando Sáenz-Pérez 167/357

Universidad Complutense de Madrid

Datalog Educational System

 float(X) (Float value) ISO

Float equivalent of X, if X is an integer; otherwise, X itself.

 integer(X) (Integer value)
Closest integer between X and 0, if X is a float; otherwise, X itself.

 sign(X) (Sign) ISO
Sign of X, i.e., -1, if X is negative, 0, if X is zero, and 1, if X is positive, coerced into
the same type as X (i.e., the result is an integer, iff X is an integer).

 gcd(X,Y) (Greatest common divisor)
Greatest common divisor of the two integers X and Y.

 min(X,Y) (Minimum)
Least value of X and Y.

 max(X,Y) (Maximum)
Greatest value of X and Y.

 trunc(X) (Truncate)

Closest integer between X and 0.

 truncate(X) (Truncate) ISO

Closest integer between X and 0.

 float_integer_part(X) (Integer part as a float) ISO
The same as float(integer(X)).

 float_fractional_part(X) (Fractional part as a float) ISO

Fractional part of X, i.e., X - float_integer_part(X).

 round(X) (Closest integer) ISO

Closest integer to X. X has to be a float. If X is exactly half-way between two
integers, it is rounded up (i.e., the value is the least integer greater than X).

 floor(X) (Floor) ISO

Greatest integer less than or equal to X. X has to be a float.

 ceiling(X) (Ceiling) ISO

Least integer greater than or equal to X. X has to be a float.

 rand (Random number)

Random float number. A Datalog predicate '$rand'/1 is available (with a single
argument as its output).

 rand(X) (Random number)

Random float number with a 64 bit integer seed X. A Datalog predicate '$rand'/3
is available available (the input in the first argument and the output in the last one).

4.7.5 String Functions and Operators

All the functions listed below find a counterpart Datalog predicate with an
additional argument at the end representing the result. The name of the predicate is
prepended with $ and enclosed between quotes as, for instance, '$length'(X,Y) ,
which returns in Y the length of X. So, in Datalog, one can use both a function in
expressions and its counterpart predicate in goals.

Functions:

 length(X) (Length of string)

 concat(X,Y) (Concatenation of strings)

 lower(X) (Lowercase conversion)

 substr(X,Y,Z) (Substring starting at offset Y with length Z)

 upper(X) (Uppercase conversion)

Fernando Sáenz-Pérez 168/357

Universidad Complutense de Madrid

Datalog Educational System

Operators:

 X like Y [escape Z] (Comparison of strings) ISO
The escape part is optional. Not available as an operator in Datalog, but as the
predicates $like/3 and $like/4.

 X + Y (Concatenation of strings) ISO

 X || Y (Concatenation of strings)

4.7.6 Date and Time: Data Structures, Functions and Operators

Date and time representation in computers has been a cumbersome task since
computer science inception. Recall, for instance, the Y2K issue (ony the last two digits
for storing a year). Calendars [US12] are not unique around the world. For example,
the Gregorian caIendar which replaced the Julian calendar was adopted at different
years in different countries. The SQL standard defines dates for years in the range 0-
9999, omitting BC dates (before year 1), and uses a proleptic Gregorian (Gregorian
calendar extrapolated to dates before its inception, omitting the original Julian). While
DB2 is the DBMS most closer to this standard, others, as Oracle, follow a more "real"
approach (including both Julian and Gregorian calendars and BC dates). Here, we
follow this approach, but not limiting the upper bound to dates, in the following way:

Dates start at -4712 (BC 4713), where the year 0 corresponds to BC 1. The Julian
calendar is used up to 1582-10-4, where the Gregorian calendar is used from 1582-10-
15. Note that there are 11 days (from 1582-10-5 to 1582-10-14) which are not accepted as
valid dates (they were removed from the calendar to adjust the accumulated
imprecisions of the Julian calendar). For internal calculations, the Julian Date, as used
by astronomers, is applied.

In the rest of this subsection, date/time data structures, functions and operators
for both Datalog and SQL are described.

Datalog Data Structures:

 date(Year,Month,Day)
Dates start at date(-4712,1,1) (begin of the current astronomical
Julian Date) and has no upper limit. Note that year -4712 is read as BC
4713, and year 0 in this structure is read as BC 1.

 time(Hour,Minute,Second)

Times are also stored normalized, even for negative numbers. For
example, time(1,-1,0) is normalized as time(0,59,0).

 datetime(Year,Month,Day,Hour,Minute,Second) (Timestamp)
A timestamp is stored normalized.

SQL, RA, TRC and DRC Data Structures:

 date 'Year-Month-Day' ISO

As an extension to ISO, Year can be negative or can be prepended by
BC (for years before 1). As in Datalog, non-valid dates are converted to
valid dates before storing or using them.

 time 'Hour:Minute:Second' ISO
As an extension to ISO, negative parts of the time are allowed.

 timestamp 'Year-Month-Day Hour:Minute:Second ' ISO

Fernando Sáenz-Pérez 169/357

Universidad Complutense de Madrid

Datalog Educational System

 datetime 'Year-Month-Day Hour:Minute:Second '

This data structure is a synonymous for timestamp.

Notes:

 Though discouraged, you can write dates and times with outbound
values as, e.g., 32 for the day (or even negative), which is converted into
(i.e., normalized to) a valid date before storing or using it. So, an input
as date(2018,12,32) would be internally represented as
date(2019,1,1), and date(2018,12,-1) as date(2018,11,31).

Crossing the bounds between Gregorian and Julian calendars for non-
valid dates may develop unexpected results. For example,
date(1582,11,-31) would be (incorrectly) stored as
date(1582,9,20) .

 Neither time zones nor leap seconds are implemented yet.

Functions:

Almost all the functions listed below find a counterpart Datalog predicate with
an additional argument at the end representing the result (exceptions are noticed). The
name of the predicate is prepended with $ and enclosed between quotes as, for
instance, '$year'(X,Y) , which returns in Y the year of X.

 year(X) ISO
Extract the year of a date/time value as a number.

 month(X)

Extract the month of a date/time value as a number.

 day(X)

Extract the day of a date/time value as a number.

 hour(X)

Extract the hour of a date/time value as a number.

 minute(X)

Extract the minute of a date/time value as a number.

 second(X)

Extract the second of a date/time value as a number.

 extract(X from Y) ISO

Extract the field X from the date/time value Y, where X can be year, month, day,
hour, minute, or second .
This function is not available for Datalog.

 current_date ISO

Return the current date.

 current_time ISO
Return the current time.

 current_timestamp ISO

Return the current timestamp.

Operators:

 X + Y (Addition) ISO

Fernando Sáenz-Pérez 170/357

Universidad Complutense de Madrid

Datalog Educational System

Sum of X and Y. Arguments can be a date/time and an integer value, but two
date/times cannot be added. Adding a number to a date means adding days,
whereas adding a number to a time or datetime means adding seconds.

 X - Y (Subtraction) ISO

Difference of X and Y. Arguments can be either a date/time or an integer value.
Subtracting two dates computes the number of days between them. Subtracting
two times or datetimes computes the seconds between them.

Comparison operators apply to values with the same date/time types.
Comparing different date/time values in Datalog does not raise any exception but may
yield an unexpected behaviour. For example:

DES> datetime(2010,1,1,0,0,0)>date(2010,1,1)

{

 datetime(2010,1,1,0,0,0)>date(2010,1,1)

}

Info: 1 tuple computed.

That is, one might interpret to be asking whether the start time of the day
1/1/2010 is after the day 1/1/2010, which intuitively would not succeed. However,
date and time comparisons in Datalog are syntactic comparison, and the term
datetime(2010,1,1,0,0,0) is actually after the term date(2010,1,1), and so
the comparison in this example does succeed.

4.7.7 Negation

 not Query (Stratified negation)
It stands for the complement of the relation Query w.r.t. the meaning of the
program (i.e., closed world assumption). See sections 4.1.8 and 5.22.3. If Query is
not an atom, a new predicate defined by a head Head with relevant variables in
Query is built, and defined by the single rule Head :- Query. Then, not Head
is replaced by not Query.

4.7.8 Datalog Outer Joins

 lj(LeftRelation,RightRelation,JoinCondition) (Left join)
It stands for the left outer join of the relations LeftRelation and relations
RightRelation, under the condition JoinCondition (expressed as literals, cf.
Section 4.1.1), as understood in extended relational algebra (LeftRelation

JoinCondition RightRelation).

 rj(LeftRelation,RightRelation,JoinCondition) (Right join)
It stands for the right outer join of the relations LeftRelation and relations
RightRelation, under the condition JoinCondition (expressed as literals, cf.
Section 4.1.1), as understood in extended relational algebra (LeftRelation

JoinCondition RightRelation).

 fj(LeftRelation,RightRelation,JoinCondition) (Full join)
It stands for the full outer join of the relations LeftRelation and relations
RightRelation, under the condition JoinCondition (expressed as literals, cf.

Section 4.1.1), as understood in extended relational algebra (LeftRelation

JoinCondition RightRelation).

Fernando Sáenz-Pérez 171/357

Universidad Complutense de Madrid

Datalog Educational System

4.7.9 Datalog Aggregates

This section lists both aggregate functions (to be used in expressions) and
aggregate predicates (including grouping).

4.7.9.1 Aggregate Functions

Aggregate functions can only occur in the context of a group_by aggregate
predicate (see next section) and apply to the result set for its input relation.

 count(Variable)

Return the number of tuples in the group so that the value for Variable is not

null.

 count

Return the number of tuples in the group, disregarding tuples may contain null
values.

 sum(Variable)

Return the sum of values for Variable in the group, ignoring nulls.

 times(Variable)

Return the product of values for Variable in the group, ignoring nulls.

 avg(Variable)

Return the average of values for Variable in the group, ignoring nulls.

 min(Variable)

Return the minimum value for Variable in the group, ignoring nulls.

 max(Variable)

Return the maximum value for Variable in the group, ignoring nulls.

4.7.9.2 Predicate group_by

 group_by(Query,Variables,GroupConditions)

Solve GroupConditions in the context of Query, building groups w.r.t. the
possible values the variables in the list Variables. This list is specified as a Prolog
list, i.e., a sequence of comma-separated values enclosed between square brackets.
If this list is empty, there is only one group: the answer set for Query. The (possibly
compound) goal GroupConditions can contain aggregate functions ranging over
set variables.

4.7.9.3 Aggregate Predicates

 count(Query,Variable,Result)

Count in Result the number of tuples in the group for the query Query so that
Variable is a variable of Query (an attribute of the result relation set) and this
attribute is not null. It returns 0 if no tuples are found in the result set.

Fernando Sáenz-Pérez 172/357

Universidad Complutense de Madrid

Datalog Educational System

 count(Query,Result)

Count in Result the total number of tuples in the group for the query Query,
disregarding whether they contain nulls or not. It returns 0 if no tuples are found in
the result set.

 sum(Query,Variable,Result)

Sum in Result the numbers in the group for the query Query and the attribute
Variable, which should occur in Query. Nulls are simply ignored.

 times(Query,Variable,Result)

Compute in Result the product of all the numbers in the group for the query
Query and the attribute Variable, which should occur in Query. Nulls are
simply ignored.

 avg(Query,Variable,Result)

Compute in Result the average of the numbers in the group for the query Query
and the attribute Variable, which should occur in Query. Nulls are simply
ignored.

 min(Query,Variable,Result)

Compute in Result the minimum of the numbers in the group for the query

Query and the attribute Variable, which should occur in Query. Nulls are
simply ignored. If there are no such numbers, it returns null.

 max(Query,Variable,Result)

Compute in Result the maximum of the numbers in the group for the query
Query and the attribute Variable, which should occur in Query. Nulls are
simply ignored. If there are no such numbers, it returns null.

4.7.10 Null-related Predicates

 is_null(Term)

Succeed if Term is bound to a null value. It raises an exception if Term is a variable.

 is_not_null(Term)

Succeed if Term is not bound to a null value. It raises an exception if Term is a
variable.

4.7.11 Duplicates

The following built-ins take effect when duplicates are enabled via the
command /duplicates on.

 distinct(Query)

Succeed as many times as different ground answers are computed for Query.

 distinct([Variables], Query)

Fernando Sáenz-Pérez 173/357

Universidad Complutense de Madrid

Datalog Educational System

Succeed as many times as different ground tuples (built with Variables) are
computed for Query.

4.7.12 Top-N Queries

 top(N,Query)

Succeed at most N times for Query. This metapredicate can occur at the top-level
and in any rule body.

As tuples are usually retrieved in the chronological order in which they were
asserted, this metapredicate has not a declarative reading. So, the answer to a top-N
query depends on either when tuples were asserted or they become ordered. In
addition, for intensional predicates, their EDB rules are firstly fetched, followed by
their IDB rules. Let's consider the following system session:

DES> /assert t(1)

DES> /assert t(2)

DES> top(1,t(X))

Info: Processing:

 answer(X) :-

 top(1,t(X)).

{

 answer(1)

}

Info: 1 tuple computed.

DES> /abolish

DES> /assert t(2)

DES> /assert t(1)

DES> top(1,t(X))

Info: Processing:

 answer(X) :-

 top(1,t(X)).

{

 answer(2)

}

Info: 1 tuple computed.

DES> /assert p(X):-X=0;p(Y),X=Y+1

DES> /assert p(1)

DES> top(1,p(X))

Info: Processing:

 answer(X) :-

 top(1,p(X)).

{

 answer(1)

}

Info: 1 tuple computed.

Moreover, not only the chronological order affects semantics but also literal
ordering in the query. As this predicate retrieves the first N results for its query, then
depending on the actual (instantiated) query along computation, this may lead to
unexpected (non-declarative) results, as in:

DES> /assert p(X):-X=0;p(Y),X=Y+1

DES> top(1,p(X)),top(2,p(X))

Fernando Sáenz-Pérez 174/357

Universidad Complutense de Madrid

Datalog Educational System

Info: Processing:

 answer(X) :- top(1,p(X)),top(2,p(X)).

{

 answer(0)

}

Info: 1 tuple computed.

DES> top(2,p(X)),top(1,p(X))

Info: Processing:

 answer(X) :- top(2,p(X)),top(1,p(X)).

{

 answer(0),

 answer(1)

}

Info: 2 tuples computed.

In the last goal, solving top(1,p(X)) succeeds for both the instantiated goals
top(1,p(0)) and top(1,p(1)), as top(2,p(X)) firstly delivered two answers.
This is different to the first goal, where there was only one solution for top(1,p(X)),
so that the instantiated goal top(2,p(0)) returned only one answer. Compare this
with:

DES> top(2,p(X)),top(1,p(Y)),X=Y

Info: Processing:

 answer(X,Y) :-

 top(2,p(X)),

 top(1,p(Y)),

 X=Y.

{

 answer(0,0)

}

Info: 1 tuple computed.

Where the call top(1,p(Y)) is not instantiated and succeeds once for Y=0.

4.7.13 Order-By Predicate

 order_by(Query, [Expr1, …, ExprN])

 order_by(Query, [Expr1, …, ExprN], [Ord1, …, OrdN])

Order the result tuples for Query following Expr1, …, ExprN, where Expri
is an expression and Ordi is the (optional) ordering criterion which can be either a (for
ascending order) or d (for descending order). The order depends on the standard order
of terms provided by the underlying Prolog system. For instance, the following is
extracted from the SICStus Prolog manual, which specifies its particular order:

1. Variables, by age (oldest first—the order is not related to the names of
variables).

2. Floats, in numeric order (e.g. -1.0 is put before 1.0).

3. Integers, in numeric order (e.g. -1 is put before 1).

4. Atoms, in alphabetical (i.e. character code) order.

5. Compound terms, ordered first by arity, then by the name of the principal
functor, then by age for mutables and by the arguments in left-to-right order for

Fernando Sáenz-Pérez 175/357

Universidad Complutense de Madrid

Datalog Educational System

other terms. Recall that lists are equivalent to compound terms with principal
functor ./2.

So, variables come before floats, floats before integers, and son on. In particular,
this means that [p(1.0), p(0)] is actually sorted because any integer is before than
any float, even when the number it represents is not less. In contrast, the default
configuration of SWI-Prolog considers both as numbers and the ordered list in this
example would be [p(0), p(1.0)] .

The default answer ordering (set with /order_answer) is overridden if a top-
level query includes this predicate in any place of its computation paths. If the list of
ordering criterion is omitted, an ascending ordering is applied. Solving an order_by
predicate requires to have its query argument completely evaluated, analogously to the
requirement for a negated query. So, it cannot be used in any recursive computation
path.

The following system session shows some uses of this predicate:

DES> /assert t(3,1)

DES> /assert t(2,2)

DES> /assert t(1,3)

DES> /assert t(2,1)

DES> /order_answer off

DES> t(X,Y)

{

 t(3,1),

 t(2,2),

 t(1,3),

 t(2,1)

}

Info: 4 tuples computed.

DES> /order_answer off

DES> t(X,Y)

{

 t(1,3),

 t(2,1),

 t(2,2),

 t(3,1)

}

Info: 4 tuples computed.

DES> order_by(t(X,Y),[Y])

Info: Processing:

 answer(X,Y) :-

 order_by(t(X,Y),[Y],[a]).

{

 answer(3,1),

 answer(2,1),

 answer(2,2),

 answer(1,3)

}

Info: 4 tuples computed.

DES> order_by(t(X,Y),[X],[d])

Info: Processing:

 answer(X,Y) :-

 order_by(t(X,Y),[X],[d]).

Fernando Sáenz-Pérez 176/357

Universidad Complutense de Madrid

Datalog Educational System

{

 answer(3,1),

 answer(2,2),

 answer(2,1),

 answer(1,3)

}

Info: 4 tuples computed.

DES> order_by(t(X,Y),[X,Y],[d,a])

Info: Processing:

 answer(X,Y) :-

 order_by(t(X,Y),[X,Y],[d,a]).

{

 answer(3,1),

 answer(2,1),

 answer(2,2),

 answer(1,3)

}

Info: 4 tuples computed.

Note, however, that ordering affects the result of a computation. The next
example shows how, depending on the order criterion and coupled with a top-N
query, the answer can be different:

DES> top(1,order_by(t(X,Y),[X],[a]))

Info: Processing:

 answer(X,Y)

in the program context of the exploded query:

 answer(X,Y) :-

 top(1,'$p0'(Y,X)).

 '$p0'(Y,X) :-

 order_by(t(X,Y),[X],[a]).

{

 answer(1,3)

}

Info: 1 tuple computed.

DES> top(1,order_by(t(X,Y),[X],[d]))

Info: Processing:

 answer(X,Y)

in the program context of the exploded query:

 answer(X,Y) :-

 top(1,'$p0'(Y,X)).

 '$p0'(Y,X) :-

 order_by(t(X,Y),[X],[d]).

{

 answer(3,1)

}

Info: 1 tuple computed.

5. System Description

This section includes descriptions about the connection to relational database
systems via ODBC connections, persistence, safety and computability issues, modes,
syntax checking, source-to-source transformations, the multiline and development
modes, the declarative debuggers and tracers, the SQL test case generator, batch

Fernando Sáenz-Pérez 177/357

Universidad Complutense de Madrid

Datalog Educational System

processing, the configuration file, the system variables and messages, the lists of all the
available commands, the Textual API, the ISO escape character syntax, a database
instances generator, and finally some notes on the implementation of DES.

5.1 RDBMS connections via ODBC

DES provides support for connections to (relational) database management
systems (RDBMS's) in order to provide data sources for relations. This means that a
relation defined in a RDBMS as either a view or a table is allowed as any other relation
defined via a predicate in the deductive database. Then, computing a query can
involve computations both in the deductive inference engine and in the external
RDBMS SQL engine. Such relations become first-class citizens in the deductive
database and, therefore, can be queried in Datalog, RA, TRC and DRC. If the relation is
a view, it will be processed by the SQL engine. When an ODBC connection is opened,
all SQL statements are redirected to such connection, so DES does not longer process
such statements. This means that all the SQL features of the connected RDBMS are
available. However, in this case it is possible to submit DES SQL queries to test novel
features as hypothetical queries. The command /des Query drives the query to DES
instead of to the external database, nonetheless being possible to using the external
tables and views. The local, in-memory Datalog database can also be accessed in this
case, merging in-memory data with external data for relations with the same name.

Almost any relational database (RDB) can be accessed from DES using an
ODBC connection. Relational database management system (RDBMS) manufacturers
provide ODBC implementations which run on many operating systems (Microsoft
Windows, Linux, Mac OS X, ...) RDBMS's include enterprise RDBMS (as Oracle,
MySQL, DB2, ...) and desktop RDBMS (as MS Access and FileMaker).

ODBC drivers are usually bundled with OS platforms, as Windows OS's (ODBC
implementation), Linux OS distributions as Ubuntu, Red Hat and Mandriva
(UnixODBC implementation), and Mac OS's 10x (iODBC implementation). However,
additional drivers for specific databases are needed to be installed.

Since each RDBMS provides an ODBC driver and each OS an ODBC
implementation, details on how to configure such connections are out of the scope of
this manual. However, to configure such a connection, typically, the ODBC driver is
looked for and installed in the OS, if not yet available. Then, following the
manufacturer recommendations, it is configured. You can find many web pages with
advice on this. Here, we assume that there are ODBC connections already available.

5.1.1 Opening an ODBC Connection

To access an RDB in DES, first open the connection with the following
command, where test is the name of a previously created ODBC connection to a
database:

DES> /open_db test

You can also provide a user name and password (if needed) as in:

DES> /open_db test user('smith') password('my_pwd')

Notice that these values are enclosed between apostrophes (').

Fernando Sáenz-Pérez 178/357

Universidad Complutense de Madrid

Datalog Educational System

Additional ODBC configuration values can be stated as well, which must be

also enclosed between apostrophes, as in:

DES> /open_db sqlserver 'MultipleActiveResultSets=true'

Incidentally, note that DES requires the support of multiple active result sets for
SQL Server connections, which is what this configuration value is intended for.

If you have previously created some database objects (tables, views, ...) in DES
without an ODBC connection, they are still available and can be queried too (for more
information see Section 5.1.7).

5.1.2 Using a Connection

Assuming that the connection links to an empty database, let's start creating
some database objects:

(Note that, depending on the installed MySQL ODBC driver version, annoying
messages might be displayed.)

DES> create table t(a varchar(20) primary key)

DES> create table s(a varchar(20) primary key)

DES> create view v(a,b) as select * from t,s

DES> insert into t values(1)

Info: 1 tuple inserted.

DES> insert into s select * from t

Info: 1 tuple inserted.

DES> insert into s values(2)

Info: 1 tuple inserted.

Next, one can ask for the database schema (metadata) with the command:

DES> /dbschema

Info: Database 'mysql'

Info: Table(s):

 * father(father:varchar(60),child:varchar(60))

 * s(a:varchar(60))

 * t(a:varchar(60))

Info: View(s):

 * v(a:varchar(60),b:varchar(60))

 - Defining SQL statement:

 SELECT ALL t.a AS a, s.a AS b

 FROM (

 (

 t

 INNER JOIN

 s

));

Info: No integrity constraints.

The SQL text for external views is displayed if the DBMS is supported (DB2,
MySQL, Oracle and PostgreSQL have been tested on Windows) and the SQL statement
is recognized by the DES SQL dialect. In addition, the dependency graph (PDG, cf.
Section 4.1.8) is also built for the external relations. Note that the SQL text will not
coincide in general with the one in the user-submitted statement as external databases

Fernando Sáenz-Pérez 179/357

Universidad Complutense de Madrid

Datalog Educational System

keep their own internal representations for view statements and output rendered
queries.

All of these tables and views can be accessed from DES, as if they were local:

DES> select * from s;

answer(a:varchar) ->

{

 answer('1'),

 answer('2')

}

Info: 2 tuples computed.

DES> select * from t;

answer(a:varchar) ->

{

 answer('1')

}

Info: 1 tuple computed.

DES> select * from v;

answer(a:varchar,b:varchar) ->

{

 answer('1','1'),

 answer('1','2')

}

Info: 2 tuples computed.

DES> insert into t values('1')

Exception: error(odbc(23000,1062,[MySQL][ODBC 3.51

Driver][mysqld-5.0.41-community-nt]Duplicate entry '1' for key

1),_G3)

In this example, as table t has its single column defined as its primary key,
trying to insert a duplicate entry results in an exception from the ODBC driver.
Integrity constraints are handled by the RDBMS connected, instead of DES (notice that
the exception message is different from the one generated by DES).

Moreover, you can submit SQL statements that are not supported by DES but
otherwise by the connected RDBMS, as:

DES> alter table t drop primary key;

Then, you can insert again and see the result (including duplicates):

DES> insert into t values('1')

Info: 1 tuple inserted.

DES> select * from v;

answer(a:varchar,b:varchar) ->

{

 answer('1','1'),

 answer('1','1'),

 answer('1','2'),

 answer('1','2')

}

Fernando Sáenz-Pérez 180/357

Universidad Complutense de Madrid

Datalog Educational System

Info: 4 tuples computed.

Also, duplicate removing is also possible by the external RDBMS:

DES> select distinct * from v;

answer(a:varchar,b:varchar) ->

{

 answer('1','1'),

 answer('1','2')

}

Info: 2 tuples computed.

Nonetheless, these external objects can be accessed from Datalog as well (to this
end, remember to enable duplicates to get the expected result):

DES> /duplicates on

Info: Duplicates are on.

DES> s(X),t(X)

Info: Processing:

 answer(X) :-

 s(X),

 t(X).

{

 answer('1'),

 answer('1')

}

Info: 2 tuples computed.

This is equivalent to the following SQL statement:

DES> select s.a from s,t where s.a=t.a

answer(a:varchar) ->

{

 answer('1'),

 answer('1')

}

Info: 2 tuples computed.

However, whilst the former has been processed by the Datalog engine, the
latter has been processed by the external RDBMS. Some SQL statements might be more
efficiently processed by the external RDBMS and vice versa.

Duplicates are relevant in a number of situations. For instance, consider the
following, where duplicates are initially disabled:

DES> group_by(v(X,Y),[X,Y],C=count)

Info: Processing:

 answer(X,Y,C) :-

 group_by(v(X,Y),[X,Y],C = count).

{

 answer('1','1',1),

 answer('1','2',1)

}

Info: 2 tuples computed.

Fernando Sáenz-Pérez 181/357

Universidad Complutense de Madrid

Datalog Educational System

Although there are a couple of tuples for each group (see the table contents

above), only one is returned in the count because they are indistinguishable in a set.
Now, if duplicates are allowed, we get the expected result in an SQL scenario:

DES> /duplicates on

Info: Duplicates are on.

DES> group_by(v(X,Y),[X,Y],C=count)

Info: Processing:

 answer(X,Y,C) :-

 group_by(v(X,Y),[X,Y],C = count).

{

 answer('1','1',2),

 answer('1','2',2)

}

Info: 2 tuples computed.

Note that, even when you can access external SQL objects from Datalog, the
contrary is not allowed because there is neither Datalog metadata information for the
external SQL engine, nor access to Datalog data. The data bridge is only opened from
DES to the external DBMS, but not the other way round. This is in contrast to the SQL
database internally provided by DES, which allows a bidirectional communication
with the in-memory database because type information is supported for Datalog
predicates. The only way to access a predicate from a DBMS is to make it persistent in
the same DBMS (cf. Section 5.2), though this has some limitations if not all the rules of
the predicate have been made persistent.

5.1.3 Opening Several Connections

From release 3.0 on, several OCBC connections can be opened simultaneously.
Each time a new connection is opened, it becomes the new current connection, and all
query processing is related to it by default. For instance, to inspect (a rather limited set
of) metadata, one can submit the following command:

DES> /open_db mysql

DES> /dbschema

Info: Database 'mysql'

Info: Table(s):

 * s(a:varchar(20))

 * t(a:integer(4))

 * w(a:varchar(20))

Info: View(s):

 * v(a:varbinary(20))

Info: No integrity constraints.

To list all the opened connections, use the command:

DES> /show_dbs

$des

access

csv

db2

excel

mysql

oracle

Fernando Sáenz-Pérez 182/357

Universidad Complutense de Madrid

Datalog Educational System

postgresql

sqlserver

where you can see the list of opened connections, starting with $des, which is the
default database (DES deductive engine). You can close all connections but the default
one. As the names suggest, you can open a wide range of data sources, not only from
database management systems as DB2, Oracle, SQL Server but also from other sources
as datasheets (Excel) and text files (CSV (comma-separated values) files). For defining a
"table" in MS Excel, you should use Insert -> Name -> Define, where you specify the
name of the table and the cell range it covers (where the first row can be used as field
names, optionally). Types are inferred by the Excel system. Similarly, when defining a
connection to a text file, field names can be those in the first line of explicitly given.
Again, types are inferred. In both cases, you can inspect the "database" schema and
query them with either SQL, or Datalog, or RA, or TRC, or DRC queries.

Note that some data sources do neither creating views nor constraints, such as
datasheets and text files.

A warning for newbies: You have to define connection names following ODBC
installation. Do not expect the ones listed above are provided by default, you need both
the ODBC connection and the data provider (database server or whatever) already
installed and configured.

5.1.4 Current Connection

To find out the current opened ODBC database, use the command:

DES> /current_db

5.1.5 Making a Connection the Current One

Making a given connection the current one is simply done with:

DES> /use_db access

where access is an example of an already opened connection name.

5.1.6 Closing a Connection

Closing the current connection is simply done with:

DES> /close_db

You can also specify to close a given connection, as in:

DES> /close_db access

5.1.7 Schema and Data Visibility

Any submitted query or command refer to the current connection if not
otherwise specified as an argument of a command. When opening a connection (and
automatically making it the current one), their data and schema are visible, but not the
data and schema of other already opened connections. In contrast, data from the
default deductive database are visible for Datalog, RA, TRC and DRC queries,
although their schema are not. Recall that you can create tables and views in the
default database, which will be handled by DES but not delegated to any external

Fernando Sáenz-Pérez 183/357

Universidad Complutense de Madrid

Datalog Educational System

database (unless you make a predicate persistent; see Section 5.2). Anyway, data from
the default deductive database ($des) are not visible for SQL statements for a current
connection other than $des, as they are submitted for processing to the external
database.

 In the following system session, one creates a table in the default database of
DES (DDB), inserts a value, opens a connection, and realize that the table schema is not
visible, but its data do. This comes from the fact that, first, SQL data is translated by
DES to Datalog data and, second, Datalog data can be seamlessly combined with
external databases (EDB).

DES> create table t(a int) % Create table t in DDB

DES> insert into t values(1)

Info: 1 tuple inserted.

% Insert t(1) in DDB

DES> select * from t

answer(t.a:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

% Select data from DDB

DES> /open_db mysql % Open an EDB

DES> select * from t

Error: ODBC Code (1146):

[MySQL][ODBC 5.1 Driver][mysqld-

5.5.9]Table 'test.t' doesn't exist

% Select data from EDB

% As t is not defined in

% EDB, then, error

DES> t(X)

{

 t(1)

}

Info: 1 tuple computed.

% Predicate t is known to

% DDB and so it can be

% queried from Datalog

In this way, you can also combine data from DES and the external data source.
Next system session example shows this by creating a new table in the external
database and combining above predicate t/1, defined in DDB, with a new table s
created in EDB:

DES> create table s(a int) % Create table s in EDB

DES> insert into s values(2)

Info: 1 tuple inserted.

% Insert s(2) in EDB

Fernando Sáenz-Pérez 184/357

Universidad Complutense de Madrid

Datalog Educational System

DES> select * from s

answer(a:integer(4)) ->

{

 answer(2)

}

Info: 1 tuple computed.

% Select data from EDB

% Note the different type

% w.r.t. DDB

DES> t(X),s(Y)

Info: Processing:

 answer(X,Y) :-

 t(X),

 s(Y).

{

 answer(1,2)

}

Info: 1 tuple computed.

% Join t/1 (DDB) with

% s/1 (EDB)

5.1.8 Solving Engine and ODBC Connections

When the current database is an open ODBC connection, any statement is
submitted to the external database for its solving by default. However, this behaviour
can be changed by forcing DES to solve SQL DQL queries submitted to an external
database. This allows to experiment with more expressive forms of SQL queries as
allowed by the local deductive engine, as hypothetical queries, non-linear and
mutually recursive queries.

To force a single SQL DQL query to be processed by DES, simply use the
command /des followed by the query. Note however that DML and DDL queries are
still sent to the external DBMS. Let's consider MySQL, which does not support
recursive queries up to its current version 5.6. If we had available the table edge(a
int, b int), we can compute its transitive closure as follows:

DES> /open_db mysql

DES> select * from edge

answer(a:integer(4),b:integer(4)) ->

{

 answer(1,2),

 answer(2,3),

 answer(3,4)

}

Info: 3 tuples computed.

DES> /des assume select e1.a,e2.b from edge e1, edge e2 where

e1.b=e2.a in edge(a,b) select * from edge

answer(edge.a:int,edge.b:int) ->

{

 answer(1,2),

 answer(1,3),

 answer(1,4),

 answer(2,3),

 answer(2,4),

 answer(3,4)

}

Fernando Sáenz-Pérez 185/357

Universidad Complutense de Madrid

Datalog Educational System

Info: 6 tuples computed.

Note, however, that local data is not known by the external database. If we
assume on an external table and use a view on that table, the assumption will not be
available to the external database because the assumption is locally added (to the
deductive database, not to the external relational database), as in:

DES> /open_db mysql

DES> create table t(a int)

DES> insert into t values (1)

DES> create view v as select * from t

DES> select * from v

answer(A:INTEGER(4)) ->

{

 answer(1)

}

Info: 1 tuple computed.

DES> /des assume select 2 in t select * from v

answer(v.A:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

However, by querying the table for which we assume data, we get also the
assumption as DES computes the union of the local data and the external data:

DES> /des assume select 2 in t select * from t

answer(t.a:string) ->

{

 answer(1),

 answer(2)

}

Info: 2 tuples computed.

This merging of local and external data is also possible for relations with the
same name in both databases. If you have a table t already defined in the local
database, the current database is an external one, and force DES to solve the SQL
query, you will get data from both sources, as in:

DES> % Current DB is the local, deductive one

DES> create table t(a int)

DES> insert into t values(1) % Data in DES

Info: 1 tuple inserted.

DES> /open_db mysql

DES> create table t(a int)

DES> insert into t values(2) % Data in MySQL

Info: 1 tuple inserted.

DES> /des select * from t % Solved by DES

answer(t.a:int) ->

{

 answer(1),

 answer(2)

}

Info: 2 tuples computed.

Fernando Sáenz-Pérez 186/357

Universidad Complutense de Madrid

Datalog Educational System

DES> select * from t % Solved by MySQL

answer(a:integer(4)) ->

{

 answer(2)

}

Info: 1 tuple computed.

5.1.9 Integrity Constraints, ODBC Connections, and Persistence

Integrity constraints as described in Section 4.1.16 are monitored by DES for the
local deductive database. This means that inserting values directly into external tables
(either by submitting an INSERT INTO statement from the opened connection or by

inserting values out of DES) is not monitored for constraint consistency. However, as
constraint consistency checking considers all visible data, when asserting into the local
database, data from the current opened connection is also taken into account. The
following system session shows a possible scenario illustrating these situations:

DES> /use_db $des

DES> create or replace table t(a int primary key)

DES> /dbschema

Info: Database '$des'

Info: Table(s):

 * t(a:int)

 - PK: [a]

Info: No views.

Info: No integrity constraints.

DES> /open_db mysql

The table t is also an external table in the connection mysql:

DES> /dbschema t

Info: Database 'mysql'

Info: Table:

 * t(a:integer(4))

Retrieve tuples from the external table t:

DES> select * from t

answer(a:integer(4)) ->

{

}

Info: 0 tuples computed.

The following is inserted in the external table t. Recall that SQL statements
under an opened connection are submitted directly to the external RDBMS:

DES> insert into t values (1)

Info: 1 tuple inserted.

DES> insert into t values (1) % Not rejected as it is not

monitored by DES

Info: 1 tuple inserted.

DES does monitor the following assertion as it is directed to the local database:

DES> /assert t(1)

Error: Primary key violation t.[a]

Fernando Sáenz-Pérez 187/357

Universidad Complutense de Madrid

Datalog Educational System

 when trying to insert: t(1)

Error: Asserting rules due to integrity constraint violation.

DES> /use_db $des

When the current database is the local database ($des), the external table t is
not visible. So, the following fact is asserted in the local database:

DES> insert into t values (1)

Info: 1 tuple inserted.

Any other attempt to assert the same fact t(1) is rejected:

DES> /assert t(1)

Error: Primary key violation t.[a]

 when trying to insert: t(1)

Error: Asserting rules due to integrity constraint violation.

The following would also go to the local database:

DES> insert into t values (1)

Error: Primary key violation t.[a]

 when trying to insert: t(1)

Error: Asserting rules due to integrity constraint violation.

Info: 0 tuples inserted.

Finally, any persistent predicate (see forthcoming Section 5.2) which has
attached constraints is checked for its consistency, irrespective of the external database
it is stored. Also, any of the supported constraints can be attached to persistent
predicates, therefore providing a high expressivity and declarative consistency level.

5.1.10 Caveats and Limitations

This section lists some caveats and limitations of the current implementation of
ODBC connections to external data sources.

5.1.10.1 Caching

Data in relational tables are cached in the extension (answer) table during
Datalog computations, and it is not requested anymore until this cache is cleared
(either explicitly with the command /clear_et or because a command or statement

invalidating its contents, as an SQL update query). Therefore, it could be possible to
access outdated data from a Datalog query. Let's consider:

DES> t(X)

{

 t('1')

}

Info: 1 tuple computed.

Then, from the MySQL client:

mysql> insert into t values('2');

Query OK, 1 row affected (0.06 sec)

And, after, in DES, the new tuple is not listed via a Datalog query:

DES> t(X)

Fernando Sáenz-Pérez 188/357

Universidad Complutense de Madrid

Datalog Educational System

{

 t('1')

}

Info: 1 tuple computed.

However, an SQL statement returns the correct answer because it clears the
extension table (SQL is compiled to Datalog rules, which are added to the database and
the cache is cleared):

DES> select * from t;

answer(a:varchar) ->

{

 answer('1'),

 answer('2')

}

Info: 2 tuples computed.

In addition, it is not recommended to mix Datalog and SQL data unless one is
aware of what’s going on. It is possible to assert tuples with the same name and arity
as existing RDBMS's tables and/or views. Let's consider the same table t as above with
the same data (two tuples t('1') and t('2')) and assert a tuple t('3') as follows:

DES> /assert t('3')

DES> t(X)

{

 t('1'),

 t('2'),

 t('3')

}

Info: 3 tuples computed.

DES> select * from t

answer(a:varchar) ->

{

 answer('1'),

 answer('2')

}

Info: 2 tuples computed.

This reveals that, although on the DES side, Datalog data are known, they are
not on the RDBMS side. This is in contrast to the DES management of data: if no ODBC
connection is opened, the DES engine is aware of any changes to data, both from
Datalog and SQL sides.

Concluding, those updates that are external to DES might not be noticed by the
DES engine. And, also, an ODBC connection should be seen as a source of external data
that should not be mixed with Datalog data. However, you can safely use the more
powerful Datalog language to query external data (and to be sure the current data is
retrieved, clear the cache with /clear_et).

5.1.10.2 ODBC Metadata

When computing the predicate dependency graph and stratification, metadata
from the external DBMS is retrieved, which can be a costly operation if the number of
tables and views is large. This is the default case when opening connections to DBMS's

Fernando Sáenz-Pérez 189/357

Universidad Complutense de Madrid

Datalog Educational System

as SQL Server or Oracle, where many views are defined for an empty database. Also,
ODBC connections to Oracle seem to be slow on some platforms.

It is however possible to restrict the number of retrieved objects from the
external database with the settings in the ODBC connection. For instance, returned
schemas in DB2 can be limited to user schemas with the property SchemaList by
providing the user name.

Listing the database schema can suffer this situation as well, by issuing the
command /dbschema. Instead, it is better to focus on the required object to display, as
either /dbschema relname or /dbschema connection:relname.

Another issue is the un-syncing of the part of the predicate dependency graph
related to the external metadata. Each time an external database is opened or the
current database is set to it, the PDG is computed. Any changes to the external data
from an external source are not available until one of these operations are performed
(with the commands /open_db and /use_db, respectively) or a DDL statement is
locally issued. It is also possible to refresh the PDG with the command /refresh_db.

5.1.10.3 Platform-specific Issues

ODBC connections are only supported by the provided binaries, and the source
distributions for SWI-Prolog and SICStus Prolog.

If you use a 64 bit Windows OS, notice that you can select to run either a 64 bit
version of DES or a 32 bit one. In the first case (64 bit), you must use the Database
Connectivity (ODBC) Data Source Administrator tool (Odbcad32.exe):

 The 32-bit version of the Odbcad32.exe file is located in the folder
%systemdrive%Windows%SysWoW64. Note that the number 64 in this folder
name is correct even when it is intended for the 32-bit version.

 The 64-bit version of the Odbcad32.exe file is located in the folder
%systemdrive%Windows%System32. Note that this number 32 in this folder
name is correct even when it is intended for the 64-bit version.

 Also notice that a 64 bit driver requires also a 64 bit database installation. For
instance, you can define a 32 bit ODBC connection to 32 bit MS Access installation and
a 64 bit ODBC connection to a 64 bit Oracle installation. In this scenario, both
connections cannot be opened from the same DES instance (which is either a 32 bit or
64 bit release).

Some data types are not yet supported by the ODBC library in the SICStus
releases, while in SWI-Prolog they do. So, if you find an exception including something
as unsupported_datatype in the first system, try to use the second system instead
(the DES download page specifies the Prolog system for each download). However, in
this second system you may get an answer of string type for unknown data types
(which might be numeric in the database), as follows:

DES> /prolog_system

Info: Prolog engine: SWI-Prolog 7.2.0.

DES> /open_db db2

Info: Computing predicate dependency graph...

Info: - Reading external metadata...

Info: - Building graph...

Info: Computing strata...

Fernando Sáenz-Pérez 190/357

Universidad Complutense de Madrid

Datalog Educational System

DES> select 1.0/2.0 from dual

answer ->

{

 answer('0,50000000000000000000000000000')

}

Info: 1 tuple computed.

Notice also that the answer does not include neither the column name nor its
data type. In SICStus:

DES> /prolog_system

Info: Prolog engine: SICStus 4.3.1 (x86-win32-nt-4): Thu Nov 27

18:31:25 WEST 2014.

DES> /open_db db2

Info: Computing predicate dependency graph...

Info: - Reading external metadata...

Info: - Building graph...

Info: Computing strata...

DES> select 1.0/2.0 from dual

Exception:

error(odbc_error(unsupported_datatype,describeandbindcolumn(stat

ement_handle(1),1,_367,_369,_371)),odbc_error(unsupported_dataty

pe,describeandbindcolumn(statement_handle(1),1,_367,_369,_371)))

5.1.11 Tested ODBC Drivers

Several data sources have been successfully tested on Windows XP/Vista/7 32
bit with both SICStus Prolog and SWI-Prolog executables and sources:

 IBM DB2 v9.7.200.358

 Oracle Database Express Edition 11g Release 2 (also tested with Windows 7 64 bit
and SWI-Prolog 6.0.0 64 bit)

 SQL Server Express 2008 (including spatial components)

 MySQL 5.5.9

 PostgreSQL 9.1.3

 Access 2003

 Excel 2003

 CSV text files

5.2 Persistence

Since DES 3.0, it is possible to use persistent predicates on an external database
via an ODBC connection. This section describes how to declare a persistent predicate,
use it, examine its schema, and remove its persistence assertion. Finally, a couple of
caveats are included.

5.2.1 Declaring a Persistent Predicate

An assertion is used to declare a persistent predicate, as in:

DES> :-persistent(p(a:int),mysql)

Fernando Sáenz-Pérez 191/357

Universidad Complutense de Madrid

Datalog Educational System

where its first argument is the predicate and its schema (where types include all the
supported types by DES, cf. Section 4.1.16.1), and the second one is the ODBC
connection name. This name can be omitted if the current connection is the one you
want to use for declaring predicate persistence, as in:

DES> /current_db

Info: Current database is 'mysql'. DBMS: mysql

DES> :-persistent(p(a:int))

You can confirm that the predicate p has been declared as persistent with:

DES> /list_persistent

mysql:p(a:int)

where the connection name is shown, followed by a semicolon and the predicate
schema.

Also, if you have type information declared already, you can simply refer to the
predicate with its name and arity in the persistence assertion:

DES> /use_db $des

DES> create table p(a int)

DES> /use_db mysql

DES> :-persistent(p/1)

DES> /list_persistent

mysql:p(a:int)

The general form of a persistence assertion is as follows:

:-persistent(PredSpec[,Connection]))

This assertion makes a predicate to persist on an external RDBMS via an ODBC
connection. PredSpec can be either the pattern PredName/Arity or
PredName(Schema), where Schema can be either ArgName1, …, ArgNameN or
ArgName1:Type1, …, ArgNameN:TypeN. If a connection name is not provided, the
current open database is used. The local, default database $des cannot be used to
persist, but an ODBC connection.

5.2.2 Using Persistent Predicates

You can assert facts as usual and query the persistent predicate p/1 as the
following example shows:

DES> /assert p(1)

DES> p(X)

{

 p(1)

}

Info: 1 tuple computed.

And, as expected, it can be seamlessly combined with other non-persistent
predicates, as in:

DES> /assert q(2)

DES> p(X),q(Y),X<Y

Info: Processing:

Fernando Sáenz-Pérez 192/357

Universidad Complutense de Madrid

Datalog Educational System

 answer(X,Y) :-

 p(X),

 q(Y),

 X < Y.

{

 answer(1,2)

}

Info: 1 tuple computed.

where q(2) is in the meaning of q/1.

Also, you can use SQL, RA, TRC or DRC languages to query such persistent
predicates, as in:

DES> :-type(q(a:int))

DES> select * from p,q where p.a<q.a

answer(p.a:int,q.a:int) ->

{

 answer(1,2)

}

Info: 1 tuple computed.

DES> p zjoin p.a<q.a q

answer(p.a:int,q.a:int) ->

{

 answer(1,2)

}

Info: 1 tuple computed.

DES> {P,Q | P in p and Q in q and P.a<Q.a}

answer(p_a:int,q_a:int) ->

{

 answer(1,2)

}

Info: 1 tuple computed.

DES> {P,Q | p(P) and q(Q) and P<Q}

answer(p:int,q:int) ->

{

 answer(1,2)

}

Info: 1 tuple computed.

Submitting the same query to the SQL ODBC bridge and to the deductive
engine returns the same result:

DES> /show_compilations on

DES> /show_sql on

DES> /prompt des_db

DES:access> select * from p

answer(a:INTEGER(4)) ->

{

 answer(1)

}

Info: 1 tuple computed.

DES:access> /des select * from p

Info: SELECT * FROM [p]

Info: SQL statement compiled to:

Fernando Sáenz-Pérez 193/357

Universidad Complutense de Madrid

Datalog Educational System

answer(A) :-

 p(A).

answer(p.a:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

DES:access> /des select * from p

Info: SELECT * FROM [p]

Info: SQL statement compiled to:

answer(A) :-

 p(A).

answer(p.a:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

DES:access> {P | P in p}

Info: SELECT * FROM [p]

Info: TRC statement compiled to:

answer(A) :-

 p(A).

answer(a:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

The first query is completely processed by the external database. The second
and third ones are submitted to the deductive engine, which translates the SQL query
to a Datalog goal and program under which the result is computed. This amounts to
query the external database with the SQL statement built for the persistent predicate
(SELECT * FROM [p]). When such a query is directed to the deductive engine, note
that if a condition is included, it would be computed by this engine (as opposed to
directing the query to the external database), as in:

DES:access> /des select * from p where a>0

Info: SELECT * FROM [p]

Info: SQL statement compiled to:

answer(A) :-

 p(A),

 A>0.

answer(p.a:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

Persistent predicates can be combined even with external data coming from
other ODBC connections, as in:

DES> /open_db access

DES> /dbschema t

Info: Database 'access'

Info: Table:

Fernando Sáenz-Pérez 194/357

Universidad Complutense de Madrid

Datalog Educational System

 * t(a:INTEGER(4))

DES> select * from t

answer(a:INTEGER(4)) ->

{

 answer(1),

 answer(2)

}

Info: 2 tuples computed.

DES> p(X),t(X)

Info: Processing:

 answer(X) :-

 p(X),

 t(X).

{

 answer(1)

}

Info: 1 tuple computed.

Here, the current database is access and all its data is available (as already
introduced in Section 5.1.2); in particular, the table t, which contains the tuple t(1).

Moreover, a persistent predicate can refer to external relations (tables and
views) as well. Assuming the external table u in MySQL:

DES:mysql> select * from u

answer(a:integer(4)) ->

{

 answer(2),

 answer(3)

}

Info: 2 tuples computed.

DES:mysql> /assert p(X):-u(X)

DES:mysql> p(X)

{

 p(1),

 p(2),

 p(3)

}

Info: 3 tuples computed.

However, if you add a new tuple to the relation u in the local deductive
database, the external database will not be aware of this when computing a query on
the persistent predicate p, as in:

DES:mysql> /assert u(4)

DES:mysql> p(X)

{

 p(1),

 p(2),

 p(3)

}

Info: 3 tuples computed.

If you want to mix data from both databases in this case, it is needed to use the
metapredicate st/1, as the following session illustrates:

Fernando Sáenz-Pérez 195/357

Universidad Complutense de Madrid

Datalog Educational System

DES:mysql> /retract p(X):-u(X)

DES:mysql> /assert p(X):-st(u(X))

DES:mysql> p(X)

{

 p(1),

 p(2),

 p(3),

 p(4)

}

Info: 4 tuples computed.

Though this could be automatically provided without resorting to using the
metapredicate st/1, this option is left up to the user because mixing both the
deductive and the external databases in this way will lead to read all the contents of the
external relation. Without using st/1, only the needed contents are read (for instance,
selecting only some tuples by a call with ground arguments, as posing the query
p(2)). The metapredicate st/1 enforces that its predicate argument is to be located at
a lower strata than the predicate in whose body the metapredicate occurs. This forces
to solve its argument by using both the external database engine and the deductive
engine. Thus, in the above example u/1 is located at a lower strata than p/1:

DES:mysql> /strata

[(u/1,1),(p/1,2)]

Recall also that to be able to mix both databases, the external database must be
the current one. Otherwise, only the tuples computed with the rules in the deductive
database are obtained:

DES:mysql> /use_ddb

Info: Computing predicate dependency graph...

Info: Computing strata...

DES:$des> p(X)

{

 p(1),

 p(4)

}

Info: 2 tuples computed.

Here, as the rule p(X):-st(u(X)) has been kept in the local database, the

data source for u/1 is only coming from this database, and the external tuples u(2)
and u(3) are not retrieved.

Finally, one can retract the rules previously asserted as well. For instance:

DES> /retract p(1)

DES> /retract p(X):-st(u(X))

5.2.3 Processing a Persistence Assertion

Processing a persistence assertion means to make persistent a predicate and
delegate either all or part of its computation. All of its current rules as well as rules
added afterwards are stored in a persistent media, as a relational database. A fact is
translated into a table row whereas a rule is translated into an SQL view. Each
persistent predicate is translated into a view which is the union of the table holding its
facts and all the SQL translations for its rules. Translating rules into SQL views

Fernando Sáenz-Pérez 196/357

Universidad Complutense de Madrid

Datalog Educational System

includes an adaptation of Draxler's Prolog to SQL compiler [Drax92]. Rules that cannot
be delegated to the external media are kept in the local database for its storing and
processing, therefore coupling the processing of the external and deductive engines.

Any rule belonging to the definition of a predicate pred which is being made
persistent is expected, in general, to involve calls to other predicates. Each callee (such
other called predicate) can be:

 An existing relation in the external database.

 A persistent predicate restored already in the local database.

 A persistent predicate not yet restored in the local database.

 A non-persistent predicate.

For the first two cases, besides making pred persistent, nothing else is
performed when processing its persistence assertion. For the third case, a persistent
predicate is automatically restored in the local database, i.e., it is made available to the
deductive engine. For the fourth case, each non-persistent predicate is automatically
made persistent if types match; otherwise, an error is raised. This is needed in order for
the external database to be aware of a predicate only known by the deductive engine so
far, as this database will be eventually involved in computing the meaning of pred..

However, not all rules can be externally processed for a number of reasons
including: the external database does not support some features, and the translations of
some built-ins are not supported yet. In the current state of the implementation, the
following conditions must hold for a rule to be externally processed:

 Only the following built-ins are supported: comparison operators and the
infix arithmetic is.

 The rule does not form a recursive cycle.

 The rule is not a restricting rule (with a minus before its head; cf. Section
4.1.17).

Nonetheless, they are kept in the in-memory database for computing the
meaning of the predicate when needed. This is performed by the deductive engine,
which couples the processing of the external database with its own processing to
derive the meaning of the predicate. Therefore, all the deductive computing power is
preserved although the external persistent media lacks some features as, for instance,
recursion (think of MySQL and MS Access). Anyway, such rules which are not
translated into the external database are stored on it as metadata information. This is
needed to restore the complete definition of a persistent predicate upon restoring (c.f.
next section). Further releases might contain relaxed conditions. The following system
session shows an example of this.

DES> /open_db access

DES> :-persistent(q(a:int))

DES> /assert q(X):-X=1;q(Y),X=Y+1

DES> select top 3 * from q

answer(a:INTEGER(4)) ->

{

 answer(1)

}

Info: 1 tuple computed.

Fernando Sáenz-Pérez 197/357

Universidad Complutense de Madrid

Datalog Educational System

DES> /des select top 3 * from q

answer(q.a:int) ->

{

 answer(1),

 answer(2),

 answer(3)

}

Info: 3 tuples computed.

Here, the first select statement is processed by Access, which is only able to
retrieve the extensional part from the definition of q (the recursive, intensional part is
kept in the local, deductive database). In the second select statement, DES processed
the whole meaning because it is able to process recursive definitions in contrast to
Access, which cannot.

 Any time a predicate is made persistent, its associated connection is opened if
it not was opened already (the current connection is not changed, anyway). The
connection is not closed even when you drop the assertion (see Section 5.2.6).

5.2.4 Restoring Predicates

As expected, if you make a predicate persistent and quit DES, in a next session
you can recover the state of this predicate. It is simply done by submitting again the
same assertion as used to make the predicate persist for the first time.

However, note that any rule in the in-memory database for such a predicate
will be persisted, too. This is to say that, for instance, if you have persisted a predicate
which is not restored already, and you have a rule asserted in the in-memory database
for this predicate, then the result of restoring it is the union of the asserted rule and the
rules in the external database. For instance, let's consider the following system session:

DES> :-persistent(p(a:int),mysql)

DES> /assert p(1)

Now, let's assume another system session (quit and restart DES):

DES> /assert p(2)

DES> :-persistent(p(a:int),mysql)

Info: Recovering existing data from external database for 'p'...

DES> /listing

p(1).

p(2).

Info: 2 rules listed.

As it can be seen, the resulting database is composed of the union of the
external rules and the local rules. The fact p(2) is automatically made persistent
during restoring.

Finally, restoring compiled rules in a different system session does not recover
source rules as they were originally asserted. They are recovered in its compiled form
and without textual variable names as they were originally typed. Let's consider the
following:

DES> :-persistent(p(a:int),mysql)

DES> /assert p(X):-X=1;X=2

DES> /listing

Fernando Sáenz-Pérez 198/357

Universidad Complutense de Madrid

Datalog Educational System

p(X) :-

 X = 1

 ;

 X = 2.

Info: 1 rule listed.

DES> /drop_assertion :-persistent(p(a:int),mysql)

DES> /listing

p(X) :-

 X = 1

 ;

 X = 2.

Info: 1 rule listed.

DES> :-persistent(p(a:int),mysql)

DES> /listing

p(X) :-

 X = 1

 ;

 X = 2.

Info: 1 rule listed.

DES> /quit

Then, we open a new system session and type:

DES> :-persistent(p(a:int),mysql)

Info: Recovering existing data from external database...

DES> /listing

p(A) :-

 A = 2.

p(A) :-

 A = 1.

Info: 2 rules listed.

As it can be seen, two rules are the result of the compilation of the originally
asserted single rule with a disjunctive body. Also original variable names (only X in
this case) are missing. However, a next release of DES might deal with this, allowing to
restore the very same rules as the original ones.

5.2.5 Schema of Persistent Predicates

You can request the current database schema with:

DES> /dbschema

Info: Database '$des'

Info: No tables.

Info: View(s):

 * p(a:int)

 - Defining SQL statement:

 CREATE VIEW p(a) AS

 SELECT ALL *

 FROM

 p_des_table;

 - Datalog equivalent rules:

Info: No integrity constraints.

Fernando Sáenz-Pérez 199/357

Universidad Complutense de Madrid

Datalog Educational System

where the persistent predicate is listed in the database schema of the default database
$des and, therefore, it can be combined in a query with any predicate visible in this
database.

Note that the predicate p has been declared as a view depending on a table
(with the same name as the predicate and view, but ending with "_des_table"). Since
predicates are defined in general with intensional rules, the view p will contain those
intensional rules whereas the table will contain the extensional rules (facts). For
instance, assuming that the predicate r has been made persisted already in the same
connection, we assert an intensional rule for p, and examine its schema:

DES> /assert p(X):-r(X)

DES> /dbschema p

Info: Database '$des'

Info: View:

 * p(a:int)

 - Defining SQL statement:

 CREATE VIEW p(a) AS

 (

 SELECT ALL *

 FROM

 p_des_table

)

 UNION ALL

 (

 SELECT ALL rel1.a

 FROM

 r AS rel1

);

 - Datalog equivalent rules:

 p(1).

 p(2).

 p(X) :-

 r(X).

If you change the current database to the external one and request the schema
for p, you get:

DES> /use_db mysql

DES> /dbschema p

Info: Database 'mysql'

Info: View:

 * p(a:integer(4))

which is the schema of theview p as provided by the external database system. Now,
the detailed metadata information supplied by $des is not available in the external
database.

Also note that the above couple of commands can be simply written as a single
one without resorting to change the current database, with:

DES> /dbschema mysql:p

Fernando Sáenz-Pérez 200/357

Universidad Complutense de Madrid

Datalog Educational System

5.2.6 Removing Predicate Persistence

One can make a given predicate non-persistent by simply dropping its
assertion, as in:

DES> /drop_assertion :-persistent(p(a:int),mysql)

This retrieves all the data stored in the external database and stores it back in
the in-memory database of DES. In addition to the view p and table p_des_table
created in the external database for p, there is also a table p_des_metadata holding
the Datalog intensional rules that have been made persistent. This is needed to recover
the original rules as they were asserted (in its compiled Datalog form).

If you have made persistent a predicate which depends on other for which no
type constraints has been given before, a type constraint is derived, if possible, and
both predicates are made persistent. This type constraint remains even when the
persistence assertion is removed. If you want to remove this too, then submit a
/drop_ic command. The following session illustrates this:

DES> /dbschema

Info: Database '$des'

Info: No tables.

Info: No views.

Info: No integrity constraints.

DES> :-persistent(p(a:int),access)

DES> /assert p(X):-q(X)

Warning: Undefined predicate: [q/1]

DES> /dbschema

Info: Database '$des'

Info: No tables.

Info: View(s):

 * p(a:int)

 - Defining SQL statement:

 CREATE VIEW p AS

 (

 SELECT ALL *

 FROM

 p_des_table

)

 UNION ALL

 (

 SELECT ALL rel1.col1

 FROM

 q AS rel1

);

 * q(col1:int)

 - Defining SQL statement:

 CREATE VIEW q AS

 SELECT ALL *

 FROM

 q_des_table;

Info: No integrity constraints.

DES> /drop_assertion :-persistent(p(a:int),access)

DES> /dbschema

Info: Database '$des'

Fernando Sáenz-Pérez 201/357

Universidad Complutense de Madrid

Datalog Educational System

Info: Table(s):

 * p(a:int)

Info: View(s):

 * q(col1:int)

 - Defining SQL statement:

 CREATE VIEW q AS

 SELECT ALL *

 FROM

 q_des_table;

Info: No integrity constraints.

DES> /drop_ic :-type(p(a:int))

DES> /drop_assertion :-persistent(q(col1:int),access)

DES> /drop_ic :-type(q(col1:int))

DES> /dbschema

Info: Database '$des'

Info: No tables.

Info: No views.

Info: No integrity constraints.

If you want to completely remove a predicate, even its persistent
representation, you can use the command /abolish, as in:

DES> /abolish p

DES> /dbschema

Info: Database '$des'

Info: No tables.

Info: No views.

Info: No integrity constraints.

DES> /listing p

Info: 0 rules listed.

DES> /use_db access

DES> /dbschema access:p

Info: Database 'access'

Error: No table or view found with name 'p'.

5.2.7 Closing a Persistent Predicate Connection

It is also possible to close the connection to a persistent predicate with the
command /close_persistent Name, where Name is the name of the predicate.

This means that the predicate will be no longer visible for the local database (though its
type information metadata are kept). However, and by contrast to the command
/drop_assertion, the external relations supporting persistence for the predicate are
not dropped and, therefore, a subsequent persistent assertion can be issued (either in
the same or in a different session) and the predicate is again restored. Only the
connection to the predicate given as argument is closed. If it depends on other
persistent predicates, they will be still persistent after closing the connection. The
following system session illustrates all this:

DES> :-persistent(p(a:int),access)

DES> /assert p(X):-r(X)

DES> /list_persistent

access:p(a:int)

access:r(col1:int)

DES> /close_persistent p

Fernando Sáenz-Pérez 202/357

Universidad Complutense de Madrid

Datalog Educational System

DES> /list_persistent

access:r(col1:int)

DES> /dbschema $des

Info: Database '$des'

Info: Table(s):

 * p(a:int)

 * t(a:int)

Info: View(s):

 * r(col1:int)

 - Defining SQL statement:

 CREATE VIEW r AS

 SELECT ALL *

 FROM

 r_des_table;

Info: No integrity constraints.

DES> /dbschema access

Info: Database 'access'

Info: Table(s):

 * dual(void:INTEGER(4))

 * p_des_metadata(txtrule:LONGCHAR(2147483646))

 * p_des_table(a:INTEGER(4))

 * r_des_metadata(txtrule:LONGCHAR(2147483646))

 * r_des_table(col1:INTEGER(4))

Info: View(s):

 * p(a:INTEGER(4))

 * r(col1:INTEGER(4))

Info: No integrity constraints.

5.2.8 Schema and Data Visibility

The default database (DDB) is called $des, and it contains metadata of each
predicate for which either a type assertion or an SQL table creation statement has been
issued. If one makes a predicate persistent in an external database (EDB), its metadata
as well as its data is visible both to DDB and EDB. The following session illustrates this:

DES> /use_db $des

DES> :-persistent(p(a:int),mysql)

DES> /assert p(1)

DES> /show_compilations on

DES> select * from p

Info: SQL statement compiled to:

answer(A) :-

 p(A).

answer(p.a:int) ->

{

 answer(1)

}

Info: 1 tuple computed.

DES> /use_db mysql

DES> select * from p

answer(a:integer(4)) ->

{

 answer(1)

}

Fernando Sáenz-Pérez 203/357

Universidad Complutense de Madrid

Datalog Educational System

Info: 1 tuple computed.

Note that in the first case (first SELECT above) when the current database is
$des, DES solves the query (in this case retrieving tuples from DDB), and in the
second case (second SELECT above), the query is directly submitted to the EDB, which
solves it. In the first, case, the SQL statement is compiled to Datalog and solved by the
deductive engine, and in the second one, data and metadata are collected from EDB
and shown as a result. Retrieved types from an external database differ in general to
those managed by DES, as it can be seen in this example. This is not an issue as long as
equivalent types are found (in this case, number(integer) is considered as
equivalent to integer(4), as numeric size constraints are not handled by DES, up to
now).

As already introduced in Section 5.1.7, even when a connection is opened, their
data and metadata are not known unless it becomes the current database, as illustrated
next:

DES> /use_db mysql

DES> create table q(a int)

DES> insert into q values (2)

Info: 1 tuple inserted.

DES> select * from q

answer(a:integer(4)) ->

{

 answer(2)

}

Info: 1 tuple computed.

DES> /use_db $des

DES> select * from q

Error: Unknown table or view "q"

DES> q(X)

Warning: Undeclared predicate(s): [q/1]

{

}

Info: 0 tuples computed.

However, a persistent predicate does have access to data and metadata in the
EDB it was made persistent. To show this, and following the above system session, let's
assert the following rule:

DES> /assert p(X):-q(X)

Warning: Undefined predicate(s): [q/1]

DES> p(X)

{

}

Info: 0 tuples computed.

DES> :-persistent(p(a:int),mysql)

DES> p(X)

{

 p(2)

}

Info: 1 tuple computed.

Here, the external database is assumed to hold a relation q/1 with a tuple q(2)
in its meaning.

Fernando Sáenz-Pérez 204/357

Universidad Complutense de Madrid

Datalog Educational System

5.2.9 Applications

Persisting predicates opens a brand new scenario for Datalog applications
because several reasons: First, predicates are no longer limited by available memory;
instead, persistent predicates are using as much secondary storage as needed and
provided by the underlying external database. Predicate size limit is therefore moved
to the external database. Second, processing is directed to the external database for
rules that can be delegated, and to the deductive engine for rules that can not. This
way, one can take advantage of the external database performance and scalability.
Third, queries which are not possible in an external database can be solved by the
deductive engine. So, one can extend external database expressiveness with the added
features in DES. Finally, as several ODBC connections are allowed at a time, different
predicates can be made persistent in different DBMS's, which allows for
interoperability among external relational engines and the local deductive engine,
therefore enabling business intelligence applications.

For instance, let's consider MySQL, which does not support recursive queries
up to its current version 5.6. The following predicate can be made persistent in this
DBMS even when it is recursive:

DES> :-persistent(path(a:int,b:int),mysql)

DES> /assert path(1,2)

DES> /assert path(2,3)

DES> /assert path(X,Y):-path(X,Z),path(Z,Y)

Warning: Recursive rule cannot be transferred to external

database (kept in local database for its processing):

path(X,Y) :-

 path(X,Z),

 path(Z,Y).

DES> path(X,Y)

{

 path(1,2),

 path(1,3),

 path(2,3)

}

Info: 3 tuples computed.

Here, non-recursive rules are stored in the external database whereas the
recursive one is kept in the local database. External rules are processed by MySQL and
local rules by the local deductive engine.

In addition, recall that you can use SQL on the current database schema (for
which the persistent predicate schema is known). Then, even special SQL features
included in DES, such as hypothetical queries, can be used. For example, and following
the above system session:

DES> assume select 3,1 in path(a,b) select * from path

answer(path.a:int,path.b:int) ->

{

 answer(1,1),

 answer(1,2),

 answer(1,3),

 answer(2,1),

 answer(2,2),

Fernando Sáenz-Pérez 205/357

Universidad Complutense de Madrid

Datalog Educational System

 answer(2,3),

 answer(3,1),

 answer(3,2),

 answer(3,3)

}

Info: 9 tuples computed.

This example also shows that DES is able to compute more queries than an
DBMS. For instance, neither MS SQL Server nor DB2 allow cycles in the above path
definition. This is not the most important limitation of recursion in current DBMS's,
note that stratified recursion is not supported for more than one stratum. This means
that recursive SQL queries involving EXCEPT, NOT IN, aggregates, ... are not allowed
in current DBMS's such as SQL Server and DB2. Another limitation is linear recursion:
the above rules cannot be expressed in DBMS's as there are several recursive calls. To
name another, UNION ALL is enforced in those SQL's, so that just UNION is not
allowed. For instance, the following query is rejected in any current commercial DBMS,
but accepted by DES:

DES> /duplicates on

DES> /multiline on

DES> CREATE TABLE edge(a int, b int);

DES> INSERT INTO edge VALUES(1,2);

Info: 1 tuple inserted.

DES> INSERT INTO edge VALUES(2,3);

Info: 1 tuple inserted.

DES> INSERT INTO edge VALUES(1,3);

Info: 1 tuple inserted.

DES> :-persistent(edge(a:int,b:int),mysql).

DES> :-persistent(path(a:int,b:int),mysql).

DES> WITH RECURSIVE path(a, b) AS

 SELECT * FROM edge

 UNION -- Discarding duplicates (ALL is not required)

 SELECT p1.a,p2.b

 FROM path p1, path p2

 WHERE p1.b=p2.a

SELECT * FROM path;

Warning: Recursive rule cannot be transferred to external

database (kept in local database for its processing):

path_2_1(A,B) :-

 path(A,C),

 path(C,B).

answer(path.a:int,path.b:int) ->

{

 answer(1,2),

 answer(1,3),

 answer(2,3)

}

Info: 3 tuples computed.

Note the difference against the next query, which does not discard duplicates:

DES> WITH RECURSIVE path(a, b) AS

 SELECT * FROM edge

 UNION ALL -- Keeping duplicates

Fernando Sáenz-Pérez 206/357

Universidad Complutense de Madrid

Datalog Educational System

 SELECT p1.a,p2.b

 FROM path p1, path p2

 WHERE p1.b=p2.a

SELECT * FROM path;

Warning: Recursive rule cannot be transferred to external

database (kept in local database for its processing):

path(A,B) :-

 path(A,C),

 path(C,B).

answer(path.a:int,path.b:int) ->

{

 answer(1,2),

 answer(1,3),

 answer(1,3),

 answer(2,3)

}

Info: 4 tuples computed.

5.2.10 Caveats

This section includes some caveats which deserve to be highlighted.

5.2.10.1 Supported Built-ins

The current version supports comparison operators (<, >, =, ...) and the built-in
infix operator is for arithmetical expressions. Note that the equality is treated as a
comparison in the translation.

5.2.10.2 Incomplete Meanings

If a predicate p which depends on an external relation r is made persistent,
then it may be the case that the default database engine cannot get the meaning of r
but via p unless this meaning is requested from the current database in which the
relation is defined, as illustrated in the following example:

DES> /current_db

Info: The current database is '$des'. DBMS: $des

DES> /assert p(1)

DES> /assert p(X):-r(X)

Warning: Undefined predicate(s): [r/1]

DES> :-persistent(p(a:int),access)

DES> p(X)

{

 p(1),

 p(2),

 p(3)

}

Info: 3 tuples computed.

DES> % For the local database, 'r' is not visible:

DES> r(X)

{

}

Info: 0 tuples computed.

DES> % If 'access' is the current database, then 'r' is visible:

DES> /use_db access

DES> /current_db

Fernando Sáenz-Pérez 207/357

Universidad Complutense de Madrid

Datalog Educational System

Info: The current database is 'access'. DBMS: access

DES> r(X)

{

 r(2),

 r(3)

}

Info: 2 tuples computed.

As well, you can have a local relation with the same name of an external
relation (as r in the example above) on which a persistent predicate depends on (as p).
In such a case, local data is not visible for the persistent predicate as its meaning is
externally computed.

To avoid this issue, simply make persistent the relation.

Finally, in general there are missing tuples for a persistent predicate p that
depend on others for which some rule cannot be externally processed. In the following
example, as p is completely processed by the external DBMS, the meaning of q is not
joined with the results from the deductive engine unless q(X) was issued at the top-
level:

DES> /assert r(1)

DES> /assert q(X):-distinct(r(X))

DES> /assert p(X):-q(X)

DES> p(X)

{

 p(1)

}

Info: 1 tuple computed.

DES> :-persistent(p(a:int),access)

DES> p(X)

{

}

Info: 0 tuples computed.

DES> q(X)

{

 q(1)

}

Info: 1 tuple computed.

Note that the metapredicate distinct is responsible of this issue, as it
precludes the single rule for q to be delegated to the external database. This incomplete
behaviour is expected to be fixed in a forthcoming release. In addition, more built-ins
(as distinct and top) are expected to be supported for the translation from Datalog
rules to SQL statements.

5.2.10.3 Opening and Closing Connections

Each time a persistent assertion is issued over a given connection, this
connection is opened, although the current database is not changed to it. In addition, it
is not closed although a /drop_assertion command was issued.

A connection cannot be closed (with the command /close_db) if any

persistent predicate remains on it.

Fernando Sáenz-Pérez 208/357

Universidad Complutense de Madrid

Datalog Educational System

5.2.10.4 Abolishing Predicates

The command /abolish not only abolishes rules in the deductive database but
also those predicates that have been persistent in the external database, dropping their
table and view definitions.

5.2.10.5 Null Values

Processing of null values involving the local and external database is not still
supported as they have different representations. So, outer joins are not supported up
to now.

5.2.10.6 External Database Processing

Only the transferred rules of persistent predicates can be processed by the EDB.
In particular, neither Datalog queries nor SQL queries submitted from $des are
translated into external SQL and therefore processed by such EDB. Only SQL queries
in the same connection as the persistent predicate are processed by the EDB. However,
future releases might translate queries submitted from $des.

5.2.10.7 Supported Platforms

A limited number of systems have been tested, including MySQL, MS Access,
IBM DB2, Oracle, PostgreSQL and others. However, test suites are rather small up to
now. Please report any fault for your application in order to be fixed.

5.3 Safety and Computability

This section explains notions related to safety and computability of Datalog
queries. Both classical safety as explained in [Ullm95], safety for metapredicates and
limited domain predicates are discussed. Computability includes dealing with solving
unsafe rules from the classical point-of-view, but that are safe in certain scenarios, as
null providers.

5.3.1 Classical Safety

Built-in predicates are appealing, but they come at a cost, which was already
noticed in Section 4.7. The domain of their arguments is infinite, in contrast to the finite
domain of each argument of any user-defined predicate. Since it is neither reasonable
nor possible to (extensionally) give an infinite answer, when a subgoal involving a
built-in is going to be computed, its arguments need to be range restricted, i.e., the
arguments have to take values provided by other subgoals. To illustrate this point,
consider submitting the following view to the program file relop.dl:

less(X,Y) :- X < Y, c(X,Y).

Since the goal is less(X,Y), and the computation is left to right, both X and Y
are not range restricted when computing the goal X < Y and, therefore, this goal
ranges over two infinite domains: the one for X and the one for Y. We do not allow the
computation of such rules. However, if we reorder the two goals as follows:

less(X,Y) :- c(X,Y), X < Y.

we get the expected result:

{

Fernando Sáenz-Pérez 209/357

Universidad Complutense de Madrid

Datalog Educational System

 less(a1, b2),

 less(a2, b2)

}

Note, then, that built-in predicates affect declarative semantics, i.e., the
intended meaning of the two former views should be the same, although actually it is
not. Declarative semantics is therefore affected by the underlying operational
mechanism. Notice, nonetheless, that Datalog is less sensitive to operational issues

than Prolog and it could be said to be more declarative (pure Datalog13 is a truly
declarative language). First, because of terminating issues as already introduced, and
second, because the problematic first view can be automatically transformed into the
second, computation-safe, one, as we explain next.

We can check whether a rule is safe in the sense that all its variables are range
restricted and, then, reorder the goals for allowing its computation. First, we need a
notion of safety, which intuitively seems clear but that actually is undecidable
[ZCF+97]. Some simple sufficient conditions for the safety of Datalog programs can be
imposed, which means that rules obeying these conditions can be safely computed,
although there are rules that, even violating some conditions, can be actually
computed. We impose the following (weak) conditions [Ullm95, ZCF+97] for safe rules
adapted to our context:

1) Any variable X in a rule r is safe if:

a) X occurs in some positive goal referring to a user-defined predicate.

b) r contains some equality goal X=Y, where Y is safe (Y can be a constant, which,
obviously, makes X safe).

c) A variable X in the goal X is Expression is safe whenever all variables in
Expression are safe.

2) A rule is safe if all its variables are safe.

Notice that these conditions, currently supported by the system, are weak since
they assume that user-defined predicates are safe, which is not always the case (but
only require analysing locally each rule for deciding weak safety). To make these
conditions stronger, 1.a. has to be changed to: “X occurs in some positive goal referring
to a safe user-defined predicate”, and add “3. A predicate is safe if all of its variables are
safe”. The changed conditions would require a global analysis of the program, which is
not supported by DES up to now.

The variables in a negated call to a limited domain predicates are always
restricted (see sections 4.1.16.5 and 4.1.18) and therefore safe.

The built-in predicate is has the same problem as comparison operators as
well, but it only demands ground its second argument (cf. condition 1.c above).
Negation requires its argument to have no unsafe variables. In addition, to be correctly
computed, the restrictions in the domains of the safe variables it may contain should be
computed before. The reader is referred to Section 3.6 in [Ullm95] to discovering the
problems when interpreting rules with negation.

13 Pure Datalog programs are normal logic programs (i.e., function-free) in which all
rules are Horn clauses, and a program signature is built with the symbols in the program (no
built-in is considered to be part of a pure Datalog program).

Fernando Sáenz-Pérez 210/357

Universidad Complutense de Madrid

Datalog Educational System

DES provides a check that decides if a rule is safe and, if so, it may apply a

program transformation for reordering its goals in order to make it computable in a
left-to-right order. This transformation does not come by default, and it can be enabled
with the command /safe Switch, where Switch can take two values: on, for
enabling program transformation, and off, for disabling this transformation. If
Switch is not included, then the command informs whether program transformation
is enabled or disabled.

The analysis performed by the system at compile-time warns about safety and
computability as follows:

1) Raise an error if:

a) A goal involving a comparison operator will be non-ground at run-time.

b) The expression E in a goal X is E will be non-ground at run-time.

c) The goal not G contains unsafe variables or its safe variables are not restricted
so far.

1) Raise a warning if:

a) A goal involving a comparison operator may be non-ground at run-time.

b) The expression E in a goal X is E may be non-ground at run-time.

This analysis is performed in several cases:

 Whenever a rule is asserted (either manually with the command /assert or
automatically when consulting programs). A rule is always asserted, even
when it is detected as unsafe or it may raise an exception at run-time. Recall
that safety is undecidable and there are rules detected as unsafe that can be
actually and correctly computed.

 When a query, conjunctive query (autoview) or view is submitted. They are
rejected and not computed if unsafety or uncomputability is detected and
cannot be repaired (because program transformation is disabled or no way
is found out). Notice that there can be unsafe or uncomputable rules already
consulted than can result either in an incorrect result or raise a run-time
exception.

Concluding, one can expect a correct answer whenever no unsafe,
uncomputable rule has been asserted to an empty database. Recall that the local
analysis relies on the weak condition that assumes that the consulted rules are safe.

Next, an example of unsafe rule including negation is provided. As introduced,
such a rule, when asserted, raises an error, but it is asserted in any case in order to
show its misbehaviour.

DES> /assert q(0)

DES> /assert p(X):-not q(X)

Error: not q(X) might not be correctly computed because of the

unrestricted variable(s):

 [X]

Warning: This rule is unsafe because of variable(s):

 [X]

DES> p(X)

{

Fernando Sáenz-Pérez 211/357

Universidad Complutense de Madrid

Datalog Educational System

}

Info: 0 tuples computed.

As the domain of X in p(X) is not range restricted, no tuples are found in the
left-to-right top-down search. If we submit a query as p(1), the negation not q(1)
should be proven:

DES> p(1)

{

}

Info: 0 tuples computed.

However, as illustrated, there is no tuples in the answer for such a query. The
misbehaviour of the rule for p/1 emerges here due to the way answers are computed
via an extension table. As far as the query p(1) is subsumed by a previous call (p(X)),
results in the extension table are reused. But if the extension table is cleared, then p(1)
can be proven:

DES> /clear_et

DES> p(1)

{

 p(1)

}

Info: 1 tuple computed.

Notice that both calls can occur during a computation, disabling the
opportunity to clear the extension table, as in:

DES> p(X),p(1)

Info: Processing:

 answer(X) :-

 p(X),

 p(1).

{

}

Info: 0 tuples computed.

A similar situation happens with equality:

DES> p(X),X=1

Info: Processing:

 answer(X) :-

 p(X),

 X = 1.

{

}

Info: 0 tuples computed.

Also notice that, if simplification mode is enabled with the command
/simplification on, then this conjunctive query is simplified and computed as
follows:

DES> p(X),X=1

Info: Processing:

 answer(1) :-

 p(1).

Fernando Sáenz-Pérez 212/357

Universidad Complutense de Madrid

Datalog Educational System

{

 answer(1)

}

Info: 1 tuple computed.

5.3.2 Safety and Variables

Depending on the syntactical name of variables and the safety check for a given
query, view, autoview or rule those variables occur may develop different conclusions.

There are certain negated, unsafe calls that can be rewritten to end up with safe
calls [Ullm95]. For instance, let's consider the unsafe rule p :- not t(X). Since X is
not range restricted, the negated call is unsafe, dealing to the floundering problem.
This rule can be translated into the safe rules p :- not t1 and t1 :- t(_X).

DES includes a couple of ways to deal with this. First, by using underscored
variables, where the transformation is automatically applied (even if the safety
transformations are not enabled). In this example, p :- not t(_X) is considered a
safe rule because it can be transformed into safe rules because _X is considered as a
non-relevant variable for the outcome. And, second, by using an explicit existential
quantifier on the non-underscored variable: p :- exists([X],not t(X)).

Note that, for queries, non-underscored variables are free variables (universally
quantified in the clausal form of the logic rule) that are required to occur in the answer.
So, even if safety transformations are enabled (via /safe on), the query not t(X) is
not transformed.

However, a rule with such variables not occurring in the head can be
transformed, as the rule v :- not t(X), which will be accepted as a safe rule if safe
transformations are enabled and unsafe otherwise. But if the variable is underscored,
then it is removed even from the head:

DES> v(_X):-not t(_X)

Info: Processing:

 v

in the program context of the exploded query:

 v :-

 not '$p0'.

 '$p0' :-

 t(_X).

Warning: Undefined predicate: [t/1]

{

 v

}

Info: 1 tuple computed.

5.3.3 Safety for Aggregates and Duplicate Elimination

Another source of unsafety, departing from the classical notion, resides in
metapredicates as distinct/2 and aggregates. A set variable is any variable occurring
in a metapredicate such that it is not bound by the metapredicate. For instance, Y in the
goal distinct([X],t(X,Y)) is a set variable, as well as in group_by(t(X,Y),

[X],C=count).

Fernando Sáenz-Pérez 213/357

Universidad Complutense de Madrid

Datalog Educational System

Because computing a goal follows SLD order, if a set variable is used after the

metapredicate, as in distinct([X],t(X,Y)), p(Y), then this is an unsafe goal as
in the call to distinct, the variable Y is not bound, and all tuples in t/2 are
considered for computing its outcome. Swapping both subgoals yields a safe goal. So,
data providers for set variables are only allowed before their use in such
metapredicates.

Another source of unsafety is placing a set variable in the head of a rule. Unless
such variable comes bound, open tuples might be delivered as a result, as in:

DES> /assert t(1,2)

DES> /assert v(X,Y,C):-group_by(t(X,Y),[X],C=count(X))

Warning: This rule is unsafe if called with nonground variable:

[Y]

DES> v(X,Y)

{

 v(1,A)

}

Info: 1 tuple computed.

5.3.4 Unsafe Rules from Compilations

Along compilations, unsafe rules can be automatically generated, as in the
translations from outer joins. However, they are considered safe because a couple of
reasons:

 Unsafe arguments of such rules are always given as input in goals.

 Goal arguments are null providers. A null provider has the open form
'$NULL'(V), is generated by the system, and it is not supposed to be called
explicitly by the user. An argument of this form is specifically handled by
the system for outer join computations [Saen12].

Mode information for predicates is handled throughout program compilations
to detect truly unsafe rules, avoiding to raise warnings about (non-classical safe)
system generated rules. Notice, however, that you can still manually write an unsafe
call to these system-generated predicates, yielding to incorrect results, as the following
examples illustrates (which needs to enable development listings to inspect those
unsafe rules):

DES> /assert t(1)

DES> /assert s(2)

DES> /assert l(X):-lj(t(X),s(Y),X=Y)

DES> /development on

DES> /listing

'$p0'(X,Y) :-

 '$p1'(X,Y).

'$p0'(X,'$NULL'(A)) :-

 t(X),

 not '$p1'(X,Y).

'$p1'(X,Y) :-

 X = Y,

 t(X),

 s(Y).

l(X) :-

Fernando Sáenz-Pérez 214/357

Universidad Complutense de Madrid

Datalog Educational System

 lj('$p0'(X,Y)).

s(2).

t(1).

Info: 6 rules listed.

DES> '$p0'(X,Y)

{

 '$p0'(1,'$NULL'(0))

}

Info: 1 tuple computed.

DES> /list_et

Answers:

{

 not '$p1'(1,A),

 t(1),

 '$p0'(1,'$NULL'(0))

}

Info: 3 tuples in the answer table.

Calls:

{

 '$p0'(A,B)

}

Info: 1 tuple in the call table.

The extension (answer) table contains the non-ground entry not '$p1'(1,A),
which is not safe.

5.3.5 Safety for Limited Domain Predicates

The inference engine of DES is able to process non-ground negated calls for
limited domain predicates as introduced in Section 4.1.18 already. This kind of
predicates are range restricted because their domains are known. Thus, a negated call
always grounds its goal (if it succeeds) because the values that are not in the meaning
of a predicate must belong to its domain. In the next example, the predicate p is
allowed to take values only in the meaning of q because of the foreign key declaration
(if fact, the values that the referenced arguments can take, which in this case are all the
arguments of q):

DES> :-type(p(a:int)),type(q(a:int)),pk(q,[a]),fk(p,[a],q,[a])

DES> /assert q(1)

DES> /assert q(2)

DES> /assert q(3)

DES> /assert p(2)

DES> p(X)

{

 p(2)

}

Info: 1 tuple computed.

DES> not p(X)

Info: Processing:

 answer(X) :-

 not p(X).

{

 answer(1),

 answer(3)

Fernando Sáenz-Pérez 215/357

Universidad Complutense de Madrid

Datalog Educational System

}

Info: 2 tuples computed.

 The goal p(X) is instantiated with as many values as there are in its domain
(the tuples (1), (2) and (3)) and its negation succeeds for all that are not in its
positive meaning (the tuple (2)), i.e., for the tuples (1) and (3).

For referenced extensional predicates, a negated call always terminates because
the domain is finite, but intensional predicates may lead to non-termination in
presence of infinite built-ins, as in:

DES> :-type(p(a:int)),type(q(a:int)),pk(q,[a]),fk(p,[a],q,[a])

DES> /assert q(X):-X=0;q(Y),X=Y+1

DES> % q has no upper bound, so let's take the first 10 just to

check that it delivers integers from 0

DES> top(10,q(X))

Info: Processing:

 answer(X) :-

 top(10,q(X)).

{

 answer(0),

 answer(1),

 ...,

 answer(9)

}

Info: 10 tuples computed.

DES> not p(X)

Info: Processing:

 answer(X) :-

 not p(X).

% non-termination

5.4 Modes for Unsafe Predicates

Modes in Prolog are typically used to declare properties of predicates at call
and/or exit times. Here, we borrow the notion of modes to specify expected properties
for a predicate in order to be correctly computed. We use mode i (for an input
argument) and o (for an output argument) in a different way as in Prolog so that i

means that the argument is expected to be ground at call time, and o means that it is
not, though it might be. Whereas in safe Datalog, all modes should be o, in DES we can
find i modes as well because unsafe predicates are allowed. For instance, because
there are infinite built-ins as comparison operators (<, >, ...), it is interesting to allow i
modes as well, as in the next example, that is intended to compute the first T natural
numbers:

nat(T,1).

nat(T,X) :- nat(T,Y),X=Y+1,X<T.

Expected goals must have a ground first argument, as:

nat(100,X)

which returns the first 100 naturals. Otherwise, a run-time exception is raised:

DES> nat(X,Y)

Fernando Sáenz-Pérez 216/357

Universidad Complutense de Madrid

Datalog Educational System

Exception: Non ground argument(s) found in goal 1<T in the

instanced rule:

 nat(T,X) :-

 nat(T,1),

 1<T,

 X=1+1.

 Asserted at 10:23:37 on 1-18-2018.

So, each time a rule is asserted, it is checked for classical safety and, if not safe, a
mode assertion is stored, indicating the input requirement of offending arguments. The
assertion has the following syntax:

:-mode(ModeSchema)

ModeSchema ::= PredName(Mode,...,Mode)

Mode ::= i % The argument must be ground at call time

Mode ::= o % The argument can be a free variable at call time

In the example above, the automatically-stored assertion is:

:-mode(nat(i,o)).

This can listed with the command /list_modes, which lists all asserted
modes, and /list_modes N/A for a give predicate of name N and arity A.

The mode assertion is created only for predicates including a mode i in an
argument. If no mode is asserted for a given predicate, it is classical safe. If the
predicate becomes classical safe (e.g., because one of its defining rules is removed), the
mode assertion is removed.

Although the user can only examine predicate modes, the system keeps track of
modes at rule-level. Each time a rule is asserted or retracted, the modes for its predicate
are updated with the already stored modes for the rest of the predicate rules, if any.

Therefore, such declarations are understood more from a documentation point-
of-view than from constraints (as types, referential integrity constraints, ...), because
mode assertions recall users about expected properties for the queries (in addition to
the first message they got when compiling an unsafe rule).

5.5 Syntax Checking

A number of syntax checks are conducted when asserting rules, consulting
programs, processing commands and submitting queries. These checks include basic
syntax errors, arguments of built-ins and metapredicates errors, safety warnings and
errors, undefined predicate warnings, singleton variable warnings, and set variable
errors.

5.5.1 Basic Syntax

Basic syntax error checking tries to devise the incorrect part of the parsed
element by consuming it as much as an unexpected fragment is found. For instance,
parsing in the following example succeeds before the closing parenthesis is found,
because the number is not ended properly (maybe because during typing the
parenthesis and the dot were interchanged):

Fernando Sáenz-Pérez 217/357

Universidad Complutense de Madrid

Datalog Educational System

DES> p(1.)

Error: (DL) Invalid fractional number after 'p(1.'

Note that the language for which the error is detected is shown between
parentheses (DL, SQL, RA, TRC, or DRC standing respectively for Datalog, SQL,
Relational Algebra, Tuple Relational Calculus and Domain Relational Calculus) before
the error message. Since there are several languages available in the same prompt,
there may be several errors for the same input as well. Let's consider the following:

DES> select ,

Error: (DL) Invalid atom or (SQL) Invalid SELECT list or (SQL)

Expected valid SQL expression or (RA) Expected valid SQL

expression near 'select '

From the point of view of Datalog, 'select ,' is not a valid atom (to be used
as a query); from SQL, after the keyword 'select' it is expected a list of expressions
(the SELECT list); and from RA, the operator select requires a valid expression.
Whereas in this second example the error can come from considering the input as
either a Datalog, SQL or RA input, in the first example the input cannot be considered
as part of SQL and hence only one error message is displayed. Next subsection shows
another example for which two different errors are raised for the same language.

Only when some part of the input is recognized as a valid fragment of the
language, a language-specific error can be displayed. In the following erroneous input,
it is not recognized as starting any valid input:

DES> X

Error: Unrecognized start of input.

If you want to parse your input in a given language, either write your input
after the language selection command or switch to the required language (/sql, ...) as
follows:

DES> % First option:

DES> /datalog select ,

Error: (DL) Invalid atom after '/datalog select '

DES> /sql select ,

Error: (SQL) Invalid SELECT list after '/sql select '

DES> % Second option:

DES> /sql

DES-SQL> select ,

Error: (SQL) Invalid SELECT list after 'select '

There is no an isolated Datalog system mode yet, so that if you want parsing
only for Datalog, you should use the first option (a Datalog mode can be expected in a
future version). As well, this basic syntax error system can be expected also for
Relational Algebra and Prolog.

5.5.2 Arguments of Built-ins and Metapredicates

Most built-ins and metapredicates include syntax checks to discard rules and
queries with incorrect arguments. An example of incorrect argument of a built-in is:

DES> X is a+1

Error: (DL) Arithmetic expression expected after 'X is '

Fernando Sáenz-Pérez 218/357

Universidad Complutense de Madrid

Datalog Educational System

where a is not a valid reference in the arithmetic expression.

Another example for a metapredicate is:

DES> lj(X,Y,Z)

Error: (DL) First argument of lj/3 must be a relation or (DL)

Expected sequence of non-compound terms after 'lj('

The system determines that this input may correspond either to the left-join
built-in, which demands a relation in its first argument, or a call to a user predicate lj
but with an incorrect sequence of non-compound terms (a user predicate which should
have an arity different from 3 to avoid a name clash).

5.5.3 Safety

By default, safety warnings are issued when inserting rules which are not
classical safe, set variable safe, and duplicate elimination safe (see Section 5.3). If a
query is not safe, an error is displayed, and the query is not executed.

This warning is enabled by default. To remove undefined predicate warnings,
use the command /safety_warnings off. However, an unsafe query will still raise
an error.

5.5.4 Undefined Predicates

An undefined predicate is a predicate for which there are no rules defining it and
has no type declaration. Undefined predicates are signals of possible program errors.
So, each time the database is changed by asserting or retracting rules, undefined
predicates are listed as a warning (offending rules are anyway accepted). As well,
when submitting a query containing calls to undefined predicates, such a warning is
also issued.

This warning is enabled by default. To remove undefined predicate warnings,
use the command /undef_pred_warnings off.

5.5.5 Singleton Variables

A singleton variable is a variable occurring once in a rule. Such variables are
usually warned in Prolog systems as they can be signalling a program error. Following
the same criterion as in SWI-Prolog, both syntactic and semantic singletons are
detected in DES when consulting a file and asserting rules. While a syntactic singleton
denotes a single occurrence of a variable in a rule, as in p :- q(X), a semantic
singleton denotes a single occurrence of a variable in a branch of a rule, as in p :-
q(X) ; r(X). As this last rule is translated into p :- q(X) and p :- r(X), the
semantic singleton check simply resorts to the syntactic singleton check on the
translated rules.

This warning is enabled by default. To avoid singleton warnings there are two
options: Either simply disable this check with the command /singleton_warnings
off, or use underscored variables (see Section 4.1.1):

DES> /assert p :- q(X)

Warning: This rule has singleton variable: [X]

DES> /assert p :- q(_X)

DES> /assert p :- q(X) ; r(X)

Fernando Sáenz-Pérez 219/357

Universidad Complutense de Madrid

Datalog Educational System

Warning: This rule has singleton variable: [X]

DES> /singleton_warnings off

DES> /assert p :- q(X) ; r(X)

5.5.6 Set Variables

Set variables (Section 5.3.3) occurring in more than one metapredicate
(aggregate or distinct) in the context of a query or a rule raise an error and the rule is
rejected. When submitting a query with such an error, the query is not processed.
When asserting or consulting a rule with this error, the rule is neither asserted nor
consulted. For instance:

DES> /assert v(C,D):-count(t(X),C),count(t(X),D)

Error: Set variable [X] is not allowed to occur in different

metapredicates.

In addition, a set variable cannot occur in expressions but as an argument of an
aggregate. For example:

DES> group_by(t(X,Y),[X],C=count(X)+Y)

Error: Ungrouped variables [Y] cannot occur in C=count(X)+Y out

of aggregate functions.

5.5.7 Stratification

When changing the database by asserting or retracting rules, a stratification is
computed, if it exists (see Section 5.22.3). If the current database is not stratifiable, a
warning is submitted. Also, if a query involving a cycle with negation for its sub-PDG
is submitted, a warning is issued.

DES> /assert t:-not t

Warning: Non stratifiable program.

DES> t

Warning: Unable to ensure correctness/completeness for this

query.

{

}

Info: 0 tuples computed.

Undefined:

{

 t

}

Info: 1 tuple undefined.

5.6 Source-to-Source Transformations

Currently, two source-to-source transformations are possible under demand:
First, as explained in the previous section, when safety transformations are enabled via
the command /safe on, rule bodies are reordered to try to produce a safe rule.
Second, when simplification is enabled via the command /simplification on, rule
bodies containing equalities, true, and not BooleanValue are simplified.

In addition, there is also place for several automatic transformations (cf. Section
5.8 to know how to display such transformations):

Fernando Sáenz-Pérez 220/357

Universidad Complutense de Madrid

Datalog Educational System

 A clause containing a disjunctive body is transformed into a sets of clauses

with conjunctive bodies.

 A clause containing an outer join predicate is transformed into its
executable form.

 A clause containing an aggregate predicate is transformed into its
executable form including grouping criterion.

 A clause containing the goal not is_null(+Term) is transformed into a
clause with this goal replaced by is_not_null(+Term).

5.7 Multi-line Mode

By default, DES command prompt reads single-line inputs and, therefore,
ending termination character is optional (as the dot (.) in Datalog and the semicolon
(;) in SQL and RA). But, when writing a long query, as usual in SQL, breaking down
the sentence along several lines enhances readability. This is also possible in DES by
enabling multi-line mode with the command /multiline on. However, in this
scenario, the terminating character must be issued in order to know when to finish
parsing the input query. Returning to single-line mode is just by issuing /multiline
off.

With multi-line input, multi-line remarks (enclosed between /* and */) are
also allowed. Note that nested remarks are supported, too, as:

/*

 First remark

 /*

 Second, nested remark

 */

*/

5.8 Development Mode

This section is focused at those interested in modifying and extending the
system. So, from a system implementor viewpoint, it is handy to show several
implementation-specific issues such as source-to-source transformations and internal
representation of null values. To this end, the command /development [on|off]
has been made available. Let’s consider the following system session:

DES> /development off

DES> /assert p(X):-X=1;X=2

DES> /assert c(C):-count(p(X),X,C)

DES> /assert q(1)

DES> /assert l(X,Y):-lj(p(X),q(Y),X=Y)

DES> /listing

c(C) :-

 count(p(X),X,C).

l(X,Y) :-

 lj(p(X),q(Y),X = Y).

p(X) :-

 X = 1

Fernando Sáenz-Pérez 221/357

Universidad Complutense de Madrid

Datalog Educational System

 ;

 X = 2.

q(1).

Info: 4 rules listed.

DES> l(X,Y)

{

 l(1,1),

 l(2,null)

}

Info: 2 tuples computed.

Next, we enable the development mode for listings:

DES> /development on

DES> l(X,Y)

{

 l(1,1),

 l(2,'$NULL'(59))

}

Info: 2 tuples computed.

Here, the internal representation of nulls is available. If we request the listing of
the stored rules in development mode:

DES> /listing

'$p0'(A,'$NULL'(B)) :-

 p(A),

 not '$p1'(A,C).

'$p0'(A,B) :-

 '$p1'(A,B).

'$p1'(A,B) :-

 p(A),

 q(B),

 A = B.

c(C) :-

 count(p(X),X,'[]',C).

l(X,Y) :-

 '$p0'(X,Y).

p(X) :-

 X = 2.

p(X) :-

 X = 1.

q(1).

Info: 8 rules listed.

Here, we see several source-to-source transformations: First, the left join, then
the aggregate count, and finally the disjunctive rule.

Development listings also allows to inspect the extension table looking at
(repeated) facts involving nulls, as follows:

DES> /assert q(null)

Fernando Sáenz-Pérez 222/357

Universidad Complutense de Madrid

Datalog Educational System

DES> /assert q(null)

DES> q(X)

{

 q(1),

 q(3),

 q('$NULL'(64)),

 q('$NULL'(67))

}

Info: 4 tuples computed.

Compare this to the non-development mode:

DES> /development off

DES> q(X)

{

 q(1),

 q(3),

 q(null)

}

Info: 3 tuples computed.

Also, one can be aware from where nulls come because of their IDs, as in:

DES> /assert p(null)

DES> /listing p

p('$NULL'(70)).

p(X) :-

 X = 1.

p(X) :-

 X = 2.

Info: 3 rules listed.

DES> l(X,Y)

{

 l(1,1),

 l(2,'$NULL'(72)),

 l('$NULL'(70),'$NULL'(74))

}

Info: 3 tuples computed.

Observe above ID 70. There, the data source rule providing such an entry in the
answer is the first rule of p.

As SQL statements and RA expressions are compiled to Datalog programs, the
command /show_compilations on enables the display of compilations each time
an SQL statement is submitted, as the following example illustrates:

DES> /show_compilations on

DES> create table t(a int, b int)

DES> create table s(a int, b int)

DES> select * from t where a>1 union select * from s where b<2

Info: SQL statement compiled to:

answer(A,B) :-

 distinct(answer_2_1(A,B)).

Fernando Sáenz-Pérez 223/357

Universidad Complutense de Madrid

Datalog Educational System

answer_2_1(A,B) :-

 t(A,B),

 A > 1.

answer_2_1(A,B) :-

 s(A,B),

 B < 2.

answer(t.a, t.b) ->

{

}

Info: 0 tuples computed.

5.9 Datalog and SQL Tracers

In contrast to imperative programming languages, deductive and relational
database query languages feature solving procedures which are far from the query
languages itself. Whilst one can trace an imperative program by following each
statement as it is executed, along with the program state, this is not feasible in
declarative (high abstraction) languages as Datalog and SQL. However, this does not
apply to Prolog, also acknowledged as a declarative language, because one can follow
the execution of a goal via the SLD resolution tree and use the four-port debugging
approach.

Datalog stems from logic programming and Prolog in particular, and it can be
also understood as a subset of Prolog from a syntactic point-of-view. However, its
operational behaviour is quite different, since the outcome of a query represents all the
possible resolutions, instead of a single one as in Prolog. In addition, tabling (cf. Section
5.6) and program transformations (due to outer joins, aggregates, simplifications,
disjunctions, ...) make tracing cumbersome.

Similarly, SQL represents a truly declarative language which is even farthest
from its computation procedure than Prolog. Indeed, the execution plan for a query
include transformations considering data statistics to enhance performance. These
query plans are composed of primitive relational operations (such as Cartesian product
and set operators) and specialized operations (such as theta joins) for which efficient
algorithms have been developed, containing in general references to index usage.

Therefore, instead of following a more imperative approach to tracing, here we
focus on a declarative approach which only takes into account the outcomes at some
program points. This way, the user can inspect each point and decide whether its
outcome is correct or not. This approach will allow users to examine the syntactical
graph of a query, which possibly depends on other views or predicates (SQL or
Datalog, resp.) This graph may be cyclic when recursive views or predicates are
involved. A given node in the graph will be traversed only once during tracing, either
because there is a cycle in the graph or the node is repeated (used in several views or
relations). In the case of Datalog queries, this graph contains the nodes and edges in
the dependency graph restricted to the query, ignoring other nodes which do not take
part in its computation. In the case of SQL, the graph shows the dependencies between
a view and its data sources (in FROM clauses).

Next, tracing for both Datalog queries and SQL views are explained and
illustrated with examples.

Fernando Sáenz-Pérez 224/357

Universidad Complutense de Madrid

Datalog Educational System

5.9.1 Tracing Datalog Queries

The command /trace_datalog Goal [Order] allows to trace a Datalog
goal in the given order (either postorder or the default preorder). Goals should be
basic, i.e., no conjunctive or disjunctive goals are allowed. For instance, let's consider
the program in the file examples/negation.dl and its dependency graph, shown in
Figure 1 (page 58). A tracing session could be as follows:

DES> /c negation

Warning: Undefined predicate(s): [d/0]

DES> /trace_datalog a

Info: Tracing predicate 'a'.

{

 a

}

Info: 1 tuple in the answer table.

Info: Remaining predicates: [b/0,c/0,d/0]

Input: Continue? (y/n) [y]:

Info: Tracing predicate 'b'.

{

 not b

}

Info: 1 tuple in the answer table.

Info: Remaining predicates: [c/0,d/0]

Input: Continue? (y/n) [y]:

Info: Tracing predicate 'c'.

{

 c

}

Info: 1 tuple in the answer table.

Info: Remaining predicates: [d/0]

Input: Continue? (y/n) [y]:

Info: Tracing predicate 'd'.

{

}

Info: No more predicates to trace.

5.9.2 Tracing SQL Views

Tracing SQL views is similar to tracing Datalog queries, but, instead of posing a
goal (involving in general variables and constants) to trace, only the name of a view
should be given. For example, let's consider the file examples/family.sql, which
contains view definitions for ancestor and parent, where tables father and
mother are involved in the latter view. Note that this view is recursive since it
depends on itself:

create view parent(parent,child) as

 select * from father

 union

 select * from mother;

create or replace view ancestor(ancestor,descendant) as

 select parent,child

 from parent

Fernando Sáenz-Pérez 225/357

Universidad Complutense de Madrid

Datalog Educational System

 union

 select parent,descendant

 from parent,ancestor

 where parent.child=ancestor.ancestor;

Then, tracing the view ancestor is as follows:

DES> /trace_sql ancestor

Info: Tracing view 'ancestor'.

{

 ancestor(amy,carolIII),

 ...

 ancestor(tony,carolIII)

}

Info: 16 tuples in the answer table.

Info: Remaining views: [parent/2,father/2,mother/2]

Input: Continue? (y/n) [y]:

Info: Tracing view 'parent'.

{

 parent(amy,fred),

 ...

 parent(tony,carolII)

}

Info: 8 tuples in the answer table.

Info: Remaining views: [father/2,mother/2]

Input: Continue? (y/n) [y]:

Info: Tracing view 'father'.

{

 father(fred,carolIII),

 ...

 father(tony,carolII)

}

Info: 4 tuples in the answer table.

Info: Remaining views: [mother/2]

Input: Continue? (y/n) [y]:

Info: Tracing view 'mother'.

{

 mother(amy,fred),

 ...

 mother(grace,amy)

}

Info: 4 tuples in the answer table.

Info: No more views to trace.

5.10 Datalog Declarative Debugger

Debugging a Datalog program may be cumbersome as there are few and rather
simple tools. Here, we propose a novel way to applying declarative debugging, also
called algorithmic debugging (a term first coined in the logic programming field by
E.H. Shapiro [Shap83]) to Datalog programs. Instead of considering a procedural way
following how programs are solved (which turns out to be impractical due to the high
gap between the program specification and program solving), we focus at the semantic
level. That is, we no longer consider Prolog approaches to debugging as the procedure
box control flow model for port tracers [Byrd80,CM87] and rather we automatically

Fernando Sáenz-Pérez 226/357

Universidad Complutense de Madrid

Datalog Educational System

inspect the computation graph asking the user for what the actual semantics meets the
intended semantics for selected nodes.

We have developed along time a couple of tools following this approach. In the
first one [CGS07], the tools asks the user about the validity of certain nodes (goals) and
can infer the erroneous predicate or even the clause, informing about the missing or
wrong tuples. In the second tool [CGS15a], the user can answer not only whether the
node is valid or not, but also inform the debugger about either a missing or wrong
tuple. This makes the debugger to focus in this more detailed information when posing
new questions, which now can be more elaborated but simpler to answer as it includes
fewer tuples for the user to inspect. Next, we describe these two tools:

5.10.1 Basic Debugging of Datalog Programs

With this approach, it is possible to debug queries and diagnose missing
answers (an expected tuple is not computed) as well as wrong answers (a given
computed tuple should not be computed). Our system uses a question-answering
procedure which starts when the user detects an unexpected answer for some query.
Then, if possible, it points to the program fragment responsible of the incorrectness.

The debugging process consists of two phases. During the first phase the
debugger builds a computation graph (CG) for the initial query Q w.r.t. the program P.
This graph represents how the meaning of the initial query is constructed from all the
calls made along its computation. These calls correspond to the literals in the rule
bodies used in such computation, which in general belong to many predicates. Each
node in the graph is composed of a literal and its meaning (i.e., a set of facts). See more
details in [CGS07]. The second phase consists of traversing the CG to find either a
buggy vertex or a set of related incorrect vertices. The vertex associated to the initial
query Q is marked automatically as non-valid by the debugger. The rest of the vertices
are marked initially as unknown. In order to minimize the number of questions asked
by a declarative debugger, several traversing strategies have been studied
[Caba05,Silv07]. However, these strategies are only adequate for declarative debuggers
based on trees and not on graphs. The currently implemented strategy already contains
some ideas of how to minimize the number of questions in a CG:

 First, the debugger asks about the validity of vertices that are not part of cycles in
order to find a buggy vertex, if it exists. Only when this is no longer possible, the
vertices that are part of cycles are visited.

 Each time the user indicates that a vertex (Query = FactSet) is valid, i.e., the validity
of the answer for the subquery Query is ensured, the tool changes to valid all the
vertices with queries subsumed by Query.

 Each time the user indicates that a vertex (Query = FactSet) is non-valid, the tool
changes to non-valid all the vertices with queries subsumed by Query.

The last two items help to reduce the number of questions, deducing
automatically the validity of some vertices from the validity of others.

As an example, we show a debugger session for the query br_is_even in the
program examples/parity.dl, which has been changed to contain an error in the

following rule:

Fernando Sáenz-Pérez 227/357

Universidad Complutense de Madrid

Datalog Educational System

has_preceding(X) :− br(X), br(Y), Y>X. % error: Y>X should be

Y<X

In this case, the user expects the answer for the query br_is_even to be
{br_is_even}, because the relation br contains two elements: a and b. However, the
answer returned by the system is {}, which means that the corresponding query was
unsuccessful.

The available command for starting a debugging session is /debug_datalog
Goal, where Goal is a basic goal, i.e., neither conjunctive nor disjunctive goals are
allowed. Therefore, the user can start a typical debugging session as follows:

DES> /debug_datalog br_is_even

Is br(a) = {br(a)} valid(v)/nonvalid(n)/abort(a) [v]? v

Is has_preceding(a) = {has_preceding(a)}

valid(v)/nonvalid(n)/abort(a) [v]? n

Is br(E) = {br(a),br(b)} valid(v)/nonvalid(n)/abort(a) [v]? v

 Error in relation: has_preceding/1

 Witness query : has_preceding(a) -> {has_preceding(a)}

Info: Debug Statistics:

Info: Number of questions : 3

Info: Number of inspected tuples: 4

Info: Number of root tuples : 3

Info: Number of non-root tuples : 1

 More information? (yes(y)/no(n)/abort(a)) [n]? y

Is the witness query a wrong answer(w)/missing

answer(m)/abort(a) [w]? w

 Error in relation: has_preceding/1

 Error in rule :

 has_preceding(X) :-

 br(X),

 br(Y),

 Y>X.

 File : c:/des/desdevel/examples/parity.dl

 Lines: 18,19

Info: Debug Statistics:

Info: Number of questions : 4

Info: Number of inspected tuples: 4

Info: Number of root tuples : 0

Info: Number of non-root tuples : 4

In this particular case, only three questions are necessary to find out that the
relation has_preceding is incorrectly defined. In addition, by requesting for more
information, we can even find out the offending rule in the predicate.

In order to minimize the number of questions asked to the user, the tool relies
on a navigation strategy similar to the divide & query presented in [Shap82] for
deciding which vertex is selected at each step. In other paradigms it has been shown
that this strategy requires an average of log2 n questions to find the bug [Caba05], with
n the number of nodes in a (non-recursive) computation tree.

Fernando Sáenz-Pérez 228/357

Universidad Complutense de Madrid

Datalog Educational System

Another example is a view of the cosmos for orbiting objects as the following

simple program illustrates:

star(sun).

orbits(earth, sun).

orbits(moon, earth).

orbits(X,Y) :-

 orbits(X,Z),

 orbits(Z,Y).

planet(X) :-

 orbits(X,Y),

 star(Y),

 not(intermediate(X,Y)).

intermediate(X,Y) :-

 orbits(X,Y), % This is an error. It should be orbits(X,Z)

 orbits(Z,Y).

When you consult the program:

DES> /c examples/dldebugger/orbits1

Warning: Next rule has a singleton variable: [Z]

intermediate(X,Y) :-

 orbits(X,Y),

 orbits(Z,Y).

Info: 6 rules consulted.

you can notice a warning. Indeed, this is the cause of the error the debugger will catch
should you did not notice this warning (the variable Z is not used in the rule, so that
most likely, something is going wrong). Let's try it:

DES> /debug_datalog planet(X) p

Is orbits(sun,sun) = {} valid(v)/nonvalid(n)/abort(a) [v]? v

Is orbits(earth,F) = {orbits(earth,sun)}

valid(v)/nonvalid(n)/abort(a) [v]? v

Is intermediate(earth,sun) = {intermediate(earth,sun)}

valid(v)/nonvalid(n)/abort(a) [v]? n

Is orbits(sun,F) = {} valid(v)/nonvalid(n)/abort(a) [v]? v

Is orbits(L,sun) = {orbits(earth,sun),orbits(moon,sun)}

valid(v)/nonvalid(n)/abort(a) [v]? v

 Error in relation: intermediate/2

 Witness query : intermediate(earth,sun) ->

{intermediate(earth,sun)}

Info: Debug Statistics:

Info: Number of questions : 5

Info: Number of inspected tuples: 4

Info: Number of root tuples : 3

Info: Number of non-root tuples : 1

 More information? (yes(y)/no(n)/abort(a)) [n]? y

Fernando Sáenz-Pérez 229/357

Universidad Complutense de Madrid

Datalog Educational System

Is the witness query a wrong answer(w)/missing

answer(m)/abort(a) [w]? w

 Error in relation: intermediate/2

 Error in rule :

 intermediate(X,Y) :-

 orbits(X,Y),

 orbits(Z,Y).

 File : c:/des/desdevel/examples/dldebugger/orbits1.dl

 Lines: 23,26

Info: Debug Statistics:

Info: Number of questions : 6

Info: Number of inspected tuples: 4

Info: Number of root tuples : 0

Info: Number of non-root tuples : 4

So, by answering a total of 5 questions and inspecting 4 tuples, the debugger
catches the erroneous relation. But also as before it can point to the responsible rule if
we request for more information and answer a simple one more question. In this case,
the relation intermediate is composed of only one rule, but it might contain more.

The complete syntax of the command is:

/debug_datalog Goal [Level]

which starts the debugger for the basic goal Goal at predicate or clause level. Level is
indicated with the options p and c for Level, respectively. The default is p.

If you specify a clause level debugging, the debugger automatically look for
incorrect clauses, as in the following example, which ends with no further questions:

DES> /debug_datalog planet(X) c

Is orbits(sun,sun) = {} valid(v)/nonvalid(n)/abort(a) [v]? v

Is orbits(earth,F) = {orbits(earth,sun)}

valid(v)/nonvalid(n)/abort(a) [v]? v

Is intermediate(earth,sun) = {intermediate(earth,sun)}

valid(v)/nonvalid(n)/abort(a) [v]? n

Why is nonvalid, is a wrong answer(w)/missing answer(m)/abort(a)

[w]? w

Is orbits(sun,F) = {} valid(v)/nonvalid(n)/abort(a) [v]? v

Is orbits(L,sun) = {orbits(earth,sun),orbits(moon,sun)}

valid(v)/nonvalid(n)/abort(a) [v]? v

 Error in relation: intermediate/2

 Error in rule :

 intermediate(X,Y) :-

 orbits(X,Y),

 orbits(Z,Y).

 File : c:/des/desdevel/examples/dldebugger/orbits1.dl

 Lines: 23,26

Info: Debug Statistics:

Info: Number of questions : 6

Info: Number of inspected tuples: 4

Info: Number of root tuples : 0

Info: Number of non-root tuples : 4

Fernando Sáenz-Pérez 230/357

Universidad Complutense de Madrid

Datalog Educational System

5.10.2 Debugging Datalog Programs with Wrong and Missing Answers

With this second tool, the main goal is to overcome or at least to reduce the
number of inspected tuples when debugging by using a modification14 of the former
tool. This is done by asking for more specific information from the user. Now, the user
can indicate not only that a result (set of answers) is non-valid, but also which tuple is
unexpected in the set (wrong answer) or was expected but is not in the set (missing
answer). This information is not compulsory, but it is usually easy to provide and leads
to a reduction both in the number of questions and in the size of the considered result
sets. The reduction is achieved by using three optimizations which use the information
about wrong and missing answers to concentrate only on the parts of the program
which are related to the particular errors. Thus, this approach combines ideas of
algorithmic debugging [Shap82], slicing [Tip95] and database provenance [GKT07].

The syntax of the command for this debugger is:

/debug_dl Name/Arity File

which starts the debugger for the relation Name/Arity which is defined in file File.
It is assumed that a predicate name only occurs in the program with the same arity.
Here, instead a goal, a predicate is requested along a file name needed to build a
program transformation for the debugger to work.

Let's consider the following program (example1 in folder examples/
DLDebugger) and its intended interpretation:

% Intensional database (program rules)

p(X) :- s(X).

p(X) :- q(X,B), not r(B).

s(f).

s(X) :- t(B,X), r(B).

t(b,X) :- q(c,X), r(X).

t(X,g) :- r(X).

% Extensional database (facts)

q(a,c).

q(e,e).

q(c,d).

r(a).

r(b).

r(c).

% Intended interpretation

i(p) = { a, c, f, g} i(q) = { (a,c), (c,d) }

i(r) = { a, b, c } i(s) = { a, f, g }

14 In fact, a brand-new debugger using CHR.

Fernando Sáenz-Pérez 231/357

Universidad Complutense de Madrid

Datalog Educational System

i(t) = { (a,g), (b,g), (c,g), (c,a) }

When the user submits the query t(c,X) he gets:

DES> t(c,X)

{

 t(c,g)

}

Info: 1 tuple computed.

But he would have expected t(c,a) as well (as depicted in the intended
interpretation above). Then, he completes a debugging session as follows:

DES> /debug_dl t/2 example1.dl

Info: 12 rules consulted.

Info: Loading and transforming file...

{

1 - t(a,g),

2 - t(b,g),

3 - t(c,g)

}

Input: Is this the expected answer for t/2?

(y/n/mT/wN/a/h) [n]: ma,c

Info: Bug source: [buggy(t,unmatched atom,[(a,c)])]

Info: Debug Statistics:

Info: Number of questions : 1

Info: Number of inspected tuples: 3

Info: Number of root tuples : 3

Info: Number of non-root tuples : 0

The single question the user needs to answer is about the validity of the relation
t (of course, the answer is unexpected because the user started the debugger pointing
at t/2, but he is allowed to answer a more detailed information). In this case, the user
answers ma,c, where m stands for missing, and a,c stands for the missing tuple
(a,c). Observe that the user can also indicate a wrong tuple using w or simply choose
to answer yes (y) (respectively no (n)) indicating that the result set is valid
(respectively non-valid). In the case of y and n the debugger behaves as a traditional
algorithmic debugger and no optimization is applied.

Another session for the same program but a different relation is as follows,
where there is an unexpected, wrong answer for the meaning of p.

DES> /debug_dl p/1 example1.dl

Info: 12 rules consulted.

Info: Loading and transforming file...

{

 1-p(c),

 2-p(e),

 3-p(f),

 4-p(g)

}

Input: Is this the expected answer for p/1? (y/n/mT/wN/a/h) [n]:

w2

{

Fernando Sáenz-Pérez 232/357

Universidad Complutense de Madrid

Datalog Educational System

 1-q(e,e)

}

Input: Do you expect that ALL these tuples be in q/2?

(y/n/mT/wN/a/h) [n]:

Info: Buggy relation found: q

Info: Debug Statistics:

Info: Number of questions : 2

Info: Number of inspected tuples: 5

Info: Number of root tuples : 4

Info: Number of non-root tuples : 1

The user indicates that the tuple (e) in p is wrong. Here, we use the user

answer w2, stating that the second tuple is wrong with respect to the intended
interpretation of the program (notice that all tuples are numbered so that they can be
easily pointed out). Then, the debugger chooses questions (and some of them are
automatically answered) for the user to answer. The user answer is yes for the second
question indicating that (e) is not expected in the result of the query r(X), while the
user answer is no for the last question, indicating that the tuple (e,e) is not expected
in the result of the query q(X,Y). With this information the debugger determines that
the relation q is a buggy relation.

Next, we include the debugging session using the debugger of the last
subsection. Notice that the debugger needs to formulate four questions to the user
before finding the error, one of which requires the examination of all the tuples in t. In
this case, the debugger points out the relation t as a buggy relation, however it is not
the cause of the wrong answer e in p. This happens by chance since we are considering
a program with two errors.

DES> /debug_datalog p(F)

Is r(a) = {r(a)} valid(v)/nonvalid(n)/abort(a) [v]? v

Is r(F) = {r(a),r(b),r(c)} valid(v)/nonvalid(n)/abort(a) [v]? v

Is t(C,D) = {t(a,g),t(b,g),t(c,g)}

valid(v)/nonvalid(n)/abort(a) [v]? n

Is q(c,E) = {q(c,d)} valid(v)/nonvalid(n)/abort(a) [v]? v

 Error in relation: t/2

 Witness query : t(C,D) -> {t(a,g),t(b,g),t(c,g)}

Info: Debug Statistics:

Info: Number of questions : 4

Info: Number of inspected tuples: 8

Info: Number of root tuples : 4

Info: Number of non-root tuples : 4

 More information? (yes(y)/no(n)/abort(a)) [n]? n

It is worth remarking that the difference in the number of tuples will increase in
realistic applications. Suppose that the extensional predicate r is defined by thousands
of different values instead of just three as in our toy example. Then, the debugger
proposed in this paper will still ask the same questions with the same number of tuples
to consider (six, where four of them corresponding to the initial symptom), while the
debugger in [CGS08] will ask a question about the whole content of r in the second
question, therefore displaying thousands of values to the user.

Fernando Sáenz-Pérez 233/357

Universidad Complutense de Madrid

Datalog Educational System

5.11 SQL Declarative Debugger

As in the previous section, here we focus on a declarative approach to
debugging, following [CGS12a] (former version of the debugger is based on [CGS11b]
and subsumed by the current one, which is a brand new implementation). There,
possible erroneous objects correspond to views, and the debugger looks for erroneous
views asking the user whether the result of a given view is as expected.

When the user starts the debugger for a view with the command /debug_sql
View, the debugger builds internally its computation tree and starts the debugging
session. The root of the tree is the view under debugging, its nodes can be either views
or tables, and children of a view are all of the views and tables occurring in that view
(table nodes do not have children). This tree is traversed and the validity (whether the
view outcome matches its intended meaning) of each node is asked to the user. If a
given node is checked as valid, its subtree is assumed to be valid and it is no longer
traversed. Otherwise, the node itself or one of its descendants is assumed to be non-
valid. In this case, the subtree is traversed to find the erroneous node.

Starting the debugging is done with the command:

/debug_sql View [Opts]

where:

Opts = [trust_tables([yes|no])] [trust_file(FileName)]

[oracle_file(FileName)] [debug([full|plain])]

[order([cardinality|topdown])].

Defaults are trust tables (trust_tables(yes)), no trust file, no oracle file, full
debugging (debug(full)), and navigation order based on relation cardinality
(order(cardinality)). Trusting tables means that they are considered correct and
no question about their contents are posed to the user. Trust files, oracle files,
debugging type and navigation order are explained later.

Let's consider the file pets1.sql in the directory examples/SQLDebugger
(the problem is explained in the same file). Here, we find that the view Guest returns
an unexpected answer:

DES> /process examples/SQLDebugger/pets1.sql

...

DES> select * from Guest;

answer(Guest.id:int,Guest.name:varchar(50)) ->

{

 answer(1,'Mark Costas'),

 answer(2,'Helen Kaye'),

 answer(3,'Robin Scott')

}

Info: 3 tuples computed.

In fact, only Robin Scott is expected in the result set. Then, we can debug
that view as follows:

DES> /debug_sql Guest

Info: Debugging view 'Guest'.

Fernando Sáenz-Pérez 234/357

Universidad Complutense de Madrid

Datalog Educational System

{

 1 - 'Guest'(1,'Mark Costas'),

 2 - 'Guest'(2,'Helen Kaye'),

 3 - 'Guest'(3,'Robin Scott')

}

Input: Is this the expected answer for view 'Guest'?

(y/n/m/mT/w/wN/a/h) [n]: n

Info: Debugging view 'CatsAndDogsOwner'.

{

 1 - 'CatsAndDogsOwner'(1,'Wilma'),

 2 - 'CatsAndDogsOwner'(2,'Lucky'),

 3 - 'CatsAndDogsOwner'(3,'Rocky')

}

Input: Is this the expected answer for view 'CatsAndDogsOwner'?

(y/n/m/mT/w/wN/a/h) [y]: n

Info: Debugging view 'NoCommonName'.

{

 1 - 'NoCommonName'(1),

 2 - 'NoCommonName'(2),

 3 - 'NoCommonName'(3)

}

Input: Is this the expected answer for view 'NoCommonName'?

(y/n/m/mT/w/wN/a/h) [y]: n

Info: Debugging view 'LessThan6'.

{

 1 - 'LessThan6'(1),

 2 - 'LessThan6'(2),

 3 - 'LessThan6'(3),

 4 - 'LessThan6'(4)

}

Input: Is this the expected answer for view 'LessThan6'?

(y/n/m/mT/w/wN/a/h) [y]: y

Info: Debugging view 'AnimalOwner'.

{

 1 - 'AnimalOwner'(1,'Kitty',cat),

 2 - 'AnimalOwner'(1,'Wilma',dog),

 3 - 'AnimalOwner'(2,'Lucky',dog),

 4 - 'AnimalOwner'(2,'Wilma',cat),

 5 - 'AnimalOwner'(3,'Oreo',cat),

 6 - 'AnimalOwner'(3,'Rocky',dog),

 7 - 'AnimalOwner'(4,'Cecile',turtle),

 8 - 'AnimalOwner'(4,'Chelsea',dog)

}

Input: Is this the expected answer for view 'AnimalOwner'?

(y/n/m/mT/w/wN/a/h) [y]: y

Info: Buggy relation found: CatsAndDogsOwner

In this example, tables have been trusted, but it is also possible to ask the user
for the validity of the involved tables in the debugging process via the command
/debug_sql Guest trust_tables(no). In this example session, the validity of
the table Owner would be asked to the user.

Fernando Sáenz-Pérez 235/357

Universidad Complutense de Madrid

Datalog Educational System

5.11.1 Trusted Specifications

In SQL, the following scenario is very usual: A set of correct views is updated to
improve its efficiency. The new set of views includes both new views and improved
versions of some old views, keeping their names and intended answers. Sometimes,
the new, usually more involved system, no longer produces the expected results. We
use the first, reliable version, which we call a trusted specification during the subsequent
debugging session as a valid reference.

For instance, let's consider that the user has corrected the former example,
which is now working properly. Now, suppose that, in order to improve readability,
the set of views is changed by removing AnimalOwner, adding instead a new view
CatsOrDogsOwner, and modifying LessThan6 and CatsAndDogsOwner, which
now make use of CatsOrDogsOwner.

Next, the modified and new views (Guest and NoCommonName remain the
same; this new version is located in the file examples/SQLDebugger/pets2.sql)
are listed.

create or replace view CatsOrDogsOwner(id,aname,specie) as

 select O.id, P.name, P.specie

 from Owner O, Pet P, PetOwner PO

 where O.id = PO.id and P.code=PO.code

 and (specie='cat' or specie='dog');

 create or replace view CatsAndDogsOwner(id,aname) as

 select A.id, A.aname

 from CatsOrDogsOwner A, CatsOrDogsOwner B

 where A.id=B.id and A.specie=B.specie;

 create or replace view LessThan6(id) as

 select id from CatsOrDogsOwner

 group by id having count(*)<6;

The intended answer of the views with the same name is kept. In the case of
CatsOrDogsOwner, its intended answer is the multiset of owners with their pet
names and species, but limited to cats and dogs.

The very same computation tree as for pets1.sql results after replacing
literals AnimalOwner by CatsOrDogsOwner. However, the new set of views is
erroneous, since the where condition A.specie=B.specie of CatsAndDogsOwner
should be A.specie<>B.specie, in order to ensure that the owner has at least one
dog and one cat.

Now, the user again detects an unexpected result from the view Guest since its
outcome incorrectly includes the owner with identifier 4: Tom Cohen. A new
debugging session starts, but now the old version of the views (in the file
pets_trust) can be used as a trusted specification as follows:

DES> /process examples/SQLDebugger/pets2.sql

...

DES> /debug_sql Guest

 trust_file('examples/SQLDebugger/pets_trust')

Info: Debugging view 'Guest'.

Fernando Sáenz-Pérez 236/357

Universidad Complutense de Madrid

Datalog Educational System

{

 1 - 'Guest'(3,'Robin Scott'),

 2 - 'Guest'(4,'Tom Cohen')

}

Input: Is this the expected answer for view 'Guest'?

(y/n/m/mT/w/wN/a/h) [n]: n

Info: view 'NoCommonName' is nonvalid w.r.t. the trusted file.

Info: view 'LessThan6' is valid w.r.t. the trusted file.

Info: view 'CatsAndDogsOwner' is nonvalid w.r.t. the trusted

file.

Info: Debugging view 'CatsOrDogsOwner'.

{

 1 - 'CatsOrDogsOwner'(1,'Kitty',cat),

 2 - 'CatsOrDogsOwner'(1,'Wilma',dog),

 3 - 'CatsOrDogsOwner'(2,'Lucky',dog),

 4 - 'CatsOrDogsOwner'(2,'Wilma',cat),

 5 - 'CatsOrDogsOwner'(3,'Oreo',cat),

 6 - 'CatsOrDogsOwner'(3,'Rocky',dog),

 7 - 'CatsOrDogsOwner'(4,'Chelsea',dog)

}

Input: Is this the expected answer for view 'CatsOrDogsOwner'?

(y/n/m/mT/w/wN/a/h) [y]: y

Info: Buggy view found: CatsAndDogsOwner

Here, the debugger traverses the computation tree as before, but the user is not
asked for views in the set of trusted views, and the erroneous view is caught with only
one final check (compared to the four checks that would be needed otherwise). The
debugger detects that the new version of CatsAndDogsOwner is erroneous.

5.11.2 Missing and Wrong Tuples

The debugger also allows the user to specify the error type, indicating if there is
either a missing answer (a tuple was expected but it is not in the result) or a wrong
answer (the result contains an unexpected tuple). This information is used for slicing
the associated queries, keeping only those parts that might be the cause of the error.
The validity of the results produced by sliced queries is easier to determine, thus
facilitating the location of the error.

5.11.2.1 Missing Tuples

Let's consider another example (located at examples/SQLDebugger/

awards1.sql): The loyalty program of an academy awards an intensive course for
students that satisfy the following constraints:

 The student has completed the basic level course (level = 0).

 The student has not completed an intensive course.

 To complete an intensive course, a student must either pass the all in one course, or
the three initial level courses (levels 1, 2 and 3).

The database schema includes three tables:

 courses(id,level) contains information about the standard courses, including

their identifier and the course level

Fernando Sáenz-Pérez 237/357

Universidad Complutense de Madrid

Datalog Educational System

 registration(student,course,pass) indicates that the student is in the

course, with pass taking the value true if the course has been successfully
completed

 allInOneCourse(student,pass) contains information about students
registered in a special intensive course, with pass playing the same role as in
registration.

File awards1.sql contains the SQL views selecting the award candidates. The
first view is standard, which completes the information included in the table
registration with the course level. The view basic selects those standard students that
have passed a basic level course (level 0). The view intensive defines as intensive

students those in the table allInOneCourse, together with the students that have
completed the three initial levels. However, this view definition is erroneous: We have
forgotten to check that the courses have been completed (flag pass). Finally, the main
view awards selects the students in the basic but not in the intensive courses. Suppose
that we try the query select * from awards, and that in the result we notice that
the student Anna is missing. We know that Anna completed the basic course, and that
although she registered in the three initial levels, she did not complete one of them,
and hence she is not an intensive student. Thus, the result obtained by this query is
non-valid.

So, the user starts the debugger as Anna is not among the (possibly large) list of
student names produced by the view awards. The debugging session proceeds as

follows:

DES> /process examples/SQLDebugger/awards1

...

DES> /debug_sql awards

Info: Debugging view 'awards'.

{

 1 - awards('Carla')

}

Input: Is this the expected answer for view 'awards'?

(y/n/m/mT/w/wN/a/h) [n]: m'Anna'

Info: Debugging view 'intensive'.

Input: Should 'intensive' include a tuple of the form 'Anna'?

(y/n/a) [y]: n

Info: Debugging view 'standard'.

Input: Should 'standard' include a tuple of the form 'Anna,1,1'?

(y/n/a) [y]: y

Input: Should 'standard' include a tuple of the form 'Anna,2,1'?

(y/n/a) [y]: y

Input: Should 'standard' include a tuple of the form 'Anna,3,0'?

(y/n/a) [y]: y

Info: Buggy view found: intensive

The first answer m'Anna' indicates that ('Anna') is missing in the view
awards. Next, the user indicates that view intensive should not include ('Anna'). The
debugger then asks three simple questions involving the view standard. After
checking the information for Anna, the user indicates that the listed tuples are correct.

Then, the tool points out intensive as the buggy view, after only three simple

Fernando Sáenz-Pérez 238/357

Universidad Complutense de Madrid

Datalog Educational System

questions. Observe that intermediate views can contain hundreds of thousands of
tuples, but the slicing mechanism helps to focus only on the source of the error.

5.11.2.2 Wrong Tuples

Let's consider a modification of the database defined in awards1.sql as found
in file awards2.sql, where the view basicLevelStudents has been incorrectly
defined. We process this file, inspect the outcome of awards and notice that Anna
should not be in the result set. Then, we proceed with the debugging session as
follows:

DES> /process examples/SQLDebugger/awards2

...

DES> /debug_sql awards

Info: Debugging view 'awards'.

{

 1 - awards('Ana'),

 2 - awards('Mica')

}

Input: Is this the expected answer for view 'awards'?

(y/n/m/mT/w/wN/a/h) [n]: w1

Info: Debugging view 'intensiveStudents'.

{

 1 - intensiveStudents('Juan')

}

Input: Is this the expected answer for view 'intensiveStudents'?

(y/n/m/mT/w/wN/a/h) [y]: y

Info: Debugging view 'candidates'.

Input: Should 'candidates' include a tuple of the form 'Ana'?

(y/n/a) [y]: n

Info: Debugging view 'basicLevelStudents'.

Input: Should 'basicLevelStudents' include a tuple of the form

'Ana'? (y/n/a) [y]: n

Info: Debugging view 'salsaStudents'.

Input: Should 'salsaStudents' include a tuple of the form

'Ana,1,teach1'? (y/n/a) [y]: y

Info: Debugging view 'salsaStudents'.

Input: Should 'salsaStudents' include a tuple of the form

'Ana,2,teach2'? (y/n/a) [y]: y

Info: Debugging view 'salsaStudents'.

Input: Should 'salsaStudents' include a tuple of the form

'Ana,3,teach1'? (y/n/a) [y]: y

Info: Buggy view found: basicLevelStudents

5.11.2.3 Displaying Extended Information

Enabling verbose output allows to extend the display with further information
as, e.g., view definitions when they are asked for its validity. As well, enabling
development output allows to check how the logic program that represents the
computation tree is built (c.f. [CGS12a]). For that, use the following commands, resp.:

DES> /verbose on

Info: Verbose output is on.

DES> /development on

Info: Development listings are on.

Fernando Sáenz-Pérez 239/357

Universidad Complutense de Madrid

Datalog Educational System

5.11.2.4 Automated Benchmarking for Debugging

Assessing the applicability of our approach to declarative debugging of SQL
databases can be hard for a large number of database instances. To this end, in order to
provide a wide spectrum of benchmarks, we have developed a tool that randomly
generates a database instance and a mutated version of this instance, making the root
view to deliver different results for both. This way, both an erroneous instance (the
mutated one) along with a correct instance (the originally generated one) are available
to be compared, where the correct instance plays the role of the intended semantics for
the database. The tool then debugs the mutated instance by employing the original
instance as a trusted specification, which is used to replace the user by an automated
oracle.

The correct instance is generated as described in Section 5.21. The mutation
consists of changing the query definition of a view in the computation tree of the root
view so that the meaning of the root view changes. We consider the modification of
one of the following components of the query: The operator in a set query (involving
UNION, INTERSECT or EXCEPT), the comparison operator (<, <>, ...), the logical
operator (AND, OR, ...), a column name in the WHERE condition, and a constant in the
condition. All these modifications are randomly selected, and only the one that makes
the result of the root view to change is preserved in the mutated instance.

The command /debug_sql_bench is similar to /generate_db (c.f. Section
5.21) and generates both the correct and the mutated database. The filename for the
first one is added with _trust before its extension. So, as a result of its successful
execution for the filename parameter p.sql, we get both p.sql and p_trust.sql.

Having these two files (either automatically generated with the command
/debug_sql_bench or manually written) already, it is possible to applying an oracle
automaton, which should behave similar to a user with respect to the queries issued by
the debugger, this time by using the trusted specification p_trust.sql. The
automaton answering a question about the validity of a view can be easily done by
comparing the outcomes of the same relation for both instances (as in a plain debugger
with no wrong and missing answers). However, when the user has more answer
opportunities (as in the debugger explained in this section, including both missing and
wrong tuples), then an automaton can consider different possibilities. We have selected
among them, the ones that are explained next.

For an unexpected result, it may be the case that only either wrong or missing
tuples are observed. In this case, the automaton answers with the first unexpected
observation (a wrong or missing tuple). If both kinds of unexpected tuples are present,
the automaton selects a missing tuple as an answer to the question.

Other questions include set membership (in) and set containment (subset).
While in the first case the answer can be computed as either yes or no, in the second
case also a wrong tuple can be signalled (in both cases by simply contrasting with the
trusted instance).

Note that the implementation of the automated oracle is similar to the
implementation of trusted specifications, but automatically generating detailed
answers for the nodes delivering an unexpected result.

Fernando Sáenz-Pérez 240/357

Universidad Complutense de Madrid

Datalog Educational System

To apply the automaton, the command /debug_sql is provided with the

parameter oracle_file(FileName). Then, to develop an example to illustrate the
whole process, following is a system session showing this:

DES> /set_flag random_seed 44

DES> /debug_sql_bench 3 5 10 3 3 p.sql

Info: Generating the database.

Info: Processing the generated database.

Info: Creating the database.

Info: Processing file 'p_trust.sql' ...

DES> /multiline on

DES> /abolish

DES> /drop_all_relations

Warning: No views found.

Warning: No tables found.

DES> /output on

DES> CREATE TABLE t1(a INTEGER, b INTEGER, c INTEGER, d INTEGER,

PRIMARY KEY(a));

DES> CREATE TABLE t2(a INTEGER, b INTEGER, c INTEGER, d INTEGER,

PRIMARY KEY(a));

DES> CREATE TABLE t3(a INTEGER, b INTEGER, c INTEGER, d INTEGER,

PRIMARY KEY(a));

DES> INSERT INTO t1(a,b,c,d) VALUES (1,5,1,2);

Info: 1 tuple inserted.

DES> INSERT INTO t1(a,b,c,d) VALUES (2,4,2,0);

Info: 1 tuple inserted.

DES> INSERT INTO t1(a,b,c,d) VALUES (3,3,1,1);

Info: 1 tuple inserted.

DES> INSERT INTO t1(a,b,c,d) VALUES (4,2,3,2);

Info: 1 tuple inserted.

DES> INSERT INTO t1(a,b,c,d) VALUES (5,1,2,3);

Info: 1 tuple inserted.

DES> INSERT INTO t2(a,b,c,d) VALUES (1,5,2,4);

Info: 1 tuple inserted.

DES> INSERT INTO t2(a,b,c,d) VALUES (2,4,4,4);

Info: 1 tuple inserted.

DES> INSERT INTO t2(a,b,c,d) VALUES (3,3,3,4);

Info: 1 tuple inserted.

DES> INSERT INTO t2(a,b,c,d) VALUES (4,2,3,4);

Info: 1 tuple inserted.

DES> INSERT INTO t2(a,b,c,d) VALUES (5,1,4,4);

Info: 1 tuple inserted.

DES> INSERT INTO t3(a,b,c,d) VALUES (1,5,0,4);

Info: 1 tuple inserted.

DES> INSERT INTO t3(a,b,c,d) VALUES (2,4,2,1);

Info: 1 tuple inserted.

DES> INSERT INTO t3(a,b,c,d) VALUES (3,3,3,1);

Info: 1 tuple inserted.

DES> INSERT INTO t3(a,b,c,d) VALUES (4,2,1,2);

Info: 1 tuple inserted.

DES> INSERT INTO t3(a,b,c,d) VALUES (5,1,2,2);

Info: 1 tuple inserted.

Fernando Sáenz-Pérez 241/357

Universidad Complutense de Madrid

Datalog Educational System

DES> CREATE VIEW v10(a,b,c,d) AS (SELECT DISTINCT

t3.c,t3.c,t3.d,t3.b FROM t3 WHERE t3.a <= 2) UNION ALL (SELECT

ALL t3.c,t3.b,t3.a,t3.b FROM t3 WHERE t3.b = 2);

DES> CREATE VIEW v5(a,b,c,d) AS (SELECT DISTINCT

t1.d,t1.b,t1.b,t1.c FROM t1 WHERE t1.a = 1) INTERSECT (SELECT

DISTINCT t1.d,t1.a,t1.a,t1.c FROM t1 WHERE t1.d > 1);

DES> CREATE VIEW v6(a,b,c,d) AS SELECT DISTINCT

t1.d,t1.d,t1.a,t2.c FROM t1, t2 WHERE (t1.a = t2.b AND (t1.b < 1

OR t2.c >= 0));

DES> CREATE VIEW v7(a,b,c,d) AS (SELECT ALL t1.d,t1.c,t1.c,t1.a

FROM t1 WHERE t1.d < 0) UNION (SELECT ALL t1.a,t1.c,t1.a,t1.a

FROM t1 WHERE t1.a < 1);

DES> CREATE VIEW v8(a,b,c,d) AS (SELECT DISTINCT

t3.d,t3.d,t3.c,t3.b FROM t3 WHERE t3.c = 2) EXCEPT (SELECT

DISTINCT t1.b,t1.c,t1.d,t1.c FROM t1 WHERE t1.a > 0);

DES> CREATE VIEW v9(a,b,c,d) AS (SELECT DISTINCT

t2.c,t2.a,t2.b,t2.d FROM t2 WHERE t2.b < 2) INTERSECT (SELECT

DISTINCT t1.c,t1.d,t1.b,t1.b FROM t1 WHERE t1.d = 4);

DES> CREATE VIEW v2(a,b,c,d) AS (SELECT ALL v6.d,v6.d,v8.a,v6.a

FROM v6, v8 WHERE (v8.a = v6.b AND (v8.c < 0 AND v6.b > 4)))

INTERSECT (SELECT ALL v5.d,v5.a,v5.a,v5.c FROM v5 WHERE v5.a <

4);

DES> CREATE VIEW v3(a,b,c,d) AS (SELECT ALL

v10.a,v10.c,v10.b,v10.d FROM v10 WHERE v10.a = 4) INTERSECT (

SELECT DISTINCT v9.c,v9.d,v9.a,v9.c FROM v9 WHERE v9.b <= 3);

DES> CREATE VIEW v4(a,b,c,d) AS (SELECT DISTINCT

v7.b,v7.d,v7.b,v7.a FROM v7 WHERE v7.a <= 2) UNION ALL (SELECT

DISTINCT v7.c,v7.d,v7.b,v7.c FROM v7 WHERE v7.b >= 1);

DES> CREATE VIEW v1(a,b,c,d) AS SELECT ALL v2.d,v3.b,v2.b,v2.b

FROM v2, v3, v4 WHERE ((v4.a = v3.b AND v3.a = v2.b) AND ((v4.d

<= 1 AND v3.a <= 0) OR v2.b >= 0));

DES> /output on

DES>

Info: Batch file processed.

Info: Ensuring non-empty views.

Info: Checking cardinality of v10: 3

Info: Checking cardinality of v5: 0..4

Info: Checking cardinality of v6: 5

Info: Checking cardinality of v7: 0..5

Info: Checking cardinality of v8: 2

Info: Checking cardinality of v9: 0..1

Info: Checking cardinality of v2: 0..4

Info: Checking cardinality of v3: 0..0..3

Info: Checking cardinality of v4: 8

Info: Checking cardinality of v1: 3

Info: Mutating the database...

Info: Mutating view v9: 3.

Info: Mutating view v1: 3.

Info: Mutating view v8: 3.

Info: Mutating view v7: 3

Info: Mutating view v10: 3.7 (v1)

DES> /debug_sql v1 oracle_file('p_trust.sql')

Info: Debugging view 'v1'.

{

Fernando Sáenz-Pérez 242/357

Universidad Complutense de Madrid

Datalog Educational System

 1-v1(1,1,2,2),

 2-v1(1,2,2,2),

 3-v1(4,1,2,2),

 4-v1(4,2,2,2),

 5-v1(5,1,2,2),

 6-v1(5,1,3,3),

 7-v1(5,2,2,2)

}

Input: Is this the expected answer for view 'v1'?

(y/n/m/mT/w/wN/a/h) [n]: w2

Info: Debugging view 'v9'.

{

 1-v9(4,5,1,4)

}

Input: Is this the expected answer for view 'v9'?

(y/n/m/mT/w/wN/a/h) [y]: y

Info: Debugging view 'v2'.

Input: Should 'v2' include a tuple of the form '1,2,2,1'?

(y/n/a) [y]: y

Info: Debugging view 'v3'.

Input: Should 'v3' include a tuple of the form '2,2,2,1'?

(y/n/a) [y]: n

Info: Debugging view 'v10'.

Input: Should 'v10' include a tuple of the form '2,2,2,1'?

(y/n/a) [y]: n

Info: Buggy view found: 'v10'.

Info: Debug Statistics:

Info: Number of nodes : 13

Info: Max. number of questions : 13

Info: Number of questions : 5

Info: Number of inspected tuples: 11

Info: Number of root tuples : 7

Info: Number of non-root tuples : 4

Notice that mutation did change the meaning of v1 by modifying the view v10
(originally, v1 had 2 tuples and ended with 0, as the Info: Mutating view v10:
2.0 (v1) line above indicates) , so that the automated debugger caught correctly the
bug, in this case by answering a couple of questions with detailed information about
missing tuples.

It is also possible to compare this evolved debugger to a classical one by
specifying in the parameter debug(Type) the type of debugging: either plain
(classical) or full (with missing and wrong answers). Also, it can be specified the
navigation strategy with the parameter order([cardinality|topdown]), where
cardinality seeks for the next dependant node with the smallest cardinality, and
topdown selects the next node in the classical top-down order. The next system session
illustrates the behaviour of a classical declarative debugger (with the values plain
and topdown for the parameters)

DES> /debug_sql v1 oracle_file('p_trust.sql') debug(plain)

order(topdown)

Info: Debugging view 'v1'.

{

 1-v1(1,1,2,2),

Fernando Sáenz-Pérez 243/357

Universidad Complutense de Madrid

Datalog Educational System

 2-v1(1,2,2,2),

 3-v1(4,1,2,2),

 4-v1(4,2,2,2),

 5-v1(5,1,2,2),

 6-v1(5,1,3,3),

 7-v1(5,2,2,2)

}

Input: Is this the expected answer for view 'v1'?

(y/n/m/mT/w/wN/a/h) [n]: n

Info: Debugging view 'v2'.

{

 1-v2(1,2,2,1),

 2-v2(1,2,2,5),

 3-v2(2,3,3,5),

 4-v2(3,2,2,4)

}

Input: Is this the expected answer for view 'v2'?

(y/n/m/mT/w/wN/a/h) [y]: y

Info: Debugging view 'v3'.

{

 1-v3(0,4,0,5),

 2-v3(1,2,1,2),

 3-v3(1,4,2,2),

 4-v3(2,1,2,4),

 5-v3(2,2,2,1),

 6-v3(3,1,3,3)

}

Input: Is this the expected answer for view 'v3'?

(y/n/m/mT/w/wN/a/h) [y]: n

Info: Debugging view 'v10'.

{

 1-v10(0,0,4,5),

 2-v10(1,1,2,2),

 3-v10(1,2,4,2),

 4-v10(2,2,1,4),

 5-v10(2,2,2,1),

 6-v10(3,3,1,3)

}

Input: Is this the expected answer for view 'v10'?

(y/n/m/mT/w/wN/a/h) [y]: n

Info: Buggy view found: 'v10'.

Info: Debug Statistics:

Info: Number of nodes : 13

Info: Max. number of questions : 11

Info: Number of questions : 4

Info: Number of inspected tuples: 23

Info: Number of root tuples : 7

Info: Number of non-root tuples : 16

By comparing the statistics at the end of both sessions, we can see that, though
the questions in this last case is one less than in the former, they are easier to answer,
the number of inspected are roughly a half for the classical one. The benefits of using
the more evolved approach has been confirmed for a test suite of 200 database
instances.

Fernando Sáenz-Pérez 244/357

Universidad Complutense de Madrid

Datalog Educational System

5.12 SQL Test Case Generator

Checking that a view produces the same result as its intended interpretation is a
daunting task when large databases and both dependent and correlated queries are
considered. Test case generation provides tuples that can be matched to the intended
interpretation of a view and therefore be used to catch possible design errors in the
view.

A test case for a view in the context of a database is a set of tuples for the
different tables involved in the computation of the view. Executing a view for a positive

test case (PTC)15 should return, at least, one tuple. This tuple can be used by the user to
catch errors in the view, if any. This way, if the user detects that this tuple should not
be part of the answer, it is definitely a witness of the error in the design of the view. On
the contrary, the execution of the view for a negative test case (NTC) should return at
least one tuple which should not be in the result set of the query. Again, if no such a
tuple can be found, this tuple is a witness of the error in the design.

A PTC in a basic query means that at least one tuple in the query domain
satisfies the where condition. In the case of aggregate queries, a PTC will require
finding a valid aggregate verifying the having condition, which in turn implies that
all its rows verify the where condition.

In the case of basic query, an NTC will contain at least one tuple in the result set
of the view not verifying the where condition. In queries containing aggregate
functions, this tuple either does not satisfy the where condition or the having

condition. Set operations are also allowed in both PTC and NTC generation.

It is possible to obtain a test case which is both positive and negative at the
same time thus achieving predicate coverage with respect to the where and having
clauses (in the sense of [AO08]). We will call these tests PNTC's. For instance, let's
consider the following system session:

DES> create table t(a int primary key)

DES> create view v(a) as select a from t where a=5

DES> /test_case v

Info: Test case over integers:

[t(5),t(-5)]

The test case {t(5),t(-5)} is a PNTC. However, a PNTC is not always possible
to be generated. For instance, it is possible for the following view to generate both
PTC's and NTC's but no PNTC:

create view v(a) as select a from t where a=1 and not exists

(select a from t where a<>1);

The only PTC for this view is {t(1)} (modulo duplicates). (If you want to check
this, ensure that a minimum test case size of 1 has been set with the command
/tc_size). There are many NTC's, as, e.g., {t(2)} and {t(1) ,t(2)}.

The command /test_case View [Options] allows two kind of options.
First, to specify which test case class is to be generated: all (PNTC, the default option),
positive (PTC) or negative (NTC). The second option specifies an action: the

15 That is, executing the view using as input data for the tables those in the PTC.

Fernando Sáenz-Pérez 245/357

Universidad Complutense de Madrid

Datalog Educational System

results are to be displayed via the option display (default option), added to the
corresponding tables (add option) or the contents of the tables replaced by the
generated test case tuples (replace option).

For experimenting with the domain of attributes, we provide the command
/tc_domain Min Max, which defines the range of values the integer attributes may
take. This range is determinant in the search of test cases in a constraint network that
can easily become too complex as long as involved views grow. So, keeping this
domain small allows to manage bigger problems. This range is set by default to -5..5.

String constants occurring in all the views on which the view for the test case
generated depends are mapped to integers in the same domain, starting from 0. So, the
size of the domain has to be large enough to hold, at least, the string constants in those
views.

Also, we provide the command /tc_size Min Max for specifying the size of
the test case generated, in number of tuples. Again, keeping this range small helps in
being able to cope with bigger problems. This range is set by default to 1..7.

Currently, we provide support for integer and string attributes. Binary
distributions, and both SICStus and SWI-Prolog source distributions allow the
functionality described.

5.13 Batch Processing

There are three ways for processing batch files (scripts):

1. If the file des.ini is located at the distribution directory, its contents are
interpreted as input prompts and executed before giving control to the user at start-
up of the system.

2. If the file des.cnf is located at the distribution directory, its contents are
processed as before, but producing no output. It is intended for configuring system
settings (though it can be used for other purposes, too).

3. If the file des.out is located at the distribution directory, its contents are
interpreted as input prompts and executed upon exiting the system. This file can be
used in combination with the file des.ini for restoring the last session state (see
commands /save_state and /restore_state in Section 5.17.1).

4. The command /process Filename [Parameters] (or /p as a shorthand) allows
to process each line in the script file as it was an input, the same way as above. If no
file extension is given and Filename does not exists, then .ini, .sql, .ra, .trc,
and .drc are appended in turn to Filename and tried in that order for finding an
existing, matching file. The optional argument Parameters is intended to pass
parameters to the file to be processed. A parameter is a string delimited by either
blanks or double quotes ("), which are needed if the parameter contains a blank.
The same is applied to Filename. The value for each parameter is retrieved by the
tokens $parv1$, $parv2$, ... for the first, second, ... parameter, respectively. If no
value as a parameter is provided for a token occurring in a batch file, a warning is
issued. The command /set_default_parameter can be used to set default
values for parameters. A different parameter vector exists for each script call to the
command /process, so that nested calls with this command are allowed.

Fernando Sáenz-Pérez 246/357

Universidad Complutense de Madrid

Datalog Educational System

5.13.1 Comments in Scripts

When processing batch files, inputs starting with either the symbol % or -- are
interpreted as comments. Comments can also be delimited between /* and */ and can
be nested (comments spanning for more than a line are only allowed in multi-line
mode, c.f. the command /multiline). The user can also interactively input such
comments at the command prompt, but again producing no effects.

5.13.2 Logging Script Processing

Batch processing can include logging to register program output. This is useful
to feed the system with batch input and get its output in a file, maybe avoiding any
interactive input (multiple logs can be opened at a time). For example, consider the
following des.ini excerpt:

% Dump output to output.txt

/log output.txt

/pretty_print off

% Process (Datalog, SQL, ... queries and commands)

/c examples/fib

fib(100,F)

% End log

/nolog

The result found in output.txt should be:

DES> /pretty_print off

Info: Pretty print is off.

DES> % Process (Datalog, SQL, ... queries and commands)

DES> /c examples/fib

Warning: N > 1 may raise a computing exception if non-ground at

run-time.

Warning: N2 is N - 2 may raise a computing exception if non-

ground at run-time.

Warning: N1 is N - 1 may raise a computing exception if non-

ground at run-time.

Warning: Next rule is unsafe because of variable: [N]

fib(N,F) :- N > 1,N2 is N - 2,fib(N2,F2),N1 is N -

1,fib(N1,F1),F is F2 + F1.

DES> fib(100,F)

{

 fib(100,573147844013817084101)

}

Info: 1 tuple computed.

DES> % End log

DES> /nolog

5.13.3 Script Parameters

Scripts can be invoked with parameters in the expected way:

/process script p1 p2 ... pN

Each parameter pi can be referenced in script with the name $parvi$.

Fernando Sáenz-Pérez 247/357

Universidad Complutense de Madrid

Datalog Educational System

As an example, let's consider the file numbers.sql (in the examples directory),

which contains a query that is intended to display the N first naturals:

WITH nat(n) AS SELECT 1 UNION SELECT n+1 FROM nat SELECT TOP

$parv1$ * FROM nat;

For instance, providing the number 3 as a parameter, then $parv1$ is replaced
by 3:

DES> /p examples/numbers 3

Info: Processing file 'numbers.sql' ...

DES> WITH nat(n) AS SELECT 1 UNION SELECT n+1 FROM nat SELECT

TOP 3 * FROM nat;

answer(nat.n:int) ->

{

 answer(1),

 answer(2),

 answer(3)

}

Info: 3 tuples computed.

Info: Batch file processed.

If we neither provide such a parameter nor specify a default one, most likely an
error is returned as in:

DES> /p examples/numbers

Info: Processing file 'numbers.sql' ...

Warning: Parameter $parv1$ has not been passed to this script.

DES> WITH nat(n) AS SELECT 1 UNION SELECT n+1 FROM nat SELECT

TOP * FROM nat;

Error: Unknown column 'TOP' in 'select' list

Info: Batch file processed.

Default parameters can be set in the invoked script with the command
/set_default_parameter Index Value. , where Index is the integer i denoting
the i-th parameter.

For example, adding the line /set_default_parameter 1 5 to the script
numbers.sql, we get:

DES> /p examples/numbers

Info: Processing file 'examples/numbers.sql' ...

DES> /set_default_parameter 1 5

DES> WITH nat(n) AS SELECT 1 UNION SELECT n+1 FROM nat SELECT

TOP 5 * FROM nat;

answer(nat.n:int) ->

{

 answer(1),

 answer(2),

 answer(3),

 answer(4),

 answer(5)

}

Info: 5 tuples computed.

Info: Batch file processed.

Fernando Sáenz-Pérez 248/357

Universidad Complutense de Madrid

Datalog Educational System

5.13.4 Script Return Codes

Scripts return a code 0 in the system variable $return_code$ upon
completion. However, the command /return Code allows the user to specify any
code (which can be of any data type) in Code. Using /return with no argument stops
processing of the current script. If you need to stop all parent scripts as well, use the
command /stop_batch.

5.14 Configuration File

DES can be configured at start-up by including the file des.cnf at the
distribution directory. Its contents are processed as a batch file with no output being
displayed. This way, DES can be silently configured each time a new session begins.
Typical commands to be included in this file includes those in the command category
Settings (cf. Section 5.17.11). This file is processed just before des.ini. For instance,
the following contents in that file makes DES to show a plain prompt, no banner, no
running information, and compacted output (no extra blank lines):

/display_banner off

/prompt plain

/running_info off

/compact_listings on

5.15 System and User Variables

The following are the system variables which can be used, for instance, when
writing strings to either the console or a file with the commands write, writeln,
write_to_file, and writeln_to_file:

 $computation_time$ last query elapsed time due to computing (eliding
parsing and display time)

 $display_time$ last query elapsed time due to display (eliding parsing and
computing time)

 $parsing_time$ last query elapsed time due to parsing (eliding computing
and display time)

 $stopwatch$ current stopwatch time

 $last_stopwatch$ stopwatch time for its last stop

 $total_elapsed_time$ last query total elapsed time

 $command_elapsed_time$ last command elapsed time

In addition, any dynamic predicate of arity 1 implemented in Prolog as
included in source files can be accessed as well as system variables. The following is a
(most likely non-updated) list of such predicates (the file des.pl contains all
declarations of such dynamic predicates):

 $cf_lookups$ Flag indicating the number of CF lookups

 $check_ic$ Flag indicating whether integrity constraint checking is enabled
(on or off)

 $compact_listings$ Flag indicating whether compact listings are enabled

Fernando Sáenz-Pérez 249/357

Universidad Complutense de Madrid

Datalog Educational System

 $computed_tuples$ Flag with the number of computed tuples during

fixpoint computation (for running info display)

 $ct_lookups$ Flag indicating the number of CT lookups

 $current_db$ Flag indicating the current opened DB

 $des_sql_solving$ Flag indicating whether DES solving is forced for
external DBMSs

 $development$ Flag indicating a development session. Listings show source
and compiled rules

 $display_answer$ Flag indicating whether answers are to be displayed
upon solving (on or off)

 $display_nbr_of_tuples$ Flag indicating whether the number of tuples
are to be displayed upon solving (on or off)

 $duplicates$ Flag indicating whether duplicates are enabled

 $edb_retrievals$ Flag indicating the number of EDB retrievals during
fixpoint computation

 $editor$ Flag indicating the current external editor, if defined already

 et_flag Extension (answer) table flag

 $et_lookups$ Flag indicating the number of ET lookups

 $extensional_predicates$ List of extensional predicates

 $format_timing$ Flag indicating whether formatting of time is enabled or
disabled: on or off

 $fp_iterations$ Flag indicating the number of iterations during fixpoint
computation

 $host_statistics$ Flag for host statistics

 $hypothetical$ Flag indicating whether hypothetical queries are enabled
(on or off)

 $indexing$ Flag indicating whether indexing on extension table is enabled

(on or off)

 $language$ Flag indicating the current default query language

 $last_autoview$ Flag indicating the last autoview executed. This autoview
should be retracted upon exceptions

 $multiline$ Flag indicating whether multiline input is enabled (on or off)

 $my_odbc_query_handle$ Flag indicating the handle to the last ODBC
query

 $my_statistics$ Flag displaying whether statistics are enabled (on or off)

 $non_recursive_predicates$ List of non-recursive predicates

 $nr_nd_predicates$ List of non-recursive predicates which do not depend
on any recursive predicates

Fernando Sáenz-Pérez 250/357

Universidad Complutense de Madrid

Datalog Educational System

 $null_id$ Integer identifier for nulls, represented as '$NULL'(i), where 'i'

is the null identifier

 $nulls$ Flag indicating whether nulls are allowed

 $optimize_cc$ Flag indicating whether complete computation optimization
is enabled

 $optimize_cf$ Flag indicating whether complete flag optimization is
enabled

 $optimize_ep$ Flag indicating whether extensional predicate optimization is
enabled

 $optimize_nrp$ Flag indicating whether non-recursive predicate
optimization is enabled

 $optimize_st$ Flag indicating whether stratum optimization is enabled

 $order_answer$ Flag indicating whether the answer is to be displayed upon
solving (on or off)

 $output$ Flag indicating whether output is enabled (on or off)

 pdg Predicate Dependency Graph

 $pretty_print$ Pretty print for listings (takes more lines to print)

 $prompt$ Flag indicating the prompt format

 $recursive_predicates$ List of recursive predicates

 $return_code$ Flag indicating the last return code from a script invocation
with /process

 $rule_id$ Integer identifier for rules, represented as datalog(Rule, NVs,
i, Lines, FileId, Kind), where 'i' is the rule identifier

 $running_info$ Flag indicating whether running info is to be displayed
(number of consulted rules)

 $safe$ Flag indicating whether program transformation for safe rules is
allowed

 $safety_warnings$ Flag indicating whether safety warnings are enabled

 $shell_exit_code$ Flag indicating the last exit code from a /shell
invocation

 $show_compilations$ Flag indicating whether SQL to DL compilations are
displayed

 $show_sql$ Flag indicating whether SQL compilations are displayed

 $simplification$ Flag indicating whether program simplification for
performance is allowed

 $start_path$ Path on first initialization

 $state$ States for various flags to be restored upon exceptions

 $stopwatch$ Flag indicating stopwatch elapsed time

Fernando Sáenz-Pérez 251/357

Universidad Complutense de Madrid

Datalog Educational System

 $strata$ Result from a stratification

 $tapi$ Flag indicating whether a TAPI command is being processed

 $timing$ Flag indicating elapsed time display: on, off or detailed

 $trusted_views$ Predicate containing trusted view names

 $trusting$ Flag indicating whether a trust file is being processed

 $user_predicates$ List of user predicates

 $verbose$ Verbose mode flag

Finally, with the command /set_flag Flag Expression it is possible to

modify the value of a given system variable (flag). For instance, the following input
resets the last exit code returned by a /shell command:

DES> /set_flag shell_exit_code 0

To inspect the value of a flag, use /current_flag Flag:

DES> /current_flag error

Info: error(0)

System flags should not be modified unless you are sure (typically as a system
implementor) what you are doing. Otherwise, unexpected results can be obtained.

Setting a new flag is also possible for referring to it as a user variable. For
example:

FDES> /timing on

Info: Command elapsed time: 0 ms.

FDES> /c p

Info: 1 rule consulted.

Info: Command elapsed time: 73 ms.

FDES> /set_flag consult_time $last_command_elapsed_time$

Info: Command elapsed time: 3 ms.

FDES> /writeln $consult_time$

73

A value assigned to a variable can be the result of evaluating an expression:

DES> /set_flag i 0

DES> /writeln i

0

DES> /set_flag i i+1

DES> /writeln i

1

Such an expression can be any expression admitted in Datalog (for integers,
strings, dates, ...)

5.16 Messages

DES system messages are prefixed by:

Fernando Sáenz-Pérez 252/357

Universidad Complutense de Madrid

Datalog Educational System

 Info: An information message which requires no attention from the user. Many

information messages are hidden with the command /verbose off, which is the
default mode.

 Warning: A warning message which does not necessarily imply an error, but the
user is requested to focus on its origin. These messages are always shown.

 Error: An error message handled by DES which requires attention from the user.
These messages are always shown.

 Exception: An exception message emerged from the underlying Prolog system
and might be the source of a bug. These messages are always shown. Examples of
exception messages include instantiation errors and undefined predicates.

Prolog exceptions are caught by DES and shown to the user without any further
processing. Depending on the Prolog platform, the system may continue by itself;
otherwise the user must type des. (including the ending dot) to continue if DES was
started from a Prolog interpreter. Upon exceptions, the extension table is cleared and
stratification is recomputed. Note that the latter computation may take a long time if
there are multiple tables and views (typically in opened ODBC connections for DBMS’s
as Oracle and SQL Server).

5.17 Commands

The input at the prompt (i.e., commands or queries) must be written in a line
(i.e., without carriage returns, although it can be broken by the DES console due to
space limitations in the terminal window) and can end with an optional dot.

Commands are issued by preceding the command with a slash (/) at the DES
system prompt. Command arguments are not a comma-separated list enclosed
between brackets as usual, but they simply occur separated by at least one blank. This
enables short typing.

Command names and binary flags (as on/off switches) are not case sensitive.

Ending dots are considered as part of the argument wherever they are expected.
For instance, /cd .. behaves as /cd ... (this command changes the working
directory to the parent directory). In this last case, the final dot is not considered as part
of the argument. The command /ls . shows the contents of the working directory,
whereas /ls .. shows the contents of the parent directory (which behaves as /ls
...).

Filenames and directories can be specified with relative or absolute names.
There is no need of enclosing such names between separators. However, a file or a
directory name can be enclosed between double quotes ("), should its name contains
blanks.

Since commands are submitted with a preceding slash, they are only recognized
as commands in this way. Therefore, you can use command names for your relation
names without name clashes. However, there are a few exceptions to this: Some
commands can be stated in a Datalog file as a directive so that, upon consulting this
file, they are executed. A command specified as an assertion has its arguments
delimited by brackets and separated by commas. For example:

:- solve(ancestor(X,Y)).

Fernando Sáenz-Pérez 253/357

Universidad Complutense de Madrid

Datalog Educational System

:- fuzzy_relation(near,[reflexive,symmetric]).

Note that such directives are executed in the order in which they occur in the
consulted file. In the command descriptions that come next, commands that can be
used as directed are noticed. So, for the file p.dl containing:

p(a).

:-solve(p(X)).

:-clear_et.

p(b).

:-solve(p(X)).

Consulting it produces the following output:

DES> /c p

{

 p(a)

}

Info: 1 tuple computed.

{

 p(a),

 p(b)

}

Info: 2 tuples computed.

Info: 2 rules consulted.

Note that the extension table is not updated upon loading each rule. If the
directive clear_et was not stated, then the result for both solve directives would be
the same because a completed computation is assumed for the goal.

When consulting Datalog files, filename resolution works as follows:

 If the given filename ends with .dl, DES tries to load the file with this (absolute or
relative) filename.

 If the given filename does not end with .dl, DES firstly tries to load a file with .dl
appended to the end of the filename. If such a file is not found, it tries to load the
file with the given filename.

In command arguments, when applicable, you can use relative or absolute
pathnames. In general, you can use a slash (/) as a directory delimiter, but depending
on the platform, you can also use the backslash (\). Also, it might be needed to enclose
path names between either single quotes (') or double quotes (").

Some commands are labelled with TAPI enabled, which means that they can be
submitted to the textual application programming interface (TAPI). There is additional
information for such commands in Section 5.18.2.

Next, commands are described, where italics indicate a parameter which must
be supplied by the user. Square brackets ([and]) indicate an optional keyword or
parameter (excepting the first two DES Database commands for consulting and
reconsulting files, following Prolog syntax). If a parameter is not accepted, please try
again enclosing it between single quotes (').

5.17.1 DDB Database

Commands related to the deductive database handling.

Fernando Sáenz-Pérez 254/357

Universidad Complutense de Madrid

Datalog Educational System

 /[FileNames]

Load the Datalog programs found in the comma–separated list [Filenames],
discarding both rules already loaded, integrity constraints, and SQL table and
view definitions. The extension table is cleared, and the predicate dependency
graph and strata are recomputed.
Examples:
Assuming we are on the examples distribution directory, we can write:

DES> /[mutrecursion,family]

TAPI enabled.
See also /consult Filename.

 /[+FileNames]

Load the Datalog programs found in the comma–separated list Filenames,
keeping rules already loaded, integrity constraints, and SQL table and view
definitions. The extension table is cleared, and the predicate dependency graph
and strata are recomputed.
TAPI enabled.
See also /[Filenames].

 /abolish

Delete the Datalog database. This includes all the local rules (including those
which are the result of SQL compilations) and external rules (persistent
predicates). Integrity constraints and SQL table and view definitions are
removed. The extension table is cleared, and the predicate dependency graph
and strata are recomputed.

 /abolish Name

Delete the predicates matching Name. This includes all their local rules
(including those which are the result of SQL compilations) and external rules
(persistent predicates). Their integrity constraints and SQL table and view
definitions are removed. The extension table is cleared, and the predicate
dependency graph and strata are recomputed.

 /abolish Name/Arity

Delete the predicates matching the pattern Name/Arity. This includes all their
local rules (including those which are the result of SQL compilations) and
external rules (persistent predicates). Their integrity constraints and SQL table
and view definitions are removed. The extension table is cleared, and the
predicate dependency graph and strata are recomputed.

 /assert Head[:-Body]

Add a Datalog rule. If Body is not specified, it is simply a fact. Rule order is
irrelevant for Datalog computation. The extension table is cleared, and the
predicate dependency graph and strata are recomputed.

 /close_persistent

Fernando Sáenz-Pérez 255/357

Universidad Complutense de Madrid

Datalog Educational System

If there is only one connection to a persistent predicate, it is closed. Otherwise,
the user is warned with the different predicate alternatives. After closing the
connection, the predicate is no longer visible except its metadata. The external
DBMS keeps its definition. For restoring its visibility again, simply submit an
assertion as :-persistent(PredSpec,DBMS).

 /close_persistent Name

Close the connection to the persistent predicate Name. The predicate is no
longer visible except its metadata. The external DBMS keeps its definition. For
restoring its visibility again, simply submit an assertion as :-
persistent(PredSpec,DBMS).

 /consult FileName

Load the Datalog program found in the file Filename, discarding the rules
already loaded, integrity constraints, and SQL table and view definitions. The
extension table is cleared, and the predicate dependency graph and strata are
recomputed. The default extension .dl for Datalog programs can be omitted.
Examples:
Assuming we are on the distribution directory, we can write:

DES> /consult examples/mutrecursion

which behaves the same as the following:

DES> /consult examples/mutrecursion.dl

DES> /consult ./examples/mutrecursion

DES> /consult c:/des6.1/examples/mutrecursion.dl

This last command assumes that the distribution directory is c:/des6.1.
Synonyms: /c, /restore_ddb.
TAPI enabled.

 /check_db

Check database consistency w.r.t. declared integrity constraints (types,
existence, primary key, candidate key, foreign key, functional dependency, and
user-defined). Display a report with the outcome.

 /des Input

Force DES to solve Input. If Input is an SQL query, DES solves it instead of
relying on external DBMS solving. This allows to try the more expressive
queries which are available in DES (as, e.g., hypothetical and non-linear
recursive queries).

 /drop_ic Constraint

Drop the specified integrity constraint, which starts with ":-" and can be either
one of:

 :- type(Table, [Column:Type])

 :- nn(Table, Columns)

 :- pk(Table, Columns)

Fernando Sáenz-Pérez 256/357

Universidad Complutense de Madrid

Datalog Educational System

 :- ck(Table, Columns)

 :- fk(Table, Columns, RTable, RColumns)

 :- fd(Table, Columns, DColumns)

 :- Goal

where Goal specifies a user-defined integrity constraint). Only one constraint
can be dropped at a time. Alternative syntax for constraint is also allowed.
TAPI enabled.

 /drop_assertion Assertion

Drop the specified assertion, which starts with ":-". So far, there is only
support for :-persistent(Schema[,Connection]). Where Schema is the
ground atom describing the predicate (predicate and argument names, as:
pred_name(arg_name1,...,arg_nameN)) that has been made persistent
on an external DBMS via ODBC, and Connection is an optional connection
name for the external RDB. Only one assertion can be dropped at a time.

 /listing

List the loaded Datalog rules, including restricting rules. Neither integrity
constraints nor SQL views and metadata are displayed.
TAPI enabled.

 /listing Name

List the loaded Datalog rules matching Name, including restricting rules.
Neither integrity constraints nor SQL views and metadata are displayed.
TAPI enabled.

 /listing Name/Arity

List the loaded Datalog rules matching the pattern Name/Arity, including
restricting rules. Neither integrity constraints nor SQL views and metadata are
displayed.
TAPI enabled.

 /listing Head

List the Datalog loaded rules whose heads are subsumed by the head Head.
Neither integrity constraints nor SQL views and metadata are displayed.
TAPI enabled.

 /listing Head:-Body

List the Datalog loaded rules that are subsumed by Head:-Body. Neither
integrity constraints nor SQL views and metadata are displayed.
TAPI enabled.

 /listing_asserted

List the Datalog rules that have been asserted with command. Rules from
consulted files are not listed. Neither integrity constraints nor SQL views and
metadata are displayed.

Fernando Sáenz-Pérez 257/357

Universidad Complutense de Madrid

Datalog Educational System

TAPI enabled.

 /listing_asserted Name

List the Datalog rules that have been asserted with command matching Name,
including restricting rules. Neither integrity constraints nor SQL views and
metadata are displayed.
TAPI enabled.

 /listing_asserted Name/Arity

List the Datalog rules that have been asserted with command matching the
pattern Name/Arity, including restricting rules. Neither integrity constraints
nor SQL views and metadata are displayed.
TAPI enabled.

 /listing_asserted Head

List the Datalog rules that have been asserted with command whose heads are
subsumed by the head Head. Neither integrity constraints nor SQL views and
metadata are displayed.
TAPI enabled.

 /list_modes

List the expected modes for unsafe predicates in order to be correctly
computed. Modes can be 'i' (for an input argument) and 'o' (for an output
argument).

 /list_modes Name

List expected modes, if any, for predicates with name Name in order to be
correctly computed. Modes can be 'i' (for an input argument) and 'o' (for an
output argument).

 /list_modes Name/Arity

List expected modes, if any, for the given predicate Name/Arity in order to be
correctly computed. Modes can be 'i' (for an input argument) and 'o' (for an

output argument).

 /list_persistent

List persistent predicates along with their ODBC connection names.

 /list_sources Name/Arity

List the sources of the Datalog rules matching the pattern Name/Arity .
TAPI enabled.

 /reconsult FileName

Load a Datalog program found in the file Filename, keeping the rules already
loaded. The extension table is cleared, and the predicate dependency graph and
strata are recomputed.

Fernando Sáenz-Pérez 258/357

Universidad Complutense de Madrid

Datalog Educational System

TAPI enabled.
See also /consult Filename.
Synonyms: /r.

 /restore_ddb Filename

Restore the Datalog database in the given file (same as consult) . Constraints
(type, existence, primary key, candidate key, functional dependency, foreign
key, and user-defined) are also restored, if present, in Filename.
See also /save_ddb Filename.

 /restore_state

Restore the database state from the default file des.sds. Equivalent to
/restore_state des.sds, where the current path is the start path.
See also /save_state.

 /restore_state Filename

Restore the database state from Filename.
See also /restore_state Filename.

 /retract Head:-Body

Delete the first Datalog rule that unifies with Head:-Body (or simply with
Head, if Body is not specified. In this case, only facts are deleted). The extension
table is cleared, and the predicate dependency graph and strata are
recomputed.

 /retractall Head

Delete all the Datalog rules whose heads unify with Head. The extension table
is cleared, and the predicate dependency graph and strata are recomputed.

 /save_ddb [force] Filename

Save the current Datalog database to the file Filename. If option force is
included, no question is asked to the user should the file exists already.
Constraints (type, existence, primary key, candidate key, functional
dependency, foreign key, and user-defined) are also saved.
See also /restore_ddb Filename.

 /save_state

Save the current database state to the default file des.sds. Equivalent to
/save_state force des.sds, where the current path is the start path
See also /restore_state.

 /save_state [force] Filename

Save the current database state to the file Filename. Save the current database
state to the file FileName. If option force is included, no question is asked to
the user should the file exists already. The whole database (including its
current state) can be saved to a file, and restored in a subsequent session. An

Fernando Sáenz-Pérez 259/357

Universidad Complutense de Madrid

Datalog Educational System

automatic saving and restoring can be stated respectively by adding the
commands /save_state and /restore_state in the files des.ini and
des.out. This way, the user can restart its session in the same state point it
was left, including the deductive database, metadata information (types,
constraints, SQL text, ...), system settings, all opened external databases and
persistent predicates.
See also /restore_state Filename.

5.17.2 ODBC/DDB Database

 /dbschema

Display the database schema: Database name, tables, views and Datalog
constraints. A Datalog integrity constraint is displayed under a table if it only
refers to this table, and under the Datalog integrity constraints otherwise. If a
constraint is created with a CREATE TABLE Tablename statement, it is listed
under the table Tablename even when it refers to other tables or views.
TAPI enabled.
Synonyms: /db_schema.

 /dbschema Name

Display the database schema for the given connection, view or table name.
TAPI enabled.
Synonyms: /db_schema Name.

 /dbschema Connection:Name

Display the database schema for the given view or table name in the given
connection.
TAPI enabled.
Synonyms: /db_schema Connection:Name.

 /db_schema

Synonym for /dbschema.

 /db_schema Name

Synonym for /dbschema Name.

 /db_schema Connection:Relation

Synonym for /dbschema Connection:Relation.

 /dependent_relations Relation

Display the name of relations that directly depend on relation Relation. TAPI
enabled

 /dependent_relations Relation/Arity

Display in format Name/Arity those relations that directly depend on relation
Relation/Arity.
TAPI enabled

Fernando Sáenz-Pérez 260/357

Universidad Complutense de Madrid

Datalog Educational System

 /drop_all_tables

Drop all tables from the current database but dual if it exists. If the current
connection is an external database, tables in $des are not dropped.
TAPI enabled.

 /drop_all_relations

Drop all relations from the current database but dual if it exists. If the current
connection is an external database, relations in $des are not dropped.

 /drop_all_views

Drop all views from the current database but dual if it exists. If the current
connection is an external database, views in $des are not dropped.

 /open_db Name [Options]

Open and set the current ODBC connection to Name, where
Options=[user('Username')] [password('Password')]. Username and
Password must be delimited by single quotes ('). This connection must be
already defined at the OS layer.
TAPI enabled.

 /close_db

Close the current ODBC connection.
TAPI enabled.

 /close_db Name

Close the given ODBC connection.
TAPI enabled.

 /close_dbs

Close all the opened ODBC connections. Make $des the current database.

 /current_db

Display the current ODBC connection name and DSN provider.
TAPI enabled.

 /is_empty relation_name

Display $true if the given relation is empty, and $false otherwise.
TAPI enabled

 /list_dbs

Display the open database connections.
TAPI enabled.
Synonym: /show_dbs.

 /list_relations

Fernando Sáenz-Pérez 261/357

Universidad Complutense de Madrid

Datalog Educational System

List relation (both tables and views) names.

 /list_tables

List table names.

 /list_table_schemas

List table schemas.
TAPI enabled

 /list_table_constraints Name

List table constraints for table Name.
TAPI enabled

 /list_views

List view names.
TAPI enabled

 /list_view_schemas

List view schemas.
TAPI enabled

 /referenced_relations Relation

Display the name of relations that are directly referenced by a foreign key in
relation Relation.
TAPI enabled

 /referenced_relations Relation/Arity

Display in format Name/Arity those relations that are directly referenced by a
foreign key in relation Relation/Arity.
TAPI enabled

 /refresh_db

Refresh local metadata from either the deductive or the current external
database, clear the cache, and recompute the PDG and strata.
TAPI enabled.

 /relation_exists RelationName

Display $true if the given relation exists, and $false otherwise.
TAPI enabled

 /relation_schema RelationName

Display relation schema of RelationName.
TAPI enabled

 /show_dbs

Synonym for /list_dbs.

Fernando Sáenz-Pérez 262/357

Universidad Complutense de Madrid

Datalog Educational System

TAPI enabled.

 /sql_left_delimiter

Display the SQL left delimiter as defined by the current database manager
(either DES or the external DBMS via ODBC).
TAPI enabled

 /sql_right_delimiter

Display the SQL left delimiter as defined by the current database manager
(either DES or the external DBMS via ODBC) .
TAPI enabled

 /use_db Name

Make Name the current ODBC connection. If it is not open already, it is
automatically opened.
TAPI enabled.

 /use_ddb

Shorthand for /use_db $des.
TAPI enabled.

5.17.3 Dependency Graph and Stratification

 /external_pdg

Display whether external PDG construction is enabled.

 /external_pdg Switch

Enable or disable external PDG construction (on or off) Some ODBC drivers
are so slow that makes external PDG construction impractical. If disabled,
tracing and debugging external databases are not possible.

 /pdg

Display the current predicate dependency graph.
TAPI enabled

 /pdg Name

Display the current predicate dependency graph restricted to the first predicate
found with name Name.
TAPI enabled

 /pdg Name/Arity

Display the current predicate dependency graph restricted to the predicate with
name Name and Arity.
TAPI enabled

 /rdg

Fernando Sáenz-Pérez 263/357

Universidad Complutense de Madrid

Datalog Educational System

Display the current relation dependency graph, i.e., the PDG restricted to show
only nodes with type information (tables and views).
TAPI enabled

 /rdg Name

Display the current relation dependency graph restricted to the first relation
found with name Name.
TAPI enabled

 /rdg Name/Arity

Display the current relation dependency graph restricted to the relation with
name Name and Arity.
TAPI enabled

 /strata

Display the current stratification as a list of pairs (Name/Arity, Stratum).

 /strata Name

Display the current stratification restricted to predicate with name Name.

 /strata Name/Arity

Display the current stratification restricted to the predicate Name/Arity.

5.17.4 Debugging and Test Case Generation

 /debug_datalog Goal [Level]

Start the debugger for the basic goal Goal at predicate or clause level, which is
indicated with the options p and c for Level, respectively. Default is p.

 /debug_sql View [Options]

Debug an SQL view where:

Options=[trust_tables([yes|no])] [trust_file(FileName)]

Defaults are trust tables and no trust file. It might be needed to enclose
FileName between single quotes.

 /trace_datalog Goal [Order]

Trace a Datalog goal in the given order (postorder or the default preorder).

 /trace_sql View [Order]

Trace an SQL view in the given order (postorder or the default preorder).

 /test_case View [Options]

Generate test case classes for the view View. Options may include a class
and/or an action parameters. The test case class is indicated by the values all
(positive-negative, the default), positive, or negative in the class

Fernando Sáenz-Pérez 264/357

Universidad Complutense de Madrid

Datalog Educational System

parameter. The action is indicated by the values display (only display tuples,
the default), replace (replace contents of the involved tables by the computed
test case), or add (add the computed test case to the contents of the involved
tables) in the action parameter.

 /tc_size

Display the minimum and maximum number of tuples generated for a test case.

 /tc_size Min Max

Set the minimum and maximum number of tuples generated for a test case.

 /tc_domain

Display the domain of values for test cases.

 /tc_domain Min Max

Set the domain of values for test cases between Min and Max.

5.17.5 Tabling

 /clear_et

Delete the contents of the extension table. Can be used as a directive.

 /list_et

List the contents of the extension table in lexicographical order. First, answers
are displayed, then calls.

 /list_et Name

List the contents of the extension table matching Name. First, answers are
displayed, then calls.

 /list_et Name/Arity

List the contents of the extension table matching the pattern Name/Arity. First,

answers are displayed, then calls.
TAPI enabled.

5.17.6 Operating System

 /ashell Command

An asynchronous shell command, i.e., as /shell Command but without
waiting for the process to finish and also eliding output.

 /cat Filename

Type the contents of Filename enclosed between the following lines:

%% BEGIN AbsoluteFilename %%

%% END AbsoluteFilename %%

Fernando Sáenz-Pérez 265/357

Universidad Complutense de Madrid

Datalog Educational System

Synonym: /type Filename.

 /cd

Set the current directory to the directory where DES was started from.
TAPI enabled.

 /cd Path

Set the current directory to Path.
TAPI enabled.

 /copy FromFile ToFile

Synonym for /cp FromFile ToFile.

 /cp FromFile ToFile

Copy the file FromFile to ToFile.

 /del Filename

Synonym for /rm FileName.

 /e Filename

Synonym for /edit Filename.

 /edit Filename

Edit Filename by calling the predefined external text editor. This editor is set
with the command /set_editor.

 /dir

Synonym for /ls.

 /dir Path

Synonym for /ls Path.

 /ls

Display the contents of the current directory in alphabetical order. First, files are
displayed, then directories.
Synonym: /dir.

 /ls Path

Display the contents of the given directory in alphabetical order. It behaves as
/ls.
Synonym: /dir Path.

 /pwd

Display the absolute filename for the current directory.
TAPI enabled.

Fernando Sáenz-Pérez 266/357

Universidad Complutense de Madrid

Datalog Educational System

 /rm FileName

Delete FileName from the file system.
Synonyms: /del.

 /set_editor

Display the current external text editor.

 /set_editor Editor

Set the current external text editor to Editor.

 /shell Command

Submit Command to the operating system shell.
Notes for platform specific issues:
o Windows users:

command.exe is the shell for Windows 98, whereas cmd.exe is the one for
Windows NT/2000/2003/XP/Vista/7/8.
Filenames containing blanks must be enclosed between double quotes (").
Some non-file parameters needing double quotes might been needed to be
also enclosed between single quotes ('"some parameter"') in SWI-
Prolog distros.

o SICStus users:
Under Windows, if the environment variable SHELL is defined, it is
expected to name a Unix like shell, which will be invoked with the option -
c Command. If SHELL is not defined, the shell named by COMSPEC will be
invoked with the option /C Command.

o Windows and Linux/Unix executable users:
The same note for SICStus is applied.

Synonyms: /s.

 /type Filename

Synonym for /cat Filename

5.17.7 Logging

 /log

Display the current log files, if any.

 /log Filename

Set logging to the given filename overwriting the file, if exists, or creating a new
one. Simultaneous logging to different logs is supported. Simply issue as many
/log Filename commands as needed.

 /log Mode Filename

Set logging to the given filename and mode: write (overwriting the file, if

exists, or creating a new one) or append (appending to the contents of the
existing file, if exists, or creating a new one).

Fernando Sáenz-Pérez 267/357

Universidad Complutense de Madrid

Datalog Educational System

 /nolog

Disable logging.

5.17.8 Informative

 /apropos Keyword

Display detailed help about Keyword, which can be a command or built-in.
Synonyms: /help.

 /builtins

List predefined operators, functions, and predicates.

 /development

Display whether development listings are enabled.

 /development Switch

Enable or disable development listings (on or off, resp.). These listings show
the source-to-source translations needed to handle null values, Datalog outer
join built-ins, and disjunctive literals.

 /display_answer

Display whether display of computed tuples is enabled.

 /display_answer Switch

Enable or disable display of computed tuples (on or off, resp.) The number of
tuples is still displayed.

 /display_nbr_of_tuples

Display whether display of the number of computed tuples is enabled.

 /display_nbr_of_tuples Switch

Enable or disable display of the number of computed tuples (on or off, resp.)

 /help

Display resumed help on commands.
Shorthand: /h.

 /help Keyword

Display detailed help about Keyword, which can be a command or built-in.
Synonym: /apropos.

 /license

Display GPL and LGPL licenses.

 /prolog_system

Fernando Sáenz-Pérez 268/357

Universidad Complutense de Madrid

Datalog Educational System

Display the underlying Prolog engine version.

 /silent

Display whether silent batch output is either enabled or disabled.

 /silent Option

Enable or disable silent batch output messages (on or off, resp.) If this
command precedes any other input, it is processed in silent mode (the
command is not displayed and some displays are elided, as in particular
verbose outputs).

 /status

Display the current system status, i.e., verbose mode, logging, elapsed time
display, program transformation, current directory, current database and other
settings.

 /verbose

Display whether verbose output is either enabled or disabled (on or off, resp.)

 /verbose Switch

Enable or disable verbose output messages (on or off, resp.) Another option,
toggle, toggles its state (from on to off and vice versa).

 /version

Display the current DES system version.

5.17.9 Query Languages

 /datalog

Switch to Datalog interpreter. All subsequent queries are parsed and executed
first by the Datalog engine. If it is not a Datalog query, then it is tried in order as
an SQL, RA, TRC, and DRC query.

 /datalog Query

Trigger Datalog resolution for the query Query. The query is parsed and
executed in Datalog, but if a parsing error is found, it is tried in order as an
SQL, RA, TRC, and DRC query.

 /drc

Switch to DRC interpreter (all queries are parsed and executed in DRC).

 /drc Query

Trigger DRC evaluation for the query Query.

 /prolog

Switch to Prolog interpreter (all queries are parsed and executed in Prolog).

Fernando Sáenz-Pérez 269/357

Universidad Complutense de Madrid

Datalog Educational System

 /prolog Goal

Trigger Prolog’s SLD resolution for the goal Goal.

 /ra

Switch to RA interpreter (all queries are parsed and executed in RA).

 /ra RA_expression

Trigger RA evaluation for the query RA_expression.

 /sql

Switch to SQL interpreter (all queries are parsed and executed in SQL).

 /sql SQL_statement

Trigger SQL resolution for SQL_statement.

 /trc

Switch to TRC interpreter (all queries are parsed and executed in TRC).

 /trc Query

Trigger TRC evaluation for the query Query.

5.17.10 TAPI

See also Section 5.18.2 for more information.

 /tapi Input

Process Input and format its output for TAPI communication. Only a limited
set of possible inputs are allowed (cf. Section 5.18).

 /test_tapi

Test the current TAPI connection.
TAPI enabled.

5.17.11 Settings

 /autosave

Display whether the database is automatically saved upon exiting and restored
upon starting in the file des.sds (on) or not (off).

 /autosave Switch

Enable or disable automatic saving and restoring of the database (on or off,
resp.) Another option, toggle, toggles its state (from on to off and vice
versa). If enabled, the complete database is automatically saved upon exiting
and restored upon starting in the file des.sds. Processing /autosave on adds
the line /restore_state to the beginning of des.ini if the line is not in the
file, and adds the line /save_state to the beginning of des.out if the line is

Fernando Sáenz-Pérez 270/357

Universidad Complutense de Madrid

Datalog Educational System

not in the file. If either des.ini or des.out does not exist, the file is created
and the corresponding line is included. Processing /autosave off deletes the
line /restore_state from des.ini if they exist, and the line /save_state
from des.out if they exist. If either des.ini or des.out becomes empty, the
file is deleted.

 /batch

Display whether batch mode is enabled. If enabled, batch mode avoids PDG
construction.

 /batch Switch

Enable or disable batch mode (on or off, resp.)

 /check

Display whether integrity constraint checking is enabled.

 /check Switch

Enable or disable integrity constraint checking (on or off, resp.)

 /compact_listings

Display whether compact listings are enabled.

 /compact_listings Switch

Enable or disable compact listings (on or off, resp.)

 /current_flag Flag

Display the current value of flag Flag, if it exists.

 /des_sql_solving

Display whether DES is forced to solve SQL queries for external DB's. If
enabled, this allows to experiment with more expressive queries as, e.g.,
hypothetical and non-linear recursive queries targeted at an external DBMS.

 /des_sql_solving Switch

Enable or disable DES solving for SQL queries when the current database is an
open ODBC connection (on or off, resp.)

 /display_banner

Display whether the system banner is displayed at startup.

 /display_banner Switch

Enable or disable the display of the system banner at startup (on or off, resp.).
Only useful in a batch file des.ini or des.cnf.

 /duplicates

Fernando Sáenz-Pérez 271/357

Universidad Complutense de Madrid

Datalog Educational System

Display whether duplicates are enabled.

 /duplicates Switch

Enable or disable integrity constraint checking (on or off, resp.)

 /fp_info

Display whether fixpoint information is to be displayed.

 /fp_info Switch

Enable or disable display of fixpoint information, as the ET entries deduced for
the current iteration (on or off, resp.)

 /host_safe

Display whether host safe mode is enabled (on) or not (off). Enabling host safe
mode prevents users and applications using DES from accessing the host
(typically used to shield the host from outer attacks, hide host information,
protect the file system, and so on).

 /host_safe on

Enable host safe mode. This mode cannot be disabled.

 /hypothetical

Display whether hypothetical queries are enabled (on) or not (off) .

 /hypothetical Switch

Enable or disable hypothetical queries (on or off, resp.)

 /multiline

Display whether multi-line input is enabled.

 /multiline Switch

Enable or disable multi-line input (on or off resp.)

 /nulls

Display whether nulls are enabled (on) or not (off) .

 /nulls Switch

Enable or disable nulls (on or off, resp.)

 /order_answer

Display whether displayed answers are ordered by default.

 /order_answer Switch

Fernando Sáenz-Pérez 272/357

Universidad Complutense de Madrid

Datalog Educational System

Enable or disable a default (ascending) ordering of displayed computed tuples
(on or off, resp.) This order is overridden if the user query contains either a
group by specification or a call to a view with such a specification.

 /output

Display the display output mode (on, off, or only_to_log). In mode on,
both console and log outputs are enabled. In mode off, no output is enabled.
In mode only_to_log, only log output is enabled.

 /output Mode

Set the display output mode (on, off, or only_to_log).

 /pretty_print

Display whether pretty print listings is enabled.

 /pretty_print Switch

Enable or disable pretty print for listings (on or off, resp.)

 /prompt

Display the prompt format.

 /prompt Option

Set the format of the prompt. The value des sets the prompt to DES>. The value
des_db adds the current database name DB as DES:DB>. The value plain sets
the prompt to >. The value prolog sets the prompt to ?-. Note that, for the
values des and des_db, if a language other than Datalog is selected, the
language name preceded by a dash is also displayed before >, as DES-SQL>.

 /reorder_goals

Display whether pushing equalities to the left is enabled

 /reorder_goals Switch

Enable or disable pushing equalities to the left (on or off, resp.) Equalities in
bodies are moved to the left, which in general allows more efficient
computations.

 /reset

Synonym for /restore_default_status.

 /restore_default_status

Restore the status of the system to the initial status, i.e., set all user-configurable
flags to their initial values, including the default database and the start-up
directory. Neither the database nor the extension table are cleared
Synonyms: /reset

 /running_info

Fernando Sáenz-Pérez 273/357

Universidad Complutense de Madrid

Datalog Educational System

Display whether running information (as the incremental number of consulted
rules as they are read) is to be displayed.

 /running_info Switch

Enable or disable display of running information (on or off, resp.)

 /safe

Display whether safety transformation is enabled.

 /safe Switch

Enable or disable program transformation for unsafe rules (on or off, resp.)

 /safety_warnings

Display whether safety warnings are enabled.

 /safety_warnings Switch

Enable or disable safety warnings (on or off, resp.)

 /set_flag Flag Value

Set the system flag Flag to Value. Any system flag can be changed but
unexpected behaviour can occur if thoughtlessly setting a flag.

 /show_compilations

Display whether compilations from SQL DQL statements to Datalog rules are to
be displayed.

 /show_compilations Switch

Enable or disable display of extended information about compilation of SQL
DQL statements to Datalog clauses (on or off, resp.)

 /show_sql

Display whether SQL compilations are to be displayed.

 /show_sql Switch

Enable or disable display of SQL compilations (on or off, resp.) SQL
statements can come from either RA, or DRC, or TRC, or Datalog compilations.
In this last case, they are intented to be externally processed.

 /simplification

Display whether program simplification is enabled.

 /simplification Switch

Enable or disable program simplification (on or off, resp.). Rules with
equalities, true, and not BooleanValue are simplified.

 /singleton_warnings

Fernando Sáenz-Pérez 274/357

Universidad Complutense de Madrid

Datalog Educational System

Display whether singleton warnings are enabled.

 /singleton_warnings Switch

Enable or disable singleton warnings (on or off, resp.)

 /system_mode

Display the current system mode, which can be either des or fuzzy.

 /system_mode Mode

Set the system mode to Mode (des or fuzzy). Switching between modes

abolishes the current database. Can be used as a directive.

 /type_casting

Display whether automatic type casting is enabled.

 /type_casting Switch

Enable or disable automatic type casting (on or off, resp.) This applies to
Datalog fact assertions and SQL insertions and selections. Enabling this
provides a closer behaviour of SQL statement solving.

 /undef_pred_warnings

Display whether undefined predicate warnings are enabled.

 /undef_pred_warnings Switch

Enable or disable undefined predicate warnings (on or off, resp.)

 /unfold

Display whether program unfolding is enabled.

 /unfold Switch

Enable or disable program unfolding (on or off, resp.) Unfolding affects to the

set of rules which result from the compilation of a single source rule. Unfolding
is always forced for SQL, RA, TRC and DRC compilations, irrespective of this
setting.

5.17.12 Timing

 /date

Display the current host date as YYYY-MM-DD for the year (YYYY), month
(MM), and day (DD) according to ISO 8601.

 /datetime

Display the current host date as YYYY-MM-DD for the year (YYYY), month
(MM), and day (DD), and the host time as HH:Mi:SS for hours (HH), minutes
(Mi), and seconds (SS) in 24-hour format according to ISO 8601.

Fernando Sáenz-Pérez 275/357

Universidad Complutense de Madrid

Datalog Educational System

 /display_stopwatch

Display stopwatch. Precision depends on host Prolog system (1 second or
milliseconds).

 /format_timing

Display whether formatted timing is enabled.

 /format_timing Switch

Enable or disable formatted timing (on or off, resp.). Given that ms, s, m, h
represent milliseconds, seconds, minutes, and hours, respectively, times less
than 1 second are displayed as ms; times between 1 second and less than 60 are
displayed as s.ms; times between 60 seconds and less than 60 minutes are
displayed as m:s.ms; and times from 60 minutes on are displayed as
h:m:s.ms

 /reset_stopwatch

Reset stopwatch. Precision depends on host Prolog system (1 second or
milliseconds).

 /set_timeout

Display whether a global timeout is set.

 /set_timeout Value

Set the global timeout to Value (either in seconds as an integer or off). If an
integer is provided, any input is restricted to be processed for a time period of
up to this number of seconds. If the timeout is exceeded, then the execution is
stopped as if an exception was raised. If Value is off, the timeout is disabled.

 /start_stopwatch

Start stopwatch. Precision depends on host Prolog system (1 second or
milliseconds).

 /stop_stopwatch

Stop stopwatch. Precision depends on host Prolog system (1 second or
milliseconds).

 /time

Display the current host time as HH:Mi:SS for hours (HH), minutes (Mi), and
seconds (SS) in 24-hour format according to ISO 8601.

 /time Input

Process Input and display detailed elapsed time. Its output is the same as
processing Input with /timing detailed.

 /timeout Seconds Input

Fernando Sáenz-Pérez 276/357

Universidad Complutense de Madrid

Datalog Educational System

Process Input for a time period of up to the number of seconds specified in
Seconds. If the timeout is exceeded, then the execution is stopped as if an
exception was raised. Timeout commands cannot be nested. In this case, the
outermost command is the prevailing one.

 /timing

Display whether elapsed time display is enabled.

 /timing Option

Sets the required level of elapsed time display as disabled, enabled or detailed
(off, on or detailed, resp.)

5.17.13 Statistics

 /display_statistics

Display whether statistics display is enabled.

 /display_statistics Switch

Enable or disable statistics display (on or off, resp., and disabled by default).
Enabling statistics display also enables statistics collection, but disabling
statistics display does not disable statistics collection. Statistics include numbers
for: Fixpoint iterations, EDB (Extensional Database - Facts) retrievals, IDB
(Intensional Database - Rules) retrievals, ET (Extension Table) retrievals, ET
lookups, CT (Call Table) lookups, CF (Complete Computations) lookups, ET
entries and CT entries. Individual statistics can be displayed in any mode with
write commands and system flags (e.g., /writeln $et_entries$). .
Enabling statistics incurs in a run-time overhead.

 /host_statistics Keyword

Display host Prolog statistics for Keyword (runtime or total_runtime). For
runtime, this command displays the CPU time used while executing,
excluding time spent in memory management tasks or in system calls since the
last call to this command. For total_runtime, this command displays the
total CPU time used while executing, including memory management tasks
such as garbage collection but excluding system calls since the last call to this
command.

 /statistics

Display whether statistics collection is enabled or not (on or off, resp.). It also
displays last statistics, if enabled.

 /statistics Switch

Enable or disable statistics collection (on or off, resp., and disabled by default).
Statistics include numbers for: Fixpoint iterations, EDB (Extensional Database -
Facts) retrievals, IDB (Intensional Database - Rules) retrievals, ET (Extension
Table) retrievals, ET lookups, CT (Call Table) lookups, CF (Complete
Computations) lookups, ET entries and CT entries. Statistics are displayed only

Fernando Sáenz-Pérez 277/357

Universidad Complutense de Madrid

Datalog Educational System

in verbose mode, but they can be displayed in any mode with write commands
and system flags (e.g., /writeln $et_entries$). Enabling statistics incurs in
a run-time overhead.

5.17.14 Scripting

 /if Condition Input

Process Input if Condition holds. A condition is written as a Datalog
condition, including all the primitive operators and functions.

 /goto Label

Set the current script position to the next line where the label Label is located.
A label is defined as a single line starting with a semicolon (:) and followed by
its name. If the label is not found, an error is displayed and processing continue
with the next script line. This command does not apply to interactive mode.

 /process Filename [Parameters]

Process the contents of Filename as if they were typed at the system prompt.
Extensions by default are: .sql and .ini. When looking for a file f, the
following filenames are checked in this order: f, f.sql, and f.ini. A
parameter is a string delimited by either blanks or double quotes (") if the
parameter contains a blank. The same is applied to Filename. The value for each
parameter is retrieved by the tokens $parv1$, $parv2$, ... for the first, second,
... parameter, respectively.
Synonyms: /p.

 /repeat Number Input

Repeat Input as many times as Number, where Input can be any legal input
at the command prompt.

 /return

Stop processing of current script, returning a 0 code. This code is stored in the
system variable $return_code$. Parent scripts continue processing

 /return Code

Stop processing of current script, returning Code. This code is stored in the
system variable $return_code$. Parent scripts continue processing

 /set_default_parameter Index Value

Set the default value for the i-th parameter (denoted by the number Index) to
Value.

 /stop_batch

Stop batch processing. The last return code is kept. All parent scripts are
stopped

Fernando Sáenz-Pérez 278/357

Universidad Complutense de Madrid

Datalog Educational System

5.17.15 Miscellanea

 /csv FileName

Enables semicolon-separated csv output of answer tuples. If FileName is off,
output is disabled. If the file already exists, tuples are appended to the existing
file.

 /debug_sql_bench NbrTables TableSize NbrViews MaxDepth

MaxChildren FileName

With the same parameters as /generate_db, generate an SQL database

instance and a mutated version. The filename for the first one is appended with
_trust before the extension.

 /exit

Synonym for /halt.
Shorthand: /e.

 /generate_db NbrTables TableSize NbrViews MaxDepth

MaxChildren FileName

These parameters specify the number of tables (NbrTables) and its rows
(TableSize), the maximum number of views (NbrViews), the height of the

computation tree (i.e., the maximum number of view descendants in a rooted
genealogic line) (MaxDepth), the maximum number of children for views
(MaxChildren), and the output filename (FileName) for a random SQL
database instance generation. See Section 5.21.

 /halt

Quit the system.
Synonyms: /exit, /quit.

 /solve Input

Solve Input as it was directly submitted from the prompt. The command, used
as a directive, can submit goals during consulting a Datalog program. Can be
used as a directive.

 /quit

Synonym for /halt.
Shorthand: /q.

5.17.16 Implementor

 /debug

Enable debugging in the host Prolog interpreter.

 /indexing

Display whether hash indexing on memo tables is enabled.

Fernando Sáenz-Pérez 279/357

Universidad Complutense de Madrid

Datalog Educational System

 /indexing Switch

Enable or disable hash indexing on memo tables (on or off, resp.) Default is
enabled, which shows a noticeable speed-up gain in some cases.

 /nospyall

Remove all Prolog spy points in the host Prolog interpreter. Disable debugging.

 /nospy Pred[/Arity]

Remove the spy point on the given predicate in the host Prolog interpreter.

 /optimize_cc

Display whether complete computations optimization is enabled.

 /optimize_cc Switch

Enable or disable complete computations optimization (on or off, resp. and
enabled by default). Fixpoint iterations and/or extensional database retrievals
might been saved.

 /optimize_ep

Display whether extensional predicates optimization is enabled.

 /optimize_ep Switch

Enable or disable extensional predicates optimization (on or off, resp. and
enabled by default). Fixpoint iterations and extensional database retrievals are
saved for extensional predicates as a single linear fetching is performed for
computing them.

 /optimize_nrp

Display whether non-recursive predicates optimization is enabled.

 /optimize_nrp Switch

Enable or disable non-recursive predicates optimization (on or off, resp. and
enabled by default). Memoing is only performed for top-level goals.

 /optimize_st

Display whether stratum optimization is enabled.

 /optimize_st Switch

Enable or disable stratum optimization (on or off, resp. and enabled by
default). Extensional table lookups are saved for non-recursive predicates
calling to recursive ones, but more tuples might be computed if the non-
recursive call is filtered, as in this case an open call is submitted instead (i.e., not
filtered).

 /spy Pred[/Arity]

Fernando Sáenz-Pérez 280/357

Universidad Complutense de Madrid

Datalog Educational System

Set a spy point on the given predicate in the host Prolog interpreter.

 /system Goal

Submit Goal to the underlying Prolog system.

 /terminate

Terminate the current DES session without halting the host Prolog system
Synonym: /t.

 /write String

Write String to console. String can contain system variables as
$stopwatch$ (which holds the current stopwatch time) and
$total_elapsed_time$ (which holds the last total elapsed time). Strings are
not needed to be delimited: the text after the command is considered as the
string. (See Subsection 5.15 for system variables).

 /writeln String

As /write but adding a new line at the end of the string.

 /write_to_file File String

Write String to File. If File does not exist, it is created; otherwise, previous

contents are not deleted and String is simply appended to File. String can
contain system variables as $stopwatch$ (which holds the current stopwatch
time) and $total_elapsed_time$ (which holds the last total elapsed time).
Strings are not needed to be delimited: the text after File is considered as the
string. (See Subsection 5.15 for system variables).

 /writeln_to_file File

As /write_to_file but writing a new line.

5.17.17 Fuzzy

 /fuzzy_answer_subsumption

Display whether fuzzy answer subsumption is enabled.

 /fuzzy_answer_subsumption Switch

Enable or disable fuzzy answer subsumption (on or off, resp. and enabled by
default). Enabling fuzzy answer subsumption prunes answers for the same
tuple with less approximation degrees, in general saving computations.

 /fuzzy_expansion

Display current fuzzy expansion: bpl (Bousi~Prolog) or des (DES). For each
fuzzy equation P~Q=D, the first one generates as many rules for Q as rules for
P, whereas for the second one, generates only one rule for Q.

 /fuzzy_expansion Value

Fernando Sáenz-Pérez 281/357

Universidad Complutense de Madrid

Datalog Educational System

Set the fuzzy expansion as of the given system: bpl (Bousi~Prolog) or des
(DES). If changed, the database is cleared. The value bpl is for experimental
purposes and may develop unexpected behaviour when retracting either
clauses or equations. Can be used as a directive.

 /fuzzy_relation

Display each fuzzy relation and its properties.

 /fuzzy_relation ListOfProperties

Synonym for /fuzzy_relation ~ ListOfProperties.

 /fuzzy_relation Relation ListOfProperties

Set the relation name with its properties given as a list of: reflexive,
symmetric and transitive. If a property is not given, its counter-property is
assumed (irreflexive for reflexive, asymmetric for symmetric, and intransitive
for transitive). Can be used as a directive.

 /fuzzy_rel ListOfProperties

Synonym for /fuzzy_relation ~ ListOfProperties.

 /lambda_cut

Display current lambda cut value, a float between 0.0 and 1.0. It defines a
threshold for approximation degrees of answers.

 /lambdacut

Synonym for /lambda_cut.

 /lambda_cut Value

Set the lambda cut value, a float between 0.0 and 1.0. It defines a threshold for
approximation degrees of answers. Can be used as a directive.

 /lambdacut Value

Synonym for /lambda_cut Value.

 /list_fuzzy_equations

List fuzzy proximity equations of the form X~Y=D, meaning that the symbol X is
similar to the symbol Y with approximation degree D. Equivalent to
/list_fuzzy_equations ~.

 /list_fuzzy_equations Relation

List fuzzy equations of the form X Relation Y = D, meaning that the
symbol (either a predicate or constant) X is related under Relation to the
symbol Y with approximation degree D.

 /list_t_closure

Fernando Sáenz-Pérez 282/357

Universidad Complutense de Madrid

Datalog Educational System

List the t-closure of the similarity relation ~ as fuzzy proximity equations of the
form X~Y=D, meaning that the symbol X is similar to the symbol Y with
approximation degree D. Equivalent to /list_t_closure ~. Can be used as a
directive.

 /list_t_closure Relation

List the t-closure of the relation Relation as fuzzy equations of the form X
Relation Y=D, meaning that the symbol X is similar to the symbol Y with
approximation degree D. Can be used as a directive.

 /t_closure_comp

Display the way for computing the t-closure of fuzzy relations, which can be
either datalog or prolog.

 /t_closure_comp Value

Set the way for computing the t-closure of fuzzy relations, which can be either
datalog or prolog. Can be used as a directive.

 /t_norm

Synonym for /t_norm ~.

 /t_norm Value

Synonym for /t_norm ~ Value. Can be used as a directive.

 /t_norm Relation

Display the current t-norm for Relation, which can be: goedel,
lukasiewicz, product, hamacher, nilpotent, where min is synonymous
for goedel, and luka for lukasiewicz. Can be used as a directive.

 /t_norm Relation Value

Set the current t-norm for Relation, which can be: goedel, lukasiewicz,
product, hamacher, nilpotent, where min is synonymous for goedel, and

luka for lukasiewicz. Can be used as a directive.

 /transitivity

Synonym for /transitivity ~.

 /transitivity Value

Synonym for /transitivity ~ Value. Can be used as a directive.

 /transitivity Relation

Display the current t-norm for Relation, which can be: goedel,
lukasiewicz, product, hamacher, nilpotent, where min is synonymous

for goedel, and luka for lukasiewicz. Can be used as a directive.

 /transitivity Relation Value

Fernando Sáenz-Pérez 283/357

Universidad Complutense de Madrid

Datalog Educational System

Set the current t-norm for Relation, which can be: goedel, lukasiewicz,
product, hamacher, nilpotent, where min is synonymous for goedel, and
luka for lukasiewicz. Can be used as a directive.

 /weak_unification

Display current weak unification algorithm: a1 (Sessa) or a3 (Block-based). The
algorithm a3, though a bit slower at run-time, is complete for proximity
relations. However, it shows exponential time complexity for compilation.

 /weak_unification Value

Set the weak unification algorithm: a1 (Sessa) or a3 (Block-based). If changed,
the database is cleared. The algorithm a3, though a bit slower at run-time, is
complete for proximity relations. However, it shows exponential time
complexity for compilation. Can be used as a directive.

5.18 Textual API

Rather than providing a Prolog underlying system dependent API, DES
provides a textual API (TAPI, Textual Application Programming Interface) for its
communication to external applications. It can used via standard input and output
streams, as provided by the OS.

Such interface has been guided by the demands of the ACIDE GUI (Graphical
User Interface) in order to allow users to interact with the system via a Java
application. This way, it is possible to inspect and modify the database schema and
table contents, being managed by DES and by external data sources as RDBMS's,
spreadsheets, or CSV (Comma-Separated Values) plain files connected by an ODBC
connection. This TAPI can be used from any application wrote in any language and
running on any platform, provided that it can handle input and output standard
streams.

Several existing commands, statements and queries can be processed via this
interface. As well, new commands and statements have been added to support the GUI
requirements described above. Input syntax is as for DES, whereas answers follow a
concrete format for easing their parsing. Any input to this interface must be prepended
by the command /tapi, and cannot be spread beyond a single line, as shown next:

Input: /tapi /test_tapi

Output: $success

Notice that after the command /tapi, another command follows:
/test_tapi, which is only intended to test whether a successful connection between
the external application and DES can be established. If so, the answer $success is sent
to the output stream. The usual DES command prompt is not sent, as well as no extra
blank lines (even if compact listings are disabled, cf. Section 5.17.11). Any input which
is not TAPI enabled after /tapi can also be submitted in the DES command prompt,
but following the usual DES output, instead of the TAPI-oriented way.

A typical scenario for accessing DES from an external application is to start a
process from this application and connecting adequately input and output streams. If

Fernando Sáenz-Pérez 284/357

Universidad Complutense de Madrid

Datalog Educational System

run on Windows, use the console application des.exe for such process; otherwise, use
des (both provided in the binary distribution for your concrete operating system).

5.18.1 Notes about the Interface

 Text in font Courier New are for textual input and output. Italized

Courier New stands for input that the TAPI user must provide with a

concrete input. For example, description for dropping a table includes:

/tapi drop table table_name, where table_name is the placeholder

for your concrete table to be dropped.

 Lines starting with % are remarks which are not needed to be included (they

are only for explanatory purposes).

 Types returned by a database or predicate handled by DES include:

Type Abbreviation

string(varchar) string/varchar

string(varchar(N)) varchar()

string(char(N)) char(N)

number(integer) int

number(float) float

 Where N is an integer greater than 0.

 Types returned by ODBC databases depend on the concrete external DBMS.

 Character strings as returned by DES are enclosed between single quotes.

This allows in particular to distinguish these strings from the null value,

which can occur in any data type.

 Datalog identifiers in TAPI inputs must be enclosed between single quotes

should they contain special characters (as blanks, commas and quotes). If an

identifier contains a single quote, this must be written twice as, e.g.,

'pete''s' , which represents pete's.

 DDL (Data Definition Language) statements for SQL and Datalog include:
o CREATE TABLE (SQL)
o CREATE VIEW (SQL)

o RENAME (SQL)
o :-strong_constraint (Datalog)

Fernando Sáenz-Pérez 285/357

Universidad Complutense de Madrid

Datalog Educational System

 DQL (Data Query Language) SQL statements include:

o SELECT
o WITH

 Any input to command /tapi is processed as a DES input. However, output

is only formatted for those commands and queries as listed in sections 5.18.2

and 5.18.3. So, feeding unsupported inputs to /tapi might produce

unexpected results. Users of TAPI are expected to ask for other commands

and/or statements needed for their concrete applications. Feedback is

welcome.

5.18.1.1 Identifiers

As SQL identifiers can contain special characters which can be missed with
other language constructors, they are enclosed between delimiters in such a case. This
document contains an abbreviated notation: name and column_name, for table and
views in the former, and columns in the second. When an SQL identifier is written as
part of a TAPI input, they must be enclosed between the characters L and R (left and
right delimiters, respectively). Characters for such delimiters depend on the external
DBMS. For instance, MS Access requires [and], resp., but standard SQL defines
double quotes for both (") (MS Access does not support this).

In order to know what are such characters for the current connection, one can
submit the following commands:

/tapi /sql_left_delimiter

/tapi /sql_right_delimiter

Datalog identifiers suffer a similar situation but they are enclosed between
single quotes (if needed). For example:

/tapi /listing 't'

5.18.1.2 Kinds of Answers

Any input can return either a successful answer (with a syntax described for
each supported command and statement) or an error. There are several kinds of
answers:

 Regular:
o Successful answer with no return data:

$success

o Error:

$error

code

text

...

text

$eot

Where code is the error code and text is its textual description, which
can consist of several lines. Last line is the text for denoting end of

Fernando Sáenz-Pérez 286/357

Universidad Complutense de Madrid

Datalog Educational System

transmission. Error codes are digits starting by either 0 (denoting an
exception error), or 1 (denoting a warning), or 2 (denoting an extended
informative message).

 Boolean:

Only one line, either one of the following:
o $true
o $false

If an error occurs, it is output as in the regular answer.

 Defined specifically for a given command or statement.

If an error occurs, it is output as in the regular answer.

5.18.2 TAPI-enabled Commands

This section shows each supported command for TAPI communication.

 Command:

/tapi /listing

Answer:

Loaded rules delimited by separator and a final line containing $eot:

rule_1_1

...

rule_1_m

$

...

$

rule_n_1

...

rule_n_m

$eot

Remarks:

Note that a single rule may expand to several lines if pretty print is enabled.

All forms of this command are supported (with arguments name, arity, ...)

Example:

/tapi /listing

p(0).

$

p(X) :-

 p(Y),

 X=Y+1.

$eot

 Command:

/tapi /listing_asserted

Remarks:

Fernando Sáenz-Pérez 287/357

Universidad Complutense de Madrid

Datalog Educational System

As /listing above but only for asserted rules.

All forms of this command are supported (with arguments name, arity, ...)

 Command:

/tapi /list_et

Answer:

Extension table contents. Each entry is preceded by the separator $ and follows
the relation name and as many lines as tuple arguments (i.e., arity).

$answers

$

name

value

...

value

...

$calls

$

name

value

...

value

...

$eot

Remarks:

Note that a single rule may span several lines if pretty print is enabled.

All forms of this command are supported (with arguments name and arity).

Example:

/tapi /list_et

$answers

$

p

'a'

$

t

1

3

$

t

2

4

$calls

$

p

_8902

$

t

Fernando Sáenz-Pérez 288/357

Universidad Complutense de Madrid

Datalog Educational System

_8910

_8911

$eot

Compare this with the same command with no TAPI:

DES> /list_et

Answers:

{

 p(a),

 t(1,3),

 t(2,4)

}

Info: 2 tuples in the answer table.

Calls:

{

 p(A),

 t(A,B)

}

Info: 2 tuples in the call table.

 Command:

/tapi /list_sources Name/Arity

Answer:

Rule sources for predicate Name/Arity. There are two possible sources:
Consulted from a file, and asserted at the prompt. Each entry of the former
form is preceded by a line containing $file, followed by the file name, the
start line, and the end line. Each entry of the latter form is preceded by a line
containing $asserted, followed by a line with its assertion time.

$asserted

'time'

...

$file

'fileName'

line

line

...

$eot

Example:

/tapi /list_sources father/2

$asserted

'2018,3,11,13,45,19'

$file

'c:/des/desdevel/examples/family.dl'

8

8

$file

'c:/des/desdevel/examples/family.dl'

9

Fernando Sáenz-Pérez 289/357

Universidad Complutense de Madrid

Datalog Educational System

9

$file

'c:/des/desdevel/examples/family.dl'

10

10

$file

'c:/des/desdevel/examples/family.dl'

11

11

$eot

 Command:

/tapi /sql_left_delimiter

Answer:

Only one line with a single character corresponding to the SQL left delimiter as
defined by the database manager (either DES or the external DBMS via ODBC).

Example assuming an ODBC connection to MS Access:

Input:

/tapi /sql_left_delimiter

Output:

[

 Command:

/tapi /sql_right_delimiter

Answer:

Only one line with a single character corresponding to the SQL right delimiter
as defined by the database manager (either DES or the external DBMS via
ODBC).

Example assuming an ODBC connection to MS Access:

Input:

/tapi /sql_right_delimiter

Output:

]

 Command:

/tapi /cd

Answer:

Only one line with the full path DES was started from.

Example:

Input:

Fernando Sáenz-Pérez 290/357

Universidad Complutense de Madrid

Datalog Educational System

/tapi /cd

Output:

c:/des

 Command:

/tapi /cd Path

Answer:

Only one line with the full new path.

Example:

Input:

/tapi /cd examples

Output:

c:/des/examples

 Command:

/tapi /consult File

/tapi /c File

/tapi /[File]

Answer:

Information about the loaded program and a final line containing $eot.

Examples:

Input:

/tapi /[family]

Output:

Info: 11 rules consulted.

$eot

Input:

/tapi /c family,fact

Output:

Warning: N > 0 may raise a computing exception if non-

ground at run-time.

Warning: N1 is N - 1 may raise a computing exception if

non-ground at run-time.

Warning: F is N * F1 may raise a computing exception if

non-ground at run-time.

Warning: Next rule is unsafe because of variable(s):

 [F,N]

fac(N,F) :-

 N > 0,

Fernando Sáenz-Pérez 291/357

Universidad Complutense de Madrid

Datalog Educational System

 N1 is N - 1,

 fac(N1,F1),

 F is N * F1.

Info: 13 rules consulted.

$eot

 Command:

/tapi /reconsult Files

/tapi /r Files

/tapi /[+Files]

Answer:

Information about the loaded program and a final line containing $eot.

Example:

Input:

/tapi /[+family]

Output:

Info: 11 rules consulted.

$eot

 Command:

/tapi /test_tapi

Answer:

Regular.

Remarks:

This command is used to test the current connection.

Example:

Input:

/tapi /test_tapi

Output:

$success

 Command:

/tapi /open_db db

Arguments:

db: Database connection name. Not delimited.

Answer:

Regular.

Remarks:

Fernando Sáenz-Pérez 292/357

Universidad Complutense de Madrid

Datalog Educational System

This command is used to open an ODBC connection (cf. Section 0).

Example:

Input:

/tapi /open_db test

Output:

$success

 Command:

/tapi /close_db

Answer:

Regular.

Remarks:

This command is used to close the current ODBC connection (cf. Section 0).

Example:

Input:

/tapi /close_db

Output:

$success

 Command:

/tapi /current_db

Answer:

Two lines: the first one containing the current ODBC connection name and the
second one the external DBMS (cf. Section 0).

Remarks:

This command is used to get the current ODBC connection name (cf. Section 0).

Example:

Input, assuming that the ODBC connection test is already opened:

/tapi /current_db

Output:

test

access

 Command:

/tapi /relation_exists relation_name

Arguments:

Fernando Sáenz-Pérez 293/357

Universidad Complutense de Madrid

Datalog Educational System

relation_name: Relation (table, view or predicate) name, which must be
enclosed between delimiters if needed.

Answer:

Boolean.

Remarks:

This command returns $true if the given relation exists, and $false
otherwise.

Example:

Input:

/tapi /relation_exists "v"

Output:

$true

 Command:

/tapi ddl_query

Answer:

Regular.

Remarks:

This DDL statement returns $success upon a successful processing.

Example:

Input:

/tapi create table [t]([a] int)

Output:

$success

 Command:

/tapi /dependent_relations pattern

Where pattern can be either relation_name or relation_name/arity,
where relation_name stands for a relation name and arity for its arity.

Answer:

relation_name

...

relation_name

$eot

Where relation_name stands for relation names.

Remarks:

Fernando Sáenz-Pérez 294/357

Universidad Complutense de Madrid

Datalog Educational System

Display the names of relations that directly depend on the given relation.
Relations are returned alphabetically sorted.

Example:

Input, considering that views z1 y z2 reference table t:

/tapi /dependent_relations "t"

Output:

z1

z2

$eot

 Command:

/tapi /list_table_schemas

Answer:

table_name(column_name:type,..., column_name:type)

table_name(column_name:type,..., column_name:type)

...

table_name(column_name:type,..., column_name:type)

$eot

Where table_name stands for table names, column_name is a column name,
type is the column type, and $eot is the end of the transmission.

Remarks:

Return table schemas.

Tables are returned alphabetically sorted.

Example:

Input:

/tapi /list_table_schemas

Output:

t(a:int)

$eot

 Command:

/tapi /list_view_schemas

Answer:

view(column_name:type,..., column_name:type)

view(column_name:type,..., column_name:type)

...

view(column_name:type,..., column_name:type)

$eot

Fernando Sáenz-Pérez 295/357

Universidad Complutense de Madrid

Datalog Educational System

Where view_name stands for view names, column_name is a column name,
type is the column type, and $eot is the end of the transmission.

Remarks:

Return view schemas.

Views are returned alphabetically sorted.

Example:

Input:

/tapi /list_view_schemas

Output:

v(a:int,b:varchar(20))

$eot

 Command:

/tapi /list_table_constraints table_name

Arguments:

table_name: Table name (enclosed between SQL delimiters, if needed).

Answer:

NN

$

PK

$

CK

...

CK

$

FK

...

FK

$

FD

...

FD

$

IC

...

IC

$eot

Where $ is a delimiter for different kinds of integrity constraints, NN is a single
line with the names of columns with existence constraint, PK is a single line
with the primary key constraint, CK are candidate keys, FK are foreign keys, FD
are functional dependencies, IC are user-defined integrity constraints, and
$eot is the end of transmission.

Remarks:

Fernando Sáenz-Pérez 296/357

Universidad Complutense de Madrid

Datalog Educational System

 List table constraints.

If there are no constraints of a given type, no line is written.

Example:

Input:

/tapi /list_table_constraints "s"

Output (no existence constraint, primary key {b}, no candidate key, foreign key
{s.[a]} → {t.[a]}, functional dependency a → b, and user-defined integrity
constraint :- t(X),s(X,X).):

$

b

$

$

s.[a] -> t.[a]

$

[a] -> [b]

$

:- t(X),s(X,X).

$eot

 Command:

/tapi /relation_schema relation_name

Arguments:

relation_name: Relation name (either a table or view), which must be
enclosed between SQL delimiters if needed.

Answer:

relation_kind

relation_name

column_name

type

column_name

type

...

column_name

type

$eot

Remarks:

Return relation schema of relation_name. First line in the answer is the kind
of relation (either $table for a table or $view for a view), followed by its
name in the second line. Next and successive pair of lines contain the column
name and column type.

Example:

Input:

/tapi /relation_schema "t"

Fernando Sáenz-Pérez 297/357

Universidad Complutense de Madrid

Datalog Educational System

Output:

$table

t

a

int

$eot

 Command:

/tapi /drop_ic constraint

Arguments:

constraint: Constraint following Datalog syntax (cf. Section 4.1.16.8).

Answer:

Regular.

Example:

Input:

/tapi /drop_ic :-pk('s',['b'])

Output:

$success

 Command:

/tapi /dbschema view_name

Arguments:

view_name: View name as an SQL identifier, which needs to be enclosed
between SQL delimiters if needed.

Answer:

relation_kind

relation_name

column_name

type

...

column_name

type

$

SQL

...

SQL

$

Datalog

...

Datalog

$eot

Remarks:

Fernando Sáenz-Pérez 298/357

Universidad Complutense de Madrid

Datalog Educational System

First line in the answer is the kind of relation ($view), followed by its name in
the second line. Next and successive pair of lines contain the column name and
its type. Next lines contain the SQL definition of the view, starting with a line
containing the delimiter $. Next lines contain the Datalog definition of the view,
starting with a line containing the delimiter $. Finally, end of transmission is
the last line.

Both Datalog and SQL outputs are displayed depending on whether pretty
print is disabled or not (cf. Section 5.17.8), i.e., each statement or rule can be in a
single line or multiple lines.

Example:

Input:

/tapi /dbschema "v"

Output:

$view

v

a

int

b

varchar(20)

$

SELECT ALL *

FROM (t

 NATURAL INNER JOIN

 s);

$

$eot

 Command:

/tapi /is_empty relation_name

Arguments:

relation_name: Relation name (either a table or a view), which must be

enclosed between SQL delimiters if needed.

Answer:

Boolean.

Remarks:

Return $true is relation relation_name is empty (i.e., it contains no tuples in
its meaning) and $false otherwise.

Example:

Input:

/tapi /is_empty "t"

Output:

Fernando Sáenz-Pérez 299/357

Universidad Complutense de Madrid

Datalog Educational System

$false

 Command:

/tapi /pdg optional_argument

Arguments:

optional_argument: An optional argument, either a predicate name or
name/arity pattern.

Answer:

node

node

...

$

kind

node

node

...

$eot

Remarks:

Return nodes in the current PDG, one per line, then arcs. An arc is output as
three consecutive lines: the first one (kind) is the type of the arc (+ or -), and

the second and third are the ending and starting nodes, resp.

Example:

Input:

/tapi /pdg

Output:

a/0

b/0

c/0

d/0

$

+

b/0

c/0

+

b/0

d/0

+

c/0

b/0

-

a/0

b/0

$eot

Fernando Sáenz-Pérez 300/357

Universidad Complutense de Madrid

Datalog Educational System

5.18.3 TAPI-enabled Queries

This section shows each supported query for TAPI communication.

 Query:

/tapi sql_ddl_query

 Where sql_ddl_query can be any SQL DDL query (cf. Section 4.2.4).

Answer:

 Regular.

Examples:

Input:

/tapi create table t(a int)

Output:

$success

Input:

/tapi rename table t to q

Output:

$success

 Query:

/tapi sql_dml_query

 Where sql_dml_query can be any SQL DML query (cf. Section 4.2.5).

Answer:

 If successful, one single line with the number of affected tuples.

Examples:

Input:

/tapi insert into [t] values(3)

Output:

1

Input:

/tapi insert into [t] values('3')

Output:

$error

0

Type mismatch [number(integer)] (table declaration)

$eot

Fernando Sáenz-Pérez 301/357

Universidad Complutense de Madrid

Datalog Educational System

 Query:

/tapi sql_dql_query

 Where sql_dql_query can be any SQL DQL query (cf. Section 4.2.6).

Answer:

relation_name

column_name

type

...

column_name

type

$

value

...

value

$

...

$

value

...

value

$eot

Where relation_name is the name of the answer relation, column_name is a
column name, type is the column type, value is the column value, $ is the record
delimiter and $eot is the end of the transmission.

Remarks:

This DQL statement returns in the first line the name of the answer relation, the
first column name and its type in the next two lines, and so for all of its
columns. Then, each or the tuples in the relation preceded by the record
delimiter ($). Last line is the end of transmission.

Examples:

Input, considering that table s contains tuples {(1,'abc'), (null,'def'),

(null,null)}:

/tapi select * from [s]

Output:

answer

s.a

int

s.b

varchar(20)

$

1

'abc'

$

null

'def'

Fernando Sáenz-Pérez 302/357

Universidad Complutense de Madrid

Datalog Educational System

$

null

null

$eot

Input, considering an empty table s:

/tapi select * from [s]

Output:

answer

s.a

int

s.b

varchar(20)

$eot

5.18.4 TAPI-enabled Assertions

This section shows each supported assertion for TAPI communication.

 Predefined constraints (type, primary key, existence, primary key, candidate key,
foreign key, functional dependency):

/tapi predefined_constraint

Answer:

 Regular.

Remarks:

Only one constraint can be issued. Sequences of constraints (separated by
colons) are not supported.

Examples:

Input:

/tapi :-pk(t,[a])

Output:

$success

Input:

/tapi :-pk(t,[b])

Output:

$error

0

Unknown column 'b'.

$eot

Fernando Sáenz-Pérez 303/357

Universidad Complutense de Madrid

Datalog Educational System

5.19 Enabling Host Safety

Some applications (whether built with TAPI access or otherwise) require
isolating the host system from OS accesses which may corrupt it. Typically, this
scenario raises in web applications, where a limited set of features from DES are
required. In particular, accesses to the host file system should not be permitted in this
cases. To this end, the command /host_safe on allows the system to be tuned for
this security shield to prevent outer attacks, hide host information, protect the file
system, and so on.

Host safety is ensured by disabling sensible commands. On the one hand, there
are several command categories for which all their commands are disabled. On the
other hand, there are some other commands that have been disabled even when
belonging to assumed-safe categories, as follows:

o Unsafe categories:

 Operating System

 Logging

 Miscellanea

 Implementor

o Unsafe commands:

 /autosave

 /open_db

 /restore_ddb

 /restore_state

 /save_ddb

 /save_state

 /set_flag

 /use_ddb

5.20 ISO Escape Character Syntax

Special characters in constants and user identifiers can be specified by
prepending a backslash to an escape-sequence. This feature depends on its support by
the underlying Prolog system, so that the reader is referenced to read the
corresponding entry in the manual of such system.

Currently, escape-sequences can only be specified in Datalog files to be either
consulted or reconsulted, but neither at the command prompt nor in files to be
processed.

Common escape-sequences are:

 \a
Alarm (ASCII character code 7)

 \b
Backspace (ASCII character code 8)

 \d
Delete (ASCII character code 127)

Fernando Sáenz-Pérez 304/357

Universidad Complutense de Madrid

Datalog Educational System

 \e

Escape (ASCII character code 27)

 \f
Form feed (ASCII character code 12)

 \n
Line feed/Newline (ASCII character code 10)

 \r
Carriage return (ASCII character code 13). Go to the start of the line,
without feeding a new line

 \t
Horizontal tab (ASCII character code 9)

 \v
Vertical tab (ASCII character code 11)

 \xhex-digit...\
A character code represented by the hexadecimal digits.

5.21 Database Instances Generator

Sometimes, it is convenient to have some sample databases for testing or
benchmarking. Here, we provide a database instances generator tool that is able to
randomly generate databases given a series of parameters. The following command
generates such database instances:

/generate_db NbrTables TableSize NbrViews MaxDepth MaxChildren

FileName

These parameters specify the number of tables (NbrTables) and its rows
(TableSize), the maximum number of views (NbrViews), the height of the
computation tree (i.e., the maximum number of view descendants in a rooted
genealogic line) (MaxDepth), the maximum number of children for views
(MaxChildren), and the output filename (FileName). The output file is an SQL script
which can be processed to build the database, where the SQL dialect is tailored to the
current open database. This database is required to support INTERSECT and EXCEPT

clauses (incidentally, MySQL and Access do not). Upon successful command
execution, the database instance is created in the current database (either the default
local database $des or whatever external other which has been opened via ODBC and
made the current one). Should any error exists, the system flag error is automatically
set to 1 (its default value is 0).

Tables are named t1, t2, ... and their column names are a, b, ... and types are
the same for all the columns as specified in the flag gen_column_type. The first
column is a primary key. Tuples in each table are of the form {(1,N,R11,R12), (2,N-
1,R21,R22), ... }, where the first and the second value has been chosen arbitrarily as an
increasing and a decreasing progression respectively, Rij represents random integers,
and N is the number of rows as specified in the parameter TableSize.

With respect to views, first, a computation tree structure committing to the
applicable parameters is randomly generated. Then, an SQL query for each node in the
tree is built where each child of the node is made to occur in a FROM clause of the

Fernando Sáenz-Pérez 305/357

Universidad Complutense de Madrid

Datalog Educational System

query. The query is randomly selected to be a basic query or a set query. The WHERE
condition firstly correlates each involved relation and then randomly applies a
condition. Each view receives the name vi where i is an increasing integer from 1 on
(v1 is always the root name and numbers are assigned in preorder in the computation
tree). Views have column names a, b, ... as the tables. Each generated view is tested to
deliver more than one tuple if possible by randomly enlarging the result set if
necessary (i.e., by relaxing the WHERE condition or changing a more restricting set
operator (INTERSECT, EXCEPT) for a less restricting one (UNION)). However, it still can
be the case that some of the views return no tuples at all.

The next picture illustrates the dependency graph for a database which has
been generated with the following commands:

DES> /set_flag random_seed 1234567890

DES> /generate_db 3 5 10 3 3 p.sql

The shape of the database depends on the randomizer, but the same result can
be obtained with the same random seed. To this end, you can use the flag
random_seed as used above to reproduce the same results as depicted.

There are other parameters that can be set by setting system flags as follows:

 gen_number_of_table_columns(Number). % Number of columns

in both tables and views. Default: 4. Minimum: 2

 gen_column_type(InternalType). % Type of the columns.

Default: number(integer). Possible other values:

number(float), string(varchar), string(varchar(N)),

string(char(N)), where N is the number of characters

Fernando Sáenz-Pérez 306/357

Universidad Complutense de Madrid

Datalog Educational System

 gen_children_density(Percent). % Probability (0-100) of

having MaxChildren in each node. Default: 70

Any of these flags can be modified with the command: /set_flag FlagName
Value. For example, the following will set the number of columns to 2:

/set_flag gen_number_of_table_columns 2

5.22 Notes about the Implementation of DES

DES is implemented with the original ideas found in [Diet87, TS86, FD92], that
deal with termination issues of Prolog programs. These ideas have been already used
in the deductive database community. Our implementation uses extension tables for
achieving a top–down driven bottom–up approach. In its current form, it can be seen
as an extension of the work in [Diet87, FD92] in the sense that, in addition, we deal
with negation, undefined (although incomplete) information, nulls, aggregates, Top-N
queries, hypothetical reasoning, restricted predicates and more. Also, the
implementation follows a different approach: Instead of compiling rules, they are
interpreted.

DES does not pretend to be an efficient system but a system capable of showing
the nice aspects of the more powerful form of logic we can find in Datalog systems
w.r.t. relational database systems.

5.22.1 Tabling16

DES uses an extension table which stores answers to goals previously
computed, as well as their calls. For the ease of the introduction, we assume an answer
table and a call table to store answers and calls, respectively. Answers may be positive
or negative, that is, if a call to a positive goal p succeeds, then the fact p is added as an
answer to the answer table; if a negated goal not p succeeds, then the fact not p is
added. Calls are also added to the call table whenever they are solved. This allows us
to detect whether a call has been previously solved and we can use the results in the
extension table (if any).

The algorithm which implements this idea is schematized next:

% Already called. Call table with an entry for the current call

memo(G) :-

 build(G,Q), % Build in Q the same call with fresh variables

 called(Q), % Look for a unifiable call in CT for the current call

 subsumes(Q,G), % Test whether CT call subsumes the current call

 !, %

 et_lookup(G). % If so, use the results in answer table (ET)

% New call. Call table without an entry for the current call

memo(G) :-

 assertz(called(G)), % Assert the current call to CT

 ((et_lookup(G)) % First call returns all previous answers in ET

 ;

 (solve_goal(G), % Solve the current call using applicable rules

 build(G,Q), % Build in Q the same call with fresh variables

 no_subsumed_by_et(Q), % Test whether there is no entry in ET for Q

16 For a complementary understanding of this section, the reader is advised to read
[Diet87].

Fernando Sáenz-Pérez 307/357

Universidad Complutense de Madrid

Datalog Educational System

 et_assert(G), % If so, assert the current result in ET

 et_changed)). % Flag the change

This algorithm, first, tests whether there is a previous call that subsumes17 the
current call. There are two possibilities: 1) there is such a previous call: then, use the
result in the answer table, if any. It is possible that there is no such a result (for
instance, when computing the goal p in the program p :- p) and we cannot derive
any information, 2) otherwise, process the new call knowing that there is no call or
answer to this call in the extension table. So, firstly store the current call and then, solve
the goal with the program rules (recursively applying this algorithm). Once the goal
has been solved (if succeeded), store the computed answer if there is no any previous
answer subsuming the current one (note that, through recursion, we can deliver new
answers for the same call). This so–called memoization process is implemented with
the predicate memo/1 in the file des.pl of the distribution, and will also be referred to
as a memo function in the rest of this manual.

Negative facts are produced when a negative goal is proven by means of
negation as failure (closed world assumption). In this situation, a goal as not p which
succeeds produces the fact not p which is added to the answer table, just the same as
proving a positive goal.

The command /list_et shows the current state of the extension table, both
for answers and calls already obtained by solving one or more queries (incidentally,
recall that you can focus on the contents of the extension table for a given predicate, cf.
Section 5.17.5). This command is useful for the user when asking for the meaning of
relations, and for the developer for examining the last calls being performed. Before
executing any query, the extension table is empty; after executing a query, at least the
call is not empty. Also, the extension table is empty after the execution of a temporary

view.18 The extension table contains the calls made during the last fixpoint iteration
(see next section for details); the calls are cleared before each iteration whereas the
answers are kept. The command /clear_et clears the extension table contents, both
for calls and answers.

5.22.2 Fixpoint Computation

The tabling mechanism is insufficient in itself for computing all of the possible
answers to a query. The rationale behind this comes from the fact that the computed
information is not complete when solving a given goal, because it can use incomplete
information from the goals in its defining rules (these goals can be mutually recursive).
Therefore, we have to ensure that we produce all the possible information by finding a
fixpoint of the memo function. The algorithm implementing this is depicted next:

solve_star(Q,St) :-

 repeat,

 (remove_calls, % Clear CT

 et_not_changed, % Flag ET as not changed

17 A term T1 subsumes a term T2 if T1 is “more general” than T2 and both terms are
unifiable, e.g.: p(X,Y) subsumes p(a,Z), p(X,Y) subsumes p(U,V), p(X,Y) subsumes

p(U,U), but p(U,U) neither subsumes p(a,b) nor p(X,Y).

18 The contents of the extension table in this case should be restored instead of being
cleared; left for further improvements.

Fernando Sáenz-Pérez 308/357

Universidad Complutense de Madrid

Datalog Educational System

 solve(Q,St), % Solve the call to Q using memoization at stratum St

 fail % Request all alternatives

 ;

 no_change, % If no more alternatives, start a new iteration

 !, fail). % Otherwise, fail and exit

First, the call table is emptied in order to allow the system to try to obtain new
answers for a given call, preserving the previous computed answers. Then, the memo
function is applied, possibly providing new answers. If the answer table remains the
same as before after this last memo function application, we are done. Otherwise, the
memo function is reapplied as many times as needed until we find a stable answer
table (with no changes in the answer table). The answer table contains the meaning of
the query (plus perhaps other meanings for the relations used in the computation of
the given query).

The fixpoint is found in finite time because the memo function is monotonic in
the sense that we only add new entries each time it is called while keeping the old
ones. Repeatedly applying the memo function to the answer table delivers a finite
answer table since the number of new facts that can be derived from a Datalog
program is finite (recall that there are no compound terms such as sk(z)). On the one
hand, the number of positive facts which can be inferred are finite because there is a
finite number of ground facts which can be used in a given proof, and proofs have
finite depth provided that tabling prevents recomputations of older nodes in the proof
tree. On the other hand, the number of negative facts which can be inferred is also
finite because they are proved using negation as failure. (Failures are always finite
because they are proved trying to get a success.) Finally, there are facts that cannot be
proved to be true or false because of recursion. These cases are detected by the tabling
mechanism which prevent infinite recursion such as in p :- p.

It is also possible that both a positive and a negative fact have been inferred for
a given call. Then, an undefined fact replaces the contradictory information. The
implementation simply removes the contradictory facts and informs about the
undefinedness. As already indicated (see Section 6.8.1), the algorithm for determining
undefinedness is incomplete.

5.22.3 Dependency Graphs and Stratification: Negation, Outer Joins, and
Aggregates

Each time a program is consulted or modified (i.e., via submitting a temporary
view or changing the database), a predicate dependency graph is built [ZCF+97]. This
graph shows the dependencies, through positive and negative atoms, among
predicates in the program. Also, a negative dependency is added for each outer join
goal and aggregate goal.

This dependency graph is useful for finding a stratification for the program
[ZCF+97]. A stratification collects predicates into numbered strata (1..N). A basic
bottom-up computation would solve all of the predicates in stratum 1, then 2, and so
on, until the meaning of the whole program is found. With our approach, we only
resort to compute by stratum when a negative dependency occurs in the predicate
dependency graph restricted to the query; nevertheless, each predicate that is actually
needed is solved by means of the extension table mechanism described in the previous
section. As a consequence, many computations are avoided w.r.t. a naïve bottom-up
implementation. See also next section on optimizations.

Fernando Sáenz-Pérez 309/357

Universidad Complutense de Madrid

Datalog Educational System

Outer join and aggregate goals are also collected into strata as if they were

negative atoms in order to have their answer set completely defined and therefore
ensure termination of the computation algorithm in presence of null values (for outer
joins) and incomplete set of values (for aggregates).

5.22.4 Optimizations

Though, as already said, DES is not targeted at performance, it uses the (slower
in most systems) Prolog dynamic database, it does not allow user-defined indexes,
implemented algorithms are not the best ones, several tasks are redone sparingly
(although they can be actually saved), and so on. Once that said, there has been still a
minor room for optimizing performance so that projects of the size DES is intended for
can be successfully achieved. Below, we list some of such optimizations that can be
enabled or disabled at user request (this feature is more oriented to the system
implementors for knowing the impact on performance of such optimizations). Each
optimization is listed in a subsection along with the command (between brackets) that
is used for disabling or enabling it (with the switch off and on, respectively).

5.22.4.1 Complete Computations (/optimize_cc)

Each call during the computation of a stratum (stratum saturation) is
remembered in addition to its outcome (in the answer table). Even when the calls are
removed in each fixpoint iteration (recall Section 5.22.2), most general ones do persist
as a collateral data structure to be used for saving computations should any of them is
called again during either computing a higher stratum or a subsequent query solving.
'cc' stands for completed computation, so that if a call is marked as a completed
computation, it is not even tried if called again. This means the following two points: 1)
During the computation of the memo function, calls already computed are not tried to
be solved again, and only the entries in the memo table are returned. 2) Moreover,
computing the memo function is completely avoided if a subsuming already-computed
call can be found. In the first case, that saves solving goals in computing the memo
function. In the second case, that completely saves fixpoint computation.

The following system session shows how this optimization works. First, we
enable statistics collection, enable verbose output to automatically display statistics
results, disable all the optimizations, assert the fact p(1) and submit the query p(X):

DES> /statistics on

DES> /verbose on

DES> /optimize_cc off

Info: Complete computations optimization is off.

DES> /optimize_ep off

Info: Extensional predicate optimization is off.

DES> /optimize_nrp off

Info: Non-recursive predicates optimization is off.

DES> /optimize_st off

Info: Stratum optimization is already disabled.

DES> /assert p(1)

Info: Rule asserted.

DES> p(X)

Info: Parsing query...

Info: DL query successfully parsed.

Info: Solving query p(X)...

Fernando Sáenz-Pérez 310/357

Universidad Complutense de Madrid

Datalog Educational System

Info: Displaying query answer...

Info: Sorting answer...

{

 p(1)

}

Info: 1 tuple computed.

Info: Fixpoint iterations: 2

Info: EDB retrievals : 2

Info: IDB retrievals : 0

Info: ET retrievals : 4

Info: ET look-ups : 6

Info: CT look-ups : 2

Info: CF look-ups : 0

Info: ET entries : 1

Info: CT entries : 1

As the statistics show, 2 fixpoint iterations have been needed to deduce the
output. In the first one, the rule p(1) is read for the first time. Then, in the second
iteration, it is read again and as the answer table has not changed, then this means that
the fixpoint has been reached. The information display EDB retrievals shows those
two fact reads (where EDB stands for Extensional Database).

If the same query is submitted again:

DES> p(X)

Info: Parsing query...

Info: DL query successfully parsed.

Info: Solving query p(X)...

Info: Displaying query answer...

Info: Sorting answer...

{

 p(1)

}

Info: 1 tuple computed.

Info: Fixpoint iterations: 1

Info: EDB retrievals : 1

Info: IDB retrievals : 0

Info: ET retrievals : 4

Info: ET look-ups : 4

Info: CT look-ups : 1

Info: CF look-ups : 0

Info: ET entries : 1

Info: CT entries : 1

then only 1 iteration is needed to reach the fixpoint, and only one EDB retrieval is
done, as the answer table contained an entry for p(1) already for the same call. This
illustrates point 1 above.

 Now let's enable the optimization, previously deleting the contents of the
answer table so that we are in the same starting situation again:

DES> /clear_et

Info: Extension table cleared.

DES> /optimize_cc on

Info: Complete flag optimization is on.

Fernando Sáenz-Pérez 311/357

Universidad Complutense de Madrid

Datalog Educational System

DES> p(X)

Info: Parsing query...

Info: DL query successfully parsed.

Info: Solving query p(X)...

Info: Displaying query answer...

Info: Sorting answer...

{

 p(1)

}

Info: 1 tuple computed.

Info: Fixpoint iterations: 2

Info: EDB retrievals : 2

Info: IDB retrievals : 0

Info: ET retrievals : 4

Info: ET look-ups : 6

Info: CT look-ups : 2

Info: CF look-ups : 1

Info: ET entries : 1

Info: CT entries : 1

 As before, 2 fixpoint iterations and 2 EDB retrievals are needed. But, if we
submit again the query:

DES> p(X)

Info: Parsing query...

Info: DL query successfully parsed.

Info: Solving query p(X)...

Info: Displaying query answer...

Info: Sorting answer...

{

 p(1)

}

Info: 1 tuple computed.

Info: Fixpoint iterations: 0

Info: EDB retrievals : 0

Info: IDB retrievals : 0

Info: ET retrievals : 2

Info: ET look-ups : 2

Info: CT look-ups : 0

Info: CF look-ups : 1

Info: ET entries : 1

Info: CT entries : 1

then, as the computation for the goal p(X) is complete, then no fixpoint iterations are
needed. For the same reason, no EDB retrievals are needed, as just the contents of the
memo table are returned. This illustrates point 2 above.

5.22.4.2 Extensional Predicates (/optimize_ep)

Extensional predicates are not needed to be iteratively computed. So, no
fixpoint computation is needed for them. They are known from the predicate
dependency graph simply because they occur in the graph without incoming arcs. For
them, a linear fetching is enough to derive their meanings. 'ep' stands for 'extensional
predicates'.

In the following system session we illustrate this with the fact p(1):

Fernando Sáenz-Pérez 312/357

Universidad Complutense de Madrid

Datalog Educational System

DES> /clear_et

Info: Extension table cleared.

DES> /optimize_ep on

Info: Extensional predicate optimization is on.

DES> p(X)

Info: Parsing query...

Info: DL query successfully parsed.

Info: Solving query p(X)...

Info: Displaying query answer...

Info: Sorting answer...

{

 p(1)

}

Info: 1 tuple computed.

Info: Fixpoint iterations: 1

Info: EDB retrievals : 1

Info: IDB retrievals : 0

Info: ET retrievals : 2

Info: ET look-ups : 3

Info: CT look-ups : 0

Info: CF look-ups : 1

Info: ET entries : 1

Info: CT entries : 1

where there are 1 fixpoint iteration and only one EDB retrieval. This optimization is
independent from the completed computations optimization.

Successive calls will render the same behaviour as in the previous section,
unless the complete computations optimization is enabled:

DES> p(X)

Info: Parsing query...

Info: DL query successfully parsed.

Info: Solving query p(X)...

Info: Displaying query answer...

Info: Sorting answer...

{

 p(1)

}

Info: 1 tuple computed.

Info: Fixpoint iterations: 0

Info: EDB retrievals : 0

Info: IDB retrievals : 0

Info: ET retrievals : 2

Info: ET look-ups : 2

Info: CT look-ups : 0

Info: CF look-ups : 1

Info: ET entries : 1

Info: CT entries : 1

where no fixpoint iterations and no EDB retrievals are needed.

5.22.4.3 Non-recursive Predicates (/optimize_nrp)

Each non-recursive predicate can be extracted out from the fixpoint iterative
cycle because its meaning can be computed by requesting all its solutions at once.

Fernando Sáenz-Pérez 313/357

Universidad Complutense de Madrid

Datalog Educational System

Further fixpoint iterations won't develop new tuples, so this would be useless. In fact,
this is true for each non-recursive rule of any predicate (being recursive or not).
Though, this optimization is not available yet.

The following example shows the predicate p as composed of a fact and a rule.
First, it is computed with all optimizations disabled:

DES> /assert p(1)

DES> /assert p(X):-X=1+1

DES> p(X)

Info: Parsing query...

Info: DL query successfully parsed.

Info: Solving query p(X)...

Info: Displaying query answer...

Info: Sorting answer...

{

 p(1),

 p(2)

}

Info: 2 tuples computed.

Info: Fixpoint iterations: 2

Info: EDB retrievals : 2

Info: IDB retrievals : 2

Info: ET retrievals : 8

Info: ET look-ups : 8

Info: CT look-ups : 2

Info: CF look-ups : 0

Info: ET entries : 2

Info: CT entries : 1

Then, enabling non-recursive predicates optimization and submitting the same
query:

DES> /optimize_nrp on

Info: Non-recursive predicates optimization is on.

DES> /clear_et

DES> p(X)

{

 p(1),

 p(2)

}

Info: 2 tuples computed.

Info: Fixpoint iterations: 1

Info: EDB retrievals : 1

Info: IDB retrievals : 1

Info: ET retrievals : 4

Info: ET look-ups : 4

Info: CT look-ups : 0

Info: CF look-ups : 0

Info: ET entries : 2

Info: CT entries : 0

In only one fixpoint iteration the meaning is computed for which 1 EDB and 1
IDB retrievals are needed (the fact and rule, respectively).

Fernando Sáenz-Pérez 314/357

Universidad Complutense de Madrid

Datalog Educational System

5.22.4.4 Stratum (/optimize_st)

Predicates which contain no recursive rules but calls to recursive predicates do
not need to be computed in the same iterative fixpoint computation. If this
optimization is enabled, such predicates are isolated from recursive ones in another
stratum, so that iterative cycles are saved for them. This situation occurs, for instance,
when compiling SQL queries to Datalog, as the intermediate relation answer is
introduced. Next system session illustrates this:

DES> :-type(p(a:int))

DES> /display_answer off

DES> /display_nbr_of_tuples off

DES> /timing on

DES> /running_info off

DES> /assert p(1)

DES> /assert p(X):-p(Y),X=Y+1,Y<500

DES> select * from p

Info: Solving query answer(A)...

answer(p.a:int) ->

Info: Fixpoint iterations: 500

Info: EDB retrievals : 500

Info: IDB retrievals : 1000

Info: ET retrievals : 627246

Info: ET look-ups : 252999

Info: CT look-ups : 1500

Info: CF look-ups : 0

Info: ET entries : 1000

Info: CT entries : 2

Info: Total elapsed time: 02.755 s.

DES> /optimize_st on

DES> select * from p

Info: Solving query answer(A)...

Info: Computing by stratum of [p(A)].

answer(p.a:int) ->

Info: Fixpoint iterations: 2

Info: EDB retrievals : 502

Info: IDB retrievals : 504

Info: ET retrievals : 381248

Info: ET look-ups : 128757

Info: CT look-ups : 1006

Info: CF look-ups : 0

Info: ET entries : 1000

Info: CT entries : 2

Info: Total elapsed time: 01.888 s.

With this optimization enabled, less extension table lookups are needed and the
result is therefore computed faster. However, note that non-termination might raise
when breaking strata if using the metapredicate top: This is because top requires the
amount of tuples as indicated from its goal argument. If this goal is isolated in a higher
stratum, no top constraint is propagated to the lower stratum, as in:

DES> :- type(p(a:int))

DES> /assert p(1)

DES> /assert p(X):-p(Y),X=Y+1

Fernando Sáenz-Pérez 315/357

Universidad Complutense de Madrid

Datalog Educational System

DES> select top 2 * from p

answer(p.a:int) ->

{

 answer(1),

 answer(2)

}

Info: 2 tuples computed.

DES> /optimize_st on

DES> select top 2 * from p

... non-terminating query

That is, as the SQL query had been compiled to:

answer(A) :-

 top(10,p(A)).

then, the predicate answer/1 is located at stratum 2 and the predicate p/1 at stratum
1:

DES> /strata

[(p/1,1),(answer/1,2)]

and DES tries to solve first the goal p(X) (not top(10,p(A)))19 which proves to be
non-terminating as there is no top constraint on p. Further releases might cope with
this issue.

5.22.5 Indexing (/indexing)

There is no provision for user indexes up to now. However, indexing on memo
tables can be enabled or disabled at user request. There are three tables which are
indexed: the answer table, the call table, and the complete computation table. The first
one stores the computed results for the calls during query solving and it is used in the
tabling scheme for avoiding to recompute already known goals. The second one stores
the calls so that it is possible to know whether a subsuming call has been done already.
The third table stores for each call whether its computation has been either completed
or not.

The next system session shows a speed-up of almost 3× when enabling
indexing.

DES> /timing on

DES> /indexing off

DES> /pretty_print off

DES> /display_answer off

DES> p(X):-X=1;p(Y),Y<500,X=Y+1

Info: Processing:

 p(X)

in the program context of the exploded query:

 p(X) :- X=1.

 p(X) :- p(Y),Y<500,X=Y+1.

Info: 500 tuples computed.

19 And secondly it would try the goal answer(X), although in this case it is unable

because of the non-terminating first goal.

Fernando Sáenz-Pérez 316/357

Universidad Complutense de Madrid

Datalog Educational System

Info: Total elapsed time: 03.540 s.

DES> /indexing on

DES> p(X):-X=1;p(Y),Y<500,X=Y+1

Info: Processing:

 p(X)

in the program context of the exploded query:

 p(X) :- X=1.

 p(X) :- p(Y),Y<500,X=Y+1.

Info: 500 tuples computed.

Info: Total elapsed time: 01.279 s.

5.22.6 Porting to Unsupported Systems

DES is implemented in several Prolog files:

 des.pl contains the common predicates for all of the platforms (both
Prolog interpreters and operating systems) following the Prolog ISO
standard.

 des_ini.pl contains initialization directives for loading files at system
start-up.

 des_dcg.pl contains the definition of DCG expansion (which varies
from one Prolog system to another).

 des_sql.pl contains the SQL processor.

 des_ra.pl contains the RA processor.

 des_drc.pl contains the DRC processor.

 des_trc.pl contains the TRC processor.

 des_commands.pl defines system commands.

 des_help.pl includes the help system.

 des_common.pl includes predicates used by several files.

 des_types.pl contains the type checking, inference and casting
systems.

 des_atts.pl for allowing attributed variables in the context of types.

 des_modes.pl implements the mode information system for Datalog
predicates.

 des_persistence.pl implements persistence of Datalog predicates
on external SQL databases via ODBC connections.

 des_fuzzy.pl implements a fuzzy system.

 des_trace.pl implements a naïve declarative tracer.

 des_dl_debug.pl contains the Datalog declarative debugger.

 des_sql_debug.pl contains the SQL declarative debugger.

 des_sql_semantic.pl contains the SQL semantic checker.

Fernando Sáenz-Pérez 317/357

Universidad Complutense de Madrid

Datalog Educational System

 des_pchr.pl is a CHR program for debugging Datalog predicates and

used by des_dl_debug.pl.

 des_tc.pl contains the SQL test case generator code.

 des_dbigen.pl contains the SQL database instance random generator.

 des_glue.pl contains Prolog system specific code, which vary from a
system to another.

Adapting the predicates found in the last file should not pose problems,
provided that the Prolog interpreter and operating system feature some required
characteristics. In particular, finite domain constraints with positive and negative
integers is a must for supporting several features of DES, such as type inference and
test case generation. Also, attributed variables are required. Finally, file-system-related
built-ins. If you plan to port DES to other systems not described here, you will have to
modify the system specific Prolog file to suit your system. If so, and if you want to
figure as one of the system contributors, please send an e–mail message with the code
and reference information to: fernan@sip.ucm.es, accepting that your contribution
will be under the GNU Lesser General Public License. (See the appendix for details.)

6. Examples

The DES distribution contains the directory examples, which shows several
features of the system. Unless explicitly noted, all queries have been solved after the
commands /verbose off and /pretty_print off have been executed.

6.1 Relational Operations (files
relop.{dl,sql,ra,drc,trc})

The program relop.dl is intended to show how to mimic with Datalog rules
the basic relational operations that can be found in the file relop.sql. It contains
three relations (a, b, and c), which are used as arguments of relational operations. In
order to have loaded this program and be able to submit queries you can consult it
with /c relop. In the remarks below, relational operator symbols are represented
with ASCII characters, as =|x| to denote the left outer join , the letter x to simply
denote the Cartesian product, and the letter U for the set union.

% (Extended) Relational Algebra Operations

% pi(X)(c(X,Y)) : Projection of the first argument of c

projection(X) :- c(X,Y).

% sigma(X=a2)(a) : Selecting tuples from a such that its first

argument is a2

selection(X) :- a(X), X=a2.

% a x b : Cartesian product of relations a and b

cartesian(X,Y) :- a(X), b(Y).

% a |x| b : Natural inner join of relations a and b

inner_join(X) :- a(X), b(X).

mailto:fernan@sip.ucm.es

Fernando Sáenz-Pérez 318/357

Universidad Complutense de Madrid

Datalog Educational System

% a =|x| b : Left outer join of relations a and b

left_join(X,Y) :- lj(a(X), b(Y), X=Y).

% a |x|= b : Right outer join of relations a and b

right_join(X,Y) :- rj(a(X), b(Y), X=Y).

% a =|x|= b : Full outer join of relations a and b

full_join(X,Y) :- fj(a(X), b(Y), X=Y).

% a U b : Set union of relations a and b

union(X) :- a(X) ; b(X).

% a - b: Set difference of relations a and b

difference(X) :- a(X), not b(X).

Once the program is consulted, you can query it with, for example:

DES> projection(X)

{

 projection(a1),

 projection(a2)

}

Info: 2 tuples computed.

The result of a query is the meaning of the view, i.e., the fact set for the query
derived from the program whether intensionally or extensionally. In the above
example, projection(X) corresponds to the projection of the first argument of
relation c.

The second view in Section 4.1.5 returns:

Info: Processing:

 a(X) :- b(X).

{

 a(a1),

 a(a2),

 a(a3),

 a(b1),

 a(b2)

}

Info: 5 tuples computed.

For abolishing this program and execute the SQL statements in relop.sql,
you can type /abolish and /process relop.sql. Note that the extension can be
omitted in the /process command.

Here, we depart from the Datalog interpreter and, if you are to submit SQL
queries, it is useful to switch to the SQL interpreter via the command /sql as inputs
will be parsed only by the SQL parser. Otherwise, it will be tried to be identified as a
Datalog input, and then as an SQL input.

Note that in the file relop.sql listed below, strings are enclosed between
apostrophes. This is not needed in the Datalog language. In order to execute the
contents of this file, type /process relop.sql.

% Switch to SQL interpreter

Fernando Sáenz-Pérez 319/357

Universidad Complutense de Madrid

Datalog Educational System

/sql

% Creating tables

create or replace table a(a);

create or replace table b(b);

create or replace table c(a,b);

% Listing the database schema

/dbschema

% Inserting values into tables

insert into a values ('a1');

insert into a values ('a2');

insert into a values ('a3');

insert into b values ('b1');

insert into b values ('b2');

insert into b values ('a1');

insert into c values ('a1','b2');

insert into c values ('a1','a1');

insert into c values ('a2','b2');

% Testing the just inserted values

select * from a;

select * from b;

select * from c;

% Projection

select a from c;

% Selection

select a from a where a='a2';

% Cartesian product

select * from a,b;

% Inner Join

select a from a inner join b on a.a=b.b;

% Left Join

select * from a left join b on a.a=b.b;

% Right Join

select * from a right join b on a.a=b.b;

% Full Join

select * from a full join b on a.a=b.b;

% Union

select * from a union select * from b;

% Difference

select * from a except select * from b;

If we have created the relations in Datalog, we cannot access them from SQL
unless they had been either defined as tables or views or declared with types. For
example, following the first alternative and after consulting the file relop.dl, we can
submit:

create table a(a varchar);

And, then, accessing with an SQL statement the tuples that were asserted in
Datalog:

DES> select * from a;

answer(a.a) ->

{

 answer(a1),

 answer(a2),

Fernando Sáenz-Pérez 320/357

Universidad Complutense de Madrid

Datalog Educational System

 answer(a3)

}

Info: 3 tuples computed.

Otherwise, an error is submitted:

Error: Unknown table or view 'a'.

Following the second alternative, and after consulting the file relop.dl, we
can declare types for a:

DES> /datalog :-type(a,[a:varchar])

DES> select * from a

answer(a.a) ->

{

 answer(a1),

 answer(a2),

 answer(a3)

}

Info: 3 tuples computed.

Files relop.trc and relop.drc include the relational operations expressed
as queries in these files. To process any of these files you have to proceed similar to
SQL: /p relop.trc, for instance. As an example or TRC, the following computes the
set union of two relations:

DES-TRC> {X|a(X) or b(X)};

answer(a:string) ->

{

 answer(a1),

 answer(a2),

 answer(a3),

 answer(b1),

 answer(b2)

}

Info: 5 tuples computed.

6.2 Paths in a Graph (files paths.{dl,sql,ra})

This program20 introduces the use of recursion in DES by defining the graph in
Figure 2 and the set of tuples <origin, destination> such that there is a path from origin
to destination.

 b

c

a d

Figure 2. Paths in a Graph

20 Adapted from [TS86].

Fernando Sáenz-Pérez 321/357

Universidad Complutense de Madrid

Datalog Educational System

The file paths.dl contains the following Datalog code, which can be consulted

with /c paths:

% Paths in a Graph

edge(a,b).

edge(a,c).

edge(b,a).

edge(b,d).

path(X,Y) :- path(X,Z), edge(Z,Y).

path(X,Y) :- edge(X,Y).

The query path(X,Y) yields the following answer:

{

 path(a,a),

 path(a,b),

 path(a,c),

 path(a,d),

 path(b,a),

 path(b,b),

 path(b,c),

 path(b,d)

}

Info: 8 tuples computed.

The file paths.sql contains the SQL counterpart code, which can be executed
with /process paths.sql:

create table edge(origin,destination);

insert into edge values('a','b');

insert into edge values('a','c');

insert into edge values('b','a');

insert into edge values('b','d');

create view paths(origin,destination) as

 with

 recursive path(origin,destination) as

 (select * from edge)

 union

 (select path.origin,edge.destination

 from path,edge

 where path.destination = edge.origin)

 select * from path;

So, you can get the same answer as before with the SQL statement:

DES> select * from paths;

answer(paths.origin, paths.destination) ->

{

 answer(a,a),

 answer(a,b),

 answer(a,c),

 answer(a,d),

 answer(b,a),

Fernando Sáenz-Pérez 322/357

Universidad Complutense de Madrid

Datalog Educational System

 answer(b,b),

 answer(b,c),

 answer(b,d)

}

Info: 8 tuples computed.

Another shorter formulation is allowed in DES with the following view
definition:

create view path(origin,destination) as

 select * from

 (select * from edge)

 union

 (select path.origin,edge.destination

 from path,edge

 where path.destination=edge.origin)

You can finally compare this with the RA formulation:

paths(origin,destination) :=

 select true (edge)

 union

 project paths.origin,edge.destination

 (edge zjoin paths.destination = edge.origin paths);

6.3 Shortest Paths (file spaths.{dl,sql,ra})

Thanks to aggregate predicates, one can code the following version of the
shortest paths problem (file spaths.dl), which uses the same definition of edge as in
the previous example:

path(X,Y,1) :-

 edge(X,Y).

path(X,Y,L) :-

 path(X,Z,L0),

 edge(Z,Y),

 count(edge(A,B),Max),

 L0<Max,

 L is L0+1.

sp(X,Y,L) :-

 min(path(X,Y,Z),Z,L).

Note that the infinite computation that may raise from using the built-in is/2 is
avoided by limiting the total length of a path to the number of edges in the graph.

The following query returns all the possible paths and their corresponding
minimal distances:

DES> sp(X,Y,L)

{

 sp(a,a,2),

 sp(a,b,1),

 sp(a,c,1),

 sp(a,d,2),

 sp(b,a,1),

Fernando Sáenz-Pérez 323/357

Universidad Complutense de Madrid

Datalog Educational System

 sp(b,b,2),

 sp(b,c,2),

 sp(b,d,1)

}

Info: 8 tuples computed.

Below is the SQL formulation for the same problem (file spaths.sql) :

DES> create or replace view spaths(origin,destination,length) as

with recursive path(origin,destination,length) as

(select edge.*,1 from edge)

 union

(select path.origin,edge.destination,path.length+1

 from path,edge

 where path.destination=edge.origin and

 path.length<(select count(*) from edge))

select origin,destination,min(length) from path group by

origin,destination;

DES> select * from spaths

answer(spaths.origin, spaths.destination, spaths.length) ->

{

 answer(a,a,2),

 answer(a,b,1),

 answer(a,c,1),

 answer(a,d,2),

 answer(b,a,1),

 answer(b,b,2),

 answer(b,c,2),

 answer(b,d,1)

}

Info: 8 tuples computed.

A possible RA formulation follows:

max_length(max_length) :=

 group_by [] count(*) true (edge);

path(origin,destination,length) :=

 project origin,destination,1 (edge)

 union

 project path.origin,edge.destination,path.length+1

 (

 path

 zjoin path.destination=edge.origin and

 path.length<max_length

 (edge product max_length)

);

spaths(origin,destination,length) :=

 group_by origin,destination origin,destination,min(length)

true

 (path);

And its query:

Fernando Sáenz-Pérez 324/357

Universidad Complutense de Madrid

Datalog Educational System

/ra select true (spaths);

6.4 Family Tree (files family.{dl,sql,ra})

This (yet another classic) program defines the family tree shown in Figure 3, the
set of tuples <parent,child> such that parent is a parent of child (the relation
parent), the set of tuples <ancestor,descendant> such that ancestor is an
ancestor of descendant (the relation ancestor), the set of tuples <father,child>
such that father is the father of child (the relation father), and the set of tuples
<mother,child> such that mother is the mother of child (the relation mother).

amy

tom grace

fred

jack

carolIII

carolII

tony carolI

Figure 3. Family Tree

The file family.dl contains the following Datalog code, which can be
consulted with /c family:

father(tom,amy).

father(jack,fred).

father(tony,carolII).

father(fred,carolIII).

mother(grace,amy).

mother(amy,fred).

mother(carolI,carolII).

mother(carolII,carolIII).

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

The query ancestor(tom,X) yields the following answer (that is, it computes
the set of descendants of tom):

{

 ancestor(tom,amy),

 ancestor(tom,carolIII),

 ancestor(tom,fred)

}

Info: 3 tuples computed.

Solving the view:

Fernando Sáenz-Pérez 325/357

Universidad Complutense de Madrid

Datalog Educational System

son(S,F,M) :- father(F,S),mother(M,S).

yields the following answer, computing the set of sons:

Info: Processing:

 son(S,F,M) :- father(F,S),mother(M,S).

{

 son(amy,tom,grace),

 son(carolII,tony,carolI),

 son(carolIII,fred,carolII),

 son(fred,jack,amy)

}

Info: 4 tuples computed.

The file family.sql contains the SQL counterpart code, which can be
executed with /process family.sql:

create table father(father,child);

insert into father values('tom','amy');

insert into father values('jack','fred');

insert into father values('tony','carolII');

insert into father values('fred','carolIII');

create table mother(mother,child);

insert into mother values('grace','amy');

insert into mother values('amy','fred');

insert into mother values('carolI','carolII');

insert into mother values('carolII','carolIII');

create view parent(parent,child) as

 select * from father

 union

 select * from mother;

create or replace view ancestor(ancestor,descendant) as

 select parent,child from parent

 union

 select parent,descendant from parent,ancestor

 where parent.child=ancestor.ancestor;

The two example queries above can be formulated in SQL as:

select * from ancestor where ancestor='tom';

select child,father,mother

 from father,mother

 where father.child=mother.child;

And also as RA queries as:

/ra select ancestor='tom' (ancestor);

project child,father,mother

 (father zjoin father.child=mother.child mother);

Fernando Sáenz-Pérez 326/357

Universidad Complutense de Madrid

Datalog Educational System

6.5 Basic Recursion Problem (file recursion.dl)

This example is intended to show that queries involving recursive predicates do
terminate thanks to DES fixpoint solving, by contrast with Prolog’s usual SLD
resolution.

p(0).

p(X) :- p(X).

p(1).

The query p(X) returns the inferred facts from the program irrespective of the
apparent infinite recursion in the second rule. (Note that the Prolog goal p(1) does not
terminate. You can easily check it out with /prolog p(1).)

6.6 Transitive Closure (files tranclosure.{dl,sql,ra})

With this example, we show a possible use of mutual recursion by means of a
Datalog program that defines the transitive closure of the relations p and q21. It can be
consulted with /c tranclosure.

p(a,b).

p(c,d).

q(b,c).

q(d,e).

pqs(X,Y) :- p(X,Y).

pqs(X,Y) :- q(X,Y).

pqs(X,Y) :- pqs(X,Z),p(Z,Y).

pqs(X,Y) :- pqs(X,Z),q(Z,Y).

The query pqs(X,Y) returns the whole set of inferred facts that model the
transitive closure.

File tranclosure.sql contains the SQL counterpart code, which can be
executed with /process tranclosure.sql:

create table p(x,y);

insert into p values ('a','b');

insert into p values ('c','d');

create table q(x,y);

insert into q values ('b','c');

insert into q values ('d','e');

create view pqs(x,y) as

 select * from p

 union

 select * from q

 union select pqs.x,p.y from pqs,p where pqs.y=p.x

 union select pqs.x,q.y from pqs,q where pqs.y=q.x;

The query select * from pqs returns the same answer as before.

The file tranclosure.ra contains the RA formulation:

pqs(x,y) :=

21 Taken from [Diet87].

Fernando Sáenz-Pérez 327/357

Universidad Complutense de Madrid

Datalog Educational System

 p

 union

 q

 union

 project pqs.x,p.y (pqs zjoin pqs.y=p.x p)

 union

 project pqs.x,q.y (pqs zjoin pqs.y=q.x q);

/ra select true (pqs)

6.7 Mutual Recursion (files mutrecursion.{dl,sql,ra})

The following program shows a basic example about mutual recursion:

p(a).

p(b).

q(c).

q(d).

p(X) :- q(X).

q(X) :- p(X).

Submitting the goal p(X), we get:

{

 p(a),

 p(b),

 p(c),

 p(d)

}

Info: 4 tuples computed.

which is the same set of values for arguments for the query q(X). The file mrtc.dl is
a combination of this example and that of the previous section.

The file mutrecursion.sql contains the SQL counterpart code, which can be
executed with /process mutrecursion.sql:

/sql

/assert p(a)

/assert p(b)

/assert q(c)

/assert q(d)

-- View q must be given a prototype for view p to be defined

create view q(x) as select * from q;

create or replace view p(x) as select * from q;

create or replace view q(x) as select * from p;

Note that it is needed to build a void view for q in order to have it declared
when defining the view p. The void view is then replaced by its actual definition. The
contents of both views can be tested to be equal with:

select * from p;

select * from q;

File mutrecursion.ra contains the RA formulation:

Fernando Sáenz-Pérez 328/357

Universidad Complutense de Madrid

Datalog Educational System

-- View q must be given a prototype for view p to be defined

q(x) := select true (q);

p(x) := select true (q);

q(x) := select true (p);

select true (p);

select true (q);

6.8 Farmer-Wolf-Goat-Cabbage Puzzle (file puzzle.dl)

This example22 shows the classic Farmer–Wolf–Goat–Cabbage puzzle (also
Missionaries and Cannibals as another rewritten form). The farmer, wolf, goat, and
cabbage are all on the north shore of a river and the problem is to transfer them to the
south shore. The farmer has a boat which he can row taking at most one passenger at a
time. The goat cannot be left with the wolf unless the farmer is present. The cabbage,
which counts as a passenger, cannot be left with the goat unless the farmer is present.
The following program models the solution to this puzzle. The relation state/4
defines the valid states under the specification (i.e., those situations in which there is
no danger for any of the characters in our story; a state in which the goat is left alone
with the cabbage may result in an eaten cabbage) and imposes that there is a previous
valid state from which we depart from. The arguments of this relation are intended to
represent (from left to right) the position (north –n– or south –s– shore) of the farmer,
wolf, goat, and cabbage. We use the relation safe/4 to verify that a given
configuration of positions is valid. The relation opp/2 simply states that north is the
opposite shore of south and vice versa.

% Initial state

state(n,n,n,n).

% Farmer takes Wolf

state(X,X,U,V) :-

 safe(X,X,U,V),

 opp(X,X1),

 state(X1,X1,U,V).

% Farmer takes Goat

state(X,Y,X,V) :-

 safe(X,Y,X,V),

 opp(X,X1),

 state(X1,Y,X1,V).

% Farmer takes Cabbage

state(X,Y,U,X) :-

 safe(X,Y,U,X),

 opp(X,X1),

 state(X1,Y,U,X1).

% Farmer goes by himself

state(X,Y,U,V) :-

 safe(X,Y,U,V),

 opp(X,X1),

 state(X1,Y,U,V).

% Opposite shores (n/s)

22 Adapted from [Diet87].

Fernando Sáenz-Pérez 329/357

Universidad Complutense de Madrid

Datalog Educational System

opp(n,s).

opp(s,n).

% Farmer is with Goat

safe(X,Y,X,V).

% Farmer is not with Goat

safe(X,X,X1,X) :- opp(X,X1).

If we submit the query state(s,s,s,s), we get the expected result:

{

 state(s,s,s,s)

}

Info: 1 tuple computed.

That is, the system has proved that there is a serial of transfers between shores
which finally end with the asked configuration (this problem is not modelled to show
this serial). If we ask for the extension table contents regarding the relation state/4
(with the command /list_et state/4), we get for the answers:

{

 state(n,n,n,n),

 state(n,n,n,s),

 state(n,n,s,n),

 state(n,s,n,n),

 state(n,s,n,s),

 state(s,n,s,n),

 state(s,n,s,s),

 state(s,s,n,s),

 state(s,s,s,n),

 state(s,s,s,s)

}

Info: 10 tuples in the answer set.

This is the complete set of valid states which includes all of the valid paths from
state(n,n,n,n) to state(s,s,s,s). However, the order of states to reach the
latter is not given, but we can find it by observing this relation, i.e.:

state(n,n,n,n) Farmer takes Goat to south shore

state(s,n,s,n) Farmer returns to north shore

state(n,n,s,n) Farmer takes Wolf to south shore

state(s,s,s,n) Farmer takes Goat to north shore

state(n,s,n,n) Farmer takes Cabbage to south shore

state(s,s,n,s) Farmer returns to north shore

state(n,s,n,s) Farmer takes Goat to south shore

state(s,s,s,s) Final safe state

Observe that there is two states in the relation state/4 which do not form part
of the previous path:

state(s,n,s,s)

state(n,n,n,s)

Fernando Sáenz-Pérez 330/357

Universidad Complutense de Madrid

Datalog Educational System

These states come from another possible path:23

state(n,n,n,n) Farmer takes Goat to south shore

state(s,n,s,n) Farmer returns to north shore

state(n,n,s,n) Farmer takes Cabbage to south shore

state(s,n,s,s) Farmer takes Goat to north shore

state(n,n,n,s) Farmer takes Wolf to south shore

state(s,s,s,n) Farmer takes Goat to north shore

state(s,s,n,s) Farmer returns to north shore

state(n,s,n,s) Farmer takes Goat to south shore

state(s,s,s,s) Final safe state

6.8.1 Dealing with paths (file puzzle1.dl)

As just illustrated, the sequence of movements needed to find a feasible
solution can be inferred from the answer table. Nonetheless, it is possible to outcome
such sequences even when there is no provision for data structures. The idea is to code
sequences of movements into a single plain type, as an integer. We can resort, for
instance, to build a decimal number whose digits, as read from right to left, indicate the
selected movement in the sequence. If we number the movement alternatives from 1 to
4 (in the same order as rules occur at the program text) the first solution above can be
coded as 2412342, and the second one as 2432142.

Modelling in this way, we can rewrite the predicate state by adding a first
argument as the sequence needed to reach a given state, and the steps already
performed. This is useful to build the code as adding a number (identifying the
alternative rule) multiplied by the n-th power of ten, where n is the number of steps
already done. The following two example rules illustrates this:

% 0. Initial state

state(0,0,n,n,n,n).

% 1. Farmer takes Wolf

state(C,S,X,X,U,V) :-

 safe(X,X,U,V),

 opp(X,X1),

 state(C1,S1,X1,X1,U,V),

 S is S1+1,

 bound(B),

 S<B,

 C is C1+1*10**S1.

Solving the new program yields:

DES> state(C,S,s,s,s,s)

{

 state(2412342.0,7,s,s,s,s),

 state(2432142.0,7,s,s,s,s)

}

Info: 2 tuples computed.

Which is explained as follows:

23 Remember that the system returns all of the possible solutions.

Fernando Sáenz-Pérez 331/357

Universidad Complutense de Madrid

Datalog Educational System

* Solution 1: state(2412342.0,7,s,s,s,s)

0: Initial state

 North: Farmer,Goat,Cabbage,Wolf

 South: empty

2: Farmer takes goat to the South shore

 North: Cabbage,Wolf

 South: Farmer,Goat

4: Farmer returns to North shore

 North: Farmer,Cabbage,Wolf

 South: Goat

3: Farmer takes cabbage to the South shore

 North: Wolf

 South: Farmer,Cabbage,Goat

2: Farmer takes goat to the North shore

 North: Farmer,Goat,Wolf

 South: Cabbage

1: Farmer takes wolf to the South shore

 North: Goat

 South: Farmer,Cabbage,Wolf

4: Farmer returns to North shore

 North: Farmer,Goat

 South: Cabbage,Wolf

2: Farmer takes goat to the South shore

 North: empty

 South: Farmer,Goat,Cabbage,Wolf

* Solution 2: state(2432142.0,7,s,s,s,s)

0: Initial state

 North: Farmer,Goat,Cabbage,Wolf

 South: empty

2: Farmer takes goat to the South shore

 North: Cabbage,Wolf

 South: Farmer,Goat

4: Farmer returns to North shore

 North: Farmer,Cabbage,Wolf

 South: Goat

1: Farmer takes wolf to the South shore

 North: Cabbage

 South: Farmer,Goat,Wolf

2: Farmer takes goat to the North shore

 North: Farmer,Goat,Cabbage

 South: Wolf

3: Farmer takes cabbage to the South shore

 North: Goat

 South: Farmer,Cabbage,Wolf

4: Farmer returns to North shore

 North: Farmer,Goat

 South: Cabbage,Wolf

2: Farmer takes goat to the South shore

 North: empty

 South: Farmer,Goat,Cabbage,Wolf

Fernando Sáenz-Pérez 332/357

Universidad Complutense de Madrid

Datalog Educational System

6.9 Paradoxes (files russell.{dl,sql,ra})

When negation is used, we can find paradoxes, such as the Russell’s paradox
(the barber in a town shaves every person who does not shave himself) shown in the
next example (please note that this example is not stratified and, in general, we cannot
ensure correctness for non-stratifiable programs):

DES> /verbose on

Info: Verbose output is on.

DES> /c russell

Info: Consulting russell...

 shaves(barber,M) :-

 man(M),

 not shaves(M,M).

 man(barber).

 man(mayor).

 shaved(M) :-

 shaves(barber,M).

 end_of_file.

Info: 4 rules consulted.

Info: Computing predicate dependency graph...

Info: Computing strata...

Warning: Non stratifiable program.

If we submit the query shaves(X,Y), we get the positive facts as well as a set
of undefined inferred information (in our example, whether the barber shaves himself),
as follows (here, verbose output is enabled):

DES> shaves(X,Y)

Warning: Unable to ensure correctness for this query.

{

 shaves(barber,mayor)

}

Info: 1 tuple computed.

Undefined:

{

 shaves(barber,barber)

}

Info: 1 tuple undefined.

If we look at the extension table contents by submitting the command
/list_et, we get as answers:

Answers:

{

 man(barber),

 man(mayor),

 not shaves(mayor,mayor),

 shaves(barber,mayor)

}

Info: 4 tuples in the answer set.

We can see that, in particular, we have proved additional negative information
(the mayor does not shaves himself) and that no information is given for the undefined

Fernando Sáenz-Pérez 333/357

Universidad Complutense de Madrid

Datalog Educational System

facts. The current implementation uses an incomplete algorithm for finding such
undefined facts. We can see this incompleteness by adding the following rule:

shaved(M) :- shaves(barber,M).

The query shaved(M) returns:

Warning: Unable to ensure correctness for this query.

{

 shaved(mayor)

}

Info: 1 tuple computed.

That is, the system is unable to prove that shaved(barber) is undefined.

If you look at the predicate dependency graph and the stratification of the
program:

DES> /pdg

Nodes: [man/1,shaved/1,shaves/2]

Arcs : [shaves/2-shaves/2,shaves/2+man/1,shaved/1+shaves/2]

DES> /strata

[non-stratifiable]

you get the predicate dependency graph shown in Figure 4, and you are informed that
the program is non-stratifiable. This figure shows a negation in a cycle, so that the
program is not stratifiable. (The system warned of this situation when the program was
loaded.)

 +

shaves

man shaved

+

-

Figure 4. Predicate Dependency Graph for russell.dl

However, even when a program is non-stratifiable, there may exist a query with
an associated predicate dependency subgraph so that negation does not occur in any
cycle. For instance, this occurs with the query man(X) in this program:

DES> man(X)

Info: Stratifiable subprogram found for the given query.

{

 man(barber),

 man(mayor)

}

Info: 2 tuples computed.

Here, the system recomputed the strata for the predicate dependency subgraph,
and informed that it found a stratifiable subprogram for such a query. In this simple

Fernando Sáenz-Pérez 334/357

Universidad Complutense de Madrid

Datalog Educational System

case, no more negations were involved in the subgraph, but more elaborated
dependencies can be found in other examples (cf. sections 6.10 and 6.11).

Stratification may be needed for programs without negation as long as a
temporary view contains a negated goal. Consider the following view under the
program relop.dl (rules in the program with negation are not present in the
subgraph for the query d(X)):

DES> d(X) :- a(X), not b(X)

Info: Processing:

 d(X) :- a(X),not b(X).

{

 d(a2),

 d(a3)

}

Info: 2 tuples computed.

In this view, the query d(X) is solved with a solve-by-stratum algorithm,
described in Section 5.22.3. In this case, this means that the goal b(X) is solved before
obtaining the meaning of d(X) because b is in a lower stratum than d and it is needed
for the computation of d.

The basic paradox p:-not p can be found in the file paradox.dl, whose
model is undefined as you can test with the query p.

6.10 Parity (file parity.dl)

This example program24 is intended to compute the parity of a given base
relation br(X), i.e., it can determine whether the number of elements in the relation
(cardinality) is even or odd by means of the predicates br_is_even, and br_is_odd,
respectively. The predicate next defines an ascending chain of elements in br based
on their textual ordering, where the first link of the chain connects the distinguished
node nil to the first element in br. The predicates even and odd define the even,
resp. odd, elements in the chain. The predicate has_preceding defines the elements
in br such that there are previous elements to a given one (the first element in the
chain has no preceding elements). The rule defining this predicate includes an
intended error (fourth rule in the example) which will be used in Section 6.13 to show
how it is caught by the declarative debugger.

% Pairs of non-consecutive elements in br

between(X,Z) :-

 br(X), br(Y), br(Z), X<Y, Y<Z.

% Consecutive elements in the sequence, starting at nil

next(X,Y) :-

 br(X), br(Y), X<Y, not between(X,Y).

next(nil,X) :-

 br(X), not has_preceding(X).

% Values having preceding values in the sequence

has_preceding(X) :-

24 Adapted from [ZCF+97].

Fernando Sáenz-Pérez 335/357

Universidad Complutense de Madrid

Datalog Educational System

 br(X), br(Y), Y>X. %error: Y>X should be Y<X

% Values in an even position of the sequence, including nil

even(nil).

even(Y) :-

 odd(X), next(X,Y).

% Values in an odd position of the sequence

odd(Y) :-

 even(X), next(X,Y).

% Succeeds if the cardinality of the sequence is even

br_is_even :-

 even(X), not next(X,Y).

% Succeeds if the cardinality of the sequence is odd

br_is_odd :-

 odd(X), not next(X,Y).

% Base relation

br(a).

br(b).

6.11 Grammar (file grammar.dl)

Parsers can also be coded as Datalog programs. In this example25, a simple left-
recursive grammar analyser is coded for the following grammar rules.

A –> a

A –> Ab

A –> Aa

It was tested with the input string "ababa", which is coded with the relation
t(F,T,L), F for the position of token T that ends at position L.

t(1,a,2).

t(2,b,3).

t(3,a,4).

t(4,b,5).

t(5,a,6).

a(F,L) :- t(F,a,L).

a(F,L) :- a(F,M), t(M,b,L).

a(F,L) :- a(F,M), t(M,a,L).

DES> a(1,6)

{

 a(1,6)

}

Info: 1 tuple computed.

25 Taken from [FD92].

Fernando Sáenz-Pérez 336/357

Universidad Complutense de Madrid

Datalog Educational System

6.12 Fibonacci (file fib.{dl,sql,ra})

The all-time classics Fibonacci program26 can be coded in DES thanks to
arithmetic built-ins. It can be formulated as follows:

fib(0,1).

fib(1,1).

fib(N,F) :-

 N>1,

 N2 is N-2,

 fib(N2,F2),

 N1 is N-1,

 fib(N1,F1),

 F is F2+F1.

Since DES is implemented with extension tables, computing high Fibonacci
numbers is possible with linear complexity:

DES> fib(1000,F)

{

fib(1000,7033036771142281582183525487718354977018126983635873274

2604905087154537118196933579742249494562611733487750449241765991

0881863632654502236471060120533741212738673391111981393731255987

67690091902245245323403501)

}

Info: 1 tuple computed.

Also, it is possible to formulate this in SQL, even when the next view features
non-linear recursion (file fib.sql):

create view fib(n,f) as

 select 0,1

 union

 select 1,1

 union

 select fib1.n+1,fib1.f+fib2.f

 from fib fib1, fib fib2

 where fib1.n=fib2.n+1 and fib1.n<10;

As well, next there is a possible RA formulation (file fib.ra):

fib(n,f) :=

 project 0,1 (dual)

 union

 project 1,1 (dual)

 union

 project fib1.n+1,fib1.f+fib2.f

 (rename fib1(n1,f1) (fib)

 zjoin

 n1=n2+1 and n1<10

 rename fib2(n2,f2) (fib));

26 Taken from [FD92].

Fernando Sáenz-Pérez 337/357

Universidad Complutense de Madrid

Datalog Educational System

6.13 Hanoi Towers (file hanoi.dl)

Another well-known toy puzzle is the towers of Hanoi, which can be coded as:

hanoi(1,A,B,C).

hanoi(N,A,B,C) :-

 N>1,

 N1 is N-1,

 hanoi(N1,A,C,B),

 hanoi(N1,C,B,A).

We can submit the following query for 10 discs:

DES> hanoi(10,a,b,c)

{

 hanoi(10,a,b,c)

}

Info: 1 tuple computed.

Note that the answer to this query does not reflect the movements of the discs,
which can be otherwise shown as the intermediate results kept in the extension table:

DES> /list_et hanoi

Answers:

{

 hanoi(1,a,c,b),

 hanoi(1,b,a,c),

 hanoi(1,c,b,a),

 hanoi(2,a,b,c),

 hanoi(2,b,c,a),

 hanoi(2,c,a,b),

 hanoi(3,a,c,b),

 hanoi(3,b,a,c),

 hanoi(3,c,b,a),

 hanoi(4,a,b,c),

 hanoi(4,b,c,a),

 hanoi(4,c,a,b),

 hanoi(5,a,c,b),

 hanoi(5,b,a,c),

 hanoi(5,c,b,a),

 hanoi(6,a,b,c),

 hanoi(6,b,c,a),

 hanoi(6,c,a,b),

 hanoi(7,a,c,b),

 hanoi(7,b,a,c),

 hanoi(7,c,b,a),

 hanoi(8,a,b,c),

 hanoi(8,b,c,a),

 hanoi(8,c,a,b),

 hanoi(9,a,c,b),

 hanoi(9,c,b,a),

 hanoi(10,a,b,c)

}

Info: 27 tuples in the answer set.

...

Fernando Sáenz-Pérez 338/357

Universidad Complutense de Madrid

Datalog Educational System

6.14 Other Examples

Directory examples include some other examples as the files bom.dl (bill of
materials) and trains.dl (train connections) which show more example applications
including negation. Other examples are orbits.dl (a cosmos tiny database), sg.dl
(same generation for a family database), tc.dl (transitive closure), and
empTraining.{ra,sql} (taken from [Diet01]). Also, the folder persistent
contains examples for persisting predicates, the folder ontology includes examples of
authoring ontologies, including some documentation, and folders DLDebugger and
SQLDebugger include examples for debugging Datalog programs and SQL views,
respectively.

7. Contributions

This section collects the contributions from external developers up to now:

 Fuzzy Datalog.
Authors: Pascuál Julián-Iranzo and Fernando Sáenz-Pérez
Date: 2/2017
Description: Fuzzy extension of Datalog including fuzzy relations and weak
unification
License: LGPL
Contact: Fernando Sáenz-Pérez

 Datalog Declarative Debugger with Wrong and Missing Answers.
Authors: Rafael Caballero-Roldán, Yolanda García-Ruiz, and Fernando Sáenz-Pérez
Date: 8/2015
Description: Tool for the declarative debugging of Datalog programs with wrong
and missing answers
License: LGPL
Contact: Fernando Sáenz-Pérez

 SQL Declarative Debugger.
Authors: Rafael Caballero-Roldán, Yolanda García-Ruiz, and Fernando Sáenz-Pérez
Date: 5/2011 (upgraded version with Wrong and Missing Answers since DES 3.0)
Description: Tool for the declarative debugging of Datalog programs with wrong
and missing answers
License: LGPL
Contact: Fernando Sáenz-Pérez

 Test Case Generator.
Authors: Rafael Caballero-Roldán, Yolanda García-Ruiz, and Fernando Sáenz-Pérez
Date: 10/2009 (upgraded version supported since DES 1.8.0)
Description: Tool for generating test cases for SQL views
License: LGPL
Contact: Yolanda García-Ruiz (Implementor)

 Datalog Declarative Debugger.
Authors: Rafael Caballero-Roldán, Yolanda García-Ruiz, and Fernando Sáenz-Pérez
Date: 5/2007
Description: Tool for the declarative debugging of Datalog programs (brand-new
version with Wrong and Missing Answers since DES 4.0)

Fernando Sáenz-Pérez 339/357

Universidad Complutense de Madrid

Datalog Educational System

License: LGPL
Contact: Yolanda García-Ruiz (Implementor)

 ACIDE (A Configurable Development Environment).
Authors: Diego Cardiel Freire, Juan José Ortiz Sánchez, Delfín Rupérez Cañas (SI
2006/2007), Miguel Martín Lázaro (SI 2007/2008), and Javier Salcedo Gómez (SI
2010/2011), Pablo Gutiérrez García-Pardo, Elena Tejeiro Pérez de Ágreda, Andrés
Vicente del Cura (SI 2012/2013) led by Fernando Sáenz-Pérez.
Date: 3/2007 (ACIDE 0.1, first version), 11/2008 (ACIDE 0.7), 7/2011 (ACIDE 0.8),
12/2012 (ACIDE 0.9, current version)
Description: This project is aimed to provide a multiplatform configurable
integrated development environment which can be configured in order to be used
with any development system such as interpreters, compilers and database
systems. Features of this system include: project management, multi-file editing,
syntax colouring, and parsing on-the-fly (which informs of syntax errors when
editing programs prior to the compilation).
License: GPL.
Project Web Page: http://acide.sourceforge.net/

 Emacs development environment.
Author: Markus Triska.
Date: 2/22/2007
Description: Provides an integration of DES into Emacs. Once a Datalog file has
been opened, you can consult it by pressing F1 and submit queries and commands
from Emacs. This works at least in combination with SWI-Prolog (it depends on the
–s switch); other systems may require slight modifications.
License: GPL.
Project Web Page: http://stud4.tuwien.ac.at/~e0225855/index.html
Contact: markus.triska@gmx.at
Installation: Copy des.el (in the contributors web page) to your home directory
and add to your .emacs:

(load "~/des")

; adapt the following path as necessary:

(setq des-prolog-file "~/des/systems/swi/des.pl")

(add-to-list 'auto-mode-alist '("\\.dl$" . des-mode))

Restart Emacs, open a *.dl file to load it into a DES process (this currently only
works with SWI-Prolog). If the region is active, F1 consults the text in the region.
You can then interact with DES as on a terminal.

8. Caveats and Limitations

 Datalog:

o No compound terms as arguments in user relations

o Termination is ensured up to arithmetic and hypotheses. There is no
provision for numerical bounds (although top-N queries can be used to
limit the number of returned tuples)

o No database updates via Datalog rules are allowed

http://acide.sourceforge.net/
http://stud4.tuwien.ac.at/~e0225855/index.html

Fernando Sáenz-Pérez 340/357

Universidad Complutense de Madrid

Datalog Educational System

o Rules in consulted files must end with a dot, in contrast to command

prompt inputs in single-line mode, where the dot is optional. Rules in a
consulted file may span on multiple lines and an ending dot is mandatory,
irrespective of the multi-line mode

 SQL:

o User identifiers (including tables, views, column names) are case sensitive
but for external relations, which depends on each particular system

o Case sensitiveness for external databases depends on the RDBMS and its
ODBC connection (e.g., DB2 uses uppercase user identifiers, even when
they are declared in lowercase)

o No Datalog built-in predicate is allowed as an SQL identifier for a relation
with the same arity (as, e.g., the table name count with two columns)

o Computable SQL statements follow the grammar in Section 4.2.11 of this
manual. The current grammar parses extra clauses which cannot be
computed yet (e.g., ANY, ALL,...)

o By default, a numeric constant is assumed to be float if it includes a decimal
part, and integer otherwise. This may lead to type errors as, for instance, in:

DES> select 1 union select 1.0

Error: Type mismatch number(integer) vs.

number(float).

However, if automatic type casting is enabled (with /type_casting
on), DES behaves similar to SQL systems, therefore allowing queries as
above

o Batch updates and deletions are not atomic

o Nulls and null-related operations do not exactly follow the SQL standard

o Limited set of types (e.g., boolean is not supported yet)

o Duplicates in conjunction with SQL set operators and disjunctions are not
equivalent to SQL implementations. Further versions may make match
them

 See also Section 5.1.10 regarding ODBC connections

 Test case generator:

o Test case generation is not supported for ODBC connections, up to now

 Miscellanea:

o Enabling duplicates can notably harm performance for recursive predicates
(cf. Fibonacci example)

o Users should not write predicate identifiers starting with the symbol '$'.
Otherwise, unexpected behaviour might happen

 Prolog systems' specific issues:

o SWI-Prolog distributions do not allow arithmetic expressions involving
log/2

Fernando Sáenz-Pérez 341/357

Universidad Complutense de Madrid

Datalog Educational System

9. Release Notes

This section lists release notes of the current DES version.

9.1 Version 6.1 of DES (released on May, 24th, 2018)

 Enhancements:

o Reworked date and time data type system: Date range extended (since BC
4713 up to the future). Julian and Gregorian calendar support with
astronomical Julian Date for calculations.

o Added conversions between string and date/time data types for automatic
type casting and explicit conversions

o Reworked interactive help on commands

o New category 'Scripting' for commands

o More precise error message for unexistent default saved state file

o Tautological condition SQL check in SELECT statements

o The command /set_flag admits an expression instead of just a value to
be assigned to a variable

o Added the clause INTO SelectTargetList for the SELECT statement.
This allows to communicate SQL return values with the basic scripting
system

o Exposed ODBC errors when figuring out return schemas

o Stand-alone executables for Ubuntu and Mac OS High Sierra versions
compiled with SICStus Prolog, with no dependencies (no need to install
other software)

o Floating point numbers in E-notation accept downcase "e" for the base and
no longer require a decimal part for the coefficient

o New commands:

 /goto Label Set the current script position to the next line where
the label Label is located. A label is defined as a single line starting
with a colon (:) and followed by its name. If the label is not found,
an error is displayed and processing continue with the next script
line. This command does not apply to interactive mode

 /return Stop processing of current script, returning a 0 code. This
code is stored in the system variable $return_code$. Parent
scripts continue processing

 /return Code Stop processing of current script, returning Code.
This code is stored in the system variable $return_code$. Parent
scripts continue processing

 /set_timeout Display whether a default timeout is set

 /set_timeout Value Set the default timeout to Value (either in

seconds as an integer or off). If an integer is provided, any input is
restricted to be processed for a time period of up to this number of

Fernando Sáenz-Pérez 342/357

Universidad Complutense de Madrid

Datalog Educational System

seconds. If the timeout is exceeded, then the execution is stopped as
if an exception was raised. If Value is off, the timeout is disabled

 /stop_batch Stop batch processing. The last return code is kept.
All parent scripts are stopped

 /time Input Process Input and display detailed elapsed time. Its
output is the same as processing Input with /timing detailed

 Changes:

o In host safe mode, absolute paths for displaying files are not shown

o Some commands in the miscellanea category have been turned to be safe on
the host safe mode

o Timeout commands moved to the category 'Timing'

 Fixed bugs:

o Some HTML formatting in the manual has been fixed

o Removed extra new line characters in silent mode

o The command /restore_state raised an input processing error

o Display of SQL conditions involving relations were incorrect in some cases

o Consulting the DES sources in Unixes versions of SWI-Prolog raised
encoding errors

o Line counting for Datalog metadata was incorrect in SWI-Prolog distros

o Added help to command /set_default_parameter

10. Acknowledgements

The author wishes to thank Jan Wielemaker both for providing such an
amazing free Prolog system and for supporting help. Mats Carlsson and Per Mildner,
at SICS, supported the development providing help and also by adding new features to
the ODBC library. Also, thanks to all the people providing feedback, since they are
guiding DES to suit more demanded requirements and in particular, to the students of
the subject Databases at UCM since 2012. Contributors are specially acknowledged:
Markus Triska, for developing the Emacs IDE and also author of the SWI-Prolog
clpfd library, and the students Diego Cardiel Freire, Juan José Ortiz Sánchez, Delfín
Rupérez Cañas, Miguel Martín Lázaro, Javier Salcedo Gómez, Pablo Gutiérrez García-
Pardo, Elena Tejeiro Pérez de Ágreda, Andrés Vicente del Cura, Fernando Ordás
Lorente, Juan Jesús Marqués Ortiz, Semíramis Gutiérrez Quintana, and Sergio
Domínguez Fuentes who developed and improved ACIDE. Thanks to Yolanda García
and Rafael Caballero for making possible to declaratively debug Datalog and SQL
databases. They are also key authors in the inclusion of test case generation for SQL
views. In particular, Yolanda took the implementation effort supported by Rafael.
Pascual Julián-Iranzo provided all the help and formal support to develop Fuzzy
Datalog. Gabriel Aranda López and Sonia Estévez Martín generated Mac OS X Snow
Leopard and Leopard executables, respectively, for versions up to DES 2.6. Enrique
Martín Martín fixed the Linux distribution of DES 1.5.0. Fernando Sáenz-López
designed and draw the system logo. Finally, thanks to the Spanish MINECO projects
CAVI-ART (TIN2013-44742-C4-3-R), CAVI-ART-2 (TIN2017-86217-R), Madrid regional

Fernando Sáenz-Pérez 343/357

Universidad Complutense de Madrid

Datalog Educational System

project N-GREENS Software-CM (S2013/ICE-2731), UCM grant GR3/14-910502, FAST-
STAMP (TIN2008-06622-C03-01), Prometidos-CM (S2009TIC-1465) and GPD-UCM
(UCM-BSCH-GR35/10-A-910502) which supported this work in the context of the
University Complutense of Madrid, and the Departments Artificial Intelligence and
Software Engineering, and Computer Systems and Programming.

Fernando Sáenz-Pérez 345/357

Universidad Complutense de Madrid

Datalog Educational System

11. License

A.1 Software License

DES licensing comes from the ideas of the Free Software Foundation. Since version 3.0,
it is distributed under version 3 of the GNU Lesser General Public License (LGPL),
which supplements version 3 of the GNU General Public License.

DES is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

DES is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

DES versions prior to 3.0 were distributed under GNU General Public License (GPL).

A.2 Documentation License

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document "free" in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

http://www.gnu.org/licenses/
http://fsf.org/

Fernando Sáenz-Pérez 346/357

Universidad Complutense de Madrid

Datalog Educational System

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of
this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the
Document to the Document's overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in
an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of
text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

Fernando Sáenz-Pérez 347/357

Universidad Complutense de Madrid

Datalog Educational System

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, "Title Page"
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to
the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve
the Title" of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect
on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for
copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document's license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque

Fernando Sáenz-Pérez 348/357

Universidad Complutense de Madrid

Datalog Educational System

copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the
last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these things in the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous
sentence.

Fernando Sáenz-Pérez 349/357

Universidad Complutense de Madrid

Datalog Educational System

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version's license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

Fernando Sáenz-Pérez 350/357

Universidad Complutense de Madrid

Datalog Educational System

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various
original documents, forming one section Entitled "History"; likewise combine any
sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You
must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an "aggregate" if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation's users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document's Cover Texts may be placed on covers that bracket the Document within
the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License, and
all the license notices in the Document, and any Warranty Disclaimers, provided that
you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

Fernando Sáenz-Pérez 351/357

Universidad Complutense de Madrid

Datalog Educational System

If a section in the Document is Entitled "Acknowledgements", "Dedications", or
"History", the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version"
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license
published by Creative Commons Corporation, a not-for-profit corporation with a
principal place of business in San Francisco, California, as well as future copyleft
versions of that license published by that same organization.

http://www.gnu.org/copyleft/

Fernando Sáenz-Pérez 352/357

Universidad Complutense de Madrid

Datalog Educational System

"Incorporate" means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-
BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:

Copyright (C) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts.

A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
"with … Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the

Front-Cover Texts being LIST, and with the Back-Cover Texts being

LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.

Fernando Sáenz-Pérez 353/357

Universidad Complutense de Madrid

Datalog Educational System

Bibliography

[Agra88] R. Agrawal, "Alpha: An Extension of Relational Algebra to Express a
Class of Recursive Queries", IEEE Transactions on Software
Engineering archive, Volume 14 Issue 7, July 1988.

[AO08] P. Ammann and J. Offutt, "Introduction to Software Testing",
Cambridge University Press, 2008.

[AOTWZ03] F. Arni, K. Ong, S. Tsur, H. Wang, and C. Zaniolo, "The deductive
database system LDL++", TPLP, 3(1):61–94, 2003.

[BFG07] M. Becker, C. Fournet, and A. Gordon. "Design and Semantics of a
Decentralized Authorization Language". In CSF ’07: Proceedings of the
20th IEEE Computer Security Foundations Symposium, pages 3–15,
Washington, DC, USA, 2007. IEEE Computer Society.

[BG06] S. Brass and C. Goldberg. "Semantic Errors in SQL Queries: A Quite
Complete List". The Journal of Systems and Software 79(5), pages 630–
644, 2006.

[Bonn90] A.J. Bonner. "Hypothetical Datalog: Complexity and Expressibility",
Theoretical Computer Science 76, pages 3–51, 1990.

[BPFWD94] M.L. Barja, N.W. Paton, A. Fernandes, M.H. Williams, A. Dinn, "An
Effective Deductive Object–Oriented Database Through Language
Integration", In Proc. of the 20th VLDB Conference, 1994.

[Byrd80] L. Byrd. "Understanding the control flow of Prolog programs". Logic
Programming Workshop, 1980.

[Caba05] Caballero, R., "A declarative debugger of incorrect answers for
constraint functional-logic program"s, in: WCFLP ’05: Proceedings of
the 2005 ACM SIGPLAN workshop on Curry and functional logic
programming (2005), pp. 8–13.

[CGL09] A. Calì, G. Gottlob, and T. Lukasiewicz. "Datalog+-: a unified approach
to ontologies and integrity constraints". In ICDT ’09: Proceedings of the
12th International Conference on Database Theory, pages 14–30, New
York, NY, USA, 2009. ACM.

[CGS06b] R. Caballero, Y. García-Ruiz, and F. Sáenz-Pérez, "Towards a Set
Oriented Calculus for Logic Programming", Programación y
Lenguajes, P. Lucio y F. Orejas (editors), CIMNE, pp. 41-50, Barcelona,
Spain, September, 2006.

[CGS07] R. Caballero, Y. García-Ruiz, and F. Sáenz-Pérez, "A New Proposal for
Debugging Datalog Programs", 16th International Workshop on
Functional and (Constraint) Logic Programming, 2007.

[CGS08] R. Caballero, Y. García-Ruiz and F. Sáenz-Pérez, "A Theoretical

Framework for the Declarative Debugging of Datalog Programs" In
International Workshop on Semantics in Data and Knowledge Bases

(SDKB 2008), LNCS 4925, pp. 143-159, Springer, 2008.

Fernando Sáenz-Pérez 354/357

Universidad Complutense de Madrid

Datalog Educational System

[CGS10a] R. Caballero, Y. García-Ruiz and F. Sáenz-Pérez, "Applying Constraint

Logic Programming to SQL Test Case Generation", In 10th

International Symposium on Functional and Logic Programming

(FLOPS 2010), 2010.

[CGS11b] R. Caballero, Y. García-Ruiz and F. Sáenz-Pérez, "Algorithmic
Debugging of SQL Views", Eigth Ershov Informatics Conference,
PSI’11, Novosibirsk, Akademgorodok, Russia, June, 2011.

[CGS12a] R. Caballero, Y. García-Ruiz, and F. Sáenz-Pérez, "Declarative
Debugging of Wrong and Missing Answers for SQL Views", In 11th
International Symposium on Functional and Logic Programming
(FLOPS 2012), Springer, Lecture Notes in Computer Science, Kobe,
Japan, May, 2012.

[CGS15a] R. Caballero, Y. García-Ruiz, and F. Sáenz-Pérez, "Debugging of Wrong
and Missing Answers for Datalog Programs with Constraint Handling
Rules", PPDP 2015, Siena, Italy, July 2015.

[Chan78] C.L. Chang, "Deduce 2: Further Investigations of Deduction in
Relational Databases", H. Gallaire and J. Minker (eds.), Logic and
Databases, Plenum Press, 1978.

[CM87] W. F. Clocksin and C. S. Melish. "Programming in Prolog". Springer-
Verlag, New York, Third, Revised and Extended edition, 1987.

[Codd70] E. F. Codd, "A relational model of data for large shared data banks",
Communications of the ACM, Vol. 13, Number 6, 1970.

[Codd72] E. F. Codd, "Relational Completeness of Data Base Sublanguages. ", In:
R. Rustin (ed.): Database Systems: 65-98, Prentice Hall and IBM
Research Report RJ 987, San Jose, California, 1972.

[DES2.6] F. Sáenz-Pérez, DES User Manual, Version 2.6, October 2011.

[DES3.7] F. Sáenz-Pérez, DES User Manual, Version 3.7, April 2014.

[Diet87] S.W. Dietrich, "Extension Tables: Memo Relations in Logic
Programming", IV IEEE Symposium on Logic Programming, 1987.

[Diet01] S.W. Dietrich, "Understanding Relational Database Query Languages,",
Prentice Hall, 2001.

[DMP93] M. Derr, S. Morishita, and G. Phipps, "Design and Implementation of
the Glue–NAIL Database System", In Proc. of the ACM SIGMOD
International Conference on Management of Data, pp. 147–167, 1993.

[Drax92] Draxler, Chr., "A Powerful Prolog to SQL Compiler", CIS-Bericht-92-61,
Centrum für Informations und Sprachverarbeitung, Ludwig-
Maximilians-Universität München, 1992.

[FD92] C. Fan and S. W. Dietrich, "Extension Table Built-ins for Prolog",
Software - Practice and Experience Vol. 22 (7), pp. 573-597, July 1992.

[FHH04] R. Fikes, P.J. Hayes, and I. Horrocks. "OWL-QL - a language for
deductive query answering on the Semantic Web". J. Web Sem.,
2(1):19–29, 2004.

Fernando Sáenz-Pérez 355/357

Universidad Complutense de Madrid

Datalog Educational System

[FP96] Wolfgang Faber and Gerald Pfeifer. "DLV homepage", since 1996. url

http://www.dlvsystem.com/.

[GKT07] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.
In PODS, Beijing, China, June 2007.

[GR68] C.C. Green and B. Raphael, "The Use of Theorem–Proving Techniques
in Question–Answering Systems", Proceedings of the 23rd ACM
National Conference, Washington D.C., 1968.

[GTZ05] S. Greco, I. Trubitsyna, and E. Zumpano. "NP Datalog: A Logic
Language for NP Search and Optimization Queries". Database
Engineering and Applications Symposium, International, 0:344–353,
2005.

[GUW02] H. Garcia-Molina, J. D. Ullman, J. Widom, "Database Systems: The
Complete Book", Prentice-Hall, 2002.

[HA92] M. A. W. Houtsma and P. M. G. Apers, "Algebraic optimization of
recursive queries", Data & Knowledge Engineering, Volume 7 Issue 4,
March 1992.

[HS15] T. Halpin and S. Rugaber, "LogiQL: A Query Language for Smart
Databases", 2015.

[IRIS2008] IRIS-Reasoner, http://iris-reasoner.org.

[ISO00] ISO/IEC. "ISO/IEC 132111-2: Prolog Standard". 2000.

[JR10] P. Julián-Iranzo, C. Rubio-Manzano, "Bousi~Prolog - A Fuzzy Logic
Programming Language for Modeling Vague Knowledge and
Approximate Reasoning." IJCCI (ICFC-ICNC), p. 93-98, 2010.

[JGJ+95] M. Jarke, R. Gallersdörfer, M.A. Jeusfeld, M. Staudt, S. Eherer:
"ConceptBase - a deductive object base for meta data management". In
Journal of Intelligent Information Systems, Special Issue on Advances
in Deductive Object-Oriented Databases, Vol. 4, No. 2, 167-192, 1995.
System available at: http://www-i5.informatik.rwth-

aachen.de/CBdoc/

[KLW95] M. Kifer, G. Lausen, J. Wu, "Logical Foundations of Object Oriented
and Frame Based Languages", Journal of the ACM, vol. 42, p. 741-843,
1995.

[KSSD94] W. Kiessling, H. Schmidt, W. Strauss, and G. Dünzinger, "DECLARE
and SDS: Early Efforts to Commercialize Deductive Database
Technology", VLDB Journal, 3, pp. 211–243, 1994.

[KT81] C. Kellogg and L. Travis, "Reasoning with Data in a Deductively
Augmented Data Management System", H. Gallaire, J. Minker, and J.
Nicolas (eds.), Advances in Data Base Theory, Volume 1, Plenum
Press, 1981.

[Lloy87] J. Lloyd, "Foundations of Logic Programming", Springer Verlag, 1987.

[LP77] M. Lacroix and A.Pirotte, "Domain-Oriented Relational Languages",
VLDB 1977: 370-378, 1977.

http://www.dlvsystem.com/
http://iris-reasoner.org/
http://www-i5.informatik.rwth-aachen.de/CBdoc/
http://www-i5.informatik.rwth-aachen.de/CBdoc/

Fernando Sáenz-Pérez 356/357

Universidad Complutense de Madrid

Datalog Educational System

[Mink87] J. Minker, "Perspectives in Deductive Databases", Technical Report CS–

TR–1799, University of Maryland at College Park, March 1987.

[MN82] J. Minker and J.–M. Nicolas, "On Recursive Axioms in Deductive
Databases, Information Systems", 16(4):670–702, 1991.

[MS11] J. Małuszyński and A. Szałas, "Living with Inconsistency and Taming
Nonmonotonicity". Datalog 2.0, G. Gottlob, G. Grasso, O. de Moor, and
A. Sellers, eds., LNCS 6702, 334-398, Springer-Verlag, 2011.

[PDR91] G. Phipps, M. A. Derr, and K.A. Ross, "Glue–NAIL!: A Deductive
Database System". In Proc. of the ACM SIGMOD Conference on
Management of Data, pp. 308–317, 1991.

[Robi65] J.A. Robinson, "A Machine–Oriented Logic Based on the Resolution
Principle", Journal of the ACM, 12:23–41, 1965.

[Rev02] P. Revesz, "Introduction to constraint databases", Springer-Verlag,
New York, 2002.

[RS09] R. Ronen and O. Shmueli. "Evaluating very large Datalog queries on
social networks". In EDBT ’09: Proceedings of the 12th International
Conference on Extending Database Technology, pages 577–587, New
York, NY, USA, 2009. ACM.

[RSSS94] R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. "The
Coral deductive system". VLDB Journal, 3(2):161–210, 1994.

[RSSWF97] P. Rao, Konstantinos F. Sagonas, Terrance Swift, David Scott Warren,
and Juliana Freire, "XSB: A System for Efficiently Computing WFS",
Logic Programming and Non–monotonic Reasoning, 1997.

[RU95] R. Ramakrishnan and J.D Ullman, "A Survey of Research on Deductive
Database Systems", Journal of Logic Programming, 23(2): 125–149,
1995.

[SD91] C. Shih and S. W. Dietrich, "Extension Table Evaluation of Datalog
Programs with Negation", Proceedings of the IEEE International
Phoenix Conference on Computers and Communications, Scottsdale,
AZ, March 1991, pp. 792-798.

[Saen07] F. Sáenz-Pérez, "ACIDE: An Integrated Development Environment
Configurable for LaTeX", The PracTeX Journal, 2007, Number 3, ISSN
1556-6994, August, 2007.

[Saen12] F. Sáenz-Pérez, "Outer Joins in a Deductive Database System",
Electronic Notes in Theoretical Computer Science, vol. 282, pp. 73-88,
May, 2012.

[Saen13] F. Sáenz-Pérez, "Implementing Tabled Hypothetical Datalog", IEEE
International Conference on Tools with Artificial Intelligence (ICTAI) -
2013, Washington D.C., USA, November, 2013.

[Saen15] F. Sáenz-Pérez, "Restricted Predicates for Hypothetical Datalog",
Electronic Proceedings in Theoretical Computer Science, vol. 200, 2015.

[Sess02] Sessa, M. I.: Approximate Reasoning by Similarity-based SLD
Resolution. Theoretical Computer Science, 275(1-2):389–426, 2002.

Fernando Sáenz-Pérez 357/357

Universidad Complutense de Madrid

Datalog Educational System

[Shap82] E. Shapiro: "Algorithmic Program Debugging". In: ACM Distiguished

Dissertation. MIT Press, Cambridge, 1982.

[Shap83] Shapiro, E., "Algorithmic Program Debugging", ACM Distinguished
Dissertation, MIT Press, 1983.

[SICStus] SICS, http://www.sics.se/sicstus.

[Silv07] Silva, J., "A Comparative Study of Algorithmic Debugging Strategies",
in: Proc. of International Symposium on Logic-based Program
Synthesis and Transformation LOPSTR 2006, 2007, pp. 134–140.

[SRSS93] D. Srivastava, R. Ramakrishnan, S. Sudarshan, and P. Seshadri,
"Coral++: Adding Object–Orientation to a Logic Database Language",
Proceedings of the International Conference on Very Large Databases,
1993.

[SWI] J. Wielemaker, http://www.SWI-Prolog.org.

[Tang99] Z. Tang, "Datalog++: An Object-Oriented Front-End for the XSB
Deductive Database Management System", http://citeseer.ist.psu.
edu/tang99datalog.html.

[Tip95] F. Tip. "A survey of program slicing techniques". Journal of
Programming Languages, 3(3):121–189, 1995.

[TS86] H. Tamaki and T. Sato, "OLD Resolution with Tabulation", Proceedings
of ICLP’86, Lecture Notes on Computer Science 225, Springer–Verlag,
1986.

[Ullm95] J.D. Ullman. "Database and Knowledge-Base Systems", Vols. I
(Classical Database Systems) and II (The New Technologies),
Computer Science Press, 1995.

[US12] Explanatory Supplement to the Astronomical Almanac, S. E. Urban
and P. K. Seidelman, Eds., 2012

[VRK+91] J. Vaghani, K. Ramamohanarao, D.B. Kemp, Z. Somogyi, and P.J.
Stuckey, "Design Overview of the Aditi Deductive Database System",
In Proc. of the 7th Intl. Conf. on Data Engineering, pp. 240–247, 1991.

[WL04] J. Whaley and M. Lam, "Cloning-based context-sensitive pointer alias
analyses using binary decision diagrams". In: Prog. Lang. Design and
Impl., 2004.

[ZCF+97] C. Zaniolo, S. Ceri, C. Faloutsos, T.T. Snodgrass, V.S. Subrahmanian,
and R. Zicari, "Advanced Database Systems", Morgan Kauffmann
Publishers, 1997.

[Zade65] Zadeh, L. A.: Fuzzy Sets. Information and Control, 8(3):338–353, 1965.

[ZF97] U. Zukowski and B. Freitag, "The Deductive Database System LOLA",
In: J. Dix and U. Furbach and A. Nerode (Eds.). Logic Programming
and Nonmonotonic Reasoning. LNAI 1265, pp. 375–386. Springer,
1997.

http://www.sics.se/sicstus
http://www.swi-prolog.org/

