
www.it-ebooks.info

http://www.it-ebooks.info/

WordPress 3 Plugin
Development Essentials

Create your own powerful, interactive plugins to extend
and add features to your WordPress site

Brian Bondari

Everett Griffiths

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress 3 Plugin Development Essentials

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2011

Production Reference: 1180311

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849513-52-4

www.packtpub.com

Cover Image by Rakesh Shejwal (shejwal.rakesh@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Brian Bondari

Everett Griffiths

Reviewers
Srikanth AD

Sam Rose

Paul Thewlis

Ezwan Aizat Bin Abdullah Faiz

Acquisition Editor
David Barnes

Development Editor
Hyacintha D'Souza

Technical Editor
Kavita Iyer

Copy Editor
Neha Shetty

Indexers
Hemangini Bari

Tejal Daruwale

Editorial Team Leader
Akshara Aware

Project Team Leader
Ashwin Shetty

Project Coordinators
Michelle Quadros

Zainab Bagasrawala

Proofreader
Aaron Nash

Graphics
Nilesh Mohite

Production Coordinator
Kruthika Bangera

Cover Work
Kruthika Bangera

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Brian Bondari is a musician, composer, and teacher with equal love for both music
and technology. His hobbies include reading, hiking, composing music, and playing
with his pet rabbit. He also spends an exorbitant amount of time lying on the floor
grading papers.

Brian earned his doctorate from the University of Kansas in 2009 and is currently
an Assistant Professor of Music Theory and Composition at Trinity University in
San Antonio, TX. When he is not writing music or grading papers, he helps run the
multi-author technology blog www.TipsFor.us. He is also the author of WordPress
2.9 E-Commerce, also published by Packt.

This book would not have been possible without Everett's mad
coding skills and utterly unyielding work ethic. Thanks for the
partnership and friendship of many years. I'd also like to thank the
team at Packt for helping to organize this project and get it off the
ground. Finally, utmost thanks to my wife Katrina for her unending
love, support, and patience.

Everett Griffiths is the owner of Fireproof Socks, a development company that
specializes in web applications and content management systems including MODx,
WordPress, and Expression Engine. Although, he has contributed many educational
articles and screencasts to the blog he runs with Brian Bondari, TipsFor.us, this
is his first published book. He survives as a coder of fortune in the Los Angeles
underground. If you have a problem, if no one else can help, and if you can find him,
maybe you can hire... Everett's team.

I'd like to thank Brian for being a steadfast and patient editor of
practically every crazy word I've penned or spoken, Nui for the
beautiful memories, and my parents for their constant support. I'd
also like to thank all the people who didn't believe in me because all
their attempts to keep me down only made me stronger.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Srikanth AD is a Web Developer and SEO Consultant. He is passionate about
developing and optimizing websites for better search engine visibility and user
experience. Sharing interesting tools and services pertaining to web development
and SEO across technology blogs is one of his active hobbies.

He has written articles for some of the popular blogs such as MakeUseOf,
TheNextWeb, QuickOnlineTips, Lost in Technology, 1stWebDesigner, and others.

Portfolio: http://www.adsrikanth.com

Blog: http://www.readaboutseo.com

Sam Rose is a 20 year old Computer Science student living in Wales, UK. He has
recently entered his second year of his Computer Science degree at the University of
Glamorgan in South Wales.

Sam writes code primarily in Java, PHP and has intermediate knowledge in an array
of other languages.

In his spare time, Sam is usually playing pool, watching comedy produced by Chuck
Lorre, writing code on his current favorite open source project, ThinkUp, managed
by the lovely Gina Trapani, or writing on his blog, http://lbak.co.uk.

This is my first time as a technical reviewer for a book and I would
really like to thank Erika from the Packt team for finding and giving
me the opportunity to review this book and Michelle, also from the
Packt team, for being a wonderfully happy and helpful point of
contact throughout the review process.

www.it-ebooks.info

http://www.it-ebooks.info/

Paul Thewlis is seasoned web marketing professional. He is currently in charge
of the Search Engine Marketing department at a leading full-service digital agency
in the UK. Previously, he was the E-Communications Manager for a multinational
transport company. He began his web career as a Technical Editor, working on web
design books for a well-known publisher. He has extensive experience of many
content management systems and blogging platforms. His first book, WordPress
For Business Bloggers, was published by Packt. He is an expert in the use of social
media within corporate communications, and blogs about that subject, as well as
WordPress, SEO, and the Web in general, at http://blog.paulthewlis.com.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Preparing for WordPress Development 7

WordPress background 7
Extending WordPress 8
Understanding WordPress architecture 8

Templating 9
Introducing plugins 9

Summarizing architecture 10
Tools for web development 11

WordPress 11
Mac 12
Windows 12
Text editor 12
Using an IDE 13
FTP client 14
MySQL client 14

Coding best practices 15
Basic organization 15

Isolate tasks into functions 16
Use classes 16
Use descriptive variable names 16
Use descriptive function names 17
Separate logic and display layers 17
Go modular, to a point 18
Avoid short tags 18

Planning ahead / starting development 18
Interfaces 19
Localization 19

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Documentation for the developer 19
Version control 20
Environment 20
Tests 20
Security 21

Printing user-supplied data to a page 21
Using user-supplied data to construct database queries 22

Debugging 22
Clearing your browser cache 23
Updating your php.ini file 23
Configuring your wp-config.php file 23
Checking your syntax 24
Checking values 24
Exercise 25

Summary 26
Chapter 2: Anatomy of a Plugin 29

Deconstructing an existing plugin: "Hello Dolly" 29
Activating the plugin 29
Examining the hello.php file 30

Information header 30
Exercise—breaking the header 30
Location, name, and format 31

Understanding the Includes 32
Exercise – parse errors 32

Bonus for the curious 33
User-defined functions 34

Exercise—an evil functionless plugin 34
What just happened 36
Omitting the closing "?>" PHP tag 38
A better example: Adding functions 38

Referencing hooks via add_action() and add_filter() 39
Actions versus Filters 40

Exercise—actions and filters 40
Exercise—filters 41
Reading more 43

Summary 44
Chapter 3: Social Bookmarking 45

The overall plan 46
Proof of concept 46

Avoiding conflicting function names 47

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

The master plugin outline 48
The plugin information header 50

In your browser—information header 51
Adding a link to the post content 51

Documenting our functions 52
In your browser—linking to the post content 52

Adding JavaScript to the head 52
Making our link dynamic 55

Adding a button template 57
Getting the post URL 58

In your browser—getting the post URL 60
Getting the post title 60
Getting the description 60
Getting the media type 62
Getting the post topic 62

In your browser—title, description, and topic 64
Checking WordPress versions 64
Summary 66

Chapter 4: Ajax Search 67
What is Ajax? 67
The overall plan 70
The proof of concept mock up 71

Hooking up jQuery 74
Test that jQuery has loaded 74
What happened? 75
Using the FireBug console directly 75

Writing HTML dynamically to a target div 76
Multi-line strings 77
Viewing the generated page 78
Anonymous functions 79
Adding a div on the fly 79

Create a listener 80
Fetching data from another page 81

Creating our plugin 83
Creating index.php and activating the plugin 84
Creating our first PHP class 85
Updating index.php 86
Testing your version of PHP 87
Testing for searchable pages 89
Adding your own CSS files 90
Adding your search handler 92
Adding your own JavaScript 92
Handling Ajax search requests 96

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Formatting your search results 99
Summary 102

Chapter 5: Content Rotator 105
The plan 105
Widget overview 106
Preparation 106

Activating your plugin 110
Activating the widget 110

Having problems? 111
Parents and children: extending classes 112
Objects vs. libraries: when to use static functions 114

Add custom text 115
Adding widget options 116
Generating random content 121
Expiration dates: adding options to our widget 125

Expiration dates: enforcing the shelf life 126
Explaining the $instance 127

Adding a custom manager page 129
Adding options to the custom manager page 131

Randomizing content from the database 134
Review of PHP functions used 135
Summary 135

Chapter 6: Standardized Custom Content 137
What WordPress does for you: custom fields 138
What WordPress doesn't do for you 138
Standardizing a post's custom fields 139
Creating a new plugin 139

Removing the default WordPress form for custom fields 140
Creating our own custom meta box 143
Defining custom fields 145
Generating custom form elements 149
Saving custom content 155

Having trouble saving data? 157
Displaying custom data in your Templates 158

Copying a theme 158
Modifying the theme 159
Granular display of custom fields 161
Bonus for the MySQL curious 163

Known limitations 164
Summary 165

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 7: Custom Post Types 167
Background: What's in a name? 168
Understanding register_post_type() 169
Customizing our post type 175

Using shortcodes 177
Testing our shortcode 180

Customizing our plugin 181
Creating a settings shortcut link 186
Cleaning up when uninstalling 188
Summary 190

Chapter 8: Versioning Your Code with Subversion (SVN) 191
Why Subversion? 192

Understanding the terminology and concepts 192
Checking out a local working copy 193
SVN folder structure 194
Checkout, revisited 196

Setting up an SVN repository 197
Checking out a local working copy of our repo 198
Adding files 199
Committing changes to the repository 200
Overcoming errors 201

Verifying the new state of your repository 202
Adding more files to your repository 203
Removing files from the repository 204
Updating your working copy 204
Tagging a version 205
Reverting an entire project 206
Reverting a single file 207

Moving files 208
Exporting your working copy 208
Quick reference 209
Summary 211

Chapter 9: Preparing Your Plugin for Distribution 213
Public enemy number one: PHP notices 213
PHP short tags 215
Conflicting names 215
Modifying loader.php 220
Testing WordPress version 222
Testing PHP version 222
Testing MySQL version

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Testing PHP modules 223
Testing WordPress installed plugins 224
Custom tests 226
Unit tests 226
WordPress limitations 227
Health check page 227
Storing test results in the database 229
Death to clippy: Use sensible configurations 229
Double check your interface 230
Documentation 230

Identify the purpose 230
Learning to drive: Keeping it relevant 231
Phrasebooks vs. dictionaries: Give examples 232
Analogy: The three bears 232
Analogy: PC load letter 232

The decalog of documentation 233
Summary 235

Chapter 10: Publishing Your Plugin 237
Internationalization and localization 237
Processing each message 238

Choosing a textdomain 240
Best practices 240
Working with formatting 241
More advanced messages 242
Plural vs. singular 242
More complex messages 243

Notes to translators 244
Language files 245
Creating a POT file 246
Creating translations: .po files 248
Loading a textdomain 250
Updating a translation 251
Format for the readme.txt file 252

Section – installation 253
Section – Frequently Asked Questions 253
Section – screenshots 253
New addition – videos 254
Section – summary 254

Requesting and using SVN access 255
Publicity and promotion 257
Summary 258

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vii]

Appendix A: Recommended Resources 259
PHP reference 259
Function reference 259
The WordPress forums 259
WebDev Studios 260
Viper007Bond 260
Kovshenin 260
SLTaylor 260
XPlus3 260
WP Engineer 261
Other plugins 261

Appendix B: WordPress API Reference 263
PHP functions 263

dirname 263
file_get_contents 263
preg_match 264
preg_replace 264
print_r 264
sprintf 265
strtolower 265
substr 265

WordPress Functions 266
__ 266
_e 266
add_action 266
add_filter 267
add_meta_box 267
add_options_page 267
check_admin_referer 267
esc_html 268
get_option 268
get_post_meta 268
get_the_ID 268
register_post_type 269
remove_meta_box 269
screen_icon 269
the_content 269
the_meta 269
update_post_meta 270
wp_count_posts 270

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[viii]

wp_die 270
wp_nonce_field 270

Actions 270
admin_init 270
admin_menu 270
do_meta_boxes 271
init 271
save_post 271
widgets_init 271
wp_head 272

Filters 272
the_content 272

Index 273

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
By picking up this book, there's a good chance that you fall into one of two
categories: an existing WordPress user / hobbyist programmer who is interested in
building your own plugins for the platform, or a seasoned developer who is new to
WordPress and need to complete a project for a client.

In either case, this book is designed to help you along the way. If you can code your
own plugins, you can make WordPress do just about anything. By learning how to
tap into the additional power and functionality that plugins provide, you can make
your site easier to administer, add new features, or even alter the very nature of how
WordPress works. Written with the WordPress version 3 in mind, this book will
show you how to build a variety of plugins that demonstrate the additional power
available to you as a plugin author.

Throughout this book, our goal is to teach you all aspects of modern WordPress
development. We will build a variety of WordPress plugins and follow their creation
from the idea to the finishing touches. You will discover how to deconstruct an
existing plugin, use the WordPress API in typical scenarios, hook into the database,
version your code with SVN, and deploy your new plugin to the world.

We have plenty of work to do, so let's get started!

What this book covers
Chapter 1, Preparing for WordPress Development, provides an overview of the
development process and discusses a number of tools and practices recommended
for a successful WordPress development environment.

Chapter 2, Anatomy of a Plugin, breaks an existing plugin down into its component
parts to see what makes it work, and what makes it break.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 3, Social Bookmarking, walks through the development of an initial plugin,
including how to tie into the WordPress API, how to trigger functions, and how to
include external JavaScript files.

Chapter 4, Ajax Search, covers the construction of a plugin that augments WordPress'
built-in search capability. This chapter provides details on how to utilize Ajax and
JQuery, as well as how to use the PHP library classes with static functions in our
plugins.

Chapter 5, Content Rotator, explores the wonderful world of WordPress widgets. In
this chapter we will show you how to build and manipulate a widget, as well as how
to construct a personal preference page for your plugin.

Chapter 6, Standardized Custom Content, begins the process of extending WordPress'
usage as a content management system. We will cover how to alter and extend
custom fields and how to display custom content in your templates.

Chapter 7, Custom Post Types, continues the discussion on extending WordPress as
a CMS. We will also discuss working with shortcodes, and how to customize your
plugin by creating custom menus and administration panels in the Dashboard.

Chapter 8, Versioning Your Code with Subversion (SVN), shows you how to maintain
and manage your plugin code with a version control system.

Chapter 9, Preparing Your Plugin for Distribution, takes the next logical step in making
sure your shiny new plugins are ready for the wider world. We will discuss how to
avoid certain pitfalls by writing custom tests to check for failure points.

Chapter 10, Publishing Your Plugin, covers the mechanics of officially making your
masterpiece available to the public, including the topics of internationalization, using
the WordPress SVN repository, and handling the ubiquitous readme.txt file.

Appendix A, Recommended Resources, lists some of our favorite websites, books, and
other resources for seeking additional knowledge or getting help with a specific
problem.

Appendix B, WordPress API Reference, provides a compendium of functions, actions,
and filters referenced in this book.

What you need for this book
To develop plugins for WordPress, all you really need is a text editor, a working
installation of WordPress, and your favorite (s)FTP program. Other tools, such as a
MySQL editor, can make your life easier, but are optional.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Who this book is for
This book is for WordPress users who want to learn how to create their own plugins
and for developers who are new to the WordPress platform. Basic knowledge of PHP
and HTML is expected, as well as a functional knowledge of how WordPress works
from a user standpoint.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

<h3 class="widget-title">Built In WordPress Search Widget</h3>

<form role="search" method="get" id="searchform" action="http://
localhost:8888/" >
 <div>
 <label class="screen-reader-text" for="s">Search for:</label>
 <input type="text" value="" name="s" id="s" />
 <input type="submit" id="searchsubmit" value="Search" />
 </div>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

/*
Theme Name: Twenty Ten v2
Theme URI: http://wordpress.org/

Any command-line input or output is written as follows:

svn checkout https://my-unique-project-name.googlecode.com/svn/trunk/
--username mygoogleid

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: " Under the
Hello Dolly title, click on the Activate link.".

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing for WordPress
Development

Since you have picked up this book, you are likely to fall into one of two overall
categories: developers who are new to WordPress, or WordPress users keen to start
or improve their WordPress development skills. No matter which camp you lie in,
this book will help you down that path. This book will show you how to customize
WordPress using plugins by providing well-structured code and by explaining
how the code interacts with the WordPress application. It introduces a variety of
development techniques drawn from a range of real-world scenarios that will give
you, the reader, a practical understanding of how to write, debug, and deploy
WordPress plugins.

Together we will delve through a series of increasingly challenging topics covering
a range of scenarios that a developer is likely to encounter when developing and
maintaining a WordPress 3 site. While you may read the book from start to finish,
each chapter strives to be a self-contained topic for easier reference.

It is expected that the readers of this book have some knowledge of programming
concepts and a working understanding of web applications, including HTML and
basic CSS. Familiarity with WordPress is also recommended.

WordPress background
WordPress is a popular content management system (CMS), most renowned for its
use as a blogging / publishing application. According to usage statistics tracker,
BuiltWith (http://builtWith.com), WordPress is considered to be the most popular
blogging software on the planet—not bad for something that has only been around
officially since 2003. It has always sought to allow its users to publish information
easily, and although it can be used successfully for sites that are not blog-centric,
running a blog has been a guiding star in WordPress' design since its inception.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing for WordPress Development

[8]

Extending WordPress
Like many systems, WordPress may not do everything you want right out of the box.
Instead, it focuses on a set of core features and allows for customizations in the form of
plugins, so if the built-in functionality doesn't meet your needs, your options are to:

•	 Find an existing third-party plugin
•	 Write your own plugin
•	 Look for another CMS entirely

It is well worth your time to search for an existing solution if WordPress doesn't
already have the functionality that you require—chances are high that someone
out there has already done what you are trying to do. It may not be as much fun or
as glamorous as developing your own shiny new code, but it is usually easier and
faster to cash in on the work others have done, just be aware that a lot of code in the
WordPress repository is written by amateurs and it may contain bugs.

If you do end up extending WordPress with your own plugin, and we hope you do
since you are reading this book, make sure that you are doing one of two things:
either you are solving a problem that nobody has solved before, or you are coming
up with a better mousetrap and re-solving a problem in a new and valuable way.

Understanding WordPress architecture
Spend a few minutes kicking the tires and you will become familiar with WordPress'
features:

•	 Clean blog management
•	 Flexible permalink structure
•	 Easy search engine optimization (SEO)
•	 A simple package management tool
•	 The ability to update WordPress itself directly from the manager
•	 Versioning of drafts (so you don't lose data)

•	 A mature Ajax interface (lets you easily drag-and-drop widgets to customize
your experience in the manager)

This is a fine system, but it is a bit like listening to a car salesman—if you really want
to see how it performs, you should get your hands greasy and see what's under the
hood. For developers, the real aspects of WordPress' customization and extensibility
lie in Templating and Plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Templating
WordPress offers a templating system for implementing custom HTML and CSS,
but it is not a templating system in the same sense as Smarty (http://www.smarty.
net) or Perl's Template Toolkit. Instead, like many PHP CMSs (most notably Drupal
and Joomla!), WordPress templates are simply PHP files that typically contain a mix
of application logic and presentation code, for example, <div id="footer"><?php
wp_footer(); ?></div>.

Compare that with a Drupal template excerpt: <div id="footer"><?php print
render($page['footer']); ?></div> or with a MODx excerpt using Smarty
placeholders: <div id="footer">[[*footer]]</div> and you can get some idea
of the spectrum. Typically, the templates used in WordPress do not adhere to the
Model-View-Controller (MVC) pattern, so they cause some developers to raise a
critical eyebrow.

Be aware that your WordPress templates contain PHP code and that they do execute,
so it is naturally possible to "crash" your templates, or to have complex loops and
logical statements in them. As a developer, try your absolute best to separate logic
from presentation and keep your templates as clean as possible. There are plenty of
WordPress theme files out there that contain a dizzying mess of PHP and HTML,
which result in an unmaintainable no man's land. Designers won't touch them
because they can't decipher the myriad if-statements and sloppy concatenations, and
developers won't touch them for the same reason, or perhaps because they contain
HTML and CSS that developers don't want to worry about. In the end, just try to
avoid the numerous pitfalls that exist in this type of templating system.

Introducing plugins
Like any good CMS, WordPress offers an application programming interface
(API) for developers to perform common tasks in their plugins. Unlike many CMSs,
however, the WordPress API is largely procedural: it exists mostly as a series of
globally scoped functions and variables in the main namespace, so you have to be
extra careful when naming your functions to avoid naming collisions. There are
certain tasks that are object oriented (OO), but there is a decent chance that you could
look through a dozen WordPress plugins before encountering a class or an object. In
certain programming languages, such an arrangement is unusual if not impossible,
but the PHP community in particular often offers procedural equivalents of object-
oriented code.

Opening up an existing WordPress plugin is a bit like going into a public restroom:
it may be perfectly clean and hygienic, or it may be a rank and apoplectic mess of
functions, logic, and HTML. Just be prepared.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing for WordPress Development

[10]

What is a plugin?
The term "Plugin" is a bit ambiguous and WordPress' definition differs
from other content management systems. In general, a WordPress plugin
is any bit of code that extends the core functionality of WordPress. Unlike
Expression Engine, Drupal, or MODx, WordPress does not use different
terms such as "module", "snippet", or "add-on" to distinguish where or
how this extension occurs. In WordPress, they are all considered plugins.

WordPress plugins use an event-driven architecture—anyone who has seen a
JavaScript function triggered via an HTML "onClick" is familiar with this approach,
but in WordPress, the events are typically referred to as hooks. A hook is an event—
it is a place where you can attach (or "hook") code. While examining existing plugins,
keep an eye out for the add_action() and add_filter() functions that tie a hook
to a function inside the plugin. Depending on the author, add_action() and add_
filter() instances may be scattered throughout the code or consolidated into one
place.

The number of hooks available in WordPress has been steadily increasing and with
version 3, there are well over 1,000. Unfortunately, they are not well documented.
This daunting number represents an unwieldy weak point in the WordPress
architecture. How can the developer find the one or two he needs? We have included
a list of some of the most common hooks in an appendix at the end of this book.

Many plugins contain convoluted mixtures of logic and HTML within a single
function. This scenario is unfortunately common in many PHP CMSs, and it can
make it exceedingly difficult to find and fix formatting errors. You may be fighting
an uphill battle, but we strongly recommend separating your plugin logic from any
formatting code. It will make your plugins easier to maintain and skin.

Another thing to remember when writing plugins is that WordPress 3.1 is the last
version of WordPress that is compatible with a dwindling number of PHP 4 users.
Be sure your plugin tests the PHP version in use, especially if you use the more
advanced language constructs available in PHP 5.

Summarizing architecture
WordPress has put together a solution that works well. This solution is not
necessarily better or worse than other platforms, it just has different advantages
and disadvantages. When in Rome, it is not necessarily best to do as the Romans do
(Rome did fall, after all), but you had better be aware of their modus operandi.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

In general, WordPress offers a clean and efficient way to get many sites off the
ground. However, its flexibility has allowed some less-experienced developers to
create unenviable code patterns that are difficult to maintain and debug, and this is
what we are striving to avoid. Above all, we encourage you to strive for clean and
concise code while working within this, or any, system.

Tools for web development
The tools you need to develop plugins for WordPress are essentially the same tools
you need for developing almost any web application, specifically:

•	 WordPress
•	 Text editor
•	 FTP client
•	 MySQL client (optional)

WordPress
If you are going to develop plugins for WordPress, you need WordPress itself and
an environment that can run it. Download the latest version of WordPress from
http://wordpress.org/download. It is then just a matter of finding a suitable
place to install it.

WordPress 3 runs on a web server (most commonly Apache) that can run at least
PHP 4.3 and MySQL 4.1.2—WordPress 3.2 requires PHP 5.2 and MySQL 5.0.15. Since
both PHP and MySQL are widespread web technologies and WordPress is such a
popular blogging tool, most hosting providers can support running WordPress on
their servers. If in doubt, consult your web host's FAQ.

Another option is to run WordPress in a "sandbox" environment on your own
computer. This can be more involved since you have to set up your computer as a
web server and configure several other inter-related technologies, but thankfully
there are bundled packages available that do much of the difficult work for you—we
have listed a few options for these types of packages below.

A third option is to run a virtual machine on your local computer using emulation
software like Parallels (http://www.parallels.com), VMware (http://www.
vmware.com) or VirtualBox (http://www.virtualbox.org). This can be a great
way to mimic your intended production environment precisely and still get all
the benefits of hosting your site locally, but it does require some solid system
administration skills, so this option is mainly recommended for seasoned developers.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing for WordPress Development

[12]

If you plan to run a "sandbox" testing ground on your own computer, you have a
few options depending on the platform.

Mac
Since Mac OS X ships with Apache and PHP—and MySQL can be compiled to
run natively—you can run WordPress directly on your Macintosh. However, this
requires a fair amount of non-trivial sysadmin skills, so we strongly recommend that
you download an all-in-one pre-configured PHP-MySQL package.

Two solid options are:

•	 MAMP (http://www.mamp.info)
•	 XAMPP (http://www.apachefriends.org/en/xampp.html)

Both are free packages that include all you need to get your Mac ready for WordPress.

Windows
On Microsoft Windows, there are several options. You can try:

•	 WAMP (http://www.wampserver.com)
•	 EasyPHP (http://www.easyphp.org)
•	 XAMPP (http://www.apachefriends.org/en/xampp.html)
•	 Microsoft Web Platform (http://www.microsoft.com/web)

All of the above options are free and will get the job done. For reference, the
Microsoft Web Platform uses IIS as the web server instead of Apache. Refer to the
relevant website for instructions on how to install and set up any of this software.

Text editor
You don't need anything special when it comes to a text editor, just something that
can write plain, unformatted text files. Don't try using a word processor such as
Microsoft Word because it will add all kinds of formatting. We strongly recommend,
however, that you go a little bit beyond the basic requirement of authoring text files
and find an editor that offers the following features:

•	 Syntax highlighting: This could save you hours of frustration by helping
you spot variables, missing quotes, or other errata.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

•	 Locate matching parentheses, brackets, or braces: Many times syntax errors
are caused when you inadvertently omit a curly brace or a parenthesis. Being
able to locate the matching unit of these paired symbols will help you track
down these types of errors more quickly.

•	 Find and replace across multiple files: A massively timesaving operation.
•	 Displays line numbers: PHP will reference line numbers when it

encounters errors.

On a Mac, TextWrangler (http://www.barebones.com/products/textwrangler)
is a free application that lets you work on multiple files simultaneously, made by
the same folks who make the venerable BBEdit (which is a viable option if you
need more features and are willing to spend a bit of money). TextMate (http://
macromates.com) is on par with BBEdit and is a direct competitor. A tremendous
editor for Mac OS X is Coda (http://www.panic.com/coda). It really is the Swiss
Army Knife of web development applications. Coda keeps your files organized, lets
you preview HTML and CSS, does syntax highlighting on all kinds of files, offers
auto complete on function calls, acts as an FTP, SSH, and a lightweight SVN client,
and even has plugins that will help you check your code for errors. If you have a
budget for your projects, Coda is a time-saving application.

On Windows, there are several free text editors worth examining, including
NotePad++ (http://notepad-plus-plus.org), PSPad (http://www.pspad.com),
and NotePad2 (http://www.flos-freeware.ch/notepad2.html). One excellent
commercial offering is UltraEdit (http://www.ultraedit.com).

Using an IDE
You may consider using a full blown Integrated Development Environment (IDE)
such as Eclipse (http://www.eclipse.org), Sun's NetBeans (http://netbeans.
org), Jet Brain's PhpStorm (http://www.jetbrains.com/phpstorm/), or the Zend
Studio IDE (http://www.zend.com/products/studio), all of which run on Mac,
Windows, or Linux.

These are powerful programs, but they aren't easy to use so their complexity may be
off-putting. Compare a 16 MB footprint for a standalone text editor such as TextEdit
to the behemoth 470 MB of the Zend Studio IDE and you get some idea of the
resources required to run each program. The more development you do, the more
you will gravitate toward IDE applications because they offer unmatched features,
but they're not generally recommend for first time developers. NetBeans is free and
relatively resource friendly, so it is a good option if you are looking to explore the
world of IDEs.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing for WordPress Development

[14]

On the lightweight end of the spectrum, you can use one of the feature rich and
battle-tested command line editors: vi or eMacs. They offer enormous flexibility and
features directly from any *nix command line. Although it is extremely useful for
a developer to be capable of editing files from a command line, the keyboard-only
interface and steep learning curve of these editors precludes them from mainstream
use, so we don't recommend you use them as your primary editing application.

No matter which editor you choose, make sure it helps you get your work
done instead of becoming a chore unto itself. Refer to each vendor's site
for instructions on how to install and configure them.

FTP client
In order to transfer files from your local computer to your destination web server
and back again, you need an FTP client (or an SSH client) to facilitate the copying.
The application need not be fancy, but it should be easy to use because chances are
good that you will be using it a lot.

On Mac OS X, the aforementioned text editor Coda includes FTP functionality;
CyberDuck (http://cyberduck.ch) offers a fine standalone client with the ability to
bookmark sites and access Amazon S3 folders. Though not free, Transmit (http://
www.panic.com/transmit) has a slick interface and it stands out as one of the only
FTP clients that offers the OS X "column view" of files and folders.

On Windows, FileZilla (http://filezilla-project.org) is a solid offering. There's
also the venerable WinSCP (http://winscp.net), as well as Core FTP LE (http://
www.coreftp.com). All three of these programs are free.

MySQL client
Depending on the level of developing that you do with WordPress, you may not need
a MySQL client, but it is extremely handy to have one available, and it can be good to
have this window into your database. After all, the database has much of your content
and settings, so eventually you will want to see what's going on in there.

On a Mac, if you installed the MAMP package, it comes with phpMyAdmin.
This works in a pinch, albeit clumsily because it is a web application. Sequel Pro
(http://www.sequelpro.com) is one of only a handful of options for desktop SQL
clients on Mac OS X.

SQLyog (http://www.webyog.com) is the Windows-only benchmark—it's a
powerful desktop client with an intuitive interface and sensible shortcuts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

phpMyAdmin is also available for many Windows installations, including XAMPP
and EasyPHP, so don't feel obligated to purchase software if it's not in your budget.

Coding best practices
Contrary to the old adage, practice does not always make perfect. Instead, practice
makes habit. The more time you spend developing, the more knowledgeable you
become, but the benefits or disadvantages of certain development practices may not
be obvious to the hobbyist. The wisdom of experienced developers is invaluable
as you learn, so here are some general guidelines that should help you make your
code easier to design, test, and maintain. You can read through WordPress' coding
guidelines (http://codex.wordpress.org/Writing_a_Plugin), but this chapter
provides more detailed information—we will be putting these into practice over the
following chapters.

Basic organization
The simple recommendation here is to keep your code consistently organized. If
someone is looking through your code months from now, will he be able to follow
the method to your madness? If you are consistent, people will be able to follow
your logic more easily, even if they don't agree with it. Consistency should prevail
throughout your variable names, function names, documentation, file names, and
folder structure: keep it sensible and clean.

One other tip that we have learned through many hours of frustration seems
profoundly simple: a "unit" of code should fit on one screen without scrolling.
In general, if you can't see it, you can't get it uploaded into your brain for full
comprehension. What is a "unit"? Usually it is a function, but sometimes it can be a
logical block or a group of related tasks. Functions are easier to test, so they make for
better units. The bottom line is to take small bites and if your "units" fit snugly on the
screen instead of scrolling across several pages, then your code will be much easier
to understand and debug.

Here are the main points to consider when organizing your code:

•	 Isolate tasks into functions
•	 Use classes
•	 Use descriptive variable names
•	 Use descriptive function names
•	 Separate logic and display layers
•	 Go modular, to a point
•	 Avoid short tags

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing for WordPress Development

[16]

Isolate tasks into functions
A function, as its name suggests, performs a certain task, but structuring them can
be a bit of an art. Any time you find yourself copying and pasting identical code (or
even similar code), that should be a glaring red flag that it's time to consolidate it into
one place by putting it into a function. Just like having a single stylesheet for your
website gives the designer a single place to make global changes, a function should
give the developer one place to alter a particular behavior.

A good rule of thumb when writing functions is that they should not accept more
than three inputs. Otherwise, they become difficult to use. You can package multiple
inputs into a single associative array (a.k.a. a "hash"), or you could restructure your
code into multiple functions. Again, find a clean solution.

Use classes
For new developers, the whole notion of objects and classes may seem something
of a black art. It may feel needlessly complex, and to be fair, in some scenarios it is.
However, the more you develop, the more you will gravitate toward object-oriented
code because it allows for better organization, maintainability, and classes are much
easier to extend.

Anyone familiar with CSS can appreciate the beauty of overriding a behavior. In
the same way that you can override a style declaration from a *.css file with a
local declaration, you can override a PHP class function by extending the class and
redefining the function. We will see some examples of this later in this book.

Use descriptive variable names
PHP does not impose many restrictions on variable names, and there are differing
naming strategies that you may employ. Compare this to Java, where using the
incorrect case or underscores in your variable names is tantamount to heresy.
Common naming strategies include $lower_case_with_underlines and $camelCase,
and since PHP does not use distinct glyphs to distinguish arrays from scalar
variables (like Perl, which distinguishes a $scalar from a @array), it can be useful to
include the data type in the variable name, for example, $records_array.

Whichever method you use, make sure that the names adequately describe the
contents of the variable in the context in which they appear. Avoid single letters
and avoid long-winded, overly complicated names. In general, find the shortest
name that accurately represents the variable's purpose. It may seem esoteric, but in
order to understand your code, it must enter your brain through the construct of the
English language (or in whatever language you tend to think). If your variable names
are unclear, your brain will have to work harder to understand what your code is
doing, so take the time to be descriptive and clear.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Use descriptive function names
As with your variable names, your function names should accurately describe what
the functions do. It is common in most languages to have functions that get or set
attributes, such as getHeader() or setPageWidth().

There are a few caveats to mention with PHP function names: first of all they are not
case sensitive. For example, add_action(), aDD_aCtIoN(), or ADD_ACTION() are all
interpreted identically. For the sake of clarity and ease of searching, always call your
functions using the same case as their definitions.

Function names starting with a single underscore (for example, _my_private_
function()) have historically been used to denote private functions—that is
functions intended for use by other functions and not for direct use by the "outside
world". With PHP 5, you can control the access to a class's functions as public,
private, or protected, but the underscore is still often used as a helpful reminder.

"Magical" functions in PHP use names starting with two underscores (for example,
__construct()). They are used to perform special tasks inside of a PHP class.
Although you can name your functions in this way provided there are no name
collisions, it is not recommended because they may be mistaken for magic PHP
functions. For example, WordPress uses the __() function for localization, but we do
not recommend using function names that begin with two underscores or whose
names are very non-descriptive.

Lastly, your code will be much easier to navigate if you alphabetize your functions
by name. Some text editors, particularly IDEs, will provide a menu to jump to
each function. Alphabetizing works especially well if you put the magic functions
(with two leading underscores) before the private functions (with a single leading
underscore) before the public functions (with no leading underscores). The quicker
you can navigate your code, the quicker you will be able to debug and change it.

Separate logic and display layers
It doesn't matter whether you are using procedural or object-oriented code, you
should still separate your logic from your presentation. In laymen's terms, that
means that you should keep if-statements, loops, or any other logical flows out of
your HTML as much as possible.

Endlessly concatenating bits of HTML with variables and having to debug your
display layers is a huge waste of time that is accepted as common practice by a
staggering number of developers. You will be way ahead of the curve if you keep
your HTML display logic as simple and static as possible, and keep your complicated
calculations in separate functions and files. We will show you several examples of
how to avoid messy concatenations using PHP functions like sprintf() as well as a
few of our own parsing functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing for WordPress Development

[18]

Go modular, to a point
Normally, there are strong admonitions to reuse your code whenever possible, but it is
necessary to mention the caveats required for making your code portable and modular.
When it comes to plugin development, sometimes you can get into trouble if your code
pokes its head too far out of its own folder and starts referencing JavaScript libraries,
CSS files, or even scripts that it assumes will be present in any WordPress install.

The only tie to the parent application should be through the API. It may go against
your instincts to copy a second version of an image or a JavaScript library into your
plugin's directory, but it will ensure that your plugin is self-sustaining and not
susceptible to changes outside of its own folder.

Avoid short tags
Simply because you can configure PHP to use "<?" and "?>" (a.k.a. "short tags") to
demarcate PHP code, that doesn't mean you should. Short tags are fool's gold! Even
if your web server supports them, don't expect everyone in the neighborhood to join
your club. Apart from making distribution of your plugin risky, short tags can cause
XML files to get interpreted as PHP because they too begin with "<?".

We have personally discovered many plugins in the WordPress repository that
made the sophomoric mistake of using short tags, forcing us to have to debug them
immediately after installing them. It sounds harsh, but using short tags is a sure-fire
way to doom your plugin to the rubbish pile.

Planning ahead / starting development
If you have ever worked in a professional development shop, you are probably
familiar with the careful preparations, discussions, wireframes, and mock-ups that
are made before any code is written. Projects born of haphazard random hacking are
always harder to upgrade and maintain, so it is worth your time to plan your actions
before writing a single line of code.

The following are a few important aspects to have in mind when starting
development of your plugin:

•	 Interfaces
•	 Localization
•	 Documentation for the developer
•	 Version control
•	 Environment

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

•	 Tests
•	 Security

Interfaces
As you write code, you should constantly ask yourself, "How should this component
be used?" If you are coding a particular function, you should choose what the input
and output should be to make it as easy to use as possible. If you are planning a
particular plugin, close your eyes and try to imagine every detail of how it should
look once it is finished. What configuration options does it need? How many
buttons? What will each button do? Choosing how a user will interact with your
code can be broadly described as "defining the interface", and it is one of the most
important aspects in planning your project because you should strive to "code to
the interface". The concept is subtle, but the point is that if you have designed an
interface that is easy to use, your plugin will be easy to use, and its code will be
easier to maintain.

When you think about interfaces, think about the WordPress API—it is a series of
functions that define how you interact with the WordPress application. While the
code within each function may change between versions, so as long as the inputs and
outputs (that is "the interface") remain the same, all the code using those functions
will continue to work.

Localization
Even if you never intend to release your code publicly, it can be helpful to isolate
any text that is used for messaging and might at some point be translated. If you
are curious, you can skip ahead to the chapter on internationalization.

Documentation for the developer
As you write your plugin, be vigilant about documentation. Most developers do not
include enough comments, and some include too many. At a minimum, you should
include a synopsis of the plugin itself and list the expected inputs and outputs of
each function so that it is clear to anyone looking at the comments what the function
does and what data types it requires. If you've followed the advice presented here
so far, your code will be broken down into bite-sized "units" that are easier to debug
and easier to document. If you find that you are documenting a function that does
more than one task, chances are good that you did not break down the functionality
into a small enough unit. We have included a section on how to write effective
documentation in a later chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing for WordPress Development

[20]

Version control
On any software project, it is useful to store versions of your files using one of the
common version control applications such as Subversion (SVN), GIT, or Mercurial.
The WordPress plugin repositories use SVN, and it is one of the most popular tools,
so if you know you will be publishing your plugin, it may save you some time to use
SVN right off the bat.

No matter how you do it, make sure that you are storing all revisions of your work
so that you can easily roll back. Indeed, in professional projects, one of the first
things that gets set up for collaborators is the version-controlled code repository. If
you know you are going down this route or if you just want to brush up your chops,
you may want to spend around $50 and get a good client for your system. Mac OS
X ships with SVN on the command-line (and the Coda editor includes a basic SVN
client), but you can also download Versions (http://www.versionsapp.com).
Windows has the well-liked TortoiseSVN (http://www.tortoisesvn.net), while
SyncroSVN is available on all platforms (http://www.syncrosvnclient.com). GIT
also has client software available on all platforms.

We have included a chapter on SVN later in this book, so feel free to refer to it if you
need to get your code versioned.

Environment
Just as you should consider the interfaces and possible translations of your code
before getting too deep into it, you should also consider the environment on which it
will be deployed. Does your code need to work on a specific version of PHP? Does it
need to work across a series of load-balanced servers where the default PHP session
management won't work? Does the destination environment have all the PHP
modules that you have on your development machine?

It is common practice in software development to set up a development server
that mimics the production server exactly. Unless you do additional tests, the only
environment on which your plugin is guaranteed to work is the one you used while
writing it. If you ever write plugins for paying customers, be sure to allow time to
test your code in the environment(s) where it will be used.

Tests
Whether informal or not, tests are an integral part of any application. If you have
structured your code well, it will be easier to test. Later on, we will talk about writing
tests to ensure that your plugin functions properly, but it is also very worthwhile to
construct informal proof-of-concept tests as you develop.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Just as an artist will draw a few studies before he paints his masterpiece, it is useful
for the developer to isolate tricky bits of code into a separate test or proof. We
recommend saving these little proofs in a separate directory and keeping them
along with your other project code. They can become valuable notes for you as you
progress in your education of PHP development.

Security
Web application security is a massive topic that goes far beyond the scope of this
book. Experience is the best teacher, and we encourage you to educate yourself as
much as possible when it comes to understanding vulnerabilities. We are devoting
only a small amount of time to cover some of the most common exploits. You don't
have much control over the underlying technologies that your plugin runs on
(that is PHP, MySQL, or WordPress itself), so you should focus your attention on
writing your code securely. The following scenarios represent the most commonly
exploited areas in a typical web application, but remember: security is a journey, not
a destination. No technology or code can ever be guaranteed to be 100% secure, but
there are steps you can take to avoid the most common pitfalls.

Printing user-supplied data to a page
This most often comes up when repopulating forms after failed validation and it is
often the key ingredient in a cross-site-scripting (XSS) attack. Be extremely careful
any time your code handles data supplied by the user. This can be data from the
$_POST, $_GET, $_REQUEST, $_COOKIE, or even from the $_SESSION arrays. If you
print any of this data to the page, you must make sure that you have filtered out any
malicious content.

Consider this little bit of code:

<?php print $_GET ['x']; ?>

That bit of code is deadly. Printing raw request variables is all it takes to convert
your site into a distributor of scum and villainy, infect computers with viruses, and
get your site blocked by Google.

A better example shows how to force the value of a variable to an integer using
type-casting, rendering harmless any hacking attempt:

<?php print (int) $_GET['x']; ?>

When handling user-supplied data, you will certainly become intimately familiar
with regular expressions and the preg_match() and preg_replace() functions.
Regular expressions represent another topic that is beyond the scope of this book,
but keep an eye on our plugins for examples on how they might be used.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing for WordPress Development

[22]

Using user-supplied data to construct database
queries
This can crop up in search forms, profile pages, surveys, or any other form that
interacts with the database. Consider this query:

$query = "SELECT * FROM wp_some_table WHERE username='" . $username .
"'";

If you did nothing to filter the value of $username, then it is entirely possible that
the variable could contain multiple queries instead of just the single username you
expected. This could lead to your database being inadvertently read, deleted, or
altered. Sending unfiltered user input directly to the database is the prime ingredient
in a SQL-injection attack.

The risk can be virtually eliminated if your code uses "prepared statements". Instead
of sending arbitrary strings to the database for execution, prepared statements first
prepare the basic query and then accept only variables that complete it. Prepared
statements are only possible if your web server has a more mature PHP-MySQL
driver installed, such as mysqli, and your code is written explicitly to use them;
WordPress does not, so be very careful if you ever start constructing your own query
strings to send to the database. It is highly recommended that you use WordPress'
built-in database accessor functions whenever possible. We have some examples of
these in our plugins.

Debugging
If you code, you will need to learn how to debug. PHP can be more difficult to debug
than some languages because it lacks a built-in debugger, so you can't step through
the code line by line and set break points. PHP also does not require that you declare
your variables. The first time it comes across a variable, the variable is automatically
typed and scoped. This behavior is both a blessing and a curse; it is guaranteed that
you will have times when you will debug a script for hours, only to discover that the
root cause was a misspelled variable name.

The following is a list of recommendations for more efficient PHP debugging:

•	 Clear your browser cache
•	 Update your php.ini file
•	 Check your syntax
•	 Configure your wp-config.php file
•	 Check values: print_r() and vardump()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

Clearing your browser cache
This should be old news for anyone who has done web development of any kind,
but you must ensure that you are getting the freshest copy each time you view a
page. The one caveat here is with Firefox and its "Work Offline" setting. If you are
developing locally on your own computer (for example, using MAMP) and you have
disconnected from the Internet, Firefox tends to go into "Work Offline" mode, which
means that it will not reload any pages. Make sure Firefox never enters the "Work
Offline" mode.

Updating your php.ini file
Use the following settings in your php.ini file:

error_reporting = E_ALL
display_errors = On

And optionally, use these settings to log errors to a log file:

log_errors = On
error_log = "/path/to/php_error.log"

For security, make sure the following value is set:

register_globals = Off

This will make PHP print errors to the screen (and optionally to the logs), including
line numbers. Without this type of verbose output, it is virtually impossible to tell
if your scripts are having problems, let alone diagnose them. On a shared hosting
environment, you may not have much control over the contents of the php.ini file,
but you can include a line in your scripts to change the error reporting level:

error_reporting(E_ALL)

Some hosting setups allow you to use your own local php.ini file to override system
settings found in the main php.ini file. Check with your web host for details.

Configuring your wp-config.php file
WordPress has some debugging options of its own. If you are developing on a
shared server where you cannot modify the php.ini file, it can be just as effective to
modify the contents of your wp-config.php file so that the WP_DEBUG value is set to
true:

define('WP_DEBUG', true);

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing for WordPress Development

[24]

Checking your syntax
From a *nix command line (Linux or Mac OS X), you can easily check whether or not
a script has parse errors by using the syntax-check flag:

php -l myscript.php

If you are using Coda on Mac OS X, you can install the PHP Toolkit (http://www.
chipwreck.de) and check for syntax errors directly from Coda. No matter what,
check your syntax frequently! Sometimes forgetting a semicolon or a bracket can
trigger an error that is nowhere near the actual problem. So, it is best to work on one
area of code at a time and check syntax frequently so you will know where to look
for the problem.

Checking values
Since PHP does not have a built-in debugger, it is common for developers to
temporarily sprinkle their code with print and exit statements to check variable
contents at runtime. You should become intimately familiar with the following two
functions: print_r and var_dump. The get_defined_vars() function is also useful
to help check for misspellings and variables that may be persisting beyond the scope
you expected.

It is common to exit your script after performing one of these debugging maneuvers,
then comment out the statement once you've verified the values. It can be really easy
to forget that you added an exit statement somewhere in your script, so be vigilant
when you perform this type of debugging. Don't forget to comment it out when
finished.

For example, the following script:

<?php
$arr = array('man','bear','pig');
print_r($arr);
?>

prints this result, clearly identifying the contents of the array:

Array
(
 [0] => man
 [1] => bear
 [2] => pig
)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

If you are doing any sort of frontend development that involves
CSS or JavaScript, then the Firefox Firebug add-on is invaluable
(http://getfirebug.com).

Exercise
If you're not already a Firebug user, here's a little exercise that you can try in order to
get a glimpse of the value that Firebug can do to aid in debugging. First, upload the
following HTML file to the root of your site then visit it using Firefox (for example,
http://yoursite.com/firebug.html):

<html>
<head>
 <title>Testing FireBug</title>
 <script type="text/javascript">
 function myFunction(inputValue)
 {
 console.log('Current value is' + inputValue);
 }
 </script>
</head>
<body>
 Man

 Bear

 Pig

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing for WordPress Development

[26]

Within FireFox, click on the Firebug icon at the bottom-right corner of your browser
to activate it, then enable the console. Do you see how you can track JavaScript
variable values in the console?

Note that the console.log() function has variants: console.info(),
console.warn(), and console.error(). They all accept input in
the same format at PHP's printf() function, and they will all help you
test your JavaScript. The big thing to remember when using the Firebug
console methods is that they are only available when Firebug is active. As
soon as you close Firebug, those commands will fail and cause JavaScript
processing to stop. The simple workaround is to remove the debugging
statements when you are finished debugging, or shepherd them into areas
where they can fail safely.

We will show some examples of how to use Firebug and JavaScript in your plugins
in some of the later chapters.

Summary
There is a lot to learn about the numerous technologies that work together to
allow you to write a plugin. If it did not all sink in, that's okay, because we will be
repeatedly exposing you to the ideas and techniques discussed in this chapter as
we work through the following chapters. We have included an appendix at the end
of the book that lists resources where you can get information about WordPress
functions and plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

Hopefully, we have painted a decent picture of the landscape of WordPress plugins
and their parent technologies. In the next chapter, we will dissect a typical plugin to
find out what makes it tick.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of a Plugin
Before we develop any substantial plugins of our own, let's take a few moments to
look at what other people have done, so we get an idea of what the final product
might look like. By this point, you should have a fresh version of WordPress
installed and running somewhere for you to play with. It is important that your
installation of WordPress is one with which you can tinker—in this chapter we will
purposely break a few things to help see how they work, so please don't try anything
in this chapter on a live production site.

Deconstructing an existing plugin:
"Hello Dolly"
WordPress ships with a simple plugin named "Hello Dolly". Its name is a whimsical
take on the programmer's obligatory "Hello, World!", and it is trotted out only for
pedantic explanations like the one that follows (unless, of course, you really do want
random lyrics by Jerry Herman to grace your administration screens).

Activating the plugin
Let's activate this plugin so we can have a look at what it does:

1. Browse to your WordPress Dashboard at http://yoursite.com/wp-admin/.
2. Navigate to the Plugins section.
3. Under the Hello Dolly title, click on the Activate link.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of a Plugin

[30]

You should now see a random lyric appear in the top-right portion of the Dashboard.
Refresh the page a few times to get the full effect.

Examining the hello.php file
Now that we've tried out the "Hello Dolly" plugin, let's have a closer look. In your
favorite text editor, open up the /wp-content/plugins/hello.php file. Can you
identify the following integral parts?

•	 The Information Header which describes details about the plugin (author
and description). This is contained in a large PHP /* comment */.

•	 User-defined functions, such as the hello_dolly() function.
•	 The add_action() and/or add_filter() functions, which hook a

WordPress event to a user-defined function.

It looks pretty simple, right? That's all you need for a plugin:

•	 An information header
•	 Some user-defined functions
•	 add_action() and/or add_filter() functions

Now that we've identified the critical component parts, let's examine them
in more detail.

Information header
Don't just skim this section thinking it's a waste of breath on the self-explanatory
header fields. Unlike a normal PHP file in which the comments are purely optional,
in WordPress plugin and theme files, the Information Header is required! It is this
block of text that causes a file to show up on WordPress' radar so that you can
activate it or deactivate it. If your plugin is missing a valid information header, you
cannot use it!

Exercise—breaking the header
To reinforce that the information header is an integral part of a plugin, try the
following exercise:

1. In your WordPress Dashboard, ensure that the "Hello Dolly" plugin has been
activated.

2. If applicable, use your preferred (s)FTP program to connect to your
WordPress installation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

3. Using your text editor, temporarily delete the information header from wp-
content/plugins/hello.php and save the file (you can save the header
elsewhere for now). Save the file.

4. Refresh the Plugins page in your browser.
5. You should get a warning from WordPress stating that the plugin does not

have a valid header:

After you've seen the tragic consequences, put the header information back into the
hello.php file.

This should make it abundantly clear to you that the information header is absolutely
vital for every WordPress plugin. If your plugin has multiple files, the header should
be inside the primary file—in this book we use index.php as our primary file, but
many plugins use a file named after the plugin name as their primary file.

Location, name, and format
The header itself is similar in form and function to other content management
systems, such as Drupal's module.info files or Joomla's XML module
configurations—it offers a way to store additional information about a plugin in
a standardized format. The values can be extended, but the most common header
values are listed below:

•	 Author: Listed below the plugin name
•	 Author URI: Together with "Author", this creates a link to the author's site
•	 Description: Main block of text describing the plugin
•	 Plugin Name: The displayed name of the plugin
•	 Plugin URI: Destination of the "Visit plugin site" link
•	 Version: Use this to track your changes over time

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of a Plugin

[32]

For more information about header blocks, see the WordPress codex at:
http://codex.wordpress.org/File_Header.

In order for a PHP file to show up in WordPress' Plugins menu:

•	 The file must have a .php extension.
•	 The file must contain the information header somewhere in it

(preferably at the beginning).
•	 The file must be either in the /wp-content/plugins directory,

or in a subdirectory of the plugins directory. It cannot be more
deeply nested.

Understanding the Includes
When you activate a plugin, the name of the file containing the information header
is stored in the WordPress database. Each time a page is requested, WordPress
goes through a laundry list of PHP files it needs to load, so activating a plugin
ensures that your own files are on that list. To help illustrate this concept, let's break
WordPress again.

Exercise – parse errors
Try the following exercise:

1. Ensure that the "Hello Dolly" plugin is active.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

2. Open the /wp-content/plugins/hello.php file in your text editor.
3. Immediately before the line that contains function hello_dolly_get_lyric, type

in some gibberish text, such as "asdfasdf" and save the file.
4. Reload the plugins page in your browser.
5. This should generate a parse error, something like:

Parse error: syntax error, unexpected T_FUNCTION in /path/to/
wordpress/html/wp-content/plugins/hello.php on line 16

Yikes! Your site is now broken. Why did this happen? We introduced errors into the
plugin's main file (hello.php), so including it caused PHP and WordPress to choke.
If you did not see any errors and instead saw only a blank white page, you need to
refer back to the previous chapter and the section on debugging to ensure that you
have configured PHP to report errors. This is vital!

Delete the gibberish line from the hello.php file and save to return the plugin back
to normal.

The parse error only occurs if there is an error in an active plugin. Deactivated
plugins are not included by WordPress and therefore their code is not parsed.
You can try the same exercise after deactivating the plugin and you'll notice that
WordPress does not raise any errors.

Bonus for the curious
In case you're wondering exactly where and how WordPress stores the information
about activated plugins, have a look in the database. Using your MySQL client, you
can browse the wp_options table or execute the following query:

SELECT option_value FROM wp_options WHERE option_name='active_
plugins';

The active plugins are stored as a serialized PHP hash, referencing the file containing
the header. The following is an example of what the serialized hash might contain if you
had activated a plugin named "Bad Example". You can use PHP's unserialize() function
to parse the contents of this string into a PHP variable as in the following script:

<?php
 $active_plugin_str = 'a:1:{i:0;s:27:"bad-example/bad-example.
php";}';
 print_r(unserialize($active_plugin_str));
?>

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of a Plugin

[34]

And here's its output:

Array
(
 [0] => bad-example/bad-example.php
)

User-defined functions
Each plugin will store the majority of its code inside functions that you define. While
it is technically possible to have a plugin that has nothing but a header, or to have a
plugin that does not use user-defined functions, it is highly unlikely you would ever
write such a plugin outside of a purely academic exercise.

Ready to proceed? Let's make a doomed plugin.

Exercise—an evil functionless plugin
You may not be used to writing your own functions in your code, especially for
trivial tasks. However, when you are writing WordPress plugins, it is virtually
impossible to get away with having all your code naked in the main code block.
Let's take a closer look at how WordPress works and you will see why you need to
shepherd your code into functions.

Normal users will use the Add New button in the Dashboard to search the
WordPress repository for published plugins, but we as developers will be creating
our own plugins from scratch. To do this, all we need is our trusty text editor (and
our FTP client to upload it to the web server, if you're running WordPress remotely).

This exercise will illustrate how not to code a plugin:

1. Create a new PHP file inside the /wp-content/plugins directory. In this
example, we've named ours evil-example.php.

2. Copy the <?php opening tag and the header information from the "Hello
Dolly" hello.php file and take a moment to customize the header.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

3. Add a single print statement to your plugin and save it. The following is
what our full example looks like:
<?php
/*
Plugin Name: Bad Example
Plugin URI: http://wordpress.org/#
Description: Showing what NOT to do.
Author: Everett's Twin from an Evil Parallel Universe
Version: 0.666
Author URI: http://goo.gl/us9i
*/

// Worst plugin ever
print " -------- I think I'm getting a clue!";

/* End of File */

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

In case you didn't notice, we have omitted the closing ?> tag. We'll
explain why, later in this chapter.

4. Once you've saved your new plugin, head back to your browser and refresh
the Plugin admin page. Your new plugin should appear on the list, as follows:

5. As soon as you activate the plugin, a few horrible things may happen.
6. You may see a PHP warning, such as Cannot modify header information….

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of a Plugin

[36]

7. WordPress itself may show you a warning, as follows:
The plugin generated 37 characters of unexpected output during activation.
If you notice "headers already sent" messages, problems with syndication
feeds or other issues, try deactivating or removing this plugin.

You will see the text you printed at the top of every page on your site, including your
home page! This obnoxious text appears before the opening HTML and DOCTYPE tags.

What just happened
This is a pretty simple script, so why did everything explode? If you already know
the answer, keep quiet for the folks who are still figuring this out. The answer will
help keep you out of trouble when writing PHP code.

Before we go any further, if you did not see the PHP errors, then you really need
revisit the previous chapter on setting up your environment and debugging. This
will be your last reminder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Now, to answer the question of all those header errors—what's going on? The whole
point of using a hook is to have your function executed at a certain time. When you
include a file, its code is parsed and any code not inside classes or function-blocks
gets executed (whereas the classes and functions are merely loaded). The problem
here revolves around PHP's header() function, which WordPress is using to declare
the content type of its output—for example, the scripts generating the main pages
use the text/HTML content type, whereas the scripts generating the RSS feeds use an
RSS/XML content type.

All you really need to understand here is that the header() function must be called
before any output is sent. From PHP's documentation:

"Remember that header() must be called before any actual output is sent, either
by normal HTML tags, blank lines in a file, or from PHP."

It also warns that header errors are common when using include() or require()
functions. A brief analogy is seen when you mail a letter—you must address the
envelope before you drop it into the mailbox.

Consider the following two scripts:

Example 1

<?php
header('Content-type: text/plain');
print "Headers come first.";
/* End of File */

Example 2

<?php
print "This will raise a warning.";
header('Content-type: text/plain');
/* End of File */

The first example works normally—if you uploaded this to the root of your website and
named it test.php, then loaded it in your browser (for example, http://yoursite.
com/test.php), you would see the printed text. However, the second example generates
the now familiar PHP warning: Cannot modify header information. It's as if you are
trying to change the address on your letter after you posted it.

Back in our "Bad Example" plugin, this is exactly what was happening. The print
statement was executed when the file was included, and this jumped the gun on the
header() function, even though the code was otherwise syntactically correct. Our
"Bad Example" is, in fact, a good example of what not to do. This should help drive
home the point that you must define your own functions in order to write WordPress
functions—you cannot simply put naked code into your plugin file.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of a Plugin

[38]

Omitting the closing "?>" PHP tag
So why do we omit the closing tag in our plugins? PHP will automatically terminate
a file with a closing ?> tag if needed, but we're not just being lazy here. The reason
is predicated on our discussion about headers—if your plugins have any trailing
whitespace after the closing ?>, it gets interpreted in the same way as if you had
printed something, and that can cause the same header warnings. Look closely at the
following example. Notice the extra lines after the closing PHP tag?

It is exceedingly difficult to spot extra newlines or spaces when debugging a script,
so we omit the closing PHP tags whenever possible simply because they may trigger
header errors. It is helpful to include a comment at the end of the file, such as /*End
of File*/ or simply /*EOF*/ just as a reminder that yes, the omission is intentional
and not the result of a corrupted file.

A better example: Adding functions
Now that we know what we can't simply print data directly from our plugin's main
block, let's fix our example to make it a bit more like the "Hello Dolly" plugin:

<?php
/*
Plugin Name: Better Example
Plugin URI: http://wordpress.org/#
Description: Undoing the Madness
Author: Everett's sometimes obnoxious Twin
Version: 0.7
Author URI: http://theonion.com/
*/

function safe_print() {
 print " -------- I think I'm getting a clue!";
}

/* End of File */

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

What's different about this example? This version of our plugin isolates the print
statement inside a function block so that it does not execute immediately once the
file is loaded. If you change the code in your sample plugin and save it, the warnings
caused by the previous version of this plugin should disappear once you refresh the
page. This gets us out of trouble, but it doesn't get our statement printing and visible
just yet. To do that, we must add a hook to trigger execution of our function.

Referencing hooks via add_action()
and add_filter()
The final vital component in a WordPress plugin is the hook, which defines when the
plugin is executed. This is arguably the most confusing component of a plugin, so we
will be thorough in our explanations. Just as in pop-music, the term "hook" is sometimes
ambiguous—different people use the term to refer to different things. Technically, the
term "hook" should refer to a WordPress event, such as get_header or the_content,
but sometimes it is used generally to refer to the add_action() or add_filter()
functions which reference the hook. Pay attention to the context, and it should be clear
which meaning was intended. The most important thing to understand here is that you
determine when your functions execute by attaching them to a WordPress event by
using the add_action() or add_filter() functions. Remember: hooks are events.

The syntax for both functions is exactly the same. We'll discuss the reasoning for this
shortly, but for now, just compare the two:

add_filter(string $hook, mixed $your_function_name [, int $priority =
10 [, int $accepted_args = 1]])

versus

add_action(string $hook, mixed $your_function_name [, int $priority =
10 [, int $accepted_args = 1]])

In practice, the most common usage includes only the name of the WordPress event
and the name of your function, such as:

add_action('admin_footer', 'hello_dolly');

In "Hello Dolly", admin_footer is the action or event, and hello_dolly is the
name of the function which we want WordPress to run when the admin_footer
event occurs. Note that we have intentionally digressed from WordPress' official
terminology for the sake of clarity.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of a Plugin

[40]

Actions versus Filters
This is another confusing area in the land of WordPress plugins. What exactly is
the difference between an action and a filter? Well, even if you've read through the
forums and official documentation, the answers there likely left you more confused,
so let's get this clarified once and for all.

Actions and filters are simply two different types of events. Remember that
WordPress refers to events as "hooks". The difference between them is predicated on
how WordPress handles the hook in question. Some hooks are designated as action
hooks, others as filter hooks. When you link one of your functions to a filter hook,
your function must accept an input and return an output because it is intended to
modify or "filter" output. When you link a function to an action hook, your function
is not passed input parameters, and any value returned is simply ignored. It is all a
matter of how WordPress handles a given hook. On his site, Adam Brown maintains
lists of all available WordPress hooks, and you can verify whether a given hook is a
filter or an action hook (http://adambrown.info/p/wp_hooks/).

The truth of the matter is that the architecture here is showing its age, and there are
some caveats that can be confusing. Actions and filters are simply types of events,
and the add_action() and add_filter() functions are actually one and the same—
one function merely references the other. If you are curious, have a look for yourself
inside the /wp-includes/plugin.php file. In other words, you can replace any
instance of add_action() with add_filter() and vice versa, and it will have no
effect on the functionality of your plugin. They both simply tie a WordPress event
to a function you have defined. Even though the add_action() and add_filter()
functions are fundamentally the same, we do not recommend that you swap them!
There is a recommended usage here that should be followed for mnemonic purposes.

Just once, however, let's demonstrate that the add_action() and add_filter()
functions are equivalent by modifying the "Hello Dolly" plugin once again. This will
help us understand that both functions tie to an event, and the behavior of the event
is determined by the event in question, not by the function used to reference it.

Exercise—actions and filters
Using your favorite text editor, let's modify the "Hello Dolly" plugin once more.

Try replacing both instances of add_action() with add_filter() and save the file.
The following is what the important lines now look like:

add_filter('admin_footer', 'hello_dolly');
// ...
add_filter('admin_head', 'dolly_css');

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Remember: We haven't changed anything else about this plugin, only these two lines.

Try refreshing the WordPress Dashboard—the plugin still functions in exactly the
same way. The takeaways from this exercise should be that actions and filters are
simply classifications of events, and the behavior of a particular event is inherent
in the event itself, not in the function we use to reference it. In other words, admin_
footer and admin_head are action-events, not filter-events, and they remain action-
events no matter how we hook into them.

Return the functions to their original state once you're done:

add_action('admin_footer', 'hello_dolly');
// ...
add_action('admin_head', 'dolly_css');

Now that we've demonstrated that the event is the important thing here, not the
function, let's try using a different event so we can see how it behaves differently.

Exercise—filters
Let's suppose we want to repurpose the "Hello Dolly" plugin so it prints random
lyrics into posts on the frontend of our site instead of just inside the WordPress
manager. We will call this new plugin "Hello Knock Off". The change in behavior
will revolve around the event that we hook into. Instead of tying into the admin_
footer event, we are going to hook into the the_content event. the_content is a
filter event, so we have to use it slightly differently than we did the admin_footer
action event. Comparing the "Hello Knock Off" plugin to the original "Hello Dolly"
will be a simple example that demonstrates the differences between an action and a
filter. Let's get started.

First, let's make a copy of the "Hello Dolly" plugin—just copy the hello.php
file and name the copy knockoff.php. You should save it in the same directory:
/wp-content/plugins. Be sure you deactivate the original "Hello Dolly" plugin to
avoid confusion.

Next, modify the information header so we can spot this plugin inside the
WordPress manager. The following is what our example looks like:

<?php
/*
Plugin Name: Hello Knock Off
Plugin URI: http://wordpress.org/#
Description: Our first filter event
Author: Some Puerto Rican Guy
Version: 0.1

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of a Plugin

[42]

Author URI: http://goo.gl/kMEc
*/

/*EOF*/

Activate the plugin from inside the WordPress manager—it should show up in the
Plugin administration area under the name "Hello Knock Off". Before we change
the functionality, verify that the copy of the plugin works just like the original. You
should see the same random messages at the top of each page in your WordPress
Dashboard just like you did with the original plugin.

Next, let's change the event that is referenced here. Instead of using the admin_
footer hook, let's use the the_content hook. Change the following line:

add_action('admin_footer', 'hello_dolly');

So it reads:

add_filter('the_content', 'hello_dolly');

Even though we have demonstrated that both functions are effectively the same, do
not confuse yourself or others by mixing these up! the_content is a filter event, so
we should always reference it using the add_filter() function.

Save your work, then try visiting your home page. You'll notice that all of your
posts have been replaced with random Hello Dolly lyrics, all simply because we are
hooking the code into a different event.

Let's make some adjustments here so that instead of replacing the post content, we
append the quote to it. That is what a filter normally does: it modifies some text, not
replaces it entirely.

Edit the hello_dolly() function in your knockoff.php so that it accepts an input,
and instead of echoing a string, it returns it:

function hello_dolly($input) {
 $chosen = hello_dolly_get_lyric();
 return $input . "<p id='dolly'>$chosen</p>";
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

The $input here represents the content for each post—it is passed into the filter
function, acted on, and then returned. Do you see how we have appended the chosen
lyric to the $input? The result is that now we are appending a random lyric to each
blog post instead of overwriting it.

To reiterate what just happened, the bulk of changes were caused by simply changing
the event that was referenced from admin_footer to the_content. We also had to
change some of the syntax in the user-defined function to correctly use a filter event
instead of an action event. This should help reinforce the fact that some events are
filters, and some events are actions, and now you have seen the differences in syntax
between these two types of events. A function called by an action event does not accept
or return input, whereas a function called by a filter does.

You may have noticed that some parts of this knock-off plugin are not being used. So
let's simplify our knock-off plugin by deleting the following two functions: dolly_css()
and the function that hooks into it: add_action('admin_head', 'dolly_css');

Deleting those functions simply helps clean up superfluous code. The original "Hello
Dolly" plugin required those extra functions in order to correctly style and position
the output, but in our "Hello Knock Off" plugin, we don't need the extra styling
because we are simply appending the quotes to post content.

Reading more
Hopefully these exercises have clarified how WordPress handles actions and hooks.
It is worth your time and effort to skim through the online documentation that lists
the most common actions and filters, just so you have some awareness of what
actions and filters are available. WordPress has thousands of hooks, but there are still
some key places that you cannot easily hook into. We recommend bookmarking the
following two pages for reference:

http://codex.wordpress.org/Plugin_API/Action_Reference

http://codex.wordpress.org/Plugin_API/Filter_Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of a Plugin

[44]

The hooks referenced on those pages are only a fraction of those available, but we
recommend that you stick to the short list as much as possible. For a full list of all
WordPress hooks, see:

http://adambrown.info/p/wp_hooks/

We have included a short list of actions and filters used in this book in Appendix B.
You'll find that you can achieve a lot of what you need by using a small number of
actions and filters.

Summary
After completing this chapter, you should know how to create a simplistic WordPress
plugin and you should know where you have to put the file in order for it to show up
in the WordPress Dashboard. You should have learned a couple debugging techniques
that will apply to your work as a plugin developer. We've learned the differences
between filters and actions and seen how WordPress sends data to your functions in
each case. You should now have a working understanding of the most common plugin
patterns and you should now be ready to write a couple of your own.

Up next, we're going to create our first full and functional plugin: Social Bookmarking.

www.it-ebooks.info

http://www.it-ebooks.info/

Social Bookmarking
Now that we've covered the component parts of a WordPress plugin, it's time to
write something more substantial. In this chapter, we will create a plugin that
allows visitors to bookmark each of our posts using the social bookmarking
service http://www.digg.com. We are going to learn a bit more about the
WordPress API and by the time we're done, we will have in our toolbox a simple
coding pattern that is applicable to many other plugins we may want to write, such
as one that creates a Facebook "Like" button.

In this chapter, you will learn or review the following points:

•	 How to plan your plugin architecture and write code in a methodical and
testable way

•	 How to use several WordPress API functions, such as how to retrieve the title
and permalink URL of each post

•	 How to use WordPress hooks to execute your plugin code
•	 How to check the WordPress version
•	 How to include external JavaScript files

We're going to build this slowly and test it as we go so you can see how each
component works. Let's get started!

www.it-ebooks.info

http://www.it-ebooks.info/

Social Bookmarking

[46]

The overall plan
In our opening chapters, we talked about the importance of planning ahead, so here
is a picture of what our plugin should do. It should add a Submit to digg button to
each post:

Proof of concept
Before we get WordPress involved at all, let's make sure that Digg's button works
on a simple static page. If we can't make it work outside of WordPress, it's unlikely
that we can make it work inside of WordPress. Take a look at the guide at http://
about.digg.com/downloads/button/smart and get familiar with the sample code
and the options available. We're going to try to make a simple static HTML page that
implements a "Medium Smart Digg Button". According to Digg's documentation, all
we need to do is add a bit of JavaScript to the document head and then use a special
anchor tag on our page. Taking Digg's lead, the following is the HTML we've saved
in a file named proof_of_concept.html:

<html>
<head>
 <title>Proof of Concept</title>

 <script type="text/javascript">
 (function() {
 var s = document.createElement('SCRIPT'), s1 = document.
getElementsByTagName('SCRIPT')[0];
 s.type = 'text/javascript';
 s.async = true;
 s.src = 'http://widgets.digg.com/buttons.js';
 s1.parentNode.insertBefore(s, s1);
 })();
 </script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

</head>
<body>
 <p>My post content goes here...</p>

</body>
</html>

Visiting this page in a browser should look something like the following screenshot:

Make sure you see something like the preceding screenshot before you go on. This
gives you an opportunity to troubleshoot the basic functionality before WordPress or
PHP are involved.

Avoiding conflicting function names
Remember from Chapter 1 that WordPress' architecture normally relies on globally
scoped functions in the main namespace, so name collisions are a big concern. In
layman's terms, each function must have a unique name to avoid PHP errors. For
example, the following PHP script would die with a fatal error:

<?php
function main() {
 // Do something
}

function main() {
 // Oops... "Fatal error: Cannot redeclare main()"
}
?>

Even if the functions are declared in different files, the names must be unique. As we
write plugins, we must be careful to avoid using function names that are already in
use by WordPress or by other plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Social Bookmarking

[48]

In this chapter, we will ensure unique function names by adding a prefix to each
name, for example, my_plugin_main() or my_plugin_some_function. Usually this
prefix is inspired by your plugin's name. We're naming our plugin Digg This, so
we've used "diggthis" as a prefix to each function's name.

In later chapters, we will show you how to avoid conflicting function names by using
PHP classes, objects, and static functions. Object-oriented coding represents a cleaner
solution to the problem of namespace pollution, but it is a bit harder to follow, so we
have dedicated this chapter to show you how we solved this problem using simple
function names. We'll tackle the more advanced solutions later.

The master plugin outline
After looking over the examples on Digg.com and trying out our own proof of
concept, we know what we're aiming for, so let's think through the structure of
the PHP code that is required. When you write your own plugins, it's a great habit
to sketch an outline of the main components before you start any serious coding
because it will force you to identify problems and establish a structure. Keep in
mind there are many different ways in which a plugin could be written, so don't be
discouraged if your outline differs from ours.

We know our plugin needs an information header and either the add_action() or
the add_filter() functions. We also want to test the WordPress version in use and
we're going to outline some of the helper functions we expect we'll need to achieve
all of this. To help organize our thoughts, we are going to sketch an outline for our
plugin by creating some PHP comments in the file that will become our plugin. Our
plugin will slowly become functional as we replace those comments with working
functions. Let's get started!

Create a folder for your plugin inside /wp-content/plugins. We're naming our
plugin Digg This, so the folder will be named digg-this—we have simply replaced
spaces with dashes to come up with a valid folder name. Next, create an index.
php file inside your plugin's folder. This index.php will contain your plugin's
information header, and we will refer to it as your plugin's "main" file.

Many WordPress developers use a file named after the plugin as their plugin's
"main" file, for example, digg-this.php, but we find it more intuitive to use index.
php instead. As a web developer, you should already be accustomed to looking for
this common file any time you scan through a directory. It may seem overly nitpicky
when we are writing plugins that only have a couple files, but once your plugin
grows to include multiple files, it can become increasingly difficult for you
or others to find your plugin's "main" file. Here is the code we've saved inside of
/wp-content/plugins/digg-this/index.php:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

<?php
/* Information Header Goes here */

// include() or require() any necessary files here...

// Settings and/or Configuration Details go here...

// Tie into WordPress Hooks and any functions that should run on load.

// "Private" internal functions named with a leading underscore
function _diggthis_get_post_description() { }
function _diggthis_get_post_media_type() { }
function _diggthis_get_post_title() { }
function _diggthis_get_post_topic() { }
function _diggthis_get_post_url() { }

// The "Public" functions
function diggthis_add_js_to_doc_head() { }
function diggthis_check_wordpress_version() { }
function diggthis_get_button() { }

/* EOF */

That's the skeletal framework of our plugin, and it's a simple outline you can copy
for similar plugins. This code should execute without errors, even though it doesn't
do anything yet because our functions are empty. Regardless, you should be able to
get a decent idea about how the plugin will work just by looking at this outline—
we've used descriptive function names that give an idea of what each function will
do. As discussed in the previous section, we have prepended "diggthis" to each
function's name to help avoid naming collisions.

You can see that we've created three "public" functions to correspond with the three
main things we want this plugin to do. We want it to add some JavaScript to the
document head, we want it to generate a valid Digg button, and we also want it to
test the version of WordPress in use. The public functions represent the main tasks
for our plugin, and they are the functions that will be tied to a WordPress event.

Our "private" functions are meant to assist the public functions. Technically, they aren't
private functions per se, but we are isolating them as functions that will be called by
one of the "public" functions instead of being called directly. Notice that the names of
these functions too begin with an underscore. It is common practice to use a leading
underscore to identify functions that should be considered "private", for "internal use
only". The private functions we have outlined will help the diggthis_get_button()
function by getting the component parts needed to create the button: title, description,
and URL. Just to be clear, the private functions we have outlined are a product of the
Digg API. If Digg offered a way to transmit a post's author, for example, we would
have included a corresponding _diggthis_get_post_author() function to isolate the
task of getting the author's name into its own function.

www.it-ebooks.info

http://www.it-ebooks.info/

Social Bookmarking

[50]

Lastly, notice that we have alphabetized our functions by name for better organization.

In this chapter, we are not using object oriented code, so we are not
enforcing any permissions on our functions. We are referring to some
functions as "public" and others as "private" merely as a way to help
distinguish between primary functions and helper functions. In later
chapters, we will use PHP classes and we will implement true public and
private functions.

Now that we've outlined our script with comments and empty functions, let's start
filling in the gaps. Here are all the areas in our plugin outline that we need to address:

•	 The plugin information header
•	 Adding JavaScript to the head
•	 Adding a link to the post content
•	 Adding a button template
•	 Getting the post URL
•	 Getting the post title
•	 Getting the description
•	 Getting the media type
•	 Getting the topic

As we work through this chapter, we will show small bits of code that are meant
to replace individual sections within the master plugin outline. This is intended to
allow you to focus on one section of the code at a time.

The plugin information header
We know from the previous chapter that each plugin requires an information
header before it shows up in WordPress' plugin administration panel. You can
copy and modify the plugin header from the Hello Dolly plugin. Take a moment to
customize it and save the result. The following is the plugin header we're using in
our /content/wp-content/plugins/digg-this/index.php file:

/*
Plugin Name: Digg This
Plugin URI: http://www.tipsfor.us/
Description: This plugin will add a "Digg This" button link to each
post on your WordPress site.
Author: Everett Griffiths
Version: 0.1
Author URI: http://www.tipsfor.us/
*/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

In your browser—information header
Remember that this header information is what causes the plugin to show up on
WordPress' radar, so as soon as you've saved the file, you should be able to see it
in the WordPress plugin administration screen. Before you go any further, check to
ensure that your plugin is now showing up in the plugin administration page.

If your future plugin has more than one PHP file, the plugin information
header should be placed only in your main file, the one which will
include() or require() the other plugin PHP files.

Before you continue, try activating your plugin to ensure that you do not have any
syntax errors. It should work, even though it doesn't do anything yet. It is critical to
start testing your script early and often. This helps you catch any errors more quickly!

Adding a link to the post content
Let's begin by focusing on modifying the post content so we can append a clickable
link. It can be a challenge to know whether you need to use an action or a filter, but
experience will teach you. If we examine our options in the WordPress Codex about
filter references (http://goo.gl/whqA) and action references (http://goo.gl/
qAps), eventually we can narrow our choices down to the the_content filter. This,
by the way, is exactly the same filter we demonstrated in the previous chapter. As
this is a filter and not an action, we will use the add_filter() function to reference
it, and the custom function that we reference must accept an input and return an
output. We've already earmarked the diggthis_get_button() as the one that will
generate the button link, so we'll reference it by name in the add_filter() function.

The following is how we've edited our /content/wp-content/plugins/digg-
this/index.php file:

add_filter('the_content', 'diggthis_get_button');

// [. . .]
/**
* Adds a "Digg This" link to the post content.
*
* @param string $content the existing post content
* @return string appends a DiggThis link to the incoming $content.
*/
function diggthis_get_button($content) {
 return $content . '';
}

www.it-ebooks.info

http://www.it-ebooks.info/

Social Bookmarking

[52]

Documenting our functions
You may have noticed that we used a special syntax for documenting the diggthis_
get_button() function. We are using a PHP equivalent to the often-emulated
Javadoc syntax, which is a standard syntax used for documenting functions so that
your comments can be automatically converted to HTML pages. The principle is
similar to Wikipedia formatting or BBCode, both of which use special symbols to
specify various HTML elements. The PHPDoc syntax isn't strictly necessary, but
since it is a common feature of a lot of open source PHP code, we will be using it
throughout this book.

Ironically, the documentation on how to use the PHPDoc syntax is confusing and
hard to follow. The official quick start is here (http://goo.gl/5CyZg), but we find
the third-party tutorial at http://goo.gl/oTARc to be much more to the point and
easier to follow.

No matter which syntax you use, make sure you document your functions clearly
by including a brief overview of what the function does, specifying the input
parameters, and specifying the value returned. Adding proper documentation to
your code is a "time" investment that will save you (and others) lots of time in the
long run, so please don't neglect it!

In your browser—linking to the post content
Save your file, then try refreshing your homepage. At first, everything might look
the same, but try viewing the source HTML and verify that the Digg anchor tag is
appearing after your post content.

Congratulations! It doesn't look like much yet and it doesn't quite work, but a little
bit of JavaScript will bring it to life.

Adding JavaScript to the head
From our proof of concept, we learned that the Digg button needs to have some
special JavaScript in the HTML document head. Although we could simply paste the
necessary JavaScript into our template files, that defeats the purpose of dynamically
adding it via a plugin. Besides, we want a solution that doesn't break when we
switch templates.

As we've already done this a couple of times, you might be ready to scan through the
available actions and filters in the WordPress Codex to find a viable event you can
hook into. If you did that, you might come to the conclusion that using the wp_head
action would be your ticket to making this work. It's true that the wp_head action
would allow you to print the necessary HTML into the head of your pages, but that's
actually not the recommended way of accomplishing this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

When working with plugins in any CMS, it is a common need to add both JavaScript
and CSS to augment your plugin – the scripts expect to have certain JavaScript and
CSS available to them in order to function correctly. WordPress, like other CMS's,
has dedicated a few API functions designed explicitly to help solve this problem:
wp_register_script() and wp_enqueue_script(). Together, these functions
allow you to include an external JavaScript file exactly once. When used correctly,
they prevent you from including the same file multiple times. That's important
with JavaScript because many plugins might require the same JavaScript library,
but including the same file multiple times can cause conflicts in the same way as
redeclaring PHP functions. It's also inefficient to include the same file multiple times,
so WordPress' functions here are an effective solution.

Our fist task then is to get the necessary JavaScript into a separate file. If you have
working JavaScript inside a <script> tag, you can put its contents into an external
file and reference it using the src attribute. Create a new file named digg.js and
paste the contents of the <script> tag into it. Here is what we have added to our
newly created digg-this/digg.js file:

(function() {
var s = document.createElement('SCRIPT'), s1 = document.
getElementsByTagName('SCRIPT')[0];
s.type = 'text/javascript';
s.async = true;
s.src = 'http://widgets.digg.com/buttons.js';
s1.parentNode.insertBefore(s, s1);
})();

To include this on our pages, we would typically add something like this to our
document head:

<script type="text/javascript" src="http://yoursite.com/plugins/digg-
this/digg.js"></script>

In order to have WordPress do this automatically for us, we are going to make use
of the aforementioned wp_register_script() and wp_enqueue_script() as well
as the plugins_url() function, which helps us generate the correct URL to our new
JavaScript file:

function diggthis_add_js_to_doc_head() {
 $src = plugins_url('digg.js', __FILE__);
 wp_register_script('diggthis', $src);
 wp_enqueue_script('diggthis');
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Social Bookmarking

[54]

The function plugins_url() generates a URL to the digg.js file inside of our
plugin's folder when we pass it the __FILE__ constant, which PHP interprets as
the path and name of the current file. Now we have a function that will cause the
necessary JavaScript file to be loaded, but we need to tie this to a WordPress event so
that this function executes. The event to which we want to tie this is the init action
that fires when WordPress is initialized.

// Tie into WordPress Hooks and any functions that should run on load.
add_action('init','diggthis_add_js_to_doc_head');

When we've finished this, our index.php file looks like the following:

<?php
/*---

Plugin Name: Digg This
Plugin URI: http://www.tipsfor.us/
Description: This plugin will add a "Digg This" button link to each
post on your WordPress site.
Author: Everett Griffiths
Version: 0.1
Author URI: http://www.tipsfor.us/

---------*/

// include() or require() any necessary files here...

// Settings and/or Configuration Details go here...

// Tie into WordPress Hooks and any functions that should run on load.
add_filter('the_content', 'diggthis_get_button');
add_action('init', 'diggthis_add_js_to_doc_head');

// "Private" internal functions named with a leading underscore
function _diggthis_get_post_description() { }
function _diggthis_get_post_media_type() { }
function _diggthis_get_post_title() { }
function _diggthis_get_post_topic() { }
function _diggthis_get_post_url() { }

// The "Public" functions
/**
* Add the local digg.js to the <head> of WordPress pages
*
* @return none adds HTML to the document <head>
*/

function diggthis_add_js_to_doc_head() {
 $src = plugins_url('digg.js', __FILE__);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

 wp_register_script('diggthis', $src);
 wp_enqueue_script('diggthis');
}
function diggthis_check_wordpress_version() { }

/**
* Adds a "Digg This" link to the post content.
*
* @param string $content the existing post content
* @return string appends a DiggThis link to the incoming $content.
*/
function diggthis_get_button($content) {
 return $content . '';
}

/* EOF */

If you haven't already, activate this plugin and then visit the homepage of your site.
You should now see a functioning Digg button. Try viewing the source HTML and
verify that the Digg JavaScript is being added to the head. You should see something
like the following show up in your document head when you view the source HTML:

<script type='text/javascript' src='http://yoursite.com/wp-content/
plugins/digg-this/digg.js?ver=3.0.4'></script>

Tricky, eh? We are now dynamically modifying our pages and we have achieved
basic functionality! If you are developing locally on your own desktop computer,
you may get some errors when you try to submit a link to Digg: Unable to access
this content. This is normal—Digg is trying to connect to your site, but if you are
developing locally, your site is not publicly available, so it throws this error.

If you get any other errors, the PHP information printed to the screen should help
you track down their source.

Making our link dynamic
We have the basic functionality in place, but our link doesn't yet send any data to
Digg.com. Remember from Digg's documentation that we can supply each link with
a URL, a title, a description, a media type, and a topic. That's why we set up those
other functions.

In order to pass all that additional information, we need to modify the format of our
link, so we have to refer back to Digg's documentation. Arguably, we could have
done this right off the bat in our proof-of-concept page, but it was good to first test
the basic functionality. Let's revisit our proof_of_concept.html page and try to use
a "fully qualified" link that passes along the extra attributes.

www.it-ebooks.info

http://www.it-ebooks.info/

Social Bookmarking

[56]

While tinkering with Digg's format on our proof_of_concept.html, we realized
a couple of things that may throw you off. First, submitting a page is a two-part
process, and only after Digg has evaluated your submission can you see whether or
not the attributes you passed actually came through. In short, it takes a bit of mouse
work to test if it is working properly.

Secondly, Digg uses "&" to separate name/value pairs in their URL instead of
the traditional "&". This might seem perplexing, but it has to do with URL encoding,
and "&" is actually correct.

We had to piece together various parts of the Digg documentation to get what we
wanted, but when we finished, our proof_of_concept.html file contained a link
that looked like this:

<a class="DiggThisButton DiggMedium" href="http://digg.com/
submit?url=http%3A//tipsfor.us&title=Tips%20For%20Us" rev="news,
tech_news">
This site will make you smarter.

In your browser—dynamic links
Before going further, take a moment to verify that the static proof-of-concept still
works and that all attributes are passed correctly. You can log into Digg.com using
your Facebook or Twitter account. If everything was passed correctly, you should
see a page on Digg.com that has all the information you specified in your proof-of-
concept link.

Unfortunately, at the time of writing, we had problems getting all attributes to pass
correctly. In particular, the description and the topic that we defined in our proof of
concept never showed up on Digg.com; they had to be re-entered manually. Rather
than trying to tell you that web service integrations like this are always peaches and
cream, this can be a good reality check: API's do not always work as advertised. It's
fairly common that the documentation is incomplete or the examples don't work. If
this frustrates you, then it should be a strong motivation for you to make sure that
your functions work and are documented properly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

Adding a button template
Now that we've tested it, let's update our diggthis_get_button() function so that
we can pass information dynamically using the full link format. We will now take
the opportunity to reference the other functions, even though they still are empty.
As always, it's important to keep your code as organized as possible, so we're going
to use the PHP sprintf() function to format our link string and replace instances
of "%s" with values returned by our functions. If you're not familiar with sprintf(),
take a moment to look over its manual page: http://php.net/manual/en/
function.sprintf.php. It's a really useful function for cleanly formatting strings.

We are also going to make use of a PHP constant. PHP constants are declared using
the define() function. Constants are declared in the global namespace, so like
functions, you have to be careful that their names are unique. Unlike variables, they
cannot be overwritten once defined, so they are perfect for configuration details that
should not be changed.

We're going to create a PHP constant in the section of our plugin that we have
earmarked for configuration details:

// Settings and/or Configuration Details go here...
define ('DIGGTHIS_BUTTON_TEMPLATE',
 '<a class="DiggThisButton DiggMedium"
 href="http://digg.com/submit?url=%s&title=%s"
 rev="%s, %s">

 %s

 ');

This constant contains instances of "%s", which will be replaced by PHP's sprintf()
function. Here's our updated diggthis_get_button() function, now using the
sprintf() function. Notice that we have used PHP's urlencode() function to
encode the values for $url and $title:

/**
* Adds a "Digg This" link to the post content.
*
* @param string $content the existing post content
* @return string appends a DiggThis link to the incoming $content.
*/
function diggthis_get_button($content) {
 $url = urlencode(_diggthis_get_post_url());
 $title = urlencode(_diggthis_get_post_title());
 $description = _diggthis_get_post_description();

www.it-ebooks.info

http://www.it-ebooks.info/

Social Bookmarking

[58]

 $media_type = _diggthis_get_post_media_type();
 $topic = _diggthis_get_post_topic();

 return $content . sprintf(
 DIGGTHIS_BUTTON_TEMPLATE,
 $url,
 $title,
 $media_type,
 $topic,
 $description);
}

There are more concise ways of writing this function that would have required
fewer variables, but here we are striving for clarity. Never optimize your functions
prematurely—your first priorities should always be functionality and readability. A
more conventional way to construct the link would have been via concatenation, as
shown below:

return '<a class="DiggThisButton DiggMedium"
 href="http://digg.com/submit?url=' . $url . '&title=' . $title.
'"
 rev="' . $media_type . ', ' . $topic . '"

 ' . $description. '

 ';

Concatenation works, but can you see how much more difficult it is to read?
Particularly, keeping track of the quotes and periods is prone to error, so we prefer
the sprintf() function. Its first argument is the string or template that contains
placeholders (that is %s). The following list of parameters correspond to values that
will replace the placeholders; the first instance of %s will be replaced by the value of
$url, and the second %s by the value of $title and so on. It can be an elegant way
to keep your code clean.

Getting the post URL
Let's start fleshing out the helper functions that retrieve the link's URL, title, and
other attributes. Can you see the logic of our approach here? We've framed the script
in a way that lets us develop gradually and test as we go, function by function.

We're going to start introducing some elements from the WordPress API to help us
get the information we need about each post. Our primary source of information
here is the WordPress function reference: http://codex.wordpress.org/
Function_Reference.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

Can you find a function that retrieves a post's URL? We did it using the get_
permalink() function. By default, it will return the URL of the current post, which is
what we want.

/**
* Gets the URL of the current post.
*
* @return string the URL of the current post.
*/
function _diggthis_get_post_url() {
return get_permalink();
}

It's worth mentioning that there are multiple ways we could have gone about this.
We have opted to use the built-in WordPress functions whenever possible because
we feel they offer a cleaner interface to the application. It is entirely possible,
however, to rely on WordPress variables instead. Look at the following variation on
the same function:

function _diggthis_get_post_url() {
 global $post;
 return get_permalink($post->ID);
}

Notice our use of the global keyword. This has nothing to do with the notorious
PHP security vulnerability that arises when register globals are enabled. Rather,
it is a command which instructs PHP to inherit the globally scoped variable of
that name, rather than creating a new locally scoped variable. In other words,
WordPress already has a global $post variable floating around, and we want to
use it. The $post variable is actually an object, and it has all kinds of information
about the current post. If you are curious, try temporarily printing its contents using
print_r() and observing the result when you refresh the page:

function _diggthis_get_post_url() {
 global $post;
print_r($post); exit; // <-- temporarily add this line if you're
curious!
return get_permalink($post->ID);
}

Once you've seen what's contained in the $post object, be sure to delete or comment
out the print_r and the exit lines.

Accessing post data directly from the $post object has some advantages, but in
general we feel it's clearer to rely on WordPress' accessor methods to retrieve post
attributes.

www.it-ebooks.info

http://www.it-ebooks.info/

Social Bookmarking

[60]

We could have forgone our custom function altogether, since the only thing it did
was to reference a single WordPress function. We did construct a sensible outline,
though, and we have isolated a single function dedicated to a single purpose, and
that clarity is useful.

In your browser—getting the post URL
Once you have implemented the _diggthis_get_post_url() function you should
be able to save your work and then refresh your home page in your browser. By
examining the source of the HTML, you should be able to see some values coming
through. In the HTML of our page, we can see that we are now getting a value for
the URL:

<a class="DiggThisButton DiggMedium" href="http://digg.com/subm
it?url=http%3A%2F%2Flocalhost%3A8888%2F%3Fp%3D1&title=" rev=", ">

We still have a lot of empty attributes, though, so let's keep going!

Getting the post title
We're going to do something very similar for the _diggthis_get_post_title()
function. First, we'll find a viable WordPress API function that can return the post's
title, and then we'll add it to our function earmarked for the purpose:

/**
* Gets the title of the current post.
*
* @return string the title of the current post.
*/
function _diggthis_get_post_title () {
$id = get_the_ID();
return get_the_title($id);
}

As before, save the result and check the result in your browser.

Getting the description
Getting the post description is slightly more complicated because Digg requires that
the excerpt be no longer than 350 characters. There are some built-in WordPress
functions that return excerpts, but nothing does exactly what we want. So, we're
going to roll up our sleeves and write our own function that grabs the first 350
characters of the content.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

We have to think a bit more ahead, though. Digg wants only text, but our content
may contain HTML tags or WordPress shortcodes (more about those in a later
chapter). So we need to make sure we strip all of those out of the excerpt before we
count our 350 characters.

Lastly, we want to make sure that we don't chop a word in half when we return the
excerpt. As we are perfectionists, we are going to ensure that only whole words are
sent to Digg for their description.

The following is the function we came up with. Note that we used WordPress's
strip_shortcodes() function and PHP's strip_tags() function:

/**
* Gets a short description/excerpt of the post from the content.
*
* @return string stripped of html tags and shortcodes.
*/
function _diggthis_get_post_description() {
 $excerpt = get_the_content();
 $excerpt = strip_shortcodes($excerpt);
 $excerpt = strip_tags($excerpt);
 $excerpt = substr($excerpt,0, 350);
 $words_array = explode(' ', $excerpt);
 $word_cnt = count($words_array);
 return implode(' ', array_slice($words_array, 0, $word_cnt - 1));
}

Wow. We did some crazy stuff in there. Let's walk you through what we did. Firstly,
we retrieved the post content using WordPress' get_the_content() function. Next,
we removed WordPress shortcodes from the content using WordPress' strip_
shortcodes() function. Shortcodes are macro codes that can appear in your post
content, so they can throw off the total number of characters in a text-only excerpt.
We also need to remove any HTML tags from the excerpt, so for that we used PHP's
strip_tags() function. After those functions have operated on the content, we
should have only raw text, of which we need only 350 characters. The next few
functions help us prevent chopping a word in half—if we had simply grabbed 350
characters from the raw content, chances are that we'd end up with half a word at
the end of our excerpt, and that's just as bad as half a worm in your apple. The way
we prevent chopping a word in half means that we grab the first 350 characters
using PHP's substr() function, then we effectively count the words using PHP's
explode() function, which converts the string to an array of words. Since the last
word in that array might be half a word, we omit the last word from the excerpt
using the count() function and the array_slice() function. Finally, we glue the
array of words back together using the implode() function. Our solution here might
be somewhat complicated, but it is thorough enough to cover our bases.

www.it-ebooks.info

http://www.it-ebooks.info/

Social Bookmarking

[62]

Getting the media type
The media type is not something we are going to support in this first version, so we
are going to return a static value from our function:

/**
* Get the media type for the current post
*
* @return string a valid media type: news, image, or video.
*/

function _diggthis_get_post_media_type() {
return 'news';
}

"Shenanigans!" you might be saying. "That's not legit!" Calm down. It is actually quite
common for programmers to earmark certain functionality as "Future" or "To-Do". We
should be happy that we've isolated this particular functionality into its own function,
and if we so choose, we can at a later date make this plugin dynamically determine the
media type. However, for now, we're going to leave it alone.

It would be a great exercise for the reader to figure out a way to determine whether
a post's media type was "image" or "video". We can give you a hint: search for "post
types".

Getting the post topic
The post topic is something that we could return statically as well, but there is the
possibility that our post has been grouped into a category that might match up
favorably with a Digg topic. From Digg's documentation, we can see a list of viable
topics: arts_culture, autos, baseball, and so on. If our site is predominantly
about baseball, then we could set this to a static value and forget about it, but let's do
this instead: if one of a post's categories matches up with one of Digg's topics, we'll
use that as the topic, but if not, we'll fall back on a default topic.

To accomplish this plan, we're going to use another PHP constant in our script in the
area we've reserved for settings and configuration details:

// Must be one of the allowed Digg topics: http://about.digg.com/
button
define ('DIGGTHIS_DEFAULT_TOPIC','tech_news');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

For our site, we've decided to use tech_news as our default. Like before, we're going
to look through the available WordPress functions to use in our _diggthis_get_
post_topic() function. We can get all of a post's categories using WordPress' get_
categories() function. Then we need to see if any of them match up with the viable
Digg topics. The following is how we did it:

/**
* Checks current post categories to see if any WP Category is a viable
* Digg topic; if yes, return the first match. Otherwise, the
* DIGGTHIS_DEFAULT_TOPIC will be returned.
*
* @return string a viable Digg topic.
*/
function _diggthis_get_post_topic() {

 $digg_topics_array = array(
 'arts_culture','autos','baseball','basketball','business_
finance',
 'celebrity','comedy','comics_animation','design','educational',
 'environment','extreme_sports','food_
drink','football','gadgets',
 'gaming_news','general_sciences','golf','hardware','health',
 'hockey','linux_unix','microsoft','mods','motorsport',
 'movies','music','nintendo','odd_stuff','olympics','other_sports',
'pc_games','people','pets_animals','playable_web_games','playstation',
 'political_opinion','politics','programming','security','socc
er',
 'software','space','tech_news','television','tennis','travel_
places',
 'world_news','xbox',);

 $category_array = get_categories();

 foreach ($category_array as $cat) {
 // WP replaces spaces w '-', whereas Digg uses '_'
 $category_name = preg_replace('/ \-/','_',$cat->category_
nicename);
 if (in_array ($category_name, $digg_topics_array)) {
 return $category_name;
 }
 }

 // if no match, then fall back to the default
 return DIGGTHIS_DEFAULT_TOPIC;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Social Bookmarking

[64]

We have used WordPress' get_categories() function to retrieve all the categories
that the current post has been placed in. We can iterate through these categories and
use the PHP in_array() function to determine if a category matches any of Digg's
topics. We have to manipulate WordPress' categories a bit so they match up with the
Digg topics: we replace spaces and dashes with underscores. We have opted to use
PHP's powerful preg_replace() function for this purpose, but we could have used
the str_replace() function as well:

$replace_me = array(' ', '_');
$category_name = str_replace($replace_me, '_', $cat->category_
nicename);

Although str_replace() and similar functions are simpler to understand, the
preg_replace() function offers a flexible solution using Perl's powerful regular
expressions. Regular expressions represent a huge topic in and of themselves, so we
can't get too far into their syntax. However, if you ever use other program languages,
it's more likely that you will end up using the Perl syntax, so we favor its use.

In your browser—title, description, and topic
Once you complete this function, your Digg button should be fully functional! Try
refreshing your home page and clicking your Digg button. Verify whether the title,
description, and the topic come through to the Digg page when you click on the
button. If you are developing locally on your computer, remember that Digg will
complain that the URL is not properly formatted, so you can temporarily modify your
_diggthis_get_post_url() function to return the URL of a publicly available page:

function _diggthis_get_post_url() {
 return "http://www.tipsfor.us/"; // <-- temporary for testing
 // return get_permalink();
}

Be sure to change the function back to normal after testing.

Checking WordPress versions
It is common for scripts to perform some "pre-flight" tests at runtime to ensure
that they can execute correctly. Common examples of these types of tests include
checking the version of PHP or of WordPress. To avoid any potential catastrophes
that could occur if our plugin is activated on incompatible WordPress versions, we
will perform a simple WordPress version check, and you can use this format as a
guideline for how you might perform similar pre-flight tests. Let's add another PHP
constant to define the minimum version of WordPress required. We want this plugin
to require WordPress version 3 or greater:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

define('DIGGTHIS_MIN_WORDPRESS_VERSION', '3.0');

Again, we place this near the top of our plugin in the area we allotted for
configuration and settings.

In order to check the current version of WordPress, we can use the global WordPress
variable $wp_version. We can then use the PHP function version_compare() to
compare the current version with the minimum required. The following is how we
updated the diggthis_check_wordpress_version() function:

/**
* Checks that the current version of WordPress is current enough.
*
* @return none exit on fail.
*/
function diggthis_check_wordpress_version() {
 global $wp_version;

 $exit_msg='"Digg This" requires WordPress '
 .DIGGTHIS_MIN_WORDPRESS_VERSION
 .' or newer.
 Please
update!';

 if (version_compare($wp_version,DIGGTHIS_MIN_WORDPRESS_
VERSION,'<'))
 {
 exit ($exit_msg);
 }
}

This will ensure that only users who are running WordPress 3.0 or later will be able
to use the plugin. Technically, everything we've done would work on many older
versions of WordPress, but since we authored this plugin on WordPress 3, it's best
not to assume that it will work on older versions.

To execute this function, we will tie into the same init method as we did before.
Simply add this below our existing add_action() and add_filter() functions:

add_action('init', 'diggthis_check_wordpress_version');

To ensure that this works, try temporarily changing the minimum version constant:

define('DIGGTHIS_MIN_WORDPRESS_VERSION', '4.0');

www.it-ebooks.info

http://www.it-ebooks.info/

Social Bookmarking

[66]

Save your file and refresh your browser. You should see the $exit_msg displayed:

"Digg This" requires WordPress 4.0 or newer. Please update!

Once you've verified that the error message works, you can change the constant back.

Summary
We've gone through a lot of topics in this chapter, and we've taken you step by step
through a sensible development flow. Here's what we've covered:

•	 Structuring a plugin: How to prepare an outline of key components and
implement them slowly, allowing you to test as you go

•	 Accessing post information: Different ways of obtaining data from the post
such as title, permalink and content

•	 Checking WordPress version: How to check that our plugin is compatible
with the user's version of WordPress

•	 Using WordPress hooks: How to use actions and filters to get to trigger
functions in our plugin

•	 Include external JavaScript files in your plugins using WordPress' wp_
register_script() and wp_enqueue_script() functions

Now that we've learned a bit more about WordPress hooks, the API, and how
to handle some of the external files, we are ready to look at some more complex
code patterns. We will do this in the next chapter as we improve upon the built-in
WordPress search feature.

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search
In this chapter we will continue our exploration of the WordPress universe by using
Ajax to create a cleaner user experience for the WordPress site search form. Don't
worry if you've never used Ajax before. We'll explain what it is, how to use it in your
plugins, and also how to debug it.

In this chapter, you will:

•	 Learn a bit about Ajax
•	 Augment the default search functionality using jQuery and Ajax
•	 Learn how to include Ajax functionality in your plugins
•	 Create a plugin that displays search results automatically without you

having to submit the form
•	 Learn techniques for debugging Ajax scripts
•	 Learn how to tie jQuery into your plugins
•	 Learn how to test your PHP version
•	 Use more API features
•	 Create a plugin that uses classes and external files
•	 Learn some templating techniques for creating skins that are easy to maintain

What is Ajax?
Ajax stands for "Asynchronous JavaScript and XML". Once merely a party trick of
Web 1.0 sites, Ajax has now firmly established itself as the wunderkind component
of interactive Web 2.0 and Web 3.0 sites. Despite its impressive resumé, don't forget
that on a functional level, everything that is done with Ajax can also be done without
Ajax—its only function is to enhance user experience. Any site built with Ajax can be
fully operational without Ajax, albeit with more mouse clicks.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[68]

The following is a simple but relevant example: go to http://www.pandora.com or
http://www.google.com and try searching for something. You'll notice that search
results appear without you having to submit the form.

You didn't have to click anything. This is the magic of asynchronous JavaScript. You
received your search results and the page did not have to reload. We have all been
on websites where we had to click a button to submit a form, but the user experience
is smoother when Ajax is used.

To help demonstrate how this all happens, have a look at the following diagrams
that compare a "normal" search form to an Ajax search form. In a normal search
form, the user requests the first page containing the search form, and then a second
page is requested when the user submits the form. Two page requests are made, both
by the user.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

The Ajax search form also makes two page requests, but instead of the user making
both requests, the user requests only the first page, then the page makes the second
request. The Ajax page acts like a browser.

Can you see how the Ajax scenario might be harder to debug? Instead of any error
messages being delivered to you, they are delivered to the page that made the
request, and unless you are looking for them, you might never realize that a problem
occurred.

The slick features and smooth interface that Ajax sites provide come at a price.
Special JavaScript functions have to be loaded and there are hidden dependencies
on other pages. In short, Ajax-enabled pages are larger and thus slower to load, and
their added complexity makes them more difficult to test and troubleshoot. As you
design and develop plugins and pages, be sure to evaluate whether the clean Ajax
interface is an absolute necessity or merely a "nice to have".

WordPress includes jQuery, a popular JavaScript library that makes it easy to
perform Ajax tasks. Most importantly, jQuery solves many of the cross browser
issues that plague many JavaScript functions. If you have never used jQuery
before, then this chapter will introduce you to some of what it can do. If you are
already familiar with jQuery, this chapter will show you how well it integrates with
WordPress.

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[70]

"Why use Ajax?" you might ask yourself. To answer that question, it's worthwhile to
review the mechanics of how a web page works. When a browser requests a page,
the web server constructs it using server-side technology such as PHP and then
sends the assembled page to your browser. After the page request has been fulfilled,
it is out of PHP's hands. JavaScript, however, can run client-side on the user's
browser. It is for this reason that it is extremely valuable. It can do things long after
PHP has packed up and gone home.

The overall plan
In order to demonstrate how to integrate Ajax into your WordPress plugins, we've
chosen a textbook example: automatically showing search results. Later in this book,
we'll use Ajax to do more complicated things, but first we're going to cover the basics
by breathing life into the standard search widget.

If you don't have the search widget enabled on your site, enable it now so you can
see what we're talking about. In the WordPress manager, click on the Appearance |
Widgets link and then drag the Search widget into the Primary Widget Area so that
it becomes active. On a tangential note, WordPress uses Ajax to save your widget
selections without you having to click anything.

Take a look at your home page to verify that you see the search widget. Try
searching for a few terms to get a feel for how this process works.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

Pretty basic, eh? You've seen this type of thing before, but let's take a moment to talk
about what is really going on here. On a technical level, here is what happens when
you perform a simple search:

1. You type a search term, for example, "sparky".
2. You submit the form—in this case it submits to same page via the "GET"

method. After submitting, you can see the query term in your URL, for
example, http://yoursite.com/?s=sparky.

3. The data is sanitized and a database query is constructed.
4. The database executes the query and returns zero or many rows matching

the criteria.
5. The results are formatted and displayed on the results page.

We don't want to change the behavior of the normal results page—we just want to
have some "live" results that appear without the user having to submit the form. So
in order to do that, we need to do a few extra things.

A common Ajax implementation for this type of situation uses the following
components:

•	 The original page (just as we have with our standard search form)
•	 Another page that executes a search and provides "naked" search results that

are meant to be dynamically inserted into the original page
•	 An Ajax script on the original page that fetches the data from the other page

and inserts it dynamically into the original page

Remember that the other page's sole purpose is to provide a payload meant for
the original page; it is never visited by the normal user. The original page uses a
CSS selector to designate where this payload will be placed, for example, <div
id="ajax_search_results_go_here"></div>.

The proof of concept mock up
Just like we did in the previous chapter, we're going to mock this up using static
HTML before we try to do it dynamically. This forces us to test the solution in its
simplest implementation (remember: test early and often). Our goal with this mock
up is to test the necessary JavaScript—we'll deal with the PHP components later.

First, let's copy the HTML from our home page into a new file:

1. Go to your site's home page, then view the source HTML (you can right-click
the page or look under the browser's View menu).

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[72]

2. Do a Select all from your browser's Edit menu, copy the text, then paste it
into a new file named mockup.html.

3. Save the mockup.html file to the root of your site—this will ensure that paths
to assets remain the same.

4. Visit this page in your browser (http://yoursite.com/mockup.html) and
verify that it displays correctly.

Now we need to choose where to display the search results. We are choosing to show
our dynamic search results right below the search box, just as they do on Facebook
and on Pandora. By searching for the <form> tag, we can find where we need to
insert our HTML, and we're going to make sure we use a unique ID attribute in the
<div> tag.

Here is the excerpt of our static HTML mock-up. We have added the ajax_search_
results_go_here div following the closing </form> tag:

<h3 class="widget-title">Built In WordPress Search Widget</h3>

<form role="search" method="get" id="searchform" action="http://
localhost:8888/" >
 <div>
 <label class="screen-reader-text" for="s">Search for:</label>
 <input type="text" value="" name="s" id="s" />
 <input type="submit" id="searchsubmit" value="Search" />
 </div>
 </form>
 <div id="ajax_search_results_go_here">
 <div id="ajax_search_results">

 First result
 Second result
 Third result
 More...

 </div>
 </div>

Let's go ahead and add a wee bit of styling to the page so we can more easily see the
results. Put the following into your page's head:

<style type="text/css">
 #ajax_search_results {
 background: gray;
 border:1px solid black;
 padding:5px;
 width:115px;
 }
</style>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

Notice that we're using two nested div tags (this helps isolate our styling) and that
we are putting some styling information in-line for now; this is not best practices,
but it is only temporary! Later, we will put the styling information into a dedicated
CSS file. Don't waste too much time styling your search results yet—let's get the
functionality in place first.

The following is what it looks like in a browser:

Next, let's mock up the second page. It will generate mock search results meant to
be used on the first page, so for now we can just copy and paste our unordered list
to this page. Paste your sample search results into a new file named ajax_search_
results.php:

 <div id="ajax_search_results">

 First result
 Second result
 Third result
 More...

 </div>

Remember, that's the only thing in ajax_search_results.php: there are no <html>,
<head>, or <body> tags.

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[74]

By now you should have two self-contained pages: mockup.html and ajax_
search_results.php. Our next task is going to be setting up the JavaScript that will
dynamically manipulate access and modify the content of these pages. Make sure
you can navigate to each of these pages in your browser before continuing.

Hooking up jQuery
Some PHP developers don't like dealing with JavaScript because it can be more
difficult to debug. If you are in this camp, we can sympathize with you—we're going
to take things slowly so that we can verify exactly what is happening in our mockup.
Here's a task list of everything we're going to be doing with jQuery:

1. Test that jQuery is loading.
2. Writing HTML dynamically into a target div.
3. Create the target div automatically (and continue to write HTML to it).
4. Create a listener that is triggered when someone types a search term.
5. Get HTML from ajax_search_results.php after passing it the search term.

Test that jQuery has loaded
The first thing we are going to do is ensure that the jQuery library is loading. In your
mockup.html file, add a line that includes jquery.js, something like the following:

<script type="text/javascript" src="http://yoursite.com/wp-includes/
js/jquery/jquery.js"></script>

WordPress ships with jQuery and it is enabled by certain themes and plugins, so it
may already appear in your mockup.html.

Let's brush up our JavaScript debugging chops right off the bat and verify that
jQuery has indeed loaded correctly. We're going to use the FireBug console for a
lot of things in this chapter, so make sure you've got the FireBug plugin installed
in Firefox, as we mentioned in the first chapter. It is imperative you have this plugin
installed—it is nearly impossible to debug JavaScript without it.

Add the following script tag to the end of your mockup.html head (make sure this
comes after the jquery.js include):

<script type="text/javascript">
 jQuery.noConflict();
 console.log(jQuery().jquery);
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

Now refresh the mockup.html page in Firefox and open up the FireBug console. This
is done by clicking the little lightning bug icon at the bottom of your Firefox window
and then selecting the Console tab. You should see the current jQuery version
printed to the console:

If you do not see the valid version number and instead see an error saying that
jQuery is not defined, then you know that the jQuery library was not loaded
correctly—double check the path to wp-includes to ensure you are including the
right file. Maybe you put the carriage before the horse. Remember that the jquery.
js file must be loaded before our test script which makes use of it.

What happened?
The noConflict method is used to avoid conflicts in JavaScript libraries that can arise
when too much shorthand is used—different JavaScript libraries use the "$" variable
in different ways. jQuery uses the "$" variable as an alias for the jQuery object, so we
could have used the following function to retrieve the jQuery version:

$().jquery;

However, we have opted instead to use the verbose form in our examples, and we
went one step further in conflict resolution by running the jQuery.noConflict()
function, which destroys the "$" variable entirely. Strictly speaking, for these
examples the noConflict method is probably unnecessary but we introduce it here
to remind the reader that conflicts between libraries may occur.

Once you have verified that jQuery is loading you can remove the console.log()
statement.

Using the FireBug console directly
To further your understanding of FireBug, let's point out one thing quickly, anything
that you enter into a <script> tag can be typed directly into the FireBug console. Try
pasting the console.log(jQuery().jquery); statement into the right-side of the
FireBug console, and then clicking on Run. The result is the same as it would have
been if you had put the statement into a <script> tag and reloaded the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[76]

This is a useful way to check variable values without having to edit the page.

Writing HTML dynamically to a target div
Now that we have jQuery loaded, let's take advantage of the cool features it brings
to the table. We're going to use it to dynamically insert text into our page. Before we
try bringing in content from a separate page, let's keep it in the house and try writing
text from our script to a div tag in the same file.

To prepare, delete the sample search results from mockup.html—we just want an
empty div tag, like this:

<div id="ajax_search_results_go_here"></div>

Let's start things off with a common mistake. You can set the contents of a particular
div using jQuery's .html method, so you would think the following would be a
valid way to write text to our page (where #ajax_search_results_go_here is a
valid CSS selector identifying our empty <div> tag). Try adding this script to the
document head in mockup.html:

<script type="text/javascript">
 // This won't work!!!
 jQuery('#ajax_search_results_go_here').html('Tripmaster
Monkey!');
</script>

If you refresh the page, you won't see any new text inserted inside the <div
id="ajax_search_results_go_here"></div>, but why? It has to do with timing.
Remember that the page loads head first, top down. So when your browser reads
this script in the document head, the rest of the page has not yet loaded. As far as the
browser is concerned, it doesn't even exist yet!

If you're curious to test this, try putting that script at the end of the page right before
the closing </body> tag. Then it will work, because the HTML will have loaded by
that point.

So in order to make this work in the head of the document, we have to tell it to wait
until the page has loaded. jQuery does this through the use of the .ready() function.
Let's modify our script:

<script type="text/javascript">
 jQuery(document).ready(main);

 // Runs once the DOM is ready
 function main()
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

 jQuery('#ajax_search_results_go_here').html('Tripmaster
Monkey!');
 }

</script>

Here we've created a JavaScript function and we've referenced it by name as an
argument to the .ready() function. Now when you refresh your mockup.html page,
you should see the Tripmaster Monkey! text just below the search box:

Multi-line strings
Let's point out a few things before moving on (hey, we warned you that JavaScript
can be more difficult to debug). If you received an error message in the FireBug
console about an "unterminated string literal", it's because your HTML text contained
a carriage return, and JavaScript is more sensitive to multi-line strings than PHP.
Your HTML text must appear all on one line, or you must separate it in a way that
JavaScript respects. Consider the following options for separating multi-line strings:

<script type="text/javascript">

 var multiline_str1 = 'Well,'
 + 'well,'
 + 'well...';

 var multiline_str2 = 'Something \
 something \
 something \
 Dark Side';

 var invalid_multiline = 'They
 killed
 Kenny!'; // <-- Invalid!

</string>

The first two examples are valid, but the third will cause JavaScript to error out. If
you are not using FireBug, you might never see the error message! Consider this
your last warning to install and use FireBug.

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[78]

Viewing the generated page
Let's point out something else here that's really important. When you start
manipulating pages using JavaScript, it becomes more difficult to see what's going on.
As a web developer, you are probably accustomed to viewing the source HTML of a
page (for example, View | Page Source). If you've got the "Tripmaster Monkey" text
from our previous example being added dynamically to your target div, go ahead and
try viewing the page source. According to "View Source", the target div is still empty.
What happened? Remember that the source HTML is created when the page is loaded,
and everything we're doing with jQuery occurs after the page has loaded.

It's a bit maddening because the HTML that you look at may no longer bear any
resemblance to the HTML that first arrived from the web server. For example, when
a web page gets hacked, JavaScript is often used to completely alter the page. Viewing
the page source only tells you what the HTML looked like when it left the server,
sort of like the police description of a missing person.

An extremely useful tool for dealing with this problem comes in the form of another
Firefox add-on that we mentioned back in the first chapter: the Web Developer
toolbar (available at https://addons.mozilla.org/en-US/firefox/addon/60). It
has an option to View Generated Source which shows you the actual condition of
the page after any JavaScript manipulations.

When we use the Web Developer Toolbar and View Source | View Generated
Source, we can see our text both in the head and where we inserted it in the target
div. We highly recommend using this plugin to check your work as you manipulate
pages using JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

Anonymous functions
Another thing that can be difficult for PHP developers is JavaScript's use of anonymous
functions. This language construct is not available to PHP until version 5.3.0, so the code
pattern may be unfamiliar to you. The gist is that you can put an unnamed function
where you would put a function callback. Consider our earlier script:

<script type="text/javascript">
 jQuery(document).ready(main);

 // Runs once the DOM is ready
 function main()
 {
 jQuery('#ajax_search_results_go_here').html('Tripmaster
Monkey!');
 }
</script>

And now consider this variation that uses an anonymous function in place of the
named function callback ("main" in our example):

<script type="text/javascript">
 jQuery(document).ready(function(){
 jQuery('#ajax_search_results_go_here').html("Tripmaster
Monkey!");
 });
</script>

Generally, we feel anonymous functions are a bit harder to read, but it is important
to point out how they are used because they are used frequently in JavaScript
examples on the Web.

Now that we've brushed up our JavaScript chops, let's get back to the tasks at hand.

Adding a div on the fly
We are walking you through this process step by step so you can test your work
as you go and hopefully keep any frustrations to a minimum. In our mockup.html
page, we manually added the <div id="ajax_search_results_go_here"></div>
to hold our search results, but this was really a crutch. In WordPress, we may not
have the luxury of manipulating the search form's HTML—this widget is built into
the core, so it is especially hard to get to. Besides, we prefer to create plugins that are
template agnostic, and we don't want to edit templates unless we absolutely have to.

Our solution to this is to use jQuery to add the div on the fly. We can use
the .append() method to write the div to the list item identified by <li
id="search-2"> (this is the list item that houses the search form).

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[80]

1. First, delete the <div id="ajax_search_results_go_here"></div> from
mockup.html.

2. Next, modify the JavaScript in your document head to use the .append()
method:
<script type="text/javascript">

 jQuery(document).ready(main);

 function main()

 {

 // Create a div where we can dynamically send results

 jQuery('#search-2').append('<div id="ajax_search_results_go_
here"></div>');

 // Write some text to the target div

 jQuery('#ajax_search_results_go_here').html('Tripmaster
Monkey!');

 }

</script>

3. Save your work and refresh the mockup.html page in Firefox.

If everything worked, you should see the exact same results. Use the Web Developer
toolbar's View Source | View Generated Source to verify that the div tag and the
sample content are being placed correctly inside the "search-2" . Remember,
you can't write HTML to the ajax_search_results_go_here element unless that
element exists.

Create a listener
Next, we need to add a listener to the form. When someone begins typing a search
term, we need to capture the input before they submit the form. We are going to listen
for the keyup event inside the search query box: <input id="s" type="text" />.

jQuery can use any valid CSS selector to identify a page component, but we've been
sticking to id tags for simplicity. Let's modify our JavaScript once again:

<script type="text/javascript">

 jQuery(document).ready(main);

 function main()
 {
 // Create a div where we can dynamically send results
 jQuery('#search-2').append('<div id="ajax_search_results_go_
here"></div>');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

 // Listen for changes in our search field (<input id="s" >)
 jQuery('#s').keyup(get_search_results);
 }

 function get_search_results()
 {
 // Write some text to the target div
 jQuery('#ajax_search_results_go_here').html('Tripmaster
Monkey!');
 }

</script>

We added another function to the mix: get_search_results. For now, the expected
behavior is that the "Tripmaster Monkey" text should only appear after a keyup
event has occurred in the search box. Save your work and refresh the page. Try
typing something in the search box to verify that "Tripmaster Monkey" appears after
you've typed something in the search box.

Again, we've opted for the use of a callback function (get_search_results) instead
of an anonymous function; this creates a bit of a waterfall effect: the .ready()
method calls the "main" function, and the .keyup() method calls the get_search_
results. Too much waterfall is confusing: feel free to structure your code differently
if you feel it would make it clearer.

Fetching data from another page
Up until now, we've been writing sample text to our target div locally, from within
the same page. The final component in our mockup is to grab the text from an
external file, ajax_search_results.php, and insert it into the mockup.html page.
jQuery makes it easy to grab data asynchronously from an external page. All we
need to do is to make use of jQuery's .get() method.

We are going to take this opportunity to refine the get_search_results function
so it requests the ajax_search_results.php page only if more than two characters
have been typed into the search box. This is simply a practical matter: we won't
get very meaningful search results with character combinations shorter than three
letters. We are also now passing data to the ajax_search_results.php page via the
second argument to the .get() method. We are passing the search query inside of
the $_GET['s'] array.

We are also going to add some documentation to our functions to make them easier
to understand and easier to read. Since these are JavaScript functions, we will forgo
the PHPDoc syntax for commenting them. Update the JavaScript in mockup.html so
it matches the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[82]

<script type="text/javascript">

 jQuery(document).ready(main);

 function main()
 {
 // Create a div where we can dynamically send results
 jQuery('#search-2').append('<div id="ajax_search_results_go_
here"></div>');

 // Listen for changes in our search field (<input id="s" >)
 jQuery('#s').keyup(get_search_results);
 }

 /*--
 SYNOPSIS:
 Query our external search page
 INPUT:
 none; reads values from the id='s' text input (the search query)
 OUTPUT:
 triggers the write_results_to_page() function, writes to console
for logging.
 ---*/
 function get_search_results()
 {
 var search_query = jQuery('#s').val();

 if(search_query != "" && search_query.length > 2) {
 jQuery.get("ajax_search_results.php", { s:search_query },
write_results_to_page);
 }
 else
 {
 console.log('Search term empty or too short.');
 }
 }

 /*--
 SYNOPSIS:
 Write the incoming data to the page.
 INPUT:
 data = the html to write to the page
 OUTPUT:
 Writes HTML data to the 'ajax_search_results_go_here' id.
 ---*/
 function write_results_to_page(data)
 {
 jQuery('#ajax_search_results_go_here').html(data);
 }

</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[83]

We added some console logging, so you should see some messages coming across as
you type a search term. If all went well, the HTML from the ajax_search_results.
php page should be inserted into the mockup.html page as soon as you type three or
more characters into your search field.

If you are having problems, double check your spellings and make sure that you
have used the correct identifier in your JavaScript functions. The FireBug console
should help you isolate errors. Make sure you have the mockup working before you
go on. Our goal here was to complete a proof-of-concept mockup using the necessary
Ajax functions, and we've done that entirely without PHP. Make sure it's working
without PHP before continuing. The next step will be porting this over into a plugin
where we will be dealing with the added complexity of PHP and WordPress.

Creating our plugin
Now that we have a working mockup, we can finally create our plugin. As before,
we will start with a simple outline and then flesh it out. This time, however, we're
going to introduce a new structure for our plugin and its related files, including
several directories and PHP classes. Learning good organization and some object-
oriented structures is an important step in your education as a developer.

We are choosing the name "Live Search" for our plugin, so our first step is to create a
directory named live-search inside the wp-content/plugins/ directory.

Inside that directory, we recommend the following items:

•	 An index.php file which houses the Information Header for the plugin
•	 A directory for style sheets, named css
•	 A directory for images, named images
•	 A directory for included PHP files, named includes
•	 A directory for JavaScript files, named js
•	 A directory for tests, named tests

You may not need all these directories for this plugin, but it is a useful structure.

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[84]

Before we start creating files and our outline, let's take a moment to think through
the overall tasks our plugin must perform:

•	 Test the version of PHP
•	 Include a CSS stylesheet in the document head
•	 Include some JavaScript in the document head
•	 Handle Ajax requests and return search results

We covered all of this in our mockup, but this time we are not going to have a
simple one-to-one correlation with public functions and WordPress events. The
Ajax search handler has to act as its own standalone page, and there are some
caveats involved with using JavaScript that needs to inherit values from PHP. This
is about the simplest Ajax scenario we could come up with, but you'll find that its
implementation isn't quite as linear as our previous plugin. Let's get started.

Creating index.php and activating the plugin
We want to activate our skeleton plugin as early as possible so that we can test
if there are any errors. So let's create the index.php file inside the live-search
directory. We know that at a minimum, we need to have an Information Header
inside the file, so let's add that now. If you have forgotten the format, just copy it
from the "Hello Dolly" plugin like we did in the previous chapter.

We're also going to sketch out a couple of items in this file because we know we need
to add more to it to make it a viable plugin. The following is what our index.php looks
like:

<?php
/*---
Plugin Name: Live Search
Plugin URI: http://www.tipsfor.us/
Description: Sample plugin for integrating jQuery with your WordPress
plugins
Author: Everett Griffiths
Version: 0.1
Author URI: http://www.tipsfor.us/
--*/
// include() or require() any necessary files here...

// Tie into WordPress Hooks and any functions that should run on load.

/* EOF */

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

You should notice right away that it's a bit simpler than the outline we introduced
in Chapter 3. That's because we are going to move the public and private functions
associated with this plugin into a PHP class file that will live inside the includes/
directory.

Once you've created the index.php file, log in to the WordPress administration area
and activate the plugin. Try visiting your homepage and verify that no errors are
showing. We might sound like a broken record, but it's so much easier to test your
code now when it's simple!

Creating our first PHP class
PHP classes come in two flavors: objects and libraries. We're going to introduce you
to the latter. What we want here is simply a collection of functions under one roof.
This helps us stay organized by keeping related functions together and it helps us
avoid conflicting function names. PHP classes are a more mature solution to the
namespace problem.

It is standard practice in PHP programming to capitalize the first letter of your class
name. Most often, there is only one class per file and the filename uses the same
naming convention as the class. The first letter is capitalized.

Inside our plugin's includes/ directory, let's create a file named LiveSearch.
php. We're going to outline a couple of functions in it—it's hard to know exactly
what we're going to need beforehand, but we're going to take a stab at the public
functions. If we need to add more, we can always do that later. Here is what our
outline inside of includes/LiveSearch.php looks like:

<?php
/**
* class LiveSearch
*
* Adds basic Ajax functionality to the built-in WordPress search
* widget: it displays results matching your query without the user
having to
* submit the form.
*/
class LiveSearch
{
 const plugin_name = 'Live Search';
 const min_php_version = '5.2';

 /**
 * Adds the necessary JavaScript and/or CSS to the pages to enable
the Ajax search.

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[86]

 */
 public static function head() {

 }

 /**
 * The main function for this plugin, similar to __construct()
 */
 public static function initialize() {

 }
}
/* EOF */

Notice that we are declaring our functions using the static keyword. This is what
makes our class a library of related functions instead of an object that must be
instantiated—we do not need to instantiate our class using the new keyword.

Since we are now using PHP classes, we get to use visibility keywords for our
functions and variables in our class, so when we say that a function is "public" or
"private", now we really mean it. From the PHP manual:

A property or method can be defined by prefixing the declaration with the keywords
public, protected or private.

Before we only earmarked functions as public and private, but now we actually
can control access to them. This is a more advanced feature that is only available
in later versions of PHP, but remember that WordPress 3.1 and later versions
will require PHP version 5.2 at a minimum. Public functions can be called from
anywhere, simply by prefacing their name with the name of the class, for example,
LiveSearch::initialize();. Private functions, you will see, can only be called
from inside the class where they were declared.

We have also added a couple of class constants to our class. These are similar to PHP
constants that were defined using the define() function, but class constants are
defined using the const keyword. In order to retrieve their value, you must include
the class name, for example:

<?php print LiveSearch::min_php_version; ?>

Now that we've created our first class, let's hook it up to index.php and make sure
it works.

Updating index.php
In order to use the functions in our new class, we simply have to include it. Modify
your index.php file to include the includes/LiveSearch.php file:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

// include() or require() any necessary files here...
include_once('includes/LiveSearch.php');

Save it, then refresh your homepage and check for errors.

Next, let's add a couple of actions to the index.php file so we can make use of the
two functions we outlined. We are going to tie into the init and wp_head actions, so
the following is what our index.php looks like:

// Tie into WordPress Hooks and any functions that should run on load.
add_action('init', 'LiveSearch::initialize');
add_action('wp_head', 'LiveSearch::head');

Notice how we have called the static functions by including the name of the class.
Do you see how much cleaner those names are? We could have also used the
following syntax:

add_action('init', array('LiveSearch', 'initialize'));

This latter version is the required method for calling functions in an object; we
got by with the LiveSearch::initialize version because we were dealing with
static functions. If you're curious about the specifics of the syntax, refer to the PHP
documentation for the call_user_func() function: http://php.net/manual/en/
function.call-user-func.php.

Save the index.php file and refresh your homepage again. If you have any errors,
clean them up now while your classes are virtually empty. The most common causes
of errors at this point are missing braces "}" or semicolons ";"—sometimes the line
number that PHP references in its error message is several lines after the missing
brace or semicolon, so keep your eyes peeled.

Testing your version of PHP
We are going to create another PHP class where we can store testing functions.
Create a file named Test.php inside the tests directory. The following is what we
have written for tests/Test.php:

<?php
/**
* class Test
*
* Basic library for run-time tests.
*/
if (!class_exists('Test')):
class Test
{

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[88]

 /**
 * min_php_version
 *
 * Test that your PHP version is at least that of the $min_php_
version.
 * @param $min_php_version string representing the minimum
required version of PHP, e.g. '5.3.2'
 * @param $plugin_name string Name of the plugin for messaging
purposes.
 * @return none Exit with messaging if PHP version is too old.
 */
 static function min_php_version($min_php_version, $plugin_name) {

 $exit_msg = "The '$plugin_name' plugin requires PHP $min_php_
version
 or newer. Contact your system administrator about updating
your version of PHP";

 if (version_compare(phpversion(),$min_php_version,'<'))
 {
 exit ($exit_msg);
 }
 }
}
endif;
/*EOF*/

This is a useful library we are building. We can add additional functions to it as
needed. Notice that we've wrapped the entire class with an if statement in an
attempt to avoid naming collisions, this time with conflicting class names.

The astute reader may realize that this class definition omits the visibility statements
(that is public). It does this to be compatible with PHP 4—it wouldn't be a very
useful version test if it couldn't actually execute on older versions. Although
technically, PHP 4 would have probably crashed when including the LiveSearch.
php file due it its use of visibility statements.

Let's include Test.php in our index.php file. Now, the include section of index.
php should read as follows:

// include() or require() any necessary files here...
include_once('includes/LiveSearch.php');
include_once('tests/Test.php');

Save your work, then try refreshing your home page to check for errors.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

Next, we need to actually run this test. Instead of hooking the tests directly
to a WordPress event, we are going to execute them from within the
LiveSearch::initialize() function. Update the includes/LiveSearch.php file
so the initialize function looks like the following:

 /**
 * initialize
 *
 * The main function for this plugin, similar to __construct()
 */
 public static function initialize() {

 Test::min_php_version(self::min_php_version, self::plugin_name);
 }

Notice how we referenced the class constants using the self keyword. Technically
LiveSearch::min_php_version would also work just fine, but using self is the
recommended way to refer to class constants from within the class.

In order to properly verify that this test is working, we need to goose the system
a bit. Let's pretend that our script requires PHP version 7. Simply edit the class
constant at the top of the LiveSearch class:

const min_php_version = '7';

Now save the file and refresh your homepage. You should be greeted with the
message from the Test::min_php_version() function:

The 'Live Search' plugin requires PHP 7 or newer. Contact your system
administrator about updating your version of PHP.

Once you have verified that this test is working properly, please edit includes/
LiveSearch.php and restore the public variable to the value of PHP that you're
using for development:

public static $min_php_version = '5.2';

Testing for searchable pages
Next, we need to focus on adding the necessary JavaScript and CSS to our pages to
enable the Ajax search results. Since this plugin is only intended to be used on pages
that are searchable, let's add a private function to our includes/LiveSearch.php
file that tests whether or not a page is searchable. For now, we are going to consider
everything that is not in the WordPress admin area as "searchable". We are going
to rely on WordPress' is_admin() function for this purpose. Add the following
function to includes/LiveSearch.php:

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[90]

 /**
 * _is_searchable_page
 *
 * Any page that's not in the WP admin area is considered
searchable.
 * @return boolean Simple true/false as to whether the current
page is searchable.
 */
 private static function _is_searchable_page() {
 if (is_admin()) {
 return false;
 } else {
 return true;
 }
 }

It's worth pointing out that the use of the private keyword means that this function
can only be called from within the LiveSearch.php class. If you tried to reference
it in your index.php and tie it to a WordPress action, you'd get a permission error.
Even though we are now controlling the access to this function, we still name it with
a leading underscore as a reminder that it is for "internal use only".

We will use this function momentarily to control if and when we add our custom
CSS to a page, but first, let's prepare our CSS file.

Adding your own CSS files
We did some basic styling in our mockup.html file. Let's copy everything from our
<style> tag and paste it into a new file: css/live-search.css:

#ajax_search_results {
 background: gray;
 border:1px solid black;
 padding:5px;
 width:115px;
}

Now we just need to dynamically add this stylesheet to pages that utilize our plugin.
We're going to do this by making use of two WordPress API functions, which are
very similar to the functions we used to reference external JavaScript files in the
previous chapter:

•	 wp_register_style()

•	 wp_enqueue_style()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

They are designed to be used together and their purpose is to let you reference
shared assets while avoiding multiple includes of the same files. If you are creating
interrelated plugins, these functions can help you easily share assets between them.
We are going to make use of the previous function to ensure that this CSS file is only
included for searchable pages. Make the following changes to the initialize()
function in your includes/LiveSearch.php file—remember, we've already
declared this function; you just need to add a few lines to it:

 /**
 * initialize
 *
 * The main function for this plugin, similar to __construct()
 */
 public static function initialize() {

 Test::min_php_version(self::min_php_version, self::plugin_name);

 if(self::_is_searchable_page()) {
 $src = plugins_url('css/live-search.css',dirname(__FILE__));
 wp_register_style('live-search', $src);
 wp_enqueue_style('live-search');
 }
 }

We are again relying on WordPress' plugins_url() function to help us get
the plugin's URL, but this time, we need to modify the second argument. Our
LiveSearch.php file is inside the includes/ directory, so we need to make use of
PHP's dirname() function to help retrieve the path of the directory above where this
appears.

Save your work and then refresh your homepage. Look for the following in your
source HTML:

<link rel='stylesheet' id='live-search-css' href='http://
localhost:8888/wp-content/plugins/live-search/css/live-search.
css?ver=3.0' type='text/css' media='all' />

You can even test by refreshing your administration page to verify that the _is_
searchable_page() function is working—your CSS file should not appear in any
of the WordPress admin pages because those are not considered searchable.

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[92]

Adding your search handler
If you recall from the mockup.html page, search requests were submitted via
JavaScript to a dedicated search handler, ajax_search_results.php. This page
lived at the root of the site, but that's a poor location for any of a plugin's ancillary
files—we should try to keep all of our toys inside the toy box. We want our search
handler to reside inside our plugin's dedicated directory.

Let's create a new search handler inside our plugin directory. Create a new file,
wp-content/plugins/live-search/ajax_search_results.php, with some
simple text in it:

<div id="ajax_search_results">

 Sample search result

</div>

Try navigating this page in a browser, just to make sure it comes through without
errors, for example, www.your-site.com/wp-content/plugins/live-search/
ajax_search_results.php.

We will come back to this page and make it dynamic momentarily, but first let's see
if we can get some JavaScript on our pages that dynamically include the contents of
our search handler.

Adding your own JavaScript
Once you have verified that the search handler file is error free, we need to set up
the JavaScript file that requests that page. In the mockup.html file, we simply wrote
the JavaScript inside of a <script> tag. In the previous chapter, we used the wp_
register_script() and wp_enqueue_script() functions to include an external
JavaScript file, and normally we would use them as we did previously. It's a matter
of some debate, but in this situation, we are going to advise you not to add JavaScript
that way. The difficulty here revolves around the fact that the JavaScript file needs
to inherit some values from PHP, and the integration between JavaScript and PHP
is sometimes tenuous. In particular, the JavaScript that we need to make the Ajax
requests requires the URL of our plugin. That's easy enough for us to calculate when
we include a file via PHP, but it's much more difficult if we were to reference an
external file via a script tag and a src attribute.

www.it-ebooks.info

http://www.your-site.com/wp-content/plugins/live-search/ajax_search_results.php
http://www.your-site.com/wp-content/plugins/live-search/ajax_search_results.php
http://www.it-ebooks.info/

Chapter 4

[93]

It's not an ideal solution, but we're going to emulate the mockup here very closely
because we intend to literally print the <script> tag and its contents into the
document head. We wince a bit as we tell you to do this, but we winced even more
at the alternative. First, let's copy the JavaScript from our mockup into a dedicated
PHP file (yes, a PHP file). We are calling this file dynamic_javascript.php and we
are storing it inside the includes directory because it is technically a PHP file that
executes and is not a static JavaScript file. Add a little bit of PHP to the front of our
JavaScript file. Here's what the js/live-search.js.php file looks like—again, most
of this is simply pasted from mockup.html:

<?php
/*---
A "mostly" static page. We do however, have to supply one of the
functions with
a valid URL to where the search handler page lives.
--*/
header('Content-type: text/javascript');
include_once('../includes/LiveSearch.php');
$plugin_url = LiveSearch::get_plugin_url();
$search_handler = $plugin_url . 'ajax_search_results.php';

//---
?>
jQuery(document).ready(main);

function main()
{
 // Create a div where we can dynamically send results
 jQuery('#search-2').append('<div id="ajax_search_results_go_
here"></div>');

 // Listen for changes in our search field (<input id="s" >)
 jQuery('#s').keyup(get_search_results);
}

/*---
SYNOPSIS:
 Query our external search page
INPUT:
 none; reads values from the id='s' text input (the search query)
OUTPUT:
 triggers the write_results_to_page() function, writes to console
for logging.
--*/
function get_search_results()
{
 var search_query = jQuery('#s').val();

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[94]

 if(search_query != "" && search_query.length > 2) {
 jQuery.get("<?php print $search_handler; ?>", { s:search_query
}, write_results_to_page);
 }
 else
 {
 console.log('Search term empty or too short.');
 }
}

/*---
SYNOPSIS:
 Write the incoming data to the page.
INPUT:
 data = the html to write to the page
 status = an HTTP code to designate 200 OK or 404 Not Found
 xhr = object
OUTPUT:
 Writes HTML data to the 'ajax_search_results_go_here' id.
--*/
function write_results_to_page(data,status, xhr)
{
 if (status == "error") {
 var msg = "Sorry but there was an error: ";
 console.error(msg + xhr.status + " " + xhr.statusText);
 }
 else
 {
 jQuery('#ajax_search_results_go_here').html(data);
 }
}

Make sense? We've just added a wee bit of PHP to the otherwise static file—the
alternative would be to simply hardcode the path to the search handler and forgo
all this drama. A hard-coded URL would work in a pinch, but it would fail in cases
where the user changed his content directory in the wp-config.php file (which has
been possible since WordPress 2.6), or in cases where WordPress was installed to a
subdirectory, for example, http://yoursite.com/myblog/. For those reasons, we
need to dynamically read the path to this search handler.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

We now need to ensure that this JavaScript is added to the document head. Modify
the head() function inside the includes/LiveSearch.php file:

 /**
 * head
 *
 * Prints some JavaScript into the document head. We are printing
directly
 * to the document head because we need our JavaScript to contain a
dynamic
 * value that identifies the search handler script.
 *
 * @return none This does, however, create some HTML output
 */
 public static function head() {
 if(self::_is_searchable_page()) {
 $search_handler_url = plugins_url('ajax_search_results.
php',dirname(__FILE__));
 include('dynamic_javascript.php');
 }
 }

We are almost done, but we also need to ensure that jQuery has been loaded so our
custom JavaScript works correctly. Update your includes/LiveSearch.php script
so that the initialize() function looks like the following:

 /**
 * initialize
 *
 * The main function for this plugin, similar to __construct()
 */
 public static function initialize() {

 Test::min_php_version(self::min_php_version, self::plugin_name);

 if(self::_is_searchable_page()) {
 wp_enqueue_script('jquery'); // make sure jQuery is loaded!
Otherwise our JS will fail!
 $src = plugins_url('css/live-search.css',dirname(__FILE__)
);
 wp_register_style('live-search', $src);
 wp_enqueue_style('live-search');
 }
 }

The only thing added was a reference to WordPress' wp_enqueue_script function; that
will ensure that jQuery is loaded before we print our JavaScript to the document head.

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[96]

Save the file and refresh your homepage in a browser. View the source code and verify
that jQuery and our custom JavaScript are being included. Make sure you test this in
Firefox with the FireBug plugin enabled. That will alert you to JavaScript errors.

Finally, try typing in a search term. If all goes correctly, the static text that you have
sitting on the ajax_search_results.php page should be inserted into the area
below your search form. If you encounter any errors, track down the problematic
areas using Firebug.

Was this an ideal solution? No. However, by including the dynamic_javascript.
php file, we were more easily able to ensure that the JavaScript had the correct value
passed to it from PHP. Some readers may prefer to try this the other way around
by using the wp_enqueue_script() function to include the JavaScript, but as we
mentioned, it's more difficult to pass a PHP value to an external JavaScript file. If
you want to try that method, read the next section for some ideas first. You will see
that you can gain access to WordPress' functions and constants when you include
the wp-config.php file. That, along with the use of PHP's header function could be
your ticket to dynamically generating an external JavaScript file for inclusion via the
wp_enqueue_script() function, but we're getting ahead of ourselves.

The only task remaining for us is to actually do the dynamic searches in the
ajax_search_results.php page. Let's finish this thing.

Handling Ajax search requests
We've created a page that is meant to handle Ajax search results: ajax_search_
results.php. Technically, this type of page can be called a "controller", and it's not
intended to be accessed by the normal user. It's intended to be accessed by the Ajax
requests made by our JavaScript functions.

How does this work? We built our JavaScript so that it sends the search term to this
page in the $_GET array. So we just need to pass that value to a valid database query
to get our matching search results.

What we're actually going to do is to tie into WordPress' backdoor—we will include
the wp-config.php file and thereby gain access to the built-in WordPress functions
and classes, including the database API methods. We're going to completely rewrite
the static text on the ajax_search_results.php page with some heavy hitting PHP.

Let's modify our ajax_search_results.php file so that we connect with the
WordPress application. We're going to verify that this connection has taken place
by printing out the defined classes. If the connection is successful, PHP's get_
declared_classes() function will spew out hundreds of classes that WordPress
has defined. Make your ajax_search_results.php file look like this, paying careful
attention to the realpath() function—that's the critical one that identifies how
many levels up the wp-config.php file is:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

<?php
/**
* This file is an independent controller, used to query the WordPress
database
* and provide search results for Ajax requests.
*
* @return string Either return nothing (i.e. no results) or return
some formatted results.
*/
if (!defined('WP_PLUGIN_URL')) {
 require_once(realpath('../../../').'/wp-config.php');
}

print_r(get_declared_classes());

/* EOF */

Now try hitting that file in a browser, for example, www.yoursite.com/wp-
content/plugins/live-search/ajax_search_results.php.

If successful, you should see an array beginning with something like the following:

Array
(
 [0] => stdClass
 [1] => Exception
 [2] => ErrorException

 [...]

Congratulations! If you see the WordPress classes, then we can commence using
them. In particular, we're going to use the WP_Query class and its query method.
Update your ajax_search_results.php so it looks like the following:

<?php
/**
* This file is an independent controller, used to query the WordPress
database
* and provide search results for Ajax requests.
*
* @return string Either return nothing (i.e. no results) or return
some formatted results.
*/
if (!defined('WP_PLUGIN_URL')) {
 // WP functions become available once you include the config file
 require_once(realpath('../../../').'/wp-config.php');
}

// No point in executing a query if there's no query string

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[98]

if (empty($_GET['s']))
{
 exit;
}

$max_posts = 3;

$WP_Query_object = new WP_Query();
$WP_Query_object->query(array('s' => $_GET['s'], 'showposts' => $max_
posts));

foreach($WP_Query_object->posts as $result)
{
 print_r($result);
}
/* EOF */

Again, we need to hit this in a browser, but this time, we need to include a query
string. Use a URL with the s parameter set to a search term that is likely to return
some results, such as:

www.yoursite.com/wp-content/plugins/live-search/ajax_search_results.
php?s=term.

If all goes well, the print_r() statement should print up to three matching posts.
The object structure looks something like the following:

stdClass Object
(
 [ID] => 7
 [post_author] => 1
 [post_date] => 2010-08-10 03:36:47
 [post_date_gmt] => 2010-08-10 03:36:47
 [post_content] => Not much going on here...

 [...]

If you've gotten this far, you have successfully tied into WordPress' database API to
safely pass a query term to the database—you are relying on WordPress to sanitize
your input and prevent SQL injection attacks. It is highly recommended that you rely
on WordPress' API functions to access the database because chances are high that
their data sanitization will be more thorough than yours, and besides, it's easier to
use the functions they have already provided.

Once you've got the posts being returned, the only task that remains is to format them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

Formatting your search results
We are going to introduce a little bit of templating here. Although we could simply
concatenate variables from our search results, it's more readable and maintainable
to use some kind of templates for formatting. We are going to create one additional
sub-directory in our plugin's directory: tpls/, short for "templates". In it will we
store our template files that will be used to format our search results. We're going to
use three different templates, designated with a .tpl extension:

1. A template to use when there are no search results: no_results.tpl.
2. A template to format each individual search result: single_result.tpl.
3. A template which will contain the individual results: results_container.tpl.

This is not traditional PHP per se, but it does represent some valuable principles
garnered from other MVC applications and it can be a great way to create
customizable layouts. We will provide sample text for each template before we
show you how to parse them. The name of the game here is placeholders. We will
denote placeholders by flanking a word with "[+" and "+]". Let's take a look at some
examples so you can see what we mean.

The tpls/single_result.tpl will make use of a couple placeholders:

 [+post_title+]

The tpls/results_container.tpl will wrap the collective individual results.
It will only use a single "[+content+]" placeholder to denote where the individual
results will appear:

<div id="ajax_search_results">

 [+content+]

</div>

Lastly, tpls/no_results.tpl contains no placeholders, just a message to display if
no results were found:

<div id="ajax_search_results">
 <p>No results found.</p>
</div>

Can you see how each result is formatted as a list item, and then the collection of
results is formatted into an unordered list?

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Search

[100]

Previously, we showed you the sprintf() function, which makes use of %s as a
type of placeholder. sprintf() can even swap the order of the arguments by using
placeholders such as %1$s and %2$s—look at the manual page under "argument
swapping" for more information. However, this is hard to read. It is not clear what
value might be substituted into %s, whereas a placeholder such as "[+permalink+]"
gives you a good idea of what will replace the placeholder.

Now that we have our templates set up, how do we parse them? We are going to
create a simple function that relies on PHP's str_replace(). To get the template
files as raw strings (without executing any PHP in them), we load them using PHP's
file_get_contents() function.

When we put it all together, our ajax_search_results.php file ends up looking
like the following:

<?php
/**
* This file is an independent controller, used to query the WordPress
database
* and provide search results for Ajax requests.
*
* @return string Either return nothing (i.e. no results) or return
some formatted results.
*/
if (!defined('WP_PLUGIN_URL')) {
 // WP functions become available once you include the config file
 require_once(realpath('../../../').'/wp-config.php');
}

// No point in executing a query if there's no query string
if (empty($_GET['s']))
{
 exit;
}

$max_posts = 3; // Number of results to show

$WP_Query_object = new WP_Query();
$WP_Query_object->query(array('s' => $_GET['s'], 'showposts' => $max_
posts));

// If there are no results...
if (! count($WP_Query_object->posts)){
 print file_get_contents('tpls/no_results.tpl');
 exit;
}

// Otherwise, format the results

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

$container = array('content'=>''); // define the container's only
placeholder
$single_tpl = file_get_contents('tpls/single_result.tpl');
foreach($WP_Query_object->posts as $result)
{
 $result->permalink = get_permalink($result->ID);
 $container['content'] .= parse($single_tpl, $result);
}

// Wrap the results
$results_container_tpl = file_get_contents('tpls/results_container.
tpl');
print parse($results_container_tpl, $container);

/**
* parse
*
* A simple parsing function for basic templating.
*
* @param $tpl string A formatting string containing
[+placeholders+]
* @param $hash array An associative array containing keys and
values e.g. array('key' => 'value');
* @return string Placeholders corresponding to the keys of the
hash will be replaced with the values the resulting string will be
returned.
*/
function parse($tpl, $hash) {
 foreach ($hash as $key => $value) {
 $tpl = str_replace('[+'.$key.'+]', $value, $tpl);
 }
 return $tpl;
}

/* EOF */

While testing this, it's useful to refresh a page that navigates to it directly, just
remember to include a valid search term: http://yoursite.com/wp-content/
plugins/live-search/ajax_search_results.php?s=something.

You may have noticed that we manipulated the search results as objects in PHP,
using arrow notation:

$result->new_value = 'something';

This was as opposed to an associative array:

$result['new_value'] = = 'something else';

www.it-ebooks.info

http://yoursite.com/wp-content/plugins/live-search/ajax_search_results.php?s=something
http://yoursite.com/wp-content/plugins/live-search/ajax_search_results.php?s=something
http://www.it-ebooks.info/

Ajax Search

[102]

Our parse() function can reliably iterate over the properties of an object in the same
way as the elements of an associative array.

Although building our own template parsing functions like this is slower and
it may be more confusing for you the first time you set it up, it is much easier to
maintain and change over a longer term. Any inebriated frontend designer can make
alterations to the template files contained in the tpls/ directory without fear of
breaking some delicate PHP concatenation. The worst thing that could happen when
using our templating system is that a placeholder is unrecognized and comes out the
other end unparsed.

Save your work and give this one final test. Refresh your home page and try
searching for a word. You should get the Ajax search results to appear directly below
your search form.

Summary
We've come a long way. We have learned about how Ajax works and we've learned
how to tie into jQuery and how to debug some JavaScript. We have also learned how
to use PHP library classes with static functions in our plugins and how to tie into the
WordPress application from the backdoor. In order to pull this off, we have created a
total of nine files:

•	 ajax_search_results.php

•	 css/live-search.css

•	 includes/dynamic_javascript.php

•	 includes/LiveSearch.php

•	 index.php

•	 tests/Test.php

•	 tpls/no_results.tpl

•	 tpls/results_container.tpl

•	 tpls/single_result.tpl

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

We have constructed a working Ajax search, but as you may have noticed, it was
fairly complex to set up, and even after all that work, it is still fairly primitive. The
goal here was to teach you how to construct a plugin that relied on Ajax; if you
want a full-featured Ajax search for your site, try downloading an existing plugin.
One example is Dave's WordPress Live Search (http://wordpress.org/extend/
plugins/daves-wordpress-live-search). We think our code is cleaner, but Dave's
plugin has a lot of customizable options and it handles edge cases that are beyond
the scope of this chapter.

Next, we will dive into the world of WordPress widgets. The next chapter will
expand our understanding of PHP classes by introducing us to some real object-
oriented code, and everything we learned about Ajax will come in handy. Get ready
for some widgets!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator
In this chapter, we will learn about a special type of WordPress plugin: the widget.
The architecture of widgets has undergone a radical change starting with the release
of WordPress 2.8, so now we must talk about Object Oriented programming. We will
learn a bit about its power as we extend the WP_Widget class to create our widget.
We will also learn how to create a preference page in the manager so we can store
our plugin's configuration details.

The plan
What exactly do we want this plugin to do? Our widget will display a random bit
of text from the database. This type of plugin is frequently used for advertisement
rotations or in situations where you want to spruce up a page by rotating content
on a periodic basis. Each instance of our plugin will also have a "shelf life" that will
determine how frequently its content should be randomized.

Let's take a moment to come up with some specifications for this plugin. We want it
to do the following:

•	 Store multiple chunks of content, such as bits of Google Adsense code
•	 Be able to randomly return one of the chunks
•	 Set a time limit that defines the "shelf life" of each chunk, after which the

"random" chunk will be updated

As with our other chapters, there are existing plugins you can download that do this
already, but our focus here is showing you how to write the code.

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[106]

Widget overview
Even if you are already familiar with widgets, take a moment to look at how they work
in the WordPress manager under Appearance | Widgets. You know that they display
content on the frontend of your site, usually in a sidebar, and they also have text and
control forms that are displayed only when you view them inside the manager. If you
put on your thinking cap, this should suggest to you at least two actions: an action
that displays the content on the frontend, and an action that displays the form used to
update the widget settings inside the manager. There are actually a total of four actions
that determine the behavior of a standard widget, and you can think of these functions
as a unit because they all live together in a single widget object. In layman's terms,
there are four things that any widget can do. In programmatic terms, the WP_Widget
object class has four functions that you may implement:

•	 The constructor: The constructor is the only function that you must
implement. When you "construct" your widget, you give it a name, a
description, and you define what options it has. Its name is often __
construct(), but PHP still accepts the PHP 4 method of naming your
constructor function using the name of the class.

•	 widget(): It displays content to users on the frontend.
•	 form(): It displays content to manager users on the backend, usually to

allow them to update the widget settings.
•	 update(): It prepares the updated widget settings for database storage.

Override this function if you require special form validation.

In order to make your widget actually work, you will need to tell WordPress about
it by registering it using the WordPress register_widget() function. If you
want to get a bit more information about the process, have a look at WordPress'
documentation here: http://codex.wordpress.org/Widgets_API.

Let's outline this in code so you can see how it works.

Preparation
As always, we're going to go through the same setup steps to get our plugin outlined
so we can get it activated and tested as soon as possible.

1. Create a folder inside the wp-content/plugins/ directory. We are naming
this plugin "Content Rotator", so create a new folder inside wp-content/
plugins/ named content-rotator.

2. Create the index.php file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[107]

3. Add the Information Head to the index.php file. If you forgot the format,
just copy and modify it from the Hello Dolly plugin like we did in previous
chapters.
We're giving you bigger sections of code than before because hopefully by
now you're more comfortable adding and testing them. Here is what our
index.php looks like:
<?php

/*--

Plugin Name: Content Rotator

Plugin URI: http://www.tipsfor.us/

Description: Sample plugin for rotating chunks of custom content.

Author: Everett Griffiths

Version: 0.1

Author URI: http://www.tipsfor.us/

--
------------*/

// include() or require() any necessary files here...

include_once('includes/ContentRotatorWidget.php');

// Tie into WordPress Hooks and any functions that should run on
load.

add_action('widgets_init', 'ContentRotatorWidget::register_this_
widget');

/* EOF */

4. Add the folders for includes and tpls to help keep our files organized.
5. Add a new class file to the includes directory. The file should be named

ContentRotatorWidget.php so it matches the include statement in the
index.php file. This is a subclass which extends the parent WP_Widget class.
We will name this class ContentRotatorWidget, and it should be declared
using the extends keyword.

 <?php

 /**

* ContentRotatorWidget extends WP_Widget

*

* This implements a WordPress widget designed to randomize chunks
of content.

*/

class ContentRotatorWidget extends WP_Widget

 {

 public $name = 'Content Rotator';

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[108]

 public $description = 'Rotates chunks of content on a

 periodic basis';

 /* List all controllable options here along with a

 default value.

 The values can be distinct for each instance of the

 widget. */

 public $control_options = array();

 //!!! Magic Functions

 // The constructor.

 function __construct()

 {

 $widget_options = array(

 'classname' => __CLASS__,

 'description' => $this->widget_desc,

);

 parent::__construct(__CLASS__, $this->name,$widget_
 options,$this->control_options);

 }

 //!!! Static Functions

 static function register_this_widget()

 {

 register_widget(__CLASS__);

 }

 }

 /* EOF */

This is the simplest possible widget—we constructed it using only the __
construct() function. We haven't implemented any other functions, but we are
supplying enough information here for it to work. Specifically, we are supplying
a name and a description, and that's enough to get started. Let's take a moment to
explain everything that just happened, especially since the official documentation
here is a bit lacking.

When we declared the ContentRotatorWidget class, we used the extends keyword.
That's what makes this PHP class a widget, and that's what makes object-oriented
code so useful.

The __construct() function is called when an object is first created using the new
command, so you might expect to see something like the following in our index.
php file:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

<?php
 $my_widget = new ContentRotatorWidget();
?>

However, WordPress has obscured that from us—we just have to tell WordPress the
classname of the widget we want to register via the register_widget() function,
and it takes care of rest by creating a new instance of this ContentRotatorWidget.
There is a new instance being created, we just don't see it directly. Some of the
official documentation still uses PHP 4 style examples of the constructor function—
that is to say that the function whose name shares the name of the class. We feel that
naming the constructor function __construct is clearer.

You may have wondered why we didn't simply put the following into our
index.php file:

register_widget('ContentRotatorWidget'); // may throw errors if called
too soon!

If you do that, WordPress will try to register the widget before it's ready, and you'll
get a fatal error:

"Call to a member function register() on a non-object".

That's why we delay the execution of that function by hooking it to the widgets_
init action.

We are also tying into the construct of the parent class via the parent::__
construct() function call. We'll explain the hierarchy in more detail later, but
"parent" is a special keyword that can be used by a child class in order to call
functions in the parent class. In this case, we want to tie into the WP_Widget __
construct() function in order to properly instantiate our widget.

Note our use of the PHP __CLASS__ constant—its value is the class name, so in this
case, we could replace it with ContentRotatorWidget, but we wanted to provide
you with more reusable code. You're welcome.

Lastly, have a look at the class variables we have declared at the top of the class:
$name, $description, and $control_options. We have put them at the top of the
class for easy access, then we have referenced them in the __construct() function
using the $this variable. Note the syntax here for using class variables. We are
declaring these variables as class variables for purposes of scope: we want their
values to be available throughout the class.

Please save your work before continuing.

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[110]

Activating your plugin
Before we can actually use our widget and see what it looks like, we first have to
activate our plugin in the manager. Your widget will never show up in the widget
administration area if the plugin is not active! Just to be clear, you will have to
activate two things: your plugin, and then your widget.

The code is simple enough at this point for you to be able to quickly track down
any errors.

Activating the widget
Now that the plugin code is active, we should see our widget show up in the widget
administration area: Appearance | Widgets.

Take a moment to notice the correlation between the widget's name and description
and how we used the corresponding variables in our constructor function. Drag your
widget into the primary widget area to make it active.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

Once it has been activated, refresh your homepage. Your active widget should print
some text in the sidebar.

Congratulations! You have created your first WordPress widget! It is printing a
default message: function WP_Widget::widget() must be over-ridden in a sub-class,
which is not very exciting, but technically speaking you have a functional widget.
We still need to enable our widget to store some custom options, but first we should
ensure that everything is working correctly.

Having problems?
No widget? If you have activated your plugin, but you do not see your widget
showing up in the widget administration area, make sure you have tied into a valid
WordPress action! If you misspell the action, it will not get called! The action we are
using in our index.php is widgets_init—don't forget the "s"!

White screen? Even if you have PHP error-reporting enabled, sometimes you suddenly
end up with a completely white screen in both the frontend and in the manager.
If there is a legitimate syntax error, that displays just fine, but if your PHP code is
syntactically correct, you end up with nothing but a blank page. What's going on?

A heavy-handed solution for when plugins go bad is to temporarily remove your
plugin's folder from /wp-content/plugins, then refresh the manager. WordPress is
smart enough to deactivate any plugin that it cannot find, so it can recover from this
type of surgery.

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[112]

If you are experiencing the "White Screen of Death", it usually means that something
is tragically wrong with your code, and it can take a while to track it down because
each time you deactivate the plugin by removing the folder, you have to reactivate it
by moving the folder back and reactivating the plugin in the WordPress manager.

This unenviable situation can occur if you accidentally chose a function name that
was already in use (for example, register()—don't use that as a function name).
You have to be especially careful of this when you are extending a class because you
may inadvertently override a vital function when you meant to create a new one. If
you think you may have done this, drop and do 20 push-ups and then have a look at
the original parent WP_Widget class and its functions in wp-includes/widgets.php.
Remember that whenever you extend a class, it behooves you to look at the parent
class' functions and their inputs and outputs. If this sounds like Greek to you, then
the next section is for you.

Parents and children: extending classes
If this is your first foray into the world of Object-Oriented programming or if you
just need a refresher, let's take a moment to explain what is going on here. First of
all, even though it is common parlance in the programming world, the "parent/
child" terminology does not necessarily provide an accurate description of what's
happening in our PHP classes. We find it helpful instead to think in terms of
overriding and redefining—when you extend a class, you can redefine the parent's
functions and thereby override their behavior.

Let's look at a more familiar example: CSS. If you have done much web
development, you have used Cascading Style Sheets to stylize your content. If you
follow the rules of good semantic web development, you put your style definitions
into a separate .css file which you reference in the head of your HTML documents:

<link href="/css/default.css" rel="stylesheet" type="text/css" />

If you want all paragraphs on your site to be black and regularly sized, you would
add something like the following to the default .css file:

p {
 font-size: medium;
 color: black;
}

However, there will always be exceptions. Let's say you have a legalese.html page
with legal terms, so you want the paragraph text to be impossibly small and hard
to read. What's the solution? You override the default style by redefining the style
declaration in the head of your page:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[113]

<link href="/css/default.css" rel="stylesheet" type="text/css" />
<style type="text/css">
 p {
 font-size: x-small; /* <-- overrides the declaration in default.
css */
 }
</style>

Now all the paragraphs on legalese.html will be extra small. Good job—nobody
will bother to read text so small! Now is your chance to disclose your plans to take
over the world!

What if you have one paragraph on legalese.html that needs yet another
style? Well, you can override the style again by redefining it inside that particular
paragraph, for example:

<p style="font-size: large; font-weight: bold;">I AGREE TO THE
TERMS.</p>

Do you see how in each case we overrode the previous definition of the font-size
attribute? Of course, we could have used different classes and definitions for each
type of text, but we wanted to demonstrate the concept of inheritance and our ability
to override inherited attributes. When the browser renders a particular paragraph,
it will use the last style declaration it encountered. If the last declaration was in the
CSS file, it uses that; if the last declaration was in the document head, it uses that; if a
declaration was used inline alongside the content, it uses that. The browser literally
remembers the last thing you told it about how to style any given content.

Imagine taking your mother out to dinner, and she can't make up her mind, so she
keeps changing her order. The last thing she tells the waiter is what she'll be served.

What does this have to do with PHP and WordPress widgets? Similar to CSS style
definitions, PHP functions describe behavior. Similar to CSS inheritance, the class
hierarchy defined by extending classes tells our scripts which behavior should be
implemented. In our example, the WP_Widget has a widget() function, which is
what is currently displaying the default message reminding us that it must be "over-
ridden in a sub-class". In other words, our ContentRotatorWidget class must define
its own widget() function and thereby override it. The widget() function in the
parent WP_Widget class is used until you define your own version of the widget()
function and override it in the child class. Make sense?

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[114]

In terms of the the parent/child terminology, imagine visiting a friend's house,
knocking on their door, and having their kid answer it. You ask the child, "Hey, what
content should be displayed here for this widget?" If the child knows the answer, your
pages will get that text in their sidebars. If the child doesn't know the answer, he might
say, "I don't know, let me go ask my dad", and then the parent WP_Widget class (the
dad) would provide the "answer" to your "question". This chain can keep going—if the
dad doesn't know, he asks the grandfather, and so on. Sorry, but in this hierarchical
chain of authority, there is no PHP equivalent of "wife" or "girlfriend".

Hopefully this makes the concept of classes and inheritance clearer for you.

Objects vs. libraries: when to use static
functions
You may have noticed that in our ContentRotatorWidget class some functions are
static and some are not. What's going on?

In our example, we are using a static function to register the widget's class name.
Even if we had thousand instances of this widget, the class name remains the same
for all of them, so it is a good candidate for a static function. As the name suggests, a
static function should be used to implement behavior that does not change.

The rest of the widget properties, however, are dynamic and will change from
instance to instance. Objects distinguish themselves from libraries because you can
have multiple instances of an object. You may not have noticed this, but in the widget
administration area, you can in fact drag several instances of your widget into the
"Primary Widget Area" drop zone.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[115]

Even though they are all instances of the ContentRotatorWidget, each instance has
its own properties. If our class were "Books", then one instance might have a title of
"No Country for Old Men" and another instance might have a title of "I Hope They
Serve Beer in Hell". For each instance the title changes.

Objects use the $this variable to refer to the current instance of the object, that is
THIS instance. So if you need to call a function inside the class, you call it via $this-
>function_name(), or if you need to access a "class variable", you use $this-
>variable_name. We'll see more examples of this as we go along.

Add custom text
Our simple widget is technically functional, but it doesn't do anything yet. After you
have activated your widget and viewed your homepage, you will see some default
text that we pointed out earlier: function WP_Widget::widget() must be over-ridden
in a sub-class.

This is the output of the WP_Widget class' widget() function. If we think about
our parent/child analogy, here we are getting a message from the parent
telling the kid that he needs to take care of this function himself. How do we
override the WP_Widget::widget() function? We simply add a widget()
function to our ContentRotatorWidget class. Add the following function to the
ContentRotatorWidget.php file, somewhere below the __construct() function
(remember we like to keep our functions alphabetized):

/**
* Displays content to the front-end.
*
* @param array $args Display arguments
* @param array $instance The settings for the particular instance
of the widget
* @return none No direct output. This should instead print output
directly.
*/function widget($args, $instance)
{
 print "Hi, I'm a sneezing unicorn.";

}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[116]

Note that this function takes two arguments, and the official documentation
currently does a poor job of explaining them. You can have a look at the original
class and read the documentation for the function we are overriding inside of wp-
includes/widgets.php, but it's not entirely clear what those arguments do. Just
remember that when you override a function, it must take the same inputs and
return the same output as the original. We'll use these arguments later so you can get
some idea of how they're used.

Save your work and then refresh your homepage. You should see your text printed
in place of the default message. Congratulations! You have successfully overridden
your first function! Your ContentRotatorWidget stuck it to his old man and is now
handling this function on his own.

Adding widget options
The other place where we need to customize our widget's content is in the
manager—we need to provide a custom form for editing our widget's options. Let's
start by adding a single option for the title. In order to do this, we need to implement
another function in our widget and add some options:

1. Create a form() function that prints out some HTML. Later, this function will
print out some HTML form elements, but for now, let's just make sure this
works. Add the following function to your ContentRotatorWidget.php file:
/**

* Displays the widget form in the manager, used for editing its
settings

*

* @param array $instance The settings for the particular
instance of the widget

* @return none No value is returned directly, but form elements
are printed.

*/

function form($instance)

{

 print "Form elements go here";

}

2. Save your file and refresh your manager page. You should see your
handiwork when you open your widget for editing:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

You may be thinking that all we need to do is print some form elements
here, but the process here is deceptively complex because we need to handle
multiple instances (and multiple HTML forms) of your widget. Each form
element must have a unique name and ID. What to do? We let WordPress
handle it via the WP_Widget class' get_field_id() and get_field_name()
functions. We are going to build a simple template that allows you to adjust
your form elements, and we will feed it the $control_options that we
defined at the top of our ContentRotatorWidget class. Let's add a control
option now.

3. Update your ContentRotatorWidget class and edit the $control_options
array so we have a control option for "title". Later, we can expand this array
to include as many options as our widget requires.
/* List all controllable options here along with a default value.

The values can be distinct for each instance of the widget. */

public $control_options = array(

 'title' => 'Content Rotator',

);

4. It's finally getting to the point where we need some helper functions
that do things that are not directly related to this widget. We need
to put the functions somewhere, but they don't necessarily belong in
the ContentRotatorWidget class. So let's create a new class named
ContentRotator, and save it inside the content-rotator/includes/
directory as ContentRotator.php. The following is what our
ContentRotator.php looks like:
<?php

/**

* ContentRotator

*

* Helper functions that assist the ContentRotatorWidget class

*/

class ContentRotator {

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[118]

}

/*EOF*/

It's empty for now. We will be adding a handful of functions to it later, but
first let's test it.

5. Update the content-rotator/index.php file so it includes your new class.
Add the following line to your index.php file:
include_once('includes/ContentRotator.php');

Save your work and refresh your homepage to check for any errors. You
should now have a helper class hooked up and ready for use.

6. The first helper function we are going add to ContentRotator.php is
one we've used before: a simple parsing function. This lets us use simple
templates and [+placeholders+] in order to avoid the confusing mess of
PHP concatenation.

Add this static function to the ContentRotator class:
/**

 * parse

 *

 * A simple parsing function for basic templating.

 *

 * @param $tpl string A formatting string containing
[+placeholders+]

 * @param $hash array An associative array containing keys
and values e.g. array('key' => 'value');

 * @return string Placeholders corresponding to the keys
of the hash will be replaced with the values the resulting string
will be returned.

 */

static function parse($tpl, $hash) {

 foreach ($hash as $key => $value) {

 $tpl = str_replace('[+'.$key.'+]', $value, $tpl);

 }

 return $tpl;

}

Save your work, refresh your homepage, and verify that no errors occurred.
7. Add a tpls/ folder to your plugin's folder if you haven't already, and add a

widget_controls.tpl file that contains the following text:
<!--

This .tpl file is used when editing a widget's options in the WP
manager.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

It should only contain form *elements*; WordPress will supply the

opening and closing <form> tags.

For each key in the ContentRotatorWidget::$control_options array,
you will have

the following placeholders available:

 [+your_key.id+] - used inside id attributes, e.g.
id="[+your_key.id+]"

 [+your_key.name+] - used inside name attributes, e.g.
name="[+your_key.name+]"

 [+your_key.value+] - contains the current value of the option

WordPress appends text to the names and id's to allow for multiple
instances

of the widget, so don't try hard-coding values here.

-->

<label for="[+title.id+]">Title</label>

 <input id="[+title.id+]" name="[+title.name+]" value="[+title.
value+]" />

Notice that we've included a comment with some basic instructions for
how to use this file. This is an important concept when it comes to good
documentation: put the documentation where people need it.
We're preparing a system that can handle more complex widgets. The
placeholders are pretty easy to read, and there's no danger of crashing PHP
with a bad concatenation because it's only a text file—it does not execute.
Any frontend designer would be comfortable editing this template, and that's
a big deal. Consistently throughout this book, we want to separate the logic
from the presentation layer as much as possible because it makes for better
code and better HTML.
We still need to hook this template up to the wagon, so let's update our
form() function next so it outputs some form elements instead of just static
text.

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[120]

8. After the footwork of adding a helper class, we're ready to beef up the
form() function in the ContentRotatorWidget class. Update the function so
it looks like the following:
/**

* Displays the widget form in the manager, used for editing its
settings

*

* @param array $instance The settings for the particular
instance of the widget

* @return none No value is returned directly, but form elements
are printed. */

public function form($instance)

{

 $placeholders = array();

 foreach ($this->control_options as $key => $val)

 {

 $placeholders[$key .'.id'] = $this->get_field_id($key
);

 $placeholders[$key .'.name'] = $this->get_field_name(
$key);

 // This helps us avoid "Undefined index" notices.

 if (isset($instance[$key]))

 {

 $placeholders[$key .'.value'] = esc_attr($instance[
$key]);

 }

 // Use the default (for new instances)

 else

 {

 $placeholders[$key .'.value'] = $this->control_
options[$key];

 }

 }

 $tpl = file_get_contents(dirname(dirname(__FILE__)) .'/tpls/
widget_controls.tpl');

 print ContentRotator::parse($tpl, $placeholders);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

Save your work and refresh your admin page. We have just put together a handful
of moving parts, so it may take a little debugging before they all work together. We
are making use of the helper class' ContentRotator::parse() function, and we
are also using PHP's __FILE__ constant, which returns the name of the current file
(ContentRotatorWidget.php). We use this in order to get a full path to the widget_
controls.tpl file.

We are utilizing the parent class' get_field_id() and get_field_name() functions.
We call them using the $this variable. Since our child class does not contain these
functions, PHP looks for these functions in the parent class. This is how we let
WordPress handle the naming and identification of form fields. This ensures that we
don't get into trouble when we have several instances of our widget active.

Once it all works, head to the widget administration page in your browser,
and try adding a title to your activated widget. The default title, by the way,
comes from the value you set back in the $control_options array at the top of
ContentRotatorWidget.php. You may need to deactivate the widget and then drag
a new instance into the primary widget area before everything refreshes. Remember
to refresh your admin page frequently when developing widgets! Enter a new title
for the widget instance and try saving it.

If you got this all working, then take a deep breath and congratulate yourself.
You have built a reusable component for your widgets, and it follows some good
architectural design. That's no small feat! The next step is to tackle this widget's
namesake—we need to generate some random content and put it into rotation.

Generating random content
It's time to flesh out the widget() function. This is the function that prints out the
content that is visible on the frontend, and we want it to print out some random
content. We are going to approach this in phases so that we can test it.

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[122]

1. Firstly, add a helper function to ContentRotator.php that generates some
random content. For now, we're going to generate a random number. Later,
we will pull up some random content from the database, but always keep
things simple the first time around so you can test them. Add the following
static function to ContentRotator.php:
/**

Fetch and return a piece of random content

*/

static function get_random_content()

{

 return rand(1, 1000000);

}

This relies on PHP's rand() function, and it returns a random number
between one and 1,000,000. It will suffice for our current testing.
Before we go much further, let's "templatize" our widget output. This is
another case where the solutions offered on most websites and in most books
would have you concatenating a messy bunch of PHP and HTML, but we
want to avoid that.

2. Create a new template file named widget.tpl inside your content-
rotator/tpls/ directory:

[+before_widget+]

 [+before_title+]

 [+title+]

 [+after_title+]

 [+content+]

[+after_widget+]

What's all that about? Well, remember how the widget() function takes two
arguments? Those arguments are directly related to the widget's output, and
we are going to use those arguments to create [+placeholders+] so we can
easily control the output and formatting of our widget. If you had added a
print_r($args) statement to your widget() function, you can inspect the
arguments that WordPress is sending this function:
// Output of print_r($args) from inside the widget() function;

Array

(

 [name] => Primary Widget Area

 [id] => primary-widget-area

 [description] => The primary widget area

 [before_widget] => <li id="contentrotatorwidget-6"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

class="widget-container ContentRotatorWidget">

 [after_widget] =>

 [before_title] => <h3 class="widget-title">

 [after_title] => </h3>

 [widget_id] => contentrotatorwidget-6

 [widget_name] => Content Rotator

)

Changing what these arguments are is beyond the scope of this chapter, but we
are going to allow you a way to use these values as you customize your widget
display. Unfortunately, we can't provide documentation in a comment because
it may throw things off. For example, if our widget were used to returning bits
of Google Adsense JavaScript, they would still execute even if they were inside
an HTML comment. However, we have an obligation to explain the format and
purpose of this .tpl file to our users, so we are going to create a readme.txt
file with further information.

3. Create a content-rotator/tpls/readme.txt file with the following
instructions in it:
The file called widget_controls.tpl contains the form elements
necessary to edit a widget's settings. See widget_controls.tpl for
more instructions on using that file.

The widget.tpl template is used to format the output of the widget
as it is seen by the outside world, for example, on your homepage.

There are 4 primary built-in placeholders which are dictated by
the template in use:

[+before_widget+]

[+after_widget+]

[+before_title+]

[+after_title+]

There are also placeholders corresponding to the
ContentRotatorWidget::$control_options array keys. The values of
these are bound to an instance of the widget, so two instances
of the same widget may have completely different values. These
placeholders include:

[+seconds_shelf_life+]

[+title+]

Lastly, the most important placeholder:

[+content+] -- contains the random text as defined in the plugin's
administration page

There are additional placeholders created from the widget()
function's $args array, for example:

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[124]

Array

(

 [name] => Primary Widget Area

 [id] => primary-widget-area

 [description] => The primary widget area

 [before_widget] => <li id="contentrotatorwidget-6"
class="widget-container ContentRotatorWidget">

 [after_widget] =>

 [before_title] => <h3 class="widget-title">

 [after_title] => </h3>

 [widget_id] => contentrotatorwidget-6

 [widget_name] => Content Rotator

)

Each key in this array corresponds to a placeholder. For example
[+name+] and [+id+] are placeholders you can use in your widget.
tpl file.

The documentation for the available placeholders occurs in this
readme.txt file so that it does not display publicly.

We won't bother repeating ourselves and we'll assume you read the readme.
txt file—we have listed a few placeholders that we haven't implemented yet.
If our templating method is too unorthodox for you, have a look at the official
documentation for more conventional examples: http://codex.wordpress.
org/Widgets_API.

4. Next, let's call the get_random_content() helper function in the
ContentRotatorWidget.php widget() function so our widget can get
some random content. Currently, our random content consists of a random
number, but the important thing here is to get it so it displays on the
frontend. Update the widget() function so it looks like the following:

 /**

 * Displays content to the front-end, using the tpls/widget.tpl
template.

 *

 * @param array $args Display arguments

 * @param array $instance The settings for the particular
instance of the widget

 * @return none No direct output. This should instead print
output directly.

 */

 public function widget($args, $instance)

 {

 $placeholders = array_merge($args, $instance);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

 $placeholders['content'] = ContentRotator::get_random_
content();

 $tpl = file_get_contents(dirname(dirname(__FILE__)) .'/
tpls/widget.tpl');

 print ContentRotator::parse($tpl, $placeholders);

 }

Save your work and refresh your homepage. You should now see a new random
number each time you refresh your homepage. Furthermore, the format of the
output should be entirely controlled by the widget.tpl file. To test this, you can edit
it to include some additional HTML formatting, but we will leave that up to you.

Expiration dates: adding options to our
widget
One of the key specifications for this plugin is the ability to set how often content is
refreshed. Maybe you want to include a "quote of the day" on your site, or maybe
you want to update a chunk of content every hour. Each instance of our widget
needs an expiration date.

How do we do that? The solution is a bit tricky, so pay attention. First, we need to
add another control option to our widget that allows the managers to set how often
the content expires in each widget instance. We are referring to this as the "shelf life",
in keeping with some common grocery terms.

Update the ContentRotatorWidget.php file so the $control_options array has an
additional option:

public $control_options = array(
 'title' => 'Content Rotator',
 'seconds_shelf_life' => 86400, // 86400 seconds in a day
);

We have given it a default value of 86400; we are opting to use seconds as our refresh
interval, where 86,400 seconds is equal to 24 hours.

Next, we need to include some form elements so managers can submit new values
for this option. The hard work we did previously pays off now. Simply add the form
element to the tpls/widget_controls.tpl file so it contains elements for both
control options:

<label for="[+title.id+]">Title</label>

 <input id="[+title.id+]" name="[+title.name+]" value="[+title.
value+]" />

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[126]

<label for="[+seconds_shelf_life.id+]">Shelf Life (in seconds)</
label>

<input id="[+seconds_shelf_life.id+]" name="[+seconds_shelf_life.
name+]" value="+seconds_shelf_life.value+]" />

Save your work and refresh your manager page. You may need to deactivate your
widgets and reactivate them before you see the new options available for editing.

Now we can tell each widget instance how long its content should persist, but we
have not yet solved the trickier problem of enforcing this behavior. We handle that
in the next section.

Expiration dates: enforcing the shelf life
Expiration dates are fairly simple. For example, if a container of milk is stamped
with a date, we can read that date and compare it with today's date in order to know
if that milk is past its prime. How does this apply to our rotating content? We have
already solved the problem of determining how long a chunk of content should last
before it gets refreshed, but what is our content's "manufacture date"? When exactly
is our content considered new?

We are choosing to determine the "manufacturing date" as the time when a user first
views our content. The expiration date will be determined by adding the seconds_
shelf_life value to this date. Since PHP and UNIX typically work in seconds, the
arithmetic is simple: If the time right now is later than the manufacturing date plus
the shelf life, then it is time to refresh the content. Alternatively, in pseudo code:

if ($now > ($manufacturing_date + $shelf_life)) {
// Refresh the content
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

Make sense? Sometimes these little logical quandaries are the most difficult part
of a script. Now we have to integrate this logic into our code, and to do that, we
are finally going to make use of the second argument to the widget() function:
$instance. That's where information is stored about the specific instance of our
widget. Since each instance has the potential to have different attributes (for
example, "shelf life"), our calculations must be made according to each instance. In
our grocery store analogy, we need to be able to say this bottle of milk is still good,
but this bottle of milk needs to be replaced.

Update the ContentRotatorWidget.php widget() function so it looks like
the following:

public function widget($args, $instance)
{
 if (!isset($instance['manufacture_date'])
 || time() >= ($instance['manufacture_date']
 + $instance['seconds_shelf_life']))
 {
 $instance['content'] = ContentRotator::get_random_
content($instance);
 $instance['manufacture_date'] = time();
 $all_instances = $this->get_settings();
 $all_instances[$this->number] = $instance;
 $this->save_settings($all_instances);
 }

 $placeholders = array_merge($args, $instance);

 $tpl = file_get_contents(dirname(dirname(__FILE__)) .'/tpls/
widget.tpl');

 print ContentRotator::parse($tpl, $placeholders);
}

A lot is going on there, so let's devote some time to breaking it down.

Explaining the $instance
You can see our "expiration date" logic in the if-statement, which relies on PHP's
time() function to determine the current time (in seconds). The trickiest part of this
code is when we actually have to refresh the content. To pull this off, we are tying
into WP_Widget's get_settings() and save_settings() methods (remember, a
"method" is simply a function inside of a class). Those functions get and save settings
for ALL instances of a widget, not just the current instance, which complicates
things.

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[128]

If you were to print_r($this->get_settings()) inside the widget function, you
would see an array of arrays. Each widget gets its own array; we just need to know
which number our widget is. To distinguish our widget's unique place inside that
array of arrays, we are making use of a class variable from the parent class: $this-
>number. We make the necessary changes to our $instance, and then we slip our
$instance back into $all_instances by overwriting the unique spot in the $all_
instances array:

$all_instances[$this->number] = $instance;

So what data is stored in a particular $instance? Performing a
print_r($instance) would yield something like the following:

Array
(
 [content] => 924297
 [manufacture_date] => 1295813716
 [title] => Content Rotator
 [seconds_shelf_life] => 3
)

You can see that this is information about our ContentRotatorWidget and not
WordPress widgets in general. How did all that information get in there? We have
to apologize for this, because it probably qualifies as "clever", and in computer code,
"clever" is usually a euphemism for "complicated and poorly documented". Normally
a widget's options would only be created and changed via the backend manager by
the form you displayed via the form() function, but we only created options for title
and seconds_shelf_life, so how did the content and manufacture_date get in
there? These two lines populate the other values of $instance:

$instance['content'] = ContentRotator::get_random_content();
$instance['manufacture_date'] = time();

The "clever" thing about this is that they are populated when a user on the frontend
views a page, not when you save the widget in the manager. Since this is a bit
uncommon, we don't have a nice WordPress API function to use, so we have to use
the parent class' save_settings() function, which does in fact save data to the
database. How do we know to use that function? We read through the parent class
and its functions in wp-includes/widgets.php.

Save your work, and then try activating two instances of the Content Rotator
widget: one should have a shelf-life of five seconds and the other should have a shelf
life of zero seconds. Refresh your homepage a few times to get the full effect. You
should see one instance of the widget spit out a random number with each page
request, and the other instance should only refresh every five seconds.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

This was the hardest part of our widget. The only thing we have left to do is to
replace our random number generator with something that pulls real content from
the database. To do that, we must modify the ContentRotator::get_random_
content() function so it picks some content at random. Some readers may feel they
can take it from here, but we're going to carry on and show you how to create a
custom manager page inside of the WordPress manager so you can add and remove
chunks of content.

Adding a custom manager page
It's not written anywhere as a hard core rule, but in general, we try to put a plugin's
configuration page under the Plugins menu. There is nothing that prevents you from
creating our own custom menus, but often developing a custom menu item for your
plugin is nothing but pure vanity; it's a plugin, not the second coming! So we are
going to add a custom menu item to the Plugins menu.

Let's first create a sample page that will show up when we click on our custom menu
item. Later on, we'll customize this, but for now, let's keep it simple. Create a new file
inside the content-rotator/includes/ directory named admin_page.php and put
some sample text into it:

<div class="wrap">
 <?php screen_icon(); ?>
 <h2>Content Rotator Administration</h2>
 <p>We're remodeling...</p>
</div>

Notice that we're wrapping everything with a div tag that uses the wrap class. Use
this class for best results. We are also using a theme function, screen_icon(). This is
not required; it's just common practice.

You may have noticed that we are not using a .tpl file for this. We try to avoid
sloppy mixes of PHP and HTML whenever possible, but it is a blurry line when it
comes to building forms, so here we are using a "standard" PHP file.

Now that we have a target page, we have to make a function that displays that page.
Inside of ContentRotator.php, add a static function as shown in the following code
snippet:

/**
* Controller that generates admin page
*/
static function generate_admin_page()
{
 include('admin_page.php');
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[130]

We also need a function that will create our custom menu item. Add the following
static function to ContentRotator.php:

/**
* Adds a menu item inside the WordPress admin
*/
static function add_menu_item()
{
 add_submenu_page(
 'plugins.php', // Menu page to attach to
 'Content Rotator Configuration', // page title
 'Content Rotator', // menu title
 'manage_options', // permissions
 'content-rotation', // page-name (used in the URL)
 'ContentRotator::generate_admin_page' // clicking callback
function
);
}

We pause for a moment to remind you to distance yourself from this WordPress
function. Having six inputs is too confusing, so we've added some comments to
help you out. The rule of thumb is that having any more than three inputs probably
means that you should rewrite your function or repackage your inputs. Please, don't
write functions like this.

Finally, we need to hook our add_menu_item() function to a WordPress event. Add
the following function call to your content-rotator/index.php file:

add_action('admin_menu', 'ContentRotator::add_menu_item');

Save your work and then refresh your manager page. Try clicking on the Plugins
menu—you should see a custom menu item for Content Rotator. Click on it and
verify that you can see your custom admin_page.php.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

Adding options to the custom manager page
Let's face it: a static manager page isn't very useful for anything other than testing.
We want to use this page to add our custom content, so what we really need on it
is a form. There are many ways to store content and randomize it, and what we are
going to show you isn't necessarily the best way, but it will demonstrate how you
can store options in the database using a custom manager page. A more thorough
solution would not be as valuable as a teaching tool.

We are going to build a form with two fields: one that allows the user to enter a block
of content, and another that accepts the character (or characters) that separates that
content into units. For example, this could be our content block:

man, bear, pig

Then, our separator would be a simple comma (","). If your content is more complex,
you may need a more complex separator.

We need to store two settings in the database, so let's make the following changes.
First, update your admin_page.php file so it contains two form elements:

<div class="wrap">
 <?php screen_icon(); ?>
 <h2>Content Rotator Administration</h2>

 <?php print $msg; ?>

 <form action="" method="post" id="content_rotation_admin_
options_form">
 <h3><label for="separator">Separator</label></h3>
 <p>This separates units of content. It can be simple like a
comma, or complex like <!--SEPARATOR-->

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[132]

 <input type="text" id="separator" name="separator"
value="<?php print esc_attr(get_option('content_rotation_content_
separator')); ?>" /></p>

 <h3><label for="content_block">Content Block</label></h3>
 <p>
 Use the separator above to separate blocks of content,
e.g. <code>man, bear, pig</code>

 or <code>MySite.
com<--SEPARATOR-->
 YourSite.com</
a></code>

 <textarea rows="5" cols="50" id="content_block"
name="content_block"><?php print get_option('content_rotation_content_
block'); ?></textarea>
 </p>
 <p class="submit"><input type="submit" name="submit"
value="Update" /></p>
 <?php wp_nonce_field('content_rotation_admin_options_
update','content_rotation_admin_nonce'); ?>
 </form>
 </div>

Notice that we're using WordPress' get_option() function to supply values to our
form elements. Also, have a gander at the wp_nonce_field() function. What is a
nonce? A nonce is a "number used only once", and it is an important security feature.
By including a nonce as a hidden field on your forms, you can reduce the risk of your
form being hijacked by a cross-site request forgery (CSRF). WordPress generates a
unique value for this form which gets validated when the form is submitted. This
makes it harder to post malicious data to your form. The full explanation of this
technique is beyond the scope of this book, but you should use it for security reasons.

Any time we create a form, we also must handle the submission of that form. We
need to program some code that handles the form data after it has been submitted.
Let's do that next.

We need to save the form values if they were properly submitted. We do this by
updating our controller function inside of ContentRotator.php:

/**
* Controller that generates admin page
*/
static function generate_admin_page()
{

 $msg = ''; // used to display a success message on updates

 if (!empty($_POST) && check_admin_referer('content_rotation_admin_
options_update','content_rotation_admin_nonce'))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

 {

 update_option('content_rotation_content_separator',
 stripslashes($_POST['separator']));
 update_option('content_rotation_content_block',
 stripslashes($_POST['content_block']));

 $msg = '<div class="updated"><p>Your settings have been
updated</p></div>';

 }

 include('admin_page.php');

}

If you have built PHP form handlers in the past, you may be more familiar with a
big if-else statement which decides whether it displays the form or processes the
form based on whether or not it has been submitted. Our approach here is simpler.
The check_admin_referer() function will terminate the script if the submission
was not authentic, so we can't use an if-else construct. Instead we use a simple
if-statement.

It's important to summarize the exact syntax that needs to be used for the wp_nonce_
field() and the check_admin_referer() functions because they need to match up.
Some of the official documents for these functions are confusing, so here's the short
syntax:

wp_nonce_field($action_name, $nonce_name);

check_admin_referer($action_name, $nonce_name);

Where $action_name is the name of the action and $nonce_name is the name of
the nonce. If you have a page with multiple forms on it, it's important that you give
unique values to each instance of the wp_nonce_field() function. However, the
most important thing to remember here is that the arguments passed to the check_
admin_referer() function must match exactly the values passed to the wp_nonce_
field() function. If they do not match, WordPress will exit with a message. Oddly
the message reads "Are you sure you want to do this?" which gives little inkling as to
the root cause.

We use WordPress' update_option() function to store the options in the database,
and we are using PHP's stripslashes() function to help sanitize the data. Note
that the option names here match the names used by the get_option() functions in
the admin_page.php page. So once again we have a pair of functions whose inputs
must match.

Lastly, we are using a simple $msg variable to store a message to show whether or
not the options have been updated. We are using some standard WordPress styling
information by using a <div class="updated"> block here, and we encourage you
to do the same.

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[134]

Save your work and refresh your manager page. You should now be able to
save custom configuration details and have them persist when you revisit the
configuration page. For testing, we recommend that you use a comma separator and
a simple comma-separated list. Enter in some text now before proceeding.

Randomizing content from the database
The stars are in alignment—we have custom content in the database, we have a
widget that displays content, and choosing the random content all depends on
a single function: ContentRotator::get_random_content(). Let's update that
function, so it pulls our content from the database:

static function get_random_content(){
 $separator = get_option('content_rotation_content_
separator');
 $content_block = get_option('content_rotation_content_block');

 // Ensure that the user has entered valid settings
 if (empty($content_block))
 {
 return '';
 }
 elseif (empty($separator))
 {
 return $content_block;
 }

 // Get an array of non-empty chunks
 $content_array = explode($separator, $content_block);
 $sanitized_array = array();
 foreach ($content_array as $chunk)
 {
 $chunk = trim($chunk);
 if (!empty($chunk))
 {
 $sanitized_array[] = $chunk;
 }
 }

 $chunk_cnt = count($sanitized_array);
 if ($chunk_cnt)
 {
 $n = rand(0, ($chunk_cnt - 1));
 return $sanitized_array[$n];
 }
 else

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

 {
 return '';
 }
}

This all relies on the WordPress get_option() function and PHP's explode()
function (make sure you use same option names that you used in the generate_
admin_page() function). We are using PHP's trim() function to do some cleanup
in the event that someone entered in some empty content, but it's a fairly straight-
forward function. If you needed to test its ability to pick one item out of the list, you
could simply supply static values to the $separator and $content_block variables.

When you save your work now, your initial draft of this widget is complete.
Congratulations!

Review of PHP functions used
The following is a list of some of the PHP functions and constants used:

•	 __CLASS__: PHP constant that contains the name of the PHP class in which it
appears.

•	 __FILE__: PHP constant that contains the name of the file in which appears.
•	 parent::__construct(): A convenient way to run the __construct in the

parent class. This statement is only used in a child class.
•	 trim(): Removes whitespace from the beginning and end of a string.
•	 rand(x,y): Picks a random number between x and y.
•	 explode($separator, $str): Separates a string $str into an array by

splitting it at each instance of $separator.
•	 stripslashes(): Removes backslashes from form-submitted data.

Summary
We have created a total of seven files to build this plugin:

•	 includes/admin_page.php

•	 includes/ContentRotator.php

•	 includes/ContentRotatorWidget.php

•	 index.php

•	 tpls/readme.txt

www.it-ebooks.info

http://www.it-ebooks.info/

Content Rotator

[136]

•	 tpls/widget.tpl

•	 tpls/widget_controls.tpl

If you made it to this point, give yourself a pat on the back. You've now created your
first widget along with a custom manager page. These are important tools to have in
your toolbox as you continue to develop WordPress plugins.

When you're ready, let's move on to the next chapter, in which we will explore
WordPress' capabilities as a content management system by utilizing custom fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom
Content

In this chapter you are going to learn about customizing your WordPress content.
We will show you how to do this by adding custom fields to your posts and how to
standardize them so the same fields appear on each post.

WordPress has been a magic egg of blogging platforms, but with version 3.0 it is
starting to crack out of its shell. In our opinion, WordPress is still not entirely ready
to take flight as a full-featured content management system, but with a little help
from some additional plugins, we can get this chick hatched and airborne.

We have the following goals in this chapter:

•	 To ensure that the same custom fields appear on every post
•	 To allow for different input types in those custom fields, for example,

checkboxes and drop-down lists
•	 To modify your templates so that this custom data can be displayed in your

theme

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[138]

What WordPress does for you: custom
fields
Let's take a moment to look at how you can add custom fields to a WordPress post.
Log in to the Dashboard and create a new post. Have a look at the bottom of the
page. There is a form there that allows you to add Custom Fields:

You can create a new custom field, or you can choose from an existing one. Either
way, when you save your post, this custom field is saved along with it.

Looks simple, right? Well, yes and no. Let's look a bit closer and see what WordPress
doesn't do for you.

What WordPress doesn't do for you
If you start using custom fields more than just occasionally, you will notice a few
areas where WordPress isn't helping you. Firstly, if you use the same custom fields
on multiple posts, you have to add them one-by-one to each post. Secondly, the
custom fields are always text fields. The WordPress admin user interface does not
provide a way for you to add drop-down lists, rich text, or checkboxes. Thirdly, your
theme may not even display this custom information.

These shortcomings present us with an opportunity. As you may have guessed, in
this chapter, we will remedy these shortcomings with a plugin that will meet the
goals we have set for this chapter.

Does that whet your appetite? Good. Let's get started.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[139]

Standardizing a post's custom fields
In order to ensure that each post automatically uses the same custom fields, we
need to shepherd WordPress' behavior using a plugin that makes use of WordPress'
remove_meta_box() and add_meta_box() functions. The "meta box" is where you
interact with your custom fields (a.k.a. your post meta). Specifically, we are going
to remove the default meta box and replace it with our own. You know the drill by
now. Let's create a new plugin.

Creating a new plugin
Create a new plugin folder named standardized-custom-content inside the wp-
content/plugins folder. Next, create an index.php file and add an information
header to it. If you have forgotten the format, just modify the one from the Hello
Dolly plugin. The following is our information header:

/*
Plugin Name: Standardized Custom Content
Plugin URI: http://www.tipsfor.us/
Description: Forces post-types to use a standard list of custom fields
with options for checkboxes, dropdowns, and various text fields.
Author: Everett Griffiths
Version: 0.1
Author URI: http://www.tipsfor.us/

Based on work by Steve Taylor:
http://sltaylor.co.uk/blog/control-your-own-wordpress-custom-fields/
*/

Save your work and then try to activate the plugin. Remember, test early, test
often! The next step is to create a folder called includes inside the standardized-
custom-content folder. Within the includes folder, create a new file named
StandardizedCustomContent.php.

Next, declare a new class inside of StandardizedCustomContent.php:

<?php
/**
* StandardizedCustomContent
*
* A class designed to standardize WordPress' custom fields and allow
for
* checkboxes, dropdowns, etc.
*/
class StandardizedCustomContent {

}
/*EOF*/

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[140]

The last step to complete our new plugin's foundation is to update your index.php
file so that it includes your newly created class file:

include_once('includes/StandardizedCustomContent.php');

Save your work, and then refresh the manager to ensure that everything works.
Congratulations! We've laid the simple foundations for our new plugin. This is a
fairly straightforward plugin, and we are only going to use the index.php and the
StandardizedCustomContent.php files to hold our code.

Removing the default WordPress form for
custom fields
The first step in handling custom fields our way is to get WordPress' handling out
of the picture. To do this, we need to make use of the remove_meta_box() function.
The secret here is tying into the do_meta_boxes action, which is called when the
meta box is being created.

Update your index.php file so it ties into the do_meta_boxes action.

add_action('do_meta_boxes', 'StandardizedCustomContent::remove_
default_custom_fields', 10, 3);

You can see that we are planning on calling a static function named remove_
default_custom_fields (more on that in the next step), but this is the first time
we have used the third and fourth arguments to the add_action() function. We're
throwing the third argument a default value (10) because what we really care about
is the fourth argument. The function triggered by the do_meta_boxes action accepts
three arguments. How did we know that? Well, unfortunately, it's not from any of
WordPress' documentation. Adam Brown is our savior here (http://goo.gl/wEHo).

We can have a look inside the wp-admin/edit-form-advanced.php file to see where
this action is called:

do_action('do_meta_boxes', $post_type, 'normal', $post);

do_action() is the magic function that makes all of our action events happen, so it
can be useful to see how it triggers an event. From that call, we can see that there are
three additional arguments passed after the name of the action, therefore, we know
that if we hook into this action, we need to include 3 as the fourth argument to add_
action(). See the official documentation for the add_action() function if you need
more clarification (http://goo.gl/77Os).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[141]

If this seems fantastical that we somehow knew of this action and how to use it, it is.
The actions and filters are currently lacking in documentation, so sometimes figuring
out which one to use can be a laborious process. The following is a tip on how to find
which actions and filters are firing:

•	 Look at the file being called in your URL (wp-admin/post.php, in this case)
•	 Search for any instances of the do_action() or apply_filter() functions in

that file
•	 Look for any calls to include(), require(), include_once(), or require_

once()—from this we know that edit-form-advanced.php is included on
that page

•	 Check the included files for the do_action() or apply_filter() functions

It's not an easy process, but it is one that you can use to help find events (actions or
filters) that you can hook into.

An amazingly useful tool available for finding text is the command line
tool grep, which is standard in any Unix shell (that is Linux and Mac OS
X). You can recursively search an entire directory for any files containing
a certain string:
grep -rl 'search-term-here' .

Where "." is short for the current directory.

Our next task is to update the StandardizedCustomContent.php file so that it
contains the following two functions along with the public static variable $content_
types_array:

 /**
 * Which types of content do we want to standardize? Here you can
list WP
 * built-in content types (aka post-types) e.g. 'page', 'post', or
 * any custom post-types you define.
 */
 public static $content_types_array = array('post');

 /**
 * This plugin is meant to be configured so it acts on a specified
list of content
 * types, e.g. post, page, or any custom content types that are
registered.
 * FUTURE: read this from the database.
 * @return array Array of strings, each string being the name of a
WP post-type

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[142]

 */
 private static function _get_active_content_types() {
 return self::$content_types_array;
 }

 /**
 * Remove the default Custom Fields meta box. Only affects the
content types that
 * have been activated. All inputs are sent by WP.
 * @param string $type The name of the post-type being
edited, e.g. 'post'
 * @param string $context Identifies a type of meta-box, e.g.
'normal', 'advanced', 'side'
 * @param object $post The current post, with attributes e.g.
$post->ID and $post->post_name
 */
public static function remove_default_custom_fields($type, $context,
$post) {
 $content_types_array = self::_get_active_content_types();
 foreach (array('normal', 'advanced', 'side') as $context) {
 foreach ($content_types_array as $content_type) {
 remove_meta_box('postcustom', $content_type, $context);
 }
 }
 }

From the remove_default_custom_fields() function we are calling the _get_
active_content_types() function. If you noticed our comments, you can see
that we are anticipating future development of this plugin beyond what we will
complete in this chapter, but it brings up an important architectural point: there are
times when you should use getter and setter functions instead of accessing class
variables directly.

For the record, we could have bypassed the _get_active_content_types()
function entirely by using the following line in our remove_default_custom_
fields() function:

$content_types_array = self::$content_types_array;

However, we are anticipating that we will eventually read that value from the
database, so we will route all requests for that variable to a getter function, which
we can later rewrite so it gets its data from the database. When time comes for us to
rewrite the next version of this plugin, it will be much easier if we know our edits
will be isolated to this particular function. Until then, the function will remain a
one-liner that simply returns our class variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[143]

Understanding $this vs. self
We are once again using static functions in our class. Nothing in this
plugin requires objects, so we have opted to create a class of static
functions that requires no instantiation. In static classes, self:: takes
the place of $this->, and it is used to refer to class variables and
methods, for example, self::$my_var or self::my_function().
Static functions are not allowed to use $this-> because it refers to a
specific instance of the class, and the whole point of using static functions
is that there are no instances of the class. In fact, if you use the $this->
construct anywhere outside of an instantiated class, PHP will die with a
fatal error: Fatal error: Using $this when not in object context.

Save your work and refresh the WordPress Dashboard. The functions here are
simple enough for you to be able to quickly track down errors. Remember what we
said in Chapter 1 about keeping your "units" of code small? If your functions are too
long, they become more difficult to understand and debug.

Edit the post you created previously that contained custom fields. Notice that
the whole section for custom fields is now gone from the Dashboard. We have
successfully removed it from the post edit page. To prove this, you can temporarily
deactivate the plugin and try viewing this post again—the custom fields should be
visible once more. Please reactivate the plugin before you continue.

Creating our own custom meta box
Now that we have successfully removed the default custom fields, we need to supply
our own handling for custom fields. First, add the following action hook to your
index.php file:

add_action('admin_menu', 'StandardizedCustomContent::create_meta_box');

Next, we need to create the static function we just referenced. Create a function
named create_meta_box inside of StandardizedCustomContent.php:

 /**
 * Create the new Custom Fields meta box.
 */
public static function create_meta_box() {
 $content_types_array = self::_get_active_content_types();
 foreach ($content_types_array as $content_type) {
 add_meta_box('my-custom-fields'
 , 'Custom Fields'
 , 'StandardizedCustomContent::print_custom_fields'

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[144]

 , $content_type
 , 'normal'
 , 'high'
 , $content_type
);
 }
 }

This is where we utilize the add_meta_box() function. Its arguments are a
bit lengthy, so it helps to read its documentation to better understand its use
(http://goo.gl/WoKEK). Notice that we are again tying into the _get_active_
content_types() function for easier expansion in the future.

Even though we haven't coded it yet, we are already anticipating a function named
print_custom_fields, and we are taking advantage of the add_meta_box()
function's optional seventh argument so that we can send it some additional data. We
are passing it each content type defined in the $content_types_array so that we
can influence the custom fields of other content types (for example, pages). Since we
referenced yet another function, print_custom_fields(), we need to go and create it.

WordPress offers a few different types of content in a default installation,
namely, pages, posts, and attachments. Each has its own unique attributes
and each is used for different scenarios. The official WordPress term for
these types of content is "post types", probably because they are all stored
in the wp_posts database table. That said, we feel that the term "content
types" is more descriptive. Throughout this chapter, we use the terms
"post types" and "content types" interchangeably.

Inside of StandardizedCustomContent.php, create another public static function
named print_custom_fields. Notice that it takes two arguments; that's just how it
gets called by the add_meta_box() function. For the record, we figured that out by
using the func_get_args() function.

public static function print_custom_fields($post, $callback_args='') {
 print 'Custom fields go here...';
}

For now, let's just ensure that this works. Once it's working, we will flesh out this
function to generate some real form fields. Go ahead and save your work, refresh
your browser, and then edit your post that contains custom fields. You should see
the message you printed in the print_custom_fields() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[145]

Defining custom fields
Before we can print the custom fields for our posts, we first need to define them in
our code. We need to generate a form with multiple elements depending on what
custom fields we define for our posts. Form generation is tricky, and it has a lot of
edge cases. We want to present something usable without going too far deep down
the rabbit hole. First, let's come up with a way to define fields.

What do we need to describe a custom field? We came up with four different
attributes:

•	 name: Something to uniquely identify this field in the $_POST array and in the
database.

•	 title: The human readable name.
•	 description: Any additional description of this field's purpose.
•	 type: What type of input should this be? Text? A checkbox?

The question now becomes how to describe that in PHP code. Any time we have key/
value pairs like we just did while defining attributes, it bespeaks an associative array
(a.k.a: a "hash"). However, we need to have a hash for each custom field because we
might have multiple fields. So, what we need is a data structure that contains an array
of hashes. Here's what we came up with, commented for your convenience:

public static $custom_fields = array(
 array(
 // name and id of the form element & as the meta_key in the
wp_postmeta table.
 // Should contain lowercase letters, "-", and "_" only. Names
beginning with "_"
 // will be hidden from built-in WP functions, e.g. the_meta()
 'name' => 'my_name',

 // used in the element's <label>
 'title' => 'This is the bold Text that appears above
the Form Element!',

 // optional text will be wrapped in a <p> and appear below
the element
 'description' => 'Shh... this is extra italic text...',

 // one of the supported element types: checkbox,
dropdown,text,textarea,wysiwyg
 'type' => 'dropdown',

 // Include this ONLY when type = dropdown!!
 'options' => array('one','two','three'),
),
);

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[146]

We are deciding right now that we want to support a limited number of input types
which correspond to various HTML form input types: checkboxes, dropdowns,
regular text inputs, text areas, and WYSIWYG (What You See Is What You Get)—this
is the same as a text area, but it will include formatting controls.

Notice that we need to add one more option for drop-down lists. We need to specify
a list of options that appear in the list. Just from this simple exercise, you should start
to get an idea how subtly complicated form generation can be. Let's define some
custom fields for our posts by using the format we have outlined.

Add the following to StandardizedCustomContent.php. For testing purposes, we
want to use each of the field types that we plan to support.

 public static $custom_fields_for_posts = array(
 array(
 'name' => 'my_text',
 'title' => 'Simple text input',
 'description' => '',
 'type' => 'text',
),
 array(
 'name' => 'short_text',
 'title' => 'A short bit of text',
 'description' => 'This is a textarea, without any
formatting controls.',
 'type' => 'textarea',
),
 array(
 'name' => 'gender',
 'title' => 'Gender',
 'description' => 'Sample dropdown menu',
 'type' => 'dropdown',
 'options' => array('Male','Female'),
),
 array(
 'name' => 'formatted_text',
 'title' => 'Formatted Text',
 'description' => 'This uses jQuery to add the formatting
controls.',
 'type' => 'wysiwyg',
),
 array(
 'name' => 'my_checkbox',
 'title' => 'Do You Like This Checkbox?',

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[147]

 'description' => 'Checkboxes are tricky... they either have
a value, or they are null.',
 'type' => 'checkbox',
)
);

Even if we were going to retrieve this array in the database immediately, it's useful
to have a local copy of the data structure for testing.

Up next, let's add a getter function for this data. In the future, we can rewrite
this function to pull data from the database. Add the following static function to
StandardizedCustomContent.php:

/**
 * Get custom fields for the content type specified.
 *
 * FUTURE: read these arrays from the database.
 *
 * @param string $content_type The name of the content type,
e.g. post, page.
 * @return mixed array of associative arrays defining custom
fields to use
 * for the $content_type specified.
 */
private static function _get_custom_fields($content_type) {
 return self::$custom_fields_for_posts;
}

Next, expand the print_custom_fields() function to reference the function we just
created. We're outlining this so it can handle all the various input types that we want
to support, and we're structuring it all using a switch statement:

 public static function print_custom_fields($post, $callback_
args='') {
 $content_type = $callback_args['args']; // the 7th arg from add_
meta_box()
 $custom_fields = self::_get_custom_fields($content_type);
 $output = '';

 foreach ($custom_fields as $field)
 {
 $output_this_field = '';
 switch ($field['type'])
 {
 case 'checkbox':
 $output_this_field .= "<p>I'm a checkbox!</p>";
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[148]

 case 'dropdown':
 $output_this_field .= "<p>I'm a dropdown!</p>";
 break;
 case 'textarea':
 $output_this_field .= "<p>I'm a textarea!</p>";
 break;
 case 'wysiwyg':
 $output_this_field .= "<p>I'm a WYSIWYG!</p>";
 break;
 case 'text':
 default:
 $output_this_field .= "<p>I'm a text input!</p>";
 break;
 }
 // optionally add description
 if ($field['description'])
 {
 $output_this_field .= '<p>'.$field['description'].'</p>';
 }

 $output .= '<div class="form-field form-required">'.$output_
this_field.'</div>';
 }
 // Print the form
 print '<div class="form-wrap">';
 print $output;
 print '</div>';

 }

There's some concatenation going on in there that ties into the recommended
WordPress div's and styles, but hopefully nothing too "squirrelly". We now have
a structured function to handle all the various input types. Please save your work,
check for errors, and then refresh the WordPress Dashboard. You should see your
message displayed where we intend to put the actual form elements:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[149]

Generating custom form elements
Here's where we have to dive into some form generation functions. Each type of
form element requires slightly different behavior, a fact which unfortunately makes
many PHP-generated forms sloppy. Our plan is to keep things clean by creating a
private static function for each input type. They are all fairly simple, so we can add
them quickly, but before we do that, we are going to add our simple parsing function
that we've used in the previous chapters.

Add the parse function to StandardizedCustomContent.php:

 /**
 * parse
 *
 * A simple parsing function for basic templating.
 *
 * @param $tpl string A formatting string containing
[+placeholders+]
 * @param $hash array An associative array containing keys and
values e.g. array('key' => 'value');
 * @return string Placeholders corresponding to the keys of
the hash will be replaced with the values the resulting string will be
returned.
 */
 public static function parse($tpl, $hash) {

 foreach ($hash as $key => $value) {
 $tpl = str_replace('[+'.$key.'+]', $value, $tpl);

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[150]

 }
 return $tpl;
 }

Now let's add five static functions that correspond to the five different input types
we will support. Notice that the checkbox and the drop-down functions are the most
complex, whereas the text input function is the simplest. Can you guess why the
built-in WordPress custom fields only use text inputs?

Add these one at a time, then save your work and refresh your browser to check for
errors after each function! Don't go too fast!

 //! Private
 /**
 * The following '_get_xxx_element' functions each generate a single
form element.
 * @param array $data contains an associative array describing
how the element
 * should look with keys for name, title, description, and type.
 * @return string An HTML form element
 */

 /**
 * Note: the checked value is hard-coded to 'yes' for simplicity.
 */
 private static function _get_checkbox_element($data)
 {
 $tpl ='<input type="checkbox" name="[+name+]" id="[+name+]"
value="yes" [+is_checked+] style="width: auto;"/>
 <label for="[+name+]" style="display:inline;">[+tit
le+]</label>';
 // Special handling to see if the box is checked.
 if ($data['value'] == "yes")
 {
 $data['is_checked'] = 'checked="checked"';
 }
 else
 {
 $data['is_checked'] = '';
 }
 return self::parse($tpl, $data);
 }

 /**
 * The dropdown is special: it requires that you supply an array of
options in its
 * 'options' key.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[151]

 * The $tpl used internally here uses a custom [+options+]
placeholder.
 */
 private static function _get_dropdown_element($data)
 {
 // Some error messaging.
 if (!isset($data['options']) || !is_array($data['options']))
 {
 return '<p>Custom Content Error: No options
supplied for '.$data['name'].'</p>';
 }
 $tpl = '<label for="[+name+]">[+title+]</
label>

 <select name="[+name+]" id="[+name+]">
 [+options+]
 </select>';

 $option_str = '<option value="">Pick One</option>';
 foreach ($data['options'] as $option)
 {
 $option = htmlspecialchars($option); // Filter the values
 $is_selected = '';
 if ($data['value'] == $option)
 {
 $is_selected = 'selected="selected"';
 }
 $option_str .= '<option value="'.$option.'" '.$is_
selected.'>'.$option.'</option>';
 }

 unset($data['options']); // the parse function req's a simple
hash.
 $data['options'] = $option_str; // prep for parsing

 return self::parse($tpl, $data);

 }

 //--
 private static function _get_text_element($data)
 {
 $tpl = '<label for="[+name+]">[+title+]</
label>

 <input type="text" name="[+name+]" id="[+name+]"
value="[+value+]" />
';

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[152]

 return self::parse($tpl, $data);
 }

 //--
 private static function _get_textarea_element($data)
 {
 $tpl = '<label for="[+name+]">[+title+]</
label>

 <textarea name="[+name+]" id="[+name+]" columns="30"
rows="3">[+value+]</textarea>';
 return self::parse($tpl, $data);
 }

 //--
 private static function _get_wysiwyg_element($data)
 {
 $tpl = '<label for="[+name+]">[+title+]</label>
 <textarea name="[+name+]" id="[+name+]" columns="30"
rows="3">[+value+]</textarea>
 <script type="text/javascript">
 jQuery(document).ready(function() {
 jQuery("[+name+]").addClass("mceEditor");
 if (typeof(tinyMCE) == "object" && typeof(tinyMCE.
execCommand) == "function") {
 tinyMCE.execCommand("mceAddControl", false,
"[+name+]");
 }
 });
 </script>
 ';
 return self::parse($tpl, $data);
 }

Whew, that's a lot of busy work! Congratulations on working your way through it.

Next, let's add a static variable to StandardizedCustomContent.php. This is merely
a preparation for printing the form elements:

 /**
 * This prefix helps ensure unique keys in the $_POST array by
appending
 * this prefix to your field names. E.g. if your prefix is 'my_' and
your
 * field name from the $custom_fields_for_posts array is 'field',
then

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[153]

 * your form element gets generated something like <input name="my_
field"/>
 * and when submitted, its value would exist in $_POST['my_field']
 *
 * This prefix is *not* used as part of the meta_key when saving the
field
 * names to the database. If you want your fields to be
 * hidden from built-in WordPress theme functions, you can name them
individually
 * using an underscore "_" as the first character.
 *
 * If you omit a prefix entirely, your custom field names must steer
clear of
 * the built-in post field names (e.g. 'content').
 */
 public static $prefix = 'custom_content_';

Read the comments there; it's important to understand that we're taking the trouble
here to avoid collisions in the $_POST array. You shouldn't need to change this
value—we set it up as a class variable because many functions will access it.

Now that you have written functions that generate each type of form input, you can
update the print_custom_fields() function once more so that it references these
newly created functions. Like we did in a previous chapter, we are also going to add
a nonce to the end of the form to make it more secure:

 public static function print_custom_fields($post, $callback_
args='') {
 $content_type = $callback_args['args']; // the 7th arg from add_
meta_box()
 $custom_fields = self::_get_custom_fields($content_type);
 $output = '';

 foreach ($custom_fields as $field) {

 $output_this_field = ''

 $field['value'] = htmlspecialchars(get_post_meta($post->ID,
$field['name'], true));
 $field['name'] = self::$prefix . $field['name']; // this
ensures unique keys in $_POST

 switch ($field['type'])
 {
 case 'checkbox':
 $output_this_field .= self::_get_checkbox_
element($field);
 break;
 case 'dropdown':

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[154]

 $output_this_field .= self::_get_dropdown_
element($field);
 break;
 case 'textarea':
 $output_this_field .= self::_get_textarea_
element($field);
 break;
 case 'wysiwyg':
 $output_this_field .= self::_get_wysiwyg_
element($field);
 break;
 case 'text':
 default:
 $output_this_field .= self::_get_text_element($field);
 break;
 }
 // optionally add description
 if ($field['description'])
 {
 $output_this_field .= '<p>'.$field['description'].'</p>';
 }

 $output .= '<div class="form-field form-required">'.$output_
this_field.'</div>';
 }
 // Print the form
 print '<div class="form-wrap">';
 wp_nonce_field('update_custom_content_fields','custom_content_
fields_nonce');
 print $output;
 print '</div>';

 }

Please save your work, and then refer back to the post you previously edited. When
you edit your post, you should see an example of each type of custom field type as
pictured below:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[155]

Now that we can generate each type of content, we need to handle the saving of that
content.

Saving custom content
Knowing how to generate content for custom fields does us little good unless we can
also save it. Remember, dealing with forms requires that you display the form, and
that you handle the data after the form has been submitted. Update the index.php
file to hook into a third action. When finished, the code in your index.php should
read as follows:

include_once('includes/StandardizedCustomContent.php');

add_action('admin_menu', 'StandardizedCustomContent::create_meta_box'
);
add_action('save_post', 'StandardizedCustomContent::save_custom_
fields', 1, 2);
add_action('do_meta_boxes', 'StandardizedCustomContent::remove_
default_custom_fields', 10, 3);

Next, add a public static function to StandardizedCustomContent.php. The name
matches the function name we just referenced in the index.php file:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[156]

 /**
 * Save the new Custom Fields values. This function reads from the
$_POST array
 * and stores data to the database using the update_post_meta()
function
 *
 * @param integer $post_id id of the post these custom fields
are associated with
 * @param object $post The post object
 */
 public static function save_custom_fields($post_id, $post) {

 // The 2nd arg here is important because there are multiple
nonces on the page
 if (!empty($_POST) && check_admin_referer('update_custom_
content_fields','custom_content_fields_nonce'))
 {
 $custom_fields = self::_get_custom_fields($post->post_type);
 foreach ($custom_fields as $field) {
 if (isset($_POST[self::$prefix . $field['name']]))
 {
 $value = trim($_POST[self::$prefix . $field['name']
]);
 // Auto-paragraphs for any WYSIWYG
 if ($field['type'] == 'wysiwyg')
 {
 $value = wpautop($value);
 }
 update_post_meta($post_id, $field['name'], $value);
 }
 // if not set, then it's an unchecked checkbox, so blank
out the value.
 else
 {
 update_post_meta($post_id, $field['name'], '');
 }
 }

 }
 }

Remember that the arguments to the check_admin_referer() function must match
exactly with the arguments used in the corresponding wp_nonce_field() function
that we used back in the print_custom_fields() function. If you don't use this
function correctly, you may get that strange error: Are you sure you want to do this?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[157]

If you are plagued by this type of warning, double check the spelling of your
arguments to the wp_nonce_field() and check_admin_referer() functions. As we
mentioned before in the chapter on widgets, there are other ways to validate nonces,
so if you get stuck, see the official documentation (http://codex.wordpress.org/
WordPress_Nonces).

At this point, save your work, and then try adding some custom content to a post
and saving it.

Is everything working as expected? Congratulations! You are now standardizing
the custom fields for your posts. If you are feeling brave, you can try modifying the
$custom_fields_for_posts variable to generate your own custom fields.

Having trouble saving data?
If the data vanishes from your custom fields after saving your post, there are a few
things you should check. Have you correctly hooked into the save_post action in
your index.php file and are you passing it the correct arguments? Without your
customized save function, WordPress will ignore the data in your custom fields.

When editing your post with custom fields, view the source HTML. Search for your
$prefix that you defined in your class. Are your form elements using this as part of
the field names? You should see elements with names prefixed, for example:

<input type="text" name="custom_content_my_text" id="custom_content_
my_text" value="" />

Next, you should see what's coming through after the form is posted. At the top of
your save_custom_fields() function, try printing the contents of the $_POST array:

print_r($_POST);

Be sure to add some values to your custom fields and then resubmit the form.
WordPress and won't be happy about it, but you can see if your values are coming
through.

Array
(
 [_wpnonce] => f7b02b18fa

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[158]

 [_wp_http_referer] => /wp-admin/post.php?post=7&action=edit&messa
ge=1
 [user_ID] => 1
 [action] => editpost
 // ...
 [custom_content_fields_nonce] => ac2d7cd5cb
 [custom_content_my_text] => asdf
 [custom_content_short_text] => asfd
 [custom_content_gender] =>
 [custom_content_formatted_text] => afds
 // ...
)

That should help you isolate the problem.

Displaying custom data in your Templates
Thankfully, the hard part is over. You are now able to save custom content using
various input types. Now we need to display this information to the users on the
frontend. This process should give you a better understanding and an appreciation of
how the data from the database is delivered to your site's theme. Third-party themes
are developed differently, but if you can wrestle the default theme into submission,
then you should be able to deal with others.

If you are using the default WordPress 3 theme, "Twenty Ten", then you may have
noticed right away that your custom fields do not appear on your posts when you
visit them on the frontend.

In order to fix this problem, let's make a copy of the theme so we can work on the
copy without fear of damaging the original.

Copying a theme
As a plugin developer, you need to have some familiarity with how themes work.
You should be familiar with some of the concepts that apply to themes, after having
dealt with plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[159]

Duplicate the twentyten folder and place a copy alongside the original in wp-
content/themes/. We are naming our copied folder twentyten_v2.

Open up the style.css file inside of the twentyten_v2 folder and modify the
information head so you can distinguish between the two copies of this theme.
Specifically, you must be sure to modify the name of the theme in order to
distinguish it from the original in the Dashboard.

Just as with plugins, there is an information head that needs to be present in your
WordPress theme in order for it to show up in the theme administration area. A
WordPress theme stores this information inside its style.css file.

The following is what our modified information header looks like inside style.css:

/*
Theme Name: Twenty Ten v2
Theme URI: http://wordpress.org/
Description: Copy of the Twenty Ten theme with modifications to
display custom content.
Author: the WordPress team (mostly)
Version: 1.2
Tags: black, blue, white, two-columns, fixed-width, custom-header,
custom-background, threaded-comments, sticky-post, translation-ready,
microformats, rtl-language-support, editor-style
*/

Inside the WordPress Dashboard, head over to Appearance | Themes. You should
see the new copy listed under Available Themes. Go ahead and activate it.

Now that we have safely copied and activated the theme, let's modify the copy.

Modifying the theme
There are a lot of PHP files inside of the theme's sub-folder, but the one we need to
concern ourselves with first is single.php. As the good folks over at WordPress
have commented, this is "the template for displaying all single posts".

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[160]

After taking a look at single.php, we are obligated to pause again to restate our
strong recommendation to keep PHP and HTML as separate as possible. In a perfect
world, your templates would be devoid of logic and loops and the headaches that
accompany them. However, our fantasy world has little to do with the reality of
WordPress themes—they are almost always a sticky mixture of PHP and HTML that
can easily devolve into chaos. You may be tired of our pretentious warnings against
this type of coding, but it is our strong opinion that even though the status quo here
is functional, it should not be earmarked for emulation.

Another warning here is regarding WordPress terminology: functions that are used
inside theme files, such as the_title() or the_content(), are often referred to
as "tags", even officially (http://codex.wordpress.org/Template_Tags). This is
a confusing misnomer that would probably not be tolerated in other development
circles. Those so called "tags" are in fact PHP functions: they execute, some of them
may take arguments, and most of them return a value.

That's enough brow-beating. Let's get back to work and add a function that will print
out the data from our custom fields. First, search for the_content in single.php. It
should live somewhere around line 30.

Just after that, call the the_meta() function, like this:

<?php the_content(); ?>
<?php the_meta(); /* <----------- Custom Fields */ ?>

Save your work and then point your browser to the post on your site that uses
custom fields. Remember, it must be the full page that displays the full post, not a
page that summarizes all recent posts or an archive page.

Congratulations! You have successfully displayed your post's custom fields! If you
look at the source HTML, you will notice that WordPress created an unordered list,
and each custom field appeared as a list item using the following format:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[161]

 <ul class='post-meta'>
 name_of_my_field: Value
of my field
 <!-- [... more fields here...] -->

Remember, the_meta() is a simple formatting shortcut that will only print meta
data with names that do not begin with an underscore ("_"). If your field names start
with an underscore, the_meta() function will skip them. Likewise, the Dashboard
will ignore field names starting with an underscore because it will consider them
"private". Remember how we named private functions inside of our classes? This is
exactly the same naming convention.

Using the_meta() function is a viable solution for some people, but what if you
want more control? What if you need one custom field to appear at the top of your
page and the other at the bottom? That requires a bit more work and help from
WordPress' get_post_meta() function.

Granular display of custom fields
Before we show you how to extract a post's custom fields into separate places in
your theme, make sure you have added a couple of custom fields to one of your
posts for the purpose of demonstrating this. For our example, we are using the form
fields that we built out previously in the chapter: my_text, short_text, gender,
formatted_text, and my_checkbox. Let's write a simple function that retrieves each
field individually.

Inside your theme folder, open up the functions.php file. This is where the theme
typically stores functions that are used to control its behavior. In this book, we have
generally strived to create plugins that are "theme agnostic", that is plugins that will
work regardless of which theme is currently in use, so we have avoided placing
functions inside theme files. However, this is an occasion where our philosophy
breaks down out of necessity. We will explain ourselves momentarily, but for now,
paste in the following function:

/**
* Prints the 1st instance of the meta_key identified by $fieldname
* associated with the current post. See get_post_meta() for more
details.
*
* @param string $fieldname Name of custom field from the wp_
postmeta table.
* @return none No value returned; this function prints the value of
the first field
* named $fieldname associated with the current post.

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[162]

*/
 function print_custom_field($fieldname)
 {
 // the_ID() function won't work because it *prints* its output
 $post_id = get_the_ID();
 print get_post_meta($post_id, $fieldname, true);
 }

Note that we are printing directly from this function instead of returning a value.
This is a fairly simplistic way to do this. Take a look at the official documentation for
the get_post_meta() function if you want more details (http://goo.gl/m3G0).

Next, edit the single.php page so that it calls the newly created print_custom_
field() function. We are going to print a couple of custom values in different places
on our page. The following is the relevant part of the updated single.php:

<div class="entry-content">

 <p>Simple Text Input: <?php print_custom_
field('my_text'); ?></p>

 <?php the_content(); ?>

 <p>Gender: <?php print_custom_field('gender');
?></p>

We could also add calls for printing the other custom fields—all we need to pass to
the function is the name of the field.

So why did we put the print_custom_field() function inside of our theme instead
of inside a plugin? Arguably, because it belongs there. This function prints data into
a specific location in an HTML layout. It was designed as a slave to the template. The
final resting place for the output of this function is always going to be inside one of
the HTML template files—this is where the rubber meets the road. The relationship
between the theme and the print_custom_field() function may be subtle, but it
is intimate, so it makes sense to store the function along with the theme. This is not
uncommon in other CMS's. For example, MODx goes as far as to name these custom
fields "Template Variables" in an attempt to emphasize this relationship.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[163]

Now that we have extended our post's custom fields in a standardized fashion and
we've figured out a way to print these values into our theme, you may want to
update your theme files to make the most of these customized values. Your page
layouts can now include specific HTML and CSS for each custom field, and this
allows for some serious flexibility in your themes.

Bonus for the MySQL curious
We haven't looked under the hood to see how WordPress is actually storing this
meta data. The post itself is stored in the wp_posts table. Using your MySQL client,
you can have a look at the structure of the wp_posts table by using the "describe"
function. If you are using a GUI tool such as phpMyAdmin, you can usually click on
the table name to see its structure. On the MySQL command line, you'd execute the
following command:

mysql> describe wp_posts;

You can look through the list of columns and you can see where your post data is
stored: post_title, post_content, post_excerpt, and so on. The problem faced
when adding custom fields is that we run out of columns. It's rare that an application
changes the column structure of a database table, and WordPress is no exception. In
order to store the custom fields, WordPress instead writes rows of data to the wp_
postmeta table. Essentially, that table stores simple key:value pairs and it associates
them back to the parent post.

www.it-ebooks.info

http://www.it-ebooks.info/

Standardized Custom Content

[164]

Have a look at the metadata for one of the posts we created in this chapter. In our
database, the post_id happened to be 92. The following is the command and the
output from the MySQL command line:

 mysql> select * from wp_postmeta where post_id='92';

 +---------+---------+----------------+--+

 | meta_id | post_id | meta_key | meta_value |

 +---------+---------+----------------+--+

 | 136 | 92 | _edit_last | 1 |

 | 137 | 92 | my_text | My sample text input |

 | 138 | 92 | short_text | A little textarea never hurt no one.. |

 | 139 | 92 | gender | Male |

 | 140 | 92 | formatted_text | <p>Then I got formatted..</p> |

 | 141 | 92 | my_checkbox | yes |

 | 144 | 92 | _wp_old_slug | |

 | 145 | 92 | _edit_lock | 1284569248 |

 +---------+---------+----------------+--+

 8 rows in set (0.25 sec)

You can see our custom field names and values in there, and you can see that
WordPress is using this table to store some additional information about the post.
Those are hidden values, whose names begin with an underscore.

The meta_id is this table's "primary key". Each row in this table gets a unique meta_
id, which uniquely identifies that row. The post_id is a "foreign key". That means
it references the primary key from another table. In this case, it is referencing the
primary key in the wp_posts table. The wp_posts table simply names its primary
key, "ID"; it would have been clearer if it had been named post_id, but it is a
common naming convention to name your primary key simply "id" or "ID".

Known limitations
Even though the solution presented in this chapter offers some nice possibilities, it is
incomplete. For one, our custom field definitions rely on configurations in our plugin
files, so they are not accessible to the average user. We did not build out an options
page in the Dashboard—we showed you how to do that in the previous chapter, so
if you want to add a manager page for updating this plugin's options, please review
the previous chapter and give it a try. Check the plugin's page on www.tipsfor.us
if you want to see some more discussion on this plugin or how to design a manager
page for it. As it is right now, you have to define your custom fields in code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[165]

If you look a bit harder, there are a few other limitations here. Form generation is
really its own level of hell, and it's difficult to capture all the myriad edge cases that
arise. We've been there and done that, and we sneakily side-stepped some of the
pitfalls in our presentation. For example, what if you wanted your checkbox to be
checked by default? Alternatively, what if your text input needed to have a default
value? Ah, tricky....

We also avoided the checking of permissions; instead we relegated that
responsibility to WordPress. Effectively, we assumed that if the user could edit
the post, then they should be allowed to edit the custom fields. A more thorough
solution would use WordPress' current_user_can() function to check permission
on a per-field level.

There are other limitations here, but this should serve as a good introduction to
custom content, and it offers a nice segue into the next chapter that deals with
custom post-types.

Summary
We have taken an important step in realizing WordPress' potential as a content
management system. We are now able to standardize custom fields on our posts,
and we're able to use a handful of different input types to simplify the job of
administering them. Next we will talk about custom post-types, where we take the
idea of customizations even further.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Post Types
This chapter ties together several of the core concepts from previous chapters, while
investigating WordPress' capabilities as a CMS. It also covers a few extra tricks,
including shortcodes, creating a link to your plugin's settings page, and how to clean
up when someone uninstalls your plugin.

The task before us is to tap into WordPress' CMS abilities by using the register_
post_type() function. Judging by the difficulties tracked in the SVN repository
as WordPress 3.1 got ready for launch, it seems that we weren't the only ones who
experienced difficulties in wrestling with WordPress' CMS capabilities.

A word of warning: this function is difficult to use and lacks good documentation,
and exploring its full capabilities is beyond the scope of this chapter. If you want to
examine a fuller implementation of custom post types and what they can do, have a
look at one of our plugins (http://goo.gl/cgJDU)—this is the plugin we wrote for
early drafts of this chapter, but the code quickly grew too complex for educational
purposes. Our aim here is to demonstrate one use case of the register_post_
type() function, so you can see how it works. We want a plugin that allows users
to create their own reusable chunks of content that we can reference in other posts
via WordPress shortcodes, denoted by square brackets, for example, [example-
shortcode]. This is a great way to reuse content across many posts or pages.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Post Types

[168]

For example, you could create chunks containing your signature information, or a
link to the latest travel deals.

The preceding screenshot is what we're aiming for. We have a lot of ground to cover,
so let's get started.

Background: What's in a name?
Out of the box, WordPress offers several primary types of content: posts, pages, and
attachments. WordPress refers to all of these as "post types". Why is a page a type of
post? Well, our best guess is that the naming convention stems from the fact that posts,
pages, and attachments are all stored in the wp_posts table in the database. Examine the
contents of that table by issuing the following query in your MySQL client:

SELECT * FROM wp_posts;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[169]

The contents of the post_type column will tell you the type of any given "post".
Whether it is a post, a page, or an attachment, the data is stored in the wp_posts
table and it all has the same attributes (that is columns). Perhaps a more descriptive
name for this table would have been wp_content, but for the sake of uniformity, we
will defer to WordPress' naming conventions as much as possible.

You may have even spotted a few other post types in your database, such as
"revision", but don't worry about them too much for now. In this chapter, we are
primarily concerned with post-types that represent text content.

Understanding register_post_type()
WordPress uses built-in post types for normal everyday use, but you can extend the list
of available post types by using a pivotal function: register_post_type(). It is this
function that allows WordPress to fulfill more traditional CMS roles. For example, you
could create a custom post type for "movies" with custom fields for "plot", "genre" and
"rating". The important thing to realize is that any custom post types will be visible to
WordPress only if you register them using the register_post_type() function, and as
you may have guessed, the only way for you to do that is inside a plugin.

To really understand what this complex function does, we really need to get our
hands dirty and try using it ourselves. You guessed it, it's time for you to create
another plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Post Types

[170]

We are naming this plugin "Content Chunks", so our first step is to create a folder
named content-chunks in the wp-content/plugins folder, and then create our
index.php with a valid information header.

<?php
/*
Plugin Name: Content Chunks
Plugin URI: http://tipsfor.us/
Description: Display Chunks of Content from a custom post type "chunk"
Author: Everett Griffiths
Version: 0.1
Author URI: http://tipsfor.us
*/

include_once('includes/ContentChunks.php');
add_action('init', 'ContentChunks::register_chunk_post_type');

/*EOF*/

You can see we have already added the action we intend to use, so the next step
should be no surprise; create an includes folder, and in it create a file named
ContentChunks.php:

<?php
/**
* ContentChunks
*
*/
class ContentChunks {

 /**
 *
 */
 public static function register_chunk_post_type()
 {
 register_post_type('chunk',
 array(
 'label' => '0. Chunks',
 'labels' => array(
 'add_new' => '1. Add New',
 'add_new_item' => '2. Add New Chunk',
 'edit_item' => '3. Edit Chunk',
 'new_item' => '4. New Chunk',
 'view_item' => '5. View Chunk',
 'search_items' => '6. Search Chunks',
 'not_found' => '7. No chunks Found',
 'not_found_in_trash'=> '8. Not Found in Trash',

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[171]

 'parent_item_colon' => '9. Parent Chunk Colon', /*
??? */
 'menu_name' => '10. Chunks', /* ??? */
),

 'description' => 'Reusable chunks of content',
 'public' => true,
 'publicly_queryable' => true,
 // 'exclude_from_search' => false, /* optional */
 'show_ui' => true,
 'show_in_menu' => true,
 'menu_position' => 5,
 //'menu_icon' => '', /* optional string */
 'capability_type' => 'post',
 //'capabilities' => array(), /* optional */
 //'map_meta_cap' => false, /* optional */
 'hierarchical' => true,
 'supports' => array('title','editor','author','thumbnail'
,'excerpt','trackbacks','custom-fields','comments','revisions','page-
attributes'),
 'register_meta_box_cb' => '', /* optional callback */
 // 'taxonomies' => array('category'), /* optional */
 // 'permalink_epmask' => EP_PERMALINK, /* optional */
 // 'has_archive' => false,
 'rewrite' => false, /* optional - can be an array */
 'query_var' => false, /* boolean or string */
 'can_export' => false,
 'show_in_nav_menus' => true,

)
);
 }
}

/*EOF*/

As always, we begin by mocking things up so that we have a functional outline to
test. Save your files and then refresh your browser while logged into the Dashboard
and correct any typos in your code. Here we will give you all possible parameters to
the register_post_type() function, even the optional ones.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Post Types

[172]

We have to pause to remind you not to write functions like this. It has a ridiculous
number of inputs that are very difficult to keep straight. To make matters worse,
the official documentation at present is rather poor (http://goo.gl/LtE3). Our
final gripe is that the data types of many input options are inconsistent. It should be
a red flag if your functions have inputs like "boolean or string"—that usually is an
indication of a poorly architected function. At a minimum, such functions are more
demanding on you (the developer) because you have to sanitize the input parameters.
We get the feeling that this function is half-baked, and we are hoping that future
versions of WordPress will include a better implementation, or at least more-thorough
documentation. In our opinion, this function should have been broken down into
several more manageable object methods, but WordPress tends to favor the all-in-one
approach, and in this case, it seems to have been the wrong approach.

Congratulations for making it through all of that—you should now have your very
own custom post type. If you were successful, once you activate your plugin, you
should see Chunks listed in the left-hand administration menu alongside the other
post types.

One of the most confusing areas of the register_post_type() function is the
labels. These labels are part of an optional parameter, but it makes for a nicer user
experience if you take the time to provide them. We have numbered our parameters
in our code to help demonstrate where each label will appear.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[173]

We could not locate the parent_item_colon or the menu_name labels.

We encourage you to play around with the $supports array and watch how each
setting affects the manager. Try creating a new Chunk and look at all the different
parts of the editing page. Almost every component of the editor can be changed by
the $supports array.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Post Types

[174]

We have outlined the components here as a reference:

Note that the thumbnail image option requires that you enable thumbnail support
for each content type by including the add_theme_support() function. Typically
this function appears in the active theme's functions.php file, but you can put it
immediately after the register_post_type() function in the ContentChunks.php
file, just so you see how it works:

add_theme_support('post-thumbnails', array('chunk'));

Without that line, the "Featured Image" meta box would not be visible.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[175]

The thing you might not realize when looking at these options is that several of them
are interconnected in unforeseen ways, and unless you are extremely patient, it is
difficult to figure out how to use all of them. It's no accident that there are practically
no tutorials out there for how to accomplish certain tasks related to custom post
types. The reality is that the documentation is lacking or absent, and figuring out
how to accomplish some of the tasks is beyond the average developer. Again, if you
want to see this in a fuller implementation, take a look at our Custom Content Type
Manager plugin (http://goo.gl/cgJDU); it doesn't qualify as "easy to understand",
but it can help you get a sense of what custom post types can do.

Now that we know how to control the appearance of the manager by altering the
inputs to the register_post_type() function, let's configure them so our new
"chunk" post type will have the attributes we want.

Customizing our post type
Remember that our intent is to create reusable chunks of content, so we don't need
all the bells and whistles that are available to us. Let's scale this down to something
simple that meets our needs. Here is our simplified register_chunk_post_type()
function:

 public static function register_chunk_post_type()
 {
 register_post_type('chunk',
 array(
 'label' => 'Chunks',
 'labels' => array(
 'add_new' => 'Add New',
 'add_new_item' => 'Add New Chunk',
 'edit_item' => 'Edit Chunk',
 'new_item' => 'New Chunk',
 'view_item' => 'View Chunk',
 'search_items' => 'Search Chunks',
 'not_found' => 'No chunks Found',
 'not_found_in_trash'=> 'Not Found in Trash',
),
 'description' => 'Reusable chunks of content',
 'public' => false,
 'show_ui' => true,
 'menu_position' => 5,
 'supports' => array('title','editor'),
)
);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Post Types

[176]

The show_ui option refers to the WordPress Dashboard, and this will be set to true
nearly all the time. It is difficult to imagine how you might use a post type that is not
visible in the Dashboard.

The public option affects whether or not a public visitor could view a chunk.
Another way to think about it is whether or not you need a URL associated with
this bit of content. If our post type was movies or store_locations where we
envisioned a page on our website that would house information about that movie or
store, then public would have to be true. However, we don't want that behavior—
we instead want to keep the chunks visible only in the Dashboard, and then we can
access them via shortcodes in our existing posts and pages.

Remember that if the public option is set to false, you won't be able to
preview your post, so the preview links will generate a 404 page.

When you're all done, the Dashboard page should simply have fields for the
title and for the main content. That's all we need. Create a few sample chunks
before continuing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[177]

Using shortcodes
Shortcodes were introduced to WordPress in version 2.5 and they offer a simple way
of adding macros to a post's content. You may have already seen them used by other
plugins. For example, the Viper's Video Quicktag plugin (http://goo.gl/ofe0K) is a
great plugin that adds videos to your posts via shortcodes that look like the following:

[youtube]http://www.youtube.com/watch?v=stdJd598Dtg[/youtube]

Given this shortcode macro, the plugin renders the appropriate embed code so
the YouTube video is included inside your post without you having to write the
necessary HTML.

We are going to do something similar. We want a macro that lets us specify the name
of a chunk by its title, like the following:

[get-chunk title="my_title"]

In order to make this work, we need to do two things: we need to register the
shortcode's name so WordPress is aware of it, and secondly we need to write the
function that will handle the retrieval of the chunk.

To start, we use WordPress' add_shortcode() function, and the syntax is fairly
similar to the now familiar add_action() and add_filter() functions:

add_shortcode('name-of-shortcode', 'your_callback_function');

We are going to register our shortcode in a separate function, so create the following
function inside of ContentChunks.php:

 /**
 * Register the shortcodes used
 */
 public static function register_shortcodes()
 {
 add_shortcode('get-chunk', 'ContentChunks::get_chunk');
 }

This function basically says that if a shortcode named [get-chunk] is found in a
post's content, then you have to call the ContentChunks::get_chunk() function. In
a moment we will show you how the shortcode's parameters are passed.

In order to execute our register_shortcodes() function we are going to tie it
to a WordPress action, so add another add_action() to your index.php so it
looks like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Post Types

[178]

include_once('includes/ContentChunks.php');

add_action('init', 'ContentChunks::register_chunk_post_type');
add_action('init', 'ContentChunks::register_shortcodes');

At this point, we are registering the shortcode, but we don't yet have a valid callback
function—ContentChunks::get_chunk() doesn't exist yet. Let's create that callback
function now. Add the following to ContentChunks.php:

 /**
 * Returns the content of a chunk, referenced via shortcode, e.g.
put the
 * following in the content of a post or page:
 * [get-chunk title="my_title"]
 *
 * See http://codex.wordpress.org/Function_Reference/get_page_by_
title
 *
 * @param array $raw_args Any arguments included in the
shortcode.
 * E.g. [get-chunk x="1" y="2"] translates to
array('x'=>'1','y'=>'2')
 * @param string $content Optional content if the shortcode
encloses content with a closing tag,
 * e.g. [get-chunk]My content here[/get-
chunk]
 * @return string The text that should replace the shortcode.
 */
 public static function get_chunk($raw_args, $content=null)
 {
 $defaults = array(
 'title' => '',
);

 $sanitized_args = shortcode_atts($defaults, $raw_args);

 if (empty($sanitized_args['title']))
 {
 return '';
 }

 $result = get_page_by_title($sanitized_args['title'], 'OBJECT',
'chunk');

 if ($result)
 {
 return $result->post_content;
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[179]

Pay attention to the input parameters of the callback function—they were described
in the function's documentation. So let's look at this shortcode.

[get-chunk x="1" y="2"]Some content here[/get-chunk]

It would produce the following $raw_args:

Array ([x] => 1, [y] => 2)

If in doubt, try using print_r() to print the contents of the incoming parameters.
The second parameter, $content, is optional, but you will use it if your shortcode
uses the full opening and closing tags. Anything found between the opening and
closing tags will be passed to this second $content parameter, or "Some content
here" in our example.

Be careful when using the full opening and closing tags. In our
experience, the $content was not correctly passed unless the closing
tag followed the content immediately—putting it on a new line caused
the input to fail. Another thing to be aware of is that shortcodes are only
parsed when they appear inside a post's main content block. They are not
parsed if you try to use them inside any other field.

WordPress has dedicated a function to help you sanitize the inputs to your shortcode
functions: shortcode_atts(). Without this function, you'd find yourself writing the
same type of code to clean up the inputs over and over again. Basically, to use the
shortcode_atts() function, you define the values that you want to "listen" for and
provide some default values, and then WordPress will do the rest. Have a look at the
official documentation if you need some more information: http://goo.gl/xCnZE.

WordPress has several functions devoted to retrieving posts, and we landed on
one that can retrieve a post by its title: get_page_by_title(). That's the final
function we need to make this whole thing work. See the function reference for more
information: http://goo.gl/tcflU.

The WordPress API is a bit bewildering when it comes to retrieving
posts. There is the get_posts() function, the get_post() function (to
retrieve a single post by its ID), the query_posts() function, and the
WP_Query object, all of which give you some control over which posts
you want to retrieve. Unfortunately each of these has limitations, and
most of them require different syntaxes. The quality of the documentation
for these functions is as varied as the functions themselves, so take a deep
breath if you need to use one these in your plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Post Types

[180]

We have added a couple of checks here to handle the possibility that no chunk of the
specified title was found. We should also point out that if two or more chunks share
the same title, the first one will be returned. "First" in this case means the one with
the smallest ID (that is first in the database).

Testing our shortcode
Now that we have put together all the parts, let's test this out. Make sure you have
a few chunks created. Inside a new or existing post, try using the shortcode that
references one of your chunks by its title. Remember, we are adding the shortcode
to an ordinary post, under the Posts menu. The limitation here is that you have to
remember the title of your chunks in order to use them, so keep your titles simple.

You can see that only the shortcode in the post's content was parsed; the shortcode in
the post's title was ignored.

Congratulations, if you got this all working! You now have a good way of reusing
content. If you are experiencing problems, double-check the spelling of your shortcode
and make sure it matches the name used in the add_shortcode() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[181]

Customizing our plugin
Now that we have the basic functionality in place, you might realize that the success
of this plugin depends on the uniqueness of your shortcode. If another plugin
happened to use the same name for their shortcode, your plugin could break. It's not
a likely scenario, but it's one we're going to address by creating an administration
page to let the users control the name of the shortcode.

We've created a manager page before, but let's review the process now. In order to
have a manager page for this plugin, we need three things: a function that defines the
menu item, a function that generates the page when that menu item is clicked, and
finally an add_action() hook to ensure that the other two functions are executed.

Let's begin by creating the function that will add the menu item. We are going to do
something new here by demonstrating how you can create a dedicated menu item.
It's not at all necessary for this plugin, but we wanted to show you how to do it. Add
the following function to your ContentChunks.php file:

// Used to uniquely identify this plugin's menu page in the WP manager
 const admin_menu_slug = 'content_chunks';

 /**
 * Create custom post-type menu
 */
 public static function create_admin_menu()
 {
 add_menu_page(
 'Content Chunks', // page title
 'Content Chunks', // menu title
 'manage_options', // capability
 self::admin_menu_slug, // menu slug
 'ContentChunks::get_admin_page' // callback
);
 }

Using the add_menu_page() function instead of the add_options_page() allows
us to create a dedicated menu item, although the options are quite similar. We have
omitted the last two options; see the official documentation if you want to try your
hand at including a custom icon and a custom location in the menu tree: http://
goo.gl/OZ8CW.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Post Types

[182]

We are making use of a class constant here, named admin_menu_slug. Note that you
reference it without the use of a dollar sign, for example, self::admin_menu_slug.
This is similar to how you reference normal PHP constants. We are using a constant
here because this is a value that should not ever change during runtime. Just to
be pedantic, if you needed to reference this value from somewhere outside of the
ContentChunks class, you would have to use the fully qualified name, for example:

print ContentChunks::admin_menu_slug;

Inside of a class you can retrieve static class variables and constants using
the self keyword, but outside the class, you need to specify the full class
name. In code, this is analogous to when we use the self:: or $this->
constructs. We can use them inside the class, but outside the class, we
must be more verbose.
Imagine being in a hotel and calling for room service. It would be
exceedingly odd if you told the receptionist the name of the hotel in
addition to your room number: the receptionist already knows that
you are staying in this hotel. On the other hand, if you called for pizza
delivery, you would have to include the hotel name—you couldn't just
tell them your room number and expect them to find you.

You may have noticed that we've already defined a callback function,
ContentChunks::get_admin_page(), so let's create that next. Add the following
function to your ContentChunks.php file:

 /**
 * Prints the administration page for this plugin.
 */
 public static function get_admin_page()
 {
 print 'testing...';
 }

We will add something more substantial to this function once we have verified that it
works, but for now, we want something simple we can test.

Finally, you need to add an action to make this code execute. In your index.php file,
add the following action:

add_action('admin_menu', 'ContentChunks::create_admin_menu');

Save your work and try refreshing the manager. You should see this menu item
appear in the menu hierarchy on the left-hand side of the WordPress Dashboard.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[183]

Once you have verified that this is working, let's customize the manager page by
creating a form that will allow users to change the name of the shortcode. It's a
simple form with only one input, so we can follow the example from the previous
chapter on widgets. Create a file named admin_page.php, and save it inside your
includes folder. The following is what our admin_page.php looks like:

<div class="wrap">
 <?php screen_icon(); ?>
 <h2>Content Chunks Administration</h2>

 <?php print $msg; ?>

 <form action="" method="post" id="content_chunks_form">
 <h3><label for="shortcode_name">Shortcode Name</label></h3>
 <p>Define the shortcode that will be used to trigger the
retrieval of a Chunk, e.g. [get-chunk title="My Title"]

 <input type="text" id="shortcode_name" name="shortcode_name"
value="<?php print $shortcode_name ?>" /></p>

 <p class="submit"><input type="submit" name="submit"
value="Update" /></p>
 <?php wp_nonce_field('content_chunks_options_update','content_
chunks_admin_nonce'); ?>

 </form>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Post Types

[184]

We are again using the built-in WordPress screen_icon() function to give our page
a default icon, and once again, we are wrapping our form with <div class="wrap">
so we can take advantage of WordPress' styling.

Now that we have a viable form, we need to use it. Update the get_admin_page()
function inside the ContentChunks.php file so it includes and processes the form:

 public static function get_admin_page()
 {
 if (!empty($_POST) && check_admin_referer('content_chunks_
options_update','content_chunks_admin_nonce'))
 {
 update_option(self::option_key,
 stripslashes($_POST['shortcode_name']));
 $msg = '<div class="updated"><p>Your settings have been
updated</p></div>';
 }
 $shortcode_name = esc_attr(get_option(self::option_key,
self::default_shortcode_name));
 include('admin_page.php');
 }

As before, we use the check_admin_referer() to check whether we need to process
the form or simply display it. Notice that the path to the admin_page.php file is
relative to the ContentChunks.php file, so as long as admin_page.php is in the same
directory, no further path information is required.

At the top of the ContentChunks.php file, add the following two class constants:

 const default_shortcode_name = 'get-chunk';
 const option_key = 'content_chunks_shortcode';

We need these values to define the default value of chunk, and to define the name
of the option key we will use in the wp_options table when we store our plugin's
settings. Both of these constants are used when we invoke WordPress' get_option()
function, just as we did in the chapter on widgets. As a reminder, this function either
retrieves the option requested or it returns the default value.

Save your work and verify that you can edit the value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[185]

Remember that it is vital that your inputs to the admin_referer() function exactly
match the inputs you passed to the wp_nonce_field() function, otherwise you
won't be able to correctly submit your form.

The only thing we need to do now is update our register_shortcodes() function
so it uses the dynamic value from the database instead of the one we hardcoded.
Update the function so it looks like the following:

 public static function register_shortcodes()
 {
 $shortcode = get_option(self::option_key, self::default_
shortcode_name);
 add_shortcode($shortcode, 'ContentChunks::get_chunk');
 }

To test this, try saving a new value for the shortcode name on the administration
page, then verify whether posts using this shortcode behave as expected. For
example, if you change the shortcode name to "chunk" instead of "get-chunk", your
shortcode must reflect that change: [chunk title="testing"].

Congratulations! You now have a dynamic plugin that can be configured, and you
have more experience under your belt when it comes to creating administration forms.
Let's demonstrate another trick that's useful for creating a good user experience.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Post Types

[186]

Creating a settings shortcut link
One of the problems encountered by users is that a plugin's settings may be difficult
to locate. It's not immediately clear if a new menu item has been added when a user
first activates a plugin. That's the problem we are going to solve by adding a Settings
link that takes us to our plugin's administration page.

How did we do that? Well, it turns out that the information for each plugin is printed
via a process that we can modify using a WordPress filter. The name of one of these
secret filter hooks is plugin_action_links. How did we know that? Thanks to the
nature of open-source code, we saw it used in Viper's Video Quicktag plugin, and
then we looked through his code to figure out how Mr. Viper007Bond pulled this
off. We could use that same filter here, but the thing to remember is that this filter
is called for each plugin listed, so if we used that filter, we would have to check
to ensure that we were filtering the data for our plugin, and not another plugin,
otherwise we would end up modifying the links for some other plugin. We want the
Settings link to appear under our plugin, not under the "Hello Dolly" plugin.

Let's demonstrate one option for tackling this. First, add the filter to your
index.php file:

add_filter('plugin_action_links', 'ContentChunks::add_plugin_settings_
link', 10, 2);

This is one of the few times when we need to pass additional parameters to the
add_filter() function: the 10 is merely a default value for $priority, but pay
attention to the fourth argument, which specifies that two arguments will be passed
to the callback function. This is something that's simply inherent with this particular
event, and the only way to learn that is to see examples like this one or to browse the
WordPress source code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[187]

Now, we must add the callback function to ContentChunks.php:

 /**
 * The inputs here come directly from WordPress:
 * @param array $links - a hash in theformat of name =>
translation e.g.
 * array('deactivate' => 'Deactivate') that describes all links
available to a plugin.
 * @param string $file - the path to plugin's main file (the
one with the info header),
 * relative to the plugins directory, e.g. 'content-chunks/
index.php'
 * @return array The $links hash.
 */
 public static function add_plugin_settings_link($links, $file)
 {
 if ($file == 'content-chunks/index.php')
 {
 $settings_link = sprintf('%s'
 , admin_url('options-general.php?page='.self::admin_menu_
slug)
 , 'Settings'
);
 array_unshift($links, $settings_link);
 }

 return $links;
 }

The incoming $file parameter contains the name of each plugin's main file (the one
containing the information header). Remember that the file name is relative to the
wp-content/plugins/ directory, so you can see how we tested it. Alternatively,
we could have dynamically determined the name of our plugin's folder using some
combination of basename(), dirname(), and the __FILE__ constant.

We know the URL for this plugin's settings page, so we use PHP's array_unshift()
function to put this link first in the $links array, and then we return the result.

Save your work, then try refreshing the WordPress Dashboard and viewing the
Plugins administration area. You should see a new Settings link that takes you
directly to the administration page we created in the previous section. Very nice.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Post Types

[188]

There is another filter hook we could have used, and we had to poke around in
the WordPress source code to find it. If you search through the codebase for where
plugin_action_links appears, you will find it in the wp-admin/plugins.php file,
called by the apply_filters() function. Only by examining the source code did we
realize that each plugin's action links has its own filter event, corresponding to the
name of the plugin's main file. Following is the alternative filter event that you can
use in your index.php file:

add_filter('plugin_action_links_content-chunks/index.php',
'ContentChunks::add_plugin_settings_link', 10, 2);

In other words, we prefix plugin_action_links_ to the name of the plugin's main
file, relative to the wp-content/plugins/ directory. The resulting filter name is a bit
unexpected, but it is legitimate. Now that you have a filter event that is dedicated
to your plugin, you no longer need to check the plugin file name in the callback
function. If you use the plugin_action_links_content-chunks/index.php filter,
update your add_plugin_settings_link() function so it omits the if-statement:

 public static function add_plugin_settings_link($links, $file)
 {
 $settings_link = sprintf('%s'
 , admin_url('options-general.php?page='.self::admin_menu_
slug)
 , 'Settings'
);
 array_unshift($links, $settings_link);
 return $links;
 }

The results for using this filter should be exactly the same as using the more general
plugin_action_links one.

Congratulations again! You now have in your arsenal a way to enhance the user
experience for anyone using your plugin. The only thing left to do in this chapter is
to show you how to clean up if someone "uninstalls" your plugin.

Cleaning up when uninstalling
It could happen to any developer: a user decides to uninstall your plugin. It's
a scenario that you should prepare for, especially if your plugin performs any
database modifications. You should consider it a bit rude if your plugin makes
custom modifications to the database or file system and does not clean up its mess
when asked to leave. Cleaning up is just being considerate. Unfortunately, many
plugin authors fail to do this, and who can blame them when the process is so poorly
documented? Let's show you how to do this relatively simple task.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[189]

When you choose to delete a plugin, WordPress will look for a special file, named
uninstall.php, located at the root of your plugin's directory. In it, you can place
all the code necessary to clean up whatever modifications you made. However, you
must also consider the insidious possibility that a nefarious user navigates directly
to this file, for example, by visiting http://yoursite.com/wp-content/plugins/
your-plugin/uninstall.php.

WordPress has a solution for this potential pitfall, it defines a special constant named
WP_UNINSTALL_PLUGIN, and you can check whether or not it is defined before
proceeding with your cleanup.

Let's demonstrate a simple uninstall script for your plugin. Create the uninstall.
php file and add the following text to it:

<?php
/**
* This is run only when this plugin is uninstalled. All cleanup code
goes here.
*
* WARNING: uninstalling a plugin fails when developing locally via
MAMP or WAMP.
*/

if (defined('WP_UNINSTALL_PLUGIN'))
{
 include_once('includes/ContentChunks.php');
 delete_option(ContentChunks::option_key);
 global $wp_rewrite;
 $wp_rewrite->flush_rules();
}
/*EOF*/

It's a relatively short script, because we made relatively few modifications. In fact,
the only thing we really need to clean up is the custom option we created. Since
we defined the name of that option inside of the ContentChunks.php file, we first
include it, and then read the name of the value using the full name of that class
constant: ContentChunks::option_key. This ensures that the row we created in
the wp_options database table is removed. You can see how we tested for the WP_
UNINSTALL_PLUGIN constant before taking any action; that constant is only defined
when someone clicks on the link to delete your plugin.

The other thing that we are demonstrating here is overkill for this example, but we
thought it was relevant because we are dealing with custom post types and they
potentially deal with custom URLs. We use the flush_rules() method to clear out
any stored URLs. In this chapter, our custom chunks were private, so they were not
viewable via a URL, but if your custom post type was public, then your uninstall
process should include these steps to flush the rewrite rules.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Post Types

[190]

As pointed out in the comments, this process fails if you are developing on a local
server in the same way that automatic plugin installation fails. Be sure to upload
your plugin to a public web server to test your uninstall process, but be sure to make
a backup of your plugin before you test deleting it.

With that, you have another powerful tool in your arsenal for creating professional
WordPress plugins.

Summary
Congratulations! You have taken some big steps in understanding how WordPress
works as a CMS, and you have seen some of the things that the register_post_
type() function can do, and hopefully you have glimpsed at what is possible
with custom post types. Frankly, we found dealing with this function to be rather
frustrating, but we trust that its usability and documentation will improve with
future releases of WordPress. You have also learned a couple of useful tricks for
constructing user-friendly plugins, and these are valuable tools as you consider
releasing your plugins to a wider audience.

With that in mind, it's time to start talking about getting our plugins off the ground
and available to the general public. To get us started down that path, our next topic
is versioning our code with SVN.

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning Your Code with
Subversion (SVN)

By the end of this chapter, you will know what Subversion is, what it does, and
how to use it to effectively manage your software development projects. Even if you
are already familiar with Subversion, this chapter is a useful reference of how to
complete common tasks and how to fix common problems. Throughout this chapter,
we will be referencing the shell commands used to perform various actions; although
there are a number of graphical clients available, they all make use of the underlying
command-line utilities. Once we show you how to accomplish these tasks on the
command-line, you should have no trouble figuring out the comparable actions
within a GUI application.

By now, you should be familiar with the process of code development and you
should be able to recognize the need to back up different versions of your files. You
have certainly encountered situations where the "undo" button could no longer save
you. You may have also had files that got inadvertently overwritten when multiple
people were working together on the same project. This is where a version control
system can save you.

Subversion (or any version control system) does three things for you:

•	 It stores multiple versions of your files so you can easily roll back to a
previous version at any time

•	 It backs up your code in a remote location (unless you've configured your
own local server)

•	 It allows multiple contributors to work on the same set of files without
tripping over one another

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning Your Code with Subversion (SVN)

[192]

From the official on-line documentation (http://svnbook.red-bean.com):

Subversion is a free/open source version control system. That is, Subversion
manages files and directories, and the changes made to them, over time. This allows
you to recover older versions of your data or examine the history of how your data
changed. In this regard, many people think of a version control system as a sort of
"time machine".

Indeed, any serious software development project would be virtually impossible
to manage without a system like this. Every application on your computer was
probably developed using some kind of version control.

Why Subversion?
Subversion, often abbreviated as SVN, is not the only or best version control software
available, but since it is used by WordPress to manage user-contributed plugins we
have to talk about it specifically. However, we aren't bowing in blind obeisance here:
SVN has earned its place as one of the standard version control applications because
it is reliable, it has a good set of features, and it is relatively easy to use.

Understanding the terminology and concepts
Before we get into details on how to accomplish specific tasks, let's take a moment to
discuss some of the terms and concepts so you can see the forest for the trees.

The first concept to introduce is that of the "repository", or the repo. An SVN
repository holds all of a project's files and folders and all of its incremental revisions.
You can set up a repository anywhere, but it is commonly set up on a remote server
separate from your development environment. At any time, you can download
the latest version of your project from the repository. Even though you can set up
an SVN server locally on your own computer, we find it helpful to think of the
repository as existing somewhere "out there", far away from your local machine.

The next concept is that of the working copy. That folder on your desktop containing
your project's myriad PHP and HTML files will become a "working copy", but
it's not a working copy yet. The word "copy" should ask the question: "a copy of
what?" The answer should be, it is a copy of the repository. A folder cannot be an
SVN working copy until you make a copy of the repository using the SVN checkout
command, which we will show you in a moment. It's a bit like training to be a
Jedi—your project's folder has to be subjected to special SVN treatment before it gets
superhuman powers to track changes. Until your folder gets schooled in "the ways of
the force", it's just another folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[193]

In a moment we will show you how to get this all started, but it's important to
recognize the distinction between a regular vanilla folder and an SVN working
copy. A working copy contains a series of hidden directories (named ".svn") that
store information about the parent repository and its files and folders. These hidden
folders are how SVN gets its Jedi powers to track changes between revisions.

Before we get too far ahead of ourselves, let's get our hands dirty and learn by doing.

Checking out a local working copy
The local working copy is a copy of a repository, so the repository must exist before
you can have a copy of it. Creating a working copy is done by using SVN's checkout
command (sometimes abbreviated to co). The checkout command creates a local
working copy of the repository it references, even if that repository is empty. An
important part of running the checkout command is establishing the connection
between the repository and a local folder on your computer.

Have you ever wondered how some people download the cutting edge versions of
software before they are officially released? Often it's simply a matter of checking out
a working copy of the software's repository. For example, if you want to download
the latest version of WordPress, navigate to an empty folder on your computer and
use the following command from your command line:

svn checkout http://core.svn.wordpress.org/trunk/

You should see a list of files streaming by as they are downloaded into the current
directory. When finished, you should have a trunk directory inside your current
folder and you should have gotten a message like this:

Checked out revision 17369.

You have just downloaded the latest development version of WordPress. Now you
too can see what's in store in the next version of WordPress! See http://wordpress.
org/download/svn for more details.

Congratulations! You have created a working copy on your local computer! If you
move into the trunk directory and view the hidden files, you should see all of
WordPress' files as well as a directory named .svn. Each directory in your working
copy will have a .svn directory—that's how Subversion tracks which files you've
added or modified. Do not touch these directories! Damaging them could cripple
your local working copy!

We are going to introduce you to a simple helper function here:

svn info

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning Your Code with Subversion (SVN)

[194]

That command will tell you about the working copy, including the repository URL.
It can be a useful way to look up your repo's URL if you can't remember it.

Now that you have a local working copy, you may be wondering why you have a
trunk folder. Well, the answer to that question could be quite lengthy depending on
whom you ask, but it all has to do with how versions of code are typically organized,
so we need to explain a bit about SVN's folder structure.

SVN folder structure
Technically speaking, SVN doesn't know or care about directory structures, it
simply cares about deltas, or differences between two versions of a file. In practice,
however, it is common to organize your files into a couple of extra folders to help
you distinguish public versions of your project from the ongoing development
revisions. This folder structure is what WordPress expects if and when you commit
your plugin code to their repository.

The trunk folder will be used to store the latest saved version of your project. A
couple more directories may also come into play, which means your code base will
be organized into at least two folders, but possibly all three of the following:

•	 /trunk/: Contains the private "development" version of your code
•	 /tags/: Contains "snapshots" of the trunk, made when the development of

trunk has reached a significant point
•	 /branches/: Used for more complex development scenarios

There are several main philosophies that describe how you should interact with
these folders, but we are going to focus on only one of them, known as the "Never
Branch" method, since it is easier to understand and it agrees with WordPress' plugin
submission process. Our explanation of these folders pertains to this "Never Branch"
development method, but if you are curious about some of the alternatives, have a
look at Jean-Michel Feurprier's nice article on the topic: http://goo.gl/y5ox.

In short, the trunk folder is like a tree, and it contains multiple folders and files that
collectively represent your project in development. This is where you will be editing
files—it is really the heart of your local working copy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[195]

The tags folder contains named copies of the trunk. If your trunk is like a tree, then
the tags folder will contain "snapshots" of your tree at times when you thought it was
looking particularly good. You will never commit code directly into the tags folder.
The only way code will end up in that folder will be if you copy the entire contents
of the trunk into a new subfolder inside of the tags folder. This is how you identify
significant versions or milestones in your project. You may have saved and committed
hundreds of different versions of the trunk before you are ready to officially label it as
a separate tag, but once you are ready to make that distinction, you will use SVN to
copy the trunk wholesale into a named subfolder inside of tags, such as: tags/beta or
tags/rc-2.3 or tags/public-version-1.0. For WordPress plugins, your releases
must contain only numbers and periods, for example, tags/0.6.1.

You need not worry about the branches folder because our simple development
methodology here doesn't require its use. Again, SVN does not know nor does it care
about how you structure your directories; this is just how a majority of developers
have agreed to do it, and considering its effectiveness and popularity, you should
be aware of it. WordPress offers its own explanation about using SVN with your
projects (http://goo.gl/QeGm).

Now we have an understanding of how we are planning to organize our files and
folders inside our repository, so let's bring the point home by trying to checkout an
older version of WordPress.

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning Your Code with Subversion (SVN)

[196]

Checkout, revisited
The checkout command has an optional second argument, and your checkouts can
get a bit sloppy if you omit it. The optional second argument specifies a local path,
and if you omit it, the basename of the URL will be used as the destination. In our
example, we ended up with a directory named trunk because that was name of the
folder in the repository's URL. Try making another folder, and then moving into it,
and this time modify the command to add a period at the end (in the shell, a period
represents "this folder", so we are telling SVN to checkout a working copy "here"):

svn checkout http://core.svn.wordpress.org/trunk/ .

You will still see the same message about "Checked out revision xxxx", but this time,
all the files and folders downloaded directly into the current folder, so you didn't
end up with a trunk folder at all. Depending on what you're doing, there are times
when you may want to see the trunk folder, and there are times when you might
want to omit it. Now you know how.

Before, when you omitted the period, the files you checked out were downloaded
into a newly created trunk directory:

•	 A trunk/wp-admin/user/admin.php

•	 A trunk/wp-admin/user/index-extra.php

•	 A trunk/wp-feed.php

Whereas if you added the period as your second argument, the files were checked
out into the current directory:

•	 A wp-admin/user/admin.php

•	 A wp-admin/user/index-extra.php

•	 A wp-feed.php

Make sense? We are going to drive the point home here as we show you how to
download an older version of WordPress. Create yet another directory and navigate
to it before issuing the following command:

svn checkout http://core.svn.wordpress.org/tags/3.0.4/ .

Can you guess what this will do? This command will download a working copy of
WordPress 3.0.4 to the current directory. This lets you see how the tags directory
is used to store snapshots of the trunk, and it gives you more practice using the
checkout command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[197]

Hopefully this gives you some confidence in your abilities to use Subversion, but
checking out the WordPress code has some limitations. Unless you have been invited
to submit changes to the WordPress code base, your access to the repository is read-
only. In order for us to continue our SVN education, we need to create our own
repository so we can practice submitting our own changes and start versioning our
own code. Let's create a repo.

Setting up an SVN repository
If we are going to version our own code, then we need to start with finding a suitable
SVN host to house our repository. There are a lot of SVN hosting providers that are
free to use, but they often come with limitations regarding the number of users and
the amount of disk space offered. You may have to read the fine print before you
find one that suits your needs.

For this example, we are going to make use of Google's free code repository at http://
code.google.com/hosting (read more information about the project at http://
code.google.com). Anyone with a Google account can get a 2048 MB repository
quota, as well as a wiki and a ticketing system, but it is a requirement that any
submitted code be compatible with an open-source license. This is a free public service,
so it's perfect for an open-source project. Anyone can "check out" the code (just like we
did earlier when we checked out the WordPress code), but only members you invite
to your project will get privileges to commit changes to the repository—this is, by the
way, more or less how WordPress' plugin repository works. If you do not want to
use Google Hosting for your project, you can sign up for a free repository with any
number of other sites; many of those sites also offer project management features that
help you identify milestones and track errors. We recommend http://unfuddle.com
as a nice scalable versioning and management solution.

No matter where your repository is hosted, the most important thing for this chapter
is that you become familiar with all the SVN commands you'll need.

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning Your Code with Subversion (SVN)

[198]

Go to http://code.google.com/hosting, sign in with your Google account (or
create one), and click on Create a New Project. You need to enter a unique name,
summary, description, and make sure you choose Subversion as the version control
system. If you are going to store code meant for a WordPress plugin, you can use the
GNU General Public License v2 as your license, because that's what WordPress uses.

Once you have completed this, a special password will be generated and you will be
given some commands to use when connecting to your repository. We will use those
commands in the next section.

At this point, our repository is completely empty. It literally contains nothing. We
will add files to it later, but first we need to establish the connection between the
repository and a local working copy, so let's use those commands Google provided
to check out a local working copy!

Checking out a local working copy
of our repo
The commands used to check out code from our Google repository are more or less
the same as the ones we saw previously while checking out code from WordPress'
repository.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[199]

A bit later, we will start adding your project's files to the repository, but leave them
alone for now. Create a fresh new directory on your computer. Move into the new
directory and then try running this command to check out a working copy:

svn checkout https://my-unique-project-name.googlecode.com/svn/trunk/
--username mygoogleid

Google requires an additional parameter because you need to validate before
connecting, but once finished, you should see something like the following as output:

svn checkout https://my-unique-project-name.googlecode.com/svn/trunk/
--username mygoogleid

Checked out revision 1.

If you view hidden files in that directory, you should now see the hidden .svn
folder. Remember: do not touch anything in the .svn folders! You could irreparably
damage your local working copy!

Do not immediately try to check out your repository into the same folder
as your project! Your first checkout should always be into a blank new
folder. Always keep a backup of your files separate from SVN just in case
something goes wrong with the SVN setup!

Congratulations! You have created a working copy for your project and you can now
start adding files and folders to it to bring them under version control.

You can see that Google required a username to check out the code. Some
repositories do require authentication. SVN will often store the necessary username
and password, so you usually don't need to type them again when updating or
committing your changes.

Adding files
The normal workflow is that we add files to our local working copy before they get
added to the repository. Our local working copy is like the launch-pad where we
rocket our code into that far away repository. You probably already have files sitting
in a folder somewhere that you're dying to bring under version control, but first we
are going to try this out using some test files, just to make sure that it will work. Hey,
the Russians blasted Laika the dog into space aboard Sputnik 2 long before they tried
it with a human being.

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning Your Code with Subversion (SVN)

[200]

To begin, try saving a copy of a file into your working copy folder. We're naming this
file laika.php. The process here is always going to be two-part: you do your regular
coding work, and then you come back to SVN and do your versioning. After saving
laika.php to your working copy, head back to the command line to see what SVN
thinks about it. We use SVN's status command to get a rundown of the changes
that have happened in this folder:

svn status /path/to/your/working/copy

Alternatively, if you are already inside your working copy:

svn status

Which produces the following output:

? laika.php

The question mark signifies that SVN doesn't know what this file is—it's not being
tracked. It turns out that you always have to tell SVN about what you're doing inside
your working copy. It wants to know who is invited to the party. We do this using
SVN's add command:

svn add laika.php

Which produces the following output:

A laika.php

The A shows us that the file has been added to SVN's list. You can add files one by
one, or you can use the common filename wildcards, for example, svn add *.php.
See the help page for more options:

svn help add

Next, we have to upload this file to the repository—right now it's still just sitting on
the launch-pad, waiting to blast off to the big repository in the sky.

Committing changes to the repository
This is how we really add files to the repository, we commit them. To jump right to
it, we use the commit command like this:

svn commit . -m "Testing our first commit"

It produces some output like the following:

Sending laika.php
Transmitting file data
Committed revision 2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[201]

The dot after the commit symbolizes this directory, so as written, the command
assumes that you are inside the root of your working copy. You could run that
command from elsewhere on the file system simply by specifying the full path and it
would have the same effect:

svn commit /full/path/to/my-working-copy -m "Testing our first commit"

The -m is short for --message, and it allows us to describe this particular commit.
These messages are searchable and they can help you track down when particular
changes were made, so it's good to describe each commit in a meaningful way so that
you can search for those changes later.

The rest of the output shows us which files were transmitted to the repository and
it gives us a new revision number. That number will increase sequentially each time
you make a commit. Sometimes software projects include a "revision number" in
their "about" page; often that comes directly or indirectly from the version control
system. For more information, have a look at the help page:

svn help commit

Overcoming errors
You may run into an error when trying to commit, such as the following:

svn: Could not use external editor to fetch log message; consider setting the $SVN_
EDITOR environment variable or using the --message (-m) or --file (-F) options
svn: None of the environment variables SVN_EDITOR, VISUAL or EDITOR are
set, and no 'editor-cmd' run-time configuration option was found

What in the world does that mean? Well, number one, it means that you ignored
our advice and did not to include an -m option with a description of your commit.
Secondly, it means SVN did not know which editor to pop open for you in order to
make you provide a description. You can either always include the -m option with
a description each time you make a commit, or you can set an environment variable
that specifies which editor to use.

In Linux and Mac OS X systems, you can run the following commands on the
command-line which will set the value of the SVN_EDITOR environment variable:

SVN_EDITOR=pico

export SVN_EDITOR

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning Your Code with Subversion (SVN)

[202]

You can also paste those lines into your ~/.profile or ~/.bash_profile files so
your settings don't go away when you log out. On Windows, you can set the editor
environment variable by navigating to Environment Variables in your System
Properties (right-click on My Computer, choose Properties, choose Advanced, and
then look for the Environment Variables button).

From there, you can define a new variable called SVN_EDITOR and a value that is the
system path to your text editor (such as C:\Windows\notepad.exe).

Verifying the new state of your repository
If you're doing this for the first time, we encourage you to double-check the action
here by downloading another copy of your repository to a new location on your
computer, or you could even go as far as to checkout your repository on a whole
other computer using the same commands we learned before. Create a new folder for
your local working copy, and then issue the SVN checkout command, for example:

svn checkout https://my-unique-project-name.googlecode.com/svn/trunk/ .

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[203]

The latest version of the repository (known as the head) should download to your
current directory and you should have a clean copy of the laika.php file. The
files you committed in the preceding section should appear in the new location.
Unlike Laika the dog, who died shortly after entering orbit, laika.php should have
survived the trip to the repository and back. Are you starting to get the hang of this?

Adding more files to your repository
Now that you have fired a test shot and verified that your machinery is working, you
can add some more files and folders to your repository. You can add files directly
to the repository using SVN's import command—they can come from anywhere on
your hard-drive; they don't have to be inside your working copy.

cd /path/to/non-versioned/files

svn import . http://yourrepo.com/ -m "Priming the pump: submitting
directly to the repo"

Then, over in your working copy, run the update command to pick up those changes
made to the repository:

cd /back/to/your/working/copy

svn update .

Alternatively, in one line:

svn update /back/to/your/working/copy

The import command is primarily used when you are setting up your repository for
the first time. For more information, look at the help page:

svn help import

You can also continue to use the previous add/commit method we outlined before,
but you'll find it more and more useful to specify multiple files using wildcards, for
example:

svn add *

This will throw some warnings when you try to add files that are already under
version control, but usually they are harmless warnings that you can ignore. You
might see something like this:

svn: warning: 'test.php' is already under version control

A other.php

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning Your Code with Subversion (SVN)

[204]

The command threw some warnings, but it succeeded in adding new files to SVN's
special list. Now you commit your changes and the new files will be added to the
repository.

svn commit . -m "Added some more files!"

Removing files from the repository
Hopefully you are getting the hang of this. Once you're ready, you can start adding
some of your "real" files to the repository, but sooner or later you'll want to delete
files too.

Remember: You cannot just delete the file! It will pop right back in there
the next time you update your working copy.

You must use the SVN equivalent command:

svn delete test.php

Sometimes you may get an error, such as:

svn: 'test.php' has local modifications

What does that mean? You can only delete files that have been committed. If you
are trying to delete a file that has been edited since you checked it out or if you are
trying to delete a file that you added but never committed, you will get this error.
If you accidentally added the file and haven't committed it yet, you can "delete" it
by using the revert command. The usage here is a bit odd, but remember that the
revert command discards local changes. In this case the change is that you added
the file to your working copy, so sometimes you need to revert a file before you can
delete it. If you need some more guidance, refer to the help page:

svn help delete

Updating your working copy
The final command necessary to maintain basic version control is the update
command. You will generally use the checkout command only once when you
first connect to a repository, whereas the update command you will use frequently.
You will use it to sync your local working copy with the most recent copy from the
repository. In SVN nomenclature, the most recent version is called the "head" and it
contains the most recent changes committed to the repository.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[205]

To try this out, run the update command from any working copy:

svn update

The update command assumes that you want to update the current directory, but it's
equally valid to specify the full path:

svn update /path/to/your/working/copy

If anyone has made new changes to the repository, this will ensure that your copy is
in sync. This command is absolutely vital if you have other people working on your
project. You want to make sure that your local working copy has all the new changes
that they may have committed. Even if you are working solo on your project, it's a
good habit to get into running the update command periodically.

Tagging a version
After you have gone back and forth editing and committing revisions, you will
eventually come to a major revision that you want to "tag". All that's involved here
is making a copy of your trunk and putting it into a named folder inside your tags
folder. Again, you can't just copy the trunk; you have to use SVN's equivalent copy
command. We take this a step further because we don't need to create a local copy
of the code at all; we just want to take a snapshot of the repository and store it in the
repository.

The following is what your tagging command could look like:

svn copy https://my-unique-project-name.googlecode.com/svn/trunk https://
my-unique-project-name.googlecode.com/svn/tags/0.0.1

Remember that this command must appear on one line. Just like the normal shell
cp command, the svn copy command takes two arguments. The first specifies the
source, and the second specifies the destination. Every time you create a tag, you will
copy the trunk into a named directory, named 0.0.1 in our example.

The example above may not play nicely with how WordPress expects your plugin to
look, in particular the readme.txt file. WordPress' official documentation for using
SVN demonstrates how you create a tags directory locally: http://wordpress.
org/extend/plugins/about/svn/. Their solution plays nicer with the readme.txt
file, but it requires that you dedicate a separate directory outside of your WordPress
install to act as a launchpad to the WordPress repository. See our article on the topic
for more information: http://goo.gl/r2ebz.

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning Your Code with Subversion (SVN)

[206]

SVN doesn't care what you name your tags, but WordPress does. Get into the habit
of naming the subdirectories in the tags folder using only numbers and periods, like
typical WordPress version releases. As you will see later, these numbers relate to
your plugin's readme.txt file.

As always, consult the help page if you need more guidance:

svn help copy

Let's cover a few more scenarios that you may encounter.

Reverting an entire project
Oh no! You just realized that your project is hopelessly screwed up and you want to
rollback to a previous version. Given that SVN is built for precisely this scenario, it's
a bit surprising how tricky this option can be. One thing that may seem baffling to
you is that SVN really only moves forward. It lets you pull up older versions of code,
but any revisions still get saved on top of the stack so you have a full record of every
commit you've ever made, including those bug-plagued ones you made at 3 AM
from a net bar in Tijuana.

One option is to create a new folder, then check out an entire working copy from a
previous date. Use the --revision flag (or the -r abbreviation) to specify a date.
SVN accepts several different formats, but make sure you use quotes if your date
includes a space.

svn checkout --revision {"2010-11-15 15:30"} http://your-repo.com/trunk/ .

Remember that this gives you the most recent version of the repository as of the date
you specified. If the most recent commit that occurred on or before 2010-11-15 was
actually a revision that was committed on Halloween two weeks prior, then that's
what this command will check out. Trick or treat!

It may seem strange to check out the entire code base into a separate folder, but
it can be easier to compare the two versions and paste the necessary changes into
your current working copy when you have them isolated into separate locations.
The important thing is that you get your current working copy repaired so you can
commit the necessary fixes.

You can also use the --revision flag to check out revisions by their number:

svn checkout --revision 567 http://your-repo.com/trunk/ .

This is how you can flip through open source software projects to see the iterative
process of development, but it's not very readable by humans.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[207]

Please refer to SVN's included help by issuing the following command:

svn help checkout

You may have noticed that this command does more or less exactly what we did
previously when we demonstrated how to check out older versions of WordPress.
Normally, the checkout command grabs the most recent version of the files in the
repository, but by using the extra parameters, you can grab older versions of the files.

Reverting a single file
If you don't want to check out a complete working copy, you can rollback a specific
file too. Oddly, this requires that you use the update command, not the revert
command! You can think about it like this: just like the checkout command, the
update command can take additional arguments that specify a date or a revision.

svn update test.php --revision {"2010-10-31"}

In this example, we are "updating" the test.php file to its last known state as
of Halloween 2010. This option can be more complicated than checking out an
older version to a separate directory. However here's how you should go about
performing a rollback to a previous version of a file.

First, commit your existing code:

svn commit . -m "BROKEN! Preparing to roll back!"

This may seem crazy if you know that it is in fact broken, but you have to move
forward. Simply indicate in your commit message (the -m option) that this version is
broken. If you don't do this, you may encounter an error when you try to update the
broken file in question:

svn update myfile.php --revision {"2011-01-01"}
Conflict discovered in 'myfile.php'.
Select: (p) postpone, (df) diff-full, (e) edit,
 (mc) mine-conflict, (tc) theirs-conflict,
 (s) show all options:

All that is to say that the file you are trying to roll back has local modifications. You
can press Ctrl+c to escape out of this option. Make sure you commit your local copy
before continuing.

Next, use the update command to specify a date or revision number of your file that
you want to roll back to. You should see some output like the following:

svn update myfile.php --revision {"2011-01-01"}

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning Your Code with Subversion (SVN)

[208]

The output will be as follows:

U myfile.php
Updated to revision 42.

Now that you have the older version of the file, go ahead and make the necessary
changes to it. Once you're done, you can commit your changes as you would
normally:

svn commit . -m "I fixed the problem with myfile.php"

If you need more options, don't forget to have a look at the help page:

svn help update

When you fix up your current working copy using bits and pieces of an older
working copy, you are manually merging the two versions. SVN does have a merge
command, but it is a bit more complicated to use, so we recommend that you get
comfortable manually patching things together before you try it.

Moving files
One of the easiest ways to break your working copy is to move or rename files without
telling SVN about it. It's a surefire way to get SVN coughing up a stream of errors. Any
time you need to move or rename a file, remember to use SVN's move command:

svn move oldname.php newname.php

Exporting your working copy
The final task we want to demonstrate for you is how you can take a working copy
and turn it back into a bunch of normal files and folders. If you need to send a copy of
your project to a friend or a client who is not an SVN user, you don't want to include
all those .svn folders. Another scenario is maybe you need to change repositories,
and you need to purge all the .svn folders that associate the code with a particular
repository. In this chapter, we have been submitting code to the Google repository,
so how do we transition this code so that we can store it in the WordPress repository?
We'll show you how to publish your plugin in Chapter 10, but you'll need to first
extract the raw files and folders from your local copy using the export command:

svn export /path/to/my/working/copy /path/to/backup/destination/my-export

Or you can use the following if you are in the root of your current working copy:

svn export . /path/to/backup/destination/my-export

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[209]

Just like the copy command, the first argument specifies the source, while the second
argument specifies the destination. The thing to be aware of when using the export
command is that it must create a new folder at the destination, so don't try exporting to
an existing folder. In our example, we are assuming that the my-export folder doesn't
yet exist. If it does already exist, SVN will throw an error. So, just remember to always
provide the export command the name of the folder that you want created.

After completing the export, the new folder will contain a vanilla copy of the
working copy, without any of the magical .svn directories.

Sometimes SVN cannot complete the export due to errors. Usually the errors result
from you having accidentally deleted files and folders without telling SVN about
it (that is deleting a file instead of using svn delete). Regardless of the cause,
sometimes it is easier to use humble rsync to make a copy of the directory. This is
a powerful command-line utility available in Linux and Mac OS X systems. All we
need it to do is to filter out the .svn directories and we will end up with a vanilla
copy of our working copy:

rsync -arvz /path/to/my/working/copy/ /path/to/backup/destination/my-
export --exclude=".svn"

Don't forget the trailing slash after the source argument: /path/to/my/working/
copy/—if you omit that trailing slash you will recreate unwanted sub folders in your
target directory. Just like the export command, rsync will create a folder of the name
specified in your second argument. The SVN export command is easier, but if you're
dealing with a corrupted working copy, rsync can be a lifesaver.

Quick reference
Here's a brief summary of all the commands we covered in this chapter in one place.
We are demonstrating these in an order that's plausible for a normal workflow.
Sometimes the official documentation for utilities like Subversion are terse and
confusing, so we're going to give you full examples here, using http://repo.com as
our imaginary repository:

•	 svn checkout http://repo.com/trunk/ .
Run this command only once, when you first establish a connection with the
repo to the current folder. This will also download the latest version of the
repository to your local folder:
svn checkout --revision {"2010-11-15 15:30"} http://repo.com/
trunk/ .

Add the --revision flag with a date to check out an older version of the
repository indicated.

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning Your Code with Subversion (SVN)

[210]

•	 svn status
Run this command from inside your working copy to get a summary of
which files were added (A), modified (M), deleted (D), or ones that need to
be added (?).

•	 svn info
Run this command from inside your working copy to get basic information
about your working copy, most importantly the repository URL.

•	 svn update
Run this command from inside your working copy to update your files to
the latest versions. This will not overwrite any files that you are working
on. It is important to run this command frequently if other collaborators are
committing changes to the repo:
svn update somefile.php --revision {"2010-11-15 15:30"}

Add the --revision flag to specify that you want to download an older
version of the file indicated.

•	 svn add *
Run this command from inside your working copy to add new files to the
repository. You can specify the files by name, or you can use the standard
wildcard characters. The files will be added to the repo on the next commit.

•	 svn delete somefile.php
Run this command to delete the referenced file. It will be deleted from
the repository on the next commit. The next version of the repository will
remove the file, but the file will still be there in older versions of the repo.

•	 svn revert otherfile.php
Run this command to restore this file to where it was before you modified
it. This is similar to the "revert to saved" function available in applications
like Photoshop, except this reverts the file to its condition when you last
performed an svn update.

•	 svn commit . -m "My descriptive message goes here"
Run this from the root of your working copy to commit all pending changes
to the repository with a message. This will upload all changes to the
repository and create a new revision number.

•	 svn copy http://repo.com/trunk http://repo.com/tags/2.0
Run this command to create a tagged version of your code in the repository.

•	 svn export . /path/to/new/folder
Run this command from within your working folder (or specify a full path
instead of the period) to create a clean version of your working copy without
all the myriad hidden .svn directories. Use this command if you need to
send someone a clean version of your code base.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[211]

•	 svn move oldfilename.php new/filename.php
Use the move command to move a file or change its name.

Summary
Congratulations on learning these valuable commands! Knowing how to version
your code gives you peace of mind and it could potentially save you from
catastrophic loss of work. It's also a great résumé bullet point since almost any
developer shop will expect you to have familiarity with versioning your code.

Now you are poised for serious development, and you'll be ready to work with
WordPress' repository once you are ready to publish your plugin. However, before
you publish your plugin, you will have to make sure it is clean enough to be released
to the public. We'll help you make sure your bases are covered in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Plugin for
Distribution

In this chapter you will learn how to groom your plugin in preparation for
publishing it to the official WordPress repository. This chapter is not about the
mechanics of how to apply for a login or how to use Subversion to commit your
code; those are all covered in other chapters. This chapter is all about making your
plugin as good as it can be before you go through those mechanics. Specifically, we
will discuss how to test and document your plugin so all your hard work may be a
benefit to others.

A word of warning:
You should be aware that submitting your plugin for any public use
requires some degree of responsibility. One of the worst things you can
do as a developer is to distribute shoddy, untested code. It is one thing
if you have thousands of lines of useless code inside the privacy of your
own computer (and we have lots of that), but it's another thing entirely
if you push this problematic code onto the unwitting public. Make sure
your code is clean and functional before distributing it for public use.

Public enemy number one: PHP notices
If you have followed our recommendations in this book, then you have developed
every line of your PHP code while having PHP errors, warnings, and notices
verbosely printed. As a result, you knew immediately if at any time your code had
so much as a hiccup. If you have somehow gotten to this point of the book without
enabling PHP notices and errors, then do us all a favor and do not submit your
plugin for public use. That may sound harsh, but under no circumstances should
untested code be distributed to the public.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Plugin for Distribution

[214]

Hands down, this is the single worst problem that infests the third-party plugins
in the WordPress repository. During the course of writing this book, we tested
hundreds of plugins and it was shocking how many of them had errors that caused
PHP notices to print. The majority of these notices came down to a simple pattern
that looked something like this:

$x = $my_array['x']

That statement will work only if x is defined in the array. It will throw a notice if it is
not defined. The correct way to handle this condition is to test the array beforehand
using the isset() function:

$x = '';
if (isset($my_array['x']))
{
 $x = $my_array['x'];
}

Clearly, plugins with that type of problematic construct were developed in an
environment that hid PHP notices from the plugin authors, so they never knew that
their code was coughing and wheezing behind the scenes. We have alerted many
authors to this type of code using the feedback pages on the WordPress site, and
usually the authors complied with our recommended corrections, but one author
chided back that "notices aside, my plugin is working perfectly". Wrong! Don't for
a second think that notices can be ignored—even a notice can break your plugin.
Depending on where they occur, they could end up printing into form fields or
polluting XML data feeds and cause your plugin to critically fail, just to name
two examples.

The other way notices might "break" your plugin isn't really technical, but it is
realistic. No sane user is going to continue using your plugin as soon as it starts
printing freaky messages all over their website. Having unhandled notices in your
code is a sure-fire way to doom your plugin to the trash-heap, and all of your hard
work will be wasted.

The bottom line is to clean up any code that causes notices before submitting your
plugin for public use.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[215]

PHP short tags
The other horrible bad habit that you should avoid is using PHP short tags. We
mentioned this specifically at the beginning of this book—it's a horrible idea because
you can never be sure if a given server will support them, and there are good reasons
why your server should not support them. Before your plugin can be considered
ready for publication, you must remove any instances of short tags: always use
<?php in favor of the short tag <?. The best way to check for these is to disable
support for them in your php.ini file, reboot Apache, and see if any errors crop up.

Those two problems plagued about 80% of the plugins we evaluated for this book.
That means only one in five is potentially usable. Those are great odds! If you are
being diligent about cleaning your code and you avoid these two pitfalls, your plugin
immediately stands far in front of the pack! All you have to do is not screw up!
However, we can do even better—let's look at a few more subtle tests for your plugin.

Conflicting names
PHP as a language is particularly vulnerable to naming collisions, and this is
especially prevalent in WordPress plugins where many authors are not particularly
aware or sensitive about this problem. If your site is running a lot of plugins, you are
increasing the odds that a naming conflict might occur. While debugging a plugin,
one of the first things that you should do is disable all of your other plugins so you
can isolate problems.

We have seen a lot of useless attempts to prevent naming collisions when plugin
authors wrap their function definitions in a big if-block:

if (!function_exists('myfunction'))
{
 function myfunction()
 {
 // Do stuff
 }
}

Do not think that your plugin is safe if you use if-blocks like this! This is not
guaranteed to solve the problem! The only time where this type of wrapping is
effective is when you are wrapping a stand-alone function (for example, a theme
function) that is not interdependent on the other functions in your plugin. If your
plugin defines 10 interrelated functions, and you wrap their declarations in this way,
can you imagine the erratic behavior that might occur if even one of your function
definitions deferred to someone else's existing definition? What are the odds that their
function will do exactly what you need it to do? Seriously, it would be a miracle. You
need to go further than these simple checks in order to prevent naming collisions.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Plugin for Distribution

[216]

Throughout this book, we have used a single index.php file to act as the main file
for your plugin: it contains the information head, your includes, and hopefully all
the events (that is actions and filters) that it ties into. This makes it easy for anyone
to see how your plugin interacts with WordPress and which resources it requires.
However, we are about to switch this up a little so you can be sure that your plugin
gracefully avoids naming conflicts.

Naming conflicts can occur in three places: function names, class names, and
constant names. Thankfully, PHP gives us a way to easily list all declared functions,
classes, and constants, so we are going to test for potential collisions in all three
places. The first step is to move the contents of your index.php file into a separate
file named loader.php, but leave the information head in the index.php file. That is
critical because we need WordPress to load index.php first. We are going to put our
tests into index.php, and if those tests pass, only then will we include the loader.
php file and proceed normally.

The following is what our index.php file looks like now:

<?php
/*
Plugin Name: My Plugin Name
Description: My description
Author: My Name
Version: 0.0.0.1
Author URI: http://tipsfor.us/plugins/
Plugin URI: http://tipsfor.us/plugins/
*/

/**
* CONFIGURATION:
*
* Define the names of functions and classes used by this plugin so we
can test
* for conflicts prior to loading the plugin and message the WP admins.
*
* $function_names_used -- add any function names that this plugin
declares in the
* main namespace (e.g. utility functions or theme functions).
*
* $class_names_used -- add any class names that are declared by this
plugin.
*
* $constants_used -- any constants defined using the "define"
function.
*/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[217]

$function_names_used = array('my_naked_function','other_template_
function');
$class_names_used = array('MyClassName','SomeOtherClass');
$constants_used = array('MY_PLUGIN_PATH','MY_PLUGIN_URL');

$error_items = '';

function some_unique_function_name_cannot_load()
{
 global $error_items;
 print '<div class="error"><p>'
 .__('The "MyPlugin" plugin cannot load correctly')
 .' '
 .__('Another plugin has declared conflicting class, function, or
constant names:')
 ."<ul'>$error_items"
 .'</p><p>'
 .__ ('You must deactivate the plugins that are using these
conflicting names.')
 .'</p></div>';

}

/**
* The following code tests whether or not this plugin can be safely
loaded.
* If there are no name conflicts, the loader.php is included and the
plugin
* is loaded, otherwise, an error is displayed in the manager.
*/// Check for conflicting function names
foreach ($function_names_used as $f_name)
{
 if (function_exists($f_name))
 {
 $error_items .= ''.__('Function: ') . $f_name .'';
 }
}
// Check for conflicting Class names
foreach ($class_names_used as $cl_name)
{
 if (class_exists($cl_name))
 {
 $error_items .= ''.__('Class: ') . $cl_name .'';
 }
}
// Check for conflicting Constants
foreach ($constants_used as $c_name)

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Plugin for Distribution

[218]

{
 if (defined($c_name))
 {
 $error_items .= ''.__('Constant: ') . $c_name .'';
 }
}

// Fire the error, or load the plugin.
if ($error_items)
{
 $error_items = ''.$error_items.'';
 add_action('admin_notices', 'some_unique_function_name_cannot_
load');
}
else
{
 // Load the plugin
 include_once('loader.php');
}

/*EOF*/

We aren't feeding this to you bit by bit anymore, but by now you should be able to
follow how this code snippet works. If your plugin includes three classes named
Larry, Curly, and Moe, you should list those in the $class_names_used array.
Likewise, if you use any "naked" functions declared in the main namespace (outside
of a class), you should list them in the $function_names_used array. It's the same
procedure for the constants using the $constants_used array. All that this requires
of you is that you diligently list each of your classes, functions, and constants so they
can be tested against whatever may have already been declared when your plugin
loads. All the grunt work is done by PHP's function_exists(), class_exists(),
and defined() functions. We have also used WordPress' localization function __(),
which helps you translate messages. We will cover that in the next chapter.

Can you see the advantage of using classes? You don't have to double-list every
function that exists in a class—if the class name is available, then all of the class'
functions and methods are guaranteed to work because their definitions exist only
within that class, not in the main namespace.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[219]

This code gathers error messages into the $error_items array, and if it's not empty,
it hooks into the admin_notices action. This action only fires when a user is inside
the Dashboard. The idea here is that we want to display a message to an admin user
only; we don't want to bring the whole site to its knees and publicly announce to
the world that we had a bit of an "accident". So we create a single callback function,
in this example, we name it some_unique_function_name_cannot_load. That
function is hooked to the admin_notices action, and it only executes if your plugin
encounters any problems with name collisions. In that case, the admin will be
notified, and the rest of your plugin's files will wait in the sidelines—the loader.php
file will not load unless the coast is clear, as illustrated in the following screenshot:

Congratulations! Now you can be sure that your plugin isn't bumping into anyone
else out there on the dance floor, but still it could have problems. Just because your
classes, functions, and constants can get declared safely doesn't mean that your
plugin is guaranteed to work. You may also need to test PHP, MySQL, or WordPress
itself. Sometimes you have to get creative about what you should test, but we are
going to show you a handful of tests and one way of implementing them.

Checking for naming conflicts only ensures us that our loader.php and all of our
plugin's files can load, but there are still plenty of things that can go wrong, and we
need a second tier of tests to check for them. Next, we are going to show you how to
integrate additional tests to ensure that your plugin has the version of PHP, MySQL,
or WordPress that it requires.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Plugin for Distribution

[220]

Modifying loader.php
We have set this up to use a dedicated class containing all the tests we need our
plugin to run:

<?php
// loader.php

// Required Files
include_once('includes/MyPlugin.php');
include_once('tests/MyPlugin_tests.php');

// Run Tests.
MyPlugin_tests::test1();
MyPlugin_tests::test2();
// ... more tests go here ...

// If there were no errors, load our plugin normally
if (empty(MyPlugin_tests::$errors))
{
 add_action('init', 'MyPlugin::do_stuff');
 // ... other actions here ...
}
// There were errors!
else
{
add_action('admin_notices', ' MyPlugin_tests::print_notices');
}

/*EOF*/

Can you see how we're setting this up? In addition to including our standard
includes for our plugin, now we're going to also include a special class that contains
tests for this plugin. Create a new directory inside your plugin's main folder and
create a new file with a name corresponding to the name of your plugin. In our
example, the file is named tests/MyPlugin_tests.php.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[221]

The flow will go like this: The loader.php file loads from the top down, we include
the testing class, and then we put in a line for each test we need to run, such as
MyPlugin_tests::test_function1();. If any test fails, we will add a message
to an array MyPlugin_tests::$errors. If any errors are detected, we print some
messages to the admin users via a function named MyPlugin::print_notices. If
the MyPlugin_tests::$errors comes out clean after running the gauntlet of tests,
then our plugin loads normally. Makes sense? The following is what our MyPlugin_
tests.php file looks like:

<?php
class MyPlugin_tests
{
 public static $errors = array(); // Any errors thrown.

 public static function print_notices()
 {
 if (!empty(self::$errors))
 {
 $error_items = '';
 foreach (self::$errors as $e)
 {
 $error_items .= "$e";
 }
 print '<div id="my-plugin-error" class="error"><p>'
 .__('The "My Plugin" plugin encountered errors! It
cannot load!')
 .' '
 ."<ul style='margin-left:30px;'>$error_items"
 .'</p>'
 .'</div>';
 }
 }

 // Add as many testing functions as you need...
 public static function test1()
 {

 }
}
/*EOF*/

You can now add as many testing functions as you need to this class, then call
them by referencing them in your loader.php file just like we did in the example.
In practice, you would change the function names from "test1" to something more
descriptive. Have a look at the tests below for some examples of how to test various
aspects of your environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Plugin for Distribution

[222]

Testing WordPress version
We demonstrated this in our chapter about Social Networking, but here it is again,
this time adapted for use in a testing class. You can add this to your plugin's
dedicated testing class and reference it by name in your loader.php file:

/**
* Tests that the current version of WP is greater than $ver.
*
* @param string $ver the version of WordPress your plugin requires
in order to work, e.g. '3.0.1'
* @return none Registers an error in the self::$errors array.
*/
public static function wp_version_gt($ver)
{
 global $wp_version;

 $exit_msg = __("MyPlugin requires WordPress $ver or newer.
 Please
update!");

 if (version_compare($wp_version,$ver,'<'))
 {
 self::$errors[] = $exit_msg;
 }
}

Back in your loader.php, you would reference this test by name and pass it a
minimum required version of WordPress:

// Run Tests.
MyPlugin_tests::wp_version_gt('3.0.1');

You can create variables to hold these types of settings instead of writing them
directly into your function call; it really depends on how you have set up your tests.

Testing PHP version
The following is how you test your what version of PHP looks like:

/**
* @param string the minimum version of PHP required to run, e.g.
'5.2.14'
*/
public static function php_version_gt($ver)
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[223]

 $exit_msg = __("MyPlugin requires PHP $ver or newer.
 Talk to your system administrator about upgrading");

 if (version_compare(phpversion(), $ver, '<'))
 {
 self::$errors[] = $exit_msg;
 }
}

Again, you would add a corresponding function call to your loader.php file:

// Run Tests.
MyPlugin_tests::wp_version_gt('3.0.1');
MyPlugin_tests::php_version_gt('5.2.14');

Testing MySQL version
It's the same pattern to test the database version, but we rely on the global $wbdb
object and its get_results method. We are using a simple MySQL statement:
'SELECT VERSION()' to return the MySQL version. (The 'as ver' part of the query
merely specifies how MySQL should name that particular column in its results).

// INPUT: minimum req'd version of MySQL, e.g. 5.0.41
public static function mysql_version_gt($ver)
{
 global $wpdb;

 $exit_msg = CustomPostTypeManager::name . __(" requires MySQL $ver
or newer.
 Talk to your system administrator about upgrading");
 $result = $wpdb->get_results('SELECT VERSION() as ver');

 if (version_compare($result[0]->ver, $ver, '<'))
 {
 self::$errors[] = $exit_msg;
 }
}

Testing PHP modules
Sometimes, your plugin may require the use of non-standard functions that are
only available if PHP was compiled using special options. You can use PHP's
get_loaded_extensions() function to list all loaded extensions on the server you
developed on, and you can then test against this list on the production server. This
is a bit more advanced than the standard tests, but it can really help ensure that the
environment is set up correctly before someone tries to run your plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Plugin for Distribution

[224]

/**
* PHP might have been compiled without some module that you require.
Pass this
* function an array of $required_extensions and it will register a
message
* about any missing modules.
*
* @param array $required_extensions an array of PHP modules you
want to
* ensure are installed on your server, e.g. array('pcre', 'mysqli',
'mcrypt');
* @return none An error message is registered in self::$errors if
the test fails.
*/
 public static function php_extensions($required_extensions)
{

 $loaded_extensions = get_loaded_extensions();

 foreach ($required_extensions as $req)
 {
 if (!in_array($req, $loaded))
 {
 self::$errors[] = __("MyPlugin requires the $req PHP
extension.
 Talk to your system administrator about reconfiguring PHP.");
 }
 }

}

Testing WordPress installed plugins
A slightly more complicated test involves seeing whether or not another plugin
is installed. This can be useful if you have one plugin that depends on another, or
perhaps you just need to test whether or not a site has all of the plugins you expect it
to. We took this a step further. The following function lets you specify the required
plugins and the required versions of those plugins:

/**
* This relies on the output of WP's get_plugins() and
* get_option('active_plugins') functions.
*
* @param array $required_plugins An associative array with
* the names of the plugins and the required versions, e.g.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[225]

* array('My Great Plugin' => '0.9', 'Some Other Plugin' => '1.0.1'
)
* @return none An error message is registered in self::$errors if
the
* test fails. There are 2 errors that can be generated: one if
the
* plugin's version is too old, and another if it is missing
altogether.
*/
public static function wp_required_plugins($required_plugins)
{
 require_once(ABSPATH.'/wp-admin/includes/admin.php');
 $all_plugins = get_plugins();
 $active_plugins = get_option('active_plugins');

 // Re-index the $all_plugins array for easier testing.
 // We want to index it off of the name; it's not guaranteed to be
unique, so this
 // test could throw some illegitimate errors if 2 plugins shared
the same name.
 $all_plugins_reindexed = array();
 foreach ($all_plugins as $path => $data)
 {
 $new_index = $data['Name'];
 $all_plugins_reindexed[$new_index] = $data;
 }

 foreach ($required_plugins as $name => $version)
 {
 if (isset($all_plugins_reindexed[$name]))
 {
 if (!empty($all_plugins_reindexed[$name]['Version']))
 {
 if (version_compare($all_plugins_reindexed[$name]
['Version'],$version,'<'))
 {
 self::$errors[] = __("MyPlugin requires version
$version of the $name plugin.");
 }
 }
 }
 else
 {
 self::$errors[] = __("MyPlugin requires version $version of
the $name plugin. $name is not installed.");
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Plugin for Distribution

[226]

The input for this test is slightly more complicated. In your loader.php file, you
might have something like this:

$required_plugins = array('Party to the Max'=>'2.0', 'Random stuff' =>
'0.7.3');
MyPlugin_tests::wp_required_plugins($required_plugins);

Also note you would replace the messaging with the correct name for your plugin.

Custom tests
Hopefully the sample tests listed here got your imagination going. Some software
projects rely heavily on tests, and in general, we fully condone this practice. If you
can identify "fail" points in your code and then write functions which test for them,
you will save both yours and your users' time and frustration.

If you have ever had problems deploying a development site to a live production
server, then these types of tests can save you a lot of hassle. For example, if you told
your client to provide a server with exact specifications, this can ensure that the
server meets those requirements.

Basically, any time your project starts to have any requirements that deviate from
what's normally available in a WordPress installation, you should consider writing
some tests to ensure that those conditions are being met. Don't assume that your
client will understand the technical requirements or that a new server environment
will meet them.

Unit tests
We would be remiss if we did not mention unit tests in this chapter. Unit testing is
a method by which individual units of source code are tested to determine if they
are fit for use. Remember from the beginning of the book how we recommended
that you write your code in "units"? This is where it all comes together: units of code
should be a size that makes them easy to test.

There are a couple of testing frameworks available for PHP that help you write unit
tests. It's beyond the scope of this book to demonstrate their use, but we encourage
you to look into them if your plugin is getting complicated and difficult to maintain.
Unit tests are a real lifesaver because they help you catch any place where your code
has failed. All of the tests that we have demonstrated in the book could be easily
rewritten as unit tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[227]

If you want to learn about writing unit tests, we recommend having a look at the
SimpleTest library. The code base may have been abandoned, but the site has some good
examples and it is a suitable introduction to some of the concepts and code patterns that
you will encounter while writing unit tests. http://www.simpletest.org/.

A more common library is PHPUnit, but its documentation is harder to follow and it
is short on the phrasebook style definitions, so we don't recommend it unless you are
already familiar with unit testing. You can download it at: http://phpunit.de and
read its manual at: http://www.phpunit.de/manual/current/en/.

Just like any serious software project uses version control, any serious software
project should also implement some kind of unit testing.

WordPress limitations
Unfortunately, WordPress does not yet have a good way for you to reference
common files between plugins. In the case of these tests, it would be more efficient to
put them into some sort of global WordPress library so that multiple plugins could
use the tests contained in a single testing class file. However, until our testing scripts
get integrated into the WordPress core, you have to work with a couple of options.

The first option is that you can copy all your testing functions into a dedicated class
used by only your plugin (as we did in the previous examples). The upside here is
that this is guaranteed to work, but the downside is that it's inefficient—imagine if
100 plugins each copied the exact same tests. It would take up 100 times more space,
and it would be a nightmare to maintain—even the most trifling change in one of the
tests would require that you make the same alterations to the other 99 copies.

As part of a second option, you can put all of these tests into a separate plugin, and
then reference the functions from your other plugins. This is certainly more efficient,
but it does create some dependencies between plugins that could easily be broken.
You might have a hard time distributing your plugin if it requires that the users
download a second plugin to make the first one work. It's possible, but not ideal.

Health check page
One drawback of what we have outlined here is that these tests execute during every
WordPress page request. If you have written a long series of tests, they may incur
some significant overhead and they can really slow down your site performance.
One option is to move all your tests into a separate file that you must navigate to
directly.

www.it-ebooks.info

http://www.simpletest.org/
http://phpunit.de/
http://www.it-ebooks.info/

Preparing Your Plugin for Distribution

[228]

Perhaps you have heard of a "health check" page—all it does is run a series of tests,
and if everything looks good, it prints out an "Ok" message. There are many different
monitoring applications out there (for example, Nagios—http://nagios.org/) that
can be configured to take quick looks at these health check pages and verify that they
are seeing the "Ok" message. If a test hits a snag, it will generate and error, and the
monitoring software will notice it.

To set up a health check page, you can remove all the tests from your loader.php
file and construct a new file like the following:

<?php
// Sample Health Check page
require_once(realpath('../../../').'/wp-config.php');

include_once('includes/MyPlugin.php');
include_once('tests/MyPlugin_tests.php');

// Run Tests.
MyPlugin_tests::some_long_and_difficult_test();
MyPlugin_tests::another_long_and_difficult_test();

if (empty(MyPlugin_tests::$errors))
{
 print 'Ok';
}
else
{
 $error_items = '';
 foreach (MyPlugin_tests::$errors as $e)
 {
 $error_items .= "$e";
 }
 print '<div class="error"><p>'
 .__('The "MyPlugin" plugin encountered errors! It cannot
load!')
 .' '
 ."<ul style='margin-left:30px;'>$error_items"
 .'</p>'
 .'</div>';
}

/*EOF*/

If the file were named healthcheck.php, you would navigate to it directly in a
browser and look for the "Ok" message (for example, http://yoursite.com/wp-
content/plugins/myplugin/healthcheck.php).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[229]

This is a great way to run your tests "on demand", instead of bogging down the
normal users with repeated testing, but the downside is that the users wouldn't have
any idea that the plugin was causing problems until someone bothers to look at the
health check page.

Storing test results in the database
Another option to help reduce the overhead caused by slow tests is to store test
results in the database. Each time a page is requested, you would pull up a specific
record from the wp_options table where you stored the results of the last test.
Based on the result, you could decide whether or not you needed to run tests again.
Querying the database does incur some overhead, but it may be significantly less
overhead than running through an entire gauntlet of testing functions.

There are many different options available to you when choosing how to test your
plugin. The requirements really vary depending on the nature of the code you have
used, but we've given you a good starting toolbox for how to test for some of the
most common conditions.

However, valid tests are not the only thing your plugin needs before it is cleared for
launch. You need to examine your configuration and the documentation before you
push your plugin out of the nest.

Death to clippy: Use sensible
configurations
One of the overlooked aspects of prerelease preparations is how you should set up
your default configurations. Remember Clippy, the insistently annoying animated
paperclip that greeted users when they opened older versions of Microsoft Word?
Clippy was both well known and well hated, and that annoying little paperclip is a
vivid representation of one of the most notorious failures of configuration defaults.
What made Clippy so aggravating? By default, the user was assumed to be inept
and in dire need of hand-holding at every turn. We have no objection to Clippy's
existence—some people may actually want that kind of help—but it is absurd to
think that the majority of users should be assaulted by his incessant speech-bubbles
by default. Instead of assuming that the average user was half-way competent, by
leaving those settings on by default, Microsoft assumed that the average user was
nearly a computer illiterate.

If you or your users are constantly editing the configuration settings of your plugin,
then it's probably time to re-examine your defaults and set them to something that
better matches what your users need. Do not assume that you as the plugin's author
represent an average user. Figure out what their needs are and cater to them.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Plugin for Distribution

[230]

Double check your interface
Going into round two with our previous punching bag, Clippy the Office assistant
was doubly bad because disabling it required jumping through a few unnecessary
hoops. In Office 2k/XP, killing Clippy required at least four mouse clicks, and in
Office 97, it was nearly impossible to disable the eager assistant. Many people found
it easiest to bypass the user interface entirely and just rename the appropriate folder
on the hard drive (it was "Actors" for those of you having a nostalgic flashback).

If your users are having trouble finding their way around your plugin, then you
should consider some other ways of implementing the user interface. You could
switch the brake pedal with the accelerator pedal and your car would still work,
but anyone who drove it would be more likely to have an accident. It takes time
and intuition to figure this out, but try to put options and menus where the user
expects to see them. This is one of the last chances you have to adjust your plugin's
interface—once your plugin gets published, it can be really disruptive to alter it.

Documentation
One of the problems that plague open source projects (and the WordPress plugin
repository) is a lack of effective documentation. There are a lot of books about how
to write good code, but there are precious few on how to write good documentation.
Since documentation is a critical part of your plugin, we would be remiss if we
neglected to give you some guidelines on how to write it effectively. Nothing is
worse than pushing a good plugin on the public and not telling them what they
need to know in order to use it. Think of it from a business standpoint: good user
documentation means fewer client support requests and lower support costs.

Identify the purpose
The very first thing you need to do when writing documentation is identify
the purpose of the given area that you are trying to document. The purpose in
documenting a function, for example, is to educate the developer, whereas the
purpose of the plugin's readme.txt file is to educate the plugin user. The following
are the three main areas of the readme.txt file and their purposes:

•	 Description: Its purpose is to answer the question, "What problem does this
plugin solve?" The answer to that question should inform potential users as
to whether or not they should download it. Remember, it's all about what
problem gets solved, and not so much about how it gets solved. If you keep
drifting into explanations of how something was solved, try reframing your
definition of the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[231]

•	 Installation: Its purpose is to answer the question, "How do I make this work?"
or "How can I see this in action?" If your plugin includes a menu item, you
should mention its location here. This may be an appropriate place to include a
simple common use case that demonstrates how to use the plugin.

•	 Frequently Asked Questions: You may have many FAQs, but each of them
should have the goal of instructing the user how to accomplish a specific task.

Your documentation will always be hit or miss if you cannot identify the purpose
behind it. No matter what component you are writing about, big or small, the mere
act of identifying a purpose for each piece of documentation will help guide your
writing. If the purpose is to instruct the user on how to complete a certain task, your
documentation will look completely different than if the purpose is to define what
functions are at work to carry out that task. Having a purpose in mind behind each
piece of documentation will give it structure and durability.

"If a technical document cannot be used to accomplish the task it was written for, it
has no real use and belongs at the bottom of the cat box"
Good documentation and the cat box factor. (Guest Editorial) Technical
Communication – February 1, 2004, Kathryn Poe).

The most important pieces of documentation are those whose purpose it is to instruct
the user in how to accomplish a given task, so we are going to focus most of our time
fielding that particular type of writing. The most frequent examples of this type of
documentation are the items in the "Frequently Asked Questions" area.

Learning to drive: Keeping it relevant
The mere act of identifying a task immediately helps you filter out what is and
what is not relevant for instructing users on how to complete that task. Try to have
some appreciation for what the average person needs to know about it. Put those
instructions in front of them first. The beautiful thing about online documentation
is you can always provide the streamlined "Average Joe" instructions first, and then
include links so users can "click here to read more".

Can you imagine learning to drive with your dad, but instead of him telling you
how to start the car and shift gears, he tells you about how the fuel injectors work?
The average driver doesn't need to know about fuel injectors, just like the average user
doesn't need to know about class names, query formats, or that really clever way you
overrode the plugin_action_links filter, so don't cram your readme.txt file with
detailed explanations about them. Always strive to give a concise explanation of how
to accomplish the task you identified. Fuel injectors might be broadly relevant to
driving, but they should take a back seat to the gas pedal and steering wheel.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Plugin for Distribution

[232]

Phrasebooks vs. dictionaries: Give examples
If you have ever travelled to a foreign country and had to speak a foreign language,
you know that one of the first things you learn to say are particular phrases. You
really don't need to know which word means "toilet" or which word is the reflexive
pronoun; all you really need to know is how to get to a bathroom before you have an
accident. That's why travelers carry phrasebooks more than dictionaries. Technically,
the dictionary is more thorough, and technically, it contains everything you need
to know, but it's put together in a completely inefficient way if you are trying to
construct entire sentences.

Tying this into our previous example, imagine learning to drive if your dad gave you
instructions like this:

•	 release –verb (used with object): To free from confinement
•	 the –definite article, used, esp. before a noun
•	 clutch –noun: A mechanism for readily engaging or disengaging a shaft with

or from another shaft or rotating part

That's a seriously relevant chunk of information from your old man, but it's
just ridiculous and completely ineffective. Your documentation should include
phrasebook-style examples instead of dictionary definitions. Instead of explaining
every trifling detail, you first need to give the bigger picture, as in "if you are trying
to accomplish X, then do Y". Again, you can always include links to more detailed
explanations after you have fielded a few examples.

Analogy: The three bears
Documentation is like porridge in the story of Goldilocks; some documentation is
too short, some is too long, and some is just right. You want to aim for that sweet
spot and write enough to tell people how to accomplish the given task. Avoid terse
instructions that offer no details and avoid longwinded explanations because no
one will bother to read them—massive verbiage is no substitute for clarity. In our
experience, sometimes the longest documentation is the worst because despite their
best efforts, the authors were not able to clearly identify purposes and tasks.

Analogy: PC load letter
Messaging to the user should be clear and detailed. Detailed error messages can be
time consuming to construct and translate, but they make for a much better user
experience. Look at our previous example in this chapter about conflicting names:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[233]

The Custom Post Type Manager plugin cannot load correctly! Another plugin has declared
conflicting class, function, or constant names:

 * Function: really_common_function_name

 You must deactivate the plugins that are using these conflicting names.

This alerts the user about an error, and it tries to identify the cause, and it gives the
user some idea of how to correct the problem. No, it's not perfect, but it's a lot more
informative than the fatal PHP error that would have popped up in this situation:

Fatal error: Cannot redeclare really_common_function_name() in /path/to/wordpress3/html/
wp-content/plugins/your-plugin/index.php on line 88

Anyone who has seen the cult-classic comedy "Office Space" can relate to the
distinctly unhelpful "PC Load Letter" printer error that befuddled and angered one
of the main characters to the point of destroying the printer with a baseball bat. It
pays to go the extra mile and try to make your messages to the user as specific and
helpful as possible. What does "PC Load Letter" mean, anyway?

The decalog of documentation
The following is a checklist of actions for you to go through to help ensure that your
plugin's documentation is reasonably sound.

1. Include full examples. Short little code fragments are only relevant after you've
demonstrated a full example. Zoom out a little bit and include a couple of lines
of code before and after your example—they are invaluable in helping to put
your examples into context. Take the time to demonstrate a few use-cases, and
don't be cheap. If people repeatedly ask you how to do something related to
your plugin, you should thank them for the interest and demonstrate a viable
solution. Remember that they are asking you for a phrase, not a definition—an
example demonstrates how to perform a specific task in its entirety. Assume
that your audience is knowledgeable, but pretend they have had five or six
beers, so you have to be extra clear in your explanations.

2. At the top of each file, include a brief description that identifies what it is and
what it does. How does it fit into the larger picture? What problem is this file
solving? What is an example of how it gets used? Which files use it? What is
the expected input? What is the expected output? We've included this type of
basic documentation throughout this book, so you have numerous examples
to pull from. For example:
/**

* This file is included by the index.php file when the Live-Search
plugin is loaded.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Plugin for Distribution

[234]

* This class contains static functions that manipulate date
formats.

*/

Your target audience here is other developers, including your future self
in three months after you've forgotten everything you know about this
plugin. The purpose of these little comments is to identify the lay of the
land for other developers.

3. Include a summary of each function and class describing its input and
output. Avoid the perfunctory descriptions that are just copies of the function
or class name. If it makes more sense to provide documentation for a group
of similar functions rather than for individual ones, then do that. Include
a simple example if you can't think of anything else. The point of this is so
that a developer can quickly see how each function is used. This can be done
effectively in one line, and that's fine so long as it is clear:
/**

* Converts incoming date, e.g. '2010-10-31' to human readable
'October 31, 2010'

*/

function convert_yyyymmdd_to_human_date($yyyymmdd) {

 /* code */

}

4. Take some time to review the names of your variables, functions, and classes.
Do they make sense? It can be a tricky find-and-replace operation to change
these after you're wrapping up a round of development, but those names are
the key to understanding your code, so descriptive names can save you a lot
of time debugging later on.

5. In technical and end-user documentation, remove any instances of the
following words: "obviously", "clearly", "of course", or any other word or
phrase that assumes that the user will have any idea what you're talking
about. Any time you are tempted to use one of those key words or phrases,
it should be a blistering red light that you need to stop your short-hand
shenanigans and include a full example of what you're talking about because
it's virtually guaranteed that your conception of "obvious" is a viewpoint
shared by you alone.

6. Sleep on it: Take a break from working on your plugin, and when you return,
see if your descriptions and examples make any sense.

7. Avoid pronouns. This is just to remind you to be super clear in your
sentences. You can literally do a "find all" operation in your documentation
and replace any instance of "it" or "them". Unless you say the noun
specifically, it may not be clear to the user what you were talking about.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[235]

8. Clearly list the requirements of your code (for example, versions of PHP/
MySQL/WordPress) and give a detailed description of how to install and
configure it. If you are not sure which versions of PHP/MySQL/WordPress
your plugin requires, then list the versions on which you tested it—don't
assume that it works on anything else unless you have specifically tested it
on other systems and versions. Your tests from the previous section should
correspond to these version numbers exactly.

9. Find an editor. Although you are the author, in a way, you are the person
least qualified to explain your creation to the outside world because more
than anyone else, your view is from the inside out. It takes time and practice
to learn how to write good documentation from the outside point of view. It
really is a skill that is entirely separate from writing good code, so don't beat
yourself up if you are having some trouble or if some confused forum goons
flame you for having poor explanations. Ask for help. Sometimes the people
who have the most trouble with your code can offer the best explanations
for others in how to use it. Remember that it is a separate skill, so even if
someone is a horrible coder, they may run circles around you and your
ability to effectively document your code.

10. Be sure your documentation separates the "phrasebook" style tutorials that
show users how to accomplish specific tasks from verbose "dictionary" style
definitions. The "phrasebook" style tutorials are absolutely required, whereas
the "dictionary" style definitions are optional in most cases.

Summary
Writing a plugin is always more work than it seems. You thought that you were
done when you first got the thing to work, but really there is a lot more that goes into
it. Collectively, that's all part of the process of creating well-crafted and high-quality
plugins for the masses. Take pride in it.

Up next, we'll tell you about the mechanics of getting your plugin published to the
WordPress repository.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing Your Plugin
In this chapter, we are going to deal specifically with the mechanics of submitting
your plugin to the WordPress repository for public distribution. Previous chapters
dealing with testing and documentation would broadly apply no matter where
you deployed your plugin, but this chapter deals wit the things that are specific
to deploying your plugin on the WordPress platform. It includes how to handle
internationalization, using the WordPress SVN repository, and writing the readme.
txt file that is required for all WordPress plugins.

Internationalization and localization
In the context of plugin development, internationalization is the process of preparing
software so that its messages can be translated into a specific regional dialect,
whereas localization refers to the actual translating of those messages. These two
terms sometimes blur together because they are so closely related, but to be clear, we
are focusing on internationalization in this section. The goal is to ensure that your
plugin's messages can be easily translated (that is "localized").

See the official documentation on internationalization (http://goo.gl/
fGXQ) as well as the documentation for translating WordPress (http://
goo.gl/Mlbf) for more information on this topic. Although it is not
technically required, it is highly recommended that you internationalize
your plugin so that users from different countries can localize it.

Giving you a heads up on the following sections, the process works in several stages:

1. First, you internationalize your plugin by adding special functions that will
process each message. Perhaps you've spotted them already. __() and _e()
are the primary functions WordPress uses to facilitate translation. They don't
translate (that is localize) anything yet, but they will, once you provide some
valid language files.

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing Your Plugin

[238]

Remember

Internationalization is about preparing your plugin for translation.

2. Second, you can use Poedit, a free tool that will extract these messages into a
portable object template (POT) file.

3. Third, you will provide translations for each message—even if your
messages are already in English, you actually have to "translate" the message
identifier in the POT file into a localized (that is translated) message. After
providing a translation, you will end up with ".po" and ".mo" files for each
locale that you translate those messages into.

4. Lastly, you will ensure that WordPress loads your textdomain and its
associated files when your plugin needs to display messages to the user.
Don't worry if it all sounds Greek to you—we will explain each step in more
detail as we come to it.

We should add that for most intents and purposes, the terms translate and localize
are equivalent. Likewise, a POT file and a .pot file refer to the same thing: a portable
object template that contains all the translatable messages gleaned from your plugin.

Processing each message
WordPress uses the GNU gettext localization framework to provide localization
infrastructure. The most important thing you need to know about it while
internationalizing your plugin is that gettext uses message-level translations—each
message might be a single word, a phrase, or several sentences. There are two
primary localization functions that you will be using:

__($message)

This first function searches the localization module for the translation of $message,
and passes the translation to the PHP return statement. If no translation is found for
$message, it just returns $message.

_e($message)

The second function above is shorthand for echo __().

These function names are hardly descriptive, but they are easy to use because they
are so short. There are a few other related functions, too, but these two are the most
important.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[239]

The basic idea here is truly simple. Scan through your plugin for messages that are
displayed to the user, and wrap them using the functions above. For example, if your
plugin contains the following HTML/PHP:

<?php $label = 'Click to search the database.'; ?>
<p><?php print $label; ?></p>
<input type="submit" value="Search" />

Then you might end up with something like the following:

<?php $label = __('Click to search the database.'); ?>
<p><?php print $label; ?></p>
<input type="submit" value="<?php _e('Search'); ?>" />

Any message passed to the __() function will be looked up in the localization
module and a translation will be returned if possible. So if you have the locale set to
Germany, __('Yes') would return "Ja", and if you have it set to Mexico, it would
return "Sí".

It makes sense, but it's a little too good to be true. Don't go changing all of your
messages just yet because there is a bit more to learn first. Just because the locale has
been defined does not mean that there is only one viable definition of a message.
In the same way that "football", "fag", or "weed" have very different meanings in
American and British locales, a term such as "stoned" might mean something very
different depending on whether the context of your conversation was biblical
adulterers or drug-using hippies.

So in addition to specifying the locale, the __() translation function and its cousins
can accept an optional second argument for a textdomain that identifies a proper
context for the translation. We'll show you how to load a textdomain in a moment, but
you can already grasp how it can be used:

__('stoned', 'biblical-textdomain'); // translates to being pelted by
rocks
__('stoned', 'drug-slang-textdomain'); // translates to being
intoxicated or dazed from drugs

Once you have adjusted your plugin's messages to be piped through the localization
functions, you will be ready to scrape them using Poedit or any similar tool.

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing Your Plugin

[240]

Choosing a textdomain
Choose a unique textdomain for your plugin—the name should contain only
alphabetical characters, hyphens, and underscores. Keeping in line with WordPress
parlance, it should match the name of your plugin's folder. Once you have chosen
a name, you need to comb through your plugin and ensure that each message is
wrapped with the __() or _e() functions that specify the message and the textdomain:

__('This is my message', 'my-unique-textdomain');

Usually this isn't difficult, but it may take a while. As always, be careful about
apostrophes and periods when concatenating strings. If you encounter some
messages that are a bit more complicated, have a look at the following sections for
examples of how to handle them.

Some users may find it preferable to include the __() and _e() functions as soon
as they start writing code—it's up to you. We have omitted them from previous
chapters so we could keep our examples clean and save the discussion for this
chapter. There's no harm in including the localization functions right from the get-
go once you know how to use them—they will execute without errors even if the
translations or textdomain do not yet exist.

Best practices
It may seem completely counter-intuitive, but you must avoid using variables for
your message text. Consider the following two examples:

_e('This is an Ok message', 'my-textdomain');
$msg = 'This never shows up on the radar';
_e($msg, 'my-textdomain');

As far as PHP syntax is concerned, both of those functions are properly formed.
However, the second example causes problems down the road when we need to
extract translatable messages into a dedicated language file. It's maddening, but the
scraping tools rely on simple text parsing, not PHP parsing, so they don't attempt
to figure out variable values. We will cover the Poedit application and creation
language files momentarily, but for now, just make sure you are using literal strings
in conjunction with the __() and _e() functions and not variables. Don't forget!

In conjunction with the basic "scrape-friendly" syntax, here are a handful of best-
practices that WordPress recommends along with a few of our own:

•	 Use regular, proper English. Minimize slang and abbreviations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[241]

•	 Use entire sentences: Do not do something like:
_e('This is the first line') . '
' . _e('of my really long
message.');

•	 Think of each message as a unit. If you wrote all your messages on pieces of
paper and dropped them into a hat, would a translator be able to translate
each one if he pulled them out of the hat one by one?

•	 Use sprintf() instead of string concatenation. For example:
sprintf(__('Replace %s with %s'), $a, $b); is always better than
__('Replace ').$a.__(' with ').$b;

•	 Split long messages into paragraphs. Merge related sentences, but do not
include whole pages of text in one string.

•	 Avoid unusual markup and unusual control characters. Do not use HTML
or URLs in your translation messages unless there is some legitimate reason
that they would change with locale (for example, a link to a locale specific
help page).

•	 Do not leave leading or trailing whitespace in a translatable phrase.
•	 Do not translate variables; translate literal strings only; otherwise language

file generators will be unable to extract language strings. For example:
__('This works'); /* whereas */ $x = 'This'; __($x); // fails.

Working with formatting
This whole process of internationalization and localization requires some careful
doctoring of your messages, and you may find it necessary to dumb-down your
HTML formatting. Consider the following message:

$msg = 'Determines where this post type should appear in the left hand
admin menu.

Default: null - appears below Comments.
<ul style="margin-left:40px;">
5 - below Posts
10 - below Media
';

How can we correctly format this message to rely on __() to provide translatable
strings? We need to break it down into units, and we don't want to include any
HTML as part of our translatable message. The following is what we came up with:

$msg = __('Determines where this post type should appear in the left
hand admin menu.','my-textdomain');
$msg .= '
';

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing Your Plugin

[242]

$msg .= __('Default: null - appears below Comments.','my-textdomain');
$msg .= '<ul style="margin-left:40px;">
 5 - ' . __('below Posts','my-textdomain') .'</
li>
 10 - '. __('below Media','my-textdomain') .'</
li>
 ';

It's more complicated than the original, but it's now ready for localization!

More advanced messages
Some of you may have realized that there are some messages that need to include
additional bits of data, such as a number of records returned:

$msg = "3 fields deleted";

In the scenario above, "3" is a variable. In this case, you can wrap your messages
using the sprintf() function, just like we did in Chapter 3:

$cnt_fields_deleted = 3;
$translated_msg = sprintf(__('%s fields deleted', 'your-
textdomain'), $cnt_fields_deleted);

This preserves the integrity of the message for translation purposes, and it allows
you to better inform the user about what is going on.

Plural vs. singular
Wait! Some of you are already a step ahead. What happens if there is only a single
field deleted? The message should then read "field" instead of "fields". Ah, this is
tricky. Well, there is a function that solves precisely that problem:

_n($msg_single, $msg_plural, $number, $textdomain)

This function allows you to provide variations on messages when there are chances
of singular or plural versions of the text. It solves one problem, but we discourage
its use because it causes another: its translation strings do not get picked up by
Poedit's radar. Remember, Poedit and the other tools used to generate language
files rely on simple text parsing that grabs only the first argument from a defined
translation function. In other words, only the message for the $msg_single ends up
getting scraped. It's unfortunate that we cannot rely on a WordPress internal, but for
cases like this we have to write our own if-statement if we want our POT file to be
generated correctly:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[243]

$msg = '';
if ($cnt_fields_deleted == 1)
{
 $msg = __('A single field was deleted','my-textdomain');
}
else
{
 $msg = sprintf(__('%s fields deleted','my-textdomain'), cnt_
fields_deleted);
}

These messages are starting to get more and more complex, so you may need to do
some shuffling to keep your code clean. Be diligent!

More complex messages
Since we're talking about sprintf() and its invaluable assistance in formatting
translated messages, we should cover the cases where you want to supply it with
more than one bit of data. If you've got your multi-lingual "mojo" going on, you
will remember that many languages use a different word order than English (for
example, noun and then adjective), and this may affect your messages. You can still
rely on the sprintf() function, but we need to follow sprintf's rules for argument
swapping. If we leave translations out of this for a moment, we can see that
argument swapping allows us to specify exactly where the additional arguments get
placed into the format string:

$msg_v1 = 'They were %1$s %2$s.';
$msg_v2 = 'The %2$s were %1$s.';
print sprintf($msg_v1, 'large','dogs'); // They were large dogs.
print sprintf($msg_v2, 'large','dogs'); // The dogs were large.

As a mnemonic, the original %s is still hidden in there, but now it has 1$ or 2$
sandwiched in between the % and s to reference the original order of the incoming
arguments: %1$s references the first argument ("large") and %2$s references the
second argument ("dogs"). Make sure to use single quotes around your message
format string, otherwise the $s will get interpreted as a new variable:

$msg_v3 = 'The %2$s were %1$s.'; // single quotes are ok
$msg_v4 = "The %2\$s were %1\$s."; // using double-quotes, you must
escape the '$'

It is good to cover the fundamentals here, because little things like syntax can get in
your way when what you really want to focus on is the translation of your message.

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing Your Plugin

[244]

Let's take a look at how this all fits together in a more complex message. In the
following message, assume that "bob" and "12" are both variables:

"User bob is currently editing page 12."

To get this to work, all you need to do is use verbose placeholders that allow
argument swapping:

$translated_msg = sprintf(
 __('User %1$s is currently editing page %2$s.', 'your-
textdomain')
 , $user
 , $post_id
);

Now you have a message string that is safe to translate into languages that may
change the order of your arguments, such as German:

"Seite 12 wird vom Benutzer bob bearbeitet."

If you're wondering how you are supposed to translate a string that contains
mysterious instances of "%s" in it, then the next section is for you. There are times
when you really need to put in a comment for the translator.

Notes to translators
Sometimes, the usage of your messages may be obscure or fairly complicated (like
some of the above examples), and you will want to include a message to translators.
This can be done using a simple comment with a pre-defined format. Simply preface
your comment with translators:, like this:

/* translators: this should reflect a localized date format, see
http://php.net/date */
$localized_date_format = __('g:i:s a');

This is how you can clarify the usage of strings that contain instances of "%s". It
is best to give an example of what the message might read after sprintf() has
replaced the "%s" with a value.

The Poedit application also has an option to add a comment to each message, but its
functionality seems quirky and poorly implemented. The comment does get written
to the generated .po files, but once made, the comments are not editable. For that
reason, we discourage the use of Poedit's comments function.

These examples should cover the majority of cases that you may encounter while
internationalizing your messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[245]

Language files
Now that we have internationalized our code and prepared it for localization using
the __() family of functions, it's time to create a POT file. POT stands for "portable
object template", and the .pot file will store all of your translatable messages in one
place. The POT file is what translators will typically use to translate your messages
into a specific language and locale. It is called a template because it contains message
IDs. You may have thought that you were typing actual messages into your plugin,
but take a moment to think of them as IDs. We are all familiar with this type of
message ID—we see them all the time in error codes. For example, the copy machine
might display "Error Code 7", or you may get a 404 message when you try to visit
a web page that no longer exists. Later we translate that code or ID into a message
we understand, like "Toner Low" or "Page not Found", but the ID itself is language
agnostic.

In other words, you could have written your entire plugin using esoteric message
codes for your messages and technically the process would still work—that's a
horrible idea, but it is technically possible. This type of architecture means that
plugin developers can use any language they want when displaying messages—
Spanish, Thai, German—and it doesn't matter so long as they can translate those
message IDs into other languages. Pretty cool, huh?

From the POT file, we will translate our message IDs into actual languages and
create a .po file for each localization. Remember that the message ID in the .pot file
should be thought of as being language agnostic until it gets translated into a specific
locale via a .po file. Thankfully our messages in the POT file are already in our
native language, so our first "translation" is nothing more than a copy and paste.

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing Your Plugin

[246]

You have several options available to you when creating your POT file, but the one
we will be covering next uses a cross-platform application named Poedit (available
at www.poedit.net/download.php). Make sure you download and install it before
continuing. We've done a lot of explaining so far, but now it is time to get to it!

Creating a POT file
Open up Poedit and choose to create a "catalog". Hopefully the terminology makes
more sense to you after our discussions about how the process works. A "catalog" is
a list of "message IDs". Poedit's interface is a bit unwieldy (particularly on Mac OS
X), but it outperformed the other tools we tested. Follow our instructions and have
some patience, and you'll get through it (we wouldn't lie to you). You need to enter
data on three tabs: Project info, Paths, and Keywords.

The Project info tab is pretty straightforward. Adjust your country and the language
used in your messages accordingly. You'll want to use UTF-8 as your Charset.
However, don't click OK yet! You need to edit information on the other two tabs!

It's common for WordPress plugins to include a folder dedicated to holding your
localization files. Often this is called "languages", "localizations", "translations" or
simply "lang", and that's where you will save your .pot file. We are choosing to name
our folder "lang", but what's important for the Paths tab is that you include a relative
path from the dedicated lang folder up to the plugin's base directory, namely: "..". All
we are doing is telling Poedit the path from where the language files will be stored.
If you stored your translations nested inside two folders, for example, special/
languages, then you would have to use a path of ../../. Make sense?

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[247]

Do not change the base path, and do not click on OK yet! First update your
Keywords tab!

Keywords are used to identify the names of the translation functions. Keep in mind
that Poedit is not made just for WordPress—it can be used to create .pot files for
any application that uses the gettext localization framework, so you have to define
which functions (that is keywords) are used when displaying messages. Remove or
edit the defaults so the two keywords are __ and _e. Yes, there are other WordPress
localization functions, but we are omitting them from this example.

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing Your Plugin

[248]

Only after you have configured each of the three tabs, you can safely click on the
OK button. Save the file into your plugin's lang directory (or whatever you chose to
call it). Make sure you manually type in the .pot extension, and name the file using
the same name as your plugin's directory. Oddly, some translation tools require that
your .pot file uses the same name as your plugin's folder.

If you received an error when trying to save, it can mean that you accidentally
changed the base path from "." in the Paths tab—make sure that you add a new path
named "../" and leave the base path alone.

Congratulations! Hopefully that was not too troublesome. You should now have a
valid .pot file!

Creating translations: .po files
Once you have successfully saved your .pot file, it's immediately time to create your
first translation. Remember that at this point, the .pot file technically contains only
language-agnostic message IDs, not yet actual messages. You need to translate those
message strings into a specified language and save the resulting .po file. Poedit's
interface is a bit skimpy on the labeling. Select the term you want to translate from
the list, and then type the translation into the text field at the bottom of the window.
For your first locale, this is as simple as copying and pasting your original message.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[249]

After you have translated all the entries, you should save your work in the original
POT file, but you also need to do a Save As. The way this works is very similar to how
Microsoft Office deals with templates. Any Word document or Excel spreadsheet can
be saved as a template and its contents stay the same (more or less). With Poedit, your
POT template file is essentially identical to your primary language's .po file, but the
way they are treated by the application is slightly different.

After you've saved your .pot file, save a copy as a .po file using a naming
convention that incorporates your plugin name, the language of the translation, and
the locale. For example, if "my-plugin" had been localized for traditional Chinese
(Taiwan), you would end up with a file named my-plugin-zh_TW.po, whereas if it
had been localized for simplified Chinese (China), you would save your file as my-
plugin-zh_CN.po.

"zh" is a language code as defined by ISO 639-1 (Wikipedia link: http://goo.
gl/yHjM) whereas "TW" and "CN" are country codes as defined by ISO 3166-1
(Wikipedia link: http://goo.gl/hUim). Sometimes the language code and the
country code are the same.

In our example, we're going to save the translation as my-plugin-en_US.po. This
naming convention helps WordPress find the correct file when you specify a locale—
your plugin's folder name, textdomain, and the prefix to your language files should
all be the same. You'll notice that saving a .po file also creates a .mo file. The .mo files
are "machine object" files—they are binary reproductions of the .po files, and they
are not meant to be read by humans. Normally, you don't need to concern yourself
with the .mo files, but if you ever need to, you can regenerate a .po file from its
corresponding .mo file.

To summarize, WordPress language files come in three flavors:

•	 POT: A "Portable Object Template", or POT file, saved with a .pot extension.
This is the file that will store all of your translatable messages in one place.

•	 .po: "Portable Object" files are created when a POT file is translated into a
specific locale. They contain the locale-specific translation of the message
strings.

•	 .mo: These are binary versions of the .po files which are not intended to be
read by humans.

Congratulations! You have now internationalized and localized your plugin!

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing Your Plugin

[250]

Loading a textdomain
If you've come this far, you should be ready for a victory lap: you've done a lot of
work to internationalize and localize your plugin. The final thing you need to do is
to tell WordPress to actually load up your localized translations. The format of the
function is as follows:

load_plugin_textdomain('your-unique-name','/path/to/your/plugin-name/
location-of-language-files/');

Again, for consistency we recommend using the same name for your plugin's folder
as for your textdomain. We've seen some inconsistent behavior in different plugins
and applications that seem to expect this naming convention, so it's best to follow it.
To load the language files, all you need to do is to tie into a WordPress action and
reference the load_plugin_textdomain() function.

Chances are that you've already hooked into WordPress' init action somewhere in
your plugin, so you can just add the load_plugin_textdomain() function to the
callback function that you have already defined. If your plugin isn't already hooking
into the init event, you might add a hook and a function looking something like the
following:

add_action('init', 'myplugin_load_translation_file');

function myplugin_load_translation_file()
{
 // relative path to WP_PLUGIN_DIR where the translation files will
sit:
 $plugin_path = plugin_basename(dirname(__FILE__) .'/lang');
 load_plugin_textdomain('myplugin', '', $plugin_path);
}

The trickiest thing here is determining your plugin path. Depending on whether
your callback function is in a file at the root of your plugin's directory, in a class in
the includes directory, or somewhere else entirely, the plugin path may have to be
adjusted. When in doubt, print it out—if you can see the path that you are intending
to use, you can tell if it is correct.

Save your work, and try browsing through the WordPress manager to ensure that no
errors are being thrown.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[251]

Updating a translation
Each time you change the messages used in your plugin, you will have to update your
POT file and the primary .po file that you created when you first created the POT file.
Each time you publish a new version of your plugin, you may end up re-reading this
chapter so you can regenerate your translation files. You are familiar with the process
now, and Poedit makes it fairly straightforward.

Launch Poedit and open your existing .pot file. Double-clicking on the POT file may
cause PowerPoint to launch because it too uses the .pot extension.

Mac only: We encountered some difficulties using the Mac version of Poedit: it was
unable to easily open an existing .pot file. You can either drag the .pot file onto the
Poedit icon while holding down the option + Apple keys to force Poedit to open the
file, or when you click on the Open button inside of Poedit, make sure you enable
the All files (*.*) option so you can correctly select your .pot file.

Once you have opened your POT catalog, you merely need to click on the "Update"
icon and your plugin files will be re-scanned for new message strings.

Any new messages will be added to the catalog, and any old ones that are no longer
used will be deleted. As before, all you need to do is provide translations of the new
message strings. Save your work in the original POT file, and then perform another
"Save as" where you update your primary language .po file. Remember: your
primary language file is essentially a copy of your POT file.

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing Your Plugin

[252]

Format for the readme.txt file
There are only a couple more requirements for you to fulfill before you can
submit your plugin to the WordPress repository. One of those requirements is
that each plugin must be accompanied by a readme.txt file, and several of the
other requirements can piggyback on its merits once you have written this file. We
included information about writing good documentation in the previous chapter—
this section has only to do with using the correct format for that documentation.

The readme.txt file uses a standardized format to describe a plugin's functionality,
installation procedures, and a usage manual. Its contents are automatically parsed by
the WordPress plugin repository to display an information page for each plugin—
you've already seen many such pages while browsing for plugins (for example,
http://wordpress.org/extend/plugins/vipers-video-quicktags).

There is a sample readme.txt file available here: http://goo.gl/lkFQ. We
recommend that you copy this into your plugin's directory and customize it. The
sample file is fairly descriptive, and it relies on a common markup engine. The only
things we will clarify are right at the beginning:

•	 Requires at least: 2.0.2: This refers to a version of WordPress
•	 Tested up to: 2.1: This also refers to a version of WordPress
•	 Stable tag: 4.3: This refers both to a version of your plugin, and a

corresponding SVN tags directory (for example, tags/4.3/ inside your
plugin's repository)

If you diligently followed our chapter on testing your plugin, it will be easy for you
to enforce the use of a minimum version of WordPress. The stable tag is a way for
you to continue development and tagging without alerting users that an update is
available. You are perhaps already familiar with WordPress' efficient notices about
when your plugins have updates available. These messages are triggered when the
plugin authors submit new versions of their plugins to the WordPress repository
and they update the stable tag in their readme.txt files. No messages are sent until
the readme's "Stable tag" setting is updated and the repository trunk is copied and
named in the tags folder. Just remember that the version listed in your plugin's
information header should match up exactly with the tagged directories you create
in SVN. Versions and tags should only contain numbers and periods.

The main sections include:

•	 Description
•	 Installation
•	 Frequently Asked Questions
•	 Screenshots

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[253]

You can also add your own sections as needed. This is a perfect time to review the
chapter on good documentation and ensure that your explanations are clear and to
the point.

Section – installation
WordPress plugins are very easy to install, and they are almost always installed
in the same manner. This section should include a reference to any configuration
options or manager pages that may have been added—direct the user to those pages
so they can see your plugin in action with their own eyes.

Section – Frequently Asked Questions
The Frequently Asked Questions section should include both answers to simple what
questions such as "what does this button do?", as well as answers to how questions
such as "how do I make a rainbow in my brain?" The how questions are your chance
to shine with detailed and full examples, or even provide references to included
screenshots or videos.

An often overlooked FAQ is "how do I remove this plugin?" Even though you think
your plugin is super-awesome, you should at least let people know if it made any
modifications to the database or if it is using any rows from wp_options, and so on.
If you haven't already done so, you should consider adding some cleanup code that
helps uninstall the plugin. Refer back to Chapter 7 for an example.

Section – screenshots
Your readme.txt file can include screenshots of your plugin in action. We highly
recommend including a couple. People are very visual, and a picture can speak a
thousand words. You can include images in the standard "web-friendly" formats:
.png, .jpg (or .jpeg), and .gif. Your screenshots should be named screenshot-1.
jpg, screenshot-2.jpg, and so on (or whatever file extension you are using), and
you can add a corresponding description simply by updating the Screenshots section
in the readme.txt file.

Our only pet peeve with this is that WordPress requires the screenshots to be saved
in the root of your plugin's directory. All that work we did organizing our plugin's
files into classes and folders seemingly goes to waste when the screenshots come to
town. Oh well. At least it's not the in-laws.

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing Your Plugin

[254]

Quick tip: Taking screenshots
On Mac OS X, you can use the Grab utility to take screenshots and
Preview to draw annotations on them (arrows, highlights, or extra text—
many of the illustrations in the book were made using the Grab/Preview
combo).
On Windows Vista/7, you can use the built-in Snipping Tool to capture
screenshots and draw annotations. There are also a number of free third-
party utilities available. One of our favorites is Picpick (www.picpick.
wiziple.net).
On any platform, you can also use the powerful and venerable GIMP
photo editor (www.gimp.org) to capture and edit screenshots.

New addition – videos
As of 2010, WordPress' readme.txt files can also include videos! Directly including
object/embed HTML into the readme.txt file is not supported, so you have to use
these short-tags depending on what service is hosting the video:

•	 YouTube: [youtube http://www.youtube.com/watch?v=abcd123]
•	 Vimeo: [vimeo http://vimeo.com/12345]
•	 WordPress.com and VideoPress: [wpvideo 0a1b2c]

This is a great way for you to add screencasts of your plugin in action. Making an
effective screencast is really a topic unto itself, but we recommend keeping it short
(under 10 minutes) and focused. Don't try to talk people's ears off by droning on
about every component in a single video. Several short and pointed videos are better
than a single long one. Young Grasshopper, follow our recommendations from the
chapter on good documentation and choose a purpose for any single video, and it
will guide you with what you should and should not talk about.

Section – summary
The only thing WordPress cares about at a technical level is that the readme.txt
file is in the correct format. To assist with that, WordPress offers a validator service
(http://goo.gl/kiSP). We highly recommend that you use it early and often. It
will help you catch formatting errors and it will give you a crude preview of your
formatting. It will even display the embedded videos.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[255]

Unfortunately, it's a lot easier to programmatically verify the format of a readme.
txt file than it is to test whether or not any of its instructions are actually worth
reading. In case you haven't noticed, we are passionate about you including quality
documentation for your plugin, so we won't mind a bit if you pause for a moment
now to edit your readme.txt file one more time for clarity's sake.

Requesting and using SVN access
Are you chomping at the bit? The only thing that is left for you to do at this point is
to actually submit your plugin and its code. Before you are granted commit access
to the WordPress repository, you have to request it on the following page: http://
wordpress.org/extend/plugins/add/.

One of the things required in your request is a name and a description. This is one
of the areas where you can literally copy and paste from your readme.txt file. You
have already done the hard work by creating the readme.txt file, now you get to
cash in on that investment.

The other thing you need before SVN access is granted is a dedicated URL for your
plugin. Say what? Yes, you need to create a web page somewhere dedicated to your
new plugin. We're not sure exactly why this is a requirement for publishing your
plugin since WordPress handles the hosting and related forum banter. Perhaps it's
some sort of developer hazing or a rite of passage, but if you are developing plugins,
you ought to have your own website(s) and you should be able to quickly dedicate a
URL to your plugin.

What content should appear on that page? Well, that's up to you, but you
already have some viable fodder in your readme.txt file, so that is a good
starting point. Remember, this is the page that should be referenced in your
plugin's information header.

It may take a few days to be granted access—WordPress includes a link about
understanding the process: http://wordpress.org/extend/plugins/about/.
Fairly soon you will receive an e-mail that looks something like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing Your Plugin

[256]

plugin-devleoper,
Your plugin hosting request has been approved. Within one hour, you
will have access to your SVN repository at:
http://plugins.svn.wordpress.org/name-of-your-plugin/

with your WordPress.org/bbPress.org username and password (the
same one you use on the forums).
Following are some handy links to help you get started:
Using Subversion with the WordPress Plugins Directory
http://wordpress.org/extend/plugins/about/svn/

FAQ about the WordPress Plugins Directory
http://wordpress.org/extend/plugins/about/faq/

WordPress Plugins Directory readme.txt standard
http://wordpress.org/extend/plugins/about/readme.txt

readme.txt validator:
http://wordpress.org/extend/plugins/about/validator/

Enjoy!

Once you have gained access to this new SVN repository, it's simply a matter of
committing your code to that repository. Feel free to review our chapter on SVN, but
in a nutshell the process will go something like this:

1. Create a new folder on your computer dedicated to the WordPress version of
your plugin.

2. Establish the link between this folder and the new repository by using SVN's
checkout command to create a local working copy:
svn checkout http://plugins.svn.wordpress.org/name-of-your-
plugin/ .

3. If you haven't been "versioning" your code, go ahead and skip to the next
step. However, if you are versioning your plugin using SVN and a different
repository (for example, GoogleCode), then you must first export the latest
code to a separate directory on your hard drive using the svn export
command, for example:
svn export /path/to/my/versioned/code /path/to/a/new/folder/that/
does/not/exist/yet

Remember: svn export needs to create a new folder for the export.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[257]

4. Take your plugin's files and copy them into the dedicated folder that now
contains your working copy of your WordPress repository. Use the svn
add function to put all these files and directories under version control and
schedule them for addition to repository, for example:
svn add *

5. Commit your code using svn commit, for example:
svn commit . -m 'My first commit'

6. Wait! We're not quite done! You'll want to tag your current version so as to
be compatible with the "Stable tag" attribute in your readme.txt file. Adjust
the svn copy command to match the versions you are tagging:
svn copy http://plugins.svn.wordpress.org/name-of-your-plugin/
trunk http://plugins.svn.wordpress.org/name-of-your-plugin/
tags/1.2.3

It would be a really good idea to check the WordPress repository yourself to see if
you can download your plugin. Keep in mind it may take up to an hour for your
updates to percolate through the system. Before you cross this item off your to-do
list, just make sure that the potential users out there can download your plugin.

Once that is done, the only thing you need to do is tell the world about your shiny
new plugin.

Publicity and promotion
We'd like to think that a good plugin will stand on its own merits, but it never
hurts to give it a helping hand. If you have written a terrific plugin, don't be shy
about it—we want to know about it, and we might never find it if you don't tell
us about it!

Here are few places where you can try to let people know about your new creation:

•	 The WordPress Support Forum (http://goo.gl/2TgO): This should be your
first stop. The title and description can more or less from your readme.txt
file—the important thing here is to let people know about it.

•	 Weblog tools collection (http://goo.gl/Mrur): This is another great place to
let people know about your plugin. Use the "New WordPress Plugins" forum
to put your project on everyone's radar. Your post here can be about the
same as the one on the WordPress forum.

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing Your Plugin

[258]

•	 Facebook (or other social media): If you have friends who might be
interested, you can try giving a simple non-technical pitch announcing your
plugin and what it does as a Facebook status update or link. Even if your
friends don't understand it, they might get excited and help you get the word
out. Hooray for friends!

•	 Your own clients: This one is brilliant. If you wrote a plugin that does
something really useful and you managed to do it while getting paid,
then there's a high possibility that someone else is going to want that
functionality. As the plugin's author, you will be the point of contact if
people have projects requiring the functionality of the awesome plugin you
wrote—it can easily lead to other gigs, so although your instinct might be
to keep your plugin private for your own personal use, publicizing it might
actually bring you more business, and that's more in keeping with the spirit
of open source software anyhow. Remember that WordPress plugins are
released under the GPLv2 license, so you don't have the same legal rights as
you would with a standalone application.

Summary
We have come a long way. You have not only developed a plugin that does something
useful, but you have also jumped through the flaming hoops of random requirements
in order to get it published as an official WordPress plugin. The responsibility goes
beyond this day, however. Be alert to bugs, security problems, or any feature requests.
Above all, take a moment to be proud of your accomplishment. Getting a software
project out the door is a lot more work than it seems, and if you have persevered, you
deserve some praise and a seat in the "authors only" clubhouse.

We hope that this book has been a useful part of your WordPress and PHP
education. Code on!

www.it-ebooks.info

http://www.it-ebooks.info/

Recommended Resources
Not done learning yet? Excellent! A developer's work is never finished, it seems. Here
are some additional resources that we recommend in order to continue your education.

PHP reference
http://php.net

This is the official documentation for PHP, and it should be one of your fist stops
when determining how to use any PHP function.

Function reference
http://codex.wordpress.org/Function_Reference

This is the place to look up official documentation for any WordPress function.
However, some pages are poorly linked and many functions are sparsely defined.
The WordPress community needs your help in making this a better reference, so if
you struggle with any of the definitions here, please take a moment to go back and
clarify the documentation to help out the rest of us. We added and edited a handful
of these pages while writing this book.

The WordPress forums
http://wordpress.org/support

We are obligated to mention this site as the official forum for WordPress, but in
our own experiences, the forums are not particularly helpful for people with
specific programming questions. Generally, only simpler questions are likely
to garner responses.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommended Resources

[260]

A more active alternative is the WordPress IRC chat rooms using the #wordpress
channel:

http://codex.wordpress.org/IRC

WebDev Studios
http://webdevstudios.com

This is a website run by Brad Williams, a WordPress developer and enthusiast. His
name shows up in a number of WordPress articles, podcasts, and events. Look for
his plugins in the WordPress repository.

Viper007Bond
http://www.viper007bond.com

Alex is an employee of Automatic, and his site and plugins offer some great tips on
how to use the software.

Kovshenin
http://kovshenin.com

A tech-savvy Russian named Konstantin Kovshenin runs this site. He makes some
great observations and has tackled some difficult WordPress issues. Your chances of
overcoming a problem are much higher if Konstantin has cleared the way first.

SLTaylor
http://sltaylor.co.uk

Steve Taylor lives and works in London, and his blog covers a variety of topics,
including WordPress, and the articles are generally good and informative.

XPlus3
http://xplus3.net

This is the brainchild of Jonathan Brinley, who runs a web development company
with his wife. This site was sometimes the only place where we could find certain
difficult topics discussed. If Jonathan has written about something you need to work
on, then it's probably hugely educational to see what he has to say about it.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[261]

WP Engineer
http://wpengineer.com

Here is another useful site with lots of tips and tricks about the inner workings
of WordPress.

Other plugins
Honestly, a terrific way to learn more about coding plugins for WordPress is by
plowing through hundreds of existing plugins that offer to do something similar
to your project idea. Once you find a good plugin author, you know where to get
quality stuff. In general, if the plugin throws errors or notices and is a mess to read,
then it's likely not worth copying.

This is one of the beautiful aspects of an open source project. If you need to
find inspiration from existing code in another plugin, seek the cleanest and
best code available.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress API Reference
The following is a compendium of functions, actions, and filters referenced within
this book.

PHP functions
There are over 700 functions built into PHP. The following are seven that we used,
with examples.

dirname
string dirname(string $path);

Returns parent directory's path. Often this is used to determine the path to the
current script.

Example:

print dirname(__FILE__); // prints something like '/users/me'

file_get_contents
string file_get_contents(string $filename [, bool $use_include_path =
false [, resource $context [, int $offset = -1 [, int $maxlen]]]])

Reads an entire file into a string. This is a useful way to read static, non-PHP files.
It can even work for downloading remote files, but it's better to tie into the curl
functions for serious downloading.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress API Reference

[264]

preg_match
int preg_match(string $pattern , string $subject [, array &$matches
[, int $flags = 0 [, int $offset = 0]]])

The preceding code performs a regular expression match using Perl-compatible
regular expressions.

Example:

if (preg_match('/^wp_/', $post_type)){
 print 'Post type cannot begin with wp_';
}

Special codes are used to signify different things:
•	 ^ = The beginning of the string.
•	 $ = The end of the string.
•	 [0-9] = Any digit, 0-9.
•	 [a-z] = Any lowercase letter, a-z. You can make the search case-

insensitive by using the "i" flag.
•	 .* = Shorthand for any character.

preg_replace
mixed preg_replace('/[^a-z|_]/', '_', $sanitized['post_type']);

Performs a regular expression search and replaces using Perl-compatible regular
expressions.

Example:

$string = 'The dog ate my homework';
$pattern = '/dog/i';
$replacement = 'bear';
echo preg_replace($pattern, $replacement, $string);

Returns:

"The bear ate my homework"

print_r
mixed print_r(mixed $expression [, bool $return = false])

Prints human-readable information about a variable. This is extremely useful for
debugging.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

[265]

Example:

$x = array('x' => 'Something',
 'y' => array('a' => 'alpha')
);
print_r($x);

Output:

Array
(
 [x] => Something
 [y] => Array
 (
 [a] => alpha
)

)

sprintf
string sprintf(string $format [, mixed $args [, mixed $...]])

Returns a string produced according to the formatting string format. This function
helps to avoid sloppy PHP concatenations. Mostly, we have used only the string types,
marked by the %s placeholder, but there are others available. If your format string uses
two or more placeholders, you can make use of the syntax for argument-swapping.

Example:

$format = 'The %1$s contains %2$s monkeys';
$output = sprintf($format, 'zoo', 'many');

strtolower
string strtolower(string $str)

Makes a string lowercase. This is a simple text formatting tool.

substr
string substr(string $string , int $start [, int $length])

Returns part of a string.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress API Reference

[266]

Example:

// Get the first 20 characters of a long string:
$short_str = substr($long_str, 0, 20);

WordPress Functions
The following are a number of functions within WordPress that we utilized, with
examples.

__
string __(string $text [, string $domain])

Retrieves the translated string into the current locale. The $domain is "default"
by default, but when authoring your own plugin, you should define your own
text domain.

Example:

print __('Hello', 'my_text_domain'); // Might print "Hola" in a
Spanish speaking locale.

_e
_e($text, $domain)

Prints the translated string into the current locale. The result is the same as if you
had done:

echo __('your-string');

add_action
add_action($event, $function_to_add, $priority, $accepted_args);

Hooks an action event to a user-defined callback function; normally, no values are
returned from these callback functions.

Example:

add_action('wp_head', 'MyClass::my_static_function');

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

[267]

add_filter
add_filter($event, $function_to_add, $priority, $accepted_args);

Hooks a filter event to a user-defined callback function; filter events normally accept
a string as input and return a filtered string value.

add_meta_box
add_meta_box($id, $title, $callback, $page, $context, $priority,
$callback_args);

Allows plugin developers to add sections to the Write Post, Write Page, and Write
Link editing pages. See the chapter on custom fields for an example.

add_options_page
add_options_page(see below);

Allows plugin authors to create their own menu page in the WordPress manager.
This function is a wrapper function for the add_menu_page() function.

Example:

add_options_page(
 'Custom Post Types', // page title
 'Custom Post Types', // menu title
 'manage_options', // capability
 'my_unique_menu_slug', // menu-slug (should be unique)
 'MyClass::my_static_function' // callback function
);

See http://codex.wordpress.org/Administration_Menus

check_admin_referer
check_admin_referer($action, $name_of_nonce_field);

Tests if the current request carries a valid nonce, used to avoid security exploits. This
function dies if not referred to from an admin page, returns Boolean true if the admin
referrer was successfully validated. Its inputs should line up exactly to the inputs
used in the wp_nonce_field() function.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress API Reference

[268]

Example:

if (check_admin_referer('name_of_my_action','name_of_nonce_field'))
{
 // process form data, e.g. update fields
}
// Display the form
print '<form method="post">';
// other inputs here ...
wp_nonce_field('name_of_my_action','name_of_nonce_field');
print '</form>';

esc_html
string esc_html($string)

Encodes < ,> ,&, " ,' (less than, greater than, ampersand, double quote, single quote).
Very similar to esc_attr().

get_option
mixed get_option($option_name, $default)

A safe way of getting values for a named option from the options database table.
If the desired option does not exist, or no value is associated with it, the $default
value will be returned. If the value you are trying to retrieve is an array, then an
array will be returned; if it's a string, then a string will be returned.

get_post_meta
mixed get_post_meta($post_id, $name, $single)

This function returns the values of the custom fields with the specified key from the
specified post. Also see update_post_meta(), delete_post_meta(), and add_
post_meta(). $single is "false" by default, so it's possible to retrieve an array of
values. Since this can be unexpected and architecturally awkward, we recommend
that you always set $single to "true".

get_the_ID
integer get_the_ID()

Returns the numeric ID of the current post. This tag must be within the Loop.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

[269]

register_post_type
register_post_type(see chapter 7)

Creates or modifies a post type. Do not use register_post_type before init. This
function has a lengthy list of inputs. Be careful about supplying literal Booleans (for
example, a literal false instead of zero or ''). This is the function that really allows
WordPress to have CMS capabilities. Please see Chapter 7 for examples on how to use
this complex function.

remove_meta_box
remove_meta_box($id, $page, $context);

Allows plugin developers to remove sections from the Write Post, Write Page, and
Write Link editing pages. This is the counterpart to the add_meta_box() function.

See http://codex.wordpress.org/Function_Reference/remove_meta_box

screen_icon
screen_icon()

Simple template function used when generating admin pages. This will print a
plugin icon.

the_content
the_content($more_link_text, $strip_teaser)

This prints the contents of the current post. This tag must be within the Loop.
Remember that this does not return the results, it prints them. You can optionally
configure it to output the first part of the content.

the_meta
the_meta()

This is a simple built-in function for printing custom fields for the current post,
known as the "post-meta" (stored in the wp_postmeta table). It formats the data into
an unordered list.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress API Reference

[270]

update_post_meta
update_post_meta($post_id, $field_name, $value);

Updates the value of an existing meta key (custom field) for the specified post.

wp_count_posts
integer wp_count_posts($post_type[, $perm]);

Outputs a count of the given post type. Setting the $perm option will include private
posts that the current user has permission to read. The function doesn't provide any
options for more granular control of the count.

wp_die
wp_die($msg [, $title, $args]);

Kills WordPress execution and displays HTML page with the supplied error
message. You can configure how the page is displayed.

wp_nonce_field
wp_nonce_field($action, $name_of_nonce_field);

Retrieves or displays nonce hidden field for forms. Works hand in hand with the
check_admin_referer() function. This function prints its results.

Actions
See the WordPress Codex "Action" reference (http://goo.gl/zo5vY) for a more
complete list.

admin_init
Runs at the beginning of every admin page before the page is rendered. If you need
to display data to the admin users, this is a great action to hook into.

admin_menu
Runs after the basic admin panel menu structure is in place. Hook into this action
when adding your own custom menu items.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

[271]

Example:

add_action('admin_menu', 'ContentRotator::add_menu_item');

do_meta_boxes
Runs as meta boxes are being constructed in the manager. Meta boxes are any "extra"
bit of data displayed, for example, custom fields on a post edit page.

Example:

add_action('do_meta_boxes', 'StandardizedCustomContent::remove_
default_custom_fields', 10, 3);

init
Runs after WordPress has finished loading but before any headers are sent.

Example:

add_action('init', 'LiveSearch::initialize');

save_post
This action is called immediately after a post or page is created or updated.

Example:

add_action('save_post', 'StandardizedCustomContent::save_custom_
fields', 1, 2);

widgets_init
Runs in the Dashboard when widgets are registered.

Example:

add_action('widgets_init', 'ContentRotatorWidget::register_this_
widget');

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress API Reference

[272]

wp_head
Runs when the template calls the wp_head function.

Example:

add_action('wp_head','diggthis_add_js_to_doc_head');

Filters
See the WordPress Codex "Filter" reference (http://goo.gl/1UX4U) for a more
complete list.

In this book, we have used mostly actions to achieve our goals, but it can be
necessary to filter data.

the_content
This is an important one. Triggered when the template file executes the_content()
function (that is the tag).

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
$all_instances array 128
$class_names_used array 218
$control_options array 125
$custom_fields_for_posts variable 157
$function_names_used array 218
.append() method 79
__construct() function 108
_diggthis_get_post_author() function 49
_e, WordPress functions 266
<form> tag 72
_get_active_content_types() function 142
.get() method 81
.keyup() method 81
.po files

creating 248, 249
.ready() function 77
--revision flag 206
--revision flag 209
<script> tag 53, 75
__, WordPress functions 266

A
action reference

about 270
admin_init 270
admin_menu 270
do_meta_boxes 271
init 271
save_post 271
widgets_init 271
wp_head 272

actions and filters exercise, Hello Dolly plugin
about 40
reference links 43

add_action() function 30, 39, 48, 140, 177, 266
add_action() hook 181
add command 200, 210
add_filter() function 30, 39, 48, 177, 186, 267
add_menu_item() function 130
add_menu_page() function 181
add_meta_box() function 139, 144, 267
add_meta_box, WordPress functions 267
add_options_page() function 181, 267
add_plugin_settings_link() function 188
add_shortcode() function 177
add_theme_support() function 174
admin_footer event 39
admin_init action 270
admin_menu action 270
admin_referer() function 185
Ajax

about 67
integrating, in WordPress plugins 70, 71
mock up 71

Ajax Search plugin
activating 84, 85
Ajax search requests, handling 96-98
creating 83
CSS files, adding 90, 91
index.php, creating 84, 85
index.php, updating 86, 87
JavaScript, adding 92-96
PHP class, creating 85, 86
PHP version, testing 87-89
searchable pages, testing for 89, 90
search Handler, adding 92
search results, formatting 99-101

Ajax search requests
handling 96, 97

Ajax search results
formatting 99-101

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

[274]

apply_filters() function 188
array_slice() function 61
array_unshift() function 187
aspects, plugin development

documentation, for developer 19
environment 20
interfaces 19
localization 19
security 21
tests 20
version control 20

Asynchronous JavaScript and XML. See
Ajax

B
branches folder 195
BuiltWith 7
button template

adding, to social bookmarking plugin 57,
58

C
call_user_func() function 87
changes

commiting, to SVN repository 200, 201
check_admin_referer() function 133, 156,

184, 267
checkout command 193, 196, 204, 209
class

advantages 218
class_exists() function 218
Clippy 229, 230
Coda

about 13
URL 13

coding guidelines, WordPress 15
commit command 200, 210
conflicting names

avoiding 215-219
considerations, code organizing

classes, using 16
descriptive function names, using 17
descriptive variable names, using 16
logic and display layers, seperating 17
short tags, avoiding 18
tasks, isolating into functions 16

ContentChunks class 182
ContentChunks::get_admin_page()

function 182
ContentChunks::get_chunk()

function 177, 178
ContentChunks::option_key class

constant 189
Content Chunks plugin

customizing 181-185
settings shortcut link, creating 186-188
shortcodes, testing 180
shortcodes, using 177-180
uninstalling 188-190

ContentRotator::get_random_content() func-
tion 134

ContentRotator::parse() function 121
ContentRotatorWidget class 107
ContentRotatorWidget.php widget()

function 127
Content Rotator widget plugin

activating 110
architecture plan 105
classes, extending 112, 114
content, randomizing from

database 134, 135
custom manager page, adding 129, 130
custom text, adding 115
expiration dates 125
index.php file, creating 106
issues 111
options, adding to custom manager

page 131-133
overview 106
preparing for 106-109
random content, generating 121-125
static functions, using 114, 115
widget, activating 110, 111
widget options, adding 116-121

copy command 205, 210
Core FTP LE

URL 14
count() function 61
create_meta_box function 143
current_user_can() function 165
custom admin_page.php, Content Rotator

widget plugin 129
custom data display, Standardized Custom

Content plugin

www.it-ebooks.info

http://www.it-ebooks.info/

[275]

about 158
benefits, of using MySQL 163, 164
granular display 161, 162
theme, copying 158, 159
theme, modifying 159-161

custom fields
adding, to WordPress post 138
standardizing 139

custom manager page
adding, to Content Rotator widget

plugin 129, 130
options, adding 131-133

custom post types 167
custom tests 226
custom text

adding, to Content Rotator widget
plugin 115

CyberDuck
about 14
URL 14

D
database

test results, storing in 229
debugging

browser cache, clearing 23
exercise 25, 26
php.ini file, updating 23
syntax, checking 24
values, checking 24
wp-config.php file, configuring 23

defined() function 218
define() function 57, 86
delete command 210
description, social bookmarking plugin

retrieving 60, 61
dictionaries

versus phrasebooks 232
diggthis_check_wordpress_version()

function 65
diggthis_get_button() function 49, 52, 57
dirname() function 91
dirname, PHP functions 263
div tag 129
documentation

about 230, 232
need for 230, 231

do_meta_boxes action 140, 271
dynamic links

creating 55, 56

E
EasyPHP

URL 12
Eclipse

URL 13
eMacs 14
errors

overcoming 201, 202
esc_html, WordPress functions 268
expiration dates, Content Rotator widget

plugin
$instance, explaining 127, 128
options, adding to widget 125, 126
shelf life, enforcing 126, 127

explode() function 61, 135
export command 209, 210

F
Facebook 258
file_get_contents() function 100, 263
files

adding, to local working directory 199, 200
adding, to SVN repository 203, 204
moving 208
removing, from SVN repository 204

FileZilla
about 14
URL 14

filters 272
flush_rules() method 189
folder structure, SVN 194, 195
form() function 116
FTP client

about 14
Core FTP LE 14
CyberDuck 14
FileZilla 14
Transmit 14
WinSCP 14

func_get_args() function 144
function_exists() function 218
function reference 259

www.it-ebooks.info

http://www.it-ebooks.info/

[276]

G
get_admin_page() function 184
get_categories() function 63
get_defined_vars() function 24
get_field_id() function 117
get_field_name() function 117
get_header event 39
get_loaded_extensions() function 223
get_option() function 132, 184
get_option, WordPress functions 268
get_page_by_title() function 179
get_permalink() function 59
get_post_meta, WordPress functions 268
get_settings() method 127
getter function 147
gettext localization frame 247
get_the_content() function 61
get_the_ID, WordPress functions 268

H
header blocks, Hello Dolly plugin

reference link 32
health check page

about 227
setting up 228

hello_dolly() function 30
Hello Dolly plugin

actions and filters exercise 40
activating 29, 30
deconstructing 29
filters exercise 41-43
functions, adding 38
hello.php file, examining 30
information header 30
parse error 32
user-defined functions 34

hello.php file, Hello Dolly
examining 30

hook
about 39
referencing, via add_action() 39
referencing, via add_filter() 39

HTML, writing
about 76, 77
anonymous functions 79
div, adding 79, 80

generated page, viewing 78
multi-line strings 77

I
IDE

about 13
Eclipse 13

implode() function 61
import command 203
index.php file

about 216-218
creating 84, 85

information header, Hello Dolly plugin
about 30
breaking 30
format 31
location 31

init action 271
initialize function 89
internationalization

about 237, 238
formatting 241, 242

is_admin() function 89
isset() function 214

J
JavaScript

adding, to social bookmarking plugin 52-55
Jet Brain's PhpStorm

URL 13
jQuery, hooking up

FireBug console, using 75
jQuery library loading, testing 74, 75

jQuery.noConflict() function 75

K
keyup event 80
Kovshenin

URL 260

L
lang directory 248
language files 245, 246
LiveSearch::initialize() function 89

www.it-ebooks.info

http://www.it-ebooks.info/

[277]

loader.php file
about 216, 219
modifying 220, 221

load_plugin_textdomain() function 250
localization

about 237, 238
formatting 241, 242

local working copy
about 193
checking out 193
checking out, of repo 198, 199

local working directory
files, adding to 199, 200

M
Mac 12
Macintosh 12
MAMP

URL 12
media type, social bookmarking plugin

retrieving 62
message IDs 245
Microsoft Web Platform

URL 12
mock up, Ajax

about 71-73
data, fetching from another page 81, 83
HTML, writing 76
jQuery, hooking up 74
listener, creating 80, 81

my_plugin_main() 48
my_plugin_some_function 48
MySQL client

about 14
Sequel Pro 14
SQLyog 14

MySQL version
testing 223

N
Nagios

URL 228
new state

verifying, of SVN repository 202, 203
noConflict method 75

normal search form
comparing, with Ajax search form 68, 69

NotePad++
URL 13

NotePad2
URL 13

P
Parallels

URL 11
parent::__construct() function 109
Perl Template Toolkit 9
PHP 215
PHP functions

__CLASS__ 135
__FILE__ 135
about 263
dirname 263
explode($separator, $str) 135
file_get_contents 263
parent::__construct() 135
preg_match 264
preg_replace 264
print_r 264
rand(x,y) 135
sprintf 265
stripslashes() 135
strtolower 265
substr 265
trim() 135

php.ini file 215
PHP modules

testing 223, 224
PHP notices

about 213
avoiding 214

PHP reference
URL 259

PHP short tags
about 215
avoiding 215

PHP Toolkit
URL 24

PHPUnit 227
PHP version

testing 222

www.it-ebooks.info

http://www.it-ebooks.info/

[278]

phrasebooks
versus dictionaries 232

plugin 10
plugin_action_links filter 231
plugin development

aspects 18
plugin information header, social book-

marking plugin 50
plugin outline, social bookmarking plugin

about 48, 49
button template, adding 57, 58
description, retrieving 60, 61
JavaScript, adding to head 52-55
link, adding to post content 51
media type, retrieving 62
plugin information header 50, 51
post title, retrieving 60
post topic, retrieving 62-64
post URL, retrieving 58-60

plugin's documentation
checklist 233-235

plugins_url() function 53, 91
post content, social bookmarking plugin

functions, documenting 52
linking to 51, 52

post title, social bookmarking plugin
retrieving 60

post topic, social bookmarking plugin
retrieving 62-64

post types
about 168, 169
customizing 175, 176

post URL, social bookmarking plugin
retrieving 58, 59

POT file
creating 246-248

preg_match() function 21, 264
preg_replace() function 21, 64, 264
print_custom_fields() function 156, 144
print_r() function 24, 59, 264
project

reverting 206, 207
Project info tab 246
proof_of_concept.html page 55
PSPad

URL 13

Q
query method 97

R
rand() function 122
random content, Content Rotator widget

plugin
generating 121-125

readme.txt file 230, 252
recommendations, PHP debugging 22
recommended resources

function reference 259
Kovshenin 260
PHP reference 259
SLTaylor 260
Viper007Bond 260
WebDev Studios 260
WordPress forums 259
WP Engineer 261
XPlus3 260

register_chunk_post_type() function 175
register_post_type() function

about 167, 169, 269
understanding 170-175

register_shortcodes() function 177, 185
register_widget() function 106, 109
remove_default_custom_fields() function

142
remove_meta_box() function 139, 269
repo 192
revert command 204, 207, 210

S
save_custom_fields() function 157
save_post action 271
save_settings() method 127
screen_icon() function 129, 184, 269
seconds_shelf_life value 126
sensible configurations

using 229
Sequel Pro

about 14
URL 14

shortcode_atts() function 179
shortcodes

www.it-ebooks.info

http://www.it-ebooks.info/

[279]

using 177
SimpleTest library 227
single file

reverting 207, 208
SLTaylor

URL 260
Smarty 9
social bookmarking plugin

about 45
architecture planning 46
function names confliction, avoiding 47
outline 48
proof of concept 46, 47
submit to digg button, adding 46

sprintf() function 57, 243, 265
SQLyog

bout 14
URL 14

StandardizedCustomContent.php file 139
Standardized Custom Content plugin

creating 139, 140
custom content, saving 155, 156
custom data, displaying in templates 158
custom fields, defining 145-148
custom form elements, generating 149-155
custom meta box, creating 143, 144
default form for custom fields,

removing 140-143
limitations 164
troubleshooting, data saving 157

status command 200, 209
strip_shortcodes() function 61
stripslashes() function 133
strip_tags() function 61
str_replace() function 64, 100
strtolower, PHP functions 265
substr() function 61, 265
Subversion. See SVN
Sun's NetBeans

URL 13
SVN

about 192
folder structure 194, 195
functions 191
need for 192

SVN access
requesting 255

using 255
SVN_EDITOR environment

variable 201, 202
SVN repository

about 192
changes, commiting to 200, 201
files, adding to 203, 204
files, removing from 204
setting up 197, 198
state, verifying for 202, 203

SyncroSVN
URL 20

T
tags folder 195
templating system, WordPress 9
test results

storing, in database 229
textbook example 70
textdomain

loading 250
text editors

about 12
Coda 13
features 12
NotePad++ 13
NotePad2 13
PSPad 13
TextMate 13
TextWrangler 13
UltraEdit 13

TextMate
about 13
URL 13

TextWrangler
about 13
URL 13

the_content event 39
the_content() function 160, 269, 272
the ContentRotator::get_random_content()

function 129
the_meta() function 160, 269
the_title() function 160
TortoiseSVN

URL 20
tpls/ directory 102

www.it-ebooks.info

http://www.it-ebooks.info/

[280]

translations
creating 248, 249
updating 251

Transmit
about 14
URL 14

trunk directory 193
trunk folder 194

U
UltraEdit

URL 13
unit testing 226, 227
unserialize() function 33
update command 203-210
update_option() function 133
update_post_meta, WordPress

functions 270
urlencode() function 57
user-defined functions

about 34
closing ?> tag, omitting 38
evil functionless plugin 34-37

user-supplied data
printing, to page 21
using, for constructing database queries 22

V
var_dump function 24
version

tagging 205, 206
version_compare() function 65
Versions

URL 20
Viper007Bond

URL 260
VirtualBox

URL 11
VMware

URL 11

W
WAMP

URL 12
web development tools

about 11
FTP client 14
IDE, using 13, 14
Mac 12
MySQL client 14
Text editor 12, 13
Windows 12
WordPress 11

WebDev Studios
URL 260

Weblog tools collection 257
widget() function 113
widget options

adding, to Content Rotator widget
plugin 116-121

widgets_init action 271
Windows 12
WinSCP

URL 14
WordPress

about 7, 11
coding guidelines 15
ContentChunks plugin, customizing 181
debugging 22
downloading 11
extending 8
features 8
hook 39
limitations 227
parse error 32
post types 168, 169
recommended resources 259
shortcodes, using 177-179
shortcode, testing 180
shortcomings 138
social bookmarking 45

WordPress API reference
actions 270
filters 272
PHP functions 263
WordPress functions 266

WordPress architecture
about 8
plugins 9
summarizing 10, 11
templating system 9

WordPress Dashboard

www.it-ebooks.info

http://www.it-ebooks.info/

[281]

browsing 29
WordPress event

get_header event 39
the_content event 39

WordPress forums
URL 259

WordPress function reference 58
WordPress functions

__ 266
_e 266
about 266
add_action 266
add_filter 267
add_meta_box 267
add_options_page 267
check_admin_referer 267
esc_html 268
get_option 268
get_post_meta 268
get_the_ID 268
register_post_type 269
remove_meta_box 269
screen_icon 269
the_content 269
the_meta 269
update_post_meta 270
wp_count_posts 270
wp_die 270
wp_nonce_field 270

WordPress installed plugins
testing 224-226

WordPress plugins
.po files, creating 248, 249
about 9, 10
actions, versus filters 40
advanced messages 242
complex messages 243, 244
FAQs 253
installing 253
internationalization 237, 238
language files 245, 246
localization 237, 238
message, processing 238, 239
POT file, creating 246-248
promotion 257
publicity 257
publishing 237
readme.txt file format 252

screenshots 253
summary 254
SVN access, requesting 255
SVN access, using 255-257
textdomain, loading 250
textdomain, selecting 240
translations, creating 248, 249
translation, updating 251
videos 254

WordPress post
custom fields, adding 138

WordPress Support Forum 257
WordPress version

testing 222
WordPress versions

checking 64, 65
working copy

about 192
exporting 208, 209
updating 204, 205

wp_content 169
wp_count_posts, WordPress functions 270
wp_die, WordPress functions 270
WP Engineer

URL 261
wp_enqueue_script() function 53, 92
wp_head action 272
wp_nonce_field() function 132, 133, 156, 185
wp_nonce_field, WordPress functions 270
wp_posts 169
WP_Query class 97
wp_register_script() function 53, 92
WP_Widget class 105
WP_Widget __construct() function 109
WP_Widget object class 106
wrap class 129

X
XAMPP

PURL 12
XPlus3

URL 260

Z
Zend Studio IDE

URL 13

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
WordPress 3 Plugin Development Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

OGRE 3D 1.7 Beginner's Guide
ISBN: 978-1-849512-48-0 Paperback: 300 pages

Create real time 3D applications using OGRE 3D from
scratch

1. Easy-to-follow introduction to OGRE 3D

2. Create exciting 3D applications using OGRE 3D

3. Create your own scenes and monsters, play
with the lights and shadows, and learn to use
plugins

Linux Shell Scripting Cookbook
ISBN: 978-1-849513-76-0 Paperback: 360 pages

Solve real-world shell scripting problems with over
110 simple but incredibly effective recipes

1. Master the art of crafting one-liner command
sequence to perform tasks such as text
processing, digging data from files, and lot more

2. Practical problem solving techniques adherent
to the latest Linux platform

3. Packed with easy-to-follow examples to
exercise all the features of the Linux shell
scripting language

Please check www.PacktPub.com for information on our titles

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Preparing for WordPress Development
	WordPress background
	Extending WordPress
	Understanding WordPress architecture
	Templating
	Introducing plugins

	Summarizing architecture
	Tools for web development
	WordPress
	Mac
	Windows
	Text editor
	Using an IDE
	FTP client
	MySQL client

	Coding best practices
	Basic organization
	Isolate tasks into functions
	Use classes
	Use descriptive variable names
	Use descriptive function names
	Separate logic and display layers
	Go modular, to a point
	Avoid short tags

	Planning ahead / starting development
	Interfaces
	Localization
	Documentation for the developer
	Version control
	Environment
	Tests
	Security
	Printing user-supplied data to a page
	Using user-supplied data to construct database queries

	Debugging
	Clearing your browser cache
	Updating your php.ini file
	Configuring your wp-config.php file
	Checking your syntax
	Checking values
	Exercise

	Summary

	Chaoter 2:Anatomy of a Plugin
	Deconstructing an existing plugin:
"Hello Dolly"
	Activating the plugin
	Examining the hello.php file

	Information header
	Exercise—breaking the header
	Location, name, and format

	Understanding the Includes
	Exercise – parse errors

	Bonus for the curious
	User-defined functions
	Exercise—an evil functionless plugin
	What just happened
	Omitting the closing "?>" PHP tag
	A better example: Adding functions

	Referencing hooks via add_action()
and add_filter()
	Actions versus Filters
	Exercise—actions and filters
	Exercise—filters
	Reading more

	Summary

	Chapter 3:Social Bookmarking
	The overall plan
	Proof of concept
	Avoiding conflicting function names

	The master plugin outline
	The plugin information header
	In your browser—information header

	Adding a link to the post content
	Documenting our functions
	In your browser—linking to the post content

	Adding JavaScript to the head
	Making our link dynamic

	Adding a button template
	Getting the post URL
	In your browser—getting the post URL

	Getting the post title
	Getting the description
	Getting the media type
	Getting the post topic
	In your browser—title, description, and topic

	Checking WordPress versions
	Summary

	Chapter 4:Ajax Search
	What is Ajax?
	The overall plan
	The proof of concept mock up
	Hooking up jQuery
	Test that jQuery has loaded
	What happened?
	Using the FireBug console directly

	Writing HTML dynamically to a target div
	Multi-line strings
	Viewing the generated page
	Anonymous functions
	Adding a div on the fly

	Create a listener
	Fetching data from another page

	Creating our plugin
	Creating index.php and activating the plugin
	Creating our first PHP class
	Updating index.php
	Testing your version of PHP
	Testing for searchable pages
	Adding your own CSS files
	Adding your search handler
	Adding your own JavaScript
	Handling Ajax search requests
	Formatting your search results

	Summary

	Chapter 5:Content Rotator
	The plan
	Widget overview
	Preparation
	Activating your plugin
	Activating the widget
	Having problems?

	Parents and children: extending classes
	Objects vs. libraries: when to use static functions

	Add custom text
	Adding widget options
	Generating random content
	Expiration dates: adding options to our widget
	Expiration dates: enforcing the shelf life
	Explaining the $instance

	Adding a custom manager page
	Adding options to the custom manager page

	Randomizing content from the database
	Review of PHP functions used
	Summary

	Chapter 6:Standardized Custom Content
	What WordPress does for you: custom fields
	What WordPress doesn't do for you
	Standardizing a post's custom fields
	Creating a new plugin
	Removing the default WordPress form for custom fields
	Creating our own custom meta box
	Defining custom fields
	Generating custom form elements
	Saving custom content

	Having trouble saving data?
	Displaying custom data in your Templates
	Copying a theme
	Modifying the theme
	Granular display of custom fields
	Bonus for the MySQL curious

	Known limitations
	Summary

	Chapter 7:Custom Post Types
	Background: What's in a name?
	Understanding register_post_type()
	Customizing our post type
	Using shortcodes
	Testing our shortcode

	Customizing our plugin
	Creating a settings shortcut link
	Cleaning up when uninstalling
	Summary

	Chapter 8:Versioning Your Code with Subversion (SVN)
	Why Subversion?
	Understanding the terminology and concepts
	Checking out a local working copy
	SVN folder structure
	Checkout, revisited

	Setting up an SVN repository
	Checking out a local working copy
of our repo
	Adding files
	Committing changes to the repository
	Overcoming errors
	Verifying the new state of your repository
	Adding more files to your repository
	Removing files from the repository
	Updating your working copy
	Tagging a version
	Reverting an entire project
	Reverting a single file

	Moving files
	Exporting your working copy
	Quick reference
	Summary

	Chapter 9:Preparing Your Plugin for Distribution
	Public enemy number one: PHP notices
	PHP short tags
	Conflicting names
	Modifying loader.php
	Testing WordPress version
	Testing PHP version
	Testing MySQL version
	Testing PHP modules
	Testing WordPress installed plugins
	Custom tests
	Unit tests
	WordPress limitations
	Health check page
	Storing test results in the database
	Death to clippy: Use sensible
configurations
	Double check your interface
	Documentation
	Identify the purpose
	Learning to drive: Keeping it relevant
	Phrasebooks vs. dictionaries: Give examples
	Analogy: The three bears
	Analogy: PC load letter

	The decalogue of documentation
	Summary

	Chapter 10:Publishing Your Plugin
	Internationalization and localization
	Processing each message
	Choosing a textdomain

	Best practices
	Working with formatting
	More advanced messages
	Plural vs. singular
	More complex messages
	Notes to translators

	Language files
	Creating a POT file
	Creating translations: .po files
	Loading a textdomain
	Updating a translation
	Format for the readme.txt file
	Section—installation
	Section—Frequently Asked Questions
	Section—screenshots
	New addition—videos
	Section—summary

	Requesting and using SVN access
	Publicity and promotion
	Summary

	Appendix A:Recommended Resources
	PHP reference
	Function reference
	The WordPress forums
	WebDev Studios
	Viper007Bond
	Kovshenin
	SLTaylor
	XPlus3
	WP Engineer
	Other plugins

	Appendix B:WordPress API Reference
	PHP functions
	dirname
	file_get_contents
	preg_match
	preg_replace
	print_r
	sprintf
	strtolower
	substr

	WordPress Functions
	__
	_e
	add_action
	add_filter
	add_meta_box
	add_options_page
	check_admin_referer
	esc_html
	get_option
	get_post_meta
	get_the_ID
	register_post_type
	remove_meta_box
	screen_icon
	the_content
	the_meta
	update_post_meta
	wp_count_posts
	wp_die
	wp_nonce_field

	Actions
	admin_init
	admin_menu
	do_meta_boxes
	init
	save_post
	widgets_init
	wp_head

	Filters
	the_content

	Index

