
Manual for tools-for-g16.bash (0.2.0, 2019-03-19)

Martin C Schwarzer

March 19, 2019

Contents

1 Introduction 2

1.1 Preliminary notes on the usage of this manual . 2

2 Installation & Configuration 2

2.1 Dependencies . 3

3 Utilities 3

3.1 Input preparation: g16.prepare.sh . 4

3.2 Input preparation: g16.dissolve.sh . 5

3.3 Input preparation: g16.freqinput.sh . 6

3.4 Input preparation: g16.ircinput.sh . 6

3.5 Input preparation: g16.optinput.sh . 7

3.6 Input preparation: g16.spinput.sh . 8

3.7 Pre-processing: g16.testroute.sh . 8

3.8 Input submission: g16.submit.sh . 8

3.9 Post-processing: g16.getenergy.sh . 10

3.10 Post-processing: g16.getfreq.sh . 10

3.11 Post-processing: g16.chk2xyz.sh . 10

4 Usage examples 11

4.1 Basic molecular structure optimisations . 11

4.2 Transition state search . 14

5 Author, Bugs, and the Rest 15

1

Preamble

The following document is currently little more than the already existing reference sheet. As documentation

often goes, it takes a bit more time to do it properly. I apologise for the inconvenience.

1 Introduction

The essence of quantum chemistry is performing calculations with a variety of different methods and programs.

Quite a few of these programs use low level input and output systems. In principle you are usually dealing with

text-based files.

It is in the nature of the problem, that some of the regular tasks are quite repetitive. In order to ease these

tasks, but more importantly also secure a certain level of consistency, some steps can and should be automated.

This is where this repository, tools-for-g16.bash, comes into play. Within it are contained a few scripts written

in bash, which are targeted to aid the use of the quantum chemistry software package Gaussian 16. They cover

automatic generation of input files, submission of these to a queueing system, and post-processing of output

files to archive and extract results.

Please understand that this project started out to help me with my everyday work. I am happy to hear

about suggestions and bugs. I am also fairly certain, that it is and will be a work in progress for quite some

time. Be aware that it could be in constant flux.

This ’software’ comes with absolutely no warrenty. None. Nada. If you decide to use any of the scripts, it

is entirely your resonsibility.

1.1 Preliminary notes on the usage of this manual

To make the manual easier to understand a few abreviations and common notations are used: Anything set

in brackets [] indicates optional arguments or inputs. Arguments in angles < > require human input, and a

vertical bar | indicates alternatives between the inputs or options.

The following abbreviations will be used throughout:

opt Short for option(s)

ARG String type argument

INT Positive integer (including zero)

NUM Signed whole number (including zero, the plus sign can be omitted)

FLT Signed floating point number (the plus sign can be omitted)

DUR Duration in format [[HH:]MM:]SS

2 Installation & Configuration

The scripts of this repository are not self-contained, they each need access to the resources directory and it has

to be called like that.

The easiest way to install the script is to clone the git repository from GitHub:

github.com/polyluxus/tools-for-g16.bash. Alternatively you can download the tarball archive of the latest

release from there, too:

github.com/polyluxus/tools-for-g16.bash/releases/latest.

After unpacking it only needs to be configured. There are a two kinds of file names recognised: g16.tools.rc

and the hidden .g16.toolsrc. The repository comes with an example of the former, therefore updating the

repository will (probably) overwrite the file. The latter file is excluded from this process, and therefore has

always precedence, so it is generally a safer option to configure.

The scripts will search for these configuration settings in the following order of directories:

1. the path to the script itself

2

https://github.com/polyluxus/tools-for-g16.bash
http://gaussian.com/
https://github.com/polyluxus/tools-for-g16.bash
https://github.com/polyluxus/tools-for-g16.bash/releases/latest

2. the user’s home directory

3. the .config directory in the user’s home directory

4. the current working directory, i.e. from where the script is called.

Only the last found file will be applied.

The repository comes with a configuration script in the configure directory. It produces a formatted file

like g16.tools.rc from old or the default settings. While you can assign an arbitrary filename, I recommend

to store as .g16.toolsrc in the root directory of the repository.

To make the scripts accessible from anywhere, the directory where they have been stored must be found in

the PATH variable. Alternatively, you can create softlinks to them in a directory, which is already recognised by

PATH. A common setting for this is the local $HOME/bin. The configure script will, if desired, try to create these

softlinks (omitting the sh suffix).

2.1 Dependencies

For displaying the help files, the command line utility grep is required.

Some scripts need access to an istallation of Open Babel;1 it is mainly used to interface to the TurboMole

coord file format, and the post-processing scripts.

It should be no surprise that an installation of Gaussian 16 is necessary for some of the scripts, currently

used are the utilities testrt and formchk. While a main wrapper (see next chapter) is still not included in the

repository, the scripts will accept these. Otherwise the Gaussian environment has to be set up, and the utilities

must be found in the PATH directories. The direct path to these utilities might work, too.

The following example is a very simple wrapper script when using software modules.

#!/bin/bash

module load gaussian

"$@"

For the RWTH clusters, which have such an environment installed, there is a separate repository with such

wrapper scripts: github.com/polyluxus/rwth-tools.

3 Utilities

There are essentially three different kinds of scripts contained in this repository: input generation scripts,

execution/submission scripts, and post-processing scripts.

The input generation scripts will, as the description may hint, parse a given file and write an input file for

Gaussian 16. These scripts are designed to be chained, so that a generated input file may act as a template for

a new input file. For example, an input file created with g16.prepare (3.1) can be used with g16.freqinput

(3.3), or with g16.dissolve (3.2). In the next chapter the interplay of the utilities is further explained with

example usages. This of course makes these files dependending on each other, more precisely the newly generated

input relies on the successful creation of a checkpoint file of the previous job. The mechanism employed by

the scripts was introduced in Gaussian 09 Rev. E.01, with the %OldChk directive, which essentially copies the

checkpoint file of a completed calculation to the new location. The contents of which can then be read, or

accessed, with the geom/guess keywords. That actually means, that the input files of a calculation chain can

be prepared in advance without knowing the actual outcome, then submitted with these dependencies.

In Gaussian there is a mechanism to do this with one input file, so called compound jobs, but I (personally)

discourage everyone from using this. There are a few reasons for this, but the most important is that non-

standard route commands will not be copied to a second job, depending on what was done, the level of theory

1For more information see http://openbabel.org/.

3

https://github.com/polyluxus/rwth-tools
http://openbabel.org/

may actually vary.2 Second most important is that any of these steps may fail; if they do, you loose the fallback

and with it results and calculation time. Another inconvenience is that some visualisation programs are not

able to parse these kind of output files.

Essentially the scripts emulate this process, but split it up and externalise the dependencies.

The second group of scripts are execution or submission scripts. Working with a queueing system often

comes with some waiting time. Adjusting the parameters of the calculations to reasonable values can lead

to significant reductions of these times (see g16.submit, 3.8). To further avoid failing in early stages, it is

reasonable to check the route section for syntax errors before submission (see g16.testroute, 3.7). Nothing is

worse than waiting for a job to start, only to realise that a keyword is misspelt.

In this category one crucial example is yet missing: A multipurpose wrapper (or shortcut) script, to actually

call the utilities without having them permanently accessible in the environment. The whole repository was

intended to be based on this, however, it is still the one thing that is missing.3

The last category are post-processing scripts, which help extract data, or transform data files into file

formats, which are more suitable for archiving.

3.1 Input preparation: g16.prepare.sh

This tool reads in a file containing a set of cartesian coordinates and writes a Gaussian inputfile with predefined

keywords. The script interfaces to simple Xmol4 format as it is understood by most molecular editors, but it

understands the Turbomole (or in extension GFN-xTB) coord format, too, if Open Babel is installed on the

system.

Since the implementation actually only looks for lines containing a string (at least one letter) and four

floating point numbers separated by spaces (or tabs), it is therefore also suitable to also parse already generated

input files. This was necessary due to the incapabilities of GaussView to produce actual coordinate files; it

rather produces Gaussian input data files (*.gjf) containing structural information.

This tool is incapable of parsing/producing z-matrix style input.

Usage:

g16.prepare.sh [opt] <file>

Options:

-T <FLT> Temperature (kelvin). This switch adds the temperature keyword to the route section.

-P <FLT> Pressure (atmosphere). This switch adds the pressure keyword to the route section.

-r <ARG> Add ARG to route section. This keyword may be used to add any keyword to the route

section.

-R <ARG> Specific route section ARG. With this option, you can specify a complete route section. It

will be checked for syntax errors, and it can further be modified with -r <ARG>.

-l <INT> Load predefined route section. The basic configuration (and the default values) comes

with a couple predefined route sections (as examples). They can be changed in the

configuration files and eith the configuration script. I still have not gotten around to

write a route section building script, so this has to be done by hand.

-l list Show all predefined route sections. This is a special argument to the above.

2See the Gaussian website http://gaussian.com/input/ for details about multistep jobs.
3For comparison, the wrapper script existed in the now deprecated github.com/polyluxus/tools-for-g09.bash repository; and it

may be implemented some time in the future.
4The prepare script is currently limited to a very simple version of the Xmol file format, and currently only supports the four-

field format. Each file therefore should contain a two line “header”, with the number (integer) of atoms in the first, and a free
form comment in the second. This header, however, will be discarded by g16.prepare.sh. The “body” of the file contains the
positions of the atoms, one line each, in Cartesian coordinates: Element-Symbol xx.xxx yy.yyy zz.zzz, where the element symbol
is a string and the other fields are floating point numbers. The five-field format, which includes an optional charge for the element,
or the eight-field format, which assigns an optional vector associated with the element, as well as the seven-field format, which is
the same as before, but without the charge, are not yet recognised. (If there were implemented, everything except the first four
fields would be discarded.)

4

http://gaussian.com/input/?tabid=1
https://github.com/polyluxus/tools-for-g09.bash

-t <ARG> Adds ARG to end of file. Sometimes it is necessary to add additional lines to the end of an

input file. This option can be used to do that. Fair warning though: this is still somewhat

experimental and not very convenient to use. To include an empty line, the argument has

to be set explicitly empty: -t ’’.

-C <ARG> Specify caption/title of job. Gaussian requires a title section, which must not be empty.

Replacements: %F input filename; %f input filename without .xyz; %s like %f, also filtering

start; %j jobname; %c charge (with indicator chrg); %M multiplicity (with indicator mult);

%U unpaired electrons (with indicator uhf)

The script defaults to using Calculation: %j; %c; %M; %U; (date).

-j <ARG> Jobname of the calculation. The script selects this on the basis of the given molecular

structure file name (<file>) and derives all other file names from it. This switch can be

used to explicitly ovewrite this.

-j %f Jobname is <file> filtering the extension .xyz

-j %s Jobname is <file> filtering the extension start.xyz

-f <ARG> Filename of generated input. This is normally derived from the jobname, but ocasionally

it is worthwhile to set it explicitly.

-c <NUM> Charge (default: 0).

-M <INT> Multiplicity (default: 1; ≥ 1).

-U <INT> Unpaired electrons (unset; ≥ 0). This option will overwrite a multipliity and vice versa.

-m <INT> Memory (megabyte). This will add %Mem=INTMB to the input file.

-p <INT> Processors. This will add %NProcShared=INT to the input file.

-d <INT> Disksize (megabyte). This will add the MaxDisk keyword to the input file.

-- Explicitly close reading script options.

-s Silence script (incremental) to supress messages, warnings, errors.

-h Print a small help file.

3.2 Input preparation: g16.dissolve.sh

This tool reads in a Gaussian 16 input file to extract the current route section and adds relevant keywords for

solvent corrections and produce a new input file. Since this again utilises the %OldChk directive in conjunction

with the geom/guess keywords, the calculation it is based on should be completed.

The list of options regarding the scrf keyword is long and for specifics it is referred to the Gaussian online

manual.

If nothing but a file name is specified, the script defaults to writing a single point calculation input file with

the scrf(pcm,solvent=water) keyword and options.

Usage:

g16.dissolve.sh [opt] <file>

Options:

-o <ARG> Adds option ARG to the SCRF keyword. This may be used to specify the method (like PCM,

SMD, dipole, etc.). The default is PCM. The solevent should no be set with this switch,

but with -S <ARG> instead. This option may be specified multiple times, the input stack

will be collated and written to file.

-S <ARG> Adds option solvent=ARG to the SCRF option list. The default solvent is water. This

option will cause an error if specified more than once.

-O Runs an optimisation (preserves or adds OPT). The default of this script is to run a sin-

glepoint calculation. Rather than adding the opt keyword anew (with -r opt(<ARG>)),

this switch prevents deleting it in the first place.

-r <ARG> Add ARG to route section. This keyword may be used to add any keyword to the route

section; it can be specified multiple times.

5

http://gaussian.com/scrf/
http://gaussian.com/scrf/

-t <ARG> Adds ARG to end of file. This switch functions the same way as in the prepare script.

-f <ARG> Filename of generated input.

-m <INT> Memory (megabyte). This will add %Mem=INTMB to the input file.

-p <INT> Processors. This will add %NProcShared=INT to the input file.

-d <INT> Disksize (megabyte). This will add the MaxDisk keyword to the input file.

-- Explicitly close reading script options.

-s Silence script (incremental) to supress messages, warnings, errors.

-h Print a small help file.

3.3 Input preparation: g16.freqinput.sh

This tool reads in a Gaussian 16 inputfile to extract the current route section and adds relevant keywords for a

frequency calculation and produce a new input file. Since this again utilises the %OldChk directive in conjunction

with the geom/guess keywords, the calculation it is based on should be completed.

There are some options regarding the freq keyword, some common ones are mentioned below, but for

specifics it is referred to the Gaussian online manual. If nothing further is specified, no additional options will

be activated.

Usage:

g16.freqinput.sh [opt] <file>

Options:

-o <ARG> Adds option ARG to the freq keyword. This option may be specifie multiple times, the

input stack will be collated and written to file. Example options are NoRaman, VCD,

Anharmonic, etc..

-R Writes a property run input file to redo a frequency calculation. This adds the option

ReadFC to the freq option list, which is most comonly used to repeat the statistical

thermodynamics at different temperatures and pressures (see below). Note that this

behaves similar to opt(RCFC), but is spelt differently.

-T <FLT> Temperature (kelvin). This switch adds the temperature keyword to the route section.

-P <FLT> Pressure (atmosphere). This switch adds the pressure keyword to the route section.

-r <ARG> Add ARG to route section. This keyword may be used to add any keyword to the route

section; it can be specified multiple times.

-t <ARG> Adds ARG to end of file. This switch functions the same way as in the prepare script.

-f <ARG> Filename of generated input.

-m <INT> Memory (megabyte). This will add %Mem=INTMB to the input file.

-p <INT> Processors. This will add %NProcShared=INT to the input file.

-d <INT> Disksize (megabyte). This will add the MaxDisk keyword to the input file.

-- Explicitly close reading script options.

-s Silence script (incremental) to supress messages, warnings, errors.

-h Print a small help file.

3.4 Input preparation: g16.ircinput.sh

This tool parses a Gaussian 16 inputfile from a previous frequency calculation and adds relevant keywords to

produce two input files for separate IRC calculations, i.e. the forward and the reverse direction. Since this

again utilises the %OldChk directive in conjunction with the geom/guess keywords, the calculation it is based on

should be completed. The script will assume it is based on a successful frequency calculation, and will therefore

write a file that will retrieve calculated Cartesian force constants from the checkpoint file. This means that

RCFC will always be included as an option to the irc keyword. If there is no freq keyword in the input stream,

the script will issue a warning, and the created input files should be checked manually.

6

http://gaussian.com/freq/

Therefore the script defaults to adding irc(RCFC,forward/reverse) to the respective route sections.

There are some more options regarding the irc keyword, some common ones are mentioned below, but for

specifics it is referred to the Gaussian online manual.

Usage:

g16.ircinput.sh [opt] <file>

Options:

-o <ARG> Adds option ARG to the irc keyword. This option may be specifie multiple times, the

input stack will be collated and written to file. Example options are MaxPoints=10,

StepSize=10, etc.. Please note that, as described above, the option RCFC will alway be

written; therefore specifying CalcFC will lead to an error in the calculations.

-r <ARG> Add ARG to route section. This keyword may be used to add any keyword to the route

section; it can be specified multiple times.

-t <ARG> Adds ARG to end of file. This switch functions the same way as in the prepare script.

-f <ARG> Filenametemplate of generated input files; If <ARG>=jobname.suffix then it produces

jobname.fwd.suffix and jobname.rev.suffix.

-m <INT> Memory (megabyte). This will add %Mem=INTMB to the input file.

-p <INT> Processors. This will add %NProcShared=INT to the input file.

-d <INT> Disksize (megabyte). This will add the MaxDisk keyword to the input file.

-- Explicitly close reading script options.

-s Silence script (incremental) to supress messages, warnings, errors.

-h Print a small help file.

3.5 Input preparation: g16.optinput.sh

This tool parses a Gaussian 16 inputfile and writes a new inputfile for a structure optimisation. Originally this

was desingend to be chained onto a previously completed IRC calculation to converge the structure into a local

minimum. This has since changed and the utility of this script is apparently wider. It can also, for example, used

to write an input file to remove imaginary modes that were discovered during a frequency calculation. Another

use would be chaining it onto a successful single point calculation, e.g. after applying solvent corrections. Since

this again utilises the %OldChk directive in conjunction with the geom/guess keywords, the calculation it is

based on should be completed. Another usage is performing scans, or unfreezing scans, etc..

There are many options for the opt keyword, some common ones are mentioned below, but for specifics it

is referred to the Gaussian online manual.

If no options are specified, this just defaults to adding the opt keyword.

Usage:

g16.optinput.sh [opt] <file>

Options:

-o <ARG> Adds option ARG to the opt keyword. This option may be specifie multiple times, the input

stack will be collated and written to file. Example options are TS, AddGIC/ModRedundant,

MaxStep=10, MaxCycles=300, etc..

-r <ARG> Add ARG to route section. This keyword may be used to add any keyword to the route

section; it can be specified multiple times.

-t <ARG> Adds ARG to end of file. This switch functions the same way as in the prepare script.

-f <ARG> Filename of generated input.

-m <INT> Memory (megabyte). This will add %Mem=INTMB to the input file.

-p <INT> Processors. This will add %NProcShared=INT to the input file.

-d <INT> Disksize (megabyte). This will add the MaxDisk keyword to the input file.

-- Explicitly close reading script options.

7

http://gaussian.com/irc/
http://gaussian.com/opt/

-s Silence script (incremental) to supress messages, warnings, errors.

-h Print a small help file.

3.6 Input preparation: g16.spinput.sh

This tool is the counterpart to g16.optinput.sh, and it creates a new inputfile for a subsequent single point

calculation from a specified Gaussian 16 inputfile. If nothing is specified as options, i.e. a new route section or

additional keywords, it will simply remove the opt keyword along with its options.

It is possible to overwrite the existing route section to e.g. use a different level of theory. It is still based on

the %OldChk directive add the geom/guess keywords. This means that data from a previous calculation will be

retrieved.

Usage:

g16.spinput.sh [opt] <file>

Options:

-r <ARG> Add ARG to route section. This keyword may be used to add any keyword to the route

section; it can be specified multiple times.

-R <ARG> Specific route section ARG. With this option, you can specify a complete route section. It

will be checked for syntax errors, and it can further be modified with -r <ARG>.

-t <ARG> Adds ARG to end of file. This switch functions the same way as in the prepare script.

-f <ARG> Filename of generated input.

-m <INT> Memory (megabyte). This will add %Mem=INTMB to the input file.

-p <INT> Processors. This will add %NProcShared=INT to the input file.

-d <INT> Disksize (megabyte). This will add the MaxDisk keyword to the input file.

-- Explicitly close reading script options.

-s Silence script (incremental) to supress messages, warnings, errors.

-h Print a small help file.

3.7 Pre-processing: g16.testroute.sh

This tool parses a Gaussian 16 input file and extracts the route section, which it then checks for syntax errors

with the Gaussian 16 utility testrt. Unfortunately the original Gaussian utility requires a string as input,

which is quite inconvenient if you want to test the input file itself. The input file is parsed by the same routine

as used in the other scripts, and can be used to validate the created (or to be submitted) files.

Usage:

g16.testroute.sh [opt] <file>

Options:

-- Explicitly close reading script options.

-s Silence script (incremental) to supress messages, warnings, errors.

-h Print a small help file.

3.8 Input submission: g16.submit.sh

This tool parses and then submits a Gaussian 16 inputfile to a queueing system.

More specifically it will modify the supplied input file to match the requested resources for the queueing

system. It will create a bash script to be executed as a batch job, i.e. setting up the correct environment and

executing Gaussian 16.

Currently there are three queueing systems supported: PBS, SLURM, LSF (or BSUB). Each come with a

generic set-up, and the latter two with some RWTH specific settings. (Note that the RWTH cluster running

the LSF queueing system will be decommissioned in April 2019, therefore the developement of this feature will

8

http://gaussian.com/testrt/

probably be halted at an as-is status.)

If the input files to be submitted are prepared with the tools of this repository, a few warnings are to be

expected (specifically the memory and priocessors settings). These basically only serve as a reminder.

Usage:

g16.submit.sh [opt] <file>

Options:

-m <INT> Memory (megabyte).

This will add %Mem=INTMB to the Gaussian input file, it will also set the memory flag

for the queuing system. The both settings will not be equal, because some overhead for

Gaussian is included.

-p <INT> Processors.

This will add %NProcShared=INT to the input file, it will also set the appropriate flags

for the numbere of threads/CPUs for the queueing system.

-d <INT> Disksize (megabyte).

This will add the MaxDisk keyword to the input file, but it has no effect in the submitted

script.

-w <DUR> Walltime limit. This sets the appropriate flag for the maximum wall time the job will be

allowed to run.

-e <ARG> Specify an environment variable ARG in format <VAR=value>. Occasionally it is necessary

to set specific environment variables for Gaussian 16 (see manual), this flag causes them

to be written to the submitted script before Gaussian is loaded.

-j <INT> Wait for job with ID INT. Only numeric arguments are supported (even though some of

the available queueing systems would allow names, too.) This option is useful to chain

calculations that depend on each other. Dependencies may stretch over multiple jobs, so

this option can also be specified multiple times.

-H Submit with status hold (PBS, SLURM) or PSUSP (BSUB). Jobs submitted with this

status have to be released later, this could be useful to test submisson. However, RWTH

users should be aware that the tools to release a job are not available for ordinary users.

-k Only create (keep) the jobscript, do not submit it. This option is useful to see what the

script looks like before commiting it to the queuing system, and possibly ammend /modify

it. (This was initially born by the idea to delete the script after successful submission,

hence the name of the option.)

-Q <ARG> Queue for which job script should be created <queue>-<special> (<queue>: pbs, slurm,

bsub; <special>: gen [generic], rwth; see above for more details).

-P <ARG> Account to project (BSUB) or account (SLURM); if ARG is default|0|’’ presets are

overwritten. If accounting is activated for BSUB or SLURM, this option will cause the

appropriate flag to be set in the submission script. (I have no experience for the PBS

queueing system with that, so this is not implemented right now.)

-M <ARG> Specify a machine type (only bsub-rwth); if ARG is default|0|’’ presets are overwritten.

This is a very specific setting, and is probably soon be deprecated. Specifically, this will

cause #BSUB -m ARG to be added to the submit script.

-u <ARG> set user email address (SLURM, BSUB); if ARG is default|0|’’ presets are overwritten.

(I have no experience for the PBS queueing system with that, so this is not implemented

right now.)

-- Explicitly close reading script options.

-s Silence script (incremental) to supress messages, warnings, errors.

-h Print a small help file.

9

3.9 Post-processing: g16.getenergy.sh

This tool finds energy statements from the output files of Gaussian 16 calculations. It is basically an elaborate

interface to the grep command, which can be used to create summaries of the output files.

If no files are given as argument, the script will operate on all output files in the current directory. The

default operating mode of the script will look for input files with the configured suffix (default *.com), then

match the appropriate output suffix (default: *.log), and extract energies from these files.

As such, it does not matter where <file> is an input or output file.

Usage:

g16.getenergy.sh [opt] [<file(s)>]

Options:

-i <ARG> Specify the input suffix to be used for finding matching output files when processing a

directory.

-o <ARG> Specify the output suffix to be used for finding the files when processing a directory.

-L Print the full file and path name of the parsed output file (seperated by newline). The

default behaviour is printing only the filename without the suffix.

-- Explicitly close reading script options.

-s Silence script (incremental) to supress messages, warnings, errors.

-h Print a small help file.

3.10 Post-processing: g16.getfreq.sh

This tool summarises the output of a Gaussian 16 frequency calculation and extracts and reformats the ther-

mochemistry data. This is similarly to g16.getenergy.sh an elaborate interface to the grep command, but it

(depending on the level of verbosity) extracts all corrections necessary to compute thermochemistry, see also

the Gaussian White Paper on thermochemistry.

Usage:

g16.getfreq.sh [opt] <file(s)>

Options:

-v Incrementally increase verbosity of the script.

-V <INT> Set level of verbosity directly, (0|1|2|3|4). The different levels are as follows: (0; de-

fault) display a single line with only the filename file, electronic energy Eel, zero-point

correction EZPE, enthalpy correction Hcorr, and correction to the Gibbs energy Gcorr; (1)

display a single line of most values (equal to -v), which also prints the method, temper-

ature T , pressure p, internal energy correction Ucorr, entropy Stot, constant volume heat

capacity CV,corr; (2) display a short table of most values (like above, equal to -vv); (3)

like 2, also repeats the route section (equal to -vvv); (4) like 3, also includes the decompo-

sition of the entropy, thermal energy Etot and heat capacity into electronic, translational,

rotational, and vibrational contributions (equal to -vvvv). If this option is found, -v will

be ignored.

-c Separate values by comma (-V0|-V1).

-f <ARG> Write the summary to file file instead of screen.

-- Explicitly close reading script options.

-s Silence script (incremental) to supress messages, warnings, errors.

-h Print a small help file.

3.11 Post-processing: g16.chk2xyz.sh

This tool is intended to create files for archiving a Gaussian 16 calculation. Since normal Gaussian checkpoint

files are binary files, and hence platform dependent, it interfaces to the formchk utility to produce a formatted

10

http://gaussian.com/thermo/

checkpoint file (a text file). It further uses Open Babel to write a molecular structure file in Xmol format

(*.xyz).

It can either be applied to checkpoint files or the current directory. In the latter case it assumes chk as the

suffix of the checkpoint files.

Usage:

g16.chk2xyz.sh [-s] -h | -a | <chk-file(s)>

Options:

-a Formats all checkpointfiles that are found in the current directory.

-- Explicitly close reading script options.

-s Silence script (incremental) to supress messages, warnings, errors.

-h Print a small help file.

4 Usage examples

This chapter is still in heavy developement.

4.1 Basic molecular structure optimisations

The molecular structure is often also referred to as geometry, and hence the optimisation of the molecular

structure is often referred to as geometry optimisation.

Here is a short checklist, flowchart, or list how to get from an initial (guessed) structure to a final structure.

1. Create a molecular structure file in cartesian coordinates (*.xyz) with your preferred molecular editor,

command line tool, or even text editor.5

It needs a bit training to click together a reasonable guess, Chemcraft has a reasonably large fragments

database, Molden has a few standards, but is (technically) able to read in fragments, too. For simple

molecules you can sometimes find structures online, maybe even crystal structures. Another easy way is

to search for it on ChemSpider, PubChem, or draw it with Chemdraw (etc.) and generate a SMILES

code. You can use Open Babel to create a guessed structure. For example, the SMILES for ethanol is

CCO, see PubChem CID 702, then the command for Open Babel is:

obabel -:’CCO’ -oxyz --gen3d -Oopt.start.xyz

The option -: takes a SMILES as an input, the -o selects the output format (here chosen as Xmol,

Cartesian coordinates), --gen3d tells the program to generate 3D coordinates, and -O selects the output

file to write on; see also the Open Babel Wiki.

This process sometimes even works for more complex molecules; unfortunately not for organometallic (and

similar) compounds, because SMILES does not describe ionic interactions.6 Assume we did this, and we

5Gaussview is unfortunately unable to write Xmol files, for whatever reason, this is not supported. Instead it can write a
standard Gaussian input file, which you could set up ready-for-submission-complete with Gaussview. A lot of people do that, it is
the GUI to Gaussian after all, the downside of this approach is that you tend to forget what you are doing.

Not everything in those input files is necessary, and some of it is a terrible choice. For example, it usually includes the absolute
paths to checkpoint files. If you decide to change anything (and this is quite likely) and then rerun a calculation, it will very likely
fail, or overwrite existing things. If you are using Gaussview locally, but submit a calculation to the cluster, it is also likely, that
the specified location does not exist.

There are easy and not quite as easy workarounds:

• Use a different program.

• Edit the files on the cluster by hand, remove everything superflous with a text editor.

• Convert them with, e.g. Molden. (Unfortunately Open Babel cannot do that.)

• Use my prepare script. It will search the inputfile for lines of the pattern XX +000.0000 -000.0000 +000.0000 (two letters
followed by three signed real numbers).

• Alternatively, you can use a different program. (Seriously, it is worth mentioning it twice.)

• You can use Gaussian’s newzmat utility to convert it.

6Some may work okay-ish, e.g. sodium ethanolate (CC[O-].[Na+]), others not. You can try building the structure for the cation
of tris(ethylenediamine)cobalt(III) chloride: C(C[NH-])[NH-].C(C[NH-])[NH-].C(C[NH-])[NH-].[Co].[Cl-].[Cl-].[Cl-].

11

http://www.chemspider.com/
https://pubchem.ncbi.nlm.nih.gov/search/
https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system
http://openbabel.org
https://pubchem.ncbi.nlm.nih.gov/compound/ethanol#section=Canonical-SMILES
http://openbabel.org/wiki/Main_Page
http://gaussian.com/newzmat/
https://pubchem.ncbi.nlm.nih.gov/compound/407049

will call it bp86svp.start.xyz.

2. Create an input file. A very simple optimisation would probably use BP86/def2-SVP with mostly default

parameters, or similar,7 so you can just run the prepare script:

g16.prepare -R’#P BP86/def2SVP/W06’ -r’OPT(MaxCycles=100)’ \

-j’bp86svp.opt’ bp86svp.start.xyz

This will create the file bp86svp.opt.com.

3. Submit the input file to the queue. The following command will handle this:

g16.submit -p12 -m4000 bp86svp.opt.com

This will create a modified inputfile bp86svp.opt.gjf, with the correct settings for Gaussian according

to what you requested in the submit routine. It will also create (assuming it is set to slurm-gen) a script

for the queueing system, bp86svp.opt.slurm.bash, which will be executed remotely.

What sensible parameters (processors, memory, walltime) are comes with experience. Obviously don’t ask

for more than you have (-p12, -m4000 is reasonable for medium sized molecule optimisations).

4. Once the calculation is done (you’ll probably get an email), you will have a few output files.

• bp86svp.opt.log: the main output

• bp86svp.opt.chk: the checkpoint file (useful for later)

• bp86svp.opt.slurm.bash.e012345: the error file from the queueing system8

• bp86svp.opt.slurm.bash.o012345: the standard output file from the queueing system

Check the main output file for errors. Everything should be fine when you find Normal termination at

the end (tail bp86svp.opt.log). You can (and should) also search for stationary point found :

grep ’Stationary point found’ -B7 -A3 bp86svp.opt.log.

Don’t forget to open it with a molecular viewer to make sure the structure is actually sensible.

5. Create a frequency calculation in the same directory:

g16.freqinput bp86svp.opt.gjf

This creates bp86svp.opt.freq.com which you can submit:

g16.submit -p12 -m24000 bp86svp.opt.freq.com

Frequency calculations are memory demanding, they will slow down if they do not have enough, about 2

GB per core should be okay.

7Choosing an appropriate level of theory is not often trivial, one has to consider a couple of things, like accuracy, performance,
and speed. I have previously written quite a long article about that: DFT Functional Selection Criteria.

The example command uses the DF-BP86/def2-SVP level of theory, but with something extra. Remember:
g16.prepare -R’#P BP86/def2SVP/W06’ -r’OPT(MaxCycles=100)’ -j’bp86svp.opt’ bp86svp.start.xyz

The -R switch to g16.prepare sets the basic route section to #P BP86/def2SVP/W06, the different parts mean the following:

• The #P selects verbose printing (G16 manual), other options are #N (normal) and #T (terse).

• The method is selected as BP86, which selects the exchange functional B and the correlation functional P86. There are plenty
of Functionals implemented.

• For the example I have chosen the def2-SVP basis set; please note that the keyword is without the dash. There are again
many available in Gaussian, and additional ones can be defined; that is something for more advanced users (and a topic for
another day).

• Additionally, this route section requests density fitting (sometimes also referred to as resolution-of-the-identity, or short RI,
approximation) with the auxiliar basis set W06 (see the Manual for more), which should speed up the calculation. This is also
available via the DensityFit/DenFit keyword, and therefore commonly abbreviated with DF in the level of theory.

The -r switch to the script adds more keywords to the route section. In this specific case we’ll request an optimisation (OPT)
with 100 cycles at the most.

The -j switch selects a jobname for the calculation, and it will further be used to derive filenames for it.
The last argument is the molecular structure file, here in the Xmol format. There are some other formats recognised, but that

is also something for another day.
8The number, here used as example 012345, is the JobID assigned by the queueing system.

12

https://chemistry.stackexchange.com/a/27418/4945
http://gaussian.com/route/?tabid=1
http://gaussian.com/dft/
http://gaussian.com/basissets/
http://gaussian.com/basissets/?tabid=2
http://gaussian.com/densityfit/
http://gaussian.com/opt/

6. You’ll get similar output files like above. Open the *.log file with a molecular viewer, and look at the

frequencies (or modes). If there are no imaginary modes, you have found a local minimum, if there is

exactly one mode, you found a transition state. Repeat the above steps as necessary if you didn’t meet

your target.

7. Look for the energy values and put them in tables to calculate barriers and stuff. You can use the

post-processing script for that, or look through the manual by yourself:

g16.getfreq -V3 bp86svp.opt.freq.log

8. Finalise the calculation with creating a formatted checkpoint file and a coordinate file. The Gaussian

checkpoint files are binary files and they are machine dependent (and fairly large). That usually doesn’t

pose any problem, but it is good practice to create a pure text file anyway. The formatted checkpointfile

can be used as an input for further analysis by many programs, therefore it is good to have in any case.

It can also be reverted to a binary checkpoint file, which means you can actually omit the checkpoint file

while archiving.

Writing an coordinate file with the optimised structure helps cutting down loading times; it also gives you

an indicator that the calculation is done.

You can do these two steps together with the following command:

g16.chk2xyz bp86svp.opt.freq.chk

The above command produces the formatted checkpoint file bp86svp.opt.freq.fchk and the coordinate

file bp86svp.opt.freq.xyz. Alternatively you can use the script with the -a switch to do that for every

*.chk file in the current directory.

Once you have done all the steps you can move on to interpreting the results, which is where often the real

work lies.

The following chart presents a basic diagramme of the above description, it shows how the tools may interact

with each other, or can be chained after one another, respectively.

13

Start

<mol>.start.xyz

<method>.com

<method>.gjf,

<method>.<queue>.bash

<method>.log, <method>.chk,

(queue error/out)

Stationary point found? <method>.xyz, <method>.fchk Eel

<method>.freq.com

<method>.freq.gjf,

<method>.freq.<queue>.bash

<method>.freq.log,

<method>.freq.chk,

(queue error/out)

<method>.freq.xyz,

<method>.freq.fchk
EZPE, . . . ,Hcorr, Gcorr, . . .
 Eo, . . . ,H,G, . . .

NImag
i ∈ {0, 1, ...,N} local minimum target met?

transition state target met?

Done!

Chemcraft, Molden, Open Babel, . . .

g16.prepare

g16.submit

no

g16.freqinputyes

g16

g16.chk2xyz
g16.getenergy

g16.submit

inspect *.log

g16

g16.chk2xyz
g16.getfreq

0

1

≥ 2

ex
tr
a
ct

m
ol
ec
u
la
r
st
ru
ct
u
re
,
re
p
ea
t
op

ti
m
is
at
io
n

no

ex
tr
a
ct

m
ol
ec
u
la
r
st
ru
ct
u
re
,
re
p
ea
t
o
p
ti
m
is
at
io
n

noextract molecular structure, modify/scan, repeat optimisation

yes

yes

4.2 Transition state search

The following chart attempts to do the same for the steps after a successful transition state optimisation.

(This part of the documentation is still very much a work in progress.)

14

Optimised
TS Structure

<method>.freq.com,

<method>.freq.gjf,

<method>.freq.log,

<method>.freq.chk, ...

EZPE, Eo, . . . , G

<method>.irc.fwd.com <method>.irc.rev.com

<method>.irc.fwd.log,

<method>.irc.fwd.chk,

(queue error/out)

<method>.irc.fwd.gjf,

<method>.irc.fwd.<queue>.bash

<method>.irc.rev.gjf,

<method>.irc.rev.<queue>.bash

<method>.irc.rev.log,

<method>.irc.rev.chk,

(queue error/out)

(<method>.irc.fwd.xyz,)

<method>.irc.fwd.fchk

(<method>.irc.rev.xyz,)

<method>.irc.rev.fchk

<method>.irc.fwd.opt.com <method>.irc.fwd.opt.com

<method>.irc.fwd.opt.log,

<method>.irc.fwd.opt.chk,

(queue error/out)

<method>.irc.fwd.opt.gjf,

<method>.irc.fwd.opt.<queue>.bash

<method>.irc.rev.opt.gjf,

<method>.irc.rev.opt.<queue>.bash

<method>.irc.rev.opt.log,

<method>.irc.rev.opt.chk,

(queue error/out)

<method>.irc.fwd.opt.xyz,

<method>.irc.fwd.opt.fchk Stat. Point? Stat. Point?
<method>.irc.rev.opt.xyz,

<method>.irc.rev.opt.fchk

<method>.irc.fwd.opt.freq.com <method>.irc.fwd.opt.freq.com

<method>.irc.fwd.opt.freq.log,

<method>.irc.fwd.opt.freq.chk,

(queue error/out)

<method>.irc.fwd.opt.freq.gjf,

<method>.irc.fwd.opt.freq.<queue>.bash

<method>.irc.rev.opt.freq.gjf,

<method>.irc.rev.opt.freq.<queue>.bash

<method>.irc.rev.opt.freq.log,

<method>.irc.rev.opt.freq.chk,

(queue error/out)

<method>.irc.fwd.opt.freq.xyz,

<method>.irc.fwd.opt.freq.fchk
NImag? NImag?

<method>.irc.rev.opt.freq.xyz,

<method>.irc.rev.opt.freq.fchk

EZPE, Eo, . . . , G Done! EZPE, Eo, . . . , G

. . .

g16.getfreq

g16.ircinput

g16.submit g16.submit

g16 g16

g16.optinput g16.optinput

g16.chk2xyz g16.chk2xyzinspect *.log inspect *.log

g16.submit g16.submit

g16 g16

g16.chk2xyz g16.chk2xyz

inspect *.log inspect *.log

no no

yes g16.freqinput yes g16.freqinput

g16.submit g16.submit

g16 g16

g16.chk2xyz g16.chk2xyz

g
1
6
.
g
e
t
f
r
e
q

g
1
6
.
g
e
t
f
r
e
q

inspect *.log inspect *.log

0 0

≥ 1 ≥ 1

5 Author, Bugs, and the Rest

This repository was created and is maintained by Martin C Schwarzer (� Martin-マーチン � polyluxus).

If you find any bugs, have questions, want features implemented, please do it via the GitHub Issue tracker,

or fork it and send a pull request.

The help of my colleagues for testing, finding bugs, extending the documentation is greatly appreciated.

This document is licensed cba.

15

https://chemistry.stackexchange.com/users/4945
https://github.com/polyluxus
https://github.com/polyluxus/tools-for-g16.bash/issues

	Introduction
	Preliminary notes on the usage of this manual

	Installation & Configuration
	Dependencies

	Utilities
	Input preparation: g16.prepare.sh
	Input preparation: g16.dissolve.sh
	Input preparation: g16.freqinput.sh
	Input preparation: g16.ircinput.sh
	Input preparation: g16.optinput.sh
	Input preparation: g16.spinput.sh
	Pre-processing: g16.testroute.sh
	Input submission: g16.submit.sh
	Post-processing: g16.getenergy.sh
	Post-processing: g16.getfreq.sh
	Post-processing: g16.chk2xyz.sh

	Usage examples
	Basic molecular structure optimisations
	Transition state search

	Author, Bugs, and the Rest

